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PREFACE







Genetic Algorithms with Python
 distills more than 5 years of experience using genetic algorithms and helping others learn how to apply genetic algorithms, into a graduated series of lessons that will impart to you a powerful life-long skill. To get the most out of this book you need to do more than simply read along, you need to train your mind by experimenting with the code. That means typing in the code changes as they are introduced so you can try different things at each checkpoint before moving on to the next. Enjoy!

Clinton Sheppard








A
 BRIEF
 INTRODUCTION
 TO
 GENETIC
 ALGORITHMS






Genetic algorithms are one of the tools we can use to apply machine learning to finding good, sometimes even optimal, solutions to problems that have billions of potential solutions. They use biological processes in software to find answers to problems that have really large search spaces by continuously generating candidate solutions, evaluating how well the solutions fit the desired outcome, and refining the best solutions.

When solving a problem with a genetic algorithm, instead of asking for a specific solution, you provide characteristics that the solution must have or rules its solution must pass to be accepted. For example, when filling a moving truck you provide a set of rules like: load big things first, distribute the weight to both sides, put light things on top but not loose, and interlock things with odd shapes so they don’t move around. The more constraints you add the more potential solutions are blocked. Suppose you say: put the refrigerator, washer and dryer along the front left wall, load boxes of books along the front right wall, mattresses down the middle, and clothes on top of the mattresses. These more specific rules do not work if you are loading packages, or Christmas trees, but the previous goal oriented ones still do.


Goal oriented problem solving

Imagine you are given 10 chances to guess a number between 1 and 1000 and the only feedback you get is whether your guess is right or wrong. Could you reliably guess the number? With only right
 or wrong
 as feedback, you have no way to improve your guesses so you have at best a 1 in 100 chance of guessing the number. A fundamental aspect of solving problems using genetic algorithms is that they must provide feedback that helps the engine select the better of two guesses. That feedback is called the fitness, for how closely the guess fits the desired result. More importantly it implies a general progression.

If instead of right
 or wrong
 as feedback you receive higher
 or lower
 indicating that the number is higher or lower than your guess, you can always find the number because 10 guesses are sufficient to binary search your way to any number in the 1 to 1000 range.

Now imagine multiplying the size of this problem so that instead of trying to find 1 number you are simultaneously trying to find a set of 100 numbers, all in the range 1 to 1000, you only receive back a fitness value indicating how closely that set of numbers matches the desired outcome. Your goal would be to maximize or minimize that fitness. Could you find the right set of 100 numbers? You might be able to do better than random guessing if you have problem-specific knowledge that helps you eliminate certain number combinations. Using problem-specific knowledge to guide the genetic algorithm’s creation and modification of potential solutions can help them find a solution orders of magnitude faster.

Genetic algorithms and genetic programming are very good at finding solutions to very large problems. They do it by taking millions of samples from the search space, making small changes, possibly recombining parts of the best solutions, comparing the resultant fitness against that of the current best solution, and keeping the better of the two. This process repeats until a stop condition like one of the following occurs: the known solution is found, a solution meeting all requirements is found, a certain number of generations has passed, a specific amount of time has passed, etc.



First project

Imagine you are asked to guess a 3-letter password; what kind of feedback would you want? If the password is aaa
 and you guess abc
 what should the fitness value be? Would something simple like how many of the letters in your guess are correct be sufficient? Should bab
 , which has one correct letter, get a better fitness value than zap
 , also one correct letter but the wrong letters are alphabetically farther away, or should the fitness be the same? These are some of the first decisions you have to make when planning to implement a genetic algorithm to find a solution to your problem. Genetic algorithms are good at finding good solutions to problems with large search spaces because they can quickly find the parts of the guesses that improve fitness values or lead to better solutions.

In the project above, let’s say the fitness function returns a count of the number of letters that match the password. That means abc
 , bab
 and zba
 all get a fitness value of one, because they each have one letter correct. The genetic algorithm might then combine the first two letters of abc
 with the last letter of zba
 through crossover, to create the guess aba
 . The fitness for that guess would be two because two letters match the password. The algorithm might also mutate the last letter of zba
 to get zbc
 and a fitness value of zero. Depending on how the engine is configured it might throw out zbc
 immediately, it might keep it in order to maintain genetic diversity, or perhaps it would only keep it if it is better than some cutoff fitness value when compared with all the other guesses tried by the engine.

We will look more at the password project in the first project, and go on to explore a variety of projects to learn different ways of solving problems with genetic algorithms. However, this book is not about showing you a hand-picked set of problems you can solve with genetic algorithms. It is about giving you experience making genetic algorithms work for you using sample projects that you understand and can fall back upon when learning to use other machine learning tools and techniques, or applying genetic algorithms in your own field of expertise.



Genetic programming with Python

This book uses the Python programming language to provide a working implementation for you to study. Python is a low ceremony, powerful and easy-to-read language whose code can be understood by entry-level programmers. If you have experience with another programming language then you should have no difficulty learning Python by induction while also exploring genetic algorithms. You do not, however, have to learn to write Python. I explain the occasional Python-specific feature, and try not to use 3rd-party modules, so you should be able to follow along in your favorite programming language as well. That being said, if you encounter a programming construct you’ve never seen before and can’t intuit, Python.org and StackOverflow.com are great places to find explanations.


example Python syntax

# this is a comment
import math  # imports make code from other modules available

# code blocks are initiated by a trailing colon followed by indented lines
class Circle:                     # define a class
    def __init__(self, radius):   # constructor with parameter radius
        self.radius = radius      # store the parameter in a class variable

    def get_area(self):           # function that belongs to the class
        return math.pi \
               * self.radius \
               * self.radius      # trailing \ continues the expression
                                  # on the next line
# code that is not in a class is executed immediately
for i in range(1, 10):
    if (i & 1) == 0:
        continue
    circle = Circle(i)            # create an instance
    print("A circle with radius {0} has area {1:0.2f}".format(
        i, circle.get_area()      # `print` writes output to the console
    ))




You can run the code above in your browser at: https://repl.it/EWUh


Like blacksmiths, programmers create their own tools. We frequently prototype a solution by using tools we already have available, not unlike using a pair of pliers to pull a nail. Once we get a good understanding of the problem, however, we usually restart with a better combination of tools or build a problem-specific one. In this book we will co-evolve a genetic engine while examining increasingly difficult projects with the engine. Why not just use one of the genetic programming packages already available for Python like Pyvolution, DEAP, Pyevolve, pySTEP, etc? Because they all have different interfaces and options, some of which may not be applicable to a problem, and we’re trying to learn about genetic algorithms not specific engines. By co-evolving the engine you’ll know exactly how it works so you’ll be able to use its features effectively to solve the next problem with a genetic algorithm of your own design. The engine will be a by-product of applying genetic algorithms to the different projects in this book. If you were to co-evolve an engine with a different set of projects, or even the projects in this book in a different order, you would end up with a different engine. But, by co-evolving an engine you will gain experience with some of the features available in commonly used packages, and see how they can affect the performance of your code.



About the author

I am a polyglot programmer with more than 15 years of professional programming experience. Occasionally I step out of my comfort zone and learn a new language to see what that development experience is like and to keep my skills sharp. This book grew out of my experiences while learning Python, but it isn’t about Python.

When learning a new programming language, I start with a familiar project and try to learn enough of the new language to solve it. For me, writing a genetic engine is that familiar project. Why a genetic engine? For one thing, it is a project where I can explore interesting puzzles, and where even a child’s game like Tic-tac-toe can be viewed on a whole new level. Also, I can select increasingly complex puzzles to drive evolution in the capabilities of the engine. This allows me to discover the expressiveness of the language, the power of its tool chain, and the size of its development community as I work through the idiosyncrasies of the language.



About the text

The code snippets in this book were programmatically extracted from working code files using the tags feature of AsciiDoctor’s include directive.









HELLO
 WORLD!







Guess my number

Let’s begin by learning a little bit about genetic algorithms. Reach way back in your memories to a game we played as kids. It is a simple game for two people where one picks a secret number between 1 and 10 and the other has to guess that number.



Is it 2?  No
Is it 3?  No
Is it 7?  No
Is it 1?  Yes




That works reasonably well for 1..10 but quickly becomes frustrating or boring as we increase the range to 1..100 or 1..1000. Why? Because we have no way to improve our guesses. There’s no challenge. The guess is either right or wrong, so it quickly becomes a mechanical process.



Is it 1?  No
Is it 2?  No
Is it 3?  No
Is it 4?  No
Is it 5?  No
...




So, to make it more interesting, instead of no
 let’s say higher
 or lower
 .



1?  Higher
7?  Lower
6?  Lower
5?  Lower
4?  Correct




That might be reasonably interesting for a while for numbers in the range 1..10 but soon you’ll increase the range to 1..100. Because people are competitive, the next revision is to see who is a better guesser by trying to find the number in the fewest guesses. At this point the person who evolves the most efficient guessing strategy wins.

However, one thing we automatically do when playing the game is make use of domain knowledge. For example, after this sequence:



1?  Higher
7?  Lower




Why wouldn’t we guess 8, 9, or 10? The reason is, of course, because we know that those numbers are not 'lower' than 7. Why wouldn’t we guess 1? Because we already tried it. We use our memory of what we’ve tried, our successes and failures, and our knowledge of the domain
 , number relationships, to improve our guesses.



When playing a card game inexperienced players build a mental map using the cards in their hand and those on the table. More experienced players also take advantage of their knowledge of the problem space, the entire set of cards in the deck. This means they may also keep track of cards that have not yet been played, and may know they can win the rest of the rounds without having to play them out. Highly experienced card players also know the probabilities of various winning combinations. Professionals, who earn their living playing the game, also pay attention to the way their competitors play…​ whether they bluff in certain situations, play with their chips when they think they have a good hand, etc.




A genetic algorithm does not know what lower
 means. It has no intelligence. It does not learn. It will make the same mistakes every time. It will only be as good at solving a problem as the person who writes the code. And yet, it can be used to find solutions to problems that humans would struggle to solve or could not solve at all. How is that possible?

Genetic algorithms use random exploration of the problem space combined with evolutionary processes like mutation and crossover (exchange of genetic information) to improve guesses. But also, because they have no experience in the problem domain, they try things a human would never think to try
 . Thus, a person using a genetic algorithm may learn more about the problem space and potential solutions. This gives them the ability to make improvements to the algorithm, in a virtuous cycle.

What can we learn from this?



Technique: The genetic algorithm should make informed guesses.






Guess the Password

Now let’s see how this applies to guessing a password. Start with a randomly generated initial sequence of letters, then mutate or change one random letter at a time until the sequence of letters is "Hello World!". Conceptually:


pseudo code

_letters = [a..zA..Z !]
target = "Hello World!"
guess = get 12 random letters from _letters
while guess != target:
        index = get a random value from [0..length of target]
        guess[index] = get 1 random letter from _letters




If you try this in your favorite programming language you’ll find that it performs worse than playing the number guessing game with only yes
 and no
 answers because it cannot tell when one guess is better than another.

One solution is to help it make an informed guess by telling it how many of the letters from the guess are in the correct locations. For example "World!Hello?" would get 2 because only the 4th letter of each word is correct. The 2 indicates how close the answer is to correct. This is called the fitness value. "hello world?" would get a fitness value of 9 because 9 letters are correct. Only the h, w, and question mark are wrong.



First Program

It is time for some code. By the way, if you do not already have a favorite Python development environment, I highly recommend JetBrains' PyCharm IDE
 .


Genes

To begin with, the genetic algorithm needs a gene set to use for building guesses. For this project that will be a generic set of letters. It also needs a target password to guess:


guessPassword.py

geneSet = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!."
target = "Hello World!"






You can run the code for this section in your browser at https://repl.it/EUX2







Generate a guess

Next the algorithm needs a way to generate a random string
 from the gene set.



import random

def generate_parent(length):
    genes = []
    while len(genes) < length:
        sampleSize = min(length - len(genes), len(geneSet))
        genes.extend(random.sample(geneSet, sampleSize))
    return ''.join(genes)







list.extend()
 appends multiple items to a list. string.join()
 uses the given string
 as a separator to create a new string
 with the values being joined, for example: 'x'.join(['a','b','c'])
 gets "axbxc"
 .







random.sample()
 takes sample-size values from the input without replacement. This means there will be no duplicates in the generated parent unless the gene set contains duplicates, or the requested length is greater than the number of items in the gene set. The implementation above can generate a long string
 with a small set of genes and uses as many unique genes as possible.






Fitness

The fitness
 value the genetic algorithm provides is the only
 feedback the engine receives to guide it toward a solution. In this project the fitness
 value is the total number of letters in the guess that match the letter in the same position of the password.



def get_fitness(guess):
    return sum(1 for expected, actual in zip(target, guess)
               if expected == actual)







zip()
 is a built-in function that makes it possible to iterate over two lists (or iterables) simultaneously.






Mutation

Next, the engine needs a way to produce a new guess by mutating the current one.



def mutate(parent):
    index = random.randrange(0, len(parent))
    childGenes = list(parent)
    newGene, alternate = random.sample(geneSet, 2)
    childGenes[index] = alternate if newGene == childGenes[index] else newGene
    return ''.join(childGenes)




This implementation converts the parent string
 to an array with list()
 , then replaces 1 letter in the array with a randomly selected one from the gene set, and finally recombines the result into a string
 with .join()
 . It uses an alternate replacement if the randomly selected new gene is the same as the one it is supposed to replace, which can prevent a significant number of wasted guesses.



Display

Next, it is important to monitor what is happening so that the engine can be stopped if it gets stuck. Having a visual representation of the gene sequence, which may not be the literal gene sequence, is often critical to identifying what works and what does not so that the algorithm can be improved.

Normally the display function also outputs the fitness value and how much time has elapsed.



import datetime
...
def display(guess):
    timeDiff = datetime.datetime.now() - startTime
    fitness = get_fitness(guess)
    print("{}\t{}\t{}".format(guess, fitness, timeDiff))






Main

The main program begins by initializing bestParent
 to a random sequence of letters and calling the display function.



random.seed()
startTime = datetime.datetime.now()
bestParent = generate_parent(len(target))
bestFitness = get_fitness(bestParent)
display(bestParent)




The final piece is the heart of the genetic engine. It is a loop that:



	
generates a guess,


	
requests the fitness
 for that guess, then


	
compares the fitness
 to that of the previous best guess, and


	
keeps the guess with the better fitness.






This cycle repeats until a stop condition occurs, in this case when all the letters in the guess match those in the target.



while True:
    child = mutate(bestParent)
    childFitness = get_fitness(child)
    if bestFitness >= childFitness:
        continue
    display(child)
    if childFitness >= len(bestParent):
        break
    bestFitness = childFitness
    bestParent = child




Run the code and you’ll see output similar to the following:



ftljCDPvhasn  1       0:00:00
ftljC Pvhasn    2       0:00:00
ftljC Pohasn    3       0:00:00.001000
HtljC Pohasn    4       0:00:00.002000
HtljC Wohasn    5       0:00:00.004000
Htljo Wohasn    6       0:00:00.005000
Htljo Wohas!    7       0:00:00.008000
Htljo Wohls!    8       0:00:00.010000
Heljo Wohls!    9       0:00:00.013000
Hello Wohls!    10      0:00:00.013000
Hello Wohld!    11      0:00:00.013000
Hello World!    12      0:00:00.015000







Extract a reusable engine

We have a working engine but it is currently tightly coupled to the Password project, so the next task is to extract the genetic engine code from that specific to guessing the password so it can be reused for other projects. Start by creating a new file named genetic.py
 .

Next move the mutate
 and generate_parent
 functions to the new file and rename them to _mutate and _generate_parent. This is how protected functions are named in Python. Protected functions are only accessible to other functions in the same module.


Generation and Mutation

Future projects will need to be able to customize the gene set, so that needs to become a parameter to _generate_parent and _mutate.



import random

def _generate_parent(length, geneSet):
    genes = []
    while len(genes) < length:
        sampleSize = min(length - len(genes), len(geneSet))
        genes.extend(random.sample(geneSet, sampleSize))
    return ''.join(genes)






def _mutate(parent, geneSet):
    index = random.randrange(0, len(parent))
    childGenes = list(parent)
    newGene, alternate = random.sample(geneSet, 2)
    childGenes[index] = alternate if newGene == childGenes[index] else newGene
    return ''.join(childGenes)







get_best


The next step is to move the main loop into a new public function named get_best
 in the genetic
 module. Its parameters are:



	
the function it calls to request the fitness for a guess,


	
the number of genes to use when creating a new gene sequence,


	
the optimal fitness value,


	
the set of genes to use for creating and mutating gene sequences, and


	
the function it should call to display, or report, each improvement found.








def get_best(get_fitness, targetLen, optimalFitness, geneSet, display):
    random.seed()
    bestParent = _generate_parent(targetLen, geneSet)
    bestFitness = get_fitness(bestParent)
    display(bestParent)
    if bestFitness >= optimalFitness:
        return bestParent

    while True:
        child = _mutate(bestParent, geneSet)
        childFitness = get_fitness(child)

        if bestFitness >= childFitness:
            continue
        display(child)
        if childFitness >= optimalFitness:
            return child
        bestFitness = childFitness
        bestParent = child




Notice that the display
 and get_fitness
 functions are called with only one parameter - the child gene sequence. This is because a generic engine does not need access to the target value, and it does not care about how much time has passed, so those are not passed to it.

The result is a reusable module named genetic
 that can be used in other programs via import genetic
 .



Use the genetic
 module

The code remaining in guessPassword.py
 is specific to the password guessing project. To get it working again first import the genetic
 module.


guessPassword.py

import datetime
import genetic




Next, helper functions that take only one parameter must be defined so they are compatible with what the engine expects. Each helper function will take the candidate gene sequence it receives and call the local functions with additional required parameters as necessary. Note that the helper functions are nested inside the guess_password
 function so that they have access to the target and start time variables.



def test_Hello_World():
    target = "Hello World!"
    guess_password(target)


def guess_password(target):
    geneset = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!."
    startTime = datetime.datetime.now()

    def fnGetFitness(genes): ①


        return get_fitness(genes, target)

    def fnDisplay(genes): ②


        display(genes, target, startTime)

    optimalFitness = len(target)
    genetic.get_best(fnGetFitness, len(target), optimalFitness, geneset,
                     fnDisplay)






Display

Now change the display function to take the target password as a parameter. We could implement it as a global variable in the algorithm file but this change facilitates trying different passwords without side effects.



def display(genes, target, startTime):
    timeDiff = datetime.datetime.now() - startTime
    fitness = get_fitness(genes, target)
    print("{}\t{}\t{}".format(genes, fitness, timeDiff))






Fitness

The fitness function also needs to receive the target password as a parameter.



def get_fitness(genes, target):
    return sum(1 for expected, actual in zip(target, genes)
               if expected == actual)






Main

There are many ways to structure the main code, the most flexible is as a unit test. To start that transition first rename guessPassword.py
 to guessPasswordTests.py
 . Next, to make it possible to execute the code from the command line add:


guessPasswordTests.py

if __name__ == '__main__':
    test_Hello_World()




If you are following along in an editor be sure to run your code to verify it works at this point.




Use Python’s unittest
 framework

The next step is to make the code work with Python’s built-in test framework.



import unittest




To do that the main test function must be moved into a class
 that inherits from unittest.TestCase
 . The other functions can be moved into the class
 as well if you want, but if they are then self
 must be added as the first parameter to each because they will then belong to the test class
 .



class GuessPasswordTests(unittest.TestCase):
    geneset = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.,"

    def test_Hello_World(self):
        target = "Hello World!"
        self.guess_password(target)

    def guess_password(self, target):
...
        optimalFitness = len(target)
        best = genetic.get_best(fnGetFitness, len(target), optimalFitness,
                                self.geneset, fnDisplay)
        self.assertEqual(best, target)




When the unittest
 module’s main
 function is called, it automatically executes each function whose name starts with test
 .



if __name__ == '__main__':
    unittest.main()




This allows the test to be run from the command line and, incidentally, without the output from its display function.



python -m unittest -b guessPasswordTests
.
----------------------------------------
Ran 1 test in 0.020s

OK






If you get an error like 'module' object has no attribute 'py'
 then you used the filename guessPasswordTests.py
 instead of the module name guessPasswordTests
 .






A longer password

"Hello World!" doesn’t sufficiently demonstrate the power of the genetic engine so try a longer password:



def test_For_I_am_fearfully_and_wonderfully_made(self):
    target = "For I am fearfully and wonderfully made."
    self.guess_password(target)





Run



...
ForMI am feabaully and wWndNyfulll made.        33      0:00:00.047094
For I am feabaully and wWndNyfulll made.        34      0:00:00.047094
For I am feabfully and wWndNyfulll made.        35      0:00:00.053111
For I am feabfully and wondNyfulll made.        36      0:00:00.064140
For I am feabfully and wondNyfully made.        37      0:00:00.067148
For I am feabfully and wondeyfully made.        38      0:00:00.095228
For I am feabfully and wonderfully made.        39      0:00:00.100236
For I am fearfully and wonderfully made.        40      0:00:00.195524




Nice!




Introduce a Chromosome class


The next change is to introduce a Chromosome class
 that has Genes
 and Fitness
 attributes. This will make the genetic engine more flexible by making it possible to pass those values around as a unit.


genetic.py

class Chromosome:
    def __init__(self, genes, fitness):
        self.Genes = genes
        self.Fitness = fitness






def _mutate(parent, geneSet, get_fitness):
    index = random.randrange(0, len(parent.Genes))
    childGenes = list(parent.Genes)
...
    genes = ''.join(childGenes)
    fitness = get_fitness(genes)
    return Chromosome(genes, fitness) ①








def _generate_parent(length, geneSet, get_fitness):
...
    genes = ''.join(genes)
    fitness = get_fitness(genes)
    return Chromosome(genes, fitness) ②








def get_best(get_fitness, targetLen, optimalFitness, geneSet, display):
    random.seed()
    bestParent = _generate_parent(targetLen, geneSet, get_fitness)
    display(bestParent)
    if bestParent.Fitness >= optimalFitness: ③


        return bestParent

    while True:
        child = _mutate(bestParent, geneSet, get_fitness)

        if bestParent.Fitness >= child.Fitness: ④


            continue
        display(child)
        if child.Fitness >= optimalFitness: ⑤


            return child
        bestParent = child




It does require compensating changes to the algorithm file functions but those changes also eliminate some double work (i.e. recalculating the fitness).


guessPasswordTests.py

def display(candidate, startTime): ①


    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        candidate.Genes, candidate.Fitness, timeDiff)) ②








class GuessPasswordTests(unittest.TestCase):
...
    def guess_password(self, target):
...
        def fnDisplay(candidate):
            display(candidate, startTime) ③



        optimalFitness = len(target)
        best = genetic.get_best(fnGetFitness, len(target), optimalFitness,
                                self.geneset, fnDisplay)
        self.assertEqual(best.Genes, target) ④








Benchmarking

The next improvement is to add support for benchmarking because it is useful to know how long the engine takes to find a solution on average and the standard deviation. That can be done with another class
 as follows:


genetic.py

class Benchmark:
    @staticmethod
    def run(function):
        timings = []
        for i in range(100):
            startTime = time.time()
            function()
            seconds = time.time() - startTime
            timings.append(seconds)
            mean = statistics.mean(timings)
            print("{} {:3.2f} {:3.2f}".format(
                1 + i, mean,
                statistics.stdev(timings, mean) if i > 1 else 0))




This function runs the provided function 100 times and reports how long each run takes, the mean, and standard deviation. To calculate the standard deviation we’ll use a 3rd-party module named statistics
 :


genetic.py

import statistics
import time






You may need to install the statistics
 module on your system. This can be accomplished from the command line with python -m pip install statistics





Now, to use the benchmarking capability simply add a test and pass the function to be benchmarked.


guessPasswordTests.py

def test_benchmark(self):
    genetic.Benchmark.run(self.test_For_I_am_fearfully_and_wonderfully_made)




When run, this function works great but is a bit chatty because it also shows the output from the display function for all 100 runs. That can be fixed in the benchmark function by temporarily redirecting the standard output to nowhere.


genetic.py

import sys
...
class Benchmark:
    @staticmethod
    def run(function):
...
        timings = []
        stdout = sys.stdout ①


        for i in range(100):
            sys.stdout = None ②


            startTime = time.time()
            function()
            seconds = time.time() - startTime
            sys.stdout = stdout ③


            timings.append(seconds)
...








If you get an error like the following when you run the benchmark test:






AttributeError: 'NoneType' object has no attribute 'write'




Then you are probably using Python 2.7. It does not support redirecting stdout
 to None
 . It must have someplace to write the data. One solution to that problem is to add the following class
 :


genetic.py

class NullWriter():
    def write(self, s):
        pass




Then replace the following in Benchmark.run
 :



for i in range(100):
    sys.stdout = None




with:



for i in range(100):
    sys.stdout = NullWriter()




That change allows you work around the difference between Python 2.7 and 3.5 this time. However, code in future projects uses other features of Python 3.5, so I suggest switching to Python 3.5 so that you can focus on learning about genetic algorithms without these additional issues. If you want to use machine learning tools that are tied to Python 2.7, wait until you have a solid understanding of genetic algorithms then switch to Python 2.7.




The output can also be improved by only displaying statistics for the first ten runs and then every 10th run after that.


genetic.py

...
            timings.append(seconds)
            mean = statistics.mean(timings)
            if i < 10 or i % 10 == 9: ④


                print("{} {:3.2f} {:3.2f}".format(
                    1 + i, mean,
                    statistics.stdev(timings, mean) if i > 1 else 0))




Now the benchmark test output looks like the following.


sample output

1 0.19 0.00
2 0.17 0.00
3 0.18 0.02
...
9 0.17 0.03
10 0.17 0.03
20 0.18 0.04
...
90 0.16 0.05
100 0.16 0.05




This means that, averaging 100 runs, it takes .16 seconds to guess the password, and 68 percent of the time (one standard deviation) it takes between .11 (.16 - .05) and .21 (.16 + .05) seconds. Unfortunately that is probably too fast to determine if a change is due to a code improvement or due to something else running on the computer at the same time. That problem can be solved by making the genetic algorithm guess a random sequence that takes 1-2 seconds to run.


guessPasswordTests.py

import random
...
    def test_Random(self):
        length = 150
        target = ''.join(random.choice(self.geneset) for _ in range(length))
        self.guess_password(target)

    def test_benchmark(self):
        genetic.Benchmark.run(self.test_Random)




Your cpu is probably different from mine so adjust the length as necessary.

On my system that results in:




Benchmarks





	
average (seconds)


	
standard deviation





	
1.46


	
0.35













Summary

In this project we built a simple genetic engine that makes use of random mutation to produce better results. This engine was able to guess a secret password given only its length, a set of characters that might be in the password, and a fitness function that returns a count of the number characters in the guess that match the secret. This is a good benchmark project for the engine because as the target string
 gets longer the engine wastes more and more guesses trying to change positions that are already correct. As the engine evolves in later projects, we’ll try to keep this benchmark fast. Also, as you work your way through more projects you’ll learn ways to improve the performance of the code in this project.



Final Code

The final code for all projects is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch01










ONE
 MAX
 PROBLEM







At a high level the next project involves getting the engine to produce 100 1’s when the genes can only be 0 or 1. You should be able to do that with our current engine. Go try it. Note: you can repeat a string 3 times with "1" * 3
 , if that is useful.




Solution



    def test_onemax(self):
        target = "1" * 100
        self.geneset = "01"
        self.guess_password(target)




That’s easy enough right? However, most real world genetic algorithm problems would be much more complex to solve if we were limited to using a string
 for the DNA. So we’re going to use this problem to make our engine more flexible.



Make password code work with a list
 of genes

Let’s start by changing the password related code to be compatible with an engine that provides a list
 of genes instead of a string
 of genes.

We can use the join
 function (without a separator) to combine the list
 of characters into a string
 in the display function


guessPasswordTests.py

def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        ''.join(candidate.Genes), ⑦


        candidate.Fitness,
        timeDiff))




and in the assertion in guess_password
 .



class GuessPasswordTests(unittest.TestCase):
    def guess_password(self, target):
...
        self.assertEqual(''.join(best.Genes), target)






Change genetic
 to work with a list


To make the genetic
 module work with a list we can start by using Python’s array slicing feature to simply make a copy of the genes in the mutation function, instead of using the list
 constructor to convert from a string
 to a list
 .



def _mutate(parent, geneSet, get_fitness):
    childGenes = parent.Genes[:]
...




Then remove the following line from _mutate and _generate_parent since we no longer need to convert the list
 back to a string
 in the engine:



genes = ''.join(childGenes)




Next, update those functions to use the list
 , as follows:


genetic.py

def _mutate(parent, geneSet, get_fitness):
    childGenes = parent.Genes[:]
    index = random.randrange(0, len(parent.Genes))
    newGene, alternate = random.sample(geneSet, 2)
    childGenes[index] = alternate \ ①


        if newGene == childGenes[index] \ ②


        else newGene
    fitness = get_fitness(childGenes) ③


    return Chromosome(childGenes, fitness) ④








def _generate_parent(length, geneSet, get_fitness):
...
    fitness = get_fitness(genes) ⑤


    return Chromosome(genes, fitness) ⑥






That’s it for the engine modifications. You should now be able to run the tests again.



Build the OneMax test class

In real world genetic algorithm problems we are unlikely to have a solution to compare against. Instead we know the features we want the solution to have. So let’s restate the OneMax problem as: maximize the number of genes that are the integer 1. Now create a new file called oneMaxTests.py
 using the stub below to get you started, and see if you can write the code to solve this problem using integer genes.


oneMaxTests.py

import unittest
import datetime
import genetic

def get_fitness(genes):
    # return a count the number of 1's in the genes

def display(candidate, startTime):
    # display the current genes, their fitness, and elapsed time

class OneMaxTests(unittest.TestCase):
    def test(self, length=100):
        geneset = [0, 1]
        # create the helper functions and optimal fitness
        # then call `genetic`.get_best()
        # finally, assert that the fitness of the result is optimal






Solution

My implementation is below. Yours is probably different, and that’s OK!


Fitness

In the fitness function we can simply count the number of 1’s in the list of genes.


oneMaxTests.py

def get_fitness(genes):
    return genes.count(1)






Display

Since 100 numbers would be a lot to display, just show the first and last 15 along with the fitness and elapsed time.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}...{}\t{:3.2f}\t{}".format(
          ''.join(map(str, candidate.Genes[:15])),
           ''.join(map(str, candidate.Genes[-15:])),
           candidate.Fitness,
           timeDiff))






This uses str
 to convert the integers in candidate.Genes
 to a string. Without map
 the code would need a loop like the following to convert the candidate genes to a string
 :



  result = []
  for i in candidate.Genes
    result += str(candidate[i])
  return result









Test

And here’s the full test harness.



def test(self, length=100):
    geneset = [0, 1]
    startTime = datetime.datetime.now()

    def fnDisplay(candidate):
        display(candidate, startTime)

    def fnGetFitness(genes):
        return get_fitness(genes)

    optimalFitness = length
    best = genetic.get_best(fnGetFitness, length, optimalFitness, geneset,
                            fnDisplay)
    self.assertEqual(best.Fitness, optimalFitness)





Run

It can find the solution very quickly.


sample output

010101101010010...101010110100101     50.00   0:00:00.001000
010101101010010...101010110100101       51.00   0:00:00.001000
...
110111101111111...111111110111111       95.00   0:00:00.008000
110111111111111...111111110111111       96.00   0:00:00.008000
110111111111111...111111110111111       97.00   0:00:00.009000
110111111111111...111111111111111       98.00   0:00:00.009000
111111111111111...111111111111111       99.00   0:00:00.010000
111111111111111...111111111111111       100.00  0:00:00.011000








Benchmarks

Since the engine can solve this problem so fast we’ll benchmark this project with a longer array. As with the Guess Password benchmark I’m choosing a length that takes between 1 and 2 seconds on average on my computer. You should use a length appropriate for your computer.



def test_benchmark(self):
    genetic.Benchmark.run(lambda: self.test(4000))




We can see in the updated benchmarks that eliminating the string conversion may also have given us a tiny performance improvement in the password guessing project.




Updated Benchmarks






	
project


	
average (seconds)


	
standard deviation





	
Guess Password


	
1.21


	
0.25





	
One Max


	
1.25


	
0.17













Aside

In this project the genetic engine randomly chooses an array index to change, even if the array already contains a 1 at that index, because the engine doesn’t know the change it is making is useless until after it has called the fitness function. A physical equivalent is to take 100 coins and put green sticky dots on one side and yellow sticky dots on the other. Then have a partner blindfold you and drop the coins on a table top. Your goal is to turn all the coins yellow-side up. If you turn one yellow-side up they tell you it was a success. Otherwise, they undo the change and tell you it was a failure. To keep you from building a mental map they could optionally move the coin somewhere else afterward. Tough game right?

Now think about possible changes to the coin game that would make it solvable. For example, what if they were to remove the coin from the table when you turn it yellow-side up. That would be extremely useful right? Assuming every coin started yellow-side up, you would at most turn each coin twice, meaning you could turn all coins yellow-side up in at most 200 turns no matter which way they started. If the genetic algorithm, instead of the engine, had control of choosing the next index, then the equivalent would be for it to record the index it changes. Then, if the display function is called next by the engine instead of get_index
 , the algorithm would know that the array contains a 1 at that index. It could then simply add the index to a list of indexes it ignores when guessing. A side benefit of this solution is that, like the human player in the coin game, the genetic algorithm does not need to know the state of the entire array. It can begin with zero knowledge and start tracking indexes that improve the fitness, just like the classic Battleship game
 .



Summary

In this project the flexibility of the genetic
 module was increased by allowing the genes to be any type instead of only characters in a string
 . This is a critical feature, as before long we will want to use something other than just keyboard characters for genes.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch02










SORTED
 NUMBERS







In this project we will make a genetic algorithm that produces a sorted list
 of numbers. This project is slightly more difficult than the previous two because even though there are many potential solutions instead of just one, now each of the genes has a constraint based on another gene’s value; specifically, it must have a value greater than the gene to its left in the array. Just as we did in the previous project we’ll start with a stub that you should be able to use to solve this problem.




Test class stub


sortedNumbersTests.py

import unittest
import datetime
import genetic

def get_fitness(genes)
    # return a count of the number of genes that are in ascending order

def display(candidate, startTime):
    # display the current genes, their fitness, and elapsed time
    # example: 53, 74, 95       => 3 0:00:00.001004

class SortedNumbersTests(unittest.TestCase):
    def test_sort_3_numbers(self):
        self.sort_numbers(3)

    def sort_numbers(self, totalNumbers):
        geneset = [i for i in range(100)]
        # start a timer
        # create the helper functions and optimal fitness
        # then call genetic.get_best()
        # finally, assert that the fitness of the result is optimal




For this project the gene set is integers in the range 0 to 99, created above with a list
 comprehension. Go fill in the details and see if you can implement a solution before you read further. Working through the problem on your own first will help you better understand my implementation.




[i for i in range(100)]
 is an example of a list comprehension, a powerful Python feature that enables us to build a list
 by saying what we want instead of how to get it. This is equivalent to:



geneset = []
for i in range(100):
  geneset.append(i)




The Python compiler may be able to write faster code for list comprehensions in some cases. You may recall that we sometimes use a variant of this in the display function to convert a list
 of numbers to a string
 using map
 .






Solution

This should not have been difficult for you. If it was, review my solution then do it one more time from scratch to help the patterns stick in your mind.


Fitness

The fitness function will return a count of the adjacent numbers that are in ascending order with 1 freebie because the initial position doesn’t have a gene to its left.



def get_fitness(genes):
    fitness = 1
    for i in range(1, len(genes)):
        if genes[i] > genes[i - 1]:
            fitness += 1
    return fitness






Display

The display function will output the array values separated by a comma.



import datetime
...
def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t=> {}\t{}".format(
        ', '.join(map(str, candidate.Genes)),
        candidate.Fitness,
        timeDiff))






sort_numbers



def sort_numbers(self, totalNumbers):
    geneset = [i for i in range(100)]
    startTime = datetime.datetime.now()

    def fnDisplay(candidate):
        display(candidate, startTime)

    def fnGetFitness(genes):
        return get_fitness(genes)

    optimalFitness = totalNumbers
    best = genetic.get_best(fnGetFitness, totalNumbers, optimalFitness,
                            geneset, fnDisplay)
    self.assertTrue(not optimalFitness > best.Fitness)






Run



23, 99, 43    => 2 0:00:00.001004
53, 74, 95      => 3 0:00:00.001004




Great!




Get 10 sorted digits

Now let’s try to get the engine to produce 10 sorted numbers.



def test_sort_10_numbers(self):
    self.sort_numbers(10)






Run

Now when we run the test it stalls.



54, 59, 7, 69, 73, 76, 42, 46, 39, 87 => 7 0:00:00.001000
54, 59, 7, 69, 73, 76, 42, 46, 63, 87   => 8 0:00:00.001000
54, 59, 66, 69, 73, 76, 42, 46, 63, 87  => 9 0:00:00.003000






Our first stall

When a genetic algorithm stalls it is often a clue to a pattern in the result or that there is something you know that the algorithm does not. For example, in the final output above the numbers form a pattern of runs that our current fitness function did not anticipate. The easiest way for the algorithm to make progress would be to change the values of the 7th-9th indexes from [42, 46, 63] to values in the range 77-86. The problem is it has no way to do that. So we will look at a simpler version of the issue to see why. For example, in the following sequence



3, 1, 6




the engine can change 1
 to 4
 or 5
 to get a higher fitness. But in the following sequence



3, 1, 2, 6




the engine has to change 2 values to get a higher fitness. The problem is get_best
 is coded to only keep a change if the fitness is higher. So changing 2
 to 5
 or 1
 to 4
 in the above sequence does not improve the fitness and those changes will be abandoned. One solution would be to change the engine somehow, perhaps to keep changes that don’t make the fitness worse, instead of keeping only those that increase it. We could do that but there’s a better way that shows us something important.



Engineer a solution

Consider this sequence.



9, 30, 1, 20, 60




Would the following be an improvement?



9, 30, 15, 20, 60




Or this?



9, 16, 1, 20, 60




Both changes would be improvements because they smooth the point where the two runs meet from a gap of 29 to a gap of 15. Either could then be followed by another similar change that further reduces the gap, or even converts the two sorted runs into a single one. The way to help the engine keep this kind of change is to give partial credit in the fitness.



Fitness Technique: Give partial credit in the fitness if possible.






Use a Fitness
 object

We need to somehow prefer sequences with small gaps between the runs to those with large gaps. There are a couple of ways to do that. One way that is often seen when the engine has constraints on the type of the fitness value is to scale up the fitness value, multiplying by a large value like 1000 for example, and then subtracting the amount of the gap. Another way would be to make the fitness score a floating point value with the gap value in the decimal portion and subtracted from 1. These would both work but we would then have to decode them either mentally or actually if we want to break out each part of the fitness value for display.

Lucky for us our engine doesn’t have a type limitation so we’re going to keep the values separate but encapsulated in a problem-specific fitness object that can be compared to its own type. This allows us to determine the better of two gene sequences based on their fitness, while making the fitness object responsible for how it is displayed.

We start with the constructor.


sortedNumbersTests.py

class Fitness:
    def __init__(self, numbersInSequenceCount, totalGap):
        self.NumbersInSequenceCount = numbersInSequenceCount
        self.TotalGap = totalGap
...




Next we need to be able to compare two fitness values.



...
    def __gt__(self, other):
        if self.NumbersInSequenceCount != other.NumbersInSequenceCount:
            return self.NumbersInSequenceCount > other.NumbersInSequenceCount
        return self.TotalGap < other.TotalGap
...








gt

 is name of the function that the built-in greater-than comparer looks for. If we provide an implementation, the comparer will use it. We could implement other comparison functions, such as less-than, equal, etc., but we only need to know if the fitness of the new gene sequence is better than the previous one. If we’re careful with the comparisons we make in get_best
 then we can be lazy in implementing fitness objects in the future.




Lastly, the Fitness
 object needs to know how to convert itself to a string
 for display:



...
    def __str__(self):
        return "{} Sequential, {} Total Gap".format(
            self.NumbersInSequenceCount,
            self.TotalGap)






Use only > for fitness comparison

We need to be able to compare a Chromosome’s
 fitness with the optimal fitness in the engine and only use greater-than comparisons in the implementation.



def get_best(get_fitness, targetLen, optimalFitness, geneSet, display):
...
    if not optimalFitness > bestParent.Fitness:
        return bestParent

    while True:
        child = _mutate(bestParent, geneSet, get_fitness)
        if not child.Fitness > bestParent.Fitness:
            continue
        display(child)
        if not optimalFitness > child.Fitness:
            return child
        bestParent = child




Then we need to pass an instance of Fitness
 to get_best
 as the optimal value.


sortedNumbersTests.py

def sort_numbers(self, totalNumbers):
...
    optimalFitness = Fitness(totalNumbers, 0)
    best = genetic.get_best(fnGetFitness, totalNumbers, optimalFitness,
                            geneset, fnDisplay)
    self.assertTrue(not optimalFitness > best.Fitness)




Finally, in get_fitness
 we need to return an instance of Fitness
 .



def get_fitness(genes):
    fitness = 1
    gap = 0
    for i in range(1, len(genes)):
        if genes[i] > genes[i - 1]:
            fitness += 1
        else:
            gap += genes[i - 1] - genes[i]

    return Fitness(fitness, gap)






Run 2

Now when we run the test it can find a solution about 70 percent of the time. When it can’t the result looks like this:



...
10, 16, 18, 28, 30, 33, 7, 8, 9, 11     => 9 Sequential, 26 Total Gap        0:00:00.008001
10, 16, 18, 28, 30, 6, 7, 8, 9, 11      => 9 Sequential, 24 Total Gap        0:00:00.012001
10, 16, 18, 28, 29, 6, 7, 8, 9, 11      => 9 Sequential, 23 Total Gap        0:00:00.021002






Study the results

By studying the last line of output we see that we can to get partial fitness improvements by moving 29
 and 6
 closer to each other. However, they are both prevented from moving by a neighbor - 6 can’t be replaced by a higher number, and 29 can’t be replaced by a lower number, without reducing the fitness. This means considering only the gap at the discontinuity is insufficient. What would let us move forward is if 28
 was reduced or 9
 was increased, or if one of the neighbors changed so that we could have room to reduce the gap.



Engineer a solution

Now we will implement a change mentioned earlier. Instead of keeping only changes that have a better fitness than the parent, we’re going to allow the engine to keep any change that results in a fitness equivalent to or better than the parent, like this:


genetic.py

def get_best(get_fitness, targetLen, optimalFitness, geneSet, display):
...
        child = _mutate(bestParent, geneSet, get_fitness)
        if bestParent.Fitness > child.Fitness: ①


            continue
        if not child.Fitness > bestParent.Fitness:
            bestParent = child ②


            continue
        display(child)
        if not optimalFitness > child.Fitness:
...






Run 3

Now when we run the test it can find a sorted sequence every time.



...
11, 3, 9, 27, 55, 69, 71, 76, 89, 86    => 8 Sequential, 11 Total Gap        0:00:00.001000
11, 3, 9, 41, 45, 47, 71, 76, 83, 86    => 9 Sequential, 8 Total Gap 0:00:00.001000
9, 3, 6, 18, 45, 47, 52, 76, 83, 86     => 9 Sequential, 6 Total Gap 0:00:00.002000
2, 3, 6, 36, 45, 47, 52, 76, 83, 86     => 10 Sequential, 0 Total Gap        0:00:00.002000




We can tell that it kept equivalent genetic lines to get 9 items sorted and again to get 10 sorted because more than one number changed to get each of those improvements. We can also see it switching genetic lines when multiple characters change at the same time in the output from the password problem.



C!pDrdy!QtDq  0       0:00:00
ULzEoMJmzF!a    1       0:00:00.001000
HXoSocjYQtZb    2       0:00:00.005000
HxiKoIWeVj!x    3       0:00:00.007000
HxiKoIWerj!x    4       0:00:00.007000
HxEKoIWYrl!x    5       0:00:00.007000
HovlobWJrlUX    6       0:00:00.010000
HovlobWJrldv    7       0:00:00.010000
HuTlo WRrldp    8       0:00:00.016001
HeUlo WirldK    9       0:00:00.017001
HeUlo WUrld!    10      0:00:00.017001
Hello WNrld!    11      0:00:00.024001
Hello World!    12      0:00:00.034002






Split get_best


The loop code in get_best
 is becoming complex. One way to fix that is to split the loop code into two parts. The first part will only be responsible for generating successively better gene sequences which it will send back to get_best
 via yield
 .


genetic.py

def _get_improvement(new_child, generate_parent):
    bestParent = generate_parent()
    yield bestParent
    while True:
        child = new_child(bestParent)
        if bestParent.Fitness > child.Fitness:
            continue
        if not child.Fitness > bestParent.Fitness:
            bestParent = child
            continue
        yield child
        bestParent = child




And get_best
 will be responsible for displaying improvements and breaking the loop.



def get_best(get_fitness, targetLen, optimalFitness, geneSet, display):
    random.seed()

    def fnMutate(parent):
        return _mutate(parent, geneSet, get_fitness)

    def fnGenerateParent():
        return _generate_parent(targetLen, geneSet, get_fitness)

    for improvement in _get_improvement(fnMutate, fnGenerateParent):
        display(improvement)
        if not optimalFitness > improvement.Fitness:
            return improvement






Benchmarks

Benchmark this project by having it produce a sequence of sorted numbers that takes 1-2 seconds to run on average.


sortedNumbersTests.py

def test_benchmark(self):
    genetic.Benchmark.run(lambda: self.sort_numbers(40))




Since we modified the genetic
 module the previous benchmarks may have changed, so here are the updated benchmarks for all of the projects we’ve done so far:










	
project


	
average (seconds)


	
standard deviation





	
Guess Password


	
1.25


	
0.31





	
One Max


	
1.19


	
0.15





	
Sorted Numbers


	
1.27


	
0.75













Summary

In this project we considered a couple of ways to encode multiple goals into the fitness value, and how to use a comparable class instead of a number for fitness values. We also improved the engine by making it switch to new, equally good genetic lines should they come about. Also, we extracted a generator function from get_best
 to separate concerns.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch03










THE
 8
 QUEENS
 PUZZLE






In this project we will solve the 8 Queens Puzzle.

In the game of chess, the queen can attack across any number of unoccupied squares on the board horizontally, vertically, or diagonally.


[image: ch04.queen.moves2.epub]



The 8 Queens Puzzle involves putting 8 queens on a standard chessboard such that none are under attack.

Take a couple of minutes to try to solve this with something physical like coins on a paper chessboard to get a feel for how it might work.

It turns out that getting 7 queens into safe positions on a chessboard isn’t too difficult.

Q . . . . . . .
. . . . Q . . .
. . . . . . Q .
. Q . . . . . .
. . . Q . . . .
. . . . . . . Q
. . . . . . . .
. . Q . . . . .

Getting 8 takes a bit more work. According to WikiPedia
 there are only 92 solutions to this puzzle and once we remove mirrors and rotations there are only 12 unique solutions.

There are 64 x 63 x 62 x 61 x 60 x 59 x 58 x 57 potential locations for the queens assuming we don’t apply some logic to reduce the search space. That’s a very large number, so clearly a straight iterative method is impractical.

This puzzle is like the sorted numbers project in that there are constraints on the genes, but instead of one or two constraints per gene we now have many because of the relationships between the genes that the engine knows nothing about.

Also, in the projects we’ve done so far the genes were
 the solution, so we were able to display them without transformation and our fitness code could simply compare them to each other or the known answer.

At a high level, the community calls the genetic encoding the genotype
 and the genes' ultimate form or behavior in the solution the phenotype
 .



The genotype
 is the way the parts of the problem are encoded so they can be manipulated by the genetic algorithm.

Example: potential genotypes for this project include:



	
64 bits, one for each of the 64 squares on the board


	
48 bits, 6 for each of the queen locations, because we can count to 64 with 6 bits


	
8 integers in the range 0..63 or 1..64


	
16 integers representing the row and column location of each queen











The phenotype
 is how the decoded genes are used in solving the problem. In each of the examples above the phenotype is locations of 8 queens on the board.

The fitness function then evaluates the phenotype in the context of the problem being solved to return a fitness value to the engine.




Also, like in the sorted numbers project, we have multiple potential solutions, and we’re not going to hard-code them. So, we will have to calculate fitness based on characteristics.

At this point you should have enough information to attempt an implementation. Use whatever programming language you prefer, it does not have to be Python. Come back here once you are ready to step through my implementation process. This should be your pattern for the rest of the projects so that you approach each solution implementation having at least thought about what genes you would use, and how you might evaluate fitness.


Test class



import unittest
import datetime
import genetic

class EightQueensTests(unittest.TestCase):
    def test(self, size=8):




To start with we need to define the genotype. We will use two genes for the position of each queen – one each for the row and column. The chessboard conveniently has the same number of rows as columns (8) so we’ll use the digits 0-7.



    def test(self, size=8):
        geneset = [i for i in range(size)]






Board

We will use the genes as row and column indexes to plot queen locations on a board.



class Board:
    def __init__(self, genes, size):
        board = [['.'] * size for _ in range(size)]
        for index in range(0, len(genes), 2):
            row = genes[index]
            column = genes[index + 1]
            board[column][row] = 'Q'
        self._board = board




We could have introduced a Location
 class to convert and encapsulate pairs of genes as Row and Column locations but since there is a direct correlation we don’t need it. If we had chosen one of the other genotypes described above, it would have been an important step.



Display

The display function will let us visualize the queen locations



def display(candidate, startTime, size):
    timeDiff = datetime.datetime.now() - startTime
    board = Board(candidate.Genes, size)
    board.print()
    print("{}\t- {}\t{}".format(
        ' '.join(map(str, candidate.Genes)),
        candidate.Fitness,
        timeDiff))




but first we need to add a print function to Board
 class:



class Board:
...
    def print(self):
        # 0,0 prints in bottom left corner
        for i in reversed(range(len(self._board))):
            print(' '.join(self._board[i]))




This produces output like the following:



Q . . . . . . .
. . . . Q . Q .
. . Q . . . . .
. . . . . . . Q
. . . . . . . .
. Q . . . . . .
. . . Q . . . .
. . . . . . Q .
1 2 7 4 6 6 4 6 3 1 6 0 2 5 0 7 - 3     0:00:00.005012






Printing comma separated values without a format string
 automatically separates them with a space.




The row of digits under the board is the set of genes that created that board layout. The number to the right is the fitness, and the elapsed time is on the end.



Fitness

To drive improvement we’ll need to increase the fitness value whenever more queens can coexist on the board.

We’ll start with considering the number of columns that do not have a queen.

Here’s a layout that gets an optimal score but is undesirable:



      Q Q Q Q Q Q Q Q
        . . . . . . . .
        . . . . . . . .
        . . . . . . . .
        . . . . . . . .
        . . . . . . . .
        . . . . . . . .
        . . . . . . . .




We’ll also consider the number of rows that do not have queens. Here’s a revised board where both situations are optimal but the layout still allows queens to attack one another:



      Q . . . . . . .
        . Q . . . . . .
        . . Q . . . . .
        . . . Q . . . .
        . . . . Q . . .
        . . . . . Q . .
        . . . . . . Q .
        . . . . . . . Q




To fix this problem we’ll include the number of southeast diagonals that do not have a queen. Again we can find a corner case as follows:



      . . . . . . . Q
        . . . . . . Q .
        . . . . . Q . .
        . . . . Q . . .
        . . . Q . . . .
        . . Q . . . . .
        . Q . . . . . .
        Q . . . . . . .




To resolve this final issue we’ll include the number of northeast diagonals that do not have a queen.

We can calculate indexes for the northeast diagonals in Excel using the formula =$A2+B$1
 which results in a grid as follows



          0   1   2   3   4   5   6   7
        0   0   1   2   3   4   5   6   7
        1   1   2   3   4   5   6   7   8
        2   2   3   4   5   6   7   8   9
        3   3   4   5   6   7   8   9   10
        4   4   5   6   7   8   9   10  11
        5   5   6   7   8   9   10  11  12
        6   6   7   8   9   10  11  12  13
        7   7   8   9   10  11  12  13  14




The indexes of the southeast diagonals can be calculated using =(8-1-$A2)+B$1
 which we can visualize as follows:



          0   1   2   3   4   5   6   7
        0   7   8   9   10  11  12  13  14
        1   6   7   8   9   10  11  12  13
        2   5   6   7   8   9   10  11  12
        3   4   5   6   7   8   9   10  11
        4   3   4   5   6   7   8   9   10
        5   2   3   4   5   6   7   8   9
        6   1   2   3   4   5   6   7   8
        7   0   1   2   3   4   5   6   7




Using the 2 formulas above along with the row and column values we can write a fitness function that touches each board position exactly once, which makes it run fast.



Fitness Rule: The fitness function should run as fast as possible because we’re going to call it potentially millions of times.




The fitness value will be the sum of those four counts, subtracted from the maximum value (8+8+8+8, or 32). This means the optimal value will be zero and higher values will be worse. In all previous projects, higher fitnesses were better. How do we make this work? The same way we did in the Sorted Numbers problem. We add a problem-specific Fitness
 class where 
gt

 is coded to prefer fewer queens under attack, as follows:



class Fitness:
    def __init__(self, total):
        self.Total = total

    def __gt__(self, other):
        return self.Total < other.Total

    def __str__(self):
        return "{}".format(self.Total)




Then we count the number of rows, columns, and diagonals that have queens to determine how many are under attack:



def get_fitness(genes, size):
    board = Board(genes, size)
    rowsWithQueens = set()
    colsWithQueens = set()
    northEastDiagonalsWithQueens = set()
    southEastDiagonalsWithQueens = set()
    for row in range(size):
        for col in range(size):
            if board.get(row, col) == 'Q':
                rowsWithQueens.add(row)
                colsWithQueens.add(col)
                northEastDiagonalsWithQueens.add(row + col)
                southEastDiagonalsWithQueens.add(size - 1 - row + col)

    total = size - len(rowsWithQueens) \
            + size - len(colsWithQueens) \
            + size - len(northEastDiagonalsWithQueens) \
            + size - len(southEastDiagonalsWithQueens)

    return Fitness(total)




This requires the addition of a get
 function to the Board
 class:



class Board:
...
    def get(self, row, column):
        return self._board[column][row]






Test

Finally our test harness brings all the parts together.



def test(self, size=8):
    geneset = [i for i in range(size)]
    startTime = datetime.datetime.now()

    def fnDisplay(candidate):
        display(candidate, startTime, size)

    def fnGetFitness(genes):
        return get_fitness(genes, size)

    optimalFitness = Fitness(0)
    best = genetic.get_best(fnGetFitness, 2 * size, optimalFitness,
                            geneset, fnDisplay)
    self.assertTrue(not optimalFitness > best.Fitness)






Run

Now we can run the test to see if the engine can find a solution.



. . . . . Q . .
. . . Q Q . . .
. . . . Q . . .
. . . . . . . .
. . . . . . . .
. Q . . . . . .
. . Q . . . . .
. . . Q . . . Q
3 6 7 0 1 2 4 5 4 6 3 0 2 1 5 7 - 9     0:00:00






Q . . . . Q . .
. . Q . . . . .
. . . . Q . . .
. . . . . . . Q
. . . . . . . .
. . . . . . Q .
. . Q . . . . .
. . Q . . . . .
0 7 7 4 6 2 4 5 2 6 2 0 2 1 5 7 - 4     0:00:00.001003






. . . . Q . . .
. . Q . . . . .
Q . . . . . . .
. . . . . . Q .
. Q . . . . . .
. . . . . . . Q
. . . . . Q . .
. . . Q . . . .
7 2 1 3 0 5 4 7 3 0 6 4 2 6 5 1 - 0     0:00:00.098260




Some generations are left out for brevity but you can see that the engine can easily find optimal solutions to this puzzle. The solution above is particularly pleasing. We’ll see it again in another project.



Benchmarks

The cool thing about our implementation is it works for N queens on an NxN chessboard too, so we can benchmark it with a more difficult problem, like 20 queens.



def test_benchmark(self):
    genetic.Benchmark.run(lambda: self.test(20))






. . . . . . . . . . . Q . . . . . . . .
. . . . . . . . . . . . . . . . . . . Q
. Q . . . . . . . . . . . . . . . . . .
. . . . . . . . . Q . . . . . . . . . .
. . . . . . . . . . . . . . . . . . Q .
. . . . . Q . . . . . . . . . . . . . .
. . . . . . . Q . . . . . . . . . . . .
. . . . . . . . . . . . Q . . . . . . .
Q . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . Q . .
. . . . . . . . Q . . . . . . . . . . .
. . . . Q . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . Q . . . .
. . . Q . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . Q . . .
. . . . . . . . . . Q . . . . . . . . .
. . . . . . . . . . . . . Q . . . . . .
. . . . . . Q . . . . . . . . . . . . .
. . . . . . . . . . . . . . Q . . . . .
. . Q . . . . . . . . . . . . . . . . .
10 4 11 19 5 14 6 2 17 10 14 1 8 9 18 15 3 6 4 8 13 3 2 0 1 17 15 7 9 16 7 13 12 12 19 18 0 11 16 5     - 0     0:00:00.639702




We didn’t change any code in the genetic
 module, so we can just run the N queens benchmark.




Benchmark





	
average (seconds)


	
standard deviation





	
1.38


	
1.17













Aside

If you think about it you should be able to see the queens problem as a variant of a scheduling or resource allocation problem, with the rows and columns representing resources, and the queens being people or things that require or consume resources, possibly with additional constraints (i.e. the diagonal attacks). With a different test class and genes you could solve a number of scheduling or resource allocation problems with the current engine. For example: baking pizzas in ovens, one pizza per oven. The rows could become ovens - possibly with special features like cooks-faster or -slower or only small pizzas. The columns become time slots, and the queens become pizzas with features like size, required cooking time, value, bonus for faster delivery, etc. Now you can try to maximize the number of pizzas, or the amount of money earned. You get the idea.



Summary

In this project we learned the difference between genotype and phenotype. This was the first project we’ve had where the genotype was different from the phenotype. We also learned that we can easily make the engine select for gene sequences with lower fitness values instead of higher ones, should that be useful in solving a problem.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch04










GRAPH
 COLORING






In this project we will try a type of problem known as graph coloring. Variations involve using the fewest number of colors while making each node a unique color, trying to use an equal number of each color, etc. By experimenting we can see that a shape surrounded by an even number of neighbors can generally be filled with only 3 colors.


[image: ch05.3 color region.epub]



While a shape surrounded by an odd number of neighbors requires 4 colors.


[image: ch05.4 color region.epub]



We will to try to use only 4 colors to color a map of the United States with the constraint that no adjacent states have the same color. To do this by hand, color any state then use alternating colors on its neighboring states, and only introduce a new color when necessary.

Now when we do this in code we don’t care about the visual representation, just the physical relationships between the states, which we can encode as a graph, or more simply as a set of rules indicating which states cannot have the same color.


Data

We’ll start off with a file containing a list of states and the set of states that are adjacent to each. Each row of the file contains the information for one state. There are 2 fields on each line, separated by a comma. The first field contains a unique code for the state. The second field contains a semicolon-separated list of the codes for its neighboring states. I used 2 columns in the table below to keep the list together.









	
AK,


	
MT,ID;ND;SD;WY





	
AL,FL;GA;MS;TN


	
NC,GA;SC;TN;VA





	
AR,LA;MO;MS;OK;TN;TX


	
ND,MN;MT;SD





	
AZ,CA;NM;NV;UT


	
NE,CO;IA;KS;MO;SD;WY





	
CA,AZ;NV;OR


	
NH,MA;ME;VT





	
CO,KS;NE;NM;OK;UT;WY


	
NJ,DE;NY;PA





	
CT,MA;NY;RI


	
NM,AZ;CO;OK;TX





	
DC,MD;VA


	
NV,AZ;CA;ID;OR;UT





	
DE,MD;NJ;PA


	
NY,CT;MA;NJ;PA;VT





	
FL,AL;GA


	
OH,IN;KY;MI;PA;WV





	
GA,AL;FL;NC;SC;TN


	
OK,AR;CO;KS;MO;NM;TX





	
HI,


	
OR,CA;ID;NV;WA





	
IA,IL;MN;MO;NE;SD;WI


	
PA,DE;MD;NJ;NY;OH;WV





	
ID,MT;NV;OR;UT;WA;WY


	
RI,CT;MA





	
IL,IA;IN;KY;MO;WI


	
SC,GA;NC





	
IN,IL;KY;MI;OH


	
SD,IA;MN;MT;ND;NE;WY





	
KS,CO;MO;NE;OK


	
TN,AL;AR;GA;KY;MO;MS;NC;VA





	
KY,IL;IN;MO;OH;TN;VA;WV


	
TX,AR;LA;NM;OK





	
LA,AR;MS;TX


	
UT,AZ;CO;ID;NV;WY





	
MA,CT;NH;NY;RI;VT


	
VA,DC;KY;MD;NC;TN;WV





	
MD,DC;DE;PA;VA;WV


	
VT,MA;NH;NY





	
ME,NH


	
WA,ID;OR





	
MI,IN;OH;WI


	
WI,IA;IL;MI;MN





	
MN,IA;ND;SD;WI


	
WV,KY;MD;OH;PA;VA





	
MO,AR;IA;IL;KS;KY;NE;OK;TN


	
WY,CO;ID;MT;NE;SD;UT





	
MS,AL;AR;LA;TN


	









Take a break here and at least think about what genes you would use, and how you would evaluate fitness.



Reading the file

We’ll use the csv
 module to read the file and split the lines on commas. Then we’ll manually split the adjacent state list on semicolon and link the state and its list of adjacent states in a key-value table (dict
 ).


graphColoringTests.py

import csv

def load_data(localFileName):
    """ expects: AA,BB;CC where BB and CC are the
        initial column values in other rows
    """
    with open(localFileName, mode='r') as infile:
        reader = csv.reader(infile)
        lookup = {row[0]: row[1].split(';') for row in reader if row}
    return lookup






Rule

Now that we’ve read the data we need to build the rules. A Rule
 connects two states indicating that they are adjacent. When we create the rule we always sort the state
 and adjacent
 codes alphabetically. This makes it possible to eliminate duplicates.



class Rule:
    def __init__(self, node, adjacent):
        if node < adjacent:
            node, adjacent = adjacent, node
        self.Node = node
        self.Adjacent = adjacent






Hashing and Uniqueness: Since we want to be able to put rules in a key-value table and uniquely identify them in a list
 we need to define 
hash

 and 
eq

 . The important feature of the 
hash

 function is that no combination of state and adjacent codes should get the same hash value. The implementation below multiplies the hash of the state code by a prime number then exclusive-ORs it with the hash of the adjacent state code.






    def __eq__(self, other):
        return self.Node == other.Node and self.Adjacent == other.Adjacent

    def __hash__(self):
        return hash(self.Node) * 397 ^ hash(self.Adjacent)




We may also want to be able to display a rule so we’ll add a 
str

 implementation.



    def __str__(self):
        return self.Node + " -> " + self.Adjacent






State adjacency Rules

Next we will build the set of Rule
 objects. While we’re doing so we will perform a sanity check on the data as follows: Whenever a key state says it is adjacent to another state, the adjacent state’s rules should also say it is adjacent to the key state. We do that by keeping a count of the number of times we’ve seen each state pair. We should see each twice, so if we see it only once we know we have a data problem.



def build_rules(items):
    rulesAdded = {}

    for state, adjacent in items.items():
        for adjacentState in adjacent:
            if adjacentState == '':
                continue
            rule = Rule(state, adjacentState)
            if rule in rulesAdded:
                rulesAdded[rule] += 1
            else:
                rulesAdded[rule] = 1

    for k, v in rulesAdded.items():
        if v != 2:
            print("rule {} is not bidirectional".format(k))

    return rulesAdded.keys()




We now have the ability to convert a file of node relationships to a set of adjacency Rule
 objects.



Test class

Next we will build the code used by the genetic engine.



import unittest
import datetime
import genetic
...
class GraphColoringTests(unittest.TestCase):
    def test(self):






Test

We’ll start by loading the states from the file and building the rules. Since the expected optimal situation will be that all adjacent states have different colors, we can set the optimal value to the number of rules. Our Chromosome
 will have 50 genes, one for each state in alphabetical order. This lets us use the index into its genes as an index into a list of sorted state codes.



def test(self):
    states = load_data("adjacent_states.csv")
    rules = build_rules(states)
    optimalValue = len(rules)
    stateIndexLookup = {key: index
                        for index, key in enumerate(sorted(states))}
...






Genes

Next, since we want to four-color the 50 states, our genotype can be four color codes (the first letter of each color name).



...
    colors = ["Orange", "Yellow", "Green", "Blue"]
    colorLookup = {color[0]: color for color in colors}
    geneset = list(colorLookup.keys())
...




Now add the usual function definitions and call get_best
 .



...
    startTime = datetime.datetime.now()

    def fnDisplay(candidate):
        display(candidate, startTime)

    def fnGetFitness(genes):
        return get_fitness(genes, rules, stateIndexLookup)

    best = genetic.get_best(fnGetFitness, len(states), optimalValue,
                            geneset, fnDisplay)
    self.assertTrue(not optimalValue > best.Fitness)
...




And at the end we can write out the color of each state.



...
    keys = sorted(states.keys())
    for index in range(len(states)):
        print(keys[index] + " is " + colorLookup[best.Genes[index]])






Display

As for the display function, it should be sufficient to output the genes because they are also color codes.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        ''.join(map(str, candidate.Genes)),
        candidate.Fitness,
        timeDiff))




This results in output like the following. The number to the right of the gene sequence will indicate how many rules this gene sequence satisfies.



YGGBOOGOOBBYGGYYYYGBGYOOGBOYGGOOOYBOYBBGGOBYOGOGOGG   74      0:00:00.001000






Fitness

Finally, we need a fitness function that counts how many constraints the gene sequence passed.



def get_fitness(genes, rules, stateIndexLookup):
    rulesThatPass = sum(1 for rule in rules
                        if rule.IsValid(genes, stateIndexLookup))
    return rulesThatPass




This uses a new function in the Rule
 class:



class Rule:
...
    def IsValid(self, genes, nodeIndexLookup):
        index = nodeIndexLookup[self.Node]
        adjacentStateIndex = nodeIndexLookup[self.Adjacent]
        return genes[index] != genes[adjacentStateIndex]






Run

Now when we run our main test
 function we get output like the following:



...
GOGOYYGOBGYOYYOOOGOBYOGOYYGOBBYOGGYYBBGOBYBYBGOOBOO     103     0:00:00.014000
YOGOYYGOBGYYGYBOOGOBYGGOYYGOBBYOGGYYBBGOBYBYBYOOBOO     105     0:00:00.017001
YOGOYYGOBGYYGYBOOGOBYGGOYYGOBBYOGGYYBBGOBYBYBYOOYBO     106     0:00:00.017001
GOGOYYOGYBYGGYBOOGOBBBBOYYGGBBYOGGYYBBGYOYBYBYOOYOO     107     0:00:00.040002
AK is Green
AL is Orange
AR is Green
AZ is Orange
CA is Yellow
CO is Yellow
CT is Orange
...
TX is Yellow
UT is Blue
VA is Yellow
VT is Orange
WA is Orange
WI is Yellow
WV is Orange
WY is Orange





[image: ch05.4 color usa.epub]





Benchmarking

To benchmark this project we’re going to use R100_1gb
 , one of the graph coloring problem sets available from https://turing.cs.hbg.psu.edu/txn131/graphcoloring.html
 The file format is line based, with each line prefixed with its type. The lines we’re interested in start with e
 , for edge, followed by the numeric IDs of the two nodes connected by that edge, as follows:



e 16 10




If we change the format of our adjacent state file to the same format, then we’ll be able to reuse a lot of code. We’ll start by adding a utility test-function that reads our current file and outputs the contents in the new format.


Convert the state file



@staticmethod
def test_convert_file():
    states = load_data("adjacent_states.csv")
    output = []
    nodeCount = edgeCount = 0
    for state, adjacents in states.items():
        nodeCount += 1
        for adjacent in adjacents:
            if adjacent == '':
                output.append("n {} 0".format(state))
            else:
                output.append("e {} {}".format(state, adjacent))
                edgeCount += 1
    with open('./adjacent_states.col', mode='w+') as outfile:
        print("p edge {} {}".format(nodeCount, edgeCount), file=outfile)
        for line in sorted(output):
            print(line, file=outfile)




When we run this test we end up with a file whose content looks like the following:



p edge 51 214
e AL FL
e AL GA
...
e WY UT
n AK 0
n HI 0




Alaska and Hawaii do not have edges, so the only way we know about them is from their node (n
 ) records.

The utility function and import csv
 can be removed after the file is converted.



Read the new file format

Next we need to update load_data
 to read the new file format.



def load_data(localFileName):
    """ expects: T D1 [D2 ... DN]
        where T is the record type
        and D1 .. DN are record-type appropriate data elements
    """
    rules = set()
    nodes = set()
    with open(localFileName, mode='r') as infile:
        content = infile.read().splitlines()
    for row in content:
        if row[0] == 'e':  # e aa bb, aa and bb are node ids
            nodeIds = row.split(' ')[1:3]
            rules.add(Rule(nodeIds[0], nodeIds[1]))
            nodes.add(nodeIds[0])
            nodes.add(nodeIds[1])
            continue
        if row[0] == 'n':  # n aa ww, aa is a node id, ww is a weight
            nodeIds = row.split(' ')
            nodes.add(nodeIds[1])
    return rules, nodes






Now we’re returning a set of Rule
 objects and
 a set of node names. We’ll capture those in variables in the test function. Since we have 
hash

 and 
eq

 functions on the Rule
 class, putting the rules in a set automatically eliminates the bi-directional equivalents.






Extract parameters

We’ll also take this opportunity to rename the test function to color
 and make the file name and color list into parameters. Then we’ll also add a test_states
 function that uses the color
 function.



    def test_states(self):
        self.color("adjacent_states.col",
                   ["Orange", "Yellow", "Green", "Blue"])

    def color(self, file, colors):
        rules, nodes = load_data(file)
...




Remove the following line from the color
 function since the list of colors is now a parameter.



colors = ["Orange", "Yellow", "Green", "Blue"]






Node indexes

The next change to the color
 function affects how we get the node indexes.



    rules, nodes = load_data(file)
    optimalValue = len(rules)
    colorLookup = {color[0]: color for color in colors}
    geneset = list(colorLookup.keys())
    startTime = datetime.datetime.now()
    nodeIndexLookup = {key: index
                       for index, key in enumerate(sorted(nodes))} ①



    def fnDisplay(candidate):
        display(candidate, startTime)

    def fnGetFitness(genes):
        return get_fitness(genes, rules, nodeIndexLookup) ②








Update the final output

Finally, we have to update the way we write out the results at the end of the test function:



    best = genetic.get_best(fnGetFitness, len(nodes), optimalValue,
                            geneset, fnDisplay)
    self.assertTrue(not optimalValue > best.Fitness)

    keys = sorted(nodes) ③


    for index in range(len(nodes)): ④


        print(keys[index] + " is " + colorLookup[best.Genes[index]])




Be sure to run the state test to verify that it still works.



Add the benchmark test

Next we can add a test for the R100_1gb
 data as follows:



def test_R100_1gb(self):
    self.color("R100_1gb.col",
               ["Red", "Orange", "Yellow", "Green", "Blue", "Indigo"])







Benchmarks

When we run the test it is able to find a way to color the graph using 6 colors relatively quickly. It can also find a solution using 5 colors but that takes longer than we want to spend on a benchmark, so we’ll stay with 6 colors. We’ll use this test as our benchmark for graph coloring.



def test_benchmark(self):
    genetic.Benchmark.run(lambda: self.test_R100_1gb())







Benchmark





	
average (seconds)


	
standard deviation





	
0.74


	
0.42













Summary

In this project we read from a file and built constraints that can be applied to each candidate to determine its fitness. This was also the first project where we used test data from a standard set. Reading about others' solutions to the same standard problem is a good way to learn advanced techniques and to get inspiration for improving your fitness function and genotype.



Final Code

The state files and final code for this project are available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch05










CARD
 PROBLEM






In this project we will solve the Card Problem. We start off with the set of cards, Ace and 2-10, which we separate into 2 groups of 5 cards. The cards in each group have different constraints. The card values in one group must have a product of 360. The card values in the other group must sum to 36. We can only use each card once. First try it by hand with a deck of cards. Then at least think about what genes you would use, and how you would evaluate fitness.


[image: ch06.cards.epub]




Test class and genes

For this project our genotype and phenotype can be the same, integers. Thus we can avoid an encode/decode step.


cardTests.py

import unittest
import datetime
import genetic

class CardTests(unittest.TestCase):
    def test(self):
        geneset = [i + 1 for i in range(10)]






Fitness

This keeps fitness calculation relatively easy because we can sum one range of genes and multiply the rest. In this project we have 3 values to include in the fitness. One is the sum of the numbers in the first group. Another is the product of the numbers in the second group. The last is a count of the duplicated numbers in the list; we don’t want any duplicates.



import operator
import functools
...
def get_fitness(genes):
    group1Sum = sum(genes[0:5])
    group2Product = functools.reduce(operator.mul, genes[5:10])
    duplicateCount = (len(genes) - len(set(genes)))
    return Fitness(group1Sum, group2Product, duplicateCount)




Once again we’ll use a Fitness
 class.



class Fitness:
    def __init__(self, group1Sum, group2Product, duplicateCount):
        self.Group1Sum = group1Sum
        self.Group2Product = group2Product
        sumDifference = abs(36 - group1Sum)
        productDifference = abs(360 - group2Product)
        self.TotalDifference = sumDifference + productDifference
        self.DuplicateCount = duplicateCount




When comparing two fitnesses, we’ll prefer gene sequences with fewer duplicates, and when those are the same, we’ll prefer the one whose sum and product values are closer to the optimal values.



class Fitness:
...
    def __gt__(self, other):
        if self.DuplicateCount != other.DuplicateCount:
            return self.DuplicateCount < other.DuplicateCount
        return self.TotalDifference < other.TotalDifference






Display

In the display function we’ll separate the two groups visually with a dash.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{} - {}\t{}\t{}".format(
        ', '.join(map(str, candidate.Genes[0:5])),
        ', '.join(map(str, candidate.Genes[5:10])),
        candidate.Fitness,
        timeDiff))




We need to add a 
str

 function to the Fitness
 class:



class Fitness:
...
    def __str__(self):
        return "sum: {} prod: {} dups: {}".format(
            self.Group1Sum,
            self.Group2Product,
            self.DuplicateCount)






Test

Here’s the full test harness:



def test(self):
    geneset = [i + 1 for i in range(10)]
    startTime = datetime.datetime.now()

    def fnDisplay(candidate):
        display(candidate, startTime)

    def fnGetFitness(genes):
        return get_fitness(genes)

    optimalFitness = Fitness(36, 360, 0)
    best = genetic.get_best(fnGetFitness, 10, optimalFitness, geneset,
                            fnDisplay)
    self.assertTrue(not optimalFitness > best.Fitness)






Run

Now we’re ready to try it.


sample output

2, 3, 1, 6, 4 - 8, 5, 9, 7, 10        sum: 16, prod: 25200, dups: 0   0:00:00






Study the result

We can see that the mutation function quickly eliminates the duplicate values, but the algorithm almost always gets stuck immediately thereafter. The reason is, in order to make progress it has to be able to change 2 numbers. But, it can only change 1 at a time and the priority of eliminating duplicates keeps it from moving forward.



Introducing custom mutation

We need to find a way to let the engine make two changes at once, ideally without introducing duplication in the process. This means changing the way mutation works. The most flexible way to do that is to introduce an optional parameter called custom_mutate
 into get_best
 that allows us to perform the mutation ourselves. Then we replace the current definition of fnMutate
 with a different one depending on whether or not custom_mutate
 is provided.


genetic.py

def get_best(get_fitness, targetLen, optimalFitness, geneSet, display,
             custom_mutate=None):

    if custom_mutate is None:
        def fnMutate(parent):
            return _mutate(parent, geneSet, get_fitness)
    else:
        def fnMutate(parent):
            return _mutate_custom(parent, custom_mutate, get_fitness)




We’ll use a variant of _mutate
 instead of the built-in implementation when custom_mutate
 is used.



def _mutate_custom(parent, custom_mutate, get_fitness):
    childGenes = parent.Genes[:]
    custom_mutate(childGenes)
    fitness = get_fitness(childGenes)
    return Chromosome(childGenes, fitness)






Mutate

Now back in our genetic algorithm we can add a mutation function that changes 1 random gene if there are duplicates, but otherwise swaps 2 genes.


cardTests.py

import random
...
def mutate(genes, geneset):
    if len(genes) == len(set(genes)):
        indexA, indexB = random.sample(range(len(genes)), 2)
        genes[indexA], genes[indexB] = genes[indexB], genes[indexA]
    else:
        indexA = random.randrange(0, len(genes))
        indexB = random.randrange(0, len(geneset))
        genes[indexA] = geneset[indexB]




Then we pass that function to get_best
 in the test harness.



def test(self):
...
    def fnMutate(genes): ①


        mutate(genes, geneset)

    optimalFitness = Fitness(36, 360, 0)
    best = genetic.get_best(fnGetFitness, 10, optimalFitness, geneset,
                            fnDisplay, custom_mutate=fnMutate) ②


    self.assertTrue(not optimalFitness > best.Fitness)






Run 2

Now when we run the test, it can find the solution about 20 percent of the time. The rest of the time it still gets stuck.


sample output

8, 10, 7, 6, 4 - 9, 3, 2, 1, 5        sum: 35, prod: 270, dups: 0     0:00:00
10, 5, 6, 4, 8 - 3, 9, 2, 1, 7  sum: 33, prod: 378, dups: 0     0:00:00.001033






Study the result

When we compare the last line in these results with the optimal solution, we can see that the test needs to be able to swap 2 elements on the left side with 2 on the right.



Engineer a solution

We can solve that by looping the swap portion of the mutation function a random number of times.



def mutate(genes, geneset):
    if len(genes) == len(set(genes)):
        count = random.randint(1, 4)
        while count > 0:
            count -= 1
            indexA, indexB = random.sample(range(len(genes)), 2)
            genes[indexA], genes[indexB] = genes[indexB], genes[indexA]
    else:
        indexA = random.randrange(0, len(genes))
        indexB = random.randrange(0, len(geneset))
        genes[indexA] = geneset[indexB]




We’ll see this pattern again in other projects.



Run 3

Now, when we run the test it finds the optimal solution every time.


sample output

7, 4, 6, 10, 9 - 8, 3, 5, 1, 2        sum: 36, prod: 240, dups: 0     0:00:00
7, 4, 9, 8, 6 - 1, 3, 5, 2, 10  sum: 34, prod: 300, dups: 0     0:00:00
9, 8, 3, 7, 6 - 5, 4, 1, 2, 10  sum: 33, prod: 400, dups: 0     0:00:00.002000
9, 10, 3, 7, 6 - 5, 4, 1, 2, 8  sum: 35, prod: 320, dups: 0     0:00:00.002000
9, 7, 10, 5, 3 - 6, 1, 2, 8, 4  sum: 34, prod: 384, dups: 0     0:00:00.003000
5, 8, 10, 3, 9 - 4, 1, 7, 2, 6  sum: 35, prod: 336, dups: 0     0:00:00.003000
3, 6, 10, 7, 8 - 9, 2, 5, 1, 4  sum: 34, prod: 360, dups: 0     0:00:00.015001
7, 9, 2, 8, 10 - 6, 3, 1, 5, 4  sum: 36, prod: 360, dups: 0     0:00:00.023001






Retrospective

In all previous projects the only ability we’ve had to guide the algorithm towards a solution has been the fitness value. We’ve seen that the fitness alone can usually be used to work around structural constraints in the genes. In this project we started using mutation to work around structural constraints as well, but custom mutation is much more powerful than that. It can also take advantage of problem-specific knowledge to narrow the search scope toward better solutions, away from unworkable ones, or both. When we start using mutation that way we’re no longer building a simple genetic algorithm, we’re building a memetic algorithm.

Memetic algorithms are capable of solving a wider range of problems than random-population-based genetic algorithms because they accelerate the search. Take some time and try to use custom mutation to improve the speed of previous project solutions.

Your mutate function for the 8 Queens Puzzle can now take advantage of problem-specific knowledge such as: no 2 queens will be in the same row or column. So, like this project’s mutate function, if there is a duplicate row index, change a random row index, otherwise swap 2 row indexes. The same can be done for the column indexes.

In the Password and One Max projects you might try changing a random number of genes. Another option is to create an empty dictionary of index-to-known in the test harness and pass it to your mutation function. Then each time you make a random change, check the fitness and compare it with the initial fitness from when the mutation function was called. If the random change makes the fitness worse, then you’ll know that the previous value at that index was the correct one. Add it to the dictionary and only change that location if it doesn’t match what is in the dictionary. There’s a lot you could do with this concept, so experiment.

The speed of the Sorted Numbers project could be improved in several ways. For example, we could increment all the values in the final run of the array by 1 if possible, or decrement all the values in the first run by 1 if possible, or change 1 value on both sides of a discontinuity to bring the lines together faster. You will likely think of more.

Also, in Graph Coloring you could take advantage of the adjacency rules to choose a compatible color for a particular gene index.



Memetic algorithm DOs and DON’Ts: It is important to balance keeping the algorithm fast with letting it take advantage of problem-specific knowledge. It is OKAY to check the fitness as long as that runs fast. DO NOT make a lot of changes without checking the fitness. If checking fitness, DO return the first improvement you find. DO NOT try to solve the entire problem, let the genetic engine and the random number generator do their jobs.






Benchmarks



def test_benchmark(self):
    genetic.Benchmark.run(lambda: self.test())




Because we changed the genetic
 module we’ll update all of the benchmarks.




Updated Benchmarks






	
project


	
average (seconds)


	
standard deviation





	
Guess Password


	
1.23


	
0.28





	
One Max


	
1.24


	
0.17





	
Sorted Numbers


	
1.15


	
0.66





	
Queens


	
1.45


	
1.07





	
Graph Coloring


	
0.79


	
0.41





	
Cards


	
0.01


	
0.01













Summary

In this project we added the very useful ability to take over mutation from the engine. We also learned about memetic algorithms and how the custom mutation function can be used to take advantage of problem-specific knowledge. Finally, we used the sum-of-difference technique in the fitness calculation. This is a technique commonly used in solving numerical problems.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch06










KNIGHTS
 PROBLEM






The next project is to figure out the minimal number of chess knights necessary to attack every square on a chess board. This means our chessboard must be at least 3x4 for some number of knights to be able to attack all squares on the board because a knight can only attack certain squares relative to its own location:


[image: ch07.knight.moves.epub]



The knight can attack, at most, 8 squares, fewer when positioned along an edge.

Stop here and at least think about what genes you would use, and how you would evaluate fitness.


Genes

For our genotype we could use the same number as squares on our chessboard so that each represents a location. That has the advantage of preventing duplication. Its major disadvantage is that most of the positions will be empty. A better option is for each gene to be a knight location, just like we did in the 8 Queens project. This works as long as we know how many knights are required, which we do for square boards as you’ll see later.



Position

This time we’re going to use a Position
 class with X and Y coordinates.


knightsTests.py

class Position:
    def __init__(self, x, y):
        self.X = x
        self.Y = y






Attacks

We’re going to need a utility function that returns all the squares a knight could attack from a given location, respecting the bounds of the chessboard.



def get_attacks(location, boardWidth, boardHeight):
    return [i for i in set(
        Position(x + location.X, y + location.Y)
        for x in [-2, -1, 1, 2] if 0 <= x + location.X < boardWidth
        for y in [-2, -1, 1, 2] if 0 <= y + location.Y < boardHeight
        and abs(y) != abs(x))]






Introducing custom_create


We have a problem in that the engine doesn’t know how to create a Position object. We could pass a list of all possible positions to the engine but there are a lot of them and there’s a better way. We could also add an optional function that can be called to create an individual gene, but a more efficient and flexible solution is to provide a function for creating the entire set of genes for a Chromosome
 .


genetic.py

def get_best(get_fitness, targetLen, optimalFitness, geneSet,
             display, custom_mutate=None, custom_create=None):
...
            return _mutate_custom(parent, custom_mutate, get_fitness)

    if custom_create is None: ①


        def fnGenerateParent():
            return _generate_parent(targetLen, geneSet, get_fitness)
    else:
        def fnGenerateParent(): ②


            genes = custom_create()
            return Chromosome(genes, get_fitness(genes))

    for improvement in _get_improvement(fnMutate, fnGenerateParent):
...






Create

Now we can add a create
 function to the algorithm file. It will assign a specific number of knights to unique board positions.


knightsTests.py

def create(fnGetRandomPosition, expectedKnights):
    genes = [fnGetRandomPosition() for _ in range(expectedKnights)]
    return genes






Mutate

We chose not to provide all possible genes to the engine, so we need to use a custom mutation function as well.



import random

def mutate(genes, fnGetRandomPosition):
    index = random.randrange(0, len(genes))
    genes[index] = fnGetRandomPosition()






Display

Since we want to show the board in the display function, we’ll adapt the Board
 class from our 8 Queens Puzzle implementation.



class Board:
    def __init__(self, positions, width, height):
        board = [['.'] * width for _ in range(height)]

        for index in range(len(positions)):
            knightPosition = positions[index]
            board[knightPosition.Y][knightPosition.X] = 'N'
        self._board = board
        self._width = width
        self._height = height

    def print(self):
        # 0,0 prints in bottom left corner
        for i in reversed(range(self._height)):
            print(i, "\t", ' '.join(self._board[i]))
        print(" \t", ' '.join(map(str, range(self._width))))






import datetime

def display(candidate, startTime, boardWidth, boardHeight):
    timeDiff = datetime.datetime.now() - startTime
    board = Board(candidate.Genes, boardWidth, boardHeight)
    board.print()

    print("{}\n\t{}\t{}".format(
        ' '.join(map(str, candidate.Genes)),
        candidate.Fitness,
        timeDiff))




We also want the display function to show us the positions of the knights as coordinates. Since we use map
 to convert the Position
 objects to strings, we have to implement 
str

 .



class Position:
...
    def __str__(self):
        return "{},{}".format(self.X, self.Y)






Fitness

For fitness we can just count the unique squares that can be attacked by the knights.



def get_fitness(genes, boardWidth, boardHeight):
    attacked = set(pos
                   for kn in genes
                   for pos in get_attacks(kn, boardWidth, boardHeight))
    return len(attacked)




In order to put the Position
 objects into a set
 , we also have to implement 
hash

 and 
eq

 .



class Position:
...
    def __eq__(self, other):
        return self.X == other.X and self.Y == other.Y

    def __hash__(self):
        return self.X * 1000 + self.Y






Test

Finally, we’re going to try this out on a chessboard we can check by hand.



2      N N N .
1        . . . .
0        . N N N
         0 1 2 3




Note, indexes rise starting from the bottom left corner.

Here’s the test harness:



import unittest
import genetic
...
class KnightsTests(unittest.TestCase):
    def test_3x4(self):
        width = 4
        height = 3
        # 1,0   2,0   3,0
        # 0,2   1,2   2,2
        # 2      N N N .
        # 1      . . . .
        # 0      . N N N
        #        0 1 2 3
        self.find_knight_positions(width, height, 6)






    def find_knight_positions(self, boardWidth, boardHeight,
                              expectedKnights):
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime, boardWidth, boardHeight)

        def fnGetFitness(genes):
            return get_fitness(genes, boardWidth, boardHeight)

        def fnGetRandomPosition():
            return Position(random.randrange(0, boardWidth),
                            random.randrange(0, boardHeight))
...






        def fnMutate(genes):
            mutate(genes, fnGetRandomPosition)

        def fnCreate():
            return create(fnGetRandomPosition, expectedKnights)

        optimalFitness = boardWidth * boardHeight
        best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                                fnDisplay, fnMutate, fnCreate)
        self.assertTrue(not optimalFitness > best.Fitness)






Run

When we run test_3x4
 we get output like the following:


sample output

2      N . . .
1        N N N .
0        . N . N
         0 1 2 3
0,1 2,1 3,0 0,2 1,0 1,1
        10      0:00:00.001002






2      . . N N
1        . N . .
0        N N N .
         0 1 2 3
1,0 2,2 3,2 2,0 0,0 1,1
        11      0:00:00.003007






2      . . N N
1        . . N .
0        N N N .
         0 1 2 3
3,2 2,2 2,0 1,0 2,1 0,0
        12      0:00:00.006015




As expected it finds a solution equivalent to our hand coded one.



Test 8x8

We can use OEIS
 (see: https://oeis.org/A261752
 ) to learn that 14 knights are required to attack all squares on a standard 8x8 chessboard. Let’s see if we can verify it.



class KnightsTests(unittest.TestCase):
...
    def test_8x8(self):
        width = 8
        height = 8
        self.find_knight_positions(width, height, 14)





Run


sample output

...
7        . . . . . . . .
6        . . . . . . . .
5        . N N . . N N .
4        . . N N N N . .
3        . . . . . N . .
2        . . N N N N . .
1        . . N . . . . .
0        . . . . . . . .
         0 1 2 3 4 5 6 7
2,5 3,2 6,5 4,2 3,4 1,5 2,1 5,3 2,2 5,2 4,4 5,5 2,4 5,4
        63      0:00:00.117311






7      . . . . . . . .
6        . . . . . . . .
5        . N N . . N N .
4        . . N N N N . .
3        . . . . . . . .
2        . . N N N N . .
1        . . N . . N . .
0        . . . . . . . .
         0 1 2 3 4 5 6 7
2,5 3,2 6,5 5,1 3,4 1,5 2,1 4,2 2,2 5,2 4,4 5,5 2,4 5,4
        64      0:00:00.414100




It finds an optimal solution every time.




Try 10x10

Let’s try it on a 10x10 board. OEIS
 says the optimal solution requires 22 knights.



class KnightsTests(unittest.TestCase):
...
    def test_10x10(self):
        width = 10
        height = 10
        self.find_knight_positions(width, height, 22)





Run



9      . . . . . . . . . .
8        . N . . . . . . . .
7        . N N . . N N N N .
6        . . N N . . . . . .
5        . . . N . . . N N .
4        . . . . . . . . . .
3        . . N N . N N . . .
2        . . N . . . N N . .
1        . . N . N . . N . .
0        . . . . . . . . . .
         0 1 2 3 4 5 6 7 8 9
8,7 7,2 2,1 7,5 3,6 3,5 2,2 2,7 3,3
6,3 2,3 8,5 5,7 2,6 5,3 4,1 6,7 1,7
6,2 7,1 1,8 7,7
        100 knights: 22 0:00:16.277931




It finds a solution, but it takes a while.




Performance

Let’s see if we can improve the performance. First we’ll benchmark it:



def test_benchmark(self):
    genetic.Benchmark.run(lambda: self.test_10x10())






When you run this benchmark you might find that it cannot complete all 100 rounds. This can happen if it ends up with a knight configuration where moving any knight to any location results in a worse fitness. This is called a local minimum, or local maximum, depending on whether you are trying to find a lower or higher fitness, respectively.




The change we are about to make is one way to work around the local maximum.



def mutate(genes, fnGetRandomPosition):
    count = 2 if random.randint(0, 10) == 0 else 1
    while count > 0:
        count -= 1
        index = random.randrange(0, len(genes))
        genes[index] = fnGetRandomPosition()




This does not fix the local maximum issue. It simply gives a 1/10 chance of making two changes instead of one, which means the engine now has a random chance of finding the right pair of moves to get past a local maximum. However, as the board size increases, the chance of making the right two moves in a row drops precipitously.

Here’s my starting benchmark for the 10x10 board.









	
average (seconds)


	
standard deviation





	
15.49


	
15.52












Study the result

If you study the optimal 8x8 and 10x10 board layouts you may notice the following pattern: knights are never located on edge rows or columns. This makes sense because a knight can attack, at most, 4 squares from an edge whereas being located just one square away from any edge increases that to 6 squares.



When we exploit that pattern our genetic algorithm becomes a memetic algorithm because we’re taking advantage of problem-specific knowledge.






Engineer a solution

Our first performance improvement will be to only use non-edge locations for knights.



    def find_knight_positions(self, boardWidth, boardHeight,
                              expectedKnights):
...
        allPositions = [Position(x, y)
                        for y in range(boardHeight)
                        for x in range(boardWidth)]

        if boardWidth < 6 or boardHeight < 6:
            nonEdgePositions = allPositions
        else:
            nonEdgePositions = [i for i in allPositions
                                if 0 < i.X < boardWidth - 1 and
                                0 < i.Y < boardHeight - 1]

        def fnGetRandomPosition():
            return random.choice(nonEdgePositions)






Run




Updated Benchmark





	
average (seconds)


	
standard deviation





	
3.76


	
3.84











The pattern we discovered netted us a nice performance improvement. Not only did we improve the knights' chances of hitting, we also reduced the search space on a 10x10 board by removing more than 1/3 of the potential knight positions. That is the virtuous cycle I mentioned back in the first project in action.



Choose wisely

We can get another performance boost by moving knights whose attacks are all covered by other knights to a position where they can attack a square that is not currently under attack. There’s a performance hit for checking all the squares and knight attacks but it is more than compensated for if it results in an improvement. Consider that for a 10x10 board the chances of picking the right knight (1 in 22) and moving it to bring a new square under attack (1 in 32 at worst because even the corner square can be attacked from 2 positions in the non-edge 8x8 center) is 1 in 704.

We start off as before but with some additional parameters.



def mutate(genes, boardWidth, boardHeight, allPositions, nonEdgePositions):
    count = 2 if random.randint(0, 10) == 0 else 1
    while count > 0:
        count -= 1
...




The parameters come from find_knight_positions
 as follows:



    def find_knight_positions(self, boardWidth, boardHeight,
                              expectedKnights):
...
        def fnMutate(genes):
            mutate(genes, boardWidth, boardHeight, allPositions,
                   nonEdgePositions)
...




Now continuing to modify the mutation function, the next thing we do is figure out which knights are attacking which squares. The array in the dictionary has each knight’s gene index.



...
        positionToKnightIndexes = dict((p, []) for p in allPositions)
        for i, knight in enumerate(genes):
            for position in get_attacks(knight, boardWidth, boardHeight):
                positionToKnightIndexes[position].append(i)
...




Then we get a list of indexes of knights whose attacks are all covered by some other knight, and while we’re at it we build a list of the squares that are not under attack.



...
        knightIndexes = set(i for i in range(len(genes)))
        unattacked = []
        for kvp in positionToKnightIndexes.items():
            if len(kvp[1]) > 1:
                continue
            if len(kvp[1]) == 0:
                unattacked.append(kvp[0])
                continue
            for p in kvp[1]:  # len == 1
                if p in knightIndexes:
                    knightIndexes.remove(p)
...




Next we build the list of locations from which the unattacked
 squares can be attacked. We keep the duplicates because that makes them more likely to be selected, resulting in attacking multiple new squares at once.



...
        potentialKnightPositions = \
            [p for positions in
             map(lambda x: get_attacks(x, boardWidth, boardHeight), unattacked)
             for p in positions if p in nonEdgePositions] \
                if len(unattacked) > 0 else nonEdgePositions
...




Then we choose a gene (knight) to replace.



...
        geneIndex = random.randrange(0, len(genes)) \
            if len(knightIndexes) == 0 \
            else random.choice([i for i in knightIndexes])
...




Lastly, we replace that knight with one likely to improve the fitness.



...
        position = random.choice(potentialKnightPositions)
        genes[geneIndex] = position






Run 2




Updated Benchmark





	
average (seconds)


	
standard deviation





	
0.79


	
1.02














Retrospective

The ability to control Chromosome creation often goes hand-in-hand with a custom mutation function. With both tools at your disposal you can simplify mutation functions in previous problems, such as in the Card, Sorted Numbers and 8 Queens projects. Use custom_create
 to prevent the creation of invalid sequences so you don’t have to correct for them during mutation or in the fitness value. As with custom mutation, don’t try to force a solution in this function. Let the genetic engine do its job.



Benchmarks

We made another change to genetic
 so we’ll update the benchmarks.










	
project


	
average (seconds)


	
standard deviation





	
Guess Password


	
1.21


	
0.31





	
One Max


	
1.23


	
0.16





	
Sorted Numbers


	
1.15


	
0.60





	
Queens


	
1.61


	
1.18





	
Graph Coloring


	
0.77


	
0.40





	
Cards


	
0.01


	
0.01





	
Knights


	
0.79


	
1.02













Summary

This was our first use of a custom object instead of a letter or number for our genotype. This led to the introduction of the ability to customize gene sequence creation in the genetic
 module. Custom creation and custom mutation are frequently used together. We’ll use both of these techniques together again in future projects.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch07










MAGIC
 SQUARES






Magic squares are squares of numbers where each of the rows and columns and both major diagonals sum to the same value, and all of the numbers between 1 and n2
 are used only once.


example

    6   7   2
    1   5   9
    8   3   4




Take a break here and at least think about what genes you would use, and how you would evaluate fitness.


Test class

We’ll start with the test stub.


magicSquareTests.py

import unittest
import datetime
import genetic

class MagicSquareTests(unittest.TestCase):
    def test_size_3(self):
        self.generate(3)






Test harness

In the test harness we’ll determine the range of numbers to use to fill the magic square from its diagonal size then calculate the expected sum. We then pass those to the fitness function.



    def generate(self, diagonalSize):
        nSquared = diagonalSize * diagonalSize
        geneset = [i for i in range(1, nSquared + 1)]
        expectedSum = diagonalSize * (nSquared + 1) / 2

        def fnGetFitness(genes):
            return get_fitness(genes, diagonalSize, expectedSum)
...






Fitness

For fitness we can count the number of rows, columns, and diagonals where the sum is equal to the expected sum.



def get_fitness(genes, diagonalSize, expectedSum):
    rowSums = [0 for _ in range(diagonalSize)]
    columnSums = [0 for _ in range(diagonalSize)]
    southeastDiagonalSum = 0
    northeastDiagonalSum = 0

    for row in range(diagonalSize):
        for column in range(diagonalSize):
            value = genes[row * diagonalSize + column]
            rowSums[row] += value
            columnSums[column] += value
        southeastDiagonalSum += genes[row * diagonalSize + row]
        northeastDiagonalSum += genes[row * diagonalSize +
                                      (diagonalSize - 1 - row)]

    fitness = sum(1 for s in rowSums + columnSums +
                  [southeastDiagonalSum, northeastDiagonalSum]
                  if s == expectedSum)

    return fitness




Unfortunately, that means if we want to display the sums we have to recalculate them. So, let’s extract a reusable function.



def get_sums(genes, diagonalSize):
    rows = [0 for _ in range(diagonalSize)]
    columns = [0 for _ in range(diagonalSize)]
    southeastDiagonalSum = 0
    northeastDiagonalSum = 0
    for row in range(diagonalSize):
        for column in range(diagonalSize):
            value = genes[row * diagonalSize + column]
            rows[row] += value
            columns[column] += value
        southeastDiagonalSum += genes[row * diagonalSize + row]
        northeastDiagonalSum += genes[row * diagonalSize +
                                      (diagonalSize - 1 - row)]
    return rows, columns, northeastDiagonalSum, southeastDiagonalSum




Then call it from the fitness function:



def get_fitness(genes, diagonalSize, expectedSum):
    rows, columns, northeastDiagonalSum, southeastDiagonalSum = \
        get_sums(genes, diagonalSize)

    fitness = sum(1 for s in rows + columns +
                  [southeastDiagonalSum, northeastDiagonalSum]
                  if s == expectedSum)

    return fitness






Display

We can call that function from the display function too.



def display(candidate, diagonalSize, startTime):
    timeDiff = datetime.datetime.now() - startTime

    rows, columns, northeastDiagonalSum, southeastDiagonalSum = \
        get_sums(candidate.Genes, diagonalSize)

    for rowNumber in range(diagonalSize):
        row = candidate.Genes[
              rowNumber * diagonalSize:(rowNumber + 1) * diagonalSize]
        print("\t ", row, "=", rows[rowNumber])
    print(northeastDiagonalSum, "\t", columns, "\t", southeastDiagonalSum)
    print(" - - - - - - - - - - -", candidate.Fitness, timeDiff)




This will produce output like the following:


sample output

     [5, 1, 8] = 14
     [6, 4, 9] = 19
     [3, 7, 2] = 12
15   [14, 12, 19]   11
- - - - - - - - - - - 1 0:00:00.001000






We could use format strings to justify the numbers but that involves converting each number to a string, finding the longest one, and then dynamically building a format string. However, all we really want is an idea of what is happening; a comma in the output works fine for that.




Now, since one of the constraints is that we have to use all the numbers between 1 and n2
 , we’ll pass a custom creation
 function that produces a random permutation of all values in that range



import random
...

    def generate(self, diagonalSize):
...
        def fnCustomCreate():
            return random.sample(geneset, len(geneset))

        optimalValue = 2 + 2 * diagonalSize
        startTime = datetime.datetime.now()
        best = genetic.get_best(fnGetFitness, nSquared, optimalValue,
                                geneset, fnDisplay, fnMutate,
                                fnCustomCreate)






Mutate

We’ll also pass a companion custom mutation
 function so we don’t have to worry about duplication being introduced by the engine’s built-in mutation function. We could simply swap two genes but for performance we’re going to pass in the index options. This can often provide a good performance boost versus generating a list of indexes each time we enter the function.



def mutate(genes, indexes):
    indexA, indexB = random.sample(indexes, 2)
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]




Here’s the full test harness.



    def generate(self, diagonalSize):
        nSquared = diagonalSize * diagonalSize
        geneset = [i for i in range(1, nSquared + 1)]
        expectedSum = diagonalSize * (nSquared + 1) / 2

        def fnGetFitness(genes):
            return get_fitness(genes, diagonalSize, expectedSum)

        def fnDisplay(candidate):
            display(candidate, diagonalSize, startTime)






        geneIndexes = [i for i in range(0, len(geneset))]

        def fnMutate(genes):
            mutate(genes, geneIndexes)

        def fnCustomCreate():
            return random.sample(geneset, len(geneset))

        optimalValue = 2 + 2 * diagonalSize
        startTime = datetime.datetime.now()
        best = genetic.get_best(fnGetFitness, nSquared, optimalValue,
                                geneset, fnDisplay, fnMutate,
                                fnCustomCreate)
        self.assertTrue(not optimalValue > best.Fitness)






Run

And, when we run it we get a result like the following:


sample result

...
      [8, 3, 4] = 15
      [1, 9, 5] = 15
      [2, 7, 6] = 15
15   [11, 19, 15]        23
- - - - - - - - - - - 5 0:00:00.001001




We can run the test many times but it will rarely find a valid solution.



Use sum of differences

The problem is the fitness function is written exclusively rather than inclusively. It only gives credit when the sum exactly matches the expected sum, so there’s no partial credit for the genetic engine to take advantage of. This is a problem we’ve encountered before. The solution is to take the sum of the differences between the actual sum and the expected sum for each row, column, and diagonal. That makes zero optimal, so we’ll need a Fitness
 object to help reverse the greater-than logic used to compare fitnesses in the engine.



class Fitness:
    def __init__(self, sumOfDifferences):
        self.SumOfDifferences = sumOfDifferences

    def __gt__(self, other):
        return self.SumOfDifferences < other.SumOfDifferences

    def __str__(self):
        return "{}".format(self.SumOfDifferences)




Next we update get_fitness
 :



def get_fitness(genes, diagonalSize, expectedSum):
    rows, columns, northeastDiagonalSum, southeastDiagonalSum = \
        get_sums(genes, diagonalSize)

    sumOfDifferences = sum(int(abs(s - expectedSum))
                           for s in rows + columns +
                           [southeastDiagonalSum, northeastDiagonalSum]
                           if s != expectedSum)

    return Fitness(sumOfDifferences)




And the optimal fitness value in our test.



    def generate(self, diagonalSize):
...
        optimalValue = Fitness(0)
        startTime = datetime.datetime.now()






Run 2

Now when we run the test we get a valid solution about 60% of the time but only because it just happens to find a sequence of swaps that drive improvement. When it doesn’t find a sequence


sample result

      [4, 8, 3] = 15
      [2, 6, 7] = 15
      [9, 1, 5] = 15
18   [15, 15, 15]    15
- - - - - - - - - - - 3 0:00:00.002005




it gets stuck at a position where it requires at least 2 swaps to make progress. We’re hitting a local minimum.



Fixing the local minimum / maximum issue

To fix the local minimum/local maximum issue we’re going to allow the current genetic line to die out. The first step in that is tracking how many generations have passed since the last improvement. We’ll call this its Age
 .


genetic.py

class Chromosome:
    def __init__(self, genes, fitness):
        self.Genes = genes
        self.Fitness = fitness
        self.Age = 0




Next, we’ll add an optional parameter that allows us to set an upper limit on the age of a genetic line. That parameter will be passed through to _get_improvement.



def get_best(get_fitness, targetLen, optimalFitness, geneSet, display,
             custom_mutate=None, custom_create=None, maxAge=None):
...
    for improvement in _get_improvement(fnMutate, fnGenerateParent, maxAge):




For the next part we need to import a couple of functions from other modules.



from bisect import bisect_left
from math import exp




Then we need to separate the best parent from the current parent so that we still have something to compare to when a genetic line dies out. We’re also going to keep a list containing the fitnesses of the historical best parents.



def _get_improvement(new_child, generate_parent, maxAge):
    parent = bestParent = generate_parent()
    yield bestParent
    historicalFitnesses = [bestParent.Fitness]
    while True:




Next, we want to make sure we retain the current functionality if the maximum age is not provided.



    while True:
        child = new_child(parent)
        if parent.Fitness > child.Fitness:
            if maxAge is None:
                continue




However, when the child’s fitness is worse than that of its parent, the most traveled path through the code, and a maximum age is provided, then we need to check whether or not the genetic line’s age has reached the maximum.



                continue
            parent.Age += 1
            if maxAge > parent.Age:
                continue




If so, we may allow the genetic line to die and replace it with something else. We’re going to do that using simulated annealing.



Annealing is a method used to reduce internal stresses in materials like metal. At a high level, it works by heating the metal to a high temperature then allowing it to cool slowly. As you know, heat causes metal to expand. So the metal expands, loosening the bonds between materials in the metal, allowing them to move around. Then the metal is allowed to cool slowly. As the metal cools the bonds tighten again and the impurities get pushed along by the increasing pressure until they find something to bond with or until there is no more wiggle-room, thus reducing overall stress in the system.

The standard global search algorithm only allows a parent to be replaced by a child with equal or better fitness. This makes it very difficult to break out of a local minimum or maximum because the only way out is through chance discovery of an equal or better gene sequence that is different enough from the current gene sequence to escape the local minimum/maximum, an unlikely event.

Simulated annealing resolves this by slowly increasing the probability
 of replacing the parent with a different gene sequence, even if that gene sequence has a worse fitness, based in part on how long
 we’ve been using that parent to try to make the next generation. Thus, the implementation in this book uses the term age
 to control the simulated annealing process.

In order to keep the labels semantically close to those associated with annealing metal, however, the community tends to use the terms heat
 , temperature
 , and energy
 where I use age
 and probability
 . I find the terms heat
 and energy
 to be leaky equivalents when explaining the algorithm because it isn’t obvious how to apply them to a gene sequence. Unfortunately age
 is also a leaky equivalent because the growth in probability is nonlinear. However, the resultant implementation is the same if you ignore the variable names: the probability of replacing the parent depends on how long we’ve been using the same parent and how different the new gene sequence is from the parent.




We need to determine how far away the child’s fitness is from the best fitness. If we had a numeric fitness it would be a simple calculation. But our fitnesses aren’t always numeric. No problem, we’ll figure out where it would be in the realm of historical fitnesses.



            index = bisect_left(historicalFitnesses, child.Fitness, 0, len(historicalFitnesses))




Whether calculating the difference directly from the fitness, or by using its index into the historical fitnesses as we do here, we get a proportion by dividing the child’s index by the index of the best value, in this case the highest index.



            proportionSimilar = index / len(historicalFitnesses)




Then we raise Euler’s number (e), roughly 2.718, to the power of the proportion negated. The result is a floating point number that approaches 1 if the child’s fitness is far away from the best fitness, but approaches ~0.36 when its fitness is very close to the best fitness. In the following sample chart assume the maximum current index is 50:











	
index


	
difference


	
proportion similar


	
e-proportion






	
0


	
50


	
0.0


	
1.00





	
5


	
45


	
0.1


	
0.90





	
10


	
40


	
0.2


	
0.82





	
40


	
10


	
0.8


	
0.45





	
45


	
5


	
0.9


	
0.41





	
50


	
0


	
1.0


	
0.37











A child whose fitness is close to the current best will have a high index (because the higher/better fitnesses are at the end of the array) and a low difference from the best fitness. As a result, it will have a lower chance of becoming the new parent. A child that has a fitness far from the current best will have a low index and high difference, and thus a high chance of becoming the new parent.

Next we pick a random number and if that random number is smaller than e-proportion
 then the child becomes the new parent.



            if random.random() < exp(-proportionSimilar):
                parent = child
                continue




Otherwise we replace the parent with the best parent and reset its age to zero so it has time to anneal.



                continue
            bestParent.Age = 0
            parent = bestParent
            continue




Next we consider what to do if the child’s fitness is not lower than that of its parent.



            continue
        if not child.Fitness > parent.Fitness:
            # same fitness
            child.Age = parent.Age + 1
            parent = child
            continue




When the child has a better fitness than its parent, we reset its age to zero and make it the new parent.



            continue
        child.Age = 0
        parent = child




Finally, when we find a child whose fitness is better than that of the best parent, we replace the best parent and append its fitness to the list of historical fitnesses.



        child.Age = 0
        parent = child
        if child.Fitness > bestParent.Fitness:
            bestParent = child
            yield bestParent
            historicalFitnesses.append(bestParent.Fitness)






Set the maximum age

Now, to use it in our test harness we just need to set the maxiumum age. But what value should we use? How do we pick a good maximum age? Let’s sample the average run times for the projects where we’ve encountered local minimums or maximums.
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no max





	
Knights


	
0.63 +/- 0.47


	
0.68 +/- 0.52


	
0.66 +/- 0.53


	
0.61 +/- 0.46





	
Magic Square


	
0.01 +/- 0.01


	
0.04 +/- 0.06


	
0.39 +/- 0.47


	
*












* could not complete.
 That’s interesting. The Knights project doesn’t appear to benefit from allowing genetic lines to age out. Magic squares, however, clearly benefits not only from having a maximum age but also from having a low one.


magicSquareTests.py

    def test_size_3(self):
        self.generate(3, 50)






    def generate(self, diagonalSize, maxAge):
...
        best = genetic.get_best(fnGetFitness, nSquared, optimalValue,
                                geneset, fnDisplay, fnMutate,
                                fnCustomCreate, maxAge)






Run 3

Now the test can quickly find a solution for a size-3 magic square every time.



      [6, 7, 2] = 15
      [1, 5, 9] = 15
      [8, 3, 4] = 15
15   [15, 15, 15]    15
- - - - - - - - - - - 0 0:00:00.008000






Size-5 Magic Squares

Size-5 magic squares need a higher maximum age.



    def test_size_5(self):
        self.generate(5, 500)





Run

It can find a magic square every time but we’re really giving the simulated annealing code a workout to get it.


sample result

      [25, 3, 10, 4, 23] = 65
      [9, 21, 8, 14, 13] = 65
      [22, 6, 5, 15, 17] = 65
      [2, 16, 24, 12, 11] = 65
      [7, 19, 18, 20, 1] = 65
65   [65, 65, 65, 65, 65]   64
- - - - - - - - - - - 1 0:00:00.285760
      [13, 16, 7, 4, 25] = 65
      [22, 19, 5, 9, 10] = 65
      [20, 3, 17, 14, 11] = 65
      [2, 6, 24, 15, 18] = 65
      [8, 21, 12, 23, 1] = 65
65   [65, 65, 65, 65, 65]   65
- - - - - - - - - - - 0 0:00:00.921482







Size-10 Magic Squares



    def test_size_10(self):
        self.generate(10, 5000)




Given time, it can build larger squares too:


note: alignment manually adjusted for clarity

       [31,   9,  50,  21,  81,  92,  27,  34,  97, 63] = 505
       [ 8,  80,  86,  29,  40,  24, 100,  55,  72, 11] = 505
       [87,  53,  69,  95,  15,  67,  94,   6,  17,  2] = 505
       [79,  30,  37,  28,  38,  71,  42,  96,  62, 22] = 505
       [54,  46,  56,  93,   3,  74,  59,  52,  23, 45] = 505
       [35,  89,  98,  83,  32,   4,  10,   5,  58, 91] = 505
       [19,  75,   1,  41,  61,  70,  33,  76,  47, 82] = 505
       [20,  44,  78,  12,  85,  36,  65,  99,  18, 48] = 505
       [88,  13,  14,  64,  73,  60,  49,  25,  68, 51] = 505
       [84,  66,  16,  39,  77,   7,  26,  57,  43, 90] = 505
505   [505, 505, 505, 505, 505, 505, 505, 505, 505, 505]   505
- - - - - - - - - - - 0 0:04:24.477191






Retrospective

We saw that using various maximum ages on the Knight’s project had no particular effect. What do you think will happen if you use a maximum age for the other projects? Try it.



Benchmarks

We’ll benchmark this project with size-4 magic squares because size-5 runs a bit slower than I like in a benchmark.



    def test_size_4(self):
        self.generate(4, 50)

    def test_benchmark(self):
        genetic.Benchmark.run(self.test_size_4)




We rewrote a core function of the genetic
 module so we’ll update the benchmarks to make sure there was no unintended slowdown in the ability to solve the previous projects.




Updated Benchmarks






	
project


	
average (seconds)


	
standard deviation





	
Guess Password


	
1.31


	
0.41





	
One Max


	
1.22


	
0.17





	
Sorted Numbers


	
1.23


	
0.83





	
Queens


	
1.39


	
1.03





	
Graph Coloring


	
0.78


	
0.34





	
Cards


	
0.01


	
0.01





	
Knights


	
0.61


	
0.46





	
Magic Square


	
0.33


	
0.56













Summary

In this project we encountered the first project where our forward progress was significantly impacted by a local minimum. We resolved this by adding an option to the engine that allows it to escape local minimums/maximums through the use of simulated annealing. This is also the first time we passed the gene indexes to the mutate function. We’ll be using this again.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch08










KNAPSACK
 PROBLEM







The goal of this project is to put as much stuff into a container as it will hold while optimizing for constraints such as item weight, size, shape, and value, and in variations of the problem, for the shape of the container. The bounded knapsack problem has a limitation on the number of each particular item available. In the 1/0 knapsack problem you can take no more than 1 of any given item. In the unbounded variant of the knapsack problem you are only limited by the container. We’ll try a simple version of the unbounded knapsack problem so we can understand how it works.




Resources

We’ll start by defining some resources:

This implies a Resource
 class.


knapsackTests.py

class Resource:
    def __init__(self, name, value, weight, volume):
        self.Name = name
        self.Value = value
        self.Weight = weight
        self.Volume = volume






Test

We will hard code the resources into our test.



import unittest
import datetime
import genetic

class KnapsackTests(unittest.TestCase):
    def test_cookies(self):
        items = [
            Resource("Flour", 1680, 0.265, .41),
            Resource("Butter", 1440, 0.5, .13),
            Resource("Sugar", 1840, 0.441, .29)
        ]




For the container limits, let’s say the knapsack contents cannot weigh more than 10 kilograms and its maximum volume is 4 cubic liters.



        maxWeight = 10
        maxVolume = 4




Our goal is to maximize the value of the contents of the knapsack within those constraints. Think about how you would implement this before proceeding.

Let’s think about how we would accomplish that by hand. We want a high ratio of value to weight and value to volume so we can get the highest possible total value. When we can’t stuff any more of the resource with the best ratio into the knapsack, we fill in the remaining space with the next most valuable resource, and so on. Once the knapsack is full we have to consider whether we would be better off replacing one item type with a combination of others in order to increase the total value of the items in the knapsack.



ItemQuantity

This time we’ll make the genes instances of an ItemQuantity
 class containing the resource and the quantity of that resource to take.



class ItemQuantity:
    def __init__(self, item, quantity):
        self.Item = item
        self.Quantity = quantity

    def __eq__(self, other):
        return self.Item == other.Item and self.Quantity == other.Quantity






Fitness

To calculate fitness we need to sum the weight, volume, and value of items in the knapsack.



We’re going to be careful about how we select genes so that they will never exceed the weight or volume constraints. Therefore, we don’t have to check those here.






def get_fitness(genes):
    totalWeight = 0
    totalVolume = 0
    totalValue = 0
    for iq in genes:
        count = iq.Quantity
        totalWeight += iq.Item.Weight * count
        totalVolume += iq.Item.Volume * count
        totalValue += iq.Item.Value * count

    return Fitness(totalWeight, totalVolume, totalValue)




We use these values to populate a Fitness
 object.

When comparing Fitness
 instances we will prefer the one with the highest value.



class Fitness:
    def __init__(self, totalWeight, totalVolume, totalValue):
        self.TotalWeight = totalWeight
        self.TotalVolume = totalVolume
        self.TotalValue = totalValue

    def __gt__(self, other):
        if self.TotalValue != other.TotalValue:
            return self.TotalValue > other.TotalValue
        if self.TotalWeight != other.TotalWeight:
            return self.TotalWeight < other.TotalWeight
        return self.TotalVolume < other.TotalVolume

    def __str__(self):
        return "wt: {:0.2f} vol: {:0.2f} value: {}".format(
                self.TotalWeight,
                self.TotalVolume,
                self.TotalValue)






Because we’re only comparing one value and using greater-than to do so, we could simply return the total value from get_fitness
 . But having all three in the Fitness
 object is convenient for displaying them.






Max Quantity

We’ll limit the quantity to valid ranges for each item.



import sys
...
def max_quantity(item, maxWeight, maxVolume):
    return min(int(maxWeight / item.Weight)
               if item.Weight > 0 else sys.maxsize,
               int(maxVolume / item.Volume)
               if item.Volume > 0 else sys.maxsize)






Create

Each time our custom_create
 implementation adds an ItemQuantity
 to the genes, it reduces the remaining weight and volume so it doesn’t exceed those limits. When creating a new Chromosome
 we’re going to take as much as we can of each item we choose so we fill our container quickly and thus have fewer items to exchange if they aren’t the best choices.



import random
...
def create(items, maxWeight, maxVolume):
    genes = []
    remainingWeight, remainingVolume = maxWeight, maxVolume
    for i in range(random.randrange(1, len(items))):
        newGene = add(genes, items, remainingWeight, remainingVolume)
        if newGene is not None:
            genes.append(newGene)
            remainingWeight -= newGene.Quantity * newGene.Item.Weight
            remainingVolume -= newGene.Quantity * newGene.Item.Volume
    return genes




When adding an item we’re going to exclude item types that are already in the knapsack from our options because we don’t want to have to sum multiple groups of a particular item type. Then we pick a random item and add as much of that item to the knapsack as we can.



def add(genes, items, maxWeight, maxVolume):
    usedItems = {iq.Item for iq in genes}
    item = random.choice(items)
    while item in usedItems:
        item = random.choice(items)

    maxQuantity = max_quantity(item, maxWeight, maxVolume)
    return ItemQuantity(item, maxQuantity) if maxQuantity > 0 else None






Mutate

We’ll start off the mutation function by getting the fitness. We need it so we can calculate the remaining weight and volume.



def mutate(genes, items, maxWeight, maxVolume):
    fitness = get_fitness(genes)
    remainingWeight = maxWeight - fitness.TotalWeight
    remainingVolume = maxVolume - fitness.TotalVolume




Next, because we don’t know how many different items we’ll take we don’t know how long the gene sequence needs to be. This means our gene sequence will have a variable length, up to the number of different items. So we have to handle adding and removing items in addition to the usual item replacement. We’ll implement removing
 first.

We need to give it a small chance of removing an item from the knapsack. We’ll only do that if we have more than one item so that the knapsack is never empty. We don’t immediately return when removing an item because we know removing an item reduces the fitness.



    removing = len(genes) > 1 and random.randint(0, 10) == 0
    if removing:
        index = random.randrange(0, len(genes))
        iq = genes[index]
        item = iq.Item
        remainingWeight += item.Weight * iq.Quantity
        remainingVolume += item.Volume * iq.Quantity
        del genes[index]




We’ll always add if the length is zero and when there is weight or volume available. Otherwise, if we haven’t used all the item types, we’ll give the algorithm a small chance of adding another item type. If it does then we return the result.



    adding = (remainingWeight > 0 or remainingVolume > 0) and \
             (len(genes) == 0 or
              (len(genes) < len(items) and random.randint(0, 100) == 0))
    if adding:
        newGene = add(genes, items, remainingWeight, remainingVolume)
        if newGene is not None:
            genes.append(newGene)
            return




Next we need to implement item replacement by picking a random item that is already in the knapsack then adding its quantity weight and volume to our total available.



    index = random.randrange(0, len(genes))
    iq = genes[index]
    item = iq.Item
    remainingWeight += item.Weight * iq.Quantity
    remainingVolume += item.Volume * iq.Quantity




Then we give the algorithm a chance to pick a different item type. If we do replace it, we prevent the item type we’re replacing from being selected.



    changeItem = len(genes) < len(items) and random.randint(0, 4) == 0
    if changeItem:
        itema, itemb = random.sample(items, 2)
        item = itema if itema != item else itemb




Either way we replace the current gene unless the maximum quantity is zero, in which case we remove the gene.



    maxQuantity = max_quantity(item, remainingWeight, remainingVolume)
    if maxQuantity > 0:
        quantity = random.randint(1, maxQuantity)
        genes[index] = ItemQuantity(item, quantity)
    else:
        del genes[index]






We receive a shallow copy of the list of genes from the engine, so we must be careful to create a new ItemQuantity
 object instead of simply changing the quantity on the existing object, which would unintentionally change the parent’s gene too.






Display

In the display function we’ll show the resource names and quantities so we know what to buy, and their total value, weight, and volume.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    genes = candidate.Genes[:]
    genes.sort(key=lambda iq: iq.Quantity, reverse=True)

    descriptions = [str(iq.Quantity) + "x" + iq.Item.Name for iq in genes]
    if len(descriptions) == 0:
        descriptions.append("Empty")
    print("{}\t{}\t{}".format(
        ', '.join(descriptions),
        candidate.Fitness,
        timeDiff))




The output should look like this:



13xSugar, 1xButter    wt: 6.23 vol: 3.90 value: 25360 0:00:00.001002






Test

Here’s the full test function



    def test_cookies(self):
        items = [
            Resource("Flour", 1680, 0.265, .41),
            Resource("Butter", 1440, 0.5, .13),
            Resource("Sugar", 1840, 0.441, .29)
        ]
        maxWeight = 10
        maxVolume = 4
        optimal = get_fitness(
            [ItemQuantity(items[0], 1),
             ItemQuantity(items[1], 14),
             ItemQuantity(items[2], 6)])
        self.fill_knapsack(items, maxWeight, maxVolume, optimal)




and the test harness:



    def fill_knapsack(self, items, maxWeight, maxVolume, optimalFitness):
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime)

        def fnGetFitness(genes):
            return get_fitness(genes)

        def fnCreate():
            return create(items, maxWeight, maxVolume)

        def fnMutate(genes):
            mutate(genes, items, maxWeight, maxVolume)

        best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                                fnDisplay, fnMutate, fnCreate)
        self.assertTrue(not optimalFitness > best.Fitness)






Run

When we run test_cookies



sample output

19xButter, 1xSugar    wt: 9.94 vol: 2.76 value: 29200 0:00:00.003007




it gets stuck. From previous experience we know this means it is hitting a local maximum. We also know the fix is to use simulated annealing to escape from the local maximum.



Use simulated annealing



    def fill_knapsack(self, items, maxWeight, maxVolume, optimalFitness):
...
        best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=50)






Run 2

Now when we run the test it can find the optimal solution every time.


sample output

5xFlour, 1xSugar      wt: 1.77 vol: 2.34 value: 10240 0:00:00
9xFlour, 1xSugar        wt: 2.83 vol: 3.98 value: 16960 0:00:00
13xSugar        wt: 5.73 vol: 3.77 value: 23920 0:00:00
12xSugar, 2xButter      wt: 6.29 vol: 3.74 value: 24960 0:00:00.002977
12xSugar, 4xButter      wt: 7.29 vol: 4.00 value: 27840 0:00:00.002977
20xButter       wt: 10.00 vol: 2.60 value: 28800        0:00:00.004022
19xButter, 1xSugar      wt: 9.94 vol: 2.76 value: 29200 0:00:01.682475
12xButter, 8xSugar      wt: 9.53 vol: 3.88 value: 32000 0:00:01.868943
15xButter, 5xSugar, 1xFlour     wt: 9.97 vol: 3.81 value: 32480 0:00:01.921079
14xButter, 6xSugar, 1xFlour     wt: 9.91 vol: 3.97 value: 32880 0:00:02.828494




Excellent! But does it work on larger problem sets?



Solving a harder problem

Like other projects we’ve seen, knapsack problems are very popular and as a result there are standard problem sets available. One such set, named exnsd16
 , is available from PYAsUKP
 :


https://github.com/henriquebecker91/masters/tree/master/data/ukp



File format

The problem files have the following format:



...
c: 8273            <-- constraint
...
begin data         <-- resource data starts
12 34              <-- weight and value
6 79
...
43 25
end data           <-- resource data ends
...
sol:               <-- begin optimal solution
    13  54  87  23 <-- resource index, count, quantity weight, quantity value
    55  32  78  69
                   <-- empty line
...






Parse the file

Writing a parser for this data format is easy. We start with a container:



class KnapsackProblemData:
    def __init__(self):
        self.Resources = []
        self.MaxWeight = 0
        self.Solution = []




Next we need a function that reads all the lines from the file and manages the parsing:



def load_data(localFileName):
    with open(localFileName, mode='r') as infile:
        lines = infile.read().splitlines()
    data = KnapsackProblemData()
    f = find_constraint

    for line in lines:
        f = f(line.strip(), data)
        if f is None:
            break
    return data




The initial parse function find_constraint
 looks for the constraint marker:



def find_constraint(line, data):
    parts = line.split(' ')
    if parts[0] != "c:":
        return find_constraint
    data.MaxWeight = int(parts[1])
    return find_data_start




Once the constraint is found it hands off to find_data_start
 to start watching for the start of the data section.



def find_data_start(line, data):
    if line != "begin data":
        return find_data_start
    return read_resource_or_find_data_end




The next function in the chain reads the Resources
 until the end of the data section is detected. We name the resources by their 1-based resource index.



def read_resource_or_find_data_end(line, data):
    if line == "end data":
        return find_solution_start
    parts = line.split('\t')
    resource = Resource("R" + str(1 + len(data.Resources)), int(parts[1]),
                        int(parts[0]), 0)
    data.Resources.append(resource)
    return read_resource_or_find_data_end




Then we transition to looking for the start of the solution section.



def find_solution_start(line, data):
    if line == "sol:":
        return read_solution_resource_or_find_solution_end
    return find_solution_start




Once we find the solution, we read the resource index and quantity and create the genes for the optimal solution. When we encounter an empty line we’re done.



def read_solution_resource_or_find_solution_end(line, data):
    if line == "":
        return None
    parts = [p for p in line.split('\t') if p != ""]
    resourceIndex = int(parts[0]) - 1  # make it 0 based
    resourceQuantity = int(parts[1])
    data.Solution.append(
        ItemQuantity(data.Resources[resourceIndex], resourceQuantity))
    return read_solution_resource_or_find_solution_end




The parser is complete.



Test exnsd16

Next we need a test that uses the parser and a problem file.



    def test_exnsd16(self):
        problemInfo = load_data("exnsd16.ukp")
        items = problemInfo.Resources
        maxWeight = problemInfo.MaxWeight
        maxVolume = 0
        optimal = get_fitness(problemInfo.Solution)
        self.fill_knapsack(items, maxWeight, maxVolume, optimal)






Run

When we run the test it can find the solution every time but it can take a couple of minutes.


sample output

....
156xR288, 1xR55 wt: 889237.00 vol: 0.00 value: 1029553  0:02:42.741197
156xR288, 1xR410        wt: 889244.00 vol: 0.00 value: 1029582  0:02:42.922804
156xR288, 1xR65 wt: 889276.00 vol: 0.00 value: 1029640  0:02:42.978019
156xR288, 1xR987        wt: 889303.00 vol: 0.00 value: 1029680  0:02:43.035709







Performance

Performance on the knapsack problem is frequently improved by using the branch and bound algorithm.



At a high level, the branch and bound algorithm involves a gene-specific decision and the associated consequences, or costs, of making that decision. Making a decision may allow/force you to eliminate many other potential decisions. For example, choosing a particular shirt/blouse to wear today may imply cultural constraints on your pant/skirt options. And your choice of pant/skirt combined with your blouse/shirt may limit your shoe and sock options. It is a chain reaction. This is why you often see the branch and bound algorithm depicted as a decision tree. Belt/no belt. Tie/no tie. Do I need an undershirt/slip with this? You can start anywhere on the decision tree but as soon as you make a decision your options for the next decision are reduced. The branch is the decision point. The bound is the limitations introduced by that decision. If your options can be ordered numerically then your next decision can generally be found very quickly via binary search.




To facilitate our ability to find the next improvement from a current partial solution we’re going to sort the items by value. We’re also going to use a sliding window to limit how far above and below the current item it can go to select a replacement in the mutation function. We pass the sorted items and the window to the mutation function.



    def fill_knapsack(self, items, maxWeight, maxVolume, optimalFitness):
        startTime = datetime.datetime.now()
        window = Window(1,
                        max(1, int(len(items) / 3)),
                        int(len(items) / 2))

        sortedItems = sorted(items, key=lambda item: item.Value)
...
        def fnMutate(genes):
            mutate(genes, sortedItems, maxWeight, maxVolume, window)




Here’s the implementation of Window
 :



class Window:
    def __init__(self, minimum, maximum, size):
        self.Min = minimum
        self.Max = maximum
        self.Size = size

    def slide(self):
        self.Size = self.Size - 1 if self.Size > self.Min else self.Max




In the mutation function the first thing we do is slide the window.



def mutate(genes, items, maxWeight, maxVolume, window):
    window.slide()
    fitness = get_fitness(genes)
...




Then in the section where we have the option to replace a gene item we pick the new item from those within window
 range of the current item. And then take the maximum possible quantity of that item.



...
    if changeItem:
        itemIndex = items.index(iq.Item)
        start = max(1, itemIndex - window.Size)
        stop = min(len(items) - 1, itemIndex + window.Size)
        item = items[random.randint(start, stop)]
    maxQuantity = max_quantity(item, remainingWeight, remainingVolume)
    if maxQuantity > 0:
        genes[index] = ItemQuantity(item, maxQuantity
        if window.Size > 1 else random.randint(1, maxQuantity))
    else:




That’s it.


Run

Now it finds the solution in about a second on average.



155xR288, 5xR409, 1xR112      wt: 889269.00 vol: 0.00 value: 1029497  0:00:00.344953
155xR288, 5xR409, 1xR1060       wt: 889286.00 vol: 0.00 value: 1029520  0:00:00.344953
155xR288, 5xR409, 1xR1028       wt: 889298.00 vol: 0.00 value: 1029525  0:00:00.378039
156xR288, 1xR987        wt: 889303.00 vol: 0.00 value: 1029680  0:00:00.435156




Outstanding!




Retrospective

Try using the sum of difference technique when calculating the fitness.



Benchmarks

Benchmark it with:



    def test_benchmark(self):
        genetic.Benchmark.run(lambda: self.test_exnsd16())




We did not change genetic
 so here’s the final benchmark.




Benchmark





	
average (seconds)


	
standard deviation





	
1.06


	
1.14













Summary

In this project we solved the unbounded version of the knapsack problem and learned about the branch and bound algorithm.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch09










SOLVING
 LINEAR
 EQUATIONS






Solving systems of equations is a common problem in engineering and you can find hundreds of papers online presenting ways to solve them. The methods fall into two broad classes: mathematical and iterative. The first includes methods like LU factorization
 , Gaussian elimination
 , and QR decomposition
 . The issue with these is that rounding errors are compounded at each step so methods must be used to correct for the errors. The iterative class uses successive approximation to find better solutions without the rounding errors. Genetic algorithms fall into this class.

In this project we’re going to see how genetic algorithms can be used to find the unknowns in a system of linear equations. For example:



x + 2y = 4

4x + 4y = 12




We want to figure out which x and y values we can use to solve both equations simultaneously. Stop here and think about how you would solve this problem with a genetic algorithm.

We can do this with our genetic engine using one gene for each unknown and a gene set containing all numbers in the range of expected values. Let’s try it.


Test class, test, and genes

We’ll start off with the usual stub code.


linearEquationTests.py

import unittest
import datetime
import genetic

class LinearEquationTests(unittest.TestCase):
    def test(self):
        geneset = [i for i in range(10)]
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime)

        def fnGetFitness(genes):
            return get_fitness(genes)






Fitness

In get_fitness
 we can substitute the gene values directly into x
 and y
 , but what should we return as the fitness so the engine can make progress? A good solution is to re-write the equations so we’re looking for zero.



x + 2y - 4 = 0

4x + 4y - 12 = 0




This allows us to use the sum of differences technique that we used in the Cards project.



def get_fitness(genes):
    x, y = genes[0:2]

    e1 = x + 2 * y - 4
    e2 = 4 * x + 4 * y - 12
    fitness = Fitness(abs(e1) + abs(e2))

    return fitness





Fitness class

With the Fitness
 class defined as:



class Fitness:
    def __init__(self, totalDifference):
        self.TotalDifference = totalDifference

    def __gt__(self, other):
        return self.TotalDifference < other.TotalDifference

    def __str__(self):
        return "diff: {:0.2f}".format(float(self.TotalDifference))







Optimal fitness

That means the optimal fitness value in our test is going to be zero.



    def test(self):
...
        optimalFitness = Fitness(0)
        best = genetic.get_best(fnGetFitness, 2, optimalFitness, geneset,
                                fnDisplay)
        self.assertTrue(not optimalFitness > best.Fitness)






Display

Finally, in the display function, we can write out the x
 and y
 values.


linearEquationTests.py

def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    x, y = candidate.Genes[0:2]
    print("x = {}, y = {}\t{}\t{}".format(
        x,
        y,
        candidate.Fitness,
        timeDiff))






Run

Now when we run the test…​



x = 5, y = 2  diff: 21.00     0:00:00
x = 0, y = 2    diff: 4.00      0:00:00
x = 0, y = 3    diff: 2.00      0:00:00.001000




it almost always stalls. Why? Consider the values of x
 and y
 in the above output. What has to happen for it to make progress? Both x
 and y
 have to change to new values at the same time. We’ve encountered another local minimum.



Use simulated annealing

We’ve hit a local minimum so we’ll see if adding a maximum age fixes it.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, 2, optimalFitness, geneset,
                                fnDisplay, maxAge=50)






Run 2

Now when we run the test, it finds the correct solution every time.


sample output

x = 7, y = 0  diff: 19.00     0:00:00
x = 5, y = 0    diff: 9.00      0:00:00
x = 4, y = 0    diff: 4.00      0:00:00
x = 3, y = 0    diff: 1.00      0:00:00
x = 2, y = 1    diff: 0.00      0:00:00.003007




We can verify the solution by manually substituting the values it found back into the original equations.



(2) + 2*(1) = 4

4*(2) + 4*(1) = 12




Great!



Fractions and 3 Unknowns

Now, what if x
 and y
 are fractions or mixed numbers and we have more unknowns? Well, let’s try a system with 3 unknowns and some fractions and see what happens.



6x - 2y + 8z = 20

y + 8x * z = -1

2z * 6/x + 3y/2 = 6

expected:
x = 2/3
y = -5
z = 3/4




Since some of the unknowns are fractions, our genotype will be 2 genes, one for the numerator and one for the denominator, for each unknown. This means we need 6 genes to solve the equations above. Based on the expected values, we’re going to let the gene set contain values in the range -5 to 5, excluding 0. The display and fitness functions will also have to change.


Refactoring

We would like to have common fitness, display, and mutate functions used by tests that are solving for a different number of unknowns, and with different genotypes. Let’s start by moving the gene set and equation details to the test function.



    def test_2_unknowns(self):
        geneset = [i for i in range(-5, 5) if i != 0]

        def fnGenesToInputs(genes):
            return genes[0], genes[1]

        def e1(genes):
            x, y = fnGenesToInputs(genes)
            return x + 2 * y - 4

        def e2(genes):
            x, y = fnGenesToInputs(genes)
            return 4 * x + 4 * y - 12

        equations = [e1, e2]
        self.solve_unknowns(2, geneset, equations, fnGenesToInputs)




Then rename the previous test harness function to solve_unknowns
 and send it the gene set, equations, and a function that converts the genotype to whatever phenotype the equations need.



    def solve_unknowns(self, numUnknowns, geneset, equations,
                       fnGenesToInputs):
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime, fnGenesToInputs)

        def fnGetFitness(genes):
            return get_fitness(genes, equations)

        optimalFitness = Fitness(0)
        best = genetic.get_best(fnGetFitness, numUnknowns, optimalFitness,
                                geneset, fnDisplay, maxAge=50)
        self.assertTrue(not optimalFitness > best.Fitness)




Now we can simplify the fitness function by making it only responsible for summing the absolute values of the equation results.



def get_fitness(genes, equations):
    fitness = Fitness(sum(abs(e(genes)) for e in equations))
    return fitness




The display function will still show the unknowns, fitness and elapsed time. It will also do so without having to know how many unknowns there are.



def display(candidate, startTime, fnGenesToInputs):
    timeDiff = datetime.datetime.now() - startTime
    symbols = "xyz"
    result = ', '.join("{} = {}".format(s, v)
                       for s, v in
                       zip(symbols, fnGenesToInputs(candidate.Genes)))
    print("{}\t{}\t{}".format(
        result,
        candidate.Fitness,
        timeDiff))






Test

Next we can add the new test for solving 3 unknowns. In the test for 2 unknowns the genotype was
 the phenotype. But in this test we need to convert every pair of genes to a fraction. Also, we’re not going to use simple division because floating point values can be difficult to mentally map to fractions. Instead we’ll use the Fraction
 class so we see 1/4 instead of .25, for example. We have to do the same thing to any fractions in the equations.



import fractions
...
    def test_3_unknowns(self):
        geneset = [i for i in range(-5, 5) if i != 0]

        def fnGenesToInputs(genes):
            return [fractions.Fraction(genes[i], genes[i + 1])
                    for i in range(0, len(genes), 2)]

        def e1(genes):
            x, y, z = fnGenesToInputs(genes)
            return 6 * x - 2 * y + 8 * z - 20

        def e2(genes):
            x, y, z = fnGenesToInputs(genes)
            return y + 8 * x * z + 1






        def e3(genes):
            x, y, z = fnGenesToInputs(genes)
            return 2 * z * fractions.Fraction(6, x) \
                   + 3 * fractions.Fraction(y, 2) - 6

        equations = [e1, e2, e3]

        self.solve_unknowns(6, geneset, equations, fnGenesToInputs)




And we’re ready to run the test.



Run



...
x = 3/5, y = -5, z = 2/3        diff: 2.03      0:00:00.932517
x = 2/3, y = -5, z = 4/5        diff: 1.57      0:00:09.709865
...




It occasionally has a delay while working around a local minimum. When we compare the above values of x
 , y
 and z
 with the expected values, we discover that we’re hitting a local minimum again. Except now, instead of needing to make 2 changes in order to move forward, we need to make 4. The root of the problem is we’re changing the numerator and denominator separately when we really need to be able to replace the fraction they represent with a new fraction.



Use Fractions as the Genotype

In order to use fractions as genes, we have to change the gene set to a set of all possible fractions in the range of numbers we want to support. A benefit of this is that our genotype and phenotype are the same again so we can eliminate the conversion step when evaluating the equations.



    def test_3_unknowns(self):
        geneRange = [i for i in range(-5, 5) if i != 0]
        geneset = [i for i in set(
            fractions.Fraction(d, e)
            for d in geneRange
            for e in geneRange if e != 0)]

        def fnGenesToInputs(genes):
            return genes

        def e1(genes):
            x, y, z = genes
            return 6 * x - 2 * y + 8 * z - 20

        def e2(genes):
            x, y, z = genes
            return y + 8 * x * z + 1






        def e3(genes):
            x, y, z = genes
            return 2 * z * fractions.Fraction(6, x) \
                   + 3 * fractions.Fraction(y, 2) - 6

        equations = [e1, e2, e3]
        self.solve_unknowns(3, geneset, equations, fnGenesToInputs)






Run 2

Now when it encounters a local minimum like the one we saw above



...
x = 3/5, y = -5, z = 2/3        diff: 2.03      0:00:00.042112
x = 2/3, y = -5, z = 4/5        diff: 1.57      0:00:00.082218
...




the engine hardly slows down. Great!




Finding 4 unknowns

Now let’s see if it can solve 4 unknowns:



1/15x  - 2y  - 15z  -4/5a =  3
-5/2x  - 9/4y  + 12z  - a =  17
-13x  + 3/10y  - 6z  - 2/5a =  17
1/2x  + 2y  + 7/4z  + 4/3a =  -9

x =  -3/2
y =  -7/2
z =  1/3
a =  -11/8





Test

We just have to add the new test



    def test_4_unknowns(self):
        geneRange = [i for i in range(-13, 13) if i != 0]
        geneset = [i for i in set(
            fractions.Fraction(d, e)
            for d in geneRange
            for e in geneRange if e != 0)]

        def fnGenesToInputs(genes):
            return genes

        def e1(genes):
            x, y, z, a = genes
            return fractions.Fraction(1, 15) * x \
                   - 2 * y \
                   - 15 * z \
                   - fractions.Fraction(4, 5) * a \
                   - 3

        def e2(genes):
            x, y, z, a = genes
            return -fractions.Fraction(5, 2) * x \
                   - fractions.Fraction(9, 4) * y \
                   + 12 * z \
                   - a \
                   - 17






        def e3(genes):
            x, y, z, a = genes
            return -13 * x \
                   + fractions.Fraction(3, 10) * y \
                   - 6 * z \
                   - fractions.Fraction(2, 5) * a \
                   - 17

        def e4(genes):
            x, y, z, a = genes
            return fractions.Fraction(1, 2) * x \
                   + 2 * y \
                   + fractions.Fraction(7, 4) * z \
                   + fractions.Fraction(4, 3) * a \
                   + 9

        equations = [e1, e2, e3, e4]
        self.solve_unknowns(4, geneset, equations, fnGenesToInputs)




and add to the symbols in the display function



    symbols = "xyza"






Run



....
x = -3/2, y = -10/3, z = 1/3, a = -12/7 diff: 0.40      0:00:05.217881
x = -3/2, y = -10/3, z = 1/3, a = -7/4  diff: 0.40      0:00:05.271022
x = -3/2, y = -7/2, z = 1/3, a = -13/10 diff: 0.27      0:00:12.802097
x = -3/2, y = -7/2, z = 1/3, a = -11/8  diff: 0.00      0:00:12.910380




It can find the solution every time but it can take a while. Here’s the benchmark for finding 4 unknowns.









	
average (seconds)


	
standard deviation





	
5.82


	
4.87














Performance

What can we do to improve performance? Are there any patterns in the output? Yes, there are. The first is that the sign of an unknown tends to stay the same. Another is that the change between improvements for a given unknown tends to get smaller as we get closer to the solution. We can take advantage of both by limiting our search to a sliding range around the current gene index. Let’s use the branch and bound algorithm.

We’ll start by moving the maximum age to a variable:



    def solve_unknowns(self, numUnknowns, geneset, equations,
                       fnGenesToInputs):
        startTime = datetime.datetime.now()
        maxAge = 50




Then use it to determine the minimum window size for adjusting the number of genes.



        maxAge = 50
        window = Window(max(1, int(len(geneset) / (2 * maxAge))),
                        max(1, int(len(geneset) / 3)),
                        int(len(geneset) / 2))




We’ll borrow the Window
 class from the previous project:



class Window:
    def __init__(self, minimum, maximum, size):
        self.Min = minimum
        self.Max = maximum
        self.Size = size

    def slide(self):
        self.Size = self.Size - 1 if self.Size > self.Min else self.Max




Next, in order to make the most efficient use of multiple rounds through the loop, we’re going to want to use random.choose
 so that we only use each gene index once. That means moving the indexes into an array like we did when finding Magic Squares.



        geneIndexes = [i for i in range(numUnknowns)]




We also need the gene options to be sorted so that genes that are numerically close to the current gene are also physically close to it in the array. This allows us to pick from genes within a certain numeric distance of the current one.



        sortedGeneset = sorted(geneset)




Lastly, pass these new parameters to a mutation function



        def fnMutate(genes):
            mutate(genes, sortedGeneset, window, geneIndexes)




and use that function in the engine.



        best = genetic.get_best(fnGetFitness, numUnknowns, optimalFitness,
                                geneset, fnDisplay, fnMutate, maxAge=maxAge)




Now in the mutation function, we start by choosing at least one gene to mutate. Then change the window size and start the loop.



import random
...
def mutate(genes, sortedGeneset, window, geneIndexes):
    indexes = random.sample(geneIndexes, random.randint(1, len(genes))) \
        if random.randint(0, 10) == 0 else [random.choice(geneIndexes)]
    window.slide()
    while len(indexes) > 0:




Then, each time through the loop we take the next gene from the indexes we picked



        index = indexes.pop()




and calculate the search bounds using the window size. This way we limit the number of genes we could pick from and stop if we reach one of the ends of the array.



        genesetIndex = sortedGeneset.index(genes[index])
        start = max(0, genesetIndex - window.Size)
        stop = min(len(sortedGeneset) - 1, genesetIndex + window.Size)




Finally, we replace the current gene with one picked randomly from the new bounding range.



        genesetIndex = random.randint(start, stop)
        genes[index] = sortedGeneset[genesetIndex]




This accomplishes our goal of taking advantage of patterns in the data. We now try to find replacement genes that are numerically close to the current gene. Depending on how close the gene is to zero and how wide the selection boundaries are, this keeps our choices mostly negative if the current gene is negative, or mostly positive if the current gene is positive. Using branch and bound we can slowly change the search range around the current best gene. This allows the algorithm to find the next improvement should it require the signs of one or more genes to change, as in this example:



x = -1/5, y = -3, z = -1/4, a = -1/10 diff: 35.56     0:00:00.003038
x = 1/7, y = -3, z = 5/13, a = -1/10    diff: 34.21     0:00:00.005043





Run

Now when we run the test it can find the 4 unknowns much faster.



...
x = -3/2, y = -11/3, z = 1/3, a = -13/12        diff: 0.41      0:00:01.176128
x = -3/2, y = -11/3, z = 1/3, a = -1    diff: 0.40      0:00:01.248321
x = -3/2, y = -7/2, z = 1/3, a = -13/10 diff: 0.27      0:00:01.605241
x = -3/2, y = -7/2, z = 1/3, a = -11/8  diff: 0.00      0:00:01.609281







Benchmarks

We will benchmark this project with the test that finds 4 unknowns.



def test_benchmark(self):
    genetic.Benchmark.run(lambda: self.test_4_unknowns())







Benchmark





	
average (seconds)


	
standard deviation





	
1.50


	
1.17













Summary

In this project we learned how to solve an important engineering problem. We were also able to reinforce to ourselves the power of using branch and bound.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch10










GENERATING
 SUDOKU






Sudoku puzzles are 9x9 logic problems where each row, column, and non-overlapping 3x3 section must have all the digits in the range 1 to 9. The player is given a partially filled grid and the challenge is to use the known digits, the puzzle constraints, and logic to deduce the remaining digits. Here’s a sample completed puzzle:



8 4 1 | 5 6 7 | 9 2 3
2 7 6 | 9 4 3 | 1 5 8
9 5 3 | 2 8 1 | 7 6 4
----- + ----- + -----
5 1 9 | 7 2 4 | 8 3 6
6 8 4 | 3 1 9 | 5 7 2
7 3 2 | 6 5 8 | 4 9 1
----- + ----- + -----
1 2 5 | 4 9 6 | 3 8 7
4 6 7 | 8 3 5 | 2 1 9
3 9 8 | 1 7 2 | 6 4 5




We’re going to use a genetic algorithm to generate a Sudoku puzzle. This is a guided exercise so you should be thinking about how to improve the implementation as we go along. Also, if you’ve never tried to solve one of these puzzles, you should do so as that process may provide valuable insight.

Let’s go.


Test class and genes

First off, our genotype will be the digits 1 thru 9.


sudokuTests.py

import unittest
import datetime
import genetic

class SudokuTests(unittest.TestCase):
    def test(self):
        geneset = [i for i in range(1, 9 + 1)]






Fitness

The fitness value will be a count of the rows, columns and sections that have all 9 digits. This means the optimal value will be 9+9+9 or 27.



        optimalValue = 27




The fitness function will be called many times so it needs to run fast. We start by creating an empty set
 for each row, column and section.



def get_fitness(candidate):
    rows = [set() for _ in range(9)]
    columns = [set() for _ in range(9)]
    sections = [set() for _ in range(9)]




Next, we populate the sets while touching each square only once. The section numbers can be calculated in Excel using:


QUOTIENT(B$1,3)+QUOTIENT($A2,3)*3



[image: Sections]





    for row in range(9):
        for column in range(9):
            value = candidate[row * 9 + column]
            rows[row].add(value)
            columns[column].add(value)
            sections[int(row / 3) + int(column / 3) + 3].add(value)




Lastly, we return the total number or rows, columns and sections that have the correct count.



    fitness = sum(len(row) == 9 for row in rows) + \
              sum(len(column) == 9 for column in columns) + \
              sum(len(section) == 9 for section in sections)

    return fitness






Display

We can easily produce a visual representation of the complete Sudoku puzzle.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime

    for row in range(9):
        line = ' | '.join(
            ' '.join(str(i)
                     for i in candidate.Genes[row * 9 + i:row * 9 + i + 3])
            for i in [0, 3, 6])
        print("", line)
        if row < 8 and row % 3 == 2:
            print(" ----- + ----- + -----")
    print(" - = -   - = -   - = - {}\t{}\n"
          .format(candidate.Fitness, timeDiff))




Here’s the expected output:



8 4 1 | 5 6 7 | 4 2 4
2 7 2 | 2 4 4 | 9 7 6
2 4 9 | 4 4 1 | 1 3 1
----- + ----- + -----
9 3 2 | 5 5 5 | 8 7 6
1 9 8 | 8 1 3 | 6 5 9
5 1 5 | 8 7 6 | 6 2 3
----- + ----- + -----
6 8 6 | 7 5 7 | 2 4 3
7 8 2 | 9 8 1 | 8 7 3
9 9 3 | 3 5 9 | 3 6 1
- = -   - = -   - = - 17        0:00:00






Test

The full test harness for this project is fairly simple.



def test(self):
    geneset = [i for i in range(1, 9 + 1)]
    startTime = datetime.datetime.now()
    optimalValue = 27

    def fnDisplay(candidate):
        display(candidate, startTime)

    def fnGetFitness(genes):
        return get_fitness(genes)

    best = genetic.get_best(fnGetFitness, 81, optimalValue, geneset,
                            fnDisplay)
    self.assertEqual(best.Fitness, optimalValue)






Run

Now run it. It makes progress at first but eventually stalls. I ran the code 10 times and it always stalled with a fitness value between 11 and 15.



9 5 8 | 3 6 1 | 2 7 4
2 1 4 | 5 6 8 | 3 7 9
5 8 3 | 4 6 9 | 7 1 2
----- + ----- + -----
4 3 9 | 8 2 5 | 6 7 1
8 9 2 | 6 3 4 | 5 7 1
3 4 7 | 1 6 5 | 9 2 8
----- + ----- + -----
5 7 1 | 9 8 3 | 4 6 2
8 6 9 | 2 7 4 | 1 5 3
5 2 4 | 7 6 9 | 8 1 3
- = -   - = -   - = - 15        0:00:02.793290











	
What should we do now?













	

Use simulated annealing
 to fix the local minimum.


	

Use custom mutation
 to swap two genes.


	

Use custom creation
 to start with the correct number of each digit.








Many options

The remaining sections of this project are not meant to be read straight through. Click one of the options above .

Use simulated annealing

It certainly behaves like it is hitting a local maximum. So let’s see if simulated annealing can fix the stall.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, 81, optimalValue, geneset,
                                fnDisplay, maxAge=5000)




With this change the engine can achieve a fitness value of 23 every time, but it requires a relatively high maximum age and a long run time, and it still stalls at that point every time. That is a good indication that we are encountering local maximums and that they are relatively complex to resolve.



2 3 6 | 8 7 9 | 5 4 1
8 5 4 | 1 6 3 | 7 9 2
7 1 9 | 4 8 2 | 6 3 5
----- + ----- + -----
6 9 5 | 3 2 8 | 4 1 7
4 7 1 | 6 3 5 | 2 8 9
5 2 7 | 9 1 4 | 8 6 3
----- + ----- + -----
1 8 2 | 7 9 6 | 3 5 4
9 6 3 | 5 4 7 | 1 2 8
3 4 8 | 2 5 1 | 9 7 6
- = -   - = -   - = - 23        0:03:43.065731




Let’s see if we can help it by removing some of the inefficiency from the process.








	
What should we do now?













	

Add custom creation
 to start with the correct number of each digit.


	

Add custom mutation
 to swap two genes.


	

Restart from the beginning
 .






Add custom creation

We can reduce the amount of work the engine has to do if we start with the right number of each digit. We’ll do that with a permutation of 9 copies of the digits.



import random
...
    def test(self):
...
        def fnCreate():
            return random.sample(geneset * 9, 81)

        best = genetic.get_best(fnGetFitness, None, optimalValue, geneset,
                                fnDisplay, custom_create=fnCreate,
                                maxAge=5000)




Run 3

This change doesn’t affect the fitness value, it is still 23 every time, and it still stalls every time.



...
1 8 7 | 9 5 9 | 1 3 5
9 6 3 | 7 1 4 | 5 8 2
5 2 4 | 8 6 3 | 7 9 1
----- + ----- + -----
8 7 2 | 4 2 6 | 4 7 3
3 9 1 | 5 3 2 | 6 6 8
4 1 5 | 6 8 7 | 2 3 9
----- + ----- + -----
2 4 6 | 1 9 8 | 3 5 7
6 5 9 | 3 7 1 | 8 2 4
7 3 8 | 2 4 5 | 9 1 6
- = -   - = -   - = - 19        0:00:12.411932




Add custom mutation

Since our custom creation function ensures we start with the right number of each digit, we can also replace the built-in mutation function with one that just swaps two genes.



def mutate(genes, geneIndexes):
    indexA, indexB = random.sample(geneIndexes, 2)
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]






    def test(self):
...
        geneIndexes = [i for i in range(0, 81)]

        def fnMutate(genes):
            mutate(genes, geneIndexes)

        best = genetic.get_best(fnGetFitness, None, optimalValue,
                                None, fnDisplay, fnMutate, fnCreate,
                                maxAge=5000)




Run 4



6 3 1 | 5 7 2 | 4 8 9
5 8 7 | 4 6 9 | 3 2 1
4 9 2 | 7 5 3 | 8 1 6
----- + ----- + -----
8 7 5 | 9 1 6 | 2 3 4
1 6 3 | 2 8 4 | 9 5 7
2 4 9 | 1 3 8 | 7 6 5
----- + ----- + -----
9 1 8 | 6 2 7 | 5 4 3
7 2 6 | 3 4 5 | 1 9 8
3 5 4 | 8 9 1 | 6 7 2
- = -   - = -   - = - 23        0:00:39.616364




This change removes the remaining inefficiency from the process but it still stalls. To improve further we need to think about fitness another way.



	

Use a more granular fitness
 .


	

Restart from the beginning
 .






Add custom mutation

The genetic algorithm is quite capable of producing a gene sequence that has exactly 9 of each of the 9 digits. Once it does, however, it always stalls because the built-in mutation operation can only make one change at a time. To make further progress it needs to at least be able to swap two genes. We know how to do that.

We’ll add a variation of the custom mutation function from the Cards project. If the chromosome has too many or too few of a digit we’ll randomly replace a gene. It doesn’t matter which one as the engine will make it work. Otherwise, when we have the right number of all the digits, we’ll just swap two random genes.



import random
...
def mutate(genes, geneset):
    counts = [0 for _ in range(len(geneset) + 1)]
    for digit in genes:
        counts[digit] += 1
    correctDigitCount = sum(1 for i in counts if i == 9)
    if correctDigitCount != 9:
        index = random.randrange(0, len(genes) - 1)
        genes[index] = random.choice(geneset)
    else:
        indexA, indexB = random.sample(range(len(genes)), 2)
        genes[indexA], genes[indexB] = genes[indexB], genes[indexA]




We also need to wire the test harness to use our custom mutation function.



    def test(self):
...
        def fnMutate(genes):
            mutate(genes, geneset)

        best = genetic.get_best(fnGetFitness, 81, optimalValue, geneset,
                                fnDisplay, fnMutate, maxAge=5000)




Run 3

This change definitely improves the range of fitness values. Now, over ten runs it always ends up with fitness values of 22 or 23.



...
6 4 9 | 8 3 7 | 1 5 2
5 3 1 | 2 6 9 | 7 8 4
2 7 8 | 5 4 1 | 6 9 3
----- + ----- + -----
9 8 5 | 3 7 4 | 2 6 1
4 6 3 | 9 1 2 | 5 7 8
1 5 7 | 6 2 8 | 4 3 9
----- + ----- + -----
7 2 6 | 1 8 3 | 9 4 5
8 9 2 | 4 5 6 | 3 1 7
3 1 4 | 7 9 5 | 8 2 6
- = -   - = -   - = - 23        0:00:11.885119




Add custom creation

Let’s add a custom creation function so we don’t waste time creating an invalid gene sequence in the first place. Maybe that will resolve the stall.



    def test(self):
...
        def fnCreate():
            return random.sample(geneset * 9, 81)

...
        best = genetic.get_best(fnGetFitness, None, optimalValue, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=5000)




With that change we can simplify the implementation of the mutation function to just perform swaps.



def mutate(genes, geneIndexes):
    indexA, indexB = random.sample(geneIndexes, 2)
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]




Then update the test harness to match the parameter change.



    def test(self):
...
        geneIndexes = [i for i in range(0, 81)]

        def fnMutate(genes):
            mutate(genes, geneIndexes)




Run 4



4 7 2 | 8 5 9 | 6 3 1
8 1 5 | 9 4 2 | 3 6 7
6 3 9 | 1 2 5 | 7 8 4
----- + ----- + -----
9 4 7 | 3 6 8 | 1 5 2
1 2 8 | 7 3 6 | 5 4 9
5 6 3 | 4 1 7 | 9 2 8
----- + ----- + -----
2 5 1 | 6 7 4 | 8 9 3
7 9 4 | 5 8 3 | 2 1 6
3 8 6 | 2 9 1 | 4 7 5
- = -   - = -   - = - 23        0:00:30.633457




This change removes the remaining inefficiency from the process and makes it so that we achieve a 23 fitness value 10 times out of 10. But it still stalls. To improve further we need to think about fitness another way.



	

Use a more granular fitness
 .


	

Restart from the beginning
 .






Use custom mutation

The genetic algorithm is quite capable of producing a gene sequence that has exactly 9 of each of the 9 digits. Once it does, however, it always stalls because the built-in mutation operation can only make one change at a time. To make further progress it needs to at least be able to swap two genes. We know how to do that.

We’ll add a variation of the custom mutation function from the Cards project. If the chromosome has too many or too few of a digit we randomly replace a gene. It doesn’t matter which one; the engine will make it work. Otherwise, when we have the right number of all the digits then we’ll just swap two random genes.



import random
...
def mutate(genes, geneset):
    counts = [0 for _ in range(len(geneset) + 1)]
    for digit in genes:
        counts[digit] += 1
    correctDigitCount = sum(1 for i in counts if i == 9)
    if correctDigitCount != 9:
        index = random.randrange(0, len(genes) - 1)
        genes[index] = random.choice(geneset)
    else:
        indexA, indexB = random.sample(range(len(genes)), 2)
        genes[indexA], genes[indexB] = genes[indexB], genes[indexA]




We also need to wire the test harness to use our custom mutation function.



    def test(self):
...
        def fnMutate(genes):
            mutate(genes, geneset)

        best = genetic.get_best(fnGetFitness, 81, optimalValue, geneset,
                                fnDisplay, fnMutate)




Run 2

This change definitely improves the range of fitness values. Now, over ten runs it always ends up with fitness values of 22 or 23.



...
6 9 3 | 2 4 5 | 8 1 7
5 8 1 | 7 3 4 | 6 2 9
4 2 7 | 5 6 3 | 9 8 1
----- + ----- + -----
7 3 2 | 1 9 8 | 4 5 6
9 6 5 | 4 8 1 | 3 7 2
8 1 6 | 9 2 7 | 5 4 3
----- + ----- + -----
3 4 8 | 6 7 2 | 1 9 5
1 7 4 | 3 5 9 | 2 6 8
2 5 9 | 8 1 6 | 7 3 4
- = -   - = -   - = - 23        0:00:12.103029











	
What should we do now?













	

Add simulated annealing
 to fix the local maximum.


	

Add custom creation
 to start with the correct number of each digit.


	

Restart from the beginning
 .






(Click one of the options above)

Add custom creation

If we add a custom creation function we can ensure that we start with the right number of each digit.



    def test(self):
...
        def fnCreate():
            return random.sample(geneset * 9, 81)
...
        best = genetic.get_best(fnGetFitness, None, optimalValue,
                                None, fnDisplay, fnMutate, fnCreate)




This also means we can simplify our mutation function to just swap two genes.



def mutate(genes, geneIndexes):
    indexA, indexB = random.sample(geneIndexes, 2)
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]




Now update the test harness to match the parameter change.



    def test(self):
...
        geneIndexes = [i for i in range(0, 81)]

        def fnMutate(genes):
            mutate(genes, geneIndexes)
...




Run 3



6 4 3 | 2 5 7 | 8 9 1
2 1 7 | 3 9 4 | 6 8 5
5 9 8 | 6 2 1 | 7 3 4
----- + ----- + -----
4 3 5 | 8 7 9 | 2 1 6
8 2 1 | 9 3 6 | 4 5 7
7 6 4 | 5 1 8 | 9 2 3
----- + ----- + -----
9 5 6 | 1 4 2 | 3 7 8
1 7 9 | 4 8 3 | 5 6 2
3 8 2 | 7 6 5 | 1 4 9
- = -   - = -   - = - 23        0:00:20.101972




This change enables the engine to achieve a fitness value of 22 or 23 every time, and to do so quickly most of the time. But, it still stalls.

Add simulated annealing

In the past when the engine became stuck it was because it hit a local maximum, right? No problem. Let’s see if simulated annealing can help.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, None, optimalValue, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=5000)




Run 4

This change makes it so that we achieve a 23 fitness value every time, but it still stalls. That is a good indication that we are encountering local maximums and that they are relatively complex to resolve.



...
8 9 5 | 6 4 2 | 1 3 7
4 2 3 | 1 9 7 | 6 5 8
1 7 6 | 5 2 8 | 3 4 9
----- + ----- + -----
6 8 2 | 7 5 3 | 9 1 4
3 4 7 | 9 8 1 | 5 2 6
5 1 9 | 3 6 4 | 7 8 2
----- + ----- + -----
2 3 1 | 4 7 9 | 8 6 5
9 5 8 | 2 1 6 | 4 7 3
7 6 4 | 8 3 5 | 2 9 1
- = -   - = -   - = - 23        0:01:19.822566




To improve further we need to think about fitness another way.



	

Use a more granular fitness
 .


	

Restart from the beginning
 .






Add simulated annealing

In the past when the engine became stuck it was because it hit a local maximum, right? No problem. Let’s see if simulated annealing helps.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, 81, optimalValue, geneset,
                                fnDisplay, fnMutate, maxAge=5000)




Run 3

This change makes it so that we achieve a 23 fitness value every time, but it still stalls. That is a good indication that we are encountering local maximums and that they are complex to resolve.



...
8 9 5 | 6 4 2 | 1 3 7
4 2 3 | 1 9 7 | 6 5 8
1 7 6 | 5 2 8 | 3 4 9
----- + ----- + -----
6 8 2 | 7 5 3 | 9 1 4
3 4 7 | 9 8 1 | 5 2 6
5 1 9 | 3 6 4 | 7 8 2
----- + ----- + -----
2 3 1 | 4 7 9 | 8 6 5
9 5 8 | 2 1 6 | 4 7 3
7 6 4 | 8 3 5 | 2 9 1
- = -   - = -   - = - 23        0:01:19.822566




Add custom creation

Let’s prevent the creation of invalid gene sequences in the first place. Maybe that will resolve the stall.



    def test(self):
...
        def fnCreate():
            return random.sample(geneset * 9, 81)

...
        best = genetic.get_best(fnGetFitness, None, optimalValue, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=5000)




With that change we can simplify the implementation of the mutation function and just perform swaps.



def mutate(genes, geneIndexes):
    indexA, indexB = random.sample(geneIndexes, 2)
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]




Then update the test harness to match the parameter change.



    def test(self):
...
        geneIndexes = [i for i in range(0, 81)]

        def fnMutate(genes):
            mutate(genes, geneIndexes)




Run 4



5 8 1 | 9 2 3 | 6 4 7
4 3 7 | 1 5 8 | 2 9 6
6 9 2 | 7 8 1 | 4 5 3
----- + ----- + -----
2 6 3 | 4 7 5 | 1 8 9
7 5 6 | 2 9 4 | 8 3 1
9 1 4 | 8 3 6 | 5 7 2
----- + ----- + -----
3 2 8 | 6 4 7 | 9 1 5
1 4 5 | 3 6 9 | 7 2 8
8 7 9 | 5 1 2 | 3 6 4
- = -   - = -   - = - 23        0:00:35.506982




This change removes the remaining inefficiency from the process and makes it so that we achieve a 23 fitness value 10 times out of 10. But, it still stalls. To improve further we need to think about fitness another way.



	

Use a more granular fitness
 .


	

Restart from the beginning
 .






Use custom creation

We can reduce the amount of work the engine has to do if we start with the right number of each digit. We’ll do that with a permutation of 9 copies of the digits.



import random
...
    def test(self):
...
        def fnCreate():
            return random.sample(geneset * 9, 81)

        best = genetic.get_best(fnGetFitness, None, optimalValue, geneset,
                                fnDisplay, custom_create=fnCreate)




Run 2

This change improves the range of the fitness value to between 16 and 19 (over 10 runs) with one outlier at 23. But, it still stalls every time.



...
2 5 9 | 3 1 6 | 8 4 7
6 8 4 | 9 2 7 | 5 1 3
3 1 7 | 2 5 4 | 6 8 9
----- + ----- + -----
5 9 6 | 1 3 2 | 7 4 8
8 7 6 | 2 9 3 | 1 5 4
9 3 8 | 7 6 1 | 4 2 5
----- + ----- + -----
4 2 5 | 6 7 8 | 9 3 1
7 6 1 | 8 4 5 | 3 9 2
1 4 7 | 3 8 9 | 2 5 6
- = -   - = -   - = - 19        0:00:09.601567











	
What should we do now?













	

Add simulated annealing
 to fix the local maximum.


	

Add custom mutation
 to swap two genes.


	

Restart from the beginning
 .






(Click one of the options above)

Add simulated annealing

We seem to be hitting a local maximum. Let’s see if using simulated annealing can break us out of the stall.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, None, optimalValue, geneset,
                                fnDisplay, custom_create=fnCreate,
                                maxAge=5000)




Run 3

This improves the range of fitness values to between 19 and 23 over 10 runs, but only if we use a high maximum age. The higher the maximum age the better the fitness results, up to a point. That is a good indication that we are encountering local maximums and that they are relatively complex to resolve.



9 8 2 | 1 4 5 | 6 3 7
7 1 3 | 5 8 6 | 4 2 9
4 5 6 | 8 2 3 | 9 7 1
----- + ----- + -----
1 2 4 | 6 5 4 | 3 5 8
8 3 9 | 4 7 2 | 5 1 6
6 9 7 | 5 3 1 | 8 4 2
----- + ----- + -----
3 4 8 | 2 6 7 | 1 9 5
2 6 5 | 3 1 9 | 7 8 4
5 7 1 | 4 9 8 | 2 6 3
- = -   - = -   - = - 21        0:00:21.398411




Add custom mutation

Both custom creation and simulated annealing improved the fitness results. Since our custom creation function ensures we start with the right number of each digit, we can replace the built in mutation function with one that just swaps two genes.



def mutate(genes, geneIndexes):
    indexA, indexB = random.sample(geneIndexes, 2)
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]






    def test(self):
...
        geneIndexes = [i for i in range(0, 81)]

        def fnMutate(genes):
            mutate(genes, geneIndexes)

        best = genetic.get_best(fnGetFitness, None, optimalValue, None,
                                fnDisplay, fnMutate, fnCreate,
                                maxAge=5000)




Run 4



6 3 1 | 5 7 2 | 4 8 9
5 8 7 | 4 6 9 | 3 2 1
4 9 2 | 7 5 3 | 8 1 6
----- + ----- + -----
8 7 5 | 9 1 6 | 2 3 4
1 6 3 | 2 8 4 | 9 5 7
2 4 9 | 1 3 8 | 7 6 5
----- + ----- + -----
9 1 8 | 6 2 7 | 5 4 3
7 2 6 | 3 4 5 | 1 9 8
3 5 4 | 8 9 1 | 6 7 2
- = -   - = -   - = - 23        0:00:39.616364




This change removes the remaining inefficiency from the process and makes it so that we achieve a 23 fitness value 10 times out of 10. But, it still stalls. To improve further we need to think about fitness another way.



	

Use a more granular fitness
 .


	

Restart from the beginning
 .






Add custom mutation

The custom creation function we added ensures that we start with the right number of each digit. This means we can replace the built in mutation function with one that just swaps two genes.



def mutate(genes, geneIndexes):
    indexA, indexB = random.sample(geneIndexes, 2)
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]






    def test(self):
...
        geneIndexes = [i for i in range(0, 81)]

        def fnMutate(genes):
            mutate(genes, geneIndexes)

        best = genetic.get_best(fnGetFitness, None, optimalValue, None,
                                fnDisplay, fnMutate, fnCreate)




Run 3



1 3 7 | 8 6 9 | 2 5 4
2 8 5 | 7 1 6 | 4 9 3
9 6 4 | 2 5 1 | 7 3 8
----- + ----- + -----
4 7 3 | 9 2 8 | 5 1 6
6 2 8 | 4 3 5 | 9 7 1
3 9 1 | 5 7 4 | 6 8 2
----- + ----- + -----
5 4 2 | 1 8 7 | 3 6 9
7 1 6 | 3 9 2 | 8 4 5
8 5 9 | 6 4 3 | 1 2 7
- = -   - = -   - = - 23        0:00:13.460378




This change enables the engine to achieve a fitness value of 22 or 23 every time, and to do so quickly most of the time. But, it still stalls.

Add simulated annealing

Let’s see if using simulated annealing can break us out of what appears to be a local maximum.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, None, optimalValue, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=5000)




Run 4

This change makes it so that we achieve a 23 fitness value every time, but it still stalls. That is a good indication that we are
 encountering local maximums and that they are relatively complex to resolve.



6 3 8 | 1 9 4 | 7 2 5
7 4 2 | 8 3 5 | 1 6 9
9 1 5 | 7 4 2 | 8 3 6
----- + ----- + -----
3 2 4 | 9 6 8 | 5 1 7
8 7 1 | 2 5 6 | 9 4 3
5 9 6 | 3 1 7 | 2 8 4
----- + ----- + -----
4 5 7 | 6 2 1 | 3 9 8
2 8 9 | 4 7 3 | 6 5 1
1 6 3 | 5 8 9 | 4 7 2
- = -   - = -   - = - 23        0:00:09.504245




To improve further we need to think about fitness another way.



	

Use a more granular fitness
 .


	

Restart from the beginning
 .






Use a more granular fitness

The root problem we’re having is that we’re trying to construct the whole puzzle at once. This causes us to end up in a situation where we cannot make a change without reducing the fitness because the valid rows, columns and sections are interlocked with invalid ones. The way to fix this is to build the puzzle in an organized manner row-by-row top-to-bottom, left-to-right. That will allow us to swap all we want with digits that have a higher array index in order to resolve conflicts. Once the current digit is consistent with all related digits that have a lower index, we’ll advance to the next digit. However, now we need to know the point at which it becomes inconsistent. To determine that we’re going to borrow the Rule
 idea from the Graph Coloring project



class Rule:
    def __init__(self, it, other):
        if it > other:
            it, other = other, it
        self.Index = it
        self.OtherIndex = other

    def __eq__(self, other):
        return self.Index == other.Index and \
               self.OtherIndex == other.OtherIndex

    def __hash__(self):
        return self.Index * 100 + self.OtherIndex




and create back-reference rules that only enforce row, column and section uniqueness against genes with lower array indexes.

Start with a nested pair of loops where the outer loop goes through all but the last index; this will be the back-referenced index in the rule.



def build_validation_rules():
    rules = []
    for index in range(80):
        itsRow = index_row(index)
        itsColumn = index_column(index)
        itsSection = row_column_section(itsRow, itsColumn)




The inner loop starts at the lower index plus one and iterates over the rest of the gene indexes. We then determine if the two indexes are in the same row, column and/or section, and if so, we produce a Rule
 linking them.



        for index2 in range(index + 1, 81):
            otherRow = index_row(index2)
            otherColumn = index_column(index2)
            otherSection = row_column_section(otherRow, otherColumn)
            if itsRow == otherRow or \
                            itsColumn == otherColumn or \
                            itsSection == otherSection:
                rules.append(Rule(index, index2))




Last, we sort the rules by the upper index then the lower index so we can quickly find all the rules that affect all indexes up to the current one and do so in a consistent order.



    rules.sort(key=lambda x: x.OtherIndex * 100 + x.Index)
    return rules




We use the following helper functions to determine the row, column, and section from an index.



def index_row(index):
    return int(index / 9)


def index_column(index):
    return int(index % 9)


def row_column_section(row, column):
    return int(row / 3) * 3 + int(column / 3)


def index_section(index):
    return row_column_section(index_row(index), index_column(index))


def section_start(index):
    return int((index_row(index) % 9) / 3) * 27 + int(
        index_column(index) / 3) * 3




Update the test

Next, in the test harness we need to get the validation rules and pass them to the fitness and mutation functions.



    def test(self):
...
        validationRules = build_validation_rules()

        def fnGetFitness(genes):
            return get_fitness(genes, validationRules)

        def fnMutate(genes):
            mutate(genes, validationRules)




Now we’re in a position to use the rules in the fitness function. We’ll change the fitness value to be the row and column of the index of the first square that has a digit conflict. That will make it easy for us to find the problem square in the display. It also triples the granularity of the fitness value.

Fitness



def get_fitness(genes, validationRules):
    try:
        firstFailingRule = next(rule for rule in validationRules
                                if genes[rule.Index] == genes[rule.OtherIndex])
    except StopIteration:
        fitness = 100
    else:
        fitness = (1 + index_row(firstFailingRule.OtherIndex)) * 10 \
                  + (1 + index_column(firstFailingRule.OtherIndex))
    return fitness




That change means the highest broken fitness value will be 99. So, we’ll make the optimal value 100.



    def test(self):
...
        optimalValue = 100




Mutate

Finally, in the mutation function we have to process the rules again to figure out which, if any, of the array indexes has a digit conflict and then swap the gene at that index with one at any higher index.



def mutate(genes, validationRules):
    selectedRule = next(rule for rule in validationRules
                        if genes[rule.Index] == genes[rule.OtherIndex])
    if selectedRule is None:
        return
    indexA = selectedRule.OtherIndex
    indexB = random.randrange(1 + indexA, len(genes))
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]




Run 5

Now when we run the test it gets stuck because all the possible values it could put at that array index have already been used in the associated row, column or section.



7 1 9 | 4 2 8 | 6 3 5
4 5 3 | 7 1 9 | 8 2 8
4 2 1 | 7 9 3 | 1 6 4
----- + ----- + -----
8 4 5 | 9 4 5 | 1 8 1
6 7 3 | 9 7 8 | 4 5 4
6 1 5 | 2 7 9 | 5 2 9
----- + ----- + -----
3 6 8 | 5 9 1 | 6 2 5
7 2 8 | 3 3 1 | 6 9 6
2 8 3 | 7 6 7 | 3 4 2
- = -   - = -   - = - 29        0:00:00.009169




The fitness value tells us the problem is at row 2 column 9. We can see above that an 8 is conflicting with another 8 in the same row. The apparent fix would be to replace it with a 1, 4, 6, or 7 but 1, 4 and 7 already appear in its row and 6 has already been used in the same section. There’s nothing the mutation function can swap into that position to resolve the problem, so as a result it stays stuck.

Enable row swaps

The solution is to enable swapping with any digit on the same row as well:



def mutate(genes, validationRules):
...
    row = index_row(selectedRule.OtherIndex)
    start = row * 9
    indexA = selectedRule.OtherIndex
    indexB = random.randrange(start, len(genes))
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]




Run 6

Now when we run the test, 9 times out of 10 it can produce a valid Sudoku board in under a second. When it can’t it looks like this:


sample output

9 7 1 | 4 6 2 | 8 3 5
6 2 8 | 3 5 7 | 1 4 9
3 5 4 | 9 8 1 | 6 2 7
----- + ----- + -----
7 8 5 | 6 1 3 | 2 9 4
1 4 2 | 8 9 5 | 7 6 3
3 1 1 | 4 3 9 | 2 9 1
----- + ----- + -----
2 4 6 | 5 8 6 | 5 9 8
9 8 5 | 6 4 7 | 8 2 4
7 3 3 | 7 2 7 | 5 1 6
- = -   - = -   - = - 61        0:00:00.043248




Now it only gets stuck on the last row of a section. When that happens swapping with another gene on the same row can’t fix it because the problem is that all 9 potential digits have already been used somewhere in its row, column or section.

Final revision

The final fix is to add a small chance of shuffling the contents of all genes, starting with the first gene in the current gene’s section, until all the rules up to and including those of the current gene pass.



def mutate(genes, validationRules):
...
        return

    if index_row(selectedRule.OtherIndex) % 3 == 2 \
            and random.randint(0, 10) == 0:
        sectionStart = section_start(selectedRule.Index)
        current = selectedRule.OtherIndex
        while selectedRule.OtherIndex == current:
            shuffle_in_place(genes, sectionStart, 80)
            selectedRule = next(rule for rule in validationRules
                                if genes[rule.Index] == genes[rule.OtherIndex])
        return
    row = index_row(selectedRule.OtherIndex)
...




With the shuffling function defined as:



def shuffle_in_place(genes, first, last):
    while first < last:
        index = random.randint(first, last)
        genes[first], genes[index] = genes[index], genes[first]
        first += 1




We can speed it up further if we reduce the maximum age for simulated annealing.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, None, optimalValue, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=50)




Run 7

These changes resolve the final problem without a significant performance penalty. Outstanding!



Benchmarks

Here’s the benchmark function:



    def test_benchmark(self):
        genetic.Benchmark.run(lambda: self.test())







Benchmark





	
average (seconds)


	
standard deviation





	
0.19


	
0.11













Summary

In this project we learned that we must be tenacious and willing to question everything about our genetic algorithm implementation in order to work around a sticking point. We also learned that approaching the problem in a controlled fashion instead of having partial solutions spread all over can result in substantial performance improvements.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch11










TRAVELING
 SALESMAN
 PROBLEM







Our next project involves finding an optimal or near-optimal route to visit a set of locations. This is generically known as the Traveling Salesman Problem. Route optimality can be affected by costs, priorities, etc. Variations include unequal costs to travel a route in different directions, like fuel use going up or down a hill, one-way streets, paying toll fees at certain times of the day, obstacles along the way like rivers to cross or street layouts to navigate, how much time a particular stop might require, etc. Think about how you might implement this.




Test Data

We’ll start off with a data set that we can easily verify by sight - one of the solutions to the 8 Queens Puzzle (0,0 is in the bottom left corner, points are counter-clockwise starting at A):



. . . . A . . .
. . B . . . . .
C . . . . . . .
. . . . . . H .
. D . . . . . .
. . . . . . . G
. . . . . F . .
. . . E . . . .
4,7 2,6 0,5 1,3 3,0 5,1 7,2 6,4






Test and genes

As usual we’ll start by defining the gene set, and in this case, a lookup table where we can get the coordinates for a given location.


tspTests.py

import unittest
import datetime
import genetic






class TravelingSalesmanTests(unittest.TestCase):
    def test_8_queens(self):
        idToLocationLookup = {
            'A': [4, 7],
            'B': [2, 6],
            'C': [0, 5],
            'D': [1, 3],
            'E': [3, 0],
            'F': [5, 1],
            'G': [7, 2],
            'H': [6, 4]
        }
        optimalSequence = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
        self.solve(idToLocationLookup, optimalSequence)






    def solve(self, idToLocationLookup, optimalSequence):
        geneset = [i for i in idToLocationLookup.keys()]






Calculating distance

To determine fitness we need to be able to calculate the distance between two locations. We are going to use Euclidean (straight line) distance.



import math
...
def get_distance(locationA, locationB):
    sideA = locationA[0] - locationB[0]
    sideB = locationA[1] - locationB[1]
    sideC = math.sqrt(sideA * sideA + sideB * sideB)
    return sideC






Fitness

Since we want to optimize for the shortest distance we’ll use a custom Fitness
 object.



class Fitness:
    def __init__(self, totalDistance):
        self.TotalDistance = totalDistance

    def __gt__(self, other):
        return self.TotalDistance < other.TotalDistance

    def __str__(self):
        return "{:0.2f}".format(self.TotalDistance)




To determine the route length we’re going to sum the distances for points in the route, including returning to the starting location.



def get_fitness(genes, idToLocationLookup):
    fitness = get_distance(idToLocationLookup[genes[0]],
                           idToLocationLookup[genes[-1]])

    for i in range(len(genes) - 1):
        start = idToLocationLookup[genes[i]]
        end = idToLocationLookup[genes[i + 1]]
        fitness += get_distance(start, end)

    return Fitness(round(fitness, 2))






Display

In the display function we’ll simply output the route and total distance traveled.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        ' '.join(map(str, candidate.Genes)),
        candidate.Fitness,
        timeDiff))




The output should look like this:



A E F G H B C D       27.72   0:00:00.001002






Mutate

Since we don’t want to visit any location more than once, but we do want to make sure we visit all locations, we’ll borrow custom mutate



import random
...
def mutate(genes, fnGetFitness):
    count = random.randint(2, len(genes))
    initialFitness = fnGetFitness(genes)
    while count > 0:
        count -= 1
        indexA, indexB = random.sample(range(len(genes)), 2)
        genes[indexA], genes[indexB] = genes[indexB], genes[indexA]
        fitness = fnGetFitness(genes)
        if fitness > initialFitness:
            return




and custom create from the Magic Squares project.



def solve(self, idToLocationLookup, optimalSequence):
...
    def fnCreate():
        return random.sample(geneset, len(geneset))






Test

The rest of the test harness should be familiar by now:



def solve(self, idToLocationLookup, optimalSequence):
    geneset = [i for i in idToLocationLookup.keys()]

    def fnCreate():
        return random.sample(geneset, len(geneset))

    def fnDisplay(candidate):
        display(candidate, startTime)

    def fnGetFitness(genes):
        return get_fitness(genes, idToLocationLookup)

    def fnMutate(genes):
        mutate(genes, fnGetFitness)

    optimalFitness = fnGetFitness(optimalSequence)
    startTime = datetime.datetime.now()
    best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                            fnDisplay, fnMutate, fnCreate)
    self.assertTrue(not optimalFitness > best.Fitness)






Run

When we run this we expect the optimal solution to be some rotation of the alphabetical sequence ABCDEFGH because that’s the shortest route around those 8 points. And that is exactly what we get.


sample output

B D C G A H F E       33.93   0:00:00
H G C D A B F E 32.39   0:00:00
F B A D C H G E 30.33   0:00:00
E B A D C H G F 28.35   0:00:00.000501
E C D A B H G F 26.48   0:00:00.000501
E C D B A H G F 23.78   0:00:00.001002
F D C B A H G E 23.73   0:00:00.002013
E D C B A H G F 20.63   0:00:00.004010






A larger problem

There are many commonly used data sets for this type of problem, and many more are available from a web site called TSPLIB (see: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
 ). We’re going to try a small variant named ulysses16
 The locations in this dataset are supposedly those visited by Homer’s Ulysses. The data set has 16 numbered locations that are specified by floating point x and y coordinates, and symmetric route weights.

Here’s how the points appear when plotted in Microsoft Excel.


[image: ch12.ulysses16.epub]



The data file is easy for parse.



def load_data(localFileName):
    """ expects:
        HEADER section before DATA section, all lines start in column 0
        DATA section element all have space in column  0
            <space>1 23.45 67.89
        last line of file is: " EOF"
    """
    with open(localFileName, mode='r') as infile:
        content = infile.read().splitlines()
    idToLocationLookup = {}
    for row in content:
        if row[0] != ' ':  # HEADERS
            continue
        if row == " EOF":
            break

        id, x, y = row.split(' ')[1:4]
        idToLocationLookup[int(id)] = [float(x), float(y)]
    return idToLocationLookup




We call the function that loads the data from the new test:



def test_ulysses16(self):
    idToLocationLookup = load_data("ulysses16.tsp")
    optimalSequence = [14, 13, 12, 16, 1, 3, 2, 4,
                       8, 15, 5, 11, 9, 10, 7, 6]
    self.solve(idToLocationLookup, optimalSequence)




The published optimal path for this problem treats the points as locations on Earth, which complicates the calculations with latitude, longitude, radius of the earth, etc. We’re going to keep it simple and use the Euclidean distance function we already have.

The engine cannot solve this problem without simulated annealing, so we’ll use that too.



    def solve(self, idToLocationLookup, optimalSequence):
...
        best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=500)






Run


sample output

...
3 2 4 8 1 10 9 11 5 15 6 7 12 13 14 16  74.75   0:00:00.147422
3 2 4 8 1 10 9 11 5 15 6 7 14 13 12 16  74.73   0:00:00.158453
13 14 7 6 15 5 11 9 10 3 2 4 8 1 16 12  74.61   0:00:00.502374
4 8 1 13 14 15 5 11 9 10 7 6 12 16 3 2  74.28   0:00:01.036758
4 8 1 13 14 15 5 11 9 10 6 7 12 16 3 2  74.18   0:00:01.076865
7 10 9 11 5 15 1 8 4 2 3 16 12 13 14 6  74.00   0:00:04.306453
12 16 1 3 2 4 8 15 5 11 9 10 7 6 14 13  73.99   0:00:45.714639




It finds the optimal solution every time but overcoming the local minimum at 74.00 takes the majority of the time. In benchmarks it takes 8.69 seconds +/- 8.02 seconds, which is much too slow for us to want to use in benchmarks.



    def test_benchmark(self):
        genetic.Benchmark.run(lambda: self.test_ulysses16())




We’re going to have to add something new.



Introducing crossover

When you read TSP research papers online the conversation invariably focuses on a genetic algorithm strategy that we haven’t discussed yet - crossover. Crossover uses features from two different parents to create the new child. The idea is that the genes of each parent have part of the solution but they both may be stuck at a local minimum or maximum. So, if random parts of both are combined, it might produce a better solution to the problem.

The reason conversation focuses on crossover is because of the problem constraints and the many ways people have tried to work around them. For example, you can’t just copy random genes because you might introduce duplication, which results in a worse fitness and a wasted attempt. The solution to the TSP is a cycle through all points, but the parent’s genes for producing that route could start anywhere in the cycle and travel either direction along it. This means even if you use a clever method to copy genes to the new child so that you don’t introduce duplication, you may be replacing clockwise-cycling genes with counter-clockwise cycling ones, which may or may not be an improvement. You may also, depending on how you select the genes that get moved, be breaking up a sequence that is already optimal. Ultimately, the point is that you will have to engineer crossover at least as much if not more than you do mutation.


Support a pool of parents

First things first. A prerequisite for crossover is two parents. Right now we only have one parent, so we’re going to add the ability to set the number of parents.



The community refers to this as a pool
 of parents.





genetic.py

def get_best(get_fitness, targetLen, optimalFitness, geneSet, display,
             custom_mutate=None, custom_create=None, maxAge=None,
             poolSize=1):
...




Pass the pool size through to _get_improvement.



    for improvement in _get_improvement(fnMutate, fnGenerateParent, maxAge,
                                        poolSize):




Where we’ll initialize an array of parents with the best parent.



def _get_improvement(new_child, generate_parent, maxAge, poolSize):
    bestParent = generate_parent()
    yield bestParent
    parents = [bestParent]
    historicalFitnesses = [bestParent.Fitness]




Then populate the parents array by generating new random parents. If one that has a better fitness than the best parent is found, we replace the best parent and update the list of historical best fitnesses.



    for _ in range(poolSize - 1):
        parent = generate_parent()
        if parent.Fitness > bestParent.Fitness:
            yield parent
            bestParent = parent
            historicalFitnesses.append(parent.Fitness)
        parents.append(parent)




Next, since we have an array of parents, each time through the loop we’ll select a different one to be the current parent.



    lastParentIndex = poolSize - 1
    pindex = 1
    while True:
        pindex = pindex - 1 if pindex > 0 else lastParentIndex
        parent = parents[pindex]






The strategy we’re using to curate the pool is to loop through all parents in the pool, continuously replacing parents with better children. This has the advantage of maintaining genetic diversity in the pool while keeping pool maintenance simple.

If we were to replace the parent every time then it would behave more like continuous simulated annealing. If you did the experiments when we introduced that feature, then you know that such a system would have terrible performance on pure combinatorial problems.

A much more common implementation is to have a pool of parents and a pool of children. Ways of selecting children to keep include:



	
keep all children


	
keep only children better than their respective parent


	
keep only children better than the best child


	
keep only children better than the median best child











Once the child pool is full, again there are many options for repopulating the parent pool. They include:



	
The child pool replaces the parent pool as is.


	
The best (user specified) N percent of the children replace the worst N percent of the parents. This is called elitism. The problem then becomes how to choose the right percentage.


	
The best sqrt(pool size)
 children are combined with the best sqrt(pool size)
 parents through full crossover, every parent with every child, to produce a new parent pool.


	
Pick a random number of children, then take the one with the best fitness from that group. Repeat until the pool is filled. This is known as tournament selection.


	
When the fitness value is numeric, children can be given a chance of being selected to become a parent based on the ratio of their fitness to the sum of all child fitnesses. This is known as roulette wheel selection.









The remaining changes to _get_improvement involve using a parent-array index when the parent is being replaced.



...
            if random.random() < exp(-proportionSimilar):
                parents[pindex] = child ①


                continue
            bestParent.Age = 0
            parents[pindex] = bestParent ②


            continue
...






...
        if not child.Fitness > parent.Fitness:
            # same fitness
            child.Age = parent.Age + 1
            parents[pindex] = child ③


            continue
        child.Age = 0
        parents[pindex] = child ④


...




Adding only the pool to this solution, however, actually hurts performance because every item in the pool is touched before we get back around again to the one that was just improved.


tspTests.py

    def solve(self, idToLocationLookup, optimalSequence):
...
        best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=500,
                                poolSize=25)







Updated Benchmark





	
average (seconds)


	
standard deviation





	
9.45


	
10.83













Support crossover

Since crossover is closely linked to the genotype and project, we will not add a default implementation to the genetic
 module. It will instead be available as an optional parameter only.

We’ll start with adding the optional parameter to get_best
 .


genetic.py

def get_best(get_fitness, targetLen, optimalFitness, geneSet, display,
             custom_mutate=None, custom_create=None, maxAge=None,
             poolSize=1, crossover=None):
...




We don’t want to use crossover instead of
 mutation but rather as a supplement. In fact, we’re going to make it adaptive, so that we’ll prefer whichever of the two strategies is producing the most improvements. To do that we need to track which strategy was used to create that parent. That implies a list of strategies



from enum import Enum
...
class Strategies(Enum):
    Create = 0,
    Mutate = 1,
    Crossover = 2




and a Strategy
 attribute on the Chromosome
 class:



class Chromosome:
    def __init__(self, genes, fitness, strategy):
        self.Genes = genes
        self.Fitness = fitness
        self.Strategy = strategy
        self.Age = 0




Additionally, that new constructor parameter must be supplied wherever we create a Chromosome
 .



def _generate_parent(length, geneSet, get_fitness):
...
    return Chromosome(genes, fitness, Strategies.Create)






def _mutate(parent, geneSet, get_fitness):
...
    return Chromosome(childGenes, fitness, Strategies.Mutate)






def _mutate_custom(parent, custom_mutate, get_fitness):
...
    return Chromosome(childGenes, fitness, Strategies.Mutate)






def get_best(get_fitness, targetLen, optimalFitness, geneSet, display,
             custom_mutate=None, custom_create=None, maxAge=None,
             poolSize=1, crossover=None):
...
    else:
        def fnGenerateParent():
            genes = custom_create()
            return Chromosome(genes, get_fitness(genes), Strategies.Create)




Next, in get_best
 we can keep a list of strategies that were used to create parents.



def get_best(get_fitness, targetLen, optimalFitness, geneSet, display,
             custom_mutate=None, custom_create=None, maxAge=None,
             poolSize=1, crossover=None):
...
    usedStrategies = [strategyLookup[Strategies.Mutate]]
    if crossover is not None:
        usedStrategies.append(strategyLookup[Strategies.Crossover])
...




And update it whenever _get_improvement sends it a new improvement.



...
        display(improvement)
        f = strategyLookup[improvement.Strategy]
        usedStrategies.append(f)
        if not optimalFitness > improvement.Fitness:
            return improvement
...




Now we need to create new children by selecting a random strategy from the array of successful strategies, instead of always using mutate:



...
    strategyLookup = {
        Strategies.Create: lambda p, i, o: fnGenerateParent(),
        Strategies.Mutate: lambda p, i, o: fnMutate(p),
        Strategies.Crossover: lambda p, i, o:
        _crossover(p.Genes, i, o, get_fitness, crossover, fnMutate,
                   fnGenerateParent)
    }

    usedStrategies = [strategyLookup[Strategies.Mutate]]
    if crossover is not None:
        usedStrategies.append(strategyLookup[Strategies.Crossover])

        def fnNewChild(parent, index, parents):
            return random.choice(usedStrategies)(parent, index, parents)
    else:
        def fnNewChild(parent, index, parents):
            return fnMutate(parent)

    for improvement in _get_improvement(fnNewChild, fnGenerateParent,
                                        maxAge, poolSize):
...




This requires a small change in _get_improvement



def _get_improvement(new_child, generate_parent, maxAge, poolSize):
...
        child = new_child(parent, pindex, parents)
...






Many genetic engines allow you to specify crossover and mutation rates
 . However, this puts the burden on you to experiment with the percentages to try to find values that work well for your problem. The system implemented here is to give strategies that are successful a higher chance of being used again. Since the strategy used to produce a particular Chromosome
 is included with the object, you can monitor the strategies that are used. That can help you check whether your crossover algorithm is stronger or weaker than your mutation algorithm, as we’ll see later.




Finally, we need to add a convenience function for calling the crossover function.



def _crossover(parentGenes, index, parents, get_fitness, crossover, mutate,
               generate_parent):
    donorIndex = random.randrange(0, len(parents))
    if donorIndex == index:
        donorIndex = (donorIndex + 1) % len(parents)
    childGenes = crossover(parentGenes, parents[donorIndex].Genes)
    if childGenes is None:
        # parent and donor are indistinguishable
        parents[donorIndex] = generate_parent()
        return mutate(parents[index])
    fitness = get_fitness(childGenes)
    return Chromosome(childGenes, fitness, Strategies.Crossover)




That completes the infrastructural support for crossover and adaptive use of strategies in genetic
 .



Use crossover

Back in our test file we need to change the solve
 function to pass a crossover function to get_best
 and to request a larger pool of parents.


tspTests.py

    def solve(self, idToLocationLookup, optimalSequence):
...
        def fnCrossover(parent, donor):
            return crossover(parent, donor, fnGetFitness)
...
        best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=500,
                                poolSize=25, crossover=fnCrossover)




Then we need to build the crossover function. It will start by constructing a lookup table of all the 2-point pairs in the donor parent’s genes.



def crossover(parentGenes, donorGenes, fnGetFitness):
    pairs = {Pair(donorGenes[0], donorGenes[-1]): 0}

    for i in range(len(donorGenes) - 1):
        pairs[Pair(donorGenes[i], donorGenes[i + 1])] = 0
...




The Pair
 class is just a renamed copy of the Rule
 class from the Graph Coloring project. Pair
 orders the two genes so that gene pairs can be compared regardless of cycle direction.



class Pair:
    def __init__(self, node, adjacent):
        if node < adjacent:
            node, adjacent = adjacent, node
        self.Node = node
        self.Adjacent = adjacent

    def __eq__(self, other):
        return self.Node == other.Node and self.Adjacent == other.Adjacent

    def __hash__(self):
        return hash(self.Node) * 397 ^ hash(self.Adjacent)




The next thing the crossover function does is make sure the first and last genes in the parent are not adjacent in the donor. If they are, then we search for a pair of adjacent points from the parent that are not adjacent in the donor. If we find one then we shift that discontinuity to the beginning of the array so that we know no sequences wrap around the end of the array.


example

donorGenes: ['E', 'A', 'C', 'G', 'B', 'D', 'H', 'F']
parentGenes: ['G', 'C', 'D', 'F', 'E', 'H', 'A', 'B']

pairs contains:
  EA, CA, GC, GB, DB, HD, HF, FE




The pair GB
 exists in both gene sequences. So does GC
 . But DC
 does not, so a copy of the parent genes will be shifted to the left to become:



tempGenes: ['D', 'F', 'E', 'H', 'A', 'B', 'G', 'C']




Otherwise, the parent and the donor are identical so we simply return None
 and let the genetic engine handle it. Here’s the implementation:



...
    tempGenes = parentGenes[:]
    if Pair(parentGenes[0], parentGenes[-1]) in pairs:
        # find a discontinuity
        found = False
        for i in range(len(parentGenes) - 1):
            if Pair(parentGenes[i], parentGenes[i + 1]) in pairs:
                continue
            tempGenes = parentGenes[i + 1:] + parentGenes[:i + 1]
            found = True
            break
        if not found:
            return None
...




Next we’re going to collect all the sequences from the parent that are also in the donor. The lookup table helps us to find them regardless of the direction the parent’s genes are cycling.



...
    runs = [[tempGenes[0]]]
    for i in range(len(tempGenes) - 1):
        if Pair(tempGenes[i], tempGenes[i + 1]) in pairs:
            runs[-1].append(tempGenes[i + 1])
            continue
        runs.append([tempGenes[i + 1]])
...





example continued

common sequences:
  ['D'],
  ['F', 'E'],
  ['H'],
  ['A'],
  ['B', 'G', 'C']




Now we try to find a reordering of the sequences that has a better fitness than the current parent. We’ll do this by swapping any pair of sequences and checking the fitness, with a chance of reversing the order.



...
    initialFitness = fnGetFitness(parentGenes)
    count = random.randint(2, 20)
    runIndexes = range(len(runs))
    while count > 0:
        count -= 1
        for i in runIndexes:
            if len(runs[i]) == 1:
                continue
            if random.randint(0, len(runs)) == 0:
                runs[i] = [n for n in reversed(runs[i])]
...




If the fitness is better than that of the parent, then we return the new genetic sequence. Otherwise we repeat until we find an improvement or we complete the maximum number of attempts, at which point we give up and return what we have.



from itertools import chain
...
        indexA, indexB = random.sample(runIndexes, 2)
        runs[indexA], runs[indexB] = runs[indexB], runs[indexA]
        childGenes = list(chain.from_iterable(runs))
        if fnGetFitness(childGenes) > initialFitness:
            return childGenes
    return childGenes




One other change we can make is in the display function where we can output the strategy that was used to produce each improvement.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}\t{}".format(
        ' '.join(map(str, candidate.Genes)),
        candidate.Fitness,
        candidate.Strategy.name,
        timeDiff))







Run

Now when we run test_ulysses16
 crossover tends to be the most commonly used strategy.



13 12 16 8 4 2 3 1 15 5 11 9 10 7 6 14        74.86   Crossover       0:00:01.437824
13 12 1 8 4 2 3 16 15 5 11 9 10 7 6 14  74.60   Mutate  0:00:01.468941
3 2 4 8 1 15 5 11 9 10 6 7 14 13 12 16  74.23   Crossover       0:00:02.032406
1 14 15 5 11 9 10 6 7 12 13 16 3 2 4 8  74.00   Crossover       0:00:02.170804
13 12 16 1 3 2 4 8 15 5 11 9 10 7 6 14  73.99   Crossover       0:00:02.576854




The algorithm also finds the optimal solution much faster on average.



Retrospective

We added two new tools, the parent pool size and crossover, that you may be able to use to improve the performance of previous projects.

For example, crossover might be used to detect the correct characters in the Password project so you can concentrate on non-matching indexes.

You might also try using crossover to exchange runs in the Sorted Numbers project.

In Graph Coloring, Linear Equations, and Knights, see how adding more parents affects the performance.

To use crossover effectively in the Knapsack project you might need to switch to a different genotype.



Updated benchmarks

Since we changed the code paths in genetic
 we’ll update all the benchmarks.










	
project


	
average (seconds)


	
standard deviation





	
Guess Password


	
1.26


	
0.29





	
One Max


	
1.22


	
0.16





	
Sorted Numbers


	
1.18


	
0.63





	
Queens


	
1.56


	
1.31





	
Graph Coloring


	
0.73


	
0.25





	
Cards


	
0.01


	
0.01





	
Knights


	
0.70


	
0.72





	
Magic Square


	
0.20


	
0.33





	
Knapsack


	
0.66


	
0.45





	
Linear Equations


	
1.23


	
0.88





	
Sudoku


	
0.17


	
0.11





	
Traveling Salesman


	
1.04


	
0.80













Summary

In this project we added an optional pool of parents to the genetic
 module. We also added support for using crossover with adaptive strategy selection. These two powerful capabilities make our genetic engine essentially feature complete. From this point on we’ll be concentrating on broadening the complexity and diversity of problems we know how to handle.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch12










APPROXIMATING
 PI







In this project we’re going to use a genetic algorithm to find an approximation for Pi, a deceptively simple project. Our phenotype will be 2 integers in the range 1 to 1024 that we’ll divide in order to produce a decimal value. Our genotype will be binary code. That means the gene set will only be 0 and 1. Go try it then come back to work through my implementation.




Test and genes


approximatePiTests.py

import unittest
import datetime
import genetic

class ApproximatePiTests(unittest.TestCase):
    def test(self):
        geneset = [i for i in range(2)]






Convert bits to an integer

It takes 10 binary bits to produce integer values up to 1023. That means we need 20 bits to store the numerator and denominator that we’ll be dividing to approximate Pi.



        best = genetic.get_best(fnGetFitness, 20, optimalFitness, geneset,




It also means that the position
 of the gene changes its value
 in the phenotype. For example:

We also need a utility function to convert an array of 10 bits to an integer.



def bits_to_int(bits):
    result = 0
    for bit in bits:
        result = (result << 1) | bit
    return result




To prevent division by zero, and increase the value range to 1024, we’ll add 1 to the decoded numerator



def get_numerator(genes):
    return 1 + bits_to_int(genes[:10])




and denominator.



def get_denominator(genes):
    return 1 + bits_to_int(genes[10:])






Fitness

We want the ratio that is closest to Pi so we’ll subtract the difference between the calculated value and Pi from Pi to get the fitness. This way we don’t need a Fitness
 class.



import math
...
def get_fitness(genes):
    ratio = get_numerator(genes) / get_denominator(genes)
    return math.pi - abs(math.pi - ratio)






Display

The display function will show the two parts of the fraction and their calculated ratio.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    numerator = get_numerator(candidate.Genes)
    denominator = get_denominator(candidate.Genes)
    print("{}/{}\t{}\t{}".format(
        numerator,
        denominator,
        candidate.Fitness, timeDiff))





sample output

240/129       1.8604651162790697      0:00:00.001000






Best approximations for Pi

Next, it would be useful to know what the best approximations for Pi are in the range we’re checking:



    def test_find_top_10_approximations(self):
        best = {}
        for numerator in range(1, 1024):
            for denominator in range(1, 1024):
                ratio = numerator / denominator
                piDist = math.pi - abs(math.pi - ratio)
                if piDist not in best or best[piDist][0] > numerator:
                    best[piDist] = [numerator, denominator]

        bestApproximations = list(reversed(sorted(best.keys())))
        for i in range(10):
            ratio = bestApproximations[i]
            nd = best[ratio]
            print("%i / %i\t%f" % (nd[0], nd[1], ratio))





Top ten approximations

355 / 113     3.141592
732 / 233       3.141554
688 / 219       3.141553
1021 / 325      3.141538
377 / 120       3.141519
333 / 106       3.141509
776 / 247       3.141485
977 / 311       3.141479
644 / 205       3.141463
399 / 127       3.141453




This means we expect the engine to find 355/133 or some multiple thereof.



Optimal value

Because floating point values aren’t exact in Python we’ll use a value between 355/133 and 732/233 as the optimal value.

Here’s the full test harness:



    def test(self):
        geneset = [i for i in range(2)]
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime)

        def fnGetFitness(genes):
            return get_fitness(genes)

        optimalFitness = 3.14159
        best = genetic.get_best(fnGetFitness, 20, optimalFitness, geneset,
                                fnDisplay)
        self.assertTrue(optimalFitness <= best.Fitness)






Run

When we run it we get output like the following:


sample result

679/362       1.8756906077348066      0:00:00
679/361 1.8808864265927978      0:00:00
935/361 2.590027700831025       0:00:00
935/329 2.8419452887537995      0:00:00
935/321 2.912772585669782       0:00:00
943/321 2.9376947040498442      0:00:00
944/321 2.940809968847352       0:00:00
1008/321        3.1401869158878504      0:00:00




We can run it many times but it will rarely find the optimal solution. The problem is we can only change 1 bit at a time in either the numerator or denominator and this causes it to get stuck at a local maximum where it has individually optimized those two values as much as it can.



Modify both parts

However, we can add a custom mutation function that modifies both the numerator and denominator each time it is called:



import random
...
def mutate(genes):
    numeratorIndex, denominatorIndex = random.randrange(0, 10), \
                                       random.randrange(10, len(genes))
    genes[numeratorIndex] = 1 - genes[numeratorIndex]
    genes[denominatorIndex] = 1 - genes[denominatorIndex]




And then use it in the test.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, 20, optimalFitness, geneset,
                                fnDisplay, mutate)






Run 2

Run the test again and it still cannot find the optimal solution.



924/389       2.3753213367609254      0:00:00
956/390 2.4512820512820515      0:00:00.001002
940/262 2.6953990476376015      0:00:00.001002
932/294 3.113117279968702       0:00:00.001002
931/296 3.137915036909316       0:00:00.001002




Since it appears that we’re still hitting a local maximum, let’s see if simulated annealing can fix it.



Use simulated annealing



    def test(self):
...
        best = genetic.get_best(fnGetFitness, 20, optimalFitness, geneset,
                                fnDisplay, mutate, maxAge=250)






Run 3

Now when we run the test it can find the optimal solution every time but it can take a long time.



...
1016/324        3.1358024691358026      0:00:00.002006
1024/326        3.1411042944785277      0:00:00.006020
1021/325        3.1415384615384614      0:00:00.034090
732/233 3.1415544058920326      0:00:08.040390
355/113 3.1415923868256037      0:00:34.368389




We can measure how slow it is with a benchmark test:



    def test_benchmark(self):
        genetic.Benchmark.run(lambda: self.test())







sample results





	
average (seconds)


	
standard deviation





	
28.23


	
30.62











The issue we’re having is that successive improvements don’t build on the previous ones. Consider the following corner case:



127    [0, 1, 1, 1, 1, 1, 1, 1]
128    [1, 0, 0, 0, 0, 0, 0, 0]




If we needed 128 in the numerator but had 127, the genetic algorithm would have to change 8 bits. It would be very difficult for it to make that leap. Additionally, there is no slack in our genotype. There is exactly one pattern that will produce the value 355/113 for example. This is something to be aware of when choosing a genotype for a genetic algorithm.

So how can we add some slack?



Expanding the genotype

The bits in our current genotype have the following values by position:



[512, 256, 128, 64, 32, 16, 8, 4, 2, 1]




What if we simply double the number of bits we use per phenotype and then duplicate each value. Effectively:



[512, 512, 256, 256, 128, 128, 64, 64, 32, 32, 16, 16, 8, 8, 4, 4, 2, 2, 1, 1]




Let’s try it.



Pass the bit values

We’ll start by moving the bit values to an array,



    def test(self):
...
        bitValues = [512, 256, 128, 64, 32, 16, 8, 4, 2, 1]




then use that array to decode the genes as follows:



def bits_to_int(bits, bitValues):
    result = 0
    for i, bit in enumerate(bits):
        if bit == 0:
            continue
        result += bitValues[i]
    return result




The final step is to pass the array of bit values through to the various functions that need it:



    def test(self):
...
        def fnDisplay(candidate):
            display(candidate, startTime, bitValues) ①



        def fnGetFitness(genes):
            return get_fitness(genes, bitValues) ②








def get_fitness(genes, bitValues):
    denominator = get_denominator(genes, bitValues) ③


    if denominator == 0:
        return 0

    ratio = get_numerator(genes, bitValues) / denominator ④


    return math.pi - math.fabs(math.pi - ratio)






def display(candidate, startTime, bitValues):
    timeDiff = datetime.datetime.now() - startTime
    numerator = get_numerator(candidate.Genes, bitValues) ⑤


    denominator = get_denominator(candidate.Genes, bitValues) ⑥


...






def get_numerator(genes, bitValues):
    return 1 + bits_to_int(genes[:10], bitValues) ⑦




def get_denominator(genes, bitValues):
    return bits_to_int(genes[10:], bitValues) ⑧






Now change the values of the bits.



Change the bit values



    def test(self):
...
        bitValues = [512, 512, 256, 256, 128, 128, 64, 64, 32,
                     32, 16, 16, 8, 8, 4, 4, 2, 2, 1, 1]




Since the new gene sequence length depends on the length of the bit value array, we need to update places where we reference specific indexes.



    def test(self):
...
        def fnMutate(genes): ①


            mutate(genes, len(bitValues))

        length = 2 * len(bitValues)
        best = genetic.get_best(fnGetFitness, length, optimalFitness,
                                geneset, fnDisplay, fnMutate, maxAge=250) ②








def mutate(genes, numBits):
    numeratorIndex, denominatorIndex = random.randrange(0, numBits), \
                                       random.randrange(numBits, len(genes))
...






def get_numerator(genes, bitValues):
    return 1 + bits_to_int(genes[:len(bitValues)], bitValues)


def get_denominator(genes, bitValues):
    return bits_to_int(genes[len(bitValues):], bitValues)




This change substantially improves the benchmark result for this project.




sample benchmark





	
average (seconds)


	
standard deviation





	
0.91


	
0.89











This simple change resulted in a 30x speed improvement.



Exercise

Could we get more speed if none of the values were duplicates? What if we doubled the size of the array again? Do the bit values need to be ordered? What is the highest bit value we need? You should go experiment then come back.



Optimizing the bit array

What do you think it would take to find the best bit value array for this problem? It sounds exactly like something we would solve with a genetic algorithm doesn’t it? Let’s do it.

Since we know a poor set of values for the bit array can take a long time to run, we need to put a limit on the run time. So, let’s say the goal is to find the optimal solution to the Pi project as many times as possible in 2 seconds. That means we need a way to break out of the engine after 2 seconds.


Support time constraints in the genetic
 module

We’ll start by adding an optional parameter to get_best
 for the maximum number of seconds to run.


genetic.py

def get_best(get_fitness, targetLen, optimalFitness, geneSet, display,
             custom_mutate=None, custom_create=None, maxAge=None,
             poolSize=1, crossover=None, maxSeconds=None):
...




Then pass that variable to _get_improvement and also handle the new additional return value that indicates that a timeout occurred.



    for timedOut, improvement in \
            _get_improvement(fnNewChild, fnGenerateParent, maxAge, poolSize,
                             maxSeconds):
        if timedOut:
            return improvement
...




Next, at the beginning of _get_improvement we start a timer and wherever we return a result we need to include in flag for whether a timeout occurred.



def _get_improvement(new_child, generate_parent, maxAge, poolSize,
                     maxSeconds):
    startTime = time.time()
    bestParent = generate_parent()
    yield maxSeconds is not None and time.time() \
          - startTime > maxSeconds, bestParent
...




We check it after each call to generate_parent
 when populating the parent pool.



    for _ in range(poolSize - 1):
        parent = generate_parent()
        if maxSeconds is not None and time.time() - startTime > maxSeconds:
            yield True, parent
        if parent.Fitness > bestParent.Fitness:
            yield False, parent




We also check at the start of the while
 loop.



    while True:
        if maxSeconds is not None and time.time() - startTime > maxSeconds:
            yield True, bestParent




We’ve already checked it when we find a new best parent, so we just send False
 .



        if child.Fitness > bestParent.Fitness:
            bestParent = child
            yield False, bestParent






Optimizer

Now in the optimizer we’ll see if we can make the 10-bit version run faster. We start with a gene set containing all the numbers in the range 1 to 512. And we’ll give each round 2 seconds to run.


approximatePiTests.py

import time
...
    def test_optimize(self):
        geneset = [i for i in range(1, 512 + 1)]
        length = 10
        maxSeconds = 2




Next we need to write the fitness function. It will start a timer and keep a count of the number of successes.



        def fnGetFitness(genes):
            startTime = time.time()
            count = 0




It will then run the Pi approximation test and count how many times it can find the optimal result. We’ll also suppress its output.



import sys
...
            stdout = sys.stdout
            sys.stdout = None
            while time.time() - startTime < maxSeconds:
                if self.test(genes, maxSeconds):
                    count += 1
            sys.stdout = stdout




The fitness value will be a combination of the number of successes and a fraction. The fraction indicates how far the sum of the bit values is from 1023. This gives the engine a very granular fitness to use to find improvements.



            distance = abs(sum(genes) - 1023)
            fraction = 1 / distance if distance > 0 else distance
            count += round(fraction, 4)
            return count




Next we want a way to monitor what is happening, so we write a display function.



        def fnDisplay(chromosome):
            print("{}\t{}".format(chromosome.Genes, chromosome.Fitness))




For comparison we’ll output the fitness of the initial sequence.



        initial = [512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
        print("initial:", initial, fnGetFitness(initial))




Finally, we’ll start the run and give it 10 minutes to try to find an improvement, with the goal being a set of bit values that can be used to find Pi 20 times in 2 seconds.



        optimalFitness = 10 * maxSeconds
        genetic.get_best(fnGetFitness, length, optimalFitness, geneset,
                         fnDisplay, maxSeconds=600)




Now we need to make related changes to the test function so we can pass an array of bit values and the maximum number of seconds to run as parameters. Remember to remove the existing array definition from the function.



    def test(self, bitValues=[512, 256, 128, 64, 32, 16, 8, 4, 2, 1],
             maxSeconds=None):




Then pass the number of seconds through to the engine so that it knows when to stop. At the end we need to return a value indicating whether or not it found a Pi approximation at least as good as the optimal value.



        best = genetic.get_best(fnGetFitness, length, optimalFitness,
                                geneset, fnDisplay, fnMutate, maxAge=250,
                                maxSeconds=maxSeconds)
        return optimalFitness <= best.Fitness






Optimization Run

Now run it and it does find a much better bit value sequence.


sample result

initial: [512, 256, 128, 64, 32, 16, 8, 4, 2, 1] 0
[45, 39, 289, 407, 23, 224, 280, 240, 412, 260] 0.0008
[45, 39, 289, 407, 71, 224, 280, 240, 412, 260] 3.0008
[45, 39, 289, 407, 71, 224, 45, 240, 412, 260]  5.001
[45, 26, 289, 407, 71, 224, 45, 240, 412, 260]  6.001
[45, 26, 289, 407, 71, 82, 45, 240, 412, 260]   8.0012
[45, 26, 289, 407, 70, 82, 45, 240, 412, 260]   14.0012






Verify the result

Now we can use the bit value sequence it found above to verify that we get a performance improvement.



    def test_benchmark(self):
        genetic.Benchmark.run(lambda: self.test([45, 26, 289, 407, 70,
                                                 82, 45, 240, 412, 260]))





sample output

100 0.29 0.39




That’s about 3 times better performance than we achieved by doubling the bit values. Nice!

If we allow the optimizer to run each round longer, say 4 seconds instead of 2, and run to completion it can find an even better result.


sample result

initial: [512, 256, 128, 64, 32, 16, 8, 4, 2, 1] 0
[37, 438, 95, 355, 430, 311, 309, 225, 264, 454]        0.0005
[37, 438, 95, 355, 56, 311, 196, 225, 280, 454] 0.0007
[37, 261, 95, 355, 56, 311, 196, 225, 280, 454] 0.0008
[37, 261, 95, 355, 56, 311, 196, 225, 280, 55]  0.0012
[37, 261, 95, 292, 56, 252, 190, 225, 280, 55]  0.0014
[37, 261, 95, 292, 56, 39, 190, 225, 280, 55]   0.002
[37, 261, 95, 292, 56, 39, 50, 225, 280, 55]    0.0027
[37, 261, 38, 292, 56, 39, 50, 225, 280, 55]    0.0032
[37, 261, 38, 292, 56, 39, 50, 225, 46, 55]     0.0132
[37, 261, 38, 292, 117, 39, 50, 225, 46, 55]    2.0073
[37, 334, 38, 292, 117, 39, 50, 225, 46, 55]    3.0048
[37, 334, 38, 292, 117, 39, 50, 225, 46, 124]   5.0036
[37, 334, 38, 292, 117, 39, 50, 225, 46, 129]   8.0035
[37, 334, 38, 133, 117, 39, 50, 225, 46, 129]   11.008
[37, 334, 38, 133, 117, 39, 50, 225, 262, 129]  14.0029
[37, 334, 38, 133, 117, 39, 87, 225, 262, 129]  15.0026
[37, 334, 38, 96, 117, 39, 87, 225, 262, 129]   17.0029
[37, 334, 38, 96, 117, 39, 145, 225, 262, 129]  26.0025
[37, 334, 38, 339, 117, 39, 145, 225, 262, 129] 30.0016
[98, 334, 38, 339, 117, 39, 145, 225, 262, 129] 32.0014
[98, 334, 38, 339, 117, 39, 145, 123, 262, 129] 33.0017
[98, 334, 38, 339, 117, 39, 145, 123, 40, 129]  40.0026





sample benchmark

100 0.09 0.10




Wow!




Summary

In this project we learned one way to use one genetic algorithm to optimize another, that the options we have for translating values in the genotype to phenotype values can significantly impact the performance of the genetic algorithm, and that it is important to give the algorithm multiple ways to use the genes to achieve the goal.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch13










EQUATION
 GENERATION







So far we’ve only used genes as data elements that are applied to an external problem. Our next project, equation generation, will introduce us to a new way of using genes called genetic programming. The essence of genetic programming is to overlay some kind of grammar on the genes, which may or may not include embedded data. These operation-genes can then be evaluated to produce a result.




Example

When using genetic programming it is important to understand the characteristics of both the embedded data, if any, and how we expect the operations to interact with each other and/or the environment. For example, let’s say we are asked to find some combination of the numbers 1 to 7 and addition and subtraction operations that, when evaluated, produces the numeric value 29. Stop here and think about how you would implement this.

There are many ways to solve this problem. For example: 7+7+7+7+7-6

We could simply use positive and negative integers between -7 and 7 because they essentially have the addition and subtraction operations built in, but we need to learn how to evaluate operations as independent genes, so we’ll make '+' and '-' separate tokens. That means the equation has 11 tokens or genes:



 7  +  7  +  7  +  7  +  7  -  6
 |  |  |  |  |  |  |  |  |  |  |
 1  2  3  4  5  6  7  8  9 10 11




When viewed this way we can easily see the pattern, or grammar, of alternating operations and numbers. This should be easy to enforce using an odd/even check when creating and mutating chromosomes.

Next, if we visualize the equation from the point of view of the operations:


[image: ch14.equation.generation.1.epub]



It is easy to see that each operation has 2 parameters because each acts upon 2 other genes which can be either a number or another operation.



Evaluate

The heart of a genetic programming algorithm is the function that performs evaluation. It knows how to treat the problem-specific gene sequence like a program. In this project it will apply the operation genes to the neighboring numbers, rolling up to get the final result.



def evaluate(genes):
    result = genes[0]
    for i in range(1, len(genes), 2):
        operation = genes[i]
        nextValue = genes[i + 1]
        if operation == '+':
            result += nextValue
        elif operation == '-':
            result -= nextValue
    return result




The function starts by initializing a result variable with the value of the first numeric gene. It then applies the operations, left to right, to the current result and the value-gene that follows the operation. The output of each operation is stored back in the result variable.



Test and genes

We’re ready to write the rest of the genetic algorithm according to the usual pattern, starting with the gene set.


equationGenerationTests.py

import unittest
import datetime
import genetic
import random

class EquationGenerationTests(unittest.TestCase):
    def test(self):
        numbers = [1, 2, 3, 4, 5, 6, 7]
        operations = ['+', '-']






Create

Now we can immediately see that we’ll need a custom gene-creation function, for two reasons. First, we don’t know how many symbols we’ll need to produce a particular result, and second, we need to alternate numbers and operations.



def create(numbers, operations, minNumbers, maxNumbers):
    genes = [random.choice(numbers)]
    count = random.randint(minNumbers, 1 + maxNumbers)
    while count > 1:
        count -= 1
        genes.append(random.choice(operations))
        genes.append(random.choice(numbers))
    return genes




This implementation prevents the creation of gene sequences that have multiple numbers or operations in a row, so we don’t have to detect that situation in the fitness function.



Mutate

We also need a custom mutation function that knows how to append an operation-number pair to the gene sequence,



def mutate(genes, numbers, operations, minNumbers, maxNumbers):
    numberCount = (1 + len(genes)) / 2
    adding = numberCount < maxNumbers and random.randint(0, 100) == 0
    if adding:
        genes.append(random.choice(operations))
        genes.append(random.choice(numbers))
        return




remove an operation-number pair,



    removing = numberCount > minNumbers and random.randint(0, 20) == 0
    if removing:
        index = random.randrange(0, len(genes) - 1)
        del genes[index]
        del genes[index]
        return




and mutate an operation or number.



    index = random.randrange(0, len(genes))
    genes[index] = random.choice(operations) \
        if (index & 1) == 1 else random.choice(numbers)




Here we use the parity of the index to determine whether we’re replacing a number or an operation.



Display

In the display function we can simply write the genes separated by a space to see the equation.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        (' '.join(map(str, [i for i in candidate.Genes]))),
        candidate.Fitness,
        timeDiff))





sample output

6 + 3 + 3 - 4 + 6 - 3 - 6 - 6 - 3 - 1 -5      0:00:00.001003






Fitness

That just leaves the fitness function where we’ll use the evaluation function to get the result of the equation, then compare it to the expected result. This time, instead of using a Fitness
 class we’ll use a 2-stage fitness function. The first stage tracks how far the result of evaluating the genes is from the expected total. If the result is correct then the second fitness range is used. This allows us to prefer shorter gene sequences, meaning equations with fewer operations.



def get_fitness(genes, expectedTotal):
    result = evaluate(genes)

    if result != expectedTotal:
        fitness = expectedTotal - abs(result - expectedTotal)
    else:
        fitness = 1000 - len(genes)

    return fitness






Test

The following full test harness should hold no surprises.



    def test(self):
        numbers = [1, 2, 3, 4, 5, 6, 7]
        operations = ['+', '-']
        expectedTotal = 29
        optimalLengthSolution = [7, '+', 7, '+', 7, '+', 7, '+', 7, '-', 6]
        minNumbers = (1 + len(optimalLengthSolution)) / 2
        maxNumbers = 6 * minNumbers
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime)

        def fnGetFitness(genes):
            return get_fitness(genes, expectedTotal)

        def fnCreate():
            return create(numbers, operations, minNumbers, maxNumbers)

        def fnMutate(child):
            mutate(child, numbers, operations, minNumbers, maxNumbers)

        optimalFitness = fnGetFitness(optimalLengthSolution)
        best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                                fnDisplay, fnMutate, fnCreate, maxAge=50)
        self.assertTrue(not optimalFitness > best.Fitness)






Run

When we run the test it finds an equivalent solution.


sample output

5 + 3 + 2 + 4 + 6 + 2 + 1     23      0:00:00
5 + 3 + 2 + 4 + 6 + 6 + 1       27      0:00:00
5 + 3 + 3 + 4 + 6 + 6 + 1       28      0:00:00
6 + 3 + 3 + 4 + 6 + 6 + 1       987     0:00:00
6 + 5 + 3 + 3 + 6 + 6   989     0:00:00.000998




Nice. But having to add 6 three times and 3 two times is boring. If we introduce a multiplication operation it might find 7 * 3 + 4 * 2, which saves an operation, or even 7 * 4 + 1, which saves two. Let’s try it.



Support multiplication

First we have to add the multiplication token (*) to the list of operation genes.



    def test(self):
...
        operations = ['+', '-', '*']




Next we have to implement multiplication in the evaluation function. The problem is that for the math to be correct we have to perform all multiplication operations before we perform any addition or subtraction. No problem, we can just group the operations by priority.



    def test(self):
...
        operations = ['+', '-', '*']
        prioritizedOperations = [['*'], ['+', '-']]
...
        def fnEvaluate(genes):
            return evaluate(genes, prioritizedOperations)




Then we’ll evaluate all operations in priority order rather than simultaneously, which means we’ll iterate over the array once for each priority group.



def evaluate(genes, prioritizedOperations):
    equation = genes[:]
    for operationSet in prioritizedOperations:
        iOffset = 0
        for i in range(1, len(equation), 2):
            i += iOffset
            opToken = equation[i]
            if opToken in operationSet:
                leftOperand = equation[i - 1]
                rightOperand = equation[i + 1]

                if opToken == '+':
                    leftOperand += rightOperand
                elif opToken == '-':
                    leftOperand -= rightOperand
                elif opToken == '*':
                    leftOperand *= rightOperand
                equation[i - 1] = leftOperand
                del equation[i + 1]
                del equation[i]
                iOffset -= 2
    return equation[0]




In the implementation above we make a copy of the genes so we can modify it each time through the loop. Each operation stores its output in the array location to its left then deletes itself and its second operand from the array. After all operations have been evaluated the result is in array index zero.

Since we changed the function to pass in the list of operations, we also need to change what we pass to the fitness function



def get_fitness(genes, expectedTotal, fnEvaluate):
    result = fnEvaluate(genes)
...




and update the function call in the test harness.



    def test(self):
...
        def fnGetFitness(genes):
            return get_fitness(genes, expectedTotal, fnEvaluate)





Run

This code finds a solution, but not a minimal length solution, because the defined optimal length solution in the test is based on addition and subtraction. So the engine stops as soon as it beats that solution.



...
4 - 3 * 3 - 7 * 2 + 7 + 6 + 5 * 7       983     0:00:00.103305
5 + 2 - 7 * 2 + 6 + 5 + 5 * 5   985     0:00:00.115337
5 - 4 - 3 + 6 + 5 + 4 * 5       987     0:00:00.124361
5 - 4 - 3 + 6 + 5 * 5   989     0:00:00.128372






Extract a solve function

To fix that we need to extract a solve function so we can pass in the list of operations with the optimal solution for that set of operations.



    def test_addition(self):
        operations = ['+', '-']
        prioritizedOperations = [['+', '-']]
        optimalLengthSolution = [7, '+', 7, '+', 7, '+', 7, '+', 7, '-', 6]
        self.solve(operations, prioritizedOperations, optimalLengthSolution)

    def solve(self, operations, prioritizedOperations,
              optimalLengthSolution):
        numbers = [1, 2, 3, 4, 5, 6, 7]
        expectedTotal = evaluate(optimalLengthSolution,
                                 prioritizedOperations)






Test multiplication

Now we can add a test for multiplication, and give it a more difficult equation to generate.



    def test_multiplication(self):
        operations = ['+', '-', '*']
        prioritizedOperations = [['*'], ['+', '-']]
        optimalLengthSolution = [6, '*', 3, '*', 3, '*', 6, '-', 7]
        self.solve(operations, prioritizedOperations, optimalLengthSolution)






Run 2

When we run that test it too can find an optimal length solution:


sample output

....
7 * 5 * 6 - 3 + 7 * 2 * 7 + 4 * 3       983     0:00:00.109255
7 * 7 * 7 - 4 * 4 - 6 - 5 + 1   985     0:00:00.141350
7 * 7 * 7 - 7 * 2 - 3 * 4       987     0:00:00.150363
5 * 7 * 7 + 6 * 2 * 6   989     0:00:00.158386
5 * 4 * 4 * 4 - 3       991     0:00:02.141662




Cool. When we review that solution, however, it too seems repetitive. It would be much nicer if we could reduce the equation to 5 * 43
 - 3. Let’s do that.




Refactoring

But first, have you noticed that each time we add a new operation we have to change the evaluation function? That’s an indication of a poor design that violates the Open-Closed Principal
 We can fix that by extracting the operation implementations to separate functions:



def add(a, b):
    return a + b

def subtract(a, b):
    return a - b

def multiply(a, b):
    return a * b




Then make the prioritized operation list contain dictionaries where each dictionary key is the token for an operation and the value is a function that implements the operation.



    def test_addition(self):
        operations = ['+', '-']
        prioritizedOperations = [{'+': add,
                                  '-': subtract}]
...






    def test_multiplication(self):
        operations = ['+', '-', '*']
        prioritizedOperations = [{'*': multiply},
                                 {'+': add,
                                  '-': subtract}]
...




Finally, use the operation function from the dictionary in the evaluation function.



def evaluate(genes, prioritizedOperations):
    equation = genes[:]
    for operationSet in prioritizedOperations:
        iOffset = 0
        for i in range(1, len(equation), 2):
            i += iOffset
            opToken = equation[i]
            if opToken in operationSet:
                leftOperand = equation[i - 1]
                rightOperand = equation[i + 1]
                equation[i - 1] = operationSet[opToken](leftOperand,
                                                        rightOperand)
                del equation[i + 1]
                del equation[i]
                iOffset += -2
    return equation[0]






Supporting Exponents

Now we can easily add support for a new operation, like exponentiation, without changing any other code:



    def test_exponent(self):
        operations = ['^', '+', '-', '*']
        prioritizedOperations = [{'^': lambda a, b: a ** b},
                                 {'*': multiply},
                                 {'+': add,
                                  '-': subtract}]
        optimalLengthSolution = [6, '^', 3, '*', 2, '-', 5]
        self.solve(operations, prioritizedOperations, optimalLengthSolution)





sample output

...
4 * 3 ^ 4 - 3 - 1 - 7 + 4 * 2 * 7 * 2 + 2       979     0:00:00.030079
4 * 3 ^ 4 - 2 - 7 + 4 * 2 * 7 * 2       983     0:00:00.035093
6 * 7 * 5 * 2 + 5 + 3 + 3 - 4   985     0:00:00.070215
6 * 6 * 6 * 2 + 1 - 6   989     0:00:00.083221
7 * 5 * 6 * 2 + 7       991     0:00:00.108286
6 ^ 3 * 2 - 5   993     0:00:13.129462






Improve performance

Since it is starting to take tens of seconds to find the solution, let’s add a loop to the mutation function so that it can make a random number of changes instead of just one.



def mutate(genes, numbers, operations, minNumbers, maxNumbers, fnGetFitness):
    count = random.randint(1, 10)
    initialFitness = fnGetFitness(genes)
    while count > 0:
        count -= 1
        if fnGetFitness(genes) > initialFitness:
            return ①


        numberCount = (1 + len(genes)) / 2
...






...
            genes.append(random.choice(numbers))
            continue ②



        removing = numberCount > minNumbers and random.randint(0, 20) == 0
...






...
            del genes[index]
            continue ③



        index = random.randrange(0, len(genes))
...




Now that we’re checking the fitness in the mutation function, we also need to pass in the ability to call the fitness function:



    def solve(self, operations, prioritizedOperations,
              optimalLengthSolution):
...
        def fnMutate(child):
            mutate(child, numbers, operations, minNumbers, maxNumbers,
                   fnGetFitness)
...





Run

As expected, it finds the solution much faster.


sample output

2 + 3 ^ 4 * 5 + 3 * 6 425     0:00:00.014006
3 + 3 ^ 4 * 5 + 3 * 6   426     0:00:00.016041
4 + 3 ^ 4 * 5 + 3 * 6   989     0:00:00.024067
6 * 2 * 5 * 7 + 7       991     0:00:00.067148
2 * 6 ^ 3 - 5   993     0:00:00.567508




Fantastic!




Benchmarks

We’ll benchmark this project with the exponent test.



    def test_benchmark(self):
        genetic.Benchmark.run(self.test_exponent)







Benchmark





	
average (seconds)


	
standard deviation





	
0.49


	
0.36













Summary

This project was our first introduction to genetic programming and it opened up several really interesting problems for exploration. We also learned one way to work with both data and operations in a gene sequence. This gave us experience with symbols and grammar and "program" evaluation.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch14










THE
 LAWNMOWER
 PROBLEM







In this project we’ll continue our exploration of genetic programming by solving John Koza’s Lawnmower Problem. It asks us to provide instructions to a lawnmower to make it cut a field of grass. To make it easier for the genetic algorithm to find a solution, the initial field is toroidal, this means it wraps in all directions. So, if the mower goes off the top it ends up at the bottom and vice versa and the same side-to-side. The problem statement is that the mower begins in the middle of an 8x8 toroidal field facing south (down) and it understands two instructions, mow
 and turn
 . What is the shortest series of instructions (program) needed to make it mow the entire field?




Part I - mow
 and turn


The mow
 instruction tells the mower to move forward one grid square in whatever direction it is facing then cut the grass in that location. The turn
 instruction tells the mower to turn left 90 degrees in place.

So that we can visually track the mower as it moves around the field, when it mows a field location we’ll replace the unmowed symbol (#) with the number of the step that mowed it, like this:



M^  #  #  #  #  #  #  #
11  #  #  #  #  #  #  #
10  #  #  #  #  #  #  #
 9  #  #  #  #  #  #  #
 8  #  #  #  #  #  #  #
 6  #  #  #  1  3  4  5
 #  #  #  #  #  #  #  #
 #  #  #  #  #  #  #  #







M
 is the mower, <
 >
 ^
 and v
 are used to indicate the direction the mower is facing: left, right, north or south, respectively. The gaps in the number sequence above are indicative of a turn
 instruction having been executed at steps 2 and 7.





Virtual mower infrastructure

We’ll put the code that is specific to the mower and its environment into a different file than the tests.

Let’s begin with the visual elements referenced above.


lawnmower.py

from enum import Enum

class FieldContents(Enum):
    Grass = ' #'
    Mowed = ' .'
    Mower = 'M'

    def __str__(self):
        return self.value




We need a way to indicate the direction the mower is facing,



class Directions(Enum):
    North = Direction(0, 0, -1, '^')
    East = Direction(1, 1, 0, '>')
    South = Direction(2, 0, 1, 'v')
    West = Direction(3, -1, 0, '<')




and a Direction
 object.



class Direction:
    def __init__(self, index, xOffset, yOffset, symbol):
        self.Index = index
        self.XOffset = xOffset
        self.YOffset = yOffset
        self.Symbol = symbol




We’ll define the Mower
 class next:



class Mower:
    def __init__(self, location, direction):
        self.Location = location
        self.Direction = direction
        self.StepCount = 0
...




When the Mower
 is told to turn left, it needs to find out the new direction it should be facing.



...
    def turn_left(self):
        self.StepCount += 1
        self.Direction = Directions\
            .get_direction_after_turn_left_90_degrees(self.Direction)




The Directions
 class can determine that using the direction the Mower
 is currently facing.



class Directions(Enum):
...
    @staticmethod
    def get_direction_after_turn_left_90_degrees(direction):
        newIndex = direction.Index - 1 \
            if direction.Index > 0 \
            else len(Directions) - 1
        newDirection = next(i for i in Directions
                            if i.value.Index == newIndex)
        return newDirection.value




When told to mow, the mower first asks the Direction
 object where it will end up if it moves forward from the current location. It then asks the field to translate that to a valid physical location. It also increments the move counter and updates the contents of the field in that location.



class Mower:
...
    def mow(self, field):
        newLocation = self.Direction.move_from(self.Location)
        self.Location = field.fix_location(newLocation)
        self.StepCount += 1
        field.set(self.Location, self.StepCount
            if self.StepCount > 9
            else " {}".format(self.StepCount))




That implies a move_from
 function on the Direction
 class:



class Direction:
...
    def move_from(self, location, distance=1):
        return Location(location.X + distance * self.XOffset,
                        location.Y + distance * self.YOffset)




Which, in turn, implies a Location
 class:



class Location:
    def __init__(self, x, y):
        self.X, self.Y = x, y




Next we need to define the field:



class Field:
    def __init__(self, width, height, initialContent):
        self.Field = [[initialContent] * width for _ in range(height)]
        self.Width = width
        self.Height = height
...




It knows how to change the contents of a particular grid location:



...
    def set(self, location, symbol):
        self.Field[location.Y][location.X] = symbol
...




It also knows how to convert a virtual location to a valid physical one. The field does not, however, know what it means to move in a particular direction from a location, so it asks the Location
 object for that, then adjusts it based on the expected virtual field behavior.



...
    def fix_location(self, location):
        newLocation = Location(location.X, location.Y)
        if newLocation.X < 0:
            newLocation.X += self.Width
        elif newLocation.X >= self.Width:
            newLocation.X %= self.Width

        if newLocation.Y < 0:
            newLocation.Y += self.Height
        elif newLocation.Y >= self.Height:
            newLocation.Y %= self.Height

        return newLocation




This implies a move
 function on the Location
 class:



class Location:
...
    def move(self, xOffset, yOffset):
        return Location(self.X + xOffset,
                        self.Y + yOffset)




We now have the basic parts we need to support the project described: a mower starting in the middle of an 8x8 toroidal field facing south, with the ability to turn left and/or mow in a straight line.



Test class

Now we can start on the test infrastructure. Our genes for this project will have behaviors, so we’ll use classes.


lawnmowerTests.py

class Mow:
    def __init__(self):
        pass

    @staticmethod
    def execute(mower, field):
        mower.mow(field)






class Turn:
    def __init__(self):
        pass

    @staticmethod
    def execute(mower, field):
        mower.turn_left()




Next we’ll define a Program
 class to drive gene-instruction execution.



class Program:
    def __init__(self, instructions):
        self.Main = instructions

    def evaluate(self, mower, field):
        for instruction in self.Main:
            instruction.execute(mower, field)






Create

Next, since we don’t know how many mow
 and turn
 instructions it will take for the Mower
 to mow the field
 , we need to define a custom gene creation function. It will generate a random sequence of instructions with length between the min and max given:



import random

def create(geneSet, minGenes, maxGenes):
    numGenes = random.randint(minGenes, maxGenes)
    genes = [random.choice(geneSet) for _ in range(1, numGenes)]
    return genes






Test

Here’s the start of the test harness.



import unittest
import datetime
import genetic
import lawnmower
...
class LawnmowerTests(unittest.TestCase):
    def test(self):
        geneSet = [Mow(), Turn()]
        width = height = 8
        mowerStartLocation = lawnmower.Location(int(width / 2),
                                                int(height / 2))
        mowerStartDirection = lawnmower.Directions.South.value


        def fnCreate():
            return create(geneSet, 1, height)






Evaluation

In order to determine how much of the field the gene-instructions cause to be mowed, the get_fitness
 function is going command a virtual Mower
 to execute the instructions on a virtual field
 . That implies an evaluation function that will also need to be accessible to the display function.



    def test(self):
...
        def fnEvaluate(instructions):
            program = Program(instructions)
            mower = lawnmower.Mower(mowerStartLocation, mowerStartDirection)
            field = lawnmower.Field(width, height,
                                    lawnmower.FieldContents.Grass)
            program.evaluate(mower, field)
            return field, mower, program






Fitness

Now we can pass the evaluate function to get_fitness




    def test(self):
...
        def fnGetFitness(genes):
            return get_fitness(genes, fnEvaluate)




and use it to determine how many squares get mowed.



def get_fitness(genes, fnEvaluate):
    field = fnEvaluate(genes)[0]
    return Fitness(field.count_mowed(), len(genes))




After mowing, we need to know how much of the field was mowed, so we ask the field
 :


lawnmower.py

class Field:
...
    def count_mowed(self):
        return sum(1 for row in range(self.Height)
                   for column in range(self.Width)
                   if self.Field[row][column] != FieldContents.Grass)




We don’t just want to mow the field, we want to do so using as few instructions as possible, so we use a Fitness
 class to manage those competing priorities.


lawnmowerTests.py

class Fitness:
    def __init__(self, totalMowed, totalInstructions):
        self.TotalMowed = totalMowed
        self.TotalInstructions = totalInstructions

    def __gt__(self, other):
        if self.TotalMowed != other.TotalMowed:
            return self.TotalMowed > other.TotalMowed
        return self.TotalInstructions < other.TotalInstructions






Display

Now that we can determine the fitness of a gene sequence, we’d like a way to display the state of the field
 after the gene instructions have been executed.



    def test(self):
...
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime, fnEvaluate)




We ask the field
 to display its contents, including the location of the Mower
 . Then we print the fitness, time elapsed, and program instructions.



def display(candidate, startTime, fnEvaluate):
    field, mower, program = fnEvaluate(candidate.Genes)
    timeDiff = datetime.datetime.now() - startTime
    field.display(mower)
    print("{}\t{}".format(
        candidate.Fitness,
        timeDiff))
    program.print()




When asked to print its contents, the field
 loops through the array and writes the contents.


lawnmower.py

class Field:
...
    def display(self, mower):
        for rowIndex in range(self.Height):
            if rowIndex != mower.Location.Y:
                row = ' '.join(map(str, self.Field[rowIndex]))
            else:
                r = self.Field[rowIndex][:]
                r[mower.Location.X] = "{}{}".format(
                    FieldContents.Mower, mower.Direction.Symbol)
                row = ' '.join(map(str, r))
            print(row)




The instructions also need a 
str

 implementation so that the display function can print the gene contents.


lawnmowerTests.py

class Mow:
...
    def __str__(self):
        return "mow"






class Turn:
...
    def __str__(self):
        return "turn"




The display function asks Fitness
 to stringify itself:



class Fitness:
...
    def __str__(self):
        return "{} mowed with {} instructions".format(
            self.TotalMowed, self.TotalInstructions)




and asks the Program
 to print itself:


lawnmowerTests.py

class Program:
...
    def print(self):
        print(' '.join(map(str, self.Main)))






Mutate

Since we don’t know how many instructions will be required to mow the field, we also need a custom mutation function that tries to add, remove, and change instructions.


lawnmowerTests.py

def mutate(genes, geneSet, minGenes, maxGenes, fnGetFitness, maxRounds):
    count = random.randint(1, maxRounds)
    initialFitness = fnGetFitness(genes)
    while count > 0:
        count -= 1
        if fnGetFitness(genes) > initialFitness:
            return
        adding = len(genes) == 0 or \
                 (len(genes) < maxGenes and random.randint(0, 5) == 0)
        if adding:
            genes.append(random.choice(geneSet))
            continue

        removing = len(genes) > minGenes and random.randint(0, 50) == 0
        if removing:
            index = random.randrange(0, len(genes))
            del genes[index]
            continue

        index = random.randrange(0, len(genes))
        genes[index] = random.choice(geneSet)




Next we need to define a glue function in the test so we can provide the additional required parameters.

Since mow
 can only affect one field position at a time, we can set a lower bound on the number of instructions required to mow the entire field. We’ll set the maximum number of instructions to 1.5 times that value.



    def test(self):
...
        minGenes = width * height
        maxGenes = int(1.5 * minGenes)
        maxMutationRounds = 3

        def fnMutate(child):
            mutate(child, geneSet, minGenes, maxGenes, fnGetFitness,
                   maxMutationRounds)






Optimal fitness

To determine the optimal fitness, we need to figure out how many turn
 instructions would be required. Since the field is toroidal, for calculation purposes we can shift the start location to the southwest corner, pointed south, without affecting the calculations.



.  .  .  .  .  .  .  .
.  .  .  .  .  .  .  .
.  .  .  .  .  .  .  .
.  .  .  .  .  .  .  .
.  .  .  .  .  .  .  .
.  .  .  .  .  .  .  .
.  .  .  .  .  .  .  .
Mv .  .  .  .  .  .  .




In an optimal solution the mower will only turn when it encounters a square that has already been mowed, so that it doesn’t waste an instruction. This results in a spiral mowing pattern.



1 28 27 26 25 24 23 22
2 29 48 47 46 45 44 21
3 30 49 60 59 58 43 20
4 31 50 61 64 57 42 19
5 32 51 62 63 56 41 18
6 33 52 53 54 55 40 17
7 34 35 36 37 38 39 16
8* 9 10 11 12 13 14 15    * starting location




From this we can determine that the optimal gene sequence will have 1 mow
 for each square of the field plus width + height - 2 turn
 instructions, or 78 total instructions.



    def test(self):
...
        expectedNumberOfInstructions = 78
        optimalFitness = Fitness(width * height,
                                 expectedNumberOfInstructions)






Crossover

We’re also going to apply crossover to this problem.



def crossover(parent, otherParent):
    childGenes = parent[:]
    if len(parent) <= 2 or len(otherParent) < 2:
        return childGenes
    length = random.randint(1, len(parent) - 2)
    start = random.randrange(0, len(parent) - length)
    childGenes[start:start + length] = otherParent[start:start + length]
    return childGenes




This implementation overwrites a random contiguous sequence of genes in the child with those from the donor parent.



Test

Lastly we need to call the engine from the test.



    def test(self):
...
        best = genetic.get_best(fnGetFitness, None, optimalFitness, None,
                                fnDisplay, fnMutate, fnCreate, poolSize=10,
                                crossover=crossover)
        self.assertTrue(not optimalFitness > best.Fitness)






Run

With all the necessary pieces defined we’re ready to run the test. As expected, the result is an inward spiral:



M^ 67 48 21  4 35 58 73
76 66 47 20  5 36 59 74
63 64 46 19  6 37 60 62
42 43 44 18  7 38 40 41
13 14 15 16  8 10 11 12
28 27 26 24  1 31 30 29
53 52 50 23  2 33 55 54
70 68 49 22  3 34 57 71
64 mowed with 78 instructions   0:00:09.541468
mow mow mow mow mow mow mow mow turn mow mow mow mow mow mow mow turn mow mow mow mow mow mow mow turn mow mow mow mow mow mow turn mow mow mow mow mow mow turn mow mow mow mow mow turn mow mow mow mow mow turn mow mow mow mow turn mow mow mow mow turn mow mow mow turn mow mow mow turn mow mow turn mow mow turn mow turn mow




Unfortunately, with the current instruction set that is the only result we can
 get.




Part II - Jump

To make the project more interesting we’re going to add a new instruction. Following John Koza’s problem definition again, the new instruction is jump
 . It causes the mower to jump forward and to the right a specified number of squares and cut the grass in the square where it lands. jump
 will have 2 non-negative integer parameters for how far to move forward and right, respectively.

For example, if the mower is facing south at the start location (4,4)



 .  .  .  .  .  .  .  .
 .  .  .  .  .  .  .  .
 .  .  .  .  .  .  .  .
 .  .  .  .  .  .  .  .
 .  .  .  .  Mv .  .  .
 .  .  .  .  .  .  .  .
 .  .  .  .  .  .  .  .
 .  .  .  .  .  .  .  .




and is told to jump (2,3) it will end up at (1,6) (numbered from the top left), still facing south.



 .  .  .  .  .  .  .  .
 .  .  .  .  .  .  .  .
 .  .  .  .  .  .  .  .
 .  .  .  .  .  .  .  .
 .  .  .  .  .* .  .  .   * - previous location
 .  .  .  .  .  .  .  .
 .  Mv .  .  .  .  .  .
 .  .  .  .  .  .  .  .





Implementation

To implement this we’ll start with adding a jump
 instruction. The forward and right distances will be random values supplied to the constructor and limited by the size of the field.



class Jump:
    def __init__(self, forward, right):
        self.Forward = forward
        self.Right = right




It will also need an execution function to do the work.



    def execute(self, mower, field):
        mower.jump(field, self.Forward, self.Right)




and 
str

 for the display function to use:



    def __str__(self):
        return "jump({},{})".format(self.Forward, self.Right)






Update the mower

The implementation of jump
 in the Mower
 is interesting because forward
 and right
 result in different x and y offsets depending on the direction the Mower
 is facing.


lawnmower.py

class Mower:
...
    def jump(self, field, forward, right):
        newForwardLocation = self.Direction.move_from(self.Location,
                                                      forward)
        rightDirection = Directions\
            .get_direction_after_turn_right_90_degrees(self.Direction)
        newLocation = rightDirection.move_from(newForwardLocation, right)
        self.Location = field.fix_location(newLocation)
        self.StepCount += 1
        field.set(self.Location, self.StepCount
        if self.StepCount > 9
        else " {}".format(self.StepCount))




This requires a new function on the Directions
 class:



class Directions(Enum):
...
    @staticmethod
    def get_direction_after_turn_right_90_degrees(direction):
        newIndex = direction.Index + 1 \
            if direction.Index < len(Directions) - 1 \
            else 0
        newDirection = next(i for i in Directions
                            if i.value.Index == newIndex)
        return newDirection.value






Use lambdas to create genes


jump
 requires parameters and the parameters should be random, so we can’t simply create one and put it in our instructions list anymore. This means we must convert the list of instructions to a list of lambda-that-returns-an-instruction.

Before we do that, we need to extract some of the variable configuration values from the test so that we can have one test that continues to use only mow
 and turn
 while adding a new test that uses those and adds jump
 .


lawnmowerTests.py

    def test_mow_turn(self):
        width = height = 8
        geneSet = [lambda: Mow(),
                   lambda: Turn()]
        minGenes = width * height
        maxGenes = int(1.5 * minGenes)
        maxMutationRounds = 3
        expectedNumberOfInstructions = 78
        self.run_with(geneSet, width, height, minGenes, maxGenes,
                      expectedNumberOfInstructions, maxMutationRounds)






    def run_with(self, geneSet, width, height, minGenes, maxGenes,
                 expectedNumberOfInstructions, maxMutationRounds):
        mowerStartLocation = lawnmower.Location(int(width / 2),
                                                int(height / 2))
        mowerStartDirection = lawnmower.Directions.South.value

...




Also remove the definitions of minimum and maximum genes values, and the expected number of instructions from the helper function since they are now parameters.

Now we can add the new test function with jump
 included in the gene set.



    def test_mow_turn_jump(self):
        width = height = 8
        geneSet = [lambda: Mow(),
                   lambda: Turn(),
                   lambda: Jump(random.randint(0, min(width, height)),
                                random.randint(0, min(width, height)))]
        minGenes = width * height
        maxGenes = int(1.5 * minGenes)
        maxMutationRounds = 1
        expectedNumberOfInstructions = 64
        self.run_with(geneSet, width, height, minGenes, maxGenes,
                      expectedNumberOfInstructions, maxMutationRounds)




Note that the expected number of instructions has been reduced to 64. This is because jump
 also causes a mow
 to occur and it has the ability to jump anywhere in the field, so it should be possible to reach to every location using only jump
 instructions, thus 64 instructions for an 8 by 8 field.

Also, since the gene set now contains lambdas, we need to execute them wherever we were simply using the value before:



def create(geneSet, minGenes, maxGenes):
    numGenes = random.randint(minGenes, maxGenes)
    genes = [random.choice(geneSet)() for _ in range(1, numGenes)]
    return genes




and in the add
 and change
 sections of the mutation function:



def mutate(genes, geneSet, minGenes, maxGenes, fnGetFitness, maxRounds):
...
        if adding:
            genes.append(random.choice(geneSet)())
            continue
...
        index = random.randrange(0, len(genes))
        genes[index] = random.choice(geneSet)()






Run

When we run the new test we get a result like the following:


sample output

51 36 45 31  4 Mv  9 19
52 37 46 32  5 58 10 20
13 38 47 33  6 59 11 21
14 39 48 34 61 60 12 22
15 40 49 35 62 27 54 23
16 41 56 63  1 28 55 24
53 42 57 29  2 25  7 17
50 43 44 30  3 26  8 18
64 mowed with 64 instructions   0:00:19.720286
mow mow mow mow mow mow jump(4,6) mow mow mow jump(1,0) mow jump(7,6) mow mow mow jump(1,1) mow mow mow mow mow mow mow jump(1,2) mow jump(5,0) mow jump(1,2) mow mow mow mow mow mow jump(4,2) mow mow mow mow mow mow mow jump(8,7) mow mow mow mow mow jump(3,2) mow mow jump(5,8) jump(6,2) mow jump(8,4) mow jump(3,5) mow mow jump(8,1) mow jump(1,1) jump(3,6)




Above, we see that the genetic algorithm has completely abandoned the turn
 instruction in favor of the more powerful jump
 instruction because this results in a shorter program. However, that’s only true on a toroidal field.




Try a validating field

What if we were to use a field that did not let the mower go beyond the edge? It would have to check the legality of the move before making it. We implement that by defining a validating field class that inherits from the current Field
 class.


lawnmower.py

class ValidatingField(Field):
    def __init__(self, width, height, initialContent):
        super().__init__(width, height, initialContent)
...




The function it uses to fix the location will check to see if the given location is outside the bounds of the field array. If so, it will return False
 indicating that the move is invalid, otherwise True
 , along with the location.



    def fix_location(self, location):
        if location.X >= self.Width or \
                        location.X < 0 or \
                        location.Y >= self.Height or \
                        location.Y < 0:
            return None, False
        return location, True




This requires a similar change in the toroidal field. First we need to define the toroidal field class to hold the function implementation specific to that kind of field and make it inherit from the Field
 class too.


lawnmower.py

class ToroidField(Field):
    def __init__(self, width, height, initialContent):
        super().__init__(width, height, initialContent)
...




Then we’ll move the original location correction function from Field
 to it. That function always returns True
 because moves on a toroidal field wrap around the edges of the field.



    def fix_location(self, location):
        newLocation = Location(location.X, location.Y)
...
        return newLocation, True




Then in the mower we have to check the Boolean value that was returned before updating its location.



class Mower:
...
    def mow(self, field):
        newLocation = self.Direction.move_from(self.Location)
        newLocation, isValid = field.fix_location(newLocation)
        if isValid: ①


            self.Location = newLocation
            self.StepCount += 1
            field.set(self.Location, self.StepCount
            if self.StepCount > 9
            else " {}".format(self.StepCount))






    def jump(self, field, forward, right):
        newLocation = self.Direction.move_from(self.Location, forward)
        rightDirection = Directions\
            .get_direction_after_turn_right_90_degrees(self.Direction)
        newLocation = rightDirection.move_from(newLocation, right)
        newLocation, isValid = field.fix_location(newLocation)
        if isValid: ②


            self.Location = newLocation
            self.StepCount += 1
            field.set(self.Location, self.StepCount
            if self.StepCount > 9
            else " {}".format(self.StepCount))




Next we need to update the tests. Because each is going to use a different field type we’ll define a function that creates the field, then pass it to the helper function.


lawnmowerTests.py

    def test_mow_turn(self):
...
        def fnCreateField():
            return lawnmower.ToroidField(width, height,
                                         lawnmower.FieldContents.Grass)

        self.run_with(geneSet, width, height, minGenes, maxGenes,
                      expectedNumberOfInstructions, maxMutationRounds,
                      fnCreateField)






    def test_mow_turn_jump(self):
...
        def fnCreateField():
            return lawnmower.ToroidField(width, height,
                                         lawnmower.FieldContents.Grass)

        self.run_with(geneSet, width, height, minGenes, maxGenes,
                      expectedNumberOfInstructions, maxMutationRounds,
                      fnCreateField)




Now add the function to be executed to the helper function’s parameters and use it.



    def run_with(self, geneSet, width, height, minGenes, maxGenes,
                 expectedNumberOfInstructions, maxMutationRounds,
                 fnCreateField):
...
        def fnEvaluate(instructions):
            program = Program(instructions)
            mower = lawnmower.Mower(mowerStartLocation, mowerStartDirection)
            field = fnCreateField()
            program.evaluate(mower, field)
            return field, mower, program




Using a validating field makes the jump
 test significantly more complex because once the mower moves to the right the only way to get back to the unmowed squares on the left side is to turn
 . The best solution that includes a jump
 would be for the Mower
 to jump to the southwest corner, turn, and then do a spiral. That would take 1 extra move at the beginning to set up the spiral, so 79 instructions.

Make a copy of the test then change it to use a validating field and to expect 79 instructions.



    def test_mow_turn_jump_validating(self):
...
        expectedNumberOfInstructions = 79


        def fnCreateField():
            return lawnmower.ValidatingField(width, height,
                                             lawnmower.FieldContents.Grass)
...





Run

When we run the test with a validating field it always hits a local maximum.



#  #  #  #  #  # 18 M^
#  #  #  # 16  # 17  #
#  #  # 14 15  #  #  #
#  #  # 13  #  #  #  #
1  #  # 12  #  #  #  #
2  #  # 11  #  #  #  #
3  5  6 10  #  #  #  #
#  #  7  9  #  #  #  #
17 mowed with 19 instructions   0:00:06.782601
jump(0,4) mow mow turn mow mow jump(0,1) turn jump(0,1) mow mow mow mow mow jump(0,1) mow jump(0,2) mow jump(0,1)




We can work around that by increasing the maximum number of mutation rounds.



    def test_mow_turn_jump_validating(self):
...
        maxMutationRounds = 3
...






Run 2

With that change it can
 find the optimal solution but it can take several minutes to do so. It still uses all 3 instructions but jump
 no longer dominates.



27 26 25 24 23 22 21 19
29 52 51 50 49 48 46 18
30 54 66 65 64 62 45 17
31 55 57 58 59 61 44 16
32 34 35 36 37 38 43 15
 1 M< 78 77 76 74 42 14
 2 68 70 71 72 39 40 13
 3  5  6  7  8  9 10 11
64 mowed with 79 instructions   0:04:21.840003
jump(1,4) mow mow turn mow mow mow mow mow mow mow turn mow mow mow mow mow mow mow turn mow mow mow mow mow mow mow turn mow mow mow mow turn mow mow mow mow mow jump(0,2) mow turn mow mow mow mow mow turn mow mow mow mow mow turn mow mow turn mow mow mow turn jump(0,1) mow turn mow mow mow turn jump(4,1) turn mow mow mow turn jump(1,1) turn mow mow mow mow




This would run much faster if the mutation function was engineered to select only from jump
 or mow
 destinations that are unmowed, and otherwise turn
 and try again. But that optimization is about to become completely unnecessary because we’re now in a position to explore Koza’s purpose for this project.

As interesting as the solutions have been so far, the sequence of instructions generated by the engine is completely different from the solution a human would use. Think about how you’d instruct a person to mow a field when they have never mowed. You wouldn’t give them detailed instructions for every step, right? You’d break it down into a set of repeatable sequences. In a toroidal field you might simply say, mow in a straight line until you encounter an area that has already been mowed, then turn left and do it again, repeat until you’ve mowed the whole field.

In a non-toroidal field you might say something like: start at the corner of the field and mow a strip along the edge of the field all the way to the other side.



#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
.  .  .  .  .  .  .  M>




Then turn the mower back the other direction and mow the strip right next to the one you just completed until you get back to where you started.



#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
#  #  #  #  #  #  #  #
M< .  .  .  .  .  .  .
.  .  .  .  .  .  .  .




Turn around again and repeat the process on the next unmowed strip until you’ve mowed the whole field.

See how we automatically combine squares into strips and trips across-and-back into a repeatable pattern. How do we do that with the unmanned mower?

The best result we’ve generated so far requires 64 jump
 and mow
 instructions, one for each grid square, to tell the mower how to cut the grass in the field. Can you imagine having to poke those in via a dip-switch interface on the mower? I’d probably make an error part way through and have to start over. It would be much nicer to enter a short sequence of instructions like those we’d give a human. To do that we have to introduce the ability to repeat a sequence of instructions.




Part III - Repeat

The next instruction we’re going to add is repeat
 . Like jump
 it will have 2 non-negative integer parameters. The first indicates how many of the instructions that follow it in the gene sequence are to be repeated, and the second tells how many times to repeat them.



class Repeat:
    def __init__(self, opCount, times):
        self.OpCount = opCount
        self.Times = times
        self.Ops = []




A variable will contain the instructions to be repeated. When the execution function is called it will execute that list of instructions the number of times requested.



    def execute(self, mower, field):
        for i in range(self.Times):
            for op in self.Ops:
                op.execute(mower, field)




Lastly, we need to provide a textual representation for the display function to use. If the operations property is populated we’ll combine the instructions' string representations into a string and return it, otherwise we’ll use the step counter.



    def __str__(self):
        return "repeat({},{})".format(
            ' '.join(map(str, self.Ops))
            if len(self.Ops) > 0
            else self.OpCount,
            self.Times)





Update Program


The constructor will provide the instructions that the repeat
 instruction is going to repeat.



class Program:
    def __init__(self, instructions):
        temp = instructions[:]
        for index in reversed(range(len(temp))):
            if type(temp[index]) is Repeat:
                start = index + 1
                end = min(index + temp[index].OpCount + 1, len(temp))
                temp[index].Ops = temp[start:end]
                del temp[start:end]
        self.Main = temp






Test

Finally, we need a new test, so we’ll clone the one we just created then update the code to create a repeat
 instruction and use different min, max, and expected number of instructions, as follows:



    def test_mow_turn_repeat(self):
...
        geneSet = [lambda: Mow(),
                   lambda: Turn(),
                   lambda: Repeat(random.randint(0, 8),
                                  random.randint(0, 8))]
        minGenes = 3
        maxGenes = 20
        maxMutationRounds = 3
        expectedNumberOfInstructions = 6
...






Run

When we run that test we witness the power of repetition:



193 167 75 76 77 189 191 192
142 166 139 27 26 50 159 143
163 164 138 46 47 48 160 162
114 113 137 110 230 229 228 226
133 134 135 109 Mv 18 19 225
197 85 84 108 217 201 200 224
196 104 105 106 218 220 221 222
195 168 56 55 79 188 172 171
64 mowed with 7 instructions    0:00:02.690764
repeat(turn repeat(mow mow turn mow,7),8)




Wow! We can mow the field with only 7 instructions! However, there are a couple of issues to be resolved. The output of the display function is now messy because the step count has gone to 3 digits. It has never been that high before. Also, occasionally the engine builds a very deep set of repeats that causes a RecursionError
 to be thrown. When that happens we can simply catch the error and move on, trusting the genetic engine to eliminate that gene sequence.



    def run_with(self, geneSet, width, height, minGenes, maxGenes,
                 expectedNumberOfInstructions, maxMutationRounds,
                 fnCreateField):
...
        def fnEvaluate(instructions):
            program = Program(instructions)
            mower = Mower(mowerStartLocation, mowerStartDirection)
            field = fnCreateField()
            try:
                program.evaluate(mower, field)
            except RecursionError:
                pass
            return field, mower, program
...







Optimizing for fuel efficiency

Another issue is fuel efficiency. If the Mower
 used fuel for each step, the set of instructions above would cost us almost 4 times as much as the hard coded but optimal solution. To fix this we’re going to change the Fitness
 class to prefer fewer steps to fewer instructions.

Start by adding the step count to the Fitness
 class.



class Fitness:
    def __init__(self, totalMowed, totalInstructions, stepCount):
        self.TotalMowed = totalMowed
        self.TotalInstructions = totalInstructions
        self.StepCount = stepCount




Then update its comparison function



    def __gt__(self, other):
        if self.TotalMowed != other.TotalMowed:
            return self.TotalMowed > other.TotalMowed
        if self.StepCount != other.StepCount:
            return self.StepCount < other.StepCount
        return self.TotalInstructions < other.TotalInstructions




and add the step count to the data that gets displayed.



    def __str__(self):
        return "{} mowed with {} instructions and {} steps".format(
            self.TotalMowed, self.TotalInstructions, self.StepCount)




Next we need to provide the value when we create the Fitness
 object in get_fitness
 ,



...
def get_fitness(genes, fnEvaluate):
    field, mower, _ = fnEvaluate(genes)
    return Fitness(field.count_mowed(), len(genes), mower.StepCount)




and when we create the optimal fitness value in the helper function.



    def run_with(self, geneSet, width, height, minGenes, maxGenes,
                 expectedNumberOfInstructions, maxMutationRounds,
                 fnCreateField, expectedNumberOfSteps):
...
        optimalFitness = Fitness(width * height,
                                 expectedNumberOfInstructions,
                                 expectedNumberOfSteps)




That requires compensating changes in the tests to send the new parameter:



    def test_mow_turn(self):
...
        self.run_with(geneSet, width, height, minGenes, maxGenes,
                      expectedNumberOfInstructions, maxMutationRounds,
                      fnCreateField, expectedNumberOfInstructions)






    def test_mow_turn_jump(self):
...
        self.run_with(geneSet, width, height, minGenes, maxGenes,
                      expectedNumberOfInstructions, maxMutationRounds,
                      fnCreateField, expectedNumberOfInstructions)






    def test_mow_turn_jump_validating(self):
...
        expectedNumberOfInstructions = 79

        self.run_with(geneSet, width, height, minGenes, maxGenes,
                      expectedNumberOfInstructions, maxMutationRounds,
                      fnCreateField, expectedNumberOfInstructions)






    def test_mow_turn_repeat(self):
...
        expectedNumberOfInstructions = 9
        expectedNumberOfSteps = 88

...
        self.run_with(geneSet, width, height, minGenes, maxGenes,
                      expectedNumberOfInstructions, maxMutationRounds,
                      fnCreateField, expectedNumberOfSteps)





Run

Now when we run the test it takes longer but produces a more fuel efficient yet still quite short set of instructions.



59 58 57 55 63 62 61 60
50 51 52 53 65 47 48 49
81 80 79 77 85 84 83 82
72 73 74 75 87 69 70 71
15 14 13 11 Mv 18 17 16
 6  7  8  9 21  3  4  5
37 36 35 33 41 40 39 38
28 29 30 31 43 25 26 27
64 mowed with 9 instructions and 88 steps       0:18:21.102552
repeat(repeat(mow turn repeat(mow,7) turn,2) mow mow,4)




Not bad.




Part IV - Automatically defined functions

We’ve seen how powerful repeat
 is but it is a special case of grouping instructions together for reuse. What if we were to let the engine build its own function instead? This is a commonly used strategy and such functions are referred to as automatically defined functions or ADFs. ADFs are like repeat
 in that when called they execute a set of instructions randomly put there by the algorithm, but they are different in that they only execute the instructions once for each time the function is called.


The Func
 instruction

To support ADFs we’ll introduce a Func
 instruction. It is similar to repeat
 in that it performs some number of instructions but instead of claiming a specific number of instructions that follow it, it simply marks the start of the ADF.



class Func:
    def __init__(self):
        self.Ops = []

    def execute(self, mower, field):
        for op in self.Ops:
            op.execute(mower, field)

    def __str__(self):
        return "func: {}".format(' '.join(map(str, self.Ops))) \
            if len(self.Ops) > 0 else "call-func"




The Func
 instruction will take ownership of all instructions that come after it in the gene sequence. We’re only going to do that for the first Func
 instruction we encounter:



class Program:
    Func = None
    Main = None

    def __init__(self, instructions):
        temp = instructions[:]
        func = None
...
                del temp[start:end]
                continue

            if type(temp[index]) is Func:
                if func is not None:
                    temp[index].Ops = []
                    continue
                start = index + 1
                end = len(temp)
                temp[index].Ops = [i for i in temp[start:end]
                                   if type(i) is not Repeat or
                                   type(i) is Repeat and len(i.Ops) > 0
                                   ]
                func = temp[index]
                del temp[index:end]
        self.Main = temp
        self.Func = func




At the end of the constructor we store the function’s instructions separate from those of the main program so we can easily access them.

Next, if we encounter a Func
 instruction in the evaluation function we call the execution function on the one we set aside.



    def evaluate(self, mower, field):
        for i, instruction in enumerate(self.Main):
            if type(instruction) is Func:
                self.Func.execute(mower, field)
                continue

            instruction.execute(mower, field)




Also add the Func
 instructions to what gets displayed when the program is asked to display itself.



    def print(self):
        if self.Func is not None:
            print(self.Func)
        print(' '.join(map(str, self.Main)))




Finally, we need a test. So, we’ll duplicate the test we added for the repeat
 instruction. Then create a Func
 instead of a repeat
 instruction when building its gene set.



    def test_mow_turn_jump_func(self):
...
        geneSet = [lambda: Mow(),
                   lambda: Turn(),
                   lambda: Jump(random.randint(0, min(width, height)),
                                random.randint(0, min(width, height))),
                   lambda: Func()]
...




We also have to increase the expected number of instructions because Func
 isn’t quite as powerful as repeat
 .



...
        expectedNumberOfInstructions = 18
        expectedNumberOfSteps = 65
...






Run

It runs much faster than the repeat
 version and still produces a reasonably short program like the following.


sample result

36 46 48 58  4 14 16 26
37 47 49 59  5 15 17 27
38 40 50 60  6  8 18 28
39 41 51 61  7  9 19 29
32 42 52 62 M> 10 20 30
33 43 53 63  1 11 21 31
34 44 54 56  2 12 22 24
35 45 55 57  3 13 23 25
64 mowed with 18 instructions and 65 steps      0:00:04.805489
func: mow mow mow mow mow mow mow jump(7,7)
call-func call-func call-func call-func call-func call-func call-func call-func turn







Multiple ADFs

One limitation of our current method of building the automatically defined function is that we can only have one ADF. Studying the generated main function above, we can see where we could shorten the program if we had a second function whose instructions were:



mow mow mow




or even:



call-func call-func call-func call-func




To support this capability we need to add an explicit call
 instruction that has the id (index) of the Func
 it should call as a parameter.



class Call:
    def __init__(self, funcId=None):
        self.FuncId = funcId
        self.Funcs = None




We also need to add an Id
 attribute to Func
 and, in order to keep the previous test working, we need to add a parameter to its constructor.



class Func:
    def __init__(self, expectCall=False):
        self.Ops = []
        self.ExpectCall = expectCall
        self.Id = None
...




We’ll also use the presence of an Id
 to tell whether the gene set includes a call
 instruction and change the str
 output accordingly:



class Func:
...
    def __str__(self):
        return "func{1}: {0}".format(
            ' '.join(map(str, self.Ops)),
            self.Id if self.Id is not None else '')




Next, we have to update the Program
 class to support call
 and multiple functions. We’ll start by renaming its Func
 attribute to Funcs
 and initialize it to an empty array:



class Program:
    def __init__(self, genes):
        temp = genes[:]
        funcs = []
...




Then in the loop, when we encounter a call
 instruction, we need to give it a reference to the array of functions.



...
        for index in reversed(range(len(temp))):
...
            if type(temp[index]) is Call:
                temp[index].Funcs = funcs
            if type(temp[index]) is Func:
...




And for backwards compatibility when we find an Nth Func
 instruction when the gene set does not contain a call
 instruction, we’re going to convert it to a call
 .



...
            if type(temp[index]) is Func:
                if len(funcs) > 0 and not temp[index].ExpectCall:
                    temp[index] = Call()
                    temp[index].Funcs = funcs
                    continue
...




Otherwise, if we’re expecting call
 instructions, we’ll assign it an id (for display purposes)



...
                end = len(temp)
                func = Func()
                if temp[index].ExpectCall:
                    func.Id = len(funcs)
                func.Ops = [i for i in temp[start:end]
...




and add it to the function array after populating its operations attribute.



...
                funcs.append(func)
                del temp[index:end]
...




After processing all instructions, we’re going to do some cleanup of the function contents, removing any call
 instructions that reference a function index that doesn’t exist and any Func
 that has an empty list of instructions to execute.



...
                del temp[index:end]

        for func in funcs:
            for index in reversed(range(len(func.Ops))):
                if type(func.Ops[index]) is Call and \
                                func.Ops[index].FuncId is not None:
                    if func.Ops[index].FuncId >= len(funcs) or \
                       len(funcs[func.Ops[index].FuncId].Ops) == 0:
                        del func.Ops[index]
...




Then we’ll perform that same optimization on call
 instructions in the main program before assigning the functions and main to their respective attributes.



...
                        del func.Ops[index]

        for index in reversed(range(len(temp))):
            if type(temp[index]) is Call and temp[index].FuncId is not None:
                if temp[index].FuncId >= len(funcs) or \
                   len(funcs[temp[index].FuncId].Ops) == 0:
                    del temp[index]
...
        self.Main = temp
        self.Funcs = funcs




We can now move the call
 specific code from the evaluation function



    def evaluate(self, mower, field):
        for i, instruction in enumerate(self.Main):
            instruction.execute(mower, field)




into call
 and update it to call the appropriate function, again with backward compatibility.



class Call:
...
    def execute(self, mower, field):
        funcId = 0 if self.FuncId is None else self.FuncId
        if len(self.Funcs) > funcId:
            self.Funcs[funcId].execute(mower, field)




The final change to the Program
 class is to handle multiple functions when print
 is called.



    def print(self):
        if self.Funcs is not None:
            for func in self.Funcs:
                if func.Id is not None and len(func.Ops) == 0:
                    continue
                print(func)
        print(' '.join(map(str, self.Main)))




We also need to support 
str

 in call
 for display purposes.



class Call:
...
    def __str__(self):
        return "call-{}".format(
            self.FuncId
            if self.FuncId is not None
            else 'func')




Lastly, for a test we can make a copy of the jump test then add call
 and update the Func
 constructor.



    def test_mow_turn_jump_call(self):
...
        geneSet = [lambda: Mow(),
                   lambda: Turn(),
                   lambda: Jump(random.randint(0, min(width, height)),
                                random.randint(0, min(width, height))),
                   lambda: Func(expectCall=True),
                   lambda: Call(random.randint(0,5))]





Run

It starts off building highly recursive programs that take 1000’s of steps to mow the field


sample output

1248 1241 1234 1227 1284 1269 1262 1255
1249 1242 1235 1228 1277 1270 1263 1256
1250 1243 1236 1285 1278 1271 1264 1257
1251 1244 1229 1286 1279 1272 1265 1258
1252 1237 1230 1287 1280 1273 1266 1259
1245 1238 1231 1288 1281 1274 1267 1260
1246 1239 1232 Mv 1282 1275 1268 1253
1247 1240 1233 1226 1283 1276 1261 1254
64 mowed with 16 instructions and 1288 steps    0:00:46.505430
func0: mow call-2
func1: mow mow mow jump(2,1) mow mow mow call-0
func2: call-1
call-0 mow




It eventually discovers that eliminating the recursion reduces the number of steps but that can take hours
 .


sample output

79 78 77 75 57 56 55 53
81 62 40 74 38 37 36 52
82 63 42 73 17 16 14 51
83 64 43 72 46 47 48 49
101 100 99 98 97 95 12 31
103 66 68 69 21 94 11 30
104 88 89 90 91 92 10 29
Mv  3  4  5 23 25 26 27
64 mowed with 30 instructions and 105 steps      10:00:47.530544
func0: jump(3,0)
func1: jump(3,4)
func2: call-4
func3: mow mow turn mow mow mow mow
func4: call-3 call-3 mow turn jump(3,7) call-3 call-3
call-1 call-2 call-4 call-4 call-4




The fix is to prevent recursion in the first place.




Exercise

Recursion can be easily prevented if we change the implementation so that a call
 is only valid if it references a Func
 that has a higher (or lower if you prefer) index than the function the call
 is in, excluding the main function. You can do that in the cleanup step when constructing the Program
 . Make this change and you’ll be able to see the power of ADFs.



Summary

In this project we surveyed some of the control structures used in genetic programming instructions, ultimately ending with automatically defined functions. This gave us insight into how they might be useful in other projects. It also greatly expanded the realm of projects to which we can apply genetic algorithms. Welcome to genetic programming!



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch15










LOGIC
 CIRCUITS







Logic gates are the basic building blocks of logic circuits. In this project we’re going to use a genetic algorithm to combine logic gates into circuits that can do work.




Circuit infrastructure

As in the Lawnmower project, it makes sense that our phenotype should have behaviors, so we’ll use objects. Also like that project we’ll build the infrastructure in a separate file. We’ll start with providing built-in gates for NOT
 and AND
 .



NOT
 and AND
 gates

The NOT
 gate takes one Boolean input and returns its opposite, so True
 if the input is False
 , otherwise False
 .

Since our input will not be a bare Boolean value but an upstream gate in the circuit, when asked for its output the NOT
 gate will first ask the upstream gate for its value, then return the opposite.


circuits.py

class Not:
    def __init__(self, input):
        self._input = input

    def get_output(self):
        return not self._input.get_output()




The AND
 gate takes two Boolean inputs, A
 and B
 , and returns True
 if they are both True
 , otherwise False
 .

Like the NOT
 gate, the AND
 gate must ask the gates that feed into it for their values before it can provide its output.



class And:
    def __init__(self, inputA, inputB):
        self._inputA = inputA
        self._inputB = inputB

    def get_output(self):
        aValue = self._inputA.get_output()
        bValue = self._inputB.get_output()
        return aValue and bValue




In addition to logic gates, the circuit will also contain references to the actual A
 and B
 source inputs we’re testing. We need to be able to change the source values to check the fitness of the circuit, so we’ll give it a reference to a container whose contents we can modify externally.



class Source:
    def __init__(self, sourceId, sourceContainer):
        self._sourceId = sourceId
        self._sourceContainer = sourceContainer

    def get_output(self):
        return self._sourceContainer[self._sourceId]




We’ll use a new structure for the genotype, a tree node that contains the type of gate and indexes to 2 child tree nodes (potential inputs).


circuitTests.py

class Node:
    def __init__(self, createGate, indexA=None, indexB=None):
        self.CreateGate = createGate
        self.IndexA = indexA
        self.IndexB = indexB






Nodes to circuit

Now we’ll write the function that builds the circuit.



def nodes_to_circuit(nodes):
    circuit = []




It loops through all the nodes starting with the leaf nodes and moves toward the root while connecting the logic gates together.



    for i, node in enumerate(nodes):




Using what we learned in the last project we can prevent recursion by design with the convention that child indexes are only valid if they are lower than the node index.



        inputA = circuit[node.IndexA] if node.IndexA is not None \
                                         and i > node.IndexA else None
        inputB = circuit[node.IndexB] if node.IndexB is not None \
                                         and i > node.IndexB else None




Lastly, we update the circuit by creating the gate. The circuit we’ll use ends up fully connected and in the last index of the array. There may be latent circuits in the array as well when we’re done.



        circuit.append(node.CreateGate(inputA, inputB))
    return circuit[-1]




Note that since the A and B inputs can both be None
 it can cause NOT
 and AND
 gates to be instantiated with None
 inputs, so we need to handle that situation. A None
 input makes the gate output invalid so we’ll make it return None
 when that happens.


circuits.py

class And:
...
    def get_output(self):
        if self._inputA is None or self._inputB is None:
            return None
        aValue = self._inputA.get_output()
        bValue = self._inputB.get_output()
        return aValue and bValue






class Not:
...
    def get_output(self):
        if self._input is None:
            return None
        return not self._input.get_output()




That change forces us to also handle the possibility that the input gate is not None
 but returns None
 :



class Not:
...
    def get_output(self):
        if self._input is None:
            return None
        value = self._input.get_output()
        if value is None:
            return None
        return not value






class And:
...
    def get_output(self):
        if self._inputA is None or self._inputB is None:
            return None
        aValue = self._inputA.get_output()
        if aValue is None:
            return None
        bValue = self._inputB.get_output()
        if bValue is None:
            return None
        return aValue and bValue




Now we have what we need to build a circuit, provide inputs to a circuit, and check the output. We’re ready to test.




Generate OR


For the first test we’re going to use a genetic algorithm to generate a circuit that behaves like an OR
 gate. An OR
 gate takes two Boolean inputs and returns True
 if either is True
 otherwise False
 . We can use the following truth table to see the expected output for each combination of inputs.

In our test function we convert the table to an array of rules that can be used to evaluate a circuit’s fitness.


circuitTests.py

import unittest

class CircuitTests(unittest.TestCase):
    def test_generate_OR(self):
        rules = [[[False, False], False],
                 [[False, True], True],
                 [[True, False], True],
                 [[True, True], True]]
...
        self.find_circuit(rules, optimalLength)




That implies find_circuit




    def find_circuit(self, rules, expectedLength):
        def fnGetFitness(genes):
            return get_fitness(genes, rules, self.inputs)
...




and a property to hold the inputs, which is created before the first test runs.



class CircuitTests(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.inputs = dict()
...




Now we have what we need to build the fitness function.


Fitness

To calculate the fitness we need to build the circuit from the nodes then use each rule’s inputs to test the circuit and count how many rules the circuit can satisfy.



def get_fitness(genes, rules, inputs):
    circuit = nodes_to_circuit(genes)
    sourceLabels = "AB"
    rulesPassed = 0
    for rule in rules:
        inputs.clear()
        inputs.update(zip(sourceLabels, rule[0]))
        if circuit.get_output() == rule[1]:
            rulesPassed += 1
    return rulesPassed






Display

We want to output the matching circuit, so we need to add 
str

 functions to the source and gate classes. If the gate has invalid inputs then we’ll show a question mark.


circuits.py

class Not:
...
    def __str__(self):
        if self._input is None:
            return "Not(?)"
        return "Not({})".format(self._input)






class And:
...
    def __str__(self):
        if self._inputA is None or self._inputB is None:
            return "And(?)"
        return "And({} {})".format(self._inputA, self._inputB)






class Source:
...
    def __str__(self):
        return self._sourceId




This produces output like the following:


sample output

Not(And(Not(B) And(Not(A) Not(B))))




Now we will bring it all together in the display function:


circuitTests.py

import datetime
...
def display(candidate, startTime):
    circuit = nodes_to_circuit(candidate.Genes)
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        circuit,
        candidate.Fitness,
        timeDiff))






    def find_circuit(self, rules, expectedLength):
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime)
...






Create

Our gene objects are complex, so we’ll use a special function to create them.



    def find_circuit(self, rules, expectedLength):
...
        def fnCreateGene(index):
            return create_gene(index, self.geneset)
...




Now we can complete the test harness by populating the gene set.



import circuits
...
class CircuitTests(unittest.TestCase):
...
    def setUpClass(cls):
        cls.inputs = dict()
        cls.geneset = [[circuits.And, circuits.And],
                       [lambda i1, i2: circuits.Not(i1), circuits.Not],
                       [lambda i1, i2: circuits.Source('A', cls.inputs),
                        circuits.Source],
                       [lambda i1, i2: circuits.Source('B', cls.inputs),
                        circuits.Source]]
...




It will pick child index values relative to the index where the node will be inserted so they’re more likely to be valid when converted to a circuit. We’ll also try to make the input indexes different so we can reduce the waste from gates like And(A A)
 .



import random
...
def create_gene(index, geneset):
    gateType = random.choice(geneset)
    indexA = indexB = None
    if gateType[1].input_count() > 0:
        indexA = random.randint(0, index)
    if gateType[1].input_count() > 1:
        indexB = random.randint(0, index) if index > 1 else 0
        if indexB == indexA:
            indexB = random.randint(0, index)
    return Node(gateType[0], indexA, indexB)




That implies the addition of a function that counts inputs to the source and gate classes.


circuits.py

class Source:
...
    @staticmethod
    def input_count():
        return 0






class Not:
...
    @staticmethod
    def input_count():
        return 1






class And:
...
    @staticmethod
    def input_count():
        return 2






Mutate

Next we’ll add a custom mutation function.


circuitTests.py

    def find_circuit(self, rules, expectedLength):
...
        def fnMutate(genes):
            mutate(genes, fnCreateGene)
...




To be efficient in the mutation function, we only want to change the nodes that we actually use in the circuit. We can accumulate those while we’re building the circuit. The change in the function that builds the circuit is to add a tracking array where each element contains the set of node indexes that are used to build the corresponding circuit.



def nodes_to_circuit(genes):
    circuit = []
    usedIndexes = [] ①


    for i, node in enumerate(genes):
        used = {i} ②


        inputA = inputB = None
        if node.IndexA is not None and i > node.IndexA:
            inputA = circuit[node.IndexA]
            used.update(usedIndexes[node.IndexA]) ③


            if node.IndexB is not None and i > node.IndexB:
                inputB = circuit[node.IndexB]
                used.update(usedIndexes[node.IndexB]) ④


        circuit.append(node.CreateGate(inputA, inputB))
        usedIndexes.append(used) ⑤


    return circuit[-1], usedIndexes[-1] ⑥






That requires a corresponding change to the fitness function



def get_fitness(genes, rules, inputs):
    circuit = nodes_to_circuit(genes)[0]
...




and display function.



def display(candidate, startTime):
    circuit = nodes_to_circuit(candidate.Genes)[0]
...




Now we can call the circuit builder to get the list of node indexes to use as mutation candidates.



def mutate(childGenes, fnCreateGene):
    count = random.randint(1, 5)
    while count > 0:
        count -= 1
        indexesUsed = [i for i in nodes_to_circuit(childGenes)[1]]
        index = random.choice(indexesUsed)
        childGenes[index] = fnCreateGene(index)






Create

We also need a custom creation function. It is simple enough to be added inline.



    def find_circuit(self, rules, expectedLength):
...
        maxLength = expectedLength

        def fnCreate():
            return [fnCreateGene(i) for i in range(maxLength)]
...






Optimal OR
 circuit

To build the optimal solution let’s refer back to the OR
 gate truth table.

If we could negate the first row we’d have a circuit that works for all four rules. NOT A
 anded with NOT B
 would get False
 . If we NOT
 that we get a circuit that works for all four rules, like this:


[image: OR operation from AND and NOT gates]



We’ll use the node count in that circuit to limit the number of nodes we use.



    def test_generate_OR(self):
...
        optimalLength = 6
        self.find_circuit(rules, optimalLength)




Finally we call the genetic engine.



import genetic
...
    def find_circuit(self, rules, expectedLength):
...
        best = genetic.get_best(fnGetFitness, None, len(rules), None,
                                 fnDisplay,fnMutate, fnCreate, poolSize=3)
        self.assertTrue(best.Fitness == len(rules))
        self.assertFalse(len(nodes_to_circuit(best.Genes)[1])
                         > expectedLength)






Run

When we run the test it finds the optimal solution every time.



Not(And(?))   0       0:00:00
Not(B)  1       0:00:00
And(B B)        3       0:00:00.001004
Not(And(Not(A) Not(B))) 4       0:00:09.581228




Great!




Generate XOR


Now let’s see if we can generate a circuit that behaves like an XOR
 (exclusive-or) gate. An XOR
 gate returns True
 if the inputs are different, otherwise False
 .

We’ll start by building a new test with those rules.



    def test_generate_XOR(self):
        rules = [[[False, False], False],
                 [[False, True], True],
                 [[True, False], True],
                 [[True, True], False]]
...




By comparing the XOR
 gate truth table with that of the OR
 gate we notice that the only difference is the last rule. This means that in order to determine the optimal solution for the XOR
 gate we can start with the circuit for the OR
 gate, Not(And(Not(A) Not(B)))
 (in blue below), and AND
 that with the opposite of a circuit that produces the fourth rule, Not(And(A B))
 . Here’s a visual representation:


[image: ch16.xor.operation.from.and.and.not.gates.epub]



The strict number of nodes in the circuit is 9, or 11 if we double count the source (A and B) nodes. That lets us finish writing the XOR
 test:



...
        self.find_circuit(rules, 9)





Run

Run the test and it almost always stalls.



And(B And(B B))       2       0:00:00.001003
Not(And(B A))   3       0:00:00.014127
And(Not(And(Not(A) Not(B))) Not(And(A B)))      4       0:09:44.378545




Can you think of any ways in which we can take advantage of our knowledge of the problem space to improve the performance of the genetic algorithm? Before reading further take about half an hour to experiment.




Performance improvement

The following is one of the easiest improvements to implement. Notice that the sources take up 2 of the 4 slots in the gene set. This means that on average they end up taking half the slots in the Chromosome
 , which makes it very difficult for the engine to build a complex circuit. The solution is to separate the sources from the gates and use only one copy of each of the sources because they can be referenced by index from any node with a higher index.



class CircuitTests(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.inputs = dict()
        cls.gates = [[circuits.And, circuits.And],
                     [lambda i1, i2: circuits.Not(i1), circuits.Not]]
        cls.sources = [[lambda i1, i2: circuits.Source('A', cls.inputs),
                        circuits.Source],
                       [lambda i1, i2: circuits.Source('B', cls.inputs),
                        circuits.Source]]




Then pass both to the function that creates genes:



    def find_circuit(self, rules, expectedLength):
...
        def fnCreateGene(index):
            return create_gene(index, self.gates, self.sources)
...




Next change that function so that sources are only added at the start of the node array, leaving the rest of the indexes for gates.



def create_gene(index, gates, sources):
    if index < len(sources): ①


        gateType = sources[index]
    else:
        gateType = random.choice(gates)
...
    if gateType[1].input_count() > 1:
        indexB = random.randint(0, index) \
            if index > 1 and index >= len(sources) else 0 ②


        if indexB == indexA:
...




We can also use our knowledge of the source locations in the gene sequence to reduce waste by preventing the mutation function from touching those nodes.



    def find_circuit(self, rules, expectedLength):
...
        def fnMutate(genes):
            mutate(genes, fnCreateGene, fnGetFitness, len(self.sources))
...




We’ll also check the fitness and return early if we find an improvement.



def mutate(childGenes, fnCreateGene, fnGetFitness, sourceCount):
    count = random.randint(1, 5)
    initialFitness = fnGetFitness(childGenes) ③


    while count > 0:
        count -= 1
        indexesUsed = [i for i in nodes_to_circuit(childGenes)[1] ④


                       if i >= sourceCount]
        if len(indexesUsed) == 0:
            return
        index = random.choice(indexesUsed)
        childGenes[index] = fnCreateGene(index)
        if fnGetFitness(childGenes) > initialFitness: ⑤


            return




These changes make it possible for the engine to find the solution every time.



And(?)        0       0:00:00.001005
Not(And(B Not(B)))      2       0:00:00.001005
And(Not(B) Not(Not(A))) 3       0:00:00.004011
And(Not(And(Not(B) Not(A))) Not(And(B A)))      4       0:00:02.235138




Very good!



Generate A XOR
 B XOR
 C

We’ve seen that the genetic algorithm can generate a circuit that passes the 4 rules required for 2 sources. Let’s try a circuit that uses 3 sources. This means it will have 23
 (8) rules. The circuit we’ll try to reproduce is A XOR
 B XOR
 C.

Given that information, we can start writing the test.



    def test_generate_AxBxC(self):
        rules = [[[False, False, False], False],
                 [[False, False, True], True],
                 [[False, True, False], True],
                 [[False, True, True], False],
                 [[True, False, False], True],
                 [[True, False, True], False],
                 [[True, True, False], False],
                 [[True, True, True], True]]
        self.sources.append(
            [lambda l, r: circuits.Source('C', self.inputs),
             circuits.Source])
...




That means we need to add C
 to the source labels in the fitness function too:



def get_fitness(genes, rules, inputs):
    circuit = nodes_to_circuit(genes)[0]
    sourceLabels = "ABC"
...




Since we know we can build OR
 from AND
 and NOT
 we’ll add OR
 to the gates so we can use it to help keep the final circuit relatively short.



    def test_generate_AxBxC(self):
...
        self.gates.append([circuits.Or, circuits.Or])
...




The OR
 gate implementation would be almost identical to that of the AND
 gate, so let’s extract a base class.


circuits.py

class GateWith2Inputs:
    def __init__(self, inputA, inputB, label, fnTest):
        self._inputA = inputA
        self._inputB = inputB
        self._label = label
        self._fnTest = fnTest

    def get_output(self):
        if self._inputA is None or self._inputB is None:
            return None
        aValue = self._inputA.get_output()
        if aValue is None:
            return None
        bValue = self._inputB.get_output()
        if bValue is None:
            return None
        return self._fnTest(aValue, bValue)

    def __str__(self):
        if self._inputA is None or self._inputB is None:
            return "{}(?)".format(self._label)
        return "{}({} {})".format(self._label, self._inputA, self._inputB)

    @staticmethod
    def input_count():
        return 2




That simplifies the AND
 gate implementation to:



class And(GateWith2Inputs):
    def __init__(self, inputA, inputB):
        super().__init__(inputA, inputB, type(self).__name__,
                         lambda a, b: a and b)




The OR
 gate implementation is just as easy:



class Or(GateWith2Inputs):
    def __init__(self, inputA, inputB):
        super().__init__(inputA, inputB, type(self).__name__,
                         lambda a, b: a or b)




Next we need to solve the problem of figuring out what the optimal solution is. We could use a Karnaugh Map to reduce those 8 rules to a minimal circuit but doing so for circuits with many
 inputs becomes messy. So, let’s find another way. Historically we’ve used a variable length gene sequence when we didn’t know how many genes were needed, but as you may have observed, using tree nodes already makes the length adaptive if we give it enough indexes to work with. So we’re going to take this opportunity to introduce a new machine learning technique.


Hill climbing



Hill climbing is a popular problem space exploration technique where one feature of the Chromosome
 is incrementally adjusted until a better solution is found or a local minimum or maximum is detected, at which point the process repeats with a different feature. Some variants change any feature as long as it only affects a single piece of data, which may be smaller than a gene. An example from our current project would be to only change the gate type or just one of the indexes in a node rather than replacing the entire node as we’re doing now. Be aware that hill climbing doesn’t always find the optimal solution so it may need to be supplemented with simulated annealing.




We’ll implement hill climbing in the genetic
 module so that it is reusable. Starting with the function definition, it includes the optimization function it will call, a function to test whether an improvement has been found, a function to test whether the improvement is optimal so we can stop, a function that gets the next feature value, a display function, and the initial value of the feature we’re trying to optimize.


genetic.py

def hill_climbing(optimizationFunction, is_improvement, is_optimal,
                  get_next_feature_value, display, initialFeatureValue):




We get the initial result. Then, to keep it from being chatty, we redirect the output just like we do when benchmarking, and only restore it for calls to the display function.



    best = optimizationFunction(initialFeatureValue)
    stdout = sys.stdout
    sys.stdout = None




Once we have a result we’re going to enter a loop where we keep getting new results until we find an optimal one.



    while not is_optimal(best):
        featureValue = get_next_feature_value(best)
        child = optimizationFunction(featureValue)




When we find an improvement it becomes the new best value and we display it.



        if is_improvement(best, child):
            best = child
            sys.stdout = stdout
            display(best, featureValue)
            sys.stdout = None




If we find the optimal solution we return it.



    sys.stdout = stdout
    return best






Add hill climbing to the test harness

Now we need to build the inputs we’re going to pass to the hill climbing function. We’ll start by wrapping the current call to get_best
 in a new function. This will be the optimization function. We’ll give it a maximum of 50 gates to work with and see what it finds.


circuitTests.py

    def find_circuit(self, rules, expectedLength):
...
        maxLength = 50
...
        def fnOptimizationFunction(variableLength):
            nonlocal maxLength
            maxLength = variableLength
            return genetic.get_best(fnGetFitness, None, len(rules), None,
                                    fnDisplay, fnMutate, fnCreate,
                                    poolSize=3, maxSeconds=30)




I gave it 30 seconds to try to find an improvement, but you might be able to use a lower value. The feature we’re optimizing is the number of nodes in the circuit. We need to get that to the gene-creation function. We’ll do that by transferring it to the existing maximum length variable that is already passed to that function.

Next we need a function that can tell whether the new result is better than the current best. We return True
 if all the rules pass and the number of gates used in the new result if less than that of the current best result, otherwise False
 .



        def fnIsImprovement(currentBest, child):
            return child.Fitness == len(rules) and \
                   len(nodes_to_circuit(child.Genes)[1]) < \
                   len(nodes_to_circuit(currentBest.Genes)[1])




We also need a function that can tell whether we’ve found the known optimal solution. Note that if we don’t know the optimal value we could simply use an impossibly low value and let it run until we’re ready to stop it.



        def fnIsOptimal(child):
            return child.Fitness == len(rules) and \
                   len(nodes_to_circuit(child.Genes)[1]) <= expectedLength




As for display, we can simply add an optional parameter to the existing display function for the feature value. When it is set we show the number of nodes used in the new best circuit.



        def fnDisplay(candidate, length=None):
            if length is not None:
                print("-- distinct nodes in circuit:",
                      len(nodes_to_circuit(candidate.Genes)[1]))
            display(candidate, startTime)




When an improvement is found we’ll make the number of nodes in that circuit the new value to beat.



        def fnGetNextFeatureValue(currentBest):
            return len(nodes_to_circuit(currentBest.Genes)[1])




At the end we call the hill climbing function.



        best = genetic.hill_climbing(fnOptimizationFunction,
                                     fnIsImprovement, fnIsOptimal,
                                     fnGetNextFeatureValue, fnDisplay,
                                     maxLength)
        self.assertTrue(best.Fitness == len(rules))
        self.assertFalse(len(nodes_to_circuit(best.Genes)[1])
                         > expectedLength)




Now we’re finally able to finish the test implementation.



    def test_generate_AxBxC(self):
...
        self.find_circuit(rules, 12)






Run

Let’s first verify that the OR
 and XOR
 tests work.


sample OR
 test result

And(And(And(And(?) Not(And(?))) Not(Not(And(?)))) And(Not(And(?)) Not(And(?))))       0       0:00:00
Not(Not(B))     3       0:00:00.004012
Not(And(Not(And(Not(A) B)) And(Not(Not(Not(Not(Not(A))))) Not(B))))     4       0:00:00.013128
-- distinct nodes in circuit: 8
Not(And(Not(B) And(Not(B) Not(A))))     4       0:00:00.021112
-- distinct nodes in circuit: 6
Not(And(Not(A) Not(B))) 4       0:00:00.080303





sample XOR
 test result

Not(And(?))   0       0:00:00.001003
Not(And(And(Not(And(A B)) And(Not(Not(And(A B))) Not(And(A B)))) A))    2       0:00:00.003008
And(Not(And(A And(A B))) Not(Not(Not(And(A B)))))       3       0:00:00.007047
And(Not(And(Not(A) Not(B))) Not(And(And(And(B And(B A)) And(B A)) Not(Not(And(B A)))))) 4       0:00:00.287776
-- distinct nodes in circuit: 9
And(Not(And(B A)) Not(And(Not(B) Not(A))))      4       0:00:02.833747




Now let’s see how it does on A XOR B XOR C
 .



And(Or(?) Not(Not(C)))        0       0:00:00.001001
And(And(Not(C) And(And(Not(A) B) Not(Not(Not(C))))) Not(A))     5       0:00:00.006120
And(And(Not(And(B Or(A C))) Not(A)) Not(And(Not(C) Not(Or(B And(B Or(A C))))))) 6       0:00:00.470108
And(Or(Not(Or(And(A And(A C)) And(Or(A C) B))) And(And(And(And(A C) Or(A C)) B) And(Not(Not(Or(And(A And(A C)) And(Or(A C) B)))) And(Or(A C) B)))) Or(And(Or(A C) Not(Or(And(A And(A C)) And(Or(A C) B)))) B))  8       0:00:02.133227
-- distinct nodes in circuit: 13
And(Not(And(Or(B C) And(A Or(Not(C) Not(B))))) Or(A And(Or(Not(C) Not(B)) Or(B C))))    8       0:00:50.958561
-- distinct nodes in circuit: 12
Or(And(Or(A C) Not(Or(And(A C) B))) And(B Or(And(A C) Not(Or(A C)))))   8       0:01:04.648605




Excellent!

If it takes an excessively long time to find the result on your box, you may need to increase the number of seconds you let it run on each optimization pass.




Generate a 2-bit adder

Now for something more interesting, a 2-bit adder. A 2-bit adder can add two numbers in the range 0..3 to get a result in the range 0..6. This means we need 4 sources, A and B for the first number, and C and D for the second. We also need 3 result bits for the 4’s, 2’s and 1’s result bits. 4 source-inputs means we’ll have 24
 (16) rules. Here’s the truth table.

We could change the code to work with N-result bits, essentially N-circuits, but we can get the same result without that complexity by searching for each result bit’s circuit in a separate test and sharing the setup code between them. We can build the setup function from the truth table above.



    def get_2_bit_adder_rules_for_bit(self, bit):
        rules = [[[0, 0, 0, 0], [0, 0, 0]],  # 0 + 0 = 0
                 [[0, 0, 0, 1], [0, 0, 1]],  # 0 + 1 = 1
                 [[0, 0, 1, 0], [0, 1, 0]],  # 0 + 2 = 2
                 [[0, 0, 1, 1], [0, 1, 1]],  # 0 + 3 = 3
                 [[0, 1, 0, 0], [0, 0, 1]],  # 1 + 0 = 1
                 [[0, 1, 0, 1], [0, 1, 0]],  # 1 + 1 = 2
                 [[0, 1, 1, 0], [0, 1, 1]],  # 1 + 2 = 3
                 [[0, 1, 1, 1], [1, 0, 0]],  # 1 + 3 = 4
                 [[1, 0, 0, 0], [0, 1, 0]],  # 2 + 0 = 2
                 [[1, 0, 0, 1], [0, 1, 1]],  # 2 + 1 = 3
                 [[1, 0, 1, 0], [1, 0, 0]],  # 2 + 2 = 4
                 [[1, 0, 1, 1], [1, 0, 1]],  # 2 + 3 = 5
                 [[1, 1, 0, 0], [0, 1, 1]],  # 3 + 0 = 3
                 [[1, 1, 0, 1], [1, 0, 0]],  # 3 + 1 = 4
                 [[1, 1, 1, 0], [1, 0, 1]],  # 3 + 2 = 5
                 [[1, 1, 1, 1], [1, 1, 0]]]  # 3 + 3 = 6
        bitNRules = [[rule[0], rule[1][2 - bit]] for rule in rules]
...




Here we take advantage of a Python feature that equates 0 with False
 and 1 with True
 to simplify the implementation. We also need to add C
 and D
 to the sources, and to keep the results short we’ll use both an OR
 gate and an XOR
 gate.



...
        self.gates.append([circuits.Or, circuits.Or])
        self.gates.append([circuits.Xor, circuits.Xor])
        self.sources.append([lambda l, r: circuits.Source('C', self.inputs),
                             circuits.Source])
        self.sources.append([lambda l, r: circuits.Source('D', self.inputs),
                             circuits.Source])
        return bitNRules




Next add D
 to the source labels in the fitness function.



def get_fitness(genes, rules, inputs):
    circuit = nodes_to_circuit(genes)[0]
    sourceLabels = "ABCD"
...




Here’s the implementation of the XOR
 gate.


circuits.py

class Xor(GateWith2Inputs):
    def __init__(self, inputA, inputB):
        super().__init__(inputA, inputB, type(self).__name__,
                         lambda a, b: a != b)





Tests

Now we’re ready to add the tests that find the circuit for each bit.


circuitTests.py

    def test_2_bit_adder_1s_bit(self):
        rules = self.get_2_bit_adder_rules_for_bit(0)
        self.find_circuit(rules, 3)






    def test_2_bit_adder_2s_bit(self):
        rules = self.get_2_bit_adder_rules_for_bit(1)
        self.find_circuit(rules, 7)






    def test_2_bit_adder_4s_bit(self):
        rules = self.get_2_bit_adder_rules_for_bit(2)
        self.find_circuit(rules, 9)






Run

It can quickly generate the optimal solution for the 1’s bit


sample solution for 1’s bit

Not(Or(And(?) C))     0       0:00:00.001003
Not(Or(Or(A C) C))      8       0:00:00.002006
And(Not(And(Xor(D Not(Not(Or(And(B D) C)))) And(A D))) Not(Not(Xor(D And(A And(B D))))))        9       0:00:00.007068
And(Not(Xor(Xor(Xor(D And(A And(B D))) A) Or(Xor(And(B D) Xor(D And(A And(B D)))) Not(Or(And(B D) C))))) Not(Not(Xor(D And(A And(B D))))))      10      0:00:00.009073
And(Not(Xor(Xor(Xor(D Xor(And(A D) B)) A) Or(Not(A) Not(Or(And(B D) C))))) Not(Not(Xor(D Xor(And(A D) B)))))    11      0:00:00.014086
Or(Xor(D B) Xor(And(Xor(D B) Not(D)) A))        12      0:00:00.032165
Or(Xor(D B) And(Not(D) Xor(D B)))       16      0:00:00.035143
-- distinct nodes in circuit: 3
Xor(D B)        16      0:00:00.036146




the 2’s bit


sample output for 2’s bit

Xor(Not(Not(B)) Xor(Or(?) Not(Not(B))))       0       0:00:00.001010
Xor(Not(Not(B)) Xor(Not(B) Not(Not(B))))        8       0:00:00.003009
Xor(Not(Not(And(A Or(C A)))) Xor(Xor(B Xor(A C)) And(A Or(C A))))       12      0:00:00.006119
Xor(Xor(Xor(And(A D) B) And(And(B A) B)) Xor(Xor(B Xor(A C)) Or(And(B A) Xor(And(A D) B))))     14      0:00:00.046253
Xor(Xor(Xor(And(B D) A) And(Xor(Not(C) C) B)) Xor(Xor(B Not(C)) Or(Xor(Not(C) C) Xor(And(B D) A))))     16      0:00:00.338064
-- distinct nodes in circuit: 8
Xor(And(B And(D B)) Xor(A C))   16      0:00:00.431277
-- distinct nodes in circuit: 7
Xor(Xor(And(D B) C) A)  16      0:00:30.907710




and the 4’s bit.


sample solution for 4’s bit

Or(Or(Or(Or(?) B) A) A)       0       0:00:00.001004
Not(Xor(Not(Not(A)) Not(Not(Or(Xor(A C) Not(A))))))     8       0:00:00.002005
Not(Not(And(And(D And(D C)) And(A D)))) 12      0:00:00.007520
And(C Xor(Xor(B C) Or(Not(D) Not(And(And(A A) And(Xor(B C) Xor(B C)))))))       13      0:00:00.193725
And(C Xor(Not(A) Or(And(A A) Not(A))))  14      0:00:00.224307
And(C Or(Not(Or(Not(A) Xor(A C))) And(B D)))    15      0:00:01.020520
And(And(Or(D And(C A)) Or(Not(Or(A Xor(Not(B) C))) Or(C And(Not(And(A Not(B))) B)))) Or(A Xor(Not(B) C)))       16      0:00:11.065914
-- distinct nodes in circuit: 13
And(Or(And(A C) And(Not(Not(D)) B)) Or(Xor(And(Not(Not(D)) A) Not(D)) C))       16      0:00:15.089580
-- distinct nodes in circuit: 10
Or(And(C A) And(And(B D) Or(Xor(A C) A)))       16      0:00:28.089024
-- distinct nodes in circuit: 9
And(Or(C And(D B)) Or(And(C And(D B)) A))       16      0:01:15.223721




Outstanding!




Retrospective

Tree nodes are often used instead of arrays in genetic programming because it is much easier to inject new functionality between two nodes. You should be able to adapt the way tree nodes are used in this project to the Lawnmower Problem. One way would be for all nodes to use the first child node to point to the next instruction. Then each func
 instruction could define its instructions on the second child node, making it easier for the genetic algorithm to modify the contents of the function.

You might also implement NAND
 and NOR
 gates to see if they improve upon the optimal solutions we found in this project.



Summary

This project showed how tree nodes can be used in a genetic algorithm for both fixed- and variable-length genotypes. It also introduced hill climbing, a very useful but potentially time consuming optimization technique.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch16










REGULAR
 EXPRESSIONS






The next project is to build a genetic algorithm that can evolve a regular expression (regex) that matches all items in a set of wanted strings without matching any items in a set of unwanted strings.

As you probably know, meta characters in regular expressions have special meanings, for example *
 means repeat zero or more times, +
 means repeat at least once, etc. Go experiment with some simple sequences then come back.


Test

The base gene set for the genetic algorithm will include four of these, which will be defined in global variables within the genetic algorithm file.


regexTests.py

repeatMetas = {'?', '*', '+'}
startMetas = {'|'}
allMetas = repeatMetas | startMetas




Next, the strings the generated regex should match, and those it should not match, are defined in a test. The genetic algorithm is also given a specific regex length to achieve. This keeps it from simply using the |
 (or) meta character to concatenate all the wanted strings.



import unittest

class RegexTests(unittest.TestCase):
    def test_two_digits(self):
        wanted = {"01", "11", "10"}
        unwanted = {"00", ""}
        self.find_regex(wanted, unwanted, 7)






Fitness

The fitness function first compiles the regex to see if it is valid or not. If not it returns a comparably low fitness value.



import re
...
def get_fitness(genes, wanted, unwanted):
    pattern = ''.join(genes)
    length = len(pattern)

    try:
        re.compile(pattern)
    except re.error:
        return Fitness(0, len(wanted), len(unwanted), length)




Otherwise, it determines the fitness of the generated regex by counting the number of wanted and unwanted strings the regex matches exactly.



    numWantedMatched = sum(1 for i in wanted if re.fullmatch(pattern, i))
    numUnwantedMatched = sum(1 for i in unwanted if re.fullmatch(pattern, i))
    return Fitness(numWantedMatched, len(wanted), numUnwantedMatched, length)




As usual the fitness function has a related helper function in the test harness:



    def find_regex(self, wanted, unwanted, expectedLength):
        def fnGetFitness(genes):
            return get_fitness(genes, wanted, unwanted)




This genetic algorithm uses a Fitness
 object because there are multiple objectives. They are:



	
to maximize the number of wanted strings that match,


	
to minimize the number of unwanted strings that match, and


	
to minimize the length of the regex








class Fitness:
    def __init__(self, numWantedMatched, totalWanted, numUnwantedMatched,
                 length):
        self.NumWantedMatched = numWantedMatched
        self._totalWanted = totalWanted
        self.NumUnwantedMatched = numUnwantedMatched
        self.Length = length




The comparison function first combines the number of wanted strings that were not matched with the number of unwanted strings that were matched. When that value differs, the algorithm should keep the chromosome with the smallest total. That achieves the first two objectives while allowing the matched wanted and unwanted counts to vary.



    def __gt__(self, other):
        combined = (self._totalWanted - self.NumWantedMatched) \
                   + self.NumUnwantedMatched
        otherCombined = (other._totalWanted - other.NumWantedMatched) \
                        + other.NumUnwantedMatched
        if combined != otherCombined:
            return combined < otherCombined




When the regex fails to match one or more wanted strings, or matches one or more unwanted strings, the algorithm should keep the newer one. This should prevent the algorithm from hanging on a particularly bad chromosome.



        success = combined == 0
        otherSuccess = otherCombined == 0
        if success != otherSuccess:
            return success
        if not success:
            return False




Otherwise the shortest regex is chosen.



        return self.Length < other.Length




The output of the 
str

 function makes the values easy to read when displayed.



    def __str__(self):
        return "matches: {} wanted, {} unwanted, len {}".format(
            "all" if self._totalWanted == self.NumWantedMatched else self.NumWantedMatched,
            self.NumUnwantedMatched,
            self.Length)






Display



import datetime
...
def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        ''.join(candidate.Genes), candidate.Fitness, timeDiff))





expected output

01|11?*+      matches 0 wanted 2 unwanted, len 8      0:00:00




Next is the helper function for the test harness.



    def find_regex(self, wanted, unwanted, expectedLength):
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime)
...






Mutation

Since the genetic algorithm needs to be able to change the length of the regex, a custom mutation function is used. The mutation function has a loop that breaks early if it produces a gene sequence with an improved fitness.



import random
...
def mutate(genes, fnGetFitness, mutationOperators, mutationRoundCounts):
    initialFitness = fnGetFitness(genes)




The number of times the loop executes is adaptive based on previously successful loop counts.



    count = random.choice(mutationRoundCounts)
    for i in range(1, count + 2):




The mutation function receives an array of operators that can be used to modify the gene sequence. Each time through the loop it makes a temporary copy of the operators then picks one and uses it to try to modify the gene sequence. The operator returns a Boolean value indicating whether it was able to make a change or not. If not, that operator is removed from the temporary copy so it will not be tried again in that round.



        copy = mutationOperators[:]
        func = random.choice(copy)
        while not func(genes):
            copy.remove(func)
            func = random.choice(copy)




When an operator does make a change, the fitness of the changed genes is compared with the initial fitness. If the fitness improves then the adaptive loop count is updated and the loop halts.



        if fnGetFitness(genes) > initialFitness:
            mutationRoundCounts.append(i)
            return





Mutation Operators

The default mutation operators are: add, remove, replace, swap and move.



def mutate_add(genes, geneset):
    index = random.randrange(0, len(genes) + 1) if len(genes) > 0 else 0
    genes[index:index] = [random.choice(geneset)]
    return True






def mutate_remove(genes):
    if len(genes) < 1:
        return False
    del genes[random.randrange(0, len(genes))]
    if len(genes) > 1 and random.randint(0, 1) == 1:
        del genes[random.randrange(0, len(genes))]
    return True






def mutate_replace(genes, geneset):
    if len(genes) < 1:
        return False
    index = random.randrange(0, len(genes))
    genes[index] = random.choice(geneset)
    return True






def mutate_swap(genes):
    if len(genes) < 2:
        return False
    indexA, indexB = random.sample(range(len(genes)), 2)
    genes[indexA], genes[indexB] = genes[indexB], genes[indexA]
    return True






def mutate_move(genes):
    if len(genes) < 3:
        return False
    start = random.choice(range(len(genes)))
    stop = start + random.randint(1, 2)
    toMove = genes[start:stop]
    genes[start:stop] = []
    index = random.choice(range(len(genes)))
    if index >= start:
        index += 1
    genes[index:index] = toMove
    return True




Notice that two of the functions have multiple parameters but the mutation function only calls them with one variable. The function-specific parameters, if any, are provided when the list of mutation operators is created in the test harness, through the use of the partial
 function.




partial
 gives us the ability to pre-fill or lock function parameters. This is useful when you know the parameters will not change. When the partial
 version of that function is called you only need to supply the remaining parameters, if any.






from functools import partial
...
    def find_regex(self, wanted, unwanted, expectedLength):
...
        mutationRoundCounts = [1]

        mutationOperators = [
            partial(mutate_add, geneset=fullGeneset),
            partial(mutate_replace, geneset=fullGeneset),
            mutate_remove,
            mutate_swap,
            mutate_move,
        ]

        def fnMutate(genes):
            mutate(genes, fnGetFitness, mutationOperators,
                   mutationRoundCounts)







Test Harness

The test harness starts by adding the unique letters from each of the wanted strings, as well as the wanted strings themselves, to the set of gene tokens the algorithm can use to build the regex. That way the algorithm doesn’t have to struggle to reassemble long sequences or words.



import genetic
...
    def find_regex(self, wanted, unwanted, expectedLength):
        startTime = datetime.datetime.now()
        textGenes = wanted | set(c for w in wanted for c in w)
        fullGeneset = [i for i in allMetas | textGenes]




Next come the helper functions, given previously, and finally the call to run the engine.



        optimalFitness = Fitness(len(wanted), len(wanted), 0, expectedLength)

        best = genetic.get_best(fnGetFitness,
                                max(len(i) for i in textGenes),
                                optimalFitness, fullGeneset, fnDisplay,
                                fnMutate, poolSize=10)
        self.assertTrue(not optimalFitness > best.Fitness)






Run


sample result

+10   matches: 0 wanted, 2 unwanted, len 3    0:00:00.001003
111     matches: 0 wanted, 0 unwanted, len 3    0:00:00.001003
10      matches: 1 wanted, 0 unwanted, len 2    0:00:00.001003
10?1?   matches: 2 wanted, 0 unwanted, len 5    0:00:00.017079
11|10|01        matches: all wanted, 0 unwanted, len 8  0:00:00.317880
1*0?10* matches: all wanted, 0 unwanted, len 7  0:00:01.137309




It worked! It found a successful regex in a fraction of a second but then struggled for a comparatively long time to reduce it to the requested length. A benchmark function will show long it takes on average.



    def test_benchmark(self):
        genetic.Benchmark.run(self.test_two_digits)







sample benchmark





	
average (seconds)


	
standard deviation





	
0.70


	
1.02













Performance improvement

Improving the performance of this genetic algorithm requires revisiting the try..except
 block in the fitness function, the one that detects invalid regular expressions. The following temporary code change will make it possible to measure how often that happens.



total = invalid = 0

def get_fitness(genes, wanted, unwanted):
    global total
    total += 1
...
    except re.error:
        global invalid
        invalid += 1
        return Fitness(0, len(wanted), len(unwanted), length)






    def find_regex(self, wanted, unwanted, expectedLength):
...
        self.assertTrue(not optimalFitness > best.Fitness)
        print("{}% of {} generated regexes were invalid".format(
            int(100 * invalid / total), total
        ))




Running the test a few times gets results like the following:


sample results

18% of 82018 generated regexes were invalid
21% of 57325 generated regexes were invalid
23% of 212732 generated regexes were invalid
25% of 216453 generated regexes were invalid
29% of 24124 generated regexes were invalid
34% of 2734 generated regexes were invalid




Ouch. A lot of opportunities to find an improvement are lost due to the generated regex being invalid. What could make the regex invalid? To find out, replace the measurement code with code that captures the details of the error in a global variable, with preference for the shortest example of the given error.



regexErrorsSeen = {}



def get_fitness(genes, wanted, unwanted):
...
    except re.error as e:
        key = str(e)
        key = key[:key.index("at position")]
        info = [str(e),
                "genes = ['{}']".format("', '".join(genes)),
                "regex: " + pattern]
        if key not in regexErrorsSeen or len(info[1]) < len(
                regexErrorsSeen[key][1]):
            regexErrorsSeen[key] = info
        return Fitness(0, len(wanted), len(unwanted), length)
...




Then print all the errors at the end of the test harness.



    def find_regex(self, wanted, unwanted, expectedLength):
...
        for info in regexErrorsSeen.values():
            print("")
            print(info[0])
            print(info[1])
            print(info[2])




Now run the test to get the error samples:


sample errors

nothing to repeat at position 0
genes = ['?']
regex: ?

multiple repeat at position 2
genes = ['0', '?', '*']
regex: 0?*




Run the test a few times to see variations. There are two situations: The first is when the regex has a repeat-type meta character with no text before it. The other is when two repeat-type meta characters are adjacent. One solution is to repair the regex.


Regex repair



def get_fitness(genes, wanted, unwanted):
    pattern = repair_regex(genes)
    length = len(pattern)
...




The repair function can be built iteratively by running the test and adding code that detects and corrects the errors found. Eventually all the regexes can be repaired. Here’s one possible implementation:



def repair_regex(genes):
    result = []
    f = repair_ignore_repeat_metas
    for token in genes:
        f = f(token, result)
    return ''.join(result)






def repair_ignore_repeat_metas(token, result):
    if token in repeatMetas:
        return repair_ignore_repeat_metas
    result.append(token)
    return repair_ignore_repeat_metas_following_repeat_or_start_metas






def repair_ignore_repeat_metas_following_repeat_or_start_metas(token, result):
    last = result[-1]
    if token not in repeatMetas:
        result.append(token)
    elif last in startMetas:
        pass
    elif token == '?' and last == '?' and len(result) > 2 and result[
        -2] in repeatMetas:
        pass
    elif last in repeatMetas:
        pass
    else:
        result.append(token)
    return repair_ignore_repeat_metas_following_repeat_or_start_metas




Because the regex repair function does not change the original genes it must also be called from the display function.



def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        repair_regex(candidate.Genes), candidate.Fitness, timeDiff))




The genetic algorithm now finds the solution much faster on average.









	
average (seconds)


	
standard deviation





	
0.30


	
0.63











A side effect of repairing the regex is the genes that are removed during the repair become latent. They can be activated if a mutation operator affects the gene to their left. This unexpectedly gives the genetic algorithm an additional tool.




Groups

The second test regex will require the use of the group-type meta characters '(' and ')' so support for those must be added.



startMetas = {'|', '('}
endMetas = {')'}
allMetas = repeatMetas | startMetas | endMetas





Repair

Now running test_two_digits
 produces examples of the next set of regex issues to repair:


sample errors

missing ), unterminated subpattern at position 0
genes = ['(']
regex: (

unbalanced parenthesis at position 0
genes = [')']
regex: )




The first issue can be solved by appending missing end-group )
 meta characters to the final regex.



def repair_regex(genes):
    result = []
    finals = [] ①


    f = repair_ignore_repeat_metas
    for token in genes:
        f = f(token, result, finals) ②


    result.extend(reversed(finals)) ③


    return ''.join(result)






def repair_ignore_repeat_metas(token, result, finals):
    if token in repeatMetas or token in endMetas:
        return repair_ignore_repeat_metas
    if token == '(': ④


        finals.append(')')
    result.append(token)
    return repair_ignore_repeat_metas_following_repeat_or_start_metas




The second issue can be resolved by prefixing the final regex with the missing start-group '(' meta character - (6) in the code listing below.



def repair_ignore_repeat_metas_following_repeat_or_start_metas(token, result, finals):
    last = result[-1]
    if token not in repeatMetas:
        if token == '(': ⑤


            finals.append(')')
        elif token == ')':
            match = ''.join(finals).rfind(')')
            if match != -1:
                del finals[match]
            else:
                result[0:0] = ['('] ⑥


        result.append(token)
    elif last in startMetas:
...






New test

Once all the regex problems have been repaired, the new test can be added and run.



    def test_grouping(self):
        wanted = {"01", "0101", "010101"}
        unwanted = {"0011", ""}
        self.find_regex(wanted, unwanted, 5)





sample result

01010101|0101()       matches: 1 wanted, 0 unwanted, len 15   0:00:00
(0101)|01+      matches: 2 wanted, 0 unwanted, len 10   0:00:00.003005
(01??11?|010101)+       matches: all wanted, 0 unwanted, len 17 0:00:00.106251
(01|)+01        matches: all wanted, 0 unwanted, len 8  0:00:00.108257
(01)+   matches: all wanted, 0 unwanted, len 5  0:00:00.130313




Nice!




Character-sets

The next test regex will require the use of the character-set-type meta characters '[' and ']'. To support those first add them to the meta global variables.



startMetas = {'|', '(', '['}
endMetas = {')', ']'}




As before, next run the existing tests to produce error samples.


sample errors

missing ), unterminated subpattern at position 0
genes = ['[', '*', ')', ']', '*', '0']
regex: ([)]*0

unbalanced parenthesis at position 5
genes = ['[', '(', ']', '*', '0']
regex: [(]*0)

unterminated character set at position 0
genes = ['[']
regex: [




The first two are caused by the group completion code added in the previous section completing groups that begin or end inside a character-set.


Repair



def repair_regex(genes):
    result = []
    finals = []
    f = repair_ignore_repeat_metas
    for token in genes:
        f = f(token, result, finals)
    if ']' in finals and result[-1] == '[': ①


        del result[-1]
    result.extend(reversed(finals))
    return ''.join(result)






def repair_ignore_repeat_metas(token, result, finals):
    if token in repeatMetas or token in endMetas:
        return repair_ignore_repeat_metas
    if token == '(':
        finals.append(')')
    result.append(token)
    if token == '[': ②


        finals.append(']')
        return repair_in_character_set
    return repair_ignore_repeat_metas_following_repeat_or_start_metas






def repair_ignore_repeat_metas_following_repeat_or_start_metas(token, result, finals):
    last = result[-1]
    if token not in repeatMetas:
        if token == '[': ③


            result.append(token)
            finals.append(']')
            return repair_in_character_set
        if token == '(':
...






def repair_in_character_set(token, result, finals):
    if token == ']':
        if result[-1] == '[':
            del result[-1]
        result.append(token)
        match = ''.join(finals).rfind(']')
        if match != -1:
            del finals[match]
        return repair_ignore_repeat_metas_following_repeat_or_start_metas
    elif token == '[':
        pass
    elif token == '|' and result[-1] == '|':
        pass  # suppresses FutureWarning about ||
    else:
        result.append(token)
    return repair_in_character_set






New test



    def test_state_codes(self):
        wanted = {"NE", "NV", "NH", "NJ", "NM", "NY", "NC", "ND"}
        unwanted = {"N" + l for l in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                    if "N" + l not in wanted}
        self.find_regex(wanted, unwanted, 11)





sample result

...
NM|NC|NV|ND|NJ|NE|NY|NH matches: all wanted, 0 unwanted, len 23 0:00:08.716123
NY|NE|NC|NH|NV?J*D*M*   matches: all wanted, 0 unwanted, len 21 0:00:15.928484
NH|NE|NV|NC*D?J*Y?M?    matches: all wanted, 0 unwanted, len 20 0:00:52.029423
N[D(ECYM??JVYHJD]       matches: all wanted, 0 unwanted, len 17 0:01:51.952601
N[D(ECYM?JVHYJD]        matches: all wanted, 0 unwanted, len 16 0:01:51.957615
N[DECYM?JJVHYD] matches: all wanted, 0 unwanted, len 15 0:01:51.987693
N[VJYM?HDCYED]  matches: all wanted, 0 unwanted, len 14 0:01:52.168333
N[VMCDJYCHED]   matches: all wanted, 0 unwanted, len 13 0:01:52.249548
N[VMCJYHED]     matches: all wanted, 0 unwanted, len 11 0:01:52.254562




The genetic algorithm succeeds but it can take a long time to discover the character-set solution if it has already found a successful regex. That is because removing repeated items from a character-set, or moving wanted items into a character-set, usually only negatively impact the fitness at this stage. Conversely, those actions may not affect the fitness at all before a working solution is found. That means introducing a character-set that improves the fitness requires multiple sequential steps, that’s not something genetic algorithms do well. They are much more successful when they can find ways to make incremental improvements. It would be much more likely to succeed if it had access to a character-set specific operator. That kind of mutation operator might only be useful to particular regexes.



Supporting custom operators

First add an optional parameter to the find
 function and append its contents to the array of mutation operators.



    def find_regex(self, wanted, unwanted, expectedLength,
                   customOperators=None):
...
        mutationOperators = [
...
        ]
        if customOperators is not None:
            mutationOperators.extend(customOperators)




Then define the character-set operator.



def mutate_to_character_set_left(genes, wanted):
    if len(genes) < 4:
        return False
    ors = [i for i in range(-1, len(genes) - 3)
           if (i == -1 or genes[i] in startMetas) and
           len(genes[i + 1]) == 2 and
           genes[i + 1] in wanted and
           (len(genes) == i + 1 or genes[i + 2] == '|' or genes[
               i + 2] in endMetas)]
    if len(ors) == 0:
        return False
    lookup = {}
    for i in ors:
        lookup.setdefault(genes[i + 1][0], []).append(i)
    min2 = [i for i in lookup.values() if len(i) > 1]
    if len(min2) == 0:
        return False
...




It finds all the two-character wanted
 strings that have a |
 meta character, or end-of-array, on both sides. If there are at least two that have the same first character, for example MA|
 and |ME|
 then they become candidates to be replaced with a character-set, i.e. M[AE]
 . Pick a candidate, add the character-set and remove the parts from the regex.



    choice = random.choice(min2)
    characterSet = ['|', genes[choice[0] + 1][0], '[']
    characterSet.extend([genes[i + 1][1] for i in choice])
    characterSet.append(']')
    for i in reversed(choice):
        if i >= 0:
            genes[i:i + 2] = []
    genes.extend(characterSet)
    return True




Next use the new operator in the test.



...
        customOperators = [
            partial(mutate_to_character_set_left, wanted=wanted),
        ]
        self.find_regex(wanted, unwanted, 11, customOperators)




Now run the test again and it can usually find the regex in a few seconds. Additionally, the situation where it first finds the solution that does not use a character-set becomes rare, and when it does occur the genetic algorithm can easily find the character-set solution.


sample result

NY|NM|NH*(V*(J|C*D*|E))       matches: all wanted, 0 unwanted, len 23 0:00:07.173342
NY|NM|NH*V*(J|C*D*|E)   matches: all wanted, 0 unwanted, len 21 0:00:07.252551
N[)EJ+YMCVDH+VV]        matches: all wanted, 0 unwanted, len 16 0:00:08.928685
N[)VYMCV)EVHJD] matches: all wanted, 0 unwanted, len 15 0:00:08.997869
N[VMVC)HEJYD]   matches: all wanted, 0 unwanted, len 13 0:00:09.035971
N[VJVCHEMYD]    matches: all wanted, 0 unwanted, len 12 0:00:09.053016
N[JVCEHDMY]     matches: all wanted, 0 unwanted, len 11 0:00:09.183363







Repetition

The next regex will use a repetition-type meta token like {2}
 or {2,}
 . First add them to the meta global variable.



repeatMetas = {'?', '*', '+', '{2}', '{2,}'}




Run the existing tests and there should be no errors to correct.


New test



    def test_even_length(self):
        wanted = {"00", "01", "10", "11", "0000", "0001", "0010", "0011",
                  "0100", "0101", "0110", "0111", "1000", "1001", "1010",
                  "1011", "1100", "1101", "1110", "1111"}
        unwanted = {"0", "1", "000", "001", "010", "011", "100", "101",
                    "110", "111", ""}
        self.find_regex(wanted, unwanted, 10)





sample result

...
([1110]{2})?[10]{2}     matches: all wanted, 0 unwanted, len 19 0:00:13.188051
([10]{2})?[10]{2}       matches: all wanted, 0 unwanted, len 17 0:00:15.622529
([1101]{2}|11)+ matches: all wanted, 0 unwanted, len 15 0:00:24.155222
([110101]{2})+  matches: all wanted, 0 unwanted, len 14 0:00:26.304940
([01]{2})+      matches: all wanted, 0 unwanted, len 10 0:00:26.494444




The genetic algorithm is slow to find this regex and it can also stall if it finds this particular solution:



(00|10|01|11)+        matches: all wanted, 0 unwanted, len 14 0:00:12.010740




The following custom mutation operator resolves the problem. It finds all the cases where a '|' meta character has non-meta characters on both sides. If any are found it picks one and replaces the three genes with a character-set containing only the unique characters from the two non-meta character genes.

Example: ['00', '|', '01']
 becomes ['[', '0', '1', ']']
 .



def mutate_to_character_set(genes):
    if len(genes) < 3:
        return False
    ors = [i for i in range(1, len(genes) - 1)
           if genes[i] == '|' and
           genes[i - 1] not in allMetas and
           genes[i + 1] not in allMetas]
    if len(ors) == 0:
        return False
    shorter = [i for i in ors
               if sum(len(w) for w in genes[i - 1:i + 2:2]) >
               len(set(c for w in genes[i - 1:i + 2:2] for c in w))]
    if len(shorter) == 0:
        return False
    index = random.choice(ors)
    distinct = set(c for w in genes[index - 1:index + 2:2] for c in w)
    sequence = ['['] + [i for i in distinct] + [']']
    genes[index - 1:index + 2] = sequence
    return True




Then change the test to use the new mutation operator.



    def test_even_length(self):
...
        customOperators = [
            mutate_to_character_set,
        ]
        self.find_regex(wanted, unwanted, 10, customOperators)




Run the test now and it can find the solution every time.


sample result

.....
([0*1000]{2})+  matches: all wanted, 0 unwanted, len 14 0:00:05.221497
([1000]{2})+    matches: all wanted, 0 unwanted, len 12 0:00:05.379950
([01][10])+     matches: all wanted, 0 unwanted, len 11 0:00:05.519291
([01]{2})+      matches: all wanted, 0 unwanted, len 10 0:00:06.595626







State codes

The final regex test in this project is to find a reasonably short regex for all 50 U.S. state codes.



    def test_50_state_codes(self):
        wanted = {"AL", "AK", "AZ", "AR", "CA",
                  "CO", "CT", "DE", "FL", "GA",
                  "HI", "ID", "IL", "IN", "IA",
                  "KS", "KY", "LA", "ME", "MD",
                  "MA", "MI", "MN", "MS", "MO",
                  "MT", "NE", "NV", "NH", "NJ",
                  "NM", "NY", "NC", "ND", "OH",
                  "OK", "OR", "PA", "RI", "SC",
                  "SD", "TN", "TX", "UT", "VT",
                  "VA", "WA", "WV", "WI", "WY"}
        unwanted = {a + b for a in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                    for b in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                    if a + b not in wanted} | \
                   set(i for i in "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
        customOperators = [
            partial(mutate_to_character_set_left, wanted=wanted),
            mutate_to_character_set,
        ]
        self.find_regex(wanted, unwanted, 120, customOperators)





sample result

RI|DE|VA|CO|SC|CA|PA|LA|SD|TX|WY|GA|WI|HI|M[IASDETNO]|N[CMDJYMEVH]|VT+|CT|TN|UT|WA|WV|FL|A[RLZK]|K[YS]|O[RHK]|I[LNDA] matches: all wanted, 0 unwanted, len 117        2:44:17.252814




It produces a good result but doing so can take hours.

Now add the following custom mutation operator.



def mutate_add_wanted(genes, wanted):
    index = random.randrange(0, len(genes) + 1) if len(genes) > 0 else 0
    genes[index:index] = ['|'] + [random.choice(wanted)]
    return True




It shortcuts the process of getting all the wanted sequences into the regex by inserting a |
 meta character followed by a random wanted string. That allows the algorithm to quickly switch its focus to reducing the length of the regex.



    def test_50_state_codes(self):
...
        customOperators = [
            partial(mutate_to_character_set_left, wanted=wanted),
            mutate_to_character_set,
            partial(mutate_add_wanted, wanted=[i for i in wanted]),
        ]
        self.find_regex(wanted, unwanted, 120, customOperators)





Run 2

Now the genetic algorithm can find a successful regex in a couple of minutes, but the new mutation operator makes it grow faster than it can be reduced. This results in very long regexes like the one below that then have to be reduced after the fact, a much slower process that can take tens of minutes.



|ILKYORNV|||RI|WA|[|AK{2,}{2}MTSLCNV]]LCTDEVA|ME||VA|AK|UT|HI|LA|[FNJ]LANV|MO|AZ|FL|TX|||GA|MA[SNCM]|AR||MA|MDLANVAZ|TN|MD|NE[HMSTN)SLD]X|PAN|SCI][NH||RIN|NEVHNV]VT|GA[J|CAJI]||MNUWY|CA|NC|WIVDENH]NC|WV|ME|MS|NE|VT|MT|ILLDE|IA|LAWILNV|WY|VA|PA|KY|UT|IL|WVTW|PCAMNNC|ID|||AL|VAOK[UV]|NJ|MI|CT|OK|]|NJ|IN||CO[D|UI|MDA]ME]|UTMNC|NV|KS|NY|CO|WI|CAMT[LNCNNKSHA|OH|||OWGA]CT+ND|SD|OHSDAAL|K]ARVTMAWICA[NYWVWIWYCOOHO|WIZLM|RINH*]ANDILMSN?TN||INAMSWV|MN|WVNJ[OICM][|AVFL]WIMDI]A|N[CMEEDEH]|SC|DE|O[HR] matches: all wanted, 0 unwanted, len 493        0:02:41.872429




The growth of the regex can be controlled through the introduction of a static configuration setting on the Fitness
 class.



class Fitness:
    UseRegexLength = False
...




Then update the comparison function.



    def __gt__(self, other):
...
        if not success:
            return self.Length <= other.Length if Fitness.UseRegexLength else False
        return self.Length < other.Length




This works by controlling when the engine switches to a new genetic line. When the setting is True
 then, all other things being equal, the engine will only switch if the other regex is longer.

Finally, enable the setting in the test.



    def test_50_state_codes(self):
        UseGeneLength = True
...




Now the genetic algorithm can find the final regex in just a few minutes.


sample result

FL||LA|GA|HI|UT|CT|DE|OK|RI|A[LKRZ]|O[RH]|S[DC]|K[YS]|]|I[NL]|PA|V[AT]|C[OA]|I[AD]|M[SETNODIA]|W[VIAY]|T[XN]|N[VCYJEMDH]      matches: all wanted, 0 unwanted, len 120        0:03:13.662164




Excellent! Unsurprisingly test_state_codes
 benefits from the use of this setting too.




Exercise

Notice in the final regex above that there are still characters that could be removed, for example in |K[YS]|]|
 . Also, CT
 could be merged into C[OA]
 . Those would eventually be discovered by the genetic algorithm if a shorter goal length was used. However, there are other potential savings that it is unlikely to find. For example, LA
 , GA
 , and PA
 could be combined if there was a mutation operator for creating character-sets with a common ending letter. Try adding one.

This is a great project for experimentation and there are many more regex meta characters to play with.



Summary

This project introduced three new concepts. The first is the idea of repairing the chromosome, which is useful when some phenotype values are incompatible. The second is latent genes, or genes that are ignored in invalid combinations but used in valid ones, thus giving the algorithm another tool. The third concept is using the change in the number of genes to control chromosome growth.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch17










TIC-TAC-TOE






The next project is to build a genetic algorithm that produces human-readable rules for playing Tic-tac-toe
 without losing.

A Tic-tac-toe game board has 9 squares in a 3 by 3 grid. In this project they are numbered as follows:

1 2 3
4 5 6
7 8 9

All the squares start empty. The players take turns placing a marker (X for the first player to move, O for the opponent) on an empty square with the goal of getting three of their own markers in a single row, column, or diagonal before their opponent does.

That should be enough information to build the game portion. If you’ve worked through the previous projects you know what comes next so I’m not going to go over every line of code. Instead, I’m going to point out a couple of new things. If you get stuck, or just want to start with working code, check the code sample for this project.


Genes

The goal is to end up with a relatively short list of rules that a child could use to play the game. That’s why the rules need to be human-readable. That also eliminates index specific rules like index 1 is EMPTY and index 3 has an OPPONENT piece
 . That is not the way we teach children to play this game.

There are two gene categories: location and content.

Location genes select a move based on the location of the empty square. For example: is it a corner, edge, the center, in the top/middle/bottom row, left/middle/right column, in a diagonal, etc.

Content rules look at the content of the row/column/diagonal containing the empty square. Examples might resemble the following, depending on how much time you want to spend on grammar:

its ROW has 2 OPPONENT pieces
its COLUMN has 1 EMPTY square
its DIAGONAL has NONE of MY pieces

Move selection should work like this: The engine passes the current set of empty squares to the first rule, or more precisely filter, in the gene sequence. If a rule eliminates all the remaining empty board positions, skip it. Otherwise use its output as the input for the next filter in the gene sequence. Evaluation stops when there are no more rules, or a rule reduces the set of empty squares to one. When only one square remains, that is where the genetic algorithm’s piece should be placed.



Fitness

Calculate the fitness by playing all possible games given 1) the genetic algorithm makes the first move, and 2) the opponent makes the first move. Whenever it is the opponent’s turn, all possible moves should be played out unless there is a winning move for the opponent, in which case it wins. This can be done depth-first or breadth-first as you prefer. If at any point there are empty squares and the genetic algorithm cannot provide a move, it loses that game.

Count the number of times the genetic algorithm wins, loses, and ties. Then use those counts in a Fitness comparison function like the following:


ticTacToeTests.py

    def __gt__(self, other):
        if self.PercentLosses != other.PercentLosses:
            return self.PercentLosses < other.PercentLosses

        if self.Losses > 0:
            return False

        if self.Ties != other.Ties:
            return self.Ties < other.Ties
        return self.GeneCount < other.GeneCount




Using the percentage
 instead of the absolute number
 of losses allows the number of games played to vary. You should try the other way too so you can see how the behavior changes.



Mutation and Crossover

Use adaptive mutation rules similar to the ones in the previous project.

For crossover, combine the first half of the parent, with the last half of the donor, then call mutate. Calling mutate afterward is very important. It helps to prevent the pool from converging to a single gene sequence.



        def fnCrossover(parent, donor):
            child = parent[0:int(len(parent) / 2)] + donor[
                                                     int(len(donor) / 2):]
            fnMutate(child)
            return child






Results

It takes between 10 and 30 minutes for my implementation to produce a set of rules that never lose and there is a lot of duplication in that first success:



its ROW has 2 MINE
its DIAGONAL has 2 MINE
its ROW has 2 OPPONENT
is in CENTER
its DIAGONAL has 2 OPPONENT
its COLUMN has 2 OPPONENT
its COLUMN has 0 OPPONENT
is in DIAGONAL
its ROW has 2 MINE
its ROW has 0 MINE
its DIAGONAL has 1 OPPONENT
is a CORNER
its ROW has 1 OPPONENT
its ROW has 2 OPPONENT
its COLUMN has 1 OPPONENT
is in RIGHT COLUMN
is in BOTTOM ROW
its ROW has 0 MINE
its DIAGONAL has 0 OPPONENT
its DIAGONAL has 1 OPPONENT
is in BOTTOM ROW
0.0% Losses (0), 35.6% Ties (289), 64.4% Wins (522), 21 rules
0:21:41.420539




The final set of rules, however, has no duplication and not only guarantees we never lose, it also helps to avoid tie games when the opponent is experienced. It generally takes 1-2 hours to plateau at 14 rules and 135 ties.



its DIAGONAL has 2 MINE ①


its ROW has 2 MINE ②


its COLUMN has 2 MINE ③


its COLUMN has 2 OPPONENT ④


its ROW has 2 OPPONENT ⑤


its DIAGONAL has 0 MINE
its COLUMN has 0 MINE
its ROW has 0 OPPONENT
is in MIDDLE COLUMN
is in TOP ROW
its DIAGONAL has 1 OPPONENT
its COLUMN has 1 OPPONENT
is a CORNER
is in LEFT COLUMN
0.0% Losses (0), 21.3% Ties (135), 78.7% Wins (498), 14 rules
2:07:36.146149




Rules 1, 2 and 3 detect the winning move for us. Rules 4 and 5 handle blocking the opponent from winning. The rest of the rules work to minimize the number of tie games.

There’s nothing clever about these rules and they perform well. They are not the only generic rules possible however. For example, adding rules that check for row-, column- and diagonal-opposites of the empty square enables the genetic algorithm to find a set of rules that result in even fewer ties. A row-opposite for a square is the square at the other end of the row and a column-opposite is the square at the other end of the column.



its ROW has 2 MINE ①


its DIAGONAL has 2 MINE ②


its COLUMN has 2 MINE ③


its ROW has 2 OPPONENT ④


its COLUMN has 2 OPPONENT ⑤


is in CENTER ⑥


its ROW has 0 OPPONENT
its DIAGONAL has 0 MINE
ROW-OPPOSITE is OPPONENT
is in BOTTOM ROW
its DIAGONAL has 1 OPPONENT
is a CORNER
its COLUMN has 1 MINE
its COLUMN has 1 OPPONENT
is in LEFT COLUMN
0.0% Losses (0), 19.6% Ties (127), 80.4% Wins (522), 15 rules




As before, rules 1, 2 and 3 detect the winning move for us. Rules 4 and 5 handle blocking the opponent from winning. That means the center (rule 6) is the most valuable square on the board, as many of us learned as children.



Tournament selection

Tic-tac-toe is a simple enough game that we have the ability play out every possible game in order to evolve an optimal solution. Many other games have so many potential moves that playing all possible games is not an option. That means we need a way to get a good set of rules with partial knowledge. One way to do that is through tournament selection.

In tournament selection a generation of gene sequences (rules in this problem) is created. Each is then tested against every other gene sequence in that generation to get a fitness value. The gene sequences are then ranked by their fitness value and those with the best fitness values become the parents used to populate the next generation through crossover and mutation. Their children form about 90 percent of the next generation. The remainder could be copies of the parents (this is called elitism
 ), mutated parents, randomly generated, or some combination thereof.

Because successive generations are based on the previous one, the pool can rapidly lose diversity. This can cause the genetic algorithm to become stuck at a local minimum or maximum. That makes it doubly important to mutate the children produced through crossover. A small number of randomly generated gene sequences can be added to the pool each generation as well but this is less effective as a random sequence is unlikely to compete well against a highly evolved one.


Implementation

The tournament implementation will be added to the genetic module to make it available for other projects.

First add an enum
 that can be used like an integer for array indexes.


genetic.py

from enum import IntEnum
...
class CompetitionResult(IntEnum):
    Loss = 0,
    Tie = 1,
    Win = 2,




The tournament function first populates the parent pool and creates a convenience function for getting a parent’s sort key.



def tournament(generate_parent, crossover, compete, display, sort_key,
               numParents=10, max_generations=100):
    pool = [[generate_parent(), [0, 0, 0]]
            for _ in range(1 + numParents * numParents)]
    best, bestScore = pool[0]

    def getSortKey(x):
        return sort_key(x[0], x[1][CompetitionResult.Win],
                        x[1][CompetitionResult.Tie],
                        x[1][CompetitionResult.Loss])




Next, each gene sequence plays against every other gene sequence both as first-to-move and as the opponent, keeping track of wins, losses and ties.



    generation = 0
    while generation < max_generations:
        generation += 1
        for i in range(0, len(pool)):
            for j in range(0, len(pool)):
                if i == j:
                    continue
                playera, scorea = pool[i]
                playerb, scoreb = pool[j]
                result = compete(playera, playerb)
                scorea[result] += 1
                scoreb[2 - result] += 1




The gene sequences are then sorted and the display function is called if an improvement is found.



        pool.sort(key=getSortKey, reverse=True)
        if getSortKey(pool[0]) > getSortKey([best, bestScore]):
            best, bestScore = pool[0]
            display(best, bestScore[CompetitionResult.Win],
                    bestScore[CompetitionResult.Tie],
                    bestScore[CompetitionResult.Loss], generation)




Finally, a new generation is created by crossbreeding the best N gene sequences. They are also included in the new generation along with 1 additional randomly generated gene sequence. When the maximum number of generations have completed, the function returns the best gene sequence that was seen.



        parents = [pool[i][0] for i in range(numParents)]
        pool = [[crossover(parents[i], parents[j]), [0, 0, 0]]
                for i in range(len(parents))
                for j in range(len(parents))
                if i != j]
        pool.extend([parent, [0, 0, 0]] for parent in parents)
        pool.append([generate_parent(), [0, 0, 0]])
    return best




There’s nothing special about the usage of this function so I won’t repeat it here - see test_tournament
 in the code for this project.

It takes a little over a minute to produce a set of rules that never loses against the other rules in its generation
 . That’s the main caveat, the result is only as good as the sample size. The result improves if more parents are used since O(n4
 ) games are played in each generation but that can take quite a while.


sample result with 13 parents and 100 generations

-- generation 73 --
        its ROW has 2 OPPONENT
        its COLUMN has 2 OPPONENT
        its COLUMN has 2 MINE
        its ROW has 2 MINE
        its DIAGONAL has 0 OPPONENT
        is in MIDDLE COLUMN
        its COLUMN has 0 OPPONENT
        is in LEFT COLUMN
        is a CORNER
        is in TOP ROW
0.0% Losses (0), 45.0% Ties (152), 55.0% Wins (186), 10 rules
0:16:18.756137







Summary

This project introduced a new method of sampling and recombining gene sequences to find a good combination. One potential usage is to quickly find a starting place for a slower, more comprehensive survey of the problem space.



Final Code

The final code for this project is available from:


https://github.com/handcraftsman/GeneticAlgorithmsWithPython/tree/master/ch18










AFTERWORD






This book has given you a solid introduction to genetic algorithms. There is still a lot more to learn on this topic but you now know enough to teach yourself, and that will lead to true mastery. For your next step you have several options, they include:



	
use the module from this book to explore problems in your field of expertise,


	
switch to a different Python-based module and repeat some of the experiments in order to spin up your knowledge of that module,


	
learn about another machine learning tool like decision trees or neural networks.






Other projects you could explore:



	
Optimize a neural network https://t.co/tZammOHeSk



	
Evolve wheeled vehicles https://youtu.be/uxourrlPlf8



	
Create optimal sorting networks https://t.co/jvqma9M8Zs



	
Reproduce pictures https://youtu.be/SJEoyMsG_qM



	
and much more…​






If you found this book to be valuable then please take some time to write a review or mention it on social media. Also, please ask your school or local public library to order a copy for their collection.

Good luck!

Clinton Sheppard












	

Other books by Clinton Sheppard













[image: dt python cover.epub]



Get a hands-on introduction to building and using decision trees and random forests. Tree-based machine learning algorithms are used to categorize data by known outcomes in order to facilitate predicting outcomes in new situations.

You will learn not only how to use decision trees and random forests for classification and regression, and their respective limitations, but also how the algorithms that build them work. Each project introduces a new data concern and then walks you through modifying the code, thus building the engine just-in-time. Along the way you will gain experience making decision trees and random forests work for you.


https://www.amazon.com/dp/B0756FGJCP/



https://www.amazon.com/dp/1975860977/



[image: Read Chinese Book 1.epub]



Learn to read more than 100 essential Chinese characters with lessons that build your vocabulary one character at a time and include more than 1,650 practice sentences and phrases.

The characters in this book were selected to expose you to a variety of grammar patterns and common words. When you finish this book you will know a little more than 28 percent of the characters you will encounter in any given text on average.


https://www.amazon.com/dp/1732029814
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