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F O R E W O R D

While most portions of an operating system are main-
tained and developed by individuals who specialize in 
a given operating system, device drivers are unique: 
They’re maintained by a much broader spectrum of 
developers. Some device driver authors have extensive
experience with a particular operating system, while others have detailed 
knowledge of specific hardware components and are tasked with maintain-
ing device drivers for those components across multiple systems. Too, device 
drivers are often somewhat self-contained, so that a developer can maintain 
a device driver while viewing other parts of the system as a black box.

Of course, that black box still has an interface, and each operating system 
provides its own set of interfaces to device drivers. Device drivers on all sys-
tems need to perform many common tasks, such as discovering devices, allo-
cating resources for connected devices, and managing asynchronous events. 
However, each operating system has its own ways of dealing with these tasks, 
and each differs in the interfaces it provides for higher-level tasks. The key 



to writing a device driver that is both robust and efficient lies in understand-
ing the specific details of the interfaces that the particular operating system 
provides.

FreeBSD Device Drivers is an excellent guide to the most commonly used 
FreeBSD device driver interfaces. You’ll find coverage of lower-level inter-
faces, including attaching to eligible devices and managing device resources, 
as well as higher-level interfaces, such as interfacing with the network and 
storage stacks. In addition, the book’s coverage of several of the APIs avail-
able in the kernel environment, such as allocating memory, timers, and syn-
chronization primitives, will be useful to anyone working with the FreeBSD 
kernel. This book is a welcome resource for FreeBSD device driver authors.

John Baldwin
Kernel Developer, FreeBSD
New York
March 20, 2012
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I N T R O D U C T I O N

Welcome to FreeBSD Device Drivers! The 
goal of this book is to help you improve 

your understanding of device drivers under 
FreeBSD. By the time you finish this book, 

you should be able to build, configure, and manage 
your own FreeBSD device drivers.

This book covers FreeBSD version 8, the version recommended for pro-
duction use as of this writing. Nonetheless, most of what you’ll learn will apply 
to earlier versions and should apply to later ones as well.

Who Is This Book For?

I wrote this book as a programmer, for programmers. As such, you’ll find a 
heavy focus on programming, not theory, and you’ll examine real device 
drivers (namely, ones that control hardware). Imagine trying to write a book 
without ever having read one. Inconceivable! The same thing goes for device 
drivers.



Prerequisites

To get the most out of this book, you should be familiar with the C program-
ming language. You should also know something about operating system 
design; for example, the difference between a process and a thread.

If you lack the necessary background, I recommend reading the follow-
ing three books prior to this one, or just keeping them around as references:

 The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie 
(Prentice Hall PTR, 1988)

 Expert C Programming, by Peter van der Linden (Prentice Hall, 1994)

 The Design and Implementation of the FreeBSD Operating System, by Marshall Kirk 
McKusick and George V. Neville-Neil (Addison-Wesley Professional, 2005)

Contents at a Glance

FreeBSD Device Drivers contains the following chapters.

Chapter 1: Building and Running Modules
Provides an overview and introduction to basic device driver programming 
concepts and terminology.

Chapter 2: Allocating Memory
Describes FreeBSD’s kernel memory management routines.

Chapter 3: Device Communication and Control
Teaches you how to communicate with and control your device drivers 
from user space.

Chapter 4: Thread Synchronization
Discusses the problems and solutions associated with multithreaded pro-
gramming and concurrent execution.

Chapter 5: Delaying Execution
Describes delaying code execution and asynchronous code execution, 
and explains why these tasks are needed.

Chapter 6: Case Study: Virtual Null Modem
Contains the first of several occasions where I walk you through a real-
world device driver.

Chapter 7: Newbus and Resource Allocation
Covers the infrastructure used by FreeBSD to manage the hardware devices 
on the system. From here on, I deal exclusively with real hardware.

Chapter 8: Interrupt Handling
Discusses interrupt handling in FreeBSD.

Chapter 9: Case Study: Parallel Port Printer Driver
Walks through lpt(4), the parallel port printer driver, in its entirety.

Chapter 10: Managing and Using Resources
Covers port-mapped I/O and memory-mapped I/O.
xxiv In t roduct ion



Chapter 11: Case Study: Intelligent Platform Management Interface Driver
Reviews the parts of ipmi(4), the Intelligent Platform Management Inter-
face driver, which uses port-mapped I/O and memory-mapped I/O.

Chapter 12: Direct Memory Access
Explains how to use Direct Memory Access (DMA) in FreeBSD.

Chapter 13: Storage Drivers
Teaches you how to manage storage devices, such as disk drives, flash 
memory, and so on.

Chapter 14: Common Access Method
Provides an overview and introduction to Common Access Method 
(CAM), which you’ll use to manage host bus adapters.

Chapter 15: USB Drivers
Teaches you how to manage USB devices. It also walks through ulpt(4), 
the USB printer driver, in its entirety.

Chapter 16: Network Drivers, Part 1: Data Structures
Describes the data structures used by network drivers. It also goes over 
Message Signaled Interrupts (MSI).

Chapter 17: Network Drivers, Part 2: Packet Reception and Transmission
Examines the packet reception and transmission components of em(4), 
the Intel PCI Gigabit Ethernet adapter driver.

Welcome Aboard!

I hope you find this book useful and entertaining. As always, I welcome feed-
back with comments or bug fixes to joe@thestackframe.org.

Okay, enough with the introductory stuff. Let’s begin.
In t roduct ion xxv





B U I L D I N G  A N D  R U N N I N G  
M O D U L E S

This chapter provides an introduction to 
FreeBSD device drivers. We’ll start by describ-

ing the four different types of UNIX device driv-
ers and how they are represented in FreeBSD. We’ll 
then describe the basics of building and running load-
able kernel modules, and we’ll finish this chapter with 
an introduction to character drivers.

NOTE If you don’t understand some of the terms used above, don’t worry; we’ll define them all 
in this chapter.

Types of Device Drivers

In FreeBSD, a device is any hardware-related item that belongs to the system; 
this includes disk drives, printers, video cards, and so on. A device driver is a 
computer program that controls or “drives” a device (or sometimes numerous 



devices). In UNIX and pre-4.0 FreeBSD, there are four different types of 
device drivers:

 Character drivers, which control character devices

 Block drivers, which control block devices

 Network drivers, which control network devices

 Pseudo-device drivers, which control pseudo-devices

Character devices provide either a character-stream-oriented I/O inter-
face or, alternatively, an unstructured (raw) interface (McKusick and Neville-
Neil, 2005).

Block devices transfer randomly accessible data in fixed-size blocks (Cor-
bet et al., 2005). In FreeBSD 4.0 and later, block drivers are gone (for more 
information on this, see “Block Drivers Are Gone” on page 15).

Network devices transmit and receive data packets that are driven by the 
network subsystem (Corbet et al., 2005).

Finally, a pseudo-device is a computer program that emulates the behavior 
of a device using only software (that is, without any underlying hardware).

Loadable Kernel Modules

A device driver can be either statically compiled into the system or dynami-
cally loaded using a loadable kernel module (KLD).

NOTE Most operating systems call a loadable kernel module an LKM—FreeBSD just had to 
be different.

A KLD is a kernel subsystem that can be loaded, unloaded, started, and 
stopped after bootup. In other words, a KLD can add functionality to the ker-
nel and later remove said functionality while the system is running. Needless 
to say, our “functionality” will be device drivers.

In general, two components are common to all KLDs:

 A module event handler

 A DECLARE_MODULE macro call

Module Event Handler
A module event handler is the function that handles the initialization and shut-
down of a KLD. This function is executed when a KLD is loaded into the ker-
nel or unloaded from the kernel, or when the system is shut down. Its function 
prototype is defined in the <sys/module.h> header as follows:

typedef int (*modeventhand_t)(module_t, int /* modeventtype_t */, void *);

Here,  modeventtype_t is defined in the <sys/module.h> header like so:

typedef enum modeventtype {
        MOD_LOAD,       /* Set when module is loaded. */
2 Chapter 1



        MOD_UNLOAD,     /* Set when module is unloaded. */
        MOD_SHUTDOWN,   /* Set on shutdown. */
        MOD_QUIESCE     /* Set when module is about to be unloaded. */
} modeventtype_t;

As you can see, modeventtype_t labels whether the KLD is being  loaded 
into the kernel or  unloaded from the kernel, or whether the system is 
about to  shut down. (For now, ignore the value at ; we’ll discuss it in 
Chapter 4.)

Generally, you’d use the modeventtype_t argument in a switch statement 
to set up different code blocks for each situation. Some example code should 
help clarify what I mean:

static int
modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;

        switch (event) {
case MOD_LOAD:

                uprintf("Hello, world!\n");
                break;

case MOD_UNLOAD:
                uprintf("Good-bye, cruel world!\n");
                break;

default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

Notice how the  second argument is the  expression for the switch 
statement. Thus, this module event handler prints “Hello, world!” when the 
KLD is  loaded into the kernel, prints “Good-bye, cruel world!” when 
the KLD is  unloaded from the kernel, and returns EOPNOTSUPP (which 
stands for error: operation not supported) prior to  system shutdown.

DECLARE_MODULE Macro
The DECLARE_MODULE macro registers a KLD and its module event handler with 
the system. Here is its function prototype:

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/module.h>

DECLARE_MODULE(name, moduledata_t data, sub, order);

The arguments expected by this macro are as follows.
Bui ld ing and Running Modules 3



name

The name argument is the module name, which is used to identify the KLD.

data

The data argument expects a filled-out moduledata_t structure, which is 
defined in the <sys/module.h> header as follows:

typedef struct moduledata {
        const char      *name;
        modeventhand_t  evhand;
        void            *priv;
} moduledata_t;

Here,  name is the official module name,  evhand is the KLD’s module 
event handler, and  priv is a pointer to private data (if any exists).

sub

The sub argument specifies the kernel subsystem that the KLD belongs in. 
Valid values for this argument are defined in the sysinit_sub_id enumeration, 
found in <sys/kernel.h>.

enum sysinit_sub_id {
        SI_SUB_DUMMY            = 0x0000000,    /* Not executed.        */
        SI_SUB_DONE             = 0x0000001,    /* Processed.           */
        SI_SUB_TUNABLES         = 0x0700000,    /* Tunable values.      */
        SI_SUB_COPYRIGHT        = 0x0800001,    /* First console use.   */
        SI_SUB_SETTINGS         = 0x0880000,    /* Check settings.      */
        SI_SUB_MTX_POOL_STATIC  = 0x0900000,    /* Static mutex pool.   */
        SI_SUB_LOCKMGR          = 0x0980000,    /* Lock manager.        */
        SI_SUB_VM               = 0x1000000,    /* Virtual memory.      */
...

SI_SUB_DRIVERS          = 0x3100000,    /* Device drivers.      */
...
};

For obvious reasons, we’ll almost always set sub to  SI_SUB_DRIVERS, which 
is the device driver subsystem.

order

The order argument specifies the KLD’s order of initialization within the sub 
subsystem. Valid values for this argument are defined in the sysinit_elem_order 
enumeration, found in <sys/kernel.h>.

enum sysinit_elem_order {
        SI_ORDER_FIRST          = 0x0000000,    /* First.               */
        SI_ORDER_SECOND         = 0x0000001,    /* Second.              */
        SI_ORDER_THIRD          = 0x0000002,    /* Third.               */
        SI_ORDER_FOURTH         = 0x0000003,    /* Fourth.              */
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SI_ORDER_MIDDLE         = 0x1000000, /* Somewhere in the middle. */
        SI_ORDER_ANY            = 0xfffffff     /* Last.                */
};

In general, we’ll always set order to  SI_ORDER_MIDDLE.

Hello, world!

You now know enough to write your first KLD. Listing 1-1 is the complete 
skeleton code for a KLD.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

static int
 hello_modevent(module_t mod __unused, int event, void *arg __unused)

{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                uprintf("Hello, world!\n");
                break;
        case MOD_UNLOAD:
                uprintf("Good-bye, cruel world!\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

 static moduledata_t hello_mod = {
        "hello",
        hello_modevent,
        NULL
};

 DECLARE_MODULE(hello, hello_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 1-1: hello.c

This code contains a  module event handler—it’s identical to the 
one described in “Module Event Handler” on page 2—and a filled-out  
moduledata_t structure, which is passed as the  second argument to the  
DECLARE_MODULE macro.

In short, this KLD is just a module event handler and a DECLARE_MODULE 
call. Simple, eh?
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Compiling and Loading

To compile a KLD, you can use the <bsd.kmod.mk> Makefile. Here is the com-
plete Makefile for Listing 1-1:

 KMOD=   hello
 SRCS=   hello.c

.include <bsd.kmod.mk>

Here,  KMOD is the KLD’s name and  SRCS is the KLD’s source files. 
Incidentally, I’ll adapt this Makefile to compile every KLD.

Now, assuming Listing 1-1 and its Makefile are in the same directory, sim-
ply type make, and the compilation should proceed (very verbosely) and pro-
duce an executable named hello.ko, as shown here:

$ make
Warning: Object directory not changed from original /usr/home/ghost/hello
@ -> /usr/src/sys
machine -> /usr/src/sys/i386/include
cc -O2 -fno-strict-aliasing -pipe  -D_KERNEL -DKLD_MODULE -std=c99 -nostdinc 
-I. -I@ -I@/contrib/altq -finline-limit=8000 --param inline-unit-growth=100 -
-param large-function-growth=1000 -fno-common  -mno-align-long-strings -mpref
erred-stack-boundary=2  -mno-mmx -mno-3dnow -mno-sse -mno-sse2 -mno-sse3 -ffr
eestanding -Wall -Wredundant-decls -Wnested-externs -Wstrict-prototypes  -Wmi
ssing-prototypes -Wpointer-arith -Winline -Wcast-qual  -Wundef -Wno-pointer-s
ign -fformat-extensions -c hello.c
ld  -d -warn-common -r -d -o hello.kld hello.o
:> export_syms
awk -f /sys/conf/kmod_syms.awk hello.kld  export_syms | xargs -J% objcopy % h
ello.kld
ld -Bshareable  -d -warn-common -o hello.ko hello.kld
objcopy --strip-debug hello.ko
$ ls -F
@@           export_syms  hello.kld    hello.o
Makefile     hello.c      hello.ko*    machine@

You can then load and unload hello.ko with kldload(8) and kldunload(8), 
respectively:

$ sudo kldload ./hello.ko
Hello, world!
$ sudo kldunload hello.ko
Good-bye, cruel world!

As an aside, with a Makefile that includes <bsd.kmod.mk>, you can use make 
load and make unload instead of kldload(8) and kldunload(8), as shown here:

$ sudo make load
/sbin/kldload -v /usr/home/ghost/hello/hello.ko
Hello, world!
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Loaded /usr/home/ghost/hello/hello.ko, id=3
$ sudo make unload
/sbin/kldunload -v hello.ko
Unloading hello.ko, id=3
Good-bye, cruel world!

Congratulations! You’ve now successfully loaded code into a live kernel. 
Before moving on, one additional point is also worth mentioning. You can 
display the status of any file dynamically linked into the kernel using kldstat(8), 
like so:

$ kldstat
Id Refs Address    Size     Name
 1    4 0xc0400000 906518   kernel
 2    1 0xc0d07000 6a32c    acpi.ko
 3    1 0xc3301000 2000     hello.ko

As you can see, the output is pretty self-explanatory. Now, let’s do some-
thing more interesting.

Character Drivers

Character drivers are basically KLDs that create character devices. As men-
tioned previously, character devices provide either a character-stream-
oriented I/O interface or, alternatively, an unstructured (raw) interface. 
These (character-device) interfaces establish the conventions for accessing a 
device, which include the set of procedures that can be called to do I/O 
operations (McKusick and Neville-Neil, 2005). In short, character drivers 
produce character devices, which provide device access. For example, the 
lpt(4) driver creates the /dev/lpt0 character device, which is used to access 
the parallel port printer. In FreeBSD 4.0 and later, most devices have a 
character-device interface.

In general, three components are common to all character drivers:

 The d_foo functions

 A character device switch table

 A make_dev and destroy_dev function call

d_foo Functions
The d_foo functions, whose function prototypes are defined in the <sys/conf.h> 
header, are the I/O operations that a process can execute on a device. These 
I/O operations are mostly associated with the file I/O system calls and are 
accordingly named d_open, d_read, and so on. A character driver’s d_foo func-
tion is called when “foo” is done on its device. For example, d_read is called 
when a process reads from a device.
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Table 1-1 provides a brief description of each d_foo function.

NOTE If you don’t understand some of these operations, don’t worry; we’ll describe them in 
detail later when we implement them.

Character Device Switch Table
A character device switch table, struct cdevsw, specifies which d_foo functions 
a character driver implements. It is defined in the <sys/conf.h> header as 
follows:

struct cdevsw {
        int                     d_version;
        u_int                   d_flags;
        const char              *d_name;
        d_open_t                *d_open;
        d_fdopen_t              *d_fdopen;
        d_close_t               *d_close;
        d_read_t                *d_read;
        d_write_t               *d_write;
        d_ioctl_t               *d_ioctl;
        d_poll_t                *d_poll;
        d_mmap_t                *d_mmap;
        d_strategy_t            *d_strategy;
        dumper_t                *d_dump;
        d_kqfilter_t            *d_kqfilter;
        d_purge_t               *d_purge;
        d_spare2_t              *d_spare2;
        uid_t                   d_uid;
        gid_t                   d_gid;
        mode_t                  d_mode;
        const char              *d_kind;

Table 1-1:  d_foo Functions

Function Description

d_open Called to open the device in preparation for I/O operations

d_close Called to close the device

d_read Called to read data from the device

d_write Called to write data to the device

d_ioctl Called to perform an operation other than a read or a write

d_poll Called to check the device to see whether data is available for reading or 
space is available for writing

d_mmap Called to map a device offset into a memory address

d_kqfilter Called to register the device with a kernel event list

d_strategy Called to start a read or write operation and then immediately return

d_dump Called to write all physical memory to the device
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        /* These fields should not be messed with by drivers. */
        LIST_ENTRY(cdevsw)      d_list;
        LIST_HEAD(, cdev)       d_devs;
        int                     d_spare3;
        struct cdevsw           *d_gianttrick;
};

Here is an example character device switch table for a read/write device:

static struct cdevsw echo_cdevsw = {
        .d_version =    D_VERSION,
        .d_open =       echo_open,
        .d_close =      echo_close,
        .d_read =       echo_read,
        .d_write =      echo_write,
        .d_name =       "echo"
};

As you can see, not every d_foo function or attribute needs to be defined. 
If a d_foo function is undefined, the corresponding operation is unsupported 
(for example, a character device switch table for a read-only device would not 
define d_write).

Unsurprisingly, d_version (which denotes the version of FreeBSD this 
driver supports) and d_name (which is the driver’s name) must be defined. 
Generally, d_version is set to D_VERSION, which is a macro substitution for 
whichever version of FreeBSD it’s compiled on.

make_dev and destroy_dev Functions
The make_dev function takes a character device switch table and creates a 
character device node under /dev. Here is its function prototype:

#include <sys/param.h>
#include <sys/conf.h>

struct cdev *
make_dev(struct cdevsw *cdevsw, int minor, uid_t uid, gid_t gid,
    int perms, const char *fmt, ...);

Conversely, the destroy_dev function takes the  cdev structure returned by 
make_dev and destroys the character device node. Here is its function prototype:

#include <sys/param.h>
#include <sys/conf.h>

void
destroy_dev(struct cdev *dev);
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Mostly Harmless

Listing 1-2 is a complete character driver (based on code written by Murray 
Stokely and Søren Straarup) that manipulates a memory area as though it 
were a device. This pseudo (or memory) device lets you write and read a sin-
gle character string to and from it.

NOTE Take a quick look at this code and try to discern some of its structure. If you don’t 
understand all of it, don’t worry; an explanation follows.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>

#define BUFFER_SIZE     256

/* Forward declarations. */
static d_open_t         echo_open;
static d_close_t        echo_close;
static d_read_t         echo_read;
static d_write_t        echo_write;

 static struct cdevsw echo_cdevsw = {
        .d_version =    D_VERSION,
        .d_open =       echo_open,
        .d_close =      echo_close,
        .d_read =       echo_read,
        .d_write =      echo_write,
        .d_name =       "echo"
};

typedef struct echo {
        char buffer[BUFFER_SIZE];
        int length;
} echo_t;

 static echo_t *echo_message;
 static struct cdev *echo_dev;

static int
 echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)

{
        uprintf("Opening echo device.\n");
        return (0);
}

static int
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 echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
        uprintf("Closing echo device.\n");
        return (0);
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;

        error = copyin(uio->uio_iov->iov_base, echo_message->buffer,
            MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1));
        if (error != 0) {
                uprintf("Write failed.\n");
                return (error);
        }

        *(echo_message->buffer +
            MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1)) = 0;

        echo_message->length = MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1);

        return (error);
}

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;
        int amount;

        amount = MIN(uio->uio_resid,
            (echo_message->length - uio->uio_offset > 0) ?
             echo_message->length - uio->uio_offset : 0);

        error = uiomove(echo_message->buffer + uio->uio_offset, amount, uio);
        if (error != 0)
                uprintf("Read failed.\n");

        return (error);
}

static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                echo_message = malloc(sizeof(echo_t), M_TEMP, M_WAITOK);
                echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "echo");
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                uprintf("Echo driver loaded.\n");
                break;
        case MOD_UNLOAD:
                destroy_dev(echo_dev);
                free(echo_message, M_TEMP);
                uprintf("Echo driver unloaded.\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

DEV_MODULE(echo, echo_modevent, NULL);

Listing 1-2: echo.c

This driver starts by  defining a character device switch table, which 
contains four d_foo functions named echo_foo, where foo equals to open, close, 
read, and write. Consequently, the ensuing character device will support only 
these four I/O operations.

Next, there are two variable declarations: an echo structure pointer 
named  echo_message (which will contain a  character string and its  
length) and a cdev structure pointer named  echo_dev (which will maintain 
the cdev returned by the  make_dev call).

Then, the d_foo functions  echo_open and  echo_close are defined—
each just prints a debug message. Generally, the d_open function prepares a 
device for I/O, while d_close breaks apart those preparations.

NOTE There is a difference between “preparing a device for I/O” and “preparing (or initializ-
ing) a device.” For pseudo-devices like Listing 1-2, device initialization is done in the 
module event handler.

The remaining bits—echo_write, echo_read, echo_modevent, and DEV_MODULE—
require a more in-depth explanation and are therefore described in their own 
sections.

echo_write Function
The echo_write function acquires a character string from user space and 
stores it. Here is its function definition (again):

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;

        error = copyin(uio->uio_iov->iov_base, echo_message->buffer,
            MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1));
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        if (error != 0) {
                uprintf("Write failed.\n");
                return (error);
        }

*(echo_message->buffer +
            MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1)) = 0;

echo_message->length = MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1);

        return (error);
}

Here,  struct uio describes a character string in motion—the variables 
 iov_base and  iov_len specify the character string’s base address and 
length, respectively.

So, this function starts by  copying a character string from  user space 
to  kernel space. At most,  'BUFFER_SIZE - 1' bytes of data are copied. 
Once this is done, the character string is  null-terminated, and its length 
(minus the null terminator) is  recorded.

NOTE This isn’t the proper way to copy data from user space to kernel space. I should’ve used 
uiomove instead of copyin. However, copyin is easier to understand, and at this point, 
I just want to cover the basic structure of a character driver.

echo_read Function
The echo_read function returns the stored character string to user space. 
Here is its function definition (again):

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;
        int amount;

        amount = MIN(uio->uio_resid,
            (echo_message->length - uio->uio_offset > 0) ?
            echo_message->length - uio->uio_offset : 0);

        error = uiomove(echo_message->buffer + uio->uio_offset, amount,
            uio);
        if (error != 0)
                uprintf("Read failed.\n");

        return (error);
}

Here, the variables  uio_resid and  uio_offset specify the amount 
of data remaining to be transferred and an offset into the character string, 
respectively.
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So, this function first  determines the number of characters to return—
either the  amount the user requests or  all of it. Then echo_read  trans-
fers that  number from  kernel space to  user space.

NOTE For more on copying data between user and kernel space, see the copy(9) and uio(9) 
manual pages. I’d also recommend the OpenBSD uiomove(9) manual page.

echo_modevent Function
The echo_modevent function is the module event handler for this character 
driver. Here is its function definition (again):

static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;

        switch (event) {
        case MOD_LOAD:

echo_message = malloc(sizeof(echo_t), M_TEMP, M_WAITOK);
                echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "echo");
                uprintf("Echo driver loaded.\n");
                break;
        case MOD_UNLOAD:

destroy_dev(echo_dev);
free(echo_message, M_TEMP);

                uprintf("Echo driver unloaded.\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

On module load, this function first calls  malloc to allocate sizeof(echo_t) 
bytes of memory. Then it calls  make_dev to create a character device node 
named  echo under /dev. Note that when make_dev returns, the character 
device is “live” and its d_foo functions can be executed. Consequently, if I had 
called make_dev ahead of malloc, echo_write or echo_read could be executed 
before  echo_message points to valid memory, which would be disastrous. 
The point is: Unless your driver is completely ready, don’t call make_dev.

On module unload, this function first calls  destroy_dev to destroy the 
echo device node. Then it calls  free to release the allocated memory.
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DEV_MODULE Macro
The DEV_MODULE macro is defined in the <sys/conf.h> header as follows:

#define DEV_MODULE(name, evh, arg)                                      \
static moduledata_t name##_mod = {                                      \
    #name,                                                              \
    evh,                                                                \
    arg                                                                 \
};                                                                      \

 DECLARE_MODULE(name, name##_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE)

As you can see, DEV_MODULE merely wraps  DECLARE_MODULE. So Listing 1-2 
could have called DECLARE_MODULE, but DEV_MODULE is cleaner (and it saves you 
some keystrokes).

Don’t Panic
Now that we’ve walked through Listing 1-2, let’s give it a try:

$ sudo kldload ./echo.ko
Echo driver loaded.
$ ls -l /dev/echo
crw-------  1 root  wheel    0,  95 Jun  4 23:23 /dev/echo
$ su
Password:
# echo "DON'T PANIC" > /dev/echo
Opening echo device.
Closing echo device.
# cat /dev/echo
Opening echo device.
DON'T PANIC
Closing echo device.

Unsurprisingly, it works. Before this chapter is concluded, a crucial topic 
bears mentioning.

Block Drivers Are Gone

As mentioned previously, block devices transfer randomly accessible data 
in fixed-size blocks; for example, disk drives. Naturally, block drivers provide 
access to block devices. Block drivers are characterized by the fact that all 
I/O is cached within the kernel’s buffer cache, which makes block drivers 
unreliable, for two reasons. First, because caching can reorder a sequence of 
write operations, it deprives the writing process of the ability to identify the 
exact disk contents at any moment in time. This makes reliable crash recov-
ery of on-disk data structures (for example, filesystems) impossible. Second, 
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caching can delay write operations. So if an error occurs, the kernel cannot 
report to the process that did the write which particular operation failed. For 
these reasons, every serious application that accesses block devices specifies 
that a character-device interface always be used. Consequently, FreeBSD 
dropped support for block drivers during the modernization of the disk I/O 
infrastructure.

NOTE Obviously, FreeBSD still supports block devices. For more on this, see Chapter 13.

Conclusion

This chapter introduced you to the basics of FreeBSD device driver develop-
ment. In the following chapters, we’ll build upon the concepts described 
here to complete your driver toolkit. As an aside, because most FreeBSD 
device drivers are character drivers, don’t think of them as a primary driver 
class—they’re more like a tool used to create character device nodes.
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A L L O C A T I N G  M E M O R Y

In the previous chapter we used malloc and 
free for the allocation and release of mem-

ory. The FreeBSD kernel, however, contains 
a richer set of memory allocation primitives. In 

this chapter we’ll look at the stock kernel memory 
management routines. This includes describing malloc 
and free in more detail and introducing the malloc_type 
structure. We’ll finish this chapter by describing the 
contiguous physical memory management routines.

Memory Management Routines

The FreeBSD kernel provides four functions for non-pageable memory allo-
cation and release: malloc, free, realloc, and reallocf. These functions can 
handle requests of arbitrary size or alignment, and they are the preferred way 
to allocate kernel memory.



#include <sys/types.h>
#include <sys/malloc.h>

void *
malloc(unsigned long size, struct malloc_type *type, int flags);

void
free(void *addr, struct malloc_type *type);

void *
realloc(void *addr, unsigned long size, struct malloc_type *type,
    int flags);

void *
reallocf(void *addr, unsigned long size, struct malloc_type *type,
    int flags);

The malloc function allocates size bytes of memory in kernel space. If 
successful, a kernel virtual address is returned; otherwise, NULL is returned.

The free function releases the memory at addr—that was previously allo-
cated by malloc—for reuse. Note that free doesn’t clear this memory, which 
means that you should explicitly zero any memory whose contents you need 
to keep private. If addr is NULL, then free does nothing.

NOTE If INVARIANTS is enabled, then free will stuff any released memory with 0xdeadc0de.
Thus, if you get a page fault panic and the faulting address is around 0xdeadc0de, this 
can be a sign that you’re using freed memory.1

The realloc function changes the size of the memory at addr to size bytes. 
If successful, a kernel virtual address is returned; otherwise, NULL is returned, 
and the memory is left alone. Note that the returned address may differ from 
addr, because when the size changes, the memory may be relocated to acquire 
or provide additional room. Interestingly, this implies that you should not have 
any pointers into the memory at addr when calling realloc. If addr is NULL, then 
realloc behaves identically to malloc.

The reallocf function is identical to realloc except that on failure it 
releases the memory at addr.

The malloc, realloc, and reallocf functions provide a flags argument to 
further qualify their operational characteristics. Valid values for this argu-
ment are shown in Table 2-1.

1. INVARIANTS is a kernel debugging option. For more on INVARIANTS, see /sys/conf/NOTES.
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.

The flags argument must include either M_NOWAIT or M_WAITOK.

malloc_type Structures

The malloc, free, realloc, and reallocf functions include a type argument, 
which expects a pointer to a malloc_type structure; this structure describes the 
purpose of the allocated memory. The type argument has no impact on per-
formance; it is used for memory profiling and for basic sanity checks.

NOTE You can profile kernel dynamic memory usage, sorted by type, with the vmstat -m 
command.

MALLOC_DEFINE Macro
The MALLOC_DEFINE macro defines a new malloc_type structure. Here is its func-
tion prototype:

#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/kernel.h>

MALLOC_DEFINE(type, shortdesc, longdesc);

The type argument is the new malloc_type structure’s name. In general, 
type should begin with M_ and be in uppercase letters; for example, M_FOO.

The shortdesc argument expects a short description of the new malloc_type 
structure. This argument is used in the output of vmstat -m. As a result, it 
shouldn’t contain any spaces so that it’s easier to parse vmstat -m’s output in 
scripts.

The longdesc argument expects a long description of the new malloc_type 
structure.

Table 2-1:  malloc, realloc, and reallocf Symbolic Constants

Constant Description

M_ZERO Causes the allocated memory to be set to zero

M_NOWAIT Causes malloc, realloc, and reallocf to return NULL if the allocation cannot 
be immediately fulfilled due to resource shortage; M_NOWAIT is required when 
running in an interrupt context

M_WAITOK Indicates that it is okay to wait for resources; if the allocation cannot be 
immediately fulfilled, the current process is put to sleep to wait for resources 
to become available; when M_WAITOK is specified, malloc, realloc, and 
reallocf cannot return NULL
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MALLOC_DECLARE Macro
The MALLOC_DECLARE macro declares a new malloc_type structure with the extern 
keyword. Here is its function prototype:

#include <sys/types.h>
#include <sys/malloc.h>

MALLOC_DECLARE(type);

This macro is defined in the <sys/malloc.h> header as follows:

#define MALLOC_DECLARE(type) \
        extern struct malloc_type type[1]

As an aside, if you require a private malloc_type structure, you would 
prefix the MALLOC_DEFINE call with the static keyword. In fact, a non-static 
MALLOC_DEFINE call without a corresponding MALLOC_DECLARE call actually causes 
a warning under gcc 4.x.

Tying Everything Together

Listing 2-1 is a revision of Listing 1-2 that uses its own malloc_type structure 
instead of the kernel-defined M_TEMP.2 Listing 2-1 should clarify any misunder-
standings you may have about MALLOC_DEFINE and MALLOC_DECLARE.

NOTE To save space, the functions echo_open, echo_close, echo_write, and echo_read aren’t 
listed here, as they haven’t been changed.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>

#define BUFFER_SIZE     256

 MALLOC_DECLARE(M_ECHO);
 MALLOC_DEFINE(M_ECHO, "echo_buffer", "buffer for echo driver");

static d_open_t         echo_open;
static d_close_t        echo_close;
static d_read_t         echo_read;
static d_write_t        echo_write;

2. M_TEMP is defined in /sys/kern/kern_malloc.c.
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static struct cdevsw echo_cdevsw = {
        .d_version =    D_VERSION,
        .d_open =       echo_open,
        .d_close =      echo_close,
        .d_read =       echo_read,
        .d_write =      echo_write,
        .d_name =       "echo"
};

typedef struct echo {
        char buffer[BUFFER_SIZE];
        int length;
} echo_t;

static echo_t *echo_message;
static struct cdev *echo_dev;

static int
echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
...
}

static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
...
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}

static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                echo_message = malloc(sizeof(echo_t), M_ECHO, M_WAITOK);
                echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "echo");
                uprintf("Echo driver loaded.\n");
                break;
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        case MOD_UNLOAD:
                destroy_dev(echo_dev);
                free(echo_message, M_ECHO);
                uprintf("Echo driver unloaded.\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

DEV_MODULE(echo, echo_modevent, NULL);

Listing 2-1: echo-2.0.c

This driver  declares and  defines a new malloc_type structure named 
M_ECHO. To use this malloc_type structure, malloc and free are   adjusted 
accordingly.

NOTE Because M_ECHO is used only locally, MALLOC_DECLARE is unnecessary—it’s only included 
here for demonstration purposes.

Now that Listing 2-1 uses a unique malloc_type structure, we can easily 
profile its dynamic memory usage, like so:

$ sudo kldload ./echo-2.0.ko
Echo driver loaded.
$ vmstat -m | head -n 1 && vmstat -m | grep "echo_buffer"
         Type InUse MemUse HighUse Requests  Size(s)
  echo_buffer     1     1K       -        1  512

Notice that Listing 2-1 requests 512 bytes, though sizeof(echo_t) is 
only 260 bytes. This is because malloc rounds up to the nearest power of two 
when allocating memory. Additionally, note that the second argument to 
MALLOC_DEFINE (echo_buffer in this example) is used in the output of vmstat 
(instead of the first argument).

Contiguous Physical Memory Management Routines

The FreeBSD kernel provides two functions for contiguous physical memory 
management: contigmalloc and contigfree. Ordinarily, you’ll never use these 
functions. They’re primarily for dealing with machine-dependent code and 
the occasional network driver.

#include <sys/types.h>
#include <sys/malloc.h>

void *
contigmalloc(unsigned long size, struct malloc_type *type, int flags,
    vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
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    unsigned long boundary);

void
contigfree(void *addr, unsigned long size, struct malloc_type *type);

The contigmalloc function allocates size bytes of contiguous physical 
memory. If size is 0, contigmalloc will panic. If successful, the allocation will 
reside between physical addresses low and high, inclusive.

The alignment argument denotes the physical alignment, in bytes, of the 
allocated memory. This argument must be a power of two.

The boundary argument specifies the physical address boundaries that 
cannot be crossed by the allocated memory; that is, it cannot cross any multiple 
of boundary. This argument must be 0, which indicates no boundary restrictions, 
or a power of two.

The flags argument modifies contigmalloc’s behavior. Valid values for 
this argument are shown in Table 2-2.

The contigfree function releases the memory at addr—that was previously 
allocated by contigmalloc—for reuse. The size argument is the amount of 
memory to release. Generally, size should equal the amount allocated.

A Straightforward Example

Listing 2-2 modifies Listing 2-1 to use contigmalloc and contigfree instead of 
malloc and free. Listing 2-2 should clarify any misunderstandings you may 
have about contigmalloc and contigfree.

NOTE To save space, the functions echo_open, echo_close, echo_write, and echo_read aren’t 
listed here, as they haven’t been changed.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>

Table 2-2:  contigmalloc Symbolic Constants

Constant Description

M_ZERO Causes the allocated physical memory to be zero filled

M_NOWAIT Causes contigmalloc to return NULL if the allocation cannot be immediately 
fulfilled due to resource shortage

M_WAITOK Indicates that it is okay to wait for resources; if the allocation cannot be 
immediately fulfilled, the current process is put to sleep to wait for resources 
to become available
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#define BUFFER_SIZE     256

MALLOC_DEFINE(M_ECHO, "echo_buffer", "buffer for echo driver");

static d_open_t         echo_open;
static d_close_t        echo_close;
static d_read_t         echo_read;
static d_write_t        echo_write;

static struct cdevsw echo_cdevsw = {
        .d_version =    D_VERSION,
        .d_open =       echo_open,
        .d_close =      echo_close,
        .d_read =       echo_read,
        .d_write =      echo_write,
        .d_name =       "echo"
};

typedef struct echo {
        char buffer[BUFFER_SIZE];
        int length;
} echo_t;

static echo_t *echo_message;
static struct cdev *echo_dev;

static int
echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
...
}

static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
...
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}

static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;
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        switch (event) {
        case MOD_LOAD:
                echo_message = contigmalloc(sizeof(echo_t), M_ECHO,
                    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE,
                    1024 * 1024);
                echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "echo");
                uprintf("Echo driver loaded.\n");
                break;
        case MOD_UNLOAD:
                destroy_dev(echo_dev);
                contigfree(echo_message, sizeof(echo_t), M_ECHO);
                uprintf("Echo driver unloaded.\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

DEV_MODULE(echo, echo_modevent, NULL);

Listing 2-2: echo_contig.c

Here,  contigmalloc allocates  sizeof(echo_t) bytes of  zero-filled 
memory. This memory resides between physical address  0 and  0xffffffff, 
is aligned on a  PAGE_SIZE boundary, and does not cross a  1MB address 
boundary.

The following output shows the results from vmstat -m after loading List-
ing 2-2:

$ sudo kldload ./echo_contig.ko
Echo driver loaded.
$ vmstat -m | head -n 1 && vmstat -m | grep "echo_buffer"
         Type InUse MemUse HighUse Requests  Size(s)
  echo_buffer     1     4K       -        1

Notice that Listing 2-2 uses 4KB of memory, though sizeof(echo_t) is only 
260 bytes. This is because contigmalloc allocates memory in PAGE_SIZE blocks. 
Predictably, this example was run on an i386 machine, which uses a page size 
of 4KB.

Conclusion

This chapter detailed FreeBSD’s memory management routines and con-
tiguous physical memory management routines. It also introduced the 
malloc_type structure.

Incidentally, most drivers should define their own malloc_type structure.
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D E V I C E  C O M M U N I C A T I O N  
A N D C O N T R O L

In Chapter 1 we constructed a driver that 
could read from and write to a device. In addi-

tion to reading and writing, most drivers need to 
perform other I/O operations, such as reporting error 
information, ejecting removable media, or activating 
self-destruct sequences. This chapter details how to 
make drivers do those things.

We’ll start by describing the ioctl interface, also known as the input/output 
control interface. This interface is commonly used for device communication 
and control. Then we’ll describe the sysctl interface, also known as the system 
control interface. This interface is used to dynamically change or examine the 
kernel’s parameters, which includes device drivers.



ioctl

The ioctl interface is the catchall of I/O operations (Stevens, 1992). Any 
operation that cannot be expressed using d_read or d_write (that is, any oper-
ation that’s not a data transfer) is supported by d_ioctl.1 For example, the 
CD-ROM driver’s d_ioctl function performs 29 distinct operations, such as 
ejecting the CD, starting audio playback, stopping audio playback, muting 
the audio, and so on.

The function prototype for d_ioctl is defined in the <sys/conf.h> header 
as follows:

typedef int d_ioctl_t(struct cdev *dev, u_long cmd, caddr_t data,
                      int fflag, struct thread *td);

Here,  cmd is an ioctl command passed from user space. ioctl commands 
are driver-defined numeric constants that identify the different I/O opera-
tions that a d_ioctl function can perform. Generally, you’d use the cmd argu-
ment in a switch statement to set up a code block for each I/O operation. 
Any arguments required for an I/O operation are passed through  data.

Here is an example d_ioctl function:

NOTE Just concentrate on the structure of this code and ignore what it does.

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
        int error = 0;

        switch (cmd) {
case ECHO_CLEAR_BUFFER:

                memset(echo_message->buffer, '\0',
                    echo_message->buffer_size);
                echo_message->length = 0;
                uprintf("Buffer cleared.\n");
                break;

case ECHO_SET_BUFFER_SIZE:
                error = echo_set_buffer_size(*(int *)data);
                if (error == 0)
                        uprintf("Buffer resized.\n");
                break;

default:
                error = ENOTTY;
                break;
        }

        return (error);
}

1. The d_ioctl function was first introduced in “d_foo Functions” on page 7.
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Notice how the  cmd argument is the  expression for the switch state-
ment. The constants  ECHO_CLEAR_BUFFER and  ECHO_SET_BUFFER_SIZE are 
(obviously) the ioctl commands. All ioctl commands are defined using one 
of four macros. I’ll discuss these macros in the following section.

Additionally, notice how the  data argument is  cast—as an integer 
pointer—before it is dereferenced. This is because data is fundamentally a 
“pointer to void.”

NOTE Pointers to void can hold any pointer type, so they must be cast before they’re derefer-
enced. In fact, you can’t directly dereference a pointer to void.

Finally, according to the POSIX standard, when an inappropriate ioctl 
command is received, the error code ENOTTY should be returned (Corbet et 
al., 2005). Hence, the  default block sets  error to ENOTTY.

NOTE At one point in time, only TTY drivers had an ioctl function, which is why ENOTTY 
means “error: inappropriate ioctl for device” (Corbet et al., 2005).

Now that you’ve examined the structure of a d_ioctl function, I’ll explain 
how to define an ioctl command.

Defining ioctl Commands

To define an ioctl command, you’d call one of the following macros: _IO, 
_IOR, _IOW, or _IOWR. An explanation of each macro is provided in Table 3-1.

_IO, _IOR, _IOW, and _IOWR are defined in the <sys/ioccom.h> header as follows:

#define _IO(g,n)        _IOC(IOC_VOID,  (g), (n), 0)
#define _IOR(g,n,t)     _IOC(IOC_OUT,   (g), (n), sizeof(t))
#define _IOW(g,n,t)     _IOC(IOC_IN,    (g), (n), sizeof(t))
#define _IOWR(g,n,t)    _IOC(IOC_INOUT, (g), (n), sizeof(t))

The g argument, which stands for group, expects an 8-bit magic number. 
You can choose any number—just use it throughout your driver.

Table 3-1: ioctl Command Macros

Macro Description

_IO Creates an ioctl command for an I/O operation that transfers no data—in other 
words, the data argument in d_ioctl will be unused—for example, ejecting 
removable media

_IOR Creates an ioctl command for a read operation; read operations transfer data from 
the device to user space; for example, retrieving error information

_IOW Creates an ioctl command for a write operation; write operations transfer data to the 
device from user space; for example, setting a device parameter

_IOWR Creates an ioctl command for an I/O operation with bidirectional data transfers
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The n argument is the ordinal number. This number is used to differen-
tiate your driver’s ioctl commands from one another.

Finally, the t argument is the type of data transferred during the I/O 
operation. Obviously, the _IO macro does not have a t argument, because no 
data transfer occurs.

Generally, ioctl command definitions look like this:

#define FOO_DO_SOMETHING        _IO('F', 1)
#define FOO_GET_SOMETHING       _IOR('F', 2, int)
#define FOO_SET_SOMETHING       _IOW('F', 3, int)
#define FOO_SWITCH_SOMETHING    _IOWR('F', 10, struct foo)

Here, 'F' is the magic number for these ioctl commands. Customarily, 
the first letter of your driver’s name—in uppercase—is selected as the magic 
number.

Naturally, all of the ordinal numbers are unique. But they don’t have to 
be consecutive. You can leave gaps.

Lastly, note that you can pass  structures as the t argument. Using a 
structure is how you’ll pass multiple arguments to an ioctl-based operation.

Implementing ioctl

Listing 3-1 is a revision of Listing 2-1 that adds in a d_ioctl function. As you’ll 
see, this d_ioctl function handles two ioctl commands.

NOTE Take a quick look at this code and try to discern some of its structure. If you don’t 
understand all of it, don’t worry; an explanation follows.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>

MALLOC_DEFINE(M_ECHO, "echo_buffer", "buffer for echo driver");

 #define ECHO_CLEAR_BUFFER       _IO('E', 1)
 #define ECHO_SET_BUFFER_SIZE    _IOW('E', 2, int)

static d_open_t         echo_open;
static d_close_t        echo_close;
static d_read_t         echo_read;
static d_write_t        echo_write;
static d_ioctl_t        echo_ioctl;

static struct cdevsw echo_cdevsw = {
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        .d_version =    D_VERSION,
        .d_open =       echo_open,
        .d_close =      echo_close,
        .d_read =       echo_read,
        .d_write =      echo_write,

.d_ioctl =      echo_ioctl,
        .d_name =       "echo"
};

typedef struct echo {
int buffer_size;

        char *buffer;
        int length;
} echo_t;

static echo_t *echo_message;
static struct cdev *echo_dev;

static int
echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
        uprintf("Opening echo device.\n");
        return (0);
}

static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
        uprintf("Closing echo device.\n");
        return (0);
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;
        int amount;

        amount = MIN(uio->uio_resid,
            (echo_message->buffer_size - 1 - uio->uio_offset > 0) ?
             echo_message->buffer_size - 1 - uio->uio_offset : 0);
        if (amount == 0)
                return (error);

        error = uiomove(echo_message->buffer, amount, uio);
        if (error != 0) {
                uprintf("Write failed.\n");
                return (error);
        }

        echo_message->buffer[amount] = '\0';
        echo_message->length = amount;

        return (error);
}
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static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;
        int amount;

        amount = MIN(uio->uio_resid,
            (echo_message->length - uio->uio_offset > 0) ?
             echo_message->length - uio->uio_offset : 0);

        error = uiomove(echo_message->buffer + uio->uio_offset, amount, uio);
        if (error != 0)
                uprintf("Read failed.\n");

        return (error);
}

static int
echo_set_buffer_size(int size)
{
        int error = 0;

        if (echo_message->buffer_size == size)
                return (error);

        if (size >= 128 && size <= 512) {
                echo_message->buffer = realloc(echo_message->buffer, size,
                    M_ECHO, M_WAITOK);
                echo_message->buffer_size = size;

                if (echo_message->length >= size) {
                        echo_message->length = size - 1;
                        echo_message->buffer[size - 1] = '\0';
                }
        } else
                error = EINVAL;

        return (error);
}

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
        int error = 0;

        switch (cmd) {
        case ECHO_CLEAR_BUFFER:
                memset(echo_message->buffer, '\0',
                    echo_message->buffer_size);
                echo_message->length = 0;
                uprintf("Buffer cleared.\n");
                break;
32 Chapter 3



        case ECHO_SET_BUFFER_SIZE:
                error = echo_set_buffer_size(*(int *)data);
                if (error == 0)
                        uprintf("Buffer resized.\n");
                break;
        default:
                error = ENOTTY;
                break;
        }

        return (error);
}

static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                echo_message = malloc(sizeof(echo_t), M_ECHO, M_WAITOK);
                echo_message->buffer_size = 256;
                echo_message->buffer = malloc(echo_message->buffer_size,
                    M_ECHO, M_WAITOK);
                echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "echo");
                uprintf("Echo driver loaded.\n");
                break;
        case MOD_UNLOAD:
                destroy_dev(echo_dev);
                free(echo_message->buffer, M_ECHO);
                free(echo_message, M_ECHO);
                uprintf("Echo driver unloaded.\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

DEV_MODULE(echo, echo_modevent, NULL);

Listing 3-1: echo-3.0.c

This driver starts by defining two ioctl commands:  ECHO_CLEAR_BUFFER 
(which clears the memory buffer) and  ECHO_SET_BUFFER_SIZE (which takes 
an  integer to resize the memory buffer).

NOTE Usually, ioctl commands are defined in a header file—they were defined in Listing 3-1 
solely to simplify this discussion.
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Obviously, to accommodate adding in a d_ioctl function, the character 
device switch table was  adapted. Moreover, struct echo was adjusted to 
include a variable ( buffer_size) to maintain the buffer size (because it 
can be changed now). Naturally, Listing 3-1 was   altered to use this new 
variable.

NOTE Interestingly, only echo_write had to be altered. The echo_open, echo_close, and 
echo_read functions remain the same.

The echo_write, echo_set_buffer_size, echo_ioctl, and echo_modevent func-
tions call for a more in-depth explanation and are therefore described in 
their own sections.

echo_write Function
As mentioned above, the echo_write function was altered from its Listing 2-1 
(and Listing 1-2) form. Here is its function definition (again):

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;
        int amount;

        amount = MIN(uio->uio_resid,
(echo_message->buffer_size - 1 - uio->uio_offset > 0) ?

            echo_message->buffer_size - 1 - uio->uio_offset : 0);
        if (amount == 0)
                return (error);

        error = uiomove(echo_message->buffer, amount, uio);
        if (error != 0) {
                uprintf("Write failed.\n");
                return (error);
        }

        echo_message->buffer[amount] = '\0';
        echo_message->length = amount;

        return (error);
}

This version of echo_write uses  uiomove (as described in Chapter 1) 
instead of copyin. Note that uiomove decrements uio->uio_resid (by one) and 
increments uio->uio_offset (by one) for each byte copied. This lets multiple 
calls to uiomove effortlessly copy a chunk of data.
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NOTE You’ll recall that uio->uio_resid and uio->uio_offset denote the number of bytes 
remaining to be transferred and an offset into the data (that is, the character string), 
respectively.

This function starts by  determining the number of bytes to copy—either 
the  amount the user sent or  whatever the buffer can accommodate. Then 
it  transfers that  amount from  user space to  kernel space.

The remainder of this function should be self-explanatory.

echo_set_buffer_size Function
As its name implies, the echo_set_buffer_size function takes an integer to resize 
the memory buffer echo_message->buffer. Here is its function definition (again):

static int
echo_set_buffer_size(int size)
{
        int error = 0;

if (echo_message->buffer_size == size)
return (error);

        if (size >= 128 && size <= 512) {
                echo_message->buffer = realloc(echo_message->buffer, size,
                    M_ECHO, M_WAITOK);

echo_message->buffer_size = size;

if (echo_message->length >= size) {
                        echo_message->length = size - 1;
                        echo_message->buffer[size - 1] = '\0';
                }
        } else
                error = EINVAL;

        return (error);
}

This function can be split into three parts. The first part  confirms that 
the  current and  proposed buffer sizes are distinct (or else  nothing 
needs to occur).

The second part  changes the size of the memory buffer. Then it  
records the new buffer size. Note that if the data stored in the buffer is 
longer than the proposed buffer size, the resize operation (that is, realloc) 
will truncate that data.

The third part comes about only  if the data stored in the buffer was 
truncated. It begins by  correcting the stored data’s length. Then it  null-
terminates the data.
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echo_ioctl Function
The echo_ioctl function is the d_ioctl function for Listing 3-1. Here is its 
function definition (again):

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
        int error = 0;

        switch (cmd) {
case ECHO_CLEAR_BUFFER:

                memset(echo_message->buffer, '\0',
                    echo_message->buffer_size);
                echo_message->length = 0;
                uprintf("Buffer cleared.\n");
                break;

case ECHO_SET_BUFFER_SIZE:
                error = echo_set_buffer_size(*(int *)data);
                if (error == 0)
                        uprintf("Buffer resized.\n");
                break;
        default:
                error = ENOTTY;
                break;
        }

        return (error);
}

This function can perform one of two ioctl-based operations. The first  
clears the memory buffer. It begins by  zeroing the buffer. Then it  sets 
the data length to 0.

The second  resizes the memory buffer by calling  echo_set_buffer_size. 
Note that this operation requires an  argument: the proposed buffer size. 
This argument is obtained from user space through  data.

NOTE Remember that you must cast data before it can be dereferenced.

echo_modevent Function
As you know, the echo_modevent function is the module event handler. Like 
echo_write, this function had to be altered to accommodate adding in 
echo_ioctl. Here is its function definition (again):

static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;
36 Chapter 3



        switch (event) {
        case MOD_LOAD:
                echo_message = malloc(sizeof(echo_t), M_ECHO, M_WAITOK);
                echo_message->buffer_size = 256;
                echo_message->buffer = malloc(echo_message->buffer_size,
                    M_ECHO, M_WAITOK);
                echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "echo");
                uprintf("Echo driver loaded.\n");
                break;
        case MOD_UNLOAD:
                destroy_dev(echo_dev);
                free(echo_message->buffer, M_ECHO);
                free(echo_message, M_ECHO);
                uprintf("Echo driver unloaded.\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

This version of echo_modevent allocates memory for the  echo structure 
and  memory buffer individually—that’s the only change. Previously, the 
memory buffer couldn’t be resized. So, individual memory allocations were 
unnecessary.

Don’t Panic
Now that we’ve walked through Listing 3-1, let’s give it a try:

$ sudo kldload ./echo-3.0.ko
Echo driver loaded.
$ su
Password:
# echo "DON'T PANIC" > /dev/echo
Opening echo device.
Closing echo device.
# cat /dev/echo
Opening echo device.
DON'T PANIC
Closing echo device.

Apparently it works. But how do we invoke echo_ioctl?

Invoking ioctl

To invoke a d_ioctl function, you’d use the ioctl(2) system call.
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#include <sys/ioctl.h>

int
ioctl(int d, unsigned long request, ...);

The d argument, which stands for descriptor, expects a file descriptor for a 
device node. The request argument is the ioctl command to be issued (for 
example, ECHO_CLEAR_BUFFER). The remaining argument (...) is a pointer to 
the data that’ll be passed to the d_ioctl function.

Listing 3-2 presents a command-line utility designed to invoke the 
echo_ioctl function in Listing 3-1:

#include <sys/types.h>
#include <sys/ioctl.h>

#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

 #define ECHO_CLEAR_BUFFER       _IO('E', 1)
 #define ECHO_SET_BUFFER_SIZE    _IOW('E', 2, int)

static enum {UNSET, CLEAR, SETSIZE} action = UNSET;

/*
 * The usage statement: echo_config -c | -s size
 */

static void
usage()
{
        /*
         * Arguments for this program are "either-or." That is,
         * 'echo_config -c' and 'echo_config -s size' are valid; however,
         * 'echo_config -c -s size' is invalid.
         */

        fprintf(stderr, "usage: echo_config -c | -s size\n");
        exit(1);
}

/*
 * This program clears or resizes the memory buffer
 * found in /dev/echo.
 */

int
main(int argc, char *argv[])
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{
        int ch, fd, i, size;
        char *p;

        /*
         * Parse the command-line argument list to determine
         * the correct course of action.
         *
         *    -c:      clear the memory buffer
         *    -s size: resize the memory buffer to size.
         */

        while ((ch = getopt(argc, argv, "cs:")) != -1)
                switch (ch) {
                case 'c':
                        if (action != UNSET)
                                usage();
                        action = CLEAR;
                        break;
                case 's':
                        if (action != UNSET)
                                usage();
                        action = SETSIZE;
                        size = (int)strtol(optarg, &p, 10);
                        if (*p)
                                errx(1, "illegal size -- %s", optarg);
                        break;
                default:
                        usage();
                }

        /*
         * Perform the chosen action.
         */

        if (action == CLEAR) {
                fd = open("/dev/echo", O_RDWR);
                if (fd < 0)
                        err(1, "open(/dev/echo)");

                i = ioctl(fd, ECHO_CLEAR_BUFFER, NULL);
                if (i < 0)
                        err(1, "ioctl(/dev/echo)");

                close (fd);
        } else if (action == SETSIZE) {
                fd = open("/dev/echo", O_RDWR);
                if (fd < 0)
                        err(1, "open(/dev/echo)");

                i = ioctl(fd, ECHO_SET_BUFFER_SIZE, &size);
                if (i < 0)
                        err(1, "ioctl(/dev/echo)");

                close (fd);
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        } else
                usage();

        return (0);
}

Listing 3-2: echo_config.c

NOTE Listing 3-2 is a fairly standard command-line utility. As such, I won’t cover its pro-
gram structure. Instead, I’ll concentrate on how it invokes echo_ioctl.

This program begins by redefining  ECHO_CLEAR_BUFFER and  
ECHO_SET_BUFFER_SIZE.2 To issue an ioctl command, Listing 3-2 starts by
  opening /dev/echo. Then it   calls ioctl(2) with the appropriate 
arguments.

Note that since ECHO_CLEAR_BUFFER doesn’t transmit any data,  NULL is 
passed as the third argument to ioctl(2).

The following shows the results from executing Listing 3-2 to clear the 
memory buffer:

$ sudo cat /dev/echo
Opening echo device.
DON'T PANIC
Closing echo device.
$ sudo ./echo_config -c
Opening echo device.
Buffer cleared.
Closing echo device.
$ sudo cat /dev/echo
Opening echo device.
Closing echo device.

The following shows the results from executing Listing 3-2 to resize the 
memory buffer:

$ sudo ./echo_config -s 128
Opening echo device.
Buffer resized.
Closing echo device.

sysctl

As mentioned earlier, the sysctl interface is used to dynamically change or 
examine the kernel’s parameters, which includes device drivers. For exam-
ple, some drivers let you enable (or disable) debug options using sysctls.

NOTE This book was written under the assumption that you know how to work with sysctls; if 
you don’t, see the sysctl(8) manual page.

2. This step could have been avoided by defining those ioctl commands in a header file.
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Unlike with previous topics, I’m going to take a holistic approach to 
explain sysctl. That is, I’m going to show an example first, and then I’ll 
describe the sysctl functions. I found this to be the easiest way to grok imple-
menting sysctls.

Implementing sysctls, Part 1

Listing 3-3 is a complete KLD (based on code written by Andrzej Bialecki) 
that creates multiple sysctls.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/sysctl.h>

static long  a = 100;
static int   b = 200;
static char *c = "Are you suggesting coconuts migrate?";

static struct sysctl_ctx_list clist;
static struct sysctl_oid *poid;

static int
 sysctl_pointless_procedure(SYSCTL_HANDLER_ARGS)

{
        char *buf = "Not at all. They could be carried.";
        return (sysctl_handle_string(oidp, buf, strlen(buf), req));
}

static int
pointless_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                sysctl_ctx_init(&clist);

                poid = SYSCTL_ADD_NODE(&clist,
                    SYSCTL_STATIC_CHILDREN(/* tree top */), OID_AUTO,
                    "example", CTLFLAG_RW, 0, "new top-level tree");
                if (poid == NULL) {
                        uprintf("SYSCTL_ADD_NODE failed.\n");
                        return (EINVAL);
                }
                SYSCTL_ADD_LONG(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
                    "long", CTLFLAG_RW, &a, "new long leaf");
                SYSCTL_ADD_INT(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
                    "int", CTLFLAG_RW, &b, 0, "new int leaf");

                poid = SYSCTL_ADD_NODE(&clist, SYSCTL_CHILDREN(poid),
                    OID_AUTO, "node", CTLFLAG_RW, 0,
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                    "new tree under example");
                if (poid == NULL) {
                        uprintf("SYSCTL_ADD_NODE failed.\n");
                        return (EINVAL);
                }
                SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
                    "proc", CTLFLAG_RD, 0, 0, sysctl_pointless_procedure,
                    "A", "new proc leaf");

                poid = SYSCTL_ADD_NODE(&clist,
                    SYSCTL_STATIC_CHILDREN(_debug), OID_AUTO, "example",
                    CTLFLAG_RW, 0, "new tree under debug");
                if (poid == NULL) {
                        uprintf("SYSCTL_ADD_NODE failed.\n");
                        return (EINVAL);
                }
                SYSCTL_ADD_STRING(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
                    "string", CTLFLAG_RD, c, 0, "new string leaf");

                uprintf("Pointless module loaded.\n");
                break;
        case MOD_UNLOAD:
                if (sysctl_ctx_free(&clist)) {
                        uprintf("sysctl_ctx_free failed.\n");
                        return (ENOTEMPTY);
                }
                uprintf("Pointless module unloaded.\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

static moduledata_t pointless_mod = {
        "pointless",
        pointless_modevent,
        NULL
};

DECLARE_MODULE(pointless, pointless_mod, SI_SUB_EXEC, SI_ORDER_ANY);

Listing 3-3: pointless.c

On module load, Listing 3-3 starts by  initializing a sysctl context 
named clist. Generally speaking, sysctl contexts are responsible for keeping 
track of dynamically created sysctls—this is why clist gets passed to every 
SYSCTL_ADD_* call.

The first  SYSCTL_ADD_NODE call creates a new top-level category named 
example. The  SYSCTL_ADD_LONG call creates a new sysctl named long that 
handles a long variable. Notice that SYSCTL_ADD_LONG’s second argument is 
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SYSCTL_CHILDREN(poid)3 and that poid contains the return value from 
SYSCTL_ADD_NODE. Thus, long is placed under example, like so:

example.long

The  SYSCTL_ADD_INT call creates a new sysctl named int that handles 
an integer variable. For reasons identical to those for SYSCTL_ADD_LONG, int 
is placed under example:

example.long
example.int

The second  SYSCTL_ADD_NODE call creates a new subcategory named node, 
which is placed under example, like so:

example.long
example.int
example.node

The  SYSCTL_ADD_PROC call creates a new sysctl named proc that employs 
a  function to handle its read and write requests; in this case, the function 
simply prints some flavor text. You’ll note that SYSCTL_ADD_PROC’s second argu-
ment is also SYSCTL_CHILDREN(poid). But poid now contains the return value 
from the second SYSCTL_ADD_NODE call. So, proc is placed under node:

example.long
example.int
example.node.proc

The third  SYSCTL_ADD_NODE call creates a new subcategory named example. 
As you can see, its second argument is SYSCTL_STATIC_CHILDREN(_debug),4 which 
puts example under debug (which is a static top-level category).

debug.example
example.long
example.int
example.node.proc

The  SYSCTL_ADD_STRING call creates a new sysctl named string that 
handles a character string. For obvious reasons, string is placed under 
debug.example:

debug.example.string
example.long
example.int
example.node.proc

3. The SYSCTL_CHILDREN macro is described on page 47.

4. The SYSCTL_STATIC_CHILDREN macro is described on page 47.
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On module unload, Listing 3-3 simply passes clist to  sysctl_ctx_free 
to destroy every sysctl created during module load.

The following shows the results from loading Listing 3-3:

$ sudo kldload ./pointless.ko
Pointless module loaded.
$ sysctl -A | grep example
debug.example.string: Are you suggesting coconuts migrate?
example.long: 100
example.int: 200
example.node.proc: Not at all. They could be carried.

Now, let’s discuss in detail the different functions and macros used in 
Listing 3-3.

sysctl Context Management Routines

As mentioned previously, sysctl contexts manage dynamically created sysctls. 
A sysctl context is initialized via the sysctl_ctx_init function.

#include <sys/types.h>
#include <sys/sysctl.h>

int
sysctl_ctx_init(struct sysctl_ctx_list *clist);

After a sysctl context is initialized, it can be passed to the various 
SYSCTL_ADD_* macros. These macros will update the sysctl context with 
pointers to the newly created sysctls.

Conversely, the sysctl_ctx_free function takes a sysctl context and 
destroys every sysctl that it has a pointer to.

#include <sys/types.h>
#include <sys/sysctl.h>

int
sysctl_ctx_free(struct sysctl_ctx_list *clist);

If a sysctl cannot be destroyed, all the sysctls that were associated with the 
sysctl context are reinstated.

Creating Dynamic sysctls

The FreeBSD kernel provides the following 10 macros for creating sysctls 
during runtime:

#include <sys/types.h>
#include <sys/sysctl.h>
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struct sysctl_oid *
SYSCTL_ADD_OID(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int kind, void *arg1, int arg2, int (*handler) (SYSCTL_HANDLER_ARGS),
    const char *format, const char *descr);

struct sysctl_oid *
SYSCTL_ADD_NODE(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, int (*handler) (SYSCTL_HANDLER_ARGS), const char *descr);

struct sysctl_oid *
SYSCTL_ADD_STRING(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, char *arg, int len, const char *descr);

struct sysctl_oid *
SYSCTL_ADD_INT(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, int *arg, int len, const char *descr);

struct sysctl_oid *
SYSCTL_ADD_UINT(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, unsigned int *arg, int len, const char *descr);

struct sysctl_oid *
SYSCTL_ADD_LONG(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, long *arg, const char *descr);

struct sysctl_oid *
SYSCTL_ADD_ULONG(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, unsigned long *arg, const char *descr);

struct sysctl_oid *
SYSCTL_ADD_OPAQUE(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, void *arg, int len, const char *format,
    const char *descr);

struct sysctl_oid *
SYSCTL_ADD_STRUCT(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, void *arg, STRUCT_NAME, const char *descr);

struct sysctl_oid *
SYSCTL_ADD_PROC(struct sysctl_ctx_list *ctx,
    struct sysctl_oid_list *parent, int number, const char *name,
    int access, void *arg, int len,
    int (*handler) (SYSCTL_HANDLER_ARGS), const char *format,
    const char *descr);
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The SYSCTL_ADD_OID macro creates a new sysctl that can handle any 
data type. If successful, a pointer to the sysctl is returned; otherwise, NULL 
is returned.

The other SYSCTL_ADD_* macros are alternatives to SYSCTL_ADD_OID that cre-
ate a sysctl that can handle a specific data type. These macros are explained 
in Table 3-2.

In most cases, you should use a SYSCTL_ADD_* macro instead of the generic 
SYSCTL_ADD_OID macro.

The arguments for the SYSCTL_ADD_* macros are described in Table 3-3.

Table 3-2: SYSCTL_ADD_* Macros

Macro Description

SYSCTL_ADD_NODE Creates a new node (or category) to which child nodes may be added

SYSCTL_ADD_STRING Creates a new sysctl that handles a null-terminated character string

SYSCTL_ADD_INT Creates a new sysctl that handles an integer variable

SYSCTL_ADD_UINT Creates a new sysctl that handles an unsigned integer variable

SYSCTL_ADD_LONG Creates a new sysctl that handles a long variable

SYSCTL_ADD_ULONG Creates a new sysctl that handles an unsigned long variable

SYSCTL_ADD_OPAQUE Creates a new sysctl that handles a chunk of opaque data; the size of 
this data is specified by the len argument

SYSCTL_ADD_STRUCT Creates a new sysctl that handles a structure

SYSCTL_ADD_PROC Creates a new sysctl that uses a function to handle its read and write 
requests; this “handler function” is normally used to process the data 
before importing or exporting it

Table 3-3:  SYSCTL_ADD_* Arguments

Argument Description

ctx Expects a pointer to a sysctl context

parent Expects a pointer to the parent sysctl’s list of children; more on this later

number Expects the sysctl’s number; this should always be set to OID_AUTO

name Expects the sysctl’s name

access Expects an access flag; access flags specify whether the sysctl is read-only 
(CTLFLAG_RD) or read-write (CTLFLAG_RW)

arg Expects a pointer to the data that the sysctl will manage (or NULL)

len Set this to 0 unless you’re calling SYSCTL_ADD_OPAQUE

handler Expects a pointer to the function that will handle the sysctl’s read and write 
requests (or 0)

format Expects a format name; format names identify the type of data that the sysctl 
will manage; the complete list of format names is: "N" for node, "A" for char *, 
"I" for int, "IU" for unsigned int, "L" for long, "LU" for unsigned long, and 
"S,foo" for struct foo

descr Expects a textual description of the sysctl; this description is printed by sysctl –d
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A sysctl created by a SYSCTL_ADD_* macro must be connected to a parent 
sysctl. This is done by passing SYSCTL_STATIC_CHILDREN or SYSCTL_CHILDREN as the 
parent argument.

SYSCTL_STATIC_CHILDREN Macro
The SYSCTL_STATIC_CHILDREN macro is passed as parent when connecting to a 
static node. A static node is part of the base system.

#include <sys/types.h>
#include <sys/sysctl.h>

struct sysctl_oid_list *
SYSCTL_STATIC_CHILDREN(struct sysctl_oid_list OID_NAME);

This macro takes the name of the parent sysctl preceded by an under-
score. And all dots must be replaced by an underscore. So to connect to 
hw.usb, you would use _hw_usb.

If SYSCTL_STATIC_CHILDREN(/* no argument */) is passed as parent to 
SYSCTL_ADD_NODE, a new top-level category will be created.

SYSCTL_CHILDREN Macro
The SYSCTL_CHILDREN macro is passed as parent when connecting to a dynamic 
node. A dynamic node is created by a SYSCTL_ADD_NODE call.

#include <sys/types.h>
#include <sys/sysctl.h>

struct sysctl_oid_list *
SYSCTL_CHILDREN(struct sysctl_oid *oidp);

This macro takes as its sole argument the pointer returned by a 
SYSCTL_ADD_NODE call.

Implementing sysctls, Part 2

Now that you know how to create sysctls during runtime, let’s do some actual 
device control (as opposed to quoting Monty Python).

Listing 3-4 is a revision of Listing 3-1 that employs a sysctl to resize the 
memory buffer.

NOTE To save space, the functions echo_open, echo_close, echo_write, and echo_read aren’t 
listed here, as they haven’t been changed.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
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#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
#include <sys/sysctl.h>

MALLOC_DEFINE(M_ECHO, "echo_buffer", "buffer for echo driver");

#define ECHO_CLEAR_BUFFER       _IO('E', 1)

static d_open_t         echo_open;
static d_close_t        echo_close;
static d_read_t         echo_read;
static d_write_t        echo_write;
static d_ioctl_t        echo_ioctl;

static struct cdevsw echo_cdevsw = {
        .d_version =    D_VERSION,
        .d_open =       echo_open,
        .d_close =      echo_close,
        .d_read =       echo_read,
        .d_write =      echo_write,
        .d_ioctl =      echo_ioctl,
        .d_name =       "echo"
};

typedef struct echo {
        int buffer_size;
        char *buffer;
        int length;
} echo_t;

static echo_t *echo_message;
static struct cdev *echo_dev;

static struct sysctl_ctx_list clist;
static struct sysctl_oid *poid;

static int
echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
...
}

static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
...
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
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static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
        int error = 0;

        switch (cmd) {
        case ECHO_CLEAR_BUFFER:
                memset(echo_message->buffer, '\0',
                    echo_message->buffer_size);
                echo_message->length = 0;
                uprintf("Buffer cleared.\n");
                break;
        default:
                error = ENOTTY;
                break;
        }

        return (error);
}

static int
sysctl_set_buffer_size(SYSCTL_HANDLER_ARGS)
{
        int error = 0;
        int size = echo_message->buffer_size;

        error = sysctl_handle_int(oidp, &size, 0, req);
        if (error || !req->newptr || echo_message->buffer_size == size)
                return (error);

        if (size >= 128 && size <= 512) {
                echo_message->buffer = realloc(echo_message->buffer, size,
                    M_ECHO, M_WAITOK);
                echo_message->buffer_size = size;

                if (echo_message->length >= size) {
                        echo_message->length = size - 1;
                        echo_message->buffer[size - 1] = '\0';
                }
        } else
                error = EINVAL;

        return (error);
}

static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
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{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                echo_message = malloc(sizeof(echo_t), M_ECHO, M_WAITOK);
                echo_message->buffer_size = 256;
                echo_message->buffer = malloc(echo_message->buffer_size,
                    M_ECHO, M_WAITOK);
                sysctl_ctx_init(&clist);
                poid = SYSCTL_ADD_NODE(&clist,
                    SYSCTL_STATIC_CHILDREN(/* tree top */), OID_AUTO,
                    "echo", CTLFLAG_RW, 0, "echo root node");
                SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
                    "buffer_size", CTLTYPE_INT | CTLFLAG_RW,

&echo_message->buffer_size, 0, sysctl_set_buffer_size,
                    "I", "echo buffer size");
                echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "echo");
                uprintf("Echo driver loaded.\n");
                break;
        case MOD_UNLOAD:
                destroy_dev(echo_dev);
                sysctl_ctx_free(&clist);
                free(echo_message->buffer, M_ECHO);
                free(echo_message, M_ECHO);
                uprintf("Echo driver unloaded.\n");
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

DEV_MODULE(echo, echo_modevent, NULL);

Listing 3-4: echo-4.0.c

On module load, Listing 3-4 creates a sysctl named echo.buffer_size that 
manages the  size of the memory buffer. Moreover, this sysctl uses a  han-
dler function named sysctl_set_buffer_size to resize the memory buffer.

sysctl_set_buffer_size Function
As stated above, the sysctl_set_buffer_size function resizes the memory 
buffer. Before I describe this function, let’s identify its arguments.

static int
sysctl_set_buffer_size(SYSCTL_HANDLER_ARGS)
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The constant  SYSCTL_HANDLER_ARGS is defined in <sys/sysctl.h> like so:

#define SYSCTL_HANDLER_ARGS struct sysctl_oid *oidp, void *arg1, \
        int arg2, struct sysctl_req *req

Here,  oidp points to the sysctl,  arg1 points to the data that the sysctl 
manages,  arg2 is the length of the data, and  req depicts the sysctl request.

Now, keeping these arguments in mind, let’s examine the function 
sysctl_set_buffer_size.

static int
sysctl_set_buffer_size(SYSCTL_HANDLER_ARGS)
{
        int error = 0;

int size = echo_message->buffer_size;

        error = sysctl_handle_int(oidp, &size, 0, req);
if (error || !req->newptr || echo_message->buffer_size == size)

                return (error);

        if (size >= 128 && size <= 512) {
                echo_message->buffer = realloc(echo_message->buffer, size,
                    M_ECHO, M_WAITOK);
                echo_message->buffer_size = size;

                if (echo_message->length >= size) {
                        echo_message->length = size - 1;
                        echo_message->buffer[size - 1] = '\0';
                }
        } else
                error = EINVAL;

        return (error);
}

This function first sets  size to the current buffer size. Afterward,  
sysctl_handle_int is called to obtain the new sysctl value (that is, the proposed 
buffer size) from user space.

Note that the  second argument to sysctl_handle_int is &size. See, this 
function takes a pointer to the original sysctl value and overwrites it with the 
new sysctl value.

This  if statement ensures that the new sysctl value was obtained suc-
cessfully. It works by verifying that sysctl_handle_int returned  error free 
and that  req->newptr is valid.

The remainder of sysctl_set_buffer_size is identical to echo_set_buffer_size, 
which was described on page 35.
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Don’t Panic
Now, let’s give Listing 3-4 a try:

$ sudo kldload ./echo-4.0.ko
Echo driver loaded.
$ sudo sysctl echo.buffer_size=128
echo.buffer_size: 256 -> 128

Success!

Conclusion

This chapter has described the traditional methods for device communica-
tion and control: sysctl and ioctl. Generally, sysctls are employed to adjust 
parameters, and ioctls are used for everything else—that’s why ioctls are the 
catchall of I/O operations. Note that if you find yourself creating a device 
node just for ioctl requests, you should probably use sysctls instead.

Incidentally, be aware that it’s fairly trivial to write user-mode programs 
that interact with drivers. Thus, your drivers—not your user-mode programs 
(for example, Listing 3-2)—should always validate user input.
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T H R E A D  S Y N C H R O N I Z A T I O N

This chapter deals with the problem of 
data and state corruption caused by con-

current threads. When multiple threads exe-
cuting on different CPUs simultaneously modify 

the same data structure, that structure can be cor-
rupted. Similarly, when a thread gets interrupted and 
another thread manipulates the data that the first 
thread was manipulating, that data can be corrupted 
(Baldwin, 2002).

Fortunately, FreeBSD provides a set of synchronization primitives to deal 
with these issues. Before I describe what synchronization primitives do, you’ll 
need an in-depth understanding of the abovementioned concurrency issues, 
also known as synchronization problems. To that end, let’s analyze a few.



A Simple Synchronization Problem

Consider the following scenario in which two threads increment the same 
global variable. On i386, this operation might utilize the following processor 
instructions:

movl   count,%eax       # Move the value of count into a register (eax).
addl   $0x1,%eax        # Add 1 to the value in the register.
movl   %eax,count       # Move the value of the register into count.

Imagine that count is currently 0 and that the first thread manages to 
load the current value of count into %eax (that is, it completes the first instruc-
tion) just before the second thread preempts it. As part of the thread switch, 
FreeBSD saves the value of %eax, which is 0, into the outgoing thread’s con-
text. Now, suppose that the second thread manages to complete all three 
instructions, thereby incrementing count from 0 to 1. If the first thread pre-
empts the second thread, FreeBSD will restore its thread context, which 
includes setting %eax to 0. The first thread, which resumes execution at the 
second instruction, will now proceed to add 1 to %eax and then store the 
result in count. At this point, count equals 1 when it should equal 2. Thus, 
because of a synchronization problem, we lost an update. This can also 
occur when the two threads are executing concurrently but just slightly out 
of step (that is, one thread begins executing the first instruction when the 
other thread begins executing the second instruction).

A More Complex Synchronization Problem

Listing 4-1 is a complete character driver that lets you manipulate a doubly 
linked list through its d_ioctl function. You can add or remove an item from 
the list, determine whether an item is on the list, or print every item on the 
list. Listing 4-1 also contains some synchronization problems.

NOTE Take a quick look at this code and try to identify the synchronization problems.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
#include <sys/queue.h>
#include "race_ioctl.h"

MALLOC_DEFINE(M_RACE, "race", "race object");

struct race_softc {
       LIST_ENTRY(race_softc) list;
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       int unit;
};

static LIST_HEAD(, race_softc) race_list =
    LIST_HEAD_INITIALIZER(&race_list);

static struct race_softc *      race_new(void);
static struct race_softc *      race_find(int unit);
static void                     race_destroy(struct race_softc *sc);
static d_ioctl_t                race_ioctl;

 static struct cdevsw race_cdevsw = {
        .d_version =    D_VERSION,
        .d_ioctl =      race_ioctl,
        .d_name = RACE_NAME
};

static struct cdev *race_dev;

static int
 race_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,

    struct thread *td)
{
        struct race_softc *sc;
        int error = 0;

        switch (cmd) {
        case RACE_IOC_ATTACH:
                sc = race_new();
                *(int *)data = sc->unit;
                break;
        case RACE_IOC_DETACH:
                sc = race_find(*(int *)data);
                if (sc == NULL)
                        return (ENOENT);
                race_destroy(sc);
                break;
        case RACE_IOC_QUERY:
                sc = race_find(*(int *)data);
                if (sc == NULL)
                        return (ENOENT);
                break;
        case RACE_IOC_LIST:
                uprintf("  UNIT\n");
                LIST_FOREACH(sc, &race_list, list)
                        uprintf("  %d\n", sc->unit);
                break;
        default:
                error = ENOTTY;
                break;
        }

        return (error);
}
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static struct race_softc *
race_new(void)
{
        struct race_softc *sc;
        int unit, max = -1;

        LIST_FOREACH(sc, &race_list, list) {
                if (sc->unit > max)
                        max = sc->unit;
        }
        unit = max + 1;

        sc = (struct race_softc *)malloc(sizeof(struct race_softc), M_RACE,
            M_WAITOK | M_ZERO);
        sc->unit = unit;
        LIST_INSERT_HEAD(&race_list, sc, list);

        return (sc);
}

static struct race_softc *
race_find(int unit)
{
        struct race_softc *sc;

        LIST_FOREACH(sc, &race_list, list) {
                if (sc->unit == unit)
                        break;
        }

        return (sc);
}

static void
race_destroy(struct race_softc *sc)
{
        LIST_REMOVE(sc, list);
        free(sc, M_RACE);
}

static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, RACE_NAME);
                uprintf("Race driver loaded.\n");
                break;
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        case MOD_UNLOAD:
                destroy_dev(race_dev);
                uprintf("Race driver unloaded.\n");
                break;
        case MOD_QUIESCE:
                if (!LIST_EMPTY(&race_list))
                        error = EBUSY;
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

DEV_MODULE(race, race_modevent, NULL);

Listing 4-1: race.c

Before I identify Listing 4-1’s synchronization problems, let’s walk through 
it. Listing 4-1 begins by  defining and  initializing a doubly linked list of 
race_softc structures named race_list. Each race_softc structure contains 
a (unique)  unit number and a  structure that maintains a pointer to the 
previous and next race_softc structure in race_list.

Next, Listing 4-1’s  character device switch table is defined. The con-
stant  RACE_NAME is defined in the race_ioctl.h header as follows:

#define RACE_NAME               "race"

Note how Listing 4-1’s character device switch table doesn’t define d_open 
and d_close. Recall, from Chapter 1, that if a d_foo function is undefined the 
corresponding operation is unsupported. However, d_open and d_close are 
unique; when they’re undefined the kernel will automatically define them 
as follows:

int
nullop(void)
{

        return (0);
}

This ensures that every registered character device can be opened and 
closed.

NOTE Drivers commonly forgo defining a d_open and d_close function when they don’t need 
to prepare their devices for I/O—like Listing 4-1.
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Next, Listing 4-1’s d_ioctl function, named  race_ioctl, is defined. This 
function is like the main function for Listing 4-1. It uses three helper functions 
to do its work:

 race_new

 race_find

 race_destroy

Before I describe race_ioctl, I’ll describe these functions first.

race_new Function
The race_new function creates a new race_softc structure, which is then inserted 
at the head of race_list. Here is the function definition for race_new (again):

static struct race_softc *
race_new(void)
{
        struct race_softc *sc;
        int unit, max = -1;

       LIST_FOREACH(sc, &race_list, list) {
                if (sc->unit > max)
                       max = sc->unit;
        }
        unit = max + 1;

        sc = (struct race_softc *)malloc(sizeof(struct race_softc), M_RACE,
            M_WAITOK | M_ZERO);
        sc->unit = unit;
       LIST_INSERT_HEAD(&race_list, sc, list);

       return (sc);
}

This function first  iterates through race_list looking for the largest 
unit number, which it stores in  max. Next, unit is set to  max plus one. Then 
race_new  allocates memory for a new race_softc structure, assigns it the unit 
number  unit, and  inserts it at the head of race_list. Lastly, race_new  
returns a pointer to the new race_softc structure.

race_find Function
The race_find function takes a unit number and finds the associated race_softc 
structure on race_list.

static struct race_softc *
race_find(int unit)
{
        struct race_softc *sc;

        LIST_FOREACH(sc, &race_list, list) {
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                if (sc->unit == unit)
                        break;
        }

        return (sc);
}

If race_find is successful, a pointer to the race_softc structure is returned; 
otherwise, NULL is returned.

race_destroy Function
The race_destroy function destroys a race_softc structure on race_list. Here is 
its function definition (again):

static void
race_destroy(struct race_softc *sc)
{
       LIST_REMOVE(sc, list);
       free(sc, M_RACE);
}

This function takes a  pointer to a race_softc structure and  removes 
that structure from race_list. Then it  frees the allocated memory for that 
structure.

race_ioctl Function
Before I walk through race_ioctl, an explanation of its ioctl commands, which 
are defined in race_ioctl.h, is needed.

#define RACE_IOC_ATTACH         _IOR('R', 0, int)
#define RACE_IOC_DETACH         _IOW('R', 1, int)
#define RACE_IOC_QUERY          _IOW('R', 2, int)
#define RACE_IOC_LIST           _IO('R', 3)

As you can see, three of race_ioctl’s ioctl commands transfer an integer 
value. As you’ll see, this integer value is a unit number.

Here is the function definition for race_ioctl (again):

static int
race_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
        struct race_softc *sc;
        int error = 0;

        switch (cmd) {
case RACE_IOC_ATTACH:

                sc = race_new();
*(int *)data = sc->unit;

                break;
Thread Synchronizat ion 59



case RACE_IOC_DETACH:
                sc = race_find(*(int *)data);
                if (sc == NULL)
                        return (ENOENT);
                race_destroy(sc);
                break;

case RACE_IOC_QUERY:
                sc = race_find(*(int *)data);
                if (sc == NULL)
                        return (ENOENT);
                break;

case RACE_IOC_LIST:
                uprintf("  UNIT\n");
                LIST_FOREACH(sc, &race_list, list)
                        uprintf("  %d\n", sc->unit);
                break;
        default:
                error = ENOTTY;
                break;
        }

        return (error);
}

This function can perform one of four ioctl-based operations. The first,  
RACE_IOC_ATTACH,  creates a new race_softc structure, which is then inserted 
at the head of race_list. Afterward, the unit number of the new race_softc 
structure is  returned.

The second operation,  RACE_IOC_DETACH, removes a user-specified 
race_softc structure from race_list.

The third operation,  RACE_IOC_QUERY, determines whether a user-
specified race_softc structure is on race_list.

Lastly, the fourth operation,  RACE_IOC_LIST, prints the unit number of 
every race_softc structure on race_list.

race_modevent Function
The race_modevent function is the module event handler for Listing 4-1. Here 
is its function definition (again):

static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, RACE_NAME);
                uprintf("Race driver loaded.\n");
                break;
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        case MOD_UNLOAD:
                destroy_dev(race_dev);
                uprintf("Race driver unloaded.\n");
                break;

case MOD_QUIESCE:
if (!LIST_EMPTY(&race_list))

                        error = EBUSY;
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

As you can see, this function includes a new case:  MOD_QUIESCE.

NOTE Because MOD_LOAD and MOD_UNLOAD are extremely rudimentary and because you’ve seen 
similar code elsewhere, I’ll omit discussing them.

When one issues the kldunload(8) command, MOD_QUIESCE is run before 
MOD_UNLOAD. If MOD_QUIESCE returns an error, MOD_UNLOAD does not get executed. 
In other words, MOD_QUIESCE verifies that it is safe to unload your module.

NOTE The kldunload -f command ignores every error returned by MOD_QUIESCE. So you can 
always unload a module, but it may not be the best idea.

Here, MOD_QUIESCE  guarantees that race_list is empty (before Listing 4-1 
is unloaded). This is done to prevent memory leaks from any potentially 
unclaimed race_softc structures.

The Root of the Problem
Now that we’ve walked through Listing 4-1, let’s run it and see if we can iden-
tify its synchronization problems.

Listing 4-2 presents a command-line utility designed to invoke the race_ioctl 
function in Listing 4-1:

#include <sys/types.h>
#include <sys/ioctl.h>

#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "../race/race_ioctl.h"

static enum {UNSET, ATTACH, DETACH, QUERY, LIST} action = UNSET;
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/*
 * The usage statement: race_config -a | -d unit | -q unit | -l
 */

static void
usage()
{
        /*
         * Arguments for this program are "either-or." For example,
         * 'race_config -a' or 'race_config -d unit' are valid; however,
         * 'race_config -a -d unit' is invalid.
         */

        fprintf(stderr, "usage: race_config -a | -d unit | -q unit | -l\n");
        exit(1);
}

/*
 * This program manages the doubly linked list found in /dev/race. It
 * allows you to add or remove an item, query the existence of an item,
 * or print every item on the list.
 */

int
main(int argc, char *argv[])
{
        int ch, fd, i, unit;
        char *p;

        /*
         * Parse the command line argument list to determine
         * the correct course of action.
         *
         *    -a:      add an item.
         *    -d unit: detach an item.
         *    -q unit: query the existence of an item.
         *    -l:      list every item.
         */

        while ((ch = getopt(argc, argv, "ad:q:l")) != -1)
                switch (ch) {
                case 'a':
                        if (action != UNSET)
                                usage();
                        action = ATTACH;
                        break;
                case 'd':
                        if (action != UNSET)
                                usage();
                        action = DETACH;
                        unit = (int)strtol(optarg, &p, 10);
                        if (*p)
                                errx(1, "illegal unit -- %s", optarg);
                        break;
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                case 'q':
                        if (action != UNSET)
                                usage();
                        action = QUERY;
                        unit = (int)strtol(optarg, &p, 10);
                        if (*p)
                                errx(1, "illegal unit -- %s", optarg);
                        break;
                case 'l':
                        if (action != UNSET)
                                usage();
                        action = LIST;
                        break;
                default:
                        usage();
                }

        /*
         * Perform the chosen action.
         */

        if (action == ATTACH) {
                fd = open("/dev/" RACE_NAME, O_RDWR);
                if (fd < 0)
                        err(1, "open(/dev/%s)", RACE_NAME);

                i = ioctl(fd, RACE_IOC_ATTACH, &unit);
                if (i < 0)
                        err(1, "ioctl(/dev/%s)", RACE_NAME);
                printf("unit: %d\n", unit);

                close (fd);
        } else if (action == DETACH) {
                fd = open("/dev/" RACE_NAME, O_RDWR);
                if (fd < 0)
                        err(1, "open(/dev/%s)", RACE_NAME);

                i = ioctl(fd, RACE_IOC_DETACH, &unit);
                if (i < 0)
                        err(1, "ioctl(/dev/%s)", RACE_NAME);

                close (fd);
        } else if (action == QUERY) {
                fd = open("/dev/" RACE_NAME, O_RDWR);
                if (fd < 0)
                        err(1, "open(/dev/%s)", RACE_NAME);

                i = ioctl(fd, RACE_IOC_QUERY, &unit);
                if (i < 0)
                        err(1, "ioctl(/dev/%s)", RACE_NAME);

                close (fd);
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        } else if (action == LIST) {
                fd = open("/dev/" RACE_NAME, O_RDWR);
                if (fd < 0)
                        err(1, "open(/dev/%s)", RACE_NAME);

                i = ioctl(fd, RACE_IOC_LIST, NULL);
                if (i < 0)
                        err(1, "ioctl(/dev/%s)", RACE_NAME);

                close (fd);
        } else
                usage();

        return (0);
}

Listing 4-2: race_config.c

NOTE Listing 4-2 is a bog-standard command-line utility. As such, I won’t cover its program 
structure.

The following shows an example execution of Listing 4-2:

$ sudo kldload ./race.ko
Race driver loaded.
$ sudo ./race_config -a & sudo ./race_config -a &
[1] 2378
[2] 2379
$ unit: 0
unit: 0

Above, two threads simultaneously add a race_softc structure to race_list, 
which results in two race_softc structures with the “unique” unit number 0—
this is a problem, yes?

Here’s another example:

$ sudo kldload ./race.ko
Race driver loaded.
$ sudo ./race_config -a & sudo kldunload race.ko &
[1] 2648
[2] 2649
$ unit: 0
Race driver unloaded.

[1]-  Done                    sudo ./race_config -a
[2]+  Done                    sudo kldunload race.ko
$ dmesg | tail -n 1
Warning: memory type race leaked memory on destroy (1 allocations, 16 bytes
leaked).

Above, one thread adds a race_softc structure to race_list while another 
thread unloads race.ko, which causes a memory leak. Recall that MOD_QUIESCE is 
supposed to prevent this, but it didn’t. Why?
64 Chapter 4



The problem, in both examples, is a race condition. Race conditions are 
errors caused by a sequence of events. In the first example, both threads check 
race_list simultaneously, discover that it is empty, and assign 0 as the unit 
number. In the second example, MOD_QUIESCE returns error-free, a race_softc 
structure is then added to race_list, and finally MOD_UNLOAD completes.

NOTE One characteristic of race conditions is that they’re hard to reproduce. Ergo, the results 
were doctored in the preceding examples. That is, I caused the threads to context switch 
at specific points to achieve the desired outcome. Under normal conditions, it would 
have taken literally millions of attempts before those race conditions would occur, and I 
didn’t want to spend that much time.

Preventing Race Conditions

Race conditions are prevented using locks. Locks, also known as synchroniza-
tion primitives, are used to serialize the execution of two or more threads. For 
example, the race conditions in Listing 4-1, which are caused by concurrent 
access to race_list, can be prevented by using a lock to serialize access to 
race_list. Before a thread can access race_list, it must first acquire the foo 
lock. Only one thread can hold foo at a time. If a thread cannot acquire foo, 
it cannot access race_list and must wait for the current owner to relinquish 
foo. This protocol guarantees that at any moment in time only one thread 
can access race_list, which eliminates Listing 4-1’s race conditions.

There are several different types of locks in FreeBSD, each having its 
own characteristics (for example, some locks can be held by more than one 
thread). The remainder of this chapter describes the different types of locks 
available in FreeBSD and how to use them.

Mutexes

Mutex locks (mutexes) ensure that at any moment in time, only one thread can 
access a shared object. Mutex is an amalgamation of mutual and exclusion.

NOTE The foo lock described in the previous section was a mutex lock.

FreeBSD provides two types of mutex locks: spin mutexes and sleep 
mutexes.

Spin Mutexes
Spin mutexes are simple spin locks. If a thread attempts to acquire a spin lock 
that is being held by another thread, it will “spin” and wait for the lock to be 
released. Spin, in this case, means to loop infinitely on the CPU. This spin-
ning can result in deadlock if a thread that is holding a spin lock is interrupted 
or if it context switches, and all subsequent threads attempt to acquire that 
lock. Consequently, while holding a spin mutex all interrupts are blocked on 
the local processor and a context switch cannot be performed.
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Spin mutexes should be held only for short periods of time and should 
be used only to protect objects related to nonpreemptive interrupts and low-
level scheduling code (McKusick and Neville-Neil, 2005). Ordinarily, you’ll 
never use spin mutexes.

Sleep Mutexes
Sleep mutexes are the most commonly used lock. If a thread attempts to acquire 
a sleep mutex that is being held by another thread, it will context switch (that 
is, sleep) and wait for the mutex to be released. Because of this behavior, 
sleep mutexes are not susceptible to the deadlock described above.

Sleep mutexes support priority propagation. When a thread sleeps on a 
sleep mutex and its priority is higher than the sleep mutex’s current owner, 
the current owner will inherit the priority of this thread (Baldwin, 2002). 
This characteristic prevents a lower priority thread from blocking a higher 
priority thread.

NOTE Sleeping (for example, calling a *sleep function, which is discussed in Chapter 5) while 
holding a mutex is never safe and must be avoided; otherwise, there are numerous 
assertions that will fail and the kernel will panic (McKusick and Neville-Neil, 2005).

Mutex Management Routines

The FreeBSD kernel provides the following seven functions for working with 
mutexes:

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>

void
mtx_init(struct mtx *mutex, const char *name, const char *type,
    int opts);

void
mtx_lock(struct mtx *mutex);

void
mtx_lock_spin(struct mtx *mutex);

int
mtx_trylock(struct mtx *mutex);

void
mtx_unlock(struct mtx *mutex);

void
mtx_unlock_spin(struct mtx *mutex);
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void
mtx_destroy(struct mtx *mutex);

The mtx_init function initializes the mutex  mutex. The  name argument 
is used during debugging to identify mutex. The  type argument is used dur-
ing lock-order verification by witness(4). If type is NULL, name is used instead.

NOTE You’ll typically pass NULL as type.

The  opts argument modifies mtx_init’s behavior. Valid values for opts 
are shown in Table 4-1.

Threads acquire sleep mutexes by calling mtx_lock. If another thread is 
currently holding  mutex, the caller will sleep until mutex is available.

Threads acquire spin mutexes by calling mtx_lock_spin. If another thread 
is currently holding  mutex, the caller will spin until mutex is available. Note 
that all interrupts are blocked on the local processor during the spin, and 
they remain disabled following the acquisition of mutex.

A thread can recursively acquire  mutex (with no ill effects) if MTX_RECURSE 
was passed to  opts. A recursive lock is useful if it’ll be acquired at two or 
more levels. For example:

static void
foo()
{
...
        mtx_lock(&mutex);
...
        foo();
...
        mtx_unlock(&mutex);
...
}

By using a recursive lock, lower levels don’t need to check if mutex has 
been acquired by a higher level. They can simply acquire and release mutex 
as needed (McKusick and Neville-Neil, 2005).

Table 4-1: mtx_init Symbolic Constants

Constant Description

MTX_DEF Initializes mutex as a sleep mutex; this bit or MTX_SPIN must be present

MTX_SPIN Initializes mutex as a spin mutex; this bit or MTX_DEF must be present

MTX_RECURSE Specifies that mutex is a recursive lock; more on recursive locks later

MTX_QUIET Instructs the system to not log the operations done on this lock

MTX_NOWITNESS Causes witness(4) to ignore this lock

MTX_DUPOK Causes witness(4) to ignore duplicates of this lock

MTX_NOPROFILE Instructs the system to not profile this lock
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NOTE I would avoid recursive mutexes. You’ll learn why in “Avoid Recursing on Exclusive 
Locks” on page 81.

The mtx_trylock function is identical to mtx_lock except that if another 
thread is currently holding  mutex, it returns 0 (that is, the caller does not 
sleep).

Threads release sleep mutexes by calling mtx_unlock. Note that recursive 
locks “remember” the number of times they’ve been acquired. Consequently, 
each successful lock acquisition must have a corresponding lock release.

Threads release spin mutexes by calling mtx_unlock_spin. The mtx_unlock_spin 
function also restores the interrupt state to what it was before  mutex was 
acquired.

The mtx_destroy function destroys the mutex  mutex. Note that mutex can 
be held when it is destroyed. However, mutex cannot be held recursively or have 
other threads waiting for it when it is destroyed or else the kernel will panic 
(McKusick and Neville-Neil, 2005).

Implementing Mutexes

Listing 4-3 is a revision of Listing 4-1 that uses a mutex to serialize access to 
race_list.

NOTE To save space, the functions race_ioctl, race_new, race_find, and race_destroy aren’t 
listed here, as they haven’t been changed.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include "race_ioctl.h"

MALLOC_DEFINE(M_RACE, "race", "race object");

struct race_softc {
        LIST_ENTRY(race_softc) list;
        int unit;
};

static LIST_HEAD(, race_softc) race_list = LIST_HEAD_INITIALIZER(&race_list);
 static struct mtx race_mtx;

static struct race_softc *      race_new(void);
static struct race_softc *      race_find(int unit);
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static void                     race_destroy(struct race_softc *sc);
static d_ioctl_t                race_ioctl_mtx;
static d_ioctl_t                race_ioctl;

static struct cdevsw race_cdevsw = {
        .d_version =    D_VERSION,

.d_ioctl =      race_ioctl_mtx,
        .d_name =       RACE_NAME
};

static struct cdev *race_dev;

static int
 race_ioctl_mtx(struct cdev *dev, u_long cmd, caddr_t data, int fflag,

    struct thread *td)
{
        int error;

mtx_lock(&race_mtx);
        error = race_ioctl(dev, cmd, data, fflag, td);

mtx_unlock(&race_mtx);

        return (error);
}

static int
race_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
...
}

static struct race_softc *
race_new(void)
{
...
}

static struct race_softc *
race_find(int unit)
{
...
}

static void
race_destroy(struct race_softc *sc)
{
...
}

static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;
        struct race_softc *sc, *sc_temp;
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        switch (event) {
        case MOD_LOAD:
                mtx_init(&race_mtx, "race config lock", NULL, MTX_DEF);
                race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, RACE_NAME);
                uprintf("Race driver loaded.\n");
                break;
        case MOD_UNLOAD:
                destroy_dev(race_dev);
                mtx_lock(&race_mtx);
                if (!LIST_EMPTY(&race_list)) {
                        LIST_FOREACH_SAFE(sc, &race_list, list, sc_temp) {
                                LIST_REMOVE(sc, list);
                                free(sc, M_RACE);
                        }
                }

                mtx_unlock(&race_mtx);
                mtx_destroy(&race_mtx);
                uprintf("Race driver unloaded.\n");
                break;
        case MOD_QUIESCE:
                mtx_lock(&race_mtx);
                if (!LIST_EMPTY(&race_list))
                        error = EBUSY;
                mtx_unlock(&race_mtx);
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

DEV_MODULE(race, race_modevent, NULL);

Listing 4-3: race_mtx.c

This driver  declares a mutex named race_mtx, which gets initialized as 
a  sleep mutex in the module event handler.

NOTE As you’ll see, a mutex is not the ideal solution for Listing 4-1. However, for now, I just 
want to cover how to use mutexes.

In Listing 4-1, the main source of concurrent access to race_list is the 
race_ioctl function. This should be obvious, because race_ioctl manages 
race_list.

Listing 4-3 remedies the race conditions caused by race_ioctl by serializing 
its execution via the  race_ioctl_mtx function. race_ioctl_mtx is defined as 
the  d_ioctl function. It begins by  acquiring race_mtx. Then  race_ioctl 
is called and subsequently race_mtx is  released.
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As you can see, it takes just three lines (or one mutex) to serialize the 
execution of race_ioctl.

race_modevent Function
The race_modevent function is the module event handler for Listing 4-3. Here 
is its function definition (again):

static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;
        struct race_softc *sc, *sc_temp;

        switch (event) {
        case MOD_LOAD:

mtx_init(&race_mtx, "race config lock", NULL, MTX_DEF);
                race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, RACE_NAME);
                uprintf("Race driver loaded.\n");
                break;
        case MOD_UNLOAD:

destroy_dev(race_dev);
                mtx_lock(&race_mtx);

if (!LIST_EMPTY(&race_list)) {
                        LIST_FOREACH_SAFE(sc, &race_list, list, sc_temp) {
                                LIST_REMOVE(sc, list);

free(sc, M_RACE);
                        }
                }
                mtx_unlock(&race_mtx);

mtx_destroy(&race_mtx);
                uprintf("Race driver unloaded.\n");
                break;
        case MOD_QUIESCE:

mtx_lock(&race_mtx);
if (!LIST_EMPTY(&race_list))

                        error = EBUSY;
mtx_unlock(&race_mtx);

                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

On module load, this function  initializes race_mtx as a  sleep mutex. 
Then it  creates Listing 4-3’s device node: race.

On MOD_QUIESCE, this function  acquires race_mtx,  confirms that race_list 
is empty, and then  releases race_mtx.
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On module unload, this function first calls  destroy_dev to destroy the 
race device node.

NOTE The destroy_dev function does not return until every d_foo function currently executing 
completes. Consequently, one should not hold a lock while calling destroy_dev; other-
wise, you could deadlock your driver or panic your system.

Next, race_modevent  confirms that race_list is still empty. See, after the 
execution of MOD_QUIESCE, a race_softc structure could have been added to 
race_list. So, race_list is checked again and every race_softc structure found 
is  released. Once this is done, race_mtx is  destroyed.

As you can see, every time race_list was accessed, mtx_lock(&race_mtx) 
was called first. This was necessary in order to serialize access to race_list 
throughout Listing 4-3.

Don’t Panic
Now that we’ve examined Listing 4-3, let’s give it a try:

$ sudo kldload ./race_mtx.ko
Race driver loaded.
$ sudo ./race_config -a & sudo ./race_config -a &
[1] 923
[2] 924
$ unit: 0
unit: 1

...

$ sudo kldload ./race_mtx.ko
Race driver loaded.
$ sudo ./race_config -a & sudo kldunload race_mtx.ko &
[1] 933
[2] 934
$ Race driver unloaded.
race_config: open(/dev/race): No such file or directory

[1]-  Exit 1                  sudo ./race_config -a
[2]+  Done                    sudo kldunload race_mtx.ko

Unsurprisingly, it works. Yet using a mutex has introduced a new problem. 
See, the function definition for race_new contains this line:

        sc = (struct race_softc *)malloc(sizeof(struct race_softc), M_RACE,
           M_WAITOK | M_ZERO);

Here,  M_WAITOK means that it’s okay to sleep. But it’s never okay to sleep 
while holding a mutex. Recall that sleeping while holding a mutex causes the 
kernel to panic.
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There are two solutions to this problem: First, change M_WAITOK to M_NOWAIT. 
Second, use a lock that can be held while sleeping. As the first solution 
changes the functionality of Listing 4-1 (that is, currently, race_new never 
fails), let’s go with the second.

Shared/Exclusive Locks

Shared/exclusive locks (sx locks) are locks that threads can hold while asleep. As 
the name implies, multiple threads can have a shared hold on an sx lock, but 
only one thread can have an exclusive hold on an sx lock. When a thread has 
an exclusive hold on an sx lock, other threads cannot have a shared hold on 
that lock.

sx locks do not support priority propagation and are inefficient com-
pared to mutexes. The main reason for using sx locks is that threads can 
sleep while holding one.

Shared/Exclusive Lock Management Routines

The FreeBSD kernel provides the following 14 functions for working with sx 
locks:

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/sx.h>

void
sx_init(struct sx *sx, const char *description);

void
sx_init_flags(struct sx *sx, const char *description, int opts);

void
sx_slock(struct sx *sx);

void
sx_xlock(struct sx *sx);

int
sx_slock_sig(struct sx *sx);

int
sx_xlock_sig(struct sx *sx);

int
sx_try_slock(struct sx *sx);

int
sx_try_xlock(struct sx *sx);

void
sx_sunlock(struct sx *sx);
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void
sx_xunlock(struct sx *sx);

void
sx_unlock(struct sx *sx);

int
sx_try_upgrade(struct sx *sx);

void
sx_downgrade(struct sx *sx);

void
sx_destroy(struct sx *sx);

The sx_init function initializes the sx lock  sx. The  description argu-
ment is used during debugging to identify sx.

The sx_init_flags function is an alternative to sx_init. The  opts argu-
ment modifies sx_init_flags’s behavior. Valid values for opts are shown in 
Table 4-2.

Threads acquire a shared hold on sx by calling sx_slock. If another thread 
currently has an exclusive hold on sx, the caller will sleep until sx is available.

Threads acquire an exclusive hold on sx by calling sx_xlock. If any threads 
currently have a shared or exclusive hold on sx, the caller will sleep until sx is 
available.

The sx_slock_sig and sx_xlock_sig functions are identical to sx_slock and 
sx_xlock except that when the caller sleeps it can be woken up by signals. If 
this occurs, a nonzero value is returned.

NOTE Normally, threads sleeping on locks cannot be woken up early.

The sx_try_slock and sx_try_xlock functions are identical to sx_slock and 
sx_xlock except that if sx cannot be acquired, they return 0 (that is, the caller 
does not sleep).

Threads release a shared hold on sx by calling sx_sunlock, and they release 
an exclusive hold by calling sx_xunlock.

Table 4-2: sx_init_flags Symbolic Constants

Constant Description

SX_NOADAPTIVE If this bit is passed and the kernel is compiled without options 
NO_ADAPTIVE_SX, then threads holding sx will spin instead of sleeping.

SX_RECURSE Specifies that sx is a recursive lock

SX_QUIET Instructs the system to not log the operations done on this lock

SX_NOWITNESS Causes witness(4) to ignore this lock

SX_DUPOK Causes witness(4) to ignore duplicates of this lock

SX_NOPROFILE Instructs the system to not profile this lock
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The sx_unlock function is a front end to sx_sunlock and sx_xunlock. This 
function is used when the hold state on sx is unknown.

Threads can upgrade a shared hold to an exclusive hold by calling 
sx_try_upgrade. If the hold cannot be immediately upgraded, 0 is returned. 
Threads can downgrade an exclusive hold to a shared hold by calling 
sx_downgrade.

The sx_destroy function destroys the sx lock  sx. Note that sx cannot be 
held when it is destroyed.

Implementing Shared/Exclusive Locks

Listing 4-4 is a revision of Listing 4-3 that uses an sx lock instead of a mutex.

NOTE To save space, the functions race_ioctl, race_new, race_find, and race_destroy aren’t 
listed here, as they haven’t been changed.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
#include <sys/queue.h>
#include <sys/lock.h>

 #include <sys/sx.h>
#include "race_ioctl.h"

MALLOC_DEFINE(M_RACE, "race", "race object");

struct race_softc {
        LIST_ENTRY(race_softc) list;
        int unit;
};

static LIST_HEAD(, race_softc) race_list = LIST_HEAD_INITIALIZER(&race_list);
 static struct sx race_sx;

static struct race_softc *      race_new(void);
static struct race_softc *      race_find(int unit);
static void                     race_destroy(struct race_softc *sc);
static d_ioctl_t                race_ioctl_sx;
static d_ioctl_t                race_ioctl;

static struct cdevsw race_cdevsw = {
        .d_version =    D_VERSION,
        .d_ioctl =      race_ioctl_sx,
        .d_name =       RACE_NAME
};
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static struct cdev *race_dev;

static int
race_ioctl_sx(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
        int error;

sx_xlock(&race_sx);
        error = race_ioctl(dev, cmd, data, fflag, td);

sx_xunlock(&race_sx);

        return (error);
}

static int
race_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
...
}

static struct race_softc *
race_new(void)
{
...
}

static struct race_softc *
race_find(int unit)
{
...
}

static void
race_destroy(struct race_softc *sc)
{
...
}

static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
        int error = 0;
        struct race_softc *sc, *sc_temp;

        switch (event) {
        case MOD_LOAD:

sx_init(&race_sx, "race config lock");
                race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, RACE_NAME);
                uprintf("Race driver loaded.\n");
                break;
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        case MOD_UNLOAD:
                destroy_dev(race_dev);

sx_xlock(&race_sx);
                if (!LIST_EMPTY(&race_list)) {
                        LIST_FOREACH_SAFE(sc, &race_list, list, sc_temp) {
                                LIST_REMOVE(sc, list);
                                free(sc, M_RACE);
                        }
                }

sx_xunlock(&race_sx);
sx_destroy(&race_sx);

                uprintf("Race driver unloaded.\n");
                break;
        case MOD_QUIESCE:

sx_xlock(&race_sx);
                if (!LIST_EMPTY(&race_list))
                        error = EBUSY;

sx_xunlock(&race_sx);
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

DEV_MODULE(race, race_modevent, NULL);

Listing 4-4: race_sx.c

Listing 4-4 is identical to Listing 4-3 except that every mutex manage-
ment function has been replaced by its sx lock equivalent.

NOTE The numbered balls in Listing 4-4 highlight the differences.

Here are the results from interacting with Listing 4-4:

$ sudo kldload ./race_sx.ko
Race driver loaded.
$ sudo ./race_config -a & sudo ./race_config -a &
[1] 800
[2] 801
$ unit: 0
unit: 1

...

$ sudo kldload ./race_sx.ko
Race driver loaded.
$ sudo ./race_config -a & sudo kldunload race_sx.ko &
[1] 811
[2] 812
$ unit: 0
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kldunload: can't unload file: Device busy

[1]-  Done                    sudo ./race_config -a
[2]+  Exit 1                  sudo kldunload race_sx.ko

Naturally, everything works, and no new problems were introduced.

Reader/Writer Locks

Reader/writer locks (rw locks) are basically mutexes with sx lock semantics. Like 
sx locks, threads can hold rw locks as a reader, which is identical to a shared 
hold, or as a writer, which is identical to an exclusive hold. Like mutexes, 
rw locks support priority propagation and threads cannot hold them while 
sleeping (or the kernel will panic).

rw locks are used when you need to protect an object that is mostly going 
to be read from instead of written to.

Reader/Writer Lock Management Routines

The FreeBSD kernel provides the following 11 functions for working with rw 
locks:

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/rwlock.h>

void
rw_init(struct rwlock *rw, const char *name);

void
rw_init_flags(struct rwlock *rw, const char *name, int opts);

void
rw_rlock(struct rwlock *rw);

void
rw_wlock(struct rwlock *rw);

int
rw_try_rlock(struct rwlock *rw);

int
rw_try_wlock(struct rwlock *rw);

void
rw_runlock(struct rwlock *rw);

void
rw_wunlock(struct rwlock *rw);

int
rw_try_upgrade(struct rwlock *rw);
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void
rw_downgrade(struct rwlock *rw);

void
rw_destroy(struct rwlock *rw);

The rw_init function initializes the rw lock  rw. The  name argument is 
used during debugging to identify rw.

The rw_init_flags function is an alternative to rw_init. The  opts argu-
ment modifies rw_init_flags’s behavior. Valid values for opts are shown in 
Table 4-3.

Threads acquire a shared hold on rw by calling rw_rlock. If another thread 
currently has an exclusive hold on rw, the caller will sleep until rw is available.

Threads acquire an exclusive hold on rw by calling rw_wlock. If any threads 
currently have a shared or exclusive hold on rw, the caller will sleep until rw is 
available.

The rw_try_rlock and rw_try_wlock functions are identical to rw_rlock and 
rw_wlock except that if rw cannot be acquired, they return 0 (that is, the caller 
does not sleep).

Threads release a shared hold on rw by calling rw_runlock, and they release 
an exclusive hold by calling rw_wunlock.

Threads can upgrade a shared hold to an exclusive hold by calling 
rw_try_upgrade. If the hold cannot be immediately upgraded, 0 is returned. 
Threads can downgrade an exclusive hold to a shared hold by calling 
rw_downgrade.

The rw_destroy function destroys the rw lock  rw. Note that rw cannot be 
held when it is destroyed.

At this point, you should be comfortable with locks—there’s really noth-
ing to them. So, I’m going to omit discussing an example that uses rw locks.

Condition Variables

Condition variables synchronize the execution of two or more threads based 
upon the value of an object. In contrast, locks synchronize threads by con-
trolling their access to objects.

Table 4-3: rw_init_flags Symbolic Constants

Constant Description

RW_RECURSE Specifies that rw is a recursive lock

RW_QUIET Instructs the system to not log the operations done on this lock

RW_NOWITNESS Causes witness(4) to ignore this lock

RW_DUPOK Causes witness(4) to ignore duplicates of this lock

RW_NOPROFILE Instructs the system to not profile this lock
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Condition variables are used in conjunction with locks to “block” threads 
until a condition is true. It works like this: A thread first acquires the foo lock. 
Then it examines the condition. If the condition is false, it sleeps on the bar 
condition variable. While asleep on bar, threads relinquish foo. A thread that 
causes the condition to be true wakes up the threads sleeping on bar. Threads 
woken up in this manner reacquire foo before proceeding.

Condition Variable Management Routines

The FreeBSD kernel provides the following 11 functions for working with con-
dition variables:

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/condvar.h>

void
cv_init(struct cv *cvp, const char *d);

const char *
cv_wmesg(struct cv *cvp);

void
cv_wait(struct cv *cvp, lock);

void
cv_wait_unlock(struct cv *cvp, lock);

int
cv_wait_sig(struct cv *cvp, lock);

int
cv_timedwait(struct cv *cvp, lock, int timo);

int
cv_timedwait_sig(struct cv *cvp, lock, int timo);

void
cv_signal(struct cv *cvp);

void
cv_broadcast(struct cv *cvp);

void
cv_broadcastpri(struct cv *cvp, int pri);

void
cv_destroy(struct cv *cvp);
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The cv_init function initializes the condition variable  cvp. The  d 
argument describes cvp.

The cv_wmesg function gets the  description of  cvp. This function is 
primarily used in error reporting.

Threads sleep on  cvp by calling cv_wait. The  lock argument demands 
a sleep mutex, sx lock, or rw lock. Threads must hold lock before calling cv_wait. 
Threads must not sleep on cvp with lock held recursively.

The cv_wait_unlock function is a variant of cv_wait. When threads wake up 
from sleeping on  cvp, they forgo reacquiring  lock.

The cv_wait_sig function is identical to cv_wait except that when the 
caller is asleep it can be woken up by signals. If this occurs, the error code 
EINTR or ERESTART is returned.

NOTE Normally, threads sleeping on condition variables cannot be woken up early.

The cv_timedwait function is identical to cv_wait except that the caller 
sleeps at most  timo / hz seconds. If the sleep times out, the error code 
EWOULDBLOCK is returned.

The cv_timedwait_sig function is like cv_wait_sig and cv_timedwait. The 
caller can be woken up by signals and sleeps at most timo / hz seconds.

Threads wake up one thread sleeping on cvp by calling cv_signal, and 
they wake up every thread sleeping on cvp by calling cv_broadcast.

The cv_broadcastpri function is identical to cv_broadcast except that all 
threads woken up have their priority raised to  pri. Threads with a priority 
higher than pri do not have their priority lowered.

The cv_destroy function destroys the condition variable  cvp.

NOTE We’ll walk through an example that uses condition variables in Chapter 5.

General Guidelines

Here are some general guidelines for lock usage. Note that these aren’t hard-
and-fast rules, just things to keep in mind.

Avoid Recursing on Exclusive Locks
When an exclusive hold or lock is acquired, the holder usually assumes that it 
has exclusive access to the objects the lock protects. Unfortunately, recursive 
locks can break this assumption in some cases. As an example, suppose func-
tion F1 uses a recursive lock L to protect object O. If function F2 acquires L, 
modifies O, leaving it in an inconsistent state, and then calls F1, F1 will recur-
sively acquire L and falsely assume that O is in a consistent state.1

One solution to this problem is to use a nonrecursive lock and to rewrite 
F1 so that it does not acquire L. Instead, L must be acquired before calling F1.

1. This paragraph is adapted from Locking in the Multithreaded FreeBSD Kernel by John H. 
Baldwin (2002).
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Avoid Holding Exclusive Locks for Long Periods of Time
Exclusive locks reduce concurrency and should be released as soon as possible. 
Note that it is better to hold a lock for a short period of time when it is not 
needed than to release the lock only to reacquire it (Baldwin, 2002). This is 
because the operations to acquire and release a lock are relatively expensive.

Conclusion

This chapter dealt with the problem of data and state corruption caused by 
concurrent threads. In short, whenever an object is accessible by multiple 
threads, its access must be managed.
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D E L A Y I N G  E X E C U T I O N

Often, drivers need to delay their execution 
in order to give their device(s), the kernel, 

or a user the time to accomplish some task. 
In this chapter, I’ll detail the different func-

tions available for achieving these delays. In the pro-
cess, I’ll also describe asynchronous code execution.

Voluntary Context Switching, or Sleeping

Voluntary context switching, or sleeping, is done when a driver thread must await 
the availability of a resource or the arrival of an event; for example, a driver 
thread should sleep after it requests data from an input device, such as a 
terminal (McKusick and Neville-Neil, 2005). A driver thread sleeps by calling 
a *sleep function.

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>



int
tsleep(void *chan, int priority, const char *wmesg, int timo);

void
wakeup(void *chan);

void
wakeup_one(void *chan);

void
pause(const char *wmesg, int timo);

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>

int
mtx_sleep(void *chan, struct mtx *mtx, int priority, const char *wmesg,
    int timo);

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>

int
msleep_spin(void *chan, struct mtx *mtx, const char *wmesg, int timo);

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/sx.h>

int
sx_sleep(void *chan, struct sx *sx, int priority, const char *wmesg,
    int timo);

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/rwlock.h>

int
rw_sleep(void *chan, struct rwlock *rw, int priority, const char *wmesg,
    int timo);

A thread voluntarily context switches (or sleeps) by calling tsleep. The 
arguments for tsleep are common to the other *sleep functions and are 
described in the next few paragraphs.

The chan argument is the channel (that is to say, an arbitrary address) that 
uniquely identifies the event that the thread is waiting for.

The priority argument is the priority for the thread when it resumes. If 
priority is 0, the current thread priority is used. If PCATCH is OR’ed into priority, 
signals are checked before and after sleeping.
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The wmesg argument expects a concise description of the sleeping thread. 
This description is displayed by user-mode utilities, such as ps(1), and has no 
real impact on performance. 

The timo argument specifies the sleep timeout. If timo is nonzero, the 
thread will sleep for at most timo / hz seconds. Afterward, tsleep returns the 
error code EWOULDBLOCK.

The wakeup function wakes up every thread asleep on the channel chan. 
Generally speaking, threads woken from sleep should re-evaluate the condi-
tions they slept on.

The wakeup_one function is a variant of wakeup that only gets up the first thread 
that it finds asleep on chan. The assumption is that when the awakened thread 
is done, it calls wakeup_one to wake up another thread that’s asleep on chan; 
this succession of wakeup_one calls continues until every thread asleep on chan 
has been awakened (McKusick and Neville-Neil, 2005). This reduces the load 
in cases when numerous threads are asleep on chan, but only one thread can 
do anything meaningful when made runnable.

The pause function puts the calling thread to sleep for timo / hz seconds. 
This thread cannot be awoken by wakeup, wakeup_one, or signals.

The remaining *sleep functions—mtx_sleep, msleep_spin, sx_sleep, and 
rw_sleep—are variants of tsleep that take a particular lock. This lock is dropped 
before the thread sleeps and is reacquired before the thread awakes; if PDROP 
is OR’ed into priority, this lock is not reacquired.

Note that the msleep_spin function does not have a priority argument. 
Consequently, it cannot assign a new thread priority, catch signals via PCATCH, 
or drop its spin mutex via PDROP.

Implementing Sleeps and Condition Variables

Listing 5-1 (which is based on code written by John Baldwin) is a KLD 
designed to demonstrate sleeps and condition variables. It works by obtain-
ing “events” from a sysctl; each event is then passed to a thread, which per-
forms a specific task based on the event it received.

NOTE Take a quick look at this code and try to discern some of its structure. If you don’t 
understand all of it, don’t worry; an explanation follows.

#define INVARIANTS
#define INVARIANT_SUPPORT

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/kthread.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/unistd.h>
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#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>

 #define MAX_EVENT 1

 static struct proc *kthread;
 static int event;
 static struct cv event_cv;
 static struct mtx event_mtx;

static struct sysctl_ctx_list clist;
static struct sysctl_oid *poid;

static void
 sleep_thread(void *arg)

{
        int ev;

        for (;;) {
                mtx_lock(&event_mtx);
                while ((ev = event) == 0)
                        cv_wait(&event_cv, &event_mtx);
                event = 0;
                mtx_unlock(&event_mtx);

                switch (ev) {
                case -1:
                        kproc_exit(0);
                        break;
                case 0:
                        break;
                case 1:
                        printf("sleep... is alive and well.\n");
                        break;
                default:
                        panic("event %d is bogus\n", event);
                }
        }
}

static int
 sysctl_debug_sleep_test(SYSCTL_HANDLER_ARGS)

{
        int error, i = 0;

        error = sysctl_handle_int(oidp, &i, 0, req);
        if (error == 0 && req->newptr != NULL) {
                if (i >= 1 && i <= MAX_EVENT) {
                        mtx_lock(&event_mtx);
                        KASSERT(event == 0, ("event %d was unhandled",
                            event));
                        event = i;
                        cv_signal(&event_cv);
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                        mtx_unlock(&event_mtx);
                } else
                        error = EINVAL;
        }

        return (error);
}

static int
 load(void *arg)

{
        int error;
        struct proc *p;
        struct thread *td;

        error = kproc_create(sleep_thread, NULL, &p, RFSTOPPED, 0, "sleep");
        if (error)
                return (error);

        event = 0;
        mtx_init(&event_mtx, "sleep event", NULL, MTX_DEF);
        cv_init(&event_cv, "sleep");

        td = FIRST_THREAD_IN_PROC(p);
        thread_lock(td);
        TD_SET_CAN_RUN(td);
        sched_add(td, SRQ_BORING);
        thread_unlock(td);
        kthread = p;

        sysctl_ctx_init(&clist);
        poid = SYSCTL_ADD_NODE(&clist, SYSCTL_STATIC_CHILDREN(_debug),
            OID_AUTO, "sleep", CTLFLAG_RD, 0, "sleep tree");
        SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(poid), OID_AUTO, "test",
            CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_debug_sleep_test, "I",
            "");

        return (0);
}

static int
 unload(void *arg)

{
        sysctl_ctx_free(&clist);
        mtx_lock(&event_mtx);
        event = -1;
        cv_signal(&event_cv);
        mtx_sleep(kthread, &event_mtx, PWAIT, "sleep", 0);
        mtx_unlock(&event_mtx);
        mtx_destroy(&event_mtx);
        cv_destroy(&event_cv);

        return (0);
}

Delaying Execut ion 87



static int
 sleep_modevent(module_t mod __unused, int event, void *arg)

{
        int error = 0;

        switch (event) {
        case MOD_LOAD:
                error = load(arg);
                break;
        case MOD_UNLOAD:
                error = unload(arg);
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

static moduledata_t sleep_mod = {
        "sleep",
        sleep_modevent,
        NULL
};

DECLARE_MODULE(sleep, sleep_mod, SI_SUB_SMP, SI_ORDER_ANY);

Listing 5-1: sleep.c

Near the beginning of Listing 5-1, a constant named  MAX_EVENT is 
defined as 1, and a struct proc pointer named  kthread is declared. For 
now, ignore these two objects; I’ll discuss them later.

Next, there are two variable declarations: an integer named  event and a 
condition variable named  event_cv. These variables are used to synchronize 
Listing 5-1’s threads. Obviously, the  event_mtx mutex is used to protect event.

The remaining parts— sleep_thread,  sysctl_debug_sleep_test,  load, 
 unload, and  sleep_modevent—require a more in-depth explanation and 
are therefore described in their own sections.

To make things easier to follow, I’ll describe the abovementioned parts 
in the order they execute, rather than in the order they appear. Thus, I’ll 
begin with Listing 5-1’s module event handler.

sleep_modevent Function
The sleep_modevent function is the module event handler for Listing 5-1. Here 
is its function definition (again):

static int
sleep_modevent(module_t mod __unused, int event, void *arg)
{
        int error = 0;
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        switch (event) {
        case MOD_LOAD:
                error = load(arg);
                break;
        case MOD_UNLOAD:
                error = unload(arg);
                break;
        default:
                error = EOPNOTSUPP;
                break;
        }

        return (error);
}

On module load, this function simply calls the  load function. On 
module unload, it calls the  unload function.

load Function
The load function initializes this KLD. Here is its function definition (again):

static int
load(void *arg)
{
        int error;
        struct proc *p;
        struct thread *td;

        error = kproc_create(sleep_thread, NULL, &p, RFSTOPPED, 0,
            "sleep");
        if (error)
                return (error);

event = 0;
        mtx_init(&event_mtx, "sleep event", NULL, MTX_DEF);
        cv_init(&event_cv, "sleep");

        td = FIRST_THREAD_IN_PROC(p);
        thread_lock(td);
        TD_SET_CAN_RUN(td);

sched_add(td, SRQ_BORING);
        thread_unlock(td);

kthread = p;

        sysctl_ctx_init(&clist);
        poid = SYSCTL_ADD_NODE(&clist, SYSCTL_STATIC_CHILDREN(_debug),
            OID_AUTO, "sleep", CTLFLAG_RD, 0, "sleep tree");
        SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(poid), OID_AUTO, "test",
            CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_debug_sleep_test, "I",
            "");

        return (0);
}
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This function can be split into four parts. The first  creates a kernel pro-
cess to execute the function  sleep_thread. A handle to this process is saved in 
 p. The constant  RFSTOPPED puts the process in the stopped state. The sec-
ond part initializes the  event,  event_mtx, and  event_cv variables. The 
third part  schedules the new process to execute sleep_thread. It also saves 
the process handle in  kthread.

NOTE Processes are executed at thread granularity, which is why this code is thread centric.

The fourth part creates a sysctl named debug.sleep.test, which uses a 
handler function named  sysctl_debug_sleep_test.

sleep_thread Function
The sleep_thread function receives events from the sysctl_debug_sleep_test 
function. It then performs a specific task based on the event received. Here 
is its function definition (again):

static void
sleep_thread(void *arg)
{
        int ev;

for (;;) {
mtx_lock(&event_mtx);
while ((ev = event) == 0)

cv_wait(&event_cv, &event_mtx);
event = 0;
mtx_unlock(&event_mtx);

switch (ev) {
case -1:

kproc_exit(0);
                        break;
                case 0:
                        break;
                case 1:
                        printf("sleep... is alive and well.\n");
                        break;
                default:
                        panic("event %d is bogus\n", event);
                }
        }
}

As you can see, the execution of sleep_thread is contained within a  for-
ever loop. This loop begins by  acquiring event_mtx. Next, the value of event 
is  saved in ev. If event is equal to 0, sleep_thread  waits on event_cv. See, 
event is only 0 if sleep_thread has yet to receive an event. If an event has been 
received, sleep_thread  sets event to 0 to prevent reprocessing it. Next, 
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event_mtx is  released. Finally, the received event is processed by a  switch 
statement. Note that if the received event is  -1, sleep_thread  self-terminates 
via kproc_exit.

sysctl_debug_sleep_test Function
The sysctl_debug_sleep_test function obtains events from the sysctl 
debug.sleep.test. It then passes those events to the sleep_thread function.

static int
sysctl_debug_sleep_test(SYSCTL_HANDLER_ARGS)
{
        int error, i = 0;

        error = sysctl_handle_int(oidp, &i, 0, req);
if (error == 0 && req->newptr != NULL) {

if (i >= 1 && i <= MAX_EVENT) {
mtx_lock(&event_mtx);
KASSERT(event == 0, ("event %d was unhandled",

                            event));
event = i;
cv_signal(&event_cv);

                        mtx_unlock(&event_mtx);
                } else
                        error = EINVAL;
        }

        return (error);
}

This function begins by  obtaining an event from debug.sleep.test 
and  storing it in i. The following  if statement ensures that the event was 
obtained successfully. Next, a  range check is performed on i. If i is in the 
allowable range, event_mtx is  acquired and event is  queried to ensure that 
it equals 0.

NOTE If event does not equal 0, something has gone horribly wrong. And if INVARIANTS is 
enabled, the kernel panics.

Finally, event is  set to i and sleep_thread is  unblocked to process it.

unload Function
The unload function shuts down this KLD. Here is its function definition (again):

static int
unload(void *arg)
{

sysctl_ctx_free(&clist);
        mtx_lock(&event_mtx);

event = -1;
cv_signal(&event_cv);
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mtx_sleep(kthread, &event_mtx, PWAIT, "sleep", 0);
        mtx_unlock(&event_mtx);

mtx_destroy(&event_mtx);
cv_destroy(&event_cv);

        return (0);
}

This function begins by  tearing down the sysctl debug.sleep.test. After-
ward, event is  set to -1 and sleep_thread is  unblocked to process it.

Recall that if event is -1, sleep_thread self-terminates via kproc_exit. Note 
that kproc_exit executes wakeup on its caller’s process handle before return-
ing. This is why unload  sleeps on the channel  kthread, because it contains 
sleep_thread’s process handle.

NOTE Recall that load saved sleep_thread’s process handle in kthread.

As unload sleeps (at ) until sleep_thread exits, it cannot destroy  event_mtx 
and  event_cv while they’re still in use.

Don’t Panic
Here are the results from loading and unloading Listing 5-1:

$ sudo kldload ./sleep.ko
$ sudo sysctl debug.sleep.test=1
debug.sleep.test: 0 -> 0
$ dmesg | tail -n 1
sleep... is alive and well.
$ sudo kldunload ./sleep.ko
$

Naturally, it works. Now, let’s look at some other ways to delay execution.

Kernel Event Handlers

Event handlers allow drivers to register one or more functions to be called when 
an event occurs. As an example, before halting the system, every function 
that is registered with the event handler shutdown_final is called. Table 5-1 
describes every event handler that is available.

Table 5-1: Kernel Event Handlers

Event Handler Description

acpi_sleep_event Registered functions are called when the system is sent to sleep.

acpi_wakeup_event Registered functions are called when the system is woken up.

dev_clone Registered functions are called when a solicited item under /dev 
does not exist; in other words, these functions create device 
nodes on demand.
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The FreeBSD kernel provides the following three macros for working 
with event handlers:

#include <sys/eventhandler.h>

 eventhandler_tag
EVENTHANDLER_REGISTER(name, func, arg, priority);

EVENTHANDLER_DEREGISTER(name, tag);

EVENTHANDLER_INVOKE(name, ...);

The EVENTHANDLER_REGISTER macro registers the function  func with the 
event handler  name. If successful, an  eventhandler_tag is returned. When 
func is called,  arg will be its first argument. Functions registered with name 
are called in order of  priority. priority can be 0 (which is the highest priority) 
to 20000 (which is the lowest priority).

NOTE Generally, I use the constant EVENTHANDLER_PRI_ANY, which equals 10000, for priority.

The EVENTHANDLER_DEREGISTER macro deletes the function associated with  
tag from the event handler  name (where tag is an  eventhandler_tag).

ifaddr_event Registered functions are called when an address is set up on a 
network interface.

if_clone_event Registered functions are called when a network interface is cloned.

ifnet_arrival_event Registered functions are called when a new network interface 
appears.

ifnet_departure_event Registered functions are called when a network interface is 
taken down.

power_profile_change Registered functions are called when the system’s power profile 
changes.

process_exec Registered functions are called when a process issues an exec 
operation.

process_exit Registered functions are called when a process exits.

process_fork Registered functions are called when a process forks.

shutdown_pre_sync Registered functions are called when the system is shut down 
before any filesystems are synchronized.

shutdown_post_sync Registered functions are called when the system is shut down 
after every filesystem is synchronized.

shutdown_final Registered functions are called before halting the system.

vm_lowmem Registered functions are called when virtual memory is low.

watchdog_list Registered functions are called when the watchdog timer is 
reinitialized.

Table 5-1: Kernel Event Handlers (continued)

Event Handler Description
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The EVENTHANDLER_INVOKE macro executes every function registered with 
the event handler  name. Note that you’ll never call EVENTHANDLER_INVOKE, 
because each event handler has threads dedicated to do just that. 

NOTE We’ll walk through an example that uses event handlers in Chapter 6.

Callouts

Callouts allow drivers to asynchronously execute a function after a specified 
amount of time (or at regular intervals). These functions are known as callout 
functions.

The FreeBSD kernel provides the following seven functions for working 
with callouts:

#include <sys/types.h>
#include <sys/systm.h>

typedef void timeout_t (void *);

void
callout_init(struct callout *c, int mpsafe);

void
callout_init_mtx(struct callout *c, struct mtx *mtx, int flags);

void
callout_init_rw(struct callout *c, struct rwlock *rw, int flags);

int
callout_stop(struct callout *c);

int
callout_drain(struct callout *c);

int
callout_reset(struct callout *c, int ticks, timeout_t *func,
    void *arg);

int
callout_schedule(struct callout *c, int ticks);

The callout_init function initializes the callout structure  c. The  
mpsafe argument denotes whether the callout function is “multiprocessor 
safe.” Valid values for this argument are shown in Table 5-2.
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NOTE Here, Giant is acquired and dropped by the callout subsystem. Giant primarily protects 
legacy code and should not be used by contemporary code.

The callout_init_mtx function is an alternative to callout_init. The mutex  
mtx is acquired before executing the callout function and it’s dropped after 
the callout function returns (mtx is acquired and dropped by the callout sub-
system). After callout_init_mtx returns, mtx is associated with the callout struc-
ture c and its callout function.

The  flags argument modifies callout_init_mtx’s behavior. Table 5-3 
displays its only valid value.

The callout_init_rw function is an alternative to callout_init. The rw lock 
 rw is acquired, as a writer, before executing the callout function and it’s 
dropped after the callout function returns (rw is acquired and dropped by 
the callout subsystem). After callout_init_rw returns, rw is associated with the 
callout structure c and its callout function.

The  flags argument modifies callout_init_rw’s behavior. Table 5-4 
displays its only valid value.

The callout_stop function cancels a callout function that’s currently 
pending. If successful, a nonzero value is returned. If 0 is returned, the callout 
function is either currently executing or it has already finished executing.

Table 5-2: callout_init Symbolic Constants

Constant Description

0 The callout function is not multiprocessor safe; the Giant mutex is 
acquired before executing the callout function, and it’s dropped after 
the callout function returns.

CALLOUT_MPSAFE The callout function is multiprocessor safe; in other words, race 
conditions are dealt with by the callout function itself.

Table 5-3: callout_init_mtx Symbolic Constants

Constant Description

CALLOUT_RETURNUNLOCKED Indicates that the callout function will drop mtx itself; in other 
words, mtx is not dropped after the callout function returns, 
but during.

Table 5-4: callout_init_rw Symbolic Constants

Constant Description

CALLOUT_SHAREDLOCK Causes rw to be acquired as a reader
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NOTE You must exclusively hold the lock associated with the callout function that you’re try-
ing to stop before calling callout_stop. 

The callout_drain function is identical to callout_stop except that if the 
callout function is currently executing, it waits for the callout function to 
finish before returning. If the callout function that you’re trying to stop 
requires a lock and you’re exclusively holding that lock while calling 
callout_drain, deadlock will result.

The callout_reset function schedules the function  func to be executed, 
one time, after  ticks / hz seconds; negative values for ticks are converted 
to 1. When func is called,  arg will be its first and only argument. After 
callout_reset returns, func is the callout function for the callout structure  c.

The callout_reset function can also reschedule a pending callout func-
tion to execute at a new time.

NOTE You must exclusively hold the lock associated with the callout or callout function that 
you’re trying to establish or reschedule before calling callout_reset.

The callout_schedule function reschedules a pending callout function to 
execute at a new time. This function is simply a convenience wrapper for 
callout_reset.

NOTE You must exclusively hold the lock associated with the callout function that you’re try-
ing to reschedule before calling callout_schedule.

Callouts and Race Conditions

Because callout functions execute asynchronously, it’s possible for a callout 
function to be called while another thread attempts to stop or reschedule it; 
thus creating a race condition. Fortunately, there are two simple solutions 
available for solving this problem:

Use callout_init_mtx, callout_init_rw, or callout_init(foo, 0)
Callout functions associated with a lock are exempt from the race condi-
tion described above—as long as the associated lock is held before call-
ing the callout management functions.

Use callout_drain to permanently cancel a callout function
Use callout_drain instead of callout_stop to permanently cancel a call-
out function. See, by waiting for the callout function to finish, you can’t 
destroy any objects that it might need.

NOTE We’ll walk through an example that uses callouts in Chapter 6.

Taskqueues

Taskqueues allow drivers to schedule the asynchronous execution of one or 
more functions at a later time. These functions are known as tasks. Taskqueues 
are primarily used for deferred work. 
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NOTE Taskqueues are like callouts except that you can’t specify the time to execute your functions.

Taskqueues work by having tasks queued on them. Intermittently, these 
tasks get executed.

Global Taskqueues
FreeBSD runs and maintains four global taskqueues:

taskqueue_swi
The taskqueue_swi taskqueue executes its tasks in the context of an inter-
rupt. Interrupt handlers typically defer their computationally expensive 
work to this taskqueue. This taskqueue lets interrupt handlers finish 
sooner, thereby reducing the amount of time spent with interrupts dis-
abled. Interrupt handlers are discussed in detail in Chapter 8.

taskqueue_swi_giant
The taskqueue_swi_giant taskqueue is identical to taskqueue_swi except that 
it acquires the Giant mutex before executing its tasks. Contemporary 
code should avoid this taskqueue.

taskqueue_thread
The taskqueue_thread taskqueue is the general-purpose taskqueue. It exe-
cutes its tasks in the context of a kernel thread (which is the same con-
text that drivers execute in). You can use this taskqueue when you have 
code that executes without a thread context (such as an interrupt han-
dler) that needs to execute code that requires a thread context.

taskqueue_fast
The taskqueue_fast taskqueue is identical to taskqueue_thread except that 
it acquires a spin mutex before executing its tasks. Use this taskqueue 
when your tasks cannot sleep.

Taskqueue Management Routines
The FreeBSD kernel provides the following macro and functions for working 
with taskqueues:

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>

typedef void (*task_fn_t)(void *context, int pending);

struct task {
        STAILQ_ENTRY(task)      ta_link;        /* Link for queue. */
        u_short ta_pending;     /* # of times queued. */
        u_short                 ta_priority;    /* Task priority. */
        task_fn_t               ta_func;        /* Task handler function. */
        void                    *ta_context;    /* Argument for handler. */
};
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TASK_INIT(struct task *task, int priority, task_fn_t *func,
    void *context);

int
taskqueue_enqueue(struct taskqueue *queue, struct task *task);

void
taskqueue_run(struct taskqueue *queue);

void
taskqueue_drain(struct taskqueue *queue, struct task *task);

The TASK_INIT macro initializes the task structure  task. The  priority 
argument is task’s position on a taskqueue. The  func argument is the func-
tion to be executed (one time). When func is called,  context will be its first 
argument and the value of  ta_pending will be its second.

The taskqueue_enqueue function puts  task on the taskqueue  queue 
right before the first task structure that has a lower priority value. If 
taskqueue_enqueue gets called to put task on queue again, task’s ta_pending 
value is incremented—another copy of task is not put on queue.

The taskqueue_run function executes every task on the taskqueue  queue 
in the order of the task’s priority value. After each task finishes, its task struc-
ture is removed from queue. Then its ta_pending value is zeroed and wakeup is 
called on its task structure. Note that you’ll never call taskqueue_run, because 
each taskqueue has threads dedicated to do just that.

The taskqueue_drain function waits for  task, which is on  queue, to 
finish executing.

NOTE We’ll walk through an example that uses taskqueues in Chapter 6.

Conclusion

This chapter covered the four different methods for delaying execution:

Sleeping Sleeping is done when you must wait for something to occur 
before you can proceed.

Event Handlers Event handlers let you register one or more functions 
to be executed when an event occurs.

Callouts Callouts let you perform asynchronous code execution. Call-
outs are used to execute your functions at a specific time.

Taskqueues Taskqueues also let you perform asynchronous code exe-
cution. Taskqueues are used for deferred work.
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C A S E  S T U D Y :  
V I R T U A L  N U L L  M O D E M

This chapter is the first of several case 
studies that’ll guide you through a real-

world device driver. The purpose of these 
case studies is to expose you to genuine driver 

code—warts and all—and to consolidate the informa-
tion presented in earlier chapters.

In this chapter, we’ll go through nmdm(4), the virtual null modem termi-
nal driver. This driver creates two tty(4) devices that are connected by a vir-
tual null modem cable. In other words, the output of one tty(4) device is the 
input for the other tty(4) device, and vice versa. I chose to profile nmdm(4) 
because it uses event handlers, callouts, and taskqueues, all of which were 
described, but not demonstrated, in Chapter 5.



Prerequisites

Before I can walk you through nmdm(4), you’ll need to grok the following 
functions:

#include <sys/tty.h>

struct tty *
tty_alloc_mutex(struct ttydevsw *tsw, void *softc, struct mtx *mtx);

void
tty_makedev(struct tty *tp, struct ucred *cred, const char *fmt, ...);

void *
tty_softc(struct tty *tp);

The tty_alloc_mutex function creates a TTY device. The tsw argument 
expects a pointer to a TTY device switch table, which is like a character device 
switch table, but for TTY devices. The softc argument is the software context 
(or instance variables) for the TTY device. The mtx argument specifies the 
mutex that’ll protect the TTY device.

NOTE At some point in the near future, the tty_alloc_mutex function is supposed to be depre-
cated and removed.

The tty_makedev function creates a TTY device node under /dev. The tp 
argument expects a pointer to a TTY device (for example, the return value 
from tty_alloc_mutex). The cred argument is the credentials for the device 
node. If cred is NULL, UID_ROOT and GID_WHEEL are used. The fmt argument speci-
fies the name for the device node.

The tty_softc function returns the software context of the TTY device tp. 

Code Analysis

Listing 6-1 provides a terse, source-level overview of nmdm(4).

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/tty.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/limits.h>
#include <sys/serial.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
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MALLOC_DEFINE(M_NMDM, "nullmodem", "nullmodem data structures");

struct nmdm_part {
        struct tty              *np_tty;
        struct nmdm_part        *np_other;
        struct task             np_task;
        struct callout          np_callout;
        int                     np_dcd;
        int                     np_rate;
        u_long                  np_quota;
        int                     np_credits;
        u_long                  np_accumulator;

#define QS 8                    /* Quota shift. */
};

struct nmdm_softc {
        struct nmdm_part        ns_partA;
        struct nmdm_part        ns_partB;
        struct mtx              ns_mtx;
};

static tsw_outwakeup_t          nmdm_outwakeup;
static tsw_inwakeup_t           nmdm_inwakeup;
static tsw_param_t              nmdm_param;
static tsw_modem_t              nmdm_modem;

static struct ttydevsw nmdm_class = {
        .tsw_flags =            TF_NOPREFIX,
        .tsw_outwakeup =        nmdm_outwakeup,
        .tsw_inwakeup =         nmdm_inwakeup,
        .tsw_param =            nmdm_param,
        .tsw_modem =            nmdm_modem
};

static int nmdm_count = 0;

static void
nmdm_timeout(void *arg)
{
...
}

static void
nmdm_task_tty(void *arg, int pending __unused)
{
...
}

static struct nmdm_softc *
nmdm_alloc(unsigned long unit)
{
...
}
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static void
nmdm_clone(void *arg, struct ucred *cred, char *name, int len,
    struct cdev **dev)
{
...
}

static void
nmdm_outwakeup(struct tty *tp)
{
...
}

static void
nmdm_inwakeup(struct tty *tp)
{
...
}

static int
bits_per_char(struct termios *t)
{
...
}

static int
nmdm_param(struct tty *tp, struct termios *t)
{
...
}

static int
nmdm_modem(struct tty *tp, int sigon, int sigoff)
{
...
}

static int
nmdm_modevent(module_t mod __unused, int event, void *arg __unused)
{
...
}

DEV_MODULE(nmdm, nmdm_modevent, NULL);

Listing 6-1: nmdm.c

Listing 6-1 is provided as a convenience; as I go through the code for 
nmdm(4) you can refer to it to see how nmdm(4)’s functions and structures are 
laid out.

To make things easier to understand, I’ll detail the functions and struc-
tures in nmdm(4) in the order I would’ve written them (instead of in the order 
they appear). To that end, we’ll begin with the module event handler.
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nmdm_modevent Function
The nmdm_modevent function is the module event handler for nmdm(4). Here is 
its function definition:

static int
nmdm_modevent(module_t mod __unused, int event, void *arg __unused)
{
        static eventhandler_tag tag;

        switch (event) {
        case MOD_LOAD:
                tag = EVENTHANDLER_REGISTER(dev_clone, nmdm_clone, 0,
                    1000);
                if (tag == NULL)
                        return (ENOMEM);
                break;
        case MOD_SHUTDOWN:
                break;
        case MOD_UNLOAD:

if (nmdm_count != 0)
                       return (EBUSY);

EVENTHANDLER_DEREGISTER(dev_clone, tag);
                break;
        default:
                return (EOPNOTSUPP);
        }

        return (0);
}

On module load, this function  registers the function  nmdm_clone with 
the event handler  dev_clone.

NOTE The dev_clone event handler was described in Table 5-1 on page 92.

Recall that functions registered with dev_clone are called when a solicited 
item under /dev does not exist. So when a nmdm(4) device node is accessed for 
the first time, nmdm_clone will be called to create the device node on the fly. 
Interestingly, this on-the-fly device creation lets one create an unlimited 
number of nmdm(4) device nodes.

On module unload, this function begins by  checking the value of 
nmdm_count.

NOTE The variable nmdm_count is declared near the beginning of Listing 6-1 as an integer 
initialized to 0.

nmdm_count counts the number of active nmdm(4) device nodes. If it equals 0, 
nmdm_clone is  removed from the event handler dev_clone; otherwise, EBUSY 
(which stands for error: device busy) is  returned.
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nmdm_clone Function
As mentioned in the previous section, nmdm_clone creates nmdm(4) device 
nodes on the fly. Note that all nmdm(4) device nodes are created in pairs 
named nmdm%lu%c, where %lu is the unit number and %c is either A or B. Here 
is the function definition for nmdm_clone:

static void
nmdm_clone(void *arg, struct ucred *cred, char *name, int len,
    struct cdev **dev)
{
        unsigned long unit;
        char *end;
        struct nmdm_softc *ns;

if (*dev != NULL)
                return;

if (strncmp(name, "nmdm", 4) != 0)
                return;

        /* Device name must be "nmdm%lu%c", where %c is "A" or "B". */
        name += 4;
        unit = strtoul(name, &end, 10);

if (unit == ULONG_MAX || name == end)
                return;

if ((end[0] != 'A' && end[0] != 'B') || end[1] != '\0')
                return;

        ns = nmdm_alloc(unit);

        if (end[0] == 'A')
*dev = ns->ns_partA.np_tty->t_dev;

        else
*dev = ns->ns_partB.np_tty->t_dev;

}

This function first  checks the value of *dev (which is a character device 
pointer). If *dev does not equal NULL, which implies that a device node already 
exists, nmdm_clone exits (because no nodes need to be created). Next, nmdm_clone 
 ensures that the first four characters in name are equal to nmdm; otherwise 
it exits (because the solicited device node is for another driver). Then the 
fifth character in name, which should be a unit number, is  converted to 
an unsigned long and stored in unit. The following  if statement checks 
that the conversion was a success. Afterward, nmdm_clone  ensures that fol-
lowing the unit number (in name) is the letter A or B; otherwise it exits. Now, 
having confirmed that the solicited device node is indeed for this driver,  
nmdm_alloc is called to actually create the device nodes. Finally, *dev is set to 
the solicited device node (either  nmdm%luA or  nmdm%luB). 

Note that since nmdm_clone is registered with dev_clone, its function proto-
type must conform to the type expected by dev_clone, which is defined in 
<sys/conf.h>.
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nmdm_alloc Function
As mentioned in the previous section, nmdm_alloc actually creates nmdm(4)’s 
device nodes. Before I describe this function, an explanation of nmdm_class 
is needed.

NOTE The data structure nmdm_class is declared near the beginning of Listing 6-1 as a TTY 
device switch table.

static struct ttydevsw nmdm_class = {
        .tsw_flags =  TF_NOPREFIX,
        .tsw_outwakeup =        nmdm_outwakeup,
        .tsw_inwakeup =         nmdm_inwakeup,
        .tsw_param =            nmdm_param,
        .tsw_modem =            nmdm_modem
};

The flag  TF_NOPREFIX means don’t prefix tty to the device name. The other 
definitions are the operations that nmdm_class supports. These operations will 
be described as we encounter them.

Now that you’re familiar with nmdm_class, let’s walk through nmdm_alloc.

static struct nmdm_softc *
nmdm_alloc(unsigned long unit)
{
        struct nmdm_softc *ns;

atomic_add_int(&nmdm_count, 1);

        ns = malloc(sizeof(*ns), M_NMDM, M_WAITOK | M_ZERO);
mtx_init(&ns->ns_mtx, "nmdm", NULL, MTX_DEF);

        /* Connect the pairs together. */
ns->ns_partA.np_other = &ns->ns_partB;
TASK_INIT(&ns->ns_partA.np_task, 0, nmdm_task_tty, &ns->ns_partA);
callout_init_mtx(&ns->ns_partA.np_callout, &ns->ns_mtx, 0);

ns->ns_partB.np_other = &ns->ns_partA;
TASK_INIT(&ns->ns_partB.np_task, 0, nmdm_task_tty, &ns->ns_partB);
callout_init_mtx(&ns->ns_partB.np_callout, &ns->ns_mtx, 0);

        /* Create device nodes. */
        ns->ns_partA.np_tty = tty_alloc_mutex(&nmdm_class, &ns->ns_partA,
            &ns->ns_mtx);
        tty_makedev(ns->ns_partA.np_tty, NULL, "nmdm%luA", unit);

        ns->ns_partB.np_tty = tty_alloc_mutex(&nmdm_class, &ns->ns_partB,
            &ns->ns_mtx);
        tty_makedev(ns->ns_partB.np_tty, NULL, "nmdm%luB", unit);

        return (ns);
}
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This function can be split into four parts. The first  increments 
nmdm_count by one via the atomic_add_int function. As its name implies, 
atomic_add_int is atomic. Consequently, we don’t need a lock to protect 
nmdm_count when we increment it.

The second part  allocates memory for a new nmdm_softc structure. 
After that, its mutex is  initialized. Besides a mutex, nmdm_softc contains 
two additional member variables: ns_partA and ns_partB. These variables are 
nmdm_part structures and will maintain data relating to nmdm%luA or nmdm%luB.

NOTE struct nmdm_softc is defined near the beginning of Listing 6-1.

The third part   connects the member variables ns_partA and ns_partB, 
so that given ns_partA we can find ns_partB, and vice versa. The third part also 
initializes ns_partA’s and ns_partB’s   task and   callout structures.

Finally, the fourth part creates nmdm(4)’s device nodes (that is, nmdm%luA 
and nmdm%luB).

nmdm_outwakeup Function
The nmdm_outwakeup function is defined in nmdm_class as the tsw_outwakeup oper-
ation. It is executed when output from nmdm%luA or nmdm%luB is available. Here 
is its function definition:

static void
nmdm_outwakeup(struct tty *tp)
{
        struct nmdm_part *np = tty_softc(tp);

        /* We can transmit again, so wake up our side. */
taskqueue_enqueue(taskqueue_swi, &np->np_task);

}

This function  queues ns_partA’s or ns_partB’s  task structure on  
taskqueue_swi (that is to say, it defers processing the output from nmdm%luA and 
nmdm%luB).

nmdm_task_tty Function
The nmdm_task_tty function transfers data from nmdm%luA to nmdm%luB, and vice 
versa. This function is queued on taskqueue_swi by nmdm_outwakeup (for verifica-
tion, see the third argument to TASK_INIT in nmdm_alloc). Here is its function 
definition:

static void
nmdm_task_tty(void *arg, int pending __unused)
{
        struct tty *tp, *otp;
        struct nmdm_part *np = arg;
        char c;
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        tp = np->np_tty;
        tty_lock(tp);

        otp = np->np_other->np_tty;
        KASSERT(otp != NULL, ("nmdm_task_tty: null otp"));
        KASSERT(otp != tp, ("nmdm_task_tty: otp == tp"));

if (np->np_other->np_dcd) {
if (!tty_opened(tp)) {

np->np_other->np_dcd = 0;
ttydisc_modem(otp, 0);

                }
} else {

if (tty_opened(tp)) {
                        np->np_other->np_dcd = 1;
                        ttydisc_modem(otp, 1);
                }
        }

        while (ttydisc_rint_poll(otp) > 0) {
                if (np->np_rate && !np->np_quota)
                        break;
                if (ttydisc_getc(tp, &c, 1) != 1)
                        break;
                np->np_quota--;

ttydisc_rint(otp, c, 0);
        }
        ttydisc_rint_done(otp);

        tty_unlock(tp);
}

NOTE In this function’s explanation, “our TTY” refers to the TTY device (that is, nmdm%luA or 
nmdm%luB) that queued this function on taskqueue_swi.

This function is composed of two parts. The first changes the connection 
state between the two TTYs to match the status of our TTY. If our TTY is  
closed and the other TTY’s Data Carrier Detect (DCD) flag is  on, we  turn 
off that flag and  switch off their carrier signal. On the other hand, if our 
TTY has been  opened and the other TTY’s DCD flag is  off, we turn on 
that flag and switch on their carrier signal. In short, this part ensures that if 
our TTY is closed (that is, there is no data to transfer), the other TTY will not 
have a carrier signal, and if our TTY has been opened (that is, there is data 
to transfer), the other TTY will have a carrier signal. A carrier signal indicates 
a connection. In other words, loss of the carrier equates to termination of 
the connection.

The second part transfers data from our TTY’s output queue to the 
other TTY’s input queue. This part first  polls the other TTY to determine 
whether it can accept data. Then one character is  removed from our TTY’s 
output queue and  placed in the other TTY’s input queue. These steps are 
repeated until the transfer is complete.
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nmdm_inwakeup Function
The nmdm_inwakeup function is defined in nmdm_class as the tsw_inwakeup opera-
tion. It is called when input for nmdm%luA or nmdm%luB can be received again. 
That is, when nmdm%luA’s or nmdm%luB’s input queue is full and then space 
becomes available, this function is executed. Here is its function definition:

static void
nmdm_inwakeup(struct tty *tp)
{
        struct nmdm_part *np = tty_softc(tp);

        /* We can receive again, so wake up the other side. */
taskqueue_enqueue(taskqueue_swi, &np->np_other->np_task);

}

NOTE In this function’s explanation, “our TTY” refers to the TTY device (that is, nmdm%luA or 
nmdm%luB) that executed this function.

This function  queues the other TTY’s  task structure on  
taskqueue_swi. In other words, when input for our TTY can be received 
again, our TTY tells the other TTY to transfer data to it.

nmdm_modem Function
The nmdm_modem function is defined in nmdm_class as the tsw_modem operation. 
This function sets or gets the modem control line state. Here is its function 
definition:

static int
nmdm_modem(struct tty *tp, int sigon, int sigoff)
{
        struct nmdm_part *np = tty_softc(tp);
        int i = 0;

        /* Set modem control lines. */
if (sigon || sigoff) {

if (sigon & SER_DTR)
                       np->np_other->np_dcd = 1;

if (sigoff & SER_DTR)
                       np->np_other->np_dcd = 0;

ttydisc_modem(np->np_other->np_tty, np->np_other->np_dcd);

                return (0);
        /* Get state of modem control lines. */
        } else {

if (np->np_dcd)
                       i |= SER_DCD;

if (np->np_other->np_dcd)
                       i |= SER_DTR;
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                return (i);
        }
}

NOTE In this function’s explanation, “our TTY” refers to the TTY device (that is, nmdm%luA or 
nmdm%luB) that executed this function.

This function sets the modem control lines when the sigon (signal on) or 
the sigoff (signal off) argument is  nonzero. If sigon  contains the Data 
Terminal Ready (DTR) flag, the other TTY’s DCD flag is  turned on. If 
sigoff  contains the DTR flag, the other TTY’s DCD flag is  turned off. 
The other TTY’s carrier signal is  turned on or off alongside its DCD flag.

If the preceding discussion didn’t make any sense to you, this should 
help: A null modem connects the DTR output of each serial port to the DCD 
input of the other. The DTR output is kept off until a program accesses the 
serial port and turns it on; the other serial port will sense this as its DCD 
input turning on. Thus, the DCD input is used to detect the readiness of the 
other side. This is why when our TTY’s DTR is sigon’d or sigoff’d, the other 
TTY’s DCD flag and carrier signal are also turned on or off.

This function gets the modem control line state when sigon and sigoff are 0. 
If our TTY’s DCD flag is  on, SER_DCD is  returned. If the other TTY’s DCD 
flag is  on, indicating that our TTY’s DTR flag is on, SER_DTR is  returned.

nmdm_param Function
The nmdm_param function is defined in nmdm_class as the tsw_param operation. 
This function sets up nmdm_task_tty to be executed at regular intervals. That 
is, it sets nmdm%luA to periodically transfer data to nmdm%luB, and vice versa. This 
periodic data transfer requires flow control to prevent one side from over-
running the other with data. Flow control works by halting the sender when 
the receiver can’t keep up.

Here is the function definition for nmdm_param:

static int
nmdm_param(struct tty *tp, struct termios *t)
{
        struct nmdm_part *np = tty_softc(tp);
        struct tty *otp;
        int bpc, rate, speed, i;

        otp = np->np_other->np_tty;

if (!((t->c_cflag | otp->t_termios.c_cflag) & CDSR_OFLOW)) {
                np->np_rate = 0;
                np->np_other->np_rate = 0;
                return (0);
        }

bpc = imax(bits_per_char(t), bits_per_char(&otp->t_termios));
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        for (i = 0; i < 2; i++) {
                /* Use the slower of their transmit or our receive rate. */

speed = imin(otp->t_termios.c_ospeed, t->c_ispeed);
                if (speed == 0) {
                        np->np_rate = 0;
                        np->np_other->np_rate = 0;
                        return (0);
                }

                speed <<= QS;                  /* bits per second, scaled. */
                speed /= bpc;                  /* char per second, scaled. */
                rate = (hz << QS) / speed;     /* hz per callout. */
                if (rate == 0)
                        rate = 1;

                speed *= rate;
                speed /= hz;                   /* (char/sec)/tick, scaled. */

np->np_credits = speed;
                np->np_rate = rate;
                callout_reset(&np->np_callout, rate, nmdm_timeout, np);

                /* Swap pointers for second pass--to update the other end. */
                np = np->np_other;
                t = &otp->t_termios;
                otp = tp;
        }

        return (0);
}

This function can be split into three parts. The first  determines 
whether flow control is disabled. If it is, ns_partA’s and ns_partB’s np_rate 
variable is zeroed and nmdm_param exits. The np_rate variable is the rate at 
which nmdm_task_tty will be executed. This rate can differ for nmdm%luA and 
nmdm%luB.

The second part calculates the  value for np_rate. This calculation takes 
into consideration the  speed of nmdm%luA and nmdm%luB and the  number of 
bits per character. The second part also determines the  maximum num-
ber of characters to transfer per execution of nmdm_task_tty.

Lastly, the third part causes  nmdm_timeout to execute one time after 
 rate / hz seconds. The nmdm_timeout function queues nmdm_task_tty on 
taskqueue_swi.

The second and third parts are executed twice, once for nmdm%luA and 
once for nmdm%luB.
110 Chapter 6



nmdm_timeout Function
As indicated in the previous section, the nmdm_timeout function queues 
nmdm_task_tty on taskqueue_swi at regular intervals. Here is its function 
definition:

static void
nmdm_timeout(void *arg)
{
        struct nmdm_part *np = arg;

if (np->np_rate == 0)
                return;

        /*
         * Do a simple Floyd-Steinberg dither to avoid FP math.
         * Wipe out unused quota from last tick.
         */
        np->np_accumulator += np->np_credits;
        np->np_quota = np->np_accumulator >> QS;
        np->np_accumulator &= ((1 << QS) - 1);

taskqueue_enqueue(taskqueue_swi, &np->np_task);
callout_reset(&np->np_callout, np->np_rate, nmdm_timeout, np);

}

This function first  checks the value of np_rate. If it equals 0, nmdm_timeout 
exits. Next, ns_partA’s or ns_partB’s np_quota variable is assigned the  maxi-
mum number of characters to transfer (if you return to “nmdm_task_tty 
Function” on page 106, it should be obvious how np_quota is used). Once this 
is done, nmdm_task_tty is  queued on  taskqueue_swi and  nmdm_timeout is  
rescheduled to execute after  np_rate / hz seconds. 

The nmdm_param and nmdm_timeout functions are used to emulate the TTYs’ 
baud rate. Without these two functions, data transfers would be slower.

bits_per_char Function
The bits_per_char function returns the number of bits used to represent a sin-
gle character for a given TTY. This function is used only in nmdm_param. Here is 
its function definition:

static int
bits_per_char(struct termios *t)
{
        int bits;

bits = 1;               /* start bit. */
switch (t->c_cflag & CSIZE) {
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        case CS5:
                bits += 5;
                break;
        case CS6:
                bits += 6;
                break;
        case CS7:
                bits += 7;
                break;
        case CS8:
                bits += 8;
                break;
        }

bits++;                 /* stop bit. */
if (t->c_cflag & PARENB)

                bits++;
if (t->c_cflag & CSTOPB)

                bits++;

        return (bits);
}

Notice that the  return value takes into account the  variable charac-
ter size,  start bit,  stop bit,  parity enabled bit, and  second stop bit.

Don’t Panic
Now that we’ve walked through nmdm(4), let’s give it a try:

$ sudo kldload ./nmdm.ko
$ sudo /usr/libexec/getty std.9600 nmdm0A &
[1] 936
$ sudo cu -l /dev/nmdm0B
Connected

FreeBSD/i386 (wintermute.phub.net.cable.rogers.com) (nmdm0A)

login:

Excellent. We’re able to connect to nmdm0A, which is running getty(8), 
from nmdm0B.

Conclusion

This chapter described the entire code base of nmdm(4), the virtual null modem 
terminal driver. If you noticed the complete lack of locking in this driver and 
are alarmed, don’t be. The ns_mtx mutex, which gets initialized in nmdm_alloc, 
is implicitly acquired by the TTY subsystem before nmdm_outwakeup, nmdm_inwakeup, 
nmdm_modem, and nmdm_param are called. In short, every operation between nmdm%luA 
and nmdm%luB is serialized.
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N E W B U S  A N D  R E S O U R C E  
A L L O C A T I O N

Until now, we’ve examined only pseudo-
devices, which provide a superb introduction 

to driver writing. However, most drivers need to 
interact with real hardware. This chapter shows you 
how to write drivers that do just that.

I’ll start by introducing Newbus, which is the infrastructure used in 
FreeBSD to manage the hardware devices on the system (McKusick and 
Neville-Neil, 2005). I’ll then describe the basics of a Newbus driver, and 
I’ll conclude this chapter by talking about hardware resource allocation.

Autoconfiguration and Newbus Drivers

Autoconfiguration is the procedure carried out by FreeBSD to enable the hard-
ware devices on a machine (McKusick and Neville-Neil, 2005). It works by sys-
tematically probing a machine’s I/O buses in order to identify their child 



devices. For each identified device, an appropriate Newbus driver is assigned 
to configure and initialize it. Note that it’s possible for a device to be uniden-
tifiable or unsupported. As a result, no Newbus driver will be assigned.

A Newbus driver is any driver in FreeBSD that controls a device that is 
bound to an I/O bus (that is, roughly every driver that is not a pseudo-device 
driver).

In general, three components are common to all Newbus drivers:

 The device_foo functions

 A device method table

 A DRIVER_MODULE macro call

device_foo Functions
The device_foo functions are, more or less, the operations executed by a 
Newbus driver during autoconfiguration. Table 7-1 briefly introduces each 
device_foo function.

The device_identify function adds a new device (instance) to an I/O bus. 
This function is used only by buses that cannot directly identify their children. 
Recall that autoconfiguration begins by identifying the child devices on each 
I/O bus. Modern buses can directly identify the devices that are connected 
to them. Older buses, such as ISA, have to use the device_identify routine 
provided by their associated drivers to identify their child devices (McKusick 
and Neville-Neil, 2005). You’ll learn how to associate a driver with an I/O bus 
shortly.

All identified child devices are passed to every Newbus driver’s device_probe 
function. A device_probe function tells the kernel whether its driver can han-
dle the identified device.

Note that there may be more than one driver that can handle an identi-
fied child device. Thus, device_probe’s return value is used to specify how well 
its driver matches the identified device. The device_probe function that returns 

Table 7-1:  device_foo Functions

Function Description

device_identify Add new device to I/O bus

device_probe Probe for specific device(s)

device_attach Attach to device

device_detach Detach from device

device_shutdown Shut down device

device_suspend Device suspend requested

device_resume Resume has occurred
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the highest value denotes the best Newbus driver for the identified device. 
The following excerpt from <sys/bus.h> shows the constants used to indicate 
success (that is, a match):

#define BUS_PROBE_SPECIFIC      0       /* Only I can use this device. */
#define BUS_PROBE_VENDOR        (-10)   /* Vendor-supplied driver. */
#define BUS_PROBE_DEFAULT       (-20)   /* Base OS default driver. */
#define BUS_PROBE_LOW_PRIORITY  (-40)   /* Older, less desirable driver. */
#define BUS_PROBE_GENERIC       (-100)  /* Generic driver for device. */
#define BUS_PROBE_HOOVER        (-500)  /* Driver for all devices on bus. */
#define BUS_PROBE_NOWILDCARD    (-2000000000) /* No wildcard matches. */

As you can see, success codes are values less than or equal to zero. The 
standard UNIX error codes (that is, positive values) are used as failure codes.

Once the best driver has been found to handle a device, its device_attach 
function is called. A device_attach function initializes a device and any essen-
tial software (for example, device nodes).

The device_detach function disconnects a driver from a device. This func-
tion should set the device to a sane state and release any resources that were 
allocated during device_attach.

A Newbus driver’s device_shutdown, device_suspend, and device_resume func-
tions are called when the system is shut down, when its device is suspended, 
or when its device returns from suspension, respectively. These functions let 
a driver manage its device as these events occur.

Device Method Table
A device method table, device_method_t, specifies which device_foo functions a 
Newbus driver implements. It is defined in the <sys/bus.h> header.

Here is an example device method table for a fictitious PCI device:

static device_method_t foo_pci_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_probe,         foo_pci_probe),
        DEVMETHOD(device_attach,        foo_pci_attach),
        DEVMETHOD(device_detach,        foo_pci_detach),
        { 0, 0 }
};

As you can see, not every device_foo function has to be defined. If a 
device_foo function is undefined, the corresponding operation is unsupported.

Unsurprisingly, the device_probe and device_attach functions must be 
defined for every Newbus driver. For drivers on older buses, the device_identify 
function must also be defined.
Newbus and Resource Al locat ion 115



DRIVER_MODULE Macro
The DRIVER_MODULE macro registers a Newbus driver with the system. This 
macro is defined in the <sys/bus.h> header. Here is its function prototype:

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>

DRIVER_MODULE(name, busname, driver_t driver, devclass_t devclass,
    modeventhand_t evh, void *arg);

The arguments expected by this macro are as follows.

name

The name argument is used to identify the driver.

busname

The busname argument specifies the driver’s I/O bus (for example, isa, pci, 
usb, and so on).

driver

The driver argument expects a filled-out driver_t structure. This argument is 
best understood with an example:

static driver_t foo_pci_driver = {
        "foo_pci",
        foo_pci_methods,
        sizeof(struct foo_pci_softc)
};

Here,  "foo_pci" is this example driver’s official name,  foo_pci_methods 
is its device method table, and  sizeof(struct foo_pci_softc) is the size of its 
software context.

devclass

The devclass argument expects an uninitialized devclass_t variable, which will 
be used by the kernel for internal bookkeeping.

evh

The evh argument denotes an optional module event handler. Generally, 
we’ll always set evh to 0, because DRIVER_MODULE supplies its own module event 
handler.

arg

The arg argument is the void * argument for the module event handler spec-
ified by evh. If evh is set to 0, arg must be too.
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Tying Everything Together

You now know enough to write your first Newbus driver. Listing 7-1 is a sim-
ple Newbus driver (based on code written by Murray Stokely) for a fictitious 
PCI device.

NOTE Take a quick look at this code and try to discern some of its structure. If you don’t 
understand all of it, don’t worry; an explanation follows.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/bus.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

 struct foo_pci_softc {
device_t        device;
struct cdev     *cdev;

};

static d_open_t         foo_pci_open;
static d_close_t        foo_pci_close;
static d_read_t         foo_pci_read;
static d_write_t        foo_pci_write;

 static struct cdevsw foo_pci_cdevsw = {
        .d_version =    D_VERSION,
        .d_open =       foo_pci_open,
        .d_close =      foo_pci_close,
        .d_read =       foo_pci_read,
        .d_write =      foo_pci_write,
        .d_name =       "foo_pci"
};

 static devclass_t foo_pci_devclass;

static int
foo_pci_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
        struct foo_pci_softc *sc;

        sc = dev->si_drv1;
        device_printf(sc->device, "opened successfully\n");
        return (0);
}
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static int
foo_pci_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
        struct foo_pci_softc *sc;

        sc = dev->si_drv1;
        device_printf(sc->device, "closed\n");
        return (0);
}

static int
foo_pci_read(struct cdev *dev, struct uio *uio, int ioflag)
{
        struct foo_pci_softc *sc;

        sc = dev->si_drv1;
        device_printf(sc->device, "read request = %dB\n", uio->uio_resid);
        return (0);
}

static int
foo_pci_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        struct foo_pci_softc *sc;

        sc = dev->si_drv1;
        device_printf(sc->device, "write request = %dB\n", uio->uio_resid);
        return (0);
}

static struct _pcsid {
        uint32_t        type;
        const char      *desc;
} pci_ids[] = {
        { 0x1234abcd, "RED PCI Widget" },
        { 0x4321fedc, "BLU PCI Widget" },
        { 0x00000000, NULL }
};

static int
foo_pci_probe(device_t dev)
{
        uint32_t type = pci_get_devid(dev);
        struct _pcsid *ep = pci_ids;

        while (ep->type && ep->type != type)
                ep++;
        if (ep->desc) {
                device_set_desc(dev, ep->desc);
                return (BUS_PROBE_DEFAULT);
        }

        return (ENXIO);
}
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static int
foo_pci_attach(device_t dev)
{
        struct foo_pci_softc *sc = device_get_softc(dev);
        int unit = device_get_unit(dev);

        sc->device = dev;
        sc->cdev = make_dev(&foo_pci_cdevsw, unit, UID_ROOT, GID_WHEEL,
            0600, "foo_pci%d", unit);
        sc->cdev->si_drv1 = sc;

        return (0);
}

static int
foo_pci_detach(device_t dev)
{
        struct foo_pci_softc *sc = device_get_softc(dev);

        destroy_dev(sc->cdev);
        return (0);
}

static device_method_t foo_pci_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_probe,         foo_pci_probe),
        DEVMETHOD(device_attach,        foo_pci_attach),
        DEVMETHOD(device_detach,        foo_pci_detach),
        { 0, 0 }
};

static driver_t foo_pci_driver = {
        "foo_pci",
        foo_pci_methods,
        sizeof(struct foo_pci_softc)
};

 DRIVER_MODULE(foo_pci, pci, foo_pci_driver, foo_pci_devclass, 0, 0);

Listing 7-1: foo_pci.c

This driver begins by defining its  software context, which will maintain 
a  pointer to its device and the  cdev returned by the  make_dev call.

Next, its  character device switch table is defined. This table contains 
four d_foo functions named foo_pci_open, foo_pci_close, foo_pci_read, and 
foo_pci_write. I’ll describe these functions in “d_foo Functions” on page 121.

Then a  devclass_t variable is declared. This variable is passed to the 
 DRIVER_MODULE macro as its  devclass argument.

Finally, the d_foo and device_foo functions are defined. These functions 
are described in the order they would execute.
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foo_pci_probe Function
The foo_pci_probe function is the device_probe implementation for this driver. 
Before I walk through this function, a description of the pci_ids array (found 
around the middle of Listing 7-1) is needed.

static struct _pcsid {
uint32_t        type;
const char      *desc;

} pci_ids[] = {
        { 0x1234abcd, "RED PCI Widget" },
        { 0x4321fedc, "BLU PCI Widget" },
        { 0x00000000, NULL }
};

This array is composed of three _pcsid structures. Each _pcsid structure 
contains a  PCI ID and a  description of the PCI device. As you might 
have guessed, pci_ids lists the devices that Listing 7-1 supports.

Now that I’ve described pci_ids, let’s walk through foo_pci_probe.

static int
foo_pci_probe(device_t dev)
{
        uint32_t type = pci_get_devid(dev);
        struct _pcsid *ep = pci_ids;

while (ep->type && ep->type != type)
                ep++;
        if (ep->desc) {

device_set_desc(dev, ep->desc);
return (BUS_PROBE_DEFAULT);

        }

        return (ENXIO);
}

Here,  dev describes an identified device found on the PCI bus. So this 
function begins by  obtaining the PCI ID of dev. Then it  determines if dev’s 
PCI ID is listed in  pci_ids. If it is, dev’s verbose description is  set and the 
success code BUS_PROBE_DEFAULT is  returned.

NOTE The verbose description is printed to the system console when foo_pci_attach executes.

foo_pci_attach Function
The foo_pci_attach function is the device_attach implementation for this 
driver. Here is its function definition (again):

static int
foo_pci_attach(device_t dev)
{
        struct foo_pci_softc *sc = device_get_softc(dev);
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        int unit = device_get_unit(dev);

        sc->device = dev;
        sc->cdev = make_dev(&foo_pci_cdevsw, unit, UID_ROOT, GID_WHEEL,
            0600, "foo_pci%d", unit);
        sc->cdev->si_drv1 = sc;

        return (0);
}

Here,  dev describes a device under this driver’s control. Thus, this 
function starts by getting dev’s  software context and  unit number. 
Then a character device node is  created and the variables sc->device and 
sc->cdev->si_drv1 are set to  dev and  sc, respectively.

NOTE The d_foo functions (described next) use sc->device and cdev->si_drv1 to gain access 
to dev and sc.

d_foo Functions
Because every d_foo function in Listing 7-1 just prints a debug message (that 
is to say, they’re all basically the same), I’m only going to walk through one 
of them: foo_pci_open.

static int
foo_pci_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
        struct foo_pci_softc *sc;

sc = dev->si_drv1;
device_printf(sc->device, "opened successfully\n");

        return (0);
}

Here,  dev is the cdev returned by the make_dev call in foo_pci_attach. So, 
this function first  obtains its software context. Then it  prints a debug 
message.

foo_pci_detach Function
The foo_pci_detach function is the device_detach implementation for this 
driver. Here is its function definition (again):

static int
foo_pci_detach(device_t dev)
{
        struct foo_pci_softc *sc = device_get_softc(dev);

destroy_dev(sc->cdev);
        return (0);
}
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Here,  dev describes a device under this driver’s control. Thus, this 
function simply obtains dev’s  software context to  destroy its device node.

Don’t Panic
Now that we’ve discussed Listing 7-1, let’s give it a try:

$ sudo kldload ./foo_pci.ko
$ kldstat
Id Refs Address    Size     Name
 1    3 0xc0400000 c9f490   kernel
 2    1 0xc3af0000 2000     foo_pci.ko
$ ls -l /dev/foo*
ls: /dev/foo*: No such file or directory

Of course, it  fails miserably, because foo_pci_probe is probing for ficti-
tious PCI devices. Before concluding this chapter, one additional topic bears 
mentioning.

Hardware Resource Management

As part of configuring and operating devices, a driver might need to manage 
hardware resources, such as interrupt-request lines (IRQs), I/O ports, or 
I/O memory (McKusick and Neville-Neil, 2005). Naturally, Newbus includes 
several functions for doing just that.

#include <sys/param.h>
#include <sys/bus.h>

#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>

struct resource *
bus_alloc_resource(device_t dev, int type, int *rid, u_long start,
    u_long end, u_long count, u_int flags);

struct resource *
bus_alloc_resource_any(device_t dev, int type, int *rid,
    u_int flags);

int
bus_activate_resource(device_t dev, int type, int rid,
    struct resource *r);

int
bus_deactivate_resource(device_t dev, int type, int rid,
    struct resource *r);

int
bus_release_resource(device_t dev, int type, int rid,
    struct resource *r);
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The bus_alloc_resource function allocates hardware resources for a spe-
cific device to use. If successful, a struct resource pointer is returned; other-
wise, NULL is returned. This function is normally called during device_attach. 
If it is called during device_probe, all allocated resources must be released 
(via bus_release_resource) before returning. Most of the arguments for 
bus_alloc_resource are common to the other hardware resource management 
functions. These arguments are described in the next few paragraphs.

The dev argument is the device that requires ownership of the hardware 
resource(s). Before allocation, resources are owned by the parent bus.

The type argument represents the type of resource dev wants allocated. 
Valid values for this argument are listed in Table 7-2.

The rid argument expects a resource ID (RID). If bus_alloc_resource is 
successful, a RID is returned in rid that may differ from what you passed. 
You’ll learn more about RIDs later.

The start and end arguments are the start and end addresses of the hard-
ware resource(s). To employ the default bus values, simply pass 0ul as start 
and ~0ul as end.

The count argument denotes the size of the hardware resource(s). If you 
used the default bus values for start and end, count is used only if it is larger 
than the default bus value.

The flags argument details the characteristics of the hardware resource. 
Valid values for this argument are listed in Table 7-3.

The bus_alloc_resource_any function is a convenience wrapper for 
bus_alloc_resource that sets start, end, and count to their default bus values.

The bus_activate_resource function activates a previously allocated hard-
ware resource. Naturally, resources must be activated before they can be used. 
Most drivers simply pass RF_ACTIVE to bus_alloc_resource or bus_alloc_resource_any 
to avoid calling bus_activate_resource.

Table 7-2:  Symbolic Constants for Hardware Resources

Constant Description

SYS_RES_IRQ Interrupt-request line

SYS_RES_IOPORT I/O port

SYS_RES_MEMORY I/O memory

Table 7-3:  bus_alloc_resource Symbolic Constants

Constant Description

RF_ALLOCATED Allocate hardware resource, but don’t activate it

RF_ACTIVE Allocate hardware resource and activate resource automatically

RF_SHAREABLE Hardware resource permits contemporaneous sharing; you should 
always set this flag, unless the resource cannot be shared

RF_TIMESHARE Hardware resource permits time-division sharing
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The bus_deactivate_resource function deactivates a hardware resource. 
This function is primarily used in bus drivers (so we’ll never call it).

The bus_release_resource function releases a previously allocated hard-
ware resource. Of course, the resource cannot be in use on release. If suc-
cessful, 0 is returned; otherwise, the kernel panics. 

NOTE We’ll cover an example that employs IRQs in Chapters 8 and 9, and I’ll go over an 
example that requires I/O ports and I/O memory in Chapters 10 and 11.

Conclusion

This chapter introduced you to the basics of Newbus driver development— 
working with real hardware. The remainder of this book builds upon the 
concepts described here to complete your understanding of Newbus.
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I N T E R R U P T  H A N D L I N G

Hardware devices often have to perform 
(or deal with) external events, such as spin-

ning disk platters, winding tapes, waiting for 
I/O, and so on. Most of these external events 

occur in a timeframe that is much slower than the 
processor’s—that is, if the processor were to wait for
the completion (or arrival) of these events, it would be idle for some time. 
To avoid wasting the processor’s valuable time, interrupts are employed. An 
interrupt is simply a signal that a hardware device can send when it wants the 
processor’s attention (Corbet et al., 2005). For the most part, a driver only 
needs to register a handler function to service its device’s interrupts.

Registering an Interrupt Handler

The following functions, declared in <sys/bus.h>, register or tear down an 
interrupt handler:

#include <sys/param.h>
#include <sys/bus.h>



int
bus_setup_intr(device_t dev, struct resource *r, int flags,
    driver_filter_t filter, driver_intr_t ithread, void *arg,
    void **cookiep);

int
bus_teardown_intr(device_t dev, struct resource *r, void *cookiep);

The bus_setup_intr function registers an interrupt handler with an IRQ. 
This IRQ must be allocated beforehand with bus_alloc_resource, as described 
in “Hardware Resource Management” on page 122.

The bus_setup_intr function is normally called during device_attach. The 
arguments for this function are described in the next few paragraphs.

The dev argument is the device whose interrupts are to be handled. This 
device must have an IRQ.

The r argument demands the return value from the successful 
bus_alloc_resource call that assigned an IRQ for dev.

The flags argument classifies the interrupt handler and/or the interrupt. 
Valid values for this argument are defined in the intr_type enumeration, 
found in <sys/bus.h>. Table 8-1 describes the more commonly used values.

The filter and ithread arguments specify the filter and ithread routines 
for the interrupt handler. For now, don’t worry about these arguments; I’ll 
discuss them in the following section.

The arg argument is the sole argument that gets passed to the interrupt 
handler. Generally, you’ll always set arg to dev’s software context.

The cookiep argument expects a pointer to void *. If bus_setup_intr is 
successful, a cookie is returned in cookiep; this cookie is needed to destroy 
the interrupt handler.

As you would expect, the bus_teardown_intr function tears down an inter-
rupt handler.

Interrupt Handlers in FreeBSD

Now that you know how to register an interrupt handler, let’s discuss how 
interrupt handlers are implemented.

In FreeBSD, interrupt handlers are composed of a filter routine, an 
ithread routine, or both. A filter routine executes in primary interrupt context 
(that is, it does not have its own context). Thus, it cannot block or context 

Table 8-1: bus_setup_intr Symbolic Constants

Constant Description

INTR_MPSAFE Indicates that the interrupt handler is multiprocessor safe and does not need 
to be protected by Giant—that is, any race conditions are to be handled by 
the interrupt handler itself; contemporary code should always pass this flag

INTR_ENTROPY Indicates that the interrupt is a good source of entropy and may be 
employed by the entropy device /dev/random
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switch, and it can use only spin mutexes for synchronization. Due to these 
constraints, filter routines are typically used only with devices that require a 
nonpreemptive interrupt handler.

A filter routine may either completely handle an interrupt or defer the 
computationally expensive work to its associated ithread routine, assuming it 
has one. Table 8-2 details the values that a filter routine can return.

An ithread routine, unlike a filter routine, executes in its own thread con-
text. You can do whatever you want in an ithread routine, except voluntarily 
context switch (that is, sleep) or wait on a condition variable. Because filter 
routines are nonpreemptive, most interrupt handlers in FreeBSD are just 
ithread routines.

Implementing an Interrupt Handler

Listing 8-1 is a contrived Newbus driver designed to demonstrate interrupt 
handlers. Listing 8-1 sets up an interrupt handler on the parallel port; on 
read, it sleeps until it receives an interrupt.

NOTE Take a quick look at this code and try to discern some of its structure. If you don’t 
understand all of it, don’t worry; an explanation follows.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/bus.h>
#include <sys/malloc.h>

#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>

#include <dev/ppbus/ppbconf.h>
#include "ppbus_if.h"
#include <dev/ppbus/ppbio.h>

Table 8-2: Filter Routine Return Values

Constant Description

FILTER_STRAY Indicates that the filter routine can’t handle this interrupt; this 
value is equivalent to an error code.

FILTER_HANDLED Indicates that the interrupt has been completely handled; this 
value is equivalent to a success code.

FILTER_SCHEDULE_THREAD Schedules the ithread routine to execute; this value can be 
returned if and only if the filter routine has an associated 
ithread routine.
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#define PINT_NAME               "pint"
#define BUFFER_SIZE             256

struct pint_data {
        int                     sc_irq_rid;
        struct resource        *sc_irq_resource;
        void                   *sc_irq_cookie;
        device_t                sc_device;
        struct cdev            *sc_cdev;
        short                   sc_state;
#define PINT_OPEN               0x01
        char                   *sc_buffer;
        int                     sc_length;
};

static d_open_t                 pint_open;
static d_close_t                pint_close;
static d_read_t                 pint_read;
static d_write_t                pint_write;

static struct cdevsw pint_cdevsw = {
        .d_version =            D_VERSION,
        .d_open =               pint_open,
        .d_close =              pint_close,
        .d_read =               pint_read,
        .d_write =              pint_write,
        .d_name =               PINT_NAME
};

static devclass_t pint_devclass;

static int
pint_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
        struct pint_data *sc = dev->si_drv1;
        device_t pint_device = sc->sc_device;
        device_t ppbus = device_get_parent(pint_device);
        int error;

        ppb_lock(ppbus);

        if (sc->sc_state) {
                ppb_unlock(ppbus);
                return (EBUSY);
        } else
                sc->sc_state |= PINT_OPEN;

        error = ppb_request_bus(ppbus, pint_device, PPB_WAIT | PPB_INTR);
        if (error) {
                sc->sc_state = 0;
                ppb_unlock(ppbus);
                return (error);
        }
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        ppb_wctr(ppbus, 0);
        ppb_wctr(ppbus, IRQENABLE);

        ppb_unlock(ppbus);
        return (0);
}

static int
pint_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
        struct pint_data *sc = dev->si_drv1;
        device_t pint_device = sc->sc_device;
        device_t ppbus = device_get_parent(pint_device);

        ppb_lock(ppbus);

        ppb_wctr(ppbus, 0);
        ppb_release_bus(ppbus, pint_device);
        sc->sc_state = 0;

        ppb_unlock(ppbus);
        return (0);
}

static int
pint_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        struct pint_data *sc = dev->si_drv1;
        device_t pint_device = sc->sc_device;
        int amount, error = 0;

        amount = MIN(uio->uio_resid,
            (BUFFER_SIZE - 1 - uio->uio_offset > 0) ?
             BUFFER_SIZE - 1 - uio->uio_offset : 0);
        if (amount == 0)
                return (error);

        error = uiomove(sc->sc_buffer, amount, uio);
        if (error) {
                device_printf(pint_device, "write failed\n");
                return (error);
        }

        sc->sc_buffer[amount] = '\0';
        sc->sc_length = amount;

        return (error);
}

static int
pint_read(struct cdev *dev, struct uio *uio, int ioflag)
{
        struct pint_data *sc = dev->si_drv1;
        device_t pint_device = sc->sc_device;
        device_t ppbus = device_get_parent(pint_device);
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        int amount, error = 0;

        ppb_lock(ppbus);
        error = ppb_sleep(ppbus, pint_device, PPBPRI | PCATCH, PINT_NAME, 0);
        ppb_unlock(ppbus);
        if (error)
                return (error);

        amount = MIN(uio->uio_resid,
            (sc->sc_length - uio->uio_offset > 0) ?
             sc->sc_length - uio->uio_offset : 0);

        error = uiomove(sc->sc_buffer + uio->uio_offset, amount, uio);
        if (error)
                device_printf(pint_device, "read failed\n");

        return (error);
}

static void
pint_intr(void *arg)
{
        struct pint_data *sc = arg;
        device_t pint_device = sc->sc_device;

#ifdef INVARIANTS
        device_t ppbus = device_get_parent(pint_device);
        ppb_assert_locked(ppbus);
#endif

        wakeup(pint_device);
}

static void
pint_identify(driver_t *driver, device_t parent)
{
        device_t dev;

        dev = device_find_child(parent, PINT_NAME, -1);
        if (!dev)
                BUS_ADD_CHILD(parent, 0, PINT_NAME, -1);
}

static int
pint_probe(device_t dev)
{
        /* probe() is always OK. */
        device_set_desc(dev, "Interrupt Handler Example");

        return (BUS_PROBE_SPECIFIC);
}

static int
pint_attach(device_t dev)
{
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        struct pint_data *sc = device_get_softc(dev);
        int error, unit = device_get_unit(dev);

        /* Declare our interrupt handler. */
        sc->sc_irq_rid = 0;
        sc->sc_irq_resource = bus_alloc_resource_any(dev, SYS_RES_IRQ,
            &sc->sc_irq_rid, RF_ACTIVE | RF_SHAREABLE);

        /* Interrupts are mandatory. */
        if (!sc->sc_irq_resource) {
                device_printf(dev,
                    "unable to allocate interrupt resource\n");
                return (ENXIO);
        }

        /* Register our interrupt handler. */
        error = bus_setup_intr(dev, sc->sc_irq_resource,
            INTR_TYPE_TTY | INTR_MPSAFE, NULL, pint_intr,
            sc, &sc->sc_irq_cookie);
        if (error) {
                bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
                    sc->sc_irq_resource);
                device_printf(dev, "unable to register interrupt handler\n");
                return (error);
        }

        sc->sc_buffer = malloc(BUFFER_SIZE, M_DEVBUF, M_WAITOK);

        sc->sc_device = dev;
        sc->sc_cdev = make_dev(&pint_cdevsw, unit, UID_ROOT, GID_WHEEL, 0600,
            PINT_NAME "%d", unit);
        sc->sc_cdev->si_drv1 = sc;

        return (0);
}

static int
pint_detach(device_t dev)
{
        struct pint_data *sc = device_get_softc(dev);

        destroy_dev(sc->sc_cdev);

        bus_teardown_intr(dev, sc->sc_irq_resource, sc->sc_irq_cookie);
        bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
            sc->sc_irq_resource);

        free(sc->sc_buffer, M_DEVBUF);

        return (0);
}

static device_method_t pint_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_identify,      pint_identify),
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        DEVMETHOD(device_probe,         pint_probe),
        DEVMETHOD(device_attach,        pint_attach),
        DEVMETHOD(device_detach,        pint_detach),
        { 0, 0 }
};

static driver_t pint_driver = {
        PINT_NAME,
        pint_methods,
        sizeof(struct pint_data)
};

DRIVER_MODULE(pint, ppbus, pint_driver, pint_devclass, 0, 0);
MODULE_DEPEND(pint, ppbus, 1, 1, 1);

Listing 8-1: pint.c

To make things easier to understand, I’ll describe the functions in List-
ing 8-1 in the order they were written, instead of in the order they appear. To 
that end, I’ll begin with the pint_identify function.

pint_identify Function
The pint_identify function is the device_identify implementation for this driver. 
Logically, this function is required because the parallel port cannot identify 
its children unaided.

Here is the function definition for pint_identify (again):

static void
pint_identify(driver_t *driver, device_t parent)
{
        device_t dev;

        dev = device_find_child(parent, PINT_NAME, -1);
        if (!dev)
                BUS_ADD_CHILD(parent, 0, PINT_NAME, -1);
}

This function first  determines whether the parallel port has (ever) 
identified a child device named  PINT_NAME. If it has not, then pint_identify 
 adds PINT_NAME to the parallel port’s list of identified children.

pint_probe Function
The pint_probe function is the device_probe implementation for this driver. 
Here is its function definition (again):

static int
pint_probe(device_t dev)
{
        /* probe() is always OK. */
        device_set_desc(dev, "Interrupt Handler Example");
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return (BUS_PROBE_SPECIFIC);
}

As you can see, this function always  returns the success code 
BUS_PROBE_SPECIFIC, so Listing 8-1 attaches to every device it probes. This 
may seem erroneous, but it is the correct behavior, as devices identified by 
a device_identify routine, using BUS_ADD_CHILD, are probed only by drivers with 
the same name. In this case, the identified device and driver name is PINT_NAME.

pint_attach Function
The pint_attach function is the device_attach implementation for this driver. 
Here is its function definition (again):

static int
pint_attach(device_t dev)
{
        struct pint_data *sc = device_get_softc(dev);
        int error, unit = device_get_unit(dev);

        /* Declare our interrupt handler. */
        sc->sc_irq_rid = 0;
        sc->sc_irq_resource = bus_alloc_resource_any(dev, SYS_RES_IRQ,
            &sc->sc_irq_rid, RF_ACTIVE | RF_SHAREABLE);

        /* Interrupts are mandatory. */
        if (!sc->sc_irq_resource) {
                device_printf(dev,
                    "unable to allocate interrupt resource\n");

return (ENXIO);
        }

        /* Register our interrupt handler. */
        error = bus_setup_intr(dev, sc->sc_irq_resource,
            INTR_TYPE_TTY | INTR_MPSAFE, NULL, pint_intr,
            sc, &sc->sc_irq_cookie);
        if (error) {
                bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
                    sc->sc_irq_resource);
                device_printf(dev, "unable to register interrupt handler\n");
                return (error);
        }

        sc->sc_buffer = malloc(BUFFER_SIZE, M_DEVBUF, M_WAITOK);

sc->sc_device = dev;
        sc->sc_cdev = make_dev(&pint_cdevsw, unit, UID_ROOT, GID_WHEEL,
            0600, PINT_NAME "%d", unit);

sc->sc_cdev->si_drv1 = sc;

        return (0);
}
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This function first  allocates an IRQ. If unsuccessful, the error code 
ENXIO (which stands for error: device not configured) is  returned. Next, the 
 pint_intr function is  set up as the interrupt handler for dev (in this 
case, the interrupt handler is just an ithread routine). Afterward, a buffer 
of BUFFER_SIZE bytes is  allocated. Then sc->sc_device is  set to dev, List-
ing 8-1’s character device node is  created, and a pointer to the software 
context (sc) is  saved in sc->sc_cdev->si_drv1.

pint_detach Function
The pint_detach function is the device_detach implementation for this driver. 
Here is its function definition (again):

static int
pint_detach(device_t dev)
{
        struct pint_data *sc = device_get_softc(dev);

destroy_dev(sc->sc_cdev);

bus_teardown_intr(dev, sc->sc_irq_resource, sc->sc_irq_cookie);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,

            sc->sc_irq_resource);

free(sc->sc_buffer, M_DEVBUF);

        return (0);
}

This function starts by  destroying Listing 8-1’s device node. Once this 
is done, it  tears down dev’s interrupt handler,  releases dev’s IRQ, and  
frees the allocated memory.

pint_open Function
The pint_open function is defined in pint_cdevsw (that is, Listing 8-1’s charac-
ter device switch table) as the d_open operation. Recall that d_open operations 
prepare the device for I/O.

Here is the function definition for pint_open (again):

static int
pint_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
        struct pint_data *sc = dev->si_drv1;
        device_t pint_device = sc->sc_device;
        device_t ppbus = device_get_parent(pint_device);
        int error;

ppb_lock(ppbus);

if (sc->sc_state) {
                ppb_unlock(ppbus);
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return (EBUSY);
        } else

sc->sc_state |= PINT_OPEN;

        error = ppb_request_bus(ppbus, pint_device, PPB_WAIT | PPB_INTR);
        if (error) {
                sc->sc_state = 0;
                ppb_unlock(ppbus);
                return (error);
        }

ppb_wctr(ppbus, 0);
ppb_wctr(ppbus, IRQENABLE);

        ppb_unlock(ppbus);
        return (0);
}

This function first  acquires the parallel port mutex. Then the value 
of sc->sc_state is  examined. If it does not equal 0, which indicates that 
another process has opened the device, the error code EBUSY is  returned; 
otherwise, pint_open  “opens” the device. Opening the device, in this case, 
means setting sc->sc_state to PINT_OPEN. Afterward, the ppb_request_bus func-
tion is  called to mark pint_device as the owner of the parallel port. Natu-
rally, pint_device is our device (that is, it points to dev from pint_attach).

NOTE Owning the parallel port lets a device transfer data to and from it.

Finally, before  enabling interrupts, pint_open  clears the parallel 
port’s control register.

pint_close Function
The pint_close function is defined in pint_cdevsw as the d_close operation. 
Here is its function definition (again):

static int
pint_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
        struct pint_data *sc = dev->si_drv1;
        device_t pint_device = sc->sc_device;
        device_t ppbus = device_get_parent(pint_device);

ppb_lock(ppbus);

ppb_wctr(ppbus, 0);
ppb_release_bus(ppbus, pint_device);
sc->sc_state = 0;

        ppb_unlock(ppbus);
        return (0);
}
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This function first  acquires the parallel port mutex. Then interrupts 
on the parallel port are  disabled (for all intents and purposes, clearing the 
control register, which is what the above code does, disables interrupts). 
Next, the ppb_release_bus function is  called to relinquish ownership of the 
parallel port. Finally, sc->sc_state is  zeroed, so that another process can 
open this device.

pint_write Function
The pint_write function is defined in pint_cdevsw as the d_write operation. 
This function acquires a character string from user space and stores it.

Here is the function definition for pint_write (again):

static int
pint_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        struct pint_data *sc = dev->si_drv1;
        device_t pint_device = sc->sc_device;
        int amount, error = 0;

        amount = MIN(uio->uio_resid,
            (BUFFER_SIZE - 1 - uio->uio_offset > 0) ?
             BUFFER_SIZE - 1 - uio->uio_offset : 0);
        if (amount == 0)
                return (error);

        error = uiomove(sc->sc_buffer, amount, uio);
        if (error) {
                device_printf(pint_device, "write failed\n");
                return (error);
        }

        sc->sc_buffer[amount] = '\0';
        sc->sc_length = amount;

        return (error);
}

This function is fundamentally identical to the echo_write function described 
on page 34. Consequently, I won’t walk through it again here.

pint_read Function
The pint_read function is defined in pint_cdevsw as the d_read operation. This 
function sleeps on entry. It also returns the stored character string to user 
space.

Here is the function definition for pint_read (again):

static int
pint_read(struct cdev *dev, struct uio *uio, int ioflag)
{
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        struct pint_data *sc = dev->si_drv1;
        device_t pint_device = sc->sc_device;
        device_t ppbus = device_get_parent(pint_device);
        int amount, error = 0;

ppb_lock(ppbus);
        error = ppb_sleep(ppbus, pint_device, PPBPRI | PCATCH,
            PINT_NAME, 0);
        ppb_unlock(ppbus);
        if (error)
                return (error);

        amount = MIN(uio->uio_resid,
            (sc->sc_length - uio->uio_offset > 0) ?
             sc->sc_length - uio->uio_offset : 0);

        error = uiomove(sc->sc_buffer + uio->uio_offset, amount, uio);
        if (error)
                device_printf(pint_device, "read failed\n");

        return (error);
}

This function begins by  acquiring the parallel port mutex. Then it  
sleeps on the channel  pint_device.

NOTE The ppb_sleep function releases the parallel port mutex before sleeping. Of course, it 
also reacquires the parallel port mutex before returning to its caller.

The remnants of this function are basically identical to the echo_read 
function described on page 13, so we won’t discuss them again here.

pint_intr Function
The pint_intr function is the interrupt handler for Listing 8-1. Here is its 
function definition (again):

static void
pint_intr(void *arg)
{
        struct pint_data *sc = arg;
        device_t pint_device = sc->sc_device;

#ifdef INVARIANTS
        device_t ppbus = device_get_parent(pint_device);
        ppb_assert_locked(ppbus);
#endif

wakeup(pint_device);
}

As you can see, this function simply  wakes up every thread sleeping on 
pint_device.
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NOTE Parallel port interrupt handlers are unique, because they get invoked with the parallel 
port mutex already held. Conversely, normal interrupt handlers need to explicitly acquire 
their own locks.

Don’t Panic
Now that we’ve walked through Listing 8-1, let’s give it a try:

$ sudo kldload ./pint.ko
$ su
Password:
# echo "DON'T PANIC" > /dev/pint0
# cat /dev/pint0 &
[1] 954
# ps | head -n 1 && ps | grep "cat"
  PID  TT  STAT      TIME COMMAND
  954  v1  I      0:00.03 cat /dev/pint0

Apparently it works. But how do we generate an interrupt to test our 
interrupt handler?

Generating Interrupts on the Parallel Port

Once interrupts are enabled, the parallel port generates an interrupt when-
ever the electrical signal at pin 10, dubbed the ACK bit, changes from low to 
high (Corbet et al., 2005).

To toggle the electrical signal at pin 10, I connected pin 10 to pin 9 
(using a resistor) and then I executed the program shown in Listing 8-2.

#include <sys/types.h>
#include <machine/cpufunc.h>

#include <err.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

 #define BASE_ADDRESS    0x378

int
main(int argc, char *argv[])
{
        int fd;

        fd = open("/dev/io", O_RDWR);
        if (fd < 0)
                err(1, "open(/dev/io)");

        outb(BASE_ADDRESS, 0x00);
        outb(BASE_ADDRESS, 0xff);
        outb(BASE_ADDRESS, 0x00);
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        close(fd);
        return (0);
}

Listing 8-2: tint.c

Here,  BASE_ADDRESS denotes the base address of the parallel port. On 
most contemporary PCs, 0x378 is the base address of the parallel port. How-
ever, you can check your machine’s BIOS to be sure.

This program changes the electrical signal at pin 9 of the parallel port 
from  low to  high.

NOTE If you’re curious, pin 9 is the most significant bit of the parallel data byte (Corbet et 
al., 2005).

Here are the results from executing Listing 8-2:

# echo "DON'T PANIC" > /dev/pint0
# cat /dev/pint0 &
[1] 1056
# ./tint
DON'T PANIC

Conclusion

This chapter focused primarily on implementing an interrupt handler. In 
Chapter 9, we’ll build upon the concepts and code described here to write 
a nontrivial, interrupt-driven driver.
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C A S E  S T U D Y :  P A R A L L E L  P O R T  
P R I N T E R  D R I V E R

This chapter is the second case study in 
this book. In this chapter, we’ll go through 

lpt(4), the parallel port printer driver. lpt(4), 
by default, is configured to be interrupt-driven, 

which gives us an opportunity to go through a nontriv-
ial interrupt handler. Aside from this, I chose to pro-
file lpt(4) because it uses almost every topic described 
in the previous chapters. It’s also relatively short.

NOTE To improve readability, some of the variables and functions presented in this chapter 
have been renamed and restructured from their counterparts in the FreeBSD source.

Code Analysis

Listing 9-1 provides a terse, source-level overview of lpt(4).

#include <sys/param.h>
#include <sys/module.h>



#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/syslog.h>

#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>

#include <dev/ppbus/ppbconf.h>
#include "ppbus_if.h"
#include <dev/ppbus/ppbio.h>
#include <dev/ppbus/ppb_1284.h>

#include <dev/ppbus/lpt.h>
#include <dev/ppbus/lptio.h>

#define LPT_NAME        "lpt"           /* official driver name.        */
#define LPT_INIT_READY  4               /* wait up to 4 seconds.        */
#define LPT_PRI         (PZERO + 8)     /* priority.                    */
#define BUF_SIZE        1024            /* sc_buf size.                 */
#define BUF_STAT_SIZE   32              /* sc_buf_stat size.            */

struct lpt_data {
        short                   sc_state;
        char                    sc_primed;
        struct callout          sc_callout;
        u_char                  sc_ticks;
        int                     sc_irq_rid;
        struct resource        *sc_irq_resource;
        void                   *sc_irq_cookie;
        u_short                 sc_irq_status;
        void                   *sc_buf;
        void                   *sc_buf_stat;
        char                   *sc_cp;
        device_t                sc_dev;
        struct cdev            *sc_cdev;
        struct cdev            *sc_cdev_bypass;
        char                    sc_flags;
        u_char                  sc_control;
        short                   sc_transfer_count;
};

/* bits for sc_state. */
#define LP_OPEN         (1 << 0)        /* device is open.              */
#define LP_ERROR        (1 << 2)        /* error received from printer. */
#define LP_BUSY         (1 << 3)        /* printer is busy writing.     */
#define LP_TIMEOUT      (1 << 5)        /* timeout enabled.             */
#define LP_INIT         (1 << 6)        /* initializing in lpt_open.    */
#define LP_INTERRUPTED  (1 << 7)        /* write call was interrupted.  */
#define LP_HAVEBUS      (1 << 8)        /* driver owns the bus.         */
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/* bits for sc_ticks. */
#define LP_TOUT_INIT    10              /* initial timeout: 1/10 sec.   */
#define LP_TOUT_MAX     1               /* max timeout: 1/1 sec.        */

/* bits for sc_irq_status. */
#define LP_HAS_IRQ      0x01            /* we have an IRQ available.    */
#define LP_USE_IRQ      0x02            /* our IRQ is in use.           */
#define LP_ENABLE_IRQ   0x04            /* enable our IRQ on open.      */
#define LP_ENABLE_EXT   0x10            /* enable extended mode.        */

/* bits for sc_flags. */
#define LP_NO_PRIME     0x10            /* don't prime the printer.     */
#define LP_PRIME_OPEN   0x20            /* prime on every open.         */
#define LP_AUTO_LF      0x40            /* automatic line feed.         */
#define LP_BYPASS       0x80            /* bypass printer ready checks. */

/* masks to interrogate printer status. */
#define LP_READY_MASK   (LPS_NERR | LPS_SEL | LPS_OUT | LPS_NBSY)
#define LP_READY        (LPS_NERR | LPS_SEL |           LPS_NBSY)

/* used in polling code. */
#define LPS_INVERT      (LPS_NERR | LPS_SEL |           LPS_NACK | LPS_NBSY)
#define LPS_MASK        (LPS_NERR | LPS_SEL | LPS_OUT | LPS_NACK | LPS_NBSY)
#define NOT_READY(bus)  ((ppb_rstr(bus) ^ LPS_INVERT) & LPS_MASK)
#define MAX_SPIN        20              /* wait up to 20 usec.          */
#define MAX_SLEEP       (hz * 5)        /* timeout while waiting.       */

static d_open_t                 lpt_open;
static d_close_t                lpt_close;
static d_read_t                 lpt_read;
static d_write_t                lpt_write;
static d_ioctl_t                lpt_ioctl;

static struct cdevsw lpt_cdevsw = {
        .d_version =            D_VERSION,
        .d_open =               lpt_open,
        .d_close =              lpt_close,
        .d_read =               lpt_read,
        .d_write =              lpt_write,
        .d_ioctl =              lpt_ioctl,
        .d_name =               LPT_NAME
};

static devclass_t lpt_devclass;

static void
lpt_identify(driver_t *driver, device_t parent)
{
...
}

static int
lpt_request_ppbus(device_t dev, int how)
{
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...
}

static int
lpt_release_ppbus(device_t dev)
{
...
}

static int
lpt_port_test(device_t ppbus, u_char data, u_char mask)
{
...
}

static int
lpt_detect(device_t dev)
{
...
}

static int
lpt_probe(device_t dev)
{
...
}

static void
lpt_intr(void *arg)
{
...
}

static int
lpt_attach(device_t dev)
{
...
}

static int
lpt_detach(device_t dev)
{
...
}

static void
lpt_timeout(void *arg)
{
...
}

static int
lpt_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
144 Chapter 9



{
...
}

static int
lpt_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
...
}

static int
lpt_read(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}

static int
lpt_push_bytes(struct lpt_data *sc)
{
...
}

static int
lpt_write(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}

static int
lpt_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
    struct thread *td)
{
...
}

static device_method_t lpt_methods[] = {
        DEVMETHOD(device_identify,      lpt_identify),
        DEVMETHOD(device_probe,         lpt_probe),
        DEVMETHOD(device_attach,        lpt_attach),
        DEVMETHOD(device_detach,        lpt_detach),
        { 0, 0 }
};

static driver_t lpt_driver = {
        LPT_NAME,
        lpt_methods,
        sizeof(struct lpt_data)
};

DRIVER_MODULE(lpt, ppbus, lpt_driver, lpt_devclass, 0, 0);
MODULE_DEPEND(lpt, ppbus, 1, 1, 1);

Listing 9-1: lpt.c
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Listing 9-1 is provided as a convenience; as I go through the code for lpt(4) 
you can refer to it to see how lpt(4)’s functions and structures are laid out.

To make things easier to follow, I’ll analyze the functions in lpt(4) in the 
approximate order they would execute in (rather than in the order they 
appear). To that end, I’ll begin with the lpt_identify function.

lpt_identify Function
The lpt_identify function is the device_identify implementation for lpt(4). 
Logically, this function is required because the parallel port cannot identify 
its children unaided.

Here is the function definition for lpt_identify:

static void
lpt_identify(driver_t *driver, device_t parent)
{
        device_t dev;

        dev = device_find_child(parent, LPT_NAME, -1);
        if (!dev)
               BUS_ADD_CHILD(parent, 0, LPT_NAME, -1);
}

This function first  determines whether the parallel port has (ever) 
identified a child device named  LPT_NAME. If it has not, then lpt_identify  
adds LPT_NAME to the parallel port’s list of identified children.

lpt_probe Function
The lpt_probe function is the device_probe implementation for lpt(4). Here is 
its function definition:

static int
lpt_probe(device_t dev)
{
        if (!lpt_detect(dev))
                return (ENXIO);

        device_set_desc(dev, "Printer");

        return (BUS_PROBE_SPECIFIC);
}

This function simply calls  lpt_detect to detect (that is, probe for) the 
presence of a printer.
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lpt_detect Function
As mentioned in the previous section, lpt_detect detects the presence of a 
printer. It works by writing to the parallel port’s data register. If a printer is 
present, it can read back the value just written.

Here is the function definition for lpt_detect:

static int
lpt_detect(device_t dev)
{
        device_t ppbus = device_get_parent(dev);

static u_char test[18] = {
                0x55,                   /* alternating zeros.   */
                0xaa,                   /* alternating ones.    */
                0xfe, 0xfd, 0xfb, 0xf7,
                0xef, 0xdf, 0xbf, 0x7f, /* walking zero.        */
                0x01, 0x02, 0x04, 0x08,
                0x10, 0x20, 0x40, 0x80  /* walking one.         */
        };
        int i, error, success = 1;      /* assume success.      */

ppb_lock(ppbus);

        error = lpt_request_ppbus(dev, PPB_DONTWAIT);
        if (error) {
                ppb_unlock(ppbus);
                device_printf(dev, "cannot allocate ppbus (%d)!\n", error);
                return (0);
        }

        for (i = 0; i < 18; i++)
                if (!lpt_port_test(ppbus, test[i], 0xff)) {
                        success = 0;
                        break;
                }

ppb_wdtr(ppbus, 0);
ppb_wctr(ppbus, 0);

lpt_release_ppbus(dev);
ppb_unlock(ppbus);

        return (success);
}

This function first  acquires the parallel port mutex. Next, lpt(4) is  
assigned ownership of the parallel port. Then  lpt_port_test is called to 
write to and read from the parallel port’s data register. The values written to 
this 8-bit register are housed in  test[] and are designed to toggle all 8 bits. 
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Once this is done, the parallel port’s  data and  control registers are 
cleared, ownership of the parallel port is  relinquished, and the parallel 
port mutex is  released.

lpt_port_test Function
The lpt_port_test function is called by lpt_detect to determine whether a 
printer is present. Here is its function definition:

static int
lpt_port_test(device_t ppbus, u_char data, u_char mask)
{
        int temp, timeout = 10000;

        data &= mask;
ppb_wdtr(ppbus, data);

        do {
                DELAY(10);
                temp = ppb_rdtr(ppbus) & mask;
        } while (temp != data && --timeout);

return (temp == data);
}

This function takes an  8-bit value and  writes it to the parallel port’s 
data register. Then it  reads from that register and  returns whether the 
value written and read match.

lpt_attach Function
The lpt_attach function is the device_attach implementation for lpt(4). Here 
is its function definition:

static int
lpt_attach(device_t dev)
{
        device_t ppbus = device_get_parent(dev);
        struct lpt_data *sc = device_get_softc(dev);
        int error, unit = device_get_unit(dev);

sc->sc_primed = 0;
ppb_init_callout(ppbus, &sc->sc_callout, 0);

        ppb_lock(ppbus);
        error = lpt_request_ppbus(dev, PPB_DONTWAIT);
        if (error) {
                ppb_unlock(ppbus);
                device_printf(dev, "cannot allocate ppbus (%d)!\n", error);
                return (0);
        }
148 Chapter 9



ppb_wctr(ppbus, LPC_NINIT);

        lpt_release_ppbus(dev);
        ppb_unlock(ppbus);

        /* Declare our interrupt handler. */
        sc->sc_irq_rid = 0;
        sc->sc_irq_resource = bus_alloc_resource_any(dev, SYS_RES_IRQ,
            &sc->sc_irq_rid, RF_ACTIVE | RF_SHAREABLE);

        /* Register our interrupt handler. */
        if (sc->sc_irq_resource) {
                error = bus_setup_intr(dev, sc->sc_irq_resource,
                    INTR_TYPE_TTY | INTR_MPSAFE, NULL, lpt_intr,
                    sc, &sc->sc_irq_cookie);
                if (error) {
                        bus_release_resource(dev, SYS_RES_IRQ,
                            sc->sc_irq_rid, sc->sc_irq_resource);
                        device_printf(dev,
                            "unable to register interrupt handler\n");
                        return (error);
                }

sc->sc_irq_status = LP_HAS_IRQ | LP_USE_IRQ | LP_ENABLE_IRQ;
                device_printf(dev, "interrupt-driven port\n");
        } else {
                sc->sc_irq_status = 0;
                device_printf(dev, "polled port\n");
        }

sc->sc_buf = malloc(BUF_SIZE, M_DEVBUF, M_WAITOK);
sc->sc_buf_stat = malloc(BUF_STAT_SIZE, M_DEVBUF, M_WAITOK);

        sc->sc_dev = dev;

        sc->sc_cdev = make_dev(&lpt_cdevsw, unit, UID_ROOT, GID_WHEEL, 0600,
            LPT_NAME "%d", unit);
        sc->sc_cdev->si_drv1 = sc;
        sc->sc_cdev->si_drv2 = 0;

        sc->sc_cdev_bypass = make_dev(&lpt_cdevsw, unit, UID_ROOT, GID_WHEEL,
            0600, LPT_NAME "%d.ctl", unit);
        sc->sc_cdev_bypass->si_drv1 = sc;
        sc->sc_cdev_bypass->si_drv2 = (void *)LP_BYPASS;

        return (0);
}

This function can be split into five parts. The first  sets sc->sc_primed to 
0 to indicate that the printer needs to be primed. It also  initializes lpt(4)’s 
callout structure. The second part essentially  changes the electrical signal 
at pin 16, dubbed nINIT, from high to low causing the printer to initiate an 
internal reset.
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NOTE As most signals are active high, the n in nINIT denotes that the signal is active low.

The third part registers the function  lpt_intr as the interrupt handler. 
If successful, the variable sc->sc_irq_status is  assigned LP_HAS_IRQ, LP_USE_IRQ, 
and LP_ENABLE_IRQ to indicate that the printer is interrupt-driven. The fourth 
part allocates memory for two buffers:  sc->sc_buf (which will maintain the 
data to be printed) and  sc->sc_buf_stat (which will maintain the printer’s 
status). Finally, the fifth part creates lpt(4)’s device nodes: lpt%d and lpt%d.ctl, 
where %d is the unit number. Note that lpt%d.ctl contains the  LP_BYPASS 
flag, while lpt%d does not. In the d_foo functions, LP_BYPASS is used to tell 
lpt%d.ctl from lpt%d. As you’ll see, the lpt%d device node represents the 
printer, while lpt%d.ctl is used solely to change the printer’s mode of opera-
tion (via lpt(4)’s d_ioctl routine).

lpt_detach Function
The lpt_detach function is the device_detach implementation for lpt(4). Here 
is its function definition:

static int
lpt_detach(device_t dev)
{
        device_t ppbus = device_get_parent(dev);
        struct lpt_data *sc = device_get_softc(dev);

destroy_dev(sc->sc_cdev_bypass);
destroy_dev(sc->sc_cdev);

        ppb_lock(ppbus);
lpt_release_ppbus(dev);

        ppb_unlock(ppbus);

callout_drain(&sc->sc_callout);

        if (sc->sc_irq_resource) {
               bus_teardown_intr(dev, sc->sc_irq_resource,
                    sc->sc_irq_cookie);
               bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
                    sc->sc_irq_resource);
        }

free(sc->sc_buf_stat, M_DEVBUF);
free(sc->sc_buf, M_DEVBUF);

        return (0);
}

This function begins by   destroying lpt(4)’s device nodes. Once this 
is done, it  relinquishes ownership of the parallel port,  drains lpt(4)’s 
callout function,  tears down lpt(4)’s interrupt handler,  releases lpt(4)’s 
IRQ, and   frees the allocated memory.
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lpt_open Function
The lpt_open function is defined in lpt_cdevsw (that is, lpt(4)’s character 
device switch table) as the d_open operation. Recall that d_open operations 
prepare the device for I/O.

Here is the function definition for lpt_open:

static int
lpt_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
        struct lpt_data *sc = dev->si_drv1;
        device_t lpt_dev = sc->sc_dev;
        device_t ppbus = device_get_parent(lpt_dev);
        int try, error;

        if (!sc)
                return (ENXIO);

        ppb_lock(ppbus);
if (sc->sc_state) {

                ppb_unlock(ppbus);
                return (EBUSY);
        } else
                sc->sc_state |= LP_INIT;

sc->sc_flags = (uintptr_t)dev->si_drv2;
        if (sc->sc_flags & LP_BYPASS) {
                sc->sc_state = LP_OPEN;
                ppb_unlock(ppbus);
                return (0);
        }

        error = lpt_request_ppbus(lpt_dev, PPB_WAIT | PPB_INTR);
        if (error) {
                sc->sc_state = 0;
                ppb_unlock(ppbus);
                return (error);
        }

        /* Use our IRQ? */
        if (sc->sc_irq_status & LP_ENABLE_IRQ)
                sc->sc_irq_status |= LP_USE_IRQ;
        else
                sc->sc_irq_status &= ~LP_USE_IRQ;

        /* Reset printer. */
        if ((sc->sc_flags & LP_NO_PRIME) == 0)
                if ((sc->sc_flags & LP_PRIME_OPEN) || sc->sc_primed == 0) {

ppb_wctr(ppbus, 0);
                        sc->sc_primed++;
                        DELAY(500);
                }
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ppb_wctr(ppbus, LPC_SEL | LPC_NINIT);

        /* Wait until ready--printer should be running diagnostics. */
        try = 0;

do {
                /* Give up? */
                if (try++ >= (LPT_INIT_READY * 4)) {
                        lpt_release_ppbus(lpt_dev);
                        sc->sc_state = 0;
                        ppb_unlock(ppbus);
                        return (EBUSY);
                }

                /* Wait 1/4 second. Give up if we get a signal. */
                if (ppb_sleep(ppbus, lpt_dev, LPT_PRI | PCATCH, "lpt_open",
                    hz / 4) != EWOULDBLOCK) {
                        lpt_release_ppbus(lpt_dev);
                        sc->sc_state = 0;
                        ppb_unlock(ppbus);
                        return (EBUSY);
                }
        } while ((ppb_rstr(ppbus) & LP_READY_MASK) != LP_READY);

sc->sc_control = LPC_SEL | LPC_NINIT;
        if (sc->sc_flags & LP_AUTO_LF)

sc->sc_control |= LPC_AUTOL;
        if (sc->sc_irq_status & LP_USE_IRQ)
 sc->sc_control |= LPC_ENA;

        ppb_wctr(ppbus, sc->sc_control);

        sc->sc_state &= ~LP_INIT;
        sc->sc_state |= LP_OPEN;
        sc->sc_transfer_count = 0;

        if (sc->sc_irq_status & LP_USE_IRQ) {
                sc->sc_state |= LP_TIMEOUT;
                sc->sc_ticks = hz / LP_TOUT_INIT;
                callout_reset(&sc->sc_callout, sc->sc_ticks,
                   lpt_timeout, sc);
        }

        lpt_release_ppbus(lpt_dev);
        ppb_unlock(ppbus);

        return (0);
}

This function can be split into six parts. The first  checks the value of 
sc->sc_state. If it does not equal 0, which implies that another process has 
opened the printer, the error code EBUSY is returned; otherwise, sc->sc_state 
is assigned LP_INIT. The second part  checks the value of dev->si_drv2.
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If it contains the LP_BYPASS flag, which indicates that the device node is 
lpt%d.ctl, sc->sc_state is set to LP_OPEN and lpt_open exits. Recall that lpt%d.ctl 
is used solely to change the printer’s mode of operation, hence the minute 
amount of preparatory work. The third part  primes the printer and then 
 selects and resets the printer (a printer prepares to receive data when it’s 
selected, which occurs when the electrical signal at pin 17, dubbed nSELIN, 
changes from high to low). The fourth part  waits for the printer to  
finish its internal reset. The fifth part  selects and resets the printer,  
enables automatic line feed if requested,1 and  enables interrupts if the 
printer is interrupt-driven. The fifth part also assigns LP_OPEN to sc->sc_state 
and zeroes the variable sc->sc_transfer_count. 

NOTE Automatic line feed is enabled when the electrical signal at pin 14, dubbed nAUTOF, 
changes from high to low. As you would expect, this causes the printer to automatically 
insert a line feed after each line.

Finally, the sixth part causes  lpt_timeout to execute one time after 
sc->sc_ticks / hz seconds. The lpt_timeout function is used alongside the 
interrupt handler lpt_intr. I’ll discuss these functions shortly.

lpt_read Function
The lpt_read function retrieves the printer’s status. Users can get the printer’s 
status by applying the cat(1) command to the device node lpt%d.

Here is the function definition for lpt_read:

static int
lpt_read(struct cdev *dev, struct uio *uio, int ioflag)
{
        struct lpt_data *sc = dev->si_drv1;
        device_t lpt_dev = sc->sc_dev;
        device_t ppbus = device_get_parent(lpt_dev);
        int num, error = 0;

if (sc->sc_flags & LP_BYPASS)
                return (EPERM);

        ppb_lock(ppbus);
        error = ppb_1284_negociate(ppbus, PPB_NIBBLE, 0);
        if (error) {
                ppb_unlock(ppbus);
                return (error);
        }

        num = 0;
        while (uio->uio_resid) {
                error = ppb_1284_read(ppbus, PPB_NIBBLE, sc->sc_buf_stat,
                    min(BUF_STAT_SIZE, uio->uio_resid), &num);
                if (error)
                        goto end_read;

1. Curiously enough, it’s currently impossible to request automatic line feed.
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if (!num)
                        goto end_read;

                ppb_unlock(ppbus);
                error = uiomove(sc->sc_buf_stat, num, uio);
                ppb_lock(ppbus);
                if (error)
                        goto end_read;
        }

end_read:
        ppb_1284_terminate(ppbus);
        ppb_unlock(ppbus);
        return (error);
}

This function first  checks the value of sc->sc_flags. If it contains the 
LP_BYPASS flag, which indicates that the device node is lpt%d.ctl, the error 
code EPERM (which stands for error: operation not permitted) is returned. Next, 
the function  ppb_1284_negociate is called to put the parallel port interface 
into  nibble mode.

NOTE Nibble mode is the most common way to retrieve data from a printer. Normally, pins 10, 
11, 12, 13, and 15 are used by the printer as external status indicators; however, in 
nibble mode these pins are used to send data to the host (4 bits at a time).

The remainder of this function transfers data from the printer to user space. 
The data in this case is the printer’s status. Here,  ppb_1284_read transfers data 
from the printer to  kernel space. The number of bytes transferred is saved 
in  num. If num  equals 0, lpt_read exits. The  uiomove function then moves 
the data from  kernel space to  user space.

lpt_write Function
The lpt_write function acquires data from user space and stores it in sc->sc_buf. 
This data is then sent to the printer to be printed.

Here is the function definition for lpt_write:

static int
lpt_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        struct lpt_data *sc = dev->si_drv1;
        device_t lpt_dev = sc->sc_dev;
        device_t ppbus = device_get_parent(lpt_dev);
        register unsigned num;
        int error;

        if (sc->sc_flags & LP_BYPASS)
                return (EPERM);

        ppb_lock(ppbus);
        error = lpt_request_ppbus(lpt_dev, PPB_WAIT | PPB_INTR);
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        if (error) {
                ppb_unlock(ppbus);
                return (error);
        }

sc->sc_state &= ~LP_INTERRUPTED;
        while ((num = min(BUF_SIZE, uio->uio_resid))) {
                sc->sc_cp = sc->sc_buf;

                ppb_unlock(ppbus);
                error = uiomove(sc->sc_cp, num, uio);
                ppb_lock(ppbus);
                if (error)
                        break;

sc->sc_transfer_count = num;

if (sc->sc_irq_status & LP_ENABLE_EXT) {
                        error = ppb_write(ppbus, sc->sc_cp,
                            sc->sc_transfer_count, 0);
                        switch (error) {
                        case 0:
                                sc->sc_transfer_count = 0;
                                break;
                        case EINTR:
                                sc->sc_state |= LP_INTERRUPTED;
                                ppb_unlock(ppbus);
                                return (error);
                        case EINVAL:
                                log(LOG_NOTICE,
                                    "%s: extended mode not available\n",
                                    device_get_nameunit(lpt_dev));
                                break;
                        default:
                                ppb_unlock(ppbus);
                                return (error);
                        }
                } else while ((sc->sc_transfer_count > 0) &&
                             (sc->sc_irq_status & LP_USE_IRQ)) {
                        if (!(sc->sc_state & LP_BUSY))

lpt_intr(sc);

                        if (sc->sc_state & LP_BUSY) {
                                error = ppb_sleep(ppbus, lpt_dev,
                                    LPT_PRI | PCATCH, "lpt_write", 0);
                                if (error) {
                                        sc->sc_state |= LP_INTERRUPTED;
                                        ppb_unlock(ppbus);
                                        return (error);
                                }
                        }
                }

                if (!(sc->sc_irq_status & LP_USE_IRQ) &&
                     (sc->sc_transfer_count)) {
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                        error = lpt_push_bytes(sc);
                        if (error) {
                                ppb_unlock(ppbus);
                                return (error);
                        }
                }
        }

        lpt_release_ppbus(lpt_dev);
        ppb_unlock(ppbus);

        return (error);
}

Like lpt_read, this function starts by checking the value of sc->sc_flags. 
If it contains the LP_BYPASS flag, the error code EPERM is returned. Next, the 
LP_INTERRUPTED flag is  removed from sc->sc_state (as you’ll see, LP_INTERRUPTED 
is added to sc->sc_state whenever a write operation is interrupted). The fol-
lowing while loop contains the bulk of lpt_write. Note that its  expression 
determines the amount of data to  copy from user space to kernel space. 
This amount is saved in  sc->sc_transfer_count, which is decremented each 
time a byte is sent to the printer.

Now, there are three ways to transfer data from kernel space to the 
printer. First, if extended mode is  enabled, lpt_write can  write directly 
to the printer.

NOTE Extended mode refers to either Enhanced Parallel Port (EPP) or Extended Capabilities 
Port (ECP) mode. EPP and ECP modes are designed to transmit data faster and with 
less CPU overhead than normal parallel port communications. Most parallel ports sup-
port one or both of these modes.

Second, if the printer is  interrupt-driven and the LP_BUSY flag is cleared 
in sc->sc_state, lpt_write can call  lpt_intr to transfer data to the printer. 
Looking at the function definition for lpt_intr in the following section, 
you’ll see that LP_BUSY is set during lpt_intr’s execution, and that LP_BUSY is 
not cleared until sc->sc_transfer_count is 0. This prevents lpt_write from issu-
ing another interrupt-driven transfer until the current one completes, which 
is why lpt_write  sleeps.

Finally, if the first and second options are unavailable, lpt_write can 
issue a polled transfer by calling  lpt_push_bytes, which is described in 
“lpt_push_bytes Function” on page 158.

lpt_intr Function
The lpt_intr function is lpt(4)’s interrupt handler. This function transfers 
1 byte from sc->sc_buf to the printer and then it exits. When the printer 
is ready for another byte, it will send an interrupt. Note that in lpt_intr, 
sc->sc_buf is accessed via sc->sc_cp.
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Here is the function definition for lpt_intr:

static void
lpt_intr(void *arg)
{
        struct lpt_data *sc = arg;
        device_t lpt_dev = sc->sc_dev;
        device_t ppbus = device_get_parent(lpt_dev);
        int i, status = 0;

for (i = 0; i < 100 &&
             ((status = ppb_rstr(ppbus)) & LP_READY_MASK) != LP_READY; i++)
                ;       /* nothing. */

        if ((status & LP_READY_MASK) == LP_READY) {
sc->sc_state = (sc->sc_state | LP_BUSY) & ~LP_ERROR;
sc->sc_ticks = hz / LP_TOUT_INIT;

                if (sc->sc_transfer_count) {
ppb_wdtr(ppbus, *sc->sc_cp++);
ppb_wctr(ppbus, sc->sc_control | LPC_STB);

                        ppb_wctr(ppbus, sc->sc_control);

                        if (--(sc->sc_transfer_count) > 0)
                               return;
                }

sc->sc_state &= ~LP_BUSY;

                if (!(sc->sc_state & LP_INTERRUPTED))
wakeup(lpt_dev);

                return;
        } else {
                if (((status & (LPS_NERR | LPS_OUT)) != LPS_NERR) &&
                    (sc->sc_state & LP_OPEN))
                        sc->sc_state |= LP_ERROR;
        }
}

This function first  checks ad nauseam that the printer is online and 
ready for output. If it is, the  LP_BUSY flag is added to sc->sc_state and the 
LP_ERROR flag, which denotes a printer error, is removed. Next, sc->sc_ticks is 
 reset. Then 1 byte from sc->sc_buf is  written to the parallel port’s data 
register and subsequently  sent to the printer (data on the parallel port 
interface is sent to the printer when the electrical signal at pin 1, dubbed 
nSTROBE, changes from high to low). If there is more data to send (that is, 
sc->sc_transfer_count is greater than 0), lpt_intr  exits, because it is protocol 
to wait for an interrupt before sending another byte. If there is no more data to 
send, LP_BUSY is  cleared from sc->sc_state and lpt_write is  woken up.
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lpt_timeout Function
The lpt_timeout function is the callout function for lpt(4). It is designed to 
deal with missed or unhandled interrupts. Here is its function definition:

static void
lpt_timeout(void *arg)
{
        struct lpt_data *sc = arg;
        device_t lpt_dev = sc->sc_dev;

if (sc->sc_state & LP_OPEN) {
                sc->sc_ticks++;
                if (sc->sc_ticks > hz / LP_TOUT_MAX)
                        sc->sc_ticks = hz / LP_TOUT_MAX;

callout_reset(&sc->sc_callout, sc->sc_ticks,
                    lpt_timeout, sc);
        } else
                sc->sc_state &= ~LP_TIMEOUT;

        if (sc->sc_state & LP_ERROR)
sc->sc_state &= ~LP_ERROR;

if (sc->sc_transfer_count)
lpt_intr(sc);

        else {
                sc->sc_state &= ~LP_BUSY;
                wakeup(lpt_dev);
        }
}

This function first  checks whether lpt%d is open. If so, lpt_timeout  
reschedules itself to execute. Next, LP_ERROR is  removed from sc->sc_state. 
Now if lpt(4) has  missed an interrupt,  lpt_intr is called to restart trans-
ferring data to the printer. 

Note that without the if block at , lpt(4) would hang waiting for an 
interrupt that’s been sent and lost.

lpt_push_bytes Function
The lpt_push_bytes function uses polling to transfer data to the printer. This 
function is called (by lpt_write) only if extended mode is disabled and the 
printer is not interrupt-driven.

Here is the function definition for lpt_push_bytes:

static int
lpt_push_bytes(struct lpt_data *sc)
{
        device_t lpt_dev = sc->sc_dev;
        device_t ppbus = device_get_parent(lpt_dev);
        int error, spin, tick;
        char ch;
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while (sc->sc_transfer_count > 0) {
                ch = *sc->sc_cp;
                sc->sc_cp++;
                sc->sc_transfer_count--;

 for (spin = 0; NOT_READY(ppbus) && spin < MAX_SPIN; spin++)
                        DELAY(1);

                if (spin >= MAX_SPIN) {
                        tick = 0;
                        while (NOT_READY(ppbus)) {
                                tick = tick + tick + 1;
                                if (tick > MAX_SLEEP)
                                        tick = MAX_SLEEP;

                                error = ppb_sleep(ppbus, lpt_dev, LPT_PRI,
                                    "lpt_poll", tick);
                                if (error != EWOULDBLOCK)
                                        return (error);
                        }
                }

ppb_wdtr(ppbus, ch);
ppb_wctr(ppbus, sc->sc_control | LPC_STB);

                ppb_wctr(ppbus, sc->sc_control);
        }

        return (0);
}

This function first  verifies that there is data to transfer. Then it  polls 
the printer to see if it is online and ready for output. If the printer is not 
ready, lpt_push_bytes  sleeps for a short period of time and then repolls the 
printer when it wakes up. This cycle of sleeping and polling is repeated until 
the printer is ready. If the printer is ready, 1 byte from sc->sc_buf is  written 
to the parallel port’s data register and then  sent to the printer. This entire 
process is repeated until all of the data in sc->sc_buf is transferred.

lpt_close Function
The lpt_close function is defined in lpt_cdevsw as the d_close operation. Here 
is its function definition:

static int
lpt_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
        struct lpt_data *sc = dev->si_drv1;
        device_t lpt_dev = sc->sc_dev;
        device_t ppbus = device_get_parent(lpt_dev);
        int error;

        ppb_lock(ppbus);
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if (sc->sc_flags & LP_BYPASS)
                goto end_close;

        error = lpt_request_ppbus(lpt_dev, PPB_WAIT | PPB_INTR);
        if (error) {
                ppb_unlock(ppbus);
                return (error);
        }

if (!(sc->sc_state & LP_INTERRUPTED) &&
(sc->sc_irq_status & LP_USE_IRQ))

                while ((ppb_rstr(ppbus) & LP_READY_MASK) != LP_READY ||
                   sc->sc_transfer_count)
                        if (ppb_sleep(ppbus, lpt_dev, LPT_PRI | PCATCH,
                            "lpt_close", hz) != EWOULDBLOCK)
                                break;

sc->sc_state &= ~LP_OPEN;
callout_stop(&sc->sc_callout);
ppb_wctr(ppbus, LPC_NINIT);

        lpt_release_ppbus(lpt_dev);

 end_close:
sc->sc_state = 0;
sc->sc_transfer_count = 0;

        ppb_unlock(ppbus);
        return (0);
}

Like lpt_read and lpt_write, this function first  checks the value of 
sc->sc_flags. If it contains the LP_BYPASS flag, lpt_close jumps to  end_close. 
Next, lpt(4) is assigned ownership of the parallel port. The following  
if block ensures that if there is  still data to transfer and the printer is  
interrupt-driven, the transfer is completed before closing lpt%d. Then, 
LP_OPEN is  removed from sc->sc_state, lpt_timeout is  stopped, the printer 
is  reset, and ownership of the parallel port is relinquished. Lastly,  
sc->sc_state and  sc->sc_transfer_count are zeroed.

lpt_ioctl Function
The lpt_ioctl function is defined in lpt_cdevsw as the d_ioctl operation. 
Before I describe this function, an explanation of its ioctl command, LPT_IRQ, 
is needed. LPT_IRQ is defined in the <dev/ppbus/lptio.h> header as follows:

#define LPT_IRQ         _IOW('p', 1, long)

As you can see, LPT_IRQ requires a  long int value.

static int
lpt_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
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    struct thread *td)
{
        struct lpt_data *sc = dev->si_drv1;
        device_t lpt_dev = sc->sc_dev;
        device_t ppbus = device_get_parent(lpt_dev);
        u_short old_irq_status;
        int error = 0;

        switch (cmd) {
case LPT_IRQ:

                ppb_lock(ppbus);
                if (sc->sc_irq_status & LP_HAS_IRQ) {
                        old_irq_status = sc->sc_irq_status;
                        switch (*(int *)data) {
                        case 0:

sc->sc_irq_status &= ~LP_ENABLE_IRQ;
                                break;
                        case 1:
                                sc->sc_irq_status &= ~LP_ENABLE_EXT;

sc->sc_irq_status |= LP_ENABLE_IRQ;
                                break;
                        case 2:
                                sc->sc_irq_status &= ~LP_ENABLE_IRQ;

sc->sc_irq_status |= LP_ENABLE_EXT;
                                break;
                        case 3:

sc->sc_irq_status &= ~LP_ENABLE_EXT;
                                break;
                        default:
                                break;
                        }

                        if (old_irq_status != sc->sc_irq_status)
                                log(LOG_NOTICE,
                                    "%s: switched to %s %s mode\n",
                                    device_get_nameunit(lpt_dev),
                                    (sc->sc_irq_status & LP_ENABLE_IRQ) ?
                                    "interrupt-driven" : "polled",
                                    (sc->sc_irq_status & LP_ENABLE_EXT) ?
                                    "extended" : "standard");
                } else
                        error = EOPNOTSUPP;

                ppb_unlock(ppbus);
                break;
        default:
                error = ENODEV;
                break;
        }

        return (error);
}
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Based on the  argument given to  LPT_IRQ, lpt_ioctl either  disables 
interrupt-driven mode (which enables polled mode),  enables interrupt-
driven mode,  enables extended mode, or  disables extended mode (which 
enables standard mode). Note that interrupt-driven mode and extended mode 
conflict with each other, so if one is enabled, the other is disabled.

NOTE To run this function, you’d use the lptcontrol(8) utility, whose source code I suggest 
you take a quick look at.

lpt_request_ppbus Function
The lpt_request_ppbus function sets lpt(4) as the owner of the parallel port. 
Recall that owning the parallel port lets a device (such as lpt%d) transfer 
data to and from it.

Here is the function definition for lpt_request_ppbus:

static int
lpt_request_ppbus(device_t dev, int how)
{
        device_t ppbus = device_get_parent(dev);
        struct lpt_data *sc = device_get_softc(dev);
        int error;

        ppb_assert_locked(ppbus);

if (sc->sc_state & LP_HAVEBUS)
               return (0);

        error = ppb_request_bus(ppbus, dev, how);
        if (!error)
               sc->sc_state |= LP_HAVEBUS;

        return (error);
}

This function begins by  checking the value of sc->sc_state. If it con-
tains LP_HAVEBUS, which indicates that lpt(4) currently owns the parallel port, 
lpt_request_ppbus  exits. Otherwise,  ppb_request_bus is called to set lpt(4) 
as the owner of the parallel port and sc->sc_state is  assigned LP_HAVEBUS.

lpt_release_ppbus Function
The lpt_release_ppbus function causes lpt(4) to relinquish ownership of the 
parallel port. Here is its function definition:

static int
lpt_release_ppbus(device_t dev)
{
        device_t ppbus = device_get_parent(dev);
        struct lpt_data *sc = device_get_softc(dev);
        int error = 0;
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        ppb_assert_locked(ppbus);

if (sc->sc_state & LP_HAVEBUS) {
                error = ppb_release_bus(ppbus, dev);
                if (!error)
                       sc->sc_state &= ~LP_HAVEBUS;
        }

        return (error);
}

This function first  verifies that lpt(4) currently owns the parallel port. 
Next, it calls  ppb_release_bus to relinquish ownership of the parallel port. 
Then LP_HAVEBUS is  removed from sc->sc_state.

Conclusion

This chapter described the entire code base of lpt(4), the parallel port 
printer driver.
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M A N A G I N G  A N D  U S I N G  
R E S O U R C E S

In Chapter 7 we discussed how to allocate 
IRQs, I/O ports, and I/O memory. Chapter 8 

focused on using IRQs for interrupt handling. This 
chapter details how to use I/O ports for port-mapped 
I/O (PMIO) and I/O memory for memory-mapped I/O 
(MMIO). Before I describe PMIO and MMIO, some 
background on I/O ports and I/O memory is needed.

I/O Ports and I/O Memory

Every peripheral device is controlled by reading from and writing to its regis-
ters (Corbet et al., 2005), which are mapped to either I/O ports or I/O 
memory. The use of I/O ports or I/O memory is device and architecture 
dependent. For example, on the i386, most ISA devices will map their regis-
ters to I/O ports; however, PCI devices tend to map their registers to I/O 



memory. As you may have guessed, reading and writing to a device’s regis-
ters, which are mapped to either I/O ports or I/O memory, is called PMIO 
or MMIO.

Reading from I/O Ports and I/O Memory
After a driver has called bus_alloc_resource to allocate the range of I/O ports 
or I/O memory it needs, it can read from those I/O regions using one of the 
following functions:

#include <sys/bus.h>
#include <machine/bus.h>

u_int8_t
bus_read_1(struct resource *r, bus_size_t offset);

u_int16_t
bus_read_2(struct resource *r, bus_size_t offset);

u_int32_t
bus_read_4(struct resource *r, bus_size_t offset);

u_int64_t
bus_read_8(struct resource *r, bus_size_t offset);

void
bus_read_multi_1(struct resource *r, bus_size_t offset,
    u_int8_t *datap, bus_size_t count);

void
bus_read_multi_2(struct resource *r, bus_size_t offset,
    u_int16_t *datap, bus_size_t count);

void
bus_read_multi_4(struct resource *r, bus_size_t offset,
    u_int32_t *datap, bus_size_t count);

void
bus_read_multi_8(struct resource *r, bus_size_t offset,
    u_int64_t *datap, bus_size_t count);

void
bus_read_region_1(struct resource *r, bus_size_t offset,
    u_int8_t *datap, bus_size_t count);

void
bus_read_region_2(struct resource *r, bus_size_t offset,
    u_int16_t *datap, bus_size_t count);

void
bus_read_region_4(struct resource *r, bus_size_t offset,
    u_int32_t *datap, bus_size_t count);
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void
bus_read_region_8(struct resource *r, bus_size_t offset,
    u_int64_t *datap, bus_size_t count);

The bus_read_N functions (where N is 1, 2, 4, or 8) read N bytes from an 
offset in r (where r is the return value from a successful bus_alloc_resource 
call that allocated an I/O region).

The bus_read_multi_N functions read N bytes from an offset in r, count 
times, and store the reads into datap. In short, bus_read_multi_N reads from the 
same location multiple times.

The bus_read_region_N functions read count N–byte values starting from an 
offset in r, and store the reads into datap. In other words, bus_read_region_N 
reads consecutive N-byte values from an I/O region (that is, an array).

Writing to I/O Ports and I/O Memory
A driver writes to an I/O region using one of the following functions:

#include <sys/bus.h>
#include <machine/bus.h>

void
bus_write_1(struct resource *r, bus_size_t offset,
    u_int8_t value);

void
bus_write_2(struct resource *r, bus_size_t offset,
    u_int16_t value);

void
bus_write_4(struct resource *r, bus_size_t offset,
    u_int32_t value);

void
bus_write_8(struct resource *r, bus_size_t offset,
    u_int64_t value);

void
bus_write_multi_1(struct resource *r, bus_size_t offset,
    u_int8_t *datap, bus_size_t count);

void
bus_write_multi_2(struct resource *r, bus_size_t offset,
    u_int16_t *datap, bus_size_t count);

void
bus_write_multi_4(struct resource *r, bus_size_t offset,
    u_int32_t *datap, bus_size_t count);
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void
bus_write_multi_8(struct resource *r, bus_size_t offset,
    u_int64_t *datap, bus_size_t count);

void
bus_write_region_1(struct resource *r, bus_size_t offset,
    u_int8_t *datap, bus_size_t count);

void
bus_write_region_2(struct resource *r, bus_size_t offset,
    u_int16_t *datap, bus_size_t count);

void
bus_write_region_4(struct resource *r, bus_size_t offset,
    u_int32_t *datap, bus_size_t count);

void
bus_write_region_8(struct resource *r, bus_size_t offset,
    u_int64_t *datap, bus_size_t count);

void
bus_set_multi_1(struct resource *r, bus_size_t offset,
    u_int8_t value, bus_size_t count);

void
bus_set_multi_2(struct resource *r, bus_size_t offset,
    u_int16_t value, bus_size_t count);

void
bus_set_multi_4(struct resource *r, bus_size_t offset,
    u_int32_t value, bus_size_t count);

void
bus_set_multi_8(struct resource *r, bus_size_t offset,
    u_int64_t value, bus_size_t count);

void
bus_set_region_1(struct resource *r, bus_size_t offset,
    u_int8_t value, bus_size_t count);

void
bus_set_region_2(struct resource *r, bus_size_t offset,
    u_int16_t value, bus_size_t count);

void
bus_set_region_4(struct resource *r, bus_size_t offset,
    u_int32_t value, bus_size_t count);

void
bus_set_region_8(struct resource *r, bus_size_t offset,
    u_int64_t value, bus_size_t count);
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The bus_write_N functions (where N is 1, 2, 4, or 8) write an N-byte value to 
an offset in r (where r is the return value from a bus_alloc_resource call that 
allocated an I/O region).

The bus_write_multi_N functions take count N–byte values from datap and 
write them to an offset in r. In short, bus_write_multi_N writes multiple values 
to the same location.

The bus_write_region_N functions take count N–byte values from datap and 
write them to a region in r, starting at offset. Each successive value is written 
at an offset of N bytes after the previous value. In short, bus_write_region_N 
writes consecutive N-byte values to an I/O region (that is, an array).

The bus_set_multi_N functions write an N-byte value to an offset in r, count 
times. That is, bus_set_multi_N writes the same value to the same location mul-
tiple times.

The bus_set_region_N functions write an N-byte value, count times, through-
out a region in r, starting at offset. In other words, bus_set_region_N writes the 
same value consecutively to an I/O region (that is, an array).

Stream Operations
All of the preceding functions handle converting to and from host byte order 
and bus byte order. In some cases, however, you may need to avoid this con-
version. Fortunately, FreeBSD provides the following functions for such an 
occasion:

#include <sys/bus.h>
#include <machine/bus.h>

u_int8_t
bus_read_stream_1(struct resource *r, bus_size_t offset);

u_int16_t
bus_read_stream_2(struct resource *r, bus_size_t offset);

u_int32_t
bus_read_stream_4(struct resource *r, bus_size_t offset);

u_int64_t
bus_read_stream_8(struct resource *r, bus_size_t offset);

void
bus_read_multi_stream_1(struct resource *r, bus_size_t offset,
    u_int8_t *datap, bus_size_t count);

void
bus_read_multi_stream_2(struct resource *r, bus_size_t offset,
    u_int16_t *datap, bus_size_t count);

void
bus_read_multi_stream_4(struct resource *r, bus_size_t offset,
    u_int32_t *datap, bus_size_t count);
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void
bus_read_multi_stream_8(struct resource *r, bus_size_t offset,
    u_int64_t *datap, bus_size_t count);

void
bus_read_region_stream_1(struct resource *r, bus_size_t offset,
    u_int8_t *datap, bus_size_t count);

void
bus_read_region_stream_2(struct resource *r, bus_size_t offset,
    u_int16_t *datap, bus_size_t count);

void
bus_read_region_stream_4(struct resource *r, bus_size_t offset,
    u_int32_t *datap, bus_size_t count);

void
bus_read_region_stream_8(struct resource *r, bus_size_t offset,
    u_int64_t *datap, bus_size_t count);

void
bus_write_stream_1(struct resource *r, bus_size_t offset,
    u_int8_t value);

void
bus_write_stream_2(struct resource *r, bus_size_t offset,
    u_int16_t value);

void
bus_write_stream_4(struct resource *r, bus_size_t offset,
    u_int32_t value);

void
bus_write_stream_8(struct resource *r, bus_size_t offset,
    u_int64_t value);

void
bus_write_multi_stream_1(struct resource *r, bus_size_t offset,
    u_int8_t *datap, bus_size_t count);

void
bus_write_multi_stream_2(struct resource *r, bus_size_t offset,
    u_int16_t *datap, bus_size_t count);

void
bus_write_multi_stream_4(struct resource *r, bus_size_t offset,
    u_int32_t *datap, bus_size_t count);

void
bus_write_multi_stream_8(struct resource *r, bus_size_t offset,
    u_int64_t *datap, bus_size_t count);
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void
bus_write_region_stream_1(struct resource *r, bus_size_t offset,
    u_int8_t *datap, bus_size_t count);

void
bus_write_region_stream_2(struct resource *r, bus_size_t offset,
    u_int16_t *datap, bus_size_t count);

void
bus_write_region_stream_4(struct resource *r, bus_size_t offset,
    u_int32_t *datap, bus_size_t count);

void
bus_write_region_stream_8(struct resource *r, bus_size_t offset,
    u_int64_t *datap, bus_size_t count);

void
bus_set_multi_stream_1(struct resource *r, bus_size_t offset,
    u_int8_t value, bus_size_t count);

void
bus_set_multi_stream_2(struct resource *r, bus_size_t offset,
    u_int16_t value, bus_size_t count);

void
bus_set_multi_stream_4(struct resource *r, bus_size_t offset,
    u_int32_t value, bus_size_t count);

void
bus_set_multi_stream_8(struct resource *r, bus_size_t offset,
    u_int64_t value, bus_size_t count);

void
bus_set_region_stream_1(struct resource *r, bus_size_t offset,
    u_int8_t value, bus_size_t count);

void
bus_set_region_stream_2(struct resource *r, bus_size_t offset,
    u_int16_t value, bus_size_t count);

void
bus_set_region_stream_4(struct resource *r, bus_size_t offset,
    u_int32_t value, bus_size_t count);

void
bus_set_region_stream_8(struct resource *r, bus_size_t offset,
    u_int64_t value, bus_size_t count);

These functions are identical to their nonstream counterparts, except 
that they don’t perform any byte order conversions.
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Memory Barriers

Sequences of read and write instructions can often be executed more quickly 
if run in an order that’s different from the program text (Corbet et al., 2005). 
As a result, modern processors customarily reorder read and write instruc-
tions. However, this optimization can foul up drivers performing PMIO and 
MMIO. To prevent instruction reordering, memory barriers are employed. 
Memory barriers ensure that all instructions before the barrier conclude 
before any instruction after the barrier. For PMIO and MMIO operations, 
the bus_barrier function provides this ability:

#include <sys/bus.h>
#include <machine/bus.h>

void
bus_barrier(struct resource *r, bus_size_t offset, bus_size_t length,
    int flags);

The bus_barrier function inserts a memory barrier that enforces the order-
ing of read or write operations on a region in r, which is described by the 
offset and length arguments. The flags argument specifies the type of opera-
tion to be ordered. Valid values for this argument are shown in Table 10-1.

Note that these flags can be ORed to enforce ordering on both read and 
write operations. An exemplary use of bus_barrier looks something like this:

bus_write_1(r, 0, data0);
bus_barrier(r, 0, 1, BUS_SPACE_BARRIER_WRITE);
bus_write_1(r, 0, data1);
bus_barrier(r, 0, 2, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
data2 = bus_read_1(r, 1);
bus_barrier(r, 1, 1, BUS_SPACE_BARRIER_READ);
data3 = bus_read_1(r, 1);

Here, the calls to bus_barrier guarantee that the writes and reads con-
clude in the order written.

Tying Everything Together

Listing 10-1 is a simple driver for an i-Opener’s LEDs (based on code written 
by Warner Losh). An i-Opener includes two LEDs that are controlled by bits 
0 and 1 of the register located at 0x404c. Hopefully, this example will clarify 
any misunderstandings you may have about PMIO (and MMIO).

Table 10-1:  bus_barrier Symbolic Constants

Constant Description

BUS_SPACE_BARRIER_READ Synchronizes read operations
BUS_SPACE_BARRIER_WRITE Synchronizes write operations
172 Chapter 10



NOTE Take a quick look at this code and try to discern some of its structure. If you don’t 
understand all of it, don’t worry; an explanation follows.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/lock.h>
#include <sys/mutex.h>

#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>

 #define LED_IO_ADDR             0x404c
 #define LED_NUM                 2

struct led_softc {
        int                     sc_io_rid;
        struct resource        *sc_io_resource;
        struct cdev            *sc_cdev0;
        struct cdev            *sc_cdev1;
        u_int32_t               sc_open_mask;
        u_int32_t               sc_read_mask;
        struct mtx              sc_mutex;
};

static devclass_t led_devclass;

static d_open_t                 led_open;
static d_close_t                led_close;
static d_read_t                 led_read;
static d_write_t                led_write;

static struct cdevsw led_cdevsw = {
        .d_version =            D_VERSION,
        .d_open =               led_open,
        .d_close =              led_close,
        .d_read =               led_read,
        .d_write =              led_write,
        .d_name =               "led"
};

static int
led_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
        int led = dev2unit(dev) & 0xff;
        struct led_softc *sc = dev->si_drv1;
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        if (led >= LED_NUM)
                return (ENXIO);

        mtx_lock(&sc->sc_mutex);
        if (sc->sc_open_mask & (1 << led)) {
                mtx_unlock(&sc->sc_mutex);
                return (EBUSY);
        }
        sc->sc_open_mask |= 1 << led;
        sc->sc_read_mask |= 1 << led;
        mtx_unlock(&sc->sc_mutex);

        return (0);
}

static int
led_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
        int led = dev2unit(dev) & 0xff;
        struct led_softc *sc = dev->si_drv1;

        if (led >= LED_NUM)
                return (ENXIO);

        mtx_lock(&sc->sc_mutex);
        sc->sc_open_mask &= ~(1 << led);
        mtx_unlock(&sc->sc_mutex);

        return (0);
}

static int
led_read(struct cdev *dev, struct uio *uio, int ioflag)
{
        int led = dev2unit(dev) & 0xff;
        struct led_softc *sc = dev->si_drv1;
        u_int8_t ch;
        int error;

        if (led >= LED_NUM)
                return (ENXIO);

        mtx_lock(&sc->sc_mutex);
        /* No error EOF condition. */
        if (!(sc->sc_read_mask & (1 << led))) {
                mtx_unlock(&sc->sc_mutex);
                return (0);
        }
        sc->sc_read_mask &= ~(1 << led);
        mtx_unlock(&sc->sc_mutex);

        ch = bus_read_1(sc->sc_io_resource, 0);
        if (ch & (1 << led))
                ch = '1';
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        else
                ch = '0';

        error = uiomove(&ch, 1, uio);
        return (error);
}

static int
led_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        int led = dev2unit(dev) & 0xff;
        struct led_softc *sc = dev->si_drv1;
        u_int8_t ch;
        u_int8_t old;
        int error;

        if (led >= LED_NUM)
                return (ENXIO);

        error = uiomove(&ch, 1, uio);
        if (error)
                return (error);

        old = bus_read_1(sc->sc_io_resource, 0);
        if (ch & 1)
                old |= (1 << led);
        else
                old &= ~(1 << led);

        bus_write_1(sc->sc_io_resource, 0, old);

        return (error);
}

static void
led_identify(driver_t *driver, device_t parent)
{
        device_t child;

        child = device_find_child(parent, "led", -1);
        if (!child) {
                child = BUS_ADD_CHILD(parent, 0, "led", -1);
                bus_set_resource(child, SYS_RES_IOPORT, 0, LED_IO_ADDR, 1);
        }
}

static int
led_probe(device_t dev)
{
        if (!bus_get_resource_start(dev, SYS_RES_IOPORT, 0))
                return (ENXIO);

        device_set_desc(dev, "I/O Port Example");
        return (BUS_PROBE_SPECIFIC);
}

Managing and Using Resources 175



static int
led_attach(device_t dev)
{
        struct led_softc *sc = device_get_softc(dev);

        sc->sc_io_rid = 0;
        sc->sc_io_resource = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
            &sc->sc_io_rid, RF_ACTIVE);
        if (!sc->sc_io_resource) {
                device_printf(dev, "unable to allocate resource\n");
                return (ENXIO);
        }

        sc->sc_open_mask = 0;
        sc->sc_read_mask = 0;
        mtx_init(&sc->sc_mutex, "led", NULL, MTX_DEF);

        sc->sc_cdev0 = make_dev(&led_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644,
            "led0");
        sc->sc_cdev1 = make_dev(&led_cdevsw, 1, UID_ROOT, GID_WHEEL, 0644,
            "led1");
        sc->sc_cdev0->si_drv1 = sc;
        sc->sc_cdev1->si_drv1 = sc;

        return (0);
}

static int
led_detach(device_t dev)
{
        struct led_softc *sc = device_get_softc(dev);

        destroy_dev(sc->sc_cdev0);
        destroy_dev(sc->sc_cdev1);

        mtx_destroy(&sc->sc_mutex);

        bus_release_resource(dev, SYS_RES_IOPORT, sc->sc_io_rid,
            sc->sc_io_resource);

        return (0);
}

static device_method_t led_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_identify,      led_identify),
        DEVMETHOD(device_probe,         led_probe),
        DEVMETHOD(device_attach,        led_attach),
        DEVMETHOD(device_detach,        led_detach),
        { 0, 0 }
};

static driver_t led_driver = {
        "led",
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        led_methods,
        sizeof(struct led_softc)
};

DRIVER_MODULE(led, isa, led_driver, led_devclass, 0, 0);

Listing 10-1: led.c

Before I describe the functions defined in Listing 10-1, note that the 
constant  LED_IO_ADDR is defined as 0x404c and that the constant  LED_NUM 
is defined as 2.

The following sections describe the functions defined in Listing 10-1 in 
the order they would roughly execute.

led_identify Function
The led_identify function is the device_identify implementation for this 
driver. This function is required because the ISA bus cannot identify its chil-
dren unaided. Here is the function definition for led_identify (again):

static void
led_identify(driver_t *driver, device_t parent)
{
        device_t child;

        child = device_find_child(parent, "led", -1);
        if (!child) {
                child = BUS_ADD_CHILD(parent, 0, "led", -1);

bus_set_resource(child, SYS_RES_IOPORT, 0, LED_IO_ADDR, 1);
        }
}

This function first  determines if the ISA bus has identified a child 
device named  "led". If it has not, then "led" is  appended to the ISA 
bus’s catalog of identified children. Afterward,  bus_set_resource is called 
to specify that I/O port access for "led" starts at LED_IO_ADDR.

led_probe Function
The led_probe function is the device_probe implementation for this driver. 
Here is its function definition (again):

static int
led_probe(device_t dev)
{
        if (!bus_get_resource_start(dev, SYS_RES_IOPORT, 0))
                return (ENXIO);

        device_set_desc(dev, "I/O Port Example");
        return (BUS_PROBE_SPECIFIC);
}
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This function first  checks if "led" can acquire I/O port access. 
Afterward, the verbose description of "led" is  set and the success code 
 BUS_PROBE_SPECIFIC is returned.

led_attach Function
The led_attach function is the device_attach implementation for this driver. 
Here is its function definition (again):

static int
led_attach(device_t dev)
{
        struct led_softc *sc = device_get_softc(dev);

        sc->sc_io_rid = 0;
        sc->sc_io_resource = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
            &sc->sc_io_rid, RF_ACTIVE);
        if (!sc->sc_io_resource) {
                device_printf(dev, "unable to allocate resource\n");

return (ENXIO);
        }

sc->sc_open_mask = 0;
sc->sc_read_mask = 0;

        mtx_init(&sc->sc_mutex, "led", NULL, MTX_DEF);

        sc->sc_cdev0 = make_dev(&led_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644,
            "led0");
        sc->sc_cdev1 = make_dev(&led_cdevsw, 1, UID_ROOT, GID_WHEEL, 0644,
            "led1");
        sc->sc_cdev0->si_drv1 = sc;
        sc->sc_cdev1->si_drv1 = sc;

        return (0);
}

This function begins by  acquiring an I/O port. If unsuccessful, the 
error code  ENXIO is returned. Then the member variables  sc_open_mask 
and  sc_read_mask are zeroed; in the d_foo functions, these variables will be 
protected by  sc_mutex. Finally, led_attach creates a   character device 
node for each LED.

led_detach Function
The led_detach function is the device_detach implementation for this driver. 
Here is its function definition (again):

static int
led_detach(device_t dev)
{
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        struct led_softc *sc = device_get_softc(dev);

destroy_dev(sc->sc_cdev0);
destroy_dev(sc->sc_cdev1);

mtx_destroy(&sc->sc_mutex);

bus_release_resource(dev, SYS_RES_IOPORT, sc->sc_io_rid,
            sc->sc_io_resource);

        return (0);
}

This function begins by   destroying its device nodes. Once this is 
done, it  destroys its mutex and  releases its I/O port.

led_open Function
The led_open function is defined in led_cdevsw (that is, the character device 
switch table) as the d_open operation. Here is its function definition (again):

static int
led_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{

int led = dev2unit(dev) & 0xff;
        struct led_softc *sc = dev->si_drv1;

if (led >= LED_NUM)
                return (ENXIO);

        mtx_lock(&sc->sc_mutex);
if (sc->sc_open_mask & (1 << led)) {

                mtx_unlock(&sc->sc_mutex);
                return (EBUSY);
        }

sc->sc_open_mask |= 1 << led;
sc->sc_read_mask |= 1 << led;

        mtx_unlock(&sc->sc_mutex);

        return (0);
}

This function first  stores in led the unit number of the device node 
being opened. If led is  greater than or equal to LED_NUM, then ENXIO is  
returned. Next, the value of sc_open_mask is  examined. If its led bit does 
not equal 0, which indicates that another process has opened the device, 
then EBUSY is  returned. Otherwise, sc_open_mask and sc_read_mask are   
set to include 1 << led. That is, their led bit will be changed to 1.
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led_close Function
The led_close function is defined in led_cdevsw as the d_close operation. Here 
is its function definition (again):

static int
led_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
        int led = dev2unit(dev) & 0xff;
        struct led_softc *sc = dev->si_drv1;

        if (led >= LED_NUM)
                return (ENXIO);

        mtx_lock(&sc->sc_mutex);
sc->sc_open_mask &= ~(1 << led);

        mtx_unlock(&sc->sc_mutex);

        return (0);
}

As you can see, this function simply  clears sc_open_mask’s led bit (which 
allows another process to open this device).

led_read Function
The led_read function is defined in led_cdevsw as the d_read operation. This 
function returns one character indicating whether the LED is on (1) or off 
(0). Here is its function definition (again):

static int
led_read(struct cdev *dev, struct uio *uio, int ioflag)
{
        int led = dev2unit(dev) & 0xff;
        struct led_softc *sc = dev->si_drv1;
        u_int8_t ch;
        int error;

        if (led >= LED_NUM)
                return (ENXIO);

        mtx_lock(&sc->sc_mutex);
        /* No error EOF condition. */

if (!(sc->sc_read_mask & (1 << led))) {
                mtx_unlock(&sc->sc_mutex);

return (0);
        }
        sc->sc_read_mask &= ~(1 << led);
        mtx_unlock(&sc->sc_mutex);
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ch = bus_read_1(sc->sc_io_resource, 0);
if (ch & (1 << led))

                ch = '1';
        else
                ch = '0';

        error = uiomove(&ch, 1, uio);
        return (error);
}

This function first  checks that sc_read_mask’s led bit is set; otherwise, it 
 exits. Next, 1 byte from the LED’s control register is  read into ch. Then 
ch’s led bit is  isolated and its value is  returned to user space.

led_write Function
The led_write function is defined in led_cdevsw as the d_write operation. 
This function takes in one character to turn on (1) or off (0) the LED. Here 
is its function definition (again):

static int
led_write(struct cdev *dev, struct uio *uio, int ioflag)
{
        int led = dev2unit(dev) & 0xff;
        struct led_softc *sc = dev->si_drv1;
        u_int8_t ch;
        u_int8_t old;
        int error;

        if (led >= LED_NUM)
                return (ENXIO);

        error = uiomove(&ch, 1, uio);
        if (error)
                return (error);

old = bus_read_1(sc->sc_io_resource, 0);
if (ch & 1)

old |= (1 << led);
        else

old &= ~(1 << led);

bus_write_1(sc->sc_io_resource, 0, old);

        return (error);
}

Managing and Using Resources 181



This function first  copies one character from user space to ch. Next, 
1 byte from the LED’s control register is  read into old. Then, based on 
the  value from user space, old’s led bit is turned  on or  off. Afterward, 
old is  written back to the LED’s control register.

Conclusion

This chapter described all of the functions provided by FreeBSD for perform-
ing PMIO and MMIO (that is, for accessing a device’s registers). The next 
chapter discusses using PMIO and MMIO with PCI devices, which are more 
involved than what’s been shown here.
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C A S E  S T U D Y :  I N T E L L I G E N T  
P L A T F O R M  M A N A G E M E N T  

I N T E R F A C E  D R I V E R

This chapter examines parts of ipmi(4), the 
Intelligent Platform Management Interface 

(IPMI) driver. The IPMI specification defines a 
standard for monitoring and managing system hardware.

NOTE For our purposes, this description of IPMI is sufficient, as the point of this chapter is to 
demonstrate how PCI drivers such as ipmi(4) employ PMIO and MMIO.

The code base for ipmi(4) is composed of 10 source files and 1 header 
file. In this chapter, we’ll walk through one of these files, ipmi_pci.c, which 
contains code that’s related to the PCI bus.

Code Analysis

Listing 11-1 provides a terse, source-level overview of ipmi_pci.c.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>



#include <sys/systm.h>

#include <sys/bus.h>
#include <sys/condvar.h>
#include <sys/eventhandler.h>
#include <sys/selinfo.h>

#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

#include <dev/ipmi/ipmivars.h>

static struct ipmi_ident {
        u_int16_t       vendor;
        u_int16_t       device;
        char            *description;
} ipmi_identifiers[] = {
        { 0x1028, 0x000d, "Dell PE2650 SMIC interface" },
        { 0, 0, 0 }
};

const char *
ipmi_pci_match(uint16_t vendor, uint16_t device)
{
...
}

static int
ipmi_pci_probe(device_t dev)
{
...
}

static int
ipmi_pci_attach(device_t dev)
{
...
}

static device_method_t ipmi_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_probe,         ipmi_pci_probe),
        DEVMETHOD(device_attach,        ipmi_pci_attach),
        DEVMETHOD(device_detach,        ipmi_detach),
        { 0, 0 }
};

static driver_t ipmi_pci_driver = {
        "ipmi",
        ipmi_methods,
        sizeof(struct ipmi_softc)
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};

 DRIVER_MODULE(ipmi_pci, pci, ipmi_pci_driver, ipmi_devclass, 0, 0);

static int
ipmi2_pci_probe(device_t dev)
{
...
}

static int
ipmi2_pci_attach(device_t dev)
{
...
}

static device_method_t ipmi2_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_probe,         ipmi2_pci_probe),
        DEVMETHOD(device_attach,        ipmi2_pci_attach),
        DEVMETHOD(device_detach,        ipmi_detach),
        { 0, 0 }
};

static driver_t ipmi2_pci_driver = {
        "ipmi",
        ipmi2_methods,
        sizeof(struct ipmi_softc)
};

 DRIVER_MODULE(ipmi2_pci, pci, ipmi2_pci_driver, ipmi_devclass, 0, 0);

Listing 11-1: ipmi_pci.c

Before I describe the functions in Listing 11-1, note that it contains two 
  DRIVER_MODULE calls. In other words, Listing 11-1 declares two Newbus driv-
ers; each designed to handle a distinct group of devices (as you’ll soon see).

Now let’s discuss the functions found in Listing 11-1.

ipmi_pci_probe Function
The ipmi_pci_probe function is the device_probe implementation for the first 
Newbus driver found in Listing 11-1. Here is its function definition:

static int
ipmi_pci_probe(device_t dev)
{
        const char *desc;

if (ipmi_attached)
return (ENXIO);
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        desc = ipmi_pci_match(pci_get_vendor(dev), pci_get_device(dev));
        if (desc != NULL) {
                device_set_desc(dev, desc);
                return (BUS_PROBE_DEFAULT);
        }

        return (ENXIO);
}

This function first  checks the value of the global variable ipmi_attached. 
If it is nonzero, which signifies that ipmi(4) is currently in use, the error code 
 ENXIO is returned; otherwise,  ipmi_pci_match is called to determine 
whether this driver can handle  dev.

ipmi_pci_match Function
The ipmi_pci_match function takes in a PCI Vendor ID/Device ID (VID/DID) 
pair and verifies whether it recognizes those IDs. Before I define (and sub-
sequently walk through) this function, a description of the ipmi_identifiers 
array is needed. This array is defined near the beginning of Listing 11-1 like so:

static struct ipmi_ident {
        u_int16_t       vendor;
        u_int16_t       device;
        char            *description;
} ipmi_identifiers[] = {
        { 0x1028, 0x000d, "Dell PE2650 SMIC interface" },
        { 0, 0, 0 }
};

As you can see, the ipmi_identifiers array is composed of ipmi_ident 
structures. Each ipmi_ident structure includes a   VID/DID pair and a  
description of the PCI device. As you may have guessed, ipmi_identifiers lists 
the devices that the first Newbus driver in Listing 11-1 supports.

Now that we’ve discussed ipmi_identifiers, let’s walk through ipmi_pci_match.

const char *
ipmi_pci_match(uint16_t vendor, uint16_t device)
{
        struct ipmi_ident *m;

for (m = ipmi_identifiers; m->vendor != 0; m++)
                if (m->vendor == vendor && m->device == device)
                        return (m->description);

        return (NULL);
}

This function determines whether a specific  VID/DID pair is listed in 
 ipmi_identifiers. If so, its  description is returned.
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ipmi_pci_attach Function
The ipmi_pci_attach function is the device_attach implementation for the first 
Newbus driver found in Listing 11-1. Here is its function definition:

static int
ipmi_pci_attach(device_t dev)
{
        struct ipmi_softc *sc = device_get_softc(dev);
        struct ipmi_get_info info;
        const char *mode;
        int error, type;

if (!ipmi_smbios_identify(&info))
                return (ENXIO);

        sc->ipmi_dev = dev;

switch (info.iface_type) {
        case KCS_MODE:
                mode = "KCS";
                break;
        case SMIC_MODE:
                mode = "SMIC";
                break;
        case BT_MODE:
                device_printf(dev, "BT mode is unsupported\n");
                return (ENXIO);
        default:
                device_printf(dev, "No IPMI interface found\n");
                return (ENXIO);
        }

        device_printf(dev,
            "%s mode found at %s 0x%jx alignment 0x%x on %s\n",
            mode,
            info.io_mode ? "I/O port" : "I/O memory",
            (uintmax_t)info.address,
            info.offset,
            device_get_name(device_get_parent(dev)));

        if (info.io_mode)
type = SYS_RES_IOPORT;

        else
type = SYS_RES_MEMORY;

        sc->ipmi_io_rid = PCIR_BAR(0);
        sc->ipmi_io_res[0] = bus_alloc_resource_any(dev, type,

&sc->ipmi_io_rid, RF_ACTIVE);
        sc->ipmi_io_type = type;
        sc->ipmi_io_spacing = info.offset;
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        if (sc->ipmi_io_res[0] == NULL) {
                device_printf(dev, "could not configure PCI I/O resource\n");
                return (ENXIO);
        }

        sc->ipmi_irq_rid = 0;
        sc->ipmi_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
            &sc->ipmi_irq_rid, RF_SHAREABLE | RF_ACTIVE);

        switch (info.iface_type) {
        case KCS_MODE:
                error = ipmi_kcs_attach(sc);
                if (error)
                        goto bad;
                break;
        case SMIC_MODE:
                error = ipmi_smic_attach(sc);
                if (error)
                        goto bad;
                break;
        }

        error = ipmi_attach(dev);
        if (error)
                goto bad;

        return (0);

bad:
        ipmi_release_resources(dev);
        return (error);
}

This function begins by  retrieving the IPMI data structure stored in 
the computer’s System Management BIOS (SMBIOS), which is responsible for 
maintaining hardware configuration information.

Based on the SMBIOS data, ipmi_pci_attach determines ipmi(4)’s  mode 
of operation and whether it requires  I/O port or  I/O memory access. 
Currently, ipmi(4) supports only Keyboard Controller Style (KCS) and Server 
Management Interface Chip (SMIC) modes. These modes dictate how IPMI 
messages are transferred. For our purposes, you won’t need to understand 
the specifics of either mode.

The next block of code acquires I/O region access for ipmi(4). Before I 
describe this code, some background on PCI devices is needed. After bootup, 
PCI devices can remap their device registers to a different location, thus 
avoiding address conflicts with other devices. Because of this, PCI devices 
store the size and current location of their I/O-mapped registers in their 
base address registers (BARs). Thus, this block of code first calls  PCIR_BAR(0) 
to get the address of the first BAR. Then it passes that address as the  rid 
argument to bus_alloc_resource_any, thereby acquiring I/O access to the 
device’s registers.
188 Chapter 11



NOTE To be accurate, the PCIR_BAR(x) macro returns the RID of the xth BAR.

The remainder of ipmi_pci_attach  acquires an IRQ, starts up  KCS or 
 SMIC mode, and calls  ipmi_attach to finish initializing the device.

ipmi2_pci_probe Function
The ipmi2_pci_probe function is the device_probe implementation for the sec-
ond Newbus driver found in Listing 11-1. Here is its function definition:

static int
ipmi2_pci_probe(device_t dev)
{
        if (pci_get_class(dev) == PCIC_SERIALBUS &&
            pci_get_subclass(dev) == PCIS_SERIALBUS_IPMI) {
                device_set_desc(dev, "IPMI System Interface");
                return (BUS_PROBE_GENERIC);
        }

        return (ENXIO);
}

This function determines if dev is a  generic IPMI device on the PCI bus. 
If so, its verbose description is  set, and the success code  BUS_PROBE_GENERIC is 
returned. In short, this driver handles any standard IPMI device on the PCI bus.

As you may have guessed, the first Newbus driver is a hack (that is to say, 
a workaround) for the Dell PE2650, because it does not adhere to the IPMI 
specification.

ipmi2_pci_attach Function
The ipmi2_pci_attach function is the device_attach implementation for the sec-
ond Newbus driver found in Listing 11-1. Here is its function definition:

static int
ipmi2_pci_attach(device_t dev)
{
        struct ipmi_softc *sc = device_get_softc(dev);
        int error, iface, type;

        sc->ipmi_dev = dev;

switch (pci_get_progif(dev)) {
        case PCIP_SERIALBUS_IPMI_SMIC:
                iface = SMIC_MODE;
                break;
        case PCIP_SERIALBUS_IPMI_KCS:
                iface = KCS_MODE;
                break;
        case PCIP_SERIALBUS_IPMI_BT:
                device_printf(dev, "BT interface is unsupported\n");
                return (ENXIO);
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        default:
                device_printf(dev, "unsupported interface: %d\n",
                    pci_get_progif(dev));
                return (ENXIO);
        }

        sc->ipmi_io_rid = PCIR_BAR(0);
if (PCI_BAR_IO(pci_read_config(dev, PCIR_BAR(0), 4)))

type = SYS_RES_IOPORT;
        else

type = SYS_RES_MEMORY;
        sc->ipmi_io_type = type;
        sc->ipmi_io_spacing = 1;
        sc->ipmi_io_res[0] = bus_alloc_resource_any(dev, type,
            &sc->ipmi_io_rid, RF_ACTIVE);
        if (sc->ipmi_io_res[0] == NULL) {
                device_printf(dev, "could not configure PCI I/O resource\n");
                return (ENXIO);
        }

        sc->ipmi_irq_rid = 0;
        sc->ipmi_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
            &sc->ipmi_irq_rid, RF_SHAREABLE | RF_ACTIVE);

        switch (iface) {
        case KCS_MODE:
                device_printf(dev, "using KCS interface\n");

                if (!ipmi_kcs_probe_align(sc)) {
                        device_printf(dev,
                            "unable to determine alignment\n");
                        error = ENXIO;
                        goto bad;
                }

                error = ipmi_kcs_attach(sc);
                if (error)
                        goto bad;
                break;
        case SMIC_MODE:
                device_printf(dev, "using SMIC interface\n");

                error = ipmi_smic_attach(sc);
                if (error)
                        goto bad;
                break;
        }

        error = ipmi_attach(dev);
        if (error)
                goto bad;

        return (0);
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bad:
        ipmi_release_resources(dev);
        return (error);
}

This function begins by  examining dev’s programming interface to 
determine ipmi(4)’s mode of operation (either SMIC or KCS). Then  
PCIR_BAR(0) is called to obtain the address of the first BAR. From this BAR, 
ipmi2_pci_attach  identifies whether ipmi(4) requires  I/O port or  I/O 
memory access before  acquiring it. Lastly, ipmi2_pci_attach  obtains an 
IRQ, starts up  KCS or  SMIC mode, and calls  ipmi_attach to finish ini-
tializing dev.

Conclusion

This chapter examined the PCI code base for ipmi(4) and introduced two 
fundamentals. First, a single source file can contain more than one driver. 
Second, to acquire I/O region access, PCI drivers must first call PCIR_BAR.
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D I R E C T  M E M O R Y  A C C E S S

Direct Memory Access (DMA) is a feature of 
modern processors that lets a device trans-

fer data to and from main memory indepen-
dently of the CPU. With DMA, the CPU merely 

initiates the data transfer (that is to say, it does not 
complete it), and then the device (or a separate DMA 
controller) actually moves the data. Because of this, 
DMA tends to provide higher system performance as 
the CPU is free to perform other tasks during the data 
transfer.

NOTE There is some overhead in performing DMA. Accordingly, only devices that move large 
amounts of data (for example, storage devices) use DMA. You wouldn’t use DMA just 
to transfer one or two bytes of data.



Implementing DMA

Unlike with previous topics, I’m going to take a holistic approach here. 
Namely, I’m going to show an example first, and then I’ll describe the DMA 
family of functions.

The following pseudocode is a device_attach routine for a fictitious device 
that uses DMA.

static int
foo_attach(device_t dev)
{
        struct foo_softc *sc = device_get_softc(dev);
        int error;

        bzero(sc, sizeof(*sc));

        if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent       */
                               1,                       /* alignment    */
                               0,                       /* boundary     */
                               BUS_SPACE_MAXADDR,       /* lowaddr      */
                               BUS_SPACE_MAXADDR,       /* highaddr     */
                               NULL,                    /* filter       */
                               NULL,                    /* filterarg    */
                               BUS_SPACE_MAXSIZE_32BIT, /* maxsize      */
                               BUS_SPACE_UNRESTRICTED,  /* nsegments    */
                               BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize   */
                               0,                       /* flags        */
                               NULL,                    /* lockfunc     */
                               NULL,                    /* lockfuncarg  */

&sc->foo_parent_dma_tag)) {
                device_printf(dev, "Cannot allocate parent DMA tag!\n");
                return (ENOMEM);
        }

        if (bus_dma_tag_create(sc->foo_parent_dma_tag,/* parent       */
                               1,                       /* alignment    */
                               0,                       /* boundary     */
                               BUS_SPACE_MAXADDR,       /* lowaddr      */
                               BUS_SPACE_MAXADDR,       /* highaddr     */
                               NULL,                    /* filter       */
                               NULL,                    /* filterarg    */
                               MAX_BAZ_SIZE,            /* maxsize      */
                               MAX_BAZ_SCATTER,         /* nsegments    */
                               BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize   */
                               0,                       /* flags        */
                               NULL,                    /* lockfunc     */
                               NULL,                    /* lockfuncarg  */

&sc->foo_baz_dma_tag)) {
                device_printf(dev, "Cannot allocate baz DMA tag!\n");
                return (ENOMEM);
        }

        if (bus_dmamap_create(sc->foo_baz_dma_tag,      /* DMA tag      */
                              0,                        /* flags        */
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&sc->foo_baz_dma_map)) {
                device_printf(dev, "Cannot allocate baz DMA map!\n");
                return (ENOMEM);
        }

        bzero(sc->foo_baz_buf, BAZ_BUF_SIZE);

        error = bus_dmamap_load(sc->foo_baz_dma_tag, /* DMA tag      */
sc->foo_baz_dma_map,    /* DMA map      */
sc->foo_baz_buf,        /* buffer       */

                                BAZ_BUF_SIZE,           /* buffersize   */
foo_callback,           /* callback     */

                                &sc->foo_baz_busaddr,   /* callbackarg  */
                                BUS_DMA_NOWAIT);        /* flags        */
        if (error || sc->foo_baz_busaddr == 0) {
                device_printf(dev, "Cannot map baz DMA memory!\n");
                return (ENOMEM);
        }

...
}

This pseudocode begins by calling  bus_dma_tag_create to create a DMA 
tag named  foo_parent_dma_tag. At heart, DMA tags describe the characteris-
tics and restrictions of DMA transactions.

Next, bus_dma_tag_create is called again. Notice that foo_parent_dma_tag is 
this call’s  first argument. See, DMA tags can inherit the characteristics and 
restrictions of other tags. Of course, child tags cannot loosen the restrictions 
set up by their parents. Consequently, the DMA tag  foo_baz_dma_tag is a 
“draconian” version of foo_parent_dma_tag.

The next statement, bus_dmamap_create, creates a DMA map named  
foo_baz_dma_map. Loosely speaking, DMA maps represent memory areas that 
have been allocated according to the properties of a DMA tag and are within 
device visible address space.

Finally,  bus_dmamap_load loads the buffer  foo_baz_buf into the device 
visible address associated with the DMA map  foo_baz_dma_map. 

NOTE Any arbitrary buffer can be used for DMA. However, buffers are inaccessible to devices 
until they’ve been loaded (or mapped) into a device visible address (that is, a DMA map).

Note that bus_dmamap_load requires a  callback function, which typically 
looks something like this:

static void
 foo_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)

{
        if (error)
               return;

        *(bus_addr_t *)arg = segs[0].ds_addr;
}
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Here,  arg dereferences to the sixth argument passed to bus_dmamap_load, 
which was foo_baz_busaddr.

This callback function executes after the buffer-load operation com-
pletes. If successful, the  address where the buffer was loaded is returned 
in  arg. If unsuccessful,  foo_callback does  nothing.

Initiating a DMA Data Transfer
Assuming the buffer-load operation completed successfully, one can initiate 
a DMA data transfer with something like this:

NOTE Most devices just require the device visible address of a buffer to be written to a specific 
register to start a DMA data transfer.

bus_write_4(sc->foo_io_resource, FOO_BAZ, sc->foo_baz_busaddr);

Here, the  device visible address of a buffer is  written to a  device 
register. Recall that the foo_callback function described in the previous sec-
tion returns in  foo_baz_busaddr the device visible address of foo_baz_buf.

Dismantling DMA
Now that you know how to implement DMA, I’ll demonstrate how to 
dismantle it.

static int
foo_detach(device_t dev)
{
        struct foo_softc *sc = device_get_softc(dev);

        if (sc->foo_baz_busaddr != 0)
                bus_dmamap_unload(sc->foo_baz_dma_tag, sc->foo_baz_dma_map);

        if (sc->foo_baz_dma_map != NULL)
                bus_dmamap_destroy(sc->foo_baz_dma_tag, sc->foo_baz_dma_map);

        if (sc->foo_baz_dma_tag != NULL)
                bus_dma_tag_destroy(sc->foo_baz_dma_tag);

        if (sc->foo_parent_dma_tag != NULL)
                bus_dma_tag_destroy(sc->foo_parent_dma_tag);

...
}

As you can see, this pseudocode simply tears down everything in the 
opposite order that it was built up.

Now, let’s discuss in detail the different functions encountered here and 
in the previous two sections.
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Creating DMA Tags

As mentioned earlier, DMA tags describe the characteristics and restrictions 
of DMA transactions and are created by using the bus_dma_tag_create function.

#include <machine/bus.h>

int
bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
    bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
    bus_dma_filter_t *filtfunc, void *filtfuncarg, bus_size_t maxsize,
    int nsegments, bus_size_t maxsegsz, int flags,
    bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat);

Here, the parent argument identifies the parent DMA tag. To create a 
top-level DMA tag, pass bus_get_dma_tag(device_t dev) as parent.

The alignment argument denotes the physical alignment, in bytes, of each 
DMA segment. Recall that DMA maps represent memory areas that have been 
allocated according to the properties of a DMA tag. These memory areas are 
known as DMA segments. If you return to the foo_callback function described 
in “Implementing DMA” on page 194, you’ll see that arg is actually assigned 
the address of a DMA segment.

The alignment argument must be 1, which denotes no specific alignment, 
or a power of two. As an example, drivers that require DMA buffers to begin 
on a multiple of 4KB would pass 4096 as alignment.

The boundary argument specifies the physical address boundaries that can-
not be crossed by each DMA segment; that is, they cannot cross any multiple 
of boundary. This argument must be 0, which indicates no boundary restric-
tions, or a power of two.

The lowaddr and highaddr arguments outline the address range that can-
not be employed for DMA. For example, devices incapable of DMA above 
4GB would have 0xFFFFFFFF as lowaddr and BUS_SPACE_MAXADDR as highaddr.

NOTE 0xFFFFFFFF equals 4GB, and the constant BUS_SPACE_MAXADDR signifies the maximum 
addressable memory for your architecture.

The filtfunc and filtfuncarg arguments denote an optional callback 
function and its first argument, respectively. This function is executed for 
every attempt to load (or map) a DMA buffer between lowaddr and highaddr. 
If there’s a device-accessible region between lowaddr and highaddr, filtfunc is 
supposed to tell the system. Here is the function prototype for filtfunc:

int filtfunc(void *filtfuncarg, bus_addr_t addr)

This function must return 0 if the address  addr is device-accessible or a 
nonzero value if it’s inaccessible.

If filtfunc and filtfuncarg are NULL, the entire address range from lowaddr 
to highaddr is considered inaccessible.
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The maxsize argument denotes the maximum amount of memory, in bytes, 
that may be allocated for a single DMA map.

The nsegments argument specifies the number of scatter/gather segments 
allowed in a single DMA map. A scatter/gather segment is simply a memory 
page. The name comes from the fact that when you take a set of physically 
discontinuous pages and virtually assemble them into a single contiguous 
buffer, you must “scatter” your writes and “gather” your reads. Some devices 
require blocks of contiguous memory; however sometimes a large enough 
block is not available. So the kernel “tricks” the device by using a buffer com-
posed of scatter/gather segments. Every DMA segment is a scatter/gather 
segment.

The nsegments argument may be BUS_SPACE_UNRESTRICTED, which indicates 
no number restriction. DMA tags made with BUS_SPACE_UNRESTRICTED cannot 
create DMA maps; they can only be parent tags, because the system cannot 
support DMA maps composed of an unlimited number of scatter/gather 
segments.

The maxsegsz argument denotes the maximum size, in bytes, of an indi-
vidual DMA segment within a single DMA map.

The flags argument modifies bus_dma_tag_create’s behavior. Table 12-1 
displays its only valid value.

The lockfunc and lockfuncarg arguments denote an optional callback 
function and its first argument, respectively. Remember how bus_dmamap_load 
requires a callback function? Well, lockfunc executes right before and after 
that function to acquire and release any necessary synchronization primi-
tives. Here is lockfunc’s function prototype:

void lockfunc(void *lockfuncarg, bus_dma_lock_op_t op)

When lockfunc executes,  op contains either BUS_DMA_LOCK or BUS_DMA_UNLOCK. 
That is, op dictates what lock operation to perform.

The dmat argument expects a pointer to bus_dma_tag_t; assuming 
bus_dma_tag_create is successful, this pointer will store the resulting DMA tag.

Tearing Down DMA Tags

DMA tags are torn down by the bus_dma_tag_destroy function.

#include <machine/bus.h>

int
bus_dma_tag_destroy(bus_dma_tag_t dmat);

Table 12-1: bus_dma_tag_create Symbolic Constants

Constant Description

BUS_DMA_ALLOCNOW Preallocates enough resources to handle at least one buffer-load 
operation; if sufficient resources are unavailable, ENOMEM is returned.
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This function returns EBUSY if there are any DMA maps still associated 
with dmat.

DMA Map Management Routines, Part 1

As mentioned earlier, DMA maps represent memory areas (that is to say, DMA 
segments) that have been allocated according to the properties of a DMA tag 
and are within device visible address space.

DMA maps can be managed with the following functions:

#include <machine/bus.h>

int
bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp);

int
bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map);

The bus_dmamap_create function creates a DMA map based on the 
DMA tag dmat and stores the result in mapp. The flags argument modifies 
bus_dmamap_create’s behavior. Table 12-2 displays its only valid value.

The bus_dmamap_destroy function tears down the DMA map map. The dmat 
argument is the DMA tag that map was based on.

Loading (DMA) Buffers into DMA Maps

The FreeBSD kernel provides four functions for loading a buffer into the 
device visible address associated with a DMA map:

 bus_dmamap_load

 bus_dmamap_load_mbuf

 bus_dmamap_load_mbuf_sg

 bus_dmamap_load_uio

Before I describe these functions, an explanation of bus_dma_segment struc-
tures is needed.

bus_dma_segment Structures
A bus_dma_segment structure describes a single DMA segment.

Table 12-2: bus_dmamap_create Symbolic Constants

Constant Description

BUS_DMA_COHERENT Causes cache synchronization operations to be as cheap as possible for 
your DMA buffers; this flag is implemented only on sparc64.
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typedef struct bus_dma_segment {
        bus_addr_t     ds_addr;
        bus_size_t     ds_len;
} bus_dma_segment_t;

The  ds_addr field contains its device visible address and  ds_len contains 
its length.

bus_dmamap_load Function
We first discussed the bus_dmamap_load function in “Implementing DMA” on 
page 194.

#include <machine/bus.h>

int
bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
    bus_size_t buflen, bus_dmamap_callback_t *callback,
    void *callbackarg, int flags);

This function loads the buffer buf into the device visible address associ-
ated with the DMA map map. The dmat argument is the DMA tag that map is 
based on. The buflen argument is the number of bytes from buf to load. 
bus_dmamap_load returns immediately and never blocks for any reason.

The callback and callbackarg arguments denote a callback function and its 
first argument, respectively. callback executes after the buffer-load operation 
completes. If resources are lacking, the buffer-load operation and callback will 
be deferred. If bus_dmamap_load returns EINPROGRESS, this has occurred. Here is 
callback’s function prototype:

void callback(void *callbackarg, bus_dma_segment_t *segs, int nseg,
              int error)

When callback executes,  error discloses the success (0) or failure (EFBIG) 
of the buffer-load operation (the error code EFBIG stands for error: file too large). 
The  segs argument is the array of DMA segments that buf has been loaded 
into;  nseg is this array’s size.

The following pseudocode is an example callback function:

static void
foo_callback(void *callbackarg, bus_dma_segment_t *segs, int nseg, int error)
{
        struct foo_softc *sc = callbackarg;
        int i;

        if (error)
                return;

        sc->sg_num = nseg;
for (i = 0; i < nseg; i++)
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                sc->sg_addr[i] = segs[i].ds_addr;
}

This function  iterates through segs to return the  device visible 
address of each DMA segment that buf has been loaded into. 

NOTE If buf can fit into one DMA segment, the foo_callback function described in “Imple-
menting DMA” on page 194 may be used as callback.

The flags argument modifies bus_dmamap_load’s behavior. Valid values for 
this argument are shown in Table 12-3.

bus_dmamap_load_mbuf Function
The bus_dmamap_load_mbuf function is a variant of bus_dmamap_load that loads 
mbuf chains (you’ll learn about mbuf chains in Chapter 16).

#include <machine/bus.h>

int
bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map,
    struct mbuf *mbuf, bus_dmamap_callback2_t *callback2,
    void *callbackarg, int flags);

Most of these arguments are identical to their bus_dmamap_load counter-
parts except for:

 The mbuf argument, which expects an mbuf chain

 The callback2 argument, which requires a different callback function 

 The flags argument, which implicitly sets BUS_DMA_NOWAIT

Here is callback2’s function prototype:

void callback2(void *callbackarg, bus_dma_segment_t *segs, int nseg,
               bus_size_t mapsize, int error)

callback2 is like callback, but it returns the  amount of data loaded.

bus_dmamap_load_mbuf_sg Function
The bus_dmamap_load_mbuf_sg function is an alternative to bus_dmamap_load_mbuf 
that does not use callback2.

Table 12-3: bus_dmamap_load Symbolic Constants

Constant Description

BUS_DMA_NOWAIT If memory resources are lacking, the buffer-load operation and callback 
will not be deferred.

BUS_DMA_NOCACHE Prevents caching the DMA buffer, thereby causing all DMA transactions 
to be executed without reordering; this flag is implemented only on 
sparc64.
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#include <machine/bus.h>

int
bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map,
    struct mbuf *mbuf, bus_dma_segment_t *segs, int *nseg, int flags);

As you can see, this function directly and immediately returns  segs and 
 nseg.

bus_dmamap_load_uio Function
The bus_dmamap_load_uio function is identical to bus_dmamap_load_mbuf except 
that it loads the buffers from within a uio structure.

#include <machine/bus.h>

int
bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map,
    struct uio *uio, bus_dmamap_callback2_t *callback2,
    void *callbackarg, int flags);

bus_dmamap_unload Function
The bus_dmamap_unload function unloads the buffers from a DMA map.

#include <machine/bus.h>

void
bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map);

DMA Map Management Routines, Part 2

This section describes an alternative set of functions used to manage DMA maps.

#include <machine/bus.h>

int
bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags,
    bus_dmamap_t *mapp);

void
bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map);

The bus_dmamem_alloc function creates a DMA map based on the DMA 
tag dmat and stores the result in mapp. This function also allocates maxsize bytes 
of contiguous memory (where maxsize is defined by dmat). The address of 
this memory is returned in vaddr. As you’ll soon see, this contiguous memory 
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will eventually become your DMA buffer. The flags argument modifies 
bus_dmamem_alloc’s behavior. Valid values for this argument are shown 
in Table 12-4.

NOTE bus_dmamem_alloc is used when you require a physically contiguous DMA buffer.

The bus_dmamem_free function releases the memory at vaddr that was previ-
ously allocated by bus_dmamem_alloc. Then it tears down the DMA map map.

A Straightforward Example

The following pseudocode is a device_attach routine for a fictitious device 
that requires DMA. This pseudocode should demonstrate how to use 
bus_dmamem_alloc.

static int
foo_attach(device_t dev)
{
        struct foo_softc *sc = device_get_softc(dev);
        int size = BAZ_SIZE;
        int error;

        bzero(sc, sizeof(*sc));

        if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent       */
                               1,                       /* alignment    */
                               0,                       /* boundary     */
                               BUS_SPACE_MAXADDR,       /* lowaddr      */
                               BUS_SPACE_MAXADDR,       /* highaddr     */
                               NULL,                    /* filter       */
                               NULL,                    /* filterarg    */
                               BUS_SPACE_MAXSIZE_32BIT, /* maxsize      */
                               BUS_SPACE_UNRESTRICTED,  /* nsegments    */

Table 12-4: bus_dmamem_alloc Symbolic Constants

Constant Description

BUS_DMA_ZERO Causes the allocated memory to be set to zero

BUS_DMA_NOWAIT Causes bus_dmamem_alloc to return ENOMEM if the allocation cannot be 
immediately fulfilled due to resource shortage

BUS_DMA_WAITOK Indicates that it is okay to wait for resources; if the allocation cannot be 
immediately fulfilled, the current process is put to sleep to wait for 
resources to become available.

BUS_DMA_COHERENT Causes cache synchronization operations to be as cheap as possible 
for your DMA buffer; this flag is implemented only on arm and sparc64.

BUS_DMA_NOCACHE Prevents caching the DMA buffer, thereby causing all DMA transactions 
to be executed without reordering; this flag is implemented only on 
amd64 and i386.
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                               BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize   */
                               0,                       /* flags        */
                               NULL,                    /* lockfunc     */
                               NULL,                    /* lockfuncarg  */
                               &sc->foo_parent_dma_tag)) {
                device_printf(dev, "Cannot allocate parent DMA tag!\n");
                return (ENOMEM);
        }

        if (bus_dma_tag_create(sc->foo_parent_dma_tag,  /* parent       */
                               64,                      /* alignment    */
                               0,                       /* boundary     */
                               BUS_SPACE_MAXADDR_32BIT, /* lowaddr      */
                               BUS_SPACE_MAXADDR,       /* highaddr     */
                               NULL,                    /* filter       */
                               NULL,                    /* filterarg    */

size,                    /* maxsize      */
1,                       /* nsegments    */
size,                    /* maxsegsize   */

                               0,                       /* flags        */
                               NULL,                    /* lockfunc     */
                               NULL,                    /* lockfuncarg  */
                               &sc->foo_baz_dma_tag)) {
                device_printf(dev, "Cannot allocate baz DMA tag!\n");
                return (ENOMEM);
        }

        if (bus_dmamem_alloc(sc->foo_baz_dma_tag,       /* DMA tag      */
(void **)&sc->foo_baz_buf, /* vaddr        */

                             BUS_DMA_NOWAIT,            /* flags        */
&sc->foo_baz_dma_map)) {

                device_printf(dev, "Cannot allocate baz DMA memory!\n");
                return (ENOMEM);
        }

        bzero(sc->foo_baz_buf, size);

        error = bus_dmamap_load(sc->foo_baz_dma_tag, /* DMA tag      */
sc->foo_baz_dma_map,    /* DMA map      */
sc->foo_baz_buf,        /* buffer       */

                                size,                   /* buffersize   */
foo_callback,           /* callback     */

                                &sc->foo_baz_busaddr,   /* callbackarg  */
                                BUS_DMA_NOWAIT);        /* flags        */
        if (error || sc->foo_baz_busaddr == 0) {
                device_printf(dev, "Cannot map baz DMA memory!\n");
                return (ENOMEM);
        }

...
}
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Although  bus_dmamem_alloc allocates  memory and creates a  DMA 
map,  loading that  memory into the  DMA map still needs to occur.

Also, since bus_dmamem_alloc allocates contiguous memory, the nsegments 
argument must be  1. Likewise, the  maxsize and  maxsegsz arguments 
must be identical.

Lastly, since nsegments is 1,  callback can be the foo_callback function 
shown in “Implementing DMA” on page 194.

Synchronizing DMA Buffers

DMA buffers must be synchronized after each write completed by the CPU/
driver or a device. The exact reason why is beyond the scope of this book. But 
it’s basically done to ensure that the CPU/driver and device have a consistent 
view of the DMA buffer.

DMA buffers are synchronized with the bus_dmamap_sync function.

#include <machine/bus.h>

void
bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op);

This function synchronizes the DMA buffer currently loaded in the DMA 
map map. The dmat argument is the DMA tag that map is based on. The op argu-
ment identifies the type of synchronization operation to perform. Valid val-
ues for this argument are shown in Table 12-5.

Conclusion

This chapter detailed FreeBSD’s DMA management routines. These routines 
are primarily used by storage and network drivers, which are discussed in 
Chapters 13, 16, and 17.

Table 12-5: bus_dmamap_sync Symbolic Constant

Constant Description

BUS_DMASYNC_PREWRITE Used to synchronize after the CPU/driver writes to the DMA buffer

BUS_DMASYNC_POSTREAD Used to synchronize after a device writes to the DMA buffer
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S T O R A G E  D R I V E R S

In FreeBSD, storage drivers provide access 
to devices that transfer randomly accessible 

data in blocks (such as disk drives, flash mem-
ory, and so on). A block is a fixed-size chunk of 

data (Corbet et al., 2005). In this chapter I’ll discuss 
how to manage devices that employ block-centric I/O. 
To that end, some familiarity with disk and bio struc-
tures is needed, so that is where we’ll start.

disk Structures

A disk structure is the kernel’s representation of an individual disk-like stor-
age device. It is defined in the <geom/geom_disk.h> header as follows:

struct disk {
        /* GEOM Private Data */
        struct g_geom          *d_geom;
        struct devstat         *d_devstat;



        int                     d_destroyed;

        /* Shared Objects */
        struct bio_queue_head  *d_queue;
        struct mtx             *d_lock;

        /* Descriptive Fields */
        const char             *d_name;
        u_int                   d_unit;
        u_int                   d_flags;

        /* Storage Device Methods */
        disk_open_t            *d_open;
        disk_close_t           *d_close;
        disk_strategy_t        *d_strategy;
        disk_ioctl_t           *d_ioctl;
        dumper_t               *d_dump;

        /* Mandatory Media Properties */
        u_int                   d_sectorsize;
        off_t                   d_mediasize;
        u_int                   d_maxsize;

        /* Optional Media Properties */
        u_int                   d_fwsectors;
        u_int                   d_fwheads;
        u_int                   d_stripesize;
        u_int                   d_stripeoffset;
        char                    d_ident[DISK_IDENT_SIZE];

        /* Driver Private Data */
        void                   *d_drv1;
};

Many of the fields in struct disk must be initialized by a storage driver. 
These fields are described in the following sections.

Descriptive Fields
The d_name and d_unit fields specify the storage device’s name and unit num-
ber, respectively. These fields must be defined in every disk structure.

The d_flags field further qualifies the storage device’s characteristics. 
Valid values for this field are shown in Table 13-1.

Table 13-1: disk Structure Symbolic Constants

Constant Description

DISKFLAG_NEEDSGIANT Indicates that the storage device needs to be protected by Giant

DISKFLAG_CANDELETE Indicates that the storage device wants to be notified when a 
block is no longer required so that it can perform some special 
handling (for example, drivers for solid-state drives that support 
the TRIM command employ this flag)

DISKFLAG_CANFLUSHCACHE Indicates that the storage device can flush its local write cache
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The d_flags field is optional and may be undefined.

Storage Device Methods
The d_open field identifies the storage device’s open routine. If no function is 
provided, open will always succeed.

The d_close field identifies the storage device’s close routine. If no func-
tion is provided, close will always succeed. The d_close routine should always 
terminate anything set up by the d_open routine.

The d_strategy field identifies the storage device’s strategy routine. 
Strategy routines are called to process block-centric reads, writes, and other I/O 
operations. Accordingly, d_strategy must be defined in every disk structure. 
I’ll discuss block-centric I/O and strategy routines in greater detail later.

The d_ioctl field identifies the storage device’s ioctl routine. This field is 
optional and may be undefined.

The d_dump field identifies the storage device’s dump routine. Dump 
routines are called after a kernel panic to record the contents of physical 
memory to a storage device. Note that d_dump is optional and may be 
undefined.

Mandatory Media Properties
The d_sectorsize and d_mediasize fields specify the storage device’s sector and 
media size in bytes, respectively. These fields must be defined in every disk 
structure.

The d_maxsize field denotes the maximum size in bytes that an I/O oper-
ation, for the storage device, can be. This field must be defined in every disk 
structure.

Note that you can safely modify the values for d_sectorsize, d_mediasize, 
and d_maxsize in the d_open routine.

Optional Media Properties
The d_fwsectors and d_fwheads fields identify the number of sectors and heads 
on the storage device. These fields are optional and may be undefined; how-
ever, certain platforms require these fields for disk partitioning.

The d_stripesize field specifies the width of any natural request bound-
aries for the storage device (for example, the size of a stripe on a RAID-5 
unit), and the d_stripeoffset field represents the location or offset to the 
first stripe. These fields are optional and may be undefined. For more on 
d_stripesize and d_stripeoffset, see /sys/geom/notes.

The d_ident field denotes the storage device’s serial number. This field is 
optional and may be undefined, but it’s good practice to define it.

Note that you can safely modify the abovementioned fields in the d_open 
routine.
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Driver Private Data
The d_drv1 field may be used by the storage driver to house data. Typically, 
d_drv1 will contain a pointer to the storage driver’s softc structure.

disk Structure Management Routines

The FreeBSD kernel provides the following functions for working with disk 
structures:

#include <geom/geom_disk.h>

struct disk *
disk_alloc(void);

void
disk_create(struct disk *disk, int version);

void
disk_destroy(struct disk *disk);

A disk structure is a dynamically allocated structure that’s owned by 
the kernel. That is, you cannot allocate a struct disk on your own. Instead, 
you must call disk_alloc.

Allocating a disk structure does not make the storage device available to 
the system. To do that, you must initialize the structure (by defining the nec-
essary fields) and then call disk_create. The version argument must always be 
DISK_VERSION.

Note that as soon as disk_create returns, the device is “live” and its rou-
tines can be called at any time. Therefore, you should call disk_create only 
when your driver is completely ready to handle any operation.

When a disk structure is no longer needed, it should be freed with 
disk_destroy. You can destroy an opened disk structure. Of course, you’ll 
need to free any resources that were allocated during d_open afterward, as 
d_close can no longer be called.

Block I/O Structures

A bio structure represents a block-centric I/O request. Loosely speaking, 
when the kernel needs to transfer some data to or from a storage device, it 
puts together a bio structure to describe that operation; then it passes that 
structure to the appropriate driver.

struct bio is defined in the <sys/bio.h> header as follows:

struct bio {
        uint8_t bio_cmd;                /* I/O operation.               */
        uint8_t bio_flags;              /* General flags.               */
        uint8_t bio_cflags;             /* Private use by the consumer. */
        uint8_t bio_pflags;             /* Private use by the provider. */
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        struct cdev *bio_dev;           /* Device to perform I/O on.    */
        struct disk *bio_disk;          /* Disk structure.              */
        off_t   bio_offset;             /* Requested position in file.  */
        long    bio_bcount;             /* Number of (valid) bytes.     */
        caddr_t bio_data;               /* Data.                        */
        int     bio_error;              /* Error number for BIO_ERROR.  */
        long    bio_resid;              /* Remaining I/O (in bytes).    */
        void (*bio_done)(struct bio *); /* biodone() handler function.  */

        void    *bio_driver1;           /* Private use by the provider. */
        void    *bio_driver2;           /* Private use by the provider. */
        void    *bio_caller1;           /* Private use by the consumer. */
        void    *bio_caller2;           /* Private use by the consumer. */

        TAILQ_ENTRY(bio) bio_queue;     /* bioq linkage.                */
        const char *bio_attribute;      /* For BIO_[GS]ETATTR.          */
        struct g_consumer *bio_from;    /* GEOM linkage.                */
        struct g_provider *bio_to;      /* GEOM linkage.                */

        off_t   bio_length;             /* Like bio_bcount.             */
        off_t   bio_completed;          /* Opposite of bio_resid.       */
        u_int   bio_children;           /* Number of spawned bios.      */
        u_int   bio_inbed;              /* Number of children home.     */
        struct bio *bio_parent;         /* Parent pointer.              */
        struct bintime bio_t0;          /* Time I/O request started.    */

        bio_task_t *bio_task;   /* bio_taskqueue() handler function.    */
        void    *bio_task_arg;          /* bio_task's argument.         */
        void    *bio_classifier1;       /* Classifier tag.              */
        void    *bio_classifier2;       /* Classifier tag.              */

        daddr_t bio_pblkno;             /* Physical block number.       */
};

/* Bits for bio_cmd.    */
#define BIO_READ        0x01
#define BIO_WRITE       0x02
#define BIO_DELETE      0x04
#define BIO_GETATTR     0x08
#define BIO_FLUSH       0x10
#define BIO_CMD0        0x20            /* For local hacks.             */
#define BIO_CMD1        0x40            /* For local hacks.             */
#define BIO_CMD2        0x80            /* For local hacks.             */

/* Bits for bio_flags.  */
#define BIO_ERROR       0x01
#define BIO_DONE        0x02
#define BIO_ONQUEUE     0x04

We’ll examine struct bio in greater detail later. In the interim, you just 
need to remember that strategy routines are called to process newly received 
bio structures.
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Block I/O Queues

All storage drivers maintain a block I/O queue to house any pending block-
centric I/O requests. Generally speaking, these requests are stored in increas-
ing or decreasing device-offset order so that when they are processed, the 
disk head will move in a single direction (instead of bouncing around) to 
maximize performance.

The FreeBSD kernel provides the following functions for working with 
block I/O queues:

#include <sys/bio.h>

void
bioq_init(struct bio_queue_head *head);

void
bioq_disksort(struct bio_queue_head *head, struct bio *bp);

struct bio *
bioq_first(struct bio_queue_head *head);

struct bio *
bioq_takefirst(struct bio_queue_head *head);

void
bioq_insert_head(struct bio_queue_head *head, struct bio *bp);

void
bioq_insert_tail(struct bio_queue_head *head, struct bio *bp);

void
bioq_remove(struct bio_queue_head *head, struct bio *bp);

void
bioq_flush(struct bio_queue_head *head, struct devstat *stp, int error);

A block I/O queue is a statically allocated structure that’s owned by the 
driver. To initialize a block I/O queue, you must call bioq_init.

To perform an ordered insertion, call bioq_disksort. To return the head 
of the queue (that is, the next request to process), use bioq_first. Lastly, to 
return and remove the head of the queue, call bioq_takefirst.

The abovementioned functions are the main methods for managing a 
block I/O queue. If a queue is manipulated using only these functions, it will 
contain at most one inversion point (that is, two sorted sequences).

The bioq_insert_head function inserts a request at the head of the queue. 
Additionally, it creates a “barrier” so that all subsequent insertions performed 
using bioq_disksort will end up after this request.

The bioq_insert_tail function is similar to bioq_insert_head, but it inserts 
the request at the end of the queue. Note that bioq_insert_tail also creates a 
barrier.
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Generally speaking, you’d utilize a barrier to ensure that all preceding 
requests are serviced before continuing.

The bioq_remove function removes a request from the queue. If bioq_remove 
is invoked on the head of the queue, its effect is identical to bioq_takefirst. 

If a block I/O queue is manipulated using bioq_insert_head, bioq_insert_tail, 
or bioq_remove, it may contain multiple inversion points.

The bioq_flush function expunges all of the queued requests and causes 
them to return the error code error.

NOTE For storage devices that incorporate request scheduling (such as SATA Native Com-
mand Queuing, SCSI Tagged Command Queuing, and so on), bioq_disksort is essen-
tially pointless, as the devices will (re)sort the requests internally. In those cases, a 
straightforward FIFO block I/O queue that uses bioq_insert_tail will suffice.

Tying Everything Together

Now that you’ve gained some familiarity with disk and bio structures, let’s dis-
sect a real-world storage driver.

Listing 13-1 is the storage driver for Atmel’s AT45D series of DataFlash 
chips. DataFlash is Atmel’s serial interface for flash memory, employed on 
the Serial Peripheral Interface (SPI) bus. In short, Listing 13-1 is a storage 
driver for flash memory on the SPI bus.

NOTE Take a quick look at this code and try to discern some of its structure. If you don’t 
understand all of it, don’t worry; an explanation follows.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <geom/geom_disk.h>

#include <dev/spibus/spi.h>
#include "spibus_if.h"

#define MANUFACTURER_ID                 0x9f
#define STATUS_REGISTER_READ            0xd7
#define CONTINUOUS_ARRAY_READ_HF        0x0b
#define PROGRAM_THROUGH_BUFFER          0x82

struct at45d_softc {
        device_t                        at45d_dev;
        struct mtx                      at45d_mtx;
        struct intr_config_hook         at45d_ich;
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        struct disk                    *at45d_disk;
        struct bio_queue_head           at45d_bioq;
        struct proc                    *at45d_proc;
};

static devclass_t at45d_devclass;

static void                             at45d_delayed_attach(void *);
static void                             at45d_task(void *);
static void                             at45d_strategy(struct bio *);

static int
 at45d_probe(device_t dev)

{
        device_set_desc(dev, "AT45 flash family");
        return (BUS_PROBE_SPECIFIC);
}

static int
at45d_attach(device_t dev)
{
        struct at45d_softc *sc = device_get_softc(dev);
        int error;

        sc->at45d_dev = dev;
        mtx_init(&sc->at45d_mtx, device_get_nameunit(dev), "at45d", MTX_DEF);

        sc->at45d_ich.ich_func = at45d_delayed_attach;
        sc->at45d_ich.ich_arg = sc;
        error = config_intrhook_establish(&sc->at45d_ich);
        if (error)
                device_printf(dev, "config_intrhook_establish() failed!\n");

        return (0);
}

static int
 at45d_detach(device_t dev)

{
        return (EIO);
}

static int
at45d_get_info(device_t dev, uint8_t *r)
{
        struct spi_command cmd;
        uint8_t tx_buf[8], rx_buf[8];
        int error;

        memset(&cmd, 0, sizeof(cmd));
        memset(tx_buf, 0, sizeof(tx_buf));
        memset(rx_buf, 0, sizeof(rx_buf));

        tx_buf[0] = MANUFACTURER_ID;
        cmd.tx_cmd = &tx_buf[0];
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        cmd.rx_cmd = &rx_buf[0];
        cmd.tx_cmd_sz = 5;
        cmd.rx_cmd_sz = 5;
        error = SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd);
        if (error)
                return (error);

        memcpy(r, &rx_buf[1], 4);
        return (0);
}

static uint8_t
at45d_get_status(device_t dev)
{
        struct spi_command cmd;
        uint8_t tx_buf[8], rx_buf[8];

        memset(&cmd, 0, sizeof(cmd));
        memset(tx_buf, 0, sizeof(tx_buf));
        memset(rx_buf, 0, sizeof(rx_buf));

        tx_buf[0] = STATUS_REGISTER_READ;
        cmd.tx_cmd = &tx_buf[0];
        cmd.rx_cmd = &rx_buf[0];
        cmd.tx_cmd_sz = 2;
        cmd.rx_cmd_sz = 2;
        SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd);

        return (rx_buf[1]);
}

static void
at45d_wait_for_device_ready(device_t dev)
{
        while ((at45d_get_status(dev) & 0x80) == 0)
                continue;
}

static void
at45d_delayed_attach(void *arg)
{
        struct at45d_softc *sc = arg;
        uint8_t buf[4];

        at45d_get_info(sc->at45d_dev, buf);
        at45d_wait_for_device_ready(sc->at45d_dev);

        sc->at45d_disk = disk_alloc();
        sc->at45d_disk->d_name = "at45d";
        sc->at45d_disk->d_unit = device_get_unit(sc->at45d_dev);
        sc->at45d_disk->d_strategy = at45d_strategy;
        sc->at45d_disk->d_sectorsize = 1056;
        sc->at45d_disk->d_mediasize = 8192 * 1056;
        sc->at45d_disk->d_maxsize = DFLTPHYS;
        sc->at45d_disk->d_drv1 = sc;
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        bioq_init(&sc->at45d_bioq);
        kproc_create(&at45d_task, sc, &sc->at45d_proc, 0, 0, "at45d");

        disk_create(sc->at45d_disk, DISK_VERSION);
        config_intrhook_disestablish(&sc->at45d_ich);
}

static void
at45d_strategy(struct bio *bp)
{
        struct at45d_softc *sc = bp->bio_disk->d_drv1;

        mtx_lock(&sc->at45d_mtx);
        bioq_disksort(&sc->at45d_bioq, bp);
        wakeup(sc);
        mtx_unlock(&sc->at45d_mtx);
}

static void
at45d_task(void *arg)
{
        struct at45d_softc *sc = arg;
        struct bio *bp;
        struct spi_command cmd;
        uint8_t tx_buf[8], rx_buf[8];
        int ss = sc->at45d_disk->d_sectorsize;
        daddr_t block, end;
        char *vaddr;

        for (;;) {
                mtx_lock(&sc->at45d_mtx);
                do {
                        bp = bioq_first(&sc->at45d_bioq);
                        if (bp == NULL)
                                mtx_sleep(sc, &sc->at45d_mtx, PRIBIO,
                                    "at45d", 0);
                } while (bp == NULL);
                bioq_remove(&sc->at45d_bioq, bp);
                mtx_unlock(&sc->at45d_mtx);

                end = bp->bio_pblkno + (bp->bio_bcount / ss);
                for (block = bp->bio_pblkno; block < end; block++) {
                        vaddr = bp->bio_data + (block - bp->bio_pblkno) * ss;
                        if (bp->bio_cmd == BIO_READ) {
                                tx_buf[0] = CONTINUOUS_ARRAY_READ_HF;
                                cmd.tx_cmd_sz = 5;
                                cmd.rx_cmd_sz = 5;
                        } else {
                                tx_buf[0] = PROGRAM_THROUGH_BUFFER;
                                cmd.tx_cmd_sz = 4;
                                cmd.rx_cmd_sz = 4;
                        }
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                        /* FIXME: This works only on certain devices. */
                        tx_buf[1] = ((block >> 5) & 0xff);
                        tx_buf[2] = ((block << 3) & 0xf8);
                        tx_buf[3] = 0;
                        tx_buf[4] = 0;
                        cmd.tx_cmd = &tx_buf[0];
                        cmd.rx_cmd = &rx_buf[0];
                        cmd.tx_data = vaddr;
                        cmd.rx_data = vaddr;
                        cmd.tx_data_sz = ss;
                        cmd.rx_data_sz = ss;
                        SPIBUS_TRANSFER(device_get_parent(sc->at45d_dev),
                            sc->at45d_dev, &cmd);
                }
                biodone(bp);
        }
}

static device_method_t at45d_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_probe,         at45d_probe),
        DEVMETHOD(device_attach,        at45d_attach),
        DEVMETHOD(device_detach,        at45d_detach),
        { 0, 0 }
};

static driver_t at45d_driver = {
        "at45d",
        at45d_methods,
        sizeof(struct at45d_softc)
};

DRIVER_MODULE(at45d, spibus, at45d_driver, at45d_devclass, 0, 0);

Listing 13-1: at45d.c

The following sections describe the functions defined in Listing 13-1 
roughly in the order they would execute.

Incidentally, because  at45d_probe and  at45d_detach are extremely 
rudimentary and because you’ve seen similar code elsewhere, I’ll omit dis-
cussing them.

at45d_attach Function
The at45d_attach function is the device_attach implementation for this storage 
driver. Here is its function definition (again):

static int
at45d_attach(device_t dev)
{
        struct at45d_softc *sc = device_get_softc(dev);
        int error;
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        sc->at45d_dev = dev;
mtx_init(&sc->at45d_mtx, device_get_nameunit(dev), "at45d",

            MTX_DEF);

        sc->at45d_ich.ich_func = at45d_delayed_attach;
        sc->at45d_ich.ich_arg = sc;
        error = config_intrhook_establish(&sc->at45d_ich);
        if (error)
                device_printf(dev, "config_intrhook_establish() failed!\n");

        return (0);
}

This function first  initializes the mutex at45d_mtx, which will protect 
at45d’s block I/O queue. Then it  schedules  at45d_delayed_attach to exe-
cute when interrupts are enabled.

NOTE During the initial autoconfiguration phase (that is, right after the system boots), inter-
rupts are disabled. However, some drivers (such as at45d) require interrupts for device 
initialization. In those cases, you’d use config_intrhook_establish, which schedules 
a function to execute as soon as interrupts are enabled but before root is mounted; if the 
system has already passed this point, the function is called immediately.

at45d_delayed_attach Function
The at45d_delayed_attach function is, loosely speaking, the second half of 
at45d_attach. That is, it completes the device’s initialization. Here is its func-
tion definition (again):

static void
at45d_delayed_attach(void *arg)
{
        struct at45d_softc *sc = arg;
        uint8_t buf[4];

at45d_get_info(sc->at45d_dev, buf);
at45d_wait_for_device_ready(sc->at45d_dev);

        sc->at45d_disk = disk_alloc();
        sc->at45d_disk->d_name = "at45d";
        sc->at45d_disk->d_unit = device_get_unit(sc->at45d_dev);
        sc->at45d_disk->d_strategy = at45d_strategy;
        sc->at45d_disk->d_sectorsize = 1056;
        sc->at45d_disk->d_mediasize = 8192 * 1056;
        sc->at45d_disk->d_maxsize = DFLTPHYS;
        sc->at45d_disk->d_drv1 = sc;

bioq_init(&sc->at45d_bioq);
kproc_create(&at45d_task, sc, &sc->at45d_proc, 0, 0, "at45d");
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disk_create(sc->at45d_disk, DISK_VERSION);
config_intrhook_disestablish(&sc->at45d_ich);

}

This function can be split into multiple parts. The first  gets the device’s 
manufacturer ID. Then at45d_delayed_attach  hangs until the device is ready. 
These two actions require interrupts to be enabled.

The second part  allocates and defines at45d’s disk structure,  initial-
izes at45d’s block I/O queue, and  creates a new kernel process (to execute 
the  at45d_task function). 

Finally, at45d’s device node is  created, and at45d_delayed_attach is  
torn down.

NOTE During the boot process—before root is mounted—the system stalls until every function 
scheduled via config_intrhook_establish completes and tears itself down. In other 
words, if at45d_delayed_attach didn’t call config_intrhook_disestablish, the 
system would hang.

at45d_get_info Function
The at45d_get_info function gets the storage device’s manufacturer ID. Here 
is its function definition (again):

static int
at45d_get_info(device_t dev, uint8_t *r)
{
        struct spi_command cmd;
        uint8_t tx_buf[8], rx_buf[8];
        int error;

        memset(&cmd, 0, sizeof(cmd));
memset(tx_buf, 0, sizeof(tx_buf));
memset(rx_buf, 0, sizeof(rx_buf));

tx_buf[0] = MANUFACTURER_ID;
cmd.tx_cmd = &tx_buf[0];
cmd.rx_cmd = &rx_buf[0];
cmd.tx_cmd_sz = 5;
cmd.rx_cmd_sz = 5;

        error = SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd);
        if (error)
                return (error);

memcpy(r, &rx_buf[1], 4);
        return (0);
}

This function begins by zeroing its  transmit and  receive buffers.
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NOTE Every SPI data transfer is a full-duplex data transmission. That is, it always requires 
a transmit and receive buffer, because the master and slave both transmit data—even if 
the data to be sent is meaningless or garbage, it’s still transferred.

The remainder of this function  places MANUFACTURER_ID in the transmit 
buffer, sets up the spi_command structure (which denotes the  transmit and 
 receive buffers and their   data lengths),  initiates the data transfer, 
and finally  returns the manufacturer ID to the caller.

at45d_wait_for_device_ready Function
The at45d_wait_for_device_ready function “spins” until the storage device is 
ready. Here is its function definition (again):

static void
at45d_wait_for_device_ready(device_t dev)
{
        while ((at45d_get_status(dev) & 0x80) == 0)
                continue;
}

This function continually calls  at45d_get_status until 0x80, which desig-
nates that the device is not busy and is ready to accept the next command, is 
returned.

at45d_get_status Function
The at45d_get_status function gets the storage device’s status. Here is its func-
tion definition (again):

static uint8_t
at45d_get_status(device_t dev)
{
        struct spi_command cmd;
        uint8_t tx_buf[8], rx_buf[8];

        memset(&cmd, 0, sizeof(cmd));
        memset(tx_buf, 0, sizeof(tx_buf));
        memset(rx_buf, 0, sizeof(rx_buf));

tx_buf[0] = STATUS_REGISTER_READ;
        cmd.tx_cmd = &tx_buf[0];
        cmd.rx_cmd = &rx_buf[0];
        cmd.tx_cmd_sz = 2;
        cmd.rx_cmd_sz = 2;
        SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd);

        return (rx_buf[1]);
}
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As you can see, this function is nearly identical to the at45d_get_info func-
tion, except that it  employs a different command. As such, I’ll omit walk-
ing through it.

at45d_strategy Function
The at45d_strategy function is defined in at45d_delayed_attach as the d_strategy 
routine; it is executed anytime at45d receives a bio structure. Here is its func-
tion definition (again):

static void
at45d_strategy(struct bio *bp)
{
        struct at45d_softc *sc = bp->bio_disk->d_drv1;

        mtx_lock(&sc->at45d_mtx);
bioq_disksort(&sc->at45d_bioq, bp);
wakeup(sc);

        mtx_unlock(&sc->at45d_mtx);
}

This function simply takes a  bio structure and  adds it to at45d’s block 
I/O queue. Then it  gets at45d_task to actually process the bio structure(s).

NOTE Most strategy routines do something similar. That is to say, they don’t actually process 
the bio structures; they only place them on the block I/O queue, and another function 
or thread sees to them.

at45d_task Function
As mentioned in the previous section, the at45d_task function processes the 
bio structures on at45d’s block I/O queue. Here is its function definition 
(again):

static void
at45d_task(void *arg)
{
        struct at45d_softc *sc = arg;
        struct bio *bp;
        struct spi_command cmd;
        uint8_t tx_buf[8], rx_buf[8];
        int ss = sc->at45d_disk->d_sectorsize;
        daddr_t block, end;
        char *vaddr;

        for (;;) {
                mtx_lock(&sc->at45d_mtx);
                do {
                        bp = bioq_first(&sc->at45d_bioq);
                        if (bp == NULL)

mtx_sleep(sc, &sc->at45d_mtx, PRIBIO,
                                    "at45d", 0);
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                } while (bp == NULL);
bioq_remove(&sc->at45d_bioq, bp);

                mtx_unlock(&sc->at45d_mtx);

                end = bp->bio_pblkno + (bp->bio_bcount / ss);
                for (block = bp->bio_pblkno; block < end; block++) {
 vaddr = bp->bio_data +
                            (block - bp->bio_pblkno) * ss;

if (bp->bio_cmd == BIO_READ) {
                                tx_buf[0] = CONTINUOUS_ARRAY_READ_HF;
                                cmd.tx_cmd_sz = 5;
                                cmd.rx_cmd_sz = 5;

} else {
                                tx_buf[0] = PROGRAM_THROUGH_BUFFER;
                                cmd.tx_cmd_sz = 4;
                                cmd.rx_cmd_sz = 4;
                        }

                        /* FIXME: This works only on certain devices. */
                        tx_buf[1] = ((block >> 5) & 0xff);
                        tx_buf[2] = ((block << 3) & 0xf8);
                        tx_buf[3] = 0;
                        tx_buf[4] = 0;
                        cmd.tx_cmd = &tx_buf[0];
                        cmd.rx_cmd = &rx_buf[0];
                        cmd.tx_data = vaddr;
                        cmd.rx_data = vaddr;
                        cmd.tx_data_sz = ss;
                        cmd.rx_data_sz = ss;

SPIBUS_TRANSFER(device_get_parent(sc->at45d_dev),
                            sc->at45d_dev, &cmd);
                }

biodone(bp);
        }
}

This function can be split into four parts. The first  determines whether 
at45d’s block I/O queue is empty. If so, at45d_task  sleeps; otherwise, it  
acquires (and removes) the head of the queue. The second part determines 
whether the block-centric I/O request is a  read or a  write.

NOTE Block-centric I/O requests are seen from the driver’s point of view. So, BIO_READ means 
reading from the device.

The second part also  calculates the offset in bio_data (that is, the loca-
tion in main memory) to read from or write to. This is crucial because each 
I/O operation transmits 1 block of data, not 1 byte (that is, the abovemen-
tioned offset is a multiple of 1 block).

In case you have trouble following the offset calculation, here is a brief 
description of each variable involved: The ss variable is the device’s sector 
size. The bio_pblkno variable is the first block of device memory to read from 
or write to, end is the last block, and block is the current block at45d_task is 
working with.
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The third part sets up the spi_command structure and  initiates the data 
transfer. Finally, the fourth part  tells the kernel that the block-centric I/O 
request bp has been serviced.

Block I/O Completion Routines

As seen in the previous section, after processing a block-centric I/O request, 
you must inform the kernel with:

#include <sys/bio.h>

void
biodone(struct bio *bp);

void
biofinish(struct bio *bp, struct devstat *stat, int error);

The biodone function tells the kernel that the block-centric I/O request 
bp has been serviced successfully.

The biofinish function is identical to biodone, except that it sets bp to 
return the error code error (that is to say, biofinish can tell the kernel that 
bp was invalid, successful, or unsuccessful).

NOTE Typically, the stat argument is set to NULL. For more on struct devstat, see the 
devstat(9) manual page (though it’s somewhat antiquated).

Conclusion

This chapter focused on implementing and understanding storage drivers. 
You learned how to manage both disk and bio structures and studied a real-
world storage driver.
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C O M M O N  A C C E S S  M E T H O D

Common Access Method (CAM) is an ANSI 
standard. Although primarily used for SCSI, 

CAM is a method for separating host bus 
adapter (HBA) drivers from storage drivers. HBAs 

are devices (that is, a card or integrated circuit) that 
connect the host to other devices. For example, USB 
HBAs allow the host to communicate with USB devices.

By separating HBA drivers from storage drivers, CAM reduces the com-
plexity of individual drivers. Furthermore, this separation enables storage 
drivers (such as CD-ROM and tape drivers) to control their devices on any
I/O bus (such as IDE, SCSI, and so on) as long as an appropriate HBA driver is 
available. In other words, CAM modularizes HBA and storage drivers.

In CAM vernacular, HBA drivers are known as software interface mod-
ules (SIMs), and storage drivers are known as peripheral modules. Inciden-
tally, the storage drivers discussed in Chapter 13 are not under CAM. To 
avoid confusion, I’ll refer to storage drivers under CAM as peripheral mod-
ules from now on.



The FreeBSD CAM implementation contains SIMs for SCSI Parallel Inter-
face (SPI), Fibre Channel (FC), USB Mass Storage (UMASS), FireWire (IEEE 
1394), and Advanced Technology Attachment Packet Interface (ATAPI). It 
has peripheral modules for disks (da), CD-ROMs (cd), tapes (sa), tape chang-
ers (ch), processor type devices (pt), and enclosure services (ses). Also, it pro-
vides a “pass-through” interface that allows user applications to send I/O 
requests directly to any CAM-controlled device (McKusick and Neville-Neil, 
2005). This interface is, fundamentally, a SIM (as you’ll soon see).

In this chapter you’ll learn how to manage HBAs using CAM. Of course, 
before you can do that, you’ll need to know how CAM interfaces peripheral 
modules with SIMs. Because peripheral modules are just storage drivers with 
some CAM-related code, they’re only briefly discussed in this chapter.

How CAM Works

CAM is most easily understood by tracing an I/O request through it.
In Figure 14-1,1 the kernel passes a block-centric I/O request to the da(4) 

peripheral module. As you would expect, this causes da(4)’s strategy routine 
(dastrategy) to execute.

Figure 14-1: The path of an I/O request through the CAM subsystem

The dastrategy function gets the block-centric I/O request and inserts it 
on the appropriate block I/O queue via bioq_disksort. It concludes by calling 
the xpt_schedule function. (The da(4) peripheral module supports every SCSI 
disk. Consequently, it manages multiple block I/O queues.)

1.  Figure 14-1 is adapted from The Design and Implementation of the FreeBSD Operating System by 
Marshall Kirk McKusick and George V. Neville-Neil (Addison-Wesley, 2005).
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The xpt_schedule function, by and large, schedules a peripheral module 
to receive a CAM Control Block (CCB). A CCB describes the location (or path) to 
the target device (that is, the intended recipient of the I/O request). The 
xpt_schedule function concludes by calling the xpt_run_dev_allocq function. 
(Note that my definition of CCB isn’t complete. I’ll expand this definition 
throughout this chapter.)

The xpt_run_dev_allocq function allocates and constructs a CCB. After-
ward, it calls the peripheral module’s start routine (dastart in this example).

The dastart function takes the first block-centric I/O request off the 
appropriate block I/O queue and converts that into a SCSI command. This 
command is stored in the CCB constructed by xpt_run_dev_allocq. The dastart 
function ends by calling the xpt_action function.

The xpt_action function uses the path information stored in the CCB to 
determine the SIM to which the SCSI command should be sent. It then calls 
that SIM’s action routine (ahc_action in this case).

NOTE A SIM was pseudo-randomly chosen for this example, so the fact that it’s ahc(4) is 
irrelevant.

The ahc_action function gets the CCB and translates the SCSI command 
into a hardware-specific command. This hardware-specific command is then 
passed to the device to be executed. Afterward, ahc_action returns back to the 
caller of dastrategy.

As soon as the device completes the hardware-specific command (which 
may involve DMA), it sends an interrupt, which causes ahc(4)’s done routine 
(ahc_done) to execute.

The ahc_done function appends the completion status (that is, successful 
or unsuccessful) to the CCB related to the completed hardware-specific com-
mand. It then calls the xpt_done function.

The xpt_done function gets the completed CCB and sets it up for process-
ing by camisr, the CAM interrupt service routine. It then schedules camisr 
to run.

Loosely speaking, the camisr function carries out some “housekeeping” 
on the CCB. It ends by calling the CCB’s specified completion function 
(dadone in this example).

The dadone function, more or less, tells the kernel that the block-centric 
I/O request has been serviced by calling biodone.

A (Somewhat) Simple Example

Now that you’re familiar with the CAM subsystem, let’s work through some 
code. After that, I’ll detail the different CAM-related functions.

Listing 14-1 is a SIM for a pseudo-HBA (taken from the mfi(4) code base).

NOTE Take a quick look at this code and try to discern some of its structure. If you don’t 
understand all of it, don’t worry; an explanation follows.

#include <sys/param.h>
#include <sys/module.h>
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#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/selinfo.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/uio.h>

#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>

#include <machine/md_var.h>
#include <machine/bus.h>
#include <sys/rman.h>

#include <dev/mfi/mfireg.h>
#include <dev/mfi/mfi_ioctl.h>
#include <dev/mfi/mfivar.h>

#define ccb_mfip_ptr            sim_priv.entries[0].ptr

struct mfip {
        device_t                dev;
        struct mfi_softc        *mfi;
        struct cam_devq         *devq;
        struct cam_sim          *sim;
        struct cam_path         *path;
};

static devclass_t               mfip_devclass;

static void                     mfip_action(struct cam_sim *, union ccb *);
static void                     mfip_poll(struct cam_sim *);
static struct mfi_command *     mfip_start(void *);
static void                     mfip_done(struct mfi_command *);

static int
 mfip_probe(device_t dev)

{
        device_set_desc(dev, "SCSI pass-through bus");
        return (BUS_PROBE_SPECIFIC);
}

static int
mfip_attach(device_t dev)
{
        struct mfip *sc;
        struct mfi_softc *mfi;
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        sc = device_get_softc(dev);
        if (sc == NULL)
                return (EINVAL);

        mfi = device_get_softc(device_get_parent(dev));
        sc->dev = dev;
        sc->mfi = mfi;
        mfi->mfi_cam_start = mfip_start;

        if ((sc->devq = cam_simq_alloc(MFI_SCSI_MAX_CMDS)) == NULL)
                return (ENOMEM);

        sc->sim = cam_sim_alloc(mfip_action, mfip_poll, "mfi", sc,
            device_get_unit(dev), &mfi->mfi_io_lock, 1, MFI_SCSI_MAX_CMDS,
            sc->devq);
        if (sc->sim == NULL) {
                cam_simq_free(sc->devq);
                device_printf(dev, "cannot allocate CAM SIM\n");
                return (EINVAL);
        }

        mtx_lock(&mfi->mfi_io_lock);
        if (xpt_bus_register(sc->sim, dev, 0) != 0) {
                device_printf(dev,
                    "cannot register SCSI pass-through bus\n");
                cam_sim_free(sc->sim, FALSE);
                cam_simq_free(sc->devq);
                mtx_unlock(&mfi->mfi_io_lock);
                return (EINVAL);
        }
        mtx_unlock(&mfi->mfi_io_lock);

        return (0);
}

static int
mfip_detach(device_t dev)
{
        struct mfip *sc;

        sc = device_get_softc(dev);
        if (sc == NULL)
                return (EINVAL);

        if (sc->sim != NULL) {
                mtx_lock(&sc->mfi->mfi_io_lock);
                xpt_bus_deregister(cam_sim_path(sc->sim));
                cam_sim_free(sc->sim, FALSE);
                mtx_unlock(&sc->mfi->mfi_io_lock);
        }

        if (sc->devq != NULL)
                cam_simq_free(sc->devq);

        return (0);
Common Access Method 229



}

static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
        struct mfip *sc;
        struct mfi_softc *mfi;

        sc = cam_sim_softc(sim);
        mfi = sc->mfi;
        mtx_assert(&mfi->mfi_io_lock, MA_OWNED);

        switch (ccb->ccb_h.func_code) {
        case XPT_PATH_INQ:
        {
                struct ccb_pathinq *cpi;

                cpi = &ccb->cpi;
                cpi->version_num = 1;
                cpi->hba_inquiry = PI_SDTR_ABLE | PI_TAG_ABLE | PI_WIDE_16;
                cpi->target_sprt = 0;
                cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
                cpi->hba_eng_cnt = 0;
                cpi->max_target = MFI_SCSI_MAX_TARGETS;
                cpi->max_lun = MFI_SCSI_MAX_LUNS;
                cpi->initiator_id = MFI_SCSI_INITIATOR_ID;
                strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
                strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
                strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
                cpi->unit_number = cam_sim_unit(sim);
                cpi->bus_id = cam_sim_bus(sim);
                cpi->base_transfer_speed = 150000;
                cpi->protocol = PROTO_SCSI;
                cpi->protocol_version = SCSI_REV_2;
                cpi->transport = XPORT_SAS;
                cpi->transport_version = 0;

                cpi->ccb_h.status = CAM_REQ_CMP;
                break;
        }
        case XPT_RESET_BUS:
                ccb->ccb_h.status = CAM_REQ_CMP;
                break;
        case XPT_RESET_DEV:
                ccb->ccb_h.status = CAM_REQ_CMP;
                break;
        case XPT_GET_TRAN_SETTINGS:
        {
                struct ccb_trans_settings_sas *sas;

                ccb->cts.protocol = PROTO_SCSI;
                ccb->cts.protocol_version = SCSI_REV_2;
                ccb->cts.transport = XPORT_SAS;
                ccb->cts.transport_version = 0;
                sas = &ccb->cts.xport_specific.sas;
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                sas->valid &= ~CTS_SAS_VALID_SPEED;
                sas->bitrate = 150000;

                ccb->ccb_h.status = CAM_REQ_CMP;
                break;
        }
        case XPT_SET_TRAN_SETTINGS:
                ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
                break;
        case XPT_SCSI_IO:
        {
                struct ccb_hdr *ccb_h = &ccb->ccb_h;
                struct ccb_scsiio *csio = &ccb->csio;

                ccb_h->status = CAM_REQ_INPROG;
                if (csio->cdb_len > MFI_SCSI_MAX_CDB_LEN) {
                        ccb_h->status = CAM_REQ_INVALID;
                        break;
                }
                if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
                        if (ccb_h->flags & CAM_DATA_PHYS) {
                                ccb_h->status = CAM_REQ_INVALID;
                                break;
                        }
                        if (ccb_h->flags & CAM_SCATTER_VALID) {
                                ccb_h->status = CAM_REQ_INVALID;
                                break;
                        }
                }

                ccb_h->ccb_mfip_ptr = sc;
                TAILQ_INSERT_TAIL(&mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
                mfi_startio(mfi);

                return;
        }
        default:
                ccb->ccb_h.status = CAM_REQ_INVALID;
                break;
        }

        xpt_done(ccb);
        return;
}

static void
mfip_poll(struct cam_sim *sim)
{
        return;
}

static struct mfi_command *
mfip_start(void *data)
{
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        union ccb *ccb = data;
        struct ccb_hdr *ccb_h = &ccb->ccb_h;
        struct ccb_scsiio *csio = &ccb->csio;
        struct mfip *sc;
        struct mfi_command *cm;
        struct mfi_pass_frame *pt;

        sc = ccb_h->ccb_mfip_ptr;

        if ((cm = mfi_dequeue_free(sc->mfi)) == NULL)
                return (NULL);

        pt = &cm->cm_frame->pass;
        pt->header.cmd = MFI_CMD_PD_SCSI_IO;
        pt->header.cmd_status = 0;
        pt->header.scsi_status = 0;
        pt->header.target_id = ccb_h->target_id;
        pt->header.lun_id = ccb_h->target_lun;
        pt->header.flags = 0;
        pt->header.timeout = 0;
        pt->header.data_len = csio->dxfer_len;
        pt->header.sense_len = MFI_SENSE_LEN;
        pt->header.cdb_len = csio->cdb_len;
        pt->sense_addr_lo = cm->cm_sense_busaddr;
        pt->sense_addr_hi = 0;
        if (ccb_h->flags & CAM_CDB_POINTER)
                bcopy(csio->cdb_io.cdb_ptr, &pt->cdb[0], csio->cdb_len);
        else
                bcopy(csio->cdb_io.cdb_bytes, &pt->cdb[0], csio->cdb_len);

        cm->cm_complete = mfip_done;
        cm->cm_private = ccb;
        cm->cm_sg = &pt->sgl;
        cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
        cm->cm_data = csio->data_ptr;
        cm->cm_len = csio->dxfer_len;
        switch (ccb_h->flags & CAM_DIR_MASK) {
        case CAM_DIR_IN:
                cm->cm_flags = MFI_CMD_DATAIN;
                break;
        case CAM_DIR_OUT:
                cm->cm_flags = MFI_CMD_DATAOUT;
                break;
        case CAM_DIR_NONE:
        default:
                cm->cm_data = NULL;
                cm->cm_len = 0;
                cm->cm_flags = 0;
                break;
        }

        TAILQ_REMOVE(&sc->mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
        return (cm);
}
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static void
mfip_done(struct mfi_command *cm)
{
        union ccb *ccb = cm->cm_private;
        struct ccb_hdr *ccb_h = &ccb->ccb_h;
        struct ccb_scsiio *csio = &ccb->csio;
        struct mfip *sc;
        struct mfi_pass_frame *pt;

        sc = ccb_h->ccb_mfip_ptr;
        pt = &cm->cm_frame->pass;

        switch (pt->header.cmd_status) {
        case MFI_STAT_OK:
        {
                uint8_t command, device;

                ccb_h->status = CAM_REQ_CMP;
                csio->scsi_status = pt->header.scsi_status;

                if (ccb_h->flags & CAM_CDB_POINTER)
                        command = ccb->csio.cdb_io.cdb_ptr[0];
                else
                        command = ccb->csio.cdb_io.cdb_bytes[0];

                if (command == INQUIRY) {
                        device = ccb->csio.data_ptr[0] & 0x1f;
                        if ((device == T_DIRECT) || (device == T_PROCESSOR))
                                csio->data_ptr[0] =
                                    (device & 0xe0) | T_NODEVICE;
                }

                break;
        }
        case MFI_STAT_SCSI_DONE_WITH_ERROR:
        {
                int sense_len;

                ccb_h->status = CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
                csio->scsi_status = pt->header.scsi_status;

                sense_len = min(pt->header.sense_len,
                    sizeof(struct scsi_sense_data));
                bzero(&csio->sense_data, sizeof(struct scsi_sense_data));
                bcopy(&cm->cm_sense->data[0], &csio->sense_data, sense_len);
                break;
        }
        case MFI_STAT_DEVICE_NOT_FOUND:
                ccb_h->status = CAM_SEL_TIMEOUT;
                break;
        case MFI_STAT_SCSI_IO_FAILED:
                ccb_h->status = CAM_REQ_CMP_ERR;
                csio->scsi_status = pt->header.scsi_status;
                break;
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        default:
                ccb_h->status = CAM_REQ_CMP_ERR;
                csio->scsi_status = pt->header.scsi_status;
                break;
        }

        mfi_release_command(cm);
        xpt_done(ccb);
}

static device_method_t mfip_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_probe,         mfip_probe),
        DEVMETHOD(device_attach,        mfip_attach),
        DEVMETHOD(device_detach,        mfip_detach),
        { 0, 0 }
};

static driver_t mfip_driver = {
        "mfip",
        mfip_methods,
        sizeof(struct mfip)
};

DRIVER_MODULE(mfip, mfi, mfip_driver, mfip_devclass, 0, 0);
MODULE_DEPEND(mfip, cam, 1, 1, 1);
MODULE_DEPEND(mfip, mfi, 1, 1, 1);

Listing 14-1: mfi_cam.c

The following sections describe the functions defined in Listing 14-1 
roughly in the order they would execute.

As an aside, because  mfip_probe is extremely rudimentary and because 
we’ve examined similar code elsewhere, I’ll omit discussing it.

mfip_attach Function
The mfip_attach function is the device_attach implementation for this driver. 
Here is its function definition (again):

static int
mfip_attach(device_t dev)
{
        struct mfip *sc;
        struct mfi_softc *mfi;

        sc = device_get_softc(dev);
        if (sc == NULL)
                return (EINVAL);

        mfi = device_get_softc(device_get_parent(dev));
        sc->dev = dev;
        sc->mfi = mfi;
        mfi->mfi_cam_start = mfip_start;
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        if ((sc->devq = cam_simq_alloc(MFI_SCSI_MAX_CMDS)) == NULL)
                return (ENOMEM);

        sc->sim = cam_sim_alloc(mfip_action, mfip_poll, "mfi", sc,
            device_get_unit(dev), &mfi->mfi_io_lock, 1, MFI_SCSI_MAX_CMDS,
            sc->devq);
        if (sc->sim == NULL) {
                cam_simq_free(sc->devq);
                device_printf(dev, "cannot allocate CAM SIM\n");
                return (EINVAL);
        }

        mtx_lock(&mfi->mfi_io_lock);
        if (xpt_bus_register(sc->sim, dev, 0) != 0) {
                device_printf(dev,
                    "cannot register SCSI pass-through bus\n");
                cam_sim_free(sc->sim, FALSE);
                cam_simq_free(sc->devq);
                mtx_unlock(&mfi->mfi_io_lock);
                return (EINVAL);
        }
        mtx_unlock(&mfi->mfi_io_lock);

        return (0);
}

This function first calls  cam_simq_alloc to allocate a SIM queue. Loosely 
speaking, SIM queues ensure that HBAs cannot be swamped by I/O requests. 
See, I/O requests from peripheral modules are housed on SIM queues to await 
service. When a queue becomes full, any additional requests are rejected.

Next,  cam_sim_alloc is called to allocate a SIM (or bus) descriptor. Note 
that if an HBA implements multiple buses (or channels), each bus requires 
its own descriptor.

Finally,  xpt_bus_register takes the descriptor returned by cam_sim_alloc 
and registers it with the CAM subsystem.

mfip_detach Function
The mfip_detach function is the device_detach implementation for this driver. 
Here is its function definition (again):

static int
mfip_detach(device_t dev)
{
        struct mfip *sc;

        sc = device_get_softc(dev);
        if (sc == NULL)
                return (EINVAL);

        if (sc->sim != NULL) {
                mtx_lock(&sc->mfi->mfi_io_lock);
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xpt_bus_deregister(cam_sim_path(sc->sim));
cam_sim_free(sc->sim, FALSE);

                mtx_unlock(&sc->mfi->mfi_io_lock);
        }

        if (sc->devq != NULL)
cam_simq_free(sc->devq);

        return (0);
}

This function starts by  deregistering and  freeing its SIM descriptor. 
Afterward, its SIM queue is  freed.

mfip_action Function
The mfip_action function is defined in mfip_attach as the action routine (for 
verification, see the first argument to cam_sim_alloc). Action routines are exe-
cuted every time a SIM receives a CCB.

NOTE Recall that a CCB houses an I/O request (or command) to perform along with the iden-
tity of the target device (that is, the intended recipient of the I/O request).

Fundamentally, mfip_action is akin to the ahc_action function shown in 
Figure 14-1. Here is its function definition (again):

static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
        struct mfip *sc;
        struct mfi_softc *mfi;

        sc = cam_sim_softc(sim);
        mfi = sc->mfi;
        mtx_assert(&mfi->mfi_io_lock, MA_OWNED);

switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:

        {
                struct ccb_pathinq *cpi;

                cpi = &ccb->cpi;
                cpi->version_num = 1;
                cpi->hba_inquiry = PI_SDTR_ABLE | PI_TAG_ABLE | PI_WIDE_16;
                cpi->target_sprt = 0;
                cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
                cpi->hba_eng_cnt = 0;
                cpi->max_target = MFI_SCSI_MAX_TARGETS;
                cpi->max_lun = MFI_SCSI_MAX_LUNS;
                cpi->initiator_id = MFI_SCSI_INITIATOR_ID;
                strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
                strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
                strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
236 Chapter 14



                cpi->unit_number = cam_sim_unit(sim);
                cpi->bus_id = cam_sim_bus(sim);
                cpi->base_transfer_speed = 150000;
                cpi->protocol = PROTO_SCSI;
                cpi->protocol_version = SCSI_REV_2;
                cpi->transport = XPORT_SAS;
                cpi->transport_version = 0;

                cpi->ccb_h.status = CAM_REQ_CMP;
                break;
        }

case XPT_RESET_BUS:
                ccb->ccb_h.status = CAM_REQ_CMP;
                break;

case XPT_RESET_DEV:
                ccb->ccb_h.status = CAM_REQ_CMP;
                break;

case XPT_GET_TRAN_SETTINGS:
        {
                struct ccb_trans_settings_sas *sas;

                ccb->cts.protocol = PROTO_SCSI;
                ccb->cts.protocol_version = SCSI_REV_2;
                ccb->cts.transport = XPORT_SAS;
                ccb->cts.transport_version = 0;
                sas = &ccb->cts.xport_specific.sas;
                sas->valid &= ~CTS_SAS_VALID_SPEED;
                sas->bitrate = 150000;

                ccb->ccb_h.status = CAM_REQ_CMP;
                break;
        }

case XPT_SET_TRAN_SETTINGS:
                ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
                break;

case XPT_SCSI_IO:
        {
                struct ccb_hdr *ccb_h = &ccb->ccb_h;
                struct ccb_scsiio *csio = &ccb->csio;

                ccb_h->status = CAM_REQ_INPROG;
                if (csio->cdb_len > MFI_SCSI_MAX_CDB_LEN) {
                        ccb_h->status = CAM_REQ_INVALID;
                        break;
                }
                if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
                        if (ccb_h->flags & CAM_DATA_PHYS) {
                                ccb_h->status = CAM_REQ_INVALID;
                                break;
                        }
                        if (ccb_h->flags & CAM_SCATTER_VALID) {
                                ccb_h->status = CAM_REQ_INVALID;
                                break;
                        }
                }
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                ccb_h->ccb_mfip_ptr = sc;
                TAILQ_INSERT_TAIL(&mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
                mfi_startio(mfi);

                return;
        }
        default:
                ccb->ccb_h.status = CAM_REQ_INVALID;
                break;
        }

        xpt_done(ccb);
        return;
}

Most action routines simply take a  CCB and  branch according to 
the ccb_h.func_code variable, which denotes the I/O operation to perform.

For now, I’m going to focus on the structure of mfip_action and avoid 
its specifics. An in-depth explanation of mfip_action appears in “Action Rou-
tines” on page 243.

As you can see, this function can perform one of six I/O operations: it 
can  return the SIM and HBA properties, reset a  bus or  device,  get 
or  set the transfer settings, or  issue a SCSI command to a device.

mfip_poll Function
The mfip_poll function is defined in mfip_attach as the poll routine (for verifi-
cation, see the second argument to cam_sim_alloc). Customarily, poll routines 
wrap a SIM’s interrupt handler. See, when interrupts are unavailable (for 
example, after a kernel panic) the CAM subsystem will use poll routines to 
run its interrupt handlers.

The following is the function definition for mfip_poll (again):

static void
mfip_poll(struct cam_sim *sim)
{
        return;
}

Because this SIM does not implement an interrupt handler, mfip_poll 
just  returns.

mfip_start Function
The mfip_start function transforms a SCSI command into a hardware-specific 
command. This function is called exclusively by mfi_startio.
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NOTE The mfi_startio function is defined in mfi.c (which is not described in this book). 
mfi_startio is called by mfip_action (described in “mfip_action Function” on 
page 236) to issue a SCSI command to a device.

Here is the function definition for mfip_start (again):

static struct mfi_command *
mfip_start(void *data)
{
        union ccb *ccb = data;
        struct ccb_hdr *ccb_h = &ccb->ccb_h;
        struct ccb_scsiio *csio = &ccb->csio;
        struct mfip *sc;
        struct mfi_command *cm;
        struct mfi_pass_frame *pt;

        sc = ccb_h->ccb_mfip_ptr;

        if ((cm = mfi_dequeue_free(sc->mfi)) == NULL)
                return (NULL);

        pt = &cm->cm_frame->pass;
        pt->header.cmd = MFI_CMD_PD_SCSI_IO;
        pt->header.cmd_status = 0;
        pt->header.scsi_status = 0;
        pt->header.target_id = ccb_h->target_id;
        pt->header.lun_id = ccb_h->target_lun;
        pt->header.flags = 0;
        pt->header.timeout = 0;
        pt->header.data_len = csio->dxfer_len;
        pt->header.sense_len = MFI_SENSE_LEN;
        pt->header.cdb_len = csio->cdb_len;
        pt->sense_addr_lo = cm->cm_sense_busaddr;
        pt->sense_addr_hi = 0;
        if (ccb_h->flags & CAM_CDB_POINTER)
                bcopy(csio->cdb_io.cdb_ptr, &pt->cdb[0], csio->cdb_len);
        else
                bcopy(csio->cdb_io.cdb_bytes, &pt->cdb[0], csio->cdb_len);

        cm->cm_complete = mfip_done;
        cm->cm_private = ccb;
        cm->cm_sg = &pt->sgl;
        cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
        cm->cm_data = csio->data_ptr;
        cm->cm_len = csio->dxfer_len;
        switch (ccb_h->flags & CAM_DIR_MASK) {
        case CAM_DIR_IN:
                cm->cm_flags = MFI_CMD_DATAIN;
                break;
        case CAM_DIR_OUT:
                cm->cm_flags = MFI_CMD_DATAOUT;
                break;
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        case CAM_DIR_NONE:
        default:
                cm->cm_data = NULL;
                cm->cm_len = 0;
                cm->cm_flags = 0;
                break;
        }

        TAILQ_REMOVE(&sc->mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
        return (cm);
}

As you can see, this function is fairly straightforward—it’s just a bunch 
of assignments. Until we’ve examined struct ccb_scsiio and struct ccb_hdr, 
which occurs in “XPT_SCSI_IO” on page 250, I’m going to postpone walking 
through this function.

Note that  mfip_done is set as the done routine for the hardware-specific 
command.

mfip_done Function
As implied previously, the mfip_done function is the done routine for this SIM. 
It is executed by mfi_intr immediately after a device completes a hardware-
specific command.

NOTE The mfi_intr function is mfi(4)’s interrupt handler. It is defined in mfi.c.

Fundamentally, mfip_done is akin to the ahc_done function shown in 
Figure 14-1. Here is its function definition (again):

static void
mfip_done(struct mfi_command *cm)
{
        union ccb *ccb = cm->cm_private;
        struct ccb_hdr *ccb_h = &ccb->ccb_h;
        struct ccb_scsiio *csio = &ccb->csio;
        struct mfip *sc;
        struct mfi_pass_frame *pt;

        sc = ccb_h->ccb_mfip_ptr;
        pt = &cm->cm_frame->pass;

        switch (pt->header.cmd_status) {
        case MFI_STAT_OK:
        {
                uint8_t command, device;

ccb_h->status = CAM_REQ_CMP;
                csio->scsi_status = pt->header.scsi_status;

                if (ccb_h->flags & CAM_CDB_POINTER)
                        command = ccb->csio.cdb_io.cdb_ptr[0];
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                else
                        command = ccb->csio.cdb_io.cdb_bytes[0];

                if (command == INQUIRY) {
                        device = ccb->csio.data_ptr[0] & 0x1f;
                        if ((device == T_DIRECT) || (device == T_PROCESSOR))
                                csio->data_ptr[0] =
                                    (device & 0xe0) | T_NODEVICE;
                }

                break;
        }
        case MFI_STAT_SCSI_DONE_WITH_ERROR:
        {
                int sense_len;

ccb_h->status = CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
                csio->scsi_status = pt->header.scsi_status;

                sense_len = min(pt->header.sense_len,
                    sizeof(struct scsi_sense_data));
                bzero(&csio->sense_data, sizeof(struct scsi_sense_data));
                bcopy(&cm->cm_sense->data[0], &csio->sense_data, sense_len);
                break;
        }
        case MFI_STAT_DEVICE_NOT_FOUND:

ccb_h->status = CAM_SEL_TIMEOUT;
                break;
        case MFI_STAT_SCSI_IO_FAILED:

ccb_h->status = CAM_REQ_CMP_ERR;
                csio->scsi_status = pt->header.scsi_status;
                break;
        default:

ccb_h->status = CAM_REQ_CMP_ERR;
                csio->scsi_status = pt->header.scsi_status;
                break;
        }

        mfi_release_command(cm);
xpt_done(ccb);

}

Commonly, done routines take a  hardware-specific command and 
append the completion status (that is, successful or unsuccessful) to its asso-
ciated      CCB. Once this is done,  xpt_done is called to process 
the completed CCB.

NOTE The mfi(4) code base uses DMA to acquire the completion status from a device.

Now that you’re familiar with Listing 14-1, I’ll expound on the different 
functions, structures, and constructs it employs.
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SIM Registration Routines

As alluded to previously, registering a SIM with the CAM subsystem involves 
three functions:

 cam_simq_alloc

 cam_sim_alloc

 xpt_bus_register

cam_simq_alloc Function
The cam_simq_alloc function allocates a SIM queue.

#include <cam/cam_sim.h>
#include <cam/cam_queue.h>

struct cam_devq *
cam_simq_alloc(u_int32_t max_sim_transactions);

Here, max_sim_transactions denotes the size of the SIM queue. Normally, 
it is calculated like so:

max_sim_transactions = number_of_supported_devices *
    number_of_commands_that_can_be_concurrently_processed_per_device;

cam_sim_alloc Function
The cam_sim_alloc function allocates a SIM (or bus) descriptor.

NOTE If an HBA implements multiple buses (or channels), each bus requires its own descriptor.

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>

#include <cam/cam_sim.h>
#include <cam/cam_queue.h>

struct cam_sim *
cam_sim_alloc(sim_action_func sim_action, sim_poll_func sim_poll,
    const char *sim_name, void *softc, u_int32_t unit, struct mtx *mtx,
    int max_dev_transactions, int max_tagged_dev_transactions,
    struct cam_devq *queue);

Because the first six arguments to cam_sim_alloc are fairly obvious—
they’re exactly what their name implies—I’ll omit discussing them.

The max_dev_transactions argument specifies the maximum number of 
concurrent transactions per device. This argument applies only to devices 
that do not support SCSI Tagged Command Queuing (SCSI TCQ). Gener-
ally, max_dev_transactions is always set to 1.
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The max_tagged_dev_transactions argument is identical to max_dev_transactions, 
but it applies only to devices that support SCSI TCQ.

The queue argument expects a pointer to a SIM queue (that is, 
cam_simq_alloc’s return value).

xpt_bus_register Function
The xpt_bus_register function registers a SIM with the CAM subsystem.

#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>

int32_t
xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)

Here, sim specifies the SIM to register (that is, cam_sim_alloc’s return value) 
and bus denotes its bus number. The parent argument is currently unused.

NOTE If an HBA implements multiple buses (or channels), each bus needs its own unique bus 
number.

Action Routines

As mentioned previously, action routines are executed every time a SIM 
receives a CCB. You can think of action routines like the “main function” 
for a SIM.

Here is the function prototype for an action routine (taken from the 
<cam/cam_sim.h> header):

typedef void (*sim_action_func)(struct cam_sim *sim, union ccb *ccb);

Recall that action routines switch according to the ccb->ccb_h.func_code 
variable, which contains a constant that symbolizes the I/O operation to per-
form. For the rest of this chapter, I’ll detail the most common constants/
operations.

NOTE For the complete list of constants/operations, see the xpt_opcode enumeration defined in 
the <cam/cam_ccb.h> header.

XPT_PATH_INQ
The XPT_PATH_INQ constant specifies a path inquiry operation, which returns 
the SIM and HBA properties. Action routines that are passed XPT_PATH_INQ 
simply fill in a ccb_pathinq structure and then return.

struct ccb_pathinq is defined in the <cam/cam_ccb.h> header as follows:

struct ccb_pathinq {
        struct ccb_hdr ccb_h;           /* Header information fields.   */
        u_int8_t    version_num;        /* Version number.              */
        u_int8_t    hba_inquiry;        /* Imitate INQ byte 7.          */
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        u_int8_t    target_sprt;        /* Target mode support flags.   */
        u_int8_t    hba_misc;           /* Miscellaneous HBA features.  */
        u_int16_t   hba_eng_cnt;        /* HBA engine count.            */

        u_int8_t vuhba_flags[VUHBALEN]; /* Vendor unique capabilities.  */
        u_int32_t   max_target;         /* Maximum supported targets.   */
        u_int32_t   max_lun;            /* Maximum supported LUN.       */
        u_int32_t   async_flags;        /* Asynchronous handler flags.  */
        path_id_t   hpath_id;      /* Highest path ID in the subsystem. */
        target_id_t initiator_id;       /* HBA ID on the bus.           */

        char sim_vid[SIM_IDLEN];        /* SIM vendor ID.               */
        char hba_vid[HBA_IDLEN];        /* HBA vendor ID.               */
        char dev_name[DEV_IDLEN];       /* SIM device name.             */

        u_int32_t   unit_number;        /* SIM unit number.             */
        u_int32_t   bus_id;             /* SIM bus ID.                  */
        u_int32_t base_transfer_speed;  /* Base bus speed in KB/sec.    */

        cam_proto   protocol;           /* CAM protocol.                */
        u_int       protocol_version;   /* CAM protocol version.        */
        cam_xport   transport;          /* Transport (e.g., FC, USB).   */
        u_int       transport_version;  /* Transport version.           */
        union {
                struct ccb_pathinq_settings_spi spi;
                struct ccb_pathinq_settings_fc fc;
                struct ccb_pathinq_settings_sas sas;
                char ccb_pathinq_settings_opaque[PATHINQ_SETTINGS_SIZE];
        } xport_specific;

        u_int maxio;    /* Maximum supported I/O size (in bytes).       */
};

Here is an example XPT_PATH_INQ operation (taken from Listing 14-1):

static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
        struct mfip *sc;
        struct mfi_softc *mfi;

        sc = cam_sim_softc(sim);
        mfi = sc->mfi;
        mtx_assert(&mfi->mfi_io_lock, MA_OWNED);

        switch (ccb->ccb_h.func_code) {
        case XPT_PATH_INQ:
        {
                struct ccb_pathinq *cpi;

                cpi = &ccb->cpi;
                cpi->version_num = 1;
                cpi->hba_inquiry = PI_SDTR_ABLE | PI_TAG_ABLE | PI_WIDE_16;
                cpi->target_sprt = 0;
244 Chapter 14



                cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
                cpi->hba_eng_cnt = 0;
                cpi->max_target = MFI_SCSI_MAX_TARGETS;
                cpi->max_lun = MFI_SCSI_MAX_LUNS;
                cpi->initiator_id = MFI_SCSI_INITIATOR_ID;
                strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
                strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
                strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
                cpi->unit_number = cam_sim_unit(sim);
                cpi->bus_id = cam_sim_bus(sim);
                cpi->base_transfer_speed = 150000;
                cpi->protocol = PROTO_SCSI;
                cpi->protocol_version = SCSI_REV_2;
                cpi->transport = XPORT_SAS;
                cpi->transport_version = 0;

cpi->ccb_h.status = CAM_REQ_CMP;
                break;
        }
...
        default:

ccb->ccb_h.status = CAM_REQ_INVALID;
                break;
        }

        xpt_done(ccb);
        return;
}

Notice that the ccb_pathinq structure is provided by the  CCB. More-
over, notice that the  success or  failure of any operation is returned in 
 ccb_h.status.

XPT_RESET_BUS
The XPT_RESET_BUS constant specifies a bus reset operation. As you’d expect, 
XPT_RESET_BUS is horrifically hardware specific. Here is a minimalist implemen-
tation (taken from Listing 14-1):

static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
        struct mfip *sc;
        struct mfi_softc *mfi;

        sc = cam_sim_softc(sim);
        mfi = sc->mfi;
        mtx_assert(&mfi->mfi_io_lock, MA_OWNED);

        switch (ccb->ccb_h.func_code) {
...
        case XPT_RESET_BUS:
                ccb->ccb_h.status = CAM_REQ_CMP;
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                break;
...
        default:
                ccb->ccb_h.status = CAM_REQ_INVALID;
                break;
        }

        xpt_done(ccb);
        return;
}

Here,  sim is the bus to reset. Unsurprisingly, minimalist implementa-
tions forgo any “real” work and simply return  success.

Many SIMs use a minimalist implementation. A “proper” implementa-
tion is out of the scope of this book.

XPT_GET_TRAN_SETTINGS
The XPT_GET_TRAN_SETTINGS constant denotes an I/O operation that returns 
the current transfer settings or the user-defined upper limits. Action routines 
that are passed XPT_GET_TRAN_SETTINGS simply fill in a ccb_trans_settings struc-
ture and then return.

struct ccb_trans_settings is defined in <cam/cam_ccb.h> like so:

typedef enum {
        CTS_TYPE_CURRENT_SETTINGS,      /* Current transfer settings.   */
        CTS_TYPE_USER_SETTINGS          /* User-defined upper limits.   */
} cts_type;

struct ccb_trans_settings {
        struct ccb_hdr ccb_h;           /* Header information fields.   */
        cts_type  type;                 /* Current or user settings?    */
        cam_proto protocol;             /* CAM protocol.                */
        u_int     protocol_version;     /* CAM protocol version.        */
        cam_xport transport;            /* Transport (e.g., FC, USB).   */
        u_int     transport_version;    /* Transport version.           */

union {
                u_int valid;            /* Which field(s) to honor.     */
                struct ccb_trans_settings_scsi scsi;
        } proto_specific;

union {
                u_int valid;            /* Which field(s) to honor.     */
                struct ccb_trans_settings_spi spi;
                struct ccb_trans_settings_fc fc;
                struct ccb_trans_settings_sas sas;
                struct ccb_trans_settings_ata ata;
                struct ccb_trans_settings_sata sata;
        } xport_specific;
};
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As you can see, ccb_trans_settings marshals a  protocol structure 
and five  transport-specific structures. These structures are defined in 
<cam/cam_ccb.h> like so:

struct ccb_trans_settings_scsi {
        u_int           valid;          /* Which field(s) to honor.     */
#define CTS_SCSI_VALID_TQ               0x01
        u_int           flags;
#define CTS_SCSI_FLAGS_TAG_ENB          0x01
};

struct ccb_trans_settings_spi {
        u_int           valid;          /* Which field(s) to honor.     */
#define CTS_SPI_VALID_SYNC_RATE         0x01
#define CTS_SPI_VALID_SYNC_OFFSET       0x02
#define CTS_SPI_VALID_BUS_WIDTH         0x04
#define CTS_SPI_VALID_DISC              0x08
#define CTS_SPI_VALID_PPR_OPTIONS       0x10
        u_int           flags;
#define CTS_SPI_FLAGS_DISC_ENB          0x01
        u_int           sync_period;    /* Sync period.                 */
        u_int           sync_offset;    /* Sync offset.                 */
        u_int           bus_width;      /* Bus width.                   */
        u_int           ppr_options;    /* Parallel protocol request.   */
};

struct ccb_trans_settings_fc {
        u_int           valid;          /* Which field(s) to honor.     */
#define CTS_FC_VALID_WWNN               0x8000
#define CTS_FC_VALID_WWPN               0x4000
#define CTS_FC_VALID_PORT               0x2000
#define CTS_FC_VALID_SPEED              0x1000
        u_int64_t       wwnn;           /* World wide node name.        */
        u_int64_t       wwpn;           /* World wide port name.        */
        u_int32_t       port;           /* 24-bit port ID (if known).   */
        u_int32_t       bitrate;        /* Mbps.                        */
};

struct ccb_trans_settings_sas {
        u_int           valid;          /* Which field(s) to honor.     */
#define CTS_SAS_VALID_SPEED             0x1000
        u_int32_t       bitrate;        /* Mbps.                        */
};

struct ccb_trans_settings_ata {
        u_int           valid;          /* Which field(s) to honor.     */
#define CTS_ATA_VALID_MODE              0x01
#define CTS_ATA_VALID_BYTECOUNT         0x02
#define CTS_ATA_VALID_ATAPI             0x20
        int             mode;           /* Mode.                        */
        u_int           bytecount;      /* PIO transaction length.      */
        u_int           atapi;          /* ATAPI CDB length.            */
};
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struct ccb_trans_settings_sata {
        u_int           valid;          /* Which field(s) to honor.     */
#define CTS_SATA_VALID_MODE             0x01
#define CTS_SATA_VALID_BYTECOUNT        0x02
#define CTS_SATA_VALID_REVISION         0x04
#define CTS_SATA_VALID_PM               0x08
#define CTS_SATA_VALID_TAGS             0x10
#define CTS_SATA_VALID_ATAPI            0x20
#define CTS_SATA_VALID_CAPS             0x40
        int             mode;           /* Legacy PATA mode.            */
        u_int           bytecount;      /* PIO transaction length.      */
        int             revision;       /* SATA revision.               */
        u_int           pm_present;     /* PM is present (XPT->SIM).    */
        u_int           tags;           /* Number of allowed tags.      */
        u_int           atapi;          /* ATAPI CDB length.            */
        u_int           caps;           /* Host and device SATA caps.   */
#define CTS_SATA_CAPS_H                 0x0000ffff
#define CTS_SATA_CAPS_H_PMREQ           0x00000001
#define CTS_SATA_CAPS_H_APST            0x00000002
#define CTS_SATA_CAPS_H_DMAAA           0x00000010
#define CTS_SATA_CAPS_D                 0xffff0000
#define CTS_SATA_CAPS_D_PMREQ           0x00010000
#define CTS_SATA_CAPS_D_APST            0x00020000
};

Here is an example XPT_GET_TRAN_SETTINGS operation (taken from 
Listing 14-1):

static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
        struct mfip *sc;
        struct mfi_softc *mfi;

        sc = cam_sim_softc(sim);
        mfi = sc->mfi;
        mtx_assert(&mfi->mfi_io_lock, MA_OWNED);

        switch (ccb->ccb_h.func_code) {
...
        case XPT_GET_TRAN_SETTINGS:
        {
                struct ccb_trans_settings_sas *sas;

ccb->cts.protocol = PROTO_SCSI;
                ccb->cts.protocol_version = SCSI_REV_2;
                ccb->cts.transport = XPORT_SAS;
                ccb->cts.transport_version = 0;
                sas = &ccb->cts.xport_specific.sas;
                sas->valid &= ~CTS_SAS_VALID_SPEED;
                sas->bitrate = 150000;
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                ccb->ccb_h.status = CAM_REQ_CMP;
                break;
        }
...
        default:
                ccb->ccb_h.status = CAM_REQ_INVALID;
                break;
        }

        xpt_done(ccb);
        return;
}

Notice that the  ccb_trans_settings structure is provided by the  CCB. 
Naturally, only the fields applicable to the HBA are filled in.

XPT_SET_TRAN_SETTINGS
As you’d expect, XPT_SET_TRAN_SETTINGS is the opposite of XPT_GET_TRAN_SETTINGS. 
That is, XPT_SET_TRAN_SETTINGS changes the current transfer settings based on a 
ccb_trans_settings structure. Unsurprisingly, not all SIMs support this opera-
tion. For example:

static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
        struct mfip *sc;
        struct mfi_softc *mfi;

        sc = cam_sim_softc(sim);
        mfi = sc->mfi;
        mtx_assert(&mfi->mfi_io_lock, MA_OWNED);

        switch (ccb->ccb_h.func_code) {
...
        case XPT_SET_TRAN_SETTINGS:
                ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
                break;
...
        default:
                ccb->ccb_h.status = CAM_REQ_INVALID;
                break;
        }

        xpt_done(ccb);
        return;
}

This function states that XPT_SET_TRAN_SETTINGS is  not available. Note that 
a “proper” implementation is hardware specific and not covered in this book.
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XPT_SCSI_IO
The XPT_SCSI_IO constant denotes an I/O operation that issues a SCSI com-
mand to a device. The particulars of this SCSI command are stored in two 
structures: ccb_scsiio and ccb_hdr.

struct ccb_scsiio is defined in <cam/cam_ccb.h> like so:

struct ccb_scsiio {
        struct ccb_hdr ccb_h;           /* Header information fields.   */
        union ccb *next_ccb;            /* Next CCB to process.         */
        u_int8_t  *req_map;             /* Mapping information.         */
        u_int8_t  *data_ptr;            /* Data buffer or S/G list.     */
        u_int32_t  dxfer_len;           /* Length of data to transfer.  */

        /* Sense information (used if the command returns an error).    */
        struct scsi_sense_data sense_data;

        u_int8_t   sense_len;           /* Sense information length.    */
        u_int8_t   cdb_len;             /* SCSI command length.         */
        u_int16_t  sglist_cnt;          /* Number of S/G segments.      */
        u_int8_t   scsi_status; /* SCSI status (returned by device).    */
        u_int8_t   sense_resid; /* Residual sense information length.   */
        u_int32_t  resid;               /* Residual data length.        */
        cdb_t      cdb_io;              /* SCSI command.                */
        u_int8_t  *msg_ptr;             /* Message.                     */
        u_int16_t  msg_len;             /* Message length.              */
        u_int8_t   tag_action;          /* Tag action?                  */
        /*
         * tag_action should be the constant below to send a non-tagged
         * transaction or one of the constants in scsi_message.h.
         */
#define CAM_TAG_ACTION_NONE             0x00
        u_int      tag_id;              /* Tag ID (from initiator).     */
        u_int      init_id;             /* Initiator ID.                */
};

struct ccb_hdr is also defined in <cam/cam_ccb.h>, like so:

struct ccb_hdr {
        cam_pinfo       pinfo;          /* Priority scheduling.         */
        camq_entry      xpt_links;      /* Transport layer links.       */
        camq_entry      sim_links;      /* SIM layer links.             */
        camq_entry      periph_links;   /* Peripheral layer links.      */
        u_int32_t       retry_count;    /* Retry count.                 */

        /* Pointer to peripheral module done routine.                   */
        void (*cbfcnp)(struct cam_periph *, union ccb *);

        xpt_opcode      func_code;      /* I/O operation to perform.    */
        u_int32_t status;         /* Completion status.           */
        struct cam_path *path;          /* Path for this CCB.           */
        path_id_t       path_id;        /* Path ID for the request.     */
        target_id_t     target_id;      /* Target device ID.            */
        lun_id_t        target_lun;     /* Target logical unit number.  */
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        u_int32_t       flags;          /* CCB flags.                   */
        ccb_ppriv_area  periph_priv;    /* Private use by peripheral.   */
        ccb_spriv_area  sim_priv;       /* Private use by SIM.          */
        u_int32_t       timeout;        /* Timeout value.               */

        /* Deprecated. Don't use!                                       */
        struct callout_handle timeout_ch;
};

struct ccb_hdr should seem familiar—it’s used to return the  comple-
tion status in every I/O operation.

The following is an example XPT_SCSI_IO operation (taken from 
Listing 14-1):

#define ccb_mfip_ptr            sim_priv.entries[0].ptr
...
static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
        struct mfip *sc;
        struct mfi_softc *mfi;

        sc = cam_sim_softc(sim);
        mfi = sc->mfi;
        mtx_assert(&mfi->mfi_io_lock, MA_OWNED);

        switch (ccb->ccb_h.func_code) {
...
        case XPT_SCSI_IO:
        {
                struct ccb_hdr *ccb_h = &ccb->ccb_h;
                struct ccb_scsiio *csio = &ccb->csio;

                ccb_h->status = CAM_REQ_INPROG;
if (csio->cdb_len > MFI_SCSI_MAX_CDB_LEN) {

                        ccb_h->status = CAM_REQ_INVALID;
                        break;
                }

if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if (ccb_h->flags & CAM_DATA_PHYS) {

                                ccb_h->status = CAM_REQ_INVALID;
break;

                        }
if (ccb_h->flags & CAM_SCATTER_VALID) {

                                ccb_h->status = CAM_REQ_INVALID;
break;

                        }
                }

ccb_h->ccb_mfip_ptr = sc;
                TAILQ_INSERT_TAIL(&mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);

mfi_startio(mfi);

                return;
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        }
        default:
                ccb->ccb_h.status = CAM_REQ_INVALID;
                break;
        }

        xpt_done(ccb);
        return;
}

This operation begins by  checking that the SCSI command length 
is acceptable. Then it determines whether the SCSI command uses  physi-
cal addresses or  scatter/gather segments to  transfer data. If either is 
used, this operation   exits (as it’s received invalid arguments). Then 
ccb_h->ccb_mfip_ptr is  set to the software context and mfi_startio is  
called.

NOTE The mfi_startio function is what actually issues the SCSI command.

Recall from “mfip_start Function” on page 238 that mfi_startio calls 
mfip_start to transform the SCSI command into a hardware-specific command.

static struct mfi_command *
mfip_start(void *data)
{
        union ccb *ccb = data;
        struct ccb_hdr *ccb_h = &ccb->ccb_h;
        struct ccb_scsiio *csio = &ccb->csio;
        struct mfip *sc;
        struct mfi_command *cm;
        struct mfi_pass_frame *pt;

        sc = ccb_h->ccb_mfip_ptr;

        if ((cm = mfi_dequeue_free(sc->mfi)) == NULL)
                return (NULL);

        pt = &cm->cm_frame->pass;
        pt->header.cmd = MFI_CMD_PD_SCSI_IO;
        pt->header.cmd_status = 0;
        pt->header.scsi_status = 0;
        pt->header.target_id = ccb_h->target_id;
        pt->header.lun_id = ccb_h->target_lun;
        pt->header.flags = 0;
        pt->header.timeout = 0;
        pt->header.data_len = csio->dxfer_len;
        pt->header.sense_len = MFI_SENSE_LEN;
        pt->header.cdb_len = csio->cdb_len;
        pt->sense_addr_lo = cm->cm_sense_busaddr;
        pt->sense_addr_hi = 0;
        if (ccb_h->flags & CAM_CDB_POINTER)
                bcopy(csio->cdb_io.cdb_ptr, &pt->cdb[0], csio->cdb_len);
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        else
                bcopy(csio->cdb_io.cdb_bytes, &pt->cdb[0], csio->cdb_len);

        cm->cm_complete = mfip_done;
        cm->cm_private = ccb;
        cm->cm_sg = &pt->sgl;
        cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
        cm->cm_data = csio->data_ptr;
        cm->cm_len = csio->dxfer_len;
        switch (ccb_h->flags & CAM_DIR_MASK) {

case CAM_DIR_IN:
                cm->cm_flags = MFI_CMD_DATAIN;
                break;

case CAM_DIR_OUT:
                cm->cm_flags = MFI_CMD_DATAOUT;
                break;

case CAM_DIR_NONE:
        default:
                cm->cm_data = NULL;
                cm->cm_len = 0;
                cm->cm_flags = 0;
                break;
        }

        TAILQ_REMOVE(&sc->mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
        return (cm);
}

Notice that struct ccb_hdr lists the target’s  device ID and  logical unit 
number. It also lists whether the SCSI command transfers data  in,  out, 
or  nothing. Note that XPT_SCSI_IO operations are seen from the SIM’s point 
of view. Therefore, “in” means from the device, and “out” means to the device.

The ccb_scsiio structure maintains the  data to transfer and its  
length. It also maintains the SCSI command (through a  pointer or a  
buffer) and the command’s  length.

NOTE Once more, the hardware-specific command constructed above is issued to the target 
device via mfi_startio.

Recall that as soon as a device completes a hardware-specific command, 
it sends an interrupt, which causes the done routine (mfip_done in this case) 
to execute.

static void
mfip_done(struct mfi_command *cm)
{
        union ccb *ccb = cm->cm_private;
        struct ccb_hdr *ccb_h = &ccb->ccb_h;
        struct ccb_scsiio *csio = &ccb->csio;
        struct mfip *sc;
        struct mfi_pass_frame *pt;

        sc = ccb_h->ccb_mfip_ptr;
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        pt = &cm->cm_frame->pass;

        switch (pt->header.cmd_status) {
        case MFI_STAT_OK:
        {
                uint8_t command, device;

                ccb_h->status = CAM_REQ_CMP;
                csio->scsi_status = pt->header.scsi_status;

                if (ccb_h->flags & CAM_CDB_POINTER)
                        command = ccb->csio.cdb_io.cdb_ptr[0];
                else
                        command = ccb->csio.cdb_io.cdb_bytes[0];

                if (command == INQUIRY) {
                        device = ccb->csio.data_ptr[0] & 0x1f;
                        if ((device == T_DIRECT) || (device == T_PROCESSOR))
                                csio->data_ptr[0] =
                                    (device & 0xe0) | T_NODEVICE;
                }

                break;
        }

case MFI_STAT_SCSI_DONE_WITH_ERROR:
        {
                int sense_len;

                ccb_h->status = CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
                csio->scsi_status = pt->header.scsi_status;

                sense_len = min(pt->header.sense_len,
                    sizeof(struct scsi_sense_data));
                bzero(&csio->sense_data, sizeof(struct scsi_sense_data));

bcopy(&cm->cm_sense->data[0], &csio->sense_data,
                    sense_len);
                break;
        }
        case MFI_STAT_DEVICE_NOT_FOUND:
                ccb_h->status = CAM_SEL_TIMEOUT;
                break;
        case MFI_STAT_SCSI_IO_FAILED:
                ccb_h->status = CAM_REQ_CMP_ERR;
                csio->scsi_status = pt->header.scsi_status;
                break;
        default:
                ccb_h->status = CAM_REQ_CMP_ERR;
                csio->scsi_status = pt->header.scsi_status;
                break;
        }

        mfi_release_command(cm);
        xpt_done(ccb);
}
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Notice that if the hardware-specific command  returns an error, the  
error information (or sense data) is  copied to the ccb_scsiio structure’s  
sense_data field. 

At this point in the game, the unexplained parts of this function should 
be obvious.

XPT_RESET_DEV
The XPT_RESET_DEV constant specifies a device reset operation. Unsurprisingly, 
XPT_RESET_DEV is fairly hardware specific. Here is a simple XPT_RESET_DEV opera-
tion (taken from bt.c):

NOTE The bt.c source file is part of the bt(4) code base.

static void
btaction(struct cam_sim *sim, union ccb *ccb)
{
        struct bt_softc *bt;
        
        bt = (struct bt_softc *)cam_sim_softc(sim);
        
        switch (ccb->ccb_h.func_code) {
        case XPT_RESET_DEV:
                /* FALLTHROUGH */
        case XPT_SCSI_IO:
        {
...

Given that a hardware-specific command must be issued to reset this 
device, XPT_RESET_DEV simply  cascades into XPT_SCSI_IO.

While not shown here, it should be stressed that all operations con-
clude by appending their completion status to their CCB and then calling 
xpt_done(ccb).

Conclusion

This chapter concentrated heavily on HBA drivers, or SIMs, because they’re 
the most commonly written CAM-related driver. Of course, there’s more to 
CAM than what’s been shown here. You could conceivably write an entire 
book on CAM!
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U S B  D R I V E R S

Universal Serial Bus (USB) is a connection 
protocol between a host controller (such 

as a personal computer) and a peripheral 
device. It was designed to replace a wide range 

of slow buses—the parallel port, serial port, and PS/2 
connector—with a single bus that all devices could 
connect to (Corbet et al., 2005).

As described in the official USB documentation, available at http://
www.usb.org/developers/, USB devices are hideously complex. Fortunately, 
FreeBSD provides a USB module to handle most of the complexity. This chap-
ter describes the interactions between the USB module and drivers. But first, 
some background on USB devices is needed.

About USB Devices

Communication between a USB host controller and a USB device occurs 
through a pipe (Orwick and Smith, 2007). A pipe connects the host control-
ler to an endpoint on a device. USB devices can have up to 32 endpoints. 



Each endpoint performs a specific communication-related operation for a 
device, such as receiving commands or transferring data. An endpoint can 
be one of four types:

 Control

 Interrupt

 Bulk

 Isochronous

Control endpoints are used to send and receive information of a control 
nature (Oney, 2003). They are commonly used for configuring the device, 
issuing device commands, retrieving device information, and so on. Control 
transactions are guaranteed to succeed by the USB protocol. All USB devices 
have a control endpoint named endpoint 0.

Interrupt endpoints transfer small amounts of data at a fixed rate. See, USB 
devices cannot interrupt their host in the traditional sense—they don’t have 
an asynchronous interrupt. Instead, USB devices provide interrupt endpoints, 
which are polled periodically. These endpoints are the main transport method 
for USB keyboards and mice (Corbet et al., 2005). Interrupt transactions are 
guaranteed to succeed by the USB protocol.

Bulk endpoints transfer large amounts of data. Bulk transactions are loss-
less. However, they are not guaranteed by the USB protocol to complete in a 
specific amount of time. Bulk endpoints are common on printers, mass stor-
age devices, and network devices.

Isochronous endpoints periodically transfer large amounts of data. Isochro-
nous transactions can be lossy. As such, these endpoints are used in devices 
that can handle data loss but rely on keeping a constant stream of data flow-
ing, such as audio and video devices (Corbet et al., 2005).

More About USB Devices

The endpoints on a USB device are grouped into interfaces. For example, a 
USB speaker might define one group of endpoints as the interface for the 
buttons and another group of endpoints as the interface for the audio stream.

All interfaces have one or more alternate settings. An alternate setting 
defines the parameters of the interface. For example, a lossy audio stream 
interface may have several alternate settings that provide increasing levels of 
audio quality at the cost of additional bandwidth. Naturally, only one alter-
nate setting can be active at a time.

NOTE The term “alternate setting” is kind of a misnomer, as the default interface setting is the 
first alternate setting.

Figure 15-1 depicts the relationship between endpoints, interfaces, and 
alternate settings.1

1. Figure 15-1 is adapted from Developing Drivers with the Windows Driver Foundation by Penny 
Orwick and Guy Smith (Microsoft Press, 2007).
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Figure 15-1: An example USB device layout

As you can see, an endpoint cannot be shared among interfaces, but it 
can be used in multiple alternate settings within one interface. Also, each 
alternate setting can have a different number of endpoints. Note that end-
point 0, the default control endpoint, is not part of any interface.

A group of interfaces is known as a device configuration, or simply a 
configuration.

USB Configuration Structures

In FreeBSD, usb_config structures are used to find and communicate with 
individual endpoints. struct usb_config is defined in the <dev/usb/usbdi.h> 
header as follows:

struct usb_config {
        /* USB Module Private Data */
        enum usb_hc_mode        usb_mode;

        /* Mandatory Fields */
        uint8_t                 type;
        uint8_t                 endpoint;
        uint8_t                 direction;
        usb_callback_t         *callback;
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        usb_frlength_t          bufsize;

        /* Optional Fields */
        usb_timeout_t           timeout;
        usb_timeout_t           interval;
        usb_frcount_t           frames;
        uint8_t                 ep_index;
        uint8_t                 if_index;

        /* USB Transfer Flags */
        struct usb_xfer_flags   flags;
};

Many of the fields in struct usb_config must be initialized by a USB driver. 
These fields are described in the following sections.

Mandatory Fields
The type field specifies the endpoint type. Valid values for this field are 
UE_CONTROL, UE_BULK, UE_INTERRUPT, and UE_ISOCHRONOUS.

The endpoint field specifies the endpoint number. A value of UE_ADDR_ANY 
suggests that the endpoint number is unimportant—the other fields are used 
to find the correct endpoint.

The direction field specifies the endpoint direction. Valid values for this 
field are shown in Table 15-1.

NOTE The direction of an endpoint is from the host’s perspective.

The callback field denotes a mandatory callback function. This function 
is executed before and after the endpoint specified by type, endpoint, and 
direction transfers data. We’ll discuss this function further in “USB Transfers 
(in FreeBSD)” on page 262.

The bufsize field denotes the buffer size for the endpoint specified by type, 
endpoint, and direction. As you would expect, bufsize is used for type transactions.

As this section’s heading implies, the preceding fields must be defined in 
every usb_config structure.

Optional Fields
The timeout field sets the transaction timeout in milliseconds. If timeout is 0 or 
undefined and type is UE_ISOCHRONOUS, then a timeout of 250 ms will be used.

Table 15-1: USB Endpoint Direction Symbolic Constants

Constant Description

UE_DIR_IN Stipulates that the endpoint be an IN endpoint; that is, the endpoint 
transfers data to the host from the device

UE_DIR_OUT Stipulates that the endpoint be an OUT endpoint; that is, the endpoint 
transfers data to the device from the host

UE_DIR_ANY Stipulates that the endpoint support bidirectional transfers
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The interval field’s meaning is based on the value of type. Table 15-2 
details interval’s purpose (based on type).

The frames field denotes the maximum number of USB frames that the 
endpoint specified by type, endpoint, and direction supports. In FreeBSD, 
USB frames are simply “data packets” that travel to or from an endpoint. 
USB frames are composed of one or more USB packets, which actually con-
tain the data.

The ep_index field demands a non-negative integer. If multiple endpoints 
are identified by type, endpoint, and direction—which can occur when endpoint 
is UE_ADDR_ANY—the value of ep_index will be used to select one.

The if_index field specifies the interface number (based on the ifaces 
argument passed to usbd_transfer_setup, which is described in “USB Configu-
ration Structure Management Routines” on page 264).

USB Transfer Flags
The flags field sets the transactional properties for the endpoint specified by 
type, endpoint, and direction. This field expects a usb_xfer_flags structure.

struct usb_xfer_flags is defined in the <dev/usb/usbdi.h> header as follows:

struct usb_xfer_flags {
        uint8_t force_short_xfer : 1;
        uint8_t short_xfer_ok    : 1;
        uint8_t short_frames_ok  : 1;
        uint8_t pipe_bof         : 1;
        uint8_t proxy_buffer     : 1;
        uint8_t ext_buffer       : 1;
        uint8_t manual_status    : 1;
        uint8_t no_pipe_ok       : 1;
        uint8_t stall_pipe       : 1;
};

All of the fields in struct usb_xfer_flags are optional. These fields are 1-bit 
and function as flags. They are detailed in Table 15-3.

Table 15-2: interval’s Purpose (Based on Endpoint Type)

Endpoint Type What interval Does

UE_CONTROL interval sets the transaction delay in milliseconds; in other words, interval 
milliseconds must pass before a control transaction can occur

UE_INTERRUPT interval sets the polling rate in milliseconds; in other words, the host 
controller will poll the interrupt endpoint every interval milliseconds; if 
interval is 0 or undefined, then the endpoint’s default polling rate will 
be used

UE_BULK interval does nothing for bulk endpoints

UE_ISOCHRONOUS interval does nothing for isochronous endpoints
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NOTE If you don’t understand some of these descriptions, don’t worry; I’ll expand on them later.

USB Transfers (in FreeBSD)

Recall that callback is executed before and after the endpoint specified by 
type, endpoint, and direction transfers data. Below is its function prototype:

typedef void (usb_callback_t)(struct usb_xfer *, usb_error_t);

Here,  struct usb_xfer * contains the transfer state:

struct usb_xfer {
...
        uint8_t         usb_state;
/* Set when callback is executed before a data transfer. */
#define USB_ST_SETUP            0
/* Set when callback is executed after a data transfer. */
#define USB_ST_TRANSFERRED      1
/* Set when a transfer error occurs. */
#define USB_ST_ERROR            2
...
};

Table 15-3: USB Transfer Flags

Flag Description

force_short_xfer Causes a short transfer; short transfers basically dispatch a short USB 
packet, which tends to indicate “end of transaction;” this flag can be 
set anytime

short_xfer_ok Indicates that it is okay to receive short transfers; this flag can be set 
anytime

short_frames_ok Indicates that it is okay to receive gobs of short USB frames; this flag 
can only affect UE_INTERRUPT and UE_BULK endpoints; it can be set 
anytime

pipe_bof Causes any failed USB transactions to remain first in their queue; this 
guarantees that all transactions complete in FIFO order; this flag can 
be set anytime

proxy_buffer Rounds bufsize up to the maximum USB frame size; this flag cannot be 
set after driver initialization

ext_buffer Indicates that an external DMA buffer will be used for all transactions; 
this flag cannot be set after driver initialization

manual_status Stops the handshake/status stage from occurring in control transactions; 
this flag can be set anytime

no_pipe_ok Causes USB_ERR_NO_PIPE errors to be ignored; this flag cannot be set 
after driver initialization

stall_pipe Causes the endpoint specified by type, endpoint, and direction to 
“stall” before each transaction; this flag can be set anytime
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Generally, you’d use struct usb_xfer * in a switch statement to provide a 
code block for each transfer state. Some example code should help clarify 
what I mean.

NOTE Just concentrate on the structure of this code and ignore what it does.

static void
ulpt_status_callback(struct usb_xfer *transfer, usb_error_t error)
{
        struct ulpt_softc *sc = usbd_xfer_softc(transfer);
        struct usb_device_request req;
        struct usb_page_cache *pc;
        uint8_t current_status, new_status;

        switch (USB_GET_STATE(transfer)) {
case USB_ST_SETUP:

                req.bmRequestType = UT_READ_CLASS_INTERFACE;
                req.bRequest = UREQ_GET_PORT_STATUS;
                USETW(req.wValue, 0);
                req.wIndex[0] = sc->sc_iface_num;
                req.wIndex[1] = 0;
                USETW(req.wLength, 1);

                pc = usbd_xfer_get_frame(transfer, 0);
                usbd_copy_in(pc, 0, &req, sizeof(req));
                usbd_xfer_set_frame_len(transfer, 0, sizeof(req));
                usbd_xfer_set_frame_len(transfer, 1, 1);
                usbd_xfer_set_frames(transfer, 2);

usbd_transfer_submit(transfer);

                break;
case USB_ST_TRANSFERRED:

                pc = usbd_xfer_get_frame(transfer, 1);
                usbd_copy_out(pc, 0, &current_status, 1);

                current_status = (current_status ^ LPS_INVERT) & LPS_MASK;
                new_status = current_status & ~sc->sc_previous_status;
                sc->sc_previous_status = current_status;

                if (new_status & LPS_NERR)
                       log(LOG_NOTICE, "%s: output error\n",
                            device_get_nameunit(sc->sc_dev));
                else if (new_status & LPS_SELECT)
                       log(LOG_NOTICE, "%s: offline\n",
                            device_get_nameunit(sc->sc_dev));
                else if (new_status & LPS_NOPAPER)
                       log(LOG_NOTICE, "%s: out of paper\n",
                            device_get_nameunit(sc->sc_dev));

                break;
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        default:
                break;
        }
}

Notice how  struct usb_xfer * is used as the  expression for the switch 
statement (as you would expect, the macro USB_GET_STATE returns the transfer 
state).

The constant  USB_ST_SETUP is set when callback is executed before a 
data transfer. This case handles any pre-transfer operations. It always ends 
with  usbd_transfer_submit, which starts the data transfer.

The constant  USB_ST_TRANSFERRED is set when callback is executed after a 
data transfer. This case performs any post-transfer actions, such as    
printing log messages.

USB Configuration Structure Management Routines

The FreeBSD kernel provides the following functions for working with 
usb_config structures:

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>

usb_error_t
usbd_transfer_setup(struct usb_device *udev, const uint8_t *ifaces,
    struct usb_xfer **pxfer, const struct usb_config *setup_start,
    uint16_t n_setup, void *priv_sc, struct mtx *priv_mtx);

void
usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup);

void
usbd_transfer_start(struct usb_xfer *xfer);

void
usbd_transfer_stop(struct usb_xfer *xfer);

void
usbd_transfer_drain(struct usb_xfer *xfer);

The usbd_transfer_setup function takes an  array of usb_config structures 
and sets up an  array of usb_xfer structures. The  n_setup argument denotes 
the number of elements in the arrays.

NOTE As you’ll see, a usb_xfer structure is required to initiate a USB data transfer.

The usbd_transfer_unsetup function destroys an  array of usb_xfer struc-
tures. The  n_setup argument denotes the number of elements in the array.

The usbd_transfer_start function takes a  usb_xfer structure and starts a 
USB transfer (that is, it executes callback with USB_ST_SETUP set).
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The usbd_transfer_stop function stops any transfers associated with the  
xfer argument (that is, it executes callback with USB_ST_ERROR set).

The usbd_transfer_drain function is like usbd_transfer_stop, but it waits for 
callback to complete before returning.

USB Methods Structure

A usb_fifo_methods structure defines a USB driver’s entry points. You can 
think of struct usb_fifo_methods as struct cdevsw, but for USB drivers.

struct usb_fifo_methods is defined in the <dev/usb/usbdi.h> header as follows:

struct usb_fifo_methods {
        /* Executed Unlocked */
        usb_fifo_open_t         *f_open;
        usb_fifo_close_t        *f_close;
        usb_fifo_ioctl_t        *f_ioctl;
        usb_fifo_ioctl_t        *f_ioctl_post;

        /* Executed With Mutex Locked */
        usb_fifo_cmd_t          *f_start_read;
        usb_fifo_cmd_t          *f_stop_read;
        usb_fifo_cmd_t          *f_start_write;
        usb_fifo_cmd_t          *f_stop_write;
        usb_fifo_filter_t       *f_filter_read;
        usb_fifo_filter_t       *f_filter_write;

        const char              *basename[4];
        const char              *postfix[4];
};

The FreeBSD kernel provides the following functions for working with 
usb_fifo_methods structures:

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>

int
usb_fifo_attach(struct usb_device *udev, void *priv_sc,
    struct mtx *priv_mtx, struct usb_fifo_methods *pm,
struct usb_fifo_sc *f_sc, uint16_t unit, uint16_t subunit,

    uint8_t iface_index, uid_t uid, gid_t gid, int mode);

void
usb_fifo_detach(struct usb_fifo_sc *f_sc);

The usb_fifo_attach function creates a USB device node under /dev. If 
successful, a magic cookie is saved in  f_sc.

The usb_fifo_detach function takes a  cookie created by usb_fifo_attach 
and destroys its associated USB device node.
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Tying Everything Together

Now that you’re familiar with the usb_* structures and their management 
routines, let’s dissect a real-world USB driver.

Listing 15-1 provides a terse, source-level overview of ulpt(4), the USB 
printer driver.

NOTE To improve readability, some of the variables and functions presented in this section 
have been renamed and restructured from their counterparts in the FreeBSD source.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/syslog.h>
#include <sys/fcntl.h>

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>

#define ULPT_BUF_SIZE           (1 << 15)
#define ULPT_IFQ_MAX_LEN        2

#define UREQ_GET_PORT_STATUS    0x01
#define UREQ_SOFT_RESET         0x02

#define LPS_NERR                0x08
#define LPS_SELECT              0x10
#define LPS_NOPAPER             0x20
#define LPS_INVERT              (LPS_NERR | LPS_SELECT)
#define LPS_MASK                (LPS_NERR | LPS_SELECT | LPS_NOPAPER)

enum {
        ULPT_BULK_DT_WR,
        ULPT_BULK_DT_RD,
        ULPT_INTR_DT_RD,
        ULPT_N_TRANSFER
};

struct ulpt_softc {
        device_t                sc_dev;
        struct usb_device      *sc_usb_device;
        struct mtx              sc_mutex;
        struct usb_callout      sc_watchdog;
        uint8_t                 sc_iface_num;
        struct usb_xfer        *sc_transfer[ULPT_N_TRANSFER];
        struct usb_fifo_sc      sc_fifo;
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        struct usb_fifo_sc      sc_fifo_no_reset;
        int                     sc_fflags;
        struct usb_fifo        *sc_fifo_open[2];
        uint8_t                 sc_zero_length_packets;
        uint8_t                 sc_previous_status;
};

static device_probe_t           ulpt_probe;
static device_attach_t          ulpt_attach;
static device_detach_t          ulpt_detach;

static usb_fifo_open_t          ulpt_open;
static usb_fifo_open_t          unlpt_open;
static usb_fifo_close_t         ulpt_close;
static usb_fifo_ioctl_t         ulpt_ioctl;
static usb_fifo_cmd_t           ulpt_start_read;
static usb_fifo_cmd_t           ulpt_stop_read;
static usb_fifo_cmd_t           ulpt_start_write;
static usb_fifo_cmd_t           ulpt_stop_write;

static void                     ulpt_reset(struct ulpt_softc *);
static void                     ulpt_watchdog(void *);

static usb_callback_t           ulpt_write_callback;
static usb_callback_t           ulpt_read_callback;
static usb_callback_t           ulpt_status_callback;

 static struct usb_fifo_methods ulpt_fifo_methods = {
        .f_open =               &ulpt_open,
        .f_close =              &ulpt_close,
        .f_ioctl =              &ulpt_ioctl,
        .f_start_read =         &ulpt_start_read,
        .f_stop_read =          &ulpt_stop_read,
        .f_start_write =        &ulpt_start_write,
        .f_stop_write =         &ulpt_stop_write,
        .basename[0] = "ulpt"
};

 static struct usb_fifo_methods unlpt_fifo_methods = {
        .f_open =               &unlpt_open,
        .f_close =              &ulpt_close,
        .f_ioctl =              &ulpt_ioctl,
        .f_start_read =         &ulpt_start_read,
        .f_stop_read =          &ulpt_stop_read,
        .f_start_write =        &ulpt_start_write,
        .f_stop_write =         &ulpt_stop_write,
        .basename[0] = "unlpt"
};

static const struct usb_config ulpt_config[ULPT_N_TRANSFER] = {
[ULPT_BULK_DT_WR] = {

                .callback =     &ulpt_write_callback,
                .bufsize =      ULPT_BUF_SIZE,
                .flags =        {.pipe_bof = 1, .proxy_buffer = 1},
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                .type =         UE_BULK,
                .endpoint =     UE_ADDR_ANY,
                .direction =    UE_DIR_OUT
        },

[ULPT_BULK_DT_RD] = {
                .callback =     &ulpt_read_callback,
                .bufsize =      ULPT_BUF_SIZE,
                .flags =        {.short_xfer_ok = 1, .pipe_bof = 1,
                                    .proxy_buffer = 1},
                .type =         UE_BULK,
                .endpoint =     UE_ADDR_ANY,
                .direction =    UE_DIR_IN
        },

[ULPT_INTR_DT_RD] = {
                .callback =     &ulpt_status_callback,
                .bufsize =      sizeof(struct usb_device_request) + 1,
                .timeout =      1000,           /* 1 second. */
                .type =         UE_CONTROL,
                .endpoint =     0x00,
                .direction =    UE_DIR_ANY
        }
};

static int
ulpt_open(struct usb_fifo *fifo, int fflags)
{
...
}

static void
ulpt_reset(struct ulpt_softc *sc)
{
...
}

static int
unlpt_open(struct usb_fifo *fifo, int fflags)
{
...
}

static void
ulpt_close(struct usb_fifo *fifo, int fflags)
{
...
}

static int
ulpt_ioctl(struct usb_fifo *fifo, u_long cmd, void *data, int fflags)
{
...
}
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static void
ulpt_watchdog(void *arg)
{
...
}

static void
ulpt_start_read(struct usb_fifo *fifo)
{
...
}

static void
ulpt_stop_read(struct usb_fifo *fifo)
{
...
}

static void
ulpt_start_write(struct usb_fifo *fifo)
{
...
}

static void
ulpt_stop_write(struct usb_fifo *fifo)
{
...
}

static void
ulpt_write_callback(struct usb_xfer *transfer, usb_error_t error)
{
...
}

static void
ulpt_read_callback(struct usb_xfer *transfer, usb_error_t error)
{
...
}

static void
ulpt_status_callback(struct usb_xfer *transfer, usb_error_t error)
{
...
}

static int
ulpt_probe(device_t dev)
{
...
}
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static int
ulpt_attach(device_t dev)
{
...
}

static int
ulpt_detach(device_t dev)
{
...
}

static device_method_t ulpt_methods[] = {
        /* Device interface. */
        DEVMETHOD(device_probe,         ulpt_probe),
        DEVMETHOD(device_attach,        ulpt_attach),
        DEVMETHOD(device_detach,        ulpt_detach),
        { 0, 0 }
};

static driver_t ulpt_driver = {
        "ulpt",
        ulpt_methods,
        sizeof(struct ulpt_softc)
};

static devclass_t ulpt_devclass;

DRIVER_MODULE(ulpt, uhub, ulpt_driver, ulpt_devclass, 0, 0);
MODULE_DEPEND(ulpt, usb, 1, 1, 1);
MODULE_DEPEND(ulpt, ucom, 1, 1, 1);

Listing 15-1: ulpt.c

Note that Listing 15-1 defines three usb_config structures. Therefore, 
ulpt(4) communicates with three endpoints: a  bulk OUT, a  bulk IN, 
and the  default control endpoint.

Also, note that Listing 15-1 defines two   usb_fifo_methods structures. 
So, ulpt(4) provides two device nodes:  ulpt%d and  unlpt%d (where %d is 
the unit number). As you’ll see, the ulpt%d device node resets the printer 
when opened, whereas unlpt%d does not.

Now, let’s discuss the functions found in Listing 15-1.

ulpt_probe Function
The ulpt_probe function is the device_probe implementation for ulpt(4). Here 
is its function definition:

static int
ulpt_probe(device_t dev)
{

struct usb_attach_arg *uaa = device_get_ivars(dev);
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if (uaa->usb_mode != USB_MODE_HOST)
                return (ENXIO);

if ((uaa->info.bInterfaceClass == UICLASS_PRINTER) &&
            (uaa->info.bInterfaceSubClass == UISUBCLASS_PRINTER) &&
            ((uaa->info.bInterfaceProtocol == UIPROTO_PRINTER_UNI) ||
             (uaa->info.bInterfaceProtocol == UIPROTO_PRINTER_BI) ||
             (uaa->info.bInterfaceProtocol == UIPROTO_PRINTER_1284)))
                return (BUS_PROBE_SPECIFIC);

        return (ENXIO);
}

This function first  ensures that the USB host controller is in host mode, 
which is needed to initiate data transfers. Then ulpt_probe  determines 
whether dev is a USB printer.

Incidentally,  struct usb_attach_arg contains the printer’s instance 
variables.

ulpt_attach Function
The ulpt_attach function is the device_attach implementation for ulpt(4). Here 
is its function definition:

static int
ulpt_attach(device_t dev)
{
        struct usb_attach_arg *uaa = device_get_ivars(dev);
        struct ulpt_softc *sc = device_get_softc(dev);
        struct usb_interface_descriptor *idesc;
        struct usb_config_descriptor *cdesc;
        uint8_t alt_index, iface_index = uaa->info.bIfaceIndex;
        int error, unit = device_get_unit(dev);

        sc->sc_dev = dev;
        sc->sc_usb_device = uaa->device;

device_set_usb_desc(dev);
        mtx_init(&sc->sc_mutex, "ulpt", NULL, MTX_DEF | MTX_RECURSE);

usb_callout_init_mtx(&sc->sc_watchdog, &sc->sc_mutex, 0);

        idesc = usbd_get_interface_descriptor(uaa->iface);
        alt_index = -1;
        for (;;) {
                if (idesc == NULL)
                        break;

                if ((idesc->bDescriptorType == UDESC_INTERFACE) &&
                    (idesc->bLength >= sizeof(*idesc))) {
                        if (idesc->bInterfaceNumber != uaa->info.bIfaceNum)
                                break;
                        else {
                                alt_index++;
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                                if ((idesc->bInterfaceClass ==
                                     UICLASS_PRINTER) &&
                                    (idesc->bInterfaceSubClass ==
                                     UISUBCLASS_PRINTER) &&
                                    (idesc->bInterfaceProtocol ==

UIPROTO_PRINTER_BI))
                                        goto found;
                        }
                }

                cdesc = usbd_get_config_descriptor(uaa->device);
                idesc = (void *)usb_desc_foreach(cdesc, (void *)idesc);
        }
        goto detach;

found:
        if (alt_index) {
                error = usbd_set_alt_interface_index(uaa->device,
                    iface_index, alt_index);
                if (error)
                        goto detach;
        }

        sc->sc_iface_num = idesc->bInterfaceNumber;

        error = usbd_transfer_setup(uaa->device, &iface_index,
            sc->sc_transfer, ulpt_config, ULPT_N_TRANSFER, sc,
            &sc->sc_mutex);
        if (error)
                goto detach;

        device_printf(dev, "using bi-directional mode\n");

        error = usb_fifo_attach(uaa->device, sc, &sc->sc_mutex,
            &ulpt_fifo_methods, &sc->sc_fifo, unit, -1,
            iface_index, UID_ROOT, GID_OPERATOR, 0644);
        if (error)
                goto detach;

        error = usb_fifo_attach(uaa->device, sc, &sc->sc_mutex,
            &unlpt_fifo_methods, &sc->sc_fifo_no_reset, unit, -1,
            iface_index, UID_ROOT, GID_OPERATOR, 0644);
        if (error)
                goto detach;

        mtx_lock(&sc->sc_mutex);
ulpt_watchdog(sc);

        mtx_unlock(&sc->sc_mutex);
        return (0);

detach:
        ulpt_detach(dev);
        return (ENOMEM);
}
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This function can be split into three parts. The first  sets the verbose 
description of dev by calling device_set_usb_desc(dev). Then it  initializes 
ulpt(4)’s callout structure.

NOTE All USB devices contain a textual description of themselves, which is why 
device_set_usb_desc just takes a device_t argument.

The second part essentially  iterates through the alternate settings for 
interface number  uaa->info.bIfaceNum, until the alternate setting that sup-
ports  bidirectional mode is found. If the alternate setting that supports bi-
directional mode is not alternate setting 0, then  usbd_set_alt_interface_index 
is called to instate this alternate setting. Alternate setting 0 does not need to 
be instated, because it’s used by default.

Finally, the third part  initializes the USB transfers,   creates ulpt(4)’s 
device nodes, and calls  ulpt_watchdog (which we’ll walk through in 
“ulpt_watchdog Function” on page 277).

ulpt_detach Function
The ulpt_detach function is the device_detach implementation for ulpt(4). Here 
is its function definition:

static int
ulpt_detach(device_t dev)
{
        struct ulpt_softc *sc = device_get_softc(dev);

usb_fifo_detach(&sc->sc_fifo);
usb_fifo_detach(&sc->sc_fifo_no_reset);

        mtx_lock(&sc->sc_mutex);
usb_callout_stop(&sc->sc_watchdog);

        mtx_unlock(&sc->sc_mutex);

usbd_transfer_unsetup(sc->sc_transfer, ULPT_N_TRANSFER);
usb_callout_drain(&sc->sc_watchdog);
mtx_destroy(&sc->sc_mutex);

        return (0);
}

This function starts by   destroying its device nodes. Then it  stops 
the callout function,  tears down the USB transfers,  drains the callout 
function, and  destroys its mutex.

ulpt_open Function
The ulpt_open function is the ulpt%d device node’s open routine. Here is its 
function definition:

static int
ulpt_open(struct usb_fifo *fifo, int fflags)
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{
        struct ulpt_softc *sc = usb_fifo_softc(fifo);

        if (sc->sc_fflags == 0)
                ulpt_reset(sc);

        return (unlpt_open(fifo, fflags));
}

This function first calls  ulpt_reset to reset the printer. Then  
unlpt_open is called to (actually) open the printer.

ulpt_reset Function
As mentioned in the previous section, the ulpt_reset function resets the 
printer. Here is its function definition:

static void
ulpt_reset(struct ulpt_softc *sc)
{

struct usb_device_request req;
        int error;

        req.bRequest = UREQ_SOFT_RESET;
        USETW(req.wValue, 0);
        USETW(req.wIndex, sc->sc_iface_num);
        USETW(req.wLength, 0);

        mtx_lock(&sc->sc_mutex);

        req.bmRequestType = UT_WRITE_CLASS_OTHER;
        error = usbd_do_request_flags(sc->sc_usb_device, &sc->sc_mutex,
            &req, NULL, 0, NULL, 2 * USB_MS_HZ);

if (error) {
                req.bmRequestType = UT_WRITE_CLASS_INTERFACE;

usbd_do_request_flags(sc->sc_usb_device, &sc->sc_mutex,
                    &req, NULL, 0, NULL, 2 * USB_MS_HZ);
        }

        mtx_unlock(&sc->sc_mutex);
}

This function starts by defining a  usb_device_request structure to  reset 
the printer. It then  transmits the reset request to the printer.

Note that some printers typify a reset request as  UT_WRITE_CLASS_OTHER 
and some typify it as  UT_WRITE_CLASS_INTERFACE. Thus, ulpt_reset transmits 
the reset request a  second time if the first request  fails.
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unlpt_open Function
The unlpt_open function is the unlpt%d device node’s open routine. Here is its 
function definition:

NOTE You’ll recall that this function is also called at the end of ulpt_open.

static int
unlpt_open(struct usb_fifo *fifo, int fflags)
{
        struct ulpt_softc *sc = usb_fifo_softc(fifo);
        int error;

if (sc->sc_fflags & fflags)
                return (EBUSY);

if (fflags & FREAD) {
                mtx_lock(&sc->sc_mutex);

usbd_xfer_set_stall(sc->sc_transfer[ULPT_BULK_DT_RD]);
                mtx_unlock(&sc->sc_mutex);

                error = usb_fifo_alloc_buffer(fifo,
                    usbd_xfer_max_len(sc->sc_transfer[ULPT_BULK_DT_RD]),
                    ULPT_IFQ_MAX_LEN);
                if (error)
                        return (ENOMEM);

sc->sc_fifo_open[USB_FIFO_RX] = fifo;
        }

if (fflags & FWRITE) {
                mtx_lock(&sc->sc_mutex);

usbd_xfer_set_stall(sc->sc_transfer[ULPT_BULK_DT_WR]);
                mtx_unlock(&sc->sc_mutex);

                error = usb_fifo_alloc_buffer(fifo,
                    usbd_xfer_max_len(sc->sc_transfer[ULPT_BULK_DT_WR]),
                    ULPT_IFQ_MAX_LEN);
                if (error)
                        return (ENOMEM);

sc->sc_fifo_open[USB_FIFO_TX] = fifo;
        }

sc->sc_fflags |= fflags & (FREAD | FWRITE);
        return (0);
}
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This function first  tests the value of sc->sc_fflags. If it does not equal 0, 
which implies that another process has opened the printer, the error code 
EBUSY is returned. Next, unlpt_open determines whether we’re opening the 
printer to  read from or  write to it—the answer is  stored in sc->sc_fflags. 
Then, a clear-stall request is   issued to the appropriate endpoint.

NOTE Any errors that a USB device detects in its own functionality, not counting transmis-
sion errors, cause the device to “stall” the endpoint for its current transaction (Oney, 
2003). Control endpoints clear their stalls automatically, but other endpoint types 
require a clear-stall request. Naturally, stalled endpoints cannot perform any transactions.

Next, memory for the read or write is   allocated. Afterward, the fifo 
argument is   stored in sc->sc_fifo_open.

ulpt_close Function
The ulpt_close function is the close routine for ulpt%d and unlpt%d. Here is its 
function definition:

static void
ulpt_close(struct usb_fifo *fifo, int fflags)
{
        struct ulpt_softc *sc = usb_fifo_softc(fifo);

sc->sc_fflags &= ~(fflags & (FREAD | FWRITE));

        if (fflags & (FREAD | FWRITE))
               usb_fifo_free_buffer(fifo);
}

This function starts by  clearing sc->sc_fflags. Then it  releases the 
memory allocated in unlpt_open.

ulpt_ioctl Function
The ulpt_ioctl function is the ioctl routine for ulpt%d and unlpt%d. Here is its 
function definition:

static int
ulpt_ioctl(struct usb_fifo *fifo, u_long cmd, void *data, int fflags)
{
        return (ENODEV);
}

As you can see, ulpt(4) does  not support ioctl.
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ulpt_watchdog Function
The ulpt_watchdog function periodically checks the printer’s status. Here is its 
function definition:

NOTE You’ll recall that this function is called at the end of ulpt_attach.

static void
ulpt_watchdog(void *arg)
{
        struct ulpt_softc *sc = arg;

        mtx_assert(&sc->sc_mutex, MA_OWNED);

if (sc->sc_fflags == 0)
               usbd_transfer_start(sc->sc_transfer[ULPT_INTR_DT_RD]);

usb_callout_reset(&sc->sc_watchdog, hz, &ulpt_watchdog, sc);
}

This function first  ensures that the printer is not open. Then it  
starts a transaction with the  default control endpoint (to retrieve the 
printer’s status). Recall that  usbd_transfer_start just executes a callback. 
In this case, that callback is ulpt_status_callback (for confirmation, see the 
third usb_config structure in Listing 15-1). Finally,  ulpt_watchdog is  
rescheduled to execute after  1 second.

ulpt_start_read Function
The ulpt_start_read function is executed when a process reads from ulpt%d 
or unlpt%d (for verification, see their usb_fifo_methods structures). Here is its 
function definition:

static void
ulpt_start_read(struct usb_fifo *fifo)
{
        struct ulpt_softc *sc = usb_fifo_softc(fifo);

       usbd_transfer_start(sc->sc_transfer[ULPT_BULK_DT_RD]);
}

This function simply  starts a transaction with the printer’s  bulk IN 
endpoint. Note that the callback for a bulk IN endpoint is ulpt_read_callback 
(for confirmation, see the second usb_config structure in Listing 15-1).
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ulpt_stop_read Function
The ulpt_stop_read function is called when a process stops reading from 
ulpt%d or unlpt%d. Here is its function definition:

static void
ulpt_stop_read(struct usb_fifo *fifo)
{
        struct ulpt_softc *sc = usb_fifo_softc(fifo);

usbd_transfer_stop(sc->sc_transfer[ULPT_BULK_DT_RD]);
}

This function  stops any transactions associated with the printer’s  bulk 
IN endpoint.

ulpt_start_write Function
The ulpt_start_write function is executed when a process writes to ulpt%d or 
unlpt%d. Here is its function definition:

static void
ulpt_start_write(struct usb_fifo *fifo)
{
        struct ulpt_softc *sc = usb_fifo_softc(fifo);

usbd_transfer_start(sc->sc_transfer[ULPT_BULK_DT_WR]);
}

This function simply  starts a transaction with the printer’s  bulk OUT 
endpoint. Note that the callback for a bulk OUT endpoint is ulpt_write_callback 
(for confirmation, see the first usb_config structure in Listing 15-1).

ulpt_stop_write Function
The ulpt_stop_write function is executed when a process stops writing to ulpt%d 
or unlpt%d. Here is its function definition:

static void
ulpt_stop_write(struct usb_fifo *fifo)
{
        struct ulpt_softc *sc = usb_fifo_softc(fifo);

usbd_transfer_stop(sc->sc_transfer[ULPT_BULK_DT_WR]);
}

This function  stops any transactions associated with the printer’s  
bulk OUT endpoint.
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ulpt_write_callback Function
The ulpt_write_callback function transfers data from user space to the printer 
(to be printed). Recall that this function is the callback for a bulk OUT end-
point, so it’s executed before and after a bulk OUT transfers data.

The following is the function definition for ulpt_write_callback:

static void
ulpt_write_callback(struct usb_xfer *transfer, usb_error_t error)
{
        struct ulpt_softc *sc = usbd_xfer_softc(transfer);
        struct usb_fifo *fifo = sc->sc_fifo_open[USB_FIFO_TX];
        struct usb_page_cache *pc;
        int actual, max;

        usbd_xfer_status(transfer, &actual, NULL, NULL, NULL);

        if (fifo == NULL)
                return;

        switch (USB_GET_STATE(transfer)) {
case USB_ST_SETUP:
case USB_ST_TRANSFERRED:

setup:
                pc = usbd_xfer_get_frame(transfer, 0);
                max = usbd_xfer_max_len(transfer);
                if (usb_fifo_get_data(fifo, pc, 0, max,
                   &actual, 0)) {

usbd_xfer_set_frame_len(transfer, 0, actual);
usbd_transfer_submit(transfer);

                }
                break;
        default:
                if (error != USB_ERR_CANCELLED) {
                        /* Issue a clear-stall request. */
                        usbd_xfer_set_stall(transfer);
                        goto setup;
                }
                break;
        }
}

This function first  copies foo bytes from  user space to  kernel space. 
At most,  max bytes of data are copied. The number of bytes actually copied 
is returned in  actual. Next, the  transfer length is  set. Then, the data 
copied from user space is  sent to the printer.

NOTE In the preceding paragraph, foo is a placeholder, because I don’t know how many bytes 
are copied until usb_fifo_get_data returns.
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Note that the  USB_ST_SETUP case and the  USB_ST_TRANSFERRED case are 
identical. This is because you can print more data than the maximum trans-
fer length. Thus, this function “loops” until all the data is sent.

ulpt_read_callback Function
The ulpt_read_callback function gets data from the printer. Recall that this 
function is the callback for a bulk IN endpoint, so it’s executed before and 
after a bulk IN transfers data.

The following is the function definition for ulpt_read_callback:

static void
ulpt_read_callback(struct usb_xfer *transfer, usb_error_t error)
{
        struct ulpt_softc *sc = usbd_xfer_softc(transfer);
        struct usb_fifo *fifo = sc->sc_fifo_open[USB_FIFO_RX];
        struct usb_page_cache *pc;
        int actual, max;

        usbd_xfer_status(transfer, &actual, NULL, NULL, NULL);

        if (fifo == NULL)
                return;

        switch (USB_GET_STATE(transfer)) {
case USB_ST_TRANSFERRED:

if (actual == 0) {
if (sc->sc_zero_length_packets == 4)

                                /* Throttle transfers. */
usbd_xfer_set_interval(transfer, 500);

                        else
                                sc->sc_zero_length_packets++;
                } else {
                        /* Disable throttling. */
                        usbd_xfer_set_interval(transfer, 0);
                        sc->sc_zero_length_packets = 0;
                }

                pc = usbd_xfer_get_frame(transfer, 0);
usb_fifo_put_data(fifo, pc, 0, actual, 1);

                /* FALLTHROUGH */
        case USB_ST_SETUP:
setup:
                if (usb_fifo_put_bytes_max(fifo) != 0) {
                        max = usbd_xfer_max_len(transfer);

usbd_xfer_set_frame_len(transfer, 0, max);
usbd_transfer_submit(transfer);

                }
                break;
        default:
                /* Disable throttling. */
                usbd_xfer_set_interval(transfer, 0);
                sc->sc_zero_length_packets = 0;
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                if (error != USB_ERR_CANCELLED) {
                        /* Issue a clear-stall request. */
                        usbd_xfer_set_stall(transfer);
                        goto setup;
                }
                break;
        }
}

This function first  ensures that there’s room in user space for the 
printer’s data. Next, the maximum transfer length is  specified. Then data 
from the printer is  retrieved.

After a transfer is  complete, the printer’s data is  copied from  ker-
nel space to  user space. Note that if  nothing is returned  four times in 
a row, transfer throttling is  enabled. 

NOTE Some USB devices cannot handle multiple rapid transfer requests, so staggering or 
throttling of transfers is required.

ulpt_status_callback Function
The ulpt_status_callback function returns the printer’s current status. Recall 
that this function is the callback for the default control endpoint, so it’s exe-
cuted before and after any transactions with endpoint 0.

The following is the function definition for ulpt_status_callback:

static void
ulpt_status_callback(struct usb_xfer *transfer, usb_error_t error)
{
        struct ulpt_softc *sc = usbd_xfer_softc(transfer);
        struct usb_device_request req;
        struct usb_page_cache *pc;
        uint8_t current_status, new_status;

        switch (USB_GET_STATE(transfer)) {
        case USB_ST_SETUP:
                req.bmRequestType = UT_READ_CLASS_INTERFACE;
                req.bRequest = UREQ_GET_PORT_STATUS;
                USETW(req.wValue, 0);
                req.wIndex[0] = sc->sc_iface_num;
                req.wIndex[1] = 0;
                USETW(req.wLength, 1);

                pc = usbd_xfer_get_frame(transfer, 0);
usbd_copy_in(pc, 0, &req, sizeof(req));
usbd_xfer_set_frame_len(transfer, 0, sizeof(req));
usbd_xfer_set_frame_len(transfer, 1, 1);

                usbd_xfer_set_frames(transfer, 2);
usbd_transfer_submit(transfer);

                break;
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case USB_ST_TRANSFERRED:
                pc = usbd_xfer_get_frame(transfer, 1);

usbd_copy_out(pc, 0, &current_status, 1);

                current_status = (current_status ^ LPS_INVERT) & LPS_MASK;
                new_status = current_status & ~sc->sc_previous_status;
                sc->sc_previous_status = current_status;

                if (new_status & LPS_NERR)
                        log(LOG_NOTICE, "%s: output error\n",
                            device_get_nameunit(sc->sc_dev));
                else if (new_status & LPS_SELECT)
                        log(LOG_NOTICE, "%s: offline\n",
                            device_get_nameunit(sc->sc_dev));
                else if (new_status & LPS_NOPAPER)
                        log(LOG_NOTICE, "%s: out of paper\n",
                            device_get_nameunit(sc->sc_dev));

                break;
        default:
                break;
        }
}

This function first constructs a  get status request. It then  plunks the 
 request into a  DMA buffer. Shortly afterward, the request is  sent to 
the printer. Interestingly, this transaction involves  two USB frames. The  
first contains the get status request. The  second will hold the printer’s status.

After a transaction is  complete, the printer’s status is  plucked from 
the DMA buffer.

The remainder of this function should be self-explanatory.

Conclusion

This chapter was basically a primer on USB devices and drivers. For more 
information, see the official documentation, available at http://www.usb.org/
developers/.
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N E T W O R K  D R I V E R S ,  P A R T  1 :  
D A T A  S T R U C T U R E S

Network devices, or interfaces, transmit and 
receive data packets that are driven by the 

network subsystem (Corbet et al., 2005). In 
this chapter, we’ll examine the data structures 

used to manage these devices: ifnet, ifmedia, and 
mbuf. You’ll then learn about Message Signaled Inter-
rupts, which are an alternative to traditional interrupts 
and are commonly used by network devices.

NOTE To keep things simple, we’ll examine only Ethernet drivers. Also, I won’t provide a dis-
cussion on general networking concepts.

Network Interface Structures

An ifnet structure is the kernel’s representation of an individual network 
interface. It is defined in the <net/if_var.h> header as follows:

struct ifnet {
        void    *if_softc;              /* Driver private data.         */



        void    *if_l2com;              /* Protocol bits.               */
        struct  vnet *if_vnet;          /* Network stack instance.      */
        TAILQ_ENTRY(ifnet) if_link;     /* ifnet linkage.               */
        char    if_xname[IFNAMSIZ];     /* External name.               */
        const char *if_dname;           /* Driver name.                 */
        int     if_dunit;       /* Unit number or IF_DUNIT_NONE.        */
        u_int   if_refcount;            /* Reference count.             */

        /*
         * Linked list containing every address associated with
         * this interface.
         */
        struct  ifaddrhead if_addrhead;

        int     if_pcount;      /* Number of promiscuous listeners.     */
        struct  carp_if *if_carp;       /* CARP interface.              */
        struct  bpf_if *if_bpf;         /* Packet filter.               */
        u_short if_index;       /* Numeric abbreviation for interface.  */
        short   if_timer;       /* Time until if_watchdog is called.    */
        struct  ifvlantrunk *if_vlantrunk; /* 802.1Q data.              */
        int     if_flags;       /* Flags (e.g., up, down, broadcast).   */
        int     if_capabilities;/* Interface features and capabilities. */
        int     if_capenable;   /* Enabled features and capabilities.   */
        void    *if_linkmib;            /* Link specific MIB data.      */
        size_t  if_linkmiblen;          /* Length of above.             */
        struct  if_data if_data;        /* Interface information.       */
        struct  ifmultihead if_multiaddrs; /* Multicast addresses.      */
        int     if_amcount;     /* Number of multicast requests.        */

        /* Interface methods.                                           */
        int     (*if_output)
                (struct ifnet *, struct mbuf *, struct sockaddr *,
                    struct route *);
        void    (*if_input)
                (struct ifnet *, struct mbuf *);
        void    (*if_start)
                (struct ifnet *);
        int     (*if_ioctl)
                (struct ifnet *, u_long, caddr_t);
        void    (*if_watchdog)
                (struct ifnet *);
        void    (*if_init)
                (void *);
        int     (*if_resolvemulti)
                (struct ifnet *, struct sockaddr **, struct sockaddr *);
        void    (*if_qflush)
                (struct ifnet *);
        int     (*if_transmit)
                (struct ifnet *, struct mbuf *);
        void    (*if_reassign)
                (struct ifnet *, struct vnet *, char *);

        struct  vnet *if_home_vnet; /* Where we originate from.     */
        struct  ifaddr *if_addr;   /* Link level address.          */
        void    *if_llsoftc; /* Link level softc.            */
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        int     if_drv_flags; /* Driver managed status flags. */
        struct  ifaltq if_snd; /* Output queue, includes altq. */
        const u_int8_t *if_broadcastaddr; /* Link level broadcast addr. */
        void    *if_bridge; /* Bridge glue.                 */
        struct  label *if_label; /* Interface MAC label.         */

        /* Only used by IPv6.                                           */
        struct  ifprefixhead if_prefixhead;
        void    *if_afdata[AF_MAX];
        int     if_afdata_initialized;
        struct  rwlock if_afdata_lock;
        struct  task if_linktask;
        struct  mtx if_addr_mtx;

        LIST_ENTRY(ifnet) if_clones;    /* Clone interfaces.            */
        TAILQ_HEAD(, ifg_list) if_groups; /* Linked list of groups.     */
        void    *if_pf_kif;             /* pf(4) glue.                  */
        void    *if_lagg;               /* lagg(4) glue.                */
        u_char  if_alloctype;           /* Type (e.g., Ethernet).       */

        /* Spare fields.                                                */
        char    if_cspare[3];           /* Spare characters.            */
        char    *if_description;        /* Interface description.       */
        void    *if_pspare[7];          /* Spare pointers.              */
        int     if_ispare[4];           /* Spare integers.              */
};

I’ll demonstrate how struct ifnet is used in “Hello, world!” on page 291. 
For now, let’s look at its method fields.

The  if_init field identifies the interface’s init routine. Init routines are 
called to initialize their interface.

The  if_ioctl field identifies the interface’s ioctl routine. Characteristi-
cally, ioctl routines are used to configure their interface (for example, for setting 
the maximum transmission unit).

The  if_input field identifies the interface’s input routine. An interface 
sends an interrupt whenever it receives a packet. Its driver-defined interrupt 
handler then calls its input routine to process the packet. Note that this is 
a departure from the norm. Input routines are called by a driver, while the 
other routines are called by the network stack. The if_input field generally 
points to a link layer routine (for example, ether_input) rather than a driver-
defined routine.

NOTE Obviously, link layer routines are kernel defined. Method fields that expect a link layer 
routine should be defined by an *ifattach function (such as ether_ifattach), not 
directly by a driver. *ifattach functions are described in “Network Interface Structure 
Management Routines” on page 286.

The  if_output field identifies the interface’s output routine. Output 
routines are called by the network stack to prepare an upper-layer packet for 
transmission. Every output routine ends by calling its interface’s  transmit 
routine. If an interface lacks a transmit routine, its  start routine is called 
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instead. Typically, when a network driver defines a transmit routine, its start 
routine is undefined, and vice versa. The if_output field generally points to a 
link layer routine (for example, ether_output) rather than a driver-defined 
routine.

The  if_start field identifies the interface’s start routine. Before I describe 
start routines, it’s important to discuss  send queues. Send queues are filled 
by output routines. Start routines remove one packet from their send queue 
and deposit it in their interface’s transmit ring. They repeat this process until 
the send queue is empty or the transmit ring is full. Transmit rings are simply 
ring buffers used for transmission. Network interfaces use ring buffers for 
transmission and reception.

The  if_transmit field identifies the interface’s transmit routine. Transmit 
routines are an alternative to start routines. Transmit routines maintain their 
own send queues. That is, they forego the  predefined send queue, and 
output routines push packets directly to them. Transmit routines can main-
tain multiple send queues, which makes them ideal for interfaces with multiple 
transmit rings.

The  if_qflush field identifies the interface’s qflush routine. Qflush 
routines are called to flush the send queues of transmit routines. Every trans-
mit routine must have a corresponding qflush routine.

The  if_resolvemulti field identifies the interface’s resolvemulti routine. 
Resolvemulti routines are called to resolve a network layer address into a link 
layer address when registering a multicast address with their interface. The 
if_resolvemulti field generally points to a link layer routine (for example, 
ether_resolvemulti) rather than a driver-defined routine.

The  if_reassign field identifies the interface’s reassign routine. Reassign 
routines are called before their interface is moved to another virtual network 
stack (vnet). They perform any tasks necessary before the move. The if_reassign 
field generally points to a link layer routine (for example, ether_reassign) 
rather than a driver-defined routine.

The if_watchdog field is deprecated and must not be defined. In FreeBSD 
version 9, if_watchdog will be removed.

Network Interface Structure Management Routines

The FreeBSD kernel provides the following functions for working with ifnet 
structures:

#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>

struct ifnet *
if_alloc(u_char type);

void
if_initname(struct ifnet *ifp, const char *name, int unit);
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void
if_attach(struct ifnet *ifp);

void
if_detach(struct ifnet *ifp);

void
if_free(struct ifnet *ifp);

An ifnet structure is a dynamically allocated structure that’s owned by 
the kernel. That is, you cannot allocate a struct ifnet on your own. Instead, 
you must call if_alloc. The  type argument is the interface type (for example, 
Ethernet devices are IFT_ETHER). Symbolic constants for every interface type 
can be found in the <net/if_types.h> header.

Allocating an ifnet structure does not make the interface available to the 
system. To do that, you must initialize the structure (by defining the necessary 
fields) and then call if_attach.

The if_initname function is a convenient function for setting an  inter-
face’s  name and  unit number. (Needless to say, this function is used 
before if_attach.)

When an ifnet structure is no longer needed, it should be deactivated 
with if_detach, after which it can be freed with if_free.

ether_ifattach Function
The ether_ifattach function is a variant of if_attach that’s used for Ethernet 
devices.

#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/ethernet.h>

void
ether_ifattach(struct ifnet *ifp, const u_int8_t *lla);

This function is defined in the /sys/net/if_ethersubr.c source file as follows:

void
ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
{
        struct ifaddr *ifa;
        struct sockaddr_dl *sdl;
        int i;

        ifp->if_addrlen = ETHER_ADDR_LEN;
        ifp->if_hdrlen = ETHER_HDR_LEN;
        if_attach(ifp);
        ifp->if_mtu = ETHERMTU;

ifp->if_output = ether_output;
ifp->if_input = ether_input;
ifp->if_resolvemulti = ether_resolvemulti;
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#ifdef VIMAGE
ifp->if_reassign = ether_reassign;

#endif
        if (ifp->if_baudrate == 0)
                ifp->if_baudrate = IF_Mbps(10);
        ifp->if_broadcastaddr = etherbroadcastaddr;

        ifa = ifp->if_addr;
        KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
        sdl = (struct sockaddr_dl *)ifa->ifa_addr;
        sdl->sdl_type = IFT_ETHER;
        sdl->sdl_alen = ifp->if_addrlen;
        bcopy(lla, LLADDR(sdl), ifp->if_addrlen);

        bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
        if (ng_ether_attach_p != NULL)
                (*ng_ether_attach_p)(ifp);

        /* Print Ethernet MAC address (if lla is nonzero). */
        for (i = 0; i < ifp->if_addrlen; i++)
                if (lla[i] != 0)
                        break;
        if (i != ifp->if_addrlen)
                if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
}

This function takes an ifnet structure,  ifp, and a link layer address, 
 lla, and sets up ifp for an Ethernet device.

As you can see, it assigns certain values to ifp, including assigning the 
appropriate link layer routine to  if_output,  if_input,  if_resolvemulti, 
and  if_reassign.

ether_ifdetach Function
The ether_ifdetach function is a variant of if_detach that’s used for Ethernet 
devices.

#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/ethernet.h>

void
ether_ifdetach(struct ifnet *ifp);

This function is used to deactivate an ifnet structure set up by ether_ifattach.
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Network Interface Media Structures

An ifmedia structure catalogs every media type that is supported by a network 
interface (for example, 100BASE-TX, 1000BASE-SX, and so on). It is defined 
in the <net/if_media.h> header as follows:

struct ifmedia {
        int     ifm_mask;               /* Mask of bits to ignore.      */
        int     ifm_media;              /* User-set media word.         */
        struct ifmedia_entry *ifm_cur;  /* Currently selected media.    */

        /* 
         * Linked list containing every media type supported by
         * an interface.
         */
        LIST_HEAD(, ifmedia_entry) ifm_list;

        ifm_change_cb_t ifm_change;     /* Media change callback.       */
        ifm_stat_cb_t   ifm_status;     /* Media status callback.       */
};

Network Interface Media Structure Management Routines

The FreeBSD kernel provides the following functions for working with ifmedia 
structures:

#include <net/if.h>
#include <net/if_media.h>

void
ifmedia_init(struct ifmedia *ifm, int dontcare_mask,
    ifm_change_cb_t change_callback, ifm_stat_cb_t status_callback);

void
ifmedia_add(struct ifmedia *ifm, int mword, int data, void *aux);

void
ifmedia_set(struct ifmedia *ifm, int mword);

void
ifmedia_removeall(struct ifmedia *ifm);

An ifmedia structure is a statically allocated structure that’s owned by a 
network driver. To initialize an ifmedia structure, you must call ifmedia_init.

The  dontcare_mask argument marks the bits in   mword that can be 
ignored. Usually, dontcare_mask is set to 0.
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The  change_callback argument denotes a callback function. This func-
tion is executed to change the media type or media options. Here is its function 
prototype:

typedef int (*ifm_change_cb_t)(struct ifnet *ifp);

NOTE Users can change an interface’s media type or media options with ifconfig(8).

The  status_callback argument denotes a callback function. This func-
tion is executed to return the media status. Here is its function prototype:

typedef void (*ifm_stat_cb_t)(struct ifnet *ifp, struct ifmediareq *req);

NOTE Users can query an interface’s media status with ifconfig(8).

The ifmedia_add function adds a media type to  ifm. The  mword argu-
ment is a 32-bit “word” that identifies the media type. Valid values for mword 
are defined in <net/if_media.h>.

Here are the mword values for Ethernet devices:

#define IFM_ETHER       0x00000020
#define IFM_10_T        3               /* 10BASE-T, RJ45.              */
#define IFM_10_2        4               /* 10BASE2, thin Ethernet.      */
#define IFM_10_5        5               /* 10BASE5, thick Ethernet.     */
#define IFM_100_TX      6               /* 100BASE-TX, RJ45.            */
#define IFM_100_FX      7               /* 100BASE-FX, fiber.           */
#define IFM_100_T4      8               /* 100BASE-T4.                  */
#define IFM_100_VG      9               /* 100VG-AnyLAN.                */
#define IFM_100_T2      10              /* 100BASE-T2.                  */
#define IFM_1000_SX     11      /* 1000BASE-SX, multimode fiber.       */
#define IFM_10_STP      12      /* 10BASE-T, shielded twisted-pair.     */
#define IFM_10_FL       13              /* 10BASE-FL, fiber.            */
#define IFM_1000_LX     14      /* 1000BASE-LX, single-mode fiber.      */
#define IFM_1000_CX     15      /* 1000BASE-CX, shielded twisted-pair.  */
#define IFM_1000_T      16              /* 1000BASE-T.                  */
#define IFM_HPNA_1      17              /* HomePNA 1.0 (1Mb/s).         */
#define IFM_10G_LR      18      /* 10GBASE-LR, single-mode fiber.       */
#define IFM_10G_SR      19      /* 10GBASE-SR, multimode fiber.        */
#define IFM_10G_CX4     20              /* 10GBASE-CX4.                 */
#define IFM_2500_SX     21      /* 2500BASE-SX, multimode fiber.       */
#define IFM_10G_TWINAX  22              /* 10GBASE, Twinax.             */
#define IFM_10G_TWINAX_LONG     23      /* 10GBASE, Twinax long.        */
#define IFM_10G_LRM     24      /* 10GBASE-LRM, multimode fiber.       */
#define IFM_UNKNOWN     25              /* Undefined.                   */
#define IFM_10G_T       26              /* 10GBASE-T, RJ45.             */

#define IFM_AUTO        0               /* Automatically select media.  */
#define IFM_MANUAL      1               /* Manually select media.       */
#define IFM_NONE        2               /* Unselect all media.          */

/* Shared options.                                                      */
#define IFM_FDX         0x00100000      /* Force full-duplex.           */
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#define IFM_HDX         0x00200000      /* Force half-duplex.           */
#define IFM_FLOW        0x00400000      /* Enable hardware flow control.*/
#define IFM_FLAG0       0x01000000      /* Driver-defined flag.         */
#define IFM_FLAG1       0x02000000      /* Driver-defined flag.         */
#define IFM_FLAG2       0x04000000      /* Driver-defined flag.         */
#define IFM_LOOP        0x08000000      /* Put hardware in loopback.    */

As an example, the mword value for 100BASE-TX is the following:

IFM_ETHER | IFM_100_TX

Table 16-1 describes how each bit in mword is used. It also displays the bit-
masks that can be passed to dontcare_mask to ignore those bits.

The  data and  aux arguments allow drivers to provide metadata about 
mword. Because drivers typically have no metadata to provide, data and aux are 
frequently set to 0 and NULL, respectively.

The ifmedia_set function sets the default  media type for  ifm. This 
function is used only during device initialization.

The ifmedia_removeall function takes an  ifmedia structure and removes 
every media type from it.

Hello, world!

Now that you’re familiar with the if* structures and their management routines, 
let’s go through an example. The following function, named em_setup_interface 
and defined in /sys/dev/e1000/if_em.c, sets up em(4)’s ifnet and ifmedia struc-
tures. (The em(4) driver is for Intel’s PCI Gigabit Ethernet adapters.)

static int
em_setup_interface(device_t dev, struct adapter *adapter)
{
        struct ifnet *ifp;

        ifp = adapter->ifp = if_alloc(IFT_ETHER);
        if (ifp == NULL) {
                device_printf(dev, "cannot allocate ifnet structure\n");

Table 16-1:  Bit-by-Bit Breakdown of mword

Bits Purpose of Bits Mask to Ignore Bits

00–04 Denotes the media type variant (for example, 100BASE-TX) IFM_TMASK

05–07 Denotes the media type (for example, Ethernet) IFM_NMASK

08–15 Denotes the media type specific options IFM_OMASK

16–18 Denotes the media type mode (for multimode media only) IFM_MMASK

19 Reserved for future use n/a

20–27 Denotes the shared options (for example, force full-duplex) IFM_GMASK

28–31 Denotes the mword instance IFM_IMASK
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                return (-1);
        }

        if_initname(ifp, device_get_name(dev), device_get_unit(dev));
        ifp->if_mtu = ETHERMTU;
        ifp->if_init = em_init;
        ifp->if_softc = adapter;
        ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
        ifp->if_ioctl = em_ioctl;
        ifp->if_start = em_start;
        IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
        ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
        IFQ_SET_READY(&ifp->if_snd);

ether_ifattach(ifp, adapter->hw.mac.addr);

        ifp->if_capabilities = ifp->if_capenable = 0;

        /* Enable checksum offload. */
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;

        /* Enable TCP segmentation offload. */
        ifp->if_capabilities |= IFCAP_TSO4;
        ifp->if_capenable |= IFCAP_TSO4;

        /* Enable VLAN support. */
        ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
        ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
        ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;

        /* Interface can filter VLAN tags. */
        ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;

#ifdef DEVICE_POLLING
        ifp->if_capabilities |= IFCAP_POLLING;
#endif

        /* Enable Wake-on-LAN (WOL) via magic packet? */
if (adapter->wol) {

                ifp->if_capabilities |= IFCAP_WOL;
                ifp->if_capenable |= IFCAP_WOL_MAGIC;
        }

ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
            em_media_status);

if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
            (adapter->hw.phy.media_type == e1000_media_type_internal_serdes))
        {
                u_char fiber_type = IFM_1000_SX;
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                ifmedia_add(&adapter->media,
                    IFM_ETHER | fiber_type, 0, NULL);
                ifmedia_add(&adapter->media,
                    IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
        } else {
                ifmedia_add(&adapter->media,
                    IFM_ETHER | IFM_10_T, 0, NULL);
                ifmedia_add(&adapter->media,
                    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
                ifmedia_add(&adapter->media,
                    IFM_ETHER | IFM_100_TX, 0, NULL);
                ifmedia_add(&adapter->media,
                    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);

                if (adapter->hw.phy.type != e1000_phy_ife) {
                        ifmedia_add(&adapter->media,
                            IFM_ETHER | IFM_1000_T, 0, NULL);
                        ifmedia_add(&adapter->media,
                            IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
                }
        }

        ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);

        return (0);
}

This function can be split into three parts. The first  allocates an  
Ethernet-specific ifnet structure and stores it in  adapter->ifp. Then 
adapter->ifp is defined and  activated. (Here, adapter is the name for 
em(4)’s softc structure.)

The second part  outlines and  enables the interface’s features, such 
as  Wake-on-LAN (WOL). (WOL is an Ethernet standard that allows a com-
puter to be turned on, or woken up, by a network message.)

The third part  initializes an ifmedia structure,  adds the interface’s 
supported media to it, and  defines the default media type as automatically 
select the best media.

NOTE Of course, em_setup_interface is called during em(4)’s device_attach routine.

mbuf Structures

An mbuf structure is a memory buffer for network data. Commonly, this data 
spans multiple mbuf structures, which are arranged into a linked list known as 
an mbuf chain.

struct mbuf is defined in the <sys/mbuf.h> header as follows:

struct mbuf {
struct m_hdr m_hdr;
union {
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                struct {
                        struct pkthdr MH_pkthdr;
                        union {
                                struct m_ext MH_ext;
                                char MH_databuf[MHLEN];
                        } MH_dat;
                } MH;
                char M_databuf[MLEN];
        } M_dat;
};

Every mbuf structure contains a  buffer for data and a  header, which 
looks like this:

struct m_hdr {
        struct mbuf     *mh_next;       /* Next mbuf in chain.          */
        struct mbuf     *mh_nextpkt;    /* Next chain in queue/record.  */
        caddr_t          mh_data;       /* Location of data.            */
        int              mh_len;        /* Data length.                 */
        int              mh_flags;      /* Flags.                       */
        short            mh_type;       /* Data type.                   */
        uint8_t          pad[M_HDR_PAD]; /* Padding for word alignment.  */
};

We’ll walk through an example that uses mbufs in Chapter 17. For more 
on mbufs, see the mbuf(9) manual page.

Message Signaled Interrupts

Message Signaled Interrupts (MSI) and Extended Message Signaled Interrupts (MSI-X) 
are alternative ways to send interrupts. Traditionally, devices include an inter-
rupt pin that they assert in order to generate an interrupt, but MSI- and MSI-X–
enabled devices send some data, known as an MSI message or MSI-X message, 
to a particular memory address in order to generate an interrupt. MSI- and 
MSI-X–enabled devices can define multiple unique messages. Subsequently, 
drivers can define multiple unique interrupt handlers. In other words, MSI- 
and MSI-X–enabled devices can issue different interrupts, with each inter-
rupt specifying a different condition or task. MSI- and MSI-X–enabled 
devices can define up to 32 and 2,048 unique messages, respectively. (MSI 
and MSI-X are not exclusive to network devices. They are, however, exclusive 
to PCI and PCIe devices.)

Implementing MSI

Unlike with previous topics, I’m going to take a holistic approach here. Namely, 
I’m going to show an example first, and then I’ll describe the MSI family of 
functions.

The following function, named ciss_setup_msix and defined in /sys/dev/
ciss/ciss.c, sets up MSI for the ciss(4) driver.
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NOTE This function was chosen solely because it’s simple. The fact that it’s from ciss(4) is 
irrelevant.

static int
ciss_setup_msix(struct ciss_softc *sc)
{
        int i, count, error;

        i = ciss_lookup(sc->ciss_dev);
if (ciss_vendor_data[i].flags & CISS_BOARD_NOMSI)

                return (EINVAL);

        count = pci_msix_count(sc->ciss_dev);
        if (count < CISS_MSI_COUNT) {
                count = pci_msi_count(sc->ciss_dev);
                if (count < CISS_MSI_COUNT)
                        return (EINVAL);
        }

        count = MIN(count, CISS_MSI_COUNT);
        error = pci_alloc_msix(sc->ciss_dev, &count);
        if (error) {
                error = pci_alloc_msi(sc->ciss_dev, &count);
                if (error)
                        return (EINVAL);
        }

        sc->ciss_msi = count;
        for (i = 0; i < count; i++)

sc->ciss_irq_rid[i] = i + 1;

        return (0);
}

This function is composed of four parts. The first  ensures that the 
device actually supports MSI.

The second part determines the number of unique  MSI-X or  MSI 
messages the device maintains, and stores the answer in count.

The third part allocates count  MSI-X or  MSI vectors, which connect 
each message to a SYS_RES_IRQ resource with a rid of 1 through count. Thus, 
in order to assign an interrupt handler to the eighth message, you’d call 
bus_alloc_resource_any (to allocate a SYS_RES_IRQ resource) and pass 8 as the 
rid argument. Then you’d call bus_setup_intr as usual.

Lastly, the fourth part  saves the rid of each MSI-X or MSI message in 
the ciss_irq_rid array.

Naturally, this function is called during ciss(4)’s device_attach routine, 
like so:

...
        /*
         * Use MSI/MSI-X?
         */
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        sc->ciss_irq_rid[0] = 0;
        if (method == CISS_TRANSPORT_METHOD_PERF) {
                ciss_printf(sc, "Performant Transport\n");

                if (ciss_force_interrupt != 1 && ciss_setup_msix(sc) == 0)
                        intr = ciss_perf_msi_intr;
                else
                        intr = ciss_perf_intr;

                sc->ciss_interrupt_mask =
                    CISS_TL_PERF_INTR_OPQ | CISS_TL_PERF_INTR_MSI;
        } else {
                ciss_printf(sc, "Simple Transport\n");

                if (ciss_force_interrupt == 2)
ciss_setup_msix(sc);

                sc->ciss_perf = NULL;
                intr = ciss_intr;
                sc->ciss_interrupt_mask = sqmask;
        }

        /*
         * Disable interrupts.
         */
        CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);

        /*
         * Set up the interrupt handler.
         */
        sc->ciss_irq_resource = bus_alloc_resource_any(sc->ciss_dev,
            SYS_RES_IRQ, &sc->ciss_irq_rid[0], RF_ACTIVE | RF_SHAREABLE);
        if (sc->ciss_irq_resource == NULL) {
                ciss_printf(sc, "cannot allocate interrupt resource\n");
                return (ENXIO);
        }

        error = bus_setup_intr(sc->ciss_dev, sc->ciss_irq_resource,
            INTR_TYPE_CAM | INTR_MPSAFE, NULL, intr, sc, &sc->ciss_intr);
        if (error) {
                ciss_printf(sc, "cannot set up interrupt\n");
                return (ENXIO);
        }
...

Notice how MSI is   set up before  acquiring an IRQ. Additionally, 
notice how the  rid argument is ciss_irq_rid.

NOTE As of this writing, ciss(4) supports only the first MSI-X or MSI message.
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MSI Management Routines

The FreeBSD kernel provides the following functions for working with MSI:

#include <dev/pci/pcivar.h>

int
pci_msix_count(device_t dev);

int
pci_msi_count(device_t dev);

int
pci_alloc_msix(device_t dev, int *count);

int
pci_alloc_msi(device_t dev, int *count);

int
pci_release_msi(device_t dev);

The pci_msix_count and pci_msi_count functions return the number of 
unique MSI-X or MSI messages maintained by the device dev.

The pci_alloc_msix and pci_alloc_msi functions allocate count MSI-X or 
MSI vectors based on dev. If there are not enough free vectors, fewer than 
count vectors will be allocated. Upon a successful return, count will contain 
the number of vectors allocated. (MSI-X and MSI vectors were described in 
“Implementing MSI” on page 294.)

The pci_release_msi function releases the MSI-X or MSI vectors that were 
allocated by pci_alloc_msix or pci_alloc_msi.

Conclusion

This chapter examined ifnet, ifmedia, and mbuf structures, as well as MSI and 
MSI-X. In Chapter 17, you’ll use this information to analyze a network driver.
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N E T W O R K  D R I V E R S ,  P A R T  2 :  
P A C K E T  R E C E P T I O N  A N D  

T R A N S M I S S I O N

This chapter examines the packet recep-
tion and transmission components of em(4). 

Predictably, em(4) uses both mbufs and MSI 
for packet reception and transmission.

Packet Reception

When an interface receives a packet, it sends an interrupt. Naturally, this causes 
its interrupt handler to execute. For example, here is what executes in em(4):

static void
em_msix_rx(void *arg)
{
        struct rx_ring *rxr = arg;
        struct adapter *adapter = rxr->adapter;
        bool more;

        ++rxr->rx_irq;

        more = em_rxeof(rxr, adapter->rx_process_limit, NULL);



        if (more)
                taskqueue_enqueue(rxr->tq, &rxr->rx_task);
        else
                E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxr->ims);
}

This function takes a  pointer to a ring buffer that contains one or more 
received packets, and calls  em_rxeof to process those packets. If there are 
more than  rx_process_limit packets, a task structure is  queued; otherwise, 
this interrupt is  reenabled. I’ll discuss the task structure and its associated 
function in “em_handle_rx Function” on page 303.

em_rxeof Function
As mentioned previously, em_rxeof processes received packets. Its function 
definition is listed below, but because this function is fairly long and involved, 
I’ll introduce it in parts. Here is the first part:

static bool
em_rxeof(struct rx_ring *rxr, int count, int *done)
{
        struct adapter *adapter = rxr->adapter;
        struct ifnet *ifp = adapter->ifp;
        struct e1000_rx_desc *cur;
        struct mbuf *mp, *sendmp;
        u8 status = 0;
        u16 len;
        int i, processed, rxdone = 0;
        bool eop;

        EM_RX_LOCK(rxr);

for (i = rxr->next_to_check, processed = 0; count != 0; ) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)

                        break;

bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
                    BUS_DMASYNC_POSTREAD);

                mp = sendmp = NULL;
                cur = &rxr->rx_base[i];
                status = cur->status;
                if ((status & E1000_RXD_STAT_DD) == 0)
                        break;
                len = le16toh(cur->length);
                eop = (status & E1000_RXD_STAT_EOP) != 0;

                if ((cur->errors & E1000_RXD_ERR_FRAME_ERR_MASK) ||
                    (rxr->discard == TRUE)) {
                        ++ifp->if_ierrors;
                        ++rxr->rx_discarded;
                        if (!eop)
                                rxr->discard = TRUE;
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                        else
                                rxr->discard = FALSE;

em_rx_discard(rxr, i);
                        goto next_desc;
                }
...

This function’s execution is contained primarily within a  for loop. This 
loop begins by  verifying that the  interface is up and running. Then it  
synchronizes the DMA buffer currently loaded in  rxr->rxdma.dma_map, which 
is  rxr->rx_base. 

The buffer  rxr->rx_base[i] contains a descriptor that describes a 
received packet. When a packet spans multiple mbufs, rxr->rx_base[i] 
describes one mbuf in the chain.

If rxr->rx_base[i] lacks the  E1000_RXD_STAT_DD flag, the for loop exits. 
(The E1000_RXD_STAT_DD flag stands for receive descriptor status: descriptor done. 
We’ll see its effects shortly.)

If rxr->rx_base[i] describes the  last mbuf in the chain, the Boolean vari-
able eop, which stands for end of packet, is set to TRUE. (Needless to say, when a 
packet requires only one mbuf, that mbuf is still the last mbuf in the chain.)

If the packet described by rxr->rx_base[i] contains any  errors, it is 
 discarded. Note that I use the word packet, not mbuf, here, because every 
mbuf in the packet is discarded.

Now let’s look at the next part of em_rxeof:

...
mp = rxr->rx_buffers[i].m_head;

                mp->m_len = len;
                rxr->rx_buffers[i].m_head = NULL;

if (rxr->fmp == NULL) {
                        mp->m_pkthdr.len = len;

rxr->fmp = rxr->lmp = mp;
                } else {
                        mp->m_flags &= ~M_PKTHDR;

rxr->lmp->m_next = mp;
rxr->lmp = mp;

                        rxr->fmp->m_pkthdr.len += len;
                }
...

Here,  rxr->fmp and  rxr->lmp point to the first and last mbuf in the 
chain,  mp is the mbuf described by rxr->rx_base[i], and  len is mp’s length.

So, this part simply  identifies whether mp is the first mbuf in the chain. 
If it is not, then mp is   linked into the chain.

Here is the next part of em_rxeof:

...
               if (eop) {
                        --count;

sendmp = rxr->fmp;
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                        sendmp->m_pkthdr.rcvif = ifp;
                        ++ifp->if_ipackets;

em_receive_checksum(cur, sendmp);
 #ifndef __NO_STRICT_ALIGNMENT

if (adapter->max_frame_size >
                            (MCLBYTES - ETHER_ALIGN) &&

em_fixup_rx(rxr) != 0)
                                goto skip;
#endif
                        if (status & E1000_RXD_STAT_VP) {
                                sendmp->m_pkthdr.ether_vtag =
                                    le16toh(cur->special) &
                                    E1000_RXD_SPC_VLAN_MASK;
                                sendmp->m_flags |= M_VLANTAG;
                        }
#ifndef __NO_STRICT_ALIGNMENT
skip:
#endif

rxr->fmp = rxr->lmp = NULL;
                }
...

If mp is the  last mbuf in the chain,  sendmp is set to the  first mbuf in 
the chain, and the header checksum is  verified.

If our architecture requires  strict alignment and  jumbo frames are 
enabled, em_rxeof  aligns the mbuf chain. (Jumbo frames are Ethernet 
packets with more than 1500 bytes of data.)

This part concludes by setting  rxr->fmp and  rxr->lmp to  NULL. Here 
is the next part of em_rxeof:

...
next_desc:
                cur->status = 0;
                ++rxdone;
                ++processed;

                if (++i == adapter->num_rx_desc)
                        i = 0;

if (sendmp != NULL) {
                        rxr->next_to_check = i;
                        EM_RX_UNLOCK(rxr);

(*ifp->if_input)(ifp, sendmp);
                        EM_RX_LOCK(rxr);
                        i = rxr->next_to_check;
                }

                if (processed == 8) {
em_refresh_mbufs(rxr, i);

                        processed = 0;
                }
        }                                      /* The end of the for loop. */
...
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Here, i is  incremented so that em_rxeof can get to the next mbuf in 
the ring. Then,  if sendmp points to an mbuf chain, em(4)’s input routine is 
 executed to send that  chain to the upper layers. Afterward, new mbufs 
are  allocated for em(4).

NOTE When an mbuf chain is sent to the upper layers, drivers must not access those mbufs 
anymore. For all intents and purposes, those mbufs have been freed.

To sum up, this for loop simply links together every mbuf in a received 
packet and then sends that to the upper layers. This continues until every packet 
in the ring has been processed or rx_process_limit is hit (rx_process_limit was 
described in “Packet Reception” on page 299).

Here is the final part of em_rxeof:

...
        if (e1000_rx_unrefreshed(rxr))
                em_refresh_mbufs(rxr, i);

        rxr->next_to_check = i;
        if (done != NULL)
                *done = rxdone;
        EM_RX_UNLOCK(rxr);

return ((status & E1000_RXD_STAT_DD) ? TRUE : FALSE);
}

If there are more packets to process, em_rxeof  returns TRUE.

em_handle_rx Function
Recall that when em_rxeof returns TRUE, em_msix_rx queues a task structure 
(em_msix_rx was discussed in “Packet Reception” on page 299).

Here is that task structure’s function:

static void
em_handle_rx(void *context, int pending)
{
        struct rx_ring *rxr = context;
        struct adapter *adapter = rxr->adapter;
        bool more;

        more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
        if (more)
                taskqueue_enqueue(rxr->tq, &rxr->rx_task);
        else
                E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxr->ims);
}

This function is nearly identical to em_msix_rx. When there are more packets 
to process,  em_rxeof just gets called again.
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Packet Transmission

To transmit a packet, the network stack calls a driver’s output routine. All 
output routines end by calling their interface’s transmit or start routine. 
Here is em(4)’s start routine:

static void
em_start(struct ifnet *ifp)
{
        struct adapter *adapter = ifp->if_softc;
        struct tx_ring *txr = adapter->tx_rings;

        if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
EM_TX_LOCK(txr);
em_start_locked(ifp, txr);

                EM_TX_UNLOCK(txr);
        }
}

This start routine  acquires a lock and then calls  em_start_locked.

em_start_locked Function
The em_start_locked function is defined as follows:

static void
em_start_locked(struct ifnet *ifp, struct tx_ring *txr)
{
        struct adapter *adapter = ifp->if_softc;
        struct mbuf *m_head;

        EM_TX_LOCK_ASSERT(txr);

        if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
            IFF_DRV_RUNNING)
                return;

        if (!adapter->link_active)
                return;

while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
if (txr->tx_avail <= EM_TX_CLEANUP_THRESHOLD)

em_txeof(txr);

if (txr->tx_avail < EM_MAX_SCATTER) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;

                        break;
                }

IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
                if (m_head == NULL)
                        break;
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                if (em_xmit(txr, &m_head)) {
                        if (m_head == NULL)
                                break;
                        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
                        IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
                        break;
                }

                ETHER_BPF_MTAP(ifp, m_head);

                txr->watchdog_time = ticks;
                txr->queue_status = EM_QUEUE_WORKING;
        }
}

This function  removes one  mbuf from em(4)’s  send queue and 
 transmits it to the interface. This repeats until the send queue is  empty. 
(Send queues, as mentioned in Chapter 16, are populated by output routines.)

NOTE The em_xmit function, which actually transmits the mbufs to the interface, is not 
detailed in this book, because of its length. It is fairly straightforward, though, so you 
shouldn’t have any trouble with it.

If the number of available transmit descriptors is  less than or equal to 
EM_TX_CLEANUP_THRESHOLD,  em_txeof is called to reclaim the used descriptors. 
(A transmit descriptor describes an outgoing packet. If a packet spans multiple 
mbufs, a transmit descriptor describes one mbuf in the chain.)

If the number of available transmit descriptors is  less than EM_MAX_SCATTER, 
transfers are  stopped.

em_txeof Function
The em_txeof function goes through the transmit descriptors and frees the 
mbufs for packets that have been transmitted. Its function definition is listed 
below, but because this function is fairly long and involved, I’ll introduce it 
in parts. Here is the first part:

static bool
em_txeof(struct tx_ring *txr)
{
        struct adapter *adapter = txr->adapter;
        struct ifnet *ifp = adapter->ifp;
        struct e1000_tx_desc *tx_desc, *eop_desc;
        struct em_buffer *tx_buffer;
        int processed, first, last, done;

        EM_TX_LOCK_ASSERT(txr);

        if (txr->tx_avail == adapter->num_tx_desc) {
                txr->queue_status = EM_QUEUE_IDLE;
                return (FALSE);
        }
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        processed = 0;
first = txr->next_to_clean;
tx_desc = &txr->tx_base[first];
tx_buffer = &txr->tx_buffers[first];
last = tx_buffer->next_eop;

        eop_desc = &txr->tx_base[last];

        if (++last == adapter->num_tx_desc)
                last = 0;

done = last;
...

Here,  first is the first mbuf in a chain that housed an outgoing packet, 
 last is the last mbuf in that chain, and  done is the mbuf after last.

NOTE Recall that transmit descriptors, and subsequently mbufs, are held in a ring buffer.

The variables  tx_desc and  tx_buffer are temporary variables for a 
transmit descriptor and its associated mbuf.

Now let’s look at the next part of em_txeof:

...
        bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
            BUS_DMASYNC_POSTREAD);

while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
while (first != done) {

tx_desc->upper.data = 0;
                        tx_desc->lower.data = 0;
                        tx_desc->buffer_addr = 0;
                        ++txr->tx_avail;
                        ++processed;

                        if (tx_buffer->m_head) {
                                bus_dmamap_unload(txr->txtag,
                                    tx_buffer->map);

m_freem(tx_buffer->m_head);
                                tx_buffer->m_head = NULL;
                        }

                        tx_buffer->next_eop = -1;
                        txr->watchdog_time = ticks;

                        if (++first == adapter->num_tx_desc)
                                first = 0;
                        tx_buffer = &txr->tx_buffers[first];
                        tx_desc = &txr->tx_base[first];
                }

                ++ifp->if_opackets;

                last = tx_buffer->next_eop;
if (last != -1) {
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                        eop_desc = &txr->tx_base[last];
                        if (++last == adapter->num_tx_desc)
                                last = 0;
                        done = last;
                } else
                        break;
        }

        bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
            BUS_DMASYNC_PREWRITE);
...

This  while loop iterates through first to last,  freeing their mbufs 
and  zeroing their transmit descriptors. (em(4) has a finite number of trans-
mit descriptors. Zeroing a descriptor makes it available again.)

This  while loop  determines whether another mbuf chain can be 
freed by this  while loop.

Here is the final part of em_txeof:

...
        txr->next_to_clean = first;

        if (!processed && ((ticks - txr->watchdog_time) > EM_WATCHDOG))
                txr->queue_status = EM_QUEUE_HUNG;

if (txr->tx_avail > EM_MAX_SCATTER)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

        if (txr->tx_avail == adapter->num_tx_desc) {
                txr->queue_status = EM_QUEUE_IDLE;

return (FALSE);
        }

return (TRUE);
}

If there are more transmit descriptors to reclaim, em_txeof returns  TRUE; 
otherwise, it returns  FALSE.

If the number of available transmit descriptors is  greater than 
EM_MAX_SCATTER, packets  can be transmitted.

Post Packet Transmission

Whenever an interface transmits a packet, it sends an interrupt. Naturally, 
this causes its interrupt handler to execute. Here is what executes in em(4):

static void
em_msix_tx(void *arg)
{
        struct tx_ring *txr = arg;
        struct adapter *adapter = txr->adapter;
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        bool more;

        ++txr->tx_irq;

        EM_TX_LOCK(txr);
        more = em_txeof(txr);
        EM_TX_UNLOCK(txr);
        if (more)

taskqueue_enqueue(txr->tq, &txr->tx_task);
        else
                E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
}

NOTE Because of MSI, em(4) can use a different interrupt handler for post packet transmis-
sion and packet reception.

This function simply  reclaims the used transmit descriptors. If there 
are more descriptors to reclaim, a task structure is  queued. Here is that 
task structure’s function:

static void
em_handle_tx(void *context, int pending)
{
        struct tx_ring *txr = context;
        struct adapter *adapter = txr->adapter;
        struct ifnet *ifp = adapter->ifp;

        EM_TX_LOCK(txr);

em_txeof(txr);
em_start_locked(ifp, txr);

        E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);

        EM_TX_UNLOCK(txr);
}

This function first  reclaims any used transmit descriptors, after 
which any packets that may have been halted due to a lack of descriptors 
are  transmitted.

Conclusion

This chapter and Chapter 16 gave a primer on network devices and drivers. 
If you’re serious about writing network drivers, you should review em(4) in 
its entirety. I recommend beginning with its device_attach implementation: 
em_attach.
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I N D E X

Numbers
00–04 bit, 291
05–07 bit, 291
08–15 bit, 291
0 constant, 95
0xFFFFFFFF, 197
16–18 bit, 291
19 bit, 291
20–27 bit, 291
28–31 bit, 291

A
access argument, 46
acpi_sleep_event event handler, 92
acpi_wakeup_event event handler, 92
action routines

XPT_GET_TRAN_SETTINGS constant, 246–249
XPT_PATH_INQ constant, 243–245
XPT_RESET_BUS constant, 245–246
XPT_RESET_DEV constant, 255
XPT_SCSI_IO constant, 250–255
XPT_SET_TRAN_SETTINGS constant, 249

Advanced Technology Attachment Packet 
Interface (ATAPI), 226

ahc_action function, 227
ahc_done function, 227, 240
alignment argument, 23, 197
alternate setting, 258
arg argument, 46, 116
at45d_attach function, 217–218
at45d_delayed_attach function, 218–219
at45d_get_info function, 219–220
at45d_get_status function, 220–221
at45d_strategy function, 221
at45d_task function, 221–223
ATAPI (Advanced Technology Attach-

ment Packet Interface), 226
atomic_add_int function, 106
autoconfiguration. See Newbus drivers

B
biodone function, 223
biofinish function, 223
bio_pblkno variable, 222
bioq_flush function, 213
bioq_insert_head function, 212
bioq_insert_tail function, 212
bioq_remove function, 213
bio structure, 210
bits_per_char function, 111–112
block, defined, 207
block-centric I/O requests, 222
block devices, 2
block drivers, 15–16
block I/O queues, 212–213
block I/O structures, 210–211
boundary argument, 23, 197
<bsd.kmod.mk> Makefile, 6
bt.c source file, 255
buffers, DMA, 195

bus_dmamap_load function, 200–201
bus_dmamap_load_mbuf function, 201
bus_dmamap_load_mbuf_sg function, 201–202
bus_dmamap_load_uio function, 202
bus_dmamap_unload function, 202
bus_dma_segment structures, 199–200

buflen argument, 200
bufsize field, 260
bulk endpoints, 258
bus_alloc_resource function, 123, 166
bus_deactivate_resource function, 124
BUS_DMA_ALLOCNOW constant, 198
BUS_DMA_COHERENT constant, 199, 203
bus_dmamap_create function, 195, 199
bus_dmamap_destroy function, 199
bus_dmamap_load function, 195, 200–201
bus_dmamap_load_mbuf function, 201
bus_dmamap_load_mbuf_sg function, 201–202
bus_dmamap_load_uio function, 202
bus_dmamap_unload function, 202



bus_dmamem_alloc function, 202, 205
bus_dmamem_free function, 203
BUS_DMA_NOCACHE constant, 172, 201, 203
BUS_DMA_NOWAIT constant, 201, 203
bus_dma_segment structures, 199–200
BUS_DMASYNC_POSTREAD constant, 205
BUS_DMASYNC_PREWRITE constant, 205
bus_dma_tag_create function, 195
bus_dma_tag_destroy function, 198
BUS_DMA_WAITOK constant, 203
BUS_DMA_ZERO constant, 203
busname argument, 116
BUS_PROBE_SPECIFIC success code, 133
bus_read_N functions, 167
bus_release_resource function, 124
bus_setup_intr function, 126
BUS_SPACE_BARRIER_READ constant, 172
BUS_SPACE_BARRIER_WRITE constant, 172
BUS_SPACE_MAXADDR constant, 197
bus_teardown_intr function, 126
bus_write_multi_N functions, 169
bus_write_N functions, 169
bus_write_region_N functions, 169

C
callback2 argument, 201
callback2 function, 201
callbackarg argument, 200
callback argument, 200
callback field, 260
callout_drain function, 96
callout_init_mtx function, 95
callout_init function, 94
CALLOUT_MPSAFE constant, 95
callout_reset function, 96
CALLOUT_RETURNUNLOCKED constant, 95
callouts, 94–98
callout_schedule function, 96
CALLOUT_SHAREDLOCK constant, 95
callout_stop function, 95
CAM (Common Access Method) standard

action routines
XPT_GET_TRAN_SETTINGS constant, 246–249
XPT_PATH_INQ constant, 243–245
XPT_RESET_BUS constant, 245–246
XPT_RESET_DEV constant, 255
XPT_SCSI_IO constant, 250–255
XPT_SET_TRAN_SETTINGS constant, 249

HBA (host bus adapter) driver example
mfip_action function, 236–238
mfip_attach function, 234–235
mfip_detach function, 235–236
mfip_done function, 240–241

mfip_poll function, 238
mfip_start function, 238–240

overview, 225–227
SIM registration routines

cam_sim_alloc function, 242–243
cam_simq_alloc function, 242
xpt_bus_register function, 243

CAM Control Block (CCB), 227
camisr function, 227
cam_sim_alloc function, 235, 242–243
cam_simq_alloc function, 242
CCB (CAM Control Block), 227
ccb_h.func_code variable, 238
ccb_pathinq structure, 243, 245
ccb_scsiio structure, 253
ccb_trans_settings structure, 249
chan argument, 84
change_callback argument, 290
character devices, 2
character drivers

character device switch table, 8
destroy_dev function, 9
DEV_MODULE macro, 15
d_foo function, 7–8
echo_modevent function, 14
echo_read function, 13–14
echo_write function, 12–13
loading, 15
make_dev function, 9

ciss_setup_msix function, 294–295
commands for ioctl interface, 29–30
Common Access Method (CAM) stan-

dard. See CAM standard
compiling KLDs, 6–7
condition variables, 79–81
configurations, 259
configuration structures for USB drivers

management routines for, 264–265
mandatory fields, 260
optional fields, 260–261
transfer flags, 261–262

contexts for sysctl interface, 44
contigfree function, 22, 23
contigmalloc function, 22–25
contiguous physical memory, 22–25
control endpoints, 258
cookiep argument, 126
count argument, 123
count value, 54
ctx argument, 46
cv_broadcastpri function, 81
cv_destroy function, 81
cv_init function, 81
cv_timedwait function, 81
cv_timedwait_sig function, 81
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cv_wait_sig function, 81
cv_wait_unlock function, 81
cv_wmesg function, 81

D
d (descriptor) argument, 38
dadone function, 227
dastart function, 227
dastrategy function, 226
data argument, 4
Data Carrier Detect (DCD), 107
data transfers for USB drivers, 262–264
d_close field, 209
d_close function, 57
d_drv1 field, 210
debug.sleep.test sysctl, 90–92
DECLARE_MODULE macro

data argument, 4
name argument, 4
order argument, 4–5
sub argument, 4

delaying execution
callouts, 94–96
event handlers for, 92–94
load function, 89–90
sleeping, 83–85
sleep_modevent function, 88–89
sleep_thread function, 90–91
sysctl_debug_sleep_test function, 91
taskqueues

global, 97
management routines for, 97–98
overview, 96–97

unload function, 91–92
voluntary context switching, 83–85

descr argument, 46
descriptive fields for disk structures, 208–209
descriptor (d argument), 38
destroy_dev function, 9, 72
destroying tags for DMA, 198–199
devclass argument, 116
dev_clone event handler, 92, 103
DEV_MODULE macro, 15
device_attach function, 114
device_detach function, 114, 115
device_foo functions, 114–115
device_identify function, 114
device method table, 115
device_probe function, 114
device_resume function, 114
devices

configuration of, 259
defined, 1
driver types, 1–2

device_shutdown function, 114
device_suspend function, 114
d_flags field, 209
d_foo function, 7–8, 72, 121
d_fwheads field, 209
d_fwsectors field, 209
d_ident field, 209
d_ioctl field, 209
d_ioctl function, 28, 58
direction field, 260
Direct Memory Access (DMA). See DMA
DISKFLAG_CANDELETE constant, 208
DISKFLAG_CANFLUSHCACHE constant, 208
DISKFLAG_NEEDSGIANT constant, 208
disk structures

descriptive fields, 208–209
driver private data, 210
management routines for, 210
mandatory media properties, 209
optional media properties, 209
storage device methods, 209

dismantling transfers using DMA, 196
DMA (Direct Memory Access)

buffers
bus_dmamap_load_mbuf_sg function, 201–202
bus_dmamap_load_mbuf function, 201
bus_dmamap_load_uio function, 202
bus_dmamap_load function, 200–201
bus_dmamap_unload function, 202
bus_dma_segment structures, 199–200
synchronizing, 205

example using, 203–205
maps, 199, 202–203
overview, 193
tags for

creating, 197–198
destroying, 198–199

transfers using
dismantling, 196
initiating, 196

dmat argument, 198, 200, 205
d_maxsize field, 209
d_mediasize field, 209
dontcare_mask argument, 289
d_open field, 209
d_open function, 57
driver argument, 116
DRIVER_MODULE macro

arg argument, 116
busname argument, 116
devclass argument, 116
driver argument, 116
evh argument, 116
name argument, 116
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driver private data, 210
ds_addr field, 200
d_sectorsize field, 209
d_strategy field, 209
d_stripesize field, 209
dump routines, 209
dynamic node, 47
dynamic sysctl, 44–47

E
%eax value, 54
ECHO_CLEAR_BUFFER command, 33
echo_ioctl function, 36
echo_modevent function, 14, 36–37
echo_read function, 13–14
ECHO_SET_BUFFER_SIZE command, 33
echo_set_buffer_size function, 35
echo_write function, 12–13, 34–35
ECP (Extended Capabilities Port) 

mode, 156
em(4) driver, 299
em_handle_rx function, 303
em_rxeof function, 300–303
em_start_locked function, 304–305
em_txeof function, 305–307
em_xmit function, 305
end argument, 123
end of packet (eop), 301
endpoint, 258
endpoint field, 260
Enhanced Parallel Port (EPP), 156
ENXIO error code, 134
eop (end of packet), 301
ep_index field, 261
EPP (Enhanced Parallel Port), 156
ether_ifattach function, 287–288
ether_ifdetach function, 288
EVENTHANDLER_DEREGISTER macro, 93
EVENTHANDLER_INVOKE macro, 94
EVENTHANDLER_PRI_ANY constant, 93
EVENTHANDLER_REGISTER macro, 93
event handlers, 92–94, 98
evh argument, 116
exclusive holds, 73
ext_buffer flag, 262
Extended Capabilities Port (ECP) 

mode, 156
Extended Message Signaled Interrupts 

(MSI-X), 294
extended mode, 156

F
Fibre Channel (FC), 226
filter argument, 126
FILTER_HANDLED constant, 127
filter routine, 126
FILTER_SCHEDULE_THREAD constant, 127
FILTER_STRAY constant, 127
filtfuncarg argument, 197
filtfunc argument, 197
filtfunc function, 197
FireWire (IEEE 1394), 226
flags argument, 18–19, 126, 198–201
flags field, 261
flash memory driver example

at45d_attach function, 217–218
at45d_delayed_attach function, 218–219
at45d_get_info function, 219–220
at45d_get_status function, 220–221
at45d_strategy function, 221
at45d_task function, 221–223

foo bytes, 279
foo_callback function, 201
foo lock, 65
foo_pci_attach function, 120–121
foo_pci_detach function, 121–122
foo_pci_probe function, 120
force_short_xfer flag, 262
format argument, 46
frames field, 261
free function, 18

G
g (group) argument, 29
global taskqueues, 97

H
handler argument, 46
hardware resource management with 

Newbus drivers, 122–124
HBA (host bus adapter) driver

mfip_action function, 236–238
mfip_attach function, 234–235
mfip_detach function, 235–236
mfip_done function, 240–241
mfip_poll function, 238
mfip_start function, 238–240

Hello, world! KLD, 5–6
highaddr argument, 197
host bus adapter (HBA) driver. See HBA 

driver
314 INDEX



I
IEEE 1394 (FireWire), 226
if* structures, 291
ifaddr_event event handler, 93
*ifattach function, 285
if_clone_event event handler, 93
if_index field, 261
if_init field, 285
if_initname function, 287
if_input field, 285
if_ioctl field, 285
ifmedia_add function, 290
ifmedia_removeall function, 291
ifmedia_set function, 291
ifmedia structure, 289
IFM_GMASK mask, 291
IFM_IMASK mask, 291
IFM_MMASK mask, 291
IFM_NMASK mask, 291
IFM_OMASK mask, 291
IFM_TMASK mask, 291
ifnet_arrival_event event handler, 93
ifnet_departure_event event handler, 93
ifnet structure, 283, 286–287
if_output field, 285–286
if_qflush field, 286
if_reassign field, 286
if_resolvemulti field, 286
if_start field, 286
if_transmit field, 286
if_watchdog field, 286
implementing MSI, 294–296
initiating transfers using DMA, 196
init routines, 285
input/output (I/O) operations. See I/O 

operations
input routine, 285
Intelligent Platform Management Inter-

face (IPMI) driver. See IPMI driver
Intel PCI Gigabit Ethernet adapter driver, 

291–293
interfaces, 7, 258, 283
interrupt, defined, 125
interrupt endpoints, 258
interrupt handlers

examples of
pint_attach function, 133–134
pint_close function, 135–136
pint_detach function, 134
pint_identify function, 132
pint_intr function, 137–138
pint_open function, 134–135

pint_probe function, 132–133
pint_read function, 136–137
pint_write function, 136

overview, 125, 126–127
on parallel port, 138–139
registering, 125–126

interrupt-request lines (IRQs), 122
interval field, 261
INTR_ENTROPY constant, 126
INTR_MPSAFE constant, 126
INVARIANTS option, 18
I/O (input/output) operations. See also 

MMIO; PMIO
ioctl interface

commands for, 29–30
echo_ioctl function, 36
echo_modevent function, 36–37
echo_set_buffer_size function, 35
echo_write function, 34–35
invoking, 37–40

sysctl interface
contexts for, 44
dynamic sysctl, 44–47
overview, 40–44
SYSCTL_CHILDREN macro, 47
sysctl_set_buffer_size function, 50–52
SYSCTL_STATIC_CHILDREN macro, 47

ioctl commands, 28
ioctl interface

commands for, 29–30
echo_ioctl function, 36
echo_modevent function, 36–37
echo_set_buffer_size function, 35
echo_write function, 34–35
invoking, 37–40

_IO macro, 29
i-Opener LEDs driver

led_attach function, 178
led_close function, 180
led_detach function, 178–179
led_identify function, 177
led_open function, 179
led_probe function, 177–178
led_read function, 180–181
led_write function, 181–182

_IOR macro, 29
_IOW macro, 29
_IOWR macro, 29
IPMI (Intelligent Platform Management 

Interface) driver
ipmi2_pci_attach function, 189–191
ipmi2_pci_probe function, 189
ipmi_pci_attach function, 187–189
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IPMI driver, continued
ipmi_pci_match function, 186
ipmi_pci_probe function, 185–186

ipmi2_pci_attach function, 189–191
ipmi2_pci_probe function, 189
ipmi_attached variable, 186
ipmi_identifiers array, 186
ipmi_pci_attach function, 187–189
ipmi_pci_match function, 186
ipmi_pci_probe function, 185–186
IRQs (interrupt-request lines), 122
isochronous endpoints, 258
ithread argument, 126
ithread routine, 127

K
Keyboard Controller Style (KCS) 

mode, 188
KLDs (loadable kernel modules)

block drivers, 15–16
character drivers

character device switch table, 8
destroy_dev function, 9
DEV_MODULE macro, 15
d_foo function, 7–8
echo_modevent function, 14
echo_read function, 13–14
echo_write function, 12–13
loading, 15
make_dev function, 9

compiling and loading, 6–7
DECLARE_MODULE macro

data argument, 4
name argument, 4
order argument, 4–5
sub argument, 4

Hello, world! example, 5–6
module event handlers, 2–3

kldunload -f command, 61

L
LED driver

led_attach function, 178
led_close function, 180
led_detach function, 178–179
led_identify function, 177
led_open function, 179
led_probe function, 177–178
led_read function, 180–181
led_write function, 181–182

len argument, 46
loadable kernel modules (KLDs). See KLDs

load function, 89–90
loading

character drivers, 15
KLDs, 6–7

lockfuncarg argument, 198
lockfunc argument, 198
locks, 65
longdesc argument, 19
lowaddr argument, 197
LP_BUSY flag, 157
LP_BYPASS flag, 156
lpt_attach function, 148–150
lpt_close function, 159–160
lptcontrol(8) utility, 162
lpt_detach function, 150
lpt_detect function, 147–148
lpt_identify function, 146
lpt_intr function, 156–157
lpt_ioctl function, 160–162
lpt_open function, 151–153
lpt_port_test function, 147, 148
lpt_probe function, 146
lpt_push_bytes function, 158–159
lpt_read function, 153–154
lpt_release_ppbus function, 162–163
lpt_request_ppbus function, 162
lpt_timeout function, 158
lpt_write function, 154–156

M
make_dev function, 9
Makefiles, 6
MALLOC_DECLARE macro, 20
MALLOC_DEFINE macro, 19
malloc function, 18
malloc_type structures

MALLOC_DECLARE macro, 20
MALLOC_DEFINE macro, 19

management routines
for condition variables, 80–81
for disk structures, 210
for DMA maps, 199, 202–203
for MSI (Message Signaled 

Interrupts), 297
for mutex locks, 66–68
for network interface media structures, 

289–291
for network interface structures, 

286–288
for rw (reader/writer) locks, 78–79
for sx (shared/exclusive) locks, 73–75
for taskqueues, 97–98
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mandatory fields for USB drivers, 260
mandatory media properties for disk struc-

tures, 209
manual_status flag, 262
maps, DMA, 199, 202–203
masks, for ignoring bits, 291
max_dev_transactions argument, 242, 243
MAX_EVENT constant, 88
maxsegsz argument, 198
maxsize argument, 198
max_tagged_dev_transactions argument, 243
mbuf argument, 201
mbuf chain, 293
mbuf structures, 293–294
M_ECHO structure, 22
media properties for disk structures

mandatory, 209
optional, 209

memory allocation
contiguous physical memory, 22–25
malloc_type structures

MALLOC_DECLARE macro, 20
MALLOC_DEFINE macro, 19

overview, 17–19
memory barriers, 172
memory-mapped I/O (MMIO). See MMIO
Message Signaled Interrupts (MSI), 294

implementing, 294–296
management routines for, 297

methods structure for USB drivers, 265
mfi(4) code base, 241
mfi_intr function, 240
mfip_action function, 236–238
mfip_attach function, 234–235
mfip_detach function, 235–236
mfip_done function, 240–241
mfip_poll function, 238
mfip_start function, 238–240
mfi_startio function, 239, 252
MMIO (memory-mapped I/O). See also 

I/O operations; PMIO
and memory barriers, 172
reading from, 166–167
stream operations, 169–172
writing to, 167–169

M_NOWAIT constant, 19, 23
modem drivers. See virtual null modem
modeventtype_t argument, 3
MOD_QUIESCE constant, 61
module event handlers, 2–3
MSI (Message Signaled Interrupts), 294

implementing, 294–296
management routines for, 297

MSI message, 294

MSI-X (Extended Message Signaled 
Interrupts), 294

MSI-X message, 294
msleep_spin function, 85
MTX_DEF constant, 67
mtx_destroy function, 68
MTX_DUPOK constant, 67
mtx_init function, 67
MTX_NOPROFILE constant, 67
MTX_NOWITNESS constant, 67
MTX_QUIET constant, 67
MTX_RECURSE constant, 67
MTX_SPIN constant, 67
mtx_trylock function, 68
mtx_unlock_spin function, 68
mutex locks

management routines for, 66–68
race_modevent function, 71–72
sleep mutexes, 66
spin mutexes, 65–66

M_WAITOK constant, 19, 23
mword value, 290–291
M_ZERO constant, 19, 23

N
name argument

for DECLARE_MODULE macro, 4
description of, 46
for DRIVER_MODULE macro, 116

n argument, 30
network devices, 2
network drivers

example of, 291–293
mbuf structures, 293–294
MSI (Message Signaled Interrupts), 294

implementing, 294–296
management routines for, 297

network interface media structures, 
289–291

network interface structures
ether_ifattach function, 287–288
ether_ifdetach function, 288
management routines for, 286–288

packets. 
post transmitting, 307–308
receiving, 299–303
transmitting, 304–307

network interface media structures, 
289–291

network interface structures
ether_ifattach function, 287–288
ether_ifdetach function, 288
management routines for, 286–288
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Newbus drivers
device_foo functions, 114–115
device method table, 115
DRIVER_MODULE macro

arg argument, 116
busname argument, 116
devclass argument, 116
driver argument, 116
evh argument, 116
name argument, 116

example of
d_foo functions, 121
foo_pci_attach function, 120–121
foo_pci_detach function, 121–122
foo_pci_probe function, 120
loading, 122

hardware resource management with, 
122–124

overview, 113–114
nibble mode, 154
nmdm(4) driver, 99–100, 102
nmdm_alloc function, 105–106
nmdm_clone function, 104
nmdm_count variable, 103
nmdm_inwakeup function, 108
nmdm_modem function, 108–109
nmdm_modevent function, 103
nmdm_outwakeup function, 106
nmdm_param function, 109–110
nmdm_task_tty function, 106–107
nmdm_timeout function, 110, 111
no_pipe_ok flag, 262
np_rate variable, 110
nsegments argument, 198
ns_part variables, 106
number argument, 46

O
optional fields for USB drivers, 260–261
optional media properties for disk 

structures, 209
order argument, 4–5
output routines, 285–286

P
packets

post transmitting, 307–308
receiving

em_handle_rx function, 303
em_rxeof function, 300–303

transmitting
em_start_locked function, 304–305
em_txeof function, 305–307

parallel port
interrupt handlers on, 138–139
printer driver example

lpt_attach function, 148–150
lpt_close function, 159–160
lpt_detach function, 150
lpt_detect function, 147–148
lpt_identify function, 146
lpt_intr function, 156–157
lpt_ioctl function, 160–162
lpt_open function, 151–153
lpt_port_test function, 148
lpt_probe function, 146
lpt_push_bytes function, 158–159
lpt_read function, 153–154
lpt_release_ppbus function, 162–163
lpt_request_ppbus function, 162
lpt_timeout function, 158
lpt_write function, 154–156

parent argument, 46, 197
pause function, 85
pci_alloc_msi function, 297
pci_alloc_msix function, 297
pci_msi_count function, 297
pci_msix_count function, 297
PCIR_BAR(x) macro, 189
pci_release_msi function, 297
_pcsid structures, 120
physical memory, contiguous, 22–25
pint_attach function, 133–134
pint_close function, 135–136
pint_detach function, 134
pint_identify function, 132
pint_intr function, 137–138
pint_open function, 134–135
pint_probe function, 132–133
pint_read function, 136–137
pint_write function, 136
pipe, defined, 257
pipe_bof flag, 262
PMIO (port-mapped I/O). See also I/O 

operations; MMIO
i-Opener LEDs driver example

led_attach function, 178
led_close function, 180
led_detach function, 178–179
led_identify function, 177
led_open function, 179
led_probe function, 177–178
led_read function, 180–181
led_write function, 181–182

and memory barriers, 172
reading from, 166–167
stream operations, 169–172
writing to, 167–169
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poll routines, 238
port-mapped I/O (PMIO). See PMIO
power_profile_change event handler, 93
ppb_release_bus function, 136
ppb_sleep function, 137
printer driver

ulpt_close function, 276
ulpt_detach function, 273
ulpt_ioctl function, 276
ulpt_open function, 273–274
ulpt_probe function, 270–273
ulpt_read_callback function, 280–281
ulpt_reset function, 274
ulpt_start_read function, 277
ulpt_start_write function, 278
ulpt_status_callback function, 281–282
ulpt_stop_read function, 278
ulpt_stop_write function, 278
ulpt_watchdog function, 277
ulpt_write_callback function, 279–280
unlpt_open function, 275–276

priority argument, 84
process_exec event handler, 93
process_exit event handler, 93
process_fork event handler, 93
proxy_buffer flag, 262
pseudocode, 194–195
pseudo-devices, 2

Q
qflush routines, 286

R
race conditions, 65
race_destroy function, 59
race_find function, 58–59
RACE_IOC_ATTACH operation, 60
RACE_IOC_DETACH operation, 60
RACE_IOC_LIST operation, 60
RACE_IOC_QUERY operation, 60
race_ioctl function, 59–61, 70
race_ioctl.h header, 57
race_ioctl_mtx function, 70
race_modevent function, 60–61, 71–72
race_new function, 58
race_softc structure, 57, 58, 59, 64
r argument, 126
readers, defined, 78
reader/writer (rw) locks, 78–79
reading

from MMIO (memory-mapped I/O), 
166–167

from PMIO (port-mapped I/O), 166–167

read operations, 29
reallocf function, 18
realloc function, 18
reassign routines, 286
receiving packets

em_handle_rx function, 303
em_rxeof function, 300–303
overview, 299–300

recursing on exclusive locks, avoiding, 81
registering interrupt handlers, 125–126
resolvemulti routines, 286
RF_ACTIVE constant, 123
RF_ALLOCATED constant, 123
RF_SHAREABLE constant, 123
RFSTOPPED constant, 90
RF_TIMESHARE constant, 123
rid argument, 123
rw (reader/writer) locks, 78–79
rw_destroy function, 79
rw_init_flags function, 79
rw_init function, 79
rw_runlock function, 79
rw_try_rlock function, 79
rw_try_wlock function, 79
rw_wunlock function, 79

S
scatter/gather segment, 198
sc_open_mask value, 179
sc_open_mask variable, 178
sc_read_mask variable, 178
sc->sc_state value, 135–136, 152
SCSI Parallel Interface (SPI), 226
Server Management Interface Chip 

(SMIC) mode, 188
shared/exclusive (sx) locks. See sx locks
shared holds, 73
shortdesc argument, 19
short_frames_ok flag, 262
short_xfer_ok flag, 262
shutdown_final event handler, 92, 93
shutdown_post_sync event handler, 93
shutdown_pre_sync event handler, 93
sigoff argument, 109
sigon argument, 109
SIM queues, 235
SIM registration routines for CAM 

(Common Access Method)
cam_sim_alloc function, 242–243
cam_simq_alloc function, 242
xpt_bus_register function, 243

SIMs (software interface modules), 225
size argument, 18
*sleep function, 66
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sleeping, 66, 83–85, 98
sleep_modevent function, 88–89
sleep mutexes, 66
sleep_thread function, 90–91
SMBIOS (System Management 

BIOS), 188
SMIC (Server Management Interface 

Chip) mode, 188
software interface modules (SIMs), 225
SPI (SCSI Parallel Interface), 226
spi_command structure, 220, 223
spin, defined, 65
spin mutexes, 65–66
stall_pipe flag, 262
start argument, 123
start routines, 286
static node, 47
status_callback argument, 290
storage device methods for disk 

structures, 209
storage drivers

block I/O queues, 212–213
block I/O structures, 210–211
disk structures

descriptive fields, 208–209
driver private data, 210
management routines for, 210
mandatory media properties, 209
optional media properties, 209
storage device methods, 209

flash memory driver example
at45d_attach function, 217–218
at45d_delayed_attach function, 218–219
at45d_get_info function, 219–220
at45d_get_status function, 220–221
at45d_strategy function, 221
at45d_task function, 221–223

strategy routines, 209
stream operations, 169–172
struct usb_xfer * argument, 262–264
sub argument, 4
sx (shared/exclusive) locks

avoid holding exclusive locks for long 
periods of time, 82

avoid recursing on exclusive locks, 81
example of, 75–78
management routines for, 73–75

sx_destroy function, 75
SX_DUPOK constant, 74
sx_init_flags function, 74
sx_init function, 74
SX_NOADAPTIVE constant, 74
SX_NOPROFILE constant, 74

SX_NOWITNESS constant, 74
SX_QUIET constant, 74
SX_RECURSE constant, 74
sx_slock_sig function, 74
sx_unlock function, 75
sx_xlock_sig function, 74
sx_xunlock function, 74
synchronization primitives, 65
synchronizing DMA buffers, 205
SYSCTL_ADD_* macros, 44, 46–47
SYSCTL_ADD_INT macro, 43
SYSCTL_ADD_LONG macro, 42
SYSCTL_ADD_NODE macro, 42, 43, 47
SYSCTL_ADD_OID macro, 46
SYSCTL_ADD_PROC macro, 43
SYSCTL_ADD_STRING macro, 43
SYSCTL_CHILDREN macro, 47
sysctl contexts, 42
sysctl_ctx_init function, 44
sysctl_debug_sleep_test function, 90, 91
SYSCTL_HANDLER_ARGS constant, 51
sysctl interface

contexts for, 44
dynamic sysctl, 44–47
overview, 40–44
SYSCTL_CHILDREN macro, 47
sysctl_set_buffer_size function, 50–52
SYSCTL_STATIC_CHILDREN macro, 47

sysctl_set_buffer_size function, 50–52
SYSCTL_STATIC_CHILDREN macro, 47
sysinit_elem_order enumeration, 4
<sys/malloc.h> header, 20
<sys/module.h> header, 4
SYS_RES_IOPORT constant, 123
SYS_RES_IRQ constant, 123
SYS_RES_MEMORY constant, 123
System Management BIOS 

(SMBIOS), 188

T
tags for DMA

creating, 197–198
destroying, 198–199

t argument, 30
TASK_INIT macro, 98
taskqueue_drain function, 98
taskqueue_enqueue function, 98
taskqueue_run function, 98
taskqueues

global, 97
management routines for, 97–98
overview, 96–97
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tasks, 96
TF_NOPREFIX flag, 105
threads, context switches by, 84
thread synchronization

example of
problem in, 61–65
race_destroy function, 59
race_find function, 58–59
race_ioctl function, 59–60
race_modevent function, 60–61
race_new function, 58

locks, 65
mutex locks

management routines for, 66–68
race_modevent function, 71–72
sleep mutexes, 66
spin mutexes, 65–66

reasons for, 54
rw (reader/writer) locks, 78–79
sx (shared/exclusive) locks

avoid holding exclusive locks for long 
periods of time, 82

avoid recursing on exclusive locks, 81
example of, 75–78
management routines for, 73–75

timeout field, 260
timo argument, 85
transfer flags for USB drivers, 261–262
transfers using DMA, 196
transmit routines, 286
transmitting packets

em_start_locked function, 304–305
em_txeof function, 305–307
post transmitting, 307–308

tsleep function, 84
tty_alloc_mutex function, 100
TTY device, 100
tty_makedev function, 100
tty_softc function, 100
tx_buffer variable, 306
tx_desc variable, 306
type field, 260

U
UE_BULK endpoint type, 261
UE_CONTROL endpoint type, 261
UE_DIR_ANY constant, 260
UE_DIR_IN constant, 260
UE_DIR_OUT constant, 260
UE_INTERRUPT endpoint type, 261
UE_ISOCHRONOUS endpoint type, 261
ulpt_close function, 276
ulpt_detach function, 273

ulpt_ioctl function, 276
ulpt_open function, 273–274
ulpt_probe function, 270–273
ulpt_read_callback function, 280–281
ulpt_reset function, 274
ulpt_start_read function, 277
ulpt_start_write function, 278
ulpt_status_callback function, 281–282
ulpt_stop_read function, 278
ulpt_stop_write function, 278
ulpt_watchdog function, 277
ulpt_write_callback function, 279–280
UMASS (USB Mass Storage), 226
Universal Serial Bus (USB) drivers. See 

USB drivers
unload function, 89, 91–92
unlpt_open function, 275–276
USB (Universal Serial Bus) drivers

configuration structures
management routines for, 264–265
mandatory fields, 260
optional fields, 260–261
transfer flags, 261–262

data transfers, 262–264
methods structure, 265
overview, 257–259
printer driver example

ulpt_close function, 276
ulpt_detach function, 273
ulpt_ioctl function, 276
ulpt_open function, 273–274
ulpt_probe function, 270–273
ulpt_read_callback function, 280–281
ulpt_reset function, 274
ulpt_start_read function, 277
ulpt_start_write function, 278
ulpt_status_callback function, 281–282
ulpt_stop_read function, 278
ulpt_stop_write function, 278
ulpt_watchdog function, 277
ulpt_write_callback function, 279–280
unlpt_open function, 275–276

usb_config structures, 259
usbd_transfer_drain function, 265
usbd_transfer_setup function, 264
usbd_transfer_start function, 264
usbd_transfer_stop function, 265
usb_fifo_attach function, 265
usb_fifo_detach function, 265
usb_fifo_methods structure, 265
USB frames, 261
USB Mass Storage (UMASS), 226
USB packets, 261
USB_ST_SETUP constant, 264
INDEX 321



V
variable declarations, 88
virtual null modem

bits_per_char function, 111–112
loading, 112
nmdm_alloc function, 105–106
nmdm_clone function, 104
nmdm_inwakeup function, 108
nmdm_modem function, 108–109
nmdm_modevent function, 103
nmdm_outwakeup function, 106
nmdm_param function, 109–110
nmdm_task_tty function, 106–107
nmdm_timeout function, 111
overview, 99–100

vm_lowmem event handler, 93
voluntary context switching, 83–85

W
Wake-on-LAN (WOL), 293
wakeup function, 85
watchdog_list event handler, 93
WOL (Wake-on-LAN), 293
wmesg argument, 85
write operations, 29
writing

to MMIO (memory-mapped I/O), 
167–169

to PMIO (port-mapped I/O), 167–169

X
xpt_action function, 227
xpt_bus_register function, 243
xpt_done function, 227
XPT_GET_TRAN_SETTINGS constant, 246–249
XPT_GET_TRAN_SETTINGS operation, 248
XPT_PATH_INQ constant, 243–245
XPT_PATH_INQ operation, 244
XPT_RESET_BUS constant, 245–246
XPT_RESET_DEV constant, 255
xpt_run_dev_allocq function, 227
xpt_schedule function, 226, 227
XPT_SCSI_IO constant, 250–255
XPT_SET_TRAN_SETTINGS constant, 249
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