

Mastering Go

Third Edition

Harness the power of Go to build professional utilities and concurrent servers and services

Mihalis Tsoukalos

[image:]

BIRMINGHAM—MUMBAI

Mastering Go

Third Edition

Copyright © 2021 Packt Publishing

All rights reserved
 . No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Producer:
 Dr. Shailesh Jain

Acquisition Editor – Peer Reviews:
 Saby Dsilva

Project Editor:
 Amisha Vathare

Content Development Editor:
 Edward Doxey

Copy Editor:
 Safis Editing

Technical Editor:
 Aniket Shetty

Proofreader:
 Safis Editing

Indexer:
 Rekha Nair

Presentation Designer:
 Pranit Padwal

First published: April 2018

Second edition: August 2019

Third edition: August 2021

Production reference: 1200821

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80107-931-0

www.packt.com

Contributors

About the author

Mihalis Tsoukalos
 is a UNIX Systems Engineer who enjoys technical writing. He is the author of Go Systems Programming
 and Mastering Go
 , both first and second editions. He holds a BSc in Mathematics from the University of Patras and an MSc in IT from University College London, UK. He has written more than 300 technical articles for magazines including Sys Admin
 , MacTech
 , Linux User and Developer
 , Usenix ;login:
 , Linux Format
 , and Linux Journal
 . His research interests include time series, databases, and indexing.

You can reach him at
https://www.mtsoukalos.eu/

 and @mactsouk
 .

As writing a book is a team effort, I would like to thank the people at Packt Publishing for helping me write this book. This includes Amit Ramadas for answering all my questions, Shailesh Jain for convincing me to write the third edition of Mastering Go, Edward Doxey for the helpful comments and suggestions, and Derek Parker, the technical reviewer, for his good work.

Last, I would like to thank you, the reader of the book, for choosing this book. I hope you find it helpful.

About the reviewer

Derek Parker
 is a Software Engineer at Red Hat. He is the creator of the Delve debugger for Go and a contributor to the Go compiler, linker, and standard library. Derek is an open-source contributor and maintainer and has worked on everything from front-end JavaScript to low-level assembly code.

I would like to thank my wife, Erica, and our two incredible children for lending me the time to work on this project.

Contents

	
Preface

	
Who this book is for

	
What this book covers

	
To get the most out of this book

	
Get in touch

	
A Quick Introduction to Go

	
Introducing Go

	
The history of Go

	
Why UNIX and not Windows?

	
The advantages of Go

	
The go doc and godoc utilities

	
Hello World!

	
Introducing functions

	
Introducing packages

	
Running Go code

	
Compiling Go code

	
Using Go like a scripting language

	
Important formatting and coding rules

	
Important characteristics of Go

	
Defining and using variables

	
Printing variables

	
Controlling program flow

	
Iterating with for loops and range

	
Getting user input

	
Reading from standard input

	
Working with command-line arguments

	
Using error variables to differentiate between input types

	
Understanding the Go concurrency model

	
Developing the which(1) utility in Go

	
Logging information

	
log.Fatal() and log.Panic()

	
Writing to a custom log file

	
Printing line numbers in log entries

	
Overview of Go generics

	
Developing a basic phone book application

	
Exercises

	
Summary

	
Additional resources

	
Basic Go Data Types

	
The error data type

	
Numeric data types

	
Non-numeric data types

	
Strings, Characters, and Runes

	
Converting from int to string

	
The unicode package

	
The strings package

	
Times and dates

	
A utility for parsing dates and times

	
Working with different time zones

	
Go constants

	
The constant generator iota

	
Grouping similar data

	
Arrays

	
Slices

	
About slice length and capacity

	
Selecting a part of a slice

	
Byte slices

	
Deleting an element from a slice

	
How slices are connected to arrays

	
The copy() function

	
Sorting slices

	
Pointers

	
Generating random numbers

	
Generating random strings

	
Generating secure random numbers

	
Updating the phone book application

	
Exercises

	
Summary

	
Additional resources

	
Composite Data Types

	
Maps

	
Storing to a nil map

	
Iterating over maps

	
Structures

	
Defining new structures

	
Using the new keyword

	
Slices of structures

	
Regular expressions and pattern matching

	
About Go regular expressions

	
Matching names and surnames

	
Matching integers

	
Matching the fields of a record

	
Improving the phone book application

	
Working with CSV files

	
Adding an index

	
The improved version of the phone book application

	
Exercises

	
Summary

	
Additional resources

	
Reflection and Interfaces

	
Reflection

	
Learning the internal structure of a Go structure

	
Changing structure values using reflection

	
The three disadvantages of reflection

	
Type methods

	
Creating type methods

	
Using type methods

	
Interfaces

	
The sort.Interface interface

	
The empty interface

	
Type assertions and type switches

	
The map[string]interface{} map

	
The error data type

	
Writing your own interfaces

	
Using a Go interface

	
Implementing sort.Interface for 3D shapes

	
Working with two different CSV file formats

	
Object-oriented programming in Go

	
Updating the phone book application

	
Setting up the value of the CSV file

	
Using the sort package

	
Exercises

	
Summary

	
Additional resources

	
Go Packages and Functions

	
Go packages

	
Downloading Go packages

	
Functions

	
Anonymous functions

	
Functions that return multiple values

	
The return values of a function can be named

	
Functions that accept other functions as parameters

	
Functions can return other functions

	
Variadic functions

	
The defer keyword

	
Developing your own packages

	
The init() function

	
Order of execution

	
Using GitHub to store Go packages

	
A package for working with a database

	
Getting to know your database

	
Storing the Go package

	
The design of the Go package

	
The implementation of the Go package

	
Testing the Go package

	
Modules

	
Creating better packages

	
Generating documentation

	
GitLab Runners and Go

	
The initial version of the configuration file

	
The final version of the configuration file

	
GitHub Actions and Go

	
Storing secrets in GitHub

	
The final version of the configuration file

	
Versioning utilities

	
Exercises

	
Summary

	
Additional resources

	
Telling a UNIX System What to Do

	
stdin, stdout, and stderr

	
UNIX processes

	
Handling UNIX signals

	
Handling two signals

	
File I/O

	
The io.Reader and io.Writer interfaces

	
Using and misusing io.Reader and io.Writer

	
Buffered and unbuffered file I/O

	
Reading text files

	
Reading a text file line by line

	
Reading a text file word by word

	
Reading a text file character by character

	
Reading from /dev/random

	
Reading a specific amount of data from a file

	
Writing to a file

	
Working with JSON

	
Using Marshal() and Unmarshal()

	
Structures and JSON

	
Reading and writing JSON data as streams

	
Pretty printing JSON records

	
Working with XML

	
Converting JSON to XML and vice versa

	
Working with YAML

	
The viper package

	
Using command-line flags

	
Reading JSON configuration files

	
The cobra package

	
A utility with three commands

	
Adding command-line flags

	
Creating command aliases

	
Creating subcommands

	
Finding cycles in a UNIX file system

	
New to Go 1.16

	
Embedding files

	
ReadDir and DirEntry

	
The io/fs package

	
Updating the phone book application

	
Using cobra

	
Storing and loading JSON data

	
Implementing the delete command

	
Implementing the insert command

	
Implementing the list command

	
Implementing the search command

	
Exercises

	
Summary

	
Additional resources

	
Go Concurrency

	
Processes, threads, and goroutines

	
The Go scheduler

	
The GOMAXPROCS environment variable

	
Concurrency and parallelism

	
Goroutines

	
Creating a goroutine

	
Creating multiple goroutines

	
Waiting for your goroutines to finish

	
What if the number of Add() and Done() calls differ?

	
Creating multiple files with goroutines

	
Channels

	
Writing to and reading from a channel

	
Receiving from a closed channel

	
Channels as function parameters

	
Race conditions

	
The Go race detector

	
The select keyword

	
Timing out a goroutine

	
Timing out a goroutine – inside main()

	
Timing out a goroutine – outside main()

	
Go channels revisited

	
Buffered channels

	
nil channels

	
Worker pools

	
Signal channels

	
Specifying the order of execution for your goroutines

	
Shared memory and shared variables

	
The sync.Mutex type

	
What happens if you forget to unlock a mutex?

	
The sync.RWMutex type

	
The atomic package

	
Sharing memory using goroutines

	
Closured variables and the go statement

	
The context package

	
Using context as a key/value store

	
The semaphore package

	
Exercises

	
Summary

	
Additional resources

	
Building Web Services

	
The net/http package

	
The http.Response type

	
The http.Request type

	
The http.Transport type

	
Creating a web server

	
Updating the phone book application

	
Defining the API

	
Implementing the handlers

	
Exposing metrics to Prometheus

	
The runtime/metrics package

	
Exposing metrics

	
Creating a Docker image for a Go server

	
Exposing the desired metrics

	
Reading metrics

	
Putting the metrics in Prometheus

	
Visualizing Prometheus metrics in Grafana

	
Developing web clients

	
Using http.NewRequest() to improve the client

	
Creating a client for the phone book service

	
Creating file servers

	
Downloading the contents of the phone book application

	
Timing out HTTP connections

	
Using SetDeadline()

	
Setting the timeout period on the client side

	
Setting the timeout period on the server side

	
Exercises

	
Summary

	
Additional resources

	
Working with TCP/IP and WebSocket

	
TCP/IP

	
The nc(1) command-line utility

	
The net package

	
Developing a TCP client

	
Developing a TCP client with net.Dial()

	
Developing a TCP client that uses net.DialTCP()

	
Developing a TCP server

	
Developing a TCP server with net.Listen()

	
Developing a TCP server that uses net.ListenTCP()

	
Developing a UDP client

	
Developing a UDP server

	
Developing concurrent TCP servers

	
Working with UNIX domain sockets

	
A UNIX domain socket server

	
A UNIX domain socket client

	
Creating a WebSocket server

	
The implementation of the server

	
Using websocat

	
Using JavaScript

	
Creating a WebSocket client

	
Exercises

	
Summary

	
Additional resources

	
Working with REST APIs

	
An introduction to REST

	
Developing RESTful servers and clients

	
A RESTful server

	
A RESTful client

	
Creating a functional RESTful server

	
The REST API

	
Using gorilla/mux

	
The use of subrouters

	
Working with the database

	
Testing the restdb package

	
Implementing the RESTful server

	
Testing the RESTful server

	
Testing GET handlers

	
Testing POST handlers

	
Testing the PUT handler

	
Testing the DELETE handler

	
Creating a RESTful client

	
Creating the structure of the command-line client

	
Implementing the RESTful client commands

	
Using the RESTful client

	
Working with multiple REST API versions

	
Uploading and downloading binary files

	
Using Swagger for REST API documentation

	
Documenting the REST API

	
Generating the documentation file

	
Serving the documentation file

	
Exercises

	
Summary

	
Additional resources

	
Code Testing and Profiling

	
Optimizing code

	
Benchmarking code

	
Rewriting the main() function for better testing

	
Benchmarking buffered writing and reading

	
The benchstat utility

	
Wrongly defined benchmark functions

	
Profiling code

	
Profiling a command-line application

	
Profiling an HTTP server

	
The web interface of the Go profiler

	
The go tool trace utility

	
Tracing a web server from a client

	
Visiting all routes of a web server

	
Testing Go code

	
Writing tests for ./ch03/intRE.go

	
The TempDir function

	
The Cleanup() function

	
The testing/quick package

	
Timing out tests

	
Testing code coverage

	
Finding unreachable Go code

	
Testing an HTTP server with a database backend

	
Fuzzing

	
Cross-compilation

	
Using go:generate

	
Creating example functions

	
Exercises

	
Summary

	
Additional resources

	
Working with gRPC

	
Introduction to gRPC

	
Protocol buffers

	
Defining an interface definition language file

	
Developing a gRPC server

	
Developing a gRPC client

	
Testing the gRPC server with the client

	
Exercises

	
Summary

	
Additional resources

	
Go Generics

	
Introducing generics

	
Constraints

	
Creating constraints

	
Defining new data types with generics

	
Using generics in Go structures

	
Interfaces versus generics

	
Reflection versus generics

	
Exercises

	
Summary

	
Additional resources

	
Appendix A – Go Garbage Collector

	
Heap and stack

	
Garbage collection

	
The tricolor algorithm

	
More about the operation of the Go garbage collector

	
Maps, slices, and the Go garbage collector

	
Using a slice

	
Using a map with pointers

	
Using a map without pointers

	
Splitting the map

	
Comparing the performance of the presented techniques

	
Additional resources

	
Other Books You May Enjoy

	
Index

Landmarks

	
Cover

	
Index

Preface

The book you are reading right now is Mastering Go, Third Edition
 , which is all about helping you become a better Go developer! If you have the second edition of Mastering Go
 , do not throw it away—Go has not changed that much, and the second edition is still useful. However, Mastering Go, Third Edition
 is better than the second edition in many aspects.

There exist many exciting new topics in this edition, including writing RESTful services, working with the WebSocket protocol, and using GitHub Actions and GitLab Actions for Go projects, as well as an entirely new chapter on generics and the development of lots of practical utilities. Additionally, I tried to make this book smaller than the second edition and structure it in a more natural way to make it both easier and faster to read, especially if you are a busy professional.

I also tried to include the right amount of theory and hands-on content—but, only you, the reader, can tell whether I succeed! Try to do the exercises located at the end of each chapter and do not hesitate to contact me about ways or ideas that can make future editions of this book even better!

Who this book is for

This book is for intermediate Go programmers who want to take their Go knowledge to the next level. It will also be helpful for experienced developers in other programming languages who want to learn Go without going over programming basics.

What this book covers

Chapter 1
 , A Quick Introduction to Go
 , begins by talking about the history of Go, the important characteristics of Go, and the advantages of Go, before describing the godoc
 and go doc
 utilities and explaining how we can compile and execute Go programs. Afterward, the chapter talks about printing output and getting user input, working with command-line arguments, and using log files. Lastly, we develop a basic version of a phone book application that we are going to keep improving in forthcoming chapters.

Chapter 2
 , Basic Go Data Types
 , discusses the basic data types of Go, both numeric and non-numeric, as well as arrays and slices that allow you to group data of the same data type. It also considers Go pointers, constants, and working with dates and times. The last part of the chapter is about generating random numbers and populating the phone book application with random data.

Chapter 3
 , Composite Data Types
 , begins with maps, before going into structures and the struct
 keyword. Additionally, it talks about regular expressions, pattern matching, and working with CSV files. Lastly, we improve the phone book application by adding data persistency to it.

Chapter 4
 , Reflection and Interfaces
 , is about reflection, interfaces and type methods, which are functions attached to data types. The chapter also includes the use of the sort.Interface
 interface for sorting slices, the use of the empty interface, type assertions, type switches, and the error
 data type. Additionally, we discuss how Go can mimic some object-oriented concepts before improving the phone book application.

Chapter 5
 , Go Packages and Functions
 , is all about packages, modules, and functions, which are the main elements of packages. Among other things, we create a Go package for interacting with a PostgreSQL database, create documentation for it, and explain the use of the sometimes tricky defer
 keyword. This chapter also includes information about the use of GitLab Runners and GitHub Actions for automation and how to create a Docker image for a Go binary.

Chapter 6
 , Telling a UNIX System What to Do
 , is about systems programming, which includes subjects such as working with command-line arguments, handling UNIX signals, file input and output, the io.Reader
 and io.Writer
 interfaces, and the use of the viper
 and cobra
 packages. Additionally, we talk about working with JSON, XML, and YAML files, create a handy command-line utility for discovering cycles in a UNIX filesystem, and discuss embedding files in Go binaries as well as the os.ReadDir()
 function, the os.DirEntry
 type, and the io/fs
 package. Lastly, we update the phone book application to use JSON data and convert it into a proper command-line utility with the help of the cobra
 package.

Chapter 7
 , Go Concurrency
 , discusses goroutines, channels, and pipelines. We learn about the differences between processes, threads, and goroutines, the sync
 package, and the way the Go scheduler operates. Additionally, we explore the use of the select
 keyword and we discuss the various "types" of Go channels as well as shared memory, mutexes, the sync.Mutex
 type, and the sync.RWMutex
 type. The rest of the chapter talks about the context
 package, the semaphore
 package, worker pools, how to time out goroutines, and how to detect race conditions.

Chapter 8
 , Building Web Services
 , discusses the net/http
 package, the development of web servers and web services, exposing metrics to Prometheus, visualizing metrics in Grafana, creating web clients and creating file servers. We also convert the phone book application into a web service and create a command-line client for it.

Chapter 9
 , Working with TCP/IP and WebSocket
 , is about the net
 package, TCP/IP, and the TCP and UDP protocols, as well as UNIX sockets and the WebSocket protocol. We develop lots of network servers and clients in this chapter.

Chapter 10
 , Working with REST APIs
 , is all about working with REST APIs and RESTful services. We learn how to define REST APIs and develop powerful concurrent RESTful servers as well as command-line utilities that act as clients to RESTful services. Lastly, we introduce Swagger for creating documentation for REST APIs and learn how to upload and download binary files.

Chapter 11
 , Code Testing and Profiling
 , discusses code testing, code optimization, and code profiling as well as cross-compilation, benchmarking Go code, creating example functions, the use of go:generate
 , and finding unreachable Go code.

Chapter 12
 , Working with gRPC
 , is all about working with gRPC in Go. gRPC is an alternative to RESTful services that was developed by Google. This chapter teaches you how to define the methods and the messages of a gRPC service, how to translate them into Go code, and how to develop a server and a client for that gRPC service.

Chapter 13
 , Go Generics
 , is about generics and how to use the new syntax to write generic functions and define generic data types. Generics is coming to Go 1.18, which, according to the Go development cycle, is going to be officially released during February 2022.

Appendix A
 , Go Garbage Collector
 , talks about the operation of the Go garbage collector and illustrates how this Go component can affect the performance of your code.

To get the most out of this book

This book requires a UNIX computer with a relatively recent Go version installed, which includes any machine running macOS X, macOS, or Linux. Most of the presented code also runs on Microsoft Windows machines without any changes.

To get the most out of this book, you should try to apply the knowledge of each chapter in your own programs as soon as possible and see what works and what does not! As I told you before, try to solve the exercises found at the end of each chapter or create your own programming problems.

Download the example code files

The code bundle for the book is hosted on GitHub at
https://github.com/mactsouk/mastering-Go-3rd

 . We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/

 . Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here:
https://static.packt-cdn.com/downloads/9781801079310_ColorImages.pdf

 .

Conventions used

There are a number of text conventions used throughout this book.

CodeInText
 : Indicates code words in text, folder names, filenames, file extensions, pathnames, and user input. For example, "The star of this chapter will be the net/http
 package, which offers functions that allow you to develop powerful web servers and web clients."

A block of code is set as follows:

package

 main
import

 (
 "fmt"

 "math/rand"

 "os"

 "path/filepath"

 "strconv"

 "time"

)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are highlighted:

package

 main
import

 (
 "fmt"

"math/rand"

 "os"

 "path/filepath"

 "strconv"

 "time"

)

Any command-line input or output is written as follows:

$

 go run www.go

Using default port number: :8001
Served: localhost:8001

Bold
 : Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes. For example: "The UNIX logging service has support for two properties named logging level
 and logging facility
 ."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback
 : Email feedback@packtpub.com
 , and mention the book's title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com
 .

Errata
 : Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book we would be grateful if you would report this to us. Please visit
http://www.packtpub.com/submit-errata

 , selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy
 : If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com
 with a link to the material.

If you are interested in becoming an author
 : If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit
http://authors.packtpub.com

 .

Share your thoughts

Once you've read Mastering Go, Third Edition
 , we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page

 for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

1

A Quick Introduction to Go

Imagine that you are a developer and you want to create a command-line utility. Similarly, imagine that you have a REST API and you want to create a RESTful server that implements that REST API. The first thought that will come to your mind will most likely be which programming language to use.

The most common answer to this question is to use the programming language you know best. However, this book is here to help you consider Go for all these and many more tasks and projects. In this chapter, we begin by explaining what Go is, and continue with the history of Go, and how to run Go code. We will explain some core characteristics of Go, such as how to define variables, control the flow of your programs, and get user input, and we will apply some of these concepts by creating a command-line phone book application.

We will cover the following topics:

	Introducing Go

	Hello World!

	Running Go code

	Important characteristics of Go

	Developing the which(1)
 utility in Go

	Logging information

	Overview of Go generics

	Developing a basic phone book application

Introducing Go

Go is an open-source systems
 programming language initially developed as an internal Google project that went public back in 2009. The spiritual fathers of Go are Robert Griesemer, Ken Thomson, and Rob Pike.

Although the official name of the language is Go, it is sometimes (wrongly) referred to as Golang
 . The official
 reason for this is that
go.org

 was not available for registration and
golang.org

 was chosen instead. The practical reason for this is that when you are querying a search engine for Go-related information, the word Go
 is usually interpreted as a verb. Additionally, the official Twitter hashtag for Go is #golang
 .

Although Go is a general-purpose programming language, it is primarily used for writing system tools, command-line utilities, web services, and software that work over networks. Go can also be used for teaching programming and is a good candidate as your first programming language because of its lack of verbosity and clear ideas and principles. Go can help
 you develop the following kinds of applications:

	Professional web services

	Networking tools and servers such as Kubernetes and Istio

	Backend systems

	System utilities

	Powerful command-line utilities such as docker
 and hugo

	Applications that exchange data in JSON format

	Applications that process data from relational databases, NoSQL databases, or other popular data storage systems

	Compilers and interpreters for programming languages you design

	Database systems such as CockroachDB and key/value stores such as etcd

There are many things that Go does better than other programming languages, including the following:

	The default behavior of the Go compiler can catch a large set of silly errors that might result in bugs.

	Go uses fewer parentheses than C, C++, or Java, and no semicolons, which makes the look of Go source code more human-readable and less error-prone.

	Go comes with a rich and reliable standard library.

	Go has support for concurrency out of the box through goroutines and channels.

	Goroutines are really lightweight. You can easily run thousands of goroutines on any modern machine without any performance issues.

	Unlike C, Go supports functional programming.

	Go code is backward compatible, which means that newer versions of the Go compiler accept programs that were created using a previous version of the language without any modifications. This compatibility guarantee is limited to major versions of Go. For example, there is no guarantee that a Go 1.x program will compile with Go 2.x.

Now that we know what
 Go can do and what Go is good at, let's discuss the history of Go.

The history of Go

As mentioned earlier, Go started as
 an internal Google project that went public back in 2009. Griesemer, Thomson, and Pike designed Go as a language for professional programmers who want to build reliable, robust, and efficient software that is easy to manage. They designed Go with simplicity in mind, even if simplicity meant that Go was not going to be a programming language for everyone.

The figure that follows shows the programming languages that directly or indirectly influenced Go. As an example, Go syntax looks like C whereas the package concept was inspired by Modula-2.

[image: Graphical user interface, application Description automatically generated]

Figure 1.1: The programming languages that influenced Go

The deliverable was a programming language, its tools, and its standard library. What you get with Go, apart from its syntax and tools, is a pretty rich standard library and a type system that tries to save you from easy mistakes such as implicit type conversions, unused variables and unused packages. The Go compiler catches most of these easy mistakes and refuses to compile until you do something about them. Additionally, the Go compiler can find
 difficult to catch mistakes such as race conditions.

If you are going to install Go for the
 first time, you can start by visiting
https://golang.org/dl/

 . However, there is a big chance that your UNIX variant has a ready-to-install package for the Go programming language, so you might want to get Go by using your favorite package manager.

Why UNIX and not Windows?

You might ask why we're talking about
 UNIX all the time and not discussing Microsoft Windows as well. There are two main reasons for this. The first reason is that most
 Go programs will work on Windows machines without any code changes because Go is portable by design
 —this means that you should not worry about the operating system you are using.

However, you might need to make small changes to the code of some system utilities for them to work in Windows. Additionally, there are still going to be some libraries that only work on Windows machines and some that only work on non-Windows machines. The second reason is that many services written in Go are executed in a Docker environment—Docker images use the Linux operating system
 , which means that you should program your utilities having the Linux operating system in mind.

As far as user experience is concerned, UNIX and Linux are very similar. The main difference is that Linux is open-source software whereas UNIX is proprietary software.

The advantages of Go

Go comes with
 some important advantages for developers, starting with the fact that it was designed and is currently maintained by real programmers. Go is also easy to learn, especially if you are already familiar with programming languages such as C, Python, or Java. On top of that, Go code is good-looking, at least to me, which is great, especially when you are programming applications for a living and you have to look at code on a daily basis. Go code is also easy to read and offers support for Unicode out of the box, which means that you can make changes to existing Go code easily. Lastly, Go has reserved only 25 keywords, which makes it much easier to remember the language. Can you do that with C++?

Go also comes
 with concurrency capabilities using a simple concurrency model that is
 implemented using goroutines
 and channels
 . Go manages OS threads for you and has a powerful
 runtime that allows you to spawn lightweight units of work (goroutines
) that communicate with each other using channels
 . Although Go comes with a rich standard library, there are really handy Go packages such as cobra
 and viper
 that allow Go to develop complex command-line utilities such as docker
 and hugo
 . This is greatly supported by the fact that Go's executable binaries are statically linked
 , which means that once they are generated, they do not depend on any shared libraries and include all required information.

Due to its simplicity, Go code is predictable and does not have strange side effects, and although Go supports pointers
 , it does
 not support pointer arithmetic like C, unless you use the unsafe
 package, which is the root of many bugs and security holes. Although Go is not an object-oriented programming language, Go interfaces are very versatile
 and allow you to mimic some of the capabilities of object-oriented languages such as polymorphism
 , encapsulation
 , and composition
 .

Additionally, the latest
 Go versions offer
 support for generics
 , which simplifies your code when working with multiple data types. Last but not least, Go comes with support for garbage collection
 , which means that no manual memory management is needed.

Although Go is a very
 practical and competent programming language, it is not perfect:

	Although this is a personal preference rather than an actual technical shortcoming, Go has no direct support for object-oriented programming, which is a popular programming paradigm.

	Although goroutines are lightweight, they are not as powerful as OS threads. Depending on the application you are trying to implement, there might exist some rare cases where goroutines will not be appropriate for the job. However, in most cases, designing your application with goroutines and channels in mind will solve your problems.

	Although garbage collection is fast enough most of the time and for almost all kinds of applications, there are times when you need to handle memory allocation manually—Go cannot do that. In practice, this means that Go will not allow you to perform any memory management manually.

However, there are many
 cases where you can choose Go, including the following:

	Creating complex command-line utilities with multiple commands, sub-commands, and command-line parameters

	Building highly concurrent applications

	Developing servers that work with APIs and clients that interact by exchanging data in myriad formats including JSON, XML, and CSV

	Developing WebSocket servers and clients

	Developing gRCP servers and clients

	Developing robust UNIX and Windows system tools

	Learning programming

In the following sections, we
 will cover a number of concepts and utilities in order to build a solid foundation of knowledge, before building a simplified version of the which(1)
 utility. At the end of the chapter, we'll develop a naive phone book application that will keep evolving as we explain more Go features in the chapters that follow.

But first, we'll present the go doc
 command, which allows you to find information about the Go standard library, its packages, and their functions. Then, we'll show how to execute Go code using the Hello World!
 program as an example.

The go doc and godoc utilities

The Go distribution
 comes with a plethora of tools that can make your life as a programmer easier. Two of these tools are the go doc
 subcommand and godoc
 utility, which allow you to
 see the documentation of existing Go functions and packages without needing an internet connection. However, if you prefer viewing the Go documentation online, you
 can visit
https://pkg.go.dev/

 . As godoc
 is not installed by default, you might need to install it by running go get golang.org/x/tools/cmd/godoc
 .

The go doc
 command can be executed as a normal command-line application that displays its output on a terminal, and godoc
 as a command-line application that starts a web server. In the latter case, you need a web browser to look at the Go documentation. The first utility is similar to the UNIX man(1)
 command, but for Go functions and packages.

The number after the name of a UNIX program or system call refers to the section of the manual a manual page belongs to. Although most of the names can be found only once in the manual pages, which means that putting the section number is not required, there are names that can be located in multiple sections because they have multiple meanings, such as crontab(1)
 and crontab(5)
 . Therefore, if you try to retrieve the manual page of a name with multiple meanings without stating its section number, you will get the entry that has the smallest section number.

So, in order to
 find information about the Printf()
 function of the fmt
 package, you
 should execute the following command:

$

 go doc fmt.Printf

Similarly, you can find information about the entire fmt
 package by running the following command:

$

 go doc fmt

The second utility requires executing godoc
 with the -http
 parameter:

$

 godoc -http=:8001

The numeric value in the preceding command, which in this case is 8001
 , is the port number the HTTP server will listen to. As we have omitted the IP address, godoc
 is going to listen to all network interfaces.

You can choose any port number that is available provided that you have the right privileges. However, note that port numbers 0
 -1023
 are restricted and can only be used by the root user, so it is better to avoid choosing one of those and pick something else, provided that it is not already in use by a different process.

You can omit the equals sign in the presented command and put a space character in its place. So, the following command is completely equivalent to the previous one:

$

 godoc -http :8001

After that, you should point your web browser to the http://localhost:8001/
 URL in order to get the list of available Go packages and browse their documentation. If you are using Go for the first time, you will find the Go documentation very handy for learning the parameters and the return values of the functions you want to use—as you progress in your Go journey, you will use the Go documentation for learning the gory details of the functions and variables that you want to use.

Hello World!

The following is the
 Go version of the Hello World program. Please type it and save it as hw.go
 :

package

 main
import

 (
 "fmt"

)
func

main

()

 {
 fmt.Println("Hello World!"

)
}

Each Go source code begins with a package
 declaration. In this case, the name of the package is main
 , which has a special meaning in Go. The import
 keyword allows you to include functionality from existing packages. In our case, we only need some of the functionality of the fmt
 package that belongs to the standard Go library. Packages that are not part of the standard Go library are imported using their full internet path. The next important thing if you are creating an executable application is a main()
 function. Go considers this the entry point to the application and begins the execution of the application with the code found in the main()
 function of the main
 package.

hw.go
 is a Go program that runs on its own. Two characteristics make hw.go
 an autonomous source file that can generate an executable binary: the name of the package, which should be main
 , and the presence of the main()
 function—we discuss Go functions in more detail in the next subsection but we will learn even more about functions and methods, which are functions attached to specific data types, in Chapter 5
 , Go Packages and Functions
 .

Introducing functions

Each Go function definition
 begins with the func
 keyword followed by its name, signature and implementation. As happens with the main
 package, you can name your functions anything you want—there is a global Go rule that also applies to function and variable names and is valid for all packages except main
 : everything that begins with a lowercase letter is considered private and is accessible in the current package only
 . We will learn more about that rule in Chapter 5
 , Go Packages and Functions
 . The only exception to this rule is package names, which can begin with either lowercase or uppercase letters. Having said that, I am not aware of a Go package that begins with an uppercase letter!

You might now
 ask how functions are organized and delivered. Well, the answer is in packages—the next subsection sheds some light on that.

Introducing packages

Go programs are
 organized in packages—even the smallest Go program should be delivered as a package. The package
 keyword helps you define the name of a new package, which can be anything you want with just one exception: if you are creating an executable application and not just a package that will be shared by other applications or packages, you should name your package main
 . You will learn more about developing Go packages in Chapter 5
 , Go Packages and Functions
 .

Packages can be used by other packages. In fact, reusing existing packages is a good practice that saves you from having to write lots of code or implement existing functionality from scratch.

The import
 keyword is used for importing other Go packages in your Go programs in order to use some or all of their functionality. A Go package can either be a part of the rich Standard Go library or come from an external source. Packages of the standard Go library are imported by name (os
) without the need for a hostname and a path, whereas external packages are imported using their full internet paths, like github.com/spf13/cobra
 .

Running Go code

You now
 need to know how to execute hw.go
 or any other Go application. As will be explained in the two subsections that follow, there are two ways to execute Go code: as a compiled language using go build
 or as a scripting language using go run
 . So, let us find out more about these two ways of running Go code.

Compiling Go code

In order to
 compile Go code and create a binary executable file, you need to use the go build
 command. What go build
 does is create an executable file for you to distribute and execute manually. This means that the go build
 command requires an additional step for running your code.

The generated executable is automatically named after the source code filename without the .go
 file extension. Therefore, because of the hw.go
 source file, the executable will be called hw
 . In case this is not what you want, go build
 supports the -o
 option, which allows you to change the filename and the path of the generated executable file. As an
 example, if you want to name the executable file as helloWorld
 , you should execute go build -o helloWorld hw.go
 instead. If no source files are provided, go build
 looks for a main
 package in the current directory.

After that, you need to execute the generated executable binary file on your own. In our case, this means executing either hw
 or helloWorld
 . This is shown in the next output:

$

 go build hw.go

$

 ./hw

Hello World!

Now that we know how to compile Go code, let us continue with using Go as a scripting language.

Using Go like a scripting language

The go run
 command
 builds the named Go package, which in this case is the main
 package implemented in a single file, creates a temporary executable file, executes that file, and deletes it once it is done—to our eyes, this looks like using a scripting language. In our case, we can do the following:

$

 go run hw.go

Hello World!

If you want to test your code, then using go run
 is a better choice. However, if you want to create and distribute an executable binary, then go build
 is the way to go.

Important formatting and coding rules

You should
 know that Go comes with some strict formatting and coding rules that help the developer avoid beginner mistakes and bugs—once you learn these few rules and Go idiosyncrasies as well as the implications they have for your code, you will be free to concentrate on the actual functionality of your code. Additionally, the Go compiler is here to help you follow these rules with its expressive error messages and warnings. Last, Go offers standard tooling (gofmt
) that can format your code for you so you never have to think about it.

The following is a
 list of important Go rules that will help you while reading this chapter:

	Go code is delivered in packages and you are free to use the functionality found in existing packages. However, if you are going to import a package, you should use some of this functionality—there are some exceptions to this rule that mainly have to with initializing connections, but they are not important for now.

	You either use a variable or you do not declare it at all. This rule helps you avoid errors such as misspelling an existing variable or function name.

	There is only one way to format curly braces in Go.

	Coding blocks in Go are embedded in curly braces even if they contain just a single statement or no statements at all.

	Go functions can return multiple values.

	You cannot automatically convert between different data types, even if they are of the same kind. As an example, you cannot implicitly convert an integer to a floating point.

Go has more rules but these rules are the most important ones and will keep you going for most of the book. You are going to see all these rules in action in this chapter as well as other chapters. For now, let's consider the only way to format curly braces in Go because this rule applies everywhere.

Look at the following Go program named curly.go
 :

package

 main
import

 (
 "fmt"

)
func

main

()

{
 fmt.Println("Go has strict rules for curly braces!"

)
}

Although it looks just fine, if you try to execute it, you will be fairly disappointed, because the code will not compile and therefore you will get the following syntax error message:

$

 go run curly.go

#

 command-line-arguments

./curly.go:7:6: missing function body
./curly.go:8:1: syntax error: unexpected semicolon or newline before {

The official explanation for this error message is that Go requires the use of semicolons as statement terminators in many contexts, and the compiler automatically inserts the required
 semicolons when it thinks that they are necessary. Therefore, putting the opening curly brace ({
) in its own line will make the Go compiler insert a semicolon at the end of the previous line (func main()
), which is the main cause of the error message. The correct way to write the previous code is the following:

package

 main
import

 (
 "fmt"

)
func

main

()

 {
 fmt.Println("Go has strict rules for curly braces!"

)
}

After learning about this global rule, let us continue by presenting some important characteristics of Go.

Important characteristics of Go

This big section
 discusses important and essential Go features including variables, controlling program flow, iterations, getting user input, and Go concurrency. We begin by discussing variables, variable declaration, and variable usage.

Defining and using variables

Imagine that you
 wanted to perform some basic mathematical
 calculations with Go. In that case, you need to define variables to keep your input and your results.

Go provides multiple ways to declare new variables in order to make the variable declaration process more natural and convenient. You can declare a new variable using the var
 keyword followed by the variable name, followed by the desired data type (we will cover data types in detail in Chapter 2
 , Basic Go Data Types
). If you want, you can follow that
 declaration with =
 and an initial value for your
 variable. If there is an initial value given, you can omit the data type and the compiler will guess it for you.

This brings us to a very important Go rule: if no initial value is given to a variable, the Go compiler will automatically initialize that variable to the zero value of its data type
 .

There is also the :=
 notation, which can be used instead of a var
 declaration. :=
 defines a new variable by inferring the data of the value that follows it. The official name for :=
 is short assignment statement
 and it is
 very frequently used in Go, especially for getting the return values from functions and for
 loops with the range
 keyword.

The short assignment statement can be used in place of a var
 declaration with an implicit type. You rarely see the use of var
 in Go; the var
 keyword is mostly used for declaring global or local variables without an initial value. The reason for the former is that every statement that exists outside of the code of a function must begin with a keyword such as func
 or var
 .

This means that the short assignment statement cannot be used outside of a function environment because it is not available there. Last, you might need to use var
 when you want to be explicit about the data type. For example, when you want int8
 or int32
 instead of int
 .

Therefore, although you can declare local variables using either var
 or :=
 , only const
 (when the value of a variable is not going to
 change) and var
 work for global variables
 , which are variables that are defined outside of a function and are not embedded in curly braces. Global variables can be accessed from anywhere in a package without the need to explicitly pass them to a function and can be changed unless they were defined as constants using the const
 keyword.

Printing variables

Programs tend to
 display information, which means that they need to print data or send it somewhere for other software to store or process it. For printing data on the screen, Go uses the functionality of the fmt
 package. If you want Go to take care of the printing, then you might want to use the fmt.Println()
 function. However, there are times that you want to have full control over how data is going to get printed. In such cases, you might want to use fmt.Printf()
 .

fmt.Printf()
 is similar to the C printf()
 function and requires the use of control sequences that specify the data type of the variable that is going to get printed. Additionally, the fmt.Printf()
 function allows you to format the generated output, which is particularly convenient for floating point values because it allows you to specify the digits that will be displayed in the output (%.2f
 displays 2 digits after the decimal point). Lastly, the \n
 character is used for printing a newline character and therefore creating a new line, as fmt.Printf()
 does not automatically insert a newline—this is not the case with fmt.Printf()
 , which inserts a newline.

The following
 program illustrates how you can declare new variables, how to use them, and how to print them—type the following code into a plain text file named variables.go
 :

package

 main
import

 (
 "fmt"

 "math"

)
var

 Global
int

 = 1234

var

 AnotherGlobal = -5678

func

main

()

 {
 var

 j
int

 i := Global + AnotherGlobal
 fmt.Println("Initial j value:"

, j)
 j = Global
 // math.Abs() requires a float64 parameter

 //so we type cast it appropriately

 k := math.Abs(float64

(AnotherGlobal))
 fmt.Printf("Global=%d, i=%d, j=%d k=%.2f.\n"

, Global, i, j, k)
}

Personally, I prefer to make global variables stand out by either beginning them with an uppercase letter or using all capital letters.

This program contains the following:

	A global int
 variable named Global
 .

	A second global variable named AnotherGlobal
 —Go automatically infers its data type from its value, which in this case is an integer.

	A local variable named j
 that is of type int
 , which, as you will learn in the next chapter, is a special data type. j
 does not have an initial value, which means that Go automatically assigns the zero value of its data type, which in this case is 0
 .

	Another local variable named i
 —Go infers its data type from its value. As it is the sum of two int
 values, it is also an int
 .

	As math.Abs()
 requires a float64
 parameter, you cannot pass AnotherGlobal
 to it because AnotherGlobal
 is an int
 variable. The float64()
 type cast converts the value of AnotherGlobal
 to float64
 . Note that AnotherGlobal
 continues to be int
 .

	Lastly, fmt.Printf()
 formats and prints our output.

Running variables.go
 produces the following output:

Initial j value: 0
Global=1234, i=-4444, j=1234 k=5678.00.

This example
 demonstrated another important Go rule that was also mentioned previously: Go
 does not allow implicit data conversions
 like C.

As you saw in variables.go
 when using the math.Abs()
 function that expects a float64
 value, an int
 value cannot be used when a float64
 value is expected even if this particular conversion is straightforward and error-free. The Go compiler refuses to compile such statements. You should convert the int
 value to a float64
 explicitly using float64()
 for things to work properly.

For conversions that are not straightforward (for example, string
 to int
), there exist specialized functions that allow you to catch issues with the conversion in the form of an error
 variable that is returned by the function.

Controlling program flow

So far, we have
 seen Go variables but how do we change the flow of a Go program based on the value of a variable or some other condition? Go supports the if/else
 and switch
 control structures. Both control structures can be found in most modern programming languages, so if you have already programmed in another programming language, you should already be familiar with if
 and switch
 . if
 statements use no parenthesis for embedding the conditions that need to be examined because Go does not use parentheses in general. As expected, if
 has support for else
 and else if
 statements.

To demonstrate the use of if
 , let's use a very common pattern in Go that is used almost everywhere. This pattern says that if the value of an error
 variable as returned from a function is nil
 , then everything is OK with the function execution. Otherwise, there is an error condition somewhere that needs special care. This pattern is usually implemented as follows:

err := anyFunctionCall()
if

 err != nil

 {
 // Do something if there is an error

}

err
 is the variable that
 holds the error
 value as returned from a function and !=
 means that the value of the err
 variable is not nil
 . You will see similar code multiple times in Go programs.

Lines beginning with //
 are single-line comments. If you put //
 in the middle of a line, then everything after //
 is considered a comment. This rule does not apply if //
 is inside a string value.

The switch
 statement has two different forms. In the first form, the switch
 statement has an expression that is being evaluated, whereas in the second form, the switch
 statement has no expression to evaluate. In that case, expressions are evaluated in each case
 statement, which increases the flexibility of switch
 . The main benefit you get from switch
 is that when used properly, it simplifies complex and hard-to-read if-else
 blocks.

Both if
 and switch
 are illustrated in the following code, which is designed to process user input given as a command-line argument—please type it and save it as control.go
 . For learning purposes, we present the code of control.go
 in pieces in order to explain it better:

package

 main
import

 (
 "fmt"

 "os"

 "strconv"

)

This first part contains the expected preamble with the imported packages. The implementation of the main()
 function starts next:

func

main

()

 {
 if

 len

(os.Args) != 2

 {
 fmt.Println("Please provide a command line argument"

)
 return

 }
 argument := os.Args[1

]

This part of the program makes sure that you have a single command-line argument to process, which is accessed as os.Args[1]
 , before continuing. We will cover this in more detail later, but
 you can refer to Figure 1.2
 for more information about the os.Args
 slice.

 // With expression after switch

 switch

 argument {
 case

 "0"

:
 fmt.Println("Zero!"

)
 case

 "1"

:
 fmt.Println("One!"

)
 case

 "2"

, "3"

, "4"

:
 fmt.Println("2 or 3 or 4"

)
 fallthrough

 default

:
 fmt.Println("Value:"

, argument)
 }

Here you see a switch
 block with four branches. The first three require exact string
 matches and the last one matches everything else. The order of the case
 statements is important because only the first match is executed. The fallthrough
 keyword tells Go that after this branch is executed, it will continue with the next branch, which in this case is the default
 branch:

 value, err := strconv.Atoi(argument)
 if

 err != nil

 {
 fmt.Println("Cannot convert to int:"

, argument)
 return

 }

As command-line arguments are initialized as string values, we need to convert user input into an integer value using a separate call, which in this case is a call to strconv.Atoi()
 . If the value of the err
 variable is nil
 , then the conversion was successful, and we can continue. Otherwise, an error message is printed onscreen and the program exits.

The following code shows the second form of switch
 , where the condition is evaluated at each case
 branch:

 // No expression after switch

 switch

 {
 case

 value == 0

:
 fmt.Println("Zero!"

)
 case

 value > 0

:
 fmt.Println("Positive integer"

)
 case

 value < 0

:
 fmt.Println("Negative integer"

)
 default

:
 fmt.Println("This should not happen:"

, value)
 }
}

This gives you more
 flexibility but requires more thinking when reading the code. In this case, the default
 branch should not be executed, mainly because any valid integer value would be caught by the other three branches. Nevertheless, the default
 branch is there, which is a good practice because it can catch unexpected values.

Running control.go
 generates the next output:

$

 go run control.go 10

Value: 10
Positive integer
$

 go run control.go 0

Zero!
Zero!

Each one of the two switch
 blocks in control.go
 creates one line of output.

Iterating with for loops and range

This section is all
 about iterating in Go. Go supports for
 loops as
 well as the range
 keyword for iterating over all the elements of arrays, slices, and (as you will see in Chapter 3
 , Composite Data Types
) maps. An example of Go simplicity is the fact that Go provides support for the for
 keyword only, instead of including direct support for while
 loops. However, depending on how you write a for
 loop, it can function as a while
 loop or an infinite loop. Moreover, for
 loops can implement the functionality of JavaScript's forEach
 function when combined with the range
 keyword.

You need to put curly braces around a for
 loop even if it contains a single statement or no statements at all.

You can also create for
 loops with variables and conditions. A for
 loop can be exited with a break
 keyword
 and you can skip the current iteration
 with the continue
 keyword. When used with range
 , for
 loops allow you to visit all the elements of a slice or an array without knowing the size of the data structure. As you will see in Chapter 3
 , Composite Data Types
 , for
 and range
 allow you to iterate over the elements of a map in a similar way.

The following program illustrates the use of for
 on its own and with the range
 keyword—type it and save it as forLoops.go
 in order to execute it afterward:

package

 main
import

 "fmt"

func

main

()

 {
 // Traditional for loop

 for

 i := 0

; i < 10

; i++ {
 fmt.Print(i*i, " "

)
 }
 fmt.Println()
}

The previous code illustrates a traditional for
 loop that uses a local variable named i
 . This prints the squares of 0
 , 1
 , 2
 , 3
 , 4
 , 5
 , 6
 , 7
 , 8
 , and 9
 onscreen. The square of 10
 is not printed because it does not satisfy the 10 < 10
 condition.

The following code is idiomatic Go:

 i := 0

 for

 ok := true

; ok; ok = (i != 10

) {
 fmt.Print(i*i, " "

)
 i++
 }
 fmt.Println()

You might use it, but it is sometimes hard to read, especially for people that are new to Go. The following code
 shows how a for
 loop can simulate a while
 loop, which is not supported directly:

 // For loop used as while loop

 i := 0

 for

 {
 if

 i == 10

 {
 break

 }
 fmt.Print(i*i, " "

)
 i++
 }
 fmt.Println()

The break
 keyword in the if
 condition exits the loop early and acts as the loop exit condition.

Lastly, given a slice
 named aSlice
 , you iterate over all its elements with the help of range
 , which returns two ordered values: the index of the current element in the slice and its value. If you want to ignore either of these return values, which is not the case here, you can use _
 in the place of the value that you want to ignore. If you just need the index, you can leave out the second value from range
 entirely without using _
 .

 // This is a slice but range also works with arrays

 aSlice := []int

{-1

, 2

, 1

, -1

, 2

, -2

}
 for

 i, v := range

 aSlice {
 fmt.Println("index:"

, i, "value: "

, v)
 }

If you run forLoops.go
 , you get the following output:

$

 go run forLoops.go

0 1 4 9 16 25 36 49 64 81
0 1 4 9 16 25 36 49 64 81
0 1 4 9 16 25 36 49 64 81
index: 0 value: -1
index: 1 value: 2
index: 2 value: 1
index: 3 value: -1
index: 4 value: 2
index: 5 value: -2

The previous
 output illustrates that the first three for
 loops are
 equivalent and therefore produce the same output. The last six lines show the index and the value of each element found in aSlice
 .

Now that we know about for
 loops, let us see how to get user input.

Getting user input

Getting
 user input is an important part of every program. This section presents two ways of getting user input, which are reading from standard input and
 using the command-line arguments of the program.

Reading from standard input

The fmt.Scanln()
 function can
 help you read user input while the program is already running and store it to a string
 variable, which is passed as a pointer to fmt.Scanln()
 . The fmt
 package contains additional functions for reading user input from the console (os.Stdin
), from files or from argument lists.

The following code illustrates reading from standard input—type it and save it as input.go
 :

package

 main
import

 (
 "fmt"

)
func

main

()

 {
 // Get User Input

 fmt.Printf("Please give me your name: "

)
 var

 name string

 fmt.Scanln(&name)
 fmt.Println("Your name is"

, name)
}

While waiting for user input, it is good to let the user know what kind of information they have to give, which is the purpose of the fmt.Printf()
 call. The reason for not using fmt.Println()
 instead is that fmt.Println()
 automatically adds a newline character at the
 end, which is not what we want here.

Executing input.go
 generates the following kind of output and user interaction:

$

 go run input.go

Please give me your name: Mihalis
Your name is Mihalis

Working with command-line arguments

Although typing
 user input when needed might look like a nice idea, this is not usually how real software works. Usually, user input is given in the form of command-line arguments to the executable file. By default, command-line arguments in Go are stored in the os.Args
 slice. Go also offers the flag
 package for parsing command-line arguments, but there are better and more powerful alternatives.

The figure that follows shows the way command-line arguments work in Go, which is the same as in the C programming language. It is important to know that the os.Args
 slice is properly initialized by Go and is available to the program when referenced. The os.Args
 slice contains string
 values:

[image: Text Description automatically generated]

Figure 1.2: How the os.Args slice works

The first
 command-line argument stored in the os.Args
 slice is always the name of the executable. If you are using go run
 , you will get a temporary name and path, otherwise, it will be the path of the executable as given by the user. The remaining command-line arguments are what comes after the name of the executable—the various command-line arguments are automatically separated by space characters unless they are included in double or single quotes.

The use of os.Args
 is illustrated in the code that follows, which is to find the minimum and the maximum numeric values of its input while ignoring invalid input such as characters and strings. Type the code and save it as cla.go
 (or any other filename you want):

package

 main
import

 (
 "fmt"

 "os"

 "strconv"

)

As expected, cla.go
 begins with its preamble. The fmt
 package is used for printing output whereas the os
 package is required because os.Args
 is a part of it. Lastly, the strconv
 package contains functions for converting strings to numeric values. Next, we make sure that we have at least one command-line argument:

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Need one or more arguments!"

)
 return

 }

Remember that the
 first element in os.Args
 is always the path of the executable file so os.Args
 is never totally empty. Next, the program checks for errors in the same way we have looked at in previous examples. You will learn more about errors and error handling in Chapter 2
 , Basic Go Data Types
 :

 var

 min, max float64

 for

 i := 1

; i < len

(arguments); i++ {
 n, err := strconv.ParseFloat(arguments[i], 64

)
 if

 err != nil

 {
 continue

 }

In this case, we use the error
 variable returned by strconv.ParseFloat()
 to make sure that the call to strconv.ParseFloat()
 was successful and we have a valid numeric value to process. Otherwise, we should continue to the next command-line argument. The for
 loop is used for iterating over all available command-line arguments except the first one, which uses an index value of 0
 . This is another popular technique for working with all command-line arguments.

The following code is used for properly initializing the value of min
 and max
 after the first command-line argument has been processed:

 if

 i == 1

 {
 min = n
 max = n
 continue

 }

We are using i == 1
 as the test of if this is the first iteration. In this case, it is, so we are processing the first
 command-line argument. The next code checks whether the current value is our new minimum or maximum—this is where the logic of the program is implemented:

 if

 n < min {
 min = n
 }
 if

 n > max {
 max = n
 }
 }
 fmt.Println("Min:"

, min)
 fmt.Println("Max:"

, max)
}

The last part of the program is about printing your findings, which are the minimum and the maximum numeric values of all valid command-line arguments. The output you get from cla.go
 depends on its input:

$

 go run cla.go a b 2 -1

Min: -1
Max: 2

In this case, a
 and b
 are invalid, and the only valid input are -1
 and 2
 , which are the minimum value and the maximum value, respectively.

$

 go run cla.go a 0 b -1.2 10.32

Min: -1.2
Max: 10.32

In this case, a
 and b
 are invalid input and therefore ignored.

$

 go run cla.go

Need one or more arguments!

In the final case, as cla.go
 has no input to process, it prints a help message. If you execute the program with no valid input values, for example go run cla.go a b c
 , then both Min
 and Max
 values are going to be zero.

The next subsection shows a technique for differentiating between different data types using error
 variables.

Using error variables to differentiate between input types

Now let me
 show you a technique that uses error
 variables to differentiate between various kinds of user input. For this technique to work, you should go from more specific cases to more generic ones. If we are talking about numeric values, you should first examine whether a string is a valid integer before examining whether the same string is a floating-point value because every valid integer is also a valid floating-point value.

This is illustrated in the next code excerpt:

 var

 total, nInts, nFloats int

 invalid := make

([]string

, 0

)
 for

 _, k := range

 arguments[1

:] {
 // Is it an integer?

 _, err := strconv.Atoi(k)
 if

 err == nil

 {
 total++
 nInts++
 continue

 }

First, we create three variables for keeping a count of the total number of valid values examined, the total number of integer values found, and the total number of floating-point values found, respectively. The invalid
 variable, which is a slice, is used for keeping all non-numeric values.

Once again, we need to iterate over all the command-line arguments except the first one, which has an index value of 0
 , because this is the path of the executable file. We ignore the path of the executable using arguments[1:]
 instead of just arguments
 —selecting a continuous part of a slice is discussed in the next chapter.

The call to strconv.Atoi()
 determines whether we are processing a valid int
 value or not. If so, we increase the total
 and nInts
 counters:

 // Is it a float

 _, err = strconv.ParseFloat(k, 64

)
 if

 err == nil

 {
 total++
 nFloats++
 continue

 }

Similarly, if the examined string represents a valid floating-point value, the call to strconv.ParseFloat()
 is going to be successful and the program will update the relevant counters. Lastly, if a value is not numeric, it is added to the invalid
 slice with a call to append()
 :

 // Then it is invalid

 invalid = append

(invalid, k)
 }

This is a common
 practice for keeping unexpected input in applications. The previous code can be found as process.go
 in the GitHub repository of the book—not presented here is extra code that warns you when your invalid input is more than the valid one. Running process.go
 produces the next kind of output:

$

 go run process.go 1 2 3

#

read

: 3

#ints: 3 #floats: 0

In this case, we process 1
 , 2
 , and 3
 , which are all valid integer values.

$

 go run process.go 1 2.1 a

#

read

: 2

#ints: 1 #floats: 1

In this case, we have a valid integer, 1
 , a floating-point value, 2.1
 , and an invalid value, a
 .

$

go run process.go a 1 b
#

read

: 1

#ints: 1 #floats: 0

Too much invalid input: 2
a
b

If the invalid input is more than the valid one, then process.go
 prints an extra error message.

The next subsection discusses the concurrency model of Go.

Understanding the Go concurrency model

This section is a
 quick introduction to the Go concurrency model. The Go concurrency model is implemented using goroutines and channels. A goroutine
 is the
 smallest executable Go entity. In order to create a new goroutine, you have to use the go
 keyword followed by a predefined function or an anonymous function—both methods are equivalent as far as Go is concerned.

Note that you can only execute functions or anonymous functions as goroutines.

A channel
 in Go is a
 mechanism that, among other things, allows goroutines to communicate and exchange data. If you are an amateur programmer or you're hearing about goroutines and channels for the first time, do not panic. Goroutines and channels, as well as pipelines and sharing data among goroutines, will be explained in much more detail in Chapter 7
 , Go Concurrency
 .

Although it is easy to create goroutines, there are other difficulties when dealing with concurrent programming including goroutine synchronization and sharing data between goroutines—this is a Go mechanism for avoiding side effects when running goroutines. As main()
 runs as a goroutine as well, you do not want main()
 to finish before the other goroutines of the program because when main()
 exits, the entire program along with any goroutines that have not finished yet will terminate. Although goroutines are do not share any variables, they can share memory. The good thing is that there are various techniques for the main()
 function to wait for goroutines to exchange data through channels or, less frequently in Go, using shared memory.

Type the following Go program, which synchronizes goroutines using time.Sleep()
 calls (this is not the right way to synchronize goroutines—we will discuss the proper way to synchronize goroutines in Chapter 7
 , Go Concurrency
), into your favorite editor and save it as goRoutines.go
 :

package

 main
import

 (
 "fmt"

 "time"

)
func

myPrint

(start, finish

int

)

 {
 for

 i := start; i <= finish; i++ {
 fmt.Print(i, " "

)
 }
 fmt.Println()
 time.Sleep(100

 * time.Microsecond)
}
func

main

()

 {
 for

 i := 0

; i < 5

; i++ {
 go

 myPrint(i, 5

)
 }
 time.Sleep(time.Second)
}

The preceding
 naively implemented example creates 4 goroutines and prints some values on the screen using the myPrint()
 function—the go
 keyword is used for creating goroutines. Running goRoutines.go
 generates the next output:

$

 go run goRoutines.go

2 3 4 5
0 4 1 2 3 1 2 3 4 4 5
5
3 4 5
5

However, if you run it multiple times, you'll most likely get a different output each time:

1 2 3 4 5
4 2 5 3 4 5
3 0 1 2 3 4 5
4 5

This happens because goroutines are initialized in random order and start running in random order. The Go scheduler is responsible for the execution of goroutines just like the OS scheduler is responsible for the execution of the OS threads. Chapter 7
 , Go Concurrency
 , discusses Go concurrency in more detail and presents the solution to that randomness issue with the use of a sync.WaitGroup
 variable—however, keep in mind that Go concurrency is everywhere, which is the main reason for including this section here. Therefore, as some error messages generated by the compiler talk about goroutines, you should not think that these goroutines were created by you.

The next section shows a practical example, which is developing a Go version of the which(1)
 utility, which locates a program file in the user's PATH
 value.

Developing the which(1) utility in Go

Go can
 work with your operating system through a set of packages. A good way of learning a new programming language is by trying to implement simple versions of traditional UNIX utilities. In this section, you'll see a Go version of the which(1)
 utility, which will help you understand the way Go interacts with the underlying OS and reads environment variables.

The presented
 code, which will implement the functionality of which(1)
 , can be divided into three logical parts. The first part is about reading the input argument, which is the name of the executable file that the utility will be searching for. The second part is about reading the PATH
 environment variable, splitting it, and iterating over the directories of the PATH
 variable. The third part is about looking for the desired binary file in these directories and determining whether it can be found or not, whether it is a regular file, and whether it is an executable file. If the desired executable file is found, the program terminates with the help of the return
 statement. Otherwise, it will terminate after the for
 loop ends and the main()
 function exits.

Now let us see the code, beginning with the logical preamble that usually includes the package name, the import
 statements, and other definitions with a global scope:

package

 main
import

 (
 "fmt"

 "os"

 "path/filepath"

)

The fmt
 package is used for printing onscreen, the os
 package is for interacting with the underlying operating system, and the path/filepath
 package is used for working with the contents of the PATH
 variable that is read as a long string, depending on the number of directories it contains.

The second logical part of the utility is the following:

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Please provide an argument!"

)
 return

 }
 file := arguments[1

]
 path := os.Getenv("PATH"

)
 pathSplit := filepath.SplitList(path)
 for

 _, directory := range

 pathSplit {

First, we read the
 command-line arguments of the program (os.Args
) and save the first command-line argument into the file
 variable. Then, we
 get the contents of the PATH
 environment variable and split it using filepath.SplitList()
 , which offers a portable
 way of separating a list of paths. Lastly, we iterate over all the directories of the PATH
 variable using a for
 loop with range
 as filepath.SplitList()
 returns a slice.

The rest of the utility contains the following code:

 fullPath := filepath.Join(directory, file)
 // Does it exist?

 fileInfo, err := os.Stat(fullPath)
 if

 err == nil

 {
 mode := fileInfo.Mode()
 // Is it a regular file?

 if

 mode.IsRegular() {
 // Is it executable?

 if

 mode&0111

 != 0

 {
 fmt.Println(fullPath)
 return

 }
 }
 }
 }
}

We construct the full path that we examine using filepath.Join()
 that is used for concatenating the different parts of a path using an OS-specific
 separator—this makes filepath.Join()
 work in all supported operating systems. In this part, we also get some lower-level information about the file—remember that in UNIX everything is a file, which means that we want to make sure that we are dealing with a regular file that is also executable.

In this first chapter, we are including the entire code of the presented source files. However, starting from Chapter 2
 , Basic Go Types
 , this will not be the case. This serves two purposes: the first one is that you get to see the code that really matters and the second one is that we save book space.

Executing which.go
 generates the following kind of output:

$

 go run which.go

which

/usr/bin/which
$

 go run which.go doesNotExist

The last command
 could not find the doesNotExist
 executable—according to the UNIX philosophy and the way UNIX pipes work, utilities generate
 no output onscreen if they have nothing to say. However, an exit code of 0
 means success whereas a non-zero
 exit code usually means failure.

Although it is useful to print error messages onscreen, there are times that you need to keep all error messages together and be able to search them when it is convenient for you. In this case, you need to use one or more log files.

Logging information

All UNIX systems
 have their own log files for writing logging information that comes from running servers and programs. Usually, most system log files of a UNIX system can be found under the /var/log
 directory. However, the log files of many popular services, such as Apache and Nginx, can be found elsewhere, depending on their configuration.

Logging and putting logging information in log files is a practical way of examining data and information from your software asynchronously either locally or at a central log server or using server software such as Elasticsearch, Beats, and Grafana Loki.

Generally speaking, using a log file to write some information used to be considered a better practice than writing the same output on screen for two reasons: firstly, because the output does not get lost as it is stored on a file, and secondly, because you can search and process log files using UNIX tools, such as grep(1)
 , awk(1)
 , and sed(1)
 , which cannot be done when messages are printed on a terminal window. However, this is not true anymore.

As we usually run our services via systemd
 , programs should log to stdout
 so systemd
 can put logging data in the journal.
https://12factor.net/logs

 offers more information about app logs. Additionally, in cloud native applications, we are encouraged to simply log to stderr
 and let the container system redirect the stderr
 stream to the desired destination.

The UNIX logging service has
 support for two properties named logging level
 and logging facility
 . The logging level is a value that specifies the severity of the log
 entry. There are various logging levels, including debug
 , info
 , notice
 , warning
 , err
 , crit
 , alert
 , and emerg
 , in reverse order of severity. The log
 package of the standard Go library does not support working with logging levels. The logging facility is like a category used for logging information. The value of the logging facility part can be one of auth
 , authpriv
 , cron
 , daemon
 , kern
 , lpr
 , mail
 , mark
 , news
 , syslog
 , user
 , UUCP
 , local0
 , local1
 , local2
 , local3
 , local4
 , local5
 , local6
 , or local7
 and is defined inside /etc/syslog.conf
 , /etc/rsyslog.conf
 , or another appropriate file depending on the server process used for system logging on your UNIX machine. This means that if a logging facility is not defined correctly, it will not be handled; therefore, the log messages you send to it might get ignored and therefore lost.

The log
 package sends log messages to standard error. Part of the log
 package is the log/syslog
 package, which allows you to send log messages to the syslog
 server of your machine. Although by
 default log
 writes to standard error, the use of log.SetOutput()
 modifies that behavior. The list of functions for sending logging data includes log.Printf()
 , log.Print()
 , log.Println()
 , log.Fatalf()
 , log.Fatalln()
 , log.Panic()
 , log.Panicln()
 and log.Panicf()
 .

Logging is for application code, not library code. If you are developing libraries, do not put logging in them.

In order to write to system logs, you need to call the syslog.New()
 function with the appropriate parameters. Writing to the main system log file is as easy as calling syslog.New()
 with the syslog.LOG_SYSLOG
 option. After that you need to tell your Go program that all logging information goes to the new logger—this is implemented with a call to the log.SetOutput()
 function. The process is illustrated in the following code—type it on your favorite plain text editor and save it as systemLog.go
 :

package

 main
import

 (
 "log"

 "log/syslog"

)
func

main

()

 {
 sysLog, err := syslog.New(syslog.LOG_SYSLOG, "systemLog.go"

)
 if

 err != nil

 {
 log.Println(err)
 return

 } else

 {
 log.SetOutput(sysLog)
 log.Print("Everything is fine!"

)
 }
}

After the call to log.SetOutput()
 , all logging information goes to the syslog
 logger variable that sends it to syslog.LOG_SYSLOG
 . Custom text for the log entries coming from that program is specified as the second parameter to the syslog.New()
 call.

Usually, you want to store logging data on user-defined files because they group relevant information, which makes them easier to process and inspect.

Running systemLog.go
 generates no output—however, if you look at the system logs of a macOS Big Sur
 machine, for example, you will find entries like the
 following inside /var/log/system.log
 :

Dec 5 16:20:10 iMac systemLog.go[35397]: 2020/12/05 16:20:10 Everything is fine!
Dec 5 16:43:18 iMac systemLog.go[35641]: 2020/12/05 16:43:18 Everything is fine!

The number inside the brackets is the process ID of the process that wrote the log entry—in our case, 35397
 and 35641
 .

Similarly, if you execute journalctl -xe
 on a Linux machine, you can see entries similar to the next:

Dec 05 16:33:43 thinkpad systemLog.go[12682]: 2020/12/05 16:33:43 Everything is fine!
Dec 05 16:46:01 thinkpad systemLog.go[12917]: 2020/12/05 16:46:01 Everything is fine!

The output on your own operating system might be slightly different but the general idea is the same.

Bad things happen all the time, even to good people and good software. So, the next subsection covers the Go way of dealing with bad situations in your programs.

log.Fatal() and log.Panic()

The log.Fatal()
 function is
 used when something erroneous has happened and you just want to exit your program as soon as possible after reporting that bad situation. The call to log.Fatal()
 terminates a Go program at the point where log.Fatal()
 was called after printing an error message. In most cases, this custom error message can be Not enough arguments
 , Cannot access file
 , or similar. Additionally, it returns back a non-zero exit code, which in UNIX indicates an error.

There are situations where a
 program is about to fail for good and you want to have as much information about the failure as possible—log.Panic()
 implies that something really unexpected and unknown, such as not being able to find a file that was previously accessed or not having enough disk space, has happened. Analogous to the log.Fatal()
 function, log.Panic()
 prints a custom message and immediately terminates the Go program.

Have in mind that log.Panic()
 is equivalent to a call to log.Print()
 followed by a call to panic()
 . panic()
 is a built-in function that stops the execution of the current function and begins panicking. After that, it returns to the caller function. On the other hand, log.Fatal()
 calls log.Print()
 and then os.Exit(1)
 , which is an immediate way of terminating the current program.

Both log.Fatal()
 and log.Panic()
 are illustrated in the logs.go
 file, which contains the next Go code:

package

 main
import

 (
 "log"

 "os"

)
func

main

()

 {
 if

 len

(os.Args) != 1

 {
 log.Fatal("Fatal: Hello World!"

)
 }
 log.Panic("Panic: Hello World!"

)
}

If you call logs.go
 without any command-line arguments, it calls log.Panic()
 . Otherwise, it calls log.Fatal()
 . This is illustrated in the next output from an Arch Linux system:

$

 go run logs.go

2020/12/03 18:39:26 Panic: Hello World!
panic: Panic: Hello World!
goroutine 1 [running]:
log.Panic(0xc00009ef68, 0x1, 0x1)
 /usr/lib/go/src/log/log.go:351 +0xae
main.main()
 /home/mtsouk/Desktop/mGo3rd/code/ch01/logs.go:12 +0x6b
exit status 2
$

 go run logs.go 1

2020/12/03 18:39:30 Fatal: Hello World!
exit status 1

So, the output of log.Panic()
 includes additional
 low-level information that, hopefully, will help you to
 resolve difficult situations that happened in your Go code.

Writing to a custom log file

Most of the time, and
 especially on applications and services that are deployed to production, you just need to write your logging data in a log file of your choice. This can be for many reasons, including writing debugging data without messing with the system log files, or keeping your own logging data separate from system logs in order to transfer it or store it in a database or software like Elasticsearch. This subsection teaches you how to write to a custom log file that is usually application-specific.

Writing to files and file I/O are both covered in Chapter 6
 , Telling a UNIX System What to Do
 —however, saving information to files is very handy when troubleshooting and debugging Go code, which is why this is covered in the first chapter of the book.

The path of the log file that is used is hardcoded into the code using a global variable named LOGFILE
 . For the purposes of this chapter and for preventing your file system from getting full in case something goes wrong, that log file resides inside the /tmp
 directory, which is not the usual place for storing data because usually, the /tmp
 directory is emptied after each system reboot.

Additionally, at this point, this will save you from having to execute customLog.go
 with root privileges and from putting unnecessary files into your precious system directories.

Type the
 following code and save it as customLog.go
 :

package

 main
import

 (
 "fmt"

 "log"

 "os"

 "path"

)
func

main

()

 {
 LOGFILE := path.Join(os.TempDir(), "mGo.log"

)
 f, err := os.OpenFile(LOGFILE, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644

)
// The call to

os.OpenFile()

 creates the log file for writing,

// if it does not already exist, or opens it for writing

// by appending new data at the end of it (os.O_APPEND)

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 f.Close()

The defer
 keyword tells Go to execute the statement just before the current function returns. This means that f.Close()
 is going to be executed just before main()
 returns. We'll go into more detail on defer
 in Chapter 5
 , Go Packages and Functions
 .

 iLog := log.New(f, "iLog "

, log.LstdFlags)
 iLog.Println("Hello there!"

)
 iLog.Println("Mastering Go 3rd edition!"

)
}

The last three statements create a new log file based on an opened file (f
) and write two messages to it using Println()
 .

If you ever decide to use the code of customLog.go
 in a real application, you should change the path stored in LOGFILE
 into something that makes more sense.

Running customLog.go
 generates no output. However, what is really important is what has been
 written in the custom log file:

$

 cat /tmp/mGo.log

iLog 2020/12/05 17:31:07 Hello there!
iLog 2020/12/05 17:31:07 Mastering Go 3rd edition!

Printing line numbers in log entries

In this subsection, you'll learn how to print the filename as well as the line number in the source file
 where the statement that wrote a log entry is located.

The desired
 functionality is implemented with the use of log.Lshortfile
 in the parameters of log.New()
 or SetFlags()
 . The log.Lshortfile
 flag adds the filename as well as the line number of the Go statement that printed the log entry in the log entry itself. If you use log.Llongfile
 instead of log.Lshortfile
 , then you get the full path of the Go source file—usually, this is not necessary, especially when you have a really long path.

Type the following code and save it as customLogLineNumber.go
 :

package

 main
import

 (
 "fmt"

 "log"

 "os"

 "path"

)
func

main

()

 {
 LOGFILE := path.Join(os.TempDir(), "mGo.log"

)
 f, err := os.OpenFile(LOGFILE, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644

)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 f.Close()
 LstdFlags := log.Ldate | log.Lshortfile
 iLog := log.New(f, "LNum "

, LstdFlags)
 iLog.Println("Mastering Go, 3rd edition!"

)
 iLog.SetFlags(log.Lshortfile | log.LstdFlags)
 iLog.Println("Another log entry!"

)
}

In case you are wondering, you are allowed to change the format of the log entries during program execution—this means that when there is a reason, you can print more analytical information
 in the log entries. This is implemented with multiple calls to iLog.SetFlags()
 .

Running customLogLineNumber.go
 generates no output but writes the following entries in the file path that is
 specified by the value of the LOGFILE
 global variable:

$

 cat /tmp/mGo.log

LNum 2020/12/05 customLogLineNumber.go:24: Mastering Go, 3rd edition!
LNum 2020/12/05 17:33:23 customLogLineNumber.go:27: Another log entry!

You will most likely get a different output on your own machine, which is the expected behavior.

Overview of Go generics

This section
 discusses Go generics, which is a forthcoming Go feature. Currently, generics and Go are under discussion by the Go community. However, one way or another, it is good to know how generics work, its philosophy, and what the generics discussions are about.

Go generics has been one of the most requested additions to the Go programming language. At the time of writing, it is said that generics is going to be part of Go 1.18.

The main idea
 behind generics in Go, as well as any other programming language that supports generics, is not having to write special code for supporting multiple data types when performing the same task.

Currently, Go supports multiple data types in functions such as fmt.Println()
 using the empty interface and reflection—both interfaces and reflection are discussed in Chapter 4
 , Reflection and Interfaces
 .

However, demanding every programmer to write lots of code and implement lots of functions and methods for supporting multiple custom data types is not the optimal solution—generics comes into play for providing an alternative to the use of interfaces and reflection for supporting multiple data types. The following code showcases how and where generics can be useful:

package

 main
import

 (
 "fmt"

)
func

Print

[

T

any

]

(s []T)

 {
 for

 _, v := range

 s {
 fmt.Print(v, " "

)
 }
 fmt.Println()
}
func

main

()

 {
 Ints := []int

{1

, 2

, 3

}
 Strings := []string

{"One"

, "Two"

, "Three"

}
 Print(Ints)
 Print(Strings)
}

In this case, we have a function named Print()
 that uses generics through a generics variable, which is specified by the use of [T any]
 after the function name and before the function parameters. Due to the use of [T any]
 , Print()
 can accept any slice of any data type and work with it. However, Print()
 does not work with input other than slices and that is fine because if your application supports slices of different data types, this function can still save you from having to implement multiple
 functions for supporting each
 distinct slice. This is the general idea behind generics.

In Chapter 4
 , Reflection and Interfaces
 , you will learn about the empty interface
 and how it can be used for accepting data of any data type. However, the empty interface requires extra code for working with specific data types.

We end this section by
 stating some useful facts about generics:

	You do not need to use generics in your programs all the time.

	You can continue working with Go as before even if you use generics.

	You can fully replace generics code with non-generics code. The question is are you willing to write the extra code required for this?

	I believe that generics should be used when they can create simpler code and designs. It is better to have repetitive straightforward
 code than optimal abstractions that slow down your applications.

	There are times that you need to limit the data types that are supported by a function that uses generics—this is not a bad thing as all data types do not share the same capabilities. Generally speaking, generics can be useful when processing data types that share some characteristics.

You need time to get used to generics and use generics at its full potential. Take your time. We will cover generics in more depth in Chapter 13
 , Go Generics
 .

Developing a basic phone book application

In this section, to
 utilize the skills you've picked up so far, we will develop a basic phone book application in Go. Despite its limitations, the presented application is a command-line utility that searches a slice of structures that is statically defined (hardcoded
) in the Go code. The utility offers support for two commands named search
 and list
 that search for a given surname and return its full record if the surname is found, and lists all available records, respectively.

The implementation has many
 shortcomings, including the following:

	If you want to add or delete any data, you need to change the source code

	You cannot present the data in a sorted form, which might be OK when you have 3 entries but might not work with more than 40 entries

	You cannot export your data or load it from an external file

	You cannot distribute the
 phone book application as a binary file because it uses hardcoded data
The chapters that follow enhance the functionality of the phone book application in order to be fully functional, versatile, and powerful.

The code of phoneBook.go
 can
 be briefly described as follows:

	There exists a new user-defined data type for holding the records of the phone book that is a Go structure with three fields named Name
 , Surname
 , and Tel
 . Structures group a set of
 values into a single data type
 , which allows you to pass and receive this set of values as a single entity.

	There exists a global variable that holds the data of the phone book, which is a slice of structures named data
 .

	There exist two functions that help you implement the functionality of the search
 and list
 commands.

	The contents of the data
 global variable are defined in the main()
 function using multiple append()
 calls. You can change, add, or delete the contents of the data
 slice according to your needs.

	Lastly, the program can only serve one task at a time. This means that to perform multiple queries, you have to run the program multiple times.

Let us now see phoneBook.go
 in more detail, beginning with its preamble:

package

 main
import

 (
 "fmt"

 "os"

)

After that, we have a section where we declare a Go structure named Entry
 as well as a global variable named data
 :

type

 Entry struct

 {
 Name string

 Surname string

 Tel string

}
var

 data = []Entry{}

After that, we define
 and implement two functions for supporting the functionality of the phone book:

func

search

(key

string

)

 *

Entry

 {
 for

 i, v := range

 data {
 if

 v.Surname == key {
 return

 &data[i]
 }
 }
 return

 nil

}
func

list

()

 {
 for

 _, v := range

 data {
 fmt.Println(v)
 }
}

The search()
 function performs a linear search on the data
 slice. Linear search is slow, but it does the job for now considering that the phone book does not contain lots of entries. The list()
 function just prints the contents of the data
 slice using a for
 loop with range
 . As we are not interested in displaying the index of the element that we print, we ignore it using the _
 character and just print the structure that holds the actual data.

Lastly, we have the implementation of the main()
 function. The first part of it is as follows:

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 exe := path.Base(arguments[0

])
 fmt.Printf("Usage: %s search|list <arguments>\n"

, exe)
 return

 }

The exe
 variable holds the path to the executable file—it is a nice and professional touch to print the name of the executable binary in the instructions of the program.

 data = append

(data, Entry{"Mihalis"

, "Tsoukalos"

, "2109416471"

})
 data = append

(data, Entry{"Mary"

, "Doe"

, "2109416871"

})
 data = append

(data, Entry{"John"

, "Black"

, "2109416123"

})

In this part, we check
 whether we were given any command arguments. If not (len(arguments) == 1
), the program prints a message and exits by calling return
 . Otherwise, it puts the desired data in the data
 slice before continuing.

The rest of the main()
 function implementation is as follows:

 // Differentiate between the commands

 switch

 arguments[1

] {
 // The search command

 case

 "search"

:
 if

 len

(arguments) != 3

 {
 fmt.Println("Usage: search Surname"

)
 return

 }
 result := search(arguments[2

])
 if

 result == nil

 {
 fmt.Println("Entry not found:"

, arguments[2

])
 return

 }
 fmt.Println(*result)
 // The list command

 case

 "list"

:
 list()
 // Response to anything that is not a match

 default

:
 fmt.Println("Not a valid option"

)
 }
}

This code uses a case
 block, which is really handy when you want to write readable code and avoid using multiple and nested if
 blocks. That case
 block differentiates between the two supported commands by examining the value of arguments[1]
 . If the given command is not recognized, the default
 branch is executed instead. For the search
 command, arguments[2]
 is also examined.

Working with phoneBook.go
 looks as follows:

$

 go build phoneBook.go
$

 ./phoneBook list
{Mihalis Tsoukalos 2109416471}
{Mary Doe 2109416871}
{John Black 2109416123}
$

 ./phoneBook search Tsoukalos
{Mihalis Tsoukalos 2109416471}
$

 ./phoneBook search Tsouk
Entry not found: Tsouk
$

 ./phoneBook
Usage: ./phoneBook search|list <arguments>

The first
 command lists the contents of the phone book whereas the second command searches for a given surname (Tsoukalos
). The third command searches for something that does not exist in the phone book and the last command builds phoneBook.go
 and runs the generated executable without any arguments, which prints the instructions of the program.

Despite its shortcomings, phoneBook.go
 has a clean design that you can easily extend and works as expected, which is a great starting point. The phone book application will keep improving in the chapters that follow as we learn more advanced concepts.

Exercises

	Our version of which(1)
 stops after finding the first occurrence of the desired executable. Make the necessary changes to which.go
 in order to find all possible occurrences of the desired executable.

	The current version of which.go
 processes the first command-line argument only. Make the necessary changes to which.go
 in order to accept and search the PATH
 variable for multiple executable binaries.

	Read the documentation of the fmt
 package at
https://golang.org/pkg/fmt/

 .

Summary

If you are using Go for the first time, the information in this chapter will help you understand the advantages of Go, how Go code looks, and some important characteristics of Go such as variables, iterations, flow control, and the Go concurrency model. If you already know Go, then this chapter is a good reminder of where Go excels and the kinds of software where it is advised to use Go. Lastly, we built a basic phone book application with the techniques that we have learned so far.

The next chapter discusses the basic data types of Go in more detail.

Additional resources

	The official Go website:
https://golang.org/

	The Go Playground:
https://play.golang.org/

	The log
 package:
https://golang.org/pkg/log/

	Elasticsearch Beats:
https://www.elastic.co/beats/

	Grafana Loki:
https://grafana.com/oss/loki/

	Microsoft Visual Studio:
https://visualstudio.microsoft.com/

	The Standard Go library:
https://golang.org/pkg/

2

Basic Go Data Types

Data is stored and used in variables and all Go variables should have a data type that is determined either implicitly or explicitly. Knowing the built-in data types of Go allows you to understand how to manipulate simple data values and construct more complex data structures when simple data types are not enough or not efficient for a given job.

This chapter is all about the basic data types of Go and the data structures that allow you to group data of the same data type
 . But let us begin with something more practical: imagine that you want to read data as command-line arguments of a utility. How can you be sure that what you have read was what you expected? How can you handle error situations? What about reading not just numbers and strings but dates and times from the command line? Do you have to write your own parser for working with dates and times?

This chapter will answer all these questions and many more by implementing the following three utilities:

	A command-line utility that parses dates and times

	A utility that generates random numbers and random strings

	A new version of the phone book application that contains randomly generated data

This chapter covers:

	The error
 data type

	Numeric data types

	Non-numeric data types

	Go constants

	Grouping similar data

	Pointers

	Generating random numbers

	Updating the phone book application

We begin this chapter with the error
 data type, because errors play a key role in Go.

The error data type

Go provides
 a special data type for representing error conditions and error messages named error
 —in practice, this means that Go treats errors as values. In order to program successfully in Go, you should be aware of the error conditions that might occur with the functions and methods you are using and handle them accordingly.

As you already know from the previous chapter, Go follows the next convention about error
 values: if the value of an error
 variable is nil
 , then there was no error. As an example, let us consider strconv.Atoi()
 , which is used for converting a string
 value into an int
 value (Atoi
 stands for ASCII to Int). As specified by its signature, strconv.Atoi()
 returns (int, error)
 . Having an error
 value of nil
 means that the conversion was successful and that you can use the int
 value if you want. Having an error
 value that is not nil
 means that the conversion was unsuccessful and that the string
 input is not a valid int
 value.

If you want to learn more about strconv.Atoi()
 , you should execute go doc strconv.Atoi
 in your terminal window.

You might wonder what happens if you want to create your own error messages. Is this possible? Should you wish to return a custom error, you can use errors.New()
 from the errors
 package. This usually happens inside a function other than main()
 because main()
 does not return anything to any other function. Additionally, a good place to define your custom errors is inside the Go packages you create.

You will most likely work with errors in your programs without needing the functionality of the errors
 package. Additionally, you do not need to define custom error messages unless you are creating big applications or packages.

If you want to format your error messages in the way fmt.Printf()
 works, you can use the fmt.Errorf()
 function, which simplifies the creation of custom error messages—the fmt.Errorf()
 function returns an error
 value just like errors.New()
 .

And now we should talk about something important: you should have a global error handling tactic in each application that should not change. In practice, this means the following:

	All error messages should be handled at the same level, which means that all errors should either be returned to the calling function or be handled at the place they occurred.

	It should be clearly documented how to handle critical errors. This means that there will be situations where a critical error should terminate the program and other times where a critical error might just create a warning message onscreen.

	It is considered a good practice to send all error messages to the log service
 of your machine because this way the error messages can be examined at a later time. However, this is not always true, so exercise caution when setting this up—for
 example, cloud native apps do not work that way.

The error
 data type is actually defined as an interface
 —interfaces are covered in Chapter 4
 , Reflection and Interfaces
 .

Type the following code in your favorite text editor and save it as error.go
 in the directory where you put the code for this chapter. Using ch02
 as the directory name is a good idea.

package

 main
import

 (
 "errors"

 "fmt"

 "os"

 "strconv"

)

The first part is the preamble of the program—error.go
 uses the fmt
 , os
 , strconv
 , and errors
 packages.

// Custom error message with errors.New()

func

check

(a, b

int

)

error

 {
 if

 a == 0

 && b == 0

 {
 return

 errors.New("this is a custom error message"

)
 }
 return

 nil

}

The preceding code implements a function named check()
 that returns an error
 value. If both input parameters of check()
 are equal to 0
 , the function returns a custom error message using errors.New()
 —otherwise it returns nil
 , which means that everything is OK.

// Custom error message with fmt.Errorf()

func

formattedError

(a, b

int

)

error

 {
 if

 a == 0

 && b == 0

 {
 return

 fmt.Errorf("a %d and b %d. UserID: %d"

, a, b, os.Getuid())
 }
 return

 nil

}

The previous code implements formattedError()
 , which is a function that returns a formatted
 error message using fmt.Errorf()
 . Among other things, the error message prints the user ID of the user that executed the program with a call to os.Getuid()
 . When you want to create a custom error message, using fmt.Errorf()
 gives you more control over the output.

func

main

()

 {
 err := check(0

, 10

)
 if

 err == nil

 {
 fmt.Println("check() ended normally!"

)
 } else

 {
 fmt.Println(err)
 }
 err = check(0

, 0

)
 if

 err.Error() == "this is a custom error message"

 {
 fmt.Println("Custom error detected!"

)
 }
 err = formattedError(0

, 0

)
 if

 err != nil

 {
 fmt.Println(err)
 }
 i, err := strconv.Atoi("-123"

)
 if

 err == nil

 {
 fmt.Println("Int value is"

, i)
 }
 i, err = strconv.Atoi("Y123"

)
 if

 err != nil

 {
 fmt.Println(err)
 }
}

The previous code is the implementation of the main()
 function where you can see the use of the if err != nil
 statement multiple times as well as the use of if err == nil
 , which is used to make sure that everything was OK before executing the desired code.

Running error.go
 produces
 the next output:

$

 go run error.go

check() ended normally!
Custom error detected!
a 0 and b 0. UserID: 501
Int value is -123
strconv.Atoi: parsing "Y123": invalid syntax

Now that you know about the error
 data type, how to create custom errors, and how to use error
 values, we'll continue with the basic data types of Go that can be logically divided into two main categories: numeric data types and non-numeric data types. Go also supports the bool
 data type, which can have a value of true
 or false
 only.

Numeric data types

Go supports
 integer, floating-point, and complex number values in various versions depending on the memory space they consume—this saves memory and computing time. Integer data types can be either signed or unsigned, which is not the case for floating point numbers.

The table that follows lists the numeric data types of Go.

	
Data Type

	
Description

	

int8

	
8-bit signed integer

	

int16

	
16-bit signed integer

	

int32

	
32-bit signed integer

	

int64

	
64-bit signed integer

	

int

	
32- or 64-bit signed integer

	

uint8

	
8-bit unsigned integer

	

uint16

	
16-bit unsigned integer

	

uint32

	
32-bit unsigned integer

	

uint64

	
64-bit unsigned integer

	

uint

	
32- or 64-bit unsigned integer

	

float32

	
32-bit floating-point number

	

float64

	
64-bit floating-point number

	

complex64

	
Complex number with float32
 parts

	

Complex128

	
Complex number with float64
 parts

The int
 and uint
 data
 types are special as they are the most efficient sizes for signed and unsigned integers on a given platform and can be either 32 or 64 bits each—their size is defined by Go itself. The int
 data type is the most widely used data type in Go due to its versatility.

The code that follows illustrates the use of numeric data types—you can find the entire program as numbers.go
 inside the ch02
 directory of the book GitHub repository.

func

main

()

 {
 c1 := 12

 + 1i

 c2 := complex

(5

, 7

)
 fmt.Printf("Type of c1: %T\n"

, c1)
 fmt.Printf("Type of c2: %T\n"

, c2)

The previous code creates two complex variables in two different ways—both ways are perfectly valid and equivalent. Unless you are into mathematics, you will most likely not use complex numbers in your programs. However, the existence of complex numbers shows how modern Go is.

 var

 c3 complex64

 = complex64

(c1 + c2)
 fmt.Println("c3:"

, c3)
 fmt.Printf("Type of c3: %T\n"

, c3)
 cZero := c3 - c3
 fmt.Println("cZero:"

, cZero)

The previous code continues to work with complex numbers by adding and subtracting two pairs of them. Although cZero
 is equal to zero, it is still a complex number and a complex64
 variable.

 x := 12

 k := 5

 fmt.Println(x)
 fmt.Printf("Type of x: %T\n"

, x)
 div := x / k
 fmt.Println("div"

, div)

In this part, we define two integer variables named x
 and k
 —their data type is identified by Go based on their initial values. Both are of type int
 , which is what Go prefers to use for storing
 integer values. Additionally, when you divide two integer values, you get an integer result even when the division is not perfect. This means that if this is not what you want, you should take extra care—this is shown in the next code excerpt:

 var

 m, n float64

 m = 1.223

 fmt.Println("m, n:"

, m, n)
 y := 4

 / 2.3

 fmt.Println("y:"

, y)
 divFloat := float64

(x) / float64

(k)
 fmt.Println("divFloat"

, divFloat)
 fmt.Printf("Type of divFloat: %T\n"

, divFloat)
}

The previous code works with float64
 values and variables. As n
 does not have an initial value, it is automatically assigned
 with the zero value of its data type, which is 0
 for the float64
 data type.

Additionally, the code presents a technique for dividing integer values and getting a floating-point result, which is the use of float64()
 : divFloat := float64(x) / float64(k)
 . This is a type conversion where two integers (x
 and k
) are converted to float64
 values. As the division between two float64
 values is a float64
 value, we get the result in the desired data type.

Running numbers.go
 creates the following output:

$

 go run numbers.go

Type of c1: complex128
Type of c2: complex128
c3: (17+8i)
Type of c3: complex64
cZero: (0+0i)
12
Type of x: int
div 2
m, n: 1.223 0
y: 1.7391304347826086
divFloat 2.4
Type of divFloat: float64

The output shows
 that both c1
 and c2
 are complex128
 values, which is the preferred complex data type for the machine on which the code was executed. However, c3
 is a complex64
 value because it was created using complex64()
 . The value of n
 is 0
 because the n
 variable was not initialized, which means that Go automatically assigned the zero value of its data type to n
 .

After learning about numeric data types, it is time to learn about non-numeric data types, which is the subject of the next section.

Non-numeric data types

Go has
 support for Strings
 , Characters
 , Runes
 , Dates
 , and Times
 . However, Go does not have a dedicated char
 data type. We begin by explaining the string-related data types.

For Go, dates and times are the same thing and are represented by the same data type. However, it is up to you to determine whether a time and date variable contains valid information or not.

Strings, Characters, and Runes

Go
 supports
 the string
 data
 type for representing
 strings. A
 Go string is just a collection of bytes and can be accessed as a whole or as an array. A single byte can store any ASCII character—however, multiple bytes are usually needed for storing a single Unicode character.

Nowadays, supporting Unicode characters is a common requirement—Go is designed with Unicode support in mind, which is the main reason for having the rune data type. A rune is an int32
 value that is used for representing a single
 Unicode code point, which is an integer value that is used for representing single Unicode characters or, less frequently, providing formatting information.

Although a rune is an int32
 value, you cannot compare a rune with an int32
 value. Go considers these two data types as totally different.

You can create a new byte slice from a given string by using a []byte("A String")
 statement. Given a byte slice variable b
 , you can convert it into a string using the string(b)
 statement. When working with byte slices that contain Unicode characters, the number of bytes in a byte slice is not always connected to the number of characters in the byte slice, because most Unicode characters require more than one byte for their representation. As a result, when you try to print each single byte of a byte slice using fmt.Println()
 or fmt.Print()
 , the output is not text presented as characters but integer values. If you
 want to
 print
 the
 contents
 of a byte slice as text, you should either print it using string(byteSliceVar)
 or using fmt.Printf()
 with %s
 to tell fmt.Printf()
 that you want to print a string. You can initialize a new byte slice with the desired string by using a statement such as []byte("My Initialization String")
 .

We will cover byte slices in more detail in the Byte slices
 section.

You can define a rune using single quotes: r := '€'
 and you can print the integer value of the bytes that compose it as fmt.Println(r)
 —in this case, the integer value is 8364
 . Printing it as a single Unicode character requires the use of the %c
 control string in fmt.Printf()
 .

As strings can be accessed as arrays, you can iterate over the runes of the string using a for
 loop or point to a specific character if you know its place in the string. The length of the string is the same as the number of characters found in the string, which is usually not true for byte slices because Unicode characters usually require more than one byte.

The following Go code illustrates the use of strings and runes and how you can work with strings in your code. You can find the entire program as text.go
 in the ch02
 directory of the GitHub repository of the book.

The first part of the program defines a string literal that contains a Unicode character. Then it accesses its first character as if the string was an array.

func

main

()

 {
 aString := "Hello World! €"

 fmt.Println("First character"

, string

(aString[0

]))

The next part is about working with runes.

 // Runes

 // A rune

 r := '€'

 fmt.Println("As an int32 value:"

, r)
 // Convert Runes to text

 fmt.Printf("As a string: %s and as a character: %c\n"

, r, r)
 // Print an existing string as runes

 for

 _, v := range

 aString {
 fmt.Printf("%x "

, v)
 }
 fmt.Println()

First, we
 define
 a rune
 named r
 . What
 makes
 this a rune is the use of single quotes around the €
 character. The rune is an int32
 value and is printed as such by fmt.Println()
 . The %c
 control string in fmt.Printf()
 prints a rune as a character.

Then we iterate over aString
 as a slice or an array using a for
 loop with range
 and print the contents of aString
 as runes.

 // Print an existing string as characters

 for

 _, v := range

 aString {
 fmt.Printf("%c"

, v)
 }
 fmt.Println()
}

Lastly, we iterate over aString
 as a slice or an array using a for
 loop with range
 and print the contents of aString
 as characters.

Running text.go
 produces the following output:

$

 go run text.go

First character H
As an int32 value: 8364
As a string: %!s(int32=8364) and as a character: €
48 65 6c 6c 6f 20 57 6f 72 6c 64 21 20 20ac
Hello World! €

The first line of the output shows that we can access a string
 as an array whereas the second line verifies that a rune is an integer value. The third line shows what to expect when
 you
 print
 a rune
 as a string
 and
 as a
 character—the correct way is to print it as a character. The fifth line shows how to print a string as runes and the last line shows the output of processing a string as characters using range
 and a for
 loop.

Converting from int to string

You can
 convert
 an integer value into a string in two main ways: using string()
 and using a function from the strconv
 package. However, the two methods are fundamentally different. The string()
 function converts an integer value into a Unicode code point, which is a single character, whereas functions such as strconv.FormatInt()
 and strconv.Itoa()
 convert an integer value into a string value with the same representation and the same number of characters.

This is illustrated in the intString.go
 program—its most important statements are the following. You can find the entire program in the GitHub repository of the book.

 input := strconv.Itoa(n)
 input = strconv.FormatInt(int64

(n), 10

)
 input = string

(n)

Running intString.go
 generates the following kind of output:

$

 go run intString.go 100

strconv.Itoa() 100 of type string
strconv.FormatInt() 100 of type string
string() d of type string

The data type of the output is always string
 , however, string()
 converted 100
 into d
 because
 the ASCII
 representation of d
 is 100
 .

The unicode package

The unicode
 standard Go
 package contains various handy functions for working with Unicode code points. One of them, which is called unicode.IsPrint()
 , can help you to identify the parts of a string that are printable using runes.

The following code excerpt illustrates the functionality of the unicode
 package:

 for

 i := 0

; i < len

(sL); i++ {
 if

 unicode.IsPrint(rune

(sL[i])) {
 fmt.Printf("%c\n"

, sL[i])
 } else

 {
 fmt.Println("Not printable!"

)
 }
 }

The for
 loop iterates over the contents of a string defined as a list of runes ("\x99\x00ab\x50\x00\x23\x50\x29\x9c"
) while unicode.IsPrint()
 examines whether the character is printable or not—if it returns true
 then a rune is printable.

You can find this code excerpt inside the unicode.go
 source file at the ch02
 directory in the GitHub repository of the book. Running unicode.go
 produces the following output:

Not printable!
Not printable!
a
b
P
Not printable!
#

P

)
Not printable!

This utility is very handy for filtering your input or filtering data before printing it on screen, storing it in log files, transferring it on a network, or storing it in a database.

The strings package

The strings
 standard
 Go package allows you to manipulate UTF-8 strings in Go and includes many powerful functions. Many of these functions are illustrated in the useStrings.go
 source file, which can be found in the ch02
 directory of the book GitHub repository.

If you are working with text and text processing, you definitely need to learn all the gory details and functions of the strings
 package, so make sure that you experiment with all these functions and create many examples that will help you to clarify things.

The most important parts of useStrings.go
 are the following:

import

 (
 "fmt"

 s "strings"

 "unicode"

)
var

 f = fmt.Printf

As we are going to use the strings
 package multiple times, we create a convenient alias for it named s
 . We do the same for the fmt.Printf()
 function where we create a global alias using a variable named f
 . These two shortcuts make code less populated with long, repeated lines of code. You can use it when learning Go but this is not recommended in any kind of production software, as it makes code less readable.

The first code excerpt is the following.

f("EqualFold: %v\n"

, s.EqualFold("Mihalis"

, "MIHAlis"

))
f("EqualFold: %v\n"

, s.EqualFold("Mihalis"

, "MIHAli"

))

The strings.EqualFold()
 function compares two strings without considering their case and returns true
 when they are the same and false
 otherwise.

f("Index: %v\n"

, s.Index("Mihalis"

, "ha"

))
f("Index: %v\n"

, s.Index("Mihalis"

, "Ha"

))

The strings.Index()
 function checks whether the string of the second parameter can be found in the string that is given as the first parameter and returns the index where it was found for the first time. On an unsuccessful search, it returns -1
 .

 f("Prefix: %v\n"

, s.HasPrefix("Mihalis"

, "Mi"

))
 f("Prefix: %v\n"

, s.HasPrefix("Mihalis"

, "mi"

))
 f("Suffix: %v\n"

, s.HasSuffix("Mihalis"

, "is"

))
 f("Suffix: %v\n"

, s.HasSuffix("Mihalis"

, "IS"

))

The strings.HasPrefix()
 function checks whether the given string, which is the first parameter, begins with the string that is given as the second parameter. In the previous code, the first call to strings.HasPrefix()
 returns true
 , whereas the second returns false
 .

Similarly, the strings.HasSuffix()
 function checks whether the given string ends with the second string. Both functions take into account the case of the input string and the case of the second
 parameter.

 t := s.Fields("This is a string!"

)
 f("Fields: %v\n"

, len

(t))
 t = s.Fields("ThisIs a\tstring!"

)
 f("Fields: %v\n"

, len

(t))

The handy strings.Fields()
 function splits the given string around one or more white space characters as defined by the unicode.IsSpace()
 function and returns a slice of substrings found in the input string. If the input string contains white characters only, it returns an empty slice.

 f("%s\n"

, s.Split("abcd efg"

, ""

))
 f("%s\n"

, s.Replace("abcd efg"

, ""

, "_"

, -1

))
 f("%s\n"

, s.Replace("abcd efg"

, ""

, "_"

, 4

))
 f("%s\n"

, s.Replace("abcd efg"

, ""

, "_"

, 2

))

The strings.Split()
 function allows you to split the given string according to the desired separator string—the strings.Split()
 function returns a string slice
 . Using ""
 as the second parameter of strings.Split()
 allows you to process a string character by character.

The strings.Replace()
 function takes four parameters. The first parameter is the string that you want to process. The second parameter contains the string that, if found, will be replaced by the third parameter of strings.Replace()
 . The last parameter is the maximum number of replacements that are allowed to happen. If that parameter has a negative value, then there is no limit to the number of replacements that can take place.

 f("SplitAfter: %s\n"

, s.SplitAfter("123++432++"

, "++"

))
 trimFunction := func

(c

rune

)

bool

 {
 return

 !unicode.IsLetter(c)
 }
 f("TrimFunc: %s\n"

, s.TrimFunc("123 abc ABC \t ."

, trimFunction))

The strings.SplitAfter()
 function splits its first parameter string into substrings based on the separator string that is given as the second parameter to the function. The separator string is included in the returned slice.

The last lines of code
 define a trim function
 named trimFunction
 that is used as the second parameter to strings.TrimFunc()
 in order to filter the given input based on the return value of the trim function—in this case, the trim function keeps all letters and nothing else
 due to the unicode.IsLetter()
 call.

Running useStrings.go
 produces the next output:

To Upper: HELLO THERE!
To Lower: hello there
THis WiLL Be A Title!
EqualFold: true
EqualFold: false
Prefix: true
Prefix: false
Suffix: true
Suffix: false
Index: 2
Index: -1
Count: 2
Count: 0
Repeat: ababababab
TrimSpace: This is a line.
TrimLeft: This is a line.
TrimRight: This is a line.
Compare: 1
Compare: 0
Compare: -1
Fields: 4
Fields: 3
[a b c d e f g]
_a_b_c_d_ _e_f_g_
_a_b_c_d efg
_a_bcd efg
Join: Line 1+++Line 2+++Line 3
SplitAfter: [123++ 432++]
TrimFunc: abc ABC

Visit the
 documentation page of the strings
 package at
https://golang.org/pkg/strings/

 for the complete list of available functions. You will see the functionality of the strings
 package in other places in this book.

Enough with
 strings and text; the next section is about working with dates and times in Go.

Times and dates

Often, we
 need to
 work with date and time information to store the time an entry was last used in a database or the time an entry was inserted into a database, which brings us to another interesting topic: working with dates and times in Go.

The king of working with times and dates in Go is the time.Time
 data type, which represents an instant in time with nanosecond precision
 . Each time.Time
 value is associated with a location (time zone).

If you are a UNIX person, you might already know about the UNIX epoch time and wonder how to get it in Go. The time.Now().Unix()
 function returns the popular UNIX epoch time, which is the number of seconds that have elapsed since 00:00:00 UTC, January 1, 1970. If you want to convert the UNIX time to the equivalent time.Time
 value, you can use the time.Unix()
 function. If you are not a UNIX person, then you might not have heard about the UNIX epoch time before but now you know what it is!

The time.Since()
 function calculates the time that has passed since a given time and returns a time.Duration
 variable—the duration
 data type is defined as type Duration int64
 . Although a Duration
 is, in reality, an int64
 value, you cannot compare or convert a duration
 to an int64
 value implicitly because Go does not allow implicit data type conversions
 .

The single most important topic about Go and dates and times is the way Go parses a string in order to convert it into a date and a time. The reason that this is important is usually such input is given as a string and not as a valid date variable. The function used for parsing is time.Parse()
 and its full signature is Parse(layout, value string) (Time, error)
 , where layout
 is the parse string and value
 is the input that is being parsed. The time.Time
 value that is returned is a moment in time with nanosecond precision and contains both date and time information.

The next table shows the most widely used strings for parsing dates and times.

	
Parse Value

	
Meaning (examples)

	

05

	
12-hour value (12pm, 07am)

	

15

	
24-hour value (23, 07)

	

04

	
Minutes (55, 15)

	

05

	
Seconds (5, 23)

	

Mon

	
Abbreviated day of week (Tue, Fri)

	

Monday

	
Day of week (Tuesday, Friday)

	

02

	
Day of month (15, 31)

	

2006

	
Year with 4 digits (2020, 2004)

	

06

	
Year with the last 2 digits (20, 04)

	

Jan

	
Abbreviated month name (Feb, Mar)

	

January

	
Full month name (July, August)

	

MST

	
Time zone (EST, UTC)

The previous
 table shows that if you want to parse the 30 January 2020
 string
 and convert it into a Go date variable, you should match it against the 02 January 2006
 string—you cannot use anything else in its place when matching a string with the 30 January 2020
 format. Similarly, if you want to parse the 15 August 2020 10:00
 string, you should match it against
 the 02 January 2006 15:04
 string. The documentation of the time
 package (
https://golang.org/pkg/time/

) contains even more detailed information about parsing dates and times—however, the ones presented here should be more than enough for regular use.

A utility for parsing dates and times

On a rare
 occasion, a situation can happen when we do not know anything about our input. If you do not know the exact format of your input, then you need to try matching your input against multiple Go strings without being sure that you are going to succeed in the end. This is the approach that the example uses. The Go matching strings for dates and times can be tried in any order.

If you are matching a string that only contains the date, then your time will be set to 00:00
 by Go and will most likely be incorrect. Similarly, when matching the time only, your date will be incorrect and should not be used.

The formatting strings can be also used for printing dates and times in the desired format. So in order to print the current date in the 01-02-2006
 format, you should use time.Now().Format("01-02-2006")
 .

The code that follows illustrates how to work with epoch time in Go and showcases the parsing process—create
 a text file, type the following code, and save it as dates.go
 .

package

 main
import

 (
 "fmt"

 "os"

 "time"

)

This is the expected preamble of the Go source file.

func

main

()

 {
 start := time.Now()
 if

 len

(os.Args) != 2

 {
 fmt.Println("Usage: dates parse_string"

)
 return

 }
 dateString := os.Args[1

]

This is how we get user input that is stored in the dateString
 variable. If the utility gets no input, there is no point in continuing its operation.

 // Is this a date only?

 d, err := time.Parse("02 January 2006"

, dateString)
 if

 err == nil

 {
 fmt.Println("Full:"

, d)
 fmt.Println("Time:"

, d.Day(), d.Month(), d.Year())
 }

The first test is for matching a date only using the 02 January 2006
 format. If the match is successful, you can access the individual fields of a variable that holds a valid date using Day()
 , Month()
 , and Year()
 .

 // Is this a date + time?

 d, err = time.Parse("02 January 2006 15:04"

, dateString)
 if

 err == nil

 {
 fmt.Println("Full:"

, d)
 fmt.Println("Date:"

, d.Day(), d.Month(), d.Year())
 fmt.Println("Time:"

, d.Hour(), d.Minute())
 }

This time we try
 to match a string using "02 January 2006 15:04"
 , which contains a date and a time value. If the match is successful, you can access the fields of a valid time using Hour()
 and Minute()
 .

 // Is this a date + time with month represented as a number?

 d, err = time.Parse("02-01-2006 15:04"

, dateString)
 if

 err == nil

 {
 fmt.Println("Full:"

, d)
 fmt.Println("Date:"

, d.Day(), d.Month(), d.Year())
 fmt.Println("Time:"

, d.Hour(), d.Minute())
 }

This time we try to match against the "02-01-2006 15:04"
 format, which contains both a date and a time. Note that it is compulsory that the string that is being examined contains the -
 and the :
 characters as specified in the time.Parse()
 call and that "02-01-2006 15:04"
 is different from "02/01/2006 1504"
 .

 // Is it time only?

 d, err = time.Parse("15:04"

, dateString)
 if

 err == nil

 {
 fmt.Println("Full:"

, d)
 fmt.Println("Time:"

, d.Hour(), d.Minute())
 }

The last match is for time only using the "15:04"
 format. Note that the :
 should exist in the string that is being examined.

 t := time.Now().Unix()
 fmt.Println("Epoch time:"

, t)
 // Convert Epoch time to time.Time

 d = time.Unix(t, 0

)
 fmt.Println("Date:"

, d.Day(), d.Month(), d.Year())
 fmt.Printf("Time: %d:%d\n"

, d.Hour(), d.Minute())
 duration := time.Since(start)
 fmt.Println("Execution time:"

, duration)
}

The last part of dates.go
 shows how to work with UNIX epoch time. You get the current date and time in epoch time using time.Now().Unix()
 and you can convert that to a time.Time
 value using a call to time.Unix()
 .

Lastly, you can calculate the time duration between the current time and a time in the past using a call to time.Since()
 .

Running dates.go
 creates
 the following kind of output, depending on its input:

$

 go run dates.go

Usage: dates parse_string
$

 go run dates.go 14:10

Full: 0000-01-01 14:10:00 +0000 UTC
Time: 14 10
Epoch time: 1607964956
Date: 14 December 2020
Time: 18:55
Execution time: 163.032µs
$

 go run dates.go

"14 December 2020"

Full: 2020-12-14 00:00:00 +0000 UTC
Time: 14 December 2020
Epoch time: 1607964985
Date: 14 December 2020
Time: 18:56
Execution time: 180.029µs

If a command-line argument such as 14 December 2020
 contains space characters, you should put it in double quotes for the UNIX shell to treat it as a single command-line argument. Running go run dates.go 14 December 2020
 does not work.

Now that we know how to work with dates and times, it is time to learn more about time zones.

Working with different time zones

The presented
 utility accepts a date and a time and converts them into different time zones. This can be particularly handy when you want to preprocess log files from different sources that use different time zones in order to convert these different time zones into a common one.

Once again, you need time.Parse()
 in order to convert a valid input into a time.Time
 value before doing the conversions. This time the input string contains the time zone and is parsed by the "02 January 2006 15:04 MST"
 string.

In order to convert the parsed date and time into New York time, the program uses the following code:

 loc, _ = time.LoadLocation("America/New_York"

)
 fmt.Printf("New York Time: %s\n"

, now.In(loc))

This technique is used multiple times in convertTimes.go
 .

Running convertTimes.go
 generates the following output:

$

 go run convertTimes.go

"14 December 2020 19:20 EET"

Current Location: 2020-12-14 19:20:00 +0200 EET
New York Time: 2020-12-14 12:20:00 -0500 EST
London Time: 2020-12-14 17:20:00 +0000 GMT
Tokyo Time: 2020-12-15 02:20:00 +0900 JST
$

 go run convertTimes.go

"14 December 2020 20:00 UTC"

Current Location: 2020-12-14 22:00:00 +0200 EET
New York Time: 2020-12-14 15:00:00 -0500 EST
London Time: 2020-12-14 20:00:00 +0000 GMT
Tokyo Time: 2020-12-15 05:00:00 +0900 JST
$

 go run convertTimes.go

"14 December 2020 25:00 EET"

parsing time "14 December 2020 25:00": hour out of range

In the last execution of the program, the code has to parse 25
 as the hour of the day, which is wrong and generates the hour out of range
 error message.

Go constants

Go supports constants
 , which
 are variables that cannot change their values. Constants in Go are defined with the help of the const
 keyword. Generally speaking, constants can be either global or local variables
 .

However, you might need to rethink your approach if you find yourself defining too many constant variables with a local scope. The main benefit you get from using constants in your programs is the guarantee that their value will not change during program execution. Strictly speaking, the value of a constant variable is defined at compile time, not at runtime—this means that it is included in the binary executable. Behind the scenes, Go uses Boolean, string, or number as the type for storing constant values because this gives Go more flexibility when dealing with constants.

The next subsection discusses the constant generator iota, which is a handy way of creating sequences of constants.

The constant generator iota

The constant generator iota
 is used for declaring a sequence of related values that use incrementing
 numbers without the need to explicitly type each one of them.

The concepts related to the const
 keyword, including the constant generator iota, are illustrated in the constants.go
 file.

package

 main
import

 (
 "fmt"

)
type

 Digit
int

type

 Power2
int

const

 PI = 3.1415926

const

 (
 C1 = "C1C1C1"

 C2 = "C2C2C2"

 C3 = "C3C3C3"

)

In this part, we declare two new types named Digit
 and Power2
 that will be used in a while, and four new constants named PI
 , C1
 , C2
 , and C3
 .

A Go type
 is a way of defining a new named type
 that uses the same underlying type as an existing type. This is mainly used for differentiating between different types that might use the same kind of data. The type
 keyword can be used for defining structures
 and interfaces
 .

func

main

()

 {
 const

 s1 = 123

 var

 v1
float32

 = s1 * 12

 fmt.Println(v1)
 fmt.Println(PI)
 const

 (
 Zero Digit = iota

 One
 Two
 Three
 Four
)

The previous code
 defines a constant named s1
 . Here you also see the definition of a constant generator iota
 based on Digit
 , which is equivalent to the next declaration of four constants:

const

 (
 Zero = 0

 One = 1

 Two = 2

 Three = 3

 Four = 4

)

Although we are defining constants inside main()
 , constants can be normally found outside of main()
 or any other function or method.

The last part of constants.go
 is as follows.

 fmt.Println(One)
 fmt.Println(Two)
 const

 (
 p2_0 Power2 = 1

 << iota

 _
 p2_2
 _
 p2_4
 _
 p2_6
)
 fmt.Println("2^0:"

, p2_0)
 fmt.Println("2^2:"

, p2_2)
 fmt.Println("2^4:"

, p2_4)
 fmt.Println("2^6:"

, p2_6)
}

There is another
 constant generator iota here that is a little different than the previous one. Firstly, you can see the use of the underscore character in a const
 block with a constant generator iota, which allows you to skip unwanted values. Secondly, the value of iota
 always increments and can be used in expressions, which is what occurred in this case.

Now let us see what really happens inside the const
 block. For p2_0
 , iota
 has the value of 0
 and p2_0
 is defined as 1
 . For p2_2
 , iota
 has the value of 2
 and p2_2
 is defined as the result of the expression 1 << 2
 , which is 00000100
 in binary representation. The decimal value of 00000100
 is 4
 , which is the result and the value of p2_2
 . Analogously, the value of p2_4
 is 16
 and the value of p2_6
 is 64
 .

Running constants.go
 produces the next output:

$

 go run constants.go

1476
3.1415926
1
2
2^0: 1
2^2: 4
2^4: 16
2^6: 64

Having data is good but what happens when you have lots of similar data? Do you need to have lots of variables to hold this data or is there a better way to do so? Go answers these
 questions by introducing arrays and slices.

Grouping similar data

There are
 times when you want to keep multiple values of the same data type under a single variable and access them using an index number. The simplest way to do that in Go is by using arrays or slices.

Arrays are the most widely used data structures and can be found in almost all programming languages due to their simplicity and speed of access. Go provides an alternative to arrays that is called a slice. The subsections that follow help you understand the differences between arrays and slices so that you know which data structure to use and when.

The quick answer is that you can use slices instead of arrays almost anywhere in Go but we are also demonstrating arrays because they can still be useful and because slices are implemented by Go using arrays!

Arrays

Arrays in Go have
 the following characteristics and limitations:

	When defining an array variable, you must define its size. Otherwise, you should put [...]
 in the array declaration and let the Go compiler find out the length for you. So you can create an array with 4 string
 elements either as [4]string{"Zero", "One", "Two", "Three"}
 or as [...]string{"Zero", "One", "Two", "Three"}
 . If you put nothing in the square brackets, then a slice is going to be created instead. The (valid) indexes for that particular array are 0
 , 1
 , 2
 , and 3
 .

	You cannot change the size of an array after you have created it.

	When you pass an array to a function, what is happening is that Go creates a copy of that array and passes that copy to that function—therefore any changes you make to an array inside a function are lost when the function returns.

As a result, arrays in Go are not very powerful, which is the main reason that Go has introduced an additional data structure named slice
 that is similar to an array but is dynamic in nature and is explained in the next subsection. However, data in both arrays and slices is

 accessed the same way.

Slices

Slices in Go are
 more powerful than arrays mainly because they are dynamic, which means that they can grow or shrink after creation if needed. Additionally, any changes you make to a slice inside a function also affect the original slice. But how does this happen? Strictly speaking, all parameters in Go are passed by value
 —there is no other way to pass parameters in Go.

In reality, a slice value is a header
 that contains a pointer to an underlying array
 where the elements are actually stored, the length of the array, and its capacity—the capacity of a slice is explained in the next subsection. Note that the slice value does not include its elements, just a pointer to the underlying array. So, when you pass a slice to a function, Go makes a copy of that header and passes it to the function. This copy of the slice header includes the pointer to the underlying array. That slice header is defined in the reflect
 package (
https://golang.org/pkg/reflect/#SliceHeader

) as follows:

type

 SliceHeader struct

 {
 Data uintptr

 Len int

 Cap int

}

A side effect of passing the slice header is that it is faster to pass a slice to a function because Go does not need to make a copy of the slice and its elements, just the slice header.

You can create a slice using make()
 or like an array without specifying its size or using [...]
 . If you do not want to initialize a slice, then using make()
 is better and faster. However, if you want to initialize it at the time of creation, then make()
 cannot help you. As a result, you can create a slice with three float64
 elements as aSlice := []float64{1.2, 3.2, -4.5}
 . Creating a slice with space for three float64
 elements with make()
 is as simple as executing make([]float64, 3)
 . Each element of that slice has a value of 0
 , which is the zero value of the float64
 data type.

Both slices and arrays can have many dimensions—creating a slice with two dimensions with make()
 is as simple as writing make([][]int, 2)
 . This returns a slice with two dimensions where the first dimension is 2
 (rows) and the second dimension (columns) is unspecified and should be explicitly specified
 when adding data to it.

If you want to define and initialize a slice with two dimensions at the same time, you should execute something similar to twoD := [][]int{{1, 2, 3}, {4, 5, 6}}
 .

You can find the length of an array or a slice using len()
 . As you will find out in the next subsection, slices have an additional property named capacity
 . You can add new elements to a full slice using the append()
 function. append()
 automatically allocates the required memory space.

The example that follows clarifies many things about slices—feel free to experiment with it. Type the
 following code and save it as goSlices.go
 .

package

 main
import

 "fmt"

func

main

()

 {
 // Create an empty slice

 aSlice := []float64

{}
 // Both length and capacity are 0 because aSlice is empty

 fmt.Println(aSlice, len

(aSlice), cap

(aSlice))
 // Add elements to a slice

 aSlice = append

(aSlice, 1234.56

)
 aSlice = append

(aSlice, -34.0

)
 fmt.Println(aSlice, "with length"

, len

(aSlice))

The append()
 commands add two new elements to aSlice
 . You should save the return value of append()
 to an existing variable or a new one.

 // A slice with length 4

 t := make

([]int

, 4

)
 t[0

] = -1

 t[1

] = -2

 t[2

] = -3

 t[3

] = -4

 // Now you will need to use append

 t = append

(t, -5

)
 fmt.Println(t)

Once a slice has no place left for more elements, you should add new elements to it using append()
 .

 // A 2D slice

 // You can have as many dimensions as needed

 twoD := [][]int

{{1

, 2

, 3

}, {4

, 5

, 6

}}
 // Visiting all elements of a 2D slice

 // with a double for loop

 for

 _, i := range

 twoD {
 for

 _, k := range

 i {
 fmt.Print(k, " "

)
 }
 fmt.Println()
 }

The previous
 code shows how to create a 2D slice variable named twoD
 and initialize it at the same time.

 make2D := make

([][]int

, 2

)
 fmt.Println(make2D)
 make2D[0

] = []int

{1

, 2

, 3

, 4

}
 make2D[1

] = []int

{-1

, -2

, -3

, -4

}
 fmt.Println(make2D)
}

The previous part shows how to create a 2D slice with make()
 . What makes the make2D
 a 2D slice is the use of [][]int
 in make()
 .

Running goSlices.go
 produces the next output:

$

 go run goSlices.go

[] 0 0
[1234.56 -34] with length 2
[-1 -2 -3 -4 -5]
1 2 3
4 5 6
[[] []]
[[1 2 3 4] [-1 -2 -3 -4]]

About slice length and capacity

Both
 arrays and slices support the len()
 function for finding out their length. However, slices also have an additional
 property called capacity
 that can be found using the cap()
 function.

The capacity of a slice is really important when you want to select a part of a slice or when you want to reference an array using a slice. Both subjects will be discussed over the next few sections.

The capacity shows how much a slice can be expanded without the need to allocate more memory and change the underlying array. Although after slice creation the capacity of a slice is handled by Go, a developer can define the capacity of a slice at creation time using the make()
 function—after that the capacity of the slice doubles each time the length of the slice is about to become bigger than its current capacity. The first argument of make()
 is the type of the slice and its dimensions, the second is its initial length and the third, which is optional, is the capacity of the slice. Although the data type of a
 slice cannot change after creation, the other two properties can change.

Writing something like make([]int, 3, 2)
 generates an error message because at any given time the capacity of a slice (2
) cannot be smaller than its length (3
).

But what happens when you want to append a slice or an array to an existing slice? Should you do that element by element? Go supports the ...
 operator, which is used for exploding a slice or an array into multiple arguments before appending it to an existing slice.

The figure that follows illustrates with a graphical representation how length and capacity work in slices.

[image: A picture containing diagram Description automatically generated]

Figure 2.1: How slice length and capacity are related

For those of
 you that prefer code, here is a small Go program that showcases the length and capacity properties of slices. Type it and save it as capLen.go
 .

package

 main
import

 "fmt"

func

main

()

 {
 // Only length is defined. Capacity = length

 a := make

([]int

, 4

)

In this case, the capacity of a
 is the same as its length, which is 4
 .

 fmt.Println("L:"

, len

(a), "C:"

, cap

(a))
 // Initialize slice. Capacity = length

 b := []int

{0

, 1

, 2

, 3

, 4

}
 fmt.Println("L:"

, len

(b), "C:"

, cap

(b))

Once again, the capacity of slice b
 is the same as its length, which is 5
 .

 // Same length and capacity

 aSlice := make

([]int

, 4

, 4

)
 fmt.Println(aSlice)

This time the capacity of slice aSlice
 is the same as its length, not because Go decided to do so but because we specified it.

 // Add an element

 aSlice = append

(aSlice, 5

)

When you add
 a new element to slice aSlice
 , its capacity is doubled and becomes 8
 .

 fmt.Println(aSlice)
 // The capacity is doubled

 fmt.Println("L:"

, len

(aSlice), "C:"

, cap

(aSlice))
 // Now add four elements

 aSlice = append

(aSlice, []int

{-1

, -2

, -3

, -4

}...)

The ...
 operator expands []int{-1, -2, -3, -4}
 into multiple arguments and append()
 appends each argument one by one to aSlice
 .

 fmt.Println(aSlice)
 // The capacity is doubled

 fmt.Println("L:"

, len

(aSlice), "C:"

, cap

(aSlice))
}

Running capLen.go
 produces the next output:

$

 go run capLen.go

L: 4 C: 4
L: 5 C: 5
[0 0 0 0]
[0 0 0 0 5]
L: 5 C: 8
[0 0 0 0 5 -1 -2 -3 -4]
L: 9 C: 16

Setting the correct capacity of a slice, if known in advance, will make your programs faster because Go will not have to allocate a new underlying array and have all the data copied over.

Working with slices is good but what happens when you want to work with a continuous part of an existing slice? Is there a practical way to select a part of a slice? Fortunately, the answer is
 yes—the next subsection sheds some light on selecting a continuous part
 of a slice.

Selecting a part of a slice

Go allows
 you to select parts of a slice, provided that all desired elements are next to each other. This can be pretty handy when you select a range of elements and you do not want to give their indexes one by one. In Go you select a part of a slice by defining two indexes, the first one is the beginning of the selection whereas the second one is the end of the selection, without including the element at that index, separated by :
 .

If you want to process all the command-line arguments of a utility apart from the first one, which is its name, you can assign it to a new variable (arguments := os.Args
) for ease of use and use the arguments[1:]
 notation to skip the first command-line argument.

However, there is a variation where you can add a third parameter that controls the capacity of the resulting slice. So, using aSlice[0:2:4]
 selects the first 2 elements of a slice (at indexes 0
 and 1
) and creates a new slice with a maximum capacity of 4
 . The resulting capacity is defined as the result of the 4-0
 subtraction where 4
 is the maximum capacity and 0
 is the first index—if the first index is omitted, it is automatically set to 0
 . In this case, the capacity of the result slice will be 4
 because 4-0
 equals 4
 .

If we would have used aSlice[2:4:4]
 , we would have created a new slice with the aSlice[2]
 and aSlice[3]
 elements and with a capacity of 4-2
 . Lastly, the resulting capacity cannot be bigger
 than the capacity of the original slice because in that case, you would need a different underlying array.

Type the following code using your favorite editor and save it as partSlice.go
 .

package

 main
import

 "fmt"

func

main

()

 {
 aSlice := []int

{0

, 1

, 2

, 3

, 4

, 5

, 6

, 7

, 8

, 9

}
 fmt.Println(aSlice)
 l := len

(aSlice)
 // First 5 elements

 fmt.Println(aSlice[0

:5

])
 // First 5 elements

 fmt.Println(aSlice[:5

])

In this first part, we define a new slice named aSlice
 that has 10 elements. Its capacity is the same as its length. Both 0:5
 and :5
 notations select the first 5 elements of the slice, which are the elements found at indexes 0
 , 1
 , 2
 , 3
 , and 4
 .

 // Last 2 elements

 fmt.Println(aSlice[l-2

 : l])
 // Last 2 elements

 fmt.Println(aSlice[l-2

:])

Given the length
 of the slice (l
), we can select the last two elements of the slice either as l-2 : l
 or as l-2:
 .

 // First 5 elements

 t := aSlice[0

:5

:10

]
 fmt.Println(len

(t), cap

(t))
 // Elements at indexes 2,3,4

 // Capacity will be 10-2

 t = aSlice[2

:5

:10

]
 fmt.Println(len

(t), cap

(t))

Initially, the capacity of t
 will be 10-0
 , which is 10
 . In the second case, the capacity of t
 will be 10-2
 .

 // Elements at indexes 0,1,2,3,4

 // New capacity will be 6-0

 t = aSlice[:5

:6

]
 fmt.Println(len

(t), cap

(t))
}

The capacity of t
 is now 6-0
 and its length is going to be 5
 because we have selected the first 5 elements of slice aSlice
 .

Running partSlice.go
 generates the next output:

$

 go run partSlice.go

[0 1 2 3 4 5 6 7 8 9]

The previous line is the output of fmt.Println(aSlice)
 .

[0 1 2 3 4]
[0 1 2 3 4]

The previous two lines are generated from fmt.Println(aSlice[0:5])
 and fmt.Println(aSlice[:5])
 .

[8 9]
[8 9]

Analogously, the previous two lines are generated from fmt.Println(aSlice[l-2 : l])
 and fmt.Println(aSlice[l-2:])
 .

5 10
3 8
5 6

The last three
 lines print the length and the capacity of aSlice[0:5:10]
 , aSlice[2:5:10]
 and aSlice[:5:6]
 .

Byte slices

A byte slice
 is a
 slice
 of the byte
 data type ([]byte
). Go knows that most byte
 slices are used to store strings and so makes it easy to switch between this type and the string
 type. There is nothing special in the way you can access a byte slice compared to the other types of slices. What is special is that Go uses byte slices
 for performing file I/O operations because they allow you to determine with precision the amount of data you want to read or write to a file. This happens because bytes are a universal unit among computer systems.

As Go does not have a char
 data type, it uses byte
 and rune
 for storing character values. A single byte
 can only store a single ASCII character whereas a rune
 can store Unicode characters. However, a rune can occupy multiple bytes.

The small program that follows illustrates how you can convert a byte
 slice into a string
 and vice versa, which you need for most File I/O operations—type it and save it as byteSlices.go
 .

package

 main
import

 "fmt"

func

main

()

 {
 // Byte slice

 b := make

([]byte

, 12

)
 fmt.Println("Byte slice:"

, b)

An empty byte slice contains zeros—in this case, 12 zeros.

 b = []byte

("Byte slice €"

)
 fmt.Println("Byte slice:"

, b)

In this case, the size of b
 is the size of the string "Byte slice €"
 , without the double quotes—b
 now points to a different memory location than before, which is where "Byte slice €"
 is stored. This is how you convert a string
 into a byte
 slice.

As Unicode
 characters like € need more than one byte for their representation, the
 length of the byte
 slice might not be the same as the length of the string that it stores.

 // Print byte slice contents as text

 fmt.Printf("Byte slice as text: %s\n"

, b)
 fmt.Println("Byte slice as text:"

, string

(b))

The previous code shows how to print the contents of a byte slice as text using two techniques. The first one is by using the %s
 control string and the second one using string()
 .

 // Length of b

 fmt.Println("Length of b:"

, len

(b))
}

The previous code prints the real length of the byte slice.

Running byteSlices.go
 produces the next output:

$

 go run byteSlices.go

Byte slice: [0 0 0 0 0 0 0 0 0 0 0 0]
Byte slice: [66 121 116 101 32 115 108 105 99 101 32 226 130 172]
Byte slice as text: Byte slice €
Byte slice as text: Byte slice €
Length of b: 14

The last line of
 the
 output proves that although the b
 byte slice has 12 characters, it has a size of 14
 .

Deleting an element from a slice

There is no
 default function for deleting an element from a slice, which means that if you need to delete an element from a slice, you must write your own code. Deleting an element from a slice can be tricky, so this subsection presents two techniques for doing so. The first technique virtually divides the original slice into two slices, split at the index of the element that needs to be deleted. Neither of the two slices includes the element that is going to be deleted. After that, we concatenate these two slices and creates a new one. The second technique copies the last element at the place of the element that is going to be deleted and creates a new slice by excluding the last element from the original slice.

The next figure shows a graphical representation of the two techniques for deleting an element from a slice.

[image: A picture containing text, sign Description automatically generated]

Figure 2.2: Deleting an element from a slice

The following
 program shows the two techniques that can be used for deleting an element from a slice. Create a text file by typing the following code—save it as deleteSlice.go
 .

package

 main
import

 (
 "fmt"

 "os"

 "strconv"

)
func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Need an integer value."

)
 return

 }
 index := arguments[1

]
 i, err := strconv.Atoi(index)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Println("Using index"

, i)
 aSlice := []int

{0

, 1

, 2

, 3

, 4

, 5

, 6

, 7

, 8

}
 fmt.Println("Original slice:"

, aSlice)
 // Delete element at index i

 if

 i > len

(aSlice)-1

 {
 fmt.Println("Cannot delete element"

, i)
 return

 }
 // The ... operator auto expands aSlice[i+1:] so that

 // its elements can be appended to aSlice[:i] one by one

 aSlice = append

(aSlice[:i], aSlice[i+1

:]...)
 fmt.Println("After 1st deletion:"

, aSlice)

Here we logically
 divide the original slice into two slices. The two slices are split at the index of the element that needs to be deleted. After that, we concatenate these two slices with the help of ...
 . Next, we see the second technique in action.

 // Delete element at index i

 if

 i > len

(aSlice)-1

 {
 fmt.Println("Cannot delete element"

, i)
 return

 }
 // Replace element at index i with last element

 aSlice[i] = aSlice[len

(aSlice)-1

]
 // Remove last element

 aSlice = aSlice[:len

(aSlice)-1

]
 fmt.Println("After 2nd deletion:"

, aSlice)
}

We replace the element that we want to delete with the last element using the aSlice[i] = aSlice[len(aSlice)-1]
 statement and then we remove the last element with the aSlice = aSlice[:len(aSlice)-1]
 statement.

Running deleteSlice.go
 produces the following kind of output, depending on your input:

$

 go run deleteSlice.go 1

Using index 1
Original slice: [0 1 2 3 4 5 6 7 8]
After 1st deletion: [0 2 3 4 5 6 7 8]
After 2nd deletion: [0 8 3 4 5 6 7]

As the slice
 has 9 elements, you can delete the element at index value 1
 .

$

 go run deleteSlice.go 10

Using index 10
Original slice: [0 1 2 3 4 5 6 7 8]
Cannot delete element 10

As the slice has only 9 elements, you cannot delete an element with an index value of 10
 from the slice.

How slices are connected to arrays

As
 mentioned
 before, behind the scenes, each slice is implemented using an underlying array
 . The length of the underlying array is the same as the capacity of the slice and there exist pointers that connect the slice elements to the appropriate array elements.

You can understand that by connecting an existing array with a slice, Go allows you to reference an array or a part of an array using a slice. This has some strange capabilities including the fact that the changes to the slice affect the referenced array! However, when the capacity of the slice changes, the connection to the array ceases to exist! This happens because when the capacity of a slice changes, so does the underlying array, and the connection between the slice and the original array does not exist anymore.

Type the following code and save it as sliceArrays.go
 .

package

 main
import

 (
 "fmt"

)
func

change

(s []

string

)

 {
 s[0

] = "Change_function"

}

This is a function that changes the first element of a slice.

func

main

()

 {
 a := [4

]
string

{"Zero"

, "One"

, "Two"

, "Three"

}
 fmt.Println("a:"

, a)

Here we define an array named a
 with 4 elements.

 var

 S0 = a[0

:1

]
 fmt.Println(S0)
 S0[0

] = "S0"

Here we
 connect S0
 with the first element of the array a
 and
 we print it. Then we change the value of S0[0]
 .

 var

 S12 = a[1

:3

]
 fmt.Println(S12)
 S12[0

] = "S12_0"

 S12[1

] = "S12_1"

In this part, we associate S12
 with a[1]
 and a[2]
 . Therefore S12[0]
 = a[1]
 and S12[1]
 = a[2]
 . Then, we change the values of both S12[0]
 and S12[1]
 . These two changes will also change the contents of a
 . Put simply, a[1]
 takes the new value of S12[0]
 and a[2]
 takes the new value of S12[1]
 .

 fmt.Println("a:"

, a)

And we print variable a
 , which has not changed at all in a direct way. However, due to the connections of a
 with S0
 and S12
 , the contents of a
 have changed!

 // Changes to slice -> changes to array

 change(S12)
 fmt.Println("a:"

, a)

As the slice and the array are connected, any changes you make to the slice will also affect the array even if the changes take place inside a function.

 // capacity of S0

 fmt.Println("Capacity of S0:"

, cap

(S0), "Length of S0:"

, len

(S0))
 // Adding 4 elements to S0

 S0 = append

(S0, "N1"

)
 S0 = append

(S0, "N2"

)
 S0 = append

(S0, "N3"

)
 a[0

] = "-N1"

As the
 capacity
 of S0
 changes, it is no longer connected to the same underlying array (a
).

 // Changing the capacity of S0

 // Not the same underlying array anymore!

 S0 = append

(S0, "N4"

)
 fmt.Println("Capacity of S0:"

, cap

(S0), "Length of S0:"

, len

(S0))
 // This change does not go to S0

 a[0

] = "-N1-"

 // This change does not go to S12

 a[1

] = "-N2-"

However, array a
 and slice S12
 are still connected because the capacity of S12
 has not changed.

 fmt.Println("S0:"

, S0)
 fmt.Println("a: "

, a)
 fmt.Println("S12:"

, S12)
}

Lastly, we print the final versions of a
 , S0
 , and S12
 .

Running sliceArrays.go
 produces the following output:

$

 go run sliceArrays.go

a: [Zero One Two Three]
[Zero]
[One Two]
a: [S0 S12_0 S12_1 Three]
a: [S0 Change_function S12_1 Three]
Capacity of S0: 4 Length of S0: 1
Capacity of S0: 8 Length of S0: 5
S0: [-N1 N1 N2 N3 N4]
a: [-N1- -N2- N2 N3]
S12: [-N2- N2]

Let us
 now
 discuss the use of the copy()
 function in the next subsection.

The copy() function

Go offers
 the copy()
 function
 for copying an existing array to a slice or an existing slice to another slice. However, the use of copy()
 can be tricky because the destination slice is not auto-expanded if the source slice is bigger than the destination slice. Additionally, if the destination slice is bigger than the source slice, then copy()
 does not empty the elements from the destination slice that did not get copied. This is better illustrated in the figure that follows.

[image: A picture containing text, sign Description automatically generated]

Figure 2.3: The use of the copy() function

The following program illustrates the use of copy()
 —type it in your favorite text editor and save it as copySlice.go
 .

package

 main
import

 "fmt"

func

main

()

 {
 a1 := []
int

{1

}
 a2 := []
int

{-1

, -2

}
 a5 := []
int

{10

, 11

, 12

, 13

, 14

}
 fmt.Println("a1"

, a1)
 fmt.Println("a2"

, a2)
 fmt.Println("a5"

, a5)
 // copy(destination, input)

 // len(a2) > len(a1)

 copy

(a1, a2)
 fmt.Println("a1"

, a1)
 fmt.Println("a2"

, a2)

Here we run the copy(a1, a2)
 command. In this case, the a2
 slice is bigger than a1
 . After copy(a1, a2)
 , a2
 remains the same, which makes perfect sense as a2
 is the input slice, whereas
 the
 first element of a2
 is copied to the first element of a1
 because a1
 has space for a single element only.

 // len(a5) > len(a1)

 copy

(a1, a5)
 fmt.Println("a1"

, a1)
 fmt.Println("a5"

, a5)

In this case, a5
 is bigger than a1
 . Once again, after copy(a1, a5)
 , a5
 remains the same whereas a5[0]
 is copied to a1[0]
 .

 // len(a2) < len(a5) -> OK

 copy

(a5, a2)
 fmt.Println("a2"

, a2)
 fmt.Println("a5"

, a5)
}

In this last case, a2
 is shorter than a5
 . This means that the entire a2
 is copied into a5
 . As the length of a2
 is 2, only the first 2 elements of a5
 change.

Running copySlice.go
 produces the next output:

$

 go run copySlice.go

a1 [1]
a2 [-1 -2]
a5 [10 11 12 13 14]
a1 [-1]
a2 [-1 -2]

The copy(a1, a2)
 statement does not alter the a2
 slice, just a1
 . As the size of a1
 is 1
 , only the first element from a2
 is copied.

a1 [10]
a5 [10 11 12 13 14]

Similarly, copy(a1, a5)
 alters a1
 only. As the size of a1
 is 1
 , only the first element from a5
 is copied to a1
 .

a2 [-1 -2]
a5 [-1 -2 12 13 14]

Last, copy(a5, a2)
 alters a5
 only. As the size of a5
 is 5
 , only the first two elements from a5
 are
 altered
 and become the same as the first two elements of a2
 , which has a size of 2
 .

Sorting slices

There are times
 when you want to present your information sorted and you want Go to do the job for you. In this subsection, we'll see how to sort slices of various standard data types using the functionality offered by the sort
 package.

The sort
 package can sort slices of built-in data types without the need to write any extra code. Additionally, Go provides the sort.Reverse()
 function for sorting in the reverse order than the default. However, what is really interesting is that sort
 allows you to write your own sorting functions for custom data types by implementing the sort.Interface
 interface—you will learn more about the sort.Interface
 interface and interfaces in general in Chapter 4,
 Reflection and Interfaces
 .

So, you can sort a slice of integers saved as sInts
 by typing sort.Ints(sInts)
 . When sorting a slice of integers in reverse order using sort.Reverse()
 , you need to pass the desired slice to sort.Reverse()
 using sort.IntSlice(sInts)
 because the IntSlice
 type implements the sort.Interface
 internally, which allows you to sort in a different way than usual. The same applies to the other standard Go data types.

Create a text file with the code that illustrates the use of sort
 and name it sortSlice.go
 .

package

 main
import

 (
 "fmt"

 "sort"

)
func

main

()

 {
 sInts := []
int

{1

, 0

, 2

, -3

, 4

, -20

}
 sFloats := []
float64

{1.0

, 0.2

, 0.22

, -3

, 4.1

, -0.1

}
 sStrings := []
string

{"aa"

, "a"

, "A"

, "Aa"

, "aab"

, "AAa"

}
 fmt.Println("sInts original:"

, sInts)
 sort.Ints(sInts)
 fmt.Println("sInts:"

, sInts)
 sort.Sort(sort.Reverse(sort.IntSlice(sInts)))
 fmt.Println("Reverse:"

, sInts)

As sort.Interface
 knows how to sort integers, it is trivial to sort them in reverse order. Sorting in
 reverse order is as simple as calling the sort.Reverse()
 function.

 fmt.Println("sFloats original:"

, sFloats)
 sort.Float64s(sFloats)
 fmt.Println("sFloats:"

, sFloats)
 sort.Sort(sort.Reverse(sort.Float64Slice(sFloats)))
 fmt.Println("Reverse:"

, sFloats)
 fmt.Println("sStrings original:"

, sStrings)
 sort.Strings(sStrings)
 fmt.Println("sStrings:"

, sStrings)
 sort.Sort(sort.Reverse(sort.StringSlice(sStrings)))
 fmt.Println("Reverse:"

, sStrings)
}

The same rules apply when sorting floating point numbers and strings.

Running sortSlice.go
 produces the next output:

$

 go run sortSlice.go

sInts original: [1 0 2 -3 4 -20]
sInts: [-20 -3 0 1 2 4]
Reverse: [4 2 1 0 -3 -20]
sFloats original: [1 0.2 0.22 -3 4.1 -0.1]
sFloats: [-3 -0.1 0.2 0.22 1 4.1]
Reverse: [4.1 1 0.22 0.2 -0.1 -3]
sStrings original: [aa a A Aa aab AAa]
sStrings: [A AAa Aa a aa aab]
Reverse: [aab aa a Aa AAa A]

The output illustrates
 how the original slices were sorted in both normal and reverse order.

Pointers

Go has support for
 pointers but not for pointer arithmetic, which is the cause of many bugs and errors in programming languages like C. A pointer
 is the memory address of a variable. You need to dereference
 a pointer in order to get its value—dereferencing is performed using the *
 character in front of the pointer variable. Additionally, you can get the memory address of a normal variable using an &
 in front of it.

The next diagram shows the difference between a pointer to an int
 and an int
 variable.

[image: Graphical user interface Description automatically generated]

Figure 2.4: An int variable and a pointer to an int

If a pointer variable points to an existing regular variable, then any changes you make to the stored value using the pointer variable will modify the regular variable.

The format and the values of memory addresses might be different between different machines, different operating systems, and different architectures.

You might ask, what is the point of using pointers since there is no support for pointer arithmetic. The main benefit you get from pointers is that passing a variable to a function as a pointer (we can call that by reference
) does not discard any changes you make to the value of that variable inside that function when the function returns. There exist times where you want that functionality because it simplifies your code, but the price you pay for that simplicity is being extra careful with what you do with a pointer variable. Remember that slices are passed to functions without the need to use a pointer—it is Go that passes the pointer to the underlying array of a slice and there is no way to change that behavior.

Apart from reasons of simplicity, there exist three more reasons for using pointers:

	Pointers allow you to share data between functions. However, when sharing data between functions and goroutines, you should be extra careful with race condition issues.

	Pointers are also very handy when you want to tell the difference between the zero value of a variable and a value that is not set (nil
). This is particularly useful with
 structures because pointers (and therefore pointers to structures
 , which are fully covered in the next chapter), can have the nil
 value, which means that you can compare a pointer to a structure with the nil
 value, which is not allowed for normal structure variables.

	Having support for pointers and, more specifically, pointers to structures allows Go to support data structures such as linked lists and binary trees, which are widely used in computer science. Therefore, you are allowed to define a structure field of a Node
 structure as Next *Node
 , which is a pointer to another Node
 structure. Without pointers, this would have been difficult to implement and may be too slow.

The following code illustrates how you can use pointers in Go—create a text file named pointers.go
 and type the presented code.

package

 main
import

 "fmt"

type

 aStructure struct

 {
 field1
complex128

 field2
int

}

This is a structure with two fields named field1
 and field2
 .

func

processPointer

(x *

float64

)

 {
 *x = *x * *x
}

This is a function that gets a pointer to a float64
 variable as input. As we are using a pointer, all changes to the function parameter inside the function are persistent. Additionally, there is no need to return something.

func

returnPointer

(x

float64

)

 *

float64

 {
 temp := 2

 * x
 return

 &temp
}

This is a function that requires a float64
 parameter as input and returns a pointer to a float64
 . In order
 to return the memory address of a regular variable, you need to use &
 (&temp
).

func

bothPointers

(x *

float64

)

 *

float64

 {
 temp := 2

 * *x
 return

 &temp
}

This is a function that requires a pointer to a float64
 as input and returns a pointer to a float64
 as output. The *x
 notation is used for getting the value stored in the memory address stored in x
 .

func

main

()

 {
 var

 f
float64

 = 12.123

 fmt.Println("Memory address of f:"

, &f)

To get the memory address of a regular variable named f
 , you should use the &f
 notation.

 // Pointer to f

 fP := &f
 fmt.Println("Memory address of f:"

, fP)
 fmt.Println("Value of f:"

, *fP)
 // The value of f changes

 processPointer(fP)
 fmt.Printf("Value of f: %.2f\n"

, f)

fP
 is now a pointer to the memory address of the f
 variable. Any changes to the value stored in the fP
 memory address have an effect on the f
 value as well. However, this is only true for as long as fP
 points to the memory address of the f
 variable.

 // The value of f does not change

 x := returnPointer(f)
 fmt.Printf("Value of x: %.2f\n"

, *x)

The value of f
 does not change because the function only uses its value.

 // The value of f does not change

 xx := bothPointers(fP)
 fmt.Printf("Value of xx: %.2f\n"

, *xx)

In this case, the value of f
 , as well as the value stored in the fP
 memory address, does not change because the bothPointers()
 function does not make any changes to the value stored
 in the fP
 memory address.

 // Check for empty structure

 var

 k *aStructure

The k
 variable is a pointer to an aStructure
 structure. As k
 points to nowhere, Go makes it point to nil
 , which is the zero value for pointers
 .

 // This is nil because currently k points to nowhere

 fmt.Println(k)
 // Therefore you are allowed to do this:

 if

 k == nil

 {
 k = new

(aStructure)
 }

As k
 is nil
 , we are allowed to assign it to an empty aStructure
 value with new(aStructure)
 without losing any data. Now, k
 is no longer nil
 but both fields of aStructure
 have the zero values of their data types.

 fmt.Printf("%+v\n"

, k)
 if

 k != nil

 {
 fmt.Println("k is not nil!"

)
 }
}

Just make sure that k
 is not nil
 —you might consider that check redundant, but it does not hurt to double-check.

Running pointers.go
 generates the following kind of output:

Memory address of f: 0xc000014090
Memory address of f: 0xc000014090
Value of f: 12.123
Value of f: 146.97
Value of x: 293.93
Value of xx: 293.93
<nil>
&{field1:(0+0i) field2:0}
k is not nil!

We revisit pointers in the next chapter where we discuss structures. Next, we discuss generating
 random numbers and random strings.

Generating random numbers

Random number
 generation is an art as well as a research area in computer science. This is because computers are purely logical machines, and it turns out that using them to generate random numbers is extremely difficult! Go can help you with that using the functionality of the math/rand
 package. Each random number generator needs a seed
 to start producing numbers. The seed is used for initializing the entire process and is extremely important because if you always start with the same seed, you will always get the same sequence of pseudo-random numbers. This means that everybody can regenerate that sequence, and that particular sequence will not be random after all. However, this feature is really useful for testing purposes. In Go, the rand.Seed()
 function is used for initializing a random number generator.

If you are really interested in random number generation, you should start by reading the second volume of The Art of Computer Programming
 by Donald E. Knuth (Addison-Wesley Professional, 2011).

The following function, which is part of randomNumbers.go
 found in ch02
 in the book's GitHub repository, is what generates random numbers in the [min, max)
 range.

func

random

(min, max

int

)

int

 {
 return

 rand.Intn(max-min) + min
}

The random()
 function does all of the work, which is generating pseudo-random numbers in a given range from min
 to max-1
 by calling rand.Intn()
 . rand.Intn()
 generates non-negative random integers from 0
 up to the value of its single parameter minus 1
 .

The randomNumbers.go
 utility accepts four command-line parameters but can also work with fewer parameters by using default values. By default, randomNumbers.go
 produces 100 random integers from 0
 up to and including 99
 .

$

 go run randomNumbers.go

Using default values!
39 75 78 89 39 28 37 96 93 42 60 69 50 9 69 27 22 63 4 68 56 23 54 14 93 61 19 13 83 72 87 29 4 45 75 53 41 76 84 51 62 68 37 11 83 20 63 58 12 50 8 31 14 87 13 97 17 60 51 56 21 68 32 41 79 13 79 59 95 56 24 83 53 62 97 88 67 59 49 65 79 10 51 73 48 58 48 27 30 88 19 16 16 11 35 45 72 51 41 28

In the next output, we
 define each of the parameters manually (the last parameter of the utility is the seed value):

$

 go run randomNumbers.go 1 5 10 10

3 1 4 4 1 1 4 4 4 3
$

 go run randomNumbers.go 1 5 10 10

3 1 4 4 1 1 4 4 4 3
$

 go run randomNumbers.go 1 5 10 11

1 4 2 1 3 2 2 4 1 3

The first two times the seed value was 10
 , so we got the same output. The third time the value of the seed was 11
 , which generated a different output.

Generating random strings

Imagine that
 you want to generate random strings that can be used as difficult to guess passwords or for testing purposes. Based on random number generation, we create a utility that produces random strings. The utility is implemented as genPass.go
 and can be found in the ch02
 directory of the book's GitHub repository. The core functionality of genPass.go
 is found in the next function.

func

getString

(

len

int64

)

string

 {
 temp := ""

 startChar := "!"

 var

 i int64

 = 1

 for

 {
 myRand := random(MIN, MAX)
 newChar := string

(startChar[0

] + byte

(myRand))
 temp = temp + newChar
 if

 i == len

 {
 break

 }
 i++
 }
 return

 temp
}

As we only want to get printable ASCII characters, we limit the range of pseudo-random numbers that can be generated. The total number of printable characters in the ASCII table is 94. This means that the range of the pseudo-random numbers that the program can generate should be from 0 to 94, without including 94. Therefore, the values of the MIN
 and MAX
 global variables, which are not shown here, are 0
 and 94
 , respectively.

The startChar
 variable holds the first ASCII character that can be generated by the utility, which, in this case, is the exclamation mark, which has a decimal ASCII value of 33
 . Given that the
 program can generate pseudo-random numbers up to 94
 , the maximum ASCII value that can be generated is 93 + 33
 , which is equal to 126
 , which is the ASCII value of ~
 . All generated characters are kept in the temp
 variable, which is returned once the for
 loop exits. The string(startChar[0] + byte(myRand))
 statement converts the random integers into characters in the desired range.

The genPass.go
 utility accepts a single parameter, which is the length of the generated password. If no parameter is given, genPass.go
 produces a password with 8 characters, which is the default value of the LENGTH
 variable.

Running genPass.go
 produces the following kind of output:

$

 go run genPass.go

Using default values...
!QrNq@;R
$

 go run genPass.go 20

sZL>

{F~

"hQqY>r_>TX?O

The first program execution uses the default value for the length of the generated string whereas the second program execution creates a random string with 20 characters.

Generating secure random numbers

If you intend to
 use these pseudo-random numbers for security-related work, it is important that you use the crypto/rand
 package, which implements a cryptographically secure pseudo-random number generator. You do not need to define a seed when using the crypto/rand
 package.

The following function that is part of the cryptoRand.go
 source code showcases how secure random numbers are generated with the functionality of crypto/rand
 .

func

generateBytes

(n

int64

)

([]

byte

, error)

 {
 b := make

([]byte

, n)
 _, err := rand.Read(b)
 if

 err != nil

 {
 return

 nil

, err
 }
 return

 b, nil

}

The rand.Read()
 function randomly generates numbers that occupy the entire b
 byte slice. You need to decode that byte slice using base64.URLEncoding.EncodeToString(b)
 in order to get a valid string without any control or unprintable characters. This conversion takes place in the generatePass()
 function, which is not shown here.

Running cryptoRand.go
 creates the following kind of output:

$

 go run cryptoRand.go

Using default values!
Ce30g--D
$

 go run cryptoRand.go 20

AEIePSYb13KwkDnO5Xk_

The output is not different from the one generated by genPass.go
 , it is just that the random numbers are generated more securely, which means that they can be used in applications where security is important.

Now that we know how to generate random numbers and random strings, we are going to revisit the phone book application and use these techniques to populate the phone book with random data.

Updating the phone book application

In this last
 section of the book, we are going to create a function that populates the phone book application from the previous chapter with random data, which is pretty handy when you want to put lots of data in an application for testing purposes.

I have used this handy technique in the past in order to put sample data on Kafka topics.

The biggest change in this version of the phone book application is that the searching is based on the telephone number because it is easier to search random numbers instead of random strings. But this is a small code change in the search()
 function—this time search()
 uses v.Tel == key
 instead of v.Surname == key
 in order to try to match the Tel
 field.

The populate()
 function of phoneBook.go
 (as found in the ch02
 directory) does all the work—the implementation of populate()
 is the following.

func

populate

(n

int

, s []Entry)

 {
 for

 i := 0

; i < n; i++ {
 name := getString(4

)
 surname := getString(5

)
 n := strconv.Itoa(random(100

, 199

))
 data = append

(data, Entry{name, surname, n})
 }
}

The getString()
 function generates letters from A
 to Z
 and nothing else in order to make the generated strings more readable. There is no point in using special characters in names and surnames. The generated telephone numbers are in the 100 to 198 range, which is implemented using a call to random(100, 199)
 . The reason for this is that it is easier to search for a three-digit number. Feel free to experiment with the generated names, surnames, and telephone numbers.

Working with phoneBook.go
 generates the following kind of output:

$

 go run phoneBook.go search 123

Data has 100 entries.
{BHVA QEEQL 123}
$

 go run phoneBook.go search 1234

Data has 100 entries.
Entry not found: 1234
$

 go run phoneBook.go list

Data has 100 entries.
{DGTB GNQKI 169}
{BQNU ZUQFP 120}
...

Although these randomly generated names and surnames are not perfect, they are more than enough
 for testing purposes. In the next chapter, we'll learn how to work with CSV data.

Exercises

	Create a function that concatenates two arrays into a new slice.

	Create a function that concatenates two arrays into a new array.

	Create a function that concatenates two slices into a new array.

Summary

In this chapter, we learned about the basic data types of Go, including numerical data types, strings, and errors. Additionally, we learned how to group similar values using arrays and slices. Lastly, we learned about the differences between arrays and slices and why slices are more versatile than arrays, as well as pointers and generating random numbers and strings in order to provide random data to the phone book application.

The next chapter discusses a couple of more complex composite data types of Go, maps
 and structures
 . Maps can use keys of different data types whereas structures can group multiple data types and create new ones that you can access as single entities. As you will see in later chapters, structures play a key role in Go.

Additional resources

	The sort
 package documentation:
https://golang.org/pkg/sort/

	The time
 package documentation:
https://golang.org/pkg/time/

	The crypto/rand
 package documentation:
https://golang.org/pkg/crypto/rand/

	The math/rand
 package documentation:
https://golang.org/pkg/math/rand/

3

Composite Data Types

Go offers support for maps and structures, which are composite data types and the main subject of this chapter. The reason that we present them separately from arrays and slices is that both maps and structures are more flexible and powerful than arrays and slices. The general idea is that if an array or a slice cannot do the job, you might need to look at maps. If a map cannot help you, then you should consider creating and using a structure.

You have already seen structures in Chapter 1
 , A Quick Introduction to Go
 , where we created the initial version of the phone book application. However, in this chapter we are going to learn more about structures as well as maps. This knowledge will allow us to read and save data in CSV format using structures and create an index
 for quickly searching a slice of structures, based on a given key, by using a map.

Last, we are going to apply some of these Go features to improve the phone book application we originally developed in Chapter 1
 , A Quick Introduction to Go
 . The new version of the phone book application loads and saves its data from disk, which means that it is no longer needed to hardcode your data.

This chapter covers:

	Maps

	Structures

	Pointers and structures

	Regular expressions and pattern matching

	Improving the phone book application

Maps can use keys of different data types whereas structures can group multiple data types and create new ones. So, without further ado, let us begin by presenting maps.

Maps

Both arrays and slices limit you to using positive integers as indexes. Maps are powerful data structures
 because they allow you to use indexes of various data types as keys to look up your data as long as these keys are comparable
 . A practical rule of thumb is that you should use a map when you are going to need indexes that are not positive integer numbers or when the integer indexes have big gaps.

Although bool
 variables are comparable, it makes no sense to use a bool
 variable as the key to a Go map because it only allows for two distinct values. Additionally, although floating point values are comparable, precision issues caused by the internal representation of such values might create bugs and crashes, so you might want to avoid using floating point values as keys to Go maps.

You might ask, why do
 we need maps and what are their advantages? The following list will help clarify things:

	Maps are very versatile. Later in this chapter we will create a database index
 using a map, which allows us to search and access slice elements based on a given key or, in more advanced situations, a combination of keys.

	Although this is not always the case, working with maps in Go is fast, as you can access all elements of a map in linear time
 . Inserting and retrieving elements from a map is fast and does not depend on the cardinality of the map.

	Maps are easy to understand, which leads to clear designs.

You can create a new map
 variable using either make()
 or a map literal. Creating a new map with string
 keys and int
 values using make()
 is as simple as writing make(map[string]int)
 and assigning its return value to a variable. On the other hand, if you decide to create a map using a map literal, you need to write something like the following:

m := map

[string

]int

 {
 "key1"

: -1

 "key2"

: 123

}

The map literal version is faster when you want to add data to a map at the time of creation.

You should make no assumptions about the order of the elements inside a map. Go randomizes keys when iterating over a map—this is done on purpose and is an intentional part of the language design.

You can find the length of a map, which is the number of keys in the map, using the len()
 function, which also works with arrays and slices; and you can delete a key and value pair from a map using the delete()
 function, which accepts two arguments: the name of the
 map and the name of the key, in that order.

Additionally, you can tell whether a key k
 exists on a map named aMap
 by the second return value of the v, ok := aMap[k]
 statement. If ok
 is set to true
 , then k
 exists, and its value is v
 . If it does not exist, v
 will be set to the zero value of its data type, which depends on the definition of the map. If you try to get the value of a key that does not exist in a map, Go will not complain about it and returns the zero value of the data type of the value.

Now, let us discuss a special case where a map variable has the nil
 value.

Storing to a nil map

You are allowed to assign a map variable to nil
 . In that case, you will not be able to use that variable
 until you assign it to a new map variable. Put simply, if you try
 to store data on a nil
 map, your program will crash. This is illustrated in the next bit of code, which is the implementation of the main()
 function of the nilMap.go
 source file that can be found in the ch03
 directory of the GitHub repository of this book.

func

main

()

 {
 aMap := map

[string

]int

{}
 aMap["test"

] = 1

This works because aMap
 points somewhere, which is the return value of map[string]int{}
 .

 fmt.Println("aMap:"

, aMap)
 aMap = nil

At this point aMap
 points to nil
 , which is a synonym for nothing.

 fmt.Println("aMap:"

, aMap)
 if

 aMap == nil

 {
 fmt.Println("nil map!"

)
 aMap = map

[
string

]
int

{}
 }

Testing whether a map points to nil
 before using it is a good practice. In this case, if aMap == nil
 allows us to determine whether we can store a key/pair value to aMap
 or not—we cannot and if we try it, the program will crash. We correct that by issuing the aMap = map[string]int{}
 statement.

 aMap["test"

] = 1

 // This will crash!

 aMap = nil

 aMap["test"

] = 1

}

In this last
 part of the program, we illustrate how your program
 will crash if you try to store on a nil
 map—never use such code in production!

In real-world applications, if a function accepts a map argument, then it should check that the map is not nil
 before working with it.

Running nilMap.go
 produces this output:

$

 go run nilMap.go

aMap: map[test:1]
aMap: map[]
nil map!
panic: assignment to entry in nil map
goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/mGo3rd/code/ch03/nilMap.go:21 +0x225

The reason the program crashed is shown in the program output: panic: assignment to entry in nil map
 .

Iterating over maps

When for
 is combined with the range
 keyword it implements the functionality of foreach
 loops
 found in other programming languages and allows you to iterate over all the elements of a map without knowing its size or its keys. When range
 is applied
 on a map, it returns key and value pairs
 in that order.

Type the following code and save it as forMaps.go
 .

package

 main
import

 "fmt"

func

main

()

 {
 aMap := make

(map

[string

]string

)
 aMap["123"

] = "456"

 aMap["key"

] = "A value"

 // range works with maps as well

 for

 key, v := range

 aMap {
 fmt.Println("key:"

, key, "value:"

, v)
 }

In this case
 we use both the key and the value that returned from range
 .

 for

 _, v := range

 aMap {
 fmt.Print(" # "

, v)
 }
 fmt.Println()
}

In this case, as we are only interested in the values returned by the map, we ignore the keys.

As you already know, you should make no assumptions about the order that the key and value pairs of a map will be returned in from a for
 and range
 loop.

Running forMaps.go
 produces this output:

$

 go run forMaps.go

key: key value: A value
key: 123 value: 456
 #

 456

A value

Having covered maps, it is time to learn about Go structures.

Structures

Structures in Go are both very powerful and very popular and are used for organizing and grouping
 various types of data under the same name. Structures are the more versatile data types in Go and they can even be associated with functions, which are called methods.

Structures, as well as other user-defined data types, are usually defined outside the main()
 function or any other package function so that they have a global scope and are available to the entire Go package. Therefore, unless you want to make clear that a type is only useful within the current local scope and is not expected to be used elsewhere, you should write the definitions of new data types outside functions.

Defining new structures

When you define a new structure, you group a set of values into a single data type, which allows
 you to pass and receive this set of values as a single entity. A structure has fields
 , and each field has its own data type, which can even be another
 structure or slice of structures. Additionally, as a structure is a new data type, it is defined using the type
 keyword followed by the name of the structure and ending with the struct
 keyword, which signifies that we are defining a new structure.

The following code defines a new structure named Entry
 :

type

 Entry struct

 {
 Name string

 Surname string

 Year int

}

The type
 keyword allows you to define new data types or create aliases for existing ones. Therefore, you are allowed to say type myInt int
 and define a new data type called myInt
 that is an alias for int
 . However, Go considers myInt
 and int
 as totally different data types that you cannot compare directly even though they hold the same kind of values. Each structure defines a new data type, hence the use of the type
 keyword.

For reasons that will become evident in Chapter 5
 , Go Packages and Functions
 , the fields of a structure usually begin with an uppercase letter—this depends on what you want to do with the fields. The Entry
 structure has three fields named Name
 , Surname
 , and Year
 . The first two fields are of the string
 data type, whereas the last field holds an int
 value.

These three fields can be accessed with the dot notation as V.Name
 , V.Surname
 , and V.Year
 , where V
 is the
 name of the variable holding the instance of the Entry
 structure. A structure literal
 named p1
 can be defined as p1 := aStructure{"fmt", 12, -2}
 .

There exist two ways to work with structure variables. The first one is as regular variables
 and the
 second one is as pointer variables
 that point to the
 memory address of a structure. Both ways are equally good and are usually embedded into separate functions because they allow you to initialize some
 or all of the fields of structure variables properly and/or do any other tasks you want before using the structure variable. As a result, there exist two main ways to create a new structure variable using a function. The first one returns a regular structure variable whereas the second one returns a pointer to a structure. Each one of these two ways has two variations. The first variation returns a structure instance that is initialized by the Go compiler, whereas the second variation returns a structure instance that is initialized by the user.

The order in
 which you put the fields in the definition of a structure type is significant for the type identity
 of the defined structure. Put simply, two structures with the same fields will not be considered identical in Go if their fields are not in the same order.

Using the new keyword

Additionally, you can
 create new structure instances using the new()
 keyword: pS := new(Entry)
 . The new()
 keyword has the following properties:

	It allocates the proper memory space, which depends on the data type, and then it zeroes it

	It always returns a pointer
 to the allocated memory

	It works for all data types except channel
 and map

All these techniques are illustrated in the code that follows. Type the following code in your favorite text editor and save it as structures.go
 .

package

 main
import

 "fmt"

type

 Entry struct

 {
 Name string

 Surname string

 Year int

}
// Initialized by Go

func

zeroS

()

Entry

 {
 return

 Entry{}
}

Now is a good
 time to remind you of an important Go rule: If no initial value is given to a variable, the Go compiler automatically initializes that variable to the zero value of its data type
 . For structures, this means that a structure variable without an initial value is initialized to the zero values of each one of the data types of its fields. Therefore, the zeroS()
 function returns a zero-initialized Entry
 structure.

// Initialized by the user

func

initS

(N, S

string

, Y

int

)

Entry

 {
 if

 Y < 2000

 {
 return

 Entry{Name: N, Surname: S, Year: 2000

}
 }
 return

 Entry{Name: N, Surname: S, Year: Y}
}

In this case the user initializes the new structure variable. Additionally, the initS()
 function checks whether the value of the Year
 field is smaller than 2000
 and acts accordingly. If it is smaller than 2000
 , then the value of the Year
 field becomes 2000
 . This condition is specific to the requirements of the application you are developing—what this shows is that the place where you initialize a structure is good for checking your input.

// Initialized by Go - returns pointer

func

zeroPtoS

()

 *

Entry

 {
 t := &Entry{}
 return

 t
}

The zeroPtoS()
 function returns a pointer to a zero-initialized structure.

// Initialized by the user - returns pointer

func

initPtoS

(N, S

string

, Y

int

)

 *

Entry

 {
 if

 len

(S) == 0

 {
 return

 &Entry{Name: N, Surname: "Unknown"

, Year: Y}
 }
 return

 &Entry{Name: N, Surname: S, Year: Y}
}

The initPtoS()
 function
 also returns a pointer to a structure but also checks the length of the user input. Again, this checking is application-specific.

func

main

()

 {
 s1 := zeroS()
 p1 := zeroPtoS()
 fmt.Println("s1:"

, s1, "p1:"

, *p1)
 s2 := initS("Mihalis"

, "Tsoukalos"

, 2020

)
 p2 := initPtoS("Mihalis"

, "Tsoukalos"

, 2020

)
 fmt.Println("s2:"

, s2, "p2:"

, *p2)
 fmt.Println("Year:"

, s1.Year, s2.Year, p1.Year, p2.Year)
 pS := new

(Entry)
 fmt.Println("pS:"

, pS)
}

The new(Entry)
 call returns a pointer
 to an Entry
 structure. Generally speaking, when you have to initialize lots of structure variables, it is considered a good practice to create a function for doing so as this is less error-prone.

Running structures.go
 creates the following output:

s1: { 0} p1: { 0}
s2: {Mihalis Tsoukalos 2020} p2: {Mihalis Tsoukalos 2020}
Year: 0 2020 0 2020
pS: &{ 0}

As the zero value of a string is the empty string, s1
 , p1
 , and pS
 do not show any data for the Name
 and Surname
 fields.

The next subsection shows how to group structures of the same data type and use them as the elements of a slice.

Slices of structures

You can create slices of structures in order to group and handle multiple structures under a
 single variable name. However, accessing a field of a given structure requires knowing the exact place of the structure in the slice.

For now, have a look at the following figure to better understand how a slice of structures works and how you can access the fields of a specific slice element.

[image: A picture containing shape Description automatically generated]

Figure 3.1: A slice of structures

So, each slice element is a structure that is accessed using a slice index. Once we select the slice element we want, we can select its field.

As the whole process can be a little perplexing, the code of this subsection sheds some light and clarifies things. Type the following code and save it as sliceStruct.go
 . You can also find it by the same name in the ch03
 directory in the GitHub repository of the book.

package

 main
import

 (
 "fmt"

 "strconv"

)
type

 record struct

 {
 Field1 int

 Field2 string

}
func

main

()

 {
 S := []record{}
 for

 i := 0

; i < 10

; i++ {
 text := "text"

 + strconv.Itoa(i)
 temp := record{Field1: i, Field2: text}
 S = append

(S, temp)
 }

You still
 need append()
 to add a new structure to the slice.

 // Accessing the fields of the first element

 fmt.Println("Index 0:"

, S[0

].Field1, S[0

].Field2)
 fmt.Println("Number of structures:"

, len

(S))
 sum := 0

 for

 _, k := range

 S {
 sum += k.Field1
 }
 fmt.Println("Sum:"

, sum)
}

Running sliceStruct.go
 produces the following output:

Index 0: 0 text0
Number of structures: 10
Sum: 45

We revisit structures in the next chapter where we discuss reflection, as well as Chapter 6
 , Telling a UNIX System What to Do
 where we learn how to work with JSON data using structures. For now, let us discuss regular expressions and pattern matching.

Regular expressions and pattern matching

Pattern matching
 is a technique
 for searching a string for some set of characters based on a specific search pattern that is based on regular expressions and grammars.

A regular expression
 is a sequence
 of characters that defines a search pattern. Every regular expression is compiled into a recognizer by building a generalized
 transition diagram called a finite automaton
 . A finite automaton can be either deterministic or nondeterministic. Nondeterministic means that more than one transition out of a state can be possible for the same input. A recognizer
 is a program
 that takes a string x
 as input and is able to tell whether x
 is a sentence of a given language.

A grammar
 is a set of
 production rules for strings in a formal language—the production rules describe how to create strings from the alphabet of the language that are valid according to the syntax of the language. A grammar does not describe the meaning of a string or what can be done with it in whatever context—it only describes its form. What is important here is to realize that grammars are at the heart of regular expressions because without a grammar, you cannot define or use a regular expression.

So, you might wonder why we're talking about regular expressions and pattern matching in this chapter. The reason is simple. In a while, you will learn how to store and read CSV data from plain text files, and you should be able to tell whether the data you are reading is valid or not.

About Go regular expressions

We begin
 this subsection by presenting some common match patterns
 used for constructing regular expressions.

	
Expression

	
Description

	

.

	
Matches any character

	

*

	
Means any number of times—cannot be used on its own

	

?

	
Zero or one time—cannot be used on its own

	

+

	
Means one or more times—cannot be used on its own

	

^

	
This denotes the beginning of the line

	

^

	
This denotes the end of the line

	

[]

	

[]
 is for grouping characters

	

[A-Z]

	
This means all characters from capital A
 to capital Z

	

\d

	
Any digit in 0-9

	

\D

	
A non-digit

	

\w

	
Any word character: [0-9A-Za-z_]

	

\W

	
Any non-word character

	

\s

	
A whitespace character

	

\S

	
A non-whitespace character

The characters presented in the previous table are used for constructing and defining the grammar of the regular expression. The Go package responsible for defining regular expressions and performing pattern matching is called regexp
 . We use the regexp.MustCompile()
 function to create the regular expression and the Match()
 function to see whether the given string is a match or not.

The regexp.MustCompile()
 function parses the given regular expression and returns a regexp.Regexp
 variable that can be used for matching—regexp.Regexp
 is the representation
 of a compiled regular expression
 . The function panics if the expression cannot
 be parsed, which is good because you will know that your expression is invalid early in the process. The re.Match()
 method returns true
 if the given byte slice
 matches the re
 regular expression, which is a regexp.Regexp
 variable, and false
 otherwise.

Creating separate functions for pattern matching can be handy because it allows you to reuse the functions without worrying about the context of the program.

Keep in mind that although regular expressions and pattern matching look convenient and handy at first, they are the root of lots of bugs. My advice is to use the simplest regular expression that can solve your problem. However, if you can avoid using regular expressions at all, it would be much better in the long run!

Matching names and surnames

The presented
 utility matches names and surnames, that is, strings that begin with an uppercase letter and continue with lowercase letters. The input should not contain any numbers or other characters.

The source code of the utility can be found in nameSurRE.go
 , which is located in the ch03
 directory. The function that supports the desired functionality is named matchNameSur()
 and is implemented as follows:

func

matchNameSur

(s

string

)

bool

 {
 t := []byte

(s)
 re := regexp.MustCompile(`^[A-Z][a-z]*$`

)
 return

 re.Match(t)
}

The logic of the function is in the `^[A-Z][a-z]*$`
 regular expression, where ^
 denotes the beginning of a line and $
 denotes the end of a line. What the regular expression does is match anything that begins with an uppercase letter ([A-Z]
) and continues with any number
 of lowercase letters ([a-z]*
). This means that Z
 is a match, but ZA
 is not a match because the second letter is uppercase. Similarly, Jo+
 is not a match because it contains a +
 character.

Running nameSurRE.go
 with various types of input produces the following output:

$

 go run nameSurRE.go Z

true
$

 go run nameSurRE.go ZA

false
$

 go run nameSurRE.go Mihalis

True

This technique can help you check user input.

Matching integers

The presented utility matches both signed and unsigned integers—this is implemented in the way
 we define the regular expression. If we only want unsigned integers, then we should remove the [-+]?
 from the regular expression or replace it with [+]?
 .

The source code of the utility can be found in intRE.go
 , which is in the ch03
 directory. The matchInt()
 function that supports the desired functionality is implemented as follows:

func

matchInt

(s

string

)

bool

 {
 t := []byte

(s)
 re := regexp.MustCompile(`^[-+]?\d+$`

)
 return

 re.Match(t)
}

As before, the logic of the function is found in the regular expression that is used for matching integers, which is `^[-+]?\d+$`
 . In plain English, what we say here is that we want to match something that begins with –
 or +
 , which is optional (?
), and ends with any number
 of digits (\d+
)—it is required that we have at least one digit before the end of the string that is examined ($
).

Running intRE.go
 with various types of input produces the following output:

$

 go run intRE.go 123

true
$

 go run intRE.go /123

false
$

 go run intRE.go +123.2

false
$

 go run intRE.go +

false
$

 go run intRE.go -123.2

false

Later in this book, you will learn how to test Go code by writing testing functions—for now, we will do most of the testing manually.

Matching the fields of a record

This example takes a different approach as we read an entire record and split it prior to doing
 any checking. Additionally, we make an extra check to make sure that the record we are processing contains the right number of fields. Each record should contain three fields: name, surname, and telephone number.

The full code of the utility can be found in fieldsRE.go
 , which is located in the ch03
 directory. The function that supports the desired functionality is implemented as follows:

func

matchRecord

(s

string

)

bool

 {
 fields := strings.Split(s, ","

)
 if

 len

(fields) != 3

 {
 return

 false

 }
 if

 !matchNameSur(fields[0

]) {
 return

 false

 }
 if

 !matchNameSur(fields[1

]) {
 return

 false

 }
 return

 matchTel(fields[2

])
}

What the matchRecord()
 function does first is to separate the fields of the record based on the ,
 character and then send each individual field to an appropriate function for further checking after making sure that the record has the right number of fields, which is a common practice. The field splitting is done using strings.Split(s, ",")
 , which returns a slice with as many elements as there are fields of the record.

If the checks
 of the first two fields are successful, then the function returns the return value of matchTel(fields[2])
 because it is that last check that determines the final result.

Running fieldsRE.go
 with various types of input produces the following output:

$

 go run fieldsRE.go Name,Surname,2109416471

true
$

 go run fieldsRE.go Name,Surname,OtherName

false
$

 go run fieldsRE.go One,Two,Three,Four

false

The first record is correct and therefore the true
 value is returned, which is not true for the second running where the phone number field is not correct. The last one failed because it contains four fields instead of three.

Improving the phone book application

It is time to
 update the phone book application. The new version of the phone book utility has the following improvements:

	Support for the insert
 and delete
 commands

	Ability to read data from a file and write it before it exits

	Each entry has a last visited field that is updated

	Has a database index that is implemented using a Go map

	Uses regular expressions to verify the phone numbers read

Working with CSV files

Most of the time you do not want to lose your data or have to begin without any data every time
 you execute your application. There exist many techniques for doing so—the easiest one is by saving your data locally. A very easy to work with format is CSV, which is what is explained here and used in the phone book application later on. The good thing is that Go provides a dedicated package for working with CSV data named encoding/csv
 (
https://golang.org/pkg/encoding/csv/

). For the presented utility, both the input and output files are given as command-line arguments.

There exist two very popular Go interfaces named io.Reader
 and io.Write
 that are to do with reading from files and writing to files. Almost all reading and writing operations in Go use these two interfaces. The use of the same interface for readers allows readers to share some common characteristics but most importantly allows you to create your own readers
 and use them anywhere that Go expects an io.Reader
 reader. The same applies to writers that satisfy the io.Write
 interface. You will learn more about interfaces in Chapter 4
 , Reflection and Interfaces
 .

The main tasks that need to be implemented are the following:

	Loading CSV data from disk and putting it into a slice of structures

	Saving data to disk using CSV format

The encoding/csv
 package contains functions that can help you read and write CSV files. As we are dealing with small CSV files, we use csv.NewReader(f).ReadAll()
 to read the entire input file all at once. For bigger data files or if we wanted to check the input or make any changes to the input as we read it, it would have been better to read it line by line using Read()
 instead of ReadAll()
 .

Go assumes that the CSV file uses the comma character (,
) for separating the different fields of each line. Should we wish to change that behavior, we should change the value of the Comma
 variable of the CSV reader or the writer depending on the task we want to perform. We change that behavior in the output CSV file, which separates its fields using the tab character.

For reasons of compatibility, it is better if the input and output CSV files are using the same field delimiter. We are just using the tab character as the field delimiter in the output file in order to illustrate the use of the Comma
 variable.

As working with CSV files is a new topic, there is a separate utility named csvData.go
 in the ch03
 directory of the GitHub repository of this book that illustrates the techniques for reading
 and writing CSV files. The source code of csvData.go
 is presented in chunks. First, we present the preamble of csvData.go
 that contains the import
 section as well as the Record
 structure and the myData
 global variable, which is a slice of Record
 .

package

 main
import

 (
 "encoding/csv"

 "fmt"

 "os"

)
type

 Record struct

 {
 Name string

 Surname string

 Number string

 LastAccess string

}
var

 myData = []Record{}

Then we present the readCSVFile()
 function, which reads the plain text file with the CSV data.

func

readCSVFile

(filepath

string

)

([][]

string

, error)

 {
 _, err := os.Stat(filepath)
 if

 err != nil

 {
 return

 nil

, err
 }
 f, err := os.Open(filepath)
 if

 err != nil

 {
 return

 nil

, err
 }
 defer

 f.Close()
 // CSV file read all at once

 // lines data type is [][]string

 lines, err := csv.NewReader(f).ReadAll()
 if

 err != nil

 {
 return

 [][]string

{}, err
 }
 return

 lines, nil

}

Note that we check whether the given file path exists and is associated with a regular file inside
 the function. There is no right or wrong decision about where to perform that checking—you just have to be consistent. The readCSVFile()
 function returns a [][]string
 slice that contains all the lines we have read. Additionally, have in mind that csv.NewReader()
 does separate the fields of each input line, which is the main reason for needing a slice with two dimensions to store the input.

After that, we illustrate the writing to a CSV file technique with the help of the saveCSVFile()
 function.

func

saveCSVFile

(filepath

string

)

error

 {
 csvfile, err := os.Create(filepath)
 if

 err != nil

 {
 return

 err
 }
 defer

 csvfile.Close()
 csvwriter := csv.NewWriter(csvfile)
 // Changing the default field delimiter to tab

 csvwriter.Comma = '\t'

 for

 _, row := range

 myData {
 temp := []string

{row.Name, row.Surname, row.Number, row.LastAccess}
 _ = csvwriter.Write(temp)
 }
 csvwriter.Flush()
 return

 nil

}

Note that
 change in the default value of csvwriter.Comma
 .

Last, we can see the implementation of the main()
 function.

func

main

()

 {
 if

 len

(os.Args) != 3

 {
 fmt.Println("csvData input output!"

)
 return

 }
 input := os.Args[1

]
 output := os.Args[2

]
 lines, err := readCSVFile(input)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 // CSV data is read in columns - each line is a slice

 for

 _, line := range

 lines {
 temp := Record{
 Name: line[0

],
 Surname: line[1

],
 Number: line[2

],
 LastAccess: line[3

],
 }
 myData = append

(myData, temp)
 fmt.Println(temp)
 }
 err = saveCSVFile(output)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
}

The main()
 function puts what you have read with readCSVFile()
 in the myData
 slice—remember that lines
 is a slice with two dimensions and that each row in lines
 is already separated into fields.

In this case, each line of input contains four fields. The contents of the CSV data file used as input are as follows:

$

 cat ~/csv.data

Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Jane,Doe,0800123456,1608559903

Running csvData.go
 produces the following kind of output:

$

 go run csvData.go ~/csv.data /tmp/output.data

{Dimitris Tsoukalos 2101112223 1600665563}
{Mihalis Tsoukalos 2109416471 1600665563}
{Jane Doe 0800123456 1608559903}

The contents
 of the output CSV file are the following:

$

 cat /tmp/output.data

Dimitris Tsoukalos 2101112223 1600665563
Mihalis Tsoukalos 2109416471 1600665563
Jane Doe 0800123456 1608559903

The output.data
 file uses tab characters for separating the different fields of each record. The csvData.go
 utility can be handy for converting between different types of CSV files.

Adding an index

This subsection explains how the database index is implemented with the help of a map. Indexing in
 databases is based on one or more keys that are unique. In practice, we index something that is unique and that we want to access quickly. In the database case, primary keys are unique by default and cannot be present in more than one record. In our case, phone numbers are used as primary keys, which means that the index is built based on the phone number field of the structure.

As a rule of thumb, you index a field that is going to be used for searching. There is no point in creating an index that is not going to be used for querying.

Let us now see what this means in practice. Imagine that we have a slice named S
 with the following kind of data:

S[0

]={0800123123

, ...}
S[1

]={0800123000

, ...}
S[2

]={2109416471

, ...}
.
.
.

So, each slice
 element is a structure that can contain much more data apart from the telephone number. How can we create an index for it? The index, which is named Index
 , is going to have the following data and format:

Index["0800123123"

] = 0

Index["0800123000"

] = 1

Index["2109416471"

] = 2

.
.
.

This means that if we want to look for the telephone number 0800123000
 , we should see whether 0800123000
 exists as a key in Index
 . If it is there, then we know that the value of 0800123000
 , which is Index["0800123000"]
 , is the index of the slice element that contains the desired record. So, as we know which slice element to access, we do not have to search the entire slice. With that in mind, let us update the application.

The improved version of the phone book application

It would be
 a shame to create a phone book application that has its entries hardcoded in the code. This time, the entries of the address book are read from an external file that contains data in CSV format. Similarly, the new version saves its data into the same CSV file, which you can read afterward.

Each entry of the phone book application is based on the following structure:

type

 Entry struct

 {
 Name string

 Surname string

 Tel string

 LastAccess string

}

The key to the entries is the Tel
 field and therefore its values. In practice, this means that if you try to add an entry that uses an existing Tel
 value, the process fails. This also means that the application searches the phone book using the Tel
 values. Databases use primary
 keys to identify between unique records—the phone book application has a small database implemented as a slice of Entry
 structures. Last, phone numbers are saved without any –
 characters in them. The utility removes all –
 characters from phone numbers, if there are any, before saving them.

Personally, I prefer to explore the various parts of a bigger application by creating smaller programs that when combined implement some or all of the functionality of the bigger program. This helps me understand how the bigger application needs to be implemented. This makes it much easier for me to connect all the dots afterward and develop the final product.

As this is a real application implemented as a command-line utility, it should support commands for data manipulation and searching. The updated functionality of the utility is explained in the following list:

	Data insertion using the insert
 command

	Data deletion using the delete
 command

	Data searching using the search
 command

	Listing of the available records through the list
 command

To make the code simpler, the path of the CSV data file is hardcoded. Additionally, the CSV file is automatically read when the utility is executed but it is automatically updated when the insert
 and the delete
 commands are executed.

Although Go supports CSV, JSON
 is a far more popular format that is used for data exchange in web services. However, working with CSV data is simpler than working with data in JSON format. Working with JSON data is explored in Chapter 6
 , Telling a UNIX System What to Do
 .

As explained earlier, this version of the phone book application has support for indexing
 to find the desired records faster without needing to make a linear search to the slice that holds your phone book data. The indexing technique that is used is not very fancy, but it makes searching really fast: provided that the searching process is based on phone numbers, we are going to create a map that associates each phone number with the index number of the record that contains that phone number in the slice of structures. This way, a simple
 and fast map lookup tells us whether a phone number already exists or not. If the phone number exists, we can access its record directly without having to search the entire slice of structures for it. The only downside of this technique, and every indexing technique, is that you must keep the map up to date all the time.

The previous process is called a high-level design of the application. For such a simple application, you do not have to be too analytic about the capabilities of the application—stating the supported commands and the location of the CSV data file is enough. However, for a RESTful server that implements a REST API, the design phase or the dependencies of the program are as important as the development phase itself.

The entire code of the updated phone book utility can be found in ch03
 as phoneBook.go
 —as always, we are referring to the GitHub repository of the book. This is the last time we make this clarification—from now on, we will only tell you the name of the source file unless there is a specific reason to do otherwise.

The most interesting parts of the phoneBook.go
 file are presented here, starting from the implementation of the main()
 function, which is presented in two parts. The first part is about getting a command to execute and having a valid CSV file to work with.

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Usage: insert|delete|search|list <arguments>"

)
 return

 }
 // If the CSVFILE does not exist, create an empty one

 _, err := os.Stat(CSVFILE)
 // If error is not nil, it means that the file does not exist

 if

 err != nil

 {
 fmt.Println("Creating"

, CSVFILE)
 f, err := os.Create(CSVFILE)
 if

 err != nil

 {
 f.Close()
 fmt.Println(err)
 return

 }
 f.Close()
 }

If the file path
 specified by the CSVFILE
 global variable does not already exist, we have to create it for the rest of the program to use it. This is determined by the return value of the os.Stat(CSVFILE)
 call.

 fileInfo, err := os.Stat(CSVFILE)
 // Is it a regular file?

 mode := fileInfo.Mode()
 if

 !mode.IsRegular() {
 fmt.Println(CSVFILE, "not a regular file!"

)
 return

 }

Not only must the CSVFILE
 exist but it should be a regular UNIX file, which is determined by the call to mode.IsRegular()
 . If it is not a regular file, the utility prints an error message and exits.

 err = readCSVFile(CSVFILE)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

This is the place where we read the CSVFILE
 , even if it is empty. The contents of CSVFILE
 are kept in the data
 global variable that is defined as []Entry{}
 , which is a slice of Entry
 variables.

 err = createIndex()
 if

 err != nil

 {
 fmt.Println("Cannot create index."

)
 return

 }

This is where we create the index by calling createIndex()
 . The index is kept in the index
 global variable that is defined as map[string]int
 .

The second part of main()
 is about running the right command and understanding whether the command was executed successfully or not.

 // Differentiating between the commands

 switch

 arguments[1

] {
 case

 "insert"

:
 if

 len

(arguments) != 5

 {
 fmt.Println("Usage: insert Name Surname Telephone"

)
 return

 }
 t := strings.ReplaceAll(arguments[4

], "-"

, ""

)
 if

 !matchTel(t) {
 fmt.Println("Not a valid telephone number:"

, t)
 return

 }

You need to
 remove any –
 characters from the telephone number before storing it using strings.ReplaceAll()
 . If there are not any –
 characters, then no substitution takes place.

 temp := initS(arguments[2

], arguments[3

], t)
 // If it was nil, there was an error

 if

 temp != nil

 {
 err := insert(temp)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 }
 case

 "delete"

:
 if

 len

(arguments) != 3

 {
 fmt.Println("Usage: delete Number"

)
 return

 }
 t := strings.ReplaceAll(arguments[2

], "-"

, ""

)
 if

 !matchTel(t) {
 fmt.Println("Not a valid telephone number:"

, t)
 return

 }
 err := deleteEntry(t)
 if

 err != nil

 {
 fmt.Println(err)
 }
 case

 "search"

:
 if

 len

(arguments) != 3

 {
 fmt.Println("Usage: search Number"

)
 return

 }
 t := strings.ReplaceAll(arguments[2

], "-"

, ""

)
 if

 !matchTel(t) {
 fmt.Println("Not a valid telephone number:"

, t)
 return

 }
 temp := search(t)
 if

 temp == nil

 {
 fmt.Println("Number not found:"

, t)
 return

 }
 fmt.Println(*temp)
 case

 "list"

:
 list()
 default

:
 fmt.Println("Not a valid option"

)
 }
}

In this
 relatively big switch
 block, we can see what is executed for each given command. So, we have the following:

	For the insert
 command, we execute the insert()
 function

	For the list
 command, we execute the list()
 function, which is the only function that requires any arguments

	For the delete
 command, we execute the deleteEntry()
 function

	For the search
 command, we execute the search()
 function

Anything else is handled by the default
 branch. The index is created and updated using the createIndex()
 function, which is implemented as follows:

func

createIndex

()

error

 {
 index = make

(map

[string

]int

)
 for

 i, k := range

 data {
 key := k.Tel
 index[key] = i
 }
 return

 nil

}

Put simply, you access the entire data
 slice and put the index and value pairs of the slice in a map
 using the value as the key for the map and the slice index as the value of the map.

The delete
 command is implemented as follows:

func

deleteEntry

(key

string

)

error

 {
 i, ok := index[key]
 if

 !ok {
 return

 fmt.Errorf("%s cannot be found!"

, key)
 }
 data = append

(data[:i], data[i+1

:]...)
 // Update the index - key does not exist any more

 delete

(index, key)
 err := saveCSVFile(CSVFILE)
 if

 err != nil

 {
 return

 err
 }
 return

 nil

}

The operation of the deleteEntry()
 function is simple. First, you search the index for the telephone number in order to find the place of the entry in the slice with the data—if it does not exist, then you simply create an error message with fmt.Errorf("%s cannot be found!", key)
 and the function returns. If the telephone number can be found, then you delete that relevant entry from the data
 slice with append(data[:i], data[i+1:]...)
 .

Then, you must update the index—taking care of the index is the price you have to pay for the extra speed that the index gives you. Also, after you delete an entry, you should save the updated data by calling saveCSVFile(CSVFILE)
 for changes to take effect.

Strictly speaking, as the current version of the phone book application processes one request at a time, you do not need to update the index because it is created from scratch each time you use the application. On database management systems, indexes are also saved on disk in order to avoid the major cost of creating them from scratch.

The insert
 command is implemented as follows:

func

insert

(pS *Entry)

error

 {
 // If it already exists, do not add it

 _, ok := index[(*pS).Tel]
 if

 ok {
 return

 fmt.Errorf("%s already exists"

, pS.Tel)
 }
 data = append

(data, *pS)
 // Update the index

 _ = createIndex()
 err := saveCSVFile(CSVFILE)
 if

 err != nil

 {
 return

 err
 }
 return

 nil

}

The index here
 helps you determine whether the telephone number you are trying to add already exists or not—as stated earlier, if you try to add an entry that uses an existing Tel
 value, the process fails. If this test passes, you add the new record in that data
 slice, update the index, and save the data to the CSV file.

The search
 command, which uses the index, is implemented as follows:

func

search

(key

string

)

 *

Entry

 {
 i, ok := index[key]
 if

 !ok {
 return

 nil

 }
 data[i].LastAccess = strconv.FormatInt(time.Now().Unix(), 10

)
 return

 &data[i]
}

Due to the index, searching for a telephone number is straightforward—the code just looks in the index
 for the desired telephone number. If it is present, the code returns that record—otherwise, the code returns nil
 , which is possible because the function returns a pointer to an Entry
 variable. Before returning the record, the search()
 function
 updates the LastAccess
 field of the structure that is about to be returned in order to know the last time it was accessed.

The initial contents of the CSV data file used as input are as follows:

$

 cat ~/csv.data

Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Mihalis,Tsoukalos,2109416771,1600665563
Efipanios,Savva,2101231234,1600665582

As long at the telephone number is unique, the name and surname fields can exist multiple times. Running phoneBook.go
 produces the following kind of output:

$

 go run phoneBook.go list

{Dimitris Tsoukalos 2101112223 1600665563}
{Mihalis Tsoukalos 2109416471 1600665563}
{Mihalis Tsoukalos 2109416771 1600665563}
{Efipanios Savva 2101231234 1600665582}
$

 go run phoneBook.go delete 2109416771

$

 go run phoneBook.go search 2101231234

{Efipanios Savva 2101231234 1608559833}
$

 go run phoneBook.go search 210-1231-234

{Efipanios Savva 2101231234 1608559840}

Due to our code, 210-1231-234
 is converted to 2101231234
 .

$

 go run phoneBook.go delete 210-1231-234

$

 go run phoneBook.go search 210-1231-234

Number not found: 2101231234
$

 go run phoneBook.go insert Jane Doe 0800-123-456

$

 go run phoneBook.go insert Jane Doe 0800-123-456

0800123456 already exists
$

 go run phoneBook.go search 2101112223

{Dimitris Tsoukalos 2101112223 1608559928}

The contents of the CSV file after the previous commands are the following:

$

 cat ~/csv.data

Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Jane,Doe,0800123456,1608559903

You can see
 that the utility converted 0800-123-456
 into 0800123456
 , which is the desired behavior.

Despite being much better than the previous version, the new version of the phone book utility is still not perfect. Here is a list of things that can be improved:

	Ability to sort its output based on the telephone number

	Ability to sort its output based on the surname

	Ability to use JSON records and JSON slices for the data instead of CSV files

The phone book application will keep improving, starting from the next chapter, where sorting slices with structure elements is implemented.

Exercises

	Write a Go program that converts an existing array into a map.

	Write a Go program that converts an existing map into two slices—the first slice contains the keys of the map whereas the second slice contains the values. The values at index n
 of the two slices should correspond to a key and value pair that can be found in the original map.

	Make the necessary changes to nameSurRE.go
 to be able to process multiple command-line arguments.

	Change the code of intRE.go
 to process multiple command-line arguments and display totals of true
 and false
 results at the end.

	Make changes to csvData.go
 to separate the fields of a record based on the #
 character.

	Write a Go utility that converts os.Args
 into a slice of structures with fields for storing the index and the value of each command-line argument—you should define the structure that is going to be used on your own.

	Make the necessary changes to phoneBook.go
 in order to create the index based on the LastAccess
 field. Is this practical? Does it work? Why?

	Make changes to csvData.go
 in order to separate the fields of a record with a character that is given as a command-line argument.

Summary

In this chapter we discussed the composite data types of Go, which are maps and structures. Additionally, we talked about working with CSV files as well as about using regular expressions and pattern matching in Go. We can now keep our data in proper structures, validate it using regular expressions, when this is possible, and store it in CSV files to achieve data persistency.

The next chapter is about type methods, which are functions attached to a data type, reflection, and interfaces. All these things will allow us to improve the phone book application.

Additional resources

	The encoding/csv
 documentation:
https://golang.org/pkg/encoding/csv/

	The runtime
 package documentation:
https://golang.org/pkg/runtime/

4

Reflection and Interfaces

Do you remember the phone book application from the previous chapter? You might wonder what happens if you want to sort user-defined data structures, such as phone book records, based on your own criteria, such as a surname or first name. What happens when you want to sort different datasets that share some common behavior without having to implement sorting from scratch for each one of the different data types using multiple functions? Now imagine that you have a utility like the phone book application that can process two different formats of CSV data files based on the given input file. Each kind of CSV record is stored in a different Go structure, which means that each kind of CSV record might be sorted differently. How do you implement that without having to write two different command-line utilities? Lastly, imagine that you want to write a utility that sorts really unusual data. For example, imagine that you want to sort a slice that holds various kinds of 3D shapes based on their volume. Can this be performed easily and in a way that makes sense?

The answer to all these
 questions and concerns is the use of interfaces
 . However, interfaces are not just about data manipulation and sorting. Interfaces are about expressing abstractions and identifying and defining behaviors that can be shared among different data types. Once you have implemented an interface for a data type, a new world of functionality becomes available to the variables and the values of that type, which
 can save you time and increase your productivity. Interfaces
 work with methods on types
 or type methods
 , which are like functions attached to given data types, which in Go are usually structures. Remember that once you implement the required type methods of an interface, that interface is satisfied implicitly
 , which is also the case
 with the empty interface
 that is explained in this chapter.

Another handy Go feature is reflection
 , which allows you to examine the structure of a data type at execution time. However, as reflection is an advanced Go feature, you do not need to use it on a regular basis.

This chapter covers:

	Reflection

	Type methods

	Interfaces

	Working with two different CSV file formats

	Object-oriented programming in Go

	Updating the phone book application

Reflection

We begin this chapter
 with reflection, which is an advanced Go feature, not because it is an easy subject but because it is going to help you understand how Go works with different data types, including interfaces, and why they are needed.

You might be wondering how you can find out the names of the fields of a structure at execution time. In such cases, you need to use reflection. Apart from enabling you to print the fields and the values of a structure, reflection also allows you to explore and manipulate unknown structures like the ones created from decoding JSON data.

The two main questions that I asked myself when I was introduced to reflection for the first time were the following:

	Why was reflection included in Go?

	When should I use reflection?

To answer the first question, reflection allows you to dynamically
 learn the type of an arbitrary object along with information about its structure. Go provides the reflect
 package for working with reflection. Remember when we said in a previous chapter that fmt.Println()
 is clever enough to understand the data types of its parameters and act accordingly? Well, behind the scenes, the fmt
 package uses reflection to do that.

As far as the second question is concerned, reflection allows you to handle and work with data types that do not exist at the time at which you write your code but might exist in the future, which is when we use an existing package with user-defined data types.

Additionally, reflection might come in handy when you have to work with data types that do not implement a common interface and therefore have an uncommon or unknown behavior—this does not mean that they have bad or erroneous behavior, just uncommon behavior such as a user-defined structure.

The introduction of generics
 in Go might make the use of reflection less frequent in some cases, because
 with generics you can work with different data types more easily and without the need to know their exact data types in advance. However, nothing beats reflection for fully exploring the structure and the data types of a variable. We talk about reflection compared to generics in Chapter 13
 , Go Generics
 .

The most useful parts of the reflect
 package are two data types named reflect.Value
 and reflect.Type
 . Now, reflect.Value
 is used for storing values of any type, whereas reflect.Type
 is used for representing Go types. There exist two functions named reflect.TypeOf()
 and reflect.ValueOf()
 that return the reflect.Type
 and reflect.Value
 values, respectively. Note that reflect.TypeOf()
 returns the actual type of variable—if we are
 examining a structure, it returns the name of the structure.

As structures are really important in Go, the reflect
 package offers the reflect.NumField()
 method for listing the number of fields in a structure as well as the Field()
 method for getting the reflect.Value
 value of a specific field of a structure.

The reflect
 package also defines the reflect.Kind
 data type, which is used for representing the specific
 data type of a variable: int
 , struct
 , etc. The documentation of the reflect
 package lists all possible values of the reflect.Kind
 data type. The Kind()
 function returns the kind of a variable.

Last, the Int()
 and String()
 methods return the integer and string value of a reflect.Value
 , respectively.

Reflection code can look unpleasant and hard to read sometimes. Therefore, according to the Go philosophy, you should rarely use reflection unless it is absolutely necessary because despite its cleverness, it does not create clean code.

Learning the internal structure of a Go structure

The next utility
 shows how to use reflection to discover the internal structure and fields of a Go structure variable. Type it and save it as reflection.go
 .

package

 main
import

 (
 "fmt"

 "reflect"

)
type

 Secret struct

 {
 Username string

 Password string

}
type

 Record struct

 {
 Field1 string

 Field2 float64

 Field3 Secret
}
func

main

()

 {
 A := Record{"String value"

, -12.123

, Secret{"Mihalis"

, "Tsoukalos"

}}

We begin by defining a Record
 structure
 variable that contains another structure value (Secret{"Mihalis", "Tsoukalos"}
).

 r := reflect.ValueOf(A)
 fmt.Println("String value:"

, r.String())

This returns the reflect.Value
 of the A
 variable.

 iType := r.Type()

Using Type()
 is how we get the data type of a variable—in this case variable A
 .

 fmt.Printf("i Type: %s\n"

, iType)
 fmt.Printf("The %d fields of %s are\n"

, r.NumField(), iType)
 for

 i := 0

; i < r.NumField(); i++ {

The previous for
 loop allows you to visit all the fields of a structure and examine their characteristics.

 fmt.Printf("\t%s "

, iType.Field(i).Name)
 fmt.Printf("\twith type: %s "

, r.Field(i).Type())
 fmt.Printf("\tand value _%v_\n"

, r.Field(i).Interface())

The previous fmt.Printf()
 statements return the name, the data type, and the value of the fields.

 // Check whether there are other structures embedded in Record

 k := reflect.TypeOf(r.Field(i).Interface()).Kind()
 // Need to convert it to string in order to compare it

 if

 k.String() == "struct"

 {

In order to check the data
 type of a variable with a string, we need to convert the data type into a string
 variable first.

 fmt.Println(r.Field(i).Type())
 }
 // Same as before but using the internal value

 if

 k == reflect.Struct {

You can also use the internal representation of a data type during checking. However, this makes less sense than using a string
 value.

 fmt.Println(r.Field(i).Type())
 }
 }
}

Running reflection.go
 produces the following output:

$

 go run reflection.go

String value: <main.Record Value>
i Type: main.Record
The 3 fields of main.Record are
 Field1 with type: string and value _String value_
 Field2 with type: float64 and value _-12.123_
 Field3 with type: main.Secret and value _{Mihalis Tsoukalos}_
main.Secret
main.Secret

main.Record
 is the full unique name of the structure as defined by Go—main
 is the package name and Record
 is the struct
 name. This happens so that Go can differentiate between the elements of different packages.

The presented code does not modify any values of the structure. If you were to make changes to the values of the structure fields, you would use the Elem()
 method and pass the structure
 as a pointer to ValueOf()
 —remember that pointers allow you to make changes to the actual variable. There exist methods that allow you to modify an existing value. In our case, we are going to use SetString()
 for modifying a string
 field and SetInt()
 for modifying an int
 field.

This technique is illustrated in the next subsection.

Changing structure values using reflection

Learning about the
 internal structure of a Go structure is handy, but what is more practical is being able to change values in the Go structure, which
 is the subject of this subsection.

Type the following Go code and save it as setValues.go
 —it can also be found in the GitHub repository of the book.

package

 main
import

 (
 "fmt"

 "reflect"

)
type

 T struct

 {
 F1 int

 F2 string

 F3 float64

}
func

main

()

 {
 A := T{1

, "F2"

, 3.0

}

A
 is the variable that is examined in this program.

 fmt.Println("A:"

, A)
 r := reflect.ValueOf(&A).Elem()

With the use of Elem()
 and a pointer to variable A
 , variable A
 can be modified if needed.

 fmt.Println("String value:"

, r.String())
 typeOfA := r.Type()
 for

 i := 0

; i < r.NumField(); i++ {
 f := r.Field(i)
 tOfA := typeOfA.Field(i).Name
 fmt.Printf("%d: %s %s = %v\n"

, i, tOfA, f.Type(), f.Interface())
 k := reflect.TypeOf(r.Field(i).Interface()).Kind()
 if

 k == reflect.Int {
 r.Field(i).SetInt(-100

)
 } else

 if

 k == reflect.String {
 r.Field(i).SetString("Changed!"

)
 }
 }

We are using SetInt()
 for
 modifying an integer value and SetString()
 for modifying a string
 value. Integer values are set to -100
 and string values are
 set to Changed!
 .

 fmt.Println("A:"

, A)
}

Running setValues.go
 creates the next output:

$

 go run setValues.go

A: {1 F2 3}
String value: <main.T Value>
0: F1 int = 1
1: F2 string = F2
2: F3 float64 = 3
A: {-100 Changed! 3}

The first line of output shows the initial version of A
 whereas the last line shows the final version of A
 with the modified fields. The main use of such code is dynamically
 changing the values of the fields of a structure.

The three disadvantages of reflection

Without a doubt, reflection
 is a powerful Go feature. However, as with all tools, reflection should be used sparingly for three main reasons:

	The first reason is that extensive use of reflection will make your programs hard to read and maintain. A potential solution to this problem is good documentation, but developers are notorious for not having the time to write proper documentation.

	The second reason is that the Go code that uses reflection makes your programs slower. Generally speaking, Go code that works with a particular data type is always faster than Go code that uses reflection to dynamically work with any Go data type. Additionally, such dynamic code makes it difficult for tools to refactor or analyze your code.

	The last reason is that reflection errors cannot be caught at build time and are reported at runtime as panics, which means that reflection errors can potentially crash your programs. This can happen months or even years after the development of a Go program! One solution to this problem is extensive testing before a dangerous function call. However, this adds even more Go code to your programs, which makes them even slower.

Now that we know about reflection and what it can do for us, it is time to begin the discussion about type methods, which are necessary for using interfaces.

Type methods

A type method
 is a function that is attached to
 a specific data type. Although type methods (or methods on types) are in reality functions, they are defined and used in a slightly different way.

The methods on types feature gives some object-oriented capabilities to Go, which is very handy and is used extensively in Go. Additionally, interfaces require type methods to work.

Defining new type methods is as simple as creating new functions, provided that you follow certain rules that associate the function with a data type.

Creating type methods

So, imagine that you
 want to do calculations with 2x2 matrices. A very natural way of implementing that is by defining a new data type and defining type methods for adding, subtracting, and multiplying 2x2 matrices using that new data type. To make it even more interesting and generic, we are going to create a command-line utility that accepts the elements of two 2x2 matrices as command-line arguments, which are eight integer values in total, and performs all three calculations between them using the defined type methods.

Having a data type called ar2x2
 , you can create a type method named FunctionName
 for it as follows:

func

(a ar2x2)

FunctionName

(parameters)

 <

return

values

>

 {
 ...
}

The (a ar2x2)
 part is what makes the FunctionName()
 function a type method because it associates FunctionName()
 with the ar2x2
 data type. No other data type can use that function
 . However, you are free to implement FunctionName()
 for other data types or as a regular function. If you have a ar2x2
 variable named varAr
 , you can invoke FunctionName()
 as varAr.FunctionName(...)
 , which looks like selecting the field of a structure variable.

You are not obligated to
 develop type methods if you do not want to. In
 fact, each type method can be rewritten as a regular function
 . Therefore, FunctionName()
 can be rewritten as follows:

func

FunctionName

(a ar2x2, parameters...)

 <

return

values

>

 {
 ...
}

Have in mind that under the hood, the Go compiler does turn methods into regular function calls with the self
 value as the first parameter. However, interfaces require the use of type methods
 to work.

The expressions used for selecting a field of a structure or a type method of a data type, which would replace the
 ellipsis after the variable name above, are called selectors
 .

Performing calculations between matrices of a given size is one of the rare cases where using an array instead of a slice makes more sense because you do not have to modify the size of the matrices. Some might argue that using a slice instead of an array pointer is a better practice—you are allowed to use what makes more sense to you.

Most of the time, and
 when there is such a need, the results of a type method are saved in the variable that invoked the type method—in order to implement that for the ar2x2
 data type, we pass a pointer to the array that invoked the type method, like func (a *ar2x2)
 .

The next subsection illustrates type methods in action.

Using type methods

This subsection shows the
 use of type methods using the ar2x2
 data type as an example. The Add()
 function and the Add()
 method use the exact same algorithm for adding two matrices. The only difference between them is the way they are being called and the fact that the function returns an array whereas the method saves the result to the calling variable.

Although adding and subtracting matrices is a straightforward process—you just add or subtract each element of the first matrix with the element of the second matrix that is located at the same position—matrix multiplication is a more complex process. This is the main reason that both addition and subtraction use for
 loops, which means that the code can also work with bigger matrices, whereas multiplication uses static code that cannot be applied to bigger matrices without major changes.

If you are defining type methods for a structure, you should make sure that the names of the type methods do not conflict with any field name of the structure because the Go compiler will reject such ambiguities.

Type the following code and save it as methods.go
 .

package

 main
import

 (
 "fmt"

 "os"

 "strconv"

)
type

 ar2x2 [2

][2

]int

// Traditional Add() function

func

Add

(a, b ar2x2)

ar2x2

 {
 c := ar2x2{}
 for

 i := 0

; i < 2

; i++ {
 for

 j := 0

; j < 2

; j++ {
 c[i][j] = a[i][j] + b[i][j]
 }
 }
 return

 c
}

Here, we have a traditional function that adds two ar2x2
 variables and returns their result.

// Type method Add()

func

(a *ar2x2)

Add

(b ar2x2)

 {
 for

 i := 0

; i < 2

; i++ {
 for

 j := 0

; j < 2

; j++ {
 a[i][j] = a[i][j] + b[i][j]
 }
 }
}

Here we have a type
 method named Add()
 that is attached to the ar2x2
 data type. The result of the addition is not returned. What happens is that the ar2x2
 variable that called the Add()
 method is going to be modified and hold the result—this is the reason for using a pointer when defining the type method. If you do not want that behavior, you should modify the signature and the implementation of the type method to fit your needs.

// Type method Subtract()

func

(a *ar2x2)

Subtract

(b ar2x2)

 {
 for

 i := 0

; i < 2

; i++ {
 for

 j := 0

; j < 2

; j++ {
 a[i][j] = a[i][j] - b[i][j]
 }
 }
}

The previous method subtracts ar2x2
 b
 from ar2x2
 a
 and the result is saved in a
 .

// Type method Multiply()

func

(a *ar2x2)

Multiply

(b ar2x2)

 {
 a[0

][0

] = a[0

][0

]*b[0

][0

] + a[0

][1

]*b[1

][0

]
 a[1

][0

] = a[1

][0

]*b[0

][0

] + a[1

][1

]*b[1

][0

]
 a[0

][1

] = a[0

][0

]*b[0

][1

] + a[0

][1

]*b[1

][1

]
 a[1

][1

] = a[1

][0

]*b[0

][1

] + a[1

][1

]*b[1

][1

]
}

As we are working with small arrays, we do the multiplications without using for
 loops.

func

main

()

 {
 if

 len

(os.Args) != 9

 {
 fmt.Println("Need 8 integers"

)
 return

 }
 k := [8

]int

{}
 for

 index, i := range

 os.Args[1

:] {
 v, err := strconv.Atoi(i)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 k[index] = v
 }
 a := ar2x2{{k[0

], k[1

]}, {k[2

], k[3

]}}
 b := ar2x2{{k[4

], k[5

]}, {k[6

], k[7

]}}

The main()
 function gets the input and creates two 2x2 matrices. After that, it performs the desired calculations with these two matrices.

 fmt.Println("Traditional a+b:"

, Add(a, b))
 a.Add(b)
 fmt.Println("a+b:"

, a)
 a.Subtract(a)
 fmt.Println("a-a:"

, a)
 a = ar2x2{{k[0

], k[1

]}, {k[2

], k[3

]}}

We calculate a+b
 using
 two different ways: using a regular function and using a type method. As both a.Add(b)
 and a.Subtract(a)
 change the value of a
 , we have to initialize a
 before using it again.

 a.Multiply(b)
 fmt.Println("a*b:"

, a)
 a = ar2x2{{k[0

], k[1

]}, {k[2

], k[3

]}}
 b.Multiply(a)
 fmt.Println("b*a:"

, b)
}

Last, we calculate a*b
 and b*a
 to show that they are different because the commutative property does not apply to matrix multiplication.

Running methods.go
 produces the next output:

$

 go run methods.go 1 2 0 0 2 1 1 1

Traditional a+b: [[3 3] [1 1]]
a+b: [[3 3] [1 1]]
a-a: [[0 0] [0 0]]
a*b: [[4 6] [0 0]]
b*a: [[2 4] [1 2]]

The input here is two 2x2 matrices, [[1 2] [0 0]]
 and [[2 1] [1 1]]
 , and the output is their calculations.

Now that we know
 about type methods, it is time to begin exploring interfaces as interfaces cannot be implemented without type methods.

Interfaces

An interface
 is a Go mechanism
 for defining behavior that is implemented using a set of methods. Interfaces play a key role in Go and can simplify the code of your programs when they have to deal with multiple data types that perform the same task—recall that fmt.Println()
 works for almost all data types. But remember, interfaces should not be unnecessarily complex. If you decide to create your own interfaces, then you should begin with a common behavior that you want to be used by multiple data types.

Interfaces work with methods on types
 (or type methods
), which are like functions attached to given
 data types, which in Go are usually structures (although we can use any data type we want).

As you already know, once you implement the required type methods of an interface, that interface is satisfied implicitly
 .

The empty interface
 is
 defined as just interface{}
 . As the empty interface has no methods, it means that it is already implemented by all data types
 .

Once you implement the methods of an interface for a data type, that interface is satisfied automatically
 for that data type.

In a more formal way, a Go interface type defines (or describes) the behavior
 of other types by specifying a set of methods
 that need to be implemented for supporting that behavior. For a data type to satisfy an interface, it needs to implement all the type methods
 required by that interface. Therefore, interfaces
 are abstract types
 that specify a set of methods that need to be implemented so that another type can be considered an instance of the interface. So, an interface is two things: a set of methods and a type
 . Have in mind that small and well-defined interfaces are usually the most popular ones.

As a rule of thumb, only create a new interface when you want to share a common behavior
 between two or more concrete data types. This is basically duck typing
 .

The biggest advantage
 you get from
 interfaces is that if needed, you can pass a variable of a data type that implements a particular interface to any function that expects a parameter of that specific interface, which saves you from having to write separate functions for each supported data type. However, Go offers an alternative to this with the recent addition of generics.

Interfaces can also be used for providing a kind of polymorphism in Go, which is an object-oriented concept. Polymorphism
 offers a
 way of accessing objects of different types in the same uniform way when they share a common behavior.

Lastly, interfaces can be used for composition
 . In practice, this means that you can combine existing interfaces and create new ones that offer the combined behavior of the interfaces that were brought together. The next figure shows interface composition in a graphical way.

[image: Graphical user interface, application, Word Description automatically generated]

Figure 4.1: Interface composition

Put simply, the previous
 figure illustrates that because of its definition, satisfying interface ABC
 requires satisfying InterfaceA
 , InterfaceB
 , and InterfaceC
 . Additionally, any ABC
 variable can be used instead of an InterfaceA
 variable, an InterfaceB
 variable, or an InterfaceC
 variable because it supports all these three behaviors. Last, only ABC
 variables can be used where an ABC
 variable is expected. There is nothing prohibiting you from including additional methods in the definition of the ABC
 interface if the combination of existing interfaces does not describe the desired behavior accurately.

When you combine existing interfaces, it is better that the interfaces do not contain methods with the same name.

What you should keep in mind is that there is no need for an interface to be impressive and require the implementation of a large number of methods. In fact, the fewer methods an interface has, the more generic and widely used it can be, which improves its usefulness and therefore its usage.

The subsection that follows illustrates the use of sort.Interface
 .

The sort.Interface interface

The sort
 package contains an interface named sort.Interface
 that allows you to sort slices according to
 your needs and your data, provided that you implement sort.Interface
 for the custom data types stored in your slices. The sort
 package defines the sort.Interface
 as follows:

type

 Interface interface

 {
 // Len is the number of elements in the collection.

 Len() int

 // Less reports whether the element with

 // index i should sort before the element with index j.

 Less(i, j int

) bool

 // Swap swaps the elements with indexes i and j.

 Swap(i, j int

)
}

What we can understand from the definition of sort.Interface
 is that in order to implement sort.Interface
 , we need to implement the following three type methods:

	
Len() int

	
Less(i, j int) bool

	
Swap(i, j int)

The Len()
 method returns the length of the slice that will be sorted and helps the interface to process all slice elements whereas the Less()
 method, which compares and sorts elements in pairs, defines how elements are going to be compared and therefore sorted. The return value of Less()
 is bool
 , which means that Less()
 only cares about whether the element at index i
 is bigger or not than the element at index j
 in the way that the two elements are being compared. Lastly, the Swap()
 method is used for swapping two elements of the slice, which is required for the sorting algorithm to work.

The following code, which can be found as sort.go
 , illustrates the use of sort.Interface
 .

package

 main
import

 (
 "fmt"

 "sort"

)
type

 S1 struct

 {
 F1 int

 F2 string

 F3 int

}
// We want to sort S2 records based on the value of F3.F1,

// Which is equivalent to S1.F1 as F3 is an S1 structure

type

 S2 struct

 {
 F1 int

 F2 string

 F3 S1
}

The S2
 structure includes a
 field named F3
 that is of the S1
 data type, which is also a structure.

type

 S2slice []S2

You need to have a slice because all sorting operations work on slices. It is for this slice, which should be a new data type that in this case is called S2slice
 , that you are going to implement the three type methods of the sort.Interface
 .

// Implementing sort.Interface for S2slice

func

(a S2slice)

Len

()

int

 {
 return

 len

(a)
}

Here is the implementation of Len()
 for the S2slice
 data type. It is usually that simple.

// What field to use when comparing

func

(a S2slice)

Less

(i, j

int

)

bool

 {
 return

 a[i].F3.F1 < a[j].F3.F1
}

Here is the implementation of Less()
 for the S2slice
 data type. This method defines the way elements get sorted. In this case, by using a field of the embedded data structure (F3.F1
).

func

(a S2slice)

Swap

(i, j

int

)

 {
 a[i], a[j] = a[j], a[i]
}

This is the implementation of the Swap()
 type method that defines the way to swap slice elements during sorting. It is usually that simple.

func

main

()

 {
 data := []S2{
 S2{1

, "One"

, S1{1

, "S1_1"

, 10

}},
 S2{2

, "Two"

, S1{2

, "S1_1"

, 20

}},
 S2{-1

, "Two"

, S1{-1

, "S1_1"

, -20

}},
 }
 fmt.Println("Before:"

, data)
 sort.Sort(S2slice(data))
 fmt.Println("After:"

, data)
 // Reverse sorting works automatically

 sort.Sort(sort.Reverse(S2slice(data)))
 fmt.Println("Reverse:"

, data)
}

Once you have
 implemented sort.Interface
 , you'll see that sort.Reverse()
 , which is used for reverse sorting your slice, works automatically.

Running sort.go
 generates the following output:

$

 go run sort.go

Before: [{1 One {1 S1_1 10}} {2 Two {2 S1_1 20}} {-1 Two {-1 S1_1 -20}}]
After: [{-1 Two {-1 S1_1 -20}} {1 One {1 S1_1 10}} {2 Two {2 S1_1 20}}]
Reverse: [{2 Two {2 S1_1 20}} {1 One {1 S1_1 10}} {-1 Two {-1 S1_1 -20}}]

The first line shows the elements of the slice as initially stored. The second line shows the sorted version whereas the last line shows the reverse sorted version.

The empty interface

As mentioned
 before, the empty interface
 is defined as just interface{}
 and is already implemented by all data types
 . Therefore, variables of any data type can be put in the place of a parameter of the empty interface data type. Therefore, a function with an interface{}
 parameter can accept variables of any data type in this place. However, if you intend to work with interface{}
 function parameters without examining their data type inside the function, you should process them with statements that work on all data types, otherwise your code may crash or misbehave.

The program that follows defines two structures named S1
 and S2
 but just a single function named Print()
 for printing both of them. This is allowed because Print()
 requires an interface{}
 parameter that can
 accept both S1
 and S2
 variables. The fmt.Println(s)
 statement inside Print()
 can work with both S1
 and S2
 .

If you create a function that accepts one or more interface{}
 parameters and you run a statement that can only be applied to a limited number of data types, things will not work out well. As an example, not all interface{}
 parameters can be multiplied by 5
 or be used in fmt.Printf()
 with the %d
 control string.

The source code of empty.go
 is as follows:

package

 main
import

 "fmt"

type

 S1 struct

 {
 F1 int

 F2 string

}
type

 S2 struct

 {
 F1 int

 F2 S1
}
func

Print

(s

interface

{})

 {
 fmt.Println(s)
}
func

main

()

 {
 v1 := S1{10

, "Hello"

}
 v2 := S2{F1: -1

, F2: v1}
 Print(v1)
 Print(v2)

Although v1
 and v2
 are of different data types, Print()
 can work with both of them.

 // Printing an integer

 Print(123

)
 // Printing a string

 Print("Go is the best!"

)
}

Print()
 can also work with integers and strings.

Running empty.go
 produces
 the following output:

{10 Hello}
{-1 {10 Hello}}
123
Go is the best!

Using the empty interface is easy as soon as you realize that you can pass any type of variable in the place of an interface{}
 parameter and you can return any data type as an interface{}
 return value. However, with great power comes great responsibility—you should be very careful with interface{}
 parameters and their return values, because in order to use their real values you have to be sure about their underlying data type. We'll discuss this in the next section.

Type assertions and type switches

A type assertion
 is a
 mechanism for working with the underlying concrete value of an interface. This mainly happens because interfaces are virtual data types without their own values—interfaces just define behavior and do not hold data of their own. But what happens when you do not know the data type before attempting a type assertion? How can you differentiate between the supported data types and the unsupported ones? How can you choose a different action for each supported data type? The answer is by using type switches
 . Type switches
 use switch
 blocks for data types and allow you to differentiate between type assertion values, which are data types, and process each data type the way you want. On the
 other hand, in order to use the empty interface in type switches, you need to use type assertions
 .

You can have type switches for all kinds of interfaces and data types in general.

Therefore, the real work begins once you enter the function, because this is where you need to define the supported data types and the actions that take place for each supported data type.

Type assertions
 use the x.(T)
 notation, where x
 is an interface type and T
 is a type, and help you extract the value that is hidden behind the empty interface. For a type
 assertion to work, x
 should not be nil
 and the dynamic type of x
 should be identical to the T
 type.

The following code can be found as typeSwitch.go
 :

package

 main
import

 "fmt"

type

 Secret struct

 {
 SecretValue string

}
type

 Entry struct

 {
 F1 int

 F2 string

 F3 Secret
}
func

Teststruct

(x

interface

{})

 {
 // type switch

 switch

 T := x.(type

) {
 case

 Secret:
 fmt.Println("Secret type"

)
 case

 Entry:
 fmt.Println("Entry type"

)
 default

:
 fmt.Printf("Not supported type: %T\n"

, T)
 }
}

This is a type switch that supports the Secret
 and Entry
 data types.

func

Learn

(x

interface

{})

 {
 switch

 T := x.(type

) {
 default

:
 fmt.Printf("Data type: %T\n"

, T)
 }
}

The Learn()
 function
 prints the data type of its input parameter.

func

main

()

 {
 A := Entry{100

, "F2"

, Secret{"myPassword"

}}
 Teststruct(A)
 Teststruct(A.F3)
 Teststruct("A string"

)
 Learn(12.23

)
 Learn('€'

)
}

The last part of the code
 calls the desired functions to explore variable A
 . Running typeSwitch.go
 produces the following output:

$

 go run typeSwitch.go

Entry type
Secret type
Not supported type: string
Data type: float64
Data type: int32

As you can see, we have managed to execute different code based on the data type of the variable passed to TestStruct()
 and Learn()
 .

Strictly speaking, type assertions allow you to perform two main tasks:

	Checking whether an interface value keeps a particular type. When used this way, a type assertion returns two values: the underlying value and a bool
 value. The underlying value is what you might want to use. However, it is the value of the bool
 variable that tells you whether the type assertion was successful or not and therefore whether you can use the underlying value or not. Checking whether a variable named aVar
 is of the int
 type requires the use of the aVar.(int)
 notation, which returns two values. If successful, it returns the real int
 value of aVar
 and true
 . Otherwise, it returns false
 as the second value, which means that the type assertion was not successful and that the real value could not be extracted.

	Using the concrete value stored in an interface or assigning it to a new variable. This means that if there is a float64
 variable in an interface, a type assertion allows you to get that value.

The functionality offered by the reflect
 package helps Go identify the underlying data type and the real value of an interface{}
 variable.

So far, we have seen a variation of the first case where we extract the data type stored in an empty interface variable. Now, we are going to learn how to extract the real value stored in an empty interface variable.

As explained, trying to
 extract the concrete value from an interface using a type assertion can have two outcomes:

	If you use the correct concrete data type, you get the underlying value without any issues

	If you use an incorrect concrete data type, your program will panic

All these are
 illustrated in assertions.go
 , which contains the next code as well as lots of code comments that explain the process.

package

 main
import

 (
 "fmt"

)
func

returnNumber

()

interface

{} {
 return

 12

}
func

main

()

 {
 anInt := returnNumber()

The returnNumber()
 function returns an int
 value that is wrapped in an empty interface.

 number := anInt.(int

)
 number++
 fmt.Println(number)

In the previous code, we get the int
 value wrapped in an empty interface variable (anInt
).

 // The next statement would fail because there

 // is no type assertion to get the value:

 // anInt++

 // The next statement fails but the failure is under

 // control because of the ok bool variable that tells

 // whether the type assertion is successful or not

 value, ok := anInt.(int64

)
 if

 ok {
 fmt.Println("Type assertion successful: "

, value)
 } else

 {
 fmt.Println("Type assertion failed!"

)
 }
 // The next statement is successful but

 // dangerous because it does not make sure that

 // the type assertion is successful.

 // It just happens to be successful

 i := anInt.(int

)
 fmt.Println("i:"

, i)
 // The following will PANIC because anInt is not bool

 _ = anInt.(bool

)
}

The last statement
 panics the program
 because the anInt
 variable does not hold a bool
 value. Running assertions.go
 generates the next output:

$

 go run assertions.go

13
Type assertion failed!
i: 12
panic: interface conversion: interface {} is int, not bool
goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/mGo3rd/code/ch04/assertions.go:39 +0x192

The reason for the
 panic is written onscreen: panic: interface conversion: interface {} is int, not bool
 . What else can the Go compiler do to help you?

Next we discuss
 the map[string]interface{}
 map and its use.

The map[string]interface{} map

You have a
 utility that processes its command-line arguments; if everything goes as expected, then you get the supported types of command-line arguments and everything goes smoothly. But what happens when something unexpected occurs? In that case, the map[string]interface{}
 map is here to help and this subsection shows how!

Remember that the biggest advantage you get from using a map[string]interface{}
 map or any map that stores an interface{}
 value in general, is that you still have your data in its original state and data type. If you use map[string]string
 instead, or anything similar, then any data you have is going to be converted into a string
 , which means that you are going to lose information about the original data type and the structure of the data you are storing in the map.

Nowadays, web services work by exchanging JSON records. If you get a JSON record in a supported format, then you can process it as expected and everything will be fine. However, there are times when you might get an erroneous record or a record in an unsupported JSON format. In these cases, using map[string]interface{}
 for storing these unknown JSON records (arbitrary data
) is a good choice because map[string]interface{}
 is good at storing JSON records of an unknown type. We are going to illustrate that using a utility named mapEmpty.go
 that processes arbitrary JSON records given as command-line arguments. We process the input JSON record in two ways that are similar but not identical. There is no real difference between the exploreMap()
 and typeSwitch()
 functions apart from the fact that typeSwitch()
 generates a much richer output. The code of mapEmpty.go
 is as follows:

package

 main
import

 (
 "encoding/json"

 "fmt"

 "os"

)
var

 JSONrecord = `{

 "Flag": true,

 "Array": ["a","b","c"],

 "Entity": {

 "a1": "b1",

 "a2": "b2",

 "Value": -456,

 "Null": null

 },

 "Message": "Hello Go!"

 }`

This global variable
 holds the default value of JSONrecord
 , in case there is no user input.

func

typeSwitch

(m

map

[

string

]

interface

{})

 {
 for

 k, v := range

 m {
 switch

 c := v.(type

) {
 case

 string

:
 fmt.Println("Is a string!"

, k, c)
 case

 float64

:
 fmt.Println("Is a float64!"

, k, c)
 case

 bool

:
 fmt.Println("Is a Boolean!"

, k, c)
 case

 map

[string

]interface

{}:
 fmt.Println("Is a map!"

, k, c)
 typeSwitch(v.(map

[string

]interface

{}))
 default

:
 fmt.Printf("...Is %v: %T!\n"

, k, c)
 }
 }
 return

}

The typeSwitch()
 function uses a type switch for differentiating between the values in its input map. If a map is found, then we recursively
 call typeSwitch()
 on the new map in order to examine it even more.

The for
 loop allows you to examine all the elements of the map[string]interface{}
 map.

func

exploreMap

(m

map

[

string

]

interface

{})

 {
 for

 k, v := range

 m {
 embMap, ok := v.(map

[string

]interface

{})
 // If it is a map, explore deeper

 if

 ok {
 fmt.Printf("{\"%v\": \n"

, k)
 exploreMap(embMap)
 fmt.Printf("}\n"

)
 } else

 {
 fmt.Printf("%v: %v\n"

, k, v)
 }
 }
}

The exploreMap()
 function inspects the contents of its input map. If a map is found, then we call exploreMap()
 on the new map recursively
 in order to examine it on its own.

func

main

()

 {
 if

 len

(os.Args) == 1

 {
 fmt.Println("*** Using default JSON record."

)
 } else

 {
 JSONrecord = os.Args[1

]
 }
 JSONMap := make

(map

[string

]interface

{})
 err := json.Unmarshal([]byte

(JSONrecord), &JSONMap)

As you will learn in Chapter 6
 , Telling a UNIX System What To Do
 , json.Unmarshal()
 processes JSON data and converts it into a Go value. Although this value is usually a Go structure, in this
 case we are using a map as specified by the map[string]interface{}
 variable. Strictly speaking, the second parameter of json.Unmarshal()
 is of the empty interface data type, which means that its data type can be anything.

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 exploreMap(JSONMap)
 typeSwitch(JSONMap)
}

map[string]interface{}
 is extremely handy for storing JSON records when you do not know their schema in advance. In other words, map[string]interface{}
 is good at storing arbitrary JSON data of unknown schema.

Running mapEmpty.go
 produces
 the following output:

$

 go run mapEmpty.go

*** Using default JSON record.
Message: Hello Go!
Flag: true
Array: [a b c]
{"Entity":
Value: -456
Null: <nil>
a1: b1
a2: b2
}
Is a Boolean! Flag true
...Is Array: []interface {}!
Is a map! Entity map[Null:<nil> Value:-456 a1:b1 a2:b2]
Is a string! a2 b2
Is a float64! Value -456
...Is Null: <nil>!
Is a string! a1 b1
Is a string! Message Hello Go!
$

 go run mapEmpty.go

'{"Array": [3, 4], "Null": null, "String": "Hello Go!"}'

Array: [3 4]
Null: <nil>
String: Hello Go!
...Is Array: []interface {}!
...Is Null: <nil>!
Is a string! String Hello Go!
$

 go run mapEmpty.go

'{"Array":"Error"'

unexpected end of JSON input

The first run is without any command-line parameters, which means that it uses the default value of JSONrecord
 and therefore outputs the hardcoded data. The other two executions use user data. First, valid data, and then data that does not represent a valid JSON record. The error message in the third execution is generated by json.Unmarshal()
 as it
 cannot understand the schema of the JSON record.

The error data type

As promised, we are
 revisiting the error
 data type because it is an interface defined as follows:

type

 error interface

 {
 Error() string

}

So, in order to satisfy the error
 interface you just need to implement the Error() string
 type method. This does not change the way we use errors to find out whether the execution of a function or method was successful or not but shows how important interfaces are in Go as they are being used transparently all the time. However, the crucial question is when
 you should implement the error
 interface on your own instead of using the default one. The answer to that question is when you want to give more context to an error condition.

Now, let us talk about the error
 interface in a more practical situation. When there is nothing more to read from a file, Go returns an io.EOF
 error, which, strictly speaking, is not an error condition but a logical part of reading a file. If a file is totally empty, you still get io.EOF
 when you try to read it. However, this might cause problems in some situations and you might need to have a way of differentiating between a totally empty file and a file that has been read fully and there is nothing more to read. One way of dealing with that issue is with the help of the error
 interface.

The code example that is presented here is connected to File I/O. Putting it here might generate some questions about reading files in Go—however, I feel that this is the appropriate place to put it because it is connected to errors and error handling more than it is connected to file reading.

The code of errorInt.go
 without the package
 and import
 blocks is as follows:

type

 emptyFile struct

 {
 Ended bool

 Read int

}

This is a new data type that is used in the program.

// Implement error interface

func

(e emptyFile)

Error

()

string

 {
 return

 fmt.Sprintf("Ended with io.EOF (%t) but read (%d) bytes"

, e.Ended, e.Read)
}

This is the implementation of the error
 interface for emptyFile
 .

// Check values

func

isFileEmpty

(e error)

bool

 {
 // Type assertion

 v, ok := e.(emptyFile)

This is a type assertion
 for getting an emptyFile
 structure from the error
 variable.

 if

 ok {
 if

 v.Read == 0

 && v.Ended == true

 {
 return

 true

 }
 }
 return

 false

}

This is a method for checking whether a file is empty or not. The if
 condition translates as: if you have read 0 bytes (v.Read == 0
) and you have reached the end of the file (v.Ended == true
), then the file is empty.

If you are dealing with multiple error
 variables, you should add a type switch to the isFileEmpty()
 function after the type assertion.

func

readFile

(file

string

)

error

 {
 var

 err error
 fd, err := os.Open(file)
 if

 err != nil

 {
 return

 err
 }
 defer

 fd.Close()
 reader := bufio.NewReader(fd)
 n := 0

 for

 {
 line, err := reader.ReadString('\n'

)
 n += len

(line)

We read the input file line by line—you are going to learn more about File I/O in Chapter 6
 , Telling a UNIX System What to Do
 .

 if

 err == io.EOF {
 // End of File: nothing more to read

 if

 n == 0

 {
 return

 emptyFile{true

, n}
 }

If we have reached the end of a file (io.EOF
) and we have read 0
 characters, then we are dealing with an
 empty file. This kind of context is added to the emptyFile
 structure and returned as an error
 value.

 break

 } else

 if

 err != nil

 {
 return

 err
 }
 }
 return

 nil

}
func

main

()

 {
 flag.Parse()
 if

 len

(flag.Args()) == 0

 {
 fmt.Println("usage: errorInt <file1> [<file2> ...]"

)
 return

 }
 for

 _, file := range

 flag.Args() {
 err := readFile(file)
 if

 isFileEmpty(err) {
 fmt.Println(file, err)

This is where we check the error message of the readFile()
 function. The order we do the checking in is important because only the first match is executed. This means that we have to go from more specific cases to more generic conditions.

 } else

 if

 err != nil

 {
 fmt.Println(file, err)
 } else

 {
 fmt.Println(file, "is OK."

)
 }
 }
}

Running errorInt.go
 produces the next output:

$

 go run errorInt.go /etc/hosts /tmp/doesNotExist /tmp/empty /tmp /tmp/Empty.txt

/etc/hosts is OK.
/tmp/doesNotExist open /tmp/doesNotExist: no such file or directory
/tmp/empty open /tmp/empty: permission denied
/tmp read /tmp: is a directory
/tmp/Empty.txt Ended with io.EOF (true) but read (0) bytes

The first file (/etc/hosts
) was read without any issues, whereas the second file (/tmp/doesNotExist
) could
 not be found. The third file (/tmp/empty
) was there but we did not have the required file permissions to read it, whereas the fourth file (/tmp
) was in reality a directory. The last file (/tmp/Empty.txt
) was there but was empty, which is the error situation that we wanted to catch.

Writing your own interfaces

After learning
 about using existing interfaces, we will write another command-line utility that sorts 3D shapes according to their volumes. This task requires learning the following tasks:

	Creating new interfaces

	Combining existing interfaces

	Implementing sort.Interface
 for 3D shapes

Creating your own interfaces is easy. For reasons of simplicity, we include our own interface in the main
 package. However, this is rarely the case as we usually want to share our interfaces, which means that interfaces are usually included in Go packages other than main
 .

The following code excerpt defines a new interface:

type

 Shape2D interface

 {
 Perimeter() float64

}

This interface has the following properties:

	It is called Shape2D

	It requires the implementation of a single method named Perimeter()
 that returns a float64
 value

Apart from being
 user-defined, there is nothing special about that interface compared to the built-in Go interfaces—you can use it as you do all other existing interfaces. So, in order for a data type to satisfy the Shape2D
 interface, it needs to implement a type method named Perimeter()
 that returns a float64
 value.

Using a Go interface

The code that follows
 presents the simplest way of using an interface, which is by calling its method directly, as if it was a function, to get a result. Although this is allowed, it is rarely the case as we usually create functions that accept interface parameters in order for these functions to be able to work with multiple data types.

The code uses a handy technique for quickly finding out whether a given variable is of a given data type that was presented earlier in assertions.go
 . In this case, we examine whether a variable is of the Shape2D
 interface by using the interface{}(a).(Shape2D)
 notation, where a
 is the variable that is being examined and Shape2D
 is the data type against the variable being checked.

The next program is called Shape2D.go
 —its most interesting parts are the following:

type

 Shape2D interface

 {
 Perimeter() float64

}

This is the definition of the Shape2D
 interface that requires the implementation of the Perimeter()
 type method.

type

 circle struct

 {
 R float64

}
func

(c circle)

Perimeter

()

float64

 {
 return

 2

 * math.Pi * c.R
}

This is where the circle
 type implements the Shape2D
 interface with the implementation of the Perimeter()
 type method.

func

main

()

 {
 a := circle{R: 1.5

}
 fmt.Printf("R %.2f -> Perimeter %.3f \n"

, a.R, a.Perimeter())
 _, ok := interface

{}(a).(Shape2D)
 if

 ok {
 fmt.Println("a is a Shape2D!"

)
 }
}

As stated before, the interface{}(a).(Shape2D)
 notation checks whether the a
 variable satisfies
 the Shape2D
 interface without using its underlying value (circle{R: 1.5}
).

Running Shape2D.go
 creates the next output:

R 1.50 -> Perimeter 9.425
a is a Shape2D!

Implementing sort.Interface for 3D shapes

In this section we will create a
 utility for sorting various 3D shapes based on their volume, which clearly illustrates the power and versatility of Go interfaces. This time, we will use a single slice for storing all kinds of structures that all
 satisfy a given interface. The fact that Go considers interfaces as data types allows us to create slices with elements that satisfy a given interface without getting any error messages.

This kind of scenario can be useful in various cases because it illustrates how to store elements with different data types that all satisfy a common interface on the same slice and how to sort them using sort.Interface
 . Put simply, the presented utility sorts different structures with different numbers and names of fields that all share a common behavior through an interface implementation. The dimensions of the shapes are created using random numbers, which means that each time you execute the utility, you get a different output.

The name of the interface is Shape3D
 and requires the implementation of the Vol() float64
 type method. This interface is satisfied by the Cube
 , Cuboid
 , and Sphere
 data types. The sort.Interface
 interface is implemented for the shapes
 data type, which is defined as a slice of Shape3D
 elements.

All floating-point numbers are randomly generated using the rF64(min, max float64) float64
 function. As floating-point numbers have a lot of decimal points, printing is implemented using a separate function named PrintShapes()
 that uses an fmt.Printf("%.2f ", v)
 statement to specify the number of decimal points that are displayed onscreen—in this case, we print the first two decimal points of each floating-point value.

As you might recall, once you have implemented sort.Interface
 , you can also sort your data in reverse order using sort.Reverse()
 .

Type the following
 code on your favorite editor and save
 it as sortShapes.go
 . The code illustrates how to sort 3D shapes based on their volume.

package

 main
import

 (
 "fmt"

 "math"

 "math/rand"

 "sort"

 "time"

)
const

 min = 1

const

 max = 5

func

rF64

(min, max

float64

)

float64

 {
 return

 min + rand.Float64()*(max-min)
}

The rF64()
 function generates float64
 random values.

type

 Shape3D interface

 {
 Vol() float64

}

The definition of the Shape3D
 interface.

type

 Cube struct

 {
 x float64

}
type

 Cuboid struct

 {
 x float64

 y float64

 z float64

}
type

 Sphere struct

 {
 r float64

}
func

(c Cube)

Vol

()

float64

 {
 return

 c.x * c.x * c.x
}

Cube
 implementing
 the Shape3D
 interface.

func

(c Cuboid)

Vol

()

float64

 {
 return

 c.x * c.y * c.z
}

Cuboid
 implementing
 the Shape3D
 interface.

func

(c Sphere)

Vol

()

float64

 {
 return

 4

 / 3

 * math.Pi * c.r * c.r * c.r
}

Sphere
 implementing the Shape3D
 interface.

type

 shapes []Shape3D

This is the data type that uses sort.Interface
 .

// Implementing sort.Interface

func

(a shapes)

Len

()

int

 {
 return

 len

(a)
}
func

(a shapes)

Less

(i, j

int

)

bool

 {
 return

 a[i].Vol() < a[j].Vol()
}
func

(a shapes)

Swap

(i, j

int

)

 {
 a[i], a[j] = a[j], a[i]
}

The previous three functions implement sort.Interface
 .

func

PrintShapes

(a shapes)

 {
 for

 _, v := range

 a {
 switch

 v.(type

) {
 case

 Cube:
 fmt.Printf("Cube: volume %.2f\n"

, v.Vol())
 case

 Cuboid:
 fmt.Printf("Cuboid: volume %.2f\n"

, v.Vol())
 case

 Sphere:
 fmt.Printf("Sphere: volume %.2f\n"

, v.Vol())
 default

:
 fmt.Println("Unknown data type!"

)
 }
 }
 fmt.Println()
}
func

main

()

 {
 data := shapes{}
 rand.Seed(time.Now().Unix())

The PrintShapes()
 function is
 used for customizing the
 output.

 for

 i := 0

; i < 3

; i++ {
 cube := Cube{rF64(min, max)}
 cuboid := Cuboid{rF64(min, max), rF64(min, max), rF64(min, max)}
 sphere := Sphere{rF64(min, max)}
 data = append

(data, cube)
 data = append

(data, cuboid)
 data = append

(data, sphere)
 }
 PrintShapes(data)
 // Sorting

 sort.Sort(shapes(data))
 PrintShapes(data)
 // Reverse sorting

 sort.Sort(sort.Reverse(shapes(data)))
 PrintShapes(data)
}

The following code produces shapes with randomly generated dimensions using the rF64()
 function.

Running sortShapes.go
 produces
 the following
 output:

Cube: volume 105.27
Cuboid: volume 34.88
Sphere: volume 212.31
Cube: volume 55.76
Cuboid: volume 28.84
Sphere: volume 46.50
Cube: volume 52.41
Cuboid: volume 36.90
Sphere: volume 257.03

This is the unsorted output of the program:

Cuboid: volume 28.84
Cuboid: volume 34.88
Cuboid: volume 36.90
Sphere: volume 46.50
Cube: volume 52.41
...
Sphere: volume 257.03

This is the sorted output of the program from smaller to bigger shapes:

Sphere: volume 257.03
...
Cuboid: volume 28.84

This is the reversed sorted output of the program from bigger to smaller shapes.

The next section
 shows a technique for differentiating
 between two CSV file formats in your programs.

Working with two different CSV file formats

In this section we are
 going to implement a separate command-line utility that works with two different CSV formats. The reason we are doing this is that there are times when you will need your utilities to be able to work with multiple data formats.

Remember that the records of each CSV format are stored using their own Go structure under a different variable name. As a result, we need to implement sort.Interface
 for both CSV formats and therefore for both slice variables.

The two supported formats are the following:

	
Format 1
 : name, surname, telephone number, time of last access

	
Format 2
 : name, surname, area code, telephone number, time of last access

As the two CSV formats that are going to be used have a different number of fields, the utility determines the format that is being used by the number of fields found in the first record that was read and acts accordingly. After that, the data will be sorted using sort.Sort()
 —the data type of the slice that keeps the data helps Go determine the sort implementation that is going to be used without any help from the developer.

The main benefit you get from functions that work with empty interface variables is that you can add support for additional data types easily at a later time without the need to implement additional functions and without breaking existing code.

What follows is the implementation of the most important functions of the utility beginning with readCSVFile()
 because the logic of the utility is found in the readCSVFile()
 function.

func

readCSVFile

(filepath

string

)

error

 {
.
.
.

The code that has to do with reading the input file and making sure that it exists is omitted for brevity.

 var

 firstLine bool

 = true

 var

 format1 = true

The first line of the CSV file determines its format—therefore, we need a flag variable for specifying whether we are dealing with the first line (firstLine
) or not. Additionally, we need a second
 variable for specifying the format we are working with (format1
 is that variable).

 for

 _, line := range

 lines {
 if

 firstLine {
 if

 len

(line) == 4

 {
 format1 = true

 } else

 if

 len

(line) == 5

 {
 format1 = false

The first format has four fields whereas the second format has five fields.

 } else

 {
 return

 errors.New("Unknown File Format!"

)
 }
 firstLine = false

 }

If the first line of the CSV file has neither four nor five fields, then we have an error, and the function returns with a custom error message.

 if

 format1 {
 if

 len

(line) == 4

 {
 temp := F1{
 Name: line[0

],
 Surname: line[1

],
 Tel: line[2

],
 LastAccess: line[3

],
 }
 d1 = append

(d1, temp)
 }

If we are working with format1
 , we add data to the d1
 global variable.

 } else

 {
 if

 len

(line) == 5

 {
 temp := F2{
 Name: line[0

],
 Surname: line[1

],
 Areacode: line[2

],
 Tel: line[3

],
 LastAccess: line[4

],
 }
 d2 = append

(d2, temp)
 }

If we are working with format2
 , we add data to the d2
 global variable.

 }
 }
 return

 nil

}

The sortData()
 function
 accepts an empty interface parameter. The code of the function determines the data type of the slice that is passed as an empty interface to that function using a type switch. After that, a type assertion allows you to use the actual data stored under the empty interface parameter. Its full implementation is as follows:

func

sortData

(data

interface

{})

 {
 // type switch

 switch

 T := data.(type

) {
 case

 Book1:
 d := data.(Book1)
 sort.Sort(Book1(d))
 list(d)
 case

 Book2:
 d := data.(Book2)
 sort.Sort(Book2(d))
 list(d)
 default

:
 fmt.Printf("Not supported type: %T\n"

, T)
 }
}

The type switch does the job of determining the data type we are working with, which can be either Book1
 or Book2
 . If you want to look at the implementation of sort.Interface
 , you should view the sortCSV.go
 source code file.

Lastly, list()
 prints the data of the data variable used using the technique found in sortData()
 . Although the code that handles Book1
 and Book2
 is the same as in sortData()
 , you still
 need a type assertion to get the data from the empty interface variable.

func

list

(d

interface

{})

 {
 switch

 T := d.(type

) {
 case

 Book1:
 data := d.(Book1)
 for

 _, v := range

 data {
 fmt.Println(v)
 }
 case

 Book2:
 data := d.(Book2)
 for

 _, v := range

 data {
 fmt.Println(v)
 }
 default

:
 fmt.Printf("Not supported type: %T\n"

, T)
 }
}

Running sortCSV.go
 produces the following kind of output:

$

 go run sortCSV.go /tmp/csv.file

{Jane Doe 0800123456 1609310777}
{Dimitris Tsoukalos 2109416871 1609310731}
{Dimitris Tsoukalos 2109416971 1609310734}
{Mihalis Tsoukalos 2109416471 1609310706}
{Mihalis Tsoukalos 2109416571 1609310717}

The program correctly found out the format of /tmp/csv.file
 and worked with it even though it supports two CSV formats. Trying to work with an unsupported format generates the next output:

$

 go run sortCSV.go /tmp/differentFormat.csv

Unknown File Format!

This means that the code successfully understands that we are dealing with an unsupported format.

The next section explores the limited object-oriented capabilities of Go.

Object-oriented programming in Go

As Go does not support all object-oriented features, it cannot replace an object-oriented programming language fully. However, it can mimic some object-oriented concepts
 .

First of all, a Go
 structure with its type methods is like an object with its methods. Second, interfaces are like abstract data types that define behaviors and
 objects of the same class, which is similar to polymorphism
 . Third, Go
 supports encapsulation
 , which means it supports hiding data and functions from the user by
 making them private to the structure and the current Go package. Lastly, combining interfaces and structures is like composition
 in object-oriented terminology.

If you really want to develop applications using the object-oriented methodology, then choosing Go might not be your best option. As I am not really into Java
 , I would suggest looking at C++
 or Python
 instead. The general rule here is to choose the best tool for your job.

You have already seen some of these points earlier in this chapter—the next chapter discusses how to define private fields and functions. The example that follows, which is named objO.go
 , illustrates composition and polymorphism as well as embedding an anonymous structure into an existing one to get all its fields.

package

 main
import

 (
 "fmt"

)
type

 IntA interface

 {
 foo()
}
type

 IntB interface

 {
 bar()
}
type

 IntC interface

 {
 IntA
 IntB
}

The IntC
 interface combines interfaces IntA
 and IntB
 . If you implement IntA
 and IntB
 for a data type, then this
 data type implicitly satisfies IntC
 .

func

processA

(s IntA)

 {
 fmt.Printf("%T\n"

, s)
}

This function works
 with data types that satisfy the IntA
 interface.

type

 a struct

 {
 XX int

 YY int

}
// Satisfying IntA

func

(varC c)

foo

()

 {
 fmt.Println("Foo Processing"

, varC)
}

Structure c
 satisfying IntA
 as it implements foo()
 .

// Satisfying IntB

func

(varC c)

bar

()

 {
 fmt.Println("Bar Processing"

, varC)
}

Structure c
 satisfying IntB
 . As structure c
 satisfies both IntA
 and IntB
 , it implicitly satisfies IntC
 , which is a composition of the IntA
 and IntB
 interfaces.

type

 b struct

 {
 AA string

 XX int

}
// Structure c has two fields

type

 c struct

 {
 A a
 B b
}

This structure has two fields named A
 and B
 that are of the a
 and b
 data types, respectively.

// Structure compose gets the fields of structure a

type

 compose struct

 {
 field1 int

 a
}

This new structure
 uses an anonymous structure (a
), which means that it gets the fields of that anonymous
 structure.

// Different structures can have methods with the same name

func

(A a)

A

()

 {
 fmt.Println("Function A() for A"

)
}
func

(B b)

A

()

 {
 fmt.Println("Function A() for B"

)
}
func

main

()

 {
 var

 iC c = c{a{120

, 12

}, b{"-12"

, -12

}}

Here we define a c
 variable that is composed of an a
 structure and a b
 structure.

 iC.A.A()
 iC.B.A()

Here we access a method of the a
 structure (A.A()
) and a method of the b
 structure (B.A()
).

 // The following will not work

 // iComp := compose{field1: 123, a{456, 789}}

 // iComp := compose{field1: 123, XX: 456, YY: 789}

 iComp := compose{123

, a{456

, 789

}}
 fmt.Println(iComp.XX, iComp.YY, iComp.field1)

When using an anonymous structure inside another structure, as we do with a{456, 789}
 , you can access the fields of the anonymous structure, which is the a{456, 789}
 structure, directly as iComp.XX
 and iComp.YY
 .

 iC.bar()
 processA(iC)
}

Although processA()
 works with IntA
 variables, it can also work with IntC
 variables because the IntC
 interface satisfies IntA
 !

All the code in objO.go
 is pretty
 simplistic compared to the code of a real
 object-oriented programming language that supports abstract classes and inheritance. However, it is more than adequate for generating types and elements with a structure in them, as well as for having different data types with the same method names.

Running objO.go
 produces the next output:

$

 go run objO.go

Function A() for A
Function A() for B
456 789 123
Bar Processing {{120 12} {-12 -12}}
main.c

The first two lines of the output show that two different structures can have a method with the same name. The third line proves that when using an anonymous structure inside one other structure, you can access the fields of the anonymous structure directly. The fourth line is the output of the iC.bar()
 call, where iC
 is a c
 variable accessing a method from the IntB
 interface. The last line is the output of processA(iC)
 that requires an IntA
 parameter and prints the real data type of its parameter, which in this case is main.c
 .

Evidently, although Go is not an object-oriented programming language, it can mimic some of the characteristics of object-oriented programming. Moving on, the last section of this chapter is about updating the phone book application by reading an environment variable and sorting its output.

Updating the phone book application

The functionality that is
 added to this new version of the phone book utility is the following:

	The CSV file path can be optionally given as an environment variable named PHONEBOOK

	The list
 command sorts the output based on the surname field

Although we could have given the path of the CSV file as a command-line argument instead of the value of an environment variable, it would have complicated the code, especially if that argument was made optional. More advanced Go packages such as viper
 , which is presented in Chapter 6
 , Telling a UNIX System What to Do
 , simplify the process of parsing command-line arguments with the use of command-line options such as -f
 followed by a file path or --filepath
 .

The current default value of CSVFILE
 is set to my home directory on a macOS Big Sur machine—you should change that default value to fit your needs or use a proper value for the PHONEBOOK
 environment variable.

Last, if the PHONEBOOK
 environment variable is not set, then the utility uses a default value for the CSV file path. Generally speaking, not having to recompile your software for user-defined data is considered a good practice.

Setting up the value of the CSV file

The value of the CSV file is
 set in the setCSVFILE()
 function, which is defined as follows:

func

setCSVFILE

()

error

 {
 filepath := os.Getenv("PHONEBOOK"

)
 if

 filepath != ""

 {
 CSVFILE = filepath
 }

Here is where we read the PHONEBOOK
 environment variable. The rest of the code is about making sure that we can use that file path or the default one if PHONEBOOK
 is not set.

 _, err := os.Stat(CSVFILE)
 if

 err != nil

 {
 fmt.Println("Creating"

, CSVFILE)
 f, err := os.Create(CSVFILE)
 if

 err != nil

 {
 f.Close()
 return

 err
 }
 f.Close()
 }

If the specified file does not exist, it is created using os.Create()
 .

 fileInfo, err := os.Stat(CSVFILE)
 mode := fileInfo.Mode()
 if

 !mode.IsRegular() {
 return

 fmt.Errorf("%s not a regular file"

, CSVFILE)
 }

Then, we make sure
 that the specified path belongs to a regular file that can be used for saving data.

 return

 nil

}

In order to simplify the implementation of the main()
 function, we moved the code related to the existence of and access to the CSV file path to setCSVFILE()
 .

The first time we set the PHONEBOOK
 environment variable and executed the phone book application, we got the following output—you should get something similar.

$

export

 PHONEBOOK=

"/tmp/csv.file"

$

 go run phoneBook.go list

Creating /tmp/csv.file

As /tmp/csv.file
 does not exist, phoneBook.go
 creates it from scratch. This verifies that the Go code of the setCSVFILE()
 function works as expected.

Now that we know where to get and write our data, it is time to learn how to sort it using sort.Interface
 , which is the subject of the subsection that follows.

Using the sort package

The first thing to
 decide when trying to sort data is the field that is going to be used for sorting. After that, we need to decide what we are going to do when two or more records have the same value in the main field used for sorting.

The code related to sorting using sort.Interface
 is the following:

type

 PhoneBook []Entry

You need to have a separate data type—sort.Interface
 is implemented for this data type.

var

 data = PhoneBook{}

As you have a separate data type for implementing sort.Interface
 , the data type of the data
 variable needs to
 change and become PhoneBook
 . Then sort.Interface
 is implemented for PhoneBook
 .

// Implement sort.Interface

func

(a PhoneBook)

Len

()

int

 {
 return

 len

(a)
}

The Len()
 function has a standard implementation.

// First based on surname. If they have the same

// surname take into account the name.

func

(a PhoneBook)

Less

(i, j

int

)

bool

 {
 if

 a[i].Surname == a[j].Surname {
 return

 a[i].Name < a[j].Name
 }

The Less()
 function is the place to define how you are going to sort the elements of the slice. What we say here is that if the entries that are compared, which are Go structures, have the same Surname
 field value, then compare these entries using their Name
 field values.

 return

 a[i].Surname < a[j].Surname
}

If the entries have different values in the Surname
 field, then compare them using the Surname
 field.

func

(a PhoneBook)

Swap

(i, j

int

)

 {
 a[i], a[j] = a[j], a[i]
}

The Swap()
 function has a standard implementation. After implementing the desired interface, we need to
 tell our code to sort the data, which happens in the implementation of the list()
 function:

func

list

()

 {
 sort.Sort(PhoneBook(data))
 for

 _, v := range

 data {
 fmt.Println(v)
 }
}

Now that we know how sorting is implemented, it is time to use the utility. First, we add some entries:

$

 go run phoneBook.go insert Mihalis Tsoukalos 2109416471

$

 go run phoneBook.go insert Mihalis Tsoukalos 2109416571

$

 go run phoneBook.go insert Dimitris Tsoukalos 2109416871

$

 go run phoneBook.go insert Dimitris Tsoukalos 2109416971

$

 go run phoneBook.go insert Jane Doe 0800123456

Last, we print the contents of the phone book using the list
 command:

$

 go run phoneBook.go list

{Jane Doe 0800123456 1609310777}
{Dimitris Tsoukalos 2109416871 1609310731}
{Dimitris Tsoukalos 2109416971 1609310734}
{Mihalis Tsoukalos 2109416471 1609310706}
{Mihalis Tsoukalos 2109416571 1609310717}

As Dimitris
 comes before Mihalis
 alphabetically, all relevant entries come first as well, which means that
 our sorting works as expected.

Exercises

	Create a slice of structures using a structure that you created and sort the elements of the slice using a field from the structure

	Integrate the functionality of sortCSV.go
 in phonebook.go

	Add support for a reverse
 command to phonebook.go
 in order to list its entries in reverse order

	Use the empty interface and a function that allows you to differentiate between two different structures that you create

Summary

In this chapter, we learned about interfaces
 , which are like contracts, and also about type methods
 , type assertion, and reflection. Although reflection is a very powerful Go feature, it might slow down your Go programs because it adds a layer of complexity at runtime. Furthermore, your Go programs could crash if you use reflection carelessly.

The last section of this chapter discussed writing Go code that follows the principles of object-oriented programming. If you are going to remember just one thing from this chapter, it should be that Go is not an object-oriented programming language, but it can mimic some of the functionality offered by object-programming languages, such as Java, Python, and C++.

The next chapter discusses Go packages, functions, and automation using GitHub and GitLab CI/CD systems.

Additional resources

	The documentation of the reflect
 package:
https://golang.org/pkg/reflect/

	The documentation of the sort
 package:
https://golang.org/pkg/sort/

	Working with errors in Go 1.13:
https://blog.golang.org/go1.13-errors

	The implementation of the sort
 package:
https://golang.org/src/sort/

5

Go Packages and Functions

The main focus of this chapter is Go packages
 , which are Go's way of organizing, delivering, and using code. The most common component of packages is functions
 , which are pretty flexible and powerful and are used for data processing and manipulation. Go also supports modules
 , which are packages with version numbers. This chapter will also explain the operation of defer
 , which is used for cleaning up and releasing resources.

Regarding the visibility of package elements, Go follows a simple rule that states that functions, variables, data types, structure fields, and so forth that begin with an uppercase letter are public
 , whereas functions, variables, types, and so on that begin with a lowercase letter are private
 . This is the reason why fmt.Println()
 is named Println()
 instead of just println()
 . The same rule applies not only to the name of a struct
 variable but to the fields of a struct
 variable—in practice, this means that you can have a struct
 variable with both private and public fields. However, this rule does not affect package names, which are allowed to begin with either uppercase or lowercase letters.

In summary, this chapter covers:

	Go packages

	Functions

	Developing your own packages

	Using GitHub to store Go packages

	A package for working with a database

	Modules

	Creating better packages

	Creating documentation

	GitLab Runners and Go

	GitHub Actions and Go

	Versioning utilities

Go packages

Everything in Go is
 delivered in the form of packages. A Go package is a Go source file that begins with the package
 keyword, followed by the name of the package.

Note that packages can have structure. For example, the net
 package has several subdirectories, named http
 , mail
 , rpc
 , smtp
 , textproto
 , and url
 , which should be imported as net/http
 , net/mail
 , net/rpc
 , net/smtp
 , net/textproto
 , and net/url
 , respectively.

Apart from the packages of the Go standard library, there are external packages that can be imported using their full address and that should be downloaded on the local machine, before their first use. One such example is
https://github.com/spf13/cobra

 , which is stored in GitHub.

Packages are mainly used for grouping related functions, variables, and constants so that you can transfer them easily and use them in your own Go programs. Note that apart from the main
 package, Go packages are not autonomous programs and cannot be compiled into executable files on their own. As a result, if you try to execute a Go package as if it were an autonomous program, you are going to be disappointed:

$

 go run aPackage.go
go run: cannot run non-main package

Instead, packages need to be called directly or indirectly from a main
 package in order to be used, as we have shown in previous chapters.

Downloading Go packages

In this subsection, you will learn how
 to download external Go packages using
https://github.com/spf13/cobra

 as an example. The go get
 command for downloading the cobra
 package is as follows:

$

 go get github.com/spf13/cobra

Note that you can download the package without using https://
 in its address. The results can be found inside the ~/go
 directory—the full path is ~/go/src/github.com/spf13/cobra
 . As the cobra
 package comes with a binary file that helps you structure and create command-line utilities, you can find that binary file inside ~/go/bin
 as cobra
 .

The following output, which
 was created with the help of the tree(1)
 utility, shows a high-level view with 3 levels of detail of the structure of ~/go
 on my machine:

$

 tree ~/go -L 3
/Users/mtsouk/go
├── bin
│ ├── cobra
│ ├── go-outline
│ ├── gocode
│ ├── gocode-gomod
│ ├── godef
│ ├── golint
│ ├── gopkgs
│ └── goreturns
├── pkg
│ ├── darwin_amd64
│ │ ├── github.com
│ │ ├── golang.org
│ │ ├── gonum.org
│ │ └── google.golang.org
│ ├── mod
│ │ ├── 9fans.net
│ │ ├── cache
│ │ ├── cloud.google.com
│ │ ├── github.com
│ │ ├── go.opencensus.io@v0.22.4
│ │ ├── golang.org
│ │ └── google.golang.org
│ └── sumdb
│ └── sum.golang.org
└── src
 ├── github.com
 │ ├── sirupsen
 │ └── spf13
 └── golang.org
 └── x
23 directories, 8 files

The x
 path, which is displayed last, is used by the Go team.

Basically, there are three
 main directories under ~/go
 with the following properties:

	The bin
 directory: This is where binary tools are placed.

	The pkg
 directory: This is where reusable packages are put. The darwin_amd64
 directory, which can be found on macOS machines only, contains compiled versions of the installed packages. On a Linux machine, you can find a linux_amd64
 directory instead of darwin_amd64
 .

	The src
 directory: This is where the source code of the packages is located. The underlying structure is based on the URL of the package you are looking for. So, the URL for the github.com/spf13/viper
 package is ~/go/src/github.com/spf13/viper
 . If a package is downloaded as a module, then it will be located under ~/go/pkg/mod
 .

Starting with Go 1.16, go install
 is the recommended way of building and installing packages in module mode. The use of go get
 is deprecated, but this chapter uses go get
 because it's commonly used online and is worth knowing about. However, most of the chapters in this book use go mod init
 and go mod tidy
 for downloading external dependencies for your own source files.

If you want to upgrade an existing package, you should execute go get
 with the -u
 option. Additionally, if you want to see what is happening behind the scenes, add the -v
 option to the go get
 command—in this case, we are using the viper
 package as an example, but we abbreviate the output:

$

 go get -v github.com/spf13/viper
github.com/spf13/viper (download)
...
github.com/spf13/afero (download)
get "golang.org/x/text/transform": found meta tag get.metaImport{Prefix:"golang.org/x/text", VCS:"git", RepoRoot:"https://go.googlesource.com/text"} at //golang.org/x/text/transform?go-get=1
get "golang.org/x/text/transform": verifying non-authoritative meta tag
...
github.com/fsnotify/fsnotify
github.com/spf13/viper

What you can basically see in the output is the dependencies of the initial package being downloaded before the desired package—most of the time, you do not want to know that.

We will continue this
 chapter by looking at the most important package element: functions
 .

Functions

The main elements of
 packages are functions, which are the subject of this section.

Type methods and functions are implemented in the same way and sometimes, the terms functions and type methods are used interchangeably.

A piece of advice: functions must be as independent from each other as possible and must do one job (and only one job) well. So, if you find yourself writing functions that do multiple things, you might want to consider replacing them with multiple functions instead.

You should already know that all function definitions begin with the func
 keyword, followed by the function's signature and its implementation, and that functions accept none, one, or more arguments and return none, one, or more values back. The single-most popular Go function is main()
 , which is used in every executable Go program—the main()
 function accepts no parameters and returns nothing, but it is the starting point of every Go program. Additionally, when the main()
 function ends, the entire program ends as well.

Anonymous functions

Anonymous functions
 can be
 defined inline without the need for a name, and they are usually used for implementing things that require a small amount of
 code. In Go, a function can return an anonymous function or take an anonymous function as one of its arguments. Additionally, anonymous functions can be attached to Go variables. Note that anonymous functions are
 called lambdas
 in functional programming terminology. Similar to that, a closure
 is a
 specific type of anonymous function that carries or closes over
 variables that are in the same lexical scope as the anonymous function that was defined.

It is considered a good practice for anonymous functions to have a small implementation and a local focus. If an anonymous function does not have a local focus, then you might need to consider making it a regular function. When an anonymous function is suitable for a job, it is extremely convenient and makes your life easier; just do not use too many
 anonymous functions in your programs without having a good reason to. We will look at anonymous functions in action in a while.

Functions that return multiple values

As you already
 know from functions such as strconv.Atoi()
 , functions can return multiple distinct values, which saves you from having to create a dedicated structure for returning and receiving multiple values from a function. However, if you have a function that returns more than 3 values, you should reconsider that decision and maybe redesign it to use a single structure or slice for grouping and returning the desired values as a single entity—this makes handling the returned values simpler and easier. Functions, anonymous functions, and functions that return multiple values are all illustrated in functions.go
 , as shown in the following code:

package

 main
import

 "fmt"

func

doubleSquare

(x

int

)

(

int

,

int

)

 {
 return

 x * 2

, x * x
}

This function returns two int
 values, without the need for having separate variables to keep them—the returned values are created on the fly. Note the compulsory use of parentheses
 when a function returns more than one value.

// Sorting from smaller to bigger value

func

sortTwo

(x, y

int

)

(

int

,

int

)

 {
 if

 x > y {
 return

 y, x
 }
 return

 x, y
}

The preceding function returns two int
 values as well.

func

main

()

 {
 n := 10

 d, s := doubleSquare(n)

The previous statement reads the two return values of doubleSquare()
 and saves them in d
 and s
 .

 fmt.Println("Double of"

, n, "is"

, d)
 fmt.Println("Square of"

, n, "is"

, s)
 // An anonymous function

 anF := func

(param

int

)

int

 {
 return

 param * param
 }

The anF
 variable holds an anonymous function
 that requires a single parameter as input and returns a single value. The
 only difference between an anonymous function and a regular one is that the name of the anonymous function is func()
 and that there is no func
 keyword.

 fmt.Println("anF of"

, n, "is"

, anF(n))
 fmt.Println(sortTwo(1

, -3

))
 fmt.Println(sortTwo(-1

, 0

))
}

The last two statements print the return values of sortTwo()
 . Running functions.go
 produces the following output:

Double of 10 is 20
Square of 10 is 100
anF of 10 is 100
-3 1
-1 0

The subsection that follows illustrates functions that have named return values.

The return values of a function can be named

Unlike C, Go allows you to
 name the return values of a Go function. Additionally, when such a function has a return
 statement without any arguments, the function automatically returns the current value of each named return value, in the order in which they were declared in the function signature.

The following function is included in namedReturn.go
 :

func

minMax

(x, y

int

)

(min, max

int

)

 {
 if

 x > y {
 min = y
 max = x
 return

 min, max

This return
 statement returns the values stored in the min
 and max
 variables—both min
 and max
 are defined in the function signature
 and not in the function body.

 }
 min = x
 max = y
 return

}

This return
 statement is equivalent to return min, max
 , which is based on the function signature and the use of named return values.

Running namedReturn.go
 produces the following output:

$

 go run namedReturn.go 1 -2
-2 1
-2 1

Functions that accept other functions as parameters

Functions can accept other
 functions as parameters. The best example of a function that accepts another function as an argument can be found in the sort
 package. You can provide the sort.Slice()
 function with another function as an argument that specifies the way sorting is implemented. The signature of sort.Slice()
 is func Slice(slice interface{}, less func(i, j int) bool)
 . This means the following:

	The sort.Slice()
 function does not return any data.

	The sort.Slice()
 function requires two arguments, a slice of type interface{}
 and another function—the slice variable is modified inside sort.Slice()
 .

	The function parameter of sort.Slice()
 is named less
 and should have the func(i, j int) bool
 signature—there is no need for you to name the anonymous function. The name less
 is required because all function parameters should have a name.

	The i
 and j
 parameters of less
 are indexes of the slice
 parameter.

Similarly, there is another
 function in the sort
 package named sort.SliceIsSorted()
 that is defined as func SliceIsSorted(slice interface{}, less func(i, j int) bool) bool
 . sort.SliceIsSorted()
 returns a bool
 value and checks whether the slice
 parameter is sorted according to the rules of the second parameter, which is a function.

You are not obliged to use an anonymous function in either sort.Slice()
 or sort.SliceIsSorted()
 . You can define a regular function with the required signature and use that. However, using an anonymous function is more convenient.

The use of both sort.Slice()
 and sort.SliceIsSorted()
 is illustrated in the Go program that follows—the name of the source file is sorting.go
 :

package

 main
import

 (
 "fmt"

 "sort"

)
type

 Grades struct

 {
 Name string

 Surname string

 Grade int

}
func

main

()

 {
 data := []Grades{{"J."

, "Lewis"

, 10

}, {"M."

, "Tsoukalos"

, 7

},
 {"D."

, "Tsoukalos"

, 8

}, {"J."

, "Lewis"

, 9

}}
 isSorted := sort.SliceIsSorted(data, func

(i, j

int

)

bool

 {
 return

 data[i].Grade < data[j].Grade
 })

The if else
 block that follows checks the bool
 value of sort.SliceIsSorted()
 to determine whether the slice is sorted:

 if

 isSorted {
 fmt.Println("It is sorted!"

)
 } else

 {
 fmt.Println("It is NOT sorted!"

)
 }
 sort.Slice(data,
 func

(i, j

int

)

bool

 { return

 data[i].Grade < data[j].Grade })
 fmt.Println("By Grade:"

, data)
}

The call to sort.Slice()
 sorts the data according to the anonymous function that is passed as the second argument to sort.Slice()
 .

Running sorting.go
 produces
 the following output:

It is NOT sorted!
By Grade: [{M. Tsoukalos 7} {D. Tsoukalos 8} {J. Lewis 9} {J. Lewis 10}]

Functions can return other functions

Apart from accepting
 functions as arguments, functions can also return anonymous functions, which can be handy when the returned function is not always the same but depends on the function's input or other external parameters. This is illustrated in returnFunction.go
 :

package

 main
import

 "fmt"

func

funRet

(i

int

)

func

(

int

)

int

 {
 if

 i < 0

 {
 return

 func

(k

int

)

int

 {
 k = -k
 return

 k + k
 }
 }
 return

 func

(k

int

)

int

 {
 return

 k * k
 }
}

The signature of funRet()
 declares that the function returns another function with the func(int) int
 signature. The implementation of the function is unknown, but it is going to be defined at runtime. Functions are returned using the return
 keyword. The developer should take care and save the returned function.

func

main

()

 {
 n := 10

 i := funRet(n)
 j := funRet(-4

)

Note that n
 and -4
 are only used for determining the anonymous functions that are going to be returned from funRet()
 .

 fmt.Printf("%T\n"

, i)
 fmt.Printf("%T %v\n"

, j, j)
 fmt.Println("j"

, j, j(-5

))

The first statement prints the signature of the function whereas the second statement prints the function signature
 and its memory address. The last statement also returns the memory address of j
 , because j
 is a pointer to the anonymous function and the value of j(-5)
 .

 // Same input parameter but DIFFERENT

 // anonymous functions assigned to i and j

 fmt.Println(i(10

))
 fmt.Println(j(10

))
}

Although both i
 and j
 are called with the same input (10
), they are going to return different values because they store different anonymous functions.

Running returnFunction.go
 generates the following output:

func(int) int
func(int) int 0x10a8d40
j 0x10a8d40 10
100
-20

The first line of the output shows the data type of the i
 variable that holds the return value of funRet(n)
 , which is func(int) int
 as it holds a function. The second line of output shows the data type of j
 , as well as the memory address where the anonymous function is stored. The third line shows the memory address of the anonymous function stored in the j
 variable, as
 well as the return value of j(-5)
 . The last two lines are the return values of i(10)
 and j(10)
 , respectively.

So, in this subsection, we learned about functions returning functions. This makes Go a functional programming language, albeit not a pure one, and allows Go to benefit from the functional programming paradigm.

We are now going to examine variadic functions, which are functions with a variable number of parameters.

Variadic functions

Variadic functions are functions that
 can accept a variable number of parameters—you already know about fmt.Println()
 and append()
 , which are both variadic
 functions that are widely used. In fact, most functions found in the fmt
 package are variadic.

The general ideas
 and rules behind variadic functions are as follows:

	Variadic functions use the pack operator
 , which consists of a ...
 , followed by a data type. So, for a variadic function to accept a variable number of int
 values, the pack operator should be ...int
 .

	The pack operator can only be used once in any given function.

	The variable that holds the pack operation is a slice and, therefore, is accessed as a slice inside the variadic function.

	The variable name that is related to the pack operator is always last in the list of function parameters.

	When calling a variadic function, you should put a list of values separated by ,
 in the place of the variable with the pack operator
 or a slice with the unpack operator
 .

This list contains all the rules that you need to know in order to define and use variadic functions.

The pack operator can also be used with an empty interface. In fact, most functions in the fmt
 package use ...interface{}
 to accept a variable number of arguments of all data types. You can find the source code of the latest implementation of fmt
 at
https://golang.org/src/fmt/

 .

However, there is a situation that
 needs special care here—I made that mistake when I was learning Go. If you try to pass os.Args
 , which is a slice of strings ([]string
), as ...interface{}
 to a variadic function), your code will not compile and will generate an error message similar to cannot use os.Args (type []string) as type []interface {} in argument to <function_name>
 . This happens because the two data types ([]string
 and []interface{}
) do not have the same representations in memory—this applies to all data types. In practice, this means that you cannot write os.Args...
 to pass each individual value of the os.Args
 slice to a variadic function.

On the other hand, if you just use os.Args
 , it will work, but this passes the entire slice as a single entity
 instead of its individual values! This means that the everything(os.Args, os.Args)
 statement works but does not do what you want.

The solution to this problem is converting the slice of strings—or any other slice—into a slice of interface{}
 . One way to do that is by using the code that follows:

empty := make

([]interface

{}, len

(os.Args[1

:]))
for

 i, v := range

 os.Args {
 empty[i] = v
}

Now, you are allowed to use empty...
 as an argument to the variadic function. This is the only subtle point related to variadic functions and the pack operator.

As there is no standard library function to perform that conversion for you, you have to write your own code. Note that the conversion takes time because the code must visit all slice elements. The more elements the slice has, the more time the conversion will take. This topic is also discussed at
https://github.com/golang/go/wiki/InterfaceSlice

 .

We are now ready to see variadic functions in action. Type the following Go code using your favorite text editor and save it as variadic.go
 :

package

 main
import

 (
 "fmt"

 "os"

)

As variadic functions are built into the grammar of the language, you do not need anything extra to support variadic functions.

func

addFloats

(message

string

, s ...

float64

)

float64

 {

This is a variadic function
 that accepts a string
 and an unknown number of float64
 values. It prints the string
 variable and calculates the sum of the float64
 values.

 fmt.Println(message)
 sum := float64

(0

)
 for

 _, a := range

 s {
 sum = sum + a
 }

This for
 loop accesses the pack operator as a slice, so there is nothing special here.

 s[0

] = -1000

 return

 sum
}

You can also access individual elements of the s
 slice.

func

everything

(input ...

interface

{})

 {
 fmt.Println(input)
}

This is another variadic function that accepts an unknown number of interface{}
 values.

func

main

()

 {
 sum := addFloats("Adding numbers..."

, 1.1

, 2.12

, 3.14

, 4

, 5

, -1

, 10

)

You can put the arguments of a variadic function inline.

 fmt.Println("Sum:"

, sum)
 s := []float64

{1.1

, 2.12

, 3.14

}

But you usually use a slice variable with the unpack operator.

 sum = addFloats("Adding numbers..."

, s...)
 fmt.Println("Sum:"

, sum)
 everything(s)

The previous code works because the content of s
 is not unpacked.

 // Cannot directly pass []string as []interface{}

 // You have to convert it first!

 empty := make

([]interface

{}, len

(os.Args[1

:]))

You can convert []string
 into []interface{}
 in order to use the unpack operator.

 for

 i, v := range

 os.Args[1

:] {
 empty[i] = v
 }
 everything(empty...)

And now, we can unpack the contents of empty
 .

 arguments := os.Args[1

:]
 empty = make

([]interface

{}, len

(arguments))
 for

 i := range

 arguments {
 empty[i] = arguments[i]
 }

This is a slightly
 different way of converting []string
 into []interface{}
 .

 everything(empty...)
 // This will work!

 str := []string

{"One"

, "Two"

, "Three"

}
 everything(str, str, str)
}

The previous statement works because you are passing the entire str
 variable three times—not its contents. So, the slice contains three elements—each element is equal to the contents of the str
 variable.

Running variadic.go
 produces the following output:

$

 go run variadic.go
Adding numbers...
Sum: 24.36
Adding numbers...
Sum: 6.36
[[-1000 2.12 3.14]]
[]
[]
[[One Two Three] [One Two Three] [One Two Three]]

The last line of the output shows that we have passed the str
 variable three times to the everything()
 function as three separate entities.

Variadic functions come in very handy when you want to have an unknown number of parameters in a
 function. The next subsection discusses the use of defer
 , which we have already used multiple times.

The defer keyword

So far, we have seen defer
 in ch03/csvData.go
 , as well as in the implementations of the phone book application. But what does defer
 do? The defer
 keyword postpones the execution of a function until the surrounding function returns.

Usually, defer
 is used in file I/O operations to keep the function call that closes an opened file close to the call that opened it, so
 that you do not have to remember to close a file that you have opened just before the function exits.

It is very important to
 remember that deferred functions
 are executed in last in, first out
 (LIFO
) order after the
 surrounding function has been returned. Putting it simply, this means that if you defer
 function f1()
 first, function f2()
 second, and function f3()
 third in the same surrounding function, then when the surrounding function is about to return, function f3()
 will be executed first, function f2()
 will be executed second, and function f1()
 will be the last one to get executed.

In this section, we will discuss the dangers of defer
 , when used carelessly using a simple program. The code for defer.go
 is as follows.

package

 main
import

 (
 "fmt"

)
func

d1

()

 {
 for

 i := 3

; i > 0

; i-- {
 defer

 fmt.Print(i, " "

)
 }
}

In d1()
 , defer
 is executed inside the function body with just a fmt.Print()
 call. Remember that these calls to fmt.Print()
 are executed just before function d1()
 returns.

func

d2

()

 {
 for

 i := 3

; i > 0

; i-- {
 defer

 func

()

 {
 fmt.Print(i, " "

)
 }()
 }
 fmt.Println()
}

In d2()
 , defer
 is attached to
 an anonymous function that does not accept any parameters. In practice, this means that the anonymous function should get the value of i
 on its own—this is dangerous because the current value of i
 depends on when the anonymous function is executed.

The anonymous function is a closure
 , and that is why it has access to variables that would normally be out of scope.

func

d3

()

 {
 for

 i := 3

; i > 0

; i-- {
 defer

 func

(n

int

)

 {
 fmt.Print(n, " "

)
 }(i)
 }
}

In this case, the current value of i
 is passed to the anonymous function as a parameter that initializes the n
 function parameter. This means that there are no ambiguities about the value that i
 has.

func

main

()

 {
 d1()
 d2()
 fmt.Println()
 d3()
 fmt.Println()
}

The task of main()
 is to call d1()
 , d2()
 , and d3()
 .

Running defer.go
 produces the following output:

$

 go run defer.go
1 2 3
0 0 0
1 2 3

You will most likely find the generated output complicated and challenging to understand, which proves
 that the operation and the results of the use of defer
 can be tricky if your code is not clear and unambiguous. Let me explain the results so that you get a better idea of how tricky defer
 can be if you do not pay close attention to your code.

Let's start with the first line of the output (1 2 3)
 that is generated by the d1()
 function. The values of i
 in d1()
 are 3
 , 2
 , and 1
 in that order. The function that is deferred in d1()
 is the fmt.Print()
 statement; as a result, when the d1()
 function is about to return, you get the three values of the i
 variable of the for
 loop in reverse order. This is because deferred functions are executed in LIFO order.

Now, let me explain the second line of the output that is produced by the d2()
 function. It is really strange that we got three zeros instead of 1 2 3
 in the output; however, there is a reason for that. After the for
 loop ended, the value of i
 is 0
 , because it is that value of i
 that made the for
 loop terminate. However, the tricky point here is that the deferred anonymous function is evaluated after the for
 loop ends because it has no parameters, which means that it is evaluated three times for an i
 value of 0
 , hence the generated output. This kind of confusing code is what might lead to the creation of nasty bugs in your projects, so try to avoid it.

Finally, we will talk about the third line of the output, which is generated by the d3()
 function. Due to the parameter of the anonymous function, each time the anonymous function is deferred, it gets and therefore uses the current value of i
 . As a result, each execution of the anonymous function has a different value to process without any ambiguities, hence the generated output.

After that, it should be clear that the best approach to using defer
 is the third one, which is exhibited in the d3()
 function, because you intentionally pass the desired variable in the anonymous function in an easy-to-read way. Now that we have learned about defer
 , it is time to discuss something completely different: how to develop your own packages.

Developing your own packages

At some point, you are
 going to need to develop your own packages to organize your code and distribute it if needed. As stated at the beginning of this chapter, everything that begins with an uppercase letter is considered public and can be accessed from outside its package, whereas all other elements are considered private. The only exception to this Go rule is package names—it is a best practice to use lowercase package names, even though uppercase package names are allowed.

Compiling a Go package can be done manually, if the package exists on the local machine, but it is also done automatically after you download the package from the internet, so there is no need to worry about it. Additionally, if the package you are downloading contains any errors, you will learn about them at downloading time.

However, if you want to compile a package that has been saved in the post05.go
 file (a combination of PostgreSQL
 and Chapter 05
) on your own, you can use the following command:

$

 go build -o post.a post05.go

So, the previous command compiles the post05.go
 file and saves its output in the post.a
 file:

$

 file post.a
post.a: current ar archive

The post.a
 file is an ar
 archive.

The main
 reason for compiling Go packages on your own is to check for syntax or other kinds of errors in your code. Additionally, you can build Go packages as plugins (
https://golang.org/pkg/plugin/

) or shared libraries. Discussing more about these is beyond the scope of this book.

The init() function

Each Go package can optionally have
 a private function named init()
 that is automatically executed at the beginning of execution time—init()
 runs when the package is initialized at the beginning of program execution. The init()
 function has the following characteristics:

	
init()
 takes no arguments.

	
init()
 returns no values.

	The init()
 function is optional.

	The init()
 function is called implicitly by Go.

	You can have an init()
 function in the main
 package. In that case, init()
 is executed before
 the main()
 function. In fact, all init()
 functions are always executed prior to the main()
 function.

	A source file can contain multiple init()
 functions—these are executed in the order of declaration.

	The init()
 function or functions of a package are executed only once, even if the package is imported multiple times.

	Go packages can contain multiple files. Each source file can contain one or more init()
 functions.

The fact that the init()
 function is a private function by design means that it cannot be called from outside the package in which it is contained. Additionally, as the user of a package has no control over the init()
 function, you should think carefully before using an init()
 function in public packages or changing any global state in init()
 .

There are some exceptions where the use of init()
 makes sense:

	For initializing
 network connections that might take time prior to the execution of package functions or methods.

	For initializing connections to one or more servers prior to the execution of package functions or methods.

	For creating required files and directories.

	For checking whether required resources are available or not.

As the order of execution can be perplexing sometimes, in the next subsection, we will explain the order of execution in more detail.

Order of execution

This subsection illustrates
 how Go code is executed. As an example, if a main
 package imports package A
 and package A
 depends on package B
 , then the following will take place:

	The process starts with main
 package.

	The main
 package imports package A
 .

	Package A
 imports package B
 .

	The global variables, if any, in package B
 are initialized.

	The init()
 function or functions of package B
 , if they exist, run. This is the first init()
 function that gets executed.

	The global variables, if any, in package A
 are initialized.

	The init()
 function or functions of package A
 , if there are any, run.

	The global variables in the main
 package are initialized.

	The init()
 function or functions of main
 package, if they exist, run.

	The main()
 function of the main
 package begins execution.

Notice that if the main
 package imports package B
 on its own, nothing is going to happen because everything related to package B
 is triggered by package A
 . This is because package A
 imports package B
 first.

The following diagram
 shows what is happening behind the scenes regarding the order of execution of Go code:

[image: Diagram, chat or text message Description automatically generated]

Figure 5.1: Order of execution in Go

You can learn more
 about the order of execution in Go by reading the Go Language Specification document at
https://golang.org/ref/spec#Order_of_evaluation

 and about
 package initialization at
https://golang.org/ref/spec#Package_initialization

 .

Using GitHub to store Go packages

This section will teach
 you how to create a GitHub repository where you can keep your Go package and make it available to the world.

First, you need to
 create the GitHub repository on your own. The easiest way to create a new GitHub repository is by visiting the GitHub website and going to the Repositories
 tab, where you can see your existing repositories and create new ones. Press the New
 button and type in the necessary information for creating a new GitHub repository. If you made your repository public, everyone will be able to see it—if it is a private repository, only the people you choose are going to be able to look into it.

Having a clear README.md
 file in your GitHub repository that explains the way the Go package works is considered a very good practice.

Next, you need to clone the repository on your local computer. I usually clone it using the git(1)
 utility. As the name of the repository is post05
 and my GitHub username is mactsouk
 , the git clone
 command looks as follows:

$

 git clone

 git@github.com:mactsouk/post05.git

Type cd post05
 and you are done! After that, you just have to write the code of the Go package and remember to git commit
 and git push
 the code to the GitHub repository.

The look of such a repository, after it has been used for a while, can be seen in Figure 5.2
 —you are going to learn more about the post05
 repository in a while:

[image: Graphical user interface, text, application, email, website Description automatically generated]

Figure 5.2: A GitHub repository with a Go package

Using GitLab instead of GitHub for hosting your code does not require making any changes to the way you work.

If you want to use that
 package, you just need to go get
 the package
 using its URL and include it in your import
 block—we will see this when we actually use it in a program.

The next section presents a Go package that allows you to work with a database.

A package for working with a database

This section will develop a Go package for
 working with a given database schema stored on a Postgres database, with the end goal of demonstrating how to develop, store, and use a package. When interacting with specific schemas and tables in your application, you usually create separate packages with all the database-related functions—this also applies to NoSQL databases.

Go offers a generic package (
https://golang.org/pkg/database/sql/

) for working with databases. However, each database requires a specific package that acts as the driver and allows Go to connect and work with this specific database.

The steps for creating the
 desired Go package are as
 follows:

	Downloading the necessary external Go packages for working with PostgreSQL.

	Creating package files.

	Developing the required functions.

	Using the Go package for developing utilities.

	Using CI/CD tools for automation (this is optional).

You might be wondering why we would create such a package for working with a database and not write the actual commands in our programs when needed. The reasons for this include the following:

	A Go package can be shared by all team members that work with the application.

	A Go package allows people to use the database in ways that are documented.

	The specialized functions you put in your Go package fit your needs a lot better.

	People do not need full access to the database—they just use the package functions and the functionality they offer.

	If you ever make changes to the database, people do not need to know about them, as long as the functions of the Go package remain the same.

Put simply, the functions you create can interact with a specific database schema, along with its tables and data—it would be almost impossible to work with an unknown database schema without knowing how the tables are connected to each other.

Apart from all these technical reasons, it is really fun to create Go packages that are shared among multiple developers!

Let's now continue by learning more about the database and its tables.

Getting to know your database

You most likely need to
 download an additional package for working with a database server such as Postgres, MySQL, or MongoDB. In this case, we are using PostgreSQL
 and therefore need to download a Go package that allows us to communicate with PostgreSQL. There are two main Go packages for connecting to PostgreSQL—we are going to use the github.com/lib/pq
 package here, but it is up to you to decide which package to use.

There is another Go package for working with PostgreSQL called jackc/pgx
 that can be found at
https://github.com/JackC/pgx

 .

You can download that package as follows:

$

 go get github.com/lib/pq

To make things simpler, the PostgreSQL server is executed from a Docker image using a docker-compose.yml
 file, which has the following contents:

version:

 '3'

services:

 postgres:

 image:

 postgres

 container_name:

 postgres

 environment:

 -

 POSTGRES_USER=mtsouk

 -

 POSTGRES_PASSWORD=pass

 -

 POSTGRES_DB=master

 volumes:

 -

 ./postgres:/var/lib/postgresql/data/

 networks:

 -

 psql

 ports:

 -

 "5432:5432"

volumes:

 postgres:

networks:

 psql:

 driver:

 bridge

The default port number the PostgreSQL server listens to is 5432
 . As we connect to that PostgreSQL server from the same machine, the hostname that is going to be used is localhost
 or, if you prefer
 an IP address, 127.0.0.1
 . If you are using a different PostgreSQL server, then you should change the connection details in the code that follows accordingly.

In PostgreSQL, a schema is a namespace that contains named database objects such as tables, views, and indexes. PostgreSQL automatically creates a schema called public
 for every new database.

The following Go utility, which is named getSchema.go
 , verifies that you can connect successfully to a PostgreSQL database and get a list of the available databases and tables in the given database and the public
 schema—all connection information is provided as command-line arguments:

package

 main
import

 (
 "database/sql"

 "fmt"

 "os"

 "strconv"

 _ "github.com/lib/pq"

)

The lib/pq
 package, which is the interface to the PostgreSQL database, is not used directly by the code. Therefore, you need to import the lib/pq
 package with _
 in order to prevent the Go compiler from creating an error message related to importing a package and not "using" it.

Most of the time, you do not need to import a package with _
 , but this is one of the exceptions. This kind of import is usually because the imported package has side effects, such as registering itself as the database handler for the sql
 package:

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) != 6

 {
 fmt.Println("Please provide: hostname port username password db"

)
 return

 }

Having a good help message for the information required by such a utility is very handy.

 host := arguments[1

]
 p := arguments[2

]
 user := arguments[3

]
 pass := arguments[4

]
 database := arguments[5

]

This is where we collect the details of the database connection.

 // Port number SHOULD BE an integer

 port, err := strconv.Atoi(p)
 if

 err != nil

 {
 fmt.Println("Not a valid port number:"

, err)
 return

 }
 // connection string

 conn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s sslmode=disable"

, host, port, user, pass, database)

This is how you
 define the connection string with the details for the connection to the PostgreSQL database server. The connection string should be passed to the sql.Open()
 function for establishing the connection. So far, we have no connection.

 // open PostgreSQL database

 db, err := sql.Open("postgres"

, conn)
 if

 err != nil

 {
 fmt.Println("Open():"

, err)
 return

 }
 defer

 db.Close()

The sql.Open()
 function opens the database connection and keeps it open until the program ends, or until you execute Close()
 in order to properly close the database connection.

 // Get all databases

 rows, err := db.Query(`SELECT "datname" FROM "pg_database"

 WHERE datistemplate = false`

)
 if

 err != nil

 {
 fmt.Println("Query"

, err)
 return

 }

In order to execute a SELECT
 query, you need to create it first. As the presented SELECT
 query contains no parameters, which means that it does not change based on variables, you can pass it to the Query()
 function and execute it. The live
 outcome of the SELECT
 query is kept in the rows
 variable, which
 is a cursor
 . You do not get all the results from the database, as a
 query might return millions of records, but you get them one by one—this is the point of using a cursor.

 for

 rows.Next() {
 var

 name string

 err = rows.Scan(&name)
 if

 err != nil

 {
 fmt.Println("Scan"

, err)
 return

 }
 fmt.Println("*"

, name)
 }
 defer

 rows.Close()

The previous code shows how to process the results of a SELECT
 query, which can be from nothing to lots of rows. As the rows
 variable is a cursor, you advance from row to row by calling Next()
 . After that, you need to assign the values returned from the SELECT
 query into Go variables, in order to use them. This happens with a call to Scan()
 , which requires pointer parameters. If the SELECT
 query returns multiple values, you need to put multiple parameters in Scan()
 . Lastly, you must call Close()
 with defer
 for the rows
 variable in order to close the statement and free various types of used resources.

 // Get all tables from __current__ database

 query := `SELECT table_name FROM information_schema.tables WHERE

 table_schema = 'public' ORDER BY table_name`

 rows, err = db.Query(query)
 if

 err != nil

 {
 fmt.Println("Query"

, err)
 return

 }

We are going to execute another SELECT
 query in the current database, as provided by the user. The definition of the SELECT
 query is kept in the query
 variable for simplicity and for creating easy
 to read code. The contents of the query
 variable are passed to the db.Query()
 method.

 // This is how you process the rows that are returned from SELECT

 for

 rows.Next() {
 var

 name string

 err = rows.Scan(&name)
 if

 err != nil

 {
 fmt.Println("Scan"

, err)
 return

 }
 fmt.Println("+T"

, name)
 }
 defer

 rows.Close()
}

Once again, we need to process the rows returned by the SELECT
 statement using the rows
 cursor and the Next()
 method.

Running getSchema.go
 generates the following kind of output:

$

 go run getSchema.go localhost 5432 mtsouk pass go
* postgres
* master
* go
+T userdata
+T users

But what is the output telling us? Lines beginning with *
 show PostgreSQL databases, whereas lines beginning with +T
 show database tables—this is our decision. Therefore, this specific PostgreSQL installation contains three databases named postgres
 , master
 , and go
 . The public
 schema of the go
 database, which is specified by the last command-line argument, contains two tables named userdata
 and users
 .

The main advantage of the getSchema.go
 utility is that it is generic and can be used for learning more about PostgreSQL servers, which is the main reason that it requires so many command-line arguments to work.

Now that we know how to access and query a PostgreSQL database using Go, the next task should be creating a GitHub or GitLab repository for keeping and distributing the Go package we are about to develop.

Storing the Go package

The first action
 we should take is creating a repository for storing the Go package. In our case, we are going to use a GitHub repository to keep the package. It is not a bad idea to keep the GitHub repository private
 during development, before exposing it to the rest of the world, especially when you are creating something critical.

Keeping the GitHub repository private does not affect the development process, but it might make sharing the Go package more difficult, so in some cases, it would be good to make it public.

For simplicity, we will use a public Go repository for the Go module, which is named post05
 —its full URL is
https://github.com/mactsouk/post05

 .

In order to use that package on your machines, you should go get
 it first. However, during development, you should begin with git clone git@github.com:mactsouk/post05.git
 to get the contents of the GitHub repository and make changes to it.

The design of the Go package

The following diagram shows
 the database schema that the Go package works on. Remember that when working with a specific database and schema, you need to "include" the schema information in your Go code. Put simply, the Go code should know about the schema it works on:

[image: Graphical user interface, application Description automatically generated]

Figure 5.3: The two database tables the Go package works on

This is a simple schema that
 allows us to keep user data and update it. What connects the two tables is the user ID
 , which should be unique. Additionally, the Username
 field on the Users
 table should also be unique as two or more users cannot share the same username.

This schema already exists in the PostgreSQL database server, which means that the Go code assumes that the relevant tables are in the right place and are stored in the correct PostgreSQL database. Apart from the Users
 table, there is also a table named Userdata
 that holds information about each user. Once a record is entered in the Users
 table, it cannot be changed. What can change, however, is the data stored in the Userdata
 table.

If you want to create the Users
 database and the two tables in a database called go
 , you can execute the following statements, which are saved in a file named create_tables.sql
 with the psgl
 utility:

DROP

 DATABASE

 IF

 EXISTS

 go

;
CREATE

 DATABASE

 go

;
DROP

 TABLE

 IF

 EXISTS

 Users

;
DROP

 TABLE

 IF

 EXISTS

 Userdata;
\c go;
CREATE

 TABLE

 Users

 (
 ID

 SERIAL

,
 Username VARCHAR

(100

) PRIMARY KEY

);
CREATE

 TABLE

 Userdata (
 UserID Int

 NOT

 NULL

,
 Name

 VARCHAR

(100

),
 Surname VARCHAR

(100

),
 Description VARCHAR

(200

)
);

The command-line utility for working with Postgres is called psql
 . The psql
 command for executing the code of create_tables.sql
 is as follows:

$

 psql -h localhost -p 5432 -U mtsouk master < create_tables.sql

Now that we have the
 necessary infrastructure up and running, let's begin discussing the Go package. The tasks that the Go package should perform to make our lives easier are as follows:

	Create a new user

	Delete an existing user

	Update an existing user

	List all users

Each of these tasks should have one or more Go functions or methods to support it, which is what we are going to implement in the Go package:

	A function to initiate the Postgres connection—the connection details should be given by the user and the package should be able to use them. However, the helper function to initiate the connection can be private.

	There should exist default values in some of the connection details.

	A function that checks whether a given username exists—this is a helper function that might be private.

	A function that inserts a new user into the database.

	A function that deletes an existing user from the database.

	A function for updating an existing user.

	A function for listing all users.

Now that we know the overall structure and functionality of the Go package, we should begin
 implementing it.

The implementation of the Go package

In this subsection, we will
 implement the Go package for working with the Postgres database and the given database schema. We will present each function separately—if you combine all these functions, then you have the functionality of the entire package.

During package development, you should regularly commit your changes to the GitHub or GitLab repository.

The first element that you need in your Go package is one or more structures
 that can hold data from the database tables. Most of the times, you need as many structures as there are database tables—we will begin with that and see how it goes. Therefore, we will define the following structures:

type

 User struct

 {
 ID int

 Username string

}
type

 Userdata struct

 {
 ID int

 Name string

 Surname string

 Description string

}

If you think about this, you should see that there is no point in creating two separate Go structures. This is because the User
 structure holds no real data, and there is no point in passing multiple structures to the functions that process data for the Users
 and Userdata
 PostgreSQL tables. Therefore, we can create a single Go structure for holding all the data that has been defined, as follows:

type

 Userdata struct

 {
 ID int

 Username string

 Name string

 Surname string

 Description string

}

I have decided to name the structure after the database table for simplicity—however, in this case, this is not
 completely accurate as the Userdata
 structure has more fields than the Userdata
 database table. The thing is that we do not need everything from the Userdata
 database table.

The preamble of the package is as follows:

package

 post05
import

 (
 "database/sql"

 "errors"

 "fmt"

 "strings"

 _ "github.com/lib/pq"

)

For the first time in this book, you will see a package name different than main
 , which in this case is post05
 . As the package communicates with PostgreSQL, we import the github.com/lib/pq
 package and we use _
 in front of the package's path. As we discussed earlier, this happens because the imported package is registering itself as the database handler for the sql
 package, but it is not being directly used in the code. It is only being used through the sql
 package.

Next, you should have variables to hold the connection details. In the case of the post05
 package, this can be implemented with the following global variables:

// Connection details

var

 (
 Hostname = ""

 Port = 2345

 Username = ""

 Password = ""

 Database = ""

)

Apart from the Port
 variable, which has an initial value, the other global variables have the default value of their data type, which is string
 . All these variables must be properly initialized by the Go code that uses the post05
 package and should be accessible from outside the package, which means that their first letter should be in uppercase.

The openConnection()
 function, which is private
 and only accessed
 within the scope of the package, is defined as:

func

openConnection

()

(*sql.DB, error)

 {
 // connection string

 conn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s sslmode=disable"

, Hostname, Port, Username, Password, Database)
 // open database

 db, err := sql.Open("postgres"

, conn)
 if

 err != nil

 {
 return

 nil

, err
 }
 return

 db, nil

}

You have already seen the previous code in the getSchema.go
 utility. You create the connection string and you pass it to sql.Open()
 .

Now, let's consider the exists()
 function, which is also private:

// The function returns the User ID of the username

// -1 if the user does not exist

func

exists

(username

string

)

int

 {
 username = strings.ToLower(username)
 db, err := openConnection()
 if

 err != nil

 {
 fmt.Println(err)
 return

 -1

 }
 defer

 db.Close()
 userID := -1

 statement := fmt.Sprintf(`SELECT "id" FROM "users" where username = '%s'`

, username)
 rows, err := db.Query(statement)

This is where we define the query that shows whether the provided username exists in the database or not. As all our data is kept in the database, we need to interact with the database all the time.

 for

 rows.Next() {
 var

 id int

 err = rows.Scan(&id)
 if

 err != nil

 {
 fmt.Println("Scan"

, err)
 return

 -1

 }

If the rows.Scan(&id)
 call is executed without any errors, then we know that a result has been returned, which is the desired user ID.

 userID = id
 }
 defer

 rows.Close()
 return

 userID
}

The last part of exists()
 sets or
 closes the query to free resources and returns the ID value of the username that is given as a parameter to exists()
 .

During development, I include many fmt.Println()
 statements in the package code for debugging purposes. However, I have removed most of them in the final version of the Go package and replaced them with error
 values. These error
 values are passed to the program that uses the functionality of the package, which is responsible for deciding what to do with the error messages and error conditions. You can also use logging for this—the output can go to standard output or even /dev/null
 when not needed.

Here is the implementation of the AddUser()
 function:

// AddUser adds a new user to the database

// Returns new User ID

// -1 if there was an error

func

AddUser

(d Userdata)

int

 {
 d.Username = strings.ToLower(d.Username)

All usernames are converted into lowercase in order to avoid duplicates. This is a design decision.

 db, err := openConnection()
 if

 err != nil

 {
 fmt.Println(err)
 return

 -1

 }
 defer

 db.Close()
 userID := exists(d.Username)
 if

 userID != -1

 {
 fmt.Println("User already exists:"

, Username)
 return

 -1

 }
 insertStatement := `insert into "users" ("username") values ($1)`

This is how we construct a query that
 accepts parameters. The presented query requires one value that is named $1
 .

 _, err = db.Exec(insertStatement, d.Username)

This is how you pass the desired value, which is d.Username
 , into the insertStatement
 variable.

 if

 err != nil

 {
 fmt.Println(err)
 return

 -1

 }
 userID = exists(d.Username)
 if

 userID == -1

 {
 return

 userID
 }
 insertStatement = `insert into "userdata" ("userid", "name", "surname", "description") values ($1, $2, $3, $4)`

The presented query needs 4 values that are named $1
 , $2
 , $3
 , and $4
 .

 _, err = db.Exec(insertStatement, userID, d.Name, d.Surname, d.Description)
 if

 err != nil

 {
 fmt.Println("db.Exec()"

, err)
 return

 -1

 }

As we need to pass 4 variables to insertStatement
 , we will put 4 values in the db.Exec()
 call.

 return

 userID
}

This is the end of the function that
 adds a new user to the database. The implementation of the DeleteUser()
 function is as follows.

// DeleteUser deletes an existing user

func

DeleteUser

(id

int

)

error

 {
 db, err := openConnection()
 if

 err != nil

 {
 return

 err
 }
 defer

 db.Close()
 // Does the ID exist?

 statement := fmt.Sprintf(`SELECT "username" FROM "users" where id = %d`

, id)
 rows, err := db.Query(statement)

Here, we double-check whether the given user ID exists or not in the users
 table.

 var

 username string

 for

 rows.Next() {
 err = rows.Scan(&username)
 if

 err != nil

 {
 return

 err
 }
 }
 defer

 rows.Close()
 if

 exists(username) != id {
 return

 fmt.Errorf("User with ID %d does not exist"

, id)
 }

If the previously returned username exists and has the same user ID as the parameter to DeleteUser()
 , then you can continue
 the deletion process, which contains two steps: first, deleting the relevant user data from the userdata
 table, and, second, deleting the data from the users
 table.

 // Delete from Userdata

 deleteStatement := `delete from "userdata" where userid=$1`

 _, err = db.Exec(deleteStatement, id)
 if

 err != nil

 {
 return

 err
 }
 // Delete from Users

 deleteStatement = `delete from "users" where id=$1`

 _, err = db.Exec(deleteStatement, id)
 if

 err != nil

 {
 return

 err
 }
 return

 nil

}

Now, let's examine the implementation of the ListUsers()
 function.

func

ListUsers

()

([]Userdata, error)

 {
 Data := []Userdata{}
 db, err := openConnection()
 if

 err != nil

 {
 return

 Data, err
 }
 defer

 db.Close()

Once again, we need to open a connection to the database before executing a database query.

 rows, err := db.Query(`SELECT

 "id","username","name","surname","description"

 FROM "users","userdata"

 WHERE users.id = userdata.userid`

)
 if

 err != nil

 {
 return

 Data, err
 }
 for

 rows.Next() {
 var

 id int

 var

 username string

 var

 name string

 var

 surname string

 var

 description string

 err = rows.Scan(&id, &username, &name, &surname, &description)
 temp := Userdata{ID: id, Username: username, Name: name, Surname: surname, Description: description}

At this point, we will store the data we've received from the SELECT
 query into a Userdata
 structure. This is added to the slice that is going to be returned from the ListUsers()
 function. This
 process continues until there is nothing left to read.

 Data = append

(Data, temp)
 if

 err != nil

 {
 return

 Data, err
 }
 }
 defer

 rows.Close()
 return

 Data, nil

}

After updating the contents of Data
 using append()
 , we end the query, and the function returns the list of available users, as stored in Data
 .

Lastly, let's examine the UpdateUser()
 function:

// UpdateUser is for updating an existing user

func

UpdateUser

(d Userdata)

error

 {
 db, err := openConnection()
 if

 err != nil

 {
 return

 err
 }
 defer

 db.Close()
 userID := exists(d.Username)
 if

 userID == -1

 {
 return

 errors.New("User does not exist"

)
 }

First, we need to make sure that the given username exists in the database—the update process is based on the username.

 d.ID = userID
 updateStatement := `update "userdata" set "name"=$1, "surname"=$2, "description"=$3 where "userid"=$4`

 _, err = db.Exec(updateStatement, d.Name, d.Surname, d.Description, d.ID)
 if

 err != nil

 {
 return

 err
 }
 return

 nil

}

The update statement
 stored in updateStatement
 that is executed using the desired parameters with the help of db.Exec()
 updates the user data.

Now that we know the details of how to implement each function in the post05
 package, it is time to begin using that package!

Testing the Go package

In order to test the
 package, we must develop a command-line utility called postGo.go
 .

As postGo.go
 uses an external package, even if we develop that package, you should not forget to download the latest version of that external package using go get
 or go get -u
 .

As postGo.go
 is used for testing purposes only, we hardcoded most of the data apart from the username of the user we put into the database. All usernames are randomly generated.

The code of postGo.go
 is as follows:

package

 main
import

 (
 "fmt"

 "math/rand"

 "time"

 "github.com/mactsouk/post05"

)

As the post05
 package
 works with Postgres, there is no need to import lib/pq
 here:

var

 MIN = 0

var

 MAX = 26

func

random

(min, max

int

)

int

 {
 return

 rand.Intn(max-min) + min
}
func

getString

(length

int64

)

string

 {
 startChar := "A"

 temp := ""

 var

 i int64

 = 1

 for

 {
 myRand := random(MIN, MAX)
 newChar := string

(startChar[0

] + byte

(myRand))
 temp = temp + newChar
 if

 i == length {
 break

 }
 i++
 }
 return

 temp
}

Both the random()
 and getString()
 functions are helper functions for generating random strings that are used as usernames.

func

main

()

 {
 post05.Hostname = "localhost"

 post05.Port = 5432

 post05.Username = "mtsouk"

 post05.Password = "pass"

 post05.Database = "go"

This is where you define the connection parameters to the Postgres server, as well as the database you are going to work in (go
). As all these variables are in the post05
 package, they are
 accessed as such.

 data, err := post05.ListUsers()
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 for

 _, v := range

 data {
 fmt.Println(v)
 }

We begin by listing existing users.

 SEED := time.Now().Unix()
 rand.Seed(SEED)
 random_username := getString(5

)

Then, we generate a random string that is used as the username. All randomly generated usernames are 5 characters long because of the getString(5)
 call. You can change that value if you want.

 t := post05.Userdata{
 Username: random_username,
 Name: "Mihalis"

,
 Surname: "Tsoukalos"

,
 Description: "This is me!"

}
 id := post05.AddUser(t)
 if

 id == -1

 {
 fmt.Println("There was an error adding user"

, t.Username)
 }

The previous code adds a new user to the database—the user data, including the username, is kept in a post05.Userdata
 structure. That post05.Userdata
 structure is passed to the post05.AddUser()
 function, which returns the user ID of the new user.

 err = post05.DeleteUser(id)
 if

 err != nil

 {
 fmt.Println(err)
 }

Here, we delete the
 user that we created using the user ID value returned by post05.AddUser(t)
 .

 // Trying to delete it again!

 err = post05.DeleteUser(id)
 if

 err != nil

 {
 fmt.Println(err)
 }

If you try to delete the same user again, the process fails because the user does not exist.

 id = post05.AddUser(t)
 if

 id == -1

 {
 fmt.Println("There was an error adding user"

, t.Username)
 }

Here, we add the same user again—however, as user ID values are generated by Postgres, this time, the user is going to have a different user ID value than before.

 t = post05.Userdata{
 Username: random_username,
 Name: "Mihalis"

,
 Surname: "Tsoukalos"

,
 Description: "This might not be me!"

}

Here, we update the Description
 field of the post05.Userdata
 structure before passing it to post05.UpdateUser()
 , in order update the information stored in the database.

 err = post05.UpdateUser(t)
 if

 err != nil

 {
 fmt.Println(err)
 }
}

Working with postGo.go
 creates the following kind of output:

$

 go run postGo.go
{4 mhmxz Mihalis Tsoukalos This might not be me!}
{6 wsdlg Mihalis Tsoukalos This might not be me!}
User with ID 7 does not exist

The previous output
 confirms that postGo.go
 works as expected as it can connect to the database, add a new user, and delete an existing one. This also means that the post05
 package works as expected. Now that we know how to create Go packages, let's briefly discuss Go modules.

Modules

A Go module is like a Go
 package with a version—however, Go modules can consist of multiple packages. Go
 uses semantic versioning
 for versioning modules. This means that versions begin with the letter v
 , followed by the major.minor.patch
 version numbers. Therefore, you can have versions such as v1.0.0, v1.0.5, and v2.0.2. The v1
 , v2
 , and v3
 parts signify the major version of a Go package that is usually not backward compatible. This means that if your Go program works with v1, it will not necessarily work with v2 or v3—it might work, but you cannot count on it. The second number in a version is about features. Usually, v1.1.0 has more features than v1.0.2 or v1.0.0, while being compatible with all older versions. Lastly, the third number is just about bug fixes without having any new features. Note that semantic versioning is also used for Go versions.

Go modules were introduced in Go v1.11 but were finalized in Go v1.13.

If you want to learn
 more about modules, visit and read
https://blog.golang.org/using-go-modules

 , which has five parts, as well as
https://golang.org/doc/modules/developing

 . Just remember that a Go module is similar but not identical to a regular Go package with a version
 , and that a module can consist of multiple packages.

Creating better packages

This section provides handy
 advice that can help you develop better Go packages. Here are several good rules to follow to create high-class Go packages:

	The first unofficial rule of a successful package is that its elements must be connected in some way. Thus, you can create a package for supporting cars, but it would not be a good idea to create a single package for supporting cars and bicycles and airplanes. Put simply, it is better to split the functionality of a package unnecessarily into multiple packages than to add too much functionality to a single Go package.

	A second practical rule is that you should use your own packages first for a reasonable amount of time before giving them to the public. This helps you discover silly bugs and make sure that your packages operate as expected. After that, give them to some fellow
 developers for additional testing before making them publicly available. Additionally, you should always write tests for any package you intend others to use.

	Next, make sure your package has a clear and useful API so that any consumer can be productive with it quickly.

	Try and limit the public API of your packages to only what is absolutely necessary. Additionally, give your functions descriptive but not very long names.

	Interfaces, and in future Go versions, generics
 , can improve the usefulness of your functions, so when you
 think it is appropriate, use an interface instead of a single type as a function parameter or return type.

	When updating one of your packages, try not to break things and create incompatibilities with older versions unless it is absolutely necessary.

	When developing a new Go package, try to use multiple files in order to group similar tasks or concepts.

	Do not create a package that already exists from scratch. Make changes to the existing package and maybe create your own version of it.

	Nobody wants a Go package
 that prints logging information on the screen. It would be more professional to have a flag for turning on logging when needed. The Go code of your packages should be in harmony with the Go code of your programs. This means that if you look at a program that uses your packages and your function names stand out in the code in a bad way, it would be better to change the names of your functions. As the name of a package is used almost everywhere, try to use concise and expressive package names.

	It is more convenient if you put new Go type definitions near where they are used the first time because nobody, including yourself, wants to search source files for definitions of new data types.

	Try to create test files for your packages, because packages with test files are considered more professional than ones without them; small details make all the difference and give people confidence that you are a serious developer! Notice that writing tests for your packages is not optional and that you should avoid using packages that do not include tests. You will learn more about testing in Chapter 11
 , Code Testing and Profiling
 .

Always remember that apart from the fact that the actual Go code in a package should be bug-free, the next most important element of a successful package is its documentation, as well as some code examples that clarify its use and showcase the idiosyncrasies of the
 functions of the package. The next section discusses creating documentation in Go.

Generating documentation

This section
 discusses how to create documentation
 for your Go code using the code of the post05
 package as an example. The new package is renamed and is now called document
 .

Go follows a simple rule regarding documentation: in order to document a function, a method, a variable, or even the package itself, you can write comments, as usual, that should be located directly before the element you want to document, without any empty lines in between. You can use one or more single-line comments, which are lines beginning with //
 , or block
 comments, which begin with /*
 and end with */
 —everything in-between is considered a comment.

It is highly recommended that each Go package you create has a block comment preceding the package
 declaration that introduces developers to the package, and also explains what the package does.

Instead of presenting the entire code of the post05
 package, we will only present the important part, which means that function implementations are going to be return
 statements only. The new version of post05.go
 is called document.go
 and comes with the following code and comments:

/*

The package works on 2 tables on a PostgreSQL data base server.

The names of the tables are:

 * Users

 * Userdata

The definitions of the tables in the PostgreSQL server are:

 CREATE TABLE Users (

 ID SERIAL,

 Username VARCHAR(100) PRIMARY KEY

);

 CREATE TABLE Userdata (

 UserID Int NOT NULL,

 Name VARCHAR(100),

 Surname VARCHAR(100),

 Description VARCHAR(200)

);

 This is rendered as code

This is not rendered as code

*/

package

 document

This is the first block of
 documentation that is located right before the name of the package. This is the appropriate place to document the functionality of the package, as well as other essential information. In this case, we are presenting the SQL create commands that fully describe the database tables we are going to work on. Another important element is specifying the database server this package interacts with. Other information that you can put at the beginning of a package is the author, the license, and the version of the package.

If a line in a block comment begins with a tab, then it is rendered differently in the graphical output, which is good for differentiating between various kinds of information in the documentation:

// BUG(1): Function ListUsers() not working as expected

// BUG(2): Function AddUser() is too slow

The BUG
 keyword is special when writing documentation. Go knows that bugs are part of the code and therefore should be documented as well. You can write any message you want after a BUG
 keyword, and you can place them anywhere you want—preferably close to the bugs they describe.

import

 (
 "database/sql"

 "fmt"

 "strings"

)

The github.com/lib/pq
 package was removed from the import
 block to make the file size
 smaller.

/*

This block of global variables holds the connection details to the Postgres server

 Hostname: is the IP or the hostname of the server

 Port: is the TCP port the DB server listens to

 Username: is the username of the database user

 Password: is the password of the database user

 Database: is the name of the Database in PostgreSQL

*/

var

 (
 Hostname = ""

 Port = 2345

 Username = ""

 Password = ""

 Database = ""

)

The previous code shows a way of documenting lots of variables at once—in this case, global variables. The good thing with this way is that you do not have to put a comment before each global variable and make the code less readable. The only downside of this method is that you should remember to update the comments, should you wish to make any changes to the code. However, documenting multiple variables at once might not end up rendering correctly in web-based godoc
 pages. For that reason, you might want to document each field directly.

// The Userdata structure is for holding full user data

// from the Userdata table and the Username from the

// Users table

type

 Userdata struct

 {
 ID int

 Username string

 Name string

 Surname string

 Description string

}

The previous excerpt shows how to document a Go structure—this is especially useful when you have lots of structures in a source file and you want to have a quick look at them.

// openConnection() is for opening the Postgres connection

// in order to be used by the other functions of the package.

func

openConnection

()

(*sql.DB, error)

 {
 var

 db *sql.DB
 return

 db, nil

}

When documenting a function, it is good to
 begin the first line of the comments with the function name. Apart from that, you can write any information that you consider important in the comments.

// The function returns the User ID of the username

// -1 if the user does not exist

func

exists

(username

string

)

int

 {
 fmt.Println("Searching user"

, username)
 return

 0

}

In this case, we will explain the return values of the exists()
 function as they have a special meaning.

// AddUser adds a new user to the database

//

// Returns new User ID

// -1 if there was an error

func

AddUser

(d Userdata)

int

 {
 d.Username = strings.ToLower(d.Username)
 return

 -1

}
/*

 DeleteUser deletes an existing user if the user exists.

 It requires the User ID of the user to be deleted.

*/

func

DeleteUser

(id

int

)

error

 {
 fmt.Println(id)
 return

 nil

}

You can use block comments anywhere you want, not only at the beginning of a package.

// ListUsers lists all users in the database

// and returns a slice of Userdata.

func

ListUsers

()

([]Userdata, error)

 {
 // Data holds the records returned by the SQL query

 Data := []Userdata{}
 return

 Data, nil

}

When you request the documentation of the Userdata
 structure, Go automatically presents the functions that use Userdata
 as input or output, or both.

// UpdateUser is for updating an existing user

// given a Userdata structure.

// The user ID of the user to be updated is found

// inside the function.

func

UpdateUser

(d Userdata)

error

 {
 fmt.Println(d)
 return

 nil

}

We are not done yet because
 we need to see the documentation somehow. There are two ways to see the documentation of the package. The first one involves using go get
 , which also means creating a GitHub repository of the package, as we did with post05
 . However, as this is for testing purposes, we are going to do things the easy way: we are going to copy it in ~/go/src
 and access it from there. As the package is called document
 , we are going to create a directory with the same name inside ~/go/src
 . After that, we are going to copy document.go
 in ~/go/src/document
 and we are done—for more complex packages, the process is going to be more complex as well. In such cases, it would be better to go get
 the package from its repository.

Either way, the go doc
 command is going to work just fine with the document
 package:

$

 go doc document
package document // import "document"
The package works on 2 tables on a PostgreSQL data base server.
The names of the tables are:
 * Users
 * Userdata
The definitions of the tables in the PostgreSQL server are:
 CREATE TABLE Users (
 ID SERIAL,
 Username VARCHAR(100) PRIMARY KEY
);
 CREATE TABLE Userdata (
 UserID Int NOT NULL,
 Name VARCHAR(100),
 Surname VARCHAR(100),
 Description VARCHAR(200)
);
 This is rendered as code
This is not rendered as code
var Hostname = "" ...
func AddUser(d Userdata) int
func DeleteUser(id int) error
func UpdateUser(d Userdata) error
type Userdata struct{ ... }
 func ListUsers() ([]Userdata, error)
BUG: Function ListUsers() not working as expected
BUG: Function AddUser() is too slow

If you want to see
 information about a specific function, you should use go doc
 , as follows:

$

 go doc document ListUsers
package document // import "document"
func ListUsers() ([]Userdata, error)
 ListUsers lists all users in the database and returns a slice of Userdata.

Additionally, we can use the web version of the Go documentation, which can be accessed after running the godoc
 utility and going to the Third Party
 section—by default, the web server
 initiated by godoc
 listens to port number 6060
 and can be accessed at http://localhost:6060
 .

A part of the documentation page for the document
 package is shown in Figure 5.4
 :

[image: Graphical user interface, application Description automatically generated]

Figure 5.4: Viewing the documentation of a user-developed Go package

Go automatically puts the bugs at the end of the text and graphical output.

In my personal opinion, rendering
 the documentation is much better when using the graphical interface, making it better when you do not know what you are looking for. On the other hand, using go doc
 from the command line is much faster and allows you to process the output using traditional UNIX command-line tools.

The next section will briefly present the CI/CD systems of GitLab and GitHub, starting with GitLab Runners, which can be helpful for automating package development and deployment.

GitLab Runners and Go

When developing
 Go packages and documentation, you want to be able to test the results and find out bugs as quickly as possible. When everything works as
 expected, you might want to publish your results to the world automatically, without spending more time on this. One of the best solutions for this is using a CI/CD system for automating tasks. This section will briefly illustrate the use of GitLab Runners for automating Go projects.

In order to follow this section, you need to have a GitLab account, create a dedicated GitLab repository, and store the relevant files there.

We will begin with a GitLab repository that contains the following files:

	
hw.go
 : This is a sample program that is used to make sure that everything works.

	
.gitignore
 : It is not necessary to have such a file, but it is very handy for ignoring some files and directories.

	
usePost05.go
 : This is a sample Go file that uses an external package—please refer to the
https://gitlab.com/mactsouk/runners-go/

 repository for its contents.

	
README.md
 : This file is automatically displayed on the repository web page and is usually used for explaining the purpose of the repository.

There is also a directory called .git
 that contains information and metadata about the repository.

The initial version of the configuration file

The first version
 of the configuration file is for making sure that everything is fine with our GitLab setup. The name of the configuration file is .gitlab-ci.yml
 and is a YAML file that should be located in the root directory of the GitLab repository. This initial version of the .gitlab-ci.yml
 configuration file compiles hw.go
 and creates a binary file, which is executed in a different stage than the one it was created in. This means that we should create an artifact for keeping and transferring that binary file:

$

 cat .gitlab-ci.yml
image: golang:1.15.7
stages:
 - download
 - execute
compile:
 stage: download
 script:
 - echo "Getting System Info"
 - uname -a
 - mkdir bin
 - go version
 - go build -o ./bin/hw hw.go
 artifacts:
 paths:
 - bin/
execute:
 stage: execute
 script:
 - echo "Executing Hello World!"
 - ls -l bin
 - ./bin/hw

The important thing about the previous configuration file is that we are using an image that comes with Go already installed, which saves us from having to install it from scratch and allows us to specify the Go version we want to use.

However, if you ever want to install extra software, you can do that based on the Linux distribution being used. After saving the file, you need to push the changes to GitLab for the pipeline to start running. In order to see the results, you should click on the CI/CD
 option on the left bar of the GitLab UI.

Figure 5.5
 shows information about a specific workflow based on the aforementioned YAML file. Everything that is in green is a good thing, whereas red is used in error situations. If you want to
 learn more information about a specific stage, you can press its button and see a more detailed output:

[image: Graphical user interface, text, application Description automatically generated]

Figure 5.5: Looking at the progress of a GitLab pipeline

As everything looks fine, we are ready to create the final version of .gitlab-ci.yml
 . Note that if there is an error in the workflow, you will most likely receive an email the email address you used when registering for GitLab. If everything is fine, no email will be sent.

The final version of the configuration file

The final version
 of the CI/CD configuration file compiles usePost05.go
 , which imports post05
 . This is used for illustrating how external packages are downloaded. The contents of .gitlab-ci.yml
 is as follows:

image:

 golang:1.15.7

stages:

 -

 download

 -

 execute

compile:

 stage:

 download

 script:

 -

 echo

 "Compiling usePost05.go"

 -

 mkdir

 bin

 -

 go

 get

 -v

 -d

 ./...

The go get -v -d ./...
 command is the Go way of downloading all the package dependencies of a project. After that, you are free to build your project and generate your executable file:

 -

 go

 build

 -o

 ./bin/usePost05

 usePost05.go

 artifacts:

 paths:

 -

 bin/

The bin
 directory, along
 with its contents, will be available to the execute
 state:

execute:

 stage:

 execute

 script:

 -

 echo

 "Executing usePost05"

 -

 ls

 -l

 bin

 -

 ./bin/usePost05

Pushing it to GitLab automatically triggers its execution. This is illustrated in Figure 5.6
 , which shows in more detail the progress of the compile
 stage:

[image: Text Description automatically generated]

Figure 5.6: Seeing a detailed view of a stage

What we can see
 here is that all the required packages are being downloaded and that usePost05.go
 is compiled without any issues. As we do not have a PostgreSQL instance available, we cannot try interacting with PostgreSQL, but we can execute usePost05.go
 and see the values of the Hostname
 and Port
 global variables. This is illustrated in Figure 5.7
 :

[image: Text Description automatically generated]

Figure 5.7: Seeing more details about the execute stage

So far, we have seen how to use GitLab Runners to automate Go package development and testing. Next, we are going to create a CI/CD scenario in GitHub using GitHub Actions as another
 method of automating software publication.

GitHub Actions and Go

This section will use
 GitHub Actions to push a Docker image that contains a
 Go executable file in Docker Hub.

In order to follow this section, you must have a GitHub account, create a dedicated GitHub repository, and store the related files there.

We will begin with a GitHub repository that contains the following files:

	
.gitignore
 : This is an optional file that's used for ignoring files and directories during git push
 operations.

	
usePost05.go
 : This is the same file as before.

	
Dockerfile
 : This file is used for creating a Docker image with the Go executable. Please refer to
https://github.com/mactsouk/actions-with-go

 for its contents.

	
README.md
 : As before, this is a Markdown file that contains information about the repository.

In order to set up GitHub Actions, we need to create a directory named .github
 and then create another directory named workflows
 in it. The .github/workflows
 directory contains YAML files with the pipeline configuration.

Figure 5.8
 shows the overview screen of the workflows of the selected GitHub repository:

[image: Graphical user interface, text, application, email Description automatically generated]

Figure 5.8: Displaying the Workflows associated with a given GitHub repository

To push an image to
 Docker Hub, you need to log in. As this process
 requires using a password, which is sensitive information, the next subsection illustrates how to store secrets in GitHub.

Storing secrets in GitHub

The credentials for
 connecting to Docker Hub are stored in GitHub using the secrets feature that exists in almost all CI/CD systems. However, the exact implementation might differ.

You can also use HashiCorp Vault as a central point for storing passwords and other sensitive data. Unfortunately, presenting HashiCorp Vault is beyond the scope of this book.

In your GitHub repository, go to the Settings
 tab and select Secrets
 from the left column. You will see your existing secrets, if any, and an Add new secret
 link, which you need to click on. Do this process twice to store your Docker Hub username and password.

Figure 5.9
 shows the secrets associated with the GitHub repository used in this section—the presented secrets hold the username and password that were used for connecting to Docker Hub:

[image: A picture containing chart Description automatically generated]

Figure 5.9: The secrets of the mactsouk/actions-with-go repository

The final version of the configuration file

The final version of the
 configuration file compiles the Go code, puts it in a Docker image, as described by Dockerfile
 , connects with Docker Hub using the specified credentials, and pushes the Docker image to Docker Hub using the provided data. This is a very common way of automation when creating Docker images. The contents of go.yml
 is as follows:

name:

 Go

 +

 PostgreSQL

on:

 [push

]

This line in the configuration file specifies that this pipeline is triggered on push operations only.

jobs:

 build:

 runs-on:

 ubuntu-18.04

This is the Linux image that is going to be used. As the Go binary is built inside a Docker image, we do not need to install Go on the Linux VM.

 steps:

 # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it

 -

 uses:

 actions/checkout@v2

 -

 uses:

 actions/setup-go@v2

 with:

 stable:

 'false'

 go-version:

 '1.15.7'

 -

 name:

 Publish

 Docker

 Image

 env:

 USERNAME:

 ${{

 secrets.USERNAME

 }}

 PASSWORD:

 ${{

 secrets.PASSWORD

 }}

This is how you access the
 secrets that were stored previously and how you store them.

 IMAGE_NAME:

 gopost

 run:

 |

 docker

 images

 docker

 build

 -t

 "$IMAGE_NAME"

 .

 docker

 images

 echo

 "$PASSWORD"

 |

 docker

 login

 --username

 "$USERNAME"

 --password-stdin

 docker

 tag

 "${IMAGE_NAME}"

 "$USERNAME/${IMAGE_NAME}:latest"

 docker

 push

 "$USERNAME/${IMAGE_NAME}:latest"

 echo

 "* Running Docker Image"

 docker

 run

 ${IMAGE_NAME}:latest

This time, most of the work is performed by the docker build
 command because the Go executable is built inside a Docker image. The following screenshot shows some of the output of the pipeline defined by go.yml
 :

[image: Text Description automatically generated]

Figure 5.10: The pipeline for pushing Docker images to Docker Hub

Automation saves you development time, so try to automate as many things as possible, especially when you're making your software available to the world.

Versioning utilities

One of the
 most difficult tasks is to automatically and uniquely version command-line utilities, especially when using a CI/CD system. This section presents a technique that uses a GitHub value to version a command-line utility on your local machine.

You can apply the same technique to GitLab—just search for the available GitLab variables and values and choose one that fits your needs.

This technique is used by both the docker
 and kubectl
 utilities, among others:

$

 docker version
Client: Docker Engine - Community
 Cloud integration: 1.0.4
 Version: 20.10.0
 API version: 1.41
 Go version: go1.13.15
 Git commit: 7287ab3
 Built: Tue Dec 8 18:55:43 2020
 OS/Arch: darwin/amd64
...

The previous output shows that docker
 uses the Git commit value for versioning—we are going to use a slightly different value that is longer than the one used by docker
 .

The utility that is used, which is saved as gitVersion.go
 , is implemented as follows:

package

 main
import

 (
 "fmt"

 "os"

)
var

 VERSION string

VERSION
 is the variable that is going to be set at runtime using the Go linker.

func

main

()

 {
 if

 len

(os.Args) == 2

 {
 if

 os.Args[1

] == "version"

 {
 fmt.Println("Version:"

, VERSION)
 }
 }
}

The previous code says that if there is a command-line argument and its value is version
 , print the version message with the help of the VERSION
 variable.

What we need to do is tell the Go linker that we are going to define the value of the VERSION
 variable. This
 happens with the help of the -ldflags
 flag, which stands for linker flags—this passes values to the cmd/link
 package, which allows us to change values in imported packages at build time. The -X
 value that is used requires a key/value pair, where the key is a variable name and the value is the value that we want to set for that key. In our case, the key has the main.Variable
 form because we change the value of a variable in the main
 package. As the name of the variable in gitVersion.go
 is VERSION
 , the key is main.VERSION
 .

But first, we need to decide on the GitHub value that we are going to use as the version string. The git rev-list HEAD
 command returns a full list of commits for the current repository from the latest to the oldest. We only need the last one—the most recent—which we can get using git rev-list -1 HEAD
 or git rev-list HEAD | head -1
 . So, we need to assign that value to an environment variable and pass that environment variable to the Go compiler. As this value changes each time you make a commit and you always want to have the latest value, you should reevaluate it each time you execute go build
 —this will be shown in a while.

In order to provide gitVersion.go
 with the value of the desired environment variable, we should execute it as follows:

$

 export

 VERSION=$(git rev-list -1 HEAD)
$

 go build -ldflags "-X main.VERSION=

$VERSION

"

 gitVersion.go

This works on both bash
 and zsh
 shells. If you are using a different shell, you should make sure that you are defining an environment variable the right way.

If you want to execute the two commands at the same time, you can do the following:

$

 export

 VERSION=$(git rev-list -1 HEAD) && go build -ldflags "-X main.VERSION=

$VERSION

"

 gitVersion.go

Running the generated executable, which is called gitVersion
 , produces the next output:

$

 ./gitVersion version
Version: 99745c8fbaff94790b5818edf55f15d309f5bfeb

Your output is going to
 be different because your GitHub repository is going to be different. As GitHub generates random and unique values, you won't have the same version number twice!

Exercises

	Can you write a function that sorts three int
 values? Try to write two versions of the function: one with named returned values and another without named return values. Which one do you think is better?

	Rewrite the getSchema.go
 utility so that it works with the jackc/pgx
 package.

	Rewrite the getSchema.go
 utility so that it works with MySQL databases.

	Use GitLab CI/CD to push Docker images to Docker Hub.

Summary

This chapter presented two primary topics: functions and packages. Functions are first-class citizens in Go, which makes them powerful and handy. Remember that everything that begins with an uppercase letter is public. The only exception to this rule is package names. Private variables, functions, data type names, and structure fields can be strictly used and called internally in a package, whereas public ones are available to everyone. Additionally, we learned more about the defer
 keyword. Also, memorize that Go packages are not like Java classes—a Go package can be as big as it needs to be. Regarding Go modules, keep in mind that a Go module is multiple packages with a version.

Finally, this chapter discussed creating documentation, GitHub Actions and GitLab Runners, how the two CI/CD systems can help you automate boring processes and how to assign unique version numbers to your utilities.

The next chapter discusses system programming in general, as well as file I/O in more detail.

Additional resources

	New module changes in Go 1.16:
https://blog.golang.org/go116-module-changes

	How do you structure your Go apps? Talk by Kat Zien from GopherCon UK 2018:
https://www.youtube.com/watch?v=1rxDzs0zgcE

	PostgreSQL:
https://www.postgresql.org/

	PostgreSQL Go package:
https://github.com/lib/pq

	PostgreSQL Go package:
https://github.com/jackc/pgx

	HashiCorp Vault:
https://www.vaultproject.io/

	The documentation of database/sql:
https://golang.org/pkg/database/sql/

	You can learn more about GitHub Actions environment variables at
https://docs.github.com/en/actions/reference/environment-variables

	GitLab CI/CD variables:
https://docs.gitlab.com/ee/ci/variables/

	The documentation of the cmd/link
 package:
https://golang.org/cmd/link/

	

golang.org

 moving to
go.dev

 :
https://go.dev/blog/tidy-web

6

Telling a UNIX System What to Do

This chapter teaches you about systems programming
 in Go. Systems programming involves working with files and directories, process control, signal handling, network programming, system files, configuration files, and file input and output (I/O). If you recall from Chapter 1
 , A Quick Introduction to Go
 , the reason for writing system utilities with Linux in mind is that often Go software is executed in a Docker environment—Docker images use the Linux operating system, which means that you might need to develop your utilities with the Linux operating system in mind
 . However, as Go code is portable, most system utilities work on Windows machines without any changes or with minor modifications. Among other things, this chapter implements two utilities, one that finds cycles in UNIX file systems and another that converts JSON data to XML data and vice versa. Additionally, in this chapter we are going to improve the phone book application with the help of the cobra
 package.

Important note
 : Starting with Go 1.16, the GO111MODULE
 environment variable defaults to on
 —this affects the use of Go packages that do not belong to the Go standard library. In practice, this means that you must put your code under ~/go/src
 . You can go back to the previous behavior by setting GO111MODULE
 to auto
 , but you do not want to do that—modules are the future. The reason for mentioning this in this chapter is that both viper
 and cobra
 prefer to be treated as Go modules instead of packages, which changes the development process but not the code.

This chapter covers:

	
stdin
 , stdout
 , and stderr

	UNIX processes

	Handling UNIX signals

	File input and output

	Reading plain text files

	Writing to a file

	Working with JSON

	Working with XML

	Working with YAML

	The viper
 package

	The cobra
 package

	Finding cycles in a UNIX file system

	New to Go 1.16

	Updating the phone book application

stdin, stdout, and stderr

Every UNIX operating system has three files open all the time for its processes. Remember that UNIX considers everything, even a printer or your mouse, as a file. UNIX uses file descriptors
 , which are
 positive integer values, as an internal representation for accessing open files, which is much prettier than using long paths. So, by default, all UNIX systems support three special and standard filenames: /dev/stdin
 , /dev/stdout
 , and /dev/stderr
 , which can also be accessed using file descriptors 0
 , 1
 , and 2
 , respectively. These three file descriptors are also
 called standard input
 , standard output
 , and standard error
 , respectively. Additionally, file descriptor 0
 can be
 accessed as /dev/fd/0
 on a macOS machine and as both /dev/fd/0
 and /dev/pts/0
 on a Debian
 Linux machine.

Go uses os.Stdin
 for accessing standard input, os.Stdout
 for accessing standard output, and os.Stderr
 for accessing standard error. Although you can still use /dev/stdin
 , /dev/stdout
 , and /dev/stderr
 or the related file descriptor values for accessing the same devices, it is better, safer, and more portable to stick with os.Stdin
 , os.Stdout
 , and os.Stderr
 .

UNIX processes

As Go servers, utilities, and Docker images
 are mainly executed on Linux, it is good to know about Linux processes and threads.

Strictly speaking, a process
 is an execution environment that contains instructions, user data and system data parts, and other types of resources that are obtained during runtime. On the other hand, a program
 is a binary file that contains instructions and data that are used for initializing the instruction and user data parts of a process. Each running UNIX process is uniquely identified by an unsigned integer, which is called the process ID
 of the
 process.

There are three process
 categories: user processes
 , daemon processes
 , and kernel processes
 . User processes run in user space and usually have no special
 access rights. Daemon
 processes are programs that can be found in the user space and run in the background without the need for a terminal. Kernel processes are executed in kernel space only and can fully access all
 kernel data structures.

The C way of creating new processes involves the calling of the fork(2)
 system call. The return value of fork(2)
 allows the programmer to differentiate between a parent and a child process. Although you can fork a new process in Go using the exec
 package, Go does not allow you to control
 threads—Go offers goroutines
 , which the user can create on top of threads that are created and handled by the Go runtime.

Handling UNIX signals

UNIX signals offer a very handy way of interacting asynchronously with your applications
 . However, UNIX signal handling
 requires the use of Go channels that are used exclusively for this task. So, it would be good to talk a little about the concurrency model of Go, which requires the use of goroutines and channels for signal handling.

A goroutine
 is the smallest executable Go entity. In order to create a new goroutine you have to
 use the go
 keyword followed by a predefined function or an anonymous function—the methods are equivalent. A channel
 in Go is a mechanism that among other things allows goroutines to communicate and exchange data. If you are an amateur programmer or are hearing about goroutines and channels for the first time, do not panic. Goroutines and channels are explained in much more detail in Chapter 7
 , Go Concurrency
 .

In order for a goroutine or a function to terminate the entire Go application, it should call os.Exit()
 instead of return
 . However, most of the time, you should exit a goroutine or a function using return
 because you just want to exit that specific goroutine or function and not stop the entire application.

The presented program handles SIGINT
 , which is called syscall.SIGINT
 in Go, and SIGINFO
 separately and uses a default
 case in a switch
 block for handling the remaining cases (other signals). The implementation of that switch
 block allows you to differentiate between the various signals according to your needs.

There exists a dedicated channel
 that receives all signals, as defined by the signal.Notify()
 function. Go channels can have a capacity—the capacity of this particular channel is 1
 in order to be able to receive and keep one signal at a time. This makes perfect sense as a signal can terminate a program and there is no need to try to handle another signal at the
 same time. There is usually an anonymous function that is executed as a goroutine and performs the signal handling and nothing else. The main task of that goroutine is to listen to the channel for data. Once a signal is received, it is sent to that channel, read by the goroutine, and stored into a variable—at this point the channel can receive more signals. That variable is processed by a switch
 statement.

Some signals cannot be caught, and the operating system cannot ignore them. So, the SIGKILL
 and SIGSTOP
 signals cannot be blocked, caught, or ignored and the reason for this is that they allow privileged users as well as the UNIX kernel to terminate any process they desire.

Create a text file by typing the following code—a good filename for it would be signals.go
 .

package

 main
import

 (
 "fmt"

 "os"

 "os/signal"

 "syscall"

 "time"

)
func

handleSignal

(sig os.Signal)

 {
 fmt.Println("handleSignal() Caught:"

, sig)
}

handleSignal()
 is a separate function for handling signals. However, you can also handle signals inline
 , in the branches of a switch
 statement.

func

main

()

 {
 fmt.Printf("Process ID: %d\n"

, os.Getpid())
 sigs := make

(chan

 os.Signal, 1

)

We create a channel with data of type os.Signal
 because all channels must have a type.

 signal.Notify(sigs)

The previous statement means handle all signals that can be handled
 .

 start := time.Now()
 go

 func

()

 {
 for

 {
 sig := <-sigs

Wait until you read data (<-
) from
 the sigs
 channel and store it in the sig
 variable.

 switch

 sig {

Depending on the read value, act accordingly. This is how you differentiate between signals.

 case

 syscall.SIGINT:
 duration := time.Since(start)
 fmt.Println("Execution time:"

, duration)

For the handling of syscall.SIGINT
 , we calculate the time that has passed since the beginning of the program execution, and print it on screen.

 case

 syscall.SIGINFO:
 handleSignal(sig)

The code of the syscall.SIGINFO
 case calls the handleSignal()
 function—it is up to the developer to decide on the details of the implementation. On Linux machines, you should replace syscall.SIGINFO
 with another signal such as syscall.SIGUSR1
 or syscall.SIGUSR2
 because syscall.SIGINFO
 is not available on Linux
 (
https://github.com/golang/go/issues/1653

).

 // do not use return here because the goroutine exits

 // but the time.Sleep() will continue to work!

 os.Exit(0

)
 default

:
 fmt.Println("Caught:"

, sig)
 }

If there is not a match, the default
 case handles the rest of the values and just prints a message.

 }
 }()
 for

 {
 fmt.Print("+"

)
 time.Sleep(10

 * time.Second)
 }
}

The endless for
 loop at the end of the main()
 function is for emulating the operation of a real program. Without an endless for
 loop, the program exits almost immediately.

Running signals.go
 and
 interacting with it creates the following kind of output:

$

 go run signals.go
Process ID: 74252
+Execution time: 9.989863093s
+Caught: user defined signal 1
+signal: killed

The second line of output was generated by pressing Ctrl
 + C
 on the keyboard, which on UNIX machines sends the syscall.SIGINT
 signal to the program. The third line of output was caused by executing kill -USR1 74252
 on a different terminal. The last line in the output was generated by the kill -9 74252
 command. As the KILL
 signal, which is also represented by the number 9
 , cannot be handled, it terminates the program, and the shell prints the killed
 message.

Handling two signals

If you want to handle a limited
 number of signals, instead of all of them, you should replace the signal.Notify(sigs)
 statement with the next statement:

signal.Notify(sigs, syscall.SIGINT, syscall.SIGINFO)

After that you need to make the appropriate changes to the code of the goroutine responsible for signal handling in order to identify and handle syscall.SIGINT
 and syscall.SIGINFO
 —the current version (signals.go
) already handles both of them.

Now, we need to learn how to read and write files in Go.

File I/O

This section discusses file I/O in Go, which includes the use of the io.Reader
 and io.Writer
 interfaces, buffered
 and unbuffered I/O, as well as the bufio
 package.

The io/ioutil
 package (
https://golang.org/pkg/io/ioutil/

) is deprecated in Go version 1.16. Existing Go
 code that uses the functionality of io/ioutil
 will continue to work but it is better to stop using that package.

The io.Reader and io.Writer interfaces

This subsection presents the
 definitions of the popular io.Reader
 and io.Writer
 interfaces because these two interfaces are the basis of file I/O in Go—the former
 allows you to read from a file whereas the latter allows you to write to a file. The definition of the io.Reader
 interface is the following:

type

 Reader interface

 {
 Read(p []byte

) (n int

, err error)
}

This definition, which should be revisited when we want one of our data types to satisfy the io.Reader
 interface, tells us the following:

	The Reader
 interface requires the implementation of a single method

	The parameter of Read()
 is a byte slice

	The return values of Read()
 are an integer and an error

The Read()
 method takes a byte slice as input, which is going to be filled with data up to its length
 , and returns the number of bytes read as well as an error
 variable.

The definition of the io.Writer
 interface is the following:

type

 Writer interface

 {
 Write(p []byte

) (n int

, err error)
}

The previous definition, which should be revisited when we want one of our data types to satisfy the io.Writer
 interface and to write to a file, reveals the following information:

	The interface requires the implementation of a single method

	The parameter of Write()
 is a byte slice

	The return values of Write()
 are an integer and an error
 value

The Write()
 method takes
 a byte slice, which contains the data that you want to
 write, as input and returns the number of bytes written and an error
 variable.

Using and misusing io.Reader and io.Writer

The code that follows
 showcases the use of io.Reader
 and io.Writer
 for custom data types, which in this case are two Go structures named S1
 and S2
 .

For the S1
 structure, the presented
 code implements both interfaces in order to read user data from the terminal and print data to the terminal, respectively. Although this is redundant as we already have fmt.Scanln()
 and fmt.Printf()
 , it is a good exercise that shows how versatile and flexible both interfaces are. In a different situation, you could have used io.Writer
 for writing to a log service, or keeping a second backup copy of the written data, or anything else that fits your needs. However, this is also an example of interfaces allowing you to do crazy or, if you prefer, unusual things—it is up to the developer to create the desired functionality using the appropriate Go concepts and features!

The Read()
 method is using fmt.Scanln()
 to get user input from the terminal whereas the Write()
 method is printing the contents of its buffer parameter as many times as the value of the F1
 field of the structure using fmt.Printf()
 !

For the S2
 structure, the presented code implements the io.Reader
 interface only in the traditional way. The Read()
 method reads the text
 field of the S2
 structure, which is a byte slice. When there is nothing left to read, the Read()
 method returns the expected io.EOF
 error, which in reality is not an error but an expected situation. Along with the Read()
 method there exist two helper methods, named eof()
 , which declares that there is nothing more to read, and readByte()
 , which reads the text
 field of the S2
 structure byte by byte. After the Read()
 method is done, the text
 field of the S2
 structure, which is used as a buffer, is emptied.

With this implementation, the io.Reader
 for S2
 can be used for reading in a traditional way, which in this case is with bufio.NewReader()
 and multiple Read()
 calls—the number of Read()
 calls depends on the size of the buffer that is used, which in this case is a byte slice with 2 places for data.

Type the following code and save it as ioInterface.go
 :

package

 main
import

 (
 "bufio"

 "fmt"

 "io"

)

The previous part shows
 that we are using the io
 and bufio
 packages for working with files.

type

 S1 struct

 {
 F1 int

 F2 string

}
type

 S2 struct

 {
 F1 S1
 text []byte

}

These are the two structures
 we are going to work with.

// Using pointer to S1 for changes to be persistent when the method exits

func

(s *S1)

Read

(p []

byte

)

(n

int

, err error)

 {
 fmt.Print("Give me your name: "

)
 fmt.Scanln(&p)
 s.F2 = string

(p)
 return

 len

(p), nil

}

In the preceding code, we are implementing the io.Reader()
 interface for S1
 .

func

(s *S1)

Write

(p []

byte

)

(n

int

, err error)

 {
 if

 s.F1 < 0

 {
 return

 -1

, nil

 }
 for

 i := 0

; i < s.F1; i++ {
 fmt.Printf("%s "

, p)
 }
 fmt.Println()
 return

 s.F1, nil

}

The previous method implements the io.Writer
 interface for S1
 .

func

(s S2)

eof

()

bool

 {
 return

 len

(s.text) == 0

}
func

(s *S2)

readByte

()

byte

 {
 // this function assumes that eof() check was done before

 temp := s.text[0

]
 s.text = s.text[1

:]
 return

 temp
}

The previous function is
 an implementation of bytes.Buffer.ReadByte
 from the
 standard library.

func

(s *S2)

Read

(p []

byte

)

(n

int

, err error)

 {
 if

 s.eof() {
 err = io.EOF
 return

 }
 l := len

(p)
 if

 l > 0

 {
 for

 n < l {

The previous functions read from the given buffer until the buffer is empty. This is where we implement io.Reader
 for S2
 .

 p[n] = s.readByte()
 n++
 if

 s.eof() {
 s.text = s.text[0

:0

]
 break

 }
 }
 }
 return

}

When all data is read, the relevant structure field is emptied. The previous method implements io.Reader
 for S2
 . However, the operation of Read()
 is supported by eof()
 and readByte()
 , which are also user-defined.

Recall that Go allows you to name the return values of a function—in that case, a return
 statement without any additional arguments automatically returns the current value of each named
 return variable in the order they appear in the
 function signature. The Read()
 method uses that feature.

func

main

()

 {
 s1var := S1{4

, "Hello"

}
 fmt.Println(s1var)

We initialize an S1
 variable that is named s1var
 .

 buf := make

([]byte

, 2

)
 _, err := s1var.Read(buf)

The previous line is reading for the s1var
 variable using a buffer with 2
 bytes.

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Println("Read:"

, s1var.F2)
 _, _ = s1var.Write([]byte

("Hello There!"

))

In the previous line, we call the Write()
 method for s1var
 in order to write the contents of a byte slice.

 s2var := S2{F1: s1var, text: []byte

("Hello world!!"

)}

In the previous code, we initialize an S2
 variable that is named s2var
 .

 // Read s2var.text

 r := bufio.NewReader(&s2var)

We now create a reader for s2var
 .

 for

 {
 n, err := r.Read(buf)
 if

 err == io.EOF {
 break

We keep reading from s2var
 until there is an io.EOF
 condition.

 } else

 if

 err != nil

 {
 fmt.Println("*"

, err)
 break

 }
 fmt.Println("**"

, n, string

(buf[:n]))
 }
}

Running ioInterface.go
 produces
 the next output:

$

 go run ioInterface.go
{4 Hello}

The first line of the output shows
 the contents of the s1var
 variable.

Give me your name: Mike

Calling the Read()
 method of the s1var
 variable.

Read: Mike
Hello There! Hello There! Hello There! Hello There!

The previous line is the output of s1var.Write([]byte("Hello There!"))
 .

** 2 He
** 2 ll
** 2 o
** 2 wo
** 2 rl
** 2 d!
** 1 !

The last part of the
 output illustrates the reading process using a buffer with a size of 2. The next section discusses
 buffered and unbuffered operations.

Buffered and unbuffered file I/O

Buffered file I/O happens when there is a buffer for temporarily storing data before reading data or writing data. Thus, instead
 of reading a file byte by byte, you read many bytes at once. You put the data in a buffer and wait for someone to read it in the desired way.

Unbuffered file I/O happens when there is no buffer to temporarily store data
 before actually reading or writing it—this can affect the performance of your programs.

The next question that you might ask is how to decide when to use buffered and when to use unbuffered file I/O. When dealing with critical data, unbuffered file I/O is generally a better choice because buffered reads might result in out-of-date data and buffered writes might result in data loss when the power of your computer is interrupted. However, most of the time, there is no definitive answer to that question. This means that you can use whatever makes your tasks easier to implement. However, keep in mind that buffered readers can also improve performance
 by reducing the number of system calls needed to read from a file or socket, so there can be a real performance impact on what the programmer decides to use.

There is also the bufio
 package. As the name suggests, bufio
 is about buffered I/O. Internally, the bufio
 package implements the io.Reader
 and io.Writer
 interfaces, which it wraps in order to create the bufio.Reader
 and bufio.Writer
 objects, respectively. The bufio
 package is very popular for working with plain text files and you are going to see it in action in the next section.

Reading text files

In this section you will learn how to
 read plain text files, as well as using the /dev/random
 UNIX device, which offers you a way of getting random numbers.

Reading a text file line by line

The function for reading
 a file line by line is found in byLine.go
 and is named lineByLine()
 . The technique for reading a text file line by line is also used when reading a plain text file word by word as well as when reading a plain text file character by character because you usually process plain text files line by line. The presented utility prints every line that it reads, which makes it a simplified version of the cat(1)
 utility.

First, you create a new reader to the desired file using a call to bufio.NewReader()
 . Then, you use that reader with bufio.ReadString()
 in order to read the input file line by line. The trick is done by
 the parameter of bufio.ReadString()
 , which is a character that tells bufio.ReadString()
 to keep reading until that character is found. Constantly calling bufio.ReadString()
 when that parameter is the newline character (\n
) results in reading the input file line by line.

The implementation of lineByLine()
 is as follows:

func

lineByLine

(file

string

)

error

 {
 f, err := os.Open(file)
 if

 err != nil

 {
 return

 err
 }
 defer

 f.Close()
 r := bufio.NewReader(f)

After making sure that you can open the given file for reading (os.Open()
), you create a new reader using bufio.NewReader()
 .

 for

 {
 line, err := r.ReadString('\n'

)

bufio.ReadString()
 returns two values: the string that was read and an error
 variable.

 if

 err == io.EOF {
 break

 } else

 if

 err != nil

 {
 fmt.Printf("error reading file %s"

, err)
 break

 }
 fmt.Print(line)

The use of fmt.Print()
 instead of fmt.Println()
 for printing the input line shows that the newline character is included in each input line.

 }
 return

 nil

}

Running byLine.go
 generates the following kind of output:

$

 go run byLine.go ~/csv.data
Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Jane,Doe,0800123456,1608559903

The previous output shows the contents of ~/csv.data
 presented line by line with the help of byLine.go
 . The
 next subsection shows how to read a plain text file word by word.

Reading a text file word by word

Reading a plain text file word by
 word is the single most useful function that you want to perform on a file because you usually want to process a file on a per-word basis—it is illustrated in this subsection using the code found in byWord.go
 . The desired functionality is implemented in the wordByWord()
 function. The wordByWord()
 function uses regular expressions
 to separate the words found in each line of the input file. The regular expression defined in the regexp.MustCompile("[^\\s]+")
 statement states that we use whitespace characters to separate one word from another.

The implementation of the wordByWord()
 function is as follows:

func

wordByWord

(file

string

)

error

 {
 f, err := os.Open(file)
 if

 err != nil

 {
 return

 err
 }
 defer

 f.Close()
 r := bufio.NewReader(f)
 for

 {
 line, err := r.ReadString('\n'

)
 if

 err == io.EOF {
 break

 } else

 if

 err != nil

 {
 fmt.Printf("error reading file %s"

, err)
 return

 err
 }
 r := regexp.MustCompile("[^\\s]+"

)

This is the place where you define the regular expression you want to use.

 words := r.FindAllString(line, -1

)

This is where you apply the
 regular expression to split the line
 variable into fields.

 for

 i := 0

; i < len

(words); i++ {
 fmt.Println(words[i])
 }

This for
 loop just prints the fields of the words
 slice. If you want to know the number of words found in the input line, you can just find the value of the len(words)
 call.

 }
 return

 nil

}

Running byWord.go
 produces the following kind of output:

$

 go run byWord.go ~/csv.data
Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Jane,Doe,0800123456,1608559903

As ~/csv.data
 does not contain any whitespace characters, each line is considered a single word!

Reading a text file character by character

In this subsection, you learn how to
 read a text file character by character, which is a pretty rare requirement unless you want to develop a text editor. You take each line that you read and split it using a for
 loop with range
 , which returns two values. You discard the first, which is the location of the current character in the line variable, and you use the second. However, that value is a rune, which means that you have to convert it into a character using string()
 .

The implementation of charByChar()
 is as follows:

func

charByChar

(file

string

)

error

 {
 f, err := os.Open(file)
 if

 err != nil

 {
 return

 err
 }
 defer

 f.Close()
 r := bufio.NewReader(f)
 for

 {
 line, err := r.ReadString('\n'

)
 if

 err == io.EOF {
 break

 } else

 if

 err != nil

 {
 fmt.Printf("error reading file %s"

, err)
 return

 err
 }
 for

 _, x := range

 line {
 fmt.Println(string

(x))
 }

Note that, due to the fmt.Println(string(x))
 statement, each character is printed in a distinct line, which means that the
 output of the program is going to be large. If you want a more compressed output, you should use the fmt.Print()
 function instead.

 }
 return

 nil

}

Running byCharacter.go
 and filtering it with head(1)
 , without any parameters, produces the following kind of output:

$

 go run byCharacter.go ~/csv.data | head
D
...
,
T

The use of the head(1)
 utility without any parameters limits the output to just 10 lines.

The next section is about reading from /dev/random
 , which is a UNIX system file.

Reading from /dev/random

In this subsection, you learn
 how to read from the /dev/random
 system device. The purpose of the /dev/random
 system device is to generate random data, which you might use for testing your programs or, in this case, as the seed for a random number generator. Getting data from /dev/random
 can be a little bit tricky, and this is the main reason for specifically discussing it here.

The code of devRandom.go
 is the following:

package

 main
import

 (
 "encoding/binary"

 "fmt"

 "os"

)

You need encoding/binary
 because you are reading binary data from /dev/random
 that you convert into an integer value.

func

main

()

 {
 f, err := os.Open("/dev/random"

)
 defer

 f.Close()
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 var

 seed int64

 binary.Read(f, binary.LittleEndian, &seed)
 fmt.Println("Seed:"

, seed)
}

There are two representations named little endian
 and big endian
 that have to do with the byte order
 in the internal representation. In our case, we are using little endian. The endian-ness
 has to do with the way different computing systems order multiple bytes of information.

A real-world example of endian-ness is how different languages read text in different ways: European languages tend to be read from left to right, whereas Arabic texts are read from right to left.

In a big endian
 representation, bytes are read from left to right, while little endian reads bytes from right to left. For the 0x01234567
 value, which requires 4 bytes for storing, the big endian representation is 01 | 23 | 45 | 67
 whereas the little endian representation is 67 | 45 | 23 | 01
 .

Running devRandom.go
 creates the following kind of output:

$

 go run devRandom.go
Seed: 422907465220227415

This means that the /dev/random
 device is a good place for getting random data including a seed value for your random number generator.

Reading a specific amount of data from a file

This subsection teaches
 you how to read a specific amount of data from a file. The presented utility can come in handy when you want to see a small part of a file. The numeric value that is given as a command-line argument specifies the size of the buffer that is going to be used for reading. The most important code of readSize.go
 is the implementation of the readSize()
 function:

func

readSize

(f *os.File, size

int

)

 []

byte

 {
 buffer := make

([]byte

, size)
 n, err := f.Read(buffer)

All the magic happens in the definition of the buffer
 variable because this is where we define the maximum amount of data that we want to read. Therefore, each time you invoke readSize()
 , the function is going to read from f
 at most size
 characters.

 // io.EOF is a special case and is treated as such

 if

 err == io.EOF {
 return

 nil

 }
 if

 err != nil

 {
 fmt.Println(err)
 return

 nil

 }
 return

 buffer[0

:n]
}

The remaining code is about error conditions; io.EOF
 is a special and expected condition that should be treated separately and return the read characters as a byte slice to the caller function.

Running readSize.go
 produces the following kind of output:

$

 go run readSize.go 12 readSize.go
package main

In this case, we read 12
 characters from readSize.go
 itself because of the 12
 parameter.

Now that we know how to read files, it is time to learn how to write to files.

Writing to a file

So far, we have seen
 ways to read files. This subsection shows how to write data to files in four different ways and how to append data to an existing file. The code of writeFile.go
 is as follows:

package

 main
import

 (
 "bufio"

 "fmt"

 "io"

 "os"

)
func

main

()

 {
 buffer := []byte

("Data to write\n"

)
 f1, err := os.Create("/tmp/f1.txt"

)

os.Create()
 returns an *os.File
 value associated with the file path that is passed as a parameter. Note that if the file already exists, os.Create()
 truncates it.

 if

 err != nil

 {
 fmt.Println("Cannot create file"

, err)
 return

 }
 defer

 f1.Close()
 fmt.Fprintf(f1, string

(buffer))

The fmt.Fprintf()
 function, which requires a string
 variable, helps you write data to your own files using the
 format you want. The only requirement is having an io.Writer
 to write to. In this case, a valid *os.File
 variable, which satisfies the io.Writer
 interface, does the job.

 f2, err := os.Create("/tmp/f2.txt"

)
 if

 err != nil

 {
 fmt.Println("Cannot create file"

, err)
 return

 }
 defer

 f2.Close()
 n, err := f2.WriteString(string

(buffer))

The os.WriteString()
 method writes the contents of a string to a valid *os.File
 variable.

 fmt.Printf("wrote %d bytes\n"

, n)
 f3, err := os.Create("/tmp/f3.txt"

)

Here we create a temporary file on our own. Later on in this chapter you are going to learn about using os.CreateTemp()
 for creating temporary files.

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 w := bufio.NewWriter(f3)

This function returns a bufio.Writer
 , which satisfies the io.Writer
 interface.

 n, err = w.WriteString(string

(buffer))
 fmt.Printf("wrote %d bytes\n"

, n)
 w.Flush()
 f := "/tmp/f4.txt"

 f4, err := os.Create(f)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 f4.Close()
 for

 i := 0

; i < 5

; i++ {
 n, err = io.WriteString(f4, string

(buffer))
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Printf("wrote %d bytes\n"

, n)
 }
 // Append to a file

 f4, err = os.OpenFile(f, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644

)

os.OpenFile()
 provides a better way
 to create or open a file for writing. os.O_APPEND
 is saying that if the file already exists, you should append to it instead of truncating it. os.O_CREATE
 is saying that
 if the file does not already exist, it should be created. Last, os.O_WRONLY
 is saying that the program should open the file for writing only.

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 f4.Close()
 // Write() needs a byte slice

 n, err = f4.Write([]byte

("Put some more data at the end.\n"

))

The Write()
 method gets its input from a byte slice, which is the Go way of writing. All previous techniques used strings, which is not the best way, especially when working with binary data. However, using strings instead of byte slices is more practical as it is more convenient to manipulate string
 values than the elements of a byte slice, especially when working with Unicode characters. On the other hand, using string
 values increases allocation and can cause a lot of garbage collection pressure.

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Printf("wrote %d bytes\n"

, n)
}

Running writeFile.go
 generates
 some information output about the bytes written on disk. What is really interesting is seeing the files created in the /tmp
 folder:

$

 ls -l /tmp/f?.txt
-rw-r--r-- 1 mtsouk wheel 14 Feb 27 19:44 /tmp/f1.txt
-rw-r--r-- 1 mtsouk wheel 14 Feb 27 19:44 /tmp/f2.txt
-rw-r--r-- 1 mtsouk wheel 14 Feb 27 19:44 /tmp/f3.txt
-rw-r--r-- 1 mtsouk wheel 101 Feb 27 19:44 /tmp/f4.txt

The previous output shows that the same amount of information has been written in f1.txt
 , f2.txt
 , and f3.txt
 , which means that the presented writing techniques are equivalent.

The next section shows how to
 work with JSON data in Go.

Working with JSON

The Go standard
 library includes encoding/json
 , which is for working with JSON data. Additionally, Go allows you to add support for JSON fields
 in Go structures using tags
 , which is the subject of the Structures and JSON
 subsection. Tags control the encoding and
 decoding of JSON records to and from Go structures. But first we should talk about marshaling and unmarshaling JSON records.

Using Marshal() and Unmarshal()

Both the marshaling and
 unmarshaling of JSON data are important procedures for working with JSON data
 using Go structures. Marshaling
 is the
 process of converting a Go structure into
 a JSON record. You usually want that for transferring JSON data via computer networks or for saving it on disk. Unmarshaling
 is the process of converting a JSON record given as a byte slice into a Go structure. You usually want that when receiving JSON data via computer networks or when loading JSON data from disk files.

The number one bug when converting JSON records into Go structures and vice versa is not making the required fields of your Go structures exported
 . When you have issues with marshaling and unmarshaling, begin your debugging process from there.

The code in encodeDecode.go
 illustrates both the marshaling and unmarshaling of JSON records using hardcoded data for simplicity:

package

 main
import

 (
 "encoding/json"

 "fmt"

)
type

 UseAll struct

 {
 Name string

 `json:"username"`

 Surname string

 `json:"surname"`

 Year int

 `json:"created"`

}

What the previous metadata
 tells us is that the Name
 field of the UseAll
 structure is translated to username
 in the JSON record, and vice versa
 , the Surname
 field is translated to surname
 , and vice versa
 , and the Year
 structure field is translated to created
 in the JSON
 record, and vice versa
 . This information has to do with the marshaling and unmarshaling of JSON data. Other than this, you treat and use UseAll
 as a regular Go structure.

func

main

()

 {
 useall := UseAll{Name: "Mike"

, Surname: "Tsoukalos"

, Year: 2021

}
 // Regular Structure

 // Encoding JSON data -> Convert Go Structure to JSON record with fields

 t, err := json.Marshal(&useall)

The json.Marshal()
 function requires a pointer to a structure variable—its real data type is an empty interface variable—and returns a byte slice with the encoded information and an error
 variable.

 if

 err != nil

 {
 fmt.Println(err)
 } else

 {
 fmt.Printf("Value %s\n"

, t)
 }
 // Decoding JSON data given as a string

 str := `{"username": "M.", "surname": "Ts", "created":2020}`

JSON data usually comes as a string.

 // Convert string into a byte slice

 jsonRecord := []byte

(str)

However, as json.Unmarshal()
 requires a byte slice, you need to convert that string into a byte slice before passing it to json.Unmarshal()
 .

 // Create a structure variable to store the result

 temp := UseAll{}
 err = json.Unmarshal(jsonRecord, &temp)

The json.Unmarshal()
 function
 requires the byte slice with the JSON record and a
 pointer to the Go structure variable that is going to store the JSON record and returns an error
 variable.

 if

 err != nil

 {
 fmt.Println(err)
 } else

 {
 fmt.Printf("Data type: %T with value %v\n"

, temp, temp)
 }
}

Running encodeDecode.go
 produces the next output:

$

 go run encodeDecode.go
Value {"username":"Mike","surname":"Tsoukalos","created":2021}
Data type: main.UseAll with value {M. Ts 2020}

The next subsection illustrates how to define the JSON tags in a Go structure in more detail.

Structures and JSON

Imagine that you have a Go structure
 that you want to convert into a JSON record without including any empty fields—the next code illustrates how to perform that task with the use of omitempty
 :

// Ignoring empty fields in JSON

type

 NoEmpty struct

 {
 Name string

 `json:"username"`

 Surname string

 `json:"surname"`

 Year int

 `json:"creationyear,omitempty"`

}

Last, imagine that you have some sensitive data on some of the fields of a Go structure that you do not want to include in the JSON records. You can do that by including the "-"
 special value in the desired json:
 structure tags. This is shown in the next code excerpt:

// Removing private fields and ignoring empty fields

type

 Password struct

 {
 Name string

 `json:"username"`

 Surname string

 `json:"surname,omitempty"`

 Year int

 `json:"creationyear,omitempty"`

 Pass string

 `json:"-"`

}

So, the Pass
 field is going to be ignored when converting a Password
 structure into a JSON record using json.Marshal()
 .

These two techniques are illustrated in tagsJSON.go
 , which can be found in the ch06
 directory of the GitHub repository of this book. Running tagsJSON.go
 produces the next output:

$

 go run tagsJSON.go
noEmptyVar decoded with value {"username":"Mihalis","surname":""}
password decoded with value {"username":"Mihalis"}

For the first line of output, we have the following: the value of noEmpty
 , which is converted into a NoEmpty
 structure variable named noEmptyVar
 , is NoEmpty{Name: "Mihalis"}
 . The noEmpty
 structure has the default values for the Surname
 and Year
 fields. However, as they are not specifically defined, json.Marshal()
 ignores the Year
 field because it has the omitempty
 tag but does not ignore the Surname
 field, which has the empty string value.

For the second line of output: the value of the password
 variable is Password{Name: "Mihalis", Pass: "myPassword"}
 . When the password
 variable is converted into a JSON record, the Pass
 field is not included
 in the output. The remaining two fields of the Password
 structure, Surname
 and Year
 , are omitted because of the omitempty
 tag. So, what is left is the username
 field.

So far, we have seen working with single JSON records. But what happens when you have multiple records to process? The next subsection answers this question and many more!

Reading and writing JSON data as streams

Imagine that you have a
 slice of Go structures that represent JSON records that you want to process. Should you process the records one by one? It can be done but
 does it look efficient? It does not! The good thing is that Go supports the processing of multiple JSON records as streams instead of individual records, which is faster and more efficient. This subsection teaches how to perform that using the JSONstreams.go
 utility, which contains the following two functions:

// DeSerialize decodes a serialized slice with JSON records

func

DeSerialize

(e *json.Decoder, slice

interface

{})

error

 {
 return

 e.Decode(slice)
}

The DeSerialize()
 function is used for reading input in the form of JSON records, decoding it, and putting it into a slice. The function writes the slice, which is of the interface{}
 data type and is given as a parameter, and gets its input from the buffer of the *json.Decoder
 parameter. The *json.Decoder
 parameter along with its buffer is defined in the main()
 function in order to avoid allocating it all the time and therefore losing the performance gains and efficiency of using this type—the same applies to the use of *json.Encoder
 that follows:

// Serialize serializes a slice with JSON records

func

Serialize

(e *json.Encoder, slice

interface

{})

error

 {
 return

 e.Encode(slice)
}

The Serialize()
 function accepts two parameters, a *json.Encoder
 and a slice of any data type, hence the use of interface{}
 . The function processes the slice and writes the output to the buffer of the json.Encoder
 —this buffer is passed as a parameter to the encoder at the time of its creation.

Both the Serialize()
 and DeSerialize()
 functions can work with any type of JSON record due to the use of interface{}
 .

The JSONstreams.go
 utility generates random data. Running JSONstreams.go
 creates the next output:

$

 go run JSONstreams.go
After Serialize:[{"key":"XVLBZ","value":16},{"key":"BAICM","value":89}]
After DeSerialize:
0 {XVLBZ 16}
1 {BAICM 89}

The input slice of
 structures, which is generated in main()
 , is serialized as
 seen in the first line of the output. After that it is deserialized into the original slice of structures.

Pretty printing JSON records

This subsection illustrates
 how to pretty print
 JSON records, which means printing JSON records in a pleasant and readable format without knowing the format of the Go structure that holds the JSON records. As there exist two ways to read JSON records, individually and as a stream, there exist two ways to pretty print JSON data: as single JSON records and as a stream. Therefore, we are going to implement two separate functions named prettyPrint()
 and JSONstream()
 , respectively.

The implementation of the prettyPrint()
 function is the following:

func

PrettyPrint

(v

interface

{})

(err error)

 {
 b, err := json.MarshalIndent(v, ""

, "\t"

)
 if

 err == nil

 {
 fmt.Println(string

(b))
 }
 return

 err
}

All the work is done by json.MarshalIndent()
 , which applies indent
 to format the output.

Although both json.MarshalIndent()
 and json.Marshal()
 produce a JSON text result (byte slice
), only json.MarshalIndent()
 allows applying customizable indent, whereas json.Marshal()
 generates a more compact output.

For pretty printing streams of JSON data, you should use the JSONstream()
 function:

func

JSONstream

(data

interface

{})

(

string

, error)

 {
 buffer := new

(bytes.Buffer)
 encoder := json.NewEncoder(buffer)
 encoder.SetIndent(""

, "\t"

)

The json.NewEncoder()
 function
 returns a new Encoder
 that writes to a writer that is passed as a parameter to json.NewEncoder()
 . An Encoder
 writes JSON values to an output stream. Similarly to json.MarshalIndent()
 , the SetIndent()
 method allows you to apply a customizable indent to a stream.

 err := encoder.Encode(data)
 if

 err != nil

 {
 return

 ""

, err
 }
 return

 buffer.String(), nil

}

After we are done configuring the encoder, we are free to process the JSON stream using Encode()
 .

These two functions are illustrated in prettyPrint.go
 , which generates JSON records using random data. Running prettyPrint.go
 produces the following kind of output:

Last record: {BAICM 89}
{
 "key": "BAICM",
 "value": 89
}
[
 {
 "key": "XVLBZ",
 "value": 16
 },
 {
 "key": "BAICM",
 "value": 89
 }
]

The previous output shows the beautified output of a single JSON record followed by the beautified output
 of a slice with two JSON records—all JSON records are represented as Go structures.

The next section is about working with XML in Go.

Working with XML

This section briefly describes
 how to work with XML data in Go using records. The idea behind XML and Go is the same as with JSON and Go. You put tags in Go structures in order to specify the XML tags and you can still serialize and deserialize XML records using xml.Unmarshal()
 and xml.Marshal()
 , which are found in the encoding/xml
 package. However, there exist some differences that are illustrated in xml.go
 :

package

 main
import

 (
 "encoding/xml"

 "fmt"

)
type

 Employee struct

 {
 XMLName xml.Name `xml:"employee"`

 ID int

 `xml:"id,attr"`

 FirstName string

 `xml:"name>first"`

 LastName string

 `xml:"name>last"`

 Height float32

 `xml:"height,omitempty"`

 Address
 Comment string

 `xml:",comment"`

}

This is where the structure for the XML data is defined. However, there is additional information regarding the name and the type of each XML element. The XMLName
 field provides the name of the XML record, which in this case will be employee
 .

A field with the tag ",comment"
 is a comment and it is formatted as such in the output. A field with the tag attr
 appears as an attribute to the provided field name (which is id
 in this case) in the output. The name>first
 notation tells Go to embed the first
 tag inside a tag called name
 .

Lastly, a field with the omitempty
 option is omitted from the output if it is empty. An empty value
 is any of 0
 , false
 , a nil
 pointer or interface, and any array, slice, map, or string with a length of zero.

type

 Address struct

 {
 City, Country string

}
func

main

()

 {
 r := Employee{ID: 7

, FirstName: "Mihalis"

, LastName: "Tsoukalos"

}
 r.Comment = "Technical Writer + DevOps"

 r.Address = Address{"SomeWhere 12"

, "12312, Greece"

}
 output, err := xml.MarshalIndent(&r, " "

, " "

)

As is the case with JSON, xml.MarshalIndent()
 is for
 beautifying the output.

 if

 err != nil

 {
 fmt.Println("Error:"

, err)
 }
 output = []byte

(xml.Header + string

(output))
 fmt.Printf("%s\n"

, output)
}

The output of xml.go
 is the following:

<?xml version="1.0" encoding="UTF-8"?>
 <employee id="7">
 <name>
 <first>Mihalis</first>
 <last>Tsoukalos</last>
 </name>
 <City>SomeWhere 12</City>
 <Country>12312, Greece</Country>
 <!--Technical Writer + DevOps-->
 </employee>

The previous output shows the XML version of the Go structure given as input to the program.

In the next section we develop a utility that converts JSON records to XML records and vice versa.

Converting JSON to XML and vice versa

As promised, we are
 going to produce a utility that converts records between the JSON and XML formats. The input is given as a command-line argument. The utility tries to guess the format of the input starting from XML. If xml.Unmarshal()
 fails, then the
 utility tries using json.Unmarshal()
 . If there is not a match, then the user is informed about the error condition. On the other hand, if xml.Unmarshal()
 is successful, the data is stored into an XMLrec
 variable and is then converted into a JSONrec
 variable. The same happens with json.Unmarshal()
 in the case where the xml.Unmarshal()
 call is unsuccessful.

The logic of the utility can be found in the Go structures:

type

 XMLrec struct

 {
 Name string

 `xml:"username"`

 Surname string

 `xml:"surname,omitempty"`

 Year int

 `xml:"creationyear,omitempty"`

}
type

 JSONrec struct

 {
 Name string

 `json:"username"`

 Surname string

 `json:"surname,omitempty"`

 Year int

 `json:"creationyear,omitempty"`

}

Both structures store the same data. However, the former (XMLrec
) is for storing XML data whereas the latter (JSONrec
) is for storing JSON data.

Running JSON2XML.go
 produces the next kind of output:

$

 go run JSON2XML.go '<XMLrec><username>Mihalis</username></XMLrec>'

<XMLrec><username>Mihalis</username></XMLrec>
{"username":"Mihalis"}

So, we give an XML record as input, which is converted into a JSON record.

The next output illustrates the reverse process:

$

 go run JSON2XML.go '{"username": "Mihalis"}'

{"username": "Mihalis"}
<XMLrec><username>Mihalis</username></XMLrec>

In the previous output
 the input is a JSON record, and the output is an XML record.

The next section
 discusses working with YAML files in Go.

Working with YAML

In this section, we
 briefly discuss how to work with YAML files in Go. The Go standard library does not include support for YAML files, which means that you should look at external packages for YAML support. There exist three main packages that allow you to work with YAML from Go:

	

https://github.com/kylelemons/go-gypsy

	

https://github.com/go-yaml/yaml

	

https://github.com/goccy/go-yaml

Choosing one is a matter of personal preference. We are going to work with go-yaml
 in this section using the code found in yaml.go
 . Due to the use of Go modules, yaml.go
 is developed in ~/go/src/github.com/mactsouk/yaml
 —you can also find it in the GitHub repository of this book. The most important part of it is the next:

var

 yamlfile = `

image: Golang

matrix:

 docker: python

 version: [2.7, 3.9]

`

The yamlfile
 variable contains the YAML data; you usually read the data from a file—we are just using that to save some space.

type

 Mat struct

 {
 DockerImage string

 `yaml:"docker"`

 Version []float32

 `yaml:",flow"`

}

The Mat
 structure defines two fields and their associations with the YAML file. The Version
 field is a slice of float32
 values. As there is no name for the Version
 field, the name is going to be version
 . The flow
 keyword says that the marshal is using a flow style, which is useful for structs, sequences, and maps.

type

 YAML struct

 {
 Image string

 Matrix Mat
}

The YAML structure embeds a Mat
 structure and contains a field named Image
 , which is associated with image
 in the YAML file. The main()
 function contains the expected yaml.Unmarshal()
 and yaml.Marshal()
 calls.

Once you have the
 source file at the desired place, run the next commands—if you need to run any extra commands, the go
 binary is nice enough to help you:

$

 go mod init
$

 go mod tidy

The go mod init
 command initializes and writes a new go.mod
 file in the current directory whereas the go mod tidy
 command synchronizes go.mod
 with the source code.

If you want to play it safe and you are using packages that do not belong to the standard library, then developing inside ~/go/src
 , committing to a GitHub repository, and using Go modules for all dependencies might be the best option. However, this does not mean that you must develop your own packages in the form of Go modules.

Running yaml.go
 produces the next output:

$

 go run yaml.go
After Unmarshal (Structure):
{Golang {python [2.7 3.9]}}
After Marshal (YAML code):
image: Golang
matrix:
 docker: python
 version: [2.7, 3.9]

The previous output shows how the {Golang {python [2.7 3.9]}}
 text is converted into a YAML file and vice versa. Now that we know about working with JSON, XML, and YAML data in Go, we are
 ready to learn about the viper
 package.

The viper package

Flags
 are specially formatted
 strings that are passed into a program to control its behavior. Dealing with flags on your own might become very frustrating if you want to support multiple flags and options. Go offers the flag
 package for working with command-line options, parameters, and flags. Although flag
 can do many things, it is not as capable as other external Go packages. Thus, if you are developing simple UNIX system command-line utilities, you might find the flag
 package very interesting and useful. But you are not reading this book to create simple command-line utilities! Therefore, I'll skip the flag
 package and introduce you to an external package named viper
 , which is a powerful Go package that supports a plethora of options. viper
 uses the pflag
 package instead of flag
 , which is also illustrated in the code we will look at in the following sections.

All viper
 projects follow a pattern. First, you initialize viper
 and then you define the elements that interest you. After that, you get these elements and read their values in order to use them. The desired values can be taken either directly, as happens when you are using the flag
 package from the standard Go library, or indirectly using configuration files. When using formatted configuration files in the JSON, YAML, TOML, HCL, or Java properties format, viper
 does all the parsing for you, which saves you from having to write and debug lots of Go code. viper
 also allows you to extract and save values in Go structures. However, this requires that the fields of the Go structure match the keys of the configuration file.

The home page of viper
 is on GitHub (
https://github.com/spf13/viper

). Please note that you are not obliged to use every capability of viper
 in your tools—just the features that you want. The general rule is to use the features of Viper that simplify your code. Put simply, if your command-line utility requires too many command-line parameters and flags, then it would be better to use a configuration file instead.

Using command-line flags

The first example shows how to
 write a simple utility that accepts two values as command-line parameters and prints them on screen for verification. This means that we are going to need two command-line flags for these parameters.

Starting from Go version 1.16
 , using modules is the default behavior, which the viper
 package needs to use. So, you need to put useViper.go
 , which is the name of the source file, inside ~/go
 for things to work. As my GitHub username is mactsouk
 , I had to run the following commands:

$

 mkdir ~/go/src/github.com/mactsouk/useViper
$

 cd

 ~/go/src/github.com/mactsouk/useViper
$

 vi useViper.go
$

 go mod init
$

 go mod tidy

You can either edit useViper.go
 on your own or copy it from the GitHub repository of this book. Keep in mind that the last two
 commands should be executed when useViper.go
 is ready and includes all required external packages.

The implementation of useViper.go
 is as follows:

package

 main
import

 (
 "fmt"

 "github.com/spf13/pflag"

 "github.com/spf13/viper"

)

We need to import both the pflag
 and viper
 packages as we are going to use the functionality from both of them.

func

aliasNormalizeFunc

(f *pflag.FlagSet, n

string

)

pflag

.

NormalizedName

 {
 switch

 n {
 case

 "pass"

:
 n = "password"

 break

 case

 "ps"

:
 n = "password"

 break

 }
 return

 pflag.NormalizedName(n)
}

The aliasNormalizeFunc()
 function is used for creating additional aliases for a flag—in this case an alias for the --password
 flag. According to the existing code, the --password
 flag can be accessed as either --pass
 or --ps
 .

func

main

()

 {
 pflag.StringP("name"

, "n"

, "Mike"

, "Name parameter"

)

In the preceding code, we create a new flag called name
 that can also be accessed as -n
 . Its default value is Mike
 and its
 description that appears in the usage of the utility is Name parameter
 .

 pflag.StringP("password"

, "p"

, "hardToGuess"

, "Password"

)
 pflag.CommandLine.SetNormalizeFunc(aliasNormalizeFunc)

We create another flag named password
 that can also be accessed as -p
 and has a default value of hardToGuess
 and a description. Additionally, we register a normalization function
 for generating aliases for the password
 flag.

 pflag.Parse()
 viper.BindPFlags(pflag.CommandLine)

The pflag.Parse()
 call should be used after all command-line flags are defined—its purpose is to parse the command-line flags into the defined flags.

Additionally, the viper.BindPFlags()
 call makes all flags available to the viper
 package—strictly speaking, we say that the viper.BindPFlags()
 call binds an existing set of pflag
 flags (pflag.FlagSet
) to viper
 .

 name := viper.GetString("name"

)
 password := viper.GetString("password"

)

The previous commands show how to read the values of two string
 command-line flags.

 fmt.Println(name, password)
 // Reading an Environment variable

 viper.BindEnv("GOMAXPROCS"

)
 val := viper.Get("GOMAXPROCS"

)
 if

 val != nil

 {
 fmt.Println("GOMAXPROCS:"

, val)
 }

The viper
 package can work with environment variables. We first need to call viper.BindEnv()
 to tell viper
 the environment variable that interests us and then we can read its value by calling viper.Get()
 . If GOMAXPROCS
 is not already set, the fmt.Println()
 call will not get executed.

 // Setting an Environment variable

 viper.Set("GOMAXPROCS"

, 16

)
 val = viper.Get("GOMAXPROCS"

)
 fmt.Println("GOMAXPROCS:"

, val)
}

Similarly, we can change
 the current value of an environment variable using viper.Set()
 .

The good thing is that viper
 automatically provides usage information:

$

 go run useViper.go --help

Usage of useViper:
 -n, --name string Name parameter (default "Mike")
 -p, --password string Password (default "hardToGuess")
pflag: help requested
exit status 2

Using useViper.go
 without any command-line arguments produces the next kind of output. Remember that we are inside ~/go/src/github.com/mactsouk/useViper
 :

$

 go run useViper.go
Mike hardToGuess
GOMAXPROCS: 16

However, if we provide values for the command-line flags, the output is going to be slightly different:

$

 go run useViper.go -n mtsouk -p hardToGuess
mtsouk hardToGuess
GOMAXPROCS: 16

In this second case, we used the shortcuts for the command-line flags because it is faster.

The next subsection discusses the use of JSON files for storing configuration information.

Reading JSON configuration files

The viper
 package can read JSON files to get its configuration, and this subsection illustrates how. Using text files for
 storing configuration details can be very helpful when writing complex applications that require lots of data and setup. This is illustrated in jsonViper.go
 .

Once again, we need to put jsonViper.go
 inside ~/go/src/github.com/mactsouk/jsonViper
 —please adjust that command to fit your own GitHub username, although if you do not create a GitHub repository, you can use mactsouk
 . The code of jsonViper.go
 is as follows:

package

 main
import

 (
 "encoding/json"

 "fmt"

 "os"

 "github.com/spf13/viper"

)
type

 ConfigStructure struct

 {
 MacPass string

 `mapstructure:"macos"`

 LinuxPass string

 `mapstructure:"linux"`

 WindowsPass string

 `mapstructure:"windows"`

 PostHost string

 `mapstructure:"postgres"`

 MySQLHost string

 `mapstructure:"mysql"`

 MongoHost string

 `mapstructure:"mongodb"`

}

There is an important point here
 : although we are using a JSON file to store the configuration, the Go structure uses mapstructure
 instead of json
 for the fields of the JSON configuration file.

var

 CONFIG = ".config.json"

func

main

()

 {
 if

 len

(os.Args) == 1

 {
 fmt.Println("Using default file"

, CONFIG)
 } else

 {
 CONFIG = os.Args[1

]
 }
 viper.SetConfigType("json"

)
 viper.SetConfigFile(CONFIG)
 fmt.Printf("Using config: %s\n"

, viper.ConfigFileUsed())
 viper.ReadInConfig()

The previous four
 statements declare that we are using a JSON file, let viper
 know the path to the configuration file, print the configuration file used, and read and parse that configuration file.

Keep in mind that viper
 does not check whether the configuration file actually exists and is readable. If the file cannot be found or read, viper.ReadInConfig()
 acts like processing an empty configuration file.

 if

 viper.IsSet("macos"

) {
 fmt.Println("macos:"

, viper.Get("macos"

))
 } else

 {
 fmt.Println("macos not set!"

)
 }

The viper.IsSet()
 call checks whether a key named macos
 can be found in the configuration. If it is set, it reads its value using viper.Get("macos")
 and prints it on screen.

 if

 viper.IsSet("active"

) {
 value := viper.GetBool("active"

)
 if

 value {
 postgres := viper.Get("postgres"

)
 mysql := viper.Get("mysql"

)
 mongo := viper.Get("mongodb"

)
 fmt.Println("P:"

, postgres, "My:"

, mysql, "Mo:"

, mongo)
 }
 } else

 {
 fmt.Println("active is not set!"

)
 }

In the aforementioned code, we check whether the active
 key can be found before reading its value. If its value is equal to true
 then we read the values from three more keys named postgres
 , mysql
 , and mongodb
 .

As the active
 key should hold a Boolean value, we use viper.GetBool()
 for reading it.

 if

 !viper.IsSet("DoesNotExist"

) {
 fmt.Println("DoesNotExist is not set!"

)
 }

As expected, trying to read a key that does not exist fails.

 var

 t ConfigStructure
 err := viper.Unmarshal(&t)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

The call to viper.Unmarshal()
 allows you to put the information from the JSON configuration file into a properly defined
 Go structure—this is optional but handy.

 PrettyPrint(t)
}

The implementation of the PrettyPrint()
 function was presented in prettyPrint.go
 earlier on in this chapter.

Now you need to download the dependencies of jsonViper.go
 :

$

 go mod init
$

 go mod tidy # This command is not always required

The contents of the current directory are as follows:

$

 ls -l
total 44
-rw-r--r-- 1 mtsouk users 85 Feb 22 18:46 go.mod
-rw-r--r-- 1 mtsouk users 29678 Feb 22 18:46 go.sum
-rw-r--r-- 1 mtsouk users 1418 Feb 22 18:45 jsonViper.go
-rw-r--r-- 1 mtsouk users 189 Feb 22 18:46 myConfig.json

The contents of the myConfig.json
 file used for testing are as follows:

{
 "macos"

: "pass_macos"

,
 "linux"

: "pass_linux"

,
 "windows"

: "pass_windows"

,
 "active"

: true

,
 "postgres"

: "machine1"

,
 "mysql"

: "machine2"

,
 "mongodb"

: "machine3"

}

Running jsonViper.go
 on the
 preceding JSON file produces the next output:

$

 go run jsonViper.go myConfig.json
Using config: myConfig.json
macos: pass_macos
P: machine1 My: machine2 Mo: machine3
DoesNotExist is not set!
{
 "MacPass": "pass_macos",
 "LinuxPass": "pass_linux",
 "WindowsPass": "pass_windows",
 "PostHost": "machine1",
 "MySQLHost": "machine2",
 "MongoHost": "machine3"
}

The previous output is generated by jsonViper.go
 when parsing myConfig.json
 and trying to find the desired information.

The next section discusses a Go package for creating powerful and professional command-line utilities such as docker
 and kubectl
 .

The cobra package

cobra
 is a very handy and
 popular Go package that allows you to develop command-line utilities with commands, subcommands, and aliases. If you have ever used hugo
 , docker
 , or kubectl
 you are going to realize immediately what the cobra
 package does, as all these tools are developed using cobra
 . Commands can have one or more aliases, which is very handy when you want to please both amateur and experienced users. cobra
 also
 supports persistent flags
 and local flags
 , which are flags that are available to
 all commands and flags that are available to given commands only, respectively. Also, by default, cobra
 uses viper
 for parsing its command-line arguments.

All cobra
 projects follow the same development pattern. You use the cobra
 utility, then you create commands, and then you make the desired changes to the generated Go source code files in order to implement the desired functionality. Depending on the complexity of your utility, you might need to make lots of changes to the created files. Although cobra
 saves you lots of time, you still have to write the code that implements the desired functionality for each command.

You need to take some
 extra steps in order to download the cobra
 binary the right way:

$

 GO111MODULE=on go get -u -v github.com/spf13/cobra/cobra

The previous command downloads the cobra
 binary and the required dependencies using Go modules even if you are using a Go version older than 1.16.

It is not necessary to know about all of the supported environment variables such as GO111MODULE
 , but sometimes they can help you resolve tricky problems with your Go installation. So, if you want to learn about your current Go environment, you can use the go env
 command.

For the purposes of this section, we are going to need a GitHub repository—this is optional, but it is the only way for the readers of this book to have access to the presented code.

The path of the GitHub repository is
https://github.com/mactsouk/go-cobra

 . The first thing to do is place the files of the GitHub repository in the right place. Everything is going to be much easier if you put it inside ~/go
 ; the exact place depends on the GitHub repository, because the Go compiler will not have to search for the Go files.

In our case, we are going to put it under ~/go/src/github.com/mactsouk
 because mactsouk
 is my GitHub username. This requires running the next commands:

$

 cd

 ~/go/src/github.com
$

 mkdir mactsouk # only required if the directory is not there

$

 cd

 mactsouk
$

 git clone

 git@github.com:mactsouk/go-cobra.git
$

 cd

 go-cobra
$

 ~/go/bin/cobra init --pkg-name github.com/mactsouk/go-cobra
Using config file: /Users/mtsouk/.cobra.yaml
Your Cobra application is ready at
/Users/mtsouk/go/src/github.com/mactsouk/go-cobra
$

 go mod init
go: creating new go.mod: module github.com/mactsouk/go-cobra

As the cobra
 package works better with modules, we define the project dependencies using Go modules. In order to specify that a Go project uses Go modules, you should execute go mod init
 . This
 command creates two files named go.sum
 and go.mod
 .

$

 go run main.go
go: finding module for package github.com/spf13/cobra
go: finding module for package github.com/mitchellh/go-homedir
go: finding module for package github.com/spf13/viper
go: found github.com/mitchellh/go-homedir in github.com/mitchellh/go-homedir v1.1.0
go: found github.com/spf13/cobra in github.com/spf13/cobra v1.1.3
go: found github.com/spf13/viper in github.com/spf13/viper v1.7.1
A longer description that spans multiple lines and likely contains
examples and usage of using your application. For example:
Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.

All lines beginning with go:
 have to do with Go modules and will appear only once. The last lines are the default message of a cobra
 project—we are going to modify that message later on. You are now ready to begin working with the cobra
 tool.

A utility with three commands

This subsection illustrates the
 use of the cobra add
 command, which is used for adding new commands to a cobra
 project. The names of the commands are one
 , two
 , and three
 :

$

 ~/go/bin/cobra add one
Using config file: /Users/mtsouk/.cobra.yaml
one created at /Users/mtsouk/go/src/github.com/mactsouk/go-cobra
$

 ~/go/bin/cobra add two
$

 ~/go/bin/cobra add three

The previous commands create three new files in the cmd
 folder named one.go
 , two.go
 , and three.go
 , which are the initial implementations of the three commands.

The first thing you should usually do is delete unwanted code from root.go
 and change the messages of the utility and each command as described in the Short
 and Long
 fields. However, if you want you can leave the source files unchanged.

The next subsection
 enriches the utility by adding command-line flags to the commands.

Adding command-line flags

We are going to
 create two global command-line flags and one command-line flag that is attached to a given command (two
) and is not supported by the other two commands. Global command-line flags are defined in the ./cmd/root.go
 file. We are going to define two global flags named directory
 , which is a string, and depth
 , which is an unsigned integer.

Both global flags are defined in the init()
 function of ./cmd/root.go
 .

rootCmd.PersistentFlags().StringP("directory"

, "d"

, "/tmp"

, "Path to use."

)
rootCmd.PersistentFlags().Uint("depth"

, 2

, "Depth of search."

)
viper.BindPFlag("directory"

, rootCmd.PersistentFlags().Lookup("directory"

))
viper.BindPFlag("depth"

, rootCmd.PersistentFlags().Lookup("depth"

))

We use rootCmd.PersistentFlags()
 to define global flags followed by the data type of the flag. The name of the first flag is directory
 and its shortcut is d
 whereas the name of the second flag is depth
 and has no shortcut—if you want to add a shortcut to it, you should use the UintP()
 method instead. After defining the two flags, we pass their control to viper
 by calling viper.BindPFlag()
 . The first flag is a string
 whereas the second one is a uint
 value. As both of them are available in the cobra
 project, we call viper.GetString("directory")
 to get the value of the directory
 flag and viper.GetUint("depth")
 to get the value of the depth
 flag.

Last, we add a command-line flag that is only available to the two
 command using the next line in the ./cmd/two.go
 file:

twoCmd.Flags().StringP("username"

, "u"

, "Mike"

, "Username value"

)

The name of the flag is username
 and its shortcut is u
 . As this is a local flag available to the two
 command only, we can get its value by calling cmd.Flags().GetString("username")
 inside the ./cmd/two.go
 file only.

The next subsection creates command aliases for the existing commands.

Creating command aliases

In this subsection
 we continue building on the code from the previous subsection by creating aliases for existing commands. This means that commands one
 , two
 , and three
 will also be accessible as cmd1
 , cmd2
 , and cmd3
 respectively.

In order to do that, you need to add an extra field named Aliases
 in the cobra.Command
 structure of each command—the data type of the Aliases
 field is string
 slice. So, for the one
 command, the beginning of the cobra.Command
 structure in ./cmd/one.go
 will look as follows:

var

 oneCmd = &cobra.Command{
 Use: "one"

,
 Aliases: []string

{"cmd1"

},
 Short: "Command one"

,

You should make similar changes to ./cmd/two.go
 and ./cmd/three.go
 . Please keep in mind that the internal name
 of the one
 command is oneCmd
 —the other commands have analogous internal names.

If you accidentally put the cmd1
 alias, or any other alias, in multiple commands, the Go compiler will not complain. However, only its first occurrence gets executed.

The next subsection enriches the utility by adding subcommands for the one
 and two
 commands.

Creating subcommands

This subsection illustrates how to
 create two subcommands for the command named three
 . The names of the two subcommands will be list
 and delete
 . The way to create them using the cobra
 utility is the following:

$

 ~/go/bin/cobra add list -p 'threeCmd'

Using config file: /Users/mtsouk/.cobra.yaml
list created at /Users/mtsouk/go/src/github.com/mactsouk/go-cobra
$

 ~/go/bin/cobra add delete -p 'threeCmd'

Using config file: /Users/mtsouk/.cobra.yaml
delete created at /Users/mtsouk/go/src/github.com/mactsouk/go-cobra

The previous commands create two new files inside ./cmd
 named delete.go
 and list.go
 . The -p
 flag is followed by the internal name
 of the command you want to associate the subcommands with. The internal name of the three
 command is threeCmd
 . You can verify that these two commands are associated with the three
 command as follows:

$

 go run main.go three delete
delete called
$

 go run main.go three list
list called

If you run go run main.go two list
 , Go considers list
 as a command-line argument of two
 and it will not execute the
 code in ./cmd/list.go
 . The final version of the go-cobra
 project has the following structure and contains the following files, as generated by the tree(1)
 utility:

$

 tree
.
├── LICENSE
├── README.md
├── cmd
│ ├── delete.go
│ ├── list.go
│ ├── one.go
│ ├── root.go
│ ├── three.go
│ └── two.go
├── go.mod
├── go.sum
└── main.go
1 directory, 11 files

At this point you might wonder what happens when you want to create two subcommands with the same name for two different commands. In that case, you create the first subcommand and rename its file before creating the second one.

As there is no point in presenting long listings of code, you can find the code of the go-cobra
 project at
https://github.com/mactsouk/go-cobra

 . The cobra
 package is also illustrated in the final
 section where we radically update the phone book application.

Finding cycles in a UNIX file system

This section implements a
 practical UNIX command-line utility that can find cycles (loops) in UNIX file systems. The idea behind the utility is that
 with UNIX symbolic links
 , there is a possibility to create cycles in our file system. This can perplex backup software such as tar(1)
 or utilities such as find(1)
 and can create security-related issues. The presented utility, which is called FScycles.go
 , tries to inform us about such situations.

The idea behind the solution is that we keep every visited directory path in a map and if a path appears for the second time, then we have a cycle. The map is called visited
 and is defined as map[string]int
 .

If you are wondering why we are using a string and not a byte slice or some other kind of slice as the key for the visited
 map, it is because maps cannot have slices as keys because slices are not comparable
 .

The output of the utility depends on the root path used for initialing the search process—that path is given as a command-line argument to the utility.

The filepath.Walk()
 function does not traverse symbolic links by design in order to avoid cycles. However, in our case, we want to traverse symbolic links to directories in order to discover loops. We solve that issue in a while.

The utility uses IsDir()
 , which is a function that helps you to identify directories—we are only interested in directories because only directories and symbolic links to directories can create cycles in file systems. Last, the utility uses os.Lstat()
 because it can handle symbolic links. Additionally, os.Lstat()
 returns information about the symbolic link without following it, which is not the case with os.Stat()
 —in this case we do not want to automatically follow symbolic links.

The important code of FScycles.go
 can be found in the implementation of walkFunction()
 :

func

walkFunction

(path

string

, info os.FileInfo, err error)

error

 {
 fileInfo, err := os.Stat(path)
 if

 err != nil

 {
 return

 nil

 }
 fileInfo, _ = os.Lstat(path)
 mode := fileInfo.Mode()

First, we make sure that the
 path actually exists, and then we call os.Lstat()
 .

 // Find regular directories first

 if

 mode.IsDir() {
 abs, _ := filepath.Abs(path)
 _, ok := visited[abs]
 if

 ok {
 fmt.Println("Found cycle:"

, abs)
 return

 nil

 }
 visited[abs]++
 return

 nil

 }

If a regular directory is already visited, then we have a cycle. The visited
 map keeps track of all visited directories.

 // Find symbolic links to directories

 if

 fileInfo.Mode()&os.ModeSymlink != 0

 {
 temp, err := os.Readlink(path)
 if

 err != nil

 {
 fmt.Println("os.Readlink():"

, err)
 return

 err
 }
 newPath, err := filepath.EvalSymlinks(temp)
 if

 err != nil

 {
 return

 nil

 }

The filepath.EvalSymlinks()
 function is used for finding out where symbolic links point to. If that destination is another directory, then the code that follows makes sure that it is going to be visited as well using an additional call to filepath.Walk()
 .

 linkFileInfo, err := os.Stat(newPath)
 if

 err != nil

 {
 return

 err
 }
 linkMode := linkFileInfo.Mode()
 if

 linkMode.IsDir() {
 fmt.Println("Following..."

, path, "-->"

, newPath)

The linkMode.IsDir()
 statement makes sure that only directories are being followed.

 abs, _ := filepath.Abs(newPath)

The call to filepath.Abs()
 returns the
 absolute path of the path that is given as a parameter. The keys of the visited
 slice are values returned by filepath.Abs()
 .

 _, ok := visited[abs]
 if

 ok {
 fmt.Println("Found cycle!"

, abs)
 return

 nil

 }
 visited[abs]++
 err = filepath.Walk(newPath, walkFunction)
 if

 err != nil

 {
 return

 err
 }
 return

 nil

 }
 }
 return

 nil

}

Running FScycles.go
 produces the following kind of output:

$

 go run FScycles.go ~
Following... /home/mtsouk/.local/share/epiphany/databases/indexeddb/v0 --> /home/mtsouk/.local/share/epiphany/databases/indexeddb
Found cycle! /home/mtsouk/.local/share/epiphany/databases/indexeddb

The previous output tells us that there is a cycle in the home directory of the current user—once we identify the loop, we should remove it on our own.

The remaining sections of this chapter discuss some new features that came with Go version 1.16.

New to Go 1.16

Go 1.16 came with some new features including embedding files in Go binaries as well as the introduction of the os.ReadDir()
 function, the os.DirEntry
 type, and the io/fs
 package.

As these features are related to
 systems programming, they are included and explored in the current chapter. We begin by presenting the embedding of files into Go binary executables.

Embedding files

This section presents a feature that
 first appeared in Go 1.16 that allows you to embed static assets
 into Go binaries. The allowed data types for keeping an embedded file are string
 , []byte
 , and embed.FS
 . This means that a Go binary may contain a file that you do not have to manually download when you execute the Go binary! The presented utility embeds two different files that it can retrieve based on the given command-line argument.

The code that follows, which is saved as embedFiles.go
 , illustrates this new Go feature:

package

 main
import

 (
 _ "embed"

 "fmt"

 "os"

)

You need the embed
 package in order to embed any files in your Go binaries. As the embed
 package is not directly used, you need to put _
 in front of it so that the Go compiler won't complain.

//go:embed static/image.png

var

 f1 []byte

You need to begin a line with //go:embed
 , which denotes a Go comment but is treated in a special way, followed by the path to the file you want to embed. In this case we embed static/image.png
 , which is a binary file. The next line should define the variable that is going to hold the data of the embedded file, which in this case is a byte slice named f1
 —using a byte slice is recommended for binary files because we are going to directly use that byte slice to save that binary file.

//go:embed static/textfile

var

 f2 string

In this case we save the
 contents of a plain text file, which is static/textfile
 , in a string
 variable named f2
 .

func

writeToFile

(s []

byte

, path

string

)

error

 {
 fd, err := os.OpenFile(path, os.O_CREATE|os.O_WRONLY, 0644

)
 if

 err != nil

 {
 return

 err
 }
 defer

 fd.Close()
 n, err := fd.Write(s)
 if

 err != nil

 {
 return

 err
 }
 fmt.Printf("wrote %d bytes\n"

, n)
 return

 nil

}

The writeToFile()
 function is used for storing a byte slice into a file and is a helper function that can be used in other cases as well.

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Print select 1|2"

)
 return

 }
 fmt.Println("f1:"

, len

(f1), "f2:"

, len

(f2))

This statement prints the lengths of the f1
 and f2
 variables to make sure that they represent the size of the embedded files.

 switch

 arguments[1

] {
 case

 "1"

:
 filename := "/tmp/temporary.png"

 err := writeToFile(f1, filename)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 case

 "2"

:
 fmt.Print(f2)
 default

:
 fmt.Println("Not a valid option!"

)
 }
}

The switch
 block is responsible for
 returning the desired file to the user—in the case of static/textfile
 , the file contents are printed on the screen. For the binary file, we decided to store it as /tmp/temporary.png
 .

This time we are going to compile embedFiles.go
 to make things more realistic, because it is the executable binary file that holds the embedded files. We build the binary file using go build embedFiles.go
 . Running embedFiles
 produces the following kind of output:

$

 ./embedFiles 2
f1: 75072 f2: 14
Data to write
$

 ./embedFiles 1
f1: 75072 f2: 14
wrote 75072 bytes

The next output verifies that temporary.png
 is located at the right path (/tmp/temporary.png
):

$

 ls -l /tmp/temporary.png
-rw-r--r-- 1 mtsouk wheel 75072 Feb 25 15:20 /tmp/temporary.png

Using the embedding functionality, we can create a utility that embeds its own source code and prints it on screen when it gets executed! This is a fun way of using embedded files. The source code of printSource.go
 is the following:

package

 main
import

 (
 _ "embed"

 "fmt"

)
//go:embed printSource.go

var

 src string

func

main

()

 {
 fmt.Print(src)
}

As before, the file that is being embedded is defined in the //go:embed
 line. Running printSource.go
 prints the
 aforementioned code on screen.

ReadDir and DirEntry

This section
 discusses os.ReadDir()
 and os.DirEntry
 . However, it begins by discussing the deprecation of the io/ioutil
 package—the functionality of the io/ioutil
 package
 has been transferred to other packages. So, we have the following:

	
os.ReadDir()
 , which is a new function, returns []DirEntry
 . This means that it cannot directly replace ioutil.ReadDir()
 , which returns []FileInfo
 . Although neither os.ReadDir()
 nor os.DirEntry
 offers any new functionality, they make things faster and simpler, which is important.

	The os.ReadFile()
 function directly replaces ioutil.ReadFile()
 .

	The os.WriteFile()
 function can directly replace ioutil.WriteFile()
 .

	Similarly, os.MkdirTemp()
 can replace ioutil.TempDir()
 without any changes. However, as the os.TempDir()
 name was already taken, the new function name is different.

	The os.CreateTemp()
 function is the same as ioutil.TempFile()
 . Although the name os.TempFile()
 was not taken, the Go people decided to name it os.CreateTemp()
 in order to be on par with os.MkdirTemp()
 .

Both os.ReadDir()
 and os.DirEntry
 can be found as fs.ReadDir()
 and fs.DirEntry
 in the io/fs
 package for working with the file system interface found in io/fs
 .

The ReadDirEntry.go
 utility illustrates the use of os.ReadDir()
 . Additionally, we are going to see fs.DirEntry
 in combination with fs.WalkDir()
 in action in the next section—io/fs
 only supports WalkDir()
 , which uses DirEntry
 by default. Both fs.WalkDir()
 and filepath.WalkDir()
 are using DirEntry
 instead of FileInfo
 . This means that in order to see any performance improvements when walking directory trees, you need to change filepath.Walk()
 calls to filepath.WalkDir()
 calls.

The presented utility
 calculates the size of a directory tree using os.ReadDir()
 with the help of the next function:

func

GetSize

(path

string

)

(

int64

, error)

 {
 contents, err := os.ReadDir(path)
 if

 err != nil

 {
 return

 -1

, err
 }
 var

 total int64

 for

 _, entry := range

 contents {
 // Visit directory entries

 if

 entry.IsDir() {

If we are processing
 a directory, we need to keep digging.

 temp, err := GetSize(filepath.Join(path, entry.Name()))
 if

 err != nil

 {
 return

 -1

, err
 }
 total += temp
 // Get size of each non-directory entry

 } else

 {

If it is a file, then we just need to get its size. This involves calling Info()
 to get general information about the file and then Size()
 to get the size of the file:

 info, err := entry.Info()
 if

 err != nil

 {
 return

 -1

, err
 }
 // Returns an int64 value

 total += info.Size()
 }
 }
 return

 total, nil

}

Running ReadDirEntry.go
 produces the next output, which indicates that the utility works as expected:

$

 go run ReadDirEntry.go /usr/bin
Total Size: 1170983337

Last, keep in mind that
 both ReadDir
 and DirEntry
 are copied from the Python programming language.

The next section
 introduces us to the io/fs
 package.

The io/fs package

This section illustrates the
 functionality of the io/fs
 package, which was first introduced in Go 1.16. As io/fs
 offers a unique kind of functionality, we begin this section by explaining what io/fs
 can do. Put simply, io/fs
 offers a read-only
 file system interface named FS
 . Note that embed.FS
 implements the fs.FS
 interface, which means that embed.FS
 can take advantage of some of the functionality offered by the io/fs
 package. This means that your applications can create their own internal file systems and work with their files.

The code example that follows, which is saved as ioFS.go
 , creates a file system using embed
 by putting all the files of the ./static
 folder in there. ioFS.go
 supports the following functionality: list all files, search for a filename, and extract a file using list()
 , search()
 , and extract()
 , respectively. We begin by presenting the implementation of list()
 :

func

list

(f embed.FS)

error

 {
 return

 fs.WalkDir(f, "."

, walkFunction)
}

All the magic happens in the walkFunction()
 function, which is implemented as follows:

func

walkFunction

(path

string

, d fs.DirEntry, err error)

error

 {
 if

 err != nil

 {
 return

 err
 }
 fmt.Printf("Path=%q, isDir=%v\n"

, path, d.IsDir())
 return

 nil

}

The walkFunction()
 function is pretty compact as all functionality is implemented by Go.

Then, we present the implementation of the extract()
 function:

func

extract

(f embed.FS, filepath

string

)

([]

byte

, error)

 {
 s, err := fs.ReadFile(f, filepath)
 if

 err != nil

 {
 return

 nil

, err
 }
 return

 s, nil

}

The ReadFile()
 function is used for retrieving a file, which is identified by its file path, from the embed.FS
 file system
 as a byte slice, which is returned from the extract()
 function.

Last, we have the implementation of the search()
 function, which is based on walkSearch()
 :

func

walkSearch

(path

string

, d fs.DirEntry, err error)

error

 {
 if

 err != nil

 {
 return

 err
 }
 if

 d.Name() == searchString {

searchString
 is a global variable that holds the search string. When a match is found, the matching path is printed on screen.

 fileInfo, err := fs.Stat(f, path)
 if

 err != nil

 {
 return

 err
 }
 fmt.Println("Found"

, path, "with size"

, fileInfo.Size())
 return

 nil

 }

Before printing a match, we make a call to fs.Stat()
 in order to get more details about it.

 return

 nil

}

The main()
 function specifically calls these three functions. Running ioFS.go
 produces the next kind of output:

$

 go run ioFS.go
Path=".", isDir=true
Path="static", isDir=true
Path="static/file.txt", isDir=false
Path="static/image.png", isDir=false
Path="static/textfile", isDir=false
Found static/file.txt with size 14
wrote 14 bytes

Initially, the utility lists
 all files in the file system (lines beginning with Path
). Then, it verifies that static/file.txt
 can be found in the file system. Last, it verifies that the writing of 14 bytes into a new file was successful as all 14 bytes have been written.

So, it turns out that Go version 1.16 introduced important additions and performance improvements.

Updating the phone book application

In this section we will
 change the format that the phone application uses for storing its data. This time, the phone book application uses JSON all over. Additionally, it uses the cobra
 package for implementing the supported commands. As a result, all relevant code resides on its own GitHub repository and not in the ch06
 directory of the GitHub repository of this book. The path of the GitHub repository is
https://github.com/mactsouk/phonebook

 —you can git clone
 that directory if you want but try to create your own version if you have the time.

When developing real applications, do not forget to git commit
 and git push
 your changes from time to time to ensure that you keep a history of the development phase in GitHub or GitLab. Among other things, this is a good way to keep backups!

Using cobra

First, you need to create
 an empty GitHub repository and clone it:

$

 cd

 ~/go/src/github.com/mactsouk
$

 git clone

 git@github.com:mactsouk/phonebook.git
$

 cd

 phonebook

The output of the git clone
 command is not important, so it is omitted.

The first task after cloning the GitHub repository, which at this point is almost empty, is to run the cobra init
 command with the appropriate parameters.

$

 ~/go/bin/cobra init --pkg-name github.com/mactsouk/phonebook
Using config file: /Users/mtsouk/.cobra.yaml
Your Cobra application is ready at
/Users/mtsouk/go/src/github.com/mactsouk/phonebook

Then, you should create the
 structure of the application using the cobra
 binary. Once you have the structure, it is easy to know what you have to implement. The structure of the application is based on the supported commands.

$

 ~/go/bin/cobra add list
Using config file: /Users/mtsouk/.cobra.yaml
list created at /Users/mtsouk/go/src/github.com/mactsouk/phonebook
$

 ~/go/bin/cobra add delete
$

 ~/go/bin/cobra add insert
$

 ~/go/bin/cobra add search

At this point the structure of the project should be the following:

$

 tree
.
├── LICENSE
├── README.md
├── cmd
│ ├── delete.go
│ ├── insert.go
│ ├── list.go
│ ├── root.go
│ └── search.go
├── go.mod
├── go.sum
└── main.go
1 directory, 10 files

After that you should declare that we want to use Go modules by executing the next command:

$

 go mod init
go: creating new go.mod: module github.com/mactsouk/phonebook

If needed you can run go mod tidy
 after go mod init
 . At this point executing go run main.go
 should download all required package dependencies and generate the default cobra
 output.

The next subsection
 discusses the storing of JSON data on disk.

Storing and loading JSON data

This functionality
 of the saveJSONFile()
 helper function is implemented in ./cmd/root.go
 using the following function:

func

saveJSONFile

(filepath

string

)

error

 {
 f, err := os.Create(filepath)
 if

 err != nil

 {
 return

 err
 }
 defer

 f.Close()
 err = Serialize(&data, f)
 if

 err != nil

 {
 return

 err
 }
 return

 nil

}

So, basically, all you have to do is serialize the slice of structures using Serialize()
 and save the result into a file. Next, we need to load the JSON data from the file.

The loading functionality is implemented in ./cmd/root.go
 using the readJSONFile()
 helper function. All you have to do is read the data file with the JSON data and put that data into a slice of structures by deserializing it.

Implementing the delete command

The delete
 command deletes
 existing entries from the phone book application—it is implemented in ./cmd/delete.go
 :

var

 deleteCmd = &cobra.Command{
 Use: "delete"

,
 Short: "delete an entry"

,
 Long: `delete an entry from the phone book application.`

,
 Run: func

(cmd *cobra.Command, args []

string

)

 {
 // Get key

 key, _ := cmd.Flags().GetString("key"

)
 if

 key == ""

 {
 fmt.Println("Not a valid key:"

, key)
 return

 }

First, we read the appropriate command-line flag (key
) in order to be able to identify the record that is going to be deleted.

 // Remove data

 err := deleteEntry(key)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 },
}

Then, we
 call the deleteEntry()
 helper function to actually delete the key. After a successful deletion, deleteEntry()
 calls saveJSONFile()
 for changes to take effect.

The next subsection discusses the insert
 command.

Implementing the insert command

The insert
 command
 requires user input, which means that it should support local command-line flags for doing so. As each record has three fields, the command requires three command-line flags. Then it calls the insert()
 helper function for writing the data to disk. Please refer to the ./cmd/insert.go
 source file for the details of the implementation of the insert
 command.

Implementing the list command

The list
 command lists the
 contents in the phone book application. It requires no command-line arguments and is basically implemented with the list()
 function:

func

list

()

 {
 sort.Sort(PhoneBook(data))
 text, err := PrettyPrintJSONstream(data)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Println(text)
 fmt.Printf("%d records in total.\n"

, len

(data))
}

The function sorts the data before calling PrettyPrintJSONstream()
 in order to beautify the generated output.

Implementing the search command

The search
 command is used for
 looking into the phone book application for a given phone number. It is implemented with the search()
 function found in ./cmd/search.go
 that looks into the index map for a given key. If the key is found, then the respective record is returned.

Apart from the JSON-related operations and changes due to the use of JSON and cobra
 , all other Go code is almost the same as the version of the phone book application from Chapter 4
 , Reflection and Interfaces
 .

Working with the phone book utility produces the next kind of output:

$

 go run main.go list
[
 {
 "name": "Mastering",
 "surname": "Go",
 "tel": "333123",
 "lastaccess": "1613503772"
 }
]
1 records in total.

This is the output from the list
 command. Adding an entry is as simple as running the next command:

$

 go run main.go insert -n Mike -s Tsoukalos -t 9416471

Running the list
 command
 verifies the success of the insert
 command:

$

 go run main.go list
[
 {
 "name": "Mastering",
 "surname": "Go",
 "tel": "333123",
 "lastaccess": "1613503772"
 },
 {
 "name": "Mike",
 "surname": "Tsoukalos",
 "tel": "9416471",
 "lastaccess": "1614602404"
 }
]
2 records in total.

Then you can delete that entry by running go run main.go delete --key 9416471
 . As stated before, the keys of the application are the phone numbers, which means that we delete entries based on phone numbers. However, nothing prohibits you from implementing deletion based on other properties.

If a command is not found, then you are going to get the next kind of output:

$

 go run main.go doesNotExist
Error: unknown command "doesNotExist" for "phonebook"
Run 'phonebook --help' for usage.
Error: unknown command "doesNotExist" for "phonebook"
exit status 1

As the doesNotExist
 command is not supported by the command-line application, cobra
 prints a descriptive
 error message (unknown command
).

Exercises

	Use the functionality of byCharacter.go
 , byLine.go
 , and byWord.go
 in order to create a simplified version of the wc(1)
 UNIX utility.

	Create a full version of the wc(1)
 UNIX utility using the viper
 package for processing command-line options.

	Create a full version of the wc(1)
 UNIX utility using commands instead of command-line options with the help of the cobra
 package.

	Modify JSONstreams.go
 to accept user data or data from a file.

	Modify embedFiles.go
 in order to save the binary file at a user-selected location.

	Modify ioFS.go
 in order to get the desired command as well as the search string as a command-line argument.

	Make ioFS.go
 a cobra
 project.

	The byLine.go
 utility uses ReadString('\n')
 to read the input file. Modify the code to use Scanner
 (
https://golang.org/pkg/bufio/#Scanner

) for reading.

	Similarly, byWord.go
 uses ReadString('\n')
 to read the input file—modify the code to use Scanner
 instead.

	Modify the code of yaml.go
 in order to read the YAML data from an external file.

Summary

This chapter was all about systems programming and file I/O in Go and included topics such as signal handling, working with command-line arguments, reading and writing plain text files, working with JSON data, and creating powerful command-line utilities using cobra
 .

This is one of the most important chapters in this book because you cannot create any real-world utility without interacting with the operating system as well as the file system.

The next chapter is about concurrency in Go, with the main subjects being goroutines, channels, and data sharing.

Additional resources

	The viper
 package:
https://github.com/spf13/viper

	The cobra
 package:
https://github.com/spf13/cobra

	The documentation of encoding/json
 :
https://golang.org/pkg/encoding/json

	The documentation of io/fs
 :
https://golang.org/pkg/io/fs/

	Endian-ness:
https://en.wikipedia.org/wiki/Endianness

	Go 1.16 release notes:
https://golang.org/doc/go1.16

7

Go Concurrency

The key component of the Go concurrency model is
 the goroutine
 , which is the minimum executable entity in Go. Everything in Go is executed as a goroutine, either transparently or consciously. Each executable Go program has at least one goroutine, which is used for running the main()
 function of the main
 package. Each goroutine is executed on a single
 OS thread according to the instructions of the Go scheduler
 , which is responsible for the execution of goroutines. The OS scheduler does not dictate how many threads the Go runtime is going to create because the Go runtime will spawn enough threads to ensure that GOMAXPROCS
 threads are available to run Go code.

However, goroutines cannot directly communicate with each other. Data sharing in Go is implemented using
 either channels
 or shared memory
 . Channels act as the glue that connects multiple goroutines. Remember
 that although goroutines can process data and execute commands, they cannot communicate directly
 with each other, but they can communicate in other ways, including channels, local sockets, and shared memory. On the other hand, channels cannot process data or execute code but can send data to goroutines, receive data from goroutines, or have a special purpose.

When you combine multiple channels and goroutines you can create data flows, which in Go terminology are
 also called pipelines. So, you might have a goroutine that reads data from a database and sends it to a channel and a second goroutine that reads from that channel, processes that data, and sends it to another channel in order to be read from another goroutine, before making modifications to the data and storing it to a different database.

This chapter covers:

	Processes, threads, and goroutines

	The Go scheduler

	Goroutines

	Channels

	Race conditions

	The select
 keyword

	Timing out a goroutine

	Go channels revisited

	Shared memory and shared variables

	Closured variables and the go
 statement

	The context
 package

	The semaphore
 package

Processes, threads, and goroutines

A process
 is an OS representation of a
 running program, while a program
 is a binary file on disk that contains all the
 information necessary for creating an OS process. The binary file is written in a specific format (ELF on Linux) and contains all the instructions the CPU is going to run as well as a plethora of other useful sections. That program is loaded into memory and the instructions are executed, creating a running process. So, a process
 carries
 with it additional resources such as memory, opened file descriptions, and user data as well as other types of resources that are obtained during runtime.

A thread
 is a smaller and
 lighter entity than a process. Processes consist of one or more threads that have their own flow of control and stack. A quick and simplistic way to differentiate a thread from a process is to consider a process as the running binary file and a thread as a subset of a process.

A goroutine
 is the
 minimum Go entity that can be executed concurrently. The use of the word minimum
 is very important here, as goroutines are not autonomous entities like UNIX processes—goroutines live in OS threads that live in OS processes. The good thing is that goroutines are lighter than threads, which, in turn, are lighter than processes—running thousands or hundreds of thousands of goroutines on a single machine is not a problem. Among the reasons that goroutines are lighter than threads is because they have a smaller stack that can grow, they have a faster startup time, and they can communicate with each other through channels with low latency.

In practice, this means that a process can have multiple threads as well as lots of goroutines, whereas a goroutine needs the environment of a process to exist. So, to create a goroutine, you need to have a process with at least one thread. The OS takes care of the process and thread scheduling, while Go creates the necessary threads and the developer creates the desired number of goroutines.

Now that you know the basics of processes, programs, threads, and goroutines, let us talk a little bit about the Go scheduler
 .

The Go scheduler

The OS kernel
 scheduler is responsible for the execution of the threads of a program. Similarly, the Go runtime has its own scheduler, which is responsible for the execution of the goroutines
 using a technique known as m:n scheduling
 , where m
 goroutines are executed using n
 OS threads using multiplexing. The Go scheduler is the Go component responsible for the way and the order in which the goroutines of a Go program get executed. This makes the Go scheduler a really important part of the Go programming language. The Go scheduler is executed as a goroutine.

Be aware that as the Go scheduler only deals with the goroutines of a single program, its operation is much simpler, cheaper, and faster than the operation of the kernel scheduler.

Go uses the fork-join concurrency
 model. The fork part of the model, which should not be confused with the fork(2)
 system call, states
 that a child branch can be created at any point of a program. Analogously, the join part of the Go concurrency model is where the child branch ends and joins with its parent. Keep in mind that both sync.Wait()
 statements and channels that collect the results of goroutines are join points, whereas each new goroutine creates a child branch.

The fair scheduling strategy
 , which is pretty
 straightforward and has a simple implementation, shares all load evenly among the available processors. At first, this might look like the perfect strategy because it does not have to take many things into consideration while keeping all processors equally occupied. However, it turns out that this is not exactly the case because most distributed tasks usually depend on other tasks. Therefore, some processors are underutilized, or equivalently, some processors are utilized more than others. A goroutine is a task, whereas everything
 after the calling statement of a goroutine is a continuation
 . In the work-stealing
 strategy used
 by the Go scheduler, a (logical) processor that is underutilized looks for additional work from other processors.

When it finds such jobs, it steals them from the other processor or processors, hence the name. Additionally, the work-stealing algorithm of Go queues and steals continuations. A stalling join, as is suggested by its name, is a point where a thread of execution stalls at a join and starts looking for other work to do.

Although both task stealing and continuation stealing have stalling joins, continuations happen more often than tasks; therefore, the Go scheduling algorithm works with continuations rather than tasks.

The main disadvantage of continuation stealing is that it requires extra work from the compiler of the programming language. Fortunately, Go provides that extra help and therefore uses continuation stealing in its work-stealing algorithm. One of the benefits of continuation
 stealing is that you get the same results when using function calls instead of goroutines or a single thread with multiple goroutines. This makes perfect sense, as only one thing is executed at any given point in both cases.

The Go scheduler works using three main kinds of entities: OS threads (M
), which are related to the OS in use; goroutines (G
); and logical processors (P
). The number of processors that can be used by a Go program is specified by the value of the GOMAXPROCS
 environment variable—at any given time, there are at most GOMAXPROCS
 processors. Now, let us return to the m:n
 scheduling algorithm used in Go. Strictly speaking, at any time, you have m
 goroutines that are executed, and therefore scheduled to run, on n
 OS threads using, at most, GOMAXPROCS
 number of logical processors. You will learn more about GOMAXPROCS
 shortly.

The next figure shows that there are two different kinds of queues: a global run queue and a local run queue attached to each logical processor. Goroutines from the global queue are assigned to the queue of a logical processor in order to get executed at some point.

[image: Diagram Description automatically generated with low confidence]

Figure 7.1: The operation of the Go scheduler

Each logical processor can have multiple threads, and the stealing occurs between the local queues of the available logical processors. Finally, keep in mind that the Go scheduler is allowed to
 create more OS threads when needed. OS threads are pretty expensive in terms of resources, which means that dealing too much with OS threads might slow down your Go applications.

Next, we discuss the meaning and the use of GOMAXPROCS
 .

The GOMAXPROCS environment variable

The GOMAXPROCS
 environment
 variable allows you to set the number of OS threads (CPUs
) that can execute user-level Go code simultaneously
 . Starting with Go version 1.5, the default value of GOMAXPROCS
 should be the number of logical cores
 available in your machine. There is also the runtime.GOMAXPROCS()
 function, which allows you to set and get the value of GOMAXPROCS
 programmatically.

If you decide to assign a value to GOMAXPROCS
 that is smaller than the number of the cores in your machine, you might affect the performance of your program. However, using a GOMAXPROCS
 value that is larger than the number of the available cores does not necessarily make your Go programs run faster.

As mentioned earlier in this subsection, you can programmatically set and get the value of the GOMAXPROCS
 environment variable—this is illustrated in maxprocs.go
 , which will also show additional capabilities of the runtime
 package. The main()
 function is implemented as follows:

func

main

()

 {
 fmt.Print("You are using "

, runtime.Compiler, " "

)
 fmt.Println("on a"

, runtime.GOARCH, "machine"

)
 fmt.Println("Using Go version"

, runtime.Version())

The runtime.Compiler
 variable holds the compiler toolchain used for building the running binary. The two most well-known values are gc
 and gccgo
 . The runtime.GOARCH
 variable holds the current architecture and runtime.Version()
 returns the current version of the Go compiler. This information is not necessary for using runtime.GOMAXPROCS()
 but it is good to have a better knowledge of your system.

 fmt.Printf("GOMAXPROCS: %d\n"

, runtime.GOMAXPROCS(0

))
}

What happens with the runtime.GOMAXPROCS(0)
 call? runtime.GOMAXPROCS()
 always returns the previous value of the maximum number of CPUs that can be executing simultaneously
 . When
 the parameter of runtime.GOMAXPROCS()
 is equal to
 or bigger than 1, then runtime.GOMAXPROCS()
 also changes the current setting. As we are using 0, our call does not alter the current setting.

Running maxprocs.go
 produces the next output:

You are using gc on a amd64 machine
Using Go version go1.16.2
GOMAXPROCS: 8

You can change the value of GOMAXPROCS
 on the fly using the next technique:

$

export

 GOMAXPROCS=100; go run maxprocs.go

You are using gc on a amd64 machine
Using Go version go1.16.2
GOMAXPROCS: 100

The previous command temporarily changes the value of GOMAXPROCS
 to 100
 and runs maxprocs.go
 .

Apart from testing the performance of your code using fewer cores, you will most likely not need to change GOMAXPROCS
 . The next subsection will explain the similarities and the differences between concurrency and parallelism.

Concurrency and parallelism

It is a common
 misconception that concurrency
 is the same thing as parallelism
 —this is just not true! Parallelism is the simultaneous execution of
 multiple entities of some kind, whereas
 concurrency is a way of structuring your components so that they can be executed independently when possible.

It is only when you build software
 components concurrently that you can safely execute them in parallel, when and if your OS and your hardware permit it. The Erlang programming language did this a long time ago—long before CPUs had multiple cores and computers had lots of RAM.

In a valid concurrent design, adding concurrent entities makes the whole system run faster because more things can be executed in parallel. So, the desired parallelism comes from a better concurrent expression and implementation of the problem. The developer is responsible for taking concurrency into account during the design phase of a system and will benefit from a potential parallel execution of the components of the system. So, the developer should not think about parallelism but about breaking things into independent components that solve the initial problem when combined.

Even if you cannot run your functions in parallel on your machine, a valid concurrent design still improves the design and the maintainability of your programs.

In other words, concurrency is better than parallelism! Let us now talk about goroutines before looking into channels, which are the main components of the Go concurrency model.

Goroutines

You can define, create, and execute a new
 goroutine using the go
 keyword followed by a function name or
 an anonymous function
 . The go
 keyword makes the function call return immediately, while the function starts running in the background as a goroutine and the rest of the program continues its execution. You cannot control or make any assumptions about the order
 in which your goroutines are going to be executed because that depends on the scheduler of the OS, the Go scheduler, and the load of the OS.

Creating a goroutine

In this subsection, we learn how to
 create goroutines. The program that illustrates the technique is called create.go
 . The implementation of the main()
 function is as follows:

func

main

()

 {
 go

 func

(x

int

)

 {
 fmt.Printf("%d "

, x)
 }(10

)

This is how you run an anonymous function as a goroutine. The (10)
 at the end is how you pass a parameter to an anonymous function. The previous anonymous function just prints a value onscreen.

 go

 printme(15

)

This is how you execute
 a function as a goroutine. As a general rule of thumb, the functions that you execute as goroutines do not return any values directly
 . Exchanging data with goroutines happens via the use of shared memory or channels or some other mechanism.

 time.Sleep(time.Second)
 fmt.Println("Exiting..."

)
}

As a Go program does not wait for its goroutines to end before exiting, we need to delay it manually, which is the purpose of the time.Sleep()
 call. We will correct that shortly in order to wait for all goroutines to finish before exiting.

Running create.go
 produces the next output:

$

 go run create.go

10 * 15
Exiting...

The 10
 part in the output is from the anonymous function, whereas the * 15
 part is from the go printme(15)
 statement. However, if you run create.go
 more than once, you might get a different output because the two goroutines are not always executed in the same order:

$

 go run create.go

* 15
10 Exiting...

The next subsection shows how to run a variable number of goroutines.

Creating multiple goroutines

In this subsection, you
 learn how to create a variable number of goroutines. The program that illustrates the technique is called multiple.go
 . The number of goroutines is given as a command-line argument to the program. The important code from the implementation of the main()
 function is the following:

fmt.Printf("Going to create %d goroutines.\n"

, count)
for

 i := 0

; i < count; i++ {

There is nothing prohibiting you from using a for
 loop to create multiple goroutines, especially when you want to create lots of them.

 go

 func

(x

int

)

 {
 fmt.Printf("%d "

, x)
 }(i)
}
time.Sleep(time.Second)
fmt.Println("\nExiting..."

)

Once again, time.Sleep()
 delays the termination of the main()
 function.

Running multiple.go
 generates the next kind of output:

$

 go run multiple.go 15

Going to create 15 goroutines.
3 0 8 4 5 6 7 11 9 12 14 13 1 2 10
Exiting...

If you run multiple.go
 many times, you are going to get different output. So, there is still room for improvement. The next subsection shows how to remove the call to time.Sleep()
 and make your programs wait for the goroutines to finish.

Waiting for your goroutines to finish

It is not enough to
 create multiple goroutines—you also need to wait for them to finish before the main()
 function ends. Therefore, this subsection shows a technique that improves the code of multiple.go
 —the improved version is called varGoroutines.go
 . But first, we need to explain how this works.

The synchronization process begins by defining a sync.WaitGroup
 variable and using the Add()
 , Done()
 and Wait()
 methods. If you look at the source code of the sync
 Go package, and more specifically at the waitgroup.go
 file, you see that the sync.WaitGroup
 type is nothing more than a structure with two fields:

type

 WaitGroup struct

 {
 noCopy noCopy
 state1 [3

]uint32

}

Each call to sync.Add()
 increases a counter in the state1
 field, which is an array with three uint32
 elements. Notice that it is really important to call sync.Add()
 before the go
 statement in order to prevent any race conditions—we are going to learn about race conditions in the Race conditions
 section. When each goroutine finishes its job, the sync.Done()
 function should be executed in order to decrease the same counter by one. Behind the scenes, sync.Done()
 runs a Add(-1)
 call. The Wait()
 method waits until that counter becomes 0
 in
 order to return. The return of Wait()
 inside the main()
 function means that main()
 is going to return and the program ends.

You can call Add()
 with a positive integer value other than 1
 in order to avoid calling Add(1)
 multiple times. This can be handy when you know the number of goroutines you are going to create in advance. Done()
 does not support that functionality.

The important part of varGoroutines.go
 is the following:

var

 waitGroup sync.WaitGroup
fmt.Printf("%#v\n"

, waitGroup)

This is where you create a sync.WaitGroup
 variable that you are going to use. The fmt.Printf()
 call prints the contents of the sync.WaitGroup
 structure—you do not usually do that but it is good for learning more about the sync.WaitGroup
 structure.

for

 i := 0

; i < count; i++ {
 waitGroup.Add(1

)

We call Add(1)
 just before we create the goroutine in order to avoid race conditions.

 go

 func

(x

int

)

 {
 defer

 waitGroup.Done()

The Done()
 call is going to be executed just before the anonymous function returns because of the defer
 keyword.

 fmt.Printf("%d "

, x)
 }(i)
}
fmt.Printf("%#v\n"

, waitGroup)
waitGroup.Wait()

The Wait()
 function is going to wait for the counter in the waitGroup
 variable to become 0
 before it returns, which is what we want to achieve.

fmt.Println("\nExiting..."

)

When the Wait()
 function returns, the fmt.Println()
 statement is going to be executed. No need to call time.Sleep()
 anymore!

Running varGoroutines.go
 produces
 the next output:

$

 go run varGoroutines.go 15

Going to create 15 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x0}}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0xf}}
14 8 9 10 11 5 0 4 1 2 3 6 13 12 7
Exiting...

The value in the third place of the state1
 slice is 0xf
 , which is 15
 in the decimal system, because we called Add(1)
 fifteen times.

Remember that using more goroutines in a program is not a panacea for performance, as more goroutines, in addition to the various calls to sync.Add()
 , sync.Wait()
 , and sync.Done()
 , might slow down your program due to the extra housekeeping that needs to be done by the Go scheduler.

What if the number of Add() and Done() calls differ?

When the number of sync.Add()
 calls and sync.Done()
 calls are equal, everything is going to be fine in
 your programs. However, this subsection tells you what happens when these two numbers do not agree with each other.

Depending on whether command-line parameters exist or not, the presented program acts differently. Without any command-line parameters, the number of Add()
 calls is smaller than the number of Done()
 calls. With at least one command-line parameter, the number of Done()
 calls is smaller than the number of Add()
 calls. You can look at the Go code of addDone.go
 on your
 own. What is important is the output it generates. Running addDone.go
 without command-line arguments produces the next error message:

$

 go run addDone.go

Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x0}}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x13}}
19 14 15 16 17 18 10 8 9 11 12 1 0 2 5 6 3 4 7 13
Exiting...
panic: sync: negative WaitGroup counter
goroutine 19 [running]:
sync.(*WaitGroup).Add(0xc000014094, 0xffffffffffffffff)
 /usr/local/Cellar/go/1.16/libexec/src/sync/waitgroup.go:74 +0x147
sync.(*WaitGroup).Done(0xc000014094)
 /usr/local/Cellar/go/1.16/libexec/src/sync/waitgroup.go:99 +0x34
main.main.func1(0xc000014094, 0xd)
 /Users/mtsouk/ch07/addDone.go:26 +0xdb
created by main.main
 /Users/mtsouk/ch07/addDone.go:23 +0x1c6
exit status 2

The cause of the error message can be found in the output: panic: sync: negative WaitGroup counter
 —caused by more calls to Done()
 than calls to Add()
 . Note that sometimes addDone.go
 does not produce any error messages and terminates just fine. This is an issue with concurrent programs in general—they do not always crash or misbehave as the order of execution can change, which might change the behavior of the program. This makes debugging even more difficult.

Running addDone.go
 with one command-line argument produces the next error message:

$

 go run addDone.go 1

Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x0}}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x15}}
19 5 6 7 8 9 0 1 3 14 11 12 13 4 17 10 2 15 16 18 fatal error: all goroutines are asleep - deadlock!
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc000014094)
 /usr/local/Cellar/go/1.16/libexec/src/runtime/sema.go:56 +0x45
sync.(*WaitGroup).Wait(0xc000014094)
 /usr/local/Cellar/go/1.16/libexec/src/sync/waitgroup.go:130 +0x65
main.main()
 /Users/mtsouk/ch07/addDone.go:38 +0x2b6
exit status 2

Once again, the reason for the
 crash is printed on screen: fatal error: all goroutines are asleep - deadlock!
 . This means that the program should wait indefinitely
 for a goroutine to finish, that is, for a Done()
 call that is never going to happen.

Creating multiple files with goroutines

As a practical example of the
 use of goroutines, this subsection presents a command-line utility that creates multiple files populated with randomly generated data—such files can be used for testing file systems or generating data used for testing. The crucial code of randomFiles.go
 is the following:

var

 waitGroup sync.WaitGroup
for

 i := start; i <= end; i++ {
 waitGroup.Add(1

)
 filepath := fmt.Sprintf("%s/%s%d"

, path, filename, i)
 go

 func

(f

string

)

 {
 defer

 waitGroup.Done()
 createFile(f)
 }(filepath)
}
waitGroup.Wait()

We first create a sync.WaitGroup
 variable in order to wait for all goroutines to finish the right way. Each file is created by a single goroutine only. What is important here is that each file has a unique filename—this is implemented with the filepath
 variable that contains the value of the for
 loop counter. Multiple createFile()
 functions executed as goroutines create the files. This is a simple yet very efficient way of creating multiple files.

Running randomFiles.go
 generates the next output:

$

 go run randomFiles.go

Usage: randomFiles firstInt lastInt filename directory

So, the utility requires four
 parameters, which are the first and last value of the for
 loop as well as the filename and the directory where the files are going to be written. So, let us run the utility with the correct number of parameters:

$

 go run randomFiles.go 2 5 masterGo /tmp

/tmp/masterGo5 created!
/tmp/masterGo3 created!
/tmp/masterGo2 created!
/tmp/masterGo4 created!

Everything looks fine, and four files have been created according to our instructions! Now that we know about goroutines, let us continue with channels.

Channels

A channel
 is a communication
 mechanism that, among other things, allows goroutines to exchange data. Firstly, each channel allows the exchange of a particular data type, which is also called the element type of the channel, and secondly, for a channel to operate properly, you need someone to receive what is sent via the channel. You should declare a new channel using make()
 and the chan
 keyword (make(chan int)
), and you can close a channel using the close()
 function. You can declare the size of a channel by writing something like make(chan int, 1)
 .

A pipeline
 is a virtual method for
 connecting goroutines and channels so that the output of one goroutine becomes the input of another goroutine using channels to transfer your data. One of the benefits that you get from using pipelines is that there is a constant data flow in your program, as no goroutine or channel has to wait for everything to be completed in order to start their execution. Additionally, you use fewer variables and therefore less memory space because you do not have to save everything as a variable. Finally, the use of pipelines simplifies the design of the program and improves its maintainability.

Writing to and reading from a channel

Writing the value val
 to
 channel ch
 is as easy as writing ch <- val
 . The arrow shows the direction of the value, and you will have no problem with this statement as long as both var
 and ch
 are of the same data type.

You can read a single value from a
 channel named c
 by executing <-c
 . In this case, the direction is from the channel to the outer world. You can save that value into a variable using aVar :=
 <-c
 .

Both channel reading and writing are illustrated in channels.go
 , which comes with the following code:

package

 main
import

 (
 "fmt"

 "sync"

)
func

writeToChannel

(c

chan

int

, x

int

)

 {
 c <- x
 close

(c)
}

This function just writes a value to the channel and immediately closes it.

func

printer

(ch

chan

bool

)

 {
 ch <- true

}

This function just sends the true
 value to a bool
 channel.

func

main

()

 {
 c := make

(chan

 int

, 1

)

This channel is buffered
 with a size of 1
 . This means
 that as soon as we fill that buffer, we can close the channel and the goroutine is going to continue its execution and return. A channel that is unbuffered
 has a different behavior: when you try to send a
 value to that channel, it blocks forever because it is waiting for someone to fetch that value. In this case, we definitely want a buffered channel in order to avoid any blocking.

 var

 waitGroup sync.WaitGroup
 waitGroup.Add(1

)
 go

 func

(c

chan

int

)

 {
 defer

 waitGroup.Done()
 writeToChannel(c, 10

)
 fmt.Println("Exit."

)
 }(c)
 fmt.Println("Read:"

, <-c)

Here, we read from the
 channel and print the value without storing it in a separate variable.

 _, ok := <-c
 if

 ok {
 fmt.Println("Channel is open!"

)
 } else

 {
 fmt.Println("Channel is closed!"

)
 }

The previous code shows a
 technique for determining whether a channel is closed or not
 . In this case, we are ignoring the read value—if the channel was open, then the read value would be discarded
 .

 waitGroup.Wait()
 var

 ch chan

 bool

 = make

(chan

 bool

)
 for

 i := 0

; i < 5

; i++ {
 go

 printer(ch)
 }

Here, we make an unbuffered channel, and we create five goroutines without any synchronization
 as we do not use any Add()
 calls.

 // Range on channels

 // IMPORTANT: As the channel c is not closed,

 // the range loop does not exit on its own.

 n := 0

 for

 i := range

 ch {

The range
 keyword works with channels! However, a range
 loop on a channel only exits when the channel is closed or using the break
 keyword.

 fmt.Println(i)
 if

 i == true

 {
 n++
 }
 if

 n > 2

 {
 fmt.Println("n:"

, n)
 close

(ch)
 break

 }
 }

We close the ch
 channel when a condition is met and exit the for
 loop using break
 .

 for

 i := 0

; i < 5

; i++ {
 fmt.Println(<-ch)
 }
}

When trying to read from a closed channel, we get the zero value of its data type
 , so this for
 loop works just fine
 and does not cause any issues.

Running channels.go
 generates
 the next output:

Exit.
Read: 10

After writing the value 10
 to the channel using writeToChannel(c, 10)
 , we read that value back.

Channel is closed!
true
true
true

The for
 loop with the range
 exits after three iterations—each iteration prints true
 on screen.

n: 3
false
false
false
false
false

These five false
 values are printed by the last for
 loop of the program.

Although everything
 looks fine with channels.go
 , there is a logical issue with it, which
 we will explain and resolve in the Race conditions
 section. Additionally, if we run channels.go
 multiple times, it might crash. However, most of the time it does not, which makes debugging even more challenging.

Receiving from a closed channel

Reading from a closed channel returns the zero value of its data type
 . However, if you try to write to a closed
 channel, your program is going to crash in a bad way (panic
). These two situations are explored in readCloseCh.go
 and more specifically in the implementation of the main()
 function:

func

main

()

 {
 willClose := make

(chan

 complex64

, 10

)

If you make that an unbuffered channel, the program is going to crash.

 // Write some data to the channel

 willClose <- -1

 willClose <- 1i

We write two values to the willClose
 channel.

 // Read data and empty channel

 <-willClose
 <-willClose
 close

(willClose)

Then, we read and discard these two values and we close the channel.

 // Read again – this is a closed channel

 read := <-willClose
 fmt.Println(read)
}

The last value that we read from the channel is the zero value of a complex64
 data type. Running readCloseCh.go
 generates the next output:

(0+0i)

So, we got back the zero value of the complex64
 data type. Now let us continue and discuss how to work
 with functions that accept channels as parameters.

Channels as function parameters

When using a channel as a function parameter
 , you can specify its direction; that is, whether it is going to be used for sending or receiving data. In my opinion, if you know the purpose of a channel in
 advance, you should use this capability because it makes your programs more robust. You will not be able to send data accidentally to a channel from which you should only receive data or receive data from a channel to which you should only be sending data. As a result, if you declare that a channel function parameter is going to be used for reading only and you try to write to it, you get an error message that will most likely save you from nasty bugs in the future.

All these are illustrated in channelFunc.go
 —the implementation of the functions that accept channel parameters are the following:

func

printer

(ch

chan

<-

bool

)

 {
 ch <- true

}

This function accepts a channel parameter that is available for writing only.

func

writeToChannel

(c

chan

<-

int

, x

int

)

 {
 fmt.Println("1"

, x)
 c <- x
 fmt.Println("2"

, x)
}

The channel parameter of this function is available for reading only.

func

f2

(out <-

chan

int

, in

chan

<-

int

)

 {
 x := <-out
 fmt.Println("Read (f2):"

, x)
 in <- x
 return

}

The last function accepts two channel parameters. However, out
 is available for reading whereas in
 is offered for writing. If you try to perform an operation on a channel parameter that is not allowed, the Go compiler is going to complain. This happens even if the function is not being used.

The subject of the next
 section is race conditions—read it carefully in order to avoid undefined behaviors and unpleasant situations when working with multiple goroutines.

Race conditions

A data race condition is a
 situation where two or more running elements, such as threads and goroutines, try to take control of or modify a shared resource or shared variable of a program. Strictly speaking, a data race occurs when two or more instructions access the same memory address, where at least one of them performs a write (change) operation. If all operations are read operations, then there is no race condition. In practice, this means that you might get different output if you run your program multiple times, and that is a bad thing.

Using the -race
 flag when running or building Go source files executes the Go race detector, which makes the compiler create a modified version of a typical executable file. This modified version can record all accesses to shared variables as well as all synchronization events that take place, including calls to sync.Mutex
 and sync.WaitGroup
 , which are presented later on in this chapter. After analyzing the relevant events, the race detector prints a report that can help you identify potential problems so that you can correct them.

The Go race detector

You can run the race
 detector tool with go run -race
 . If we test channels.go
 using go run -race
 , we are going to get the following output:

$

 go run -race channels.go

Exit.
Read: 10
Channel is closed!
true
true
true
n: 3
==================
WARNING: DATA RACE
Write at 0x00c00006e010 by main goroutine:
 runtime.closechan()
 /usr/local/Cellar/go/1.16.2/libexec/src/runtime/chan.go:355 +0x0
 main.main()
 /Users/mtsouk/ch07/channels.go:54 +0x46c
Previous read at 0x00c00006e010 by goroutine 12:
 runtime.chansend()
 /usr/local/Cellar/go/1.16.2/libexec/src/runtime/chan.go:158 +0x0
 main.printer()
 /Users/mtsouk/ch07/channels.go:14 +0x47
Goroutine 12 (running) created at:
 main.main()
 /Users/mtsouk/ch07/channels.go:40 +0x2b4
==================
false
false
false
false
false
Found 1 data race(s)
exit status 66

Therefore, although channels.go
 looks fine, there is a race condition waiting to happen. Let us now discuss where the problem with channels.go
 lies based on the previous output.

There is a closing of a
 channel at channels.go
 on line 54, and there is a write to the same channel on line 14 that looks to be the root of the race condition situation. Line 54 is close(ch)
 , whereas line 14 is ch <- true
 . The issue is that we cannot be sure about what is going to happen and in which order
 —this is the race condition. If you execute channels.go
 without the race detector, it might work but if you try it multiple times, you might get a panic: send on closed channel
 error message—this mainly has to do with the order the Go scheduler is going to run the goroutines of the program. So, if the
 closing of the channel happens first, then writing to that channel is going to fail—race condition
 !

Fixing channels.go
 requires changing the code and more specifically the implementation of the printer()
 function. The corrected version of channels.go
 is named chRace.go
 and comes with the next code:

func

printer

(ch

chan

<-

bool

, times

int

)

 {
 for

 i := 0

; i < times; i++ {
 ch <- true

 }
 close

(ch)
}

The first thing to notice here
 is that instead of using multiple goroutines for writing to the desired channel, we use a single goroutine. A single goroutine writing to a channel followed by the closing of that channel cannot create any race conditions because things happen sequentially.

func

main

()

 {
 // This is an unbuffered channel

 var

 ch chan

 bool

 = make

(chan

 bool

)
 // Write 5 values to channel with a single goroutine

 go

 printer(ch, 5

)
 // IMPORTANT: As the channel c is closed,

 // the range loop is going to exit on its own.

 for

 val := range

 ch {
 fmt.Print(val, " "

)
 }
 fmt.Println()
 for

 i := 0

; i < 15

; i++ {
 fmt.Print(<-ch, " "

)
 }
 fmt.Println()
}

Running go run -race chRace.go
 produces the next output, which means that there is not a race condition any more:

true true true true true
false false false false false false false false false false false false false false false

The next section is about the important and powerful select
 keyword.

The select keyword

The select
 keyword is
 really important because it allows you to listen to multiple channels at the same time. A select
 block can have multiple cases and an optional default
 case, which mimics the switch
 statement. It is good for select
 blocks to have a timeout option just in case. Last, a select
 without any cases (select{}
) waits forever.

In practice, this means that select
 allows a goroutine to wait on multiple
 communication operations. So, select
 gives you the power to listen to multiple channels using a single select
 block. As a consequence, you can have nonblocking operations on channels, provided that you have implemented your select
 blocks appropriately.

A select
 statement is not evaluated sequentially, as all of its channels are examined simultaneously. If none of the channels in a select statement are ready, the select
 statement blocks (waits
) until one of the channels is ready. If multiple channels of a
 select
 statement are ready, then the Go runtime makes a random selection from the set of these ready channels
 .

The code in select.go
 presents a simple use of select
 running in a goroutine that has three cases. But first, let us see how the goroutine that contains select
 runs:

 wg.Add(1

)
 go

 func

()

 {
 gen(0

, 2

*n, createNumber, end)
 wg.Done()
 }()

The previous code tells us that for wg.Done()
 to get executed, gen()
 should return first. So, let us see the implementation of gen()
 :

func

gen

(min, max

int

, createNumber

chan

int

, end

chan

bool

)

 {
 time.Sleep(time.Second)
 for

 {
 select

 {
 case

 createNumber <- rand.Intn(max-min) + min:
 case

 <-end:
 fmt.Println("Ended!"

)
 // return

The right thing to do here is add the return
 statement for gen()
 to finish. But let us imagine that you have forgotten to add the return
 statement. This means that the function is not going to finish after the select
 branch associated with the end
 channel parameter is executed—createNumber
 is not going to end the function as it has no return
 statement. Therefore, the select
 block keeps waiting for more. The solution can be found in the code that follows:

 case

 <-time.After(4

 * time.Second):
 fmt.Println("time.After()!"

)
 return

 }
 }
}

So, what is really
 happening in the code of the entire select
 block? This particular select
 statement has three cases. As stated earlier, select
 does not require a default
 branch. You can consider the third branch of the select
 statement as a clever default
 branch. This happens because time.After()
 waits for the specified duration (4 * time.Second
) to elapse and then prints a message and properly ends gen()
 with return
 . This unblocks the select
 statement in case all of the other channels are blocked for some reason. Although omitting return
 from the second branch is a bug, this shows that having an exit strategy is always a good thing.

Running select.go
 produces the next output:

$

 go run select.go 10

Going to create 10 random numbers.
13 0 2 8 12 4 13 15 14 19 Ended!
time.After()!
Exiting...

We are going to see select
 in action in the remainder of the chapter, starting from the next section, which discusses how to time out goroutines. What you should remember is that select
 allows us to listen to multiple channels from a single point.

Timing out a goroutine

There are times that
 goroutines take more time than expected to finish—in such situations, we want to time out the goroutines so that we can unblock the program. This section presents two such techniques.

Timing out a goroutine – inside main()

This subsection
 presents a simple technique for timing out a goroutine. The relevant code can be found in the main()
 function of timeOut1.go
 :

func

main

()

 {
 c1 := make

(chan

 string

)
 go

 func

()

 {
 time.Sleep(3

 * time.Second)
 c1 <- "c1 OK"

 }()

The time.Sleep()
 call is used for emulating the time it normally takes for a function to finish its operation. In this case, the anonymous function that is executed as a goroutine takes about three seconds before writing a message to the c1
 channel.

 select

 {
 case

 res := <-c1:
 fmt.Println(res)
 case

 <-time.After(time.Second):
 fmt.Println("timeout c1"

)
 }

The purpose of the time.After()
 call is to wait for the desired time before being executed—if another branch is executed, the waiting time resets. In this case, we are not interested in the actual value returned by time.After()
 but in the fact that the time.After()
 branch was executed, which means that the waiting time has passed. In this case, as the value passed to the time.After()
 function is smaller than the value used in the time.Sleep()
 call that was executed previously, you will most likely get a timeout message. The reason for saying "most likely" is that Linux is not a real-time OS and sometimes the OS scheduler plays strange games, especially when it has to deal with a high load and has to schedule lots of tasks.

 c2 := make

(chan

 string

)
 go

 func

()

 {
 time.Sleep(3

 * time.Second)
 c2 <- "c2 OK"

 }()
 select

 {
 case

 res := <-c2:
 fmt.Println(res)
 case

 <-time.After(4

 * time.Second):
 fmt.Println("timeout c2"

)
 }
}

The preceding code both executes a goroutine that takes about three seconds to execute because of the time.Sleep()
 call and defines a timeout period of four seconds in select
 using time.After(4 * time.Second)
 . If the time.After(4 * time.Second)
 call returns after you get a
 value from the c2
 channel found in the first case of the select
 block, then there will be no timeout; otherwise, you get a timeout. However, in this case, the value of the time.After()
 call provides enough time for the time.Sleep()
 call to return, so you will most likely not get a timeout message here.

Let us now verify our thoughts. Running timeOut1.go
 produces the next output:

$

 go run timeOut1.go

timeout c1
c2 OK

As expected, the first goroutine timed out whereas the second one did not. The subsection that follows presents another timeout technique.

Timing out a goroutine – outside main()

This subsection illustrates
 another technique for timing out goroutines. The select
 statement can be found in a separate function. Additionally, the timeout period is given as a command-line argument.

The interesting part of timeOut2.go
 is in the implementation of timeout()
 :

func

timeout

(t time.Duration)

 {
 temp := make

(chan

 int

)
 go

 func

()

 {
 time.Sleep(5

 * time.Second)
 defer

 close

(temp)
 }()
 select

 {
 case

 <-temp:
 result <- false

 case

 <-time.After(t):
 result <- true

 }
}

In timeout()
 , the time duration that is used in the time.After()
 call is a function parameter, which means that it can vary. Once again, the select
 block holds the logic of the time out. Any timeout period bigger than 5 seconds will most likely give the goroutine enough time to finish. If timeout()
 writes false
 to the result
 channel, then there was no timeout, whereas if it
 writes true
 , there was a timeout. Running timeOut2.go
 produces the next output:

$

 go run timeOut2.go 100

Timeout period is 100ms
Time out!

The timeout period is 100 milliseconds, which means that the goroutine did not have enough time to finish, hence the timeout message.

$

 go run timeOut2.go 5500

Timeout period is 5.5s
OK

This time the timeout is 5,500 milliseconds, which means that the goroutine had enough time to finish.

The next section revisits and presents advanced concepts related to channels.

Go channels revisited

So far, we have seen
 basic usages of channels—this section presents the definition and the usage of nil
 channels, signal channels, and buffered channels.

It helps to remember that the zero value of the channel type is nil
 , and that if you send a message to a closed channel, the program panics. However, if you try to read from a closed channel, you get the zero value of the type of that channel. So, after closing a channel, you can no longer write to it, but you can still read from it
 . To be able to close a channel, the channel must not be receive-only.

Additionally, a nil
 channel always blocks, which means that both reading and writing from nil
 channels blocks. This property of channels can be very useful when you want to disable a branch of a select
 statement by assigning the nil
 value to a channel variable. Finally, if you try to close
 a nil
 channel, your program is going to panic. This is best illustrated in the closeNil.go
 program:

package

 main
func

main

()

 {
var

 c chan

 string

The previous statement defines a nil
 channel named c
 of type string
 .

close

(c)
}

Running closeNil.go
 generates the following output:

panic: close of nil channel
goroutine 1 [running]:
main.main()
 /Users/mtsouk/ch07/closeNil.go:5 +0x2a
exit status 2

The previous output shows the message you are going to get if you try to close a nil
 channel.

Let us now discuss
 buffer channels.

Buffered channels

The topic of this subsection is
 buffered channels. These channels allow us to put jobs in a queue quickly in order to be able to deal with more requests and process requests later on. Moreover, you can use buffered channels as semaphores in order to limit the throughput of your application.

The presented technique
 works as follows: all incoming requests are forwarded to a channel, which processes them one by one. When the channel is done processing a request, it sends a message to the original caller saying that it is ready to process a new one. So, the capacity of the buffer of the channel restricts the number of simultaneous requests that it can keep.

The file that implements the technique is named bufChannel.go
 and contains the next code:

package

 main
import

 (
 "fmt"

)
func

main

()

 {
 numbers := make

(chan

 int

, 5

)

The numbers
 channel
 cannot store more than five integers—this is a buffer channel with a capacity of 5
 .

 counter := 10

 for

 i := 0

; i < counter; i++ {
 select

 {
 // This is where the processing takes place

 case

 numbers <- i * i:
 fmt.Println("About to process"

, i)
 default

:
 fmt.Print("No space for "

, i, " "

)
 }

We begin putting data into numbers
 —however, when the channel is full, it is not going to store more data and the default
 branch is going to be executed.

 }
 fmt.Println()
 for

 {
 select

 {
 case

 num := <-numbers:
 fmt.Print("*"

, num, " "

)
 default

:
 fmt.Println("Nothing left to read!"

)
 return

 }
 }
}

Similarly, we try to read data from numbers
 using a for
 loop. When all data from channel is read, the default
 branch is going to be executed and terminate the program with its return
 statement.

Running bufChannel.go
 produces the next output:

$

 go run bufChannel.go

About to process 0
. . .
About to process 4
No space for 5 No space for 6 No space for 7 No space for 8 No space for 9
*0 *1 *4 *9 *16 Nothing left to read!

Let us now
 discuss nil
 channels.

nil channels

nil
 channels always block
 ! Therefore, you
 should use them when you want that behavior on
 purpose! The code that follows illustrates nil
 channels:

package main
import (
 "fmt"

 "math/rand"

 "sync"

 "time"

)
var wg sync.WaitGroup

We are making wg
 a global variable in order to be available from anywhere in the code and avoid passing it to every function that needs it.

func

add

(c

chan

int

)

 {
 sum := 0

 t := time.NewTimer(time.Second)
 for

 {
 select

 {
 case

 input := <-c:
 sum = sum + input
 case

 <-t.C:
 c = nil

 fmt.Println(sum)
 wg.Done()
 }
 }
}

The send()
 function keeps sending random numbers to the c
 channel. Do not confuse channel c
 , which is a channel function parameter, with channel t.C
 , which is part of timer t
 —you can change the name of the c
 variable but not the name of the C
 field. When the time
 of timer t
 expires, the timer sends a value to the t.C
 channel.

This triggers
 the execution of the relevant branch of the select
 statement, which assigns the value nil
 to channel c
 , prints the value of the sum
 variable and wg.Done()
 is executed, which is going to unblock wg.Wait()
 found in the main()
 function. Additionally, as c
 becomes nil
 , it stops/blocks send()
 from sending any data to it.

func

send

(c

chan

int

)

 {
 for

 {
 c <- rand.Intn(10

)
 }
}
func

main

()

 {
 c := make

(chan

 int

)
 rand.Seed(time.Now().Unix())
 wg.Add(1

)
 go

 add(c)
 go

 send(c)
 wg.Wait()
}

Running nilChannel.go
 produces the next output:

$

 go run nilChannel.go

11168960

Since the number of times that the first branch of the select
 statement in add()
 is going to be executed is not fixed, you will get different results each time you execute nilChannel.go
 .

The next subsection discusses worker pools.

Worker pools

A worker pool
 is a set of threads that
 process jobs assigned to them. The Apache web server and the net/http
 package of Go more or less work this way: the main process accepts all incoming requests, which are forwarded to worker processes to get served. Once a worker process has finished its job, it is ready to serve a new client. As
 Go does not have threads, the presented implementation is going to use goroutines instead of threads. Additionally, threads do not usually die after serving a request because the cost of ending a thread and creating a new one is too high, whereas goroutines do die after finishing their job. Worker pools in Go are implemented with the help of buffered channels, because they allow you to limit the number of goroutines running at the same time.

The presented utility implements a simple task: it processes integers and prints their square values using a single goroutine for serving each request. The code of wPools.go
 is as follows:

package

 main
import

 (
 "fmt"

 "os"

 "runtime"

 "strconv"

 "sync"

 "time"

)
type

 Client struct

 {
 id int

 integer int

}

The Client
 structure is used for keeping track of the requests that the program is going to process.

type

 Result struct

 {
 job Client
 square int

}

The Result
 structure is used for keeping the data of each Client
 as well as the results generated by the client. Put simply, the Client
 structure holds the input data of each request, whereas Result
 holds the results of a request—if you want to process complex data, you should modify these structures.

var

 size = runtime.GOMAXPROCS(0

)
var

 clients = make

(chan

 Client, size)
var

 data = make

(chan

 Result, size)

The clients
 and data
 buffered channels
 are used to get new client requests and write the results, respectively. If you
 want your program to run faster, you can increase the value of size
 .

func

worker

(wg *sync.WaitGroup)

 {
 for

 c := range

 clients {
 square := c.integer * c.integer
 output := Result{c, square}
 data <- output
 time.Sleep(time.Second)
 }
 wg.Done()
}

The worker()
 function processes requests by reading the clients
 channel. Once the processing is complete, the result is written to the data
 channel. The delay that is introduced with time.Sleep()
 is not necessary, but it gives you a better sense of the way that the generated output is printed.

func

create

(n

int

)

 {
 for

 i := 0

; i < n; i++ {
 c := Client{i, i}
 clients <- c
 }
 close

(clients)
}

The purpose of the create()
 function is to create all requests properly and then send them to the clients
 buffered channel
 for processing. Note that the clients
 channel is read by worker()
 .

func

main

()

 {
 if

 len

(os.Args) != 3

 {
 fmt.Println("Need #jobs and #workers!"

)
 return

 }
 nJobs, err := strconv.Atoi(os.Args[1

])
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 nWorkers, err := strconv.Atoi(os.Args[2

])
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

In the preceding code, you
 read the command-line parameters that define the number of jobs and workers. If the number of workers is bigger than the size of the clients
 buffered channel, then the number of goroutines that are going to be created is equal to the size of the clients
 channel. Similarly, if the number of jobs is greater than the number of workers, the jobs are served in smaller chunks.

 go

 create(nJobs)

The create()
 call mimics the client requests that you are going to process.

 finished := make

(chan

 interface

{})

The finished
 channel is used for blocking the program and, therefore, needs no particular data type.

 go

 func

()

 {
 for

 d := range

 data {
 fmt.Printf("Client ID: %d\tint: "

, d.job.id)
 fmt.Printf("%d\tsquare: %d\n"

, d.job.integer, d.square)
 }
 finished <- true

The finished <- true
 statement is used for unblocking the program as soon as the for
 range
 loop ends. The for
 range
 loop ends when the data
 channel is closed, which happens after wg.Wait()
 , which means after all workers have finished.

 }()
 var

 wg sync.WaitGroup
 for

 i := 0

; i < nWorkers; i++ {
 wg.Add(1

)
 go

 worker(&wg)
 }
 wg.Wait()
 close

(data)

The purpose of the previous for
 loop is to generate the required number of worker()
 goroutines to process all requests.

 fmt.Printf("Finished: %v\n"

, <-finished)
}

The <-finished
 statement
 in fmt.Printf()
 blocks until the finished
 channel is closed.

Running wPools.go
 creates the next kind of output:

$

 go run wPools.go 10 4

Client ID: 1 int: 1 square: 1
Client ID: 0 int: 0 square: 0
Client ID: 2 int: 2 square: 4
Client ID: 3 int: 3 square: 9
Client ID: 4 int: 4 square: 16
Client ID: 5 int: 5 square: 25
Client ID: 6 int: 6 square: 36
Client ID: 7 int: 7 square: 49
Client ID: 8 int: 8 square: 64
Client ID: 9 int: 9 square: 81
Finished: true

The previous output shows that all requests were processed. This technique allows you to serve a given number of requests that saves you from server overload. The price you pay for that is having to write more code.

The next subsection introduces signal channels and shows a technique for using them to define the order of execution for a small number of goroutines.

Signal channels

A signal channel is one that is used just
 for signaling. Put simply, you can use a signal channel
 when you want to inform another goroutine about something. Signal channels should not be used for data transferring. You are going to see signal channels in action in the next subsection where we specify the order of execution of goroutines.

Specifying the order of execution for your goroutines

This
 subsection shows a technique for specifying the order of execution of goroutines with the help of signal channels
 . However, have in mind that this technique works best when you are dealing with a small number of goroutines. The presented code example has four goroutines that we want to execute in the desired order—first, goroutine for function A()
 , then function B()
 , then C()
 , and finally, D()
 .

The code of defineOrder.go
 without the package
 statement and import
 block is the following:

var

 wg sync.WaitGroup
func

A

(a, b

chan

struct

{})

 {
 <-a
 fmt.Println("A()!"

)
 time.Sleep(time.Second)
 close

(b)
}

Function A()
 is going to be blocked until channel a, which is passed as a parameter, is closed. Just before it ends, it closes channel b
 , which is passed as a parameter. This is going to unblock the next goroutine, which is going to be function B()
 .

func

B

(a, b

chan

struct

{})

 {
 <-a
 fmt.Println("B()!"

)
 time.Sleep(3

 * time.Second)
 close

(b)
}

Similarly, function B()
 is going to be blocked until channel a
 , which is passed as a parameter, is closed. Just before B()
 ends, it closes channel b
 , which is passed as a parameter. As before, this is going to unblock the next function.

func

C

(a, b

chan

struct

{})

 {
 <-a
 fmt.Println("C()!"

)
 close

(b)
}

As it happened with functions A()
 and B()
 , the execution of function C()
 is blocked by channel a
 . Just before it ends, it closes channel b
 .

func

D

(a

chan

struct

{})

 {
 <-a
 fmt.Println("D()!"

)
 wg.Done()
}

This is the last function
 that is going to be executed. Therefore, although it is blocked, it does not close any channels before exiting. Additionally, being the last function means that it can be executed more than once, which is not true for functions A()
 , B()
 and C()
 because a channel can be closed only once
 .

func

main

()

 {
 x := make

(chan

 struct

{})
 y := make

(chan

 struct

{})
 z := make

(chan

 struct

{})
 w := make

(chan

 struct

{})

We need to have as many channels as the number of functions we want to execute as goroutines.

 wg.Add(1

)
 go

 func

()

 {
 D(w)
 }()

This proves that the order of execution dictated by the Go code does not matter as D()
 is going to be executed last.

 wg.Add(1

)
 go

 func

()

 {
 D(w)
 }()
 go

 A(x, y)
 wg.Add(1

)
 go

 func

()

 {
 D(w)
 }()
 go

 C(z, w)
 go

 B(y, z)

Although we run C()
 before B()
 , C()
 is going to finish after B()
 has finished.

 wg.Add(1

)
 go

 func

()

 {
 D(w)
 }()
 // This triggers the process

 close

(x)

The closing of the first
 channel is what triggers the execution of the goroutines because this unblocks A()
 .

 wg.Wait()
}

Running defineOrder.go
 produces the next output:

$

 go run defineOrder.go

A()!
B()!
C()!
D()! D()! D()! D()!

So, the four functions, which are executed as goroutines, are executed in the desired order, and, in the case of the last function, the desired number of times. The next section talks about shared memory and shared variables, which is a very handy way of making goroutines communicate with each other.

Shared memory and shared variables

Shared memory and
 shared variables are huge topics in concurrent programming and the most common ways for UNIX threads to communicate with each other. The same principles apply to Go and goroutines, which is what this section is about. A mutex
 variable, which is
 an abbreviation of mutual exclusion variable
 , is mainly used for thread synchronization and for protecting shared data when multiple writes can occur at the same time. A mutex works like a buffered channel with a capacity of one
 , which allows at most one goroutine to
 access a shared variable at any given time. This means that there is no way for two or more goroutines to be able to update that variable simultaneously. Go offers the sync.Mutex
 and sync.RWMutex
 data types.

A critical section
 of a concurrent
 program is the code that cannot be executed simultaneously by all processes, threads, or, in this case, goroutines. It is the code that needs to be protected by mutexes. Therefore, identifying the critical sections of your code makes the whole programming process so much simpler that you should pay particular attention to this task. A critical section cannot be embedded into another critical section when both critical sections use the same sync.Mutex
 or sync.RWMutex
 variable.

Put simply, avoid at almost any cost spreading mutexes across functions because that makes it really hard to see whether you are embedding or not.

The sync.Mutex type

The sync.Mutex
 type is the Go
 implementation of a mutex
 . Its definition, which can be found in the mutex.go
 file of the sync
 directory, is as follows—you do not need to know the definition of sync.Mutex
 in order to use it:

type

 Mutex struct

 {
 state int32

 sema uint32

}

The definition of sync.Mutex
 is nothing special. All of the interesting work is done by the sync.Lock()
 and sync.Unlock()
 functions, which can lock and unlock a sync.Mutex
 variable, respectively. Locking a mutex means that nobody else can lock it until it has been released using the sync.Unlock()
 function. All these are illustrated in mutex.go
 , which contains the next code:

package

 main
import

 (
 "fmt"

 "os"

 "strconv"

 "sync"

 "time"

)
var

 m sync.Mutex
var

 v1 int

func

change

(i

int

)

 {
 m.Lock()

This function makes changes to the value of v1
 . The critical section begins here.

 time.Sleep(time.Second)
 v1 = v1 + 1

 if

 v1 == 10

 {
 v1 = 0

 fmt.Print("* "

)
 }
 m.Unlock()

This is the end of the
 critical section. Now, another goroutine can lock the mutex.

}
func

read

()

int

 {
 m.Lock()
 a := v1
 m.Unlock()
 return

 a
}

This function is used for reading the value of v1
 —therefore it should use a mutex to make the process concurrently safe. Most specifically, we want to make sure that nobody is going to change the value of v1
 while we are reading it. The rest of the program contains the implementation of the main()
 function—feel free to see the entire code of mutex.go
 in the GitHub repository of the book.

Running mutex.go
 produces the next output:

$

 go run -race mutex.go 10

0 -> 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8-> 9* -> 0-> 0

The previous output
 shows that due to the use of a mutex, goroutines cannot access shared data and therefore there are no hidden race conditions.

The next subsection shows what could happen if we forget to unlock a mutex.

What happens if you forget to unlock a mutex?

Forgetting to
 unlock a sync.Mutex
 mutex creates a panic situation even in the simplest kind of a program. The same applies to the sync.RWMutex
 mutex, which is presented in the next section.

Let us now see a code example to understand this unpleasant situation a lot better—this is part of forgetMutex.go
 .

var

 m sync.Mutex
var

 w sync.WaitGroup
func

function

()

 {
 m.Lock()
 fmt.Println("Locked!"

)
}

Here, we lock a mutex without releasing it afterwards. This means that if we run function()
 as a goroutine more than once, all instances after the first one are going to be blocked waiting to Lock()
 the shared mutex. In our case, we run two goroutines—feel free to see the entire code of forgetMutex.go
 for more details. Running forgetMutex.go
 generates the next output:

Locked!
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0x118d3e8)
 /usr/local/Cellar/go/1.16.2/libexec/src/runtime/sema.go:56 +0x45
sync.(*WaitGroup).Wait(0x118d3e0)
 /usr/local/Cellar/go/1.16.2/libexec/src/sync/waitgroup.go:130 +0x65
main.main()
 /Users/mtsouk/ch07/forgetMutex.go:29 +0x95
goroutine 18 [semacquire]:
sync.runtime_SemacquireMutex(0x118d234, 0x0, 0x1)
 /usr/local/Cellar/go/1.16.2/libexec/src/runtime/sema.go:71 +0x47
sync.(*Mutex).lockSlow(0x118d230)
 /usr/local/Cellar/go/1.16.2/libexec/src/sync/mutex.go:138 +0x105
sync.(*Mutex).Lock(...)
 /usr/local/Cellar/go/1.16.2/libexec/src/sync/mutex.go:81
main.function()
 /Users/mtsouk/ch07/forgetMutex.go:12 +0xac
main.main.func1()
 /Users/mtsouk/ch07/forgetMutex.go:20 +0x4c
created by main.main
 /Users/mtsouk/ch07/forgetMutex.go:18 +0x52
exit status 2

As expected, the program
 crashes because of the deadlock. To avoid such situations, always remember to unlock any mutexes created in your program.

Let us now discuss sync.RWMutex
 , which is an improved version of sync.Mutex
 .

The sync.RWMutex type

The sync.RWMutex
 data
 type is an improved version of sync.Mutex
 and is defined in the rwmutex.go
 file of the sync
 directory of the Go Standard library as follows:

type

 RWMutex struct

 {
 w Mutex
 writerSem uint32

 readerSem uint32

 readerCount int32

 readerWait int32

}

In other words, sync.RWMutex
 is based on sync.Mutex
 with the necessary additions and improvements. So, you might ask, how does sync.RWMutex
 improve sync.Mutex
 ? Although a single function is allowed to perform write operations with a sync.RWMutex
 mutex, you can have multiple readers
 owning a sync.RWMutex
 mutex—this means that read operations are usually faster with sync.RWMutex
 . However, there is one important detail that you should be aware of: until all of the readers
 of a sync.RWMutex
 mutex unlock that mutex, you cannot lock it for writing, which is the small price you have to pay for the performance improvement you get for allowing multiple readers.

The functions that can help you to work with sync.RWMutex
 are RLock()
 and RUnlock()
 , which are used for locking and
 unlocking the mutex for reading purposes, respectively. The Lock()
 and Unlock()
 functions used in sync.Mutex
 should still be used when you want to lock and unlock a sync.RWMutex
 mutex for writing purposes. Finally, it should be apparent that you should not make changes to any shared variables inside an RLock()
 and RUnlock()
 block of code.

All these are illustrated in rwMutex.go
 —the important code is the following:

var

 Password *secret
var

 wg sync.WaitGroup
type

 secret struct

 {
 RWM sync.RWMutex
 password string

}

This is the shared variable of the program—you can share any type of variable you want.

func

Change

(pass

string

)

 {
 fmt.Println("Change() function"

)
 Password.RWM.Lock()

This is the beginning of the critical section.

 fmt.Println("Change() Locked"

)
 time.Sleep(4

 * time.Second)
 Password.password = pass
 Password.RWM.Unlock()

This is the end of the critical section.

 fmt.Println("Change() UnLocked"

)
}

The Change()
 function makes changes to the shared variable Password
 and therefore needs to use the Lock()
 function, which can be held by a single writer only.

func

show

()

 {
 defer

 wg.Done()
 Password.RWM.RLock()
 fmt.Println("Show function locked!"

)
 time.Sleep(2

 * time.Second)
 fmt.Println("Pass value:"

, Password.password)
 defer

 Password.RWM.RUnlock()
}

The show()
 function reads
 the shared variable Password
 and therefore is allowed to use the RLock()
 function, which can be held by multiple readers. Inside main()
 , three show()
 functions are executed as goroutines before a call to the Change()
 function, which also runs as a goroutine. The key point here is that no race conditions are going to happen. Running rwMutex.go
 produces the next output:

$

 go run rwMutex.go

Change() function

The Change()
 function is executed but cannot acquire the mutex because it is already taken by one or more show()
 goroutines.

Show function locked!
Show function locked!

The previous output verifies that two show()
 goroutines have successfully taken the mutex for reading.

Change() function

Here, we can see a second Change()
 function running and waiting
 to get the mutex.

Pass value: myPass
Pass value: myPass

This is the output from the two show()
 goroutines.

Change() Locked
Change() UnLocked

Here we see that one Change()
 goroutine finishes its job.

Show function locked!
Pass value: 54321

After that another show()
 goroutine finishes.

Change() Locked
Change() UnLocked
Current password value: 123456

Last, the second Change()
 goroutine finishes. The last output line is for making sure that the password value has
 changed—please look at the full code of rwMutex.go
 for more details.

The next subsection discusses the use of the atomic
 package for avoiding race conditions.

The atomic package

An atomic operation
 is an
 operation that is completed in a single step relative to other threads or, in this case, to other goroutines. This means that an atomic operation cannot be interrupted in the middle of it
 . The Go Standard library offers the atomic
 package, which, in some simple cases, can help you to avoid using a mutex. With the atomic
 package, you can have atomic counters accessed by multiple goroutines without synchronization issues and without worrying about race conditions. However, mutexes are more versatile than atomic operations.

As illustrated in the code that follows, when using an atomic variable, all reading and writing operations of an atomic variable
 must be done using the functions provided by the atomic
 package in order to avoid race conditions.

The code in atomic.go
 is as follows, which is made smaller by hardcoding some values:

package

 main
import

 (
 "fmt"

 "sync"

 "sync/atomic"

)
type

 atomCounter struct

 {
 val int64

}

This is a structure for holding the desired int64
 atomic variable.

func

(c *atomCounter)

Value

()

int64

 {
 return

 atomic.LoadInt64(&c.val)
}

This is a helper
 function that returns the current value of an int64
 atomic variable using atomic.LoadInt64()
 .

func

main

()

 {
 X := 100

 Y := 4

 var

 waitGroup sync.WaitGroup
 counter := atomCounter{}
 for

 i := 0

; i < X; i++ {

We are creating lots of goroutines that change the shared variable—as stated before, the use of the atomic
 package for working with the shared variable offers a simple way of avoiding race conditions when changing the value of the shared variable.

 waitGroup.Add(1

)
 go

 func

(no

int

)

 {
 defer

 waitGroup.Done()
 for

 i := 0

; i < Y; i++ {
 atomic.AddInt64(&counter.val, 1

)
 }

The atomic.AddInt64()
 function changes the value of the val
 field of the counter
 structure variable in a safe way.

 }(i)
 }
 waitGroup.Wait()
 fmt.Println(counter.Value())
}

Running atomic.go
 while checking for race conditions produces the next kind of output:

$

 go run -race atomic.go

400

So, the atomic variable is
 modified by multiple goroutines without any issues.

The next subsection shows how to share memory using goroutines.

Sharing memory using goroutines

This subsection illustrates how to share data using a dedicated goroutine
 . Although shared memory is the
 traditional way that threads communicate with each other, Go comes with built-in synchronization features that allow a single goroutine to own a shared piece of data. This means that other goroutines must send messages to this single goroutine that owns the shared data, which prevents the corruption of the data. Such a
 goroutine is called a monitor goroutine
 . In Go terminology, this is sharing by communicating instead of communicating by sharing
 .

Personally, I prefer to use a monitor goroutine
 instead of traditional shared memory techniques because the implementation with the monitor goroutine is safer, closer to the Go philosophy, and easier to understand.

The logic of the program can be found in the implementation of the monitor()
 function. More specifically, the select
 statement orchestrates the operation of the entire program. When you have a read request, the read()
 function attempts to read from the readValue
 channel, which is controlled by the monitor()
 function.

This returns the current value of the value
 variable. On the other hand, when you want to change the stored value, you call set()
 . This writes to the writeValue
 channel, which is also handled by the same select
 statement. As a result, no one can deal with the shared variable without using the monitor()
 function, which is in charge.

The code of monitor.go
 is as follows:

package

 main
import

 (
 "fmt"

 "math/rand"

 "os"

 "strconv"

 "sync"

 "time"

)
var

 readValue = make

(chan

 int

)
var

 writeValue = make

(chan

 int

)
func

set

(newValue

int

)

 {
 writeValue <- newValue
}

This function sends
 data to the writeValue
 channel.

func

read

()

int

 {
 return

 <-readValue
}

When the read()
 function is called, it reads from the readValue
 channel—this reading happens inside the monitor()
 function.

func

monitor

()

 {
 var

 value int

 for

 {
 select

 {
 case

 newValue := <-writeValue:
 value = newValue
 fmt.Printf("%d "

, value)
 case

 readValue <- value:
 }
 }
}

The monitor()
 function contains the logic of the program with the endless for
 loop and the select
 statement. The first case receives data from the writeValue
 channel, sets the value
 variable accordingly, and prints that new value. The second case sends the value of the value
 variable to the readValue
 channel. As all traffic goes through monitor()
 and its select
 block, there is no way to have a race condition because there is a single instance of monitor()
 running.

func

main

()

 {
 if

 len

(os.Args) != 2

 {
 fmt.Println("Please give an integer!"

)
 return

 }
 n, err := strconv.Atoi(os.Args[1

])
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Printf("Going to create %d random numbers.\n"

, n)
 rand.Seed(time.Now().Unix())
 go

 monitor()

It is important that the monitor()
 function is executed first because that is the goroutine that orchestrates the
 flow of the program.

 var

 wg sync.WaitGroup
 for

 r := 0

; r < n; r++ {
 wg.Add(1

)
 go

 func

()

 {
 defer

 wg.Done()
 set(rand.Intn(10

 * n))
 }()
 }

When the for
 loop ends, it means that we have created the desired number of random numbers.

 wg.Wait()
 fmt.Printf("\nLast value: %d\n"

, read())
}

Last, we wait for all set()
 goroutines to finish before printing the last random number.

Running monitor.go
 produces the following output:

$

 go run monitor.go 10

Going to create 10 random numbers.
98 22 5 84 20 26 45 36 0 16
Last value: 16

So, 10 random numbers are created by 10 goroutines and all these goroutines send their output to the monitor()
 function that is also executed as a goroutine. Apart from receiving the results, the monitor()
 function prints them on screen, so all this output is generated by monitor()
 .

The next section
 discusses the go
 statement in more detail.

Closured variables and the go statement

In this section, we are going to talk about closured variables
 , which are variables inside closures, and the go
 statement. Notice that closured variables in goroutines are evaluated when the goroutine
 actually runs and when the go
 statement is executed in order to create a new goroutine. This means that closured variables are going to be
 replaced by their values when the Go scheduler decides to execute the relevant code. This is illustrated in the main()
 function of goClosure.go
 :

func

main

()

 {
 for

 i := 0

; i <= 20

; i++ {
 go

 func

()

 {
 fmt.Print(i, " "

)
 }()
 }
 time.Sleep(time.Second)
 fmt.Println()
}

Running goClosure.go
 produces the next output:

$

 go run goClosure.go

3 7 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

The program mostly prints the number 21
 , which is the last value of the variable of the for
 loop and not the other numbers. As i
 is a closured variable
 , it is evaluated at the time of execution
 . As the goroutines begin but wait for the Go scheduler to allow them to get executed, the for
 loop ends, so the value of i
 that is being used is 21
 . Lastly, the same issue also applies to Go channels, so be careful.

Running goClosure.go
 with the Go race detector reveals the issue:

$

 go run -race goClosure.go

2 ==================
WARNING: DATA RACE
Read at 0x00c00013a008 by goroutine 7:
 main.main.func1()
 /Users/mtsouk/ch07/goClosure.go:11 +0x3c
Previous write at 0x00c00013a008 by main goroutine:
 main.main()
 /Users/mtsouk/ch07/goClosure.go:9 +0xa4
Goroutine 7 (running) created at:
 main.main()
 /Users/mtsouk/ch07/goClosure.go:10 +0x7e
==================
2 3 5 5 7 8 9 10 9 11 12 13 14 17 18 18 18 19 20 21
Found 1 data race(s)
exit status 66

Now, let us correct goClosure.go
 and present it to you—the new name is goClosureCorrect.go
 and
 its main()
 function is as follows:

func

main

()

 {
 for

 i := 0

; i <= 20

; i++ {
 i := i
 go

 func

()

 {
 fmt.Print(i, " "

)
 }()
 }

This is one way of
 correcting the issue. The valid yet bizarre i := i
 statement creates a new instance of the variable
 for the goroutine that holds the correct value.

 time.Sleep(time.Second)
 fmt.Println()
 for

 i := 0

; i <= 20

; i++ {
 go

 func

(x

int

)

 {
 fmt.Print(x, " "

)
 }(i)
 }

This is a totally different way of correcting the race condition: pass the current value of i
 to the anonymous function as a parameter and everything is OK.

 time.Sleep(time.Second)
 fmt.Println()
}

Testing goClosureCorrect.go
 with the race
 detector generates the expected output:

$

 go run -race goClosureCorrect.go

0 1 2 4 3 5 6 9 8 7 10 11 13 12 14 16 15 17 18 20 19
0 1 2 3 4 5 6 7 8 10 9 12 13 11 14 15 16 17 18 19 20

The next section presents the
 functionality of the context
 package.

The context package

The main purpose of the context
 package is
 to define the Context
 type and support cancellation
 . Yes, you heard that right; there are times when, for some reason, you want to abandon what you are doing. However, it would be very helpful to be able to include some extra information about your cancellation decisions. The context
 package allows you to do exactly that.

If you take a look at the source code of the context
 package, you will realize that its implementation is pretty simple—even the implementation of the Context
 type is pretty simple, yet the context
 package is very important.

The Context
 type is an interface with four methods named Deadline()
 , Done()
 , Err()
 , and Value()
 . The good news is that you do not need to implement all of these functions of the Context
 interface—you just need to modify a Context
 variable using methods such as context.WithCancel()
 , context.WithDeadline()
 , and context.WithTimeout()
 .

All three of these functions return a derived Context
 (the child) and a CancelFunc()
 function. Calling the CancelFunc()
 function removes the parent's reference to the child and stops any associated timers. As a side effect, this means that the Go garbage collector is free to garbage collect the child goroutines that no longer have associated parent goroutines. For garbage collection to work correctly, the parent goroutine needs to keep a reference to each child goroutine. If a child goroutine ends without the parent knowing about it, then a memory leak occurs until the parent is canceled as well.

The example that follows showcases the use of the context
 package. The program contains four functions, including the main()
 function. Functions f1()
 , f2()
 , and f3()
 each require just one
 parameter, which is a time delay, because everything else they need is defined inside their function body. In this example, we use context.Background()
 to initialize an empty Context
 . The other function that can create an empty Context
 is context.TODO()
 , which is presented later on in this chapter.

package

 main
import

 (
 "context"

 "fmt"

 "os"

 "strconv"

 "time"

)
func

f1

(t

int

)

 {
 c1 := context.Background()
 c1, cancel := context.WithCancel(c1)
 defer

 cancel()

The WithCancel()
 method returns a copy of parent context with a new Done
 channel. Notice that the cancel
 variable, which is a function, is one of the return values of context.CancelFunc()
 . The context.WithCancel()
 function uses an existing Context
 and creates a child with cancellation. The context.WithCancel()
 function also returns a Done
 channel that can be closed, either when the cancel()
 function is called, as shown in the preceding code, or when the Done
 channel of the parent context is closed.

 go

 func

()

 {
 time.Sleep(4

 * time.Second)
 cancel()
 }()
 select

 {
 case

 <-c1.Done():
 fmt.Println("f1() Done:"

, c1.Err())
 return

 case

 r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f1():"

, r)
 }
 return

}

The f1()
 function creates and executes a goroutine. The time.Sleep()
 call simulates the time it would take a real goroutine to do its job. In this case it is 4 seconds, but you can put any time period you
 want. If the c1
 context calls the Done()
 function in less than 4 seconds, the goroutine will not have enough time to finish.

func

f2

(t

int

)

 {
 c2 := context.Background()
 c2, cancel := context.WithTimeout(c2, time.Duration(t)*time.Second)
 defer

 cancel()

The cancel
 variable in f2()
 comes from context.WithTimeout()
 , which requires two parameters: a Context
 parameter and a time.Duration
 parameter. When the timeout period expires the cancel()
 function is called automatically.

 go

 func

()

 {
 time.Sleep(4

 * time.Second)
 cancel()
 }()
 select

 {
 case

 <-c2.Done():
 fmt.Println("f2() Done:"

, c2.Err())
 return

 case

 r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f2():"

, r)
 }
 return

}
func

f3

(t

int

)

 {
 c3 := context.Background()
 deadline := time.Now().Add(time.Duration(2

*t) * time.Second)
 c3, cancel := context.WithDeadline(c3, deadline)
 defer

 cancel()

The cancel
 variable in f3()
 comes from context.WithDeadline()
 . context.WithDeadline()
 requires two parameters: a Context
 variable and a time in the future that signifies the deadline of the operation. When the deadline passes, the cancel()
 function is called automatically.

 go

 func

()

 {
 time.Sleep(4

 * time.Second)
 cancel()
 }()
 select

 {
 case

 <-c3.Done():
 fmt.Println("f3() Done:"

, c3.Err())
 return

 case

 r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f3():"

, r)
 }
 return

}

The logic of f3()
 is the same
 as in f1()
 and f2()
 —the select
 block orchestrates the process.

func

main

()

 {
 if

 len

(os.Args) != 2

 {
 fmt.Println("Need a delay!"

)
 return

 }
 delay, err := strconv.Atoi(os.Args[1

])
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Println("Delay:"

, delay)
 f1(delay)
 f2(delay)
 f3(delay)
}

The three functions are executed in sequence by the main()
 function.

Running useContext.go
 produces the next kind of output:

$

 go run useContext.go 3

Delay: 3
f1(): 2021-03-18 13:10:24.739381 +0200 EET m=+3.001331808
f2(): 2021-03-18 13:10:27.742732 +0200 EET m=+6.004804424
f3(): 2021-03-18 13:10:30.742793 +0200 EET m=+9.004988055

The long lines of the output are the return values of time.After()
 , which show the times that After()
 sent the current time on the returned channel. All of them denote a normal operation of the program.

If you define a bigger delay, then the output is going to be similar to the following:

$

 go run useContext.go 13

Delay: 13
f1() Done: context canceled
f2() Done: context canceled
f3() Done: context canceled

The point here is that
 the operation of the program is canceled when there are delays in its execution.

The next subsection shows a different use of the context
 package.

Using context as a key/value store

In this subsection, we pass
 values in a Context
 and use it as a key-value store. In this case, we do not pass values into contexts in order to provide further information about why they were canceled. The keyVal.go
 program illustrates the use of the context.TODO()
 function as well as the use of the context.WithValue()
 function.

All these and many more are found in keyVal.go
 , which is as follows.

package

 main
import

 (
 "context"

 "fmt"

)
type

 aKey string

func

searchKey

(ctx context.Context, k aKey)

 {
 v := ctx.Value(k)
 if

 v != nil

 {
 fmt.Println("found value:"

, v)
 return

 } else

 {
 fmt.Println("key not found:"

, k)
 }
}

The searchKey()
 function
 retrieves a value from a Context
 variable using Value()
 and checks whether that value exists or not.

func

main

()

 {
 myKey := aKey("mySecretValue"

)
 ctx := context.WithValue(context.Background(), myKey, "mySecret"

)

The context.WithValue()
 function that is used in main()
 offers a way to associate a value with a Context
 . The next two statements search an existing context (ctx
) for the values of two keys.

 searchKey(ctx, myKey)
 searchKey(ctx, aKey("notThere"

))
 emptyCtx := context.TODO()

This time we create a context using context.TODO()
 instead of context.Background()
 . Although both functions return a non-nil
 , empty Context
 , their purposes differ. You should never pass a nil
 context—use the context.TODO()
 function to create a suitable context. Additionally, use the context.TODO()
 function when you are not sure about the Context
 that you want to use. The context.TODO()
 function signifies that we intend to use an operation context, without being sure about it yet.

 searchKey(emptyCtx, aKey("notThere"

))
}

Running keyVal.go
 creates the following output:

$

 go run keyVal.go

found value: mySecret
key not found: notThere
key not found: notThere

The first call to searchKey()
 is successful whereas the next two calls cannot find the desired key in the context. So, contexts allow us to store key and value pairs and search for keys.

We are not completely done with context
 as the next chapter is going to use it to time-out HTTP interactions
 on the client side of the connection. The last section of this chapter discusses the semaphore
 package, which is not part of the Standard library.

The semaphore package

This last section of this
 chapter presents the semaphore
 package, which is provided by the Go team. A semaphore
 is a construct that can limit or control the access to a shared resource. As we are talking about Go, a semaphore can limit the access of goroutines to a shared resource but originally, semaphores were used for limiting access to threads. Semaphores can have weights
 that limit the number of threads or goroutines that can have access to a resource.

The process is supported via the Acquire()
 and Release()
 methods, which are defined as follows:

func

(s *Weighted)

Acquire

(ctx context.Context, n

int64

)

error

func

(s *Weighted)

Release

(n

int64

)

The second parameter of Acquire()
 defines the weight of the semaphore.

As we are going an external package, we need to put the code inside ~/go/src
 in order to use Go modules: ~/go/src/github.com/mactsouk/semaphore
 . Now, let us present the code of semaphore.go
 , which shows an implementation of a worker pool
 using semaphores:

package

 main
import

 (
 "context"

 "fmt"

 "os"

 "strconv"

 "time"

 "golang.org/x/sync/semaphore"

)
var

 Workers = 4

This variable specifies the maximum number of goroutines that can be executed by this program.

var

 sem = semaphore.NewWeighted(int64

(Workers))

This is where we define the semaphore with a weight identical to the maximum number of goroutines that can
 be executed concurrently. This means that no more than Workers
 goroutines can acquire the semaphore at the same time.

func

worker

(n

int

)

int

 {
 square := n * n
 time.Sleep(time.Second)
 return

 square
}

The worker()
 function is run as part of a goroutine. However, as we are using a semaphore, there is no need to return the results to a channel.

func

main

()

 {
 if

 len

(os.Args) != 2

 {
 fmt.Println("Need #jobs!"

)
 return

 }
 nJobs, err := strconv.Atoi(os.Args[1

])
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

The previous code reads the number of jobs that we want to run.

 // Where to store the results

 var

 results = make

([]int

, nJobs)
 // Needed by Acquire()

 ctx := context.TODO()
 for

 i := range

 results {
 err = sem.Acquire(ctx, 1

)
 if

 err != nil

 {
 fmt.Println("Cannot acquire semaphore:"

, err)
 break

 }

In this part, we try to acquire the semaphore as many times as the number of jobs defined by nJobs
 . If nJobs
 is bigger than Workers
 , then the Acquire()
 call is going to block and wait for Release()
 calls in order to unblock.

 go

 func

(i

int

)

 {
 defer

 sem.Release(1

)
 temp := worker(i)
 results[i] = temp
 }(i)
 }

This is where we run the
 goroutines that do the job and write the results to the results
 slice. As each goroutine writes to a different slice element, there are not any race conditions.

 err = sem.Acquire(ctx, int64

(Workers))
 if

 err != nil

 {
 fmt.Println(err)
 }

This is a clever trick: we acquire all of the tokens so that the sem.Acquire()
 call blocks until all workers/goroutines have finished. This is similar in functionality to a Wait()
 call.

 for

 k, v := range

 results {
 fmt.Println(k, "->"

, v)
 }
}

The last part of the program is about printing the results. After writing the code, we need to run the next commands in order to get the required Go modules:

$

 go mod init

$

 go mod tidy

$

 mod download golang.org/x/sync

Apart from the first command, these commands were indicated by the output of go mod init
 , so you do not have to remember anything.

Lastly, running semaphore.go
 produces the next output:

$

 go run semaphore.go 6

0 -> 0
1 -> 1
2 -> 4
3 -> 9
4 -> 16
5 -> 25

Each line in the output
 shows the input value and the output value separated by ->
 . The use of the semaphore keeps things in order.

Exercises

	Try to implement a concurrent version of wc(1)
 that uses a buffered channel.

	Try to implement a concurrent version of wc(1)
 that uses shared memory.

	Try to implement a concurrent version of wc(1)
 that uses semaphores.

	Try to implement a concurrent version of wc(1)
 that saves its output to a file.

	Modify wPools.go
 so that each worker implements the functionality of wc(1)
 .

Summary

This important chapter was about Go concurrency, goroutines, channels, the select
 keyword, shared memory, and mutexes, as well as timing out goroutines and the use of the context
 package. All this knowledge is going to allow you to write powerful concurrent Go applications. Feel free to experiment with the concepts and the examples of this chapter to better understand goroutines, channels, and shared memory.

The next chapter is all about web services and working with the HTTP protocol in Go. Among other things, we are going to convert the phone book application into a web service.

Additional resources

	The documentation page of sync
 is at
https://golang.org/pkg/sync/

	Learn about semaphore
 at
https://pkg.go.dev/golang.org/x/sync/semaphore

	Learn more about the Go scheduler by reading a series of posts starting with
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part1.html

	The implementation of the Go scheduler:
https://golang.org/src/runtime/proc.go

8

Building Web Services

The core subject of this chapter is working with HTTP using the net/http
 package—remember that all web services require a web server in order to operate. Additionally, in this chapter, we are going to convert the phone book application into a web application that accepts HTTP connections and create a command-line client to work with it. Lastly, we'll illustrate how to create an FTP
 (File Transfer Protocol
) server and how to export metrics from Go applications to Prometheus and work with the runtime/metrics
 package to get implementation-defined metrics exported by the Go runtime.

In more detail, this chapter covers:

	The net/http
 package

	Creating a web server

	Updating the phone book application

	Exposing metrics to Prometheus

	Developing web clients

	Creating a client for the phone book service

	Creating file servers

	Timing out HTTP connections

The net/http package

The net/http
 package offers
 functions that allow you to develop web servers and clients. For example, http.Get()
 and http.NewRequest()
 are used by clients for making HTTP requests, whereas http.ListenAndServe()
 is used for starting web servers by specifying the IP address and the TCP port the server listens to. Additionally, http.HandleFunc()
 defines supported URLs as well as the functions that are going to handle these URLs.

The next three subsections describe three important data structures of the net/http
 package—you can use these
 descriptions as a reference while reading this chapter.

The http.Response type

The http.Response
 structure
 embodies the response from an HTTP request—both http.Client
 and http.Transport
 return http.Response
 values
 once the response headers have been received. Its definition can be found at
https://golang.org/src/net/http/response.go

 :

type

 Response struct

 {
 Status string

 // e.g. "200 OK"

 StatusCode int

 // e.g. 200

 Proto string

 // e.g. "HTTP/1.0"

 ProtoMajor int

 // e.g. 1

 ProtoMinor int

 // e.g. 0

 Header Header
 Body io.ReadCloser
 ContentLength int64

 TransferEncoding []string

 Close bool

 Uncompressed bool

 Trailer Header
 Request *Request
 TLS *tls.ConnectionState
}

You do not have to use all the structure fields, but it is good to know that they exist. However, some of them, such as Status
 , StatusCode
 , and Body
 , are more important than others. The Go source file, as well as the output of go doc http.Response
 , contains more information about the purpose of each field, which is also the case with most struct
 data types found in the standard Go library.

The http.Request type

The http.Request
 structure
 represents an HTTP request as constructed by a client in order to be sent or received by an HTTP server. The public fields of http.Request
 are as follows:

type

 Request struct

 {
 Method string

 URL *url.URL
 Proto string

 ProtoMajor int

 ProtoMinor int

 Header Header
 Body io.ReadCloser
 GetBody func

()

(io.ReadCloser, error)

 ContentLength int64

 TransferEncoding []string

 Close bool

 Host string

 Form url.Values
 PostForm url.Values
 MultipartForm *multipart.Form
 Trailer Header
 RemoteAddr string

 RequestURI string

 TLS *tls.ConnectionState
 Cancel <-chan

 struct

{}
 Response *Response
}

The Body
 field holds the body
 of the request. After reading the body of a request, you are allowed to call GetBody()
 , which returns a new copy of the body—this is optional.

Let us now present the http.Transport
 structure.

The http.Transport type

The definition of http.Transport
 , which gives you more control over your HTTP connections, is fairly long and
 complex:

type

 Transport struct

 {
 Proxy func

(*Request)

(*url.URL, error)

 DialContext func

(ctx context.Context, network, addr

string

)

(net.Conn, error)

Dial

 func

(network, addr

string

)

(net.Conn, error)

 DialTLSContext func

(ctx context.Context, network, addr

string

)

(net.Conn, error)

 DialTLS func

(network, addr

string

)

(net.Conn, error)

 TLSClientConfig *tls.Config
 TLSHandshakeTimeout time.Duration
 DisableKeepAlives bool

 DisableCompression bool

 MaxIdleConns int

 MaxIdleConnsPerHost int

 MaxConnsPerHost int

 IdleConnTimeout time.Duration
 ResponseHeaderTimeout time.Duration
 ExpectContinueTimeout time.Duration
 TLSNextProto map

[string

]func

(authority

string

, c *tls.Conn)

RoundTripper

 ProxyConnectHeader Header
 GetProxyConnectHeader func

(ctx context.Context, proxyURL *url.URL, target

string

)

(Header, error)

 MaxResponseHeaderBytes int64

 WriteBufferSize int

 ReadBufferSize int

 ForceAttemptHTTP2 bool

}

Note that http.Transport
 is
 pretty low-level, whereas http.Client
 , which is also used in this chapter, implements a high-level HTTP client—each http.Client
 contains a Transport
 field. If its value is nil
 , then DefaultTransport
 is used. You do not need to use http.Transport
 in all of your programs and you are not required to deal with all of its fields each time you use it. If you want to learn more about DefaultTransport
 , type go doc http.DefaultTransport
 .

Let us now learn how to develop a web server.

Creating a web server

This section presents a simple
 web server developed in Go in order to better understand the principles behind such applications.

Although a web server programmed in Go can do many things efficiently and securely, if what you really need is a powerful web server that supports modules, multiple
 websites, and virtual hosts, then you would be better off using a web server
 such as Apache
 , Nginx
 , or Caddy
 that is
 written in Go.

You might ask why the presented web server uses HTTP instead of secure HTTP
 (HTTPS
). The answer to this question is simple: most Go web servers are deployed as Docker images and are hidden behind web servers such as Caddy and Nginx that provide the secure HTTP operation part using the appropriate security credentials. It does not make any sense to use the secure HTTP protocol along with the required security credentials without knowing how and under which domain name the application is going to be deployed. This is a common
 practice in microservices as well as regular web applications that are deployed in Docker images.

The net/http
 package offers functions and data types that allow you to develop powerful web servers and clients. The http.Set()
 and http.Get()
 methods can be used to make HTTP and HTTPS requests, whereas http.ListenAndServe()
 is used for creating web servers given the user-specified handler function or functions that handle incoming requests. As most web services require support for multiple endpoints, you end up needing multiple discrete functions for handling incoming requests, which also leads to the better design of your services.

The simplest way to define the supported endpoints, as well as the handler function that responds to each client request, is with the use of http.HandleFunc()
 , which can be called multiple times.

After this quick and somewhat theoretical introduction, it is time to begin talking about more practical topics, beginning with the implementation of a simple web server as illustrated in wwwServer.go
 :

package

 main
import

 (
 "fmt"

 "net/http"

 "os"

 "time"

)
func

myHandler

(w http.ResponseWriter, r *http.Request)

 {
 fmt.Fprintf(w, "Serving: %s\n"

, r.URL.Path)
 fmt.Printf("Served: %s\n"

, r.Host)
}

This is a handler function that sends a message back to the client using the w http.ResponseWriter
 , which is also an interface that implements io.Writer
 and is used for sending the server response.

func

timeHandler

(w http.ResponseWriter, r *http.Request)

 {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"

 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>"

, Body)
 fmt.Fprintf(w, "<h2 align=\"center\">%s</h2>\n"

, t)
 fmt.Fprintf(w, "Serving: %s\n"

, r.URL.Path)
 fmt.Printf("Served time for: %s\n"

, r.Host)
}

This is another handler function called timeHandler
 that returns back the current time in HTML format. All fmt.Fprintf()
 calls send data back to the HTTP client whereas the output of fmt.Printf()
 is
 printed on the terminal the web server runs on. The first argument of fmt.Fprintf()
 is the w http.ResponseWriter
 , which implements io.Writer
 and therefore can accept data.

func

main

()

 {
 PORT := ":8001"

This is where you define the port number your web server listens to.

 arguments := os.Args
 if

 len

(arguments) != 1

 {
 PORT = ":"

 + arguments[1

]
 }
 fmt.Println("Using port number: "

, PORT)

If you do not want to use the predefined port number (8001
), then you should provide wwwServer.go
 with your own port number as a command-line argument.

 http.HandleFunc("/time"

, timeHandler)
 http.HandleFunc("/"

, myHandler)

So, the web server supports the /time
 URL as well as /
 . The /
 path matches every URL
 not matched by other handlers. The fact that we associate myHandler()
 with /
 makes myHandler()
 the default handler function.

 err := http.ListenAndServe(PORT, nil

)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
}

The http.ListenAndServe()
 call begins the HTTP server using the predefined port number. As there is no hostname given in the PORT
 string, the web server is going to listen to all available network interfaces. The port number and the hostname should be separated with a colon (:
), which should be there even if there is no hostname—in that case the server listens to all available
 network interfaces and, therefore, all supported hostnames. This is the reason that the value of PORT
 is :8001
 instead of just 8001
 .

Part of the net/http
 package is the ServeMux
 type (go doc http.ServeMux
), which is an HTTP request multiplexer
 that provides a
 slightly different way of defining handler functions and endpoints than the default one, which is used in wwwServer.go
 . So, if we do not create and configure our own ServeMux
 variable, then http.HandleFunc()
 uses DefaultServeMux
 , which is the default ServeMux
 . So, in this case we are going to implement the
 web service using the default Go router
 —this is the reason that the second parameter of http.ListenAndServe()
 is nil
 .

Running wwwServer.go
 and interacting with it using curl(1)
 produces the next output:

$

 go run wwwServer.go

Using port number: :8001
Served: localhost:8001
Served time for: localhost:8001
Served: localhost:8001

Note that as wwwServer.go
 does not terminate automatically, you need to stop it on your own.

On the curl(1)
 side, the interaction looks as follows:

$

 curl localhost:8001

Serving: /

In this first case, we visit the /
 path of the web server and we are being served by myHandler()
 .

$

 curl localhost:8001/time

<h1 align="center">The current time is:</h1><h2 align="center">Mon, 29 Mar 2021 08:26:27 EEST</h2>
Serving: /time

In this case we visit /time
 and we get HTML output back from timeHandler()
 .

$

 curl localhost:8001/doesNotExist

Serving: /doesNotExist

In this last case, we visit /doesNotExist
 , which does not exist. As this cannot be matched by any other
 path, it is served by the default handler, which is the myHandler()
 function.

The next section is about making the phone book application a web application!

Updating the phone book application

This time the phone book
 application is going to work as a web service. The two main tasks that need to be performed are defining the API along with the endpoints and implementing the API. A third task that needs to be determined concerns data exchange
 between the application server and its clients. There exist four main approaches regarding data exchange:

	Using plain text

	Using HTML

	Using JSON

	Using a hybrid approach that combines plain text and JSON data

As JSON is explored in Chapter 10
 , Working with REST APIs
 , and HTML might not be the best option for a service because you need to separate the data from the HTML tags and parse the data, we are going to use the first approach. Therefore, the service is going to work with plain text data
 . We begin
 by defining the API that supports the operation of the phone book application.

Defining the API

The API has support for the
 following URLs:

	
/list
 : This lists all available entries.

	
/insert/name/surname/telephone/
 : This inserts a new entry. Later on, we are going to see how to extract the desired information from a URL that contains user data.

	
/delete/telephone/
 : This deletes an entry based on the value of telephone
 .

	
/search/telephone/
 : This searches for an entry based on the value of telephone
 .

	
/status
 : This is an extra URL that returns the number of entries in the phone book.

The list of endpoints does not follow standard REST conventions—all these are going to be presented in Chapter 10
 , Working with REST APIs
 .

This time we not using
 the default Go router, which means that we define and configure our own http.NewServeMux()
 variable. This changes the way we provide handler functions: a handler function with the func(http.ResponseWriter, *http.Request)
 signature has to be converted into an http.HandlerFunc
 type
 and be used by the ServeMux
 type and its own Handle()
 method. Therefore, when using a different ServeMux
 than the default one, we should do that conversion explicitly by calling http.HandlerFunc()
 , which makes the http.HandlerFunc
 type
 act as an adapter
 that allows the use of ordinary functions as HTTP handlers provided that they have the required signature. This is not a problem when using the default Go router (DefaultServeMux
) because the http.HandleFunc()
 function
 does that conversion automatically and internally.

To make things clearer, the http.HandlerFunc
 type
 has support for a method
 named HandlerFunc()
 —both the type and method are defined in the http
 package. The similarly named the http.HandleFunc()
 function
 (without an r
) is used with the default Go router.

As an example, for the /time
 endpoint and the timeHandler()
 handler function, you should call mux.Handle()
 as mux.Handle("/time", http.HandlerFunc(timeHandler))
 . If you were using http.HandleFunc()
 and as a consequence DefaultServeMux
 , then you should have called http.HandleFunc("/time", timeHandler)
 instead.

The subject of the next subsection is the implementation of the HTTP endpoints.

Implementing the handlers

The new version
 of the phone book is going to be created on a dedicated GitHub repository for storing and sharing it:
https://github.com/mactsouk/www-phone

 . After creating the repository, you need to do the following:

$

cd

 ~/go/src/github.com/mactsouk

Replace with your own path

$

 git

clone

 git@github.com:mactsouk/www-phone.git

$

cd

 www-phone

$

 touch handlers.go

$

 touch www-phone.go

The www-phone.go
 file holds the code that defines the operation of the web server. Usually, handlers are put in a separate package, but for reasons of simplicity, we decided to put handlers
 in a separate file within the same package named handlers.go
 . The contents of the handlers.go
 file, which contains all functionality related to the serving of the clients, are the following:

package

 main
import

 (
 "fmt"

 "log"

 "net/http"

 "strings"

)

All required packages for handlers.go
 are imported even if some of them are already imported by www-phone.go
 . Note that the name of the package is main
 , which is also the case for www-phone.go
 .

const

 PORT = ":1234"

This is the default port number the HTTP server listens to.

func

defaultHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
 w.WriteHeader(http.StatusOK)
 Body := "Thanks for visiting!\n"

 fmt.Fprintf(w, "%s"

, Body)
}

This is the default handler, which serves all requests that are not a match for any of the other handlers.

func

deleteHandler

(w http.ResponseWriter, r *http.Request)

 {
 // Get telephone

 paramStr := strings.Split(r.URL.Path, "/"

)

This is the handler function for the /delete
 path, which begins by splitting the URL in order to read the desired information.

 fmt.Println("Path:"

, paramStr)
 if

 len

(paramStr) < 3

 {
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintln(w, "Not found: "

+r.URL.Path)
 return

 }

If we do not have enough
 parameters, we should send an error message back to the client with the desired HTTP code, which in this case is http.StatusNotFound
 . You can use any HTTP code you want as long as it makes sense. The WriteHeader()
 method sends back a header with the provided status code before writing the body of the response.

 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)

This is where the HTTP server sends data to log files—this mainly happens for debugging reasons.

 telephone := paramStr[2

]

As the delete process is based on the telephone number, all that is required is a valid telephone number. This is where the parameter is read after splitting the provided URL.

 err := deleteEntry(telephone)
 if

 err != nil

 {
 fmt.Println(err)
 Body := err.Error() + "\n"

 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintf(w, "%s"

, Body)
 return

 }

Once we have a telephone number, we call deleteEntry()
 in order to delete it. The return value of deleteEntry()
 determines the result of the operation and, therefore, the response to the client.

 Body := telephone + " deleted!\n"

 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "%s"

, Body)
}

At this point, we know that the delete operation was successful so we send a proper message to the client as well as the http.StatusOK
 status code. Type go doc http.StatusOK
 for the list
 of codes.

func

listHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
 w.WriteHeader(http.StatusOK)
 Body := list()
 fmt.Fprintf(w, "%s"

, Body)
}

The list()
 helper function that is used in the /list
 path cannot fail. Therefore, http.StatusOK
 is always returned when serving /list
 . However, sometimes the return value of list()
 can be empty.

func

statusHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
 w.WriteHeader(http.StatusOK)
 Body := fmt.Sprintf("Total entries: %d\n"

, len

(data))
 fmt.Fprintf(w, "%s"

, Body)
}

The preceding code defines the handler function for the /status
 URL. It just returns information about the total number of entries found in the phone book. It can be used for verifying that the web service works fine.

func

insertHandler

(w http.ResponseWriter, r *http.Request)

 {
 // Split URL

 paramStr := strings.Split(r.URL.Path, "/"

)
 fmt.Println("Path:"

, paramStr)

As happened with delete
 , we need to split the given URL in order to extract the information. In this case, we need three elements as we are trying to insert a new entry into the phone book application.

 if

 len

(paramStr) < 5

 {
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintln(w, "Not enough arguments: "

+r.URL.Path)
 return

 }

Needing to extract three elements from the URL means that we require paramStr
 to have at least four elements in it, hence the len(paramStr) < 5
 condition.

 name := paramStr[2

]
 surname := paramStr[3

]
 tel := paramStr[4

]
 t := strings.ReplaceAll(tel, "-"

, ""

)
 if

 !matchTel(t) {
 fmt.Println("Not a valid telephone number:"

, tel)
 return

 }

In the previous part, we
 get the desired data and make sure that the telephone number contains digits only—this happens with the use of the matchTel()
 helper function.

 temp := &Entry{Name: name, Surname: surname, Tel: t}
 err := insert(temp)

As the insert()
 helper function requires an *Entry
 value, we create one before calling it.

 if

 err != nil

 {
 w.WriteHeader(http.StatusNotModified)
 Body := "Failed to add record\n"

 fmt.Fprintf(w, "%s"

, Body)
 } else

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
 Body := "New record added successfully\n"

 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "%s"

, Body)
 }
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
}

This is the end of the handler for /insert
 . The last part of the implementation of insertHandler()
 deals with the return value of insert()
 . If there was not an error, then http.StatusOK
 is returned to the client. In the opposite case, http.StatusNotModified
 is returned to signify that there was not a change in the phone book. It is the job of the client to examine the status code of the interaction but it is the job of the server to
 send an appropriate status code back to the client.

func

searchHandler

(w http.ResponseWriter, r *http.Request)

 {
 // Get Search value from URL

 paramStr := strings.Split(r.URL.Path, "/"

)
 fmt.Println("Path:"

, paramStr)
 if

 len

(paramStr) < 3

 {
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintln(w, "Not found: "

+r.URL.Path)
 return

 }
 var

 Body string

 telephone := paramStr[2

]

At this point, we extract the telephone number from the URL as we did with /delete
 .

 t := search(telephone)
 if

 t == nil

 {
 w.WriteHeader(http.StatusNotFound)
 Body = "Could not be found: "

 + telephone + "\n"

 } else

 {
 w.WriteHeader(http.StatusOK)
 Body = t.Name + " "

 + t.Surname + " "

 + t.Tel + "\n"

 }
 fmt.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
 fmt.Fprintf(w, "%s"

, Body)
}

The last function of handlers.go
 ends here and is about the /search
 endpoint. The search()
 helper function checks whether the given input exists in the phone book records or not and acts accordingly. Additionally, the implementation of the main()
 function, which can be found in www-phone.go
 , is the following:

func

main

()

 {
 err := readCSVFile(CSVFILE)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 err = createIndex()
 if

 err != nil

 {
 fmt.Println("Cannot create index."

)
 return

 }

This first part of main()
 has to do with the initialization of the phone book application.

 mux := http.NewServeMux()
 s := &http.Server{
 Addr: PORT,
 Handler: mux,
 IdleTimeout: 10

 * time.Second,
 ReadTimeout: time.Second,
 WriteTimeout: time.Second,
 }

Here, we store the
 parameters of the HTTP server in the http.Server
 structure and use our own http.NewServeMux()
 instead of the default one.

 mux.Handle("/list"

, http.HandlerFunc(listHandler))
 mux.Handle("/insert/"

, http.HandlerFunc(insertHandler))
 mux.Handle("/insert"

, http.HandlerFunc(insertHandler))
 mux.Handle("/search"

, http.HandlerFunc(searchHandler))
 mux.Handle("/search/"

, http.HandlerFunc(searchHandler))
 mux.Handle("/delete/"

, http.HandlerFunc(deleteHandler))
 mux.Handle("/status"

, http.HandlerFunc(statusHandler))
 mux.Handle("/"

, http.HandlerFunc(defaultHandler))

This is the list of the supported URLs. Note that /search
 and /search/
 are both handled by the same handler function even though /search
 is going to fail as it does not include the required argument. On the other hand, /delete/
 is handled in a special way—this is going to be shown when testing the application. As we are using http.NewServeMux()
 and not the default Go router, we need to use http.HandlerFunc()
 when defining the handler functions.

 fmt.Println("Ready to serve at"

, PORT)
 err = s.ListenAndServe()
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
}

The ListenAndServe()
 method
 starts the HTTP server using the parameters defined previously in the http.Server
 structure. The rest of www-phone.go
 contains helper functions related to the operation of the phone book. Note that it is important to save and update the contents of the phone book application as often as possible because this is a live application, and you might lose data if it crashes.

The next command allows you to execute the application—you need to provide both files in go run
 :

$

 go run www-phone.go handlers.go

Ready to serve at :1234
2021/03/29 17:13:49 Serving: /list from localhost:1234
2021/03/29 17:13:53 Serving: /status from localhost:1234
Path: [search 2109416471]
Serving: /search/2109416471 from localhost:1234
Path: [search]
2021/03/29 17:28:34 Serving: /list from localhost:1234
Path: [search 2101112223]
Serving: /search/2101112223 from localhost:1234
Path: [delete 2109416471]
2021/03/29 17:29:24 Serving: /delete/2109416471 from localhost:1234
Path: [insert Mike Tsoukalos 2109416471]
2021/03/29 17:29:56 Serving: /insert/Mike/Tsoukalos/2109416471 from localhost:1234
2021/03/29 17:29:56 Serving: /insert/Mike/Tsoukalos/2109416471 from localhost:1234
Path: [insert Mike Tsoukalos 2109416471]
2021/03/29 17:30:18 Serving: /insert/Mike/Tsoukalos/2109416471 from localhost:1234

On the client side, which is curl(1)
 , we have the next output:

$

 curl localhost:1234/list

Dimitris Tsoukalos 2101112223
Jane Doe 0800123456
Mike Tsoukalos 2109416471

Here, we get all entries from the phone book application by visiting /list
 .

$

 curl localhost:1234/status

Total entries: 3

Next, we visit /status
 and get
 back the expected output.

$

 curl localhost:1234/search/2109416471

Mike Tsoukalos 2109416471

The previous command searches for an existing phone number—the server responds with its full record.

$

 curl localhost:1234/delete/2109416471

2109416471 deleted!

The previous output shows that we have deleted the record with telephone number 2109416471
 . In REST, this requires a DELETE
 method, but for reasons of simplicity we leave the details for Chapter 10
 , Working with REST APIs
 .

Now, let us try and visit /delete
 instead of /delete/
 :

$

 curl localhost:1234/delete

Moved Permanently.

The presented message was generated by the Go router and tells us that we should try /delete/
 instead as /delete
 was moved permanently. This is the kind of message that we get by not specifically defining both /delete
 and /delete/
 in the routes.

Now, let us insert a new record:

$

 curl localhost:1234/insert/Mike/Tsoukalos/2109416471

New record added successfully

In REST, this requires a POST
 method, but again, we will leave that for Chapter 10
 , Working with REST APIs
 .

If we try to insert the same record again, the response is going to be as follows:

$

 curl localhost:1234/insert/Mike/Tsoukalos/2109416471

Failed to add record

Everything looks like it is working OK. We can now put the phone application online and interact with it using multiple HTTP requests as the http
 package uses multiple goroutines for interacting with clients—in practice, this means that the phone book application runs concurrently
 !

Later in this chapter
 we are going to create a command-line client for the phone book server. Additionally, Chapter 11
 , Code Testing and Profiling
 , shows how to test your code.

The next section shows how to expose metrics to Prometheus and how to build Docker images for server applications.

Exposing metrics to Prometheus

Imagine that you have
 an application that writes files to disk and you want to get metrics for that application to better understand how the writing of multiple files has an effect on the general performance—you need to gather performance data for understanding the behavior of your application. Although the presented application uses the gauge
 type of metric only because it is what is appropriate for the information that is sent to Prometheus, Prometheus accepts many types of data. The list of supported data types for metrics is the following:

	
Counter
 : This is a cumulative value that is used for representing increasing counters—the value of a counter can stay the same, go up, or be reset to zero but cannot decrease. Counters are usually used for representing cumulative values such as the number of requests served so far, the total number of errors, etc.

	
Gauge
 : This is a single numerical value that is allowed to increase or decrease. Gauges are usually used for representing values that can go up or down such as the number of requests, time durations, etc.

	
Histogram
 : A histogram is used for sampling observations and creating counts and buckets. Histograms are usually used for counting request durations, response times, etc.

	
Summary
 : A summary is like a histogram but can also calculate quantiles over sliding windows that work with times.

Both histograms and summaries are useful and handy for performing statistical calculations and properties. Usually, a counter or a gauge is all that you need for storing your system metrics.

This section shows how you can collect and expose a system to Prometheus. For reasons of simplicity, the presented
 application is going to generate random values. We begin by explaining the use of the runtime/metrics
 package, which provides Go runtime-related metrics.

The runtime/metrics package

The runtime/metrics
 package makes
 metrics exported by the Go runtime available to the developer. Each metric name is specified by a path. As an example, the number of live goroutines is accessed as /sched/goroutines:goroutines
 . However, if you want to collect all available metrics, you should use metrics.All()
 —this saves you from having to write lots of code in order to collect all metrics manually.

Metrics are saved using the metrics.Sample
 data type. The definition of the metrics.Sample
 data structure is as follows:

type

 Sample struct

 {
 Name string

 Value Value
}

The Name
 value must correspond to the name of one of the metric descriptions returned by metrics.All()
 . If you already know the metric description, there is no need to use metrics.All()
 .

The use of the runtime/metrics
 package is illustrated in metrics.go
 . The presented code gets the value of /sched/goroutines:goroutines
 and prints it on screen:

package

 main
import

 (
 "fmt"

 "runtime/metrics"

 "sync"

 "time"

)
func

main

()

 {
 const

 nGo = "/sched/goroutines:goroutines"

The nGo
 variable holds the path of the metric we want to collect.

 // A slice for getting metric samples

 getMetric := make

([]metrics.Sample, 1

)
 getMetric[0

].Name = nGo

After that we create a slice of
 type metrics.Sample
 in order to keep the metric value. The initial size of the slice is 1
 because we are only collecting values for a single metric. We set the Name
 value to /sched/goroutines:goroutines
 as stored in nGo
 .

 var

 wg sync.WaitGroup
 for

 i := 0

; i < 3

; i++ {
 wg.Add(1

)
 go

 func

()

 {
 defer

 wg.Done()
 time.Sleep(4

 * time.Second)
 }()

Here we manually create three goroutines to have relevant data to collect.

 // Get actual data

 metrics.Read(getMetric)
 if

 getMetric[0

].Value.Kind() == metrics.KindBad {
 fmt.Printf("metric %q no longer supported\n"

, nGo)
 }

The metrics.Read()
 function collects the desired metrics based on the data in the getMetric
 slice.

 mVal := getMetric[0

].Value.Uint64()
 fmt.Printf("Number of goroutines: %d\n"

, mVal)
 }

After reading the desired metric, we convert it into a numeric value (unsigned int64
 here) in order to use it in our program.

 wg.Wait()
 metrics.Read(getMetric)
 mVal := getMetric[0

].Value.Uint64()
 fmt.Printf("Before exiting: %d\n"

, mVal)
}

The last lines of the code verify that after all goroutines have finished, the value of the metric is going to be 1
 , which is the goroutine used for running the main()
 function.

Running metrics.go
 produces the next output:

$

 go run metrics.go

Number of goroutines: 2
Number of goroutines: 3
Number of goroutines: 4
Before exiting: 1

We have created 3 goroutines and we already have a goroutine for running the main()
 function. Therefore, the
 maximum number of goroutines is indeed 4.

The subsections that follow illustrate how to make any metric you collect available to Prometheus.

Exposing metrics

Collecting metrics is a totally
 different task from exposing them for Prometheus to collect them. This subsection shows how to make the metrics available for collection.

The code of samplePro.go
 is as follows:

package

 main
import

 (
 "fmt"

 "net/http"

 "math/rand"

 "time"

 "github.com/prometheus/client_golang/prometheus"

 "github.com/prometheus/client_golang/prometheus/promhttp"

)

We need to use two external packages for communicating with Prometheus.

var

 PORT = ":1234"

var

 counter = prometheus.NewCounter(
 prometheus.CounterOpts{
 Namespace: "mtsouk"

,
 Name: "my_counter"

,
 Help: "This is my counter"

,
 })

This is how we define a new counter
 variable and specify the desired options. The Namespace
 field is very important as it allows you to group metrics in sets.

var

 gauge = prometheus.NewGauge(
 prometheus.GaugeOpts{
 Namespace: "mtsouk"

,
 Name: "my_gauge"

,
 Help: "This is my gauge"

,
 })

This is how we define a
 new gauge
 variable and specify the desired options.

var

 histogram = prometheus.NewHistogram(
 prometheus.HistogramOpts{
 Namespace: "mtsouk"

,
 Name: "my_histogram"

,
 Help: "This is my histogram"

,
 })

This is how we define a new histogram
 variable and specify the desired options.

var

 summary = prometheus.NewSummary(
 prometheus.SummaryOpts{
 Namespace: "mtsouk"

,
 Name: "my_summary"

,
 Help: "This is my summary"

,
 })

This is how we define a new summary
 variable and specify the desired options. However, as you are going to see, defining a metric variable is not enough. You also need to register it.

func

main

()

 {
 rand.Seed(time.Now().Unix())
 prometheus.MustRegister(counter)
 prometheus.MustRegister(gauge)
 prometheus.MustRegister(histogram)
 prometheus.MustRegister(summary)

In these four statements, you register the four metric variables. Now Prometheus knows about them.

 go

 func

()

 {
 for

 {
 counter.Add(rand.Float64() * 5

)
 gauge.Add(rand.Float64()*15

 - 5

)
 histogram.Observe(rand.Float64() * 10

)
 summary.Observe(rand.Float64() * 10

)
 time.Sleep(2

 * time.Second)
 }
 }()

This goroutine runs for
 as long as the web server runs with the help of the endless for
 loop. In this goroutine, the metrics are updated every 2 seconds due to the use of the time.Sleep(2 * time.Second)
 statement—in this case using random values.

 http.Handle("/metrics"

, promhttp.Handler())
 fmt.Println("Listening to port"

, PORT)
 fmt.Println(http.ListenAndServe(PORT, nil

))
}

As you already know, each URL is handled by a handler function that you usually implement on your own. However, in this case we are using the promhttp.Handler()
 handler function that comes with the github.com/prometheus/client_golang/prometheus/promhttp
 package—this saves us from having to write our own code. However, we still need to register the promhttp.Handler()
 handler function using http.Handle()
 before we start the web server. Note that the metrics are found under the /metrics
 path—Prometheus knows how to find that.

With samplePro.go
 running, getting the list of metrics that belong to the mtsouk
 namespace is as simple as running the next curl(1)
 command:

$

 curl localhost:1234/metrics --silent | grep mtsouk

#

 HELP mtsouk_my_counter This is my counter

#

 TYPE mtsouk_my_counter counter

mtsouk_my_counter 19.948239343027772

This is the output from a counter
 variable. If the | grep mtsouk
 part is omitted, then you are going to get the list of all available metrics.

#

 HELP mtsouk_my_gauge This is my gauge

#

 TYPE mtsouk_my_gauge gauge

mtsouk_my_gauge 29.335329668135287

This is the output from a gauge
 variable.

#

 HELP mtsouk_my_histogram This is my histogram

#

 TYPE mtsouk_my_histogram histogram

mtsouk_my_histogram_bucket{le="0.005"} 0
mtsouk_my_histogram_bucket{le="0.01"} 0
mtsouk_my_histogram_bucket{le="0.025"} 0
. . .
mtsouk_my_histogram_bucket{le="5"} 4
mtsouk_my_histogram_bucket{le="10"} 9
mtsouk_my_histogram_bucket{le="+Inf"} 9
mtsouk_my_histogram_sum 44.52262035556937
mtsouk_my_histogram_count 9

This is the output from
 a histogram
 variable. Histograms contain buckets
 , hence the large number of output lines.

#

 HELP mtsouk_my_summary This is my summary

#

 TYPE mtsouk_my_summary summary

mtsouk_my_summary_sum 19.407554729772105
mtsouk_my_summary_count 9

The last lines of the output are for the summary
 data type.

So, the metrics are there and ready to be pulled by Prometheus—in practice, this means that every production Go application can export metrics that can be used for measuring its performance and discovering its bottlenecks. However, we are not done yet as we need to learn about building Docker images for Go applications.

Creating a Docker image for a Go server

This section shows how to
 create a Docker image for a Go application. The main benefit you get from this is that you can deploy it in a Docker environment
 without worrying about compiling it and having the required resources—everything is included in the Docker image.

Still, you might ask, "why not use a normal Go binary instead of a Docker image?"
 The answer is simple: Docker images can be put in docker-compose.yml
 files and can be deployed using Kubernetes. The same is not true about Go binaries.

You usually start with a base Docker image that already includes Go and you create the desired binary in there. The key point here is that samplePro.go
 uses an external package that should be downloaded in the Docker image before building the executable binary.

The process must start with go mod init
 and go mod tidy
 . The contents of the Dockerfile, which can be found as dFilev2
 in the GitHub repository of the book, are as follows:

WITH Go Modules

FROM

 golang:alpine AS builder
RUN

 apk update && apk add --no-cache git

As golang:alpine
 uses the latest Go version, which does not come with git
 , we install it manually.

RUN

 mkdir

$GOPATH

/src/server

ADD

 ./samplePro.go

$GOPATH

/src/server

If you want to use Go modules, you should put your code in $GOPATH/src
 .

WORKDIR

$GOPATH

/src/server

RUN

 go mod init

RUN

 go mod tidy

RUN

 go mod download

RUN

 mkdir /pro

RUN

 go build -o /pro/server samplePro.go

We download dependencies using various go mod
 commands. The building of the binary file is the same as before.

FROM

 alpine:latest
RUN

 mkdir /pro

COPY

 --from=builder /pro/server /pro/server

EXPOSE

 1234

WORKDIR

 /pro

CMD

 [

"/pro/server"

]

In this second stage, we
 put the binary file into the desired location (/pro
) and expose the desired port, which in this case is 1234
 . The port number depends on the
 code in samplePro.go
 .

Building a Docker image using dFilev2
 is as simple as running the next command:

$

 docker build -f dFilev2 -t go-app116 .

Once the Docker image has been created, there is no difference in the way you should use it in a docker-compose.yml
 file—a relevant entry in a docker-compose.yml
 file would look as follows:

 goapp:

 image:

 goapp

 container_name:

 goapp-int

 restart:

 always

 ports:

 -

 1234

:1234

 networks:

 -

 monitoring

The name of the Docker image is goapp
 whereas the internal name of the container would be goapp-int
 . So, if a different container from the monitoring
 network wants to access that container, it should use the goapp-int
 hostname. Last, the only open port is port number 1234
 .

The next section illustrates how to expose metrics to Prometheus.

Exposing the desired metrics

This section illustrates how to
 expose metrics from the runtime/metrics
 package to Prometheus. In our case we use /sched/goroutines:goroutines
 and /memory/classes/total:bytes
 . You already know about the former, which is the total number of goroutines. The latter metric is the amount of memory mapped by the Go runtime into the current process as read-write.

As the presented code uses an external package, it should be put inside ~/go/src
 and Go modules should be enabled using go mod init
 .

The Go code of prometheus.go
 is as follows:

package

 main
import

 (
 "log"

 "math/rand"

 "net/http"

 "runtime"

 "runtime/metrics"

 "time"

 "github.com/prometheus/client_golang/prometheus"

 "github.com/prometheus/client_golang/prometheus/promhttp"

)

The first external package is the Go client library for Prometheus and the second package is for using the default handler function (promhttp.Handler()
).

var

 PORT = ":1234"

var

 n_goroutines = prometheus.NewGauge(
 prometheus.GaugeOpts{
 Namespace: "packt"

,
 Name: "n_goroutines"

,
 Help: "Number of goroutines"

})
var

 n_memory = prometheus.NewGauge(
 prometheus.GaugeOpts{
 Namespace: "packt"

,
 Name: "n_memory"

,
 Help: "Memory usage"

})

Here, we define the two
 Prometheus metrics.

func

main

()

 {
 rand.Seed(time.Now().Unix())
 prometheus.MustRegister(n_goroutines)
 prometheus.MustRegister(n_memory)
 const

 nGo = "/sched/goroutines:goroutines"

 const

 nMem = "/memory/classes/heap/free:bytes"

This is where you define the metrics you want to read from the runtime/metrics
 package.

 getMetric := make

([]metrics.Sample, 2

)
 getMetric[0

].Name = nGo
 getMetric[1

].Name = nMem
 http.Handle("/metrics"

, promhttp.Handler())

This is where you register the handler function for the /metrics
 path. We use promhttp.Handler()
 .

 go

 func

()

 {
 for

 {
 for

 i := 1

; i < 4

; i++ {
 go

 func

()

 {
 _ = make

([]int

, 1000000

)
 time.Sleep(time.Duration(rand.Intn(10

)) * time.Second)
 }()
 }

Note that such a program should definitely have at least two goroutines
 : one for running the HTTP server and another one for collecting the metrics. Usually, the HTTP server is on the goroutine that runs the main()
 function and the metric collection happens in a user-defined goroutine.

The external for
 loop makes sure that the goroutine runs forever whereas the internal for
 loop creates additional goroutines so that the value of the /sched/goroutines:goroutines
 metric changes all the time.

 runtime.GC()
 metrics.Read(getMetric)
 goVal := getMetric[0

].Value.Uint64()
 memVal := getMetric[1

].Value.Uint64()
 time.Sleep(time.Duration(rand.Intn(15

)) * time.Second)
 n_goroutines.Set(float64

(goVal))
 n_memory.Set(float64

(memVal))
 }
 }()

The runtime.GC()
 function
 tells the Go garbage collector to run and is called for changing the /memory/classes/heap/free:bytes
 metric. The two Set()
 calls update the values of the metrics.

You can read more about the operation of the Go garbage collector in Appendix A
 .

 log.Println("Listening to port"

, PORT)
 log.Println(http.ListenAndServe(PORT, nil

))
}

The last statement runs the web server using the default Go router. Running prometheus.go
 from a directory inside ~/go/src/github.com/mactsouk
 requires executing the next commands:

$

cd

 ~/go/src/github.com/mactsouk/Prometheus

use any path inside ~/go/src

$

 go mod init

$

 go mod tidy

$

 go mod download

$

 go run prometheus.go

2021/04/01 12:18:11 Listening to port :1234

Although prometheus.go
 generates no output apart from the previous line, the next subsection illustrates how to read the desired metrics from it using curl(1)
 .

Reading metrics

You can get a list of the
 metrics from prometheus.go
 using curl(1)
 in order to make sure that the application works as expected. I always test the operation of such an application with curl(1)
 or some other similar utility such as wget(1)
 before trying to get the metrics with Prometheus.

$

 curl localhost:1234/metrics --silent | grep packt

#

 HELP packt_n_goroutines Number of goroutines

#

 TYPE packt_n_goroutines gauge

packt_n_goroutines 5
#

 HELP packt_n_memory Memory usage

#

 TYPE packt_n_memory gauge

packt_n_memory 794624

The previous command assumes that curl(1)
 is executed on the same machine as the server and that the server listens to TCP port number 1234
 . Next, we must enable Prometheus to pull the metrics. The easiest way for a Prometheus Docker image to be able to see the Go application with the metrics is to execute both as Docker images. There is an important point here: the runtime/metrics
 package was first introduced with Go version 1.16. This means that to build a Go source file that uses runtime/metrics
 , we need to use Go version 1.16 or newer, which means that we need to use modules for building
 the Docker image. Therefore, we are going to use the following Dockerfile:

FROM

 golang:alpine AS builder

This is the name of the base Docker image that is used for building the binary. golang:alpine
 always contains the latest Go version as long as you update it regularly.

RUN

 apk update && apk add --no-cache git

As golang:alpine
 does not come with git
 , we need to install it manually.

RUN

 mkdir

$GOPATH

/src/server

ADD

 ./prometheus.go

$GOPATH

/src/server

WORKDIR

$GOPATH

/src/server

RUN

 go mod init

RUN

 go mod tidy

RUN

 go mod download

The previous commands download the required dependencies before trying to build the binary.

RUN

 mkdir /pro

RUN

 go build -o /pro/server prometheus.go

FROM

 alpine:latest
RUN

 mkdir /pro

COPY

 --from=builder /pro/server /pro/server

EXPOSE

 1234

WORKDIR

 /pro

CMD

 [

"/pro/server"

]

Building the desired Docker image, which is going to be named goapp
 , is as simple as running the next command:

$

 docker build -f Dockerfile -t goapp .

As usual, the output of docker images
 verifies the successful creation of the goapp
 Docker image—in my case the relevant entry looks as follows:

goapp latest a1f0cd4bd8f5 5 seconds ago 16.9MB

Let us now discuss
 how to configure Prometheus to pull the desired metrics.

Putting the metrics in Prometheus

To be able to pull the
 metrics, Prometheus needs a
 proper configuration file. The configuration file that is going to be used is as follows:

prometheus.yml

scrape_configs:

 -

 job_name:

 GoServer

 scrape_interval:

 5s

 static_configs:

 -

 targets:

 ['goapp:1234'

]

We tell Prometheus to connect to a host named goapp
 using port number 1234
 . Prometheus pulls data every 5 seconds, according to the value of the scrape_interval
 field. You should put prometheus.yml
 in the prometheus
 directory, which should be in the same directory as the docker-compose.yml
 file that is presented next.

Prometheus as well as Grafana and the Go application are going to run as Docker containers using the next docker-compose.yml
 file:

version:

 "3"

services:

 goapp:

 image:

 goapp

 container_name:

 goapp

 restart:

 always

 ports:

 -

 1234

:1234

 networks:

 -

 monitoring

This is the part that deals
 with the Go application that collects the
 metrics. The Docker image name, as well as the internal hostname of the Docker container, is goapp
 . You should define the port number that is going to be open for connections. In this case both the internal and external port numbers are 1234
 . The internal one is mapped to the external one. Additionally, you should put all Docker images under the same network, which in this case is called monitoring
 and is defined in a while.

 prometheus:

 image:

 prom/prometheus:latest

 container_name:

 prometheus

 restart:

 always

 user:

 "0"

 volumes:

 -

 ./prometheus/:/etc/prometheus/

This is how you pass your own copy of prometheus.yml
 to the Docker image to be used by Prometheus. So, ./prometheus/prometheus.yml
 from the local machine can be accessed as /etc/prometheus/prometheus.yml
 from within the Docker image.

 -

 ./prometheus_data/:/prometheus/

 command:

 -

 '--config.file=/etc/prometheus/prometheus.yml'

This is where you tell Prometheus which configuration file to use.

 -

 '--storage.tsdb.path=/prometheus'

 -

 '--web.console.libraries=/etc/prometheus/console_libraries'

 -

 '--web.console.templates=/etc/prometheus/consoles'

 -

 '--storage.tsdb.retention.time=200h'

 -

 '--web.enable-lifecycle'

 ports:

 -

 9090

:9090

 networks:

 -

 monitoring

This is where the definition
 of the Prometheus part of the scenario ends. The Docker image used is called prom/prometheus:latest
 and
 the internal name of it is prometheus
 . Prometheus listens to port number 9090
 .

 grafana:

 image:

 grafana/grafana

 container_name:

 grafana

 depends_on:

 -

 prometheus

 restart:

 always

 user:

 "0"

 ports:

 -

 3000

:3000

 environment:

 -

 GF_SECURITY_ADMIN_PASSWORD=helloThere

This is the current password of the admin
 user—you need that for connecting to Grafana.

 -

 GF_USERS_ALLOW_SIGN_UP=false

 -

 GF_PANELS_DISABLE_SANITIZE_HTML=true

 -

 GF_SECURITY_ALLOW_EMBEDDING=true

 networks:

 -

 monitoring

 volumes:

 -

 ./grafana_data/:/var/lib/grafana/

Last, we present the Grafana part. Grafana listens to port number 3000
 .

volumes:

 grafana_data:

 {}
 prometheus_data:

 {}

The preceding two lines in combination with the two volumes
 fields allow both Grafana and Prometheus to save their data locally so that data is not lost each time you restart the Docker images.

networks:

 monitoring:

 driver:

 bridge

Internally, all three
 containers are known by the value of their container_name
 field. However, externally, you can connect to the open ports from your local machine as http://localhost:port
 or from another machine using http://hostname:port
 —the second way is not very secure and should be blocked by a firewall. Lastly, you
 need to run docker-compose up
 and you are done! The Go application begins exposing data and Prometheus begins collecting it.

The next figure shows the Prometheus UI (http://hostname:9090
) displaying a simple plot of packt_n_goroutines
 :

[image: Graphical user interface, application, table Description automatically generated]

Figure 8.1: The Prometheus UI

This output, which shows the values of the metrics in a graphical way, is very handy for debugging purposes, but it is far from being truly professional as Prometheus is not a visualization tool. The next subsection shows how to connect Prometheus with Grafana and create impressive plots.

Visualizing Prometheus metrics in Grafana

There is no point in
 collecting metrics without doing something with them, and by something, I mean visualizing them. Prometheus and Grafana work very well together so we are going to use Grafana for the visualization part. The
 single most important task that you should perform in Grafana is connecting it with your Prometheus instance. In Grafana terminology, you should create a Grafana data source
 that allows Grafana to get data from Prometheus.

The steps for creating a data source with our Prometheus installation are the following:

	First go to http://localhost:3000
 to connect to Grafana.

	The username of the administrator is admin
 whereas the password is defined in the value of the GF_SECURITY_ADMIN_PASSWORD
 parameter of the docker-compose.yml
 file.

	Then select Add your first data source
 . From the list of data sources, select Prometheus
 , which is usually at the top of the list.

	Put http://prometheus:9090
 in the URL field and then press the Save & Test
 button. Due to the internal network that exists between the Docker images, the Grafana container knows the Prometheus container by the prometheus
 hostname—this is the value of the container_name
 field. As you already know, you can also connect to Prometheus from your local machine using http://localhost:9090
 . We are done! The name of the data source is Prometheus
 .

After these steps, create a new dashboard from the initial Grafana screen and put a new panel on it. Select Prometheus
 as the data source of the panel, if it is not already selected. Then go to the Metrics
 drop-down menu and select the desired metrics. Click Save
 and you are done. Create as many panels as you want.

The next figure shows Grafana visualizing two metrics from Prometheus as exposed by prometheus.go
 .

[image: A picture containing text, monitor, electronics, screenshot Description automatically generated]

Figure 8.2: Visualizing metrics in Grafana

Grafana has many
 more capabilities than the ones presented
 here—if you are working with system metrics and want to check the performance of your Go applications, Prometheus and Grafana are good choices.

After learning about HTTP servers, the next section shows how to develop HTTP clients.

Developing web clients

This section shows how to
 develop HTTP clients starting with a simplistic version and continuing with a more advanced one. In this simplistic version, all of the work is done by the http.Get()
 call, which is pretty convenient when you do not want to deal with lots of options and parameters. However, this type of call gives you no flexibility over the process. Notice that http.Get()
 returns an http.Response
 value. All this is illustrated in simpleClient.go
 :

package

 main
import

 (
 "fmt"

 "io"

 "net/http"

 "os"

 "path/filepath"

)
func

main

()

 {
 if

 len

(os.Args) != 2

 {
 fmt.Printf("Usage: %s URL\n"

, filepath.Base(os.Args[0

]))
 return

 }

The filepath.Base()
 function returns the last element of a path. When given os.Args[0]
 as its parameter, it
 returns the name of the executable binary file.

 URL := os.Args[1

]
 data, err := http.Get(URL)

In the previous two statements we get the URL and get its data using http.Get()
 , which returns an *http.Response
 and an error
 variable. The *http.Response
 value contains all the information so you do not need to make any additional calls to http.Get()
 .

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 _, err = io.Copy(os.Stdout, data.Body)

The io.Copy()
 function reads from the data.Body
 reader, which contains the body of the server response, and writes the data to os.Stdout
 . As os.Stdout
 is always open, you do not need to open it for writing. Therefore, all data is written to standard output, which is usually the terminal window.

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 data.Body.Close()
}

Last, we close the data.Body
 reader to make the work of the garbage collection easier.

Working with simpleClient.go
 produces the next kind of output, which in this case is abbreviated:

$

 go run simpleClient.go https://www.golang.org

<!DOCTYPE html>
<html lang="en">
<meta charset="utf-8">
<meta name="description" content="Go is an open source programming language that makes it easy to build simple, reliable, and efficient software.">
...
</script>

Although simpleClient.go
 does the job of verifying that the given URL exists and is reachable, it offers no
 control over the process. The next subsection develops an advanced HTTP client that processes the server response.

Using http.NewRequest() to improve the client

As the web client of the
 previous section is relatively simplistic and does not give you any flexibility, in this subsection, you learn how to
 read a URL without using the http.Get()
 function, and with more options. However, the extra flexibility comes at a cost as you must write more code.

The code of wwwClient.go
 , without the import
 block, is as follows:

package

 main
// For the

import block go to the book GitHub repository

func

main

()

 {
 if

 len

(os.Args) != 2

 {
 fmt.Printf("Usage: %s URL\n"

, filepath.Base(os.Args[0

]))
 return

 }

Although using filepath.Base()
 is not necessary, it makes your output more professional.

 URL, err := url.Parse(os.Args[1

])
 if

 err != nil

 {
 fmt.Println("Error in parsing:"

, err)
 return

 }

The url.Parse()
 function
 parses a string into a URL
 structure. This means that if the given argument is not a valid URL, url.Parse()
 is going to
 notice. As usual, check the error
 variable.

 c := &http.Client{
 Timeout: 15

 * time.Second,
 }
 request, err := http.NewRequest(http.MethodGet, URL.String(), nil

)
 if

 err != nil

 {
 fmt.Println("Get:"

, err)
 return

 }

The http.NewRequest()
 function returns an http.Request
 object given a method, a URL, and an optional body. The http.MethodGet
 parameter defines that we want to retrieve the data using a GET
 HTTP method whereas URL.String()
 returns the string value of an http.URL
 variable.

 httpData, err := c.Do(request)
 if

 err != nil

 {
 fmt.Println("Error in Do():"

, err)
 return

 }

The http.Do()
 function sends an HTTP request (http.Request
) using an http.Client
 and gets an http.Response
 . So, http.Do()
 does the job of http.Get()
 in a more detailed way.

 fmt.Println("Status code:"

, httpData.Status)

httpData.Status
 holds the HTTP status code of the response—this is really important because it allows you to understand what really happened with the request.

 header, _ := httputil.DumpResponse(httpData, false

)
 fmt.Print(string

(header))

The httputil.DumpResponse()
 function is used here to get the response from the server and is mainly used for debugging purposes. The second argument of httputil.DumpResponse()
 is a Boolean value that specifies whether the function is going to include the body or not in its output—in our case it is set to false
 , which excludes the response body from the output and only prints the header. If you want to do the same on the
 server side, you should
 use httputil.DumpRequest()
 .

 contentType := httpData.Header.Get("Content-Type"

)
 characterSet := strings.SplitAfter(contentType, "charset="

)
 if

 len

(characterSet) > 1

 {
 fmt.Println("Character Set:"

, characterSet[1

])
 }

Here we find out about the character set of the response by searching the value of Content-Type
 .

 if

 httpData.ContentLength == -1

 {
 fmt.Println("ContentLength is unknown!"

)
 } else

 {
 fmt.Println("ContentLength:"

, httpData.ContentLength)
 }

Here, we try to get the content length from the response by reading httpData.ContentLength
 . However, if the value is not set, we print a relevant message.

 length := 0

 var

 buffer [1024

]byte

 r := httpData.Body
 for

 {
 n, err := r.Read(buffer[0

:])
 if

 err != nil

 {
 fmt.Println(err)
 break

 }
 length = length + n
 }
 fmt.Println("Calculated response data length:"

, length)
}

In the last part of the program, we use a technique for discovering the size of the server HTTP response on our own. If we wanted to display the HTML output on our screen, we could have printed the contents of the r
 buffer variable.

Working
 with wwwClient.go
 and visiting
https://www.golang.org

 produces the next output, which is the
 output of fmt.Println("Status code:", httpData.Status)
 :

$

 go run wwwClient.go https://www.golang.org

Status code: 200 OK

Next, we see output
 of the fmt.Print(string(header))
 statement with the header data of the HTTP server response:

HTTP/2.0 200 OK
Alt-Svc: h3-29=":443"; ma=2592000,h3-T051=":443"; ma=2592000,h3-Q050=":443"; ma=2592000,h3-Q046=":443"; ma=2592000,h3-Q043=":443"; ma=2592000,quic=":443"; ma=2592000; v="46,43"
Content-Type: text/html; charset=utf-8
Date: Sat, 27 Mar 2021 19:19:25 GMT
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Vary: Accept-Encoding
Via: 1.1 google

The last part of the output is about the character set of the interaction (utf-8
) and the content length of the response (9216
) as calculated by the code:

Character Set: utf-8
ContentLength is unknown!
EOF
Calculated response data length: 9216

The next section shows how to create a client for the phone book web service we developed earlier.

Creating a client for the phone book service

In this subsection, we create a
 command-line
 utility that interacts with the phone book web service that was developed earlier in this chapter. This version of the phone book client is going to be created using the cobra
 package, which means that a dedicated GitHub or GitLab repository is required. In this case the repository can be found at
https://github.com/mactsouk/phone-cli

 . The first thing to do after running git clone
 is associating
 that repository with the directory that is going to be used for development:

$

cd

 ~/go/src/github.com/mactsouk

$

 git

clone

 git@github.com:mactsouk/phone-cli.git

$

cd

 phone-cli

$

 ~/go/bin/cobra init --pkg-name github.com/mactsouk/phone-cli

$

 go mod init

$

 go mod tidy

$

 go mod download

Next, we have to create the
 commands for the utility. The structure of the utility is implemented using the next cobra
 commands:

$

 ~/go/bin/cobra add search

$

 ~/go/bin/cobra add insert

$

 ~/go/bin/cobra add delete

$

 ~/go/bin/cobra add status

$

 ~/go/bin/cobra add list

So, we have a command-line utility with five commands named search
 , insert
 , delete
 , status
 , and list
 . After that, we need to implement the commands and define their local parameters in order to interact with the phone book server.

Now let us see the implementations of the commands, starting from the implementation of the init()
 function of the root.go
 file because this is where the global command-line parameters are defined:

func

init

()

 {
 rootCmd.PersistentFlags().StringP("server"

, "S"

, "localhost"

, "Server"

)
 rootCmd.PersistentFlags().StringP("port"

, "P"

, "1234"

, "Port number"

)
 viper.BindPFlag("server"

, rootCmd.PersistentFlags().Lookup("server"

))
 viper.BindPFlag("port"

, rootCmd.PersistentFlags().Lookup("port"

))
}

So, we define two global parameters named server
 and port
 , which are the hostname and the port number, respectively. Both parameters have an alias and both parameters are handled by viper
 .

Let us now examine the implementation of the status
 command as found in status.go
 :

SERVER := viper.GetString("server"

)
PORT := viper.GetString("port"

)

All commands read the
 values of the server
 and port
 command-line parameters in order to get information about the server, and the status
 command is no exception.

// Create request

URL := "http://"

 + SERVER + ":"

 + PORT + "/status"

After that we construct
 the full URL of the request.

data, err := http.Get(URL)
if

 err != nil

 {
 fmt.Println(err)
 return

}

Then, we send a GET
 request to the server using http.Get()
 .

// Check HTTP Status Code

if

 data.StatusCode != http.StatusOK {
 fmt.Println("Status code:"

, data.StatusCode)
 return

}

After that we check the HTTP status code of the request to make sure that everything is OK.

// Read data

responseData, err := io.ReadAll(data.Body)
if

 err != nil

 {
 fmt.Println(err)
 return

}
fmt.Print(string

(responseData))

If everything is OK, we read the entire body of the server response, which is a byte
 slice, and print it on screen as a string. The implementation of list
 is almost identical to the implementation of status
 . The only differences are that the implementation is found in list.go
 and that
 the full URL is constructed as follows:

URL := "http://"

 + SERVER + ":"

 + PORT + "/list"

After that, let us see how the delete
 command is implemented in delete.go
 :

SERVER := viper.GetString("server"

)
PORT := viper.GetString("port"

)
number, _ := cmd.Flags().GetString("tel"

)
if

 number == ""

 {
 fmt.Println("Number is empty!"

)
 return

}

Apart from reading
 the values of the server
 and port
 global parameters, we read the value of the tel
 parameter. If tel
 has no value, the command returns.

// Create request

URL := "http://"

 + SERVER + ":"

 + PORT + "/delete/"

 + number

Once again, we construct the full URL of the request before connecting to the server.

// Send request to server

data, err := http.Get(URL)
if

 err != nil

 {
 fmt.Println(err)
 return

}

Then, we send the request to the server.

// Check HTTP Status Code

if

 data.StatusCode != http.StatusOK {
 fmt.Println("Status code:"

, data.StatusCode)
 return

}

If there was an error in the server response, the delete
 command terminates.

// Read data

responseData, err := io.ReadAll(data.Body)
if

 err != nil

 {
 fmt.Println(err)
 return

}
fmt.Print(string

(responseData))

If everything was fine, the server response text is printed on the screen.

The init()
 function of delete.go
 contains the definition of the local tel
 command-line parameter:

func

init

()

 {
 rootCmd.AddCommand(deleteCmd)
 deleteCmd.Flags().StringP("tel"

, "t"

, ""

, "Telephone number to delete"

)
}

This is a local flag
 available to the delete
 command only. Next, let us
 learn more about the search
 command and how it is implemented in search.go
 . The implementation is the same as in delete
 except for the full request URL:

URL := "http://"

 + SERVER + ":"

 + PORT + "/search/"

 + number

The search
 command also supports the tel
 command-line parameter for getting the telephone number to search for—this is defined in the init()
 function of search.go
 .

The last command that is presented is the insert
 command, which supports three local command-line parameters that are defined in the init()
 function in insert.go
 :

func

init

()

 {
 rootCmd.AddCommand(insertCmd)
 insertCmd.Flags().StringP("name"

, "n"

, ""

, "Name value"

)
 insertCmd.Flags().StringP("surname"

, "s"

, ""

, "Surname value"

)
 insertCmd.Flags().StringP("tel"

, "t"

, ""

, "Telephone value"

)
}

These three parameters are needed for getting the required user input. Note that the alias for surname
 is a lowercase
 s
 whereas the alias for server
 , which is defined in root.go
 , is an uppercase
 S
 . Commands
 and their aliases are
 user-defined—use common sense when selecting command names and aliases.

The command is implemented using the next code:

SERVER := viper.GetString("server"

)
PORT := viper.GetString("port"

)

First, we read the server
 and port
 global parameters.

number, _ := cmd.Flags().GetString("tel"

)
if

 number == ""

 {
 fmt.Println("Number is empty!"

)
 return

}
name, _ := cmd.Flags().GetString("name"

)
if

 number == ""

 {
 fmt.Println("Name is empty!"

)
 return

}
surname, _ := cmd.Flags().GetString("surname"

)
if

 number == ""

 {
 fmt.Println("Surname is empty!"

)
 return

}

Then, we get the values of the three local command-line parameters. If any one of them has an empty value, the command returns without sending the request to the server.

URL := "http://"

 + SERVER + ":"

 + PORT + "/insert/"

URL = URL + "/"

 + name + "/"

 + surname + "/"

 + number

Here, we create the server request in two steps for readability.

data, err := http.Get(URL)
if

 err != nil

 {
 fmt.Println("**"

, err)
 return

}

Then, we send the request to the server.

if

 data.StatusCode != http.StatusOK {
 fmt.Println("Status code:"

, data.StatusCode)
 return

}

Checking the HTTP status
 code is considered a good practice. Therefore, if everything
 is OK with the server response, we continue by reading the data. Otherwise, we print the status code, and we exit.

responseData, err := io.ReadAll(data.Body)
if

 err != nil

 {
 fmt.Println("*"

, err)
 return

}
fmt.Print(string

(responseData))

After reading the body of the server response, which is stored in a byte
 slice, we print it on screen as a string using string(responseData)
 .

The client application generates the next kind of output:

$

 go run main.go list

Dimitris Tsoukalos 2101112223
Jane Doe 0800123456
Mike Tsoukalos 2109416471

This is the output of the list
 command.

$

 go run main.go status

Total entries: 3

The output of the status
 command informs us about the number of entries in the phone book.

$

 go run main.go search --tel 0800123456

Jane Doe 0800123456

The previous output shows the use of the search
 command when successfully finding a number.

$

 go run main.go search --tel 0800

Status code: 404

The previous output shows the use of the search
 command when not finding a number.

$

 go run main.go delete --tel 2101112223

2101112223 deleted!

This is the output of the delete
 command.

$

 go run main.go insert -n Michalis -s Tsoukalos -t 2101112223

New record added successfully

This is the operation
 of the insert
 command. If you try to
 insert the same number more than once, the server output is going to be Status code: 304
 .

The next section shows how to create an FTP server using net/http
 .

Creating file servers

Although a file server is not
 a web server per se, it is closely connected to web services because it is being implemented using similar Go packages. Additionally, file servers are frequently used for supporting the functionality of web servers and web services.

Go offers the http.FileServer()
 handler for doing so, as well as http.ServeFile()
 . The biggest difference between these two is that http.FileServer()
 is an http.Handler
 whereas http.ServeFile()
 is not. Additionally, http.ServeFile()
 is better at serving single files whereas http.FileServer()
 is better at serving entire directory trees.

A simple code example of http.FileServer()
 is presented in fileServer.go
 :

package

 main
import

 (
 "fmt"

 "log"

 "net/http"

)
var

 PORT = ":8765"

func

defaultHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
 w.WriteHeader(http.StatusOK)
 Body := "Thanks for visiting!\n"

 fmt.Fprintf(w, "%s"

, Body)
}

This is the expected default handler of the HTTP server.

func

main

()

 {
 mux := http.NewServeMux()
 mux.HandleFunc("/"

, defaultHandler)
 fileServer := http.FileServer(http.Dir("/tmp/"

))
 mux.Handle("/static/"

, http.StripPrefix("/static"

, fileServer))

mux.Handle()
 registers the
 file server as the handler for all URL paths that begin with /static/
 . However, when a match is found, we strip the /static/
 prefix before the file server tries to serve such a request because /static/
 is not part of the location where the actual files are located. As far as Go is concerned, http.FileServer()
 is just another handler.

 fmt.Println("Starting server on:"

, PORT)
 err := http.ListenAndServe(PORT, mux)
 fmt.Println(err)
}

Last, we start the HTTP server using http.ListenAndServe()
 .

Using curl(1)
 for visiting /static/
 produces the next kind of output, which is in HTML format:

$

 curl http://localhost:8765/static/

<pre>
AlTest1.out
adobegc.log
com.google.Keystone/
data.csv
fseventsd-uuid
powerlog/
</pre>

You can also visit http://localhost:8765/static/
 in your web browser or an FTP client to browse the files and the directories of the FTP server.

The next subsection shows
 how to utilize http.ServeFile()
 to serve single files.

Downloading the contents of the phone book application

In this subsection we create
 and implement an endpoint that allows us to download the contents of a single file. The code creates a temporary file with a different filename for each request
 with the contents of the phone book application. For reasons of simplicity, the presented code supports two HTTP endpoints: one for the default router and the other for the serving of the file. As we are serving a single file, we are going to use http.ServeFile()
 , which replies to a request with the contents of the specified file or directory.

Each temporary file is kept in the file system for 30 seconds
 before it is deleted. To simulate a real-world situation, the presented utility reads data.csv
 , puts it into a slice, and creates a file based on the contents of data.csv
 . The name of the utility is getEntries.go
 —its most important code is the implementation of the getFileHandler()
 function:

func

getFileHandler

(w http.ResponseWriter, r *http.Request)

 {
 var

 tempFileName string

 // Create temporary file name

 f, err := os.CreateTemp(""

, "data*.txt"

)
 tempFileName = f.Name()

The temporary path is created using os.CreateTemp()
 based on a given pattern and by adding a random string to the end. If the pattern includes an *
 , then the randomly generated string replaces the last *
 . The exact place where the file is created depends on the operating system being used.

 // Remove the file

 defer

 os.Remove(tempFileName)

We do not want to end up having lots of temporary files, so we delete the file when the handler function returns.

 // Save data to it

 err = saveCSVFile(tempFileName)
 if

 err != nil

 {
 fmt.Println(err)
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintln(w, "Cannot create: "

+tempFileName)
 return

 }
 fmt.Println("Serving "

, tempFileName)
 http.ServeFile(w, r, tempFileName)

This is where the temporary file is sent to the client.

 // 30 seconds to get the file

 time.Sleep(30

 * time.Second)
}

The time.Sleep()
 call delays the deletion
 of the temporary file for 30 seconds—you can define any delay period you like.

As far as the main()
 function is concerned, getFileHandler()
 is a regular handler function used in a mux.HandleFunc("/getContents/", getFileHandler)
 statement. Therefore, each time there is a client request for /getContents/
 , the contents of a file are returned to the HTTP client.

Running getEntries.go
 and visiting /getContents/
 produces the next kind of output:

$

 curl http://localhost:8765/getContents/

Dimitris,Tsoukalos,2101112223,1617028128
Jane,Doe,0800123456,1608559903
Mike,Tsoukalos,2109416471,1617028196

As we are returning plain text data, the output is presented on screen.

Chapter 10
 , Working with REST APIs
 , presents a different way of creating a file server that supports both uploading and downloading files by using the gorilla/mux
 package.

The next section explains how to time out HTTP connections.

Timing out HTTP connections

This section presents techniques for
 timing out HTTP connections that take too long to finish and work either on the server or the client side.

Using SetDeadline()

The SetDeadline()
 function is
 used by net
 to set the read and write deadlines of network connections. Due to the way the SetDeadline()
 function works, you need to call SetDeadline()
 before any read or write operation. Keep in mind that Go uses deadlines to implement timeouts, so you do not need to reset the timeout every time your application receives or sends any data. The use of SetDeadline()
 is illustrated in withDeadline.go
 and more specifically in the implementation of the Timeout()
 function:

var

 timeout = time.Duration(time.Second)
func

Timeout

(network, host

string

)

(net.Conn, error)

 {
 conn, err := net.DialTimeout(network, host, timeout)
 if

 err != nil

 {
 return

 nil

, err
 }
 conn.SetDeadline(time.Now().Add(timeout))
 return

 conn, nil

}

The timeout
 global variable defines the timeout period used in the SetDeadline()
 call.

The previous function is used in the next code inside main()
 :

t := http.Transport{
 Dial: Timeout,
}
client := http.Client{
 Transport: &t,
}

So, http.Transport
 uses Timeout()
 in the Dial
 field and http.Client
 uses http.Transport
 . When you call the client.Get()
 method with the desired URL, which is not shown here, Timeout
 is automatically being used because of the http.Transport
 definition. So, if the Timeout
 function returns before the server response is received, we have a timeout.

Using withDeadline.go
 produces the next kind of output:

$

 go run withDeadline.go http://www.golang.org

Timeout value: 1s
<!DOCTYPE html>
...

The call was successful and took less than 1 second to finish, so there was no timeout.

$

 go run withDeadline.go http://localhost:80

Timeout value: 1s
Get "http://localhost:80": read tcp 127.0.0.1:52492->127.0.0.1:80: i/o timeout

This time we have a
 timeout as the server took too long to answer.

Next, we show how to time out a connection using the context
 package.

Setting the timeout period on the client side

This section presents a
 technique for timing out network connections that take too long to finish on the client side
 . So, if the client does not receive a response from the server in the desired time, it closes the connection. The timeoutClient.go
 source file, without the import
 block, illustrates the technique.

package

 main
// For the import block go to the book code repository

var

 myUrl string

var

 delay int

 = 5

var

 wg sync.WaitGroup
type

 myData struct

 {
 r *http.Response
 err error
}

In the previous code we define global variables and a structure that are going to be used in the rest of the program.

func

connect

(c context.Context)

error

 {
 defer

 wg.Done()
 data := make

(chan

 myData, 1

)
 tr := &http.Transport{}
 httpClient := &http.Client{Transport: tr}
 req, _ := http.NewRequest("GET"

, myUrl, nil

)

This is where you
 initialize the variables of the HTTP connection. The data
 channel is used in the select
 statement that follows. Additionally, the c context.Context
 parameter comes with an embedded channel that is also used in the select
 statement.

 go

 func

()

 {
 response, err := httpClient.Do(req)
 if

 err != nil

 {
 fmt.Println(err)
 data <- myData{nil

, err}
 return

 } else

 {
 pack := myData{response, err}
 data <- pack
 }
 }()

The previous goroutine is used for interacting with the HTTP server. There is nothing special here as this is a regular interaction of an HTTP client with an HTTP server.

 select

 {
 case

 <-c.Done():
 tr.CancelRequest(req)
 <-data
 fmt.Println("The request was canceled!"

)
 return

 c.Err()

The code that this select
 block executes is based on whether the context is going to time out or not. If the context times out first, then the client connection is canceled using tr.CancelRequest(req)
 .

 case

 ok := <-data:
 err := ok.err
 resp := ok.r
 if

 err != nil

 {
 fmt.Println("Error select:"

, err)
 return

 err
 }
 defer

 resp.Body.Close()
 realHTTPData, err := io.ReadAll(resp.Body)
 if

 err != nil

 {
 fmt.Println("Error select:"

, err)
 return

 err
 }
 fmt.Printf("Server Response: %s\n"

, realHTTPData)
 }
 return

 nil

}

The second select
 branch deals
 with the data received from the HTTP server, which is handled in the usual way.

func

main

()

 {
 if

 len

(os.Args) == 1

 {
 fmt.Println("Need a URL and a delay!"

)
 return

 }
 myUrl = os.Args[1

]
 if

 len

(os.Args) == 3

 {
 t, err := strconv.Atoi(os.Args[2

])
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 delay = t
 }

The URL is read directly because it is already a string value whereas the delay period is converted into a numeric value using strconv.Atoi()
 .

 fmt.Println("Delay:"

, delay)
 c := context.Background()
 c, cancel := context.WithTimeout(c, time.Duration(delay)*time.Second)
 defer

 cancel()

The timeout period is defined by the context.WithTimeout()
 method. It is considered a good practice to use context.Background()
 in the main()
 function or the init()
 function of a package or in tests.

 fmt.Printf("Connecting to %s \n"

, myUrl)
 wg.Add(1

)
 go

 connect(c)
 wg.Wait()
 fmt.Println("Exiting..."

)
}

The connect()
 function, which
 is also executed as a goroutine, either terminates normally or when the cancel()
 function is executed—the cancel()
 function is what calls the Done()
 method of c
 .

Working with timeoutClient.go
 and having a timeout situation generates the following kind of output:

$

 go run timeoutClient.go http://localhost:80

Delay: 5
Connecting to http://localhost:80
Get "http://localhost:80": net/http: request canceled
The request was canceled!
Exiting...

The next subsection shows how to time out an HTTP request on the server side.

Setting the timeout period on the server side

This section presents a
 technique for timing out network connections that take too long to finish on the server side. This is much more important than the client side because a server with too many open connections might not be able to process more requests unless some of the already open connections close. This usually happens for two reasons. The first reason is software bugs, and the second reason is
 when a server is experiencing a Denial of Service
 (DoS
) attack!

The main()
 function in timeoutServer.go
 shows the technique:

func

main

()

 {
 PORT := ":8001"

 arguments := os.Args
 if

 len

(arguments) != 1

 {
 PORT = ":"

 + arguments[1

]
 }
 fmt.Println("Using port number: "

, PORT)
 m := http.NewServeMux()
 srv := &http.Server{
 Addr: PORT,
 Handler: m,
 ReadTimeout: 3

 * time.Second,
 WriteTimeout: 3

 * time.Second,
 }

This is where the timeout
 periods are defined. Note that you can define timeout periods for both reading and writing processes. The value of the ReadTimeout
 field specifies the maximum duration allowed to read the entire client request, including the body, whereas the value of the WriteTimeout
 field specifies the maximum time duration before timing out the sending of the client response.

 m.HandleFunc("/time"

, timeHandler)
 m.HandleFunc("/"

, myHandler)
 err := srv.ListenAndServe()
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
}

Apart from the parameters in the definition of http.Server
 , the rest of the code is as usual: it contains the handler functions and calls ListenAndServe()
 for starting the HTTP server.

Working with timeoutServer.go
 generates no output. However, if a client connects to it without sending any requests, the client connection is going to end after 3 seconds. The same is going to happen if it takes the client more than 3 seconds to receive the server response.

Exercises

	Put all handlers from www-phone.go
 in a different Go package and modify www-phone.go
 accordingly. You need a different repository for storing the new package.

	Modify wwwClient.go
 to save the HTML output to an external file.

	Include the functionality of getEntries.go
 in the phone book application.

	Implement a simple version of ab(1)
 using goroutines and channels. ab(1)
 is an Apache HTTP server benchmarking tool.

Summary

In this chapter, we learned how to work with HTTP, how to create Docker images from Go code, how to expose metrics to Prometheus, as well as how to develop HTTP clients and servers. We have also updated the phone book application into a web application and programmed a command-line client for it. Additionally, we learned how to time out HTTP connections and develop file servers.

We are now ready to begin developing powerful and concurrent HTTP applications—however, we are not done yet with HTTP. Chapter 10
 , Working with REST APIs
 , is going to connect the dots and show how to develop powerful RESTful servers and clients.

But first, we need to learn about working with TCP/IP, TCP, UDP, and WebSocket, which are the subjects of the next chapter.

Additional resources

	Caddy server:
https://caddyserver.com/

	Nginx server:
https://nginx.org/en/

	Histograms in Prometheus:
https://prometheus.io/docs/practices/histograms/

	The net/http
 package:
https://golang.org/pkg/net/http/

	Official Docker Go images:
https://hub.docker.com/_/golang/

9

Working with TCP/IP and WebSocket

This chapter teaches you how to work with the lower-level protocols of TCP/IP, which are TCP and UDP, with the help of the net
 package so that we can develop TCP/IP servers and clients. Additionally, this chapter illustrates how to develop servers and clients for the WebSocket
 protocol, which is based on HTTP, as well as UNIX domain sockets, for programming services that work on the local machine only.

In more detail, this chapter covers:

	TCP/IP

	The net
 package

	Developing a TCP client

	Developing a TCP server

	Developing a UDP client

	Developing a UDP server

	Developing concurrent TCP servers

	Working with UNIX domain sockets

	Creating a WebSocket server

	Creating a WebSocket client

TCP/IP

TCP/IP is a
 family of protocols
 that help the internet operate. Its name comes from its two most well-known protocols: TCP and IP. TCP stands for Transmission Control Protocol
 . TCP software transmits data between machines using segments, which are also called TCP packets
 . The main characteristic of TCP is that it
 is a reliable protocol, which means that it makes sure that a packet was delivered without requiring any extra code from the programmer. If there is no proof of packet delivery, TCP resends that particular packet. Among other things, TCP packets can be used for establishing connections, transferring data, sending acknowledgments, and closing connections.

When a TCP connection is established between two machines, a full-duplex virtual circuit, similar to a telephone call, is created between those two machines. The two machines constantly communicate to make sure that data is sent and received correctly. If the connection fails for some reason, the two machines try to find the problem and report to
 the relevant application. The TCP header of each packet includes the source port
 and destination port
 fields. These two fields, plus the source and
 destination IP addresses, are combined to uniquely identify every single TCP connection. All these details are handled by TCP/IP as long as you provide the required details without any extra effort.

When creating TCP/IP server processes, remember that port numbers 0-1024
 have restricted access and can only be used by the root user, which means that you need administrative privileges to use a port in that range. Running a process with root privileges is a security risk and must be avoided.

IP stands for Internet Protocol
 . The main characteristic of IP is that it is not a reliable protocol by nature. IP encapsulates the data that travels over a TCP/IP network because it is responsible
 for delivering packets from the source host to the destination host according to the IP addresses. IP must find an addressing method
 for sending a packet to its destination effectively. Although there are dedicated devices, called routers, that
 perform IP routing, every TCP/IP device has to perform some basic routing. The first version
 of the IP protocol is now called IPv4
 to differentiate it from the
 latest version of the IP protocol, which is called IPv6
 . The main problem with IPv4 is that it is about to run out of available IP addresses, which is the main reason for creating the IPv6 protocol. This happened because an IPv4 address is represented using 32 bits only, which allows a total number of 232
 (4,294,967,296) different IP addresses. On the other hand, IPv6 uses 128 bits to define each one of its addresses. The format of an IPv4 address is 10.20.32.245
 (four parts separated by dots), while the format of an IPv6 address is 3fce:1706:4523:3:150:f8ff:fe21:56cf
 (eight parts separated by colons).

UDP
 (User Datagram Protocol
) is based on IP, which means that it is also unreliable. UDP
 is simpler than TCP, mainly because UDP is not reliable by design. As a result, UDP messages can be lost, duplicated, or arrive out of order. Furthermore, packets can arrive faster than the recipient can process them. So, UDP is used when speed is more important than reliability.

This chapter implements both TCP and UDP software—TCP and UDP services are the basis of the internet, and it is handy to know how to develop TCP/IP servers and clients in Go. But first, let us talk about the nc(1)
 utility.

The nc(1) command-line utility

The nc(1)
 utility, which is also called netcat(1)
 , comes in very handy when you want to test TCP/IP servers and clients. Actually, nc(1)
 is a utility for everything that involves TCP and UDP
 as well as IPv4 and IPv6, including opening TCP connections, sending and receiving UDP messages, and acting as a TCP server.

You can use nc(1)
 as a client for a TCP service that runs on a machine with the 10.10.1.123
 IP address and listens to port number 1234
 , as follows:

$

 nc 10.10.1.123 1234

The -l
 option tells netcat(1)
 to act as a server, which means that netcat(1)
 starts listening for incoming connections at the given port number. By default, nc(1)
 uses the TCP protocol. However, if you execute nc(1)
 with the -u
 flag, then nc(1)
 uses the UDP protocol, either as a client or as a server. Finally, the -v
 and -vv
 options tell netcat(1)
 to generate verbose output, which can come in handy when you want to troubleshoot network connections.

The net package

The net
 package of
 the Go Standard Library is all about TCP/IP, UDP, domain name resolution, and UNIX domain sockets. The net.Dial()
 function is used to connect to a network as a client, whereas the net.Listen()
 function is used to tell a Go program to accept incoming network connections and thus act as a server. The return value of both net.Dial()
 and net.Listen()
 is of the net.Conn
 data type, which implements the io.Reader
 and io.Writer
 interfaces—this means that you can both read and write to a net.Conn
 connection using code related to file I/O. The first parameter of both net.Dial()
 and net.Listen()
 is the network type, but this is where their similarities end.

The net.Dial()
 function is used for connecting to a remote server. The first parameter of the net.Dial()
 function defines the network protocol that is going to be used, while the second parameter defines the server address, which must also include the port number. Valid values for the first parameter are tcp
 , tcp4
 (IPv4-only), tcp6
 (IPv6-only), udp
 , udp4
 (IPv4-only), udp6
 (IPv6-only), ip
 , ip4
 (IPv4-only), ip6
 (IPv6-only), unix
 (UNIX sockets), unixgram
 , and unixpacket
 . On the other hand, valid values for net.Listen()
 are tcp
 , tcp4
 , tcp6
 , unix
 , and unixpacket
 .

Execute the go doc net.Listen
 and go doc net.Dial
 commands for more detailed information regarding these two functions.

Developing a TCP client

This section
 presents two equivalent ways of developing TCP clients.

Developing a TCP client with net.Dial()

First, we are
 going to present the most widely
 used way, which is implemented in tcpC.go
 :

package

 main
import

 (
 "bufio"

 "fmt"

 "net"

 "os"

 "strings"

)

The import
 block contains packages such as bufio
 and fmt
 that also work with file I/O operations.

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Please provide host:port."

)
 return

 }

First, we read the details of the TCP server we want to connect to.

 connect := arguments[1

]
 c, err := net.Dial("tcp"

, connect)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

With the connection details, we call net.Dial()
 —its first parameter is the protocol we want to use, which in this case is tcp
 , and its second parameter is the connection details. A successful net.Dial()
 call returns an open connection (a net.Conn
 interface), which is a
 generic stream-oriented network connection.

 for

 {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> "

)
 text, _ := reader.ReadString('\n'

)
 fmt.Fprintf(c, text+"\n"

)
 message, _ := bufio.NewReader(c).ReadString('\n'

)
 fmt.Print("->: "

 + message)
 if

 strings.TrimSpace(string

(text)) == "STOP"

 {
 fmt.Println("TCP client exiting..."

)
 return

 }
 }
}

The last
 part of the TCP client keeps reading user input until the word STOP
 is given as input—in this case, the client waits for the server response before terminating
 after STOP
 because this is how the for
 loop is constructed. This mainly happens because the server might have a useful answer for us, and we do not want to miss that. All given user input is sent (written) to the open TCP connection using fmt.Fprintf()
 , whereas bufio.NewReader()
 is used for reading data from the TCP connection, just like you would do with a regular file.

Using tcpC.go
 to connect to a TCP server, which in this case is implemented with nc(1)
 , produces the next kind of output:

$

 go run tcpC.go localhost:1234

>

> Hello!

->

: Hi from nc -l 1234

>

> STOP

->

: Bye!

TCP client exiting...

Lines beginning with >>
 denote user input, whereas lines beginning with ->
 signify server
 messages. After sending STOP
 , we wait for
 the server response and then the client ends the TCP connection. The previous code demonstrates how to create a proper TCP client in Go with some extra logic in it (the STOP
 keyword).

The next subsection shows a different way of creating a TCP client.

Developing a TCP client that uses net.DialTCP()

This subsection presents an alternative way to develop a TCP client. The difference lies in the
 Go functions that are being used for establishing
 the TCP connection, which are net.DialTCP()
 and net.ResolveTCPAddr()
 , and not in the functionality of the client.

The code of otherTCPclient.go
 is as follows:

package

 main
import

 (
 "bufio"

 "fmt"

 "net"

 "os"

 "strings"

)

Although we are working with TCP/IP connections, we need packages such as bufio
 because UNIX treats network connections as files, so we are basically working with I/O operations over networks.

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Please provide a server:port string!"

)
 return

 }

We need to read the details of the TCP server we want to connect to, including the desired port number. The utility cannot operate with default parameters when working with TCP/IP unless we are developing a very specialized TCP client.

 connect := arguments[1

]
 tcpAddr, err := net.ResolveTCPAddr("tcp4"

, connect)
 if

 err != nil

 {
 fmt.Println("ResolveTCPAddr:"

, err)
 return

 }

The net.ResolveTCPAddr()
 function is specific to TCP connections, hence its name, and resolves
 the given address to a *net.TCPAddr
 value, which is a structure that represents the address of a TCP endpoint—in
 this case, the endpoint is the TCP server we want to connect to.

 conn, err := net.DialTCP("tcp4"

, nil

, tcpAddr)
 if

 err != nil

 {
 fmt.Println("DialTCP:"

, err)
 return

 }

With the TCP endpoint at hand, we call net.DialTCP()
 to connect to the server. Apart from the use of net.ResolveTCPAddr()
 and net.DialTCP()
 , the rest of the code that has to do with the TCP client and TCP server interaction is exactly the same.

 for

 {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> "

)
 text, _ := reader.ReadString('\n'

)
 fmt.Fprintf(conn, text+"\n"

)
 message, _ := bufio.NewReader(conn).ReadString('\n'

)
 fmt.Print("->: "

 + message)
 if

 strings.TrimSpace(string

(text)) == "STOP"

 {
 fmt.Println("TCP client exiting..."

)
 conn.Close()
 return

 }
 }
}

Lastly, an infinite for
 loop is used for interacting with the TCP server. The TCP client reads user data, which is sent to the server. After that, it reads data from the TCP server. Once again, the STOP
 keyword ends the TCP connection on the client side using the Close()
 method.

Working with otherTCPclient.go
 and interacting with a TCP server process produces the next kind of output:

$

 go run otherTCPclient.go localhost:1234

>

> Hello!

->

: Hi from nc -l 1234

>

> STOP

->

: Thanks

for

 connection!

TCP client exiting...

The interaction
 is the same as with tcpC.go
 —we have
 just learned a different way of developing TCP clients. If you want my opinion, I prefer the implementation found in tcpC.go
 because it uses more generic functions. However, this is just personal taste.

The next section shows how to program TCP servers.

Developing a TCP server

This section
 presents two ways of developing a TCP server that can interact with TCP clients, just as we did with the TCP client.

Developing a TCP server with net.Listen()

The TCP
 server presented in this section, which
 uses net.Listen()
 , returns the current date and time to the client in a single network packet. In practice, this means that after accepting a client connection, the server gets the time and date from the operating system and sends that data back to the client. The net.Listen()
 function listens for connections, whereas the net.Accept()
 method waits for the next connection and returns a generic Conn
 variable with the client information. The code of tcpS.go
 is as follows:

package

 main
import

 (
 "bufio"

 "fmt"

 "net"

 "os"

 "strings"

 "time"

)
func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Please provide port number"

)
 return

 }

The TCP
 server should know about the port
 number it is going to use—this is given as a command-line argument.

 PORT := ":"

 + arguments[1

]
 l, err := net.Listen("tcp"

, PORT)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 l.Close()

The net.Listen()
 function listens for connections and is what makes that particular program a server process. If the second parameter of net.Listen()
 contains a port number without an IP address or a hostname, net.Listen()
 listens to all available IP addresses of the local system, which is the case here.

 c, err := l.Accept()
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

We just call Accept()
 and wait for a client connection—Accept()
 blocks until a connection comes. There is something unusual with this particular TCP server: it can only serve
 the first TCP client that is going to
 connect to it because the Accept()
 call is outside of the for
 loop and therefore is called only once. Each individual client should be specified by a different Accept()
 call.

Correcting that is left as an exercise for the reader.

 for

 {
 netData, err := bufio.NewReader(c).ReadString('\n'

)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 if

 strings.TrimSpace(string

(netData)) == "STOP"

 {
 fmt.Println("Exiting TCP server!"

)
 return

 }
 fmt.Print("-> "

, string

(netData))
 t := time.Now()
 myTime := t.Format(time.RFC3339) + "\n"

 c.Write([]byte

(myTime))
 }
}

This endless for
 loop keeps interacting with the same TCP client until the word STOP
 is sent from the client. As it happened with the TCP clients, bufio.NewReader()
 is used for reading data from the network connection, whereas Write()
 is used for sending data to the TCP client.

Running tcpS.go
 and interacting with a TCP client produces the next kind of output:

$

 go run tcpS.go 1234

->

 Hello!

->

 Have to leave now!

EOF

The server connection ended automatically with the client connection because the for
 loop
 concluded when bufio.NewReader(c).ReadString('\n')
 had nothing more to read. The client was nc(1)
 , which produced the next output:

$

 nc localhost 1234

Hello!
2021-04-12T08:53:32+03:00
Have to leave now!
2021-04-12T08:53:51+03:00

In order
 to exit nc(1)
 , we need to press Ctrl
 + D
 , which is EOF
 (End Of File) in UNIX.

So, we now know how to develop a TCP server in Go. As it happened with the TCP client, there is an alternative way to develop a TCP server, which is presented in the next subsection.

Developing a TCP server that uses net.ListenTCP()

This time, this
 alternative version of the
 TCP server implements the echo service. Put simply, the TCP server sends back to the client the data that was received by the client.

The code of otherTCPserver.go
 is as follows:

package

 main
import

 (
 "fmt"

 "net"

 "os"

 "strings"

)
func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Please provide a port number!"

)
 return

 }
 SERVER := "localhost"

 + ":"

 + arguments[1

]
 s, err := net.ResolveTCPAddr("tcp"

, SERVER)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

The previous
 code gets the TCP port
 number value as a command-line argument, which is used in net.ResolveTCPAddr()
 —this is required to define the TCP port number the TCP server is going to listen to.

That function only works with TCP, hence its name.

 l, err := net.ListenTCP("tcp"

, s)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

Similarly, net.ListenTCP()
 only works with TCP and is what makes that program a TCP server ready to accept incoming connections.

 buffer := make

([]byte

, 1024

)
 conn, err := l.Accept()
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

As before, due to the place where Accept()
 is called, this particular implementation can work with a single client only. This is used for reasons of simplicity. The concurrent TCP server that is developed later on in this chapter puts the Accept()
 call inside the endless for
 loop.

 for

 {
 n, err := conn.Read(buffer)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 if

 strings.TrimSpace(string

(buffer[0

:n])) == "STOP"

 {
 fmt.Println("Exiting TCP server!"

)
 conn.Close()
 return

 }

You need to use strings.TrimSpace()
 in order to remove any space characters from your input
 and compare the result
 with STOP
 , which has a special meaning in this implementation. When the STOP
 keyword is received from the client, the server closes the connection using the Close()
 method.

 fmt.Print("> "

, string

(buffer[0

:n-1

]), "\n"

)
 _, err = conn.Write(buffer)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 }
}

All previous code is for interacting with the TCP client until the client decides to close the connection.

Running otherTCPserver.go
 and interacting with a TCP client produces the next kind of output:

$

 go run otherTCPserver.go 1234

>

 Hello from the client!

Exiting TCP server!

The first line that begins with >
 is the client message, whereas the second line is the server
 output when getting the STOP
 message
 from the client. Therefore, the TCP server processes client requests as programmed and exits when it gets the STOP
 message, which is the expected behavior.

The next section is about developing UDP clients.

Developing a UDP client

This section
 demonstrates how to develop a UDP client that can interact with UDP services. The code of udpC.go
 is as follows:

package

 main
import

 (
 "bufio"

 "fmt"

 "net"

 "os"

 "strings"

)
func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Please provide a host:port string"

)
 return

 }
 CONNECT := arguments[1

]

This is how we get the UDP server details from the user.

 s, err := net.ResolveUDPAddr("udp4"

, CONNECT)
 c, err := net.DialUDP("udp4"

, nil

, s)

The previous two lines declare that we are using UDP and that we want to connect to the UDP server that is specified by the return value of net.ResolveUDPAddr()
 . The actual connection is initiated using net.DialUDP()
 .

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Printf("The UDP server is %s\n"

, c.RemoteAddr().String())
 defer

 c.Close()

This part of the program finds the details of the UDP server by calling the RemoteAddr()
 method.

 for

 {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> "

)
 text, _ := reader.ReadString('\n'

)
 data := []byte

(text + "\n"

)
 _, err = c.Write(data)

Data is read
 from the user using bufio.NewReader(os.Stdin)
 and is written to the UDP server using Write()
 .

 if

 strings.TrimSpace(string

(data)) == "STOP"

 {
 fmt.Println("Exiting UDP client!"

)
 return

 }

If the input read from the user is the STOP
 keyword, then the connection is terminated.

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 buffer := make

([]byte

, 1024

)
 n, _, err := c.ReadFromUDP(buffer)

Data is read from the UDP connection using the ReadFromUDP()
 method.

 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Printf("Reply: %s\n"

, string

(buffer[0

:n]))
 }
}

The for
 loop is going to keep going forever until the STOP
 keyword is received as input or the program is terminated in some other way.

Working with udpC.go
 is as simple as follows—the client side is implemented using nc(1)
 :

$

 go run udpC.go localhost:1234

The UDP server is 127.0.0.1:1234

127.0.0.1:1234
 is the value of c.RemoteAddr().String()
 , which shows the details of the UDP
 server we have connected to.

>

> Hello!

Reply: Hi from the server

Our client sent Hello!
 to the UDP server and received Hi from the server
 back.

>

> Have to leave now :)

Reply: OK - bye from nc -l -u 1234

Our client sent Have to leave now :)
 to the UDP server and received OK - bye from nc -l -u 1234
 back.

>

> STOP

Exiting UDP client!

Finally, after sending the STOP
 keyword to the server, the client prints Exiting UDP client!
 and terminates—the message is defined in the Go code and can be anything you want.

The next section is about programming a UDP server.

Developing a UDP server

This section
 shows how to develop a UDP server, which generates and returns random numbers to its clients. The code for the UDP server (udpS.go
) is as follows:

package

 main
import

 (
 "fmt"

 "math/rand"

 "net"

 "os"

 "strconv"

 "strings"

 "time"

)
func

random

(min, max

int

)

int

 {
 return

 rand.Intn(max-min) + min
}
func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Please provide a port number!"

)
 return

 }
 PORT := ":"

 + arguments[1

]

The UDP port number the server is going to listen to is provided as a command-line argument.

 s, err := net.ResolveUDPAddr("udp4"

, PORT)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

The net.ResolveUDPAddr()
 function creates a UDP endpoint that is going to be used to create the server.

 connection, err := net.ListenUDP("udp4"

, s)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

The net.ListenUDP("udp4", s)
 function call makes this process a server for the udp4
 protocol using the details specified by its second parameter.

 defer

 connection.Close()
 buffer := make

([]byte

, 1024

)

The buffer
 variable stores a byte
 slice and is used to read data from the UDP connection.

 rand.Seed(time.Now().Unix())
 for

 {
 n, addr, err := connection.ReadFromUDP(buffer)
 fmt.Print("-> "

, string

(buffer[0

:n-1

]))

The ReadFromUDP()
 and WriteToUDP()
 methods are used to read data from a UDP connection and
 write data to a UDP connection, respectively. Additionally, due to the way UDP operates, the UDP server can serve multiple clients.

 if

 strings.TrimSpace(string

(buffer[0

:n])) == "STOP"

 {
 fmt.Println("Exiting UDP server!"

)
 return

 }

The UDP server terminates when any one of the clients sends the STOP
 message. Aside from this, the for
 loop is going to keep running forever.

 data := []byte

(strconv.Itoa(random(1

, 1001

)))
 fmt.Printf("data: %s\n"

, string

(data))

A byte
 slice is stored in the data
 variable and used to write the desired data to the client.

 _, err = connection.WriteToUDP(data, addr)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 }
}

Working with udpS.go
 is as simple as the following:

$

 go run udpS.go 1234

->

 Hello from client!

data: 395

Lines beginning with ->
 show data coming from a client. Lines beginning with data
 show random numbers generated by the UDP server—in this case, 395
 .

->

 Going to terminate the connection now.

data: 499

The previous
 two lines show another interaction with a UDP client.

->

 STOP

Exiting UDP server!

Once the UDP server receives the STOP
 keyword from the client, it closes the connection and exits.

On the client side, which uses udpC.go
 , we have the next interaction:

$

 go run udpC.go localhost:1234

The UDP server is 127.0.0.1:1234
>

> Hello from client!

Reply: 395

The client sends the Hello from client!
 message to the server and receives 395
 .

>

> Going to terminate the connection now.

Reply: 499

The client sends Going to terminate the connection now.
 to the server and receives the 499
 random number.

>

> STOP

Exiting UDP client!

When the
 client gets STOP
 as user input, it terminates the UDP connection and exits.

The next section shows how to develop a concurrent TCP server that uses goroutines for serving its clients.

Developing concurrent TCP servers

This section teaches a pattern for developing concurrent TCP servers, which are servers that are
 using separate goroutines to serve their clients following a successful Accept()
 call. Therefore, such servers can serve multiple TCP clients at the same time. This is how real-world production servers and services are implemented.

The code of concTCP.go
 is as follows:

package

 main
import

 (
 "bufio"

 "fmt"

 "net"

 "os"

 "strconv"

 "strings"

)
var

 count = 0

func

handleConnection

(c net.Conn)

 {
 fmt.Print("."

)

The previous statement is not required—it just informs us that a new client has been connected.

 for

 {
 netData, err := bufio.NewReader(c).ReadString('\n'

)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 temp := strings.TrimSpace(string

(netData))
 if

 temp == "STOP"

 {
 break

 }
 fmt.Println(temp)
 counter := "Client number: "

 + strconv.Itoa(count) + "\n"

 c.Write([]byte

(string

(counter)))
 }

The for
 loop makes
 sure that handleConnection()
 is not going to exit automatically. Once again, the STOP
 keyword stops the current client connection—however, the server process, as well as all other active client connections, are going to keep running.

 c.Close()
}

This is the end of the function that is executed as a goroutine to serve clients. All you need in order to serve a client is a net.Conn
 parameter with the client details. After reading client data, the server sends back to the client a message indicating the number of the client that is being served so far.

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Please provide a port number!"

)
 return

 }
 PORT := ":"

 + arguments[1

]
 l, err := net.Listen("tcp4"

, PORT)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 l.Close()
 for

 {
 c, err := l.Accept()
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 go

 handleConnection(c)
 count++
 }
}

Each time a new client connects to the server, the count
 variable is increased. Each TCP client is served
 by a separate goroutine that executes the handleConnection()
 function. This frees the server process and allows it to accept new connections. Put simply, while multiple TCP clients are served, the TCP server is free to interact with more TCP clients. As before, new TCP clients are connected using the Accept()
 function.

Working with concTCP.go
 produces the next kind of output:

$

 go run concTCP.go 1234

.Hello
.Hi from nc localhost 1234

The first line of output is from the first TCP client, whereas the second line is from the second TCP client. This means that the concurrent TCP server works as expected. Therefore, when you want to be able to serve multiple TCP clients in your TCP services, you can use the technique and code presented as a template for developing your TCP servers.

The next section shows how to work with UNIX domain sockets, which are really fast for interactions on the local machine only.

Working with UNIX domain sockets

A UNIX Domain Socket
 or Inter-Process Communication (IPC) socket is a data communications
 endpoint that allows you to exchange data between processes that run on the same machine
 . You might ask, why use UNIX domain sockets instead of TCP/IP connections for processes that exchange data on the same machine? First, because UNIX domain sockets are faster than TCP/IP connections and second, because UNIX domain sockets require fewer resources than TCP/IP connections. So, you can use UNIX domain sockets when both the clients and the server are on the same machine.

A UNIX domain socket server

This section illustrates how to develop a UNIX domain socket server. Although we do not have
 to deal with TCP ports and network connections, the code presented is very similar to the code of the TCP server as found in tcpS.go
 and concTCP.go
 . The presented server implements the echo service.

The source code of socketServer.go
 is as follows:

package

 main
import

 (
 "fmt"

 "net"

 "os"

)
func

echo

(c net.Conn)

 {

The echo()
 function is used for serving client requests, hence the use of the net.Conn
 parameter that holds the client's details:

 for

 {
 buf := make

([]byte

, 128

)
 n, err := c.Read(buf)
 if

 err != nil

 {
 fmt.Println("Read:"

, err)
 return

 }

We read data from the socket connection using Read()
 inside a for
 loop.

 data := buf[0

:n]
 fmt.Print("Server got: "

, string

(data))
 _, err = c.Write(data)
 if

 err != nil

 {
 fmt.Println("Write:"

, err)
 return

 }
 }
}

In this second part of echo()
 , we send back to the client the data that the client sent to us. The buf[0:n]
 notation makes sure that we are going to send back the same amount of data that was read even if the size of the buffer is bigger.

This function
 serves all client connections—as you are going to see in a while, it is executed as a goroutine, which is the main reason that it does not return any values.

You cannot tell whether this function serves TCP/IP connections or UNIX socket domain connections, which mainly happens because UNIX treats all connections as files.

func

main

()

 {
 if

 len

(os.Args) == 1

 {
 fmt.Println("Need socket path"

)
 return

 }
 socketPath := os.Args[1

]

This is the part where we specify the socket file that is going to be used by the server and its clients. In this case, the path to the socket file is given as a command-line argument.

 _, err := os.Stat(socketPath)
 if

 err == nil

 {
 fmt.Println("Deleting existing"

, socketPath)
 err := os.Remove(socketPath)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 }

If the socket file already exists, you should delete it
 before the program continues—net.Listen()
 creates that file again.

 l, err := net.Listen("unix"

, socketPath)
 if

 err != nil

 {
 fmt.Println("listen error:"

, err)
 return

 }

What makes this
 a UNIX domain socket server is the use of net.Listen()
 with the "unix"
 parameter. In this case, we need to provide net.Listen()
 with the path of the socket file.

 for

 {
 fd, err := l.Accept()
 if

 err != nil

 {
 fmt.Println("Accept error:"

, err)
 return

 }
 go

 echo(fd)
 }
}

Each client connection is handled by a goroutine—in this sense, this is a concurrent UNIX domain socket server that can work with multiple clients! So, if you need to serve thousands of domain socket clients on a production server, this is the way to go!

In the next section, we are going to see the server in action as it is going to interact with the UNIX domain socket client that we are going to create.

A UNIX domain socket client

This subsection
 shows a UNIX domain socket client implementation, which can be used to communicate with a domain socket server, such as the one developed in the previous subsection. The relevant code can be found in socketClient.go
 :

package

 main
import

 (
 "bufio"

 "fmt"

 "net"

 "os"

 "strings"

 "time"

)
func

main

()

 {
 if

 len

(os.Args) == 1

 {
 fmt.Println("Need socket path"

)
 return

 }
 socketPath := os.Args[1

]

This is the part
 where we get from the user the socket file that is going to be used—the socket file should already exist and be handled by the UNIX domain socket server.

 c, err := net.Dial("unix"

, socketPath)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 c.Close()

The net.Dial()
 function is used for connecting to the socket.

 for

 {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> "

)
 text, _ := reader.ReadString('\n'

)
 _, err = c.Write([]byte

(text))

Here, we convert user input into a byte
 slice and send it to the server using Write()
 .

 if

 err != nil

 {
 fmt.Println("Write:"

, err)
 break

 }
 buf := make

([]byte

, 256

)
 n, err := c.Read(buf[:])
 if

 err != nil

 {
 fmt.Println(err, n)
 return

 }
 fmt.Print("Read:"

, string

(buf[0

:n]))

This fmt.Print()
 statement
 prints as many characters from the buf
 slice as the number of characters read from the Read()
 method using the buf[0:n]
 notation.

 if

 strings.TrimSpace(string

(text)) == "STOP"

 {
 fmt.Println("Exiting UNIX domain socket client!"

)
 return

 }

If the word STOP
 is given as input, then the client returns and therefore closes the connection to the server. Generally speaking, it is always good to have a way of gracefully exiting such a utility.

 time.Sleep(5

 * time.Second)
 }
}

The time.Sleep()
 call is used to delay the for
 loop and emulate the operation of a real program.

Working with both socketServer.go
 and socketClient.go
 , provided that the server is executed first, generates the next kind of output:

$

 go run socketServer.go /tmp/packt.socket

Server got: Hello!
Server got: STOP
Read: EOF

Although the client connection ended, the server continues to run and waits for more client requests.

On the client side, we have the following:

$

 go run socketClient.go /tmp/packt.socket

>

> Hello!

Read: Hello!
>

> STOP

Read: STOP
Exiting UNIX domain socket client!

In the previous
 two sections, we learned how to create UNIX domain socket clients and servers that are faster than TCP/IP servers but work on the same machine only.

The sections that follow concern the WebSocket protocol.

Creating a WebSocket server

The WebSocket
 protocol is a computer communications protocol that provides full-duplex
 (transmission of data in two directions simultaneously) communication channels over a single TCP connection. The WebSocket
 protocol is defined in RFC 6455 (
https://tools.ietf.org/html/rfc6455

) and uses ws://
 and wss://
 instead of http://
 and https://
 , respectively. Therefore, the client should begin a WebSocket connection
 by using a URL that starts with ws://
 .

In this section, we are going to develop a small yet fully functional WebSocket server using the gorilla/websocket
 (
https://github.com/gorilla/websocket

) module. The server implements
 the Echo service
 , which means that it automatically returns its input to the client.

The golang.org/x/net/websocket
 package offers another way of developing WebSocket clients and servers. However, according to its documentation,
golang.org/x/net/websocket

 lacks some features and it is advised that you use
https://godoc.org/github.com/gorilla/websocket

 , the one used here, or
https://godoc.org/nhooyr.io/websocket

 instead.

The advantages of the WebSocket protocol include the following:

	A WebSocket connection is a full-duplex, bidirectional communications channel. This means that a server does not need to wait to read from a client to send data to the client and vice versa.

	WebSocket connections are raw TCP sockets, which means that they do not have the overhead required to establish an HTTP connection.

	WebSocket connections can also be used for sending HTTP data. However, plain HTTP connections cannot work as WebSocket connections.

	WebSocket connections live until they are killed, so there is no need to reopen them all the time.

	WebSocket connections can be used for real-time web applications.

	Data can be sent from the server to the client at any time, without the client even requesting it.

	WebSocket is part of the HTML5 specification, which means that it is supported by all modern web browsers.

Before showing
 the server implementation, it would be good for you to know that the websocket.Upgrader
 method of the gorilla/websocket
 package upgrades
 an HTTP server connection to the WebSocket protocol and allows you to define the parameters of the upgrade. After that, your HTTP connection is a WebSocket connection, which means that you will not be allowed to execute statements that work with the HTTP protocol.

The next subsection shows the implementation of the server.

The implementation of the server

This subsection presents the implementation of the WebSocket server that implements the echo
 service, which
 can be really handy when testing network connections.

The GitHub repository used for keeping the code can be found at
https://github.com/mactsouk/ws

 . If you want to follow along with this section, you should download that repository and put it inside ~/go/src
 —in my case, it was put inside ~/go/src/github.com/mactsouk
 , in the ws
 folder.

The GitHub repository contains a Dockerfile
 file for producing a Docker image from the WebSocket server source file.

The implementation of the WebSocket server can be found in ws.go
 , which contains the next code:

package

 main
import

 (
 "fmt"

 "log"

 "net/http"

 "os"

 "time"

 "github.com/gorilla/websocket"

)

This is the external package used for working with the WebSocket protocol.

var

 PORT = ":1234"

var

 upgrader = websocket.Upgrader{
 ReadBufferSize: 1024

,
 WriteBufferSize: 1024

,
 CheckOrigin: func

(r *http.Request)

bool

 {
 return

 true

 },
}

This is where
 the parameters of websocket.Upgrader
 are defined. They are going to be used shortly.

func

rootHandler

(w http.ResponseWriter, r *http.Request)

 {
 fmt.Fprintf(w, "Welcome!\n"

)
 fmt.Fprintf(w, "Please use /ws for WebSocket!"

)
}

This is a regular HTTP handler function.

func

wsHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Connection from:"

, r.Host)
 ws, err := upgrader.Upgrade(w, r, nil

)
 if

 err != nil

 {
 log.Println("upgrader.Upgrade:"

, err)
 return

 }
 defer

 ws.Close()

A WebSocket server application calls the Upgrader.Upgrade
 method in order to get a WebSocket connection from an HTTP request handler. Following a successful call to Upgrader.Upgrade
 , the server begins working with the WebSocket connection and the WebSocket client.

 for

 {
 mt, message, err := ws.ReadMessage()
 if

 err != nil

 {
 log.Println("From"

, r.Host, "read"

, err)
 break

 }
 log.Print("Received: "

, string

(message))
 err = ws.WriteMessage(mt, message)
 if

 err != nil

 {
 log.Println("WriteMessage:"

, err)
 break

 }
 }
}

The for
 loop in wsHandler()
 handles all incoming messages for /ws
 —you can use any technique you want. Additionally, in the presented implementation, only the client
 is allowed to close an existing WebSocket connection unless there is a network issue, or the server process is killed.

Last, remember
 that in a WebSocket connection, you cannot use fmt.Fprintf()
 statements for sending data to the WebSocket client—if you use any of these, or any other call that can implement the same functionality, the WebSocket connection fails and you are not going to be able to send or receive any data. Therefore, the only way to send and receive data in a WebSocket connection implemented with gorilla/websocket
 is through WriteMessage()
 and ReadMessage()
 calls, respectively. Of course, you can always implement the desired functionality on your own by working with raw network data, but implementing this goes beyond the scope of this book.

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) != 1

 {
 PORT = ":"

 + arguments[1

]
 }

If there is not a command-line argument, use the default port number stored in PORT
 .

 mux := http.NewServeMux()
 s := &http.Server{
 Addr: PORT,
 Handler: mux,
 IdleTimeout: 10

 * time.Second,
 ReadTimeout: time.Second,
 WriteTimeout: time.Second,
 }

These are the details of the HTTP server that also handles WebSocket connections.

 mux.Handle("/"

, http.HandlerFunc(rootHandler))
 mux.Handle("/ws"

, http.HandlerFunc(wsHandler))

The endpoint
 used for WebSocket can be anything you want—in this case, it is /ws
 . Additionally, you can have multiple endpoints that work with the WebSocket protocol.

 log.Println("Listening to TCP Port"

, PORT)
 err := s.ListenAndServe()
 if

 err != nil

 {
 log.Println(err)
 return

 }
}

The code presented uses log.Println()
 instead of fmt.Println()
 for printing messages—as this is a server process, using log.Println()
 is a much better choice than fmt.Println()
 because logging information is sent to files that can be examined at a later time. However, during development, you might prefer fmt.Println()
 calls and avoid writing to your log files because you can see your data on screen immediately without having to look elsewhere.

The server implementation is short, yet fully functional. The single most important call in the code is Upgrader.Upgrade
 because this is what upgrades an HTTP connection to a WebSocket connection.

Getting and running the code from GitHub requires the following steps—most of the steps have
 to do with module initialization and downloading the required packages:

$

cd

 ~/go/src/github.com/mactsouk/

$

 git

clone

 https://github.com/mactsouk/ws.git

$

cd

 ws

$

 go mod init

$

 go mod tidy

$

 go mod download

$

 go run ws.go

To test that server, you need to have a client. As we have not developed our own client so far, we are going to test the WebSocket server using two other means.

Using websocat

websocat
 is a
 command-line utility that
 can help you test WebSocket connections. However, as websocat
 is not installed by default, you need to install it on your machine using your package manager of choice. You can use it as follows, provided that there is a WebSocket server at the desired address:

$

 websocat ws://localhost:1234/ws

Hello from websocat!

This is what we type and send to the server.

Hello from websocat!

This is what we get back from the WebSocket server, which implements the echo
 service—different WebSocket servers implement different functionality.

Bye!

Again, the previous line is user input given to websocat
 .

Bye!

And the last line is the data sent back from the server. The connection was closed by pressing Ctrl
 + D
 on the websocat
 client.

Should you
 wish for a more verbose output from websocat
 , you can execute it with the -v
 flag:

$

 websocat -v ws://localhost:1234/ws

[INFO websocat::lints] Auto-inserting the line mode
[INFO websocat::stdio_threaded_peer] get_stdio_peer (threaded)
[INFO websocat::ws_client_peer] get_ws_client_peer
[INFO websocat::ws_client_peer] Connected to ws
Hello from websocat!
Hello from websocat!
Bye!
Bye!
[INFO websocat::sessionserve] Forward finished
[INFO websocat::ws_peer] Received WebSocket close message
[INFO websocat::sessionserve] Reverse finished
[INFO websocat::sessionserve] Both directions finished

In both
 cases, the output from our WebSocket server should be similar to the following:

$

 go run ws.go

2021/04/10 20:54:30 Listening to TCP Port :1234
2021/04/10 20:54:42 Connection from: localhost:1234
2021/04/10 20:54:57 Received: Hello from websocat!
2021/04/10 20:55:03 Received: Bye!
2021/04/10 20:55:03 From localhost:1234 read websocket: close 1005 (no status)

The next subsection illustrates how to test the WebSocket server using HTML and JavaScript.

Using JavaScript

The second
 way of testing the WebSocket
 server is by creating a web page with some HTML and JavaScript code. This technique gives you more control over what is happening, but requires more code and familiarity with HTML and JavaScript.

The HTML page with the JavaScript code that makes it act like a WebSocket client is the following:

<!DOCTYPE

html

>

<

meta

charset

=

"utf-8"

>

<

html

lang

=

"en"

>

 <

head

>

 <

meta

charset

=

"UTF-8"

 />

 <

meta

name

=

"viewport"

content

=

"width=device-width, initial-scale=1.0"

 />

 <

meta

http-equiv

=

"X-UA-Compatible"

content

=

"ie=edge"

 />

 <

title

>

Testing a WebSocket Server</

title

>

 </

head

>

 <

body

>

 <

h2

>

Hello There!</

h2

>

 <

script

>

 let

 ws = new

 WebSocket("ws://localhost:1234/ws"

);

This is
 the single most important
 JavaScript statement because this is where you specify the address of the WebSocket server, the port number, and the endpoint you want to connect to.

 console.log("Trying to connect to server."

);
 ws.onopen = () => {
 console.log("Connected!"

);
 ws.send("Hello From the Client!"

)
 };

The ws.onopen
 event is used for making sure that the WebSocket connection is open, whereas the send()
 method is used for sending messages to the WebSocket server.

 ws.onmessage = function(event) {
 console.log(`[message] Data received from server: ${event.data}`);
 ws.close(1000

, "Work complete"

);
 };

The onmessage
 event is triggered each time the WebSocket server sends a new message—however, in our case, the connection is closed as soon as the first message from the server is received.

Lastly, the close()
 JavaScript method is used for closing a WebSocket connection—in our
 case, the close()
 call is included
 in the onmessage
 event. Calling close()
 triggers the onclose
 event, which contains the code that follows:

 ws.onclose = event => {
 if

 (event.wasClean) {
 console.log(`[close] Connection closed cleanly, code=${event.code} reason=${event.reason}`);
 }
 console.log("Socket Closed Connection: "

, event);
 };
 ws.onerror = error => {
 console.log("Socket Error: "

, error);
 };
 </script

>
 </body

>
</html

>

You can see the output of the JavaScript code by visiting the JavaScript console on your favorite web browser, which in this case is Google Chrome. The following screenshot shows the generated output.

[image: Text Description automatically generated]

Figure 9.1: Interacting with the WebSocket server using JavaScript

For the
 WebSocket interaction defined
 in test.html
 , the WebSocket server generated the following output in the command line:

2021/04/10 21:43:22 Connection from: localhost:1234
2021/04/10 21:43:22 Received: Hello From the Client!
2021/04/10 21:43:22 From localhost:1234 read websocket: close 1000 (normal): Work complete

Both ways verify that the WebSocket server works as expected: the client can connect to the server, the server sends data that is received by the client, and the client closes the connection with the server successfully. So, it is time to develop our own WebSocket client in Go.

Creating a WebSocket client

This subsection shows how to program a WebSocket client in Go. The client reads user data that
 sends it to the server and reads the server response. The client
 directory of
https://github.com/mactsouk/ws

 contains the implementation of the WebSocket client—I find it more convenient to include both implementations in the same repository.

As with the WebSocket server, the gorilla/websocket
 package is going to help us develop the WebSocket client.

We are going to see gorilla
 in the next chapter when working with RESTful services.

The code of ./client/client.go
 is as follows:

package

 main
import

 (
 "bufio"

 "fmt"

 "log"

 "net/url"

 "os"

 "os/signal"

 "syscall"

 "time"

 "github.com/gorilla/websocket"

)
var

 SERVER = ""

var

 PATH = ""

var

 TIMESWAIT = 0

var

 TIMESWAITMAX = 5

var

 in = bufio.NewReader(os.Stdin)

The in
 variable is just a shortcut for bufio.NewReader(os.Stdin)
 .

func

getInput

(input

chan

string

)

 {
 result, err := in.ReadString('\n'

)
 if

 err != nil

 {
 log.Println(err)
 return

 }
 input <- result
}

The getInput()
 function, which is executed as a goroutine, gets user input that is transferred
 to the main()
 function via the input
 channel. Each time the program reads some user input, the old goroutine ends and a new getInput()
 goroutine begins in order to get new input.

func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) != 3

 {
 fmt.Println("Need SERVER + PATH!"

)
 return

 }
 SERVER = arguments[1

]
 PATH = arguments[2

]
 fmt.Println("Connecting to:"

, SERVER, "at"

, PATH)
 interrupt := make

(chan

 os.Signal, 1

)
 signal.Notify(interrupt, os.Interrupt)

The WebSocket client handles UNIX interrupts with the help of the interrupt
 channel. When the appropriate signal is caught (syscall.SIGINT
), the WebSocket connection with the server is closed with the help of the websocket.CloseMessage
 message. This is how professional tools work!

 input := make

(chan

 string

, 1

)
 go

 getInput(input)
 URL := url.URL{Scheme: "ws"

, Host: SERVER, Path: PATH}
 c, _, err := websocket.DefaultDialer.Dial(URL.String(), nil

)
 if

 err != nil

 {
 log.Println("Error:"

, err)
 return

 }
 defer

 c.Close()

The WebSocket connection begins with a call to websocket.DefaultDialer.Dial()
 . Everything that goes to the input
 channel is transferred to the WebSocket server using the WriteMessage()
 method.

 done := make

(chan

 struct

{})
 go

 func

()

 {
 defer

 close

(done)
 for

 {
 _, message, err := c.ReadMessage()
 if

 err != nil

 {
 log.Println("ReadMessage() error:"

, err)
 return

 }
 log.Printf("Received: %s"

, message)
 }
 }()

Another goroutine, which this time is implemented using an anonymous Go function, is responsible
 for reading data from the WebSocket connection using the ReadMessage()
 method.

 for

 {
 select

 {
 case

 <-time.After(4

 * time.Second):
 log.Println("Please give me input!"

, TIMESWAIT)
 TIMESWAIT++
 if

 TIMESWAIT > TIMESWAITMAX {
 syscall.Kill(syscall.Getpid(), syscall.SIGINT)
 }

The syscall.Kill(syscall.Getpid(), syscall.SIGINT)
 statement sends the interrupt signal to the program using Go code. According to the logic of client.go
 , the interrupt signal makes the program close the WebSocket connection with the server and terminate its execution. This only happens if the current number of timeout periods is bigger than a predefined global value.

 case

 <-done:
 return

 case

 t := <-input:
 err := c.WriteMessage(websocket.TextMessage, []byte

(t))
 if

 err != nil

 {
 log.Println("Write error:"

, err)
 return

 }
 TIMESWAIT = 0

If you get user input, the current number of the timeout periods (TIMESWAIT
) is reset and new input is read.

 go

 getInput(input)
 case

 <-interrupt:
 log.Println("Caught interrupt signal - quitting!"

)
 err := c.WriteMessage(websocket.CloseMessage, websocket.FormatCloseMessage(websocket.CloseNormalClosure, ""

))

Just before
 we close the client connection, we send websocket.CloseMessage
 to the server in order to do the closing the right way.

 if

 err != nil

 {
 log.Println("Write close error:"

, err)
 return

 }
 select

 {
 case

 <-done:
 case

 <-time.After(2

 * time.Second):
 }
 return

 }
 }
}

As ./client/client.go
 is in a separate directory to ws.go
 , we need to run the next commands in order to collect the required dependencies and run it:

$

cd

 client

$

 go mod init

$

 go mod tidy

$

 go mod download

Interacting with the WebSocket server produces the next kind of output:

$

 go run client.go localhost:1234 ws

Connecting to: localhost:1234 at ws
Hello there!
2021/04/10 21:30:33 Received: Hello there!

The previous two lines show user input as well as the server response.

2021/04/10 21:30:37 Please give me input! 0
2021/04/10 21:30:41 Please give me input! 1
2021/04/10 21:30:45 Please give me input! 2
2021/04/10 21:30:49 Please give me input! 3
2021/04/10 21:30:53 Please give me input! 4
2021/04/10 21:30:57 Please give me input! 5
2021/04/10 21:30:57 Caught interrupt signal - quitting!
2021/04/10 21:30:57 ReadMessage() error: websocket: close 1000 (normal)

The last lines show how the automatic timeout process works.

The WebSocket
 server generated the following output for the previous interaction:

2021/04/10 21:30:29 Connection from: localhost:1234
2021/04/10 21:30:33 Received: Hello there!
2021/04/10 21:30:57 From localhost:1234 read websocket: close 1000 (normal)

However, if a WebSocket server cannot be found at the address provided, the WebSocket client produces the next output:

$

 go run client.go localhost:1234 ws

Connecting to: localhost:1234 at ws
2021/04/09 10:29:23 Error: dial tcp [::1]:1234: connect: connection refused

The connection refused
 message indicates that there is no process listening to port 1234
 at localhost
 .

WebSocket gives you an alternative way of creating services. As a rule of thumb, WebSocket is better when we want to exchange lots of data, and we want the connection to remain open all the time and exchange data in full-duplex. However, if you are not sure about what to use, begin with a TCP/IP service and see how it goes before upgrading it to the WebSocket protocol.

Exercises

	Develop a concurrent TCP server that generates random numbers in a predefined range.

	Develop a concurrent TCP server that generates random numbers in a range that is given by the TCP client. This can be used as a way of randomly picking values from a set.

	Add UNIX signal processing to the concurrent TCP server developed in this chapter to gracefully stop the server process when a given signal is received.

	Develop a UNIX domain socket server that generates random numbers. After that, program a client for that server.

	Develop a WebSocket server that creates a variable number of random integers that are sent to the client. The number of random integers is specified by the client at the initial client message.

Summary

This chapter was all about the net
 package, TCP/IP, TCP, UDP, UNIX sockets, and WebSocket, which implement pretty low-level connections. TCP/IP is what governs the internet. Additionally, WebSocket is handy when you must transfer lots of data. Lastly, UNIX domain sockets are preferred when the data exchange between the server and its various clients takes place on the same machine. Go can help you create all kinds of concurrent servers and clients. You are now ready to begin developing and deploying your own services!

The next chapter is about REST APIs, exchanging JSON data over HTTP, and developing RESTful clients and servers—Go is widely used for developing RESTful clients and servers.

Additional resources

	The WebSocket protocol:
https://tools.ietf.org/rfc/rfc6455.txt

	Wikipedia WebSocket:
https://en.wikipedia.org/wiki/WebSocket

	Gorilla WebSocket package:
https://github.com/gorilla/websocket

	Gorilla WebSocket docs:
https://www.gorillatoolkit.org/pkg/websocket

	The websocket
 package:
https://pkg.go.dev/golang.org/x/net/websocket

10

Working with REST APIs

The subject of this chapter is the development and use of simple RESTful servers and clients using the Go programming language. REST
 is an acronym for REpresentational State Transfer
 and is primarily an architecture for designing web services. Although web services exchange information in HTML, RESTful services usually use JSON format, which is well supported by Go. REST is not tied to any operating system or system architecture and is not a protocol; however, to implement a RESTful service, you need to use a protocol such as HTTP. When developing RESTful servers, you need to create the appropriate Go structures and perform the necessary marshaling and unmarshaling operations for the exchange of JSON data.

This truly important and practical chapter covers:

	An introduction to REST

	Developing RESTful servers and clients

	Creating a functional RESTful server

	Creating a RESTful client

	Uploading and downloading binary files

	Using Swagger for REST API documentation

An introduction to REST

Most modern web
 applications work by exposing their APIs and allowing clients to use these APIs to interact and communicate with them. Although REST is not tied to HTTP, most web services use HTTP as their underlying protocol. Additionally, although REST can work with any data format, usually REST means JSON over HTTP
 because most of the time, data is exchanged in JSON format in RESTful services. There are also times where data is exchanged in plain text format, usually when the exchanged data is simple and there is no need for using JSON records. Due to the way a RESTful
 service works, it should have an architecture that follows the next principles:

	Client-server design

	Stateless implementation—this means that each interaction does not depend on others

	Cacheable

	Uniform interface

	Layered system

According to the HTTP protocol, you can perform
 the following operations on an HTTP server:

	
POST
 , which is used for creating new resources.

	
GET
 , which is used for reading (getting
) existing resources.

	
PUT
 , which is used for updating existing resources. As a convention, a PUT
 request should contain the full and updated version of an existing resource.

	
DELETE
 , which is used for deleting existing resources.

	
PATCH
 , which is used for updating existing resources. A PATCH
 request only contains the modifications to an existing resource.

The important thing here is that everything you do, especially when it is out of the ordinary, must be well documented. As a reference, have in mind that the HTTP methods supported by Go are defined as constants in the net/http
 package:

const

 (
 MethodGet = "GET"

 MethodHead = "HEAD"

 MethodPost = "POST"

 MethodPut = "PUT"

 MethodPatch = "PATCH"

 // RFC 5789

 MethodDelete = "DELETE"

 MethodConnect = "CONNECT"

 MethodOptions = "OPTIONS"

 MethodTrace = "TRACE"

)

There also exist
 conventions regarding the returning HTTP status code
 of each client request. The most popular HTTP status codes as well as their meanings are the following:

	
200
 means that everything went well, and the specified action was executed successfully.

	
201
 means that the desired resource was created
 .

	
202
 means that the request was accepted
 and is currently being processed. This is usually used when an action takes too much time to complete.

	
301
 means that the requested resource has been moved permanently—the new URI should be part of the response. This is rarely used in RESTful services because usually you use API versioning
 .

	
400
 means that there was a bad request
 and that you should change your initial request before sending it again.

	
401
 means
 that the client tried to access a protected request without authorization.

	
403
 means that the client does not have the required permissions for accessing a resource even though the client is properly authorized. In UNIX terminology, 403
 means that the user does not have the required privileges to perform an action.

	
404
 means that the resource was not found.

	
405
 means that the client used a method that is not allowed by the type of resource.

	
500
 means internal server error—it probably indicates a server failure.

If you want to learn more about
 the HTTP protocol, you should visit RFC 7231 at
https://datatracker.ietf.org/doc/html/rfc7231

 .

As I am writing this chapter, I am developing a small RESTful client for a project I am working on. The client connects to a given server and gets a list of usernames. For each username, I must get a list of login and logout times by hitting another endpoint.

What I can tell you from my experience is that most of the code is not about interacting with the RESTful server but about taking care of the data, transforming it to the desired format, and storing it in a MySQL database—the two most tricky tasks that I needed to perform were getting a date and time in UNIX epoch format and truncating the information about the minutes and seconds from that epoch time, as well as inserting a new record into a database table after making sure that the record was not already stored in that database. So, expect the logic of the program to be responsible for most of the code, which is true not only for RESTful services but for all services.

The first section of this chapter contains general yet essential information about programming RESTful servers and clients.

Developing RESTful servers and clients

This section
 is going to develop a RESTful server and a client for that server
 using the functionality of the Go standard library to understand how things really work behind the scenes. The functionality of the server is described in the following list
 of endpoints:

	
/add
 : This endpoint is for adding new entries to the server

	
/delete
 : This endpoint is used for deleting an existing entry

	
/get
 : This endpoint is for getting information about an entry that already exists

	
/time
 : This endpoint returns the current date and time and is mainly used for testing the operation of the RESTful server

	
/
 : This endpoint is used for serving any request that is not a match to any other endpoint

This is my preferred way of structuring the RESTful service. An alternative way of defining the endpoints would be the following:

	
/users/
 with the GET
 method: Get a list of all users

	
/users/:id
 with the GET
 method: Get information about the user with the given ID value

	
/users/:id
 with the DELETE
 method: Delete the user with the given ID

	
/users/
 with the POST
 method: Create a new user

	
/users/:id
 with either the PATCH
 or the PUT
 method: Update the user with the given ID value

The implementation of the alternative way is left as an exercise for the reader—it should not be that difficult to implement it given that the Go code for the handlers is going to be the same and you only have to redefine the part where we specify the handling of the endpoints. The next subsection presents the implementation of the RESTful server.

A RESTful server

The purpose
 of the presented implementation is to understand how things work behind the scenes because the principles behind REST services remain the same. The logic behind each handler function is simple: read user input and decide whether the given input and HTTP method are the desired ones. The principles of each client interaction are also simple: the server should send appropriate error messages and HTTP codes back to the client so that everyone knows what really happened. Lastly, everything should be documented to communicate in a common language.

The code of the server, which is saved as rServer.go
 , is the following:

package

 main
import

 (
 "encoding/json"

 "fmt"

 "io"

 "log"

 "net/http"

 "os"

 "time"

)
type

 User struct

 {
 Username string

 `json:"user"`

 Password string

 `json:"password"`

}

This is a structure that holds user data. The use of JSON tags is crucial.

var

 user User

This global variable
 holds user data—this is the input for the /add
 , /get
 , and /delete
 endpoints and their simplistic implementations. As this global variable is shared by the entire program, our code is not concurrently safe
 , which is fine for a RESTful server used as a proof of concept.

The real-world RESTful server that is implemented in the Creating a functional RESTful server
 section is going to be concurrently safe.

// PORT is where the web server listens to

var

 PORT = ":1234"

A RESTful server is just an HTTP server, so we define the TCP port number the server listens to.

// DATA is the map that holds User records

var

 DATA = make

(map

[string

]string

)

The preceding is another global variable that contains the data of the service.

func

defaultHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
 w.WriteHeader(http.StatusNotFound)
 Body := "Thanks for visiting!\n"

 fmt.Fprintf(w, "%s"

, Body)
}

This is the default handler. On a production server, the default handler might print instructions about the operation of the server as well as the list of available endpoints.

func

timeHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host)
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is: "

 + t + "\n"

 fmt.Fprintf(w, "%s"

, Body)
}

This is another simple handler
 that returns the current date and time—such simple handlers are usually used for testing the health of the server and are usually removed in the production version.

func

addHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host, r.Method)
 if

 r.Method != http.MethodPost {
 http.Error(w, "Error:"

, http.StatusMethodNotAllowed)
 fmt.Fprintf(w, "%s\n"

, "Method not allowed!"

)
 return

 }

This is the first time that you are seeing the http.Error()
 function. The http.Error()
 function sends a reply to the client request that includes the specified error message, which should be in plain text, as well as the desired HTTP code. However, you still need to write the data you want to send back to the client using an fmt.Fprintf()
 statement.

 d, err := io.ReadAll(r.Body)
 if

 err != nil

 {
 http.Error(w, "Error:"

, http.StatusBadRequest)
 return

 }

We try to read all data from the client at once using io.ReadAll()
 and we make sure that we read the data without any errors by checking the value of the error
 variable returned by io.ReadAll(r.Body)
 .

 err = json.Unmarshal(d, &user)
 if

 err != nil

 {
 log.Println(err)
 http.Error(w, "Error:"

, http.StatusBadRequest)
 return

 }

After reading the data
 from the client, we put it into the user
 global variable. Where you want to store the data and what to do with it is decided by the server. There is no rule on how to interpret the data. However, the client should communicate with the server according to the wishes of the server.

 if

 user.Username != ""

 {
 DATA[user.Username] = user.Password
 log.Println(DATA)
 w.WriteHeader(http.StatusOK)

If the given Username
 field is not empty, add the new structure to the DATA
 map. Data persistence is not implemented—each time you restart the RESTful server, DATA
 is initialized from scratch.

 } else

 {
 http.Error(w, "Error:"

, http.StatusBadRequest)
 return

 }
}

If the value of the username
 field is empty, then we cannot add it to the DATA
 map and the operation fails with an http.StatusBadRequest
 code.

func

getHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host, r.Method)
 if

 r.Method != http.MethodGet {
 http.Error(w, "Error:"

, http.StatusMethodNotAllowed)
 fmt.Fprintf(w, "%s\n"

, "Method not allowed!"

)
 return

 }

For the /get
 endpoint we need to use http.MethodGet
 , so we have to make sure that this condition is met (if r.Method != http.MethodGet
).

 d, err := io.ReadAll(r.Body)
 if

 err != nil

 {
 http.Error(w, "ReadAll - Error"

, http.StatusBadRequest)
 return

 }

Again, we need to make sure that we can read the data from the client request without issues.

 err = json.Unmarshal(d, &user)
 if

 err != nil

 {
 log.Println(err)
 http.Error(w, "Unmarshal - Error"

, http.StatusBadRequest)
 return

 }
 fmt.Println(user)

Then, we use the client
 data and put it into a User
 structure (the user
 global variable).

 _, ok := DATA[user.Username]
 if

 ok && user.Username != ""

 {
 log.Println("Found!"

)
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "%s\n"

, d)

If the desired user record is found, we send it back to the client using the data stored in the d
 variable—remember that d
 was initialized in the io.ReadAll(r.Body)
 call and already contains a JSON record that is marshaled.

 } else

 {
 log.Println("Not found!"

)
 w.WriteHeader(http.StatusNotFound)
 http.Error(w, "Map - Resource not found!"

, http.StatusNotFound)
 }
 return

}

Otherwise, we inform the client that the desired record was not found.

func

deleteHandler

(w http.ResponseWriter, r *http.Request)

 {
 log.Println("Serving:"

, r.URL.Path, "from"

, r.Host, r.Method)
 if

 r.Method !=
http.MethodDelete

 {
 http.Error(w, "Error:"

, http.StatusMethodNotAllowed)
 fmt.Fprintf(w, "%s\n"

, "Method not allowed!"

)
 return

 }

The DELETE
 HTTP method looks like a rational choice when deleting a resource, hence the r.Method != http.MethodDelete
 test.

 d, err := io.ReadAll(r.Body)
 if

 err != nil

 {
 http.Error(w, "ReadAll - Error"

, http.StatusBadRequest)
 return

 }

Again, we read the client
 input and store it in the d
 variable.

 err = json.Unmarshal(d, &user)
 if

 err != nil

 {
 log.Println(err)
 http.Error(w, "Unmarshal - Error"

, http.StatusBadRequest)
 return

 }
 log.Println(user)

It is considered a good practice to keep additional logging information when deleting resources.

 _, ok := DATA[user.Username]
 if

 ok && user.Username != ""

 {
 if

 user.Password == DATA[user.Username] {

For the delete process, we make sure that both the given username and password values are the same as the ones that exist in the DATA
 map before deleting the relevant entry.

 delete

(DATA, user.Username)
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "%s\n"

, d)
 log.Println(DATA)
 }
 } else

 {
 log.Println("User"

, user.Username, "Not found!"

)
 w.WriteHeader(http.StatusNotFound)
 http.Error(w, "Delete - Resource not found!"

, http.StatusNotFound)
 }
 log.Println("After:"

, DATA)

After the deletion process, we print the contents of the DATA
 map to make sure that everything went as expected—you usually do not do that on a production server.

 return

}
func

main

()

 {
 arguments := os.Args
 if

 len

(arguments) != 1

 {
 PORT = ":"

 + arguments[1

]
 }

The previous code presents a technique
 for defining the TCP port number of a web server while having a default value at hand. So, if there are no command-line arguments, the default value is used. Otherwise, the value given as a command-line argument is used.

 mux := http.NewServeMux()
 s := &http.Server{
 Addr: PORT,
 Handler: mux,
 IdleTimeout: 10

 * time.Second,
 ReadTimeout: time.Second,
 WriteTimeout: time.Second,
 }

Above are the details and the options for the web server.

 mux.Handle("/time"

, http.HandlerFunc(timeHandler))
 mux.Handle("/add"

, http.HandlerFunc(addHandler))
 mux.Handle("/get"

, http.HandlerFunc(getHandler))
 mux.Handle("/delete"

, http.HandlerFunc(deleteHandler))
 mux.Handle("/"

, http.HandlerFunc(defaultHandler))

The previous code defines the endpoints of the web server—nothing special here as a RESTful server implements an HTTP server behind the scenes.

 fmt.Println("Ready to serve at"

, PORT)
 err := s.ListenAndServe()
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
}

The last step is about running the web server with the predefined options, which is common practice. After that, we test the RESTful server using the curl(1)
 utility, which is very handy when you do not have a client and you want to test the operation of a RESTful server—the good thing is that curl(1)
 can send and receive JSON data.

$

 curl localhost:1234/

Thanks for visiting!

The first interaction
 with the RESTful server is for making sure that the server works as expected. The next interaction is for adding a new user to the server—the details of the user are in the {"user": "mtsouk", "password" : "admin"}
 JSON record:

$

 curl -H

'Content-Type: application/json'

 -d

'{"user": "mtsouk", "password" : "admin"}'

 http://localhost:1234/add -v

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 1234 (#0)

The previous output shows that curl(1)
 has successfully connected to the server (localhost
) using the desired TCP port (1234
).

>

 POST /add HTTP/1.1

>

 Host: localhost:1234

>

 User-Agent: curl/7.64.1

>

 Accept: */*

>

 Content-Type: application/json

>

 Content-Length: 40

The previous output shows that curl(1)
 is going to send data using the POST
 method and the length of the data is 40
 bytes.

>

* upload completely sent off: 40 out of 40 bytes

< HTTP/1.1 200 OK
< Date: Tue, 27 Apr 2021 09:41:38 GMT
< Content-Length: 0

The previous output tells us that the data was sent and that the body
 of the server response is 0
 bytes.

<
* Connection #0 to host localhost left intact
* Closing connection 0

The last part of the output
 tells us that after sending the data to the server, the connection was closed.

When working with a RESTful server, we need to add -H 'Content-Type: application/json'
 to curl(1)
 to specify that we are going to work using the JSON format. The -d
 option is used for passing data to a server and is equivalent to the --data
 option, whereas the -v
 option generates more verbose output if we need more details to understand what is going on.

If we try to add the same user, the RESTful server is not going to complain:

$

 curl -H

'Content-Type: application/json'

 -d

'{"user": "mtsouk", "password" : "admin"}'

 http://localhost:1234/add

Although this behavior might not be perfect, it is good if it is documented. This is not allowed on a production server, but it is acceptable when experimenting.

$

 curl -H

'Content-Type: application/json'

 -d

'{"user": "mihalis", "password" : "admin"}'

 http://localhost:1234/add

With the preceding command, we add another user as specified by {"user": "mihalis", "password" : "admin"}
 .

$

 curl -H -d

'{"user": "admin"}'

 http://localhost:1234/add

curl: (3) URL using bad/illegal format or missing URL
Error:
Method not allowed!

The previous output shows an erroneous interaction where -H
 is not followed by a value. Although the request is sent to the server, it is rejected because /add
 does not use the default HTTP method.

$

 curl -H

'Content-Type: application/json'

 -d

'{"user": "admin", "password" : "admin"}'

 http://localhost:1234/get

Error:
Method not allowed!

This time, the curl
 command is correct, but the HTTP method used is not set correctly. Therefore, the request is not served.

$

 curl -X GET -H

'Content-Type: application/json'

 -d

'{"user": "admin", "password" : "admin"}'

 http://localhost:1234/get

Map - Resource not found!
$

 curl -X GET -H

'Content-Type: application/json'

 -d

'{"user": "mtsouk", "password" : "admin"}'

 http://localhost:1234/get

{"user": "mtsouk", "password" : "admin"}

The previous two interactions
 use /get
 to get information about an existing user. However, only the second user is found.

$

 curl -H

'Content-Type: application/json'

 -d

'{"user": "mtsouk", "password" : "admin"}'

 http://localhost:1234/delete -X DELETE

{"user": "mtsouk", "password" : "admin"}

The last interaction successfully deletes the user specified by {"user": "mtsouk", "password" : "admin"}
 .

The output generated by the server process for all previous interactions would look like the following:

$

 go run rServer.go

Ready to serve at :1234
2021/04/27 12:41:31 Serving: / from localhost:1234
2021/04/27 12:41:38 Serving: /add from localhost:1234 POST
2021/04/27 12:41:38 map[mtsouk:admin]
2021/04/27 12:41:41 Serving: /add from localhost:1234 POST
2021/04/27 12:41:41 map[mtsouk:admin]
2021/04/27 12:41:58 Serving: /add from localhost:1234 POST
2021/04/27 12:41:58 map[mihalis:admin mtsouk:admin]
2021/04/27 12:43:02 Serving: /add from localhost:1234 GET
2021/04/27 12:43:13 Serving: /get from localhost:1234 POST
2021/04/27 12:43:30 Serving: /get from localhost:1234 GET
{admin admin}
2021/04/27 12:43:30 Not found!
2021/04/27 12:43:30 http: superfluous response.WriteHeader call from main.getHandler (rServer.go:101)
2021/04/27 12:43:41 Serving: /get from localhost:1234 GET
{mtsouk admin}
2021/04/27 12:43:41 Found!
2021/04/27 12:44:00 Serving: /delete from localhost:1234 DELETE
2021/04/27 12:44:00 {mtsouk admin}
2021/04/27 12:44:00 map[mihalis:admin]
2021/04/27 12:44:00 After: map[mihalis:admin]

So far, we have a working RESTful server
 that has been tested with the help of the curl(1)
 utility. The next section is about developing a command-line client for the RESTful server.

A RESTful client

This subsection
 illustrates the development of a client for the RESTful server developed previously. However, in this case, the client acts as a testing program that tries the capabilities of the RESTful server—later in this chapter, you are going to learn how to write proper clients using cobra
 . So, the code of the client, which can be found in rClient.go
 , is as follows:

package

 main
import

 (
 "bytes"

 "encoding/json"

 "fmt"

 "io"

 "net/http"

 "os"

 "time"

)
type

 User struct

 {
 Username string

 `json:"user"`

 Password string

 `json:"password"`

}

This same structure is found in the server implementation and is used for exchanging data.

var

 u1 = User{"admin"

, "admin"

}
var

 u2 = User{"tsoukalos"

, "pass"

}
var

 u3 = User{""

, "pass"

}

Here, we predefine three User
 variables that are going to be used during testing.

const

 addEndPoint = "/add"

const

 getEndPoint = "/get"

const

 deleteEndPoint = "/delete"

const

 timeEndPoint = "/time"

The previous constants
 define the endpoints that are going to be used.

func

deleteEndpoint

(server

string

, user User)

int

 {
 userMarshall, _ := json.Marshal(user)
 u := bytes.NewReader(userMarshall)
 req, err := http.NewRequest("DELETE"

, server+deleteEndPoint, u)

We prepare a request that is going to access /delete
 using the DELETE
 HTTP method.

 if

 err != nil

 {
 fmt.Println("Error in req: "

, err)
 return

 http.StatusInternalServerError
 }

req.Header.Set(

"Content-Type"

,

"application/json"

)

This is the correct way to specify
 that we want to use JSON data
 when interacting with the server.

 c := &http.Client{
 Timeout: 15

 * time.Second,
 }
 resp, err := c.Do(req)
 defer

 resp.Body.Close()

Then, we send the request and wait for the server response using the Do()
 method with a 15-second timeout.

 if

 err != nil

 {
 fmt.Println("Error:"

, err)
 }
 if

 resp == nil

 {
 return

 http.StatusNotFound
 }
 data, err := io.ReadAll(resp.Body)
 fmt.Print("/delete returned: "

, string

(data))

The reason
 for putting that fmt.Print()
 here is that we want to know the server response even if there is an error in the interaction.

 if

 err != nil

 {
 fmt.Println("Error:"

, err)
 }
 return

 resp.StatusCode
}

The resp.StatusCode
 value specifies the result from the /delete
 endpoint.

func

getEndpoint

(server

string

, user User)

int

 {
 userMarshall, _ := json.Marshal(user)
 u := bytes.NewReader(userMarshall)
 req, err := http.NewRequest("GET"

, server+getEndPoint, u)

We are going to access /get
 using the GET
 HTTP method.

 if

 err != nil

 {
 fmt.Println("Error in req: "

, err)
 return

 http.StatusInternalServerError
 }
 req.Header.Set("Content-Type"

, "application/json"

)

We specify that we are going to interact with the server using the JSON format using Header.Set()
 .

 c := &http.Client{
 Timeout: 15

 * time.Second,
 }

We define a timeout period for the HTTP client in case the server is too busy responding.

 resp, err := c.Do(req)
 defer

 resp.Body.Close()
 if

 err != nil

 {
 fmt.Println("Error:"

, err)
 }
 if

 resp == nil

 {
 return

 http.StatusNotFound
 }

The previous code
 sends the client request to the server using c.Do(req)
 and saves the server response in resp
 and the error value in err
 . If the value of resp
 is nil
 , then the server response was empty, which is an error condition.

 data, err := io.ReadAll(resp.Body)
 fmt.Print("/get returned: "

, string

(data))
 if

 err != nil

 {
 fmt.Println("Error:"

, err)
 }
 return

 resp.StatusCode
}

The value of resp.StatusCode
 , which is specified and transferred by the RESTful server, determines if the interaction was successful in an HTTP sense (logically) or not.

func

addEndpoint

(server

string

, user User)

int

 {
 userMarshall, _ := json.Marshal(user)
 u := bytes.NewReader(userMarshall)
 req, err := http.NewRequest("POST"

, server+addEndPoint, u)

We are going to access /add
 using the POST
 HTTP method. You can use http.MethodPost
 instead of POST
 . As stated earlier in this chapter, there exist relevant global variables in http
 for the remaining HTTP methods (http.MethodGet
 , http.MethodDelete
 , http.MethodPut
 , etc.) and it is recommended that you use them because this is the portable way.

 if

 err != nil

 {
 fmt.Println("Error in req: "

, err)
 return

 http.StatusInternalServerError
 }
 req.Header.Set("Content-Type"

, "application/json"

)

As before, we specify that we are going to interact with the server using the JSON format.

 c := &http.Client{
 Timeout: 15

 * time.Second,
 }

Once again, we define
 a timeout period for the client in case the server is too busy responding.

 resp, err := c.Do(req)
 defer

 resp.Body.Close()
 if

 resp == nil

 || (resp.StatusCode == http.StatusNotFound) {
 return

 resp.StatusCode
 }
 return

 resp.StatusCode
}

The addEndpoint()
 function is for testing the /add
 endpoint using the POST
 method and the /add
 endpoint.

func

timeEndpoint

(server

string

)

(

int

,

string

)

 {
 req, err := http.NewRequest("POST"

, server+timeEndPoint, nil

)

We are going to access the /time
 endpoint using the POST
 HTTP method.

 if

 err != nil

 {
 fmt.Println("Error in req: "

, err)
 return

 http.StatusInternalServerError, ""

 }
 c := &http.Client{
 Timeout: 15

 * time.Second,
 }

As before, we define a timeout period for the client in case the server is too busy responding.

 resp, err := c.Do(req)
 defer

 resp.Body.Close()
 if

 resp == nil

 || (resp.StatusCode == http.StatusNotFound) {
 return

 resp.StatusCode, ""

 }
 data, _ := io.ReadAll(resp.Body)
 return

 resp.StatusCode, string

(data)
}

The timeEndpoint()
 function
 is for testing the /time
 endpoint—note that this endpoint does not require any data from the client, so the client request is empty. The server is going to return a time and date string.

func

slashEndpoint

(server, URL

string

)

(

int

,

string

)

 {
 req, err := http.NewRequest("POST"

, server+URL, nil

)

We are going to access /
 using the POST
 HTTP method.

 if

 err != nil

 {
 fmt.Println("Error in req: "

, err)
 return

 http.StatusInternalServerError, ""

 }
 c := &http.Client{
 Timeout: 15

 * time.Second,
 }

It is considered a good practice to have a timeout period on the client side in case there are delays in the server response.

 resp, err := c.Do(req)
 defer

 resp.Body.Close()
 if

 resp == nil

 {
 return

 resp.StatusCode, ""

 }
 data, _ := io.ReadAll(resp.Body)
 return

 resp.StatusCode, string

(data)
}

The slashEndpoint()
 function is for testing the default endpoint in the server—note that this endpoint does not require any data from the client.

Next is the implementation of the main()
 function, which uses all previous functions to visit the RESTful server endpoints:

func

main

()

 {
 if

 len

(os.Args) != 2

 {
 fmt.Println("Wrong number of arguments!"

)
 fmt.Println("Need: Server"

)
 return

 }
 server := os.Args[1

]

The server
 variable holds
 both the server address and the port number that is going to be used.

 fmt.Println("/add"

)
 HTTPcode := addEndpoint(server, u1)
 if

 HTTPcode != http.StatusOK {
 fmt.Println("u1 Return code:"

, HTTPcode)
 } else

 {
 fmt.Println("u1 Data added:"

, u1, HTTPcode)
 }
 HTTPcode = addEndpoint(server, u2)
 if

 HTTPcode != http.StatusOK {
 fmt.Println("u2 Return code:"

, HTTPcode)
 } else

 {
 fmt.Println("u2 Data added:"

, u2, HTTPcode)
 }
 HTTPcode = addEndpoint(server, u3)
 if

 HTTPcode != http.StatusOK {
 fmt.Println("u3 Return code:"

, HTTPcode)
 } else

 {
 fmt.Println("u3 Data added:"

, u3, HTTPcode)
 }

All the previous code is used for testing the /add
 endpoint using various types of data.

 fmt.Println("/get"

)
 HTTPcode = getEndpoint(server, u1)
 fmt.Println("/get u1 return code:"

, HTTPcode)
 HTTPcode = getEndpoint(server, u2)
 fmt.Println("/get u2 return code:"

, HTTPcode)
 HTTPcode = getEndpoint(server, u3)
 fmt.Println("/get u3 return code:"

, HTTPcode)

All the previous code
 is used for testing the /get
 endpoint using various types of input. We only test for the return code because the HTTP code specifies the success or failure of the operation.

 fmt.Println("/delete"

)
 HTTPcode = deleteEndpoint(server, u1)
 fmt.Println("/delete u1 return code:"

, HTTPcode)
 HTTPcode = deleteEndpoint(server, u1)
 fmt.Println("/delete u1 return code:"

, HTTPcode)
 HTTPcode = deleteEndpoint(server, u2)
 fmt.Println("/delete u2 return code:"

, HTTPcode)
 HTTPcode = deleteEndpoint(server, u3)
 fmt.Println("/delete u3 return code:"

, HTTPcode)

All the previous code is used for testing the /delete
 endpoint using various types of input. Once again, we print the HTTP code of the interaction because the value of the HTTP code specifies the success or failure of the operation.

 fmt.Println("/time"

)
 HTTPcode, myTime := timeEndpoint(server)
 fmt.Print("/time returned: "

, HTTPcode, " "

, myTime)
 time.Sleep(time.Second)
 HTTPcode, myTime = timeEndpoint(server)
 fmt.Print("/time returned: "

, HTTPcode, " "

, myTime)

The previous code tests the /time
 endpoint—it prints the HTTP code as well as the rest of the server response.

 fmt.Println("/"

)
 URL := "/"

 HTTPcode, response := slashEndpoint(server, URL)
 fmt.Print("/ returned: "

, HTTPcode, " with response: "

, response)
 fmt.Println("/what"

)
 URL = "/what"

 HTTPcode, response = slashEndpoint(server, URL)
 fmt.Print(URL, " returned: "

, HTTPcode, " with response: "

, response)
}

The last part of the program
 tries to connect to an endpoint that does not exist to verify the correct operation of the default handler function.

Running rClient.go
 while rServer.go
 is already running produces the next kind of output:

$

 go run rClient.go http://localhost:1234

/add
u1 Data added: {admin admin} 200
u2 Data added: {tsoukalos pass} 200
u3 Return code: 400

The previous part is related to the testing of the /add
 endpoint. The first two users were successfully added, whereas the third user (var u3 = User{"", "pass"}
) was not added because it does not contain all the required information.

/get
/get returned: {"user":"admin","password":"admin"}
/get u1 return code: 200
/get returned: {"user":"tsoukalos","password":"pass"}
/get u2 return code: 200
/get returned: Map - Resource not found!
/get u3 return code: 404

The previous part is related to the testing of the /get
 endpoint. The data of the first two users with the usernames admin
 and tsoukalos
 was successfully returned, whereas the user stored in the u3
 variable was not found.

/delete
/delete returned: {"user":"admin","password":"admin"}
/delete u1 return code: 200
/delete returned: Delete - Resource not found!
/delete u1 return code: 404
/delete returned: {"user":"tsoukalos","password":"pass"}
/delete u2 return code: 200
/delete returned: Delete - Resource not found!
/delete u3 return code: 404

The previous output is related to the testing of the /delete
 endpoint. The users admin
 and tsoukalos
 were deleted. However, trying to delete admin
 for the second time failed.

/time
/time returned: 200 The current time is: Tue, 20 Apr 2021 10:23:04 EEST
/time returned: 200 The current time is: Tue, 20 Apr 2021 10:23:05 EEST

Similarly, the previous part
 is related to the testing of the /time
 endpoint.

/
/ returned: 404 with response: Thanks for visiting!
/what
/what returned: 404 with response: Thanks for visiting!

The last part of the output is related to the operation of the default handler.

So far, both the RESTful server and the client can interact with each other. However, neither of them perform a real job. The next section shows how to develop a real-world RESTful server using gorilla/mux
 and a database backend for storing data.

Creating a functional RESTful server

This section illustrates
 how to develop a RESTful server in Go given a REST API. The biggest difference between the presented RESTful service and the phone book application created in Chapter 8
 , Building Web Services
 , is that the RESTful service in this chapter uses JSON messages everywhere, whereas the phone book application interacts and works using plain text messages. If you are thinking of using net/http
 for the implementation of the RESTful server, please do not do so! This implementation uses the gorilla/mux
 package, which is a much better choice because it supports subrouters—more about that in the Using gorilla/mux
 subsection.

The purpose of the RESTful server is to implement a login/authentication system. The purpose of the login system is to keep track of the users who are logged in, as well as their permissions. The system comes with a default administrator user named admin
 —the default password is also admin
 and you should change it. The application stores its data in a database (PostgreSQL), which means
 that if you restart it, the list of existing users is read from that database and is not lost.

The REST API

The API of an application
 helps you implement the functionality that you have in mind. However, this is a job for the client, not the server. The job of the server is to facilitate the job of its clients as much as possible by supporting a simple yet fully working functionality through a properly defined and implemented REST API. Make sure that you understand that before trying to develop and use a RESTful server.

We are going to define the endpoints that are going to be used, the HTTP codes that are going to return, as well as the allowed method or methods. Creating a RESTful server based on a REST API for production is a serious job that should not be taken lightly. Creating a prototype
 to test and validate your ideas and designs is going to save you lots of time in the long run. Always begin with a prototype.

The supported endpoints
 as well as the supported
 HTTP methods and the parameters
 are as follows:

	
/
 : Used for catching and serving everything that is not a match. This endpoint works with all HTTP methods.

	
/getall
 : Used for getting the full contents of the database. Using this requires a user with administrative privileges. This endpoint might return multiple JSON records and works with the GET
 HTTP method.

	
/getid/username
 : Used for getting the ID of a user identified by their username, which is passed to the endpoint. This command should be issued by a user with administrative privileges and supports the GET
 HTTP method.

	
/username/ID
 : Used for deleting or getting information about the user with an ID equal to ID
 , depending on the HTTP method used. Therefore, the actual action that is going to be performed depends on the HTTP method used. The DELETE
 method deletes the user, whereas the GET
 method returns the user information. This endpoint should be issued by a user with administrative privileges.

	
/logged
 : Used for getting a list of all logged-in users. This endpoint might return multiple JSON records and requires the use of the GET
 HTTP method.

	
/update
 : Used for updating the username, the password, or the admin status of a user—the ID of the user in the database remains the same. This endpoint works with the PUT
 HTTP method only and the search for the user is based on the username.

	
/login
 : Used for logging in a user to the system, given a username and a password. This endpoint works with the POST
 HTTP method.

	
/logout
 : Used for logging out a user, given a username and a password. This endpoint works with the POST
 HTTP method.

	
/add
 : Used for adding a new user to the database. This endpoint works with the POST
 HTTP method and is issued by a user with administrative privileges.

	
/time
 : This is an endpoint
 used mainly for testing purposes. It is the only
 endpoint that does not work with JSON
 data, does not require a valid account, and works with all HTTP methods.

Now, let us discuss the capabilities and the functionality of the gorilla/mux
 package.

Using gorilla/mux

The gorilla/mux
 package (
https://github.com/gorilla/mux

) is a popular and powerful alternative
 to the default Go router that allows you to match incoming requests to their respective handler. Although there exist many differences between the default Go router (http.ServeMux
) and mux.Router
 (the gorilla/mux
 router), the main difference is that mux.Router
 supports multiple conditions
 when matching a route with a handler function. This means that you can write less code to handle some options such as the HTTP method used. Let us begin by presenting some matching examples—this functionality is not supported by the default Go router:

	
r.HandleFunc("/url", UrlHandlerFunction)
 : The previous command calls the UrlHandlerFunction
 function each time /url
 is visited.

	
r.HandleFunc("/url", UrlHandlerFunction).Methods(http.MethodPut)
 : This example shows how you can tell Gorilla
 to match a specific HTTP method (PUT
 in this case, which is defined by the use of http.MethodPut
), which saves you from having to write code to do that manually.

	
mux.NotFoundHandler = http.HandlerFunc(handlers.DefaultHandler)
 : With Gorilla, the right way to match anything that is not a match by any other path is by using mux.NotFoundHandler
 .

	
mux.MethodNotAllowedHandler = notAllowed
 : If a method is not allowed for an existing route, it is handled with the help of MethodNotAllowedHandler
 . This is specific to gorilla/mux
 .

	
s.HandleFunc("/users/{id:[0-9]+}"), HandlerFunction)
 : This last example shows that you can define a variable in a path using a name (id
) and a pattern and Gorilla
 does the matching for you! If there is not a regular expression, then the match is going to be anything from the beginning slash to the next slash in the path.

Now, let us talk about another capability of gorilla/mux
 , which is subrouters.

The use of subrouters

The server implementation uses subrouters
 . A subrouter
 is a nested route
 that will only be examined for potential
 matches if the parent route matches the parameters of the subrouter. The good thing is that the parent route can contain conditions that are common among all paths that are defined under a subrouter, which includes
 hosts, path prefixes, and, as it happens in our case, HTTP request methods. As a result, our subrouters are divided based on the common request method of the endpoints that follow. Not only does this optimize the request matchings, but it also makes the structure of the code easier to understand.

As an example, the subrouter for the DELETE
 HTTP method is as simple as the following:

deleteMux := mux.Methods(http.MethodDelete).Subrouter()
deleteMux.HandleFunc("/username/{id:[0-9]+}"

, handlers.DeleteHandler)

The first statement is for defining the common characteristics of the subrouter, which in this case is the http.MethodDelete
 HTTP method, whereas the remaining statement, which in this case is the deleteMux.HandleFunc(...)
 one, is for defining the supported paths.

Yes, gorilla/mux
 might be more difficult than the default Go router, but you should understand by now the benefits of the gorilla/mux
 package for working with HTTP services.

Working with the database

In this subsection, we develop a Go package
 for working with the PostgreSQL database that supports the functionality of the RESTful server. The package is named restdb
 and is stored in
https://github.com/mactsouk/restdb

 . Due to the use of Go modules
 , its development
 can take place anywhere you want in your filesystem—in this case, in the ~/code/restdb
 folder. So, we run go mod init github.com/mactsouk/restdb
 to enable Go modules for the restdb
 package during its development.

The RESTful server itself knows nothing about the PostgreSQL server. All related functionality is kept in the restdb
 package, which means that if you change the database, the handler functions do not have to know about it.

To make things
 easier for the readers, the database is going to run using Docker and with a configuration that can be found in docker-compose.yml
 , inside the restdb
 GitHub repository, which comes with the following contents:

version:

 '3.1'

services:

 postgres:

 image:

 postgres

 container_name:

 postgredb

 environment:

 POSTGRES_USER:

 mtsouk

 POSTGRES_PASSWORD:

 pass

 POSTGRES_DB:

 restapi

 volumes:

 -

 ./postgres:/var/lib/postgresql/data/

 ports:

 -

 5432

:5432

volumes:

 postgres_data:

 driver:

 local

So, the PostgreSQL server listens to port number 5432
 , both internally and externally. What really matters is the external port number because this is what all clients are going to be using. The database name, the database table, and the admin
 user are created using the next create_db.sql
 SQL file:

DROP

 DATABASE

 IF

 EXISTS

 restapi;
CREATE

 DATABASE

 restapi;
\c restapi;
/*

Users

*/

CREATE

 TABLE

 users

 (
id

 SERIAL

 PRIMARY KEY

,
username VARCHAR

 NOT

 NULL

,
password

 VARCHAR

 NOT

 NULL

,
lastlogin INT

,
admin

 INT

,
active INT

);
INSERT

 INTO

 users

 (username, password

, lastlogin, admin

, active) VALUES

 ('admin'

, 'admin'

, 1620922454

, 1

, 1

);

Provided that PostgreSQL is executed
 using the presented docker-compose.yml
 , you can use create_db.sql
 as follows:

$

 psql -U mtsouk postgres -h 127.0.0.1 < create_db.sql

Password for user mtsouk:
DROP DATABASE
CREATE DATABASE
You are now connected to database "restapi" as user "mtsouk".
CREATE TABLE
INSERT 0 1

As most commands in restdb
 work in a similar way, we are going to present the most important functions here, beginning with ConnectPostgres()
 :

func

ConnectPostgres

()

 *

sql

.

DB

 {
 conn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s sslmode=disable"

,
 Hostname, Port, Username, Password, Database)

All of Hostname
 , Port
 , Username
 , Password
 , and Database
 are global variables defined elsewhere in the package—they contain the connection details.

 db, err := sql.Open("postgres"

, conn)
 if

 err != nil

 {
 log.Println(err)
 return

 nil

 }
 return

 db
}

As we need to connect to PostgreSQL all the time, we created a helper function that returns an *sql.DB
 variable
 that can be used for interaction with PostgreSQL.

Next, we present the DeleteUser()
 function:

func

DeleteUser

(ID

int

)

bool

 {
 db := ConnectPostgres()
 if

 db == nil

 {
 log.Println("Cannot connect to PostgreSQL!"

)
 db.Close()
 return

 false

 }
 defer

 db.Close()

The preceding code is how we use ConnectPostgres()
 to get a database connection to work with.

 t := FindUserID(ID)
 if

 t.ID == 0

 {
 log.Println("User"

, ID, "does not exist."

)
 return

 false

 }

Here, we use the FindUserID()
 helper function to make sure that the user with the given user ID exists in the database. If the user does not exist, the function stops and returns false
 .

 stmt, err := db.Prepare("DELETE FROM users WHERE ID = $1"

)
 if

 err != nil

 {
 log.Println("DeleteUser:"

, err)
 return

 false

 }

This is the actual statement for deleting the user. We use Prepare()
 to construct the required SQL statement that we will execute using Exec()
 . The $1
 in Prepare()
 denotes a parameter that is going to be given in Exec()
 . If we wanted to have more parameters, we should have named them $2
 , $3
 , and so on.

 _, err = stmt.Exec(ID)
 if

 err != nil

 {
 log.Println("DeleteUser:"

, err)
 return

 false

 }
 return

 true

}

This is where the implementation of the DeleteUser()
 function ends. The stmt.Exec(ID)
 statement
 is what deletes a user from the database.

The ListAllUsers()
 function, which is presented next, returns a slice of User
 elements, which holds all users found in the RESTful server:

func

ListAllUsers

()

 []

User

 {
 db := ConnectPostgres()
 if

 db == nil

 {
 fmt.Println("Cannot connect to PostgreSQL!"

)
 db.Close()
 return

 []User{}
 }
 defer

 db.Close()
 rows, err := db.Query("SELECT * FROM users \n"

)
 if

 err != nil

 {
 log.Println(err)
 return

 []User{}
 }

As the SELECT
 query requires no parameters, we use Query()
 to run it instead of Prepare()
 and Exec()
 . Keep in mind that this is a query that most likely returns multiple records.

 all := []User{}
 var

 c1 int

 var

 c2, c3 string

 var

 c4 int64

 var

 c5, c6 int

 for

 rows.Next() {
 err = rows.Scan(&c1, &c2, &c3, &c4, &c5, &c6)

This is how we read the values from a single record returned by the SQL query. First, we define multiple variables
 for each one of the returned values and then we pass their pointers to Scan()
 . The rows.Next()
 method keeps returning records as long as there are results.

 temp := User{c1, c2, c3, c4, c5, c6}
 all = append

(all, temp)
 }
 log.Println("All:"

, all)
 return

 all
}

So, as mentioned before, a slice of User
 structures is returned from ListAllUsers()
 .

Lastly, we are going to present the implementation of IsUserValid()
 :

func

IsUserValid

(u User)

bool

 {
 db := ConnectPostgres()
 if

 db == nil

 {
 fmt.Println("Cannot connect to PostgreSQL!"

)
 db.Close()
 return

 false

 }
 defer

 db.Close()

This is a common pattern: we call ConnectPostgres()
 and wait to get a connection to use.

 rows, err := db.Query("SELECT * FROM users WHERE Username = $1 \n"

, u.Username)
 if

 err != nil

 {
 log.Println(err)
 return

 false

 }

Here we pass our parameter to Query()
 without using Prepare()
 and Exec()
 .

 temp := User{}
 var

 c1 int

 var

 c2, c3 string

 var

 c4 int64

 var

 c5, c6 int

Here, we create the required
 parameters to keep the output of the SQL query.

 // If there exist multiple users with the same username,

 // we will get the FIRST ONE only.

 for

 rows.Next() {
 err = rows.Scan(&c1, &c2, &c3, &c4, &c5, &c6)
 if

 err != nil

 {
 log.Println(err)
 return

 false

 }
 temp = User{c1, c2, c3, c4, c5, c6}
 }

Once again, the for
 loop keeps running for as long as rows.Next()
 returns new records.

 if

 u.Username == temp.Username && u.Password == temp.Password {
 return

 true

 }

This is an important point: not only should the given user exist, but the given password should be the same as the one stored in the database for a given user to be valid.

 return

 false

}

You can view the rest of the restdb
 implementation on your own. Most functions are like the ones presented here. The code of restdb.go
 is going to be used in the implementation of the RESTful server that is presented next. However, as you are going to see, we are going to test restdb
 first.

Testing the restdb package

The RESTful server
 is developed in ~/go/src/github.com/mactsouk/rest-api
 —if you do not plan on making it available to the world, you do not need to create a separate GitHub repository for it. However, I do want to be able to share it with you, so the GitHub repository for the server is
https://github.com/mactsouk/rest-api

 .

Before continuing with the server implementation, we use the restdb
 package to make sure that it is working as expected before using it in the RESTful server implementation. The presented utility uses functions from restdb
 ; you do not have to test every possible usage of the restdb
 package—just make sure that it works and that it connects to the PostgreSQL database. For this reason, we are going to create a separate command-line utility called useRestdb.go
 that contains the next code and is in the test-db
 directory. The most important
 detail in that file is the use of restdb.User
 in the code because this is the structure that is needed by the restdb
 package. We cannot pass a different structure as a parameter to the functions of restdb
 .

Initializing modules and running useRestdb.go
 produces the next kind of output:

$

 go mod init

go: creating new go.mod: module github.com/mactsouk/rest-api/test-db
go: to add module requirements and sums:
 go mod tidy
$

 go mod tidy

go: finding module for package github.com/mactsouk/restdb
go: finding module for package github.com/lib/pq
go: downloading github.com/mactsouk/restdb v0.0.0-20210510205310-63ba9fa172df
go: found github.com/lib/pq in github.com/lib/pq v1.10.1
go: found github.com/mactsouk/restdb in github.com/mactsouk/restdb v0.0.0-20210510205310-63ba9fa172df
$

 go run useRestdb.go

&{0 {host=localhost port=5432 user=mtsouk password=pass dbname=restapi sslmode=disable 0x856110} 0 {0 0} [] map[] 0 0 0xc00007c240 false map[] map[] 0 0 0 0 <nil> 0 0 0 0 0x4dd260}
{0 0 0 0}
mike
packt
admin
2021/05/17 09:40:23 Populating PostgreSQL
User inserted successfully.
2021/05/17 09:40:23 Found user: {9 mtsouk admin 1621233623 1 1}
mtsouk: {9 mtsouk admin 1621233623 1 1}
2021/05/17 09:40:23 Found user: {9 mtsouk admin 1621233623 1 1}
User Deleted.
mtsouk: {0 0 0 0}
2021/05/17 09:40:23 User 0 does not exist.
User not Deleted.
2021/05/17 09:40:23 User 0 does not exist.
User not Deleted.

The absence of error messages tells us that, so far, the restdb
 package works as expected: users are added and deleted
 from the database and queries to the database are performed. Just remember that this is a quick and dirty way of testing a package.

All packages are improved and new functionality is added to almost all existing packages. Should you wish to update the restdb
 package, or any other external package, and use the newer version while developing your own utilities, you can issue the go get -u -v
 command in the directory where the go.sum
 and go.mod
 files of your utility reside.

Implementing the RESTful server

Now that we are sure
 that the restdb
 package works as expected, we are ready to explain the implementation of the RESTful server. The server code is split into two files, both belonging to the main
 package: main.go
 and handlers.go
 . The main reason for doing so is to avoid having huge code files to work with and separating the functionality of the server logically.

The most important part of main.go
 , which belongs to the main()
 function, is the following:

 rMux.NotFoundHandler = http.HandlerFunc(DefaultHandler)

First, we need to define the default handler function—although this is not necessary, it is a good practice to have such a handler.

 notAllowed := notAllowedHandler{}
 rMux.MethodNotAllowedHandler = notAllowed

The MethodNotAllowedHandler
 handler is executed when you try to visit an endpoint using an unsupported HTTP method. The actual implementation of the handler is found in handlers.go
 .

 rMux.HandleFunc("/time"

, TimeHandler)

The /time
 endpoint is supported by all HTTP methods, so it does not belong to any subrouter.

 // Define Handler Functions

 // Register GET

 getMux := rMux.Methods(http.MethodGet).Subrouter()
 getMux.HandleFunc("/getall"

, GetAllHandler)
 getMux.HandleFunc("/getid/{username}"

, GetIDHandler)
 getMux.HandleFunc("/logged"

, LoggedUsersHandler)
 getMux.HandleFunc("/username/{id:[0-9]+}"

, GetUserDataHandler)

First, we define
 a subrouter for the GET
 HTTP method along with the supported endpoints. Remember that gorilla/mux
 is responsible for making sure that only GET
 requests are going to be served by the getMux
 subrouter.

 // Register PUT

 // Update User

 putMux := rMux.Methods(http.MethodPut).Subrouter()
 putMux.HandleFunc("/update"

, UpdateHandler)

After that, we define a subrouter for PUT
 requests.

 // Register POST

 // Add User + Login + Logout

 postMux := rMux.Methods(http.MethodPost).Subrouter()
 postMux.HandleFunc("/add"

, AddHandler)
 postMux.HandleFunc("/login"

, LoginHandler)
 postMux.HandleFunc("/logout"

, LogoutHandler)

Then, we define the subrouter for POST
 requests.

 // Register DELETE

 // Delete User

 deleteMux := rMux.Methods(http.MethodDelete).Subrouter()
 deleteMux.HandleFunc("/username/{id:[0-9]+}"

, DeleteHandler)

The last subrouter is for DELETE
 HTTP methods. The code in gorilla/mux
 is responsible for choosing the correct subrouter based on the client request.

 go

 func

()

 {
 log.Println("Listening to"

, PORT)
 err := s.ListenAndServe()
 if

 err != nil

 {
 log.Printf("Error starting server: %s\n"

, err)
 return

 }
 }()

The HTTP server is executed as a goroutine
 because the program supports signal handling—refer to Chapter 7
 , Go Concurrency
 , for the details.

 sigs := make

(chan

 os.Signal, 1

)
 signal.Notify(sigs, os.Interrupt)
 sig := <-sigs
 log.Println("Quitting after signal:"

, sig)
 time.Sleep(5

 * time.Second)
 s.Shutdown(nil

)

Last, we add signal handling for gracefully terminating the HTTP server. The sig := <-sigs
 statement prevents the main()
 function from exiting unless an os.Interrupt
 signal is received.

The handlers.go
 file contains the implementations for the handler functions and is also part of the main
 package—its most important parts are the following:

// AddHandler is for adding a new user

func

AddHandler

(rw http.ResponseWriter, r *http.Request)

 {
 log.Println("AddHandler Serving:"

, r.URL.Path, "from"

, r.Host)
 d, err := io.ReadAll(r.Body)
 if

 err != nil

 {
 rw.WriteHeader(http.StatusBadRequest)
 log.Println(err)
 return

 }

This handler is for the /add
 endpoint. The server reads the client input using io.ReadAll()
 .

 if

 len

(d) == 0

 {
 rw.WriteHeader(http.StatusBadRequest)
 log.Println("No input!"

)
 return

 }

Then, the code makes sure that the body of the client request is not empty.

 // We read two structures as an array:

 // 1. The user issuing the command

 // 2. The user to be added

 var

 users = []restdb.User{}
 err = json.Unmarshal(d, &users)
 if

 err != nil

 {
 log.Println(err)
 rw.WriteHeader(http.StatusBadRequest)
 return

 }

As the /add
 endpoint
 requires two User
 structures, the previous code uses json.Unmarshal()
 to put them into a []restdb.User
 variable—this means that the client should send these two JSON records using an array. The reason for using restdb.User
 is that all database-related functions work with restdb.User
 variables. Even if we had a structure with the same definition as restdb.User
 , Go would consider them as different. This is not the case with the client because the client sends data without a data type associated with it.

 log.Println(users)
 if

 !restdb.IsUserAdmin(users[0

]) {
 log.Println("Issued by non-admin user:"

, users[0

].Username)
 rw.WriteHeader(http.StatusBadRequest)
 return

 }

If the user issuing the command is not an admin, the request fails. restdb.IsUserAdmin()
 is implemented in the restdb
 package.

 result := restdb.InsertUser(users[1

])
 if

 !result {
 rw.WriteHeader(http.StatusBadRequest)
 }
}

Otherwise, restdb.InsertUser()
 inserts the desired user into the database.

Last, we present the handler for the /getall
 endpoint.

// GetAllHandler is for getting all data from the user database

func

GetAllHandler

(rw http.ResponseWriter, r *http.Request)

 {
 log.Println("GetAllHandler Serving:"

, r.URL.Path, "from"

, r.Host)
 d, err := io.ReadAll(r.Body)
 if

 err != nil

 {
 rw.WriteHeader(http.StatusBadRequest)
 log.Println(err)
 return

 }

Once again, we read the data
 from the client using io.ReadAll(r.Body)
 and we make sure that the process is error-free by examining the err
 variable.

 if

 len

(d) == 0

 {
 rw.WriteHeader(http.StatusBadRequest)
 log.Println("No input!"

)
 return

 }
 var

 user = restdb.User{}
 err = json.Unmarshal(d, &user)
 if

 err != nil

 {
 log.Println(err)
 rw.WriteHeader(http.StatusBadRequest)
 return

 }

Here, we put the client data into a restdb.User
 variable. The /getall
 endpoint requires a single restdb.User
 record as input.

 if

 !restdb.IsUserAdmin(user) {
 log.Println("User"

, user, "is not an admin!"

)
 rw.WriteHeader(http.StatusBadRequest)
 return

 }

Only admin users can visit /getall
 and get back the list of all users.

 err = SliceToJSON(restdb.ListAllUsers(), rw)
 if

 err != nil

 {
 log.Println(err)
 rw.WriteHeader(http.StatusBadRequest)
 return

 }
}

The last part of the code is about getting
 the desired data from the database and sending it to the client using the SliceToJSON(restdb.ListAllUsers(), rw)
 call.

Feel free to put each handler into a separate Go file. The general idea is that if you have lots of handler functions, using a separate file for each handler function is a good practice.

The next section tests the RESTful server using curl(1)
 before developing a proper client.

Testing the RESTful server

This subsection shows how to test
 the RESTful server using the curl(1)
 utility. You should test the RESTful server as much and as extensively as possible to find bugs or unwanted behavior. As we use two files for the server implementation, we need to run it as go run main.go handlers.go
 . Additionally, do not forget to have PostgreSQL up and running. We begin by testing the /time
 handler, which works with all HTTP methods:

$

 curl localhost:1234/time

The current time is: Mon, 17 May 2021 09:14:00 EEST

Next, we test the default handler:

$

 curl localhost:1234/

/ is not supported. Thanks for visiting!
$

 curl localhost:1234/doesNotExist

/doesNotExist is not supported. Thanks for visiting!

Last, we see what happens if we use an unsupported HTTP method with a supported endpoint—in this case, the /getall
 endpoint that works with GET
 only:

$

 curl -s -X PUT -H

'Content-Type: application/json'

 localhost:1234/getall

Method not allowed!

Although the /getall
 endpoint requires a valid user to operate, the fact that we are using an HTTP method that is not supported
 by that endpoint takes precedence and the call fails for the right reasons.

It is important to look at the output of the RESTful server and the log entries that it generates during testing. Not all information can be sent back to a client, but the server process is allowed to print anything we want. This can be very helpful for debugging a server process such as our RESTful server.

The next subsection tests all handlers that support the GET
 HTTP method.

Testing GET handlers

First, we
 test the /getall
 endpoint:

$

 curl -s -X GET -H

'Content-Type: application/json'

 -d

'{"username": "admin", "password" : "newPass"}'

 localhost:1234/getall

[{"ID":1,"Username":"admin","Password":"newPass","LastLogin":1620922454,"Admin":1,"Active":1},{"ID":6,"Username":"mihalis","Password":"admin","LastLogin":1620926815,"Admin":1,"Active":0},{"ID":7,"Username":"mike","Password":"admin","LastLogin":1620926862,"Admin":1,"Active":0}]

The previous output is a list of all existing users found in the database in JSON format.

Then, we test the /logged
 endpoint:

$

 curl -X GET -H

'Content-Type: application/json'

 -d

'{"username": "admin", "password" : "newPass"}'

 localhost:1234/logged

[{"ID":1,"Username":"admin","Password":"newPass","LastLogin":1620922454,"Admin":1,"Active":1}]

After that, we test the /username/{id}
 endpoint:

$

 curl -X GET -H

'Content-Type: application/json'

 -d

'{"username": "admin", "password" : "newPass"}'

 localhost:1234/username/7

{"ID":7,"Username":"mike","Password":"admin","LastLogin":1620926862,"Admin":1,"Active":0}

Last, we test the /getid/{username}
 endpoint:

$

 curl -X GET -H

'Content-Type: application/json'

 -d

'{"username": "admin", "password" : "newPass"}'

 localhost:1234/getid/admin

User admin has ID: 1

So far, we can get a list of existing users and the list of logged-in users and get information
 about specific users—all these endpoints use the GET
 method. The next subsection tests all handlers that support the POST
 HTTP method.

Testing POST handlers

First, we test the /add
 endpoint by adding
 the packt
 user, which does not have admin privileges:

$

 curl -X POST -H

'Content-Type: application/json'

 -d

'[{"username": "admin", "password" : "newPass", "admin":1}, {"username": "packt", "password" : "admin", "admin":0}]'

 localhost:1234/add

The previous call passes an array of JSON records to the server to add a new user named packt
 . The command is issued by the admin
 user.

If we try to add the same username more than once, the process is going to fail—this is revealed with the use of -v
 in the curl(1)
 command. The relevant message is HTTP/1.1 400 Bad Request
 .

Additionally, if we try to add a new user using the credentials of a user that is not an administrator, the server is going to generate the Command issued by non-admin user: packt
 message.

Then, we test the /login
 endpoint:

$

 curl -X POST -H

'Content-Type: application/json'

 -d

'{"username": "packt", "password" : "admin"}'

 localhost:1234/login

The previous command is used for logging in the packt
 user.

Last, we test the /logout
 endpoint:

$

 curl -X POST -H

'Content-Type: application/json'

 -d

'{"username": "packt", "password" : "admin"}'

 localhost:1234/

logout

The previous command is used for logging out the packt
 user. You can use the /logged
 endpoint to verify the results of the previous two interactions.

Let us now test the only endpoint that supports the PUT
 HTTP method.

Testing the PUT handler

First, we test the /update
 endpoint
 as follows:

$

 curl -X PUT -H

'Content-Type: application/json'

 -d

'[{"username": "admin", "password" : "newPass", "admin":1}, {"username": "admin", "password" : "justChanged", "admin":1}]'

 localhost:1234/update

The previous command changes the password of the admin
 user from newPass
 to justChanged
 .

Then, we try to change a user password using the credentials of a non-admin user (packt
):

$

 curl -X PUT -H

'Content-Type: application/json'

 -d

'[{"Username":"packt","Password":"admin"}, {"username": "admin", "password" : "justChanged", "admin":1}]'

 localhost:1234/update

The generated log message is Command issued by non-admin user: packt
 .

We might consider
 the fact that a non-admin user cannot even change their password a flaw—it might be, but this is the way the RESTful server is implemented. The idea is that non-admin users should not issue dangerous commands directly. Additionally, this flaw can be easily fixed as follows: generally speaking, regular users are not going to interact in this way with the server and are going to be offered a web interface for doing so. After that, an admin user can send the user request to the server. Therefore, this can be implemented in a different way that is more secure and does not give unnecessary privileges to regular users.

Lastly, we are going to test the DELETE
 HTTP method.

Testing the DELETE handler

For the DELETE
 HTTP method, we need
 to test the /username/{id}
 endpoint. As that endpoint does not return any output, using -v
 in curl(1)
 is going to reveal the returned HTTP status code:

$

 curl -X DELETE -H

'Content-Type: application/json'

 -d

'{"username": "admin", "password" : "justChanged"}'

 localhost:1234/username/6 -v

The HTTP/1.1 200 OK
 status code verifies that the user was deleted successfully. If we try to delete the same user again, the request is going to fail, and the returned message is going to be HTTP/1.1 404 Not Found
 .

So far, we know that the RESTful server works as expected. However, curl(1)
 is far from perfect for working with the RESTful server on a daily basis. The next section shows how to develop a command-line client for the RESTful server we developed in this section.

Creating a RESTful client

Creating a RESTful client
 is much easier than programming a server mainly because you do not have to work with the database on the client side. The only thing that the client needs to do is send the right amount and kind of data to the server and receive back the server response. The RESTful client is going to be developed in ~/go/src/github.com/mactsouk/rest-cli
 —if you do not plan to make it available to the world, you do not need to create a separate GitHub repository for it. However, for you to be able to see the code of the client, I created a GitHub repository, which is
https://github.com/mactsouk/rest-cli

 .

The supported first-level cobra
 commands
 are the following:

	
list
 : This command accesses the /getall
 endpoint and returns the list of users

	
time
 : This command is for visiting the /time
 endpoint

	
update
 : This command is for updating user records—the user ID cannot change

	
logged
 : This command lists all logged-in users

	
delete
 : This command deletes an existing user

	
login
 : This command is for logging in a user

	
logout
 : This command is for logging out a user

	
add
 : This command is for adding a new user to the system

	
getid
 : This command returns the ID of a user, identified by their username

	
search
 : This command displays information about a given user, identified by their ID

A client like the one we are about to present is much better than working with curl(1)
 because it can process the received information but, most importantly, it can interpret the HTTP return codes and preprocess data before sending it to the server. The price you pay is the extra time needed for developing and debugging the RESTful client.

There exist two main command-line flags for passing the username and the password of the user issuing the command: user
 and pass
 . As you are going to see in their implementations, they have the -u
 and -p
 shortcuts, respectively. Additionally, as the JSON record that holds user info has a small number of fields, all the fields are going to be given in a JSON record as plain text, using the data
 flag and -d
 shortcut—this is implemented in root.go
 . Each command is going to read the desired flags only and the desired fields of the input JSON record—this is implemented in the source code file of each command. Lastly, the utility is going to return JSON records, when this makes sense, or a text message related to the endpoint that was visited. Now, let us continue with the structure
 of the client and the implementation of the commands.

Creating the structure of the command-line client

This subsection
 uses the cobra
 utility to create a structure for the command-line utility. But first we are going to create a proper cobra
 project and Go module:

$

cd

 ~/go/src/github.com/mactsouk

$

 git

clone

 git@github.com:mactsouk/rest-cli.git

$

cd

 rest-cli

$

 ~/go/bin/cobra init --pkg-name github.com/mactsouk/rest-cli

$

 go mod init

$

 go mod tidy

$

 go run main.go

You do not need to execute the last command, but it makes sure that everything is fine so far. After that, we are ready to define the commands that the utility is going to support by running the following cobra
 commands:

$

 ~/go/bin/cobra add add

$

 ~/go/bin/cobra add delete

$

 ~/go/bin/cobra add list

$

 ~/go/bin/cobra add logged

$

 ~/go/bin/cobra add login

$

 ~/go/bin/cobra add

logout

$

 ~/go/bin/cobra add search

$

 ~/go/bin/cobra add getid

$

 ~/go/bin/cobra add time

$

 ~/go/bin/cobra add update

Now that we have the desired structure, we can begin implementing the commands and maybe remove some of the comments inserted by cobra
 , which is the subject of the next subsection.

Implementing the RESTful client commands

As there is no point
 in presenting all code that can be found in the GitHub repository, we are going to present the most characteristic code found in some of the commands, starting with root.go
 , which is where the next global variables are defined:

var

 SERVER string

var

 PORT string

var

 data string

var

 username string

var

 password string

These global variables hold the values
 of the command-line options of the utility and are accessible from anywhere in the utility code.

type

 User struct

 {
 ID int

 `json:"id"`

 Username string

 `json:"username"`

 Password string

 `json:"password"`

 LastLogin int64

 `json:"lastlogin"`

 Admin int

 `json:"admin"`

 Active int

 `json:"active"`

}

We define the User
 structure for sending and receiving data.

func

init

()

 {
 rootCmd.PersistentFlags().StringVarP(&username, "username"

, "u"

, "username"

, "The username"

)
 rootCmd.PersistentFlags().StringVarP(&password, "password"

, "p"

, "admin"

, "The password"

)
 rootCmd.PersistentFlags().StringVarP(&data, "data"

, "d"

, "{}"

, "JSON Record"

)
 rootCmd.PersistentFlags().StringVarP(&SERVER, "server"

, "s"

, "http://localhost"

, "RESTful server hostname"

)
 rootCmd.PersistentFlags().StringVarP(&PORT, "port"

, "P"

, ":1234"

, "Port of RESTful Server"

)
}

We present the implementation of the init()
 function that holds the definitions of the command-line options. The values of the command-line flags are automatically stored in the variables that are passed as the first argument to rootCmd.PersistentFlags().StringVarP()
 . So, the username
 flag, which has the -u
 alias, stores its value to the username
 global variable.

Next is the implementation of the list
 command as found in list.go
 :

var

 listCmd = &cobra.Command{
 Use: "list"

,
 Short: "List all available users"

,
 Long: `The list command lists all available users.`

,

This part is about the help messages
 that are displayed for the command. Although they are optional, it is good to have an accurate description of the command. We continue with the implementation:

 Run: func

(cmd *cobra.Command, args []

string

)

 {
 endpoint := "/getall"

 user := User{Username: username, Password: password}

First, we construct a User
 variable to hold the username and the password of the user issuing the command—this variable is going to be passed to the server.

 // bytes.Buffer is both a Reader and a Writer

 buf := new

(bytes.Buffer)
 err := user.ToJSON(buf)
 if

 err != nil

 {
 fmt.Println("JSON:"

, err)
 return

 }

We need to encode the user
 variable before passing it to the RESTful server, which is the purpose of the ToJSON()
 method. The implementation of the ToJSON()
 method is found in root.go
 .

 req, err := http.NewRequest(http.MethodGet,
 SERVER+PORT+endpoint, buf)
 if

 err != nil

 {
 fmt.Println("GetAll – Error in req: "

, err)
 return

 }
 req.Header.Set("Content-Type"

, "application/json"

)

Here, we create the request using the SERVER
 and PORT
 global variables followed by the endpoint, using
 the desired HTTP method (http.MethodGet
), and declare that we are going to send JSON data using Header.Set()
 .

 c := &http.Client{
 Timeout: 15

 * time.Second,
 }
 resp, err := c.Do(req)
 if

 err != nil

 {
 fmt.Println("Do:"

, err)
 return

 }

After that, we send our data to the server using Do()
 and get the server response.

 if

 resp.StatusCode != http.StatusOK {
 fmt.Println(resp)
 return

 }

If the status code of the response is not http.StatusOK
 , then the request has failed.

 var

 users = []User{}
 SliceFromJSON(&users, resp.Body)
 data, err := PrettyJSON(users)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Print(data)
 },
}

If the status code is http.StatusOK
 , then we prepare
 to read a slice of User
 variables. As these variables hold JSON records, we need to decode them using SliceFromJSON()
 , which is defined in root.go
 .

Last is the code of the add
 command, as found in add.go
 . The difference between add
 and list
 is that the add
 command needs to send two JSON records to the RESTful server: the first one holding the data of the user issuing the command, and the second holding the data for the user that is about to be added to the system. The username
 and password
 flags hold the data for the Username
 and Password
 fields of the first record, whereas the data
 command-line flag holds the data for the second record.

var

 addCmd = &cobra.Command{
 Use: "add"

,
 Short: "Add a new user"

,
 Long: `Add a new user to the system.`

,
 Run: func

(cmd *cobra.Command, args []

string

)

 {
 endpoint := "/add"

 u1 := User{Username: username, Password: password}

As before, we get the information
 about the user issuing the command and put it into a structure.

 // Convert data string to User Structure

 var

 u2 User
 err := json.Unmarshal([]byte

(data), &u2)
 if

 err != nil

 {
 fmt.Println("Unmarshal:"

, err)
 return

 }

As the data
 command-line flag holds a string value, we need to convert that string value to a User
 structure—this is the purpose of the json.Unmarshal()
 call.

 users := []User{}
 users = append

(users, u1)
 users = append

(users, u2)

Then we create a slice of User
 variables that are going to be sent to the server. The order you put the structures in that slice is important: first, the user issuing the command, and then the data of the user that is going to be created.

 buf := new

(bytes.Buffer)
 err = SliceToJSON(users, buf)
 if

 err != nil

 {
 fmt.Println("JSON:"

, err)
 return

 }

Then we encode that slice before sending it to the RESTful server through the HTTP request.

 req, err := http.NewRequest(http.MethodPost,
 SERVER+PORT+endpoint, buf)
 if

 err != nil

 {
 fmt.Println("GetAll – Error in req: "

, err)
 return

 }
 req.Header.Set("Content-Type"

, "application/json"

)
 c := &http.Client{
 Timeout: 15

 * time.Second,
 }
 resp, err := c.Do(req)
 if

 err != nil

 {
 fmt.Println("Do:"

, err)
 return

 }

We prepare the request and send it to the server. The server is responsible for decoding the provided
 data and acting accordingly, in this case adding a new user to the system. The client just needs to visit the correct endpoint using the appropriate HTTP method (http.MethodPost
) and check the returned status code.

 if

 resp.StatusCode != http.StatusOK {
 fmt.Println("Status code:"

, resp.Status)
 } else

 {
 fmt.Println("User"

, u2.Username, "added."

)
 }
 },
}

The add
 command does not return any data back to the client—what interests us is the HTTP status code because this is what determines the success or failure of the command.

Using the RESTful client

We are now going
 to use the command-line utility to interact with the RESTful server. This type of utility can be used for administering a RESTful server, creating automated tasks, and carrying out CI/CD jobs. For reasons of simplicity, the client and the server reside on the same machine, and we mostly work with the default user (admin
)—this makes the presented commands shorter. Additionally, we execute go build
 to create a binary executable to avoid using go main.go
 all the time.

First, we get the time from the server:

$

 ./rest-cli time

The current time is: Tue, 25 May 2021 08:38:04 EEST

Next, we list all users. As the output depends on the contents of the database, we print a small part of the output. Note that the list
 command requires a user with admin privileges:

$

 ./rest-cli list -u admin -p admin

[
 {
 "id": 7,
 "username": "mike",
 "password": "admin",
 "lastlogin": 1620926862,
 "admin": 1,
 "active": 0
 },

Next, we test the logged
 command with an invalid password:

$

 ./rest-cli logged -u admin -p notPass

&{400 Bad Request 400 HTTP/1.1 1 1 map[Content-Length:[0] Date:[Tue, 25 May 2021 05:42:36 GMT]] 0xc000190020 0 [] false false map[] 0xc0000fc800 <nil>}

As expected, the command fails—this output is used for debugging purposes. After making sure that the command works as expected, you might want to print a more appropriate error message.

After that, we test the add
 command:

$

 ./rest-cli add -u admin -p admin --data

'{"Username":"newUser", "Password":"aPass"}'

User newUser added.

Trying to add the same user again is going to fail:

$

 ./rest-cli add -u admin -p admin --data

'{"Username":"newUser", "Password":"aPass"}'

Status code: 400 Bad Request

Next, we are going
 to delete newUser
 —but first, we need to find the user ID of newUser
 :

$

 ./rest-cli getid -u admin -p admin --data

'{"Username":"newUser"}'

User newUser has ID: 15
$

 ./rest-cli delete -u admin -p admin --data

'{"ID":15}'

User with ID 15 deleted.

Feel free to continue testing the RESTful client and let me know if you find any bugs!

Working with multiple REST API versions

A REST API can change
 and evolve over time. There exist various approaches on how to implement REST API versioning, including the following:

	Using a custom HTTP header (version-used
) to define the used version

	Using a different subdomain for each version (v1.servername
 and v2.servername
)

	Using a combination of Accept
 and Content-Type
 headers—this method is based on content negotiation

	Using a different path for each version (/v1
 and /v2
 if the RESTful server supports two REST API versions)

	Using a query parameter to reference the desired version (..../endpoint?version=v1
 or/endpoint?v=1
)

There is no correct answer for how to implement REST API versioning. Use what seems more natural to you and your users. What is important is to be consistent and use the same approach everywhere. Personally, I prefer to use /v1/...
 for supporting the endpoints of version 1, and /v2/...
 for supporting the endpoints of version 2, and so on.

The development of RESTful
 servers and clients has come to an end here. The next section illustrates how to upload and download binary files using gorilla/mux
 in case you want to add that feature.

Uploading and downloading binary files

It is not unusual
 to need to store binary files in a RESTful server and being able to download them afterward—for example, for developing photo libraries or document libraries. This section illustrates how to implement that functionality.

For reasons of simplicity, the example is going to be included in the mactsouk/rest-api
 GitHub repository used earlier for implementing the RESTful server. For this subsection, we are going to be using the file
 directory to store the relevant code, which is saved as binary.go
 . In reality, binary.go
 is a small RESTful server that only supports the uploading and downloading of binary files through the /files/
 endpoint.

There exist
 three main ways to save the files you upload:

	On the local filesystem

	On a database management system that supports the storing of binary files

	On the cloud using a cloud provider

In our case, we are storing the files on the filesystem the server runs on. More specifically, we are storing uploaded files under /tmp/files
 as we are testing things.

The code of binary.go
 is as follows:

package

 main
import

 (
 "errors"

 "io"

 "log"

 "net/http"

 "os"

 "time"

 "github.com/gorilla/mux"

)
var

 PORT = ":1234"

var

 IMAGESPATH = "/tmp/files"

The previous two global parameters hold the TCP port the server is going to listen to and the local path
 where uploaded files
 are going to be saved, respectively. Note that on most UNIX systems, /tmp
 is automatically emptied after a system reboot.

func

uploadFile

(rw http.ResponseWriter, r *http.Request)

 {
 filename, ok := mux.Vars(r)["filename"

]
 if

 !ok {
 log.Println("filename value not set!"

)
 rw.WriteHeader(http.StatusNotFound)
 return

 }
 log.Println(filename)
 saveFile(IMAGESPATH+"/"

+filename, rw, r)
}

The uploadFile()
 function is responsible for the uploading of new files to the predefined directory. The most important part of it is the use of mux.Vars(r)
 for getting the value of the filename
 key. Note that the parameter to mux.Vars()
 is the http.Request
 variable. If the desired key exists, then the function continues and calls saveFile()
 . Otherwise, it returns without saving any files.

func

saveFile

(path

string

, rw http.ResponseWriter, r *http.Request)

 {
 log.Println("Saving to"

, path)
 err := saveToFile(path, r.Body)
 if

 err != nil

 {
 log.Println(err)
 return

 }
}

The purpose of saveFile()
 is to save the uploaded file by calling saveToFile()
 . You might ask, why not combine both saveFile()
 and saveToFile()
 and have a single function? The answer is that this way, the code of saveToFile()
 is generic and can be reused by other utilities.

func

saveToFile

(path

string

, contents io.Reader)

error

 {
 _, err := os.Stat(path)
 if

 err == nil

 {
 err = os.Remove(path)
 if

 err != nil

 {
 log.Println("Error deleting"

, path)
 return

 err
 }
 } else

 if

 !os.IsNotExist(err) {
 log.Println("Unexpected error:"

, err)
 return

 err
 }
 f, err := os.Create(path)
 if

 err != nil

 {
 log.Println(err)
 return

 err
 }
 defer

 f.Close()
 n, err := io.Copy(f, contents)
 if

 err != nil

 {
 return

 err
 }
 log.Println("Bytes written:"

, n)
 return

 nil

}

All the previous code
 is related to file I/O and is used for saving
 the contents of the contents io.Reader
 to the desired path.

func

createImageDirectory

(d

string

)

error

 {
 _, err := os.Stat(d)
 if

 os.IsNotExist(err) {
 log.Println("Creating:"

, d)
 err = os.MkdirAll(d, 0755

)
 if

 err != nil

 {
 log.Println(err)
 return

 err
 }
 } else

 if

 err != nil

 {
 log.Println(err)
 return

 err
 }
 fileInfo, _ := os.Stat(d)
 mode := fileInfo.Mode()
 if

 !mode.IsDir() {
 msg := d + " is not a directory!"

 return

 errors.New(msg)
 }

The purpose of createImageDirectory()
 is to create the directory where the files are going to be saved, if the directory
 does not already exist. If the path
 exists and is not a directory, then we have a problem, so the function returns a custom error message.

 return

 nil

}
func

main

()

 {
 err := createImageDirectory(IMAGESPATH)
 if

 err != nil

 {
 log.Println(err)
 return

 }
 mux := mux.NewRouter()
 putMux := mux.Methods(http.MethodPut).Subrouter()
 putMux.HandleFunc("/files/{filename:[a-zA-Z0-9][a-zA-Z0-9\\.]*[a-zA-Z0-9]}"

, uploadFile)

Only the PUT
 HTTP method is supported for uploading files to the server. The regular expression dictates that we want filenames that begin with a single letter or digit and end with a letter or digit. This means that filenames should not begin with .
 or ..
 to avoid visiting subdirectories and therefore compromising the security of the system. As we saw earlier, the code saves the filename value in a map using the filename
 key—this map is accessed by the uploadFile()
 function.

 getMux := mux.Methods(http.MethodGet).Subrouter()
 getMux.Handle("/files/{filename:[a-zA-Z0-9][a-zA-Z0-9\\.]*[a-zA-Z0-9]}"

, http.StripPrefix("/files/"

, http.FileServer(http.Dir(IMAGESPATH))))

The downloading part is a combination of the functionality of gorilla/mux
 and the Go handler for file servers. So, the external package offers support for regular expressions and an easy way to define
 that we want to use the GET
 HTTP method, whereas Go offers the functionality of http.FileServer()
 for serving the files. This mainly happens because we are serving
 files from the local filesystem. However, nothing prohibits us from writing our own handler function for the downloading of the binary files when we want to divert from the default behavior.

 s := http.Server{
 Addr: PORT,
 Handler: mux,
 ErrorLog: nil

,
 ReadTimeout: 5

 * time.Second,
 WriteTimeout: 5

 * time.Second,
 IdleTimeout: 10

 * time.Second,
 }
 log.Println("Listening to"

, PORT)
 err = s.ListenAndServe()
 if

 err != nil

 {
 log.Printf("Error starting server: %s\n"

, err)
 return

 }
}

The last part of the utility is about beginning the server with the desired parameters. It is really surprising that main()
 is pretty short, yet it does so many useful things.

We now need to initialize the Go module functionality for binary.go
 to run:

$

 go mod init

$

 go mod tidy

$

 go mod download

We are going to use curl(1)
 to work with binary.go
 :

$

 curl -X PUT localhost:1234/files/packt.png --data-binary @packt.png

So, first we upload a file named packt.png
 to the server and the file is saved as packt.png
 on the server side. The next command saves the same file as 1.png
 on the server:

$

 curl -X PUT localhost:1234/files/1.png --data-binary @packt.png

Downloading 1.png
 on the local machine as downloaded.png
 is as easy as running the next command:

$

 curl -X GET localhost:1234/files/1.png --output downloaded.png

If you forget to use --output
 , then curl(1)
 generates
 the next error message:

Warning: Binary output can mess up your terminal. Use "--output -" to tell
Warning: curl to output it to your terminal anyway, or consider "--output
Warning: <FILE>" to save to a file.

Last, if you try to download
 a file that cannot be found, curl(1)
 prints the 404 page not found
 message.

For the previous interactions, binary.go
 generated the following output:

2021/05/25 09:06:46 Creating: /tmp/files
2021/05/25 09:06:46 Listening to :1234
2021/05/25 09:10:21 packt.png
2021/05/25 09:10:21 Saving to /tmp/files/packt.png
2021/05/25 09:10:21 Bytes written: 733

Now that we know how to create RESTful servers, download and upload files, and define REST APIs, it is time to learn how to document REST APIs using Swagger.

Using Swagger for REST API documentation

In this section, we discuss the documentation of a REST API. We are going to use the OpenAPI Specification for documenting the REST API. The OpenAPI Specification, which is also called the Swagger
 Specification, is a specification
 for describing, producing, consuming, and visualizing RESTful web services.

Put simply, Swagger is a representation of your RESTful API. Swagger reads the appropriate code annotations
 and creates
 the OpenAPI file. To be able to document a REST API using Swagger, you basically have two choices. First, writing the OpenAPI Specification file on your own (manually), or adding annotations in the source code that help Swagger generate the OpenAPI Specification file for you (automatically).

We are going to use go-swagger
 , which brings to Go a way of working with the Swagger API. The extra content
 for creating the documentation for the REST API is put in the Go source files as Go comments. The utility reads these comments
 and generates the documentation! However, all comments should follow certain rules and comply with the supported grammar and conventions.

First, we need to install
 the go-swagger
 binary by following the instructions found at
https://goswagger.io/install.html

 . As instructions and versions change from time to time, do not forget to check for updates. The instructions from the previous web page install the swagger
 binary in /usr/local/bin
 , which is the appropriate place for external binary files. However, you are free to put it elsewhere as long as the directory you put it in is in your PATH
 . After a successful installation, running Swagger on the command line should generate the next message, which states the commands that are supported by swagger
 :

Please specify one command of: diff, expand, flatten, generate, init, mixin, serve, validate or version

You can also get extra help for each swagger
 command with the --help
 flag. For example, getting help for the generate
 command is as simple as running swagger generate --help
 :

$

 swagger generate --

help

Usage:
 swagger [OPTIONS] generate <command>
generate go code for the swagger spec file
Application Options:
 -q, --quiet silence logs
 --log-output=LOG-FILE redirect logs to file
Help Options:
 -h, --help Show this help message
Available commands:
 cli generate a command line client tool from the swagger spec
 client generate all the files for a client library
 markdown generate a markdown representation from the swagger spec
 model generate one or more models from the swagger spec
 operation generate one or more server operations from the swagger spec
 server generate all the files for a server application
 spec generate a swagger spec document from a go application
 support generate supporting files like the main function and the api builder

Next, we learn how to document
 the REST API
 by adding Swagger-related metadata to a source file.

Documenting the REST API

This section teaches
 you how to document an existing REST API. For reasons of simplicity, we are going to use a relatively short file that contains handler functions. So, we create a new folder named swagger
 in the
https://github.com/mactsouk/rest-api

 repository for storing the Go file with the extra Swagger information—in our case, we are going to create a new copy of handlers.go
 inside the swagger
 directory and modify it. Have in mind that as far as Go is concerned, the new version is still a valid Go package that can be compiled and used without any issues—it just contains extra Swagger-related information in Go comments.

There is no point in displaying the entire code of the new version of handlers.go
 , which is contained in a Go package named handlers
 —we just present the most important parts of it, beginning with the preamble of the source file:

// Package handlers for the RESTful Server

//

// Documentation for REST API

//

// Schemes: http

// BasePath: /

// Version: 1.0.7

//

// Consumes:

// - application/json

//

// Produces:

// - application/json

//

// swagger:meta

We declare that we are communicating
 with data in JSON format (Consumes
 and Produces
), define the version, and put in some comments that describe the general purpose of the package. The swagger:meta
 tag is what informs the swagger
 binary that this is a source file with metadata about an API. Just make sure that you do not forget that particular tag. Then, we present the documentation for the User
 structure, which is essential for the operation of the service and is going to be used indirectly
 by extra structures that we need to define for the purposes of documentation generation.

// User defines the structure for a Full User Record

//

// swagger:model

type User struct {
 // The ID for the user

 // in: body

 //

 // required: false

 // min: 1

 ID int `json:"id"

`

The user ID is provided by the database, which makes it a not-required field, and has a minimum value of 1.

 // The Username of the user

 // in: body

 //

 // required: true

 Username string `json:"username"

`

The Username
 field is required.

 // The Password of the user

 //

 // required: true

 Password string `json:"password"

`

Similarly, the Password
 field is required.

 // The Last Login time of the User

 //

 // required: true

 // min: 0

 LastLogin int64 `json:"lastlogin"

`
 // Is the User Admin or not

 //

 // required: true

 Admin int `json:"admin"

`
 // Is the User Logged In or Not

 //

 // required: true

 Active int `json:"active"

`
}

At the end of the day, you need to add comments for all the fields of the structure.

Next, we document the /delete
 endpoint along with its handler function:

// swagger:route DELETE /delete/{id} DeleteUser deleteID

// Delete a user given their ID.

// The command should be issued by an admin user

In this first part, we say
 that this endpoint works with the DELETE
 HTTP method, uses the /delete
 path, requires a parameter named id
 , and is going to be displayed as DeleteUser
 on screen. The last part (deleteID
) allows us to define the details of the id
 parameter, which is going to be presented in a while.

//

// responses:

// 200: noContent

// 404: ErrorMessage

In the preceding code, we define the two possible responses of the endpoint. Both are going to be implemented later.

// DeleteHandler is for deleting users based on user ID

func DeleteHandler(rw http.ResponseWriter, r *http.Request) {
}

The handler implementation for /delete
 is omitted for brevity.

After that, we are going to document the /logged
 endpoint along with its handler function:

// swagger:route GET /logged logged getUserInfo

// Returns a list of logged in users

//

// responses:

// 200: UsersResponse

// 400: BadRequest

This time, the first response
 of the handler function is called UsersResponse
 and is going to be presented in a while. If you recall, this handler returns a slice of User
 elements.

// LoggedUsersHandler returns the list of all logged in users

func LoggedUsersHandler(rw http.ResponseWriter, r *http.Request) {
}

Lastly, we need to define Go structures to represent the various inputs and results of an interaction—this is mainly needed for Swagger to work (you usually put these definitions in a separate file that is usually called docs.go
). The two most important such Go structures are the following:

// swagger:parameters deleteID

type idParamWrapper struct {
 // The user id to be deleted

 // in: path

 // required: true

 ID int `json:"id"

`
}

This one is for the /delete
 endpoint and defines the ID
 variable, which is given in the path, hence the in: path
 line. Notice the use of swagger:parameters
 followed by deleteID
 , which is what associates that particular structure with the documentation of the /delete
 handler function.

// A User

// swagger:parameters getUserInfo loggedInfo

type UserInputWrapper struct {
 // A list of users

 // in: body

 Body User
}

This time, the structure is associated with two endpoints, hence the use of both getUserInfo
 and loggedInfo
 . Each endpoint should be associated with a unique name.

These helper structures
 are defined once and are the (small) price you have to pay for the automatic generation of the documentation. The next subsection shows how to create the OpenAPI file given the modified version of handlers.go
 .

Generating the documentation file

Now that we have the Go file with the Swagger
 metadata, we are ready to generate the OpenAPI file:

$

 swagger generate spec --scan-models -o ./swagger.yaml

What the previous command does is tell swagger
 to generate a Swagger spec document from a Go application that resides in the directory where we run swagger
 . The --scan-models
 option tells swagger
 to include models that were annotated with swagger:model
 . The result of the previous command is a file named swagger.yaml
 , as specified by the -o
 option. Part of the contents of that file is as follows—there is no point in trying to understand everything in the presented output:

 /delete/{id}:

 delete:

 description:

 |-

 Delete

 a

 user

 given

 their

 ID

 The

 command

 should

 be

 issued

 by

 an

 admin

 user

 operationId:

 deleteID

 parameters:

 -

 description:

 The

 user

 id

 to

 be

 deleted

 format:

 int64

 in:

 path

 name:

 id

 required:

 true

 type:

 integer

 x-go-name:

 ID

 responses:

 "200":

 $ref:

 '#/responses/noContent'

 "404":

 $ref:

 '#/responses/ErrorMessage'

 tags:

 -

 DeleteUser

The previous part is related to the /delete
 endpoint. The output says that the /delete
 endpoint requires
 a single parameter, which is the user ID of the user that is about to get deleted. The server returns HTTP code 200
 on success and 404
 on failure.

Feel free to have a look at the full version of swagger.yaml
 . However, we are not done yet. We need to be able to serve that generated file using a web server. The process is illustrated in the next subsection.

Serving the documentation file

Before we begin the discussion
 about serving the Swagger file, we first need to discuss the use of middleware functions
 using a simple yet fully functional example. The reason for doing so is simple: the swagger
 tool generates a YAML file that needs
 to be properly rendered before being presented on screen. So, we use ReDoc (
https://github.com/Redocly/redoc

) to do that. However, we need the middleware
 package for hosting ReDoc sites—although the job is done transparently by the middleware
 package, it is good to know what middleware functions are and what they do. Middleware functions are functions with a short amount of code that get a request, do something with it, and pass it to another middleware or to the last handler function. gorilla/mux
 allows you to attach one or more middleware functions to a router using Router.Use()
 . If a match is found, the relevant middleware functions are executed in the order they were added to the router (or subrouter).

The important code in middleware.go
 is the following:

 mux := mux.NewRouter()
 mux.Use(middleWare)
 putMux := mux.Methods(http.MethodPut).Subrouter()
 putMux.HandleFunc("/time"

, timeHandler)
 getMux := mux.Methods(http.MethodGet).Subrouter()
 getMux.HandleFunc("/add"

, addHandler)
 getMux.Use(anotherMiddleWare)

As middleWare()
 was added to the main router (mux.Use(middleWare)
), it is always executed before
 any subrouter middleware function. Additionally, middleWare()
 is executed with all requests, whereas anotherMiddleWare()
 is executed for the getMux
 subrouter only.

Now that you have a sense of middleware functions, it is time to continue with the serving of swagger.yaml
 . As stated before, serving swagger.yaml
 requires the addition of a handler that we are going
 to find in an external package, which saves us from having to write everything from scratch. As we try to keep things simple, we are going to serve swagger.yaml
 on its own in ./swagger/serve/swagger.go
 using the /docs
 path. The code that follows illustrates the technique by presenting the implementation of the main()
 function:

func

main

()

 {
 mux := mux.NewRouter()
 getMux := mux.Methods(http.MethodGet).Subrouter()
 opts := middleware.RedocOpts{SpecURL: "/swagger.yaml"

}

This is where we define the options of a middleware function that is going to be used when serving /swagger.yaml
 . As discussed earlier, this middleware function renders the YAML code.

 sh := middleware.Redoc(opts, nil

)

This is how we define a handler function that is based on the middleware function. This middleware function does not require the use of the Use()
 method.

 getMux.Handle("/docs"

, sh)

And now, we must associate the previous handler with /docs
 and we are done!

 getMux.Handle("/swagger.yaml"

, http.FileServer(http.Dir("./"

)))
 s := http.Server{
 . . .
 }
 log.Println("Listening to"

, PORT)
 err := s.ListenAndServe()
 if

 err != nil

 {
 log.Printf("Error starting server: %s\n"

, err)
 return

 }
}

The rest of the code is for defining
 the parameters of the server and for starting the server.

The figure that follows shows the rendered swagger.yaml
 as displayed in a Firefox browser.

[image: Graphical user interface, application Description automatically generated]

Figure 10.1: Creating documentation for the RESTful API

Figure 10.1
 shows information about the /getid
 endpoint, the required payload, and the expected responses.

Unfortunately, further discussion about Swagger and go-swagger
 is beyond the scope of this book—as usual, you need to experiment with the tools to create the desired results. The point here is that having a RESTful service without proper documentation is not going to be very pleasing for potential developers.

Exercises

	Include the functionality of binary.go
 in your own RESTful server

	Change the restdb
 package to support SQLite instead of PostgreSQL

	Change the restdb
 package to support MySQL instead of PostgreSQL

	Put the handler functions from handlers.go
 into separate files

Summary

Go is widely used for developing RESTful clients and servers and this chapter illustrated how to program professional RESTful clients and servers in Go, and how to document a REST API using Swagger. Remember that defining a proper REST API and implementing a server and clients for it is a process that takes time and requires small adjustments and modifications.

The next chapter is about code testing, benchmarking, profiling, cross-compilation, and creating example functions. Among other things, we are going to write code for testing the HTTP handlers developed in this chapter as well as creating random input for testing purposes.

Additional resources

	You can find more about gorilla/mux
 at
https://github.com/gorilla/mux

 and at
https://www.gorillatoolkit.org/pkg/mux

	The go-querystring
 library is for encoding Go structures into URL query parameters:
https://github.com/google/go-querystring

	You can find more about Swagger at
https://swagger.io/

	Go Swagger 2.0:
https://goswagger.io/

	The OpenAPI Specification:
https://www.openapis.org/

	If you want to validate JSON input, have a look at the Go validator
 package at
https://github.com/go-playground/validator

	You might find the jq(1)
 command-line utility pretty handy when working with JSON records:
https://stedolan.github.io/jq/

 and
https://jqplay.org/

	You can view OpenAPI files online at
https://editor.swagger.io/

11

Code Testing and Profiling

The topics of this chapter are both practical and important, especially if you are interested in improving the performance of your Go programs and discovering bugs. This chapter primarily addresses code optimization
 , code testing
 , and code profiling
 .

Code optimization is the process where one or more developers try to make certain parts of a program run faster, be more efficient, or use fewer resources. Put simply, code optimization is about eliminating the bottlenecks of a program that matter. Code testing is about making sure that your code does what you want it to do. In this chapter, we are experiencing the Go way of code testing. The best time to write testing code is during development, as this can help to reveal bugs in the code as early as possible. Code profiling relates to measuring certain aspects of a program to get a detailed understanding of the way the code works. The results of code profiling may help you to decide which parts of your code need to change.

Have in mind that when writing code, we should focus on its correctness
 as well as other desirable properties such as readability, simplicity, and maintainability, not its performance
 . Once we are sure that the code is correct, then we might need to focus on its performance. A good trick on performance is to execute the code on machines that are going to be a bit slower than the ones that are going to be used in production.

This chapter covers:

	Optimizing code

	Benchmarking code

	Profiling code

	The go tool trace
 utility

	Tracing a web server

	Testing Go code

	Cross-compilation

	Using go:generate

	Creating example functions

Optimizing code

Code optimization is both an art and a
 science. This means that there is no deterministic way to help you optimize your code and that you should use your brain and try many things if you want to make your code faster. However, the general principle regarding code optimization is first make it correct, then make it fast
 . Always remember what Donald Knuth said about optimization:

"The real problem is that programmers have spent far too much time worrying about efficiency in the wrong places and at the wrong times; premature optimization is the root of all evil (or at least most of it) in programming."

Also, remember what the late Joe Armstrong, one of the developers of Erlang, said about optimization:

"Make it work, then make it beautiful, then if you really, really have to, make it fast. 90 percent of the time, if you make it beautiful, it will already be fast. So really, just make it beautiful!"

If you are really into code optimization, you might want to read Compilers: Principles, Techniques, and Tools
 by Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (Pearson Education Limited, 2014), which focuses on compiler construction. Additionally, all volumes in The Art of Computer Programming
 series by Donald Knuth (Addison-Wesley Professional, 1998) are great resources for all aspects of programming if you have the time to read them.

The section that follows is about benchmarking Go code, which helps you determine what is faster and what is slower in your code—this makes it a perfect place to begin.

Benchmarking code

Benchmarking
 measures the performance of a function or program, allowing you to compare implementations and to understand the performance impact of code changes. Using that information, you can easily reveal the part of the code that needs to be rewritten to improve its performance. It goes without saying that you should not benchmark Go code on a busy machine that is currently being used for other, more important, purposes unless you have a very good reason to do so! Otherwise, you might interfere with the benchmarking process and get inaccurate results, but most importantly, you might generate performance issues on the machine.

Most of the time, the load of the operating system plays a key role in the performance of your code. Let me tell you a story here: a Java utility I developed for a project performs lots of computations and finishes in 6,242 seconds when running on its own. It took about a day for four instances of the same Java command-line utility to run on the same Linux machine! If you think about it, running them one after the other would have been faster than running them at the same time!

Go follows certain
 conventions regarding benchmarking. The most important convention is that the name of a benchmark function must begin with Benchmark
 . After the Benchmark
 word, we can put an underscore or an uppercase letter. Therefore, both BenchmarkFunctionName()
 and Benchmark_functionName()
 are valid benchmark functions whereas Benchmarkfunctionname()
 is not. The same rule applies to testing functions that begin with Test
 . Although we are allowed to put the testing and benchmarking code on the same file with the other code, it should be avoided. By convention such functions are put in files that end with _test.go
 . Once the benchmarking or the testing code is correct, the go test
 subcommand does all the dirty work for you, which includes scanning all *_test.go
 files for special functions, generating a proper temporary main
 package, calling these special functions, getting the results, and generating the final output.

Starting from Go 1.17, we can shuffle the execution order of both tests and benchmarks
 with the help of the shuffle
 parameter (go test -shuffle=on
). The shuffle
 parameter accepts a value, which is the seed for the random number generator, and can be useful when you want to replay an execution order. Its default value is off
 . The logic behind that capability is that sometimes the order in which tests and benchmarks are executed affects their results.

Rewriting the main() function for better testing

There exists a clever
 way that you can rewrite each main()
 function in order to make testing and benchmarking a lot easier. The main()
 function has a restriction, which is that you cannot call it from test code—this technique presents a solution to that problem using the code found in main.go
 . The import
 block is omitted to save space.

func

main

()

 {
 err := run(os.Args, os.Stdout)
 if

 err != nil

 {
 fmt.Printf("%s\n"

, err)
 return

 }
}

As we cannot have an executable program without a main()
 function, we have to create a minimalistic one. What main()
 does is to call run()
 , which is our own customized version of main()
 , send os.Args
 to it, and collect the return value of run()
 .

func

run

(args []

string

, stdout io.Writer)

error

 {
 if

 len

(args) == 1

 {
 return

 errors.New("No input!"

)
 }
 // Continue with the implementation of run()

 // as you would have with main()

 return

 nil

}

As discussed before, the run()
 function, or
 any other function that is called by main()
 in the same way, replaces main()
 with the additional benefit of being able to be called by test functions. Put simply, the run()
 function contains the code that would have been located in main()
 —the only difference is that run()
 returns an error variable, which is not possible with main()
 , which can only return exit codes to the operating system. You might say that this creates a slightly bigger stack because of the extra function call but the benefits are more important than this additional memory usage. Although you can omit the second parameter (stdout io.Writer
), which is used for redirecting the generated output, the first one is important because it allows you to pass the command-line arguments to run()
 .

Running main.go
 produces the next output:

$

 go run main.go

No input!
$

 go run main.go some input

There is nothing special in the way main.go
 operates. The good thing is that you can call run()
 from anywhere you want, including the code you write for testing, and pass the desired parameters to run()
 ! It is good to have that technique in mind because it might save you.

The subject of the next subsection is
 benchmarking buffered writing.

Benchmarking buffered writing and reading

In this section, we
 are going to test whether the size of the buffer plays a key role in the performance of write operations. This also gives us the opportunity to
 discuss table tests
 as well as the use of the testdata
 folder, which is reserved by Go for storing files that are going to be used during benchmarking—both table tests and the testdata
 folder can also be used in testing functions.

Benchmark functions use testing.B
 variables whereas testing functions use testing.T
 variables. It is easy to remember.

The code of table_test.go
 is the following:

package

 table
import

 (
 "fmt"

 "os"

 "path"

 "strconv"

 "testing"

)
var

 ERR error
var

 countChars int

func

benchmarkCreate

(b *testing.B, buffer, filesize

int

)

 {
 filename := path.Join(os.TempDir(), strconv.Itoa(buffer))
 filename = filename + "-"

 + strconv.Itoa(filesize)
 var

 err error
 for

 i := 0

; i < b.N; i++ {
 err = Create(filename, buffer, filesize)
 }
 ERR = err

And now some important information
 regarding benchmarking: each benchmark function is executed for at least
 one second by default—this duration also includes the execution time of the functions that are called by a benchmark function. If the benchmark function returns in a time that is less than one second, the value of b.N
 is increased, and the function
 runs again as many times in total as the value of b.N
 . The first time the value of b.N
 is 1, then it becomes 2, then 5, then 10, then 20, then 50, and so on. This happens because the faster the function, the more times Go needs to run it to get accurate results
 .

The reason for storing the return value of Create()
 in a variable named err
 and using another global variable named ERR
 afterward is tricky. We want to prevent the compiler from doing any optimizations that might exclude the function that we want to measure from being executed because its results are never used.

 err = os.Remove(filename)
 if

 err != nil

 {
 fmt.Println(err)
 }
 ERR = err
}

Neither the signature nor the name of benchmarkCreate()
 makes it a benchmark function. This is a helper function that allows you to call Create()
 , which creates a new file on disk and its implementation can be found in table.go
 , with the proper parameters. Its implementation is valid and it can be used by benchmark functions.

func

BenchmarkBuffer4Create

(b *testing.B)

 {
 benchmarkCreate(b, 4

, 1000000

)
}
func

BenchmarkBuffer8Create

(b *testing.B)

 {
 benchmarkCreate(b, 8

, 1000000

)
}
func

BenchmarkBuffer16Create

(b *testing.B)

 {
 benchmarkCreate(b, 16

, 1000000

)
}

These are three correctly defined benchmark functions that all call benchmarkCreate()
 . Benchmark functions require a single *testing.B
 variable and return no values. In this case, the numbers at the end of the function name indicate the size of the buffer.

func

BenchmarkRead

(b *testing.B)

 {
 buffers := []int

{1

, 16

, 96

}
 files := []string

{"10.txt"

, "1000.txt"

, "5k.txt"

}

This is the code that defines the
 array structures that are going to be used in the table tests. This saves us from having to implement 3x3 = 9
 separate benchmark functions.

 for

 _, filename := range

 files {
 for

 _, bufSize := range

 buffers {
 name := fmt.Sprintf("%s-%d"

, filename, bufSize)
 b.Run(name, func

(b *testing.B)

 {
 for

 i := 0

; i < b.N; i++ {
 t := CountChars("./testdata/"

+filename, bufSize)
 countChars = t
 }
 })
 }
 }
}

The b.Run()
 method, which allows you to run one or more sub-benchmarks
 within a benchmark function, accepts two parameters. First, the name of the sub-benchmark, which is displayed onscreen, and second, the function that implements the sub-benchmark. This is the proper way to run multiple benchmarks with the use of table tests. Just remember to define a proper name for each sub-benchmark because this is going to be displayed onscreen.

Running the benchmarks generates the next output:

$

 go

test

 -bench=. *.go

There are two important points here: first, the value of the -bench
 parameter specifies the benchmark functions that are going to be executed. The .
 value used is a regular expression that matches all valid benchmark functions. The second point is that if you omit the -bench
 parameter, no benchmark functions are going to be executed.

goos: darwin
goarch: amd64
cpu: Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz
BenchmarkBuffer4Create-8 78212 12862 ns/op
BenchmarkBuffer8Create-8 145448 7929 ns/op
BenchmarkBuffer16Create-8 222421 5074 ns/op

The previous three lines are the results from the BenchmarkBuffer4Create()
 , BenchmarkBuffer8Create()
 , and BenchmarkBuffer16Create()
 benchmark functions respectively, and indicate their
 performance.

BenchmarkRead/10.txt-1-8 78852 17268 ns/op
BenchmarkRead/10.txt-16-8 84225 14161 ns/op
BenchmarkRead/10.txt-96-8 92056 14966 ns/op
BenchmarkRead/1000.txt-1-8 2821 395419 ns/op
BenchmarkRead/1000.txt-16-8 21147 56148 ns/op
BenchmarkRead/1000.txt-96-8 58035 20362 ns/op
BenchmarkRead/5k.txt-1-8 600 1901952 ns/op
BenchmarkRead/5k.txt-16-8 4893 239557 ns/op
BenchmarkRead/5k.txt-96-8 19892 57309 ns/op

The previous results are from the table tests with the 9 sub-benchmarks.

PASS
ok command-line-arguments 44.756s

So, what does this output tell us? First, the -8
 at the end of each benchmark function signifies the number of goroutines used for its execution, which is essentially the value of the GOMAXPROCS
 environment variable. Similarly, you can see the values of GOOS
 and GOARCH
 , which show the operating system and the architecture of the machine. The second column in the output displays the number of times that the relevant function was executed. Faster functions are executed more times than slower functions. As an example, BenchmarkBuffer4Create()
 was executed 78212
 times, while BenchmarkBuffer16Create()
 was executed 222421
 times because it is faster! The third column in the output shows the average time of each run and is measured in nanoseconds per benchmark function execution (ns/op
). The bigger the value of the third column, the slower the benchmark function. A large value in the third column is an indication that a function might need to be optimized.

Should you wish to include memory allocation statistics in the output, you can include -benchmem
 in the command:

BenchmarkBuffer4Create-8 91651 11580 ns/op 304 B/op 5 allocs/op
BenchmarkBuffer8Create-8 170814 6202 ns/op 304 B/op 5 allocs/op

The generated output is like the one without the -benchmem
 command-line parameter but includes two additional columns. The fourth column shows the amount of memory that was allocated on average
 in each execution of the benchmark function. The fifth column shows the number of allocations used to allocate the memory value of the fourth column.

So far, we have learned how to create benchmark functions to test the performance of our own functions to better understand potential bottlenecks that might need to be optimized. You might ask, how often do we need to create benchmark functions?
 The answer is simple: when something runs slower than needed and/or when you want to choose between two or more implementations.

The next subsection shows how to compare benchmark results.

The benchstat utility

Now imagine that you have benchmarking
 data, and you want to compare it with the results that were produced in another computer or with a different configuration. The benchstat
 utility can help you here. The utility can be found in the
golang.org/x/perf/cmd/benchstat

 package and can be downloaded using go get -u golang.org/x/perf/cmd/benchstat
 . Go puts all binary files in ~/go/bin
 and benchstat
 is no exception.

The benchstat
 utility replaces
 the benchcmp
 utility that can be found at
https://pkg.go.dev/golang.org/x/tools/cmd/benchcmp

 .

So, imagine that we have two benchmark results for table_test.go
 saved in r1.txt
 and r2.txt
 —you should remove all lines
 from the go test
 output that do not contain benchmarking results, which leaves all lines that begin with Benchmark
 . You can use benchstat
 as follows:

$

 ~/go/bin/benchstat r1.txt r2.txt

name old time/op new time/op delta
Buffer4Create-8 10.5µs ± 0% 0.8µs ± 0% ~ (p=1.000 n=1+1)
Buffer8Create-8 6.88µs ± 0% 0.79µs ± 0% ~ (p=1.000 n=1+1)
Buffer16Create-8 5.01µs ± 0% 0.78µs ± 0% ~ (p=1.000 n=1+1)
Read/10.txt-1-8 15.0µs ± 0% 4.0µs ± 0% ~ (p=1.000 n=1+1)
Read/10.txt-16-8 12.2µs ± 0% 2.6µs ± 0% ~ (p=1.000 n=1+1)
Read/10.txt-96-8 11.9µs ± 0% 2.6µs ± 0% ~ (p=1.000 n=1+1)
Read/1000.txt-1-8 381µs ± 0% 174µs ± 0% ~ (p=1.000 n=1+1)
Read/1000.txt-16-8 54.0µs ± 0% 22.6µs ± 0% ~ (p=1.000 n=1+1)
Read/1000.txt-96-8 19.1µs ± 0% 6.2µs ± 0% ~ (p=1.000 n=1+1)
Read/5k.txt-1-8 1.81ms ± 0% 0.89ms ± 0% ~ (p=1.000 n=1+1)
Read/5k.txt-16-8 222µs ± 0% 108µs ± 0% ~ (p=1.000 n=1+1)
Read/5k.txt-96-8 51.5µs ± 0% 21.5µs ± 0% ~ (p=1.000 n=1+1)

If the value of the delta
 column is ~
 , as it happens to be here, it means that there was no significant change in the results. The previous output shows no differences between the two results. Discussing more about benchstat
 is beyond the scope of the book. Type benchstat -h
 to learn
 more about the supported parameters.

The next subsection touches on a sensitive subject, which is incorrectly defined benchmark functions
 .

Wrongly defined benchmark functions

You should be very careful when
 defining benchmark functions because you might define them wrongly. Look at the Go code of the following benchmark function:

func

BenchmarkFiboI

(b *testing.B)

 {
 for

 i := 0

; i < b.N; i++ {
 _ = fibo1(i)
 }
}

The BenchmarkFibo()
 function has a valid name and the correct signature. The bad news is that this benchmark function is logically wrong
 and is not going to produce any results. The reason for this is that as the b.N
 value grows in the way described earlier; the runtime of the benchmark function also increases because of the for
 loop. This fact prevents BenchmarkFiboI()
 from converging to a stable number, which prevents the function from completing and therefore returning any results. For analogous reasons, the next benchmark function is also wrongly implemented:

func

BenchmarkfiboII

(b *testing.B)

 {
 for

 i := 0

; i < b.N; i++ {
 _ = fibo1(b.N)
 }
}

On the other hand, there is nothing wrong with the implementation of the following two benchmark functions:

func

BenchmarkFiboIV

(b *testing.B)

 {
 for

 i := 0

; i < b.N; i++ {
 _ = fibo1(10

)
 }
}
func

BenchmarkFiboIII

(b *testing.B)

 {
 _ = fibo1(b.N)
}

Correct benchmark functions are a tool for identifying bottlenecks on your code that you should put in your
 own projects, especially when working with file I/O or CPU-intensive operations—as I am writing this, I have been waiting 3 days
 for a Python program to finish its operation to test the performance of the brute force method of a mathematical algorithm. Enough with benchmarking. The next section discusses code profiling.

Profiling code

Profiling is a process of dynamic
 program analysis that measures various values related to program execution to give you a better understanding of the program behavior. In this section, we are going to learn how to profile Go code to understand it better and improve its performance. Sometimes, code profiling can even reveal bugs in the code such an endless loop or functions that never return.

The runtime/pprof
 standard Go package is used for profiling all kinds of applications apart from HTTP servers. The high-level net/http/pprof
 package should be used when you want to profile a web application written in Go. You can see the help page of the pprof
 tool by executing go tool pprof -help
 .

This next section is going to illustrate how to profile a command-line application, and the following subsection shows the profiling of an HTTP server.

Profiling a command-line application

The code of the application is
 saved as profileCla.go
 and collects CPU and memory profiling data. What is interesting is the implementation of main()
 because this is where the collection of the profiling data takes place:

func

main

()

 {
 cpuFilename := path.Join(os.TempDir(), "cpuProfileCla.out"

)
 cpuFile, err := os.Create(cpuFilename)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 pprof.StartCPUProfile(cpuFile)
 defer

 pprof.StopCPUProfile()

The previous code is about collecting CPU profiling data. pprof.StartCPUProfile()
 starts the collecting, which is stopped with the pprof.StopCPUProfile()
 call. All data is saved into a file named cpuProfileCla.out
 under the os.TempDir()
 directory—this depends on the OS used and makes the code portable
 . The use of defer
 means that pprof.StopCPUProfile()
 is going to get called just before main()
 exits.

 total := 0

 for

 i := 2

; i < 100000

; i++ {
 n := N1(i)
 if

 n {
 total = total + 1

 }
 }
 fmt.Println("Total primes:"

, total)
 total = 0

 for

 i := 2

; i < 100000

; i++ {
 n := N2(i)
 if

 n {
 total = total + 1

 }
 }
 fmt.Println("Total primes:"

, total)
 for

 i := 1

; i < 90

; i++ {
 n := fibo1(i)
 fmt.Print(n, " "

)
 }
 fmt.Println()
 for

 i := 1

; i < 90

; i++ {
 n := fibo2(i)
 fmt.Print(n, " "

)
 }
 fmt.Println()
 runtime.GC()

All the previous code performs
 lots of CPU-intensive calculations for the CPU profiler to have data to collect—this is where your actual code usually goes.

 // Memory profiling!

 memoryFilename := path.Join(os.TempDir(), "memoryProfileCla.out"

)
 memory, err := os.Create(memoryFilename)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 memory.Close()

We create a second file for collecting memory-related profiling data.

 for

 i := 0

; i < 10

; i++ {
 s := make

([]byte

, 50000000

)
 if

 s == nil

 {
 fmt.Println("Operation failed!"

)
 }
 time.Sleep(50

 * time.Millisecond)
 }
 err = pprof.WriteHeapProfile(memory)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
}

The pprof.WriteHeapProfile()
 function writes the memory data into the specified file. Once again, we allocate lots of memory for the memory profiler to have data to collect.

Running profileCla.go
 is going to create two files in the folder returned by os.TempDir()
 —usually, we save them in a different folder. Feel free to change the code of profileCla.go
 and put the
 profiling files at a different place. So, what do we do next? We should use go tool pprof
 to process these files:

$

 go tool pprof /path/ToTemporary/Directory/cpuProfileCla.out

(pprof) top
Showing nodes accounting for 5.65s, 98.78% of 5.72s total
Dropped 47 nodes (cum <= 0.03s)
Showing top 10 nodes out of 18
 flat flat% sum% cum cum%
 3.27s 57.17% 57.17% 3.65s 63.81% main.N2 (inline)

The top
 command returns a summary of the top 10 entries.

(pprof) top10 -cum
Showing nodes accounting for 5560ms, 97.20% of 5720ms total
Dropped 47 nodes (cum <= 28.60ms)
Showing top 10 nodes out of 18
 flat flat% sum% cum cum%
 80ms 1.40% 1.40% 5660ms 98.95% main.main
 0 0% 1.40% 5660ms 98.95% runtime.main

The top10 –cum
 command returns the cumulative time for each function.

(pprof) list main.N1
list main.N1
Total: 5.72s
ROUTINE ======================== main.N1 in /Users/mtsouk/ch11/profileCla.go
 1.72s 1.83s (flat, cum) 31.99% of Total
 . . 35:func N1(n int) bool {
 . . 36: k := math.Floor(float64(n/2 + 1))
 50ms 60ms 37: for i := 2; i < int(k); i++ {
 1.67s 1.77s 38: if (n % i) == 0 {

Last, the list
 command shows information about a given function. The previous output shows that the if (n % i) == 0
 statement is responsible for most of the time it takes N1()
 to run.

We are not showing the full output of these commands for brevity. Try the profile commands on your own in your own code to see their full output. Visit
https://blog.golang.org/pprof

 from the Go blog to learn more about profiling.

You can also create PDF output of the profiling data from the shell of the Go profiler using the pdf
 command. Personally, most of the time, I begin with this command because it gives me a rich overview of the collected data.

Now, let us discuss how to
 profile an HTTP server, which is the subject of the next subsection.

Profiling an HTTP server

As discussed, the net/http/pprof
 package
 should be used when you want to collect profiling data for a Go application that runs an HTTP server. To that end, importing net/http/pprof
 installs various handlers
 under the /debug/pprof/
 path. You are going to see more on this in a short while. For now, it is enough to remember that the net/http/pprof
 package should be used to profile web applications, whereas runtime/pprof
 should be used to profile all other kinds of applications.

The technique is illustrated in profileHTTP.go
 , which comes with the following code:

package

 main
import

 (
 "fmt"

 "net/http"

 "net/http/pprof"

 "os"

 "time"

)

As discussed earlier, you should import the net/http/pprof
 package.

func

myHandler

(w http.ResponseWriter, r *http.Request)

 {
 fmt.Fprintf(w, "Serving: %s\n"

, r.URL.Path)
 fmt.Printf("Served: %s\n"

, r.Host)
}
func

timeHandler

(w http.ResponseWriter, r *http.Request)

 {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"

 fmt.Fprintf(w, "%s %s"

, Body, t)
 fmt.Fprintf(w, "Serving: %s\n"

, r.URL.Path)
 fmt.Printf("Served time for: %s\n"

, r.Host)
}

The previous two
 functions implement two handlers that are going to be used in our naïve HTTP server. myHandler()
 is the default handler function whereas timeHandler()
 returns the current time and date on the server.

func

main

()

 {
 PORT := ":8001"

 arguments := os.Args
 if

 len

(arguments) == 1

 {
 fmt.Println("Using default port number: "

, PORT)
 } else

 {
 PORT = ":"

 + arguments[1

]
 fmt.Println("Using port number: "

, PORT)
 }
 r := http.NewServeMux()
 r.HandleFunc("/time"

, timeHandler)
 r.HandleFunc("/"

, myHandler)

Up to this point, there is nothing special as we just register the handler functions.

 r.HandleFunc("/debug/pprof/"

, pprof.Index)
 r.HandleFunc("/debug/pprof/cmdline"

, pprof.Cmdline)
 r.HandleFunc("/debug/pprof/profile"

, pprof.Profile)
 r.HandleFunc("/debug/pprof/symbol"

, pprof.Symbol)
 r.HandleFunc("/debug/pprof/trace"

, pprof.Trace)

All previous statements install the handlers for the HTTP profiler—you can access them using the hostname and port number of the web server. You do not have to use all handlers.

 err := http.ListenAndServe(PORT, r)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
}

Last, you start the HTTP server as usual.

What is next? First, you run the HTTP server (go run profileHTTP.go
). After that, you run the next command to
 collect profiling data while interacting with the HTTP server
 :

$

 go tool pprof http://localhost:8001/debug/pprof/profile

Fetching profile over HTTP from http://localhost:8001/debug/pprof/profile
Saved profile in /Users/mtsouk/pprof/pprof.samples.cpu.004.pb.gz
Type: cpu
Time: Jun 18, 2021 at 12:30pm (EEST)
Duration: 30s, Total samples = 10ms (0.033%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) %

The previous output shows the initial screen of the HTTP profiler—the available commands are the same as when profiling a command-line application.

You can either exit the shell and analyze your data later using go tool pprof
 or continue giving profiler commands. This is the general idea behind profiling HTTP servers in Go.

The next subsection discusses the web interface of the Go profiler.

The web interface of the Go profiler

The good news is that starting with
 Go version 1.10, go tool pprof
 comes with a web user interface that you can start as go tool pprof -http=[host]:[port] aProfile.out
 —do not forget to put the correct values to -http
 .

A part of the web interface of the profiler is seen in the next figure, which shows how program execution time was spent.

[image: Diagram Description automatically generated]

Figure 11.1: The web interface of the Go profiler

Feel free to browse the
 web interface and see the various options that are offered. Unfortunately, talking more about profiling is beyond the scope of this chapter. As always, if you are really interested in code profiling, experiment with it as much as possible.

The next section is about code tracing.

The go tool trace utility

Code tracing is a process that
 allows you to learn information such as the operation of the garbage collector, the lifetime of goroutines, the activity of each logical processor, and the number of operating system threads used. The go tool trace
 utility is a tool for viewing the data stored in trace files, which can be generated in any one of the following three ways:

	With the runtime/trace
 package

	With the net/http/pprof
 package

	With the go test -trace
 command

This section illustrates the use of the first technique using the code of traceCLA.go
 :

package

 main
import

 (
 "fmt"

 "os"

 "path"

 "runtime/trace"

 "time"

)

The runtime/trace
 package is required for collecting all kinds of tracing data—there is no point in selecting specific tracing data as all tracing data is interconnected.

func

main

()

 {
 filename := path.Join(os.TempDir(), "traceCLA.out"

)
 f, err := os.Create(filename)
 if

 err != nil

 {
 panic

(err)
 }
 defer

 f.Close()

As it happened with profiling, we
 need to create a file to store tracing data. In this case the file is called traceCLA.out
 and is stored inside the temporary directory of your operating system.

 err = trace.Start(f)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 defer

 trace.Stop()

This part is all about acquiring data for go tool trace
 , and it has nothing to do with the purpose of the program. We start the tracing process using trace.Start()
 . When we are done, we call the trace.Stop()
 function. The defer
 call means that we want to terminate tracing when the main()
 function returns.

 for

 i := 0

; i < 3

; i++ {
 s := make

([]byte

, 50000000

)
 if

 s == nil

 {
 fmt.Println("Operation failed!"

)
 }
 }
 for

 i := 0

; i < 5

; i++ {
 s := make

([]byte

, 100000000

)
 if

 s == nil

 {
 fmt.Println("Operation failed!"

)
 }
 time.Sleep(time.Millisecond)
 }
}

All the previous code is about allocating memory to trigger the operation of the garbage collector and generate more tracing data—you can learn more about the Go garbage collector in Appendix A
 , Go Garbage Collector
 . The program is executed as usual. However, when it finishes, it
 populates traceCLA.out
 with tracing data. After that, we should process the tracing data as follows:

$

 go tool trace /path/ToTemporary/Directory/traceCLA.out

The last command automatically starts a web server and opens the web interface of the trace tool on your default web browser—you can run it on your own computer to play with the web interface of the trace tool.

The View trace
 link shows information about the goroutines of your program and the operation of the garbage collector.

Have in mind that although go tool trace
 is very handy and powerful, it cannot solve every kind of performance problem. There are times where go tool pprof
 is more appropriate, especially when we want to reveal where our code spends most of its time.

As it happens with profiling, collecting tracing data for an HTTP server is a slightly different process, which is explained in the next subsection.

Tracing a web server from a client

This section shows how to trace a
 web server application using net/http/httptrace
 . The package allows you to trace the phases of an HTTP request from a client. The code of traceHTTP.go
 that interacts with web servers is as follows:

package

 main
import

 (
 "fmt"

 "net/http"

 "net/http/httptrace"

 "os"

)

As expected, we need to import net/http/httptrace
 before being able to enable HTTP tracing.

func

main

()

 {
 if

 len

(os.Args) != 2

 {
 fmt.Printf("Usage: URL\n"

)
 return

 }
 URL := os.Args[1

]
 client := http.Client{}
 req, _ := http.NewRequest("GET"

, URL, nil

)

Up to this point, we
 prepare the client request to the web server as usual.

 trace := &httptrace.ClientTrace{
 GotFirstResponseByte: func

()

 {
 fmt.Println("First response byte!"

)
 },
 GotConn: func

(connInfo httptrace.GotConnInfo)

 {
 fmt.Printf("Got Conn: %+v\n"

, connInfo)
 },
 DNSDone: func

(dnsInfo httptrace.DNSDoneInfo)

 {
 fmt.Printf("DNS Info: %+v\n"

, dnsInfo)
 },
 ConnectStart: func

(network, addr

string

)

 {
 fmt.Println("Dial start"

)
 },
 ConnectDone: func

(network, addr

string

, err error)

 {
 fmt.Println("Dial done"

)
 },
 WroteHeaders: func

()

 {
 fmt.Println("Wrote headers"

)
 },
 }

The preceding code is all about tracing HTTP requests. The httptrace.ClientTrace
 structure defines the events that interest us, which are GotFirstResponseByte
 , GotConn
 , DNSDone
 , ConnectStart
 , ConnectDone
 , and WroteHeaders
 . When such an event occurs, the relevant code is executed. You can find more information about the supported events and their
 purpose in the documentation of the net/http/httptrace
 package.

 req = req.WithContext(httptrace.WithClientTrace(req.Context(), trace))
 fmt.Println("Requesting data from server!"

)
 _, err := http.DefaultTransport.RoundTrip(req)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

The httptrace.WithClientTrace()
 function returns a new context
 value based on the given parent context while http.DefaultTransport.RoundTrip()
 wraps the request with the context
 value in order to keep track of the request.

Have in mind that Go HTTP tracing has been designed to trace the events of a single http.Transport.RoundTrip
 .

 _, err = client.Do(req)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
}

The last part sends the client request to the server for the tracing to begin.

Running traceHTTP.go
 generates the next output:

$

 go run traceHTTP.go https://www.golang.org/

Requesting data from server!
DNS Info: {Addrs:[{IP:2a00:1450:4001:80e::2011 Zone:} {IP:142.250.185.81 Zone:}] Err:<nil> Coalesced:false}

In this first part, we see that the IP address of the server has been resolved, which means that the client is ready to begin interacting with the HTTP server.

Dial start
Dial done
Got Conn: {Conn:0xc000078000 Reused:false WasIdle:false IdleTime:0s}
Wrote headers
First response byte!
Got Conn: {Conn:0xc000078000 Reused:true WasIdle:false IdleTime:0s}
Wrote headers
First response byte!
DNS Info: {Addrs:[{IP:2a00:1450:4001:80e::2011 Zone:} {IP:142.250.185.81 Zone:}] Err:<nil> Coalesced:false}
Dial start
Dial done
Got Conn: {Conn:0xc0000a1180 Reused:false WasIdle:false IdleTime:0s}
Wrote headers
First response byte!

The previous output helps
 you understand the progress of the connection in more detail and is handy when troubleshooting. Unfortunately, talking more about tracing is beyond the scope of this book. The next subsection shows how to visit all the routes of a web server to make sure that they are properly defined.

Visiting all routes of a web server

The gorilla/mux
 package offers a Walk
 function that
 can be used for visiting all the registered routes of a router—this can be very handy when you want to make sure that every route is registered and is working.

The code of walkAll.go
 , which contains lots of empty handler functions because its purpose is not to test handling functions but to visit them, is as follows (nothing prohibits you from using the same technique on a fully implemented web server):

package

 main
import

 (
 "fmt"

 "net/http"

 "strings"

 "github.com/gorilla/mux"

)

As we are using an external package, the running of walkAll.go
 should take place somewhere in ~/go/src
 .

func

handler

(w http.ResponseWriter, r *http.Request)

 {
 return

}

This empty handler function
 is shared by all endpoints for reasons of simplicity.

func

(h notAllowedHandler)

ServeHTTP

(rw http.ResponseWriter, r *http.Request)

 {
 handler(rw, r)
}

The notAllowedHandler
 handler also calls the handler()
 function.

type

 notAllowedHandler struct

{}
func

main

()

 {
 r := mux.NewRouter()
 r.NotFoundHandler = http.HandlerFunc(handler)
 notAllowed := notAllowedHandler{}
 r.MethodNotAllowedHandler = notAllowed
 // Register GET

 getMux := r.Methods(http.MethodGet).Subrouter()
 getMux.HandleFunc("/time"

, handler)
 getMux.HandleFunc("/getall"

, handler)
 getMux.HandleFunc("/getid"

, handler)
 getMux.HandleFunc("/logged"

, handler)
 getMux.HandleFunc("/username/{id:[0-9]+}"

, handler)
 // Register PUT

 // Update User

 putMux := r.Methods(http.MethodPut).Subrouter()
 putMux.HandleFunc("/update"

, handler)
 // Register POST

 // Add User + Login + Logout

 postMux := r.Methods(http.MethodPost).Subrouter()
 postMux.HandleFunc("/add"

, handler)
 postMux.HandleFunc("/login"

, handler)
 postMux.HandleFunc("/logout"

, handler)
 // Register DELETE

 // Delete User

 deleteMux := r.Methods(http.MethodDelete).Subrouter()
 deleteMux.HandleFunc("/username/{id:[0-9]+}"

, handler)

The previous part is about defining the routes and the HTTP methods that we want to support.

 err := r.Walk(func

(route *mux.Route, router *mux.Router, ancestors []*mux.Route)

error

 {

This is how we
 call the Walk()
 method.

 pathTemplate, err := route.GetPathTemplate()
 if

 err == nil

 {
 fmt.Println("ROUTE:"

, pathTemplate)
 }
 pathRegexp, err := route.GetPathRegexp()
 if

 err == nil

 {
 fmt.Println("Path regexp:"

, pathRegexp)
 }
 qT, err := route.GetQueriesTemplates()
 if

 err == nil

 {
 fmt.Println("Queries templates:"

, strings.Join(qT, ","

))
 }
 qRegexps, err := route.GetQueriesRegexp()
 if

 err == nil

 {
 fmt.Println("Queries regexps:"

, strings.Join(qRegexps, ","

))
 }
 methods, err := route.GetMethods()
 if

 err == nil

 {
 fmt.Println("Methods:"

, strings.Join(methods, ","

))
 }
 fmt.Println()
 return

 nil

 })

For each visited route, the program collects the desired information. Feel free to remove some of the fmt.Println()
 calls if it does not help your purpose to reduce output.

 if

 err != nil

 {
 fmt.Println(err)
 }
 http.Handle("/"

, r)
}

So, the general idea behind walkAll.go
 is that you assign an empty handler to each route that you have in your server and then you call mux.Walk()
 for visiting all routes. Enabling Go modules and running walkAll.go
 generates the next output:

$

 go mod init

$

 go mod tidy

$

 go run walkAll.go

Queries templates:
Queries regexps:
Methods: GET
ROUTE: /time
Path regexp: ^/time$
Queries templates:
Queries regexps:
Methods: GET

The output shows the HTTP
 methods that each route supports as well as the format of the path. So, the /time
 endpoint works with GET
 and its path is /time
 because the value of Path regexp
 means that /time
 is between the beginning (^
) and the end of the path ($
).

ROUTE: /getall
Path regexp: ^/getall$
Queries templates:
Queries regexps:
Methods: GET
ROUTE: /getid
Path regexp: ^/getid$
Queries templates:
Queries regexps:
Methods: GET
ROUTE: /logged
Path regexp: ^/logged$
Queries templates:
Queries regexps:
Methods: GET
ROUTE: /username/{id:[0-9]+}
Path regexp: ^/username/(?P<v0>[0-9]+)$
Queries templates:
Queries regexps:
Methods: GET

In the case of /username
 , the output includes
 the regular expressions associated with that endpoint that is used for selecting the value of the id
 variable.

Queries templates:
Queries regexps:
Methods: PUT
ROUTE: /update
Path regexp: ^/update$
Queries templates:
Queries regexps:
Methods: PUT
Queries templates:
Queries regexps:
Methods: POST
ROUTE: /add
Path regexp: ^/add$
Queries templates:
Queries regexps:
Methods: POST
ROUTE: /login
Path regexp: ^/login$
Queries templates:
Queries regexps:
Methods: POST
ROUTE: /logout
Path regexp: ^/logout$
Queries templates:
Queries regexps:
Methods: POST
Queries templates:
Queries regexps:
Methods: DELETE
ROUTE: /username/{id:[0-9]+}
Path regexp: ^/username/(?P<v0>[0-9]+)$
Queries templates:
Queries regexps:
Methods: DELETE

Although visiting the
 routes of a web server is a kind of testing, it is not the official Go way of testing. The main thing to look for in such output is the absence of an endpoint, the use of the wrong HTTP method, or the absence of a parameter from an endpoint.

The next section discusses the testing of Go code in more detail.

Testing Go code

The subject of this section is the testing
 of Go code by writing test functions
 . Software testing is a very large subject and cannot be covered in a single section of a chapter in a book. So, this section tries to present as much practical information as possible.

Go allows you to write tests for your Go code to detect bugs. However, software testing can only show the presence
 of one or more bugs, not the absence
 of bugs. This means that you can never be 100% sure that your code has no bugs!

Strictly speaking, this section is
 about automated testing
 , which involves writing extra code to verify whether the real code—that is, the production code—works as expected or not. Thus, the result of a test function is either PASS
 or FAIL
 . You will see how this works shortly. Although the Go approach to testing might look simple at first, especially if you compare it with the testing practices of other programming languages, it is very efficient and effective because it does not require too much of the developer's time.

You should always put the testing
 code in a different source file. There is no need to create a huge source file that is hard to read and maintain. Now, let us present testing by revisiting the matchInt()
 function from Chapter 3
 , Composite Data Types
 .

Writing tests for ./ch03/intRE.go

In this subsection, we write tests for the matchInt()
 function, which was implemented in intRE.go
 back in Chapter 3
 , Composite Data Types
 . First, we create a new file named intRE_test.go
 , which is going to contain all tests. Then, we rename the package from main
 to testRE
 and remove the main()
 function—this is an optional action. After that, we must decide what we
 are going to test and how. The main steps in testing include writing tests for expected input, unexpected input, empty input, and edge cases. All these are going to be seen in the code. Additionally, we are going to generate random integers, convert them to strings, and use them as input for matchInt()
 . Generally speaking, a good way to test functions that works with numeric values is by using random numbers, or random values in general, as input and see how your code behaves and handles these values.

The two test functions of intRE_test.go
 are the following:

func

Test_matchInt

(t *testing.T)

 {
 if

 matchInt(""

) {
 t.Error(`matchInt("") != true`

)
 }

The matchInt("")
 call should return false
 , so if it returns true
 , it means that the function does not work as expected.

 if

 matchInt("00"

) == false

 {
 t.Error(`matchInt("00") != true`

)
 }

The matchInt("00")
 call should also return true
 because 00
 is a valid integer, so if it returns false
 , it means that the function does not work as expected.

 if

 matchInt("-00"

) == false

 {
 t.Error(`matchInt("-00") != true`

)
 }
 if

 matchInt("+00"

) == false

 {
 t.Error(`matchInt("+00") != true`

)
 }
}

This first test function uses static input to test the correctness of matchInt()
 . As discussed earlier, a testing function accepts a single *testing.T
 parameter and returns no values.

func

Test_with_random

(t *testing.T)

 {
 SEED := time.Now().Unix()
 rand.Seed(SEED)
 n := strconv.Itoa(random(-100000

, 19999

))
 if

 matchInt(n) == false

 {
 t.Error("n = "

, n)
 }
}

The second test function
 uses random but valid input to test matchInt()
 . Therefore, the given input should always pass the test. Running the two test functions with go test
 creates the next output:

$

 go

test

 -v *.go

=== RUN Test_matchInt
--- PASS: Test_matchInt (0.00s)
=== RUN Test_with_random
--- PASS: Test_with_random (0.00s)
PASS
ok command-line-arguments 0.410s

So, all tests passed, which means that everything is fine with matchInt()
 .

The next subsection discusses the use of the TempDir()
 method.

The TempDir function

The TempDir()
 method works with
 both testing and benchmarking. Its purpose is to create a temporary directory that is going to be used during testing or benchmarking. Go automatically removes that temporary directory when the test and its subtests or the benchmarks are about to finish with the help of the CleanUp()
 method—this is arranged by Go and you do not need to use and implement CleanUp()
 on your own. The exact place where the temporary directory is going to be created depends on the
 operating system used. On macOS, it is under /var/folders
 whereas on Linux it is under /tmp
 . We are going to illustrate TempDir()
 in the next subsection where we also talk about Cleanup()
 .

The Cleanup() function

Although we present the Cleanup()
 method in a
 testing scenario, Cleanup()
 works for both testing and benchmarking. Its name reveals its purpose, which is to clean up some things that we have created when testing or benchmarking a package. However, it is us who need to tell Cleanup()
 what to do—the parameter of Cleanup()
 is a function that does the cleaning up. That function is usually implemented inline as an anonymous function, but you can also create it elsewhere and call it by its name.

The cleanup.go
 file contains a dummy function named Foo()
 —as it contains no code, there is no point in presenting it. On the other hand, all important code can be found in cleanup_test.go
 :

func

myCleanUp

()

func

()

 {
 return

 func

()

 {
 fmt.Println("Cleaning up!"

)
 }
}

The myCleanUp()
 function is going to be used as a parameter to CleanUp()
 and should have that specific signature. Apart from the signature, you can put any kind of code in the implementation of myCleanUp()
 .

func

TestFoo

(t *testing.T)

 {
 t1 := path.Join(os.TempDir(), "test01"

)
 t2 := path.Join(os.TempDir(), "test02"

)

These are the paths of two directories that we are going to create.

 err := os.Mkdir(t1, 0755

)
 if

 err != nil

 {
 t.Error("os.Mkdir() failed:"

, err)
 return

 }

We create a directory with os.Mkdir()
 and we specify its path. Therefore, it is our duty to delete that directory when it is no longer needed.

 defer

 t.Cleanup(func

()

 {
 err = os.Remove(t1)
 if

 err != nil

 {
 t.Error("os.Mkdir() failed:"

, err)
 }
 })

After TestFoo()
 finishes, t1
 is going
 to be deleted by the code of the anonymous function that is passed as a parameter to t.CleanUp()
 .

 err = os.Mkdir(t2, 0755

)
 if

 err != nil

 {
 t.Error("os.Mkdir() failed:"

, err)
 return

 }
}

We create another directory with os.Mkdir()
 —however, in this case we are not deleting that directory. Therefore, after TestFoo()
 finishes, t2
 is not going to be deleted.

func

TestBar

(t *testing.T)

 {
 t1 := t.TempDir()

Because of the use of the t.TempDir()
 method, the value (directory path) of t1
 is assigned by the operating system. Additionally, that directory path is going to be automatically deleted when the test function is about to finish.

 fmt.Println(t1)
 t.Cleanup(myCleanUp())
}

Here we use myCleanUp()
 as the parameter to Cleanup()
 . This is handy when you want to perform the same cleanup multiple times. Running the tests creates the next output:

$

 go

test

 -v *.go

=== RUN TestFoo
--- PASS: TestFoo (0.00s)
=== RUN TestBar
/var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/TestBar2904465158/01

This is the temporary directory that was created with TempDir()
 on a macOS machine.

Cleaning up!
--- PASS: TestBar (0.00s)
PASS
ok command-line-arguments 0.096s

Checking whether the
 directories created by TempDir()
 are there shows that they have been successfully deleted. On the other hand, the directory stored in the t2
 variable of TestFoo()
 has not been deleted. Running the same tests again is going to fail because the test02
 file already exists and cannot be created:

$

 go

test

 -v *.go

=== RUN TestFoo
 cleanup_test.go:33: os.Mkdir() failed: mkdir /var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/test02: file exists
--- FAIL: TestFoo (0.00s)
=== RUN TestBar
/var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/TestBar2113309096/01
Cleaning up!
--- PASS: TestBar (0.00s)
FAIL
FAIL command-line-arguments 0.097s
FAIL

The /var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/test02: file exists
 error message shows the root of the problem. The solution is to clean up your tests.

The next subsection discusses the use of the testing/quick
 package.

The testing/quick package

There are times where you need to
 create testing data without human intervention. The Go standard library offers the testing/quick
 package, which can be used
 for black box testing
 (a software testing method that checks the functionality of an application or function without any prior knowledge of its internal working) and is somewhat related to the QuickCheck
 package found
 in the Haskell
 programming language—both packages implement utility functions to help you with black box testing. With the help of testing/quick
 , Go generates random values of built-in types that you can use for testing, which saves you from having to generate all these values manually.

The code of quickT.go
 is the following:

package

 quickT
type

 Point2D struct

 {
 X, Y int

}
func

Add

(x1, x2 Point2D)

Point2D

 {
 temp := Point2D{}
 temp.X = x1.X + x2.X
 temp.Y = x1.Y + x2.Y
 return

 temp
}

The previous code implements a
 single function that adds two Point2D
 variables—this is the function that we are going to test.

The code of quickT_test.go
 is as follows:

package

 quickT
import

 (
 "testing"

 "testing/quick"

)
var

 N = 1000000

func

TestWithItself

(t *testing.T)

 {
 condition := func

(a, b Point2D)

bool

 {
 return

 Add(a, b) == Add(b, a)
 }
 err := quick.Check(condition, &quick.Config{MaxCount: N})
 if

 err != nil

 {
 t.Errorf("Error: %v"

, err)
 }
}

The call to quick.Check()
 automatically generates
 random numbers based on the signature of its first argument, which is a function defined earlier. There is no need to create these random numbers on
 your own, which makes the code easy to read and write. The actual tests happen in the condition
 function.

func

TestThree

(t *testing.T)

 {
 condition := func

(a, b, c Point2D)

bool

 {
 return

 Add(Add(a, b), c) == Add(a, b)
 }

This implementation is wrong on purpose
 . To correct the implementation, we should replace Add(Add(a, b), c) == Add(a, b)
 with Add(Add(a, b), c) == Add(c, Add(a, b))
 . We did that to see the output that is generated when a test fails.

 err := quick.Check(condition, &quick.Config{MaxCount: N})
 if

 err != nil

 {
 t.Errorf("Error: %v"

, err)
 }
}

Running the created tests generates the next output:

$

 go

test

 -v *.go

=== RUN TestWithItself
--- PASS: TestWithItself (0.86s)

As expected, the first test was successful.

=== RUN TestThree
 quickT_test.go:28: Error: #1: failed on input quickT.Point2D{X:761545203426276355, Y:-915390795717609627}, quickT.Point2D{X:-3981936724985737618, Y:2920823510164787684}, quickT.Point2D{X:-8870190727513030156, Y:-7578455488760414673}
--- FAIL: TestThree (0.00s)
FAIL
FAIL command-line-arguments 1.153s
FAIL

However, as expected, the second test generated an error. The good thing is that the input that caused the error is presented onscreen so that you can see the input that caused your function to fail.

The next subsection tells us how to time out tests that take too long to finish.

Timing out tests

If the go test
 tool takes too long
 to finish or for some reason it never ends, there is the -timeout
 parameter that can help you.

To illustrate that, we are using the code from the previous subsection as well as the -timeout
 and -count
 command-line flags. While the former specifies the maximum allowed time duration for the tests, the latter specifies the number of times the tests are going to be executed.

Running go test -v *.go -timeout 1s
 tells go test
 that all tests should take at most one second to finish—on my machine, the tests did take less than a second to finish. However, running the following generates a different output:

$

 go

test

 -v *.go -timeout 1s -count 2

=== RUN TestWithItself
--- PASS: TestWithItself (0.87s)
=== RUN TestThree
 quickT_test.go:28: Error: #1: failed on input quickT.Point2D{X:-312047170140227400, Y:-5441930920566042029}, quickT.Point2D{X:7855449254220087092, Y:7437813460700902767}, quickT.Point2D{X:4838605758154930957, Y:-7621852714243790655}
--- FAIL: TestThree (0.00s)
=== RUN TestWithItself
panic: test timed out after 1s

The output is longer than the presented one—the rest of the output has to do with goroutines being terminated before they have finished. The key thing here is that the go test
 command timed out the process due to the use of -timeout 1s
 .

Testing code coverage

In this section, we are going to learn
 how to find information about the code coverage of our programs to discover blocks of code or single code statements that are not being executed by testing functions.

Among other things, seeing the code coverage of programs can reveal issues and bugs in the code, so do not underestimate its usefulness. However, the code coverage test complements unit testing without replacing it. The only thing to remember is that you should make sure that the testing functions do try to cover all cases and therefore try to run all available code. If the testing functions do not try to cover all cases, then the issue might be with them, not the code that is being tested.

The code of coverage.go
 , which has some intentional issues in order to show how unreachable code is identified, is as follows:

package

 coverage
import

 "fmt"

func

f1

()

 {
 if

 true

 {
 fmt.Println("Hello!"

)
 } else

 {
 fmt.Println("Hi!"

)
 }
}

The issue with this function is that the
 first branch of if
 is always true and therefore the else
 branch is not going to get executed.

func

f2

(n

int

)

int

 {
 if

 n >= 0

 {
 return

 0

 } else

 if

 n == 1

 {
 return

 1

 } else

 {
 return

 f2(n-1

) + f2(n-2

)
 }
}

There exist two issues with f2()
 . The first one is that it does not work well with negative integers and the second one is that all positive integers are handled by the first if
 branch. Code coverage can only help you with the second issue. The code of coverage_test.go
 is the following—these are regular test functions that try to run all available code:

package

 coverage
import

 "testing"

func

Test_f1

(t *testing.T)

 {
 f1()
}

This test function naively tests the operation of f1()
 .

func

Test_f2

(t *testing.T)

 {
 _ = f2(123

)
}

The second test function checks the operation of f2()
 by running f2(123)
 .

First, we should run go test
 as follows—the code coverage task is done by the -cover
 flag:

$

 go

test

 -cover *.go

ok command-line-arguments 0.420s coverage: 50.0% of statements

The previous output
 shows that we have 50%
 code coverage, which is not a good thing! However, we are not done yet as we can generate a test coverage report. The next command generates the code coverage report:

$

 go

test

 -coverprofile=coverage.out *.go

The contents of coverage.out
 are as follows—yours might vary a little depending on your username and the folder used:

$

 cat coverage.out

mode: set
/Users/mtsouk/Desktop/coverage.go:5.11,6.10 1 1
/Users/mtsouk/Desktop/coverage.go:6.10,8.3 1 1
/Users/mtsouk/Desktop/coverage.go:8.8,10.3 1 0
/Users/mtsouk/Desktop/coverage.go:13.20,14.12 1 1
/Users/mtsouk/Desktop/coverage.go:14.12,16.3 1 1
/Users/mtsouk/Desktop/coverage.go:16.8,16.19 1 0
/Users/mtsouk/Desktop/coverage.go:16.19,18.3 1 0
/Users/mtsouk/Desktop/coverage.go:18.8,20.3 1 0

The format and the fields in each line of the coverage file are name.go:line.column,line.column numberOfStatements count
 . The last field
 is a flag that tells you whether the statements specified by line.column,line.column
 are covered or not. So, when you see 0
 in the last field, it means that the code is not covered.

Last, the HTML output can be seen in your favorite web browser by running go tool cover -html=coverage.out
 . If you used a different filename than coverage.out
 , modify the command accordingly. The next figure shows the generated output—if you are reading the printed version of the book, you might not be able to see the colors. Red lines denote code that is not being executed whereas green lines show code that was executed by the tests.

[image: Graphical user interface, text Description automatically generated]

Figure 11.2: Code coverage report

Some of the code is
 marked as not tracked
 (gray in color) because this is code that cannot be processed by the code coverage tool. The generated output clearly shows the code issues with both f1()
 and f2()
 . You just have to correct them now!

The next section discusses unreachable code and how to discover it.

Finding unreachable Go code

Sometimes, a wrongly
 implemented if
 or a misplaced return
 statement can create blocks of code that are unreachable, that is, blocks of code that are not going to be
 executed at all. As this is a logical kind of error
 , which means that it is not going to get caught by the compiler, we need to find a way of discovering it.

Fortunately, the go vet
 tool, which examines Go source code and reports suspicious constructs, can help with that—the use of go vet
 is illustrated with the help of the cannotReach.go
 source code file, which contains the next two functions:

func

S2

()

 {
 return

 fmt.Println("Hello!"

)
}

There is a logical error here because S2()
 returns
 before printing the desired message.

func

S1

()

 {
 fmt.Println("In S1()"

)
 return

 fmt.Println("Leaving S1()"

)
}

Similarly, S1()
 returns without giving the fmt.Println("Leaving S1()")
 statement a chance to be executed.

Running go vet
 on cannotReach.go
 creates the next output:

$

 go vet cannotReach.go

#

 command-line-arguments

./cannotReach.go:9:2: unreachable code
./cannotReach.go:16:2: unreachable code

The first message points to the fmt.Println()
 statement of S2()
 and the second one to the second fmt.Println()
 statement of S1()
 . In this case, go vet
 did a great job. However, go vet
 is not particularly sophisticated and cannot catch every possible type of logical error. If you need a more advanced tool, have a look at staticcheck
 (
https://staticcheck.io/

), which can also be integrated with Microsoft Visual Studio Code (
https://code.visualstudio.com/

)—the next figure shows how Visual Studio Code signifies unreachable code with the help of staticcheck
 .

[image: Text Description automatically generated]

Figure 11.3: Viewing unreachable code in Visual Studio Code

As a rule of thumb, it
 does not hurt to include go vet
 in your workflow. You can find more information about the capabilities of go vet
 by running go doc cmd/vet
 .

The next section illustrates how to test an HTTP server with a database backend.

Testing an HTTP server with a database backend

An HTTP server is a different kind of animal because it should already run for tests to get executed. Thankfully, the net/http/httptest
 package can help—you do not need to run the HTTP server on your
 own as the net/http/httptest
 package does the work for you, but you need to have the database server up and running. We are going to test the REST API server we have developed in Chapter 10
 , Working with REST APIs
 —we are going to copy the server_test.go
 file with the test code in the
https://github.com/mactsouk/rest-api

 GitHub repository of the server.

To create server_test.go
 , we do not have to change the implementation of the REST API server.

The code of server_test.go
 , which holds the test functions for the HTTP service, is the following:

package

 main
import

 (
 "bytes"

 "net/http"

 "net/http/httptest"

 "strconv"

 "strings"

 "testing"

 "time"

 "github.com/gorilla/mux"

)

The only reason for
 including github.com/gorilla/mux
 is the use of mux.SetURLVars()
 later on.

func

TestTimeHandler

(t *testing.T)

 {
 req, err := http.NewRequest("GET"

, "/time"

, nil

)
 if

 err != nil

 {
 t.Fatal(err)
 }
 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(TimeHandler)
 handler.ServeHTTP(rr, req)
 status := rr.Code
 if

 status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v"

,
 status, http.StatusOK)
 }
}

The http.NewRequest()
 function is used for defining the HTTP request method, the endpoint, and for sending data to the endpoint when needed. The http.HandlerFunc(TimeHandler)
 call defines the handler function that is being tested.

func

TestMethodNotAllowed

(t *testing.T)

 {
 req, err := http.NewRequest("DELETE"

, "/time"

, nil

)
 if

 err != nil

 {
 t.Fatal(err)
 }
 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(MethodNotAllowedHandler)

We are testing MethodNotAllowedHandler
 in this test function.

 handler.ServeHTTP(rr, req)
 status := rr.Code
 if

 status != http.StatusNotFound {
 t.Errorf("handler returned wrong status code: got %v want %v"

,
 status, http.StatusOK)
 }
}

We know that this interaction is going to fail as we are testing MethodNotAllowedHandler
 . Therefore, we expect to get an http.StatusNotFound
 response code back—if we
 get a different code, the test function is going to fail.

func

TestLogin

(t *testing.T)

 {
 UserPass := []byte

(`{"Username": "admin", "Password": "admin"}`

)

Here we store the desired fields of a User
 structure in a byte
 slice. For the tests to work, the admin
 user should have admin
 as the password because this is what is used in the code—modify server_test.go
 in order to have the correct password for the admin
 user, or any other user with admin privileges, of your installation.

 req, err := http.NewRequest("POST"

, "/login"

, bytes.NewBuffer(UserPass))
 if

 err != nil

 {
 t.Fatal(err)
 }
 req.Header.Set("Content-Type"

, "application/json"

)

The previous lines of code construct the desired request.

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(LoginHandler)
 handler.ServeHTTP(rr, req)

NewRecorder()
 returns an initialized ResponseRecorder
 that is used in ServeHTTP()
 —ServeHTTP()
 is the method that
 performs the request. The response is saved in the rr
 variable.

There is also a test function for the /logout
 endpoint, which is not presented here as it is almost identical to TestLogin()
 . However, running the tests in random order might create issues with testing because TestLogin()
 should always get executed before TestLogout()
 .

 status := rr.Code
 if

 status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v"

,
 status, http.StatusOK)
 return

 }
}

If the status code is http.StatusOK
 , it means that the interaction worked as expected.

func

TestAdd

(t *testing.T)

 {
 now := int

(time.Now().Unix())
 username := "test_"

 + strconv.Itoa(now)
 users := `[{"Username": "admin", "Password": "admin"}, {"Username":"`

 + username + `", "Password": "myPass"}]`

For the Add()
 handler, we need to pass an array of JSON records, which is constructed here. As we do not want to create the same username every time, we append the current timestamp to the _test
 string.

 UserPass := []byte

(users)
 req, err := http.NewRequest("POST"

, "/add"

, bytes.NewBuffer(UserPass))
 if

 err != nil

 {
 t.Fatal(err)
 }
 req.Header.Set("Content-Type"

, "application/json"

)

This is where we
 construct the slice of JSON records (UserPass
) and create the request.

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(AddHandler)
 handler.ServeHTTP(rr, req)
 // Check the HTTP status code is what we expect.

 if

 status := rr.Code; status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v"

,
 status, http.StatusOK)
 return

 }
}

If the server response is http.StatusOK
 , then the request is successful and the test passes.

func

TestGetUserDataHandler

(t *testing.T)

 {
 UserPass := []byte

(`{"Username": "admin", "Password": "admin"}`

)
 req, err := http.NewRequest("GET"

, "/username/1"

, bytes.NewBuffer(UserPass))

Although we use /username/1
 in the request, this does not add any value in the Vars
 map. Therefore, we need to use the SetURLVars()
 function for changing the values in the Vars
 map—this is illustrated next.

 if

 err != nil

 {
 t.Fatal(err)
 }
 req.Header.Set("Content-Type"

, "application/json"

)
 vars := map

[string

]string

{
 "id"

: "1"

,
 }
 req = mux.SetURLVars(req, vars)

The gorilla/mux
 package provides the SetURLVars()
 function for testing purposes—this function allows you to add elements to the Vars
 map. In this case, we need to set the value of the id
 key to 1
 . You can add as many key/value pairs as you want.

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(GetUserDataHandler)
 handler.ServeHTTP(rr, req)
 if

 status := rr.Code; status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v"

,
 status, http.StatusOK)
 return

 }
expected := `{"ID":1,"Username":"admin","Password":"admin",

"LastLogin":0,"Admin":1,"Active":0}`

This is the record we expect
 to get back from our request. As we cannot guess the value of LastLogin
 in the server response, we replace it with 0
 , hence the use of 0
 here.

 serverResponse := rr.Body.String()
 result := strings.Split(serverResponse, "LastLogin"

)
 serverResponse = result[0

] + `LastLogin":0,"Admin":1,"Active":0}`

As we do not want to use the value of LastLogin
 from the server response, we are changing it to 0
 .

 if

 serverResponse != expected {
 t.Errorf("handler returned unexpected body: got %v but wanted %v"

,
 rr.Body.String(), expected)
 }
}

The last part of the code contains the standard Go way of checking whether we have received the expected answer or not.

Creating tests for HTTP services is easy once you understand the presented examples. This mainly happens because most of the code is repeated among test functions.

Running the tests generates the next output:

$

 go

test

 -v server_test.go main.go handlers.go

=== RUN TestTimeHandler
2021/06/17 08:59:15 TimeHandler Serving: /time from
--- PASS: TestTimeHandler (0.00s)

This is the output from visiting the /time
 endpoint. Its result is PASS
 .

=== RUN TestMethodNotAllowed
2021/06/17 08:59:15 Serving: /time from with method DELETE
--- PASS: TestMethodNotAllowed (0.00s)
=== RUN TestLogin

This is the output from
 visiting the /time
 endpoint with the DELETE
 HTTP method. Its result is PASS
 because we were expecting this request to fail as it uses the wrong HTTP method.

2021/06/17 08:59:15 LoginHandler Serving: /login from
2021/06/17 08:59:15 Input user: {0 admin admin 0 0 0}
2021/06/17 08:59:15 Found user: {1 admin admin 1620922454 1 0}
2021/06/17 08:59:15 Logging in: {1 admin admin 1620922454 1 0}
2021/06/17 08:59:15 Updating user: {1 admin admin 1623909555 1 1}
2021/06/17 08:59:15 Affected: 1
2021/06/17 08:59:15 User updated: {1 admin admin 1623909555 1 1}
--- PASS: TestLogin (0.01s)

This is the output from TestLogin()
 that tests the /login
 endpoint. All lines beginning with the date and time are generated by the REST API server and show the progress of the request.

=== RUN TestLogout
2021/06/17 08:59:15 LogoutHandler Serving: /logout from
2021/06/17 08:59:15 Found user: {1 admin admin 1620922454 1 1}
2021/06/17 08:59:15 Logging out: admin
2021/06/17 08:59:15 Updating user: {1 admin admin 1620922454 1 0}
2021/06/17 08:59:15 Affected: 1
2021/06/17 08:59:15 User updated: {1 admin admin 1620922454 1 0}
--- PASS: TestLogout (0.01s)

This is the output from TestLogout()
 that tests the /logout
 endpoint, which also has the PASS
 result.

=== RUN TestAdd
2021/06/17 08:59:15 AddHandler Serving: /add from
2021/06/17 08:59:15 [{0 admin admin 0 0 0} {0 test_1623909555 myPass 0 0 0}]
--- PASS: TestAdd (0.01s)

This is the output from the TestAdd()
 test function. The
 name of the new user that is created is test_1623909555
 and it should be different each time the test is executed.

=== RUN TestGetUserDataHandler
2021/06/17 08:59:15 GetUserDataHandler Serving: /username/1 from
2021/06/17 08:59:15 Found user: {1 admin admin 1620922454 1 0}
--- PASS: TestGetUserDataHandler (0.00s)
PASS
ok command-line-arguments (cached)

Last, this is the output from the TestGetUserDataHandler()
 test function that was also executed without any issues.

The next subsection discusses fuzzing, which offers a different way of testing.

Fuzzing

As software engineers, we do not worry when things go as expected but when unexpected things happen. One way to
 deal with the unexpected is fuzzing. Fuzzing
 (or fuzz testing
) is a testing technique that provides invalid, unexpected, or random data on programs that require input.

The advantages of fuzzing
 include the following:

	Making sure that the code can handle invalid or random input

	Bugs that are discovered with fuzzing are usually severe and might indicate security risks

	Attackers often use fuzzing for locating vulnerabilities, so it is good to be prepared

Fuzzing is going to be officially included in the Go language in a future Go release, but do not expect it in 2021. It is most likely going to be officially released with Go version 1.18 or Go version 1.19. The dev.fuzz
 branch at GitHub (
https://github.com/golang/go/tree/dev.fuzz

) contains the latest implementation of fuzzing. This branch is going to exist until the relevant code is merged to the master branch. With fuzzing comes the testing.F
 data type, in the same way that we use testing.T
 for testing and testing.B
 for
 benchmarking. If you want to try fuzzing in Go, begin by visiting
https://blog.golang.org/fuzz-beta

 .

The next section discusses a
 handy Go feature, which is cross-compilation.

Cross-compilation

Cross-compilation is the process of generating a binary executable file for a different architecture than the one on
 which we are working without having access to other machines. The main benefit that we receive from cross-compilation is that we do not need a second or third machine to create and distribute executable files for different architectures. This means that we basically need just a single machine for our development. Fortunately, Go has built-in support for cross-compilation.

To cross-compile a Go source file, we need to set the GOOS
 and GOARCH
 environment variables to the target operating system and architecture, respectively, which is not as difficult as it sounds.

You can find a list of available values for the GOOS
 and GOARCH
 environment variables at
https://golang.org/doc/install/source

 . Keep in mind, however, that not all GOOS
 and GOARCH
 combinations are valid.

The code of crossCompile.go
 is the following:

package

 main
import

 (
 "fmt"

 "runtime"

)
func

main

()

 {
 fmt.Print("You are using "

, runtime.GOOS, " "

)
 fmt.Println("on a(n)"

, runtime.GOARCH, "machine"

)
 fmt.Println("with Go version"

, runtime.Version())
}

Running it on a macOS machine with Go version 1.16.5 generates the next output:

$

 go run crossCompile.go

You are using darwin on a(n) amd64 machine
with Go version go1.16.5

Compiling crossCompile.go
 for the Linux OS
 that runs on a machine with an amd64
 processor is as simple as running the next command on a macOS machine:

$

 env GOOS=linux GOARCH=amd64 go build crossCompile.go

$

 file crossCompile

crossCompile: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, Go BuildID=GHF99KZkGUrFADRlsS7l/ty-Ka44KVhMItrIvMZ6l/rdRP5mt_yw2AEox_8uET/HqP0KyUBaOB87LY7gvVu, not stripped

Transferring that file to an Arch Linux machine and running it generates the next output:

$

 ./crossCompile

You are using linux on a(n) amd64 machine
with Go version go1.16.5

One thing to notice
 here is that the cross-compiled binary file of crossCompile.go
 prints the Go version of the machine used for compiling it—this makes perfect sense as the target machine might not even have Go installed on it.

Cross-compilation is a great Go feature that can come in handy when you want to generate multiple versions of your executables through a CI/CD system and distribute them.

The next section discusses go:generate
 .

Using go:generate

Although go:generate
 is not directly connected to testing or profiling, it is a handy and advanced Go feature and I believe that this chapter is the perfect place for discussing it as it can also help
 you with testing. The go:generate
 directive is associated with the go generate
 command, was added in Go 1.4 in order to help with automation, and allows you to run commands described by directives within existing files.

The go generate
 command supports the -v
 , -n
 , and -x
 flags. The -v
 flag prints the names of packages and files as they are processed whereas the -n
 flag prints the commands that would be executed. Last, the -x
 flag prints commands as they are executed—this is great for debugging go:generate
 commands.

The main reasons that you might need to use go:generate
 are the following:

	You want to download dynamic data from the Internet or some other source prior to the execution of the Go code.

	You want to execute some code prior to running the Go code.

	You want to generate a version number or other unique data before code execution.

	You want to make sure that you have sample data to work with. For example, you can put data into a database using go:generate
 .

As using go:generate
 is not considered a good practice because it hides things from the developer and creates additional dependencies, I try to avoid it when I can, and I usually can. On the other hand, if you really need it, you are going to know it!

The use of go:generate
 is illustrated
 in goGenerate.go
 , which has the following content:

package

 main
import

 "fmt"

//go:generate ./echo.sh

This executes the echo.sh
 script, which should be available in the current directory.

//go:generate echo GOFILE: $GOFILE

//go:generate echo GOARCH: $GOARCH

//go:generate echo GOOS: $GOOS

//go:generate echo GOLINE: $GOLINE

//go:generate echo GOPACKAGE: $GOPACKAGE

$GOFILE
 , $GOARCH
 , $GOOS
 , $GOLINE
 , and $GOPACKAGE
 are special variables and are translated at the time of execution.

//go:generate echo DOLLAR: $DOLLAR

//go:generate echo Hello!

//go:generate ls -l

//go:generate ./hello.py

This executes the hello.py
 Python script, which
 should be available in the current directory.

func

main

()

 {
 fmt.Println("Hello there!"

)
}

The go generate
 command is not going to run the fmt.Println()
 statement or any other statements found in a Go source file. Last, have in mind that go generate
 is not executed automatically and must be run explicitly.

Working with goGenerate.go
 from within ~/go/src/
 generates the next output:

$

 go mod init

$

 go mod tidy

$

 go generate

Hello world!
GOFILE: goGenerate.go
GOARCH: amd64
GOOS: darwin
GOLINE: 9
GOPACKAGE: main

This is the output of the $GOFILE
 , $GOARCH
 , $GOOS
 , $GOLINE
 , and $GOPACKAGE
 variables, which shows the values of these variables defined at runtime.

DOLLAR: $

There is also a special variable named $DOLLAR
 for printing a dollar character in the output because $
 has a special meaning in the OS environment.

Hello!
total 32
-rwxr-xr-x 1 mtsouk staff 32 Jun 2 18:18 echo.sh
-rw-r--r-- 1 mtsouk staff 45 Jun 2 16:15 go.mod
-rw-r--r-- 1 mtsouk staff 381 Jun 2 18:18 goGenerate.go
-rwxr-xr-x 1 mtsouk staff 52 Jun 2 18:18 hello.py
drwxr-xr-x 5 mtsouk staff 160 Jun 2 17:07 walk

This is the output of the ls -l
 command that shows the files found in the current directory at the time of the code execution. This can be used for testing whether some necessary files are present at the time of execution or not.

Hello from Python!

Last is the output of a naïve Python script.

Running go generate
 with -n
 shows the
 commands that are going to be executed:

$

 go generate -n

./echo.sh
echo GOFILE: goGenerate.go
echo GOARCH: amd64
echo GOOS: darwin
echo GOLINE: 9
echo GOPACKAGE: main
echo DOLLAR: $
echo Hello!
ls -l
./hello.py

So, go:generate
 can help you work with the OS before program execution. However, as it hides things from the developer, its usage should be limited.

The last section of this chapter talks about example functions.

Creating example functions

Part of the documentation
 process is generating example code that showcases the use of some or all the functions and data types of a package. Example functions
 have many benefits, including the fact that they are executable tests that are executed by go test
 . Therefore, if an example function contains an // Output:
 line, the go test
 tool checks whether the calculated output matches the values found after the // Output:
 line. Although we should include example functions in Go files that end with _test.go
 , we do not need to import the testing
 Go package for example functions. Moreover, the name of each example function must begin with Example
 . Lastly, example functions take no input parameters and return no results
 .

We are going to illustrate example functions using the code of exampleFunctions.go
 and exampleFunctions_test.go
 . The content of exampleFunctions.go
 is as follows:

package

 exampleFunctions
func

LengthRange

(s

string

)

int

 {
 i := 0

 for

 _, _ = range

 s {
 i = i + 1

 }
 return

 i
}

The previous code presents a regular
 package that contains a single function named LengthRange()
 . The contents of exampleFunctions_test.go
 , which includes the example functions, are the following:

package

 exampleFunctions
import

 "fmt"

func

ExampleLengthRange

()

 {
 fmt.Println(LengthRange("Mihalis"

))
 fmt.Println(LengthRange("Mastering Go, 3rd edition!"

))
 // Output:

 // 7

 // 7

}

What the comment lines say is that the expected output is 7
 and 7
 , which is obviously wrong. This is going to be seen after we run go test
 :

$

 go

test

 -v exampleFunctions*

=== RUN ExampleLengthRange
--- FAIL: ExampleLengthRange (0.00s)
got:
7
26
want:
7
7
FAIL
FAIL command-line-arguments 0.410s
FAIL

As expected, there is an error in the generated output—the second generated value is 26
 instead of the expected 7
 . If we make the necessary corrections, the output is going to look as follows:

$

 go

test

 -v exampleFunctions*

=== RUN ExampleLengthRange
--- PASS: ExampleLengthRange (0.00s)
PASS
ok command-line-arguments 1.157s

Example functions can be a
 great tool both for learning the capabilities of a package and for testing the correctness of functions, so I suggest that you include both test code and example functions in your Go packages. As a bonus, your test functions appear in the documentation of the package
 , if you decide to generate package documentation.

Exercises

	Implement a simple version of ab(1)
 (
https://httpd.apache.org/docs/2.4/programs/ab.html

) on your own using goroutines and channels for testing the performance of web services.

	Write test functions for the phoneBook.go
 application from Chapter 3
 , Composite Data Types
 .

	Create test functions for a package that calculates numbers in the Fibonacci sequence. Do not forget to implement that package.

	Try to find the value of os.TempDir()
 in various operating systems.

	Create three different implementations of a function that copies binary files and benchmark them to find the faster one. Can you explain why this function is faster?

Summary

This chapter discussed go:generate
 , code profiling and tracing, benchmarking, and testing Go code. You might find the Go way of testing and benchmarking boring, but this happens because Go is boring and predictable
 in general and that is a good thing! Remember that writing bug-free code is important whereas writing the fastest code possible is not always that important.

Most of the time, you need to be able to write fast enough
 code. So, spend more time writing tests than benchmarks
 unless your code runs really slowly. We have also learned how to find unreachable code and how to cross-compile Go code.

Although the discussions of the Go profiler and go tool trace
 are far from complete, you should understand that with topics such as profiling and code tracing, nothing can replace experimenting and trying new techniques on your own!

The next chapter is about creating gRPC services in Go.

Additional resources

	The generate
 package:
https://golang.org/pkg/cmd/go/internal/generate/

	Generating code:
https://blog.golang.org/generate

	Look at the code of testing
 at
https://golang.org/src/testing/testing.go

	About net/http/httptrace
 :
https://golang.org/pkg/net/http/httptrace/

	Introducing HTTP Tracing by Jaana Dogan:
https://blog.golang.org/http-tracing

	GopherCon 2019: Dave Cheney - Two Go Programs, Three Different Profiling Techniques:
https://youtu.be/nok0aYiGiYA

12

Working with gRPC

This chapter is about working with gRPC in Go. gRPC
 , which stands for gRPC Remote Procedure Calls
 , is an alternative to RESTful services that was developed by Google. The main advantage of gRPC is that it is faster than working with REST and JSON messages. Additionally, creating clients for gRPC services is also faster due to the available tooling. Last, as gRPC uses the binary data format, it is lighter than RESTful services that work with the JSON format.

The process for creating a gRPC server and client has three main steps. The first step is creating the interface definition language
 (IDL
) file, the second step is the development of the gRPC server, and the third step is the development of the gRPC client that can interact with the gRPC server.

This chapter covers the following topics:

	Introduction to gRPC

	Defining an interface definition language file

	Developing a gRPC server

	Developing a gRPC client

Introduction to gRPC

gRPC is an
 open source remote procedure call
 (RPC
) system that was developed at Google back in 2015, is built on top of HTTP/2, allows you to create services easily, and uses protocol buffers
 as the IDL which specifies the format of the interchanged messages and the service interface.

gRPC clients and servers can be written in any programming language without the need to have clients written in the same programming language as their servers. This means that you can develop a client in Python, even if the gRPC server is implemented in Go. The list of supported programming languages includes, but is not limited to, Python, Java, C++, C#, PHP, Ruby, and Kotlin.

The advantages of gRPC include the following:

	The use of binary format for data exchange makes gRPC faster than services that work with data in plain text format

	The command-line tools provided make your work simpler and faster

	Once you have defined the functions and the messages of a gRPC service, creating servers and clients for it is simpler than RESTful services

	gRPC can be used for streaming services

	You do not have to deal with the details of data exchange because gRPC takes care of
 the details

The list of advantages should not make you think that gRPC is a panacea that does not have any flaws—always use the best tool or technology for the job.

The next section discusses protocol buffers, which are the foundation of gRPC services.

Protocol buffers

A protocol buffer
 (protobuf
) is
 basically a method for serializing structured data
 . A
 part of protobuf is the IDL. As protobuf uses binary format for data exchange, it takes up less space than plain text serialization formats. However, data needs to be encoded and decoded to be machine-usable and human-readable, respectively. Protobuf has its own data types that are translated to natively supported data types of the programming language used.

Generally speaking, the IDL file is the center of each gRPC service because it defines the format of the data that is exchanged as well as the service interface. You cannot have a gRPC service without having a protobuf file at hand. Strictly speaking, a protobuf file includes the definition of services, methods of services, and the format of the messages that are going to be exchanged—it is not an exaggeration to say that if you want to understand a gRPC service, you should start by looking at its definition file. The next section shows the protobuf file that is going to be used in our gRPC service.

Defining an interface definition language file

The gRPC
 service that we are developing is going to support the following functionality:

	The server should return its date and time to the client

	The server should return a randomly generated password of a given length to the client

	The server should return random integers to the client

Before we begin developing the gRPC client and server for our service, we need to define the IDL file. We need a separate GitHub repository to host the files related to the IDL file, which is going to be
https://github.com/mactsouk/protoapi

 .

Next, we are going to present the IDL file, which is called protoapi.proto
 :

syntax = "proto3"

;

The presented file uses the proto3
 version of the protocol buffers language—there is also an older version of the language named proto2
 , which has some minor syntax differences. If you do not specify that you want to use proto3
 , then the protocol buffer compiler assumes you want to use proto2
 . The definition of the version must be in the first non-empty, non-comment line in the .proto
 file.

option

 go_package = "./;protoapi"

;

The gRPC tools are going to generate Go code from that .proto
 file. The previous line specifies that the name of the Go package that is going to be created is protoapi
 . The output is going to be written in the current directory as protoapi.proto
 due to the use of ./
 .

service

Random

{
 rpc

GetDate

 (RequestDateTime)

returns

 (DateTime)

;
 rpc

GetRandom

 (RandomParams)

returns

 (RandomInt)

;
 rpc

GetRandomPass

 (RequestPass)

returns

 (RandomPass)

;
}

This block specifies the name of the gRPC service (Random
) as well as the supported methods. Additionally, it specifies the messages that need to be exchanged for an interaction. So, for GetDate
 , the client needs to send a RequestDateTime
 message and expects to get a DateTime
 message back.

These messages are defined in the same .proto
 file.

// For random number

All .proto
 files support C- and C++-type comments. This means that you can use // text
 and /* text */
 comments in your .proto
 files.

message

RandomParams

{
 int64

 Seed = 1

;
 int64

 Place = 2

;
}

A random number generator starts with a seed value, which in our case is specified by the client and sent to the server with a RandomParams
 message. The Place
 field specifies the place of the random number that is going to be returned in the sequence of randomly
 generated integers.

message

RandomInt

{
 int64

 Value = 1

;
}

The previous two messages are related to the GetRandom
 method. RandomParams
 is for setting the parameters of the request, whereas RandomInt
 is for storing a random number that is generated by the server. All message fields are of the int64
 data type.

// For date time

message

DateTime

{
 string

 Value = 1

;
}
message

RequestDateTime

{
 string

 Value = 2

;
}

The previous two messages are for supporting the operation of the GetDate
 method. The RequestDateTime
 message is a dummy one in the sense that it does not hold any useful data—we just need to have a message that the client sends to the server—you can store any kind of information in the Value
 field of RequestDateTime
 . The information returned by the server is stored as a string
 value in a DateTime
 message.

// For random password

message

RequestPass

{
 int64

 Seed = 1

;
 int64

 Length = 8

;
}
message

RandomPass

{
 string

 Password = 1

;
}

Lastly, the previous two messages are for the operation of GetRandomPass
 .

So, the IDL file:

	specifies that we are using proto3
 .

	defines the name of the service, which is Random
 .

	specifies that the name of the generated Go package is going to be protoapi
 .

	defines that the gRPC service is going to support three methods: GetDate
 , GetRandom
 , and GetRandomPass
 . It also defines the names of the messages that are going to be exchanged in these three method calls.

	defines the format of six messages that are used for data exchange.

The next
 important step is converting that file into a format that can be used by Go. You might need to download some extra tools in order to process protoapi.proto
 , or any other .proto
 file, and generate the relevant Go .pb.go
 files. The name of the protocol buffer compiler binary is protoc
 —on my macOS machine, I had to install protoc
 using the brew install protobuf
 command. Similarly, I also had to install protoc-gen-go-grpc
 and protoc-gen-go
 packages using Homebrew—the last two packages are Go-related.

On a Linux machine, you need to install protobuf
 using your favorite package manager and protoc-gen-go
 using the go install github.com/golang/protobuf/protoc-gen-go@latest
 command. Similarly, you should install the protoc-gen-go-grpc
 executable by running go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
 .

Starting with Go 1.16, go install
 is the recommended way of building and installing packages in module mode. The use of go get
 is deprecated. However, when using go install
 , do not forget to add @latest
 after the package name to install the latest version.

So, the conversion process requires the next step:

$

 protoc --go_out=. --go_opt=paths=source_relative --go-grpc_out=. --go-grpc_opt=paths=source_relative protoapi.proto

After that, we have a file named protoapi_grpc.pb.go
 and a file named protoapi.pb.go
 —both located in the root directory of the GitHub repository. The protoapi.pb.go
 source code file contains the messages, whereas protoapi_grpc.pb.go
 contains the services.

The first ten lines of protoapi_grpc.pb.go
 are as follows:

// Code generated by protoc-gen-go-grpc. DO NOT EDIT.

package

 protoapi

As discussed
 earlier, the name of the package is protoapi
 .

import

 (
 context "context"

 grpc "google.golang.org/grpc"

 codes "google.golang.org/grpc/codes"

 status "google.golang.org/grpc/status"

)

This is the import
 block—the reason for having context "context"
 is that context
 used to be an external Go package that was not a part of the standard Go library.

The first lines of protoapi.pb.go
 are the following:

// Code generated by protoc-gen-go. DO NOT EDIT.

// versions:

// protoc-gen-go v1.27.1

// protoc v3.17.3

// source: protoapi.proto

package

 protoapi

Both protoapi_grpc.pb.go
 , and protoapi.pb.go
 are part of the protoapi
 Go package, which means that we only need to include them once in our code.

The next section is about the development of the gRPC server.

Developing a gRPC server

In this
 section, we are going to create a gRPC server based on the api.proto
 file presented in the previous section. As gRPC needs external packages, we are going to need a GitHub repository to host the files, which is going to be
https://github.com/mactsouk/grpc

 .

The code of gServer.go
 (located in the server
 directory) that is related to gRPC (some functions were omitted for brevity) is the following:

package

 main
import

 (
 "context"

 "fmt"

 "math/rand"

 "net"

 "os"

 "time"

This program uses math/rand
 instead of the more secure crypto/rand
 for generating random
 numbers because we need a seed value to be able to reproduce random number sequences.

 "github.com/mactsouk/protoapi"

 "google.golang.org/grpc"

 "google.golang.org/grpc/reflection"

)

The import
 block includes external Google packages as well as github.com/mactsouk/protoapi
 , which is the one that we created earlier. The protoapi
 package contains structures, interfaces, and functions that are specific to the gRPC service that is being developed, whereas the external Google packages contain generic code related to gRPC.

type

RandomServer

 struct

 {
 protoapi.UnimplementedRandomServer
}

This structure is named after the name of the gRPC service. This structure is going to implement the interface required by the gRPC server. The use of protoapi.UnimplementedRandomServer
 is required for the implementation of the interface—this is standard practice.

func

(

RandomServer

)

GetDate

(ctx context.Context, r *protoapi.RequestDateTime)

(*protoapi.DateTime, error)

 {
 currentTime := time.Now()
 response := &protoapi.DateTime{
 Value: currentTime.String(),
 }
 return

 response, nil

}

This is the first method of the interface named after the GetDate
 function found in the service
 block of protoapi.proto
 . This method requires no input from the client, so it ignores the r
 parameter.

func

(

RandomServer

)

GetRandom

(ctx context.Context, r *protoapi.RandomParams)

(*protoapi.RandomInt, error)

 {
 rand.Seed(r.GetSeed())
 place := r.GetPlace()

The GetSeed()
 and GetPlace()
 get methods are implemented by protoc
 , are related to the fields
 of protoapi.RandomParams
 , and should be used in order to read data from the client message.

 temp := random(min, max)
 for

 {
 place--
 if

 place <= 0

 {
 break

 }
 temp = random(min, max)
 }
 response := &protoapi.RandomInt{
 Value: int64

(temp),
 }
 return

 response, nil

}

The server constructs a protoapi.RandomInt
 variable that is going to be returned to the client. We end the implementation of the second method of the interface here.

func

(

RandomServer

)

GetRandomPass

(ctx context.Context, r *protoapi.RequestPass)

(*protoapi.RandomPass, error)

 {
 rand.Seed(r.GetSeed())
 temp := getString(r.GetLength())

The GetSeed()
 and GetLength()
 get methods are implemented by protoc
 , are related to the fields of protoapi.RequestPass
 , and should be used in order to read the data from the client message.

 response := &protoapi.RandomPass{
 Password: temp,
 }
 return

 response, nil

}

In the last part of GetRandomPass()
 , we construct the response (protoapi.RandomPass
) in order to
 send it to the client.

var

 port = ":8080"

func

main

()

 {
 if

 len

(os.Args) == 1

 {
 fmt.Println("Using default port:"

, port)
 } else

 {
 port = os.Args[1

]
 }

The first part of main()
 is about specifying the TCP port that is going to be used for the service.

 server := grpc.NewServer()

The previous statement creates a new gRPC server that is not attached to any specific gRPC service.

 var

 randomServer RandomServer
 protoapi.RegisterRandomServer(server, randomServer)

The previous statements call protoapi.RegisterRandomServer()
 to create a gRPC server for our specific service.

 reflection.Register(server)

It is not mandatory to call reflection.Register()
 , but it helps when you want to list the available services found on a server—in our case, it could have been omitted.

 listen, err := net.Listen("tcp"

, port)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }

The previous code starts a TCP service that listens to the desired TCP port.

 fmt.Println("Serving requests..."

)
 server.Serve(listen)
}

The last part of the program is about telling the gRPC server to begin serving client requests. This happens by calling the Serve()
 method and using the network parameters stored in listen
 .

The curl(1)
 utility does not work with binary data and therefore cannot be used for testing a gRPC server. However, there is an alternative for testing gRPC services, which is the grpcurl
 utility (
https://github.com/fullstorydev/grpcurl

).

Now that
 we have the gRPC server ready, let us continue by developing the client that can help us test the operation of the gRPC server.

Developing a gRPC client

This section
 presents the development of the gRPC client based on the api.proto
 file presented earlier. The main purpose of the client is to test the functionality of the server. However, what is really important is the implementation of three helper functions, each one corresponding to a different RPC call, because these three functions allow you to interact with the gRPC server. The purpose of the main()
 function of gClient.go
 is to use these three helper functions.

So, the code of gClient.go
 is the following:

package

 main
import

 (
 "context"

 "fmt"

 "math/rand"

 "os"

 "time"

 "github.com/mactsouk/protoapi"

 "google.golang.org/grpc"

)
var

 port = ":8080"

func

AskingDateTime

(ctx context.Context, m protoapi.RandomClient)

(*protoapi.DateTime, error)

 {

You can name the AskingDateTime()
 function anything you want. However, the signature of the function must contain a context.Context
 parameter, as well as a RandomClient
 parameter in order to be able to call GetDate()
 later on. The client does not need to implement any of the functions of the IDL—it just has to
 call them.

 request := &protoapi.RequestDateTime{
 Value: "Please send me the date and time"

,
 }

We first construct a protoapi.RequestDateTime
 variable that holds the data for the client request.

 return

 m.GetDate(ctx, request)
}

Then, we call the GetDate()
 method to send the client request to the server. This is handled by the code in the protoapi
 module—we just call GetDate()
 with the correct parameters. This is where the implementation of the first helper function ends—although it is not mandatory to have such a helper function, it makes the code cleaner.

func

AskPass

(ctx context.Context, m protoapi.RandomClient, seed

int64

, length

int64

)

(*protoapi.RandomPass, error)

 {
 request := &protoapi.RequestPass{
 Seed: seed,
 Length: length,
 }

The AskPass()
 helper function is for calling the GetRandomPass()
 gRPC method in order to get a random password from the server process. First, the function constructs a protoapi.RequestPass
 variable with the given values for Seed
 and Length
 , which are parameters of AskPass()
 .

 return

 m.GetRandomPass(ctx, request)
}

Then, we call GetRandomPass()
 to send the client request to the server and get the response. Finally, the function returns.

Due to the way gRPC works and the tools that simplify things, the implementation of AskPass()
 is short. Doing the same using RESTful services requires more code.

func

AskRandom

(ctx context.Context, m protoapi.RandomClient, seed

int64

, place

int64

)

(*protoapi.RandomInt, error)

 {
 request := &protoapi.RandomParams{
 Seed: seed,
 Place: place,
 }
 return

 m.GetRandom(ctx, request)
}

The last helper
 function, AskRandom()
 , operates in an analogous way. We construct the client message (protoapi.RandomParams
), send it to the server by calling GetRandom()
 , and get the server response as returned by GetRandom()
 .

func

main

()

 {
 if

 len

(os.Args) == 1

 {
 fmt.Println("Using default port:"

, port)
 } else

 {
 port = os.Args[1

]
 }
 conn, err := grpc.Dial(port, grpc.WithInsecure())
 if

 err != nil

 {
 fmt.Println("Dial:"

, err)
 return

 }

The gRPC client needs to connect to the gRPC server using grpc.Dial()
 . However, we are not done yet as we need to specify the gRPC service the client is going to connect to—this is going to happen in a while. The grpc.Insecure()
 function that is passed as a parameter to grpc.Dial()
 returns a DialOption
 value that disables security for the client connection.

 rand.Seed(time.Now().Unix())
 seed := int64

(rand.Intn(100

))

Due to the different seed values generated and sent to the gRPC server each time the client code gets executed, we are going to get different random values and passwords back from the gRPC server.

 client := protoapi.NewRandomClient(conn)

Next, we need to create a gRPC client by calling protoapi.NewRandomClient()
 and passing the TCP connection to protoapi.NewRandomClient()
 . This client
 variable is going to be used for all interactions with the server. The name of the function that is called depends on the name of the gRPC service—this allows you to differentiate among the different gRPC
 services that a machine might support.

 r, err := AskingDateTime(context.Background(), client)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Println("Server Date and Time:"

, r.Value)

First, we call the AskingDateTime()
 helper function to get the date and time from the gRPC server.

 length := int64

(rand.Intn(20

))
 p, err := AskPass(context.Background(), client, 100

, length+1

)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Println("Random Password:"

, p.Password)

Then, we call AskPass()
 to get a randomly generated password. The length of the password is specified by the length := int64(rand.Intn(20))
 statement.

 place := int64

(rand.Intn(100

))
 i, err := AskRandom(context.Background(), client, seed, place)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Println("Random Integer 1:"

, i.Value)

Then, we test AskRandom()
 with different parameters to make sure that it is going to return different values back.

 k, err := AskRandom(context.Background(), client, seed, place-1

)
 if

 err != nil

 {
 fmt.Println(err)
 return

 }
 fmt.Println("Random Integer 2:"

, k.Value)
}

With both the
 server and client completed, we are ready to test them.

Testing the gRPC server with the client

Now
 that we
 have developed both the server and the client, we are ready to use them. First, we should run gServer.go
 as follows:

$

 go run gServer.go

Using default port: :8080
Serving requests..

The server process does not produce any other output.

Then, we execute gClient.go
 without any command-line parameters. The output you get from gClient.go
 should be similar to the following:

$

 go run gClient.go

Using default port: :8080
Server Date and Time: 2021-07-05 08:32:19.654905 +0300 EEST m=+2.197816168
Random Password: $1!usiz|36
Random Integer 1: 92
Random Integer 2: 78

Apart from the first line, which is the client execution from the UNIX shell, and the second line, which is about the TCP port that is used for connecting to the gRPC server, the next line of the output shows the date and time as returned by the gRPC server. Then we have a random password as generated by the server, as well as two random integers.

If we execute gClient.go
 more than once, we are going to get a different output:

$

 go run gClient.go

Using default port: :8080
Server Date and Time: 2021-07-05 08:32:23.831445 +0300 EEST m=+6.374535148
Random Password: $1!usiz|36N}DO*}{
Random Integer 1: 10
Random Integer 2: 68

The fact that the gRPC server returned different values proves that the gRPC server works as expected.

gRPC can
 do
 more things than the ones presented in this chapter, such as exchange arrays of messages and streaming—RESTful servers cannot be used for data streaming. However, a discussion of these is beyond the scope of this book.

Exercises

	Convert gClient.go
 into a command-line utility using cobra
 .

	Try to convert gServer.go
 into a RESTful server.

	Create a RESTful service that uses gRPC for data exchange. Define the REST API you are going to support, but use gRPC for the communication between the RESTful server and the gRPC server—in this case, the RESTful server is going to act as a gRPC client to the gRPC server.

	Create your own gRPC service that implements integer addition and subtraction.

	How easy or difficult would it be to convert the Phone Book application into a gRPC service?

	Implement a gRPC service that calculates the length of a string.

Summary

gRPC is fast, easy to use and understand, and exchanges data in binary format. This chapter taught you how to define the methods and the messages of a gRPC service, how to translate them into Go code, and how to develop a server and a client for that gRPC service.

So, should you use gRPC or stick with RESTful services? Only you can answer that question. You should go with what feels more natural to you. However, if you are still in doubt and cannot decide, begin by developing a RESTful service and then implement the same service using gRPC. After that, you should be ready to choose.

The last chapter of the book is about generics
 , which is a Go feature that is currently under development and is going to be officially included in Go in 2022. However, nothing prohibits us from discussing generics and showing some Go code to better understand generics.

Additional resources

	gRPC:
https://grpc.io/

	Protocol Buffers 3 Language Guide:
https://developers.google.com/protocol-buffers/docs/proto3

	The grpcurl
 utility:
https://github.com/fullstorydev/grpcurl

	Johan Brandhorst's website:
https://jbrandhorst.com/page/about/

	The documentation of the google.golang.org/grpc
 package can be found at
https://pkg.go.dev/google.golang.org/grpc

	Go and gRPC tutorial:
https://grpc.io/docs/languages/go/basics/

	Protocol buffers:
https://developers.google.com/protocol-buffers

13

Go Generics

This chapter is about generics
 and how to use the new syntax to write generic functions and define generic data types. Currently, generics are under development, but the official release is pretty close and we have a good idea of what features generics are going to have and how generics are going to work.

The new generics syntax is coming to Go 1.18, which, according to the Go development cycle, is going to be officially released in February 2022.

Let me make something clear from the beginning: you do not have to use Go generics if you do not want to and you can still write wonderful, efficient, maintainable, and correct software in Go! Additionally, the fact that you can use generics and support lots of data types, if not all available data types, does not mean that you should do that. Always support the required data types
 , no more, no less, but do not forget to keep an eye on the future of your data and the possibility of supporting data types that were not known at the time of writing your code.

This chapter covers:

	Introducing generics

	Constraints

	Defining new data types with generics

	Interfaces versus generics

	Reflection versus generics

	Concluding remarks: what does the future look like for Go developers?

Introducing generics

Generics
 are a feature that gives you the capability of not precisely specifying the data type of one or more function parameters, mainly because you want to make your functions as generic as possible. In other words, generics allow functions to process several data types without the need to write special code, as is the case with the empty interface or interfaces in general. However, when working with interfaces in Go, you have to write extra code to determine the data type of the interface variable you are working with, which is not the case with generics.

Let me begin by presenting a small code example that implements a function that clearly shows a case where generics can be handy and save you from having to write lots of code:

func

PrintSlice

[

T

any

]

(

s []T

)

 {
 for

 _, v := range

 s {
 fmt.Println(v)
 }
}

So, what do we have here? There is a function named PrintSlice()
 that accepts a slice of any data type. This is denoted by the use of []T
 in the function signature in combination with the [T any]
 part. The [T any]
 part tells the compiler that the data type T
 is going to be determined at execution time. We are also free to use multiple data types using the [T, U, W any]
 notation—after which we should use the T, U, W
 data types in the function signature.

The any
 keyword tells the compiler that there are no constraints
 about the data type of T
 . We are going to discuss constraints in a while—for now, just learn the syntax of generics.

Now imagine writing separate functions to implement the functionality of PrintSlice()
 for slices of integers, strings, floating-point numbers, complex values, and so on. So, we have found a profound case where using generics simplifies the code and our programming efforts. However, not all cases are so obvious, and we should be very careful about overusing any
 .

But what happens if you want to try generics before the official release? There is a solution, which
 is to visit
https://go2goplay.golang.org/

 and place and run your code there.

The initial screen of
https://go2goplay.golang.org/

 is presented in the next figure. Just like the regular Go Playground, the upper part is where you write the code, whereas the bottom part is where you get the results of your code or potential error messages after pressing the Run
 button:

[image: Graphical user interface, text, email Description automatically generated]

Figure 13.1: The Go Playground for trying generics

The rest of this chapter is going to execute the Go code in
https://go2goplay.golang.org/

 . However, I am going to present the code as usual and the output of the code by copying
 and pasting it from
https://go2goplay.golang.org/

 .

The following (hw.go
) is code that uses generics, to help you understand more about them before going
 into more advanced examples:

package

 main
import

 (
 "fmt"

)
func

PrintSlice

[

T

any

]

(s []T)

 {
 for

 _, v := range

 s {
 fmt.Print(v, " "

)
 }
 fmt.Println()
}

PrintSlice()
 is similar to the function
 that we saw earlier in this chapter. However, it prints the elements of each slice in the same line and prints a new line with the help of fmt.Println()
 .

func

main

()

 {
 PrintSlice([]int

{1

, 2

, 3

})
 PrintSlice([]string

{"a"

, "b"

, "c"

})
 PrintSlice([]float64

{1.2

, -2.33

, 4.55

})
}

Here we call PrintSlice()
 with three different data types: int
 , string
 , and float64
 . The Go compiler is not going to complain about that. Instead, it is going to execute the code as if we had three separate functions, one for each data type.

Therefore, running hw.go
 produces the next output:

1 2 3
a b c
1.2 -2.33 4.55

So, each slice is printed as expected using a single generic function.

With that information in mind, let us begin by discussing generics and constraints.

Constraints

Let us say that you have a function
 that works with generics that multiplies two numeric values. Should this function work with all data types? Can this function work with all data types? Can you multiply two strings or two structures? The solution for avoiding that kind of issue is the use of constraints
 .

Forget about multiplication for a while and think about something simpler. Let us say that we want to compare variables for equality—is there a way to tell Go that we only want to work with values that can be compared? Go 1.18 is going to come with predefined constraints—one of them is called comparable
 and includes data types that can be compared
 for equality or inequality.

The code of allowed.go
 illustrates the use of the comparable
 constraint:

package

 main
import

 (
 "fmt"

)
func

Same

[

T

comparable

]

(a, b T)

bool

 {
 if

 a == b {
 return

 true

 }
 return

 false

}

The Same()
 function
 uses the predefined
 comparable
 constraint instead of any
 . In reality, the comparable
 constraint is just a predefined interface that includes all data types that can be compared with ==
 or !=
 . We do not have to write any extra code for checking our input as the function signature makes sure that we are going to deal with acceptable data types only.

func

main

()

 {
 fmt.Println("4 = 3 is"

, Same(4

,3

))
 fmt.Println("aa = aa is"

, Same("aa"

,"aa"

))
 fmt.Println("4.1 = 4.15 is"

, Same(4.1

,4.15

))
}

The main()
 function calls Same()
 three times and prints its results.

Running allowed.go
 produces the next output:

4 = 3 is false
aa = aa is true
4.1 = 4.15 is false

As only Same("aa","aa")
 is true
 , we get the respective output.

If you try to run a statement that includes Same([]int{1,2},[]int{1,3})
 , which tries to compare two slices, the Go Playground is going to generate the following error message:

type checking failed for main
prog.go2:19:31: []int does not satisfy comparable

This happens because we cannot directly compare two slices—this kind of functionality should be implemented manually.

The next subsection shows how to create your own constraints.

Creating constraints

This subsection presents
 an example where we define the data types that are allowed to be passed as parameters to a generic function using an interface
 . The code of numeric.go
 is as follows:

package

 main
import

 (
 "fmt"

)
type

 Numeric interface

 {
 type

 int

, int8

, int16

, int32

, int64

, float64

}

In here, we define a new interface called Numeric
 that specifies the list of supported data types. You can use any data type you want as long as it can be used with the generic function that you are going to implement. In this case, we could have added string
 or uint
 to the list of supported data types.

func

Add

[

T

Numeric

]

(a, b T)

T

 {
 return

 a + b
}

This is the definition of the generic function that uses the Numeric
 constraint.

func

main

()

 {
 fmt.Println("4 + 3 ="

, Add(4

,3

))
 fmt.Println("4.1 + 3.2 ="

, Add(4.1

,3.2

))
}

The previous code is the implementation of the main()
 function with the calls to Add()
 .

Running numeric.go
 produces the next output:

4 + 3 = 7
4.1 + 3.2 = 7.3

Nevertheless, Go rules
 still apply. Therefore, if you try to call Add(4.1,3)
 , you are going to get the next error message:

type checking failed for main
prog.go2:16:33: default type int of 3 does not match inferred type float64 for T

The reason for this error is that the Add()
 function expects two parameters of the same data type
 . However, 4.1
 is a float64
 whereas 3
 is an int
 , so not the same data type.

The next section shows how to use generics when defining new data types.

Defining new data types with generics

In this section we are going to create
 a new data type
 with the use of generics, which is presented in newDT.go
 . The code of newDT.go
 is the following:

package

 main
import

 (
 "fmt"

 "errors"

)
type

 TreeLast[T any] []T

The previous statement declares a new data type named TreeLast
 that uses generics.

func

(t TreeLast[T])

replaceLast

(element T)

(TreeLast[T], error)

 {
 if

 len

(t) == 0

 {
 return

 t, errors.New("This is empty!"

)
 }

 t[len

(t) - 1

] = element
 return

 t, nil

}

replaceLast()
 is a method that operates on TreeLast
 variables. Apart from the function signature, there is nothing else that shows the use of generics.

func

main

()

 {
 tempStr := TreeLast[string

]{"aa"

, "bb"

}
 fmt.Println(tempStr)
 tempStr.replaceLast("cc"

)
 fmt.Println(tempStr)

In this first part of main()
 , we create a TreeLast
 variable with the aa
 and bb
 string
 values and we replace the bb
 value with cc
 , using a call to replaceLast("cc")
 .

 tempInt := TreeLast[int

]{12

, -3

}
 fmt.Println(tempInt)
 tempInt.replaceLast(0

)
 fmt.Println(tempInt)
}

The second part of main()
 does a similar thing
 to the first
 part using a TreeLast
 variable populated with int
 values. So TreeLast
 works with both string
 and int
 values without any issues.

Running newDT.go
 produces the next output:

[aa bb]
[aa cc]

The preceding is the output related to the TreeLast[string]
 variable.

[12 -3]
[12 0]

The final output is related to the TreeLast[int]
 variable.

The next subsection is about using generics in Go structures.

Using generics in Go structures

In this section, we are going
 to implement a linked
 list that works with generics—this is one of the cases where the use of generics simplifies things because it allows you to implement the linked list once while being able to work with multiple data types.

The code of structures.go
 is the following:

package

 main
import

 (
 "fmt"

)
type

 node[T any] struct

 {
 Data T
 next *node[T]
}

The node
 structure
 uses generics in order to support nodes
 that can store all kinds of data. This does not mean that the next
 field of a node
 can point to another node
 with a Data
 field with a different data type. The rule that a linked list contains elements of the same data type still applies—it just means that if you want to create three linked lists, one for storing string
 values, one for storing int
 values, and a third one for storing JSON records of a given struct
 data type, you do not need to write any extra code to do so.

type

 list[T any] struct

 {
 start *node[T]
}

This is the definition of the root node of a linked list of node
 nodes. Both list
 and node
 must share the same data type, T
 . However, as stated before, this does not prevent you from creating multiple linked lists of various data types.

You can still replace any
 with a constraint in both the definition of node
 and list
 if you want to restrict the list of allowed data types.

func

(l *list[T])

add

(data T)

 {
 n := node[T]{
 Data: data,
 next: nil

,
 }

The add()
 function is generic in order to be able to work with all kinds of nodes. Apart from the signature of add()
 , all the remaining code is not associated with the use of generics.

 if

 l.start == nil

 {
 l.start = &n
 return

 }

 if

 l.start.next == nil

 {
 l.start.next = &n
 return

 }

These two if
 blocks have to do with the adding of a new node to the linked list.

 temp := l.start
 l.start = l.start.next
 l.add(data)
 l.start = temp
}

The last part of add()
 has to do with defining the proper associations between nodes when adding a new node to the list.

func

main

()

 {
 var

 myList list[int

]

First, we define
 a linked list of int
 values
 in main()
 , which is the linked list that we are going to work with.

 fmt.Println(myList)

The initial value of myList
 is nil
 , as the list is empty and does not contain any nodes.

 myList.add(12

)
 myList.add(9

)
 myList.add(3

)
 myList.add(9

)

In this first part, we add four elements to the linked list.

 // Print all elements

 for

 {
 fmt.Println("*"

, myList.start)
 if

 myList.start == nil

 {
 break

 }
 myList.start = myList.start.next
 }
}

The last part of main()
 is about printing all the elements of the list by traversing it with the help of the next
 field, which points to the next node in the list.

Running structures.go
 produces the next output:

{<nil>}
* &{12 0xc00010a060}
* &{9 0xc00010a080}
* &{3 0xc00010a0b0}
* &{9 <nil>}
* <nil>

Let us discuss the output
 a little more. The first line
 shows that the value of the empty list is nil
 . The first node of the list holds the value 12
 and a memory address (0xc00010a060
) that points to the second node. This goes on until we reach the last node, which holds the value of 9
 , which appears twice in this linked list, and points to nil
 , because it is the last node. Therefore, the use of generics makes the linked list able to work with multiple data types.

The next section discusses the differences between using interfaces and generics to support multiple data types.

Interfaces versus generics

This section presents
 a program that increments a numeric value by one using interfaces and generics
 so that you can compare the implementation details.

The code of interfaces.go
 illustrates the two techniques and contains the next code:

package

 main
import

 (
 "fmt"

)
type

 Numeric interface

 {
 type

 int

, int8

, int16

, int32

, int64

, float64

}

This is where we define a constraint named Numeric
 for limiting the permitted data types.

func

Print

(s

interface

{})

 {
 // type switch

 switch

 s.(type

) {

The Print()
 function
 uses the empty interface for getting input
 and a type switch to work with that input parameter.

Put simply, we are using a type switch
 to differentiate between the supported data types—in this case, the supported data types are just int
 and float64
 , which has to do with the implementation of the type switch. However, adding more data types requires code changes, which is not the most efficient solution.

 case

 int

:
 fmt.Println(s.(int

)+1

)

This branch is how we handle the int
 case.

 case

 float64

:
 fmt.Println(s.(float64

)+1

)

This branch is how we handle the float64
 case.

 default

:
 fmt.Println("Unknown data type!"

)
 }
}

The default
 branch is how we handle all unsupported data types.

The biggest issue with Print()
 is that due to the use of the empty interface, it accepts all kinds of input. As a result, the function signature does not help us limit the allowed data types. The second issue with Print()
 is that we need to specifically handle each case—handling more cases means writing more code.

On the other hand, the compiler does not have to guess many things with that code, which is not the case with generics, where the compiler and the runtime have more work to do. This kind of work introduces delays in the execution time.

func

PrintGenerics

[

T

any

]

(s T)

 {
 fmt.Println(s)
}

PrintGenerics()
 is a generic function that can handle all available data types simply and elegantly.

func

PrintNumeric

[

T

Numeric

]

(s T)

 {
 fmt.Println(s+1

)
}

The PrintNumeric()
 function
 supports all numeric data types
 with the use of the Numeric
 constraint. No need to specifically add code for supporting each distinct data type, as happens with Print()
 .

func

main

()

 {
 Print(12

)
 Print(-1.23

)
 Print("Hi!"

)

The first part of main()
 uses Print()
 with various types of input: an int
 value, a float64
 value, and a string
 value, respectively.

 PrintGenerics(1

)
 PrintGenerics("a"

)
 PrintGenerics(-2.33

)

As stated before, PrintGenerics()
 works with all data types, including string
 values.

 PrintNumeric(1

)
 PrintNumeric(-2.33

)
}

The last part of main()
 uses PrintNumeric()
 with numeric values only, due to the use of the Numeric
 constraint.

Running interfaces.go
 produces the next output:

13
-0.22999999999999998
Unknown data type!

The preceding three lines of the output are from the Print()
 function, which uses the empty interface.

1
a
-2.33

The previous three lines
 of the output
 are from the PrintGenerics()
 function, which uses generics and supports all available data types. As a result, it cannot increase the value of its input because we do not know for sure that we are dealing with a numeric value. Therefore, it just prints the given input.

2
-1.33

The last two lines are generated by the two PrintNumeric()
 calls, which operate using the Numeric
 constraint.

So in practice, when you have to support multiple data types, the use of generics might be a better choice than using interfaces.

The next section discusses the use of reflection as a way of bypassing the use of generics.

Reflection versus generics

In this section, we develop
 a utility that prints the elements
 of a slice in two ways: first, using reflection, and second, using generics.

The code of reflection.go
 is as follows:

package

 main
import

 (
 "fmt"

 "reflect"

)
func

PrintReflection

(s

interface

{})

 {
 fmt.Println("** Reflection"

)
 val := reflect.ValueOf(s)
 if

 val.Kind() != reflect.Slice {
 return

 }
 for

 i := 0

; i < val.Len(); i++ {
 fmt.Print(val.Index(i).Interface(), " "

)
 }
 fmt.Println()
}

Internally, the PrintReflection()
 function works
 with slices only. However, as we cannot
 express that in the function signature, we need to accept an empty interface parameter. Additionally, we have to write more code to get the desired output.

In more detail, first, we need to make sure that we are processing a slice (reflect.Slice
) and second, we have to print the slice elements using a for
 loop, which is pretty ugly.

func

PrintSlice

[

T

any

]

(s []T)

 {
 fmt.Println("** Generics"

)
 for

 _, v := range

 s {
 fmt.Print(v, " "

)
 }
 fmt.Println()
}

Once again, the implementation of the generic function is simpler and therefore easier to understand. Moreover, the function signature specifies that only slices are accepted as function parameters—we do not have to perform any additional checks for that as this is a job for the Go compiler. Last, we use a simple for
 loop with range
 to print the slice elements.

func

main

()

 {
 PrintSlice([]int

{1

, 2

, 3

})
 PrintSlice([]string

{"a"

, "b"

, "c"

})
 PrintSlice([]float64

{1.2

, -2.33

, 4.55

})
 PrintReflection([]int

{1

, 2

, 3

})
 PrintReflection([]string

{"a"

, "b"

, "c"

})
 PrintReflection([]float64

{1.2

, -2.33

, 4.55

})
}

The main()
 function calls PrintSlice()
 and PrintReflection()
 with various kinds of input to test their operation.

Running reflection.go
 generates the next output:

** Generics
1 2 3
** Generics
a b c
** Generics
1.2 -2.33 4.55

The first six lines are produced by taking advantage of generics and print the elements of a slice of int
 values, a slice of string
 values, and a slice of float64
 values.

** Reflection
1 2 3
** Reflection
a b c
** Reflection
1.2 -2.33 4.55

The last six lines
 of the output produce the same output,
 but this time using reflection. There is no difference in the output—all differences are in the code found in the implementations of PrintReflection()
 and PrintSlice()
 for printing the output. As expected, generics code is simpler and shorter than Go code that uses reflection, especially when you must support lots of different data types.

Exercises

	Create a PrintMe()
 method in structures.go
 that prints all the elements of the linked list

	Create two extra functions in reflection.go
 in order to support the printing of strings using reflection and generics

	Implement the delete()
 and search()
 functionality using generics for the linked list found in structures.go

	Implement a doubly-linked list using generics starting with the code found in structures.go

Summary

This chapter presented generics and gave you the rationale behind the invention of generics. Additionally, it presented the Go syntax for generics as well as some issues that might come up if you use generics carelessly. It is expected that there are going to be changes to the Go standard library in order to support generics and that there is going to be a new package named slices
 to take advantage of the new language features.

Although a function with generics is more flexible, code with generics usually runs slower than code that works with predefined static data types. So, the price you pay for flexibility is execution speed. Similarly, Go code with generics has a bigger compilation time than equivalent code that does not use generics. Once the Go community begins working with generics in real-world scenarios, the cases where generics offer the highest productivity are going to become much more evident. At the end of the day, programming is about understanding the cost of your decisions. Only then can you consider yourself a programmer. So, understanding the cost of using generics instead of interfaces, reflection, or other techniques is important.

So, what does the future look like for Go developers? In short, it looks wonderful! You should already be enjoying programming in Go, and you should continue to do so as the language evolves. If you want to know the latest and greatest of Go as it is being discussed by the team, you should definitely visit the official GitHub place of the Go team at
https://github.com/golang

 .

Go helps you to create great software! So, go and create great software!

Additional resources

	Google I/O 2012—Meet the Go team:
https://youtu.be/sln-gJaURzk

	Meet the authors of Go:
https://youtu.be/3yghHvvZQmA

	This is a video of Brian Kernighan interviewing Ken Thompson—not directly related to Go:
https://youtu.be/EY6q5dv_B-o

	Brian Kernighan on successful language design—not directly related to Go:
https://youtu.be/Sg4U4r_AgJU

	Brian Kernighan: UNIX, C, AWK, AMPL, and Go Programming from the Lex Fridman Podcast:
https://youtu.be/O9upVbGSBFo

	Why Generics?
https://blog.golang.org/why-generics

	The Next Step for Generics:
https://blog.golang.org/generics-next-step

	A Proposal for Adding Generics to Go:
https://blog.golang.org/generics-proposal

	Proposal for the slices
 package:
https://github.com/golang/go/issues/45955

A note from the author

Being a good programmer is hard, but it can be done. Keep improving and—who knows—you might become famous and have a movie made about you!

Thank you for reading this book. Feel free to contact me with suggestions, questions, or maybe ideas for other books!

Soli Deo gloria

Appendix A – Go Garbage Collector

This Appendix is all about the Go Garbage Collector
 (GC
). This crucial part of Go can affect the performance of your code more than any other Go component. We will begin by talking about the heap and the stack.

Heap and stack

The heap
 is the place where
 programming languages store global variables—the heap is where garbage collection takes place. The stack
 is the place where programming languages store temporary
 variables used by functions—each function has its own stack. As goroutines are located in user space, the Go runtime is responsible for the rules that govern their operation. Additionally, each goroutine has its own stack, whereas the heap is "shared" among goroutines.

In C++, when you create new variables
 using the new
 operator, you know that these variables are going to the heap. This is not the case with Go and the use of the new()
 and make()
 functions. In Go, the compiler decides where a new variable is going to be placed based on its size and the result of escape analysis
 . This is the reason that you can return pointers to local variables from Go functions.

As we have not seen new()
 in this book many times, have in mind that new()
 returns pointers to initialized memory
 .

If you want to know where the variables of a program are allocated by Go, you can use the -m
 GC flag. This is illustrated in allocate.go
 —this is a regular program that needs no modifications in order to display the extra output as all details are handled by Go.

package

 main
import

 "fmt"

const

 VAT = 24

type

 Item struct

 {
 Description string

 Value float64

}
func

Value

(price

float64

)

float64

 {
 total := price + price*VAT/100

 return

 total
}
func

main

()

 {
 t := Item{Description: "Keyboard"

, Value: 100

}
 t.Value = Value(t.Value)
 fmt.Println(t)
 tP := &Item{}
 *&tP.Description = "Mouse"

 *&tP.Value = 100

 fmt.Println(tP)
}

Running allocate.go
 generates the next output—the output is a result of the use of -gcflags '-m'
 , which modifies the generated executable. You should not create executable binaries that go to production with the use of -gcflags
 flags:

$

 go run -gcflags

'-m'

 allocate.go

#

 command-line-arguments

./allocate.go:12:6: can inline Value
./allocate.go:19:17: inlining call to Value
./allocate.go:20:13: inlining call to fmt.Println
./allocate.go:25:13: inlining call to fmt.Println
./allocate.go:20:13: t escapes to heap

The t escapes to heap
 message means
 that t
 escapes the function. Put simply, it means that t
 is
 used outside of the function and does not have a local scope (because it is passed outside the function). However, this does not necessarily mean that the variable has moved to the heap.

Another message that is not shown here is moved to heap
 . This message shows that the compiler decided to move a variable to the heap because it might be used outside of the function.

./allocate.go:20:13: []interface {}{...} does not escape
./allocate.go:22:8: &Item{} escapes to heap
./allocate.go:25:13: []interface {}{...} does not escape

The does not escape
 message indicates that the interface does not escape to the heap. The Go compiler performs escape analysis
 to find out whether memory needs to be allocated at the heap or
 should stay within the stack.

<autogenerated>:1: .this does not escape
{Keyboard 124}
&{Mouse 100}

The last two lines
 of the output consist of the output generated by the two fmt.Println()
 statements.

If you want to get a more detailed output, you can use -m
 twice:

$

 go run -gcflags

'-m -m'

 allocate.go

#

 command-line-arguments

./allocate.go:12:6: can inline Value with cost 13 as: func(float64) float64 { total := price + price * VAT / 100; return total }
./allocate.go:17:6: cannot inline main: function too complex: cost 199 exceeds budget 80
./allocate.go:19:17: inlining call to Value func(float64) float64 { total := price + price * VAT / 100; return total }
./allocate.go:20:13: inlining call to fmt.Println func(...interface {}) (int, error) { var fmt..autotmp_3 int; fmt..autotmp_3 = <N>; var fmt..autotmp_4 error; fmt..autotmp_4 = <N>; fmt..autotmp_3, fmt..autotmp_4 = fmt.Fprintln(io.Writer(os.Stdout), fmt.a...); return fmt..autotmp_3, fmt..autotmp_4 }
./allocate.go:25:13: inlining call to fmt.Println func(...interface {}) (int, error) { var fmt..autotmp_3 int; fmt..autotmp_3 = <N>; var fmt..autotmp_4 error; fmt..autotmp_4 = <N>; fmt..autotmp_3, fmt..autotmp_4 = fmt.Fprintln(io.Writer(os.Stdout), fmt.a...); return fmt..autotmp_3, fmt..autotmp_4 }
./allocate.go:22:8: &Item{} escapes to heap:
./allocate.go:22:8: flow: tP = &{storage for &Item{}}:
./allocate.go:22:8: from &Item{} (spill) at ./allocate.go:22:8
./allocate.go:22:8: from tP := &Item{} (assign) at ./allocate.go:22:5
./allocate.go:22:8: flow: ~arg0 = tP:
./allocate.go:22:8: from tP (interface-converted) at ./allocate.go:25:13
./allocate.go:22:8: from ~arg0 := tP (assign-pair) at ./allocate.go:25:13
./allocate.go:22:8: flow: {storage for []interface {}{...}} = ~arg0:
./allocate.go:22:8: from []interface {}{...} (slice-literal-element) at ./allocate.go:25:13
./allocate.go:22:8: flow: fmt.a = &{storage for []interface {}{...}}:
./allocate.go:22:8: from []interface {}{...} (spill) at ./allocate.go:25:13
./allocate.go:22:8: from fmt.a = []interface {}{...} (assign) at ./allocate.go:25:13
./allocate.go:22:8: flow: {heap} = *fmt.a:
./allocate.go:22:8: from fmt.Fprintln(io.Writer(os.Stdout), fmt.a...) (call parameter) at ./allocate.go:25:13
./allocate.go:20:13: t escapes to heap:
./allocate.go:20:13: flow: ~arg0 = &{storage for t}:
./allocate.go:20:13: from t (spill) at ./allocate.go:20:13
./allocate.go:20:13: from ~arg0 := t (assign-pair) at ./allocate.go:20:13
./allocate.go:20:13: flow: {storage for []interface {}{...}} = ~arg0:
./allocate.go:20:13: from []interface {}{...} (slice-literal-element) at ./allocate.go:20:13
./allocate.go:20:13: flow: fmt.a = &{storage for []interface {}{...}}:
./allocate.go:20:13: from []interface {}{...} (spill) at ./allocate.go:20:13
./allocate.go:20:13: from fmt.a = []interface {}{...} (assign) at ./allocate.go:20:13
./allocate.go:20:13: flow: {heap} = *fmt.a:
./allocate.go:20:13: from fmt.Fprintln(io.Writer(os.Stdout), fmt.a...) (call parameter) at ./allocate.go:20:13
./allocate.go:20:13: t escapes to heap
./allocate.go:20:13: []interface {}{...} does not escape
./allocate.go:22:8: &Item{} escapes to heap
./allocate.go:25:13: []interface {}{...} does not escape
<autogenerated>:1: .this does not escape
{Keyboard 124}
&{Mouse 100}

However, I find this output too
 crowded and complex. Usually, using -m
 just once reveals what is
 happening behind the scenes regarding the program heap and stack.

Now that we know about the heap and the stack, let us continue by discussing garbage collection.

Garbage collection

Garbage collection
 is the
 process of freeing up memory space that is not being used. In other words, the GC sees which objects are out of scope and cannot be referenced anymore and frees the memory space they consume. This process happens in a concurrent way while a Go program is running and not before or after the execution of the program. The documentation of the Go GC implementation states the following:

"The GC runs concurrently with mutator threads, is type accurate (also known as precise), and allows multiple GC threads to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is non-generational and non-compacting. Allocation is done using size segregated per P allocation areas to minimize fragmentation while eliminating locks in the common case."

Fortunately, the Go standard library offers functions that allow you to study the operation of the GC and learn more about what the GC covertly does. These functions are illustrated in the gColl.go
 utility, which can be found in the ch03
 directory of the book's GitHub repository. The source code of gColl.go
 is presented here in chunks.

package

 main
import

 (
 "fmt"

 "runtime"

 "time"

)

You need the runtime
 package because it allows you to obtain information about the Go runtime system, which, among other things, includes the operation of the GC.

func

printStats

(mem runtime.MemStats)

 {
 runtime.ReadMemStats(&mem)
 fmt.Println("mem.Alloc:"

, mem.Alloc)
 fmt.Println("mem.TotalAlloc:"

, mem.TotalAlloc)
 fmt.Println("mem.HeapAlloc:"

, mem.HeapAlloc)
 fmt.Println("mem.NumGC:"

, mem.NumGC, "\n"

)
}

The main purpose of printStats()
 is to
 avoid writing the same Go code multiple times. The runtime.ReadMemStats()
 call gets the latest garbage collection statistics for you.

func

main

()

 {
 var

 mem runtime.MemStats
 printStats(mem)
 for

 i := 0

; i < 10

; i++ {
 // Allocating 50,000,000 bytes

 s := make

([]byte

, 50000000

)
 if

 s == nil

 {
 fmt.Println("Operation failed!"

)
 }
 }
 printStats(mem)

In this part, we have a for
 loop that creates 10-byte slices with 50,000,000 bytes each. The reason for this is that by allocating large amounts of memory, we can trigger the GC.

 for

 i := 0

; i < 10

; i++ {
 // Allocating 100,000,000 bytes

 s := make

([]byte

, 100000000

)
 if

 s == nil

 {
 fmt.Println("Operation failed!"

)
 }
 time.Sleep(5

 * time.Second)
 }
 printStats(mem)
}

The last part of the program makes even bigger memory allocations – this time, each byte slice has 100,000,000 bytes.

Running gColl.go
 on a macOS Big Sur machine with 24 GB of RAM produces the following kind of output:

$

 go run gColl.go

mem.Alloc: 124616
mem.TotalAlloc: 124616
mem.HeapAlloc: 124616
mem.NumGC: 0
mem.Alloc: 50124368
mem.TotalAlloc: 500175120
mem.HeapAlloc: 50124368
mem.NumGC: 9
mem.Alloc: 122536
mem.TotalAlloc: 1500257968
mem.HeapAlloc: 122536
mem.NumGC: 19

The value of mem.Alloc
 is the bytes of allocated heap objects—allocated
 are all the objects that the GC has not yet freed. mem.TotalAlloc
 shows the cumulative bytes allocated for heap objects—this number does not decrease when objects are freed, which means that it keeps increasing. Therefore, it shows the total number of bytes allocated for
 heap objects during program execution. mem.HeapAlloc
 is the same as mem.Alloc
 . Last, mem.NumGC
 shows the total number of completed garbage collection cycles. The bigger that value is, the more you have to consider how you allocate memory in your code and if there is a way to optimize that.

If you want even more verbose output regarding the operation of the GC, you can combine go run gColl.go
 with GODEBUG=gctrace=1
 . Apart from the regular program output, you get some extra metrics—this is illustrated in the following output:

$

 GODEBUG=gctrace=1 go run gColl.go

gc 1 @0.021s 0%: 0.020+0.32+0.015 ms clock, 0.16+0.17/0.33/0.22+0.12 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 2 @0.041s 0%: 0.074+0.32+0.003 ms clock, 0.59+0.087/0.37/0.45+0.030 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
.
.
.
gc 18 @40.152s 0%: 0.065+0.14+0.013 ms clock, 0.52+0/0.12/0.042+0.10 ms cpu, 95->95->0 MB, 96 MB goal, 8 P
gc 19 @45.160s 0%: 0.028+0.12+0.003 ms clock, 0.22+0/0.13/0.081+0.028 ms cpu, 95->95->0 MB, 96 MB goal, 8 P
mem.Alloc: 120672
mem.TotalAlloc: 1500256376
mem.HeapAlloc: 120672
mem.NumGC: 19

As before, we have the same number of completed garbage collection cycles (19
). However, we get extra information about the heap size of each cycle. So, for garbage collection cycle 19 (gc 19
), we get the following:

gc 19 @45.160s 0%: 0.028+0.12+0.003 ms clock, 0.22+0/0.13/0.081+0.028 ms cpu, 95->95->0 MB, 96 MB goal, 8 P

Now, let us explain the 95->95->0 MB
 triplet in the previous line of output. The first value (95
) is the heap
 size when the GC is about to run. The second value (95
) is the heap size when the GC ends its operation. The last value is the size of the live heap (0
).

The tricolor algorithm

The operation of the Go GC
 is based on the tricolor algorithm
 . Note that the tricolor algorithm is not unique to Go and can be used in other programming languages
 as well.

Strictly speaking, the official name for the
 algorithm used in Go is the tricolor mark-and-sweep algorithm
 . It can work concurrently with the program
 and uses a write barrier
 . This means that when a Go program runs, the Go scheduler is responsible for the scheduling of the application as well as the GC, which also runs as a goroutine. This is as if the Go scheduler must deal with a
 regular application with multiple goroutines
 !

The core idea behind this algorithm came from Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens, and was first illustrated in a paper named On- the-Fly Garbage Collection: An Exercise in Cooperation
 .

The primary principle behind the tricolor mark-and-sweep algorithm is that it divides the objects of the heap
 into three different sets according to their color, which is assigned by the algorithm and can be black, gray, or white. The
 objects of the black set
 are guaranteed to have no pointers to
 any object of the white set
 . On the other hand, an object of the white set can point to an object in the black set because this does not affect the operation of the GC. The objects of the gray set
 might have
 pointers to some objects of the white set. Finally, the objects of the white set
 are the candidates for garbage collection.

So, when the garbage collection begins, all objects are white, and the GC visits all the root objects and colors them gray. The roots
 are the objects that can be directly accessed by the application, which includes global variables and other things on the stack. These objects mostly depend on the Go code of a particular program.

After that, the GC picks a gray object, makes it black, and starts looking at whether that object has pointers to other objects of the white set or not. Therefore, when an object of the gray set is scanned for pointers to other objects, it is colored black. If that scan discovers that this particular object has one or more pointers to a white object, it puts that white object in the gray set. This process keeps going for as long as objects
 exist in the gray set. After that, the objects in the white set are unreachable and their memory space can be reused. Therefore, at this point, the elements of the white set are said to be garbage collected. Please note that no object can go directly from the black set to the white set, which allows the
 algorithm to operate and be able to clear the objects on the white set. As mentioned before, no object of the black set can directly point to an object of the white set. Additionally, if an object of the gray set becomes unreachable at some point in a garbage collection cycle, it will not be collected at this garbage collection cycle but in the next one! Although this is not an optimal situation, it is not that bad.

During this process, the running application is
 called the mutator
 . The mutator runs a small function named the write barrier
 , which is
 executed each time a pointer in the heap is modified. If the pointer of an object in the heap is modified, this means that this object is now reachable, the write barrier colors it gray, and puts it in the gray set. The mutator is responsible for the invariant that no element of the black set has a pointer to an element of the white set. This is accomplished with the help of the write barrier function. Failing to accomplish this invariant will ruin the garbage collection process and will most likely crash your program in a pretty bad and undesirable way!

So, there are three different colors: black, white, and gray. When the algorithm begins, all objects are colored white. As the algorithm keeps going, white objects are moved into one of the other two sets. The objects that are left in the white set are the ones that are going to be cleared at some point.

The next figure displays the three color sets with objects in them.

[image: Shape, icon, circle Description automatically generated]

Figure 1: The Go GC represents the heap of a program as a graph

While object E, which is in the white set, can access object F, it cannot be accessed by any other object because no other object points to object E, which makes it a perfect candidate for
 garbage collection! Additionally, objects A, B, and C are root objects and are always reachable; therefore, they cannot be garbage collected.

Can you guess what happens next? Well, the algorithm will have to process the remaining
 elements of the gray set, which means that both objects A and F will go to the black set.

Object A goes to the black set because it is a root element and F goes to the black set because it does not point to any other object while it is in the gray set.

After object E is garbage collected, object F will become unreachable and will be garbage collected in the next cycle of the GC because an unreachable object cannot magically become reachable in the next iteration of the garbage collection cycle.

Go garbage collection can
 also be applied to variables such as channels
 . When the GC finds out that a channel is unreachable, which is when the channel variable cannot be accessed anymore, it will free its resources even if the channel has not been closed.

Go allows you to
 manually initiate garbage collection cycles by putting a runtime.GC()
 statement in your Go code. However, have in mind that runtime.GC()
 blocks the caller and it might block the entire program, especially if you are running a very busy Go program with many objects. This mainly happens because
 you cannot perform garbage collections while everything else is rapidly changing, as this will not allow the GC to clearly identify the members of the
 white, black, and gray sets. This garbage collection status is also called a garbage collection safe-point
 .

Note that the Go GC is always being improved by the Go team. They are trying to make it faster by lowering the number of scans it needs to perform over the data of the three sets. However, despite the various optimizations, the general idea behind the algorithm remains the same.

You can find the long and relatively advanced Go code of the GC at
https://github.com/golang/go/blob/master/src/runtime/mgc.go

 , which you can study if you want to learn even more information about the garbage collection operation. You can even make changes to that code if you are brave enough!

More about the operation of the Go garbage collector

This section talks more
 about the Go GC and presents additional information about its activities. The main concern of the Go GC is low latency
 , which basically means short pauses in its operation in order to have a real-time operation.

On the other hand, what a program does is create new objects and manipulate existing ones with pointers all the time. This process can end up creating objects that can no longer be accessed because there are no pointers pointing to these objects. These objects are then garbage and wait for the GC to clean them up and free their memory space. After that, the memory space that has been freed is ready to be used again.

The mark-and-sweep algorithm is the simplest algorithm used. The algorithm stops the program execution (stop-the-world garbage collector
) to visit all the accessible objects of the heap of a
 program and marks
 them. After that, it sweeps
 the inaccessible objects. During the mark phase of the algorithm, each object is marked as white, gray, or black. The children of a gray object are colored gray, whereas the original gray object is now colored black. The sweep phase begins when there are no more gray objects to examine. This technique works because there are no pointers from the black set to the white set, which is a fundamental invariant of the algorithm.

Although the mark-and-sweep algorithm is simple, it suspends the execution of the program while it is running, which means that it adds latency to the actual process. Go tries to lower that latency by running the GC as a concurrent process and by using the tricolor algorithm described in the previous section. However, other processes can move pointers or
 create new objects while the GC runs concurrently. This fact can make things difficult for the GC.

As a result, the basic principle that will allow the tricolor algorithm to operate concurrently while maintaining the fundamental invariant of the mark-and-sweep algorithm is that no object of the black set can point to an object of the white set
 .

The solution to this problem is fixing all the cases that can cause a problem to the algorithm. Therefore, new objects must go to the gray set because this way, the fundamental invariant of the mark-and-sweep algorithm cannot be altered. Additionally, when a pointer of the program is moved, you color the object that the pointer points to as gray. The gray set acts like a barrier between the white set and the black set. Finally, each time a pointer is moved, some Go code gets automatically executed, which is the write barrier mentioned earlier, which does some recoloring. The latency introduced by the execution of the write barrier code is the price we have to pay for being able to run the GC concurrently.

Please note that the Java
 programming language has many GCs that are highly configurable with the help of multiple parameters. One of these Java GCs is called G1
 and it is recommended for low-latency applications. Although Go does not have multiple GCs, it does have knobs that you can use to tune the GC for your applications.

The section that follows discusses maps and slices from a garbage collection perspective because sometimes the way we handle variables influences the operation of the GC.

Maps, slices, and the Go garbage collector

In this section, we discuss the operation of the Go GC in relation to maps and slices. The purpose of this section is to let you write code that makes the work of the GC easier.

Using a slice

The example in this section
 uses a slice to store a large number of structures. Each structure stores two integer values. This is implemented in sliceGC.go
 as follows:

package

 main
import

 (
 "runtime"

)
type

 data struct

 {
 i, j int

}
func

main

()

 {
 var

 N = 80000000

 var

 structure []data
 for

 i := 0

; i < N; i++ {
 value := int

(i)
 structure = append

(structure, data{value, value})
 }
 runtime.GC()
 _ = structure[0

]
}

The last statement (_ = structure[0]
) is used to prevent the GC from garbage collecting the structure
 variable too early, as it is not referenced or used outside of the for
 loop. The same technique will be used in the three Go programs that follow.

Apart from this important detail, a for
 loop is used for putting all values into structures that are stored in the structure
 slice variable. An equivalent way of doing that is the use of runtime.KeepAlive()
 . The program generates no output—it just triggers the GC
 using a call to runtime.GC()
 .

Using a map with pointers

In this subsection, we use a
 map for storing pointers. This time, the map is using integer keys that reference the pointers. The name of the program is mapStar.go
 and contains the following Go code:

package main
import

 (
 "runtime"

)
func

main

()

 {
 var

 N = 80000000

 myMap := make

(map

[int

]*int

)
 for

 i := 0

; i < N; i++ {
 value := int

(i)
 myMap[value] = &value
 }
 runtime.GC()
 _ = myMap[0

]
}

The operation of the program is the same as in sliceGC.go
 from the previous section. What differs is the use of a map (make(map[int]*int)
) for storing the pointers to int
 . As before, the program produces no output.

Using a map without pointers

In this subsection, we use a
 map that stores integer values directly instead of pointers to integers. The important code of mapNoStar.go
 is the following:

func

main

()

 {
 var

 N = 80000000

 myMap := make

(map

[int

]int

)
 for

 i := 0

; i < N; i++ {
 value := int

(i)
 myMap[value] = value
 }
 runtime.GC()
 _ = myMap[0

]
}

Once again, the program
 produces no output.

Splitting the map

In this last program, we
 used a different technique called sharding, where we split one long map into a map of maps. The
 implementation of the main()
 function of mapSplit.go
 is as follows:

func

main

()

 {
 var

 N = 80000000

 split := make

([]map

[int

]int

, 2000

)
 for

 i := range

 split {
 split[i] = make

(map

[int

]int

)
 }
 for

 i := 0

; i < N; i++ {
 value := int

(i)
 split[i%2000

][value] = value
 }
 runtime.GC()
 _ = split[0

][0

]
}

The code uses two for
 loops, one for creating the map of maps and another one for storing the desired data values in the map of maps.

As all four programs are using huge data structures, they are consuming large amounts of memory. Programs that consume lots of memory space trigger the Go GC more often. The next subsection presents an evaluation of the techniques presented.

Comparing the performance of the presented techniques

In this subsection, we compare
 the performance of each one of these four implementations using the time
 command of zsh(1)
 , which is pretty similar to the time(1)
 UNIX command.

$

 time go run sliceGC.go

go run sliceGC.go 2.68s user 1.39s system 127% cpu 3.184 total
$

 time go run mapStar.go

go run mapStar.go 55.58s user 3.24s system 209% cpu 28.110 total
$

 time go run mapNoStar.go

go run mapNoStar.go 20.63s user 1.88s system 99% cpu 22.684 total
$

 time go run mapSplit.go

go run mapSplit.go 20.84s user 1.29s system 100% cpu 21.967 total

It turns out that the map versions are slower than the slice version. Unfortunately for maps, the map version will always
 be slower than the slice version because of the execution of the hash function and the fact that the data is not contiguous. In maps, data is stored in a bucket determined by the output of the hash function.

Additionally, the first map program (mapStar.go
) may be triggering some garbage collection slowdown because taking the address of &value
 will cause it to escape to the heap. Every other program is just using the stack for those locals. When variables escape to the heap, they cause more garbage collection pressure.

Accessing an element of a map or a slice has O(1)
 runtime, which means that the access time does not depend on the number of elements found in the map or the slice. However, the way these structures work affects the overall speed.

Additional resources

	Go FAQ: How do I know whether a variable is allocated on the heap or the stack?
https://golang.org/doc/faq#stack_or_heap

	The list of available -gcflags
 options:
https://golang.org/cmd/compile/

	If you want to learn more about garbage collection, you should visit
http://gchandbook.org/

[image:]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	Improve your learning with Skill Plans built especially for you

	Get a free eBook or video every month

	Fully searchable for easy access to vital information

	Copy and paste, print, and bookmark content

At
www.packt.com

 , you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in this other book by Packt:

[image:]

Git for Programmers

Jesse Liberty

ISBN: 9781801075732

	Create and clone repositories

	Understand the difference between local and remote repositories

	Use, manage, and merge branches back into the main branch

	Utilize tools to manage merge conflicts

	Manage commits on your local machine through interactive rebasing

	Use the log to gain control over all the data in your repository

	Use bisect, blame, and other tools to undo Git mistakes

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit
authors.packtpub.com

 and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts

Now you've finished Mastering Go, Third Edition
 , we'd love to hear your thoughts! If you purchased the book from Amazon, please
click here to go straight to the Amazon review page

 for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

Index

Symbols

3D shapes

sort.Interface, implementing 168
 , 169
 , 171
 , 172

A

abstract types 148

anonymous function 323

anonymous functions 189
 , 190

Apache 381

arrays

characteristics and limitations 71

slices, connecting to 86
 , 87
 , 88

automated testing 571

B

benchmark functions

wrongly defined 552
 , 553

benchstat utility

about 551

benchmark results, comparing with 551
 , 552

binary files

downloading 527
 , 528
 , 529
 , 530
 , 531
 , 532

uploading 527
 , 528
 , 529
 , 530
 , 531
 , 532

black box testing 576

buffered channel 331

buffered channels 343
 , 344
 , 345

buffered writing and reading

benchmarking 547
 , 548
 , 549
 , 550
 , 551

byte slice 80
 , 81
 , 82

C

Caddy 381

capacity 75

channel 317
 , 329

as function parameters 334
 , 335

reading from 330
 , 331
 , 332
 , 333

writing to 330
 , 331
 , 332
 , 333

channels 5
 , 28

closed channel

receiving from 333
 , 334

closure 189

closured variables 364
 , 365
 , 366

cobra commands 518

cobra package 293
 , 294
 , 295

command aliases, creating 297

command-line flags, adding 296

subcommands, creating 297
 , 298

utility, with three commands 295
 , 296

code

profiling 553

code annotations 533

code benchmarking 545

main() function, rewriting 546
 , 547

code coverage

testing 578
 , 579
 , 580
 , 581

code optimization 544

command-line application

profiling 553
 , 555
 , 556

command-line arguments

working with 22
 , 23
 , 24
 , 25

command-line client

structure, creating 519

compiled regular expression 115

composition 6

concurrency 322

concurrent TCP servers

developing 453
 , 454
 , 455

configuration file

final version 242
 , 243
 , 244
 , 246
 , 247

initial version 240
 , 241

constant generator iota 68
 , 69
 , 70

constraints 618

creating 620
 , 621

context package 366
 , 367
 , 368
 , 369
 , 370

using, as key/value store 370
 , 371
 , 372

continuation 319

copy() function 88
 , 89
 , 90

critical section 353

cross-compilation 591
 , 592

CSV file formats

working with 172
 , 173
 , 174
 , 175

cursor 212

custom log file

writing 36
 , 37
 , 38

D

database

exploring 209
 , 210
 , 211
 , 212
 , 213

package, for working with 208

working with 502
 , 503
 , 504
 , 505
 , 506
 , 507

data types

creating, with generics 621
 , 622

dates and times

utility, for parsing 63
 , 64
 , 65
 , 66

working with 62
 , 63

default Go router 383

defer keyword 200
 , 201

deferred functions 200

DELETE handler

testing 518

Denial of Service (DoS) 432

desired metrics

exposing 402
 , 403
 , 405

destination port fields 436

different time zones

working with 67

Docker image

creating, for Go server 400
 , 402

documentation

generating 231
 , 232
 , 233
 , 234
 , 235
 , 237
 , 239

documentation file

generating 538
 , 539

serving 539
 , 540

duck typing 148

E

Echo service 461

empty interface 135
 , 148
 , 152
 , 153
 , 154

encapsulation 6
 , 176

error data type 48
 , 49
 , 50
 , 51
 , 162
 , 164
 , 166

error variables

using, to differentiate between input types 26
 , 27

example functions

creating 595
 , 596
 , 597

F

fair scheduling strategy 319

fields 108

file

writing to 272
 , 274
 , 275

file descriptors 254

file servers

creating 424
 , 425
 , 426

finite automaton 114

fork-join concurrency 319

full-duplex communication channel 460

functional RESTful server

creating 499

functions 189

anonymous functions 189

other functions, returning 194
 , 195

returning, multiple values 190
 , 191

return value, naming 191
 , 192
 , 193
 , 194

variadic functions 196

fuzzing 590
 , 591

advantages 590

reference link 591

G

generics 137
 , 230
 , 616
 , 617
 , 618

used, for creating data types 621
 , 622

using, in Go structures 622
 , 623
 , 624
 , 625

versus interfaces 625
 , 626
 , 627

versus reflection 628
 , 630

GET handlers

testing 515
 , 516

GitHub

secrets, storing 245

used, for storing Go packages 206
 , 207

GitHub Actions

and Go packages 244
 , 245

GitLab Runners

and Go packages 239

global variables 14

Go 2
 , 3

advantages 5
 , 6

applications, developing 2

disadvantages 6

go doc utility 7

godoc utility 7

history 3
 , 4

installation link 4

object-oriented programming 176
 , 177
 , 178
 , 179

URL 2
 , 7
 , 417

usecases 6

which(1) utility, developing 30
 , 31
 , 32

Go 1.16

DirEntry 305
 , 306

features 302

files, embedding 302
 , 304

io/fs package 307
 , 308
 , 309

ReadDir 305
 , 306

go2go Playground

URL 616
 , 617

Go channels 342
 , 343

buffered channels 343

nil channels 345
 , 346

signal channels 350

worker pools 346

Go code

characteristics 13

Cleanup() function 573
 , 574
 , 575

compiling 10

formatting and coding rules 11
 , 12

iterating, with for loops 19
 , 20
 , 21

iterating, with range 19
 , 20
 , 21

program flow, controlling 16
 , 17
 , 18

running 10

TempDir function 573

testing 571

testing/quick package 576
 , 577

tests, timing out 578

user input, obtaining 21

using, like scripting language 11

variables, defining 13

variables, printing 14
 , 15

variables, using 13

Go concurrency model 28
 , 29

Go constants 67

go*generate

using 592
 , 593
 , 594
 , 595

Go generics

facts 41

overview 39
 , 40

Go interface

using 166
 , 167

Go Language Specification document

reference link 206

GOMAXPROCS environment variable 321

Go modules 229
 , 502

reference link 229

Go package 186

and GitHub Actions 244
 , 245

creating 208

design 214
 , 215
 , 216
 , 217

developing 202
 , 230
 , 231

downloading 186
 , 187
 , 188
 , 189

GitLab Runners 239

implementation 217
 , 218
 , 219
 , 220
 , 221
 , 222
 , 223
 , 224
 , 225

storing 214

storing, with GitHub 206
 , 207

testing 225
 , 226
 , 227
 , 228
 , 229

Go profiler

web interface 559
 , 561

Go race detector 335
 , 336
 , 337

Go regular expression 114
 , 115

gorilla/mux package

matching examples 501

using 501

goroutines 5
 , 28
 , 255
 , 317
 , 318
 , 323

Add() calls, and Done() call differences 327
 , 328

creating 323

memory, sharing with 361
 , 362
 , 363
 , 364

multiple files, creating with 328
 , 329

order of execution, specifying 350
 , 352
 , 353

timing out 339

timing out, inside main() 340
 , 341

timing out, outside main() 341
 , 342

waiting, for completion 325
 , 326

Go scheduler 317
 , 319
 , 320
 , 321

concurrency 322

GOMAXPROCS environment variable 321

parallelism 322

Go server

Docker image, creating 400
 , 402

go statement 364
 , 366

Go structure

internal structure 138
 , 139
 , 140

Go structures

generics, using 622
 , 623
 , 624
 , 625

go-swagger binary

installation link 533

go tool trace utility 561
 , 562

Grafana

Prometheus metrics, visualizing 411
 , 413

grammar 114

gRPC 599
 , 600

protocol buffer (protobuf) 600

gRPC client

developing 608
 , 609
 , 610
 , 611
 , 612

gRPC server, testing with 612
 , 613

gRPC server

developing 604
 , 605
 , 606
 , 607
 , 608

testing, with gRPC client 612
 , 613

H

Haskell programming language 576

Hello World! 8

functions 9

packages 9

HTTP connections

SetDeadline() function, using 428
 , 429

timeout period, setting on client side 429
 , 430
 , 431
 , 432

timeout period, setting on server side 432
 , 433

timing out 428

http.NewRequest() function

used, for improving web clients 415
 , 416
 , 417

HTTP protocol

reference link 479

HTTP request multiplexer 383

http.Response type

reference link 378

HTTP server

endpoints, listing 480

performing, operations 478

profiling 557
 , 559

HTTP server, with database backend

testing 584
 , 585
 , 586
 , 587
 , 588
 , 589
 , 590

HTTP status code 479

I

implicit data conversions 15

init() function 203
 , 204

int

converting, to string 57

interface definition language file

defining 601
 , 602
 , 603
 , 604

interfaces 147
 , 148
 , 149

use 135

versus generics 625
 , 626
 , 627

writing 166

Internet Protocol (IP) 436

I/O, Go 259

buffered file I/O 265

io.Reader and io.Writer, misusing 260
 , 261
 , 262
 , 263
 , 264

io.Reader and io.Writer, using 260
 , 261
 , 262
 , 263
 , 264

io.Reader interfaces 259
 , 260

io.Writer interfaces 259
 , 260

unbuffered file I/O 264

io/ioutil package

reference link 259

IPv4 436

IPv6 436

J

JavaScript

used, for implementing WebSocket server 466
 , 467
 , 468
 , 470

JSON

and structures 277
 , 278

converting, to XML 283
 , 284

Marshal(), using 275
 , 276
 , 277

Unmarshal(), using 275
 , 276
 , 277

working with 275

JSON data 491

reading, as streams 278
 , 279

writing, as streams 278
 , 279

JSON records

pretty printing 280
 , 281

K

key and value pairs 107

L

lambdas 189

last in, first out (LIFO) 200

line numbers

printing, in log entries 38
 , 39

local flags 293

log entries

line numbers, printing 38
 , 39

log.Fatal() function 35
 , 36

logging information

writing 32
 , 33

logical kind of error 581

log.Panic() function 35
 , 36

M

maps 104
 , 105

advantages 104

iterating over 107

nil value 105
 , 106

map[string]interface{} map 158
 , 160
 , 161
 , 162

marshaling 275

methods on types 135

methods on types (type methods 147

metrics

exposing 397
 , 398
 , 399
 , 400

pulling, in Prometheus 407
 , 408
 , 409

reading 405
 , 406
 , 407

m*n scheduling 319

monitor goroutine 361

multiple goroutines

creating 324

mutual exclusion variable (mutex) 353

atomic package 359
 , 360
 , 361

forgetting, to unlock 355
 , 356

sync.Mutex type 354
 , 355

sync.RWMutex type 357
 , 358
 , 359

N

nc(1) command-line utility 437

nested route 502

net.Dial()

used, for developing TCP client 438
 , 439
 , 440

net.DialTCP()

used, for developing TCP client 440
 , 441
 , 442

net/http package 378

http.Request type 379

http.Response type 378

http.Transport type 379
 , 380

net.Listen()

used, for developing TCP server 442
 , 443
 , 445

net.ListenTCP()

used, for developing TCP server 445
 , 446
 , 447

net package 437

Nginx 381

nil channels 345

nil map

data, storing to 105
 , 106

non-numeric data types 54

characters 54
 , 55
 , 56
 , 57

dates 54
 , 55
 , 56
 , 57

dates and times 62
 , 63

runes 54
 , 55
 , 56
 , 57

string 54
 , 55
 , 56
 , 57

time 54
 , 55
 , 56
 , 57

numeric data types 51
 , 52
 , 53
 , 54

O

object-oriented programming

in Go 176
 , 177
 , 178
 , 179

order of execution 204
 , 205
 , 206

P

parallelism 322

pattern matching 114

integers, matching 117

names and surnames, matching 116

record field, matching 118

persistent flags 293

phone book application

API, defining 385

cobra, using 309
 , 310

CSV files, working with 119
 , 120
 , 121
 , 122
 , 123

CSV file value, setting up 180
 , 181

delete command, implementing 311
 , 312

developing 41
 , 42
 , 43
 , 45

handlers, implementing 386
 , 387
 , 388
 , 389
 , 390
 , 391
 , 392
 , 393
 , 394

improving 119

index, adding 124

insert command, implementing 312

JSON data, storing 311

list command, implementing 312

search command, implementing 313
 , 314

shortcoming 41

sort package, using 182
 , 183

updating 100
 , 101
 , 180
 , 309
 , 384

version 125
 , 126
 , 127
 , 128
 , 129
 , 130
 , 131
 , 132
 , 133

web clients, downloading 426
 , 427

phone book service

web clients, creating for 418
 , 419
 , 420
 , 421
 , 422
 , 423
 , 424

pipeline 317
 , 330

plain text data 384

plugins

reference link 203

pointers 5
 , 92
 , 94
 , 95
 , 96

pointer variables 109

polymorphism 5
 , 148
 , 176

POST handlers

testing 516

predefined comparable constraint 619

process 318

process ID 255

program 318

Prometheus

configuring, to pull metrics 407
 , 408
 , 409

metrics, exposing to 394
 , 395

runtime/metrics package 395
 , 396
 , 397

Prometheus metrics

visualizing, in Grafana 411
 , 413

protocol buffer (protobuf) 600

PUT handler

testing 517

R

race conditions 336

as function parameters 335

random numbers

generating 97
 , 98

random strings

generating 98
 , 99

recognizer 114

ReDoc 539

reflection 136
 , 137

disadvantages 142

structure values, changing with 140
 , 141

versus generics 628
 , 630

regular expression 114

regular function 143

regular variables 109

REpresentational State Transfer (REST) 478

REST API 500

documenting 534
 , 535
 , 536
 , 537
 , 538

parameters 500
 , 501

supported endpoints 500
 , 501

supported HTTP methods 500
 , 501

REST API documentation

Swagger, using for 532
 , 533
 , 534

REST API versions

working with 526
 , 527

restdb package

testing 508
 , 509

RESTful client commands

implementing 520
 , 521
 , 522
 , 523
 , 524

RESTful clients 490
 , 491
 , 492
 , 493
 , 494
 , 495
 , 496
 , 497
 , 498
 , 499

creating 518
 , 519

developing 480

using 525
 , 526

RESTful servers 481
 , 482
 , 483
 , 484
 , 485
 , 486
 , 487
 , 488
 , 489
 , 490

developing 480

implementing 510
 , 511
 , 512
 , 513
 , 514

testing 514
 , 515

RESTful service

architecture 478

routers 436

rune data type 55

S

same data type

grouping 71

secure random numbers

generating 99

select keyword 338
 , 339

selectors 143

semantic versioning 229

semaphore package 372
 , 373
 , 374
 , 375

shared memory 317
 , 353

shared variables 353

short assignment statement 13

signal channels 350

single data type 42

slices 72
 , 73
 , 74

byte slice 80
 , 81
 , 82

connecting, to arrays 86
 , 87
 , 88

copy() function 88
 , 89
 , 90

element, deleting from 82
 , 84
 , 85

length and capacity 75
 , 76
 , 77
 , 78

part, selecting of 78
 , 79
 , 80

sorting 90
 , 91
 , 92

sort.Interface

implementing, for 3D shapes 168
 , 170
 , 171
 , 172

sort.Interface interface 150
 , 151
 , 152

source port fields 436

standard error (stderr) 254

standard input

reading from 21
 , 22

standard input (stdin) 254

standard output (stdout) 254

string

converting, from int 57

strings standard Go package 58
 , 60
 , 61
 , 62

reference link 61

structure literal 109

structures 108

defining 108
 , 109

new() keyword, using 109
 , 110
 , 111

slice 112
 , 113

structure values

changing, with reflection 140
 , 141

subrouters

using 502

Swagger

using, for REST API documentation 532
 , 533
 , 534

T

table tests 547

tags 275

TCP client

developing 438

developing, with net.Dial() 438
 , 439
 , 440

developing, with net.DialTCP() 440
 , 441
 , 442

TCP packets 436

TCP server

developing 442

developing, with net.Listen() 442
 , 443
 , 444

developing, with net.ListenTCP() 445
 , 446
 , 447

tests

writing, for ./ch03/intRE.go 571
 , 572

text files

reading 265

reading, character by character 268
 , 269

reading, from /dev/random 269
 , 270

reading, line by line 265
 , 267

reading, word by word 267
 , 268

specific amount of data, reading from 271
 , 272

thread 318

time package

reference link 63

Transmission Control Protocol (TCP) 436

Transmission Control Protocol (TCP)/ Internet Protocol (IP) 436

trim function 61

type assertion 154
 , 155
 , 157
 , 158

type identity 109

type method 135
 , 142

creating 143
 , 144

using 144
 , 145
 , 147

type switches 154
 , 156
 , 157
 , 158

U

UDP client

developing 447
 , 448
 , 449

UDP server

developing 450
 , 451
 , 452
 , 453

unbuffered channel 331

unicode standard Go package 57

Unix

versus Windows 4

UNIX domain sockets

client 458
 , 459
 , 460

server 455
 , 456
 , 457

working with 455

UNIX file system

cycles, finding 299
 , 300
 , 301

Unix logging service

logging facility 33
 , 34

logging level 33
 , 34

UNIX processes 254
 , 255

daemon processes 255

kernel processes 255

user processes 255

UNIX signals

handling 255
 , 256
 , 257
 , 258

multiple signals, handling 258

UNIX symbolic links 299

unmarshaling 275

unreachable Go code

finding 581
 , 582
 , 583

User Datagram Protocol (UDP) 437

user input

obtaining 21

utilities

versioning 248
 , 249
 , 250

V

variadic functions 196
 , 197
 , 199

rules 196

viper package 286

command-line flags, using 287
 , 288
 , 289

JSON configuration files, reading 290
 , 291
 , 292
 , 293

W

web clients

creating, for phone book service 418
 , 419
 , 420
 , 421
 , 422
 , 423
 , 424

developing 413
 , 414

improving, with http.NewRequest() function 415
 , 416
 , 417

web server

creating 380
 , 381
 , 382
 , 383
 , 384

routes, visiting 566
 , 567
 , 569
 , 570

tracing, from client 563
 , 564
 , 565

websocat

used, for implementing WebSocket server 465
 , 466

WebSocket client

creating 470
 , 471
 , 472
 , 473
 , 474

WebSocket protocol

reference link 460

WebSocket server

creating 460
 , 461

implementation 461
 , 462
 , 464
 , 465

implementing, with JavaScript 466
 , 467
 , 468
 , 470

implementing, with websocat 465
 , 466

which(1) utility

developing, in Go 30
 , 31
 , 32

Windows

versus Unix 4

worker pools 346
 , 347
 , 349
 , 350

work-stealing strategy 319

X

XML

JSON, converting to 283
 , 284

working with 281
 , 282

Y

YAML

working 284
 , 285
 , 286

OEBPS/Image00003.jpg

OEBPS/Image00001.jpg

OEBPS/Image00002.jpg

OEBPS/Image00000.jpg

OEBPS/Image00007.jpg
D Actual cell

Slice length: 6 ED:EDJ

Slice capacity: 8 L-1 Virtual capacity cell

About to add a new element to the slice

Slice length: 7 If this happens, the length will
Slice capacity: 8 be bigger than the capacity, which
is not allowed.

Therefore, capacity will be
doubled first.

Slice length: 7
Then, the new element will

Slice capacity: 12 be added to the slice.

OEBPS/Image00008.jpg
Index

01234567 8 910

vaie [0[1]2[3]4]s 67 [8 [o]id]

Technique 1

! EIIEI!II IACIET N

Index
Value

Technique

Index

Delete this element

.6'7 8 910

0123456789

[o[1]2[3]4]5[7]8]s [io]

2
012345:'6378910

[o[1]2[3]4]5 9| Copy last

o * element

&3

012345“6-:789'16

Ellllllﬂiﬂ.ﬂﬂm Delete last

» element

0123456789

Value [0[1]2][3 4[5 [10]7]8 |9

OEBPS/Image00005.jpg

OEBPS/Image00006.jpg
Example: . /goapp fileToProcess -n 10 /tmp “A phrase”

The size of 0s.Args will be 6. The indexes will be from 0 to 5.

Index

Value

A
“.IgoApp”

“fileToProcess”
“n
“or

“Hmp

“A phrase”

The os.Args slice

n-1

OEBPS/Image00034.jpg
Git for
P p—.

seseiry Packh

OEBPS/Image00004.jpg
EXPERT INSIGHT

Mastering
Go

Harness the power of Go to build professional g
utilities and concurrent servers and services o
e

N _ 77,77
Third Edition ﬁ

Mihalis Tsoukalos Pqu"')

OEBPS/Image00036.jpg
Mastering

OEBPS/Image00032.jpg
Black set
Gray set

White set

OEBPS/Image00033.jpg

OEBPS/Image00030.jpg
cannotReach.go 2 X

code > ch11 > cannotReach.go > S1

)

()] o
" Lo

0L

fmt. ()
unreachable code

*
h

OEBPS/Image00031.jpg
B Tho 0200 Playaround x4

8 nhttps:/jgo2goplay.golang.org

The go2go Playground () (EEEED) (B (et pleyground ~

package main

import (
—

7/ The playground now uses square brackets for type parameters. Otherwise,
7/ the syntax of type parameter lists matches the one of regular parameter
7/ Uists except that all type parameters must have a name, and the type
7/ parameter list cannot be empty. The predeclared identifier “any" ma
77 U5C" I the position oF & Tvpe paramier constratit (and 9N Hhere)s
7/ it indicates that there are no constraints.

y be

Tund PRSLEY anyl(s 1T ¢
for range s {
fnt Prxnt(v)
b

}

func main() {

Print([1string{"Hello, ", “playground\n"})
}

Hello, playground

OEBPS/Image00029.jpg
LA X] coverage: Go Coverage Report X +

N D filesjjprivate/varffolders/9l/5xmhlblx7ga2wr65qv7yhtim0000gn/T/cover34 ¥ ® 0 =
[Users/mtsouk/Desktop/mGo3rd/code/cht/coverage/coverage.go (60.0%) v not covered covered
if true {

fmt.Println("Hello

} ¢
fmt.Printin("Hi!")
}
{
ifn>=0{
return 0
} ifn==1{
return 1
}

{
return f2(n-1) + f2(n-2)
}

OEBPS/Image00025.jpg
Goroutines

ARVAVN

1235 1240 1245 1250 1255
= packt_n_goroutines(instance="goapp:1234', ol

“GoServer’)

Free Memory

50000000

45000000

40000000

35000000

30000000

25000000

20000000

15000000

10000000

5000000

1235 1240 1245 1250 1255
= packt_n_memory(instance="goapp:1234’, job="GoServer’)

OEBPS/Image00026.jpg
Hello There!

[xy

{3 Inspector Console [Debugger N Network >

ter Output

Errors Warnings Logs Info Debug ~ CSS XHR Requests

»

Trying to connect to server.
Connected!

[message] Data received from server: Hello From the Client!
[close] Connection closed cleanly, code=1000 reason=

Socket Closed Connection:
v close { target: WebSocket, isTrusted: true, wasClean: true,
code: 1000, reason: ", srcElement: WebSocket, eventPhase: 0,
bubbles: false, cancelable: false, returnValue: true, . }
bubbles: false
cancelBubble: false
cancelable: false
code: 1000
composed: false
currentTarget: null
defaultPrevented: false
eventPhase: 0
explicitOriginalTarget: WebSocket { url:
/localhost:1234/ws", readyState: 3, bufferedAmount: @,
isTrusted: true
» originalTarget: WebSocket { ur
readyState: 3, bufferedAmount: @,
reason: "
returnvalue: true
» srcElement: WebSocket { url: “ws://localhost:1234/ws",
readyState: 3, bufferedAmount: @

"ws://localhost:1234/ws",
+

/localhost:1234/w
0,

=

test.html:16:17
test.html:19:21
test.html:24:19
test.html:30:23
test.html:32:21

OEBPS/Image00023.jpg
Global queue

Local queue Local queue

¢

Pl P2

OEBPS/Image00024.jpg
O Enable query history

pac

packt_n_goroutines

go_memstats_gc_cpu_fraction

go_memstats_heap_alloc_bytes
process_start_time_seconds
scrape_duration_seconds
scrape_samples_post_metric_relabeling

scrape_samples_scraped

Back to the new U1

y:

Load ime: 39ms
Resoluton: 14
Totaltime saries:

Remove Graph

» O stacked

OEBPS/Image00021.jpg
Repository secrets

& PASSWORD Updated 7 hours ago Update | Remove

@ USERNAME Updated 7 hours ago Update | Remove

OEBPS/Image00022.jpg
146

147
148
149
150
151
152
153
154
155
156
157
158

159
160
161

WARNING! Your password will be stored unencrypted in /home/runner/.docker

/config.json.

Login Succeeded
Configure a credential helper to remove this warning. See
https://docs.docker. com/engine/reference/commandline/login/#credentials=store

The push refers to repository [docker.io/skx/gopost

327a1f07ee35:
5516549e02ba:
72e830a4dff5:
72e830a4dff5:
5516549e02ba:
327al1f07ee35:

Preparing

Preparing

Preparing

Mounted from library/alpine
Pushed

Pushed

latest: digest:
sha256:82beefee80b89bada28b2fc7aballd17d3b3034d4752c257eece18862e9a94ce size:

945

* Running Docker Image

2345
localhost

OEBPS/Image00019.jpg
Downloading artifacts
Downloading artifacts for compile (1001263660)...
Downloading artifacts from coordinator... ok
Lxvpx

Executing "step_script” stage of the job script
$ echo "Executing usePost0s"

Executing usePostes

$ 1s =L bin
total 5752
—rWxr-xrex.
$./bin/usePostes

2345

Tocathost

Cleaning up file based variables
Job succeeded

1d=1001263660 responseStatus=200 OK token=Skr

1 root root 5883134 Feb 2 7:23 usePost05

OEBPS/Image00020.jpg
0 mactsouk /actions-with-go Quweeh- 1 trsw o Yrk o
<> Code () Issues 11 Pull requests. © Actions [1] Projects 0 wiki © Security Insights
Workdlows Newworktion All workflows
Showing runs from al wordiows
o
Q Fiter worktiow runs
2 Go+ PostgresaL.
1 workflow runs Gvent Stewse Brameh- Actore
@ Minor message
Go + PostgreSQL #31: Commit 4ef3b7c pushed by L S ag o
mactsouk G
© docker run without -it =]
Go + PostgresaL #30: Commit 5163600 pushecty 124 Smonnsago -
mactsouk S

OEBPS/Image00027.jpg
loggedinfo

Retums the ID of a User given their usemame and password

DY SC application/json

Alistof users
active Integer <inté4>

Is the User Logged In or Not

adnin integer <int6d>
. Is the User Admin o not

integer <int6d> >= 1
‘The ID for the user in: body

lastlogin integer dn6ds >+ 0
woien The Last Login time of the User

passuord sting
. The Password of the user

usernane string
e ‘The Username of the user in: body

Responses

— 200 Generic OK message retured as an HTTP Status Code

Request samples

Content type
application/json

“active':
“adnin:
Sidsd)
“lastlogin

“password”:

“string”,

OEBPS/Image00028.jpg
PProf VEW - SAMPLE - REFINE - CONFIG Qs

runtime

main
0 0f 4.125 (98.33%)

A12s

main
main
0.06s (1.43%)
of 4.12s (98.33%)

2.71s
(inline)

1.33s

main
N2
2.59s (61.81%)
of 2.71s (64.68%)

main
N1
1.26s (30.07%)

of 1.33s (31.74%)

0.12s 0.07s

runtime
asyncPreempt
0.19s (4.53%)

OEBPS/Image00014.jpg
B mactsouk / post05 ©Unwatch ~ 1

15

<>Code O lssves 1) Pullrequests () Actions [1] Projects (1) Wi

O gitignore .DS_Store.

[LICENSE Initial commit

[README.md How 0 create PostgreSQL tables.
[create_tables.sal Minor chages CREATE TABLES
[postosgo ‘Small typo CHOS

README.md

post05

Working with PostgreSQL DB in Go

Create tables by running the next command:

$ psql -h localhost -p 5432 -U mtsouk master < create_tables.sql

26daysago D52

7 months ago
7 months ago
6 months ago
& months ago

26 days ago

7

frsar 0 WPk 0

O secwity I Insights -+

main ~ Gotofile Addfile -

@ mactsouk Small typo CHOS -

About o]

Working with PostgreSQL.
DBin Go

0 Readme

5 Apache-20 License

Releases

No releases published
Create a new release

Packages

No packages published
Publish your first package

Languages

—_—
® Go1000%

OEBPS/Image00015.jpg
ID (int) UserID (int)

Username (string) Name (string)

Users Table

Surname (string)

Description (string)

Userdata Table

OEBPS/Image00012.jpg
Built-in interfaces
offered by Go InterfaceA

type ABC interface {

InterfaceA
InterfaceB
InterfaceC

OEBPS/Image00013.jpg
main package

¥

imported packages
Initialization

1 Package dependencies
| (if any)
]

Global variable
initialization in packages

3

init() functions in
imported packages

v

Global variables in
main package

v

Running
main() function

OEBPS/Image00010.jpg
In order to access the value
stored at a pointer variable,
you need to dereference It

An intvalue stored at
the memory address

An Intvariable named a A pointer variable named b that holds
with avalue of 109 amemory address pointing to an int

Stored atamemory

Value stored atais 109 Value stored at b is 0xc1020ae008

OEBPS/Image00011.jpg
Aslice of structures: § s[0] Fields of the structure

ey S[0].Field1
Index 0 e 3 S[0] Field2

Index 1

OEBPS/Image00009.jpg
copy(destination, input)

(shows input1) (shows input2)

Input1 Input2 copy(input1, input2) copy(input2, input1)
[1]2[s]4]s] [ofofo]o] [ofo[ofols] [112[3]4]

npang

OEBPS/Image00018.jpg
Fetching changes with git depth set to 50...
Initialized empty Git repository in /builds/mactsouk/runners-go/.git/
Created fresh repository.

Checking out 8bal4df7 as maste
Skipping 6it submodules setup
Executing “step_script" stage of the job script

$ echo "Compiling usePost0s.go”
Compiling usePostos.go

$ mkdir bin

$ go get ~v -d ./

github. con/mactsouk/postes (download)
github. con/ib/pq (download)

$ go build -0 ./bin/usePost05 usePost05.go
Uploading artifacts for successful job
Uploading artifacts.

bin/: found 2 matching files and directories

Uploading artifacts as "archive" to coordinator... ok 1d=1001258536 responseStatus=201 Created t

Myt
Cleaning up file based variables

Job succeeded

OEBPS/Image00016.jpg
* Users
* Userdata

The definitions of the tables in the PostgreSQL server are:

CREATE TABLE Users (

ID SERIAL,

Username VARCHAR(100) PRIMARY KEY
)i

CREATE TABLE Userdata (
UserID Int NOT NULL,
Name VARCHAR(100),
Surname VARCHAR(100),
Description VARCHAR(200)
)i

This is rendered as code

This is not rendered as code

Index v

Variables
func AddUser(d Userdata) int
func DeleteUserid int) error
func UpdateUser(d Userdata) error
type Userdata

func ListUsers() ([Userdata, error)
Bugs

Package files

document.go

Variables

This block of global variables holds the connection details to the Postgres server

OEBPS/Image00017.jpg
Mihalis Tsoukalos > runners-go > Pipelines > #250059145

Pipeline #250059145 triggered 1 minute ago by ‘ Mihalis Tsoukalos

Minor changes

@® 2jobs for master in 1 minute and 30 seconds (queued for 1 second)

R latest
- 019c0d8a [y

19 No related merge requests found.

Pipeline Needs Jobs 2 Tests 0

Download Execute

@ compile (s @ execute

Q

