

Natural Computing Series

Series Editors: G. Rozenberg

Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink

Leiden Center for Natural Computing

Advisory Board: S. Amari G. Brassard K.A. De Jong C.C.A.M. Gielen T. Head

L. Kari L. Landweber T. Martinetz Z. Michalewicz M.C. Mozer E. Oja

G. P˘aun J. Reif H. Rubin A. Salomaa M. Schoenauer H.-P. Schwefel C. Torras D. Whitley E. Winfree J.M. Zurada

For further volumes:

www.springer.com/series/4190

Frank Neumann r Carsten Witt

Bioinspired Computation

in Combinatorial Optimization

Algorithms and Their

Computational Complexity

Dr. Frank Neumann

Dr. Carsten Witt

Max Planck Institute for Informatics

Technical University of Denmark

Dept. of Algorithms and Complexity

Dept. of Informatics

Campus E14

and Mathematical Modelling

66123 Saarbrücken

Richard Petersens Plads

Germany

2800 Kgs. Lyngby

frank.neumann@mpi-inf.mpg.de

Denmark

cawi@imm.dtu.dk

 Series Editors

G. Rozenberg (Managing Editor)

rozenber@liacs.nl

Th. Bäck, J.N. Kok, H.P. Spaink

Leiden Center for Natural Computing

Leiden University

Niels Bohrweg 1

2333 CA Leiden, The Netherlands

A.E. Eiben

Vrije Universiteit Amsterdam

The Netherlands

ISSN 1619-7127

ISBN 978-3-642-16543-6

e-ISBN 978-3-642-16544-3

DOI 10.1007/978-3-642-16544-3

Springer Heidelberg Dordrecht London New York

ACM Computing Classification (1998): F.2, G.1, G.2, I.2

© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

 Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Aneta, Linda, Michelle and Ying

Foreword

Bioinspired computing is successful in practice. Over the past decade a body of theory for bioinspired computing has been developed. The authors have

contributed significantly to this body and give a highly readable account of it. (Kurt Mehlhorn, Max Planck Institute for Informatics, and Saarland University, Germany)

Bioinspired algorithms belong to the most powerful methods used to tackle

real world optimization problems. This book gives such algorithms a solid

foundation. It presents some of the most exciting results that have been obtained in bioinspired computing in the last decade. (Zbigniew Michalewicz, University of Adelaide, Australia)

This book presents a most welcome theoretical computer science approach

and perspective to the design and analysis of discrete evolutionary algorithms.

It describes the design and derivation of evolutionary algorithms which have precise computation complexity bounds for combinatorial optimization. The

book should appeal to researchers and practitioners of evolutionary algorithms and computation who want to learn the state of the art in evolutionary algorithm theory. (Una-May O’Reilly, CSAIL, MIT, USA)

The evolutionary computation community has been in need of rigorous results concerning the computational complexity of their approaches for decades. This is the first textbook covering such a fundamental topic. It provides an excel-lent overview of the state of the art in this research area, in terms of both the results obtained and the analytical methods. It is an indispensable book for everyone who is interested in the foundations of evolutionary computation.

(Xin Yao, University of Birmingham, UK)

Preface

Inspiration from biology has led to several successful algorithmic approaches.

Such methods are frequently used to tackle hard and complex optimization

problems. Biologically inspired algorithms such as evolutionary algorithms

and ant colony optimization have found numerous applications for solving

problems from computational biology, engineering, logistics, and telecommunications. Many problems arising in these application domains belong to the field of combinatorial optimization. Bio-inspired algorithms have achieved tremen-dous success when applied to such problems in recent years.

In contrast to many successful applications of bio-inspired algorithms, the theoretical foundation of these algorithms lags far behind their practical success. This is mainly due to the fact that these algorithms make use of random decisions in different modules. This leads to stochastic processes that are hard to analyze. This book treats bio-inspired computing methods as stochastic algorithms and presents rigorous results on their runtime behavior.

The book is meant to give researchers a state-of-the-art presentation on

theoretical results of bio-inspired computing methods in the context of combinatorial optimization. Furthermore, it can be used as basic material for

courses on bio-inspired computing that are meant for graduate students and

advanced undergraduates.

The book is organized into three parts. It starts with a general introduction into bio-inspired algorithms and their computational complexity. Later on,

different methods that have been developed in recent years are presented in a comprehensive manner. Afterwards, we present some of the major results that have been achieved in the field of single-objective optimization. We consider different problems such as minimum spanning trees, maximum matchings,

and the computation of shortest paths. After these studies, we turn to multiobjective optimization. We tackle classical multi-objective problems such as the computation of multi-objective minimum spanning trees as well as show

that multi-objective approaches lead provably to better algorithms for classical single-objective problems.

X

Preface

Taking the book as basic material for a course on theoretical aspects of

bio-inspired computing, we suggest you spend 12 hours of class time on Part I.

This part of the book gives all the basics for the different analyses that are carried out later. Therefore, we see it as mandatory for a teaching course.

The chapters of Parts II and III can be studied more or less independently

depending on the focus that lecturers want to set during their course. We

suggest you spend four hours on each chapter of Parts II and III if they are made to be part of a course.

We thank all our colleagues who worked with us on bio-inspired computa-

tion during recent years. In particular, we like to mention the research groups at the University of Adelaide, Technical University of Berlin, University of Birmingham, Massachusetts Institute of Technology, Technical University of

Denmark, Technical University of Dortmund, Max Planck Institute for Infor-

matics, and Swiss Federal Institute of Technology Zurich.

Saarbrücken, Kongens Lyngby

 Frank Neumann

September 2010

 Carsten Witt

Contents

Part I Basics

1

Introduction .

3

2

Combinatorial Optimization and Computational

Complexity .

9

2.1

Combinatorial Optimization .

9

2.2

Computational Complexity . 12

2.3

Approximation Versus Exact Optimization 16

2.4

Multi-objective Optimization . 17

3

Stochastic Search Algorithms . 21

3.1

Evolutionary Algorithms . 22

3.2

Ant Colony Optimization . 28

3.3

Other Stochastic Search Algorithms . 30

4

Analyzing Stochastic Search Algorithms 33

4.1

Simple Stochastic Search Algorithms . 33

4.2

Basic Methods for the Analysis . 37

Part II Single-objective Optimization

5

Minimum Spanning Trees . 51

5.1

Representation for Evolutionary Algorithms 53

5.2

Properties of Local Changes . 54

5.3

Analysis of Evolutionary Algorithms . 56

5.4

Analysis of Ant Colony Optimization . 63

XII

Contents

6

Maximum Matchings . 75

6.1

Representations and Underlying Concepts 76

6.2

Approximation Quality for General Graphs 77

6.3

Upper Bounds for Simple Graph Classes . 79

6.4

A Worst-Case Result . 85

7

Makespan Scheduling . 95

7.1

Representations and Neighborhood Structure 96

7.2

Worst-Case Analysis . 98

7.3

Average-Case Analysis . 103

8

Shortest Paths . 111

8.1

Single Source Shortest Paths . 112

8.2

All Pairs Shortest Paths . 117

8.3

Analysis of Ant Colony Optimization . 121

9

Eulerian Cycles . 133

9.1

Edge Permutations . 134

9.2

Adjacency List Matchings . 140

Part III Multi-objective Optimization

10 Multi-objective Minimum Spanning Trees 149

10.1 Representation . 150

10.2 Extremal Points of the Convex Hull . 150

10.3 Analysis of GSEMO . 153

11 Minimum Spanning Trees Made Easier . 161

11.1 A Two-Objective Model . 162

11.2 Analysis of the Expected Optimization Time 163

11.3 Experimental Results . 166

12 Covering Problems . 171

12.1 Problem Formulation and Representation 172

12.2 Single-objective Optimization . 173

12.3 Multi-objective Optimization . 182

13 Cutting Problems . 191

13.1 Single-objective Approaches . 192

13.2 Multi-objective Model for the Multicut Problem 196

A

Appendix . 205

A.1 Probability Distributions . 205

A.2 Deviation Inequalities . 206

A.3 Other Useful Formulas . 206

References . 209

Part I

Basics

1

Introduction

Algorithms play an important role in computer science and are essential for several important applications. The term “algorithm” refers to a procedure to solve a given problem. Such a problem may have different features and structures, and in the case where the problem is well understood, specific algorithms may be designed that achieve good solutions for the problem at hand. The

design and the analysis of such problem-specific algorithms has been widely studied for a wide range of problems (Cormen, Leiserson, Rivest, and Stein,

2001). The goal in this field of research is to obtain algorithms that are provably optimal with respect to the runtime and/or approximation ability for

the studied problem. Studying a specific problem allows us to obtain knowl-

edge about the problem at hand, which can be used for the development

and the analysis of problem-specific algorithms. When looking at the results obtained in this field, the reader may observe the following. Often problem-specific algorithms are very complicated as they try to incorporate as much problem knowledge as possible so that good guarantees about the runtime

and/or approximation quality can be proven. On the other hand, there are

also many simple randomized algorithms available for which good performance guarantees can be given (Motwani and Raghavan, 1995). The proof that such simple algorithms work well is usually more complicated as knowledge about

the problem is only implicitly present in the algorithm and is worked out in the analysis.

In many situations, it is not possible to develop problem-specific algo-

rithms that have good performance guarantee. This is the case if a newly

given problem is complex and/or has not been studied extensively before. In fact, most of the algorithms used in practice such as so-called bio-inspired computing and mixed integer programming do not come along with rigorous

proofs that give bounds on the runtime and/or approximation quality. Instead they provide high performance results in experimental studies and it is often hard to understand why they perform well in a particular setting. Another important advantage is that these algorithms often can be applied without much F. Neumann, C. Witt, Bioinspired Computation

3

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 1, © Springer-Verlag Berlin Heidelberg 2010

4

1 Introduction

knowledge about the problem at hand, which makes them highly suitable for

various applications.

We discuss such algorithms that are highly successful in practice. As their application often does not require specific knowledge about the problem at

hand, we refer to them as general-purpose algorithms. The design of such an algorithm should only involve the following three steps, which makes it very easy to apply such methods to a newly given problem.

1. Choose a representation of possible solutions.

2. Determine a function to evaluate the quality of a solution.

3. Define operators that produce from a current set of solutions a new set of solutions.

Well-known simple approaches fitting this setting are local search (LS)

(Aarts and Lenstra, 2003; Hoos and St¨

utzle, 2004), and simulated annealing (SA) (van Laarhoven and Aarts, 1997). On the other hand, general-purpose algorithms have been designed that are inspired by processes observed in nature. Such algorithms belonging to the field of bio-inspired computation usually involve more complicated operators than the two approaches mentioned

before. The field of bio-inspired computation covers many algorithmic ap-

proaches inspired by processes observed in nature. It includes well-known approaches such as evolutionary algorithms (EAs) (Eiben and Smith, 2007), ant colony optimization (ACO) (Dorigo and St¨

utzle, 2004), and particle swarm

optimization (PSO) (Kennedy and Eberhart, 1995).

Throughout this book, we will concentrate on evolutionary algorithms and

ant colony optimization. However, we are optimistic that the insights and

methods presented in this book may also be useful for obtaining similar re-

sults for other bio-inspired computation methods. Evolutionary algorithms

are perhaps the most popular kind of algorithms belonging to the field of

bio-inspired computation. They were introduced in the 1960s and have been

applied to complex engineering problems as well as to problems from com-

binatorial optimization. In the case of a complex engineering problem, the

structure of the problem is often not known. Then the quality of a certain

parameter setting can often only be evaluated by experiments or simulations.

Such problems are considered in the field of black-box optimization, where

the value of a parameter setting can only be given after having executed some experiments or simulations. EAs have shown to be very successful on many

problems from black-box optimization. In the case of combinatorial optimization, often much more is known about the structure of a given problem, and

the function to be optimized can be given and analyzed. Nevertheless, it is often difficult to obtain good solutions for such problems, especially if the problem is new and there are not enough resources (such as time, knowledge, money) to design specific algorithms for the given problem.

Ant colony optimization is a more recent but also very well established

branch in the field of bio-inspired computation, with the very first publications dating back to the early 1990s (Dorigo, Maniezzo, and Colorni, 1991).

1 Introduction

5

This approach is inspired by the way ant colonies find shortest paths in unknown environments using pheromone trails as a means of communication.

ACO algorithms construct solutions to problems by letting so-called artificial ants perform guided random walks on construction graphs. Promising paths

through the graphs are rewarded by means of so-called pheromone updates

which increase the probability of rediscovering and, possibly, further improving the solution. The underlying concept of a construction graph makes the

approach very attractive for the solution of combinatorial optimization problems, in particular graph problems; however, in principle, any black-box problem in the above sense can be treated by ACO.

Due to the biological models that have been in mind when designing these

algorithms, they are not designed for analysis in a classical sense. A major point in the design and analysis of algorithms is to prove bounds on the

runtime that such algorithms have in order to obtain optimal or nearly op-

timal solutions. Often the design process for a certain problem is influenced by the goal of proving that the algorithm achieves good solutions quickly. In the case of bio-inspired computation methods, the goal was rather the development of algorithms that behave well for a wide range of problems by

imitating optimization processes observed in nature. Such algorithms have

then been examined experimentally to show their efficiency. Due to this background, bio-inspired computation methods are from a natural point of view

not easy to analyze. However, there has been a lot of progress in understanding such methods rigorously in recent years. The goal of this book is to give an overview of the different results that have been achieved by studying the computational complexity of bio-inspired computation. We will, in particular, emphasize problems from combinatorial optimization as these algorithms have been used for many applications in this area.

Until the 1990s, theoretical work in the area of evolutionary algorithms

was concentrated on showing that an algorithm converges to an optimal so-

lution after a finite number of steps. In contrast, it has been considered what happens in one iteration of the algorithms. Although these are interesting investigations, the two aspects do not allow us to give upper or lower bounds on the runtime of an evolutionary algorithm for a considered problem.

As bio-inspired computation methods make use of a lot of random deci-

sions, it seems appropriate to treat them as randomized algorithms in a classical sense. Therefore, we also refer to them as stochastic search algorithms to point out that we regard bio-inspired computation methods as algorithms

that involve random decisions. Taking this point of view, it seems natural to analyze the runtime of stochastic search algorithms in a classical way, e.g., by bounding the expected runtime to achieve good solutions for a certain problem. Runtime analyses of bio-inspired computation methods have to consider

problems where the function to be optimized can at least be covered analyt-

ically. As explained before, this is often not possible for complex engineering problems. Therefore, we consider combinatorial optimization problems, which seem to be natural, but non-trivial examples where bio-inspired computation

6

1 Introduction

methods have been applied. The rigorous analysis of such algorithms with respect to their runtime behavior is a relatively new research area. Most of the results in recent years have been obtained for evolutionary algorithms. Later on, newer variants such as ant colony optimization, particle swarm optimization, and artificial immune systems have been taken into account. We will

mainly focus on evolutionary algorithms throughout this book but will dis-

cuss general methods that are also applicable for analyzing other bio-inspired computation methods.

The first theoretical result on the runtime of an evolutionary algorithm

was given by M¨

uhlenbein (1992). He presented an upper bound on the expected runtime of the simplest evolutionary algorithm, called (1+1) EA. The function considered is the simplest non-trivial pseudo-boolean function called OneMax, which counts the number of ones in a given bitstring. Since the

mid-1990s, more rigorous results on the runtime of the (1+1) EA for different kinds of pseudo-boolean functions have been obtained. The first step was a

much simpler proof for Mühlenbein’s result and a generalization of the given bound to linear pseudo-boolean functions done by Droste, Jansen, and Wegener (2002). Considering different pseudo-boolean functions, the main aim was to show the behavior of EAs in different situations. Together with these results, many techniques have been developed that are very useful to analyze more complicated EAs as well as the behavior of bio-inspired computation

methods on more natural problems. Recently, some of these techniques were

transferred and further developed in order to prove the first rigorous results on the runtime of ACO (Gutjahr, 2007; Neumann and Witt, 2009) and PSO

(Sudholt and Witt, 2010).

In this book, we present the major results that have been obtained re-

garding the computational complexity of bio-inspired computation methods

for combinatorial optimization problems. We study some of the most promi-

nent combinatorial optimization problems such as minimum spanning trees,

Eulerian cycles, shortest paths, maximum matchings, scheduling and cover-

ing problems. We cannot hope that general-purpose algorithms beat the best-

known problem-specific algorithms for such problems. Our goal is to under-

stand which structures and problems can be provably solved efficiently by

bio-inspired computation methods. Looking at the results presented in this

book, we can observe that bio-inspired computation methods are efficient

problem solvers for most of the mentioned problems although they only use a small amount of problem knowledge.

The book is divided into three major parts. The first one sets up and

reviews concepts of stochastic search algorithms and tools for their analysis.

Such analyses will be provided for two significant formulations of the investigated combinatorial problems, namely single-objective and multi-objective problems. The second part of the book concentrates on problems that are

naturally formulated as single-objective ones. The third part elaborates on a classical multi-objective problem as well as on multi-objective reformulations of originally single-objective problems. This kind of reformulation may intro-

1 Introduction

7

duce helpful information into the stochastic search algorithms and provably speed them up compared to the plain single-objective problem formulation.

Finally, the book contains an appendix with frequently used mathematical

tools.

2

Combinatorial Optimization and

Computational Complexity

Combinatorial optimization problems arise in several applications. Examples are the task of finding the shortest path from Paris to Rome in the road network of Europe or scheduling exams for given courses at a university. In this chapter, we give a basic introduction to the field of combinatorial optimization. Later on, we discuss how to measure the computational complexity of

algorithms applied to these problems and point out some general limitations for solving difficult problems.

2.1 Combinatorial Optimization

Optimization problems can be divided naturally into two categories. The first category consists of problems with continuous variables. Such problems are

well known from school courses on mathematics. A simple example consists of finding the minimum of the function f : R → R with f (x) = x 2. It is obvious that x 0 = 0 is the unique solution for this problem. More complicated problems are often tackled by computing the derivatives, using Newton methods

or linear programming techniques. As this book deals with combinatorial op-

timization problems, we will not go into detail the different methods to tackle continuous optimization problems, and refer the interested reader to Nocedal and Wright (2000).

In the case of discrete variables we are dealing with discrete optimiza-

tion. When speaking of combinatorial optimization problems, most people

have “natural” discrete optimization problems in mind, such as computing

shortest paths or scheduling different jobs on a set of available machines. In a combinatorial optimization problem, one aims at either minimizing or maximizing a given objective function under a given set of constraints.

A problem consists of a general question that has to be answered and is

given by a set of input parameters. An instance of a problem is given by the problem together with a specified parameter setting. Formally, a combinatorial optimization problem can be defined as a triple (S, f, Ω), where S is a given F. Neumann, C. Witt, Bioinspired Computation

9

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 2, © Springer-Verlag Berlin Heidelberg 2010

10

2 Combinatorial Optimization and Computational Complexity

Fig. 2.1. Example graph G

search space, f is the objective function, which should be either maximized or minimized, and Ω is the set of constraints that have to be fulfilled to obtain feasible solutions. The goal is to find a globally optimal solution, which is in the case of a maximization problem a solution s∗ with the highest objective value that fulfills all constraints. Similarly, in the case of minimization problems, one tries to achieve a smallest objective value under the condition that all constraints are fulfilled.

Throughout this book, we consider many combinatorial optimization prob-

lems on graphs. A directed graph G is a pair G = (V, E), where V is a finite set and E is a binary relation on V . The elements of V are called vertices. E

is called the edge set of G and its elements are called edges. For an illustration see Figure 2.1.

We use the notation e = (u, v) for an edge in a directed graph. Note that self-loops that are edges of the kind (u, u) are possible. In an undirected graph G = (V, E), no self-loops are possible. The edge set E consists of unordered pairs of vertices in this case, and an edge is a set {u, v} consisting of two distinct vertices u, v ∈ V . Note that one can think of an undirected edge

 {u, v} as two directed edges (u, v) and (v, u). If (u, v) is an edge in a directed graph G = (V, E) we say that v is adjacent to vertex u. This leads to the representation of graphs by adjacency matrices, which will be discussed later in greater detail. A path of length k from a vertex v 0 to a vertex vk in a graph G = (V, E) is a sequence v 0 , v 1 , . . . , vk of vertices such that (vi− 1 , vi) ∈ E, 1 ≤

 i ≤ n, holds. Note that a path implies a sequence of directed edges. Therefore, it is sometimes useful to denote a path (v 0 , v 1 , . . . , vk) by its sequence of directed edges (v 0 , v 1) , (v 1 , v 2) , . . . , (vk− 1 , vk).

The graph G in Figure 2.1 consists of the vertex set

2.1 Combinatorial Optimization

11

Fig. 2.2. Single source shortest path tree for G and s = v 1

 V = {v 1 , v 2 , v 2 , v 3 , v 4 , v 5 }

and the edge set

 E = {e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 6 , e 7 , e 8 }

where e 1 = {v 1 , v 2 }, e 2 = {v 1 , v 3 }, e 3 = {v 1 , v 4 }, e 4 = {v 2 , v 3 }, e 5 = {v 2 , v 5 }, e 6 = {v 3 , v 4 }, e 7 = {v 3 , v 5 }, and e 8 = {v 4 , v 5 }. In addition, there is a weight function w : E → N assigning weights to the edges, i.e., w(e 1) = w(e 4) =

 w(e 6) = 3, w(e 2) = w(e 7) = 1, and w(e 3) = w(e 5) = w(e 8) = 4. Clearly, (v 1 , v 2 , v 3 , v 5) is a path in G whereas (v 1 , v 5 , v 2) is not as there is no edge from v 1 to v 5.

There are many well-known combinatorial optimization problems on weigh-

ted graphs. We want to introduce two basic problems in the following. In the case of the single source shortest path problem, an undirected connected graph G = (V, E) with positive weights on the edges is given. The goal is to compute from a designated vertex s ∈ V the shortest paths to all other vertices of V \ {s}. The solution of this problem can be given by a tree rooted at s which contains the shortest paths. Considering the graph G of Figure 2.1 and s = v 1, a shortest path tree is shown in Figure 2.2. Another well-known combinatorial optimization problem on undirected connected graphs with positive weights

is the minimum spanning tree problem. Here, one searches for a connected

subgraph of the given graph G that has minimal cost. As the edge weights are positive, such a graph does not contain cycles, i.e., it is a tree. Considering again the graph G of Figure 2.1, a minimum spanning tree of G is given in Figure 2.3.

Other important problems on graphs are covering problems. In the case of

the so-called vertex cover problem for a given undirected graph G = (V, E),

12

2 Combinatorial Optimization and Computational Complexity

Fig. 2.3. Minimum spanning tree of G

one searches for a minimal subset of vertices V ⊆ V such that each edge e ∈ E contains at least one vertex of V , i.e., ∀e ∈ E : e ∩ V = ∅ holds.

Another class of combinatorial optimization problems that has been widely

examined in the literature is scheduling problems. Here, n jobs are given that have to be processed on m ≥ 1 machines. Associated with each job j, 1 ≤ j ≤ n, is usually a processing time pj. The processing time need not be the same for each machine. There are variants of scheduling problems where

the processing time may depend on the machine by which it is processed.

Often, also a specific due date for each job is given. Consider the following simple scheduling problem on two machines. Given are n jobs and for each job j a processing time pj which holds independently of the chosen machine.

The goal is to find an assignment of the jobs to the two machines such that the overall completion time is minimized. Let x ∈ { 0 , 1 }n be a decision vector.

Job j is on machine 1 iff xj = 0 holds and on machine 2 iff xj = 1 holds. The goal is to minimize

 n

 n

max

 pjxj,

 pj(1 − xj) .

 i=1

 i=1

2.2 Computational Complexity

In contrast to the description of a problem, which is usually short, the search space is most of the time exponential in the problem dimension. In addition, for a lot of combinatorial optimization problems, one cannot hope to come up

2.2 Computational Complexity

13

with an algorithm that produces for all problem instances an optimal solu-

tion within a time bound that is polynomial in the problem dimension. The

performance measure most widely used to analyze algorithms is the time an

algorithm takes to present its final answer. Time is expressed in terms of number of elementary operations such as comparisons or branching instructions

(Papadimitriou and Steiglitz, 1998). The time an algorithm needs to give the final answer is analyzed with respect to the input size. The input of a combinatorial optimization problem is often a graph or a set of integers. This input has to be represented as a sequence of symbols of a finite alphabet. The size of the input is the length of this sequence, that is, the number of symbols in it.

In this book, we are dealing with combinatorial optimization problems.

Often we are considering a graph G = (V, E) with n vertices and m edges and are searching for a subgraph G = (V , E) of the given one that fulfills given properties.

One approach to represent a graph is to do it by an adjacency matrix

 AG = [aij], where aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. This matrix has n 2 entries, i.e., the number of entries is quadratic with respect to the number of vertices. An entry aij = 1 means that there is an edge from vi to vj and aij = 0 holds if this is not the case. Note that the adjacency matrix of a given undirected graph is symmetric. An undirected graph may have up

to n = Θ(n 2) edges. However, if we are considering so-called sparse graphs, 2

the number of edges is far less than n .

2

In the case of sparse graphs, it is better to represent a given graph by socalled adjacency lists. Here, for each vertex v ∈ V we record a set A(v) ⊆ V

of vertices that are adjacent to it. The size of the representation is given by the sum of the length of lists. As each edge contributes 2 to this total length, we have to write down 2 m elements. Another factor which effects the total length of the representation is how to encode the vertices. Our alphabet has finite size. Assume the alphabet is the set { 0 , 1 }. Therefore we need Θ(log n) bits to encode one single vertex. This implies that we need Θ(m log n) bits (or symbols) to represent the graph G. In practice we say that a graph G can be encoded in Θ(m) space, which seems to be a contradiction to the previous explanation. The reason is that computers treat all integers in their range the same. Here the same space is needed to store small integers such as 5 or large integers such as 312. We assume that graphs are considered where the

number of vertices is within the integer range of the computer. This range

is in most cases 0 to 231, which means that integers are represented by 32

bits. Therefore Θ(m) is a reasonable approximation of the size of a graph and analyzing graph algorithms with respect to m is accepted in practice. In most cases both parameters n and m are taken into account when analyzing the complexity of a graph algorithm.

Considering graph algorithms where we can bound the runtime by a poly-

nomial in n and m, we obviously get a polynomial-time algorithm. We have to be careful when the input includes numbers. Let N (I) be the largest integer

14

2 Combinatorial Optimization and Computational Complexity

that appears in the input. An algorithm A is called pseudo-polynomial if it is polynomial in the input size |I| and N (I). Note that N (I) can be encoded by Θ(log(N (I))) bits. Therefore a function that is polynomial in |I| and N (I) is not necessarily polynomial in the input size. Often the input consists of small integers. In the case where N (I) is bounded by a polynomial in |I|, A is a polynomial-time algorithm.

An important issue that comes up when considering combinatorial opti-

mization problems is the classification of difficult problems (Papadimitriou and Steiglitz, 1998). To distinguish between easy and difficult problems, one considers the class of problems that are solvable by a deterministic Turing machine in polynomial time and problems that are solvable by a nondeter-ministic Turing machine in polynomial time. We do not want to formalize

the characterization of the classes P and NP via Turing machines and prefer to outline the characteristics and notions connected with these classes at a more intuitive level. This leads to a straightforward definition to characterize problems that belong to P .

Definition 2.1. A problem is in P iff it can be solved by an algorithm in polynomial time.

Problems in P can therefore be solved in polynomial time by using an appropriate algorithm. Examples of problems belonging to this class are the single source shortest path problem and the minimum spanning tree problem

introduced in Section 2.1.

A class that is intuitively associated with hard problems is called NP .

Typically, NP is restricted to so-called decision problems, i.e., problems whose output is either YES or NO. This restriction has a technical background and captures the essentials of the problems without simplifying them too much.

Definition 2.2. A decision problem is in NP iff any given solution of the problem can be verified in polynomial time.

For problems in NP , it is therefore not necessary that a solution be computable in polynomial time. It is only necessary that we can verify the solution of the problem in polynomial time. Therefore P ⊆ NP holds (slightly abusing notation by restricting P to decision problems), and it is widely assumed that P = NP.

Consider the following decision variant of the vertex cover problem. The

question is whether a given graph G = (V, E) contains a vertex cover of at most k vertices. Given a solution x we can easily check whether each edge is covered by x. This can be done in linear time by examining each edge at most once. Additionally, we can count the number of vertices chosen by x in linear time and therefore verify whether x is a vertex cover with at most k vertices in polynomial time.

Many optimization and decision problems, including the vertex cover prob-

lem, are at least as difficult as any problem in NP . Such problems are called

2.2 Computational Complexity

15

 NP -hard. Showing that a problem is NP -hard is usually done by giving a polynomial-time reduction from an NP -hard problem to the considered problem. This reduction involves a transformation of the known NP -hard problem to the considered one, which has to be done in polynomial time. Such a reduction links the considered problem to the known NP -hard problem in such a way that iff the considered problem can be solved in polynomial time also the NP -hard problem to which it has been reduced can. We do not want to go into the details and refer the reader to a book on complexity theory (Wegener,

2005a) for further reading.

Definition 2.3. A problem is called NP-hard iff it is at least as difficult as any problem in NP, i.e., each problem in NP can be reduced to it.

As we are considering optimization problems in this book, we want to

point out that many optimization problems are NP -hard but not in NP . We consider the vertex cover problem again, but at this time its optimization

variant where the task is to compute a vertex cover of minimal size. Clearly, this optimization variant is at least as difficult as the problem of deciding whether a given graph contains a vertex cover of at most k vertices. However, since the output of the optimization problem is a number, it is not a decision problem and, therefore, not in NP .

In summary, many optimization problems are at least as difficult as any

problem in NP , i.e., NP -hard but not in NP . Problems that are NP -hard and also in NP are called NP -complete. This holds for many decision variants of NP -hard optimization problems.

Definition 2.4. A problem is NP-complete iff it is NP-hard and in NP.

The classical approach to deal with NP -hard problems is to search for good approximation algorithms (Hochbaum, 1997; Vazirani, 2001). These are algorithms that run in polynomial time but guarantee that the produced solution is within a given ratio of an optimal one. Such approximation algorithms can be totally different for different optimization problems. In the case of the NP -hard bin packing problem, even simple greedy heuristics work very well whereas in the case of more complicated scheduling problems often methods

based on linear programming are used.

Another approach to solve NP -hard problems is to use sophisticated exact methods that have in the worst case an exponential runtime. The hope is that such algorithms produce good results for interesting problem instances in a small amount of time. A class of algorithms that tries to come up with exact solutions is branch and bound. Here the search space is shrunk during the

optimization process by computing lower bounds on the value of an optimal

solution in the case where we are considering maximization problems. The

hope is to come up in a short period of time with a solution that matches

such a lower bound. In this case an optimal solution has been obtained.

Related to this is the research on parametrized complexity (Downey and Fellows, 1999). Here, parametrized versions of given optimization problems are

16

2 Combinatorial Optimization and Computational Complexity

studied. These are usually decision problems in the classical sense. Consider for example the decision variant of the vertex cover problem where we ask

whether a given graph has a vertex cover of at most k vertices. This question can be answered in time O(1 . 2738 k + kn) (Chen, Kanj, and Xia, 2006), i.e., in polynomial time for any fixed k, and a corresponding solution with k vertices can be computed within that time bound if it exists. Obviously, this approach can be turned into an optimization algorithm that is efficient iff the value of an optimal solution is small.

A crucial consideration in combinatorial optimization problems and

stochastic search algorithms that search more or less locally is the neigh-

borhood of the current search point. Let s ∈ S be a search point in a given search space. The neighborhood is defined by a mapping N : S → 2 S. In the case we are considering combinatorial optimization problems from the search space { 0 , 1 }n, the neighborhood can be naturally defined by all solutions having at most Hamming distance k from the current solution s. The parameter k determines the size of the neighborhood from which the next solution is sampled. Choosing a small value k, e.g. k = 1, such a heuristic may get stuck in local optima. If the value of k is large (in the extreme case k = n) and all search points of the neighborhood are chosen with the same probability, the next solution will be somehow independent of s. This leads to stochastic search algorithms that behave almost as if they were choosing in each step

a search point uniformly at random from { 0 , 1 }n. In this case the stochastic search algorithm does not take the previously sampled function values into account and the search cannot be directed into “good” regions of the considered search space.

2.3 Approximation Versus Exact Optimization

As already mentioned, NP -hard problems probably do not allow exact solutions in polynomial time, so good approximations of optimal solutions are desired. A formal definition of the quality of approximations is based on a fixed approximation algorithm and the worst case from the set of instances

for the combinatorial optimization problem.

Definition 2.5. Given an algorithm A for the solution of a combinatorial optimization problem (S, f, Ω) , let sA ∈ S denote a solution produced by A and fA := f (sA) its f -value. Given f opt , the f -value of an optimal solution, the approximation ratio of sA is defined by fA/f opt for minimization problems and by f opt /fA for maximization problems.

We say that an algorithm maintains a certain approximation ratio if it

produces solutions of this approximation ratio on all instances of the underlying problem. In particular, we are interested in algorithms achieving a certain approximation ratio within polynomial time.

2.4 Multi-objective Optimization

17

Definition 2.6. A polynomial-time approximation algorithm with ratio r to a combinatorial optimization problem is an algorithm that computes solutions of approximation ratio r in polynomial time with respect to the input size.

In the previous definition, r might depend on the problem size, which is for example the case if the possible approximation ratios become worse

for growing inputs. The special case of a constant approximation ratio is given if r can be bounded independently of the problem size. Often, constant approximation ratios are obtainable even for NP -hard problems. An even stronger property is demanded by specifying the constant approximation ratio as a parameter of the approximation algorithm.

Definition 2.7. A polynomial-time approximation scheme (PTAS) to a combinatorial optimization problem is an algorithm with parameter that computes solutions of approximation ratio 1 + in polynomial time with respect to the input size. If the time is also polynomial with respect to 1 /, the algorithm is called fully polynomial-time approximation scheme (FPTAS).

Definitions 2.6 and 2.7 require polynomial time with probability 1 and are more suitable for deterministic than for randomized algorithms. A natural

relaxation of the definitions is to allow expected polynomial time, resulting in expected-polynomial-time approximation algorithms and schemes. However,

it is more convenient to prescribe polynomial time with a certain success

probability. This results in the following definition (Motwani and Raghavan,

1995).

Definition 2.8. A

 polynomial-time

 randomized

 approximation

 scheme

 (PRAS) to a combinatorial optimization problem is an algorithm with parameter that with probability at least 3 / 4 computes solutions of approximation ratio 1 + in polynomial time with respect to the input size.

The somewhat mysterious bound 3 / 4 on the success probability goes back to applications of PRASs to a generalization of optimization problems, the

so-called number problems. However, the exact value is not too significant.

Any constant success probability can be boosted to at least 3 / 4 by running the approximation algorithm a constant number of times and taking the best

solution out of the runs. In the domain of EAs, this is usually referred to as multistart schemes.

We will get to know characterizations of EAs as approximation algorithms

in Chapter 12 and characterizations as PRASs in Chapters 6 and 7.

2.4 Multi-objective Optimization

Many problems in computer science ask for solutions with certain attributes or properties that can be expressed as functions mapping possible solutions

18

2 Combinatorial Optimization and Computational Complexity

to scalar numeric values. The usual optimization approach is to take these

attributes as constraints to determine the feasibility of a solution, while one of them is chosen as an objective function to determine the preference order of the feasible solutions. In the minimum spanning tree problem, as a simple example, constraints are imposed on the number of connected components

(one) and the number of cycles (zero) of the chosen subgraph, while the total weight of its edges is the objective to be minimized.

A more general approach is multi-objective optimization (Ehrgott, 2005),

where several attributes are employed as objective functions and used to define a partial preference order of the solutions, with respect to which the set of minimal (maximal) elements is sought. Most of the best known single-objective

polynomial solvable problems like shortest path or minimum spanning tree

become NP-hard when at least two weight functions have to be optimized

at the same time. In this sense, multi-objective optimization is considered as more (at least as) difficult than (as) single-objective optimization.

In the case of multi-objective optimization, the objective function f =

(f 1 , . . . , fk) is vector-valued, i.e., f : S → R k. Since there is no canonical complete order on R k, one compares the quality of search points with respect to the canonical partial order on R k, namely f (s) ≤ f (s) iff fi(s) ≤ fi(s) for all i ∈ { 1 , . . . , k}. A Pareto optimal search point s is a search point such that (in the case of minimization problems) f (s) is minimal with respect to this partial order and all f (s) , s ∈ S. Again, there can be many Pareto optimal search points, but they do not necessarily have the same objective vector. The Pareto front, denoted by F , consists of all objective vectors y = (y 1 , . . . , yk) such that there exists a search point s where f (s) = y and f (s) ≤ f (s) implies f (s) = f (s). The Pareto set consists of all solutions whose objective vector belongs to the Pareto front. The problem is to compute the Pareto front and for each element y of the Pareto front one search point s such that f (s) = y.

We sometimes say that a search point s belongs to the Pareto front, which means that its objective vector belongs to the Pareto front.

As in the case of optimization problems, one may be satisfied with approx-

imate solutions. This can be formalized as follows. For each element y of the Pareto front, we have to compute a solution s such that f (s) is close enough to y. Close enough is measured by an appropriate metric and an approximation parameter. In the single-objective case, one switches to the approximation

variant if exact optimization is too difficult. The same reason may hold in the multi-objective case. There may be another reason. The size of the Pareto front may be too large for exact optimization.

The Pareto front F may contain exponentially many objective vectors.

Papadimitriou and Yannakakis (2000) have examined how to approximate the Pareto front for different multi-objective combinatorial optimization problems. W. l. o. g., they have considered the task of maximizing all objective functions. Given an instance I and a parameter > 0 they have examined how to obtain an -approximate Pareto set. This is a set of solutions X with the property that there is no solution s such that for all s ∈ X fi(s) ≥ (1 +) · fi(s)

2.4 Multi-objective Optimization

19

holds for at least one i. Papadimitriou and Yannakakis (2000) showed that there exists an algorithm which constructs such a set X, which is polynomially bounded in |I| and 1 / if and only if the corresponding gap problem problem can be solved. Given an instance I of the considered problem and a vector (b 1 , . . . , bk), the gap problem consists of either presenting a solution s with fi(s) ≥ bi, 1 ≤ i ≤ k, or answering that there is no solution s with fi(s) ≥ (1 +) · bi, 1 ≤ i ≤ k. In the case of some multi-objective optimization problems (e.g., the multi-objective variants of the minimum spanning tree

problem and the shortest path problem), such a set can also be computed

within a time bound that is polynomial in |I| and 1 /. Algorithms with such properties constitute an FPTAS (Definition 2.7), which is the best we can hope for when dealing with NP-hard problems.

3

Stochastic Search Algorithms

We want to analyze bio-inspired computation methods in a rigorous way with

respect to their runtime behavior. As these algorithms make use of many

random decisions, we treat them as randomized algorithms to study their be-

havior in a rigorous manner. The term stochastic search algorithms stresses this point of view and will be used in the following to point out that bioinspired computation methods can be treated as algorithms which are based

on random decisions. Mainly we will consider stochastic search algorithms belonging to the field of evolutionary computation throughout this book. These algorithms are inspired by the evolution process in nature and follow Darwin’s principle of the survival of the fittest. We take a closer look at the different approaches developed in this field in Section 3.1. Another kind of bio-inspired stochastic search algorithm is ant colony optimization, which will be introduced in Section 3.2. Here, solutions for a given problem are constructed by walks of ants on a so-called construction graph. To give a more complete

picture, we describe other popular variants in Section 3.3.

A stochastic search algorithm is a problem-independent algorithm to solve

problems from a considered search space although it might have modules

that are adjusted to the considered problem or are combined with problem-

dependent algorithms. The independence from the considered problem dis-

tinguishes stochastic search algorithms from problem-dependent algorithms

developed and analyzed in the classical algorithm community. In contrast to the classical approach to algorithms, where one designs an algorithm with the task to prove bounds on the runtime and/or approximation quality in mind,

stochastic search algorithms are general-purpose algorithms. Assuming that

one considers different problems from the same search space, e.g., { 0 , 1 }n, a stochastic search algorithm is usually applicable to each of these problems.

Their easy adaptation to different problems usually has to be paid for by the disadvantage that the algorithm is often not rigorously analyzed with respect to its runtime and/or approximation quality.

In the general approach, the only problem-dependent component of the

algorithm is the fitness function that guides the search. This function is the F. Neumann, C. Witt, Bioinspired Computation

21

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 3, © Springer-Verlag Berlin Heidelberg 2010

22

3 Stochastic Search Algorithms

only part of such an algorithm that has to be adjusted to the considered

problem. Therefore, we get algorithms that can be implemented very easily

and adjusted quickly to similar problems. As already mentioned, stochastic

search algorithms are not designed with the focus of proving special properties on the runtime or approximation quality. This makes a rigorous analysis of such algorithms more difficult than the analysis of algorithms that have been designed in a special way to prove properties such as the runtime or

approximation quality of the algorithm.

We start with a general description of stochastic search algorithms, which

covers all important approaches such as evolutionary algorithms, ant colony optimization, randomized local search, the Metropolis algorithm, and simulated annealing.

Given a search space S, the aim is to optimize a considered function f : S → R, where R is the set of all possible function values. A stochastic search algorithm working in a given search space S under the consideration of a function f chooses the first search point s 1 with respect to a probability distribution on S that may be determined by a heuristic. After that the function value f (s 1) is computed. The search point st is chosen according to a probability distribution that can depend on the previous sampled search

points s 1 , . . . , st− 1 and their function values. The process is iterated until a stopping criterion has been fulfilled.

The No Free Lunch Theorem by Wolpert and Macready (1997) shows the basic limitations of stochastic search algorithms when considering the

optimization of all possible functions. It is assumed that each search point of the considered search space is not evaluated more than once. This is a realistic restriction as function values for evaluated search points can be stored such that another evaluation is not necessary. Wolpert and Macready (1997) have given the following result.

Theorem 3.1 (No Free Lunch (NFL) Theorem). Let S and R be two

 finite sets, F = RS be the set of all functions f : S → R, and A and A be two stochastic search algorithms that do not evaluate each search point more than once. Then the average number of fitness evaluations among all functions of F

 is the same for A and A.

This implies that no stochastic search algorithm behaves on the average

better than blind random search, where in each step a solution is drawn uniformly at random from the so far unseen part of the search space. This should make clear that an analysis of these algorithms with respect to their runtime makes sense only for specific classes of functions or specific classes of problems.

3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) have become quite popular since the mid-

1960s. Many different approaches have been proposed in the last 40 years. In

3.1 Evolutionary Algorithms

23

this section, we give a brief overview of the main approaches proposed in the literature. For a more complete overview we refer the reader to a general book on evolutionary computation (Eiben and Smith, 2007).

Inspired by the evolution process in nature, evolutionary algorithms try to solve problems by evolving sets of search points such that satisfying results are obtained. A lot of the tasks that have been solved by EAs lie in the field of real-world applications. In real-world applications, the function to be optimized is often unknown and function values can only be obtained by experiments.

Often these experiments have high costs or need a large amount of time.

Therefore, the main aim is to minimize the number of function evaluations

until a satisfying result has been obtained.

The main difference between evolutionary algorithms and local search pro-

cedures or simulated annealing is that evolutionary algorithms usually work at each time step with a set of solutions which is called the population of an EA.

This population produces a set of solutions, called the offspring population, by some variation operators such as crossover or mutation. After that, a new population is created by selecting individuals from the parent and offspring population as a result of the fitness function f . We consider discrete search spaces throughout this book. In this case another important issue is that evolutionary algorithms often have a positive probability of sampling each search point of the given search space in the next step. In the case of local search and simulated annealing, this is usually not the case. There, the search points that can be constructed in the next step depend on the current solution and the

neighborhood defined for the search process. Especially in the case of multiobjective optimization, EAs seem to be a good heuristic approach to obtain a good set of solutions. EAs have the advantage that their population may be

evolved to obtain a good approximation of the Pareto front.

3.1.1 Representation

We want to take a look at the different modules of an EA. The first impor-

tant issue is representation. Solutions can be represented in different ways. A good example is the different representations of spanning trees. For a given undirected connected graph with n vertices and m edges, the most natural representation seems to be a set of n − 1 edges such that the graph is connected. This is known as the representation of spanning trees by edge sets

(Raidl and Julstrom, 2003). It is more general to represent them as bitstrings of length m, where each bit corresponds to an edge which is included in the solution if the bit is set to 1 and excluded otherwise. In this case, information to obtain a connected graph or a spanning tree has to be incorporated into the fitness function. We will use this representation later for the analysis of EAs on the minimum spanning tree problem. There, it turns out that guiding such an algorithm to compute connected graphs or spanning trees by the fitness

function is a minor term in the overall complexity.

24

3 Stochastic Search Algorithms

Spanning trees can also be represented by Prüfer numbers. A Prüfer num-

ber consists of n − 2 node identifiers which determine a spanning tree. This number can be decoded by an algorithm into a corresponding spanning tree

and a spanning tree can be encoded into a Prüfer number using a complemen-

tary algorithm. The disadvantage is that small changes in the Prüfer number can result in a totally different spanning tree. Therefore Prüfer numbers are a poor representation of spanning trees when using an EA (Gottlieb, Julstrom, Raidl, and Rothlauf, 2001). This is not the case when edge sets are considered. If the set of edges is changed by one edge, then the two spanning trees have n − 2 edges in common. It should be clear that this point of locality is important for the success of an EA. If only small changes lead to a completely different solution with a fitness value that does not depend on the last sampled search point, the search cannot be directed into “good” regions of the search space.

3.1.2 Variation Operators

Variation operators are important for constructing new solutions. They have to be adjusted to the chosen representation. The most popular variation operators are mutation and crossover. In the case of mutation, one single individual is altered, in a crossover operation at least two individuals produce new solutions. Often, in a first step crossover is used to produce offspring and these offspring are additionally altered by a mutation operator. Throughout this

book, we will analyze EAs that use only mutation to obtain new solutions.

Nevertheless, to give a more complete picture, we also present some pop-

ular crossover operators for the search space { 0 , 1 }n and the representation of permutations. Crossover operators produce new search points by combin-ing search points of the current population. We first take a look at the case where solutions are represented as bitstrings of length n. The most important crossover operators for individuals that are bitstrings of length n are uniform and k-point crossover, where usually k ∈ { 1 , 2 } is chosen. Consider two individuals x = (x 1 , . . . , xn) and y = (y 1 , . . . , yn) that should produce a new solution z = (z 1 , . . . , zn) by a crossover operator. In the case of uniform crossover Prob(zi = xi) = Prob(zi = yi) = 1 / 2 if xi = yi holds. Otherwise zi = xi = yi holds for the created child z. In the case of k-point crossover, k positions in the two bitstrings are selected at random. Based on these positions the individuals are partitioned into different intervals, where the intervals are numbered based on their position in the bitstrings. The new individual z is formed by taking all entries of intervals with odd numbers from x and all entries of intervals with even numbers from y.

In the case of the representation of permutations, it is a little bit more

difficult to obtain sensible crossover operators. We assume that we are working with permutations consisting of n elements. Most crossover operators are applied to two parents P 1 and P 2 and produce two offspring O 1 and O 2. To give an impression of how crossover operators for permutation problems are

3.1 Evolutionary Algorithms

25

designed we consider the order crossover operator (OX-operator), which gets two parameters i and j, 1 ≤ i, j ≤ n. W. l. o. g., we assume i < j. In a first step the elements of P 1 at positions i + 1 , . . . , j − 1 are copied into O 1 to the same positions. After that the remaining elements of P 2 are placed into O 1.

This is done by examining P 2 from position j on in a circular way and placing the elements that up to now do not occur in O 1 at the next position, where the positions j, . . . , n, 1 , . . . , i are considered one after another. In the same way the offspring O 2 is constructed by starting copy the elements between the positions i and j of P 2 into O 2.

We describe important mutation operators for the search space of binary

strings and permutations of elements in the following. In the case of bitstrings of length n each bit is often flipped with a certain probability p, where p = o(1) usually holds. It is necessary to choose p not too large to prevent the algorithm from sampling the next solution nearly uniformly at random from a very large neighborhood of the parent solution. In a lot of algorithms p = 1 /n is used such that on average one bit is flipped. In the case of permutations with n elements, often jumps or exchange operations are used. Both operations get

two parameters i and j, 1 ≤ i, j ≤ n. Then a jump(i, j) places the element at position i at position j and shifts the elements between i and j, including j, in the appropriate direction. If i < j the elements are shifted to the left, and to the right if i > j. An exchange(i, j) places the element at position i at position j and the element at position j at position i. W. l. o. g., assume that i < j holds for exchange(i, j). Then this operation can be simulated by executing sequentially the two jump operations jump(i, j) and jump(j− 1 , i). In contrast to this, k/ 2 exchange operations are needed to simulate jump(i, j) if |i − j| = k holds. Therefore the jump operator seems to be the more flexible one. We will see later that this can make the difference between a polynomial and an exponential expected runtime.

3.1.3 Selection Methods

Selection methods are used to decide which individuals of the current pop-

ulation are used to produce offsprings. In addition, they are used to decide which individuals from the parent and offspring population constitute the

population of the next generation. A widely used selection method is fitness-proportional selection. We assume that the function f should be maximized and that all function values are positive. If the population contains μ individ-

uals x 1 , . . . , xμ, then xi has probability f (xi) /(

 μ

 f (xi)) of being chosen

 i=1

in each selection step. Note that this selection method allows us to choose individuals more than once for a certain purpose. Therefore the population of the next generation may include duplicates even if the parent and offspring population before have contained only individuals that were pairwise distinct from each other.

Another important method is tournament selection. Here, tournaments of

size q ∈ { 1 , . . . , μ} are chosen. In each tournament, q individuals compete

26

3 Stochastic Search Algorithms

against each other. The individuals that take part in a certain tournament

are chosen uniformly at random from the population. In each tournament, the individual with the highest fitness value wins the competition and is chosen for reproduction for the next generation.

Two other important selection methods are (μ + λ)- and (μ, λ)-selection.

These two methods have their main application in evolution strategies. We

will discuss the different approaches in evolutionary computation together

with these two methods in the following.

3.1.4 Major Approaches

The class of evolutionary algorithms covers historically different approaches to solve problems inspired by the evolution process in nature. The approaches differ by the search spaces that are considered and the variation operators used to produce new search points.

Evolution Strategies

Evolution strategies (ESs) (Rechenberg, 1973; Schwefel, 1981) are used to solve continuous optimization problems. There, usually a real-valued search space is considered. Mutation is the variation operator that is mainly used in ES. The most important strategies are called (μ, λ)- and (μ + λ)-ES and differ from each other by the chosen selection method. In the case of a (μ, λ)-

ES, the parent population has size μ and λ children are produced in one generation. The next parent population is created by choosing μ individuals from the offspring population. Note that in this case λ >> μ should hold as the parent population is not involved in the selection process. In contrast to this, a (μ + λ) strategy considers both populations for the next parent population. After having created λ children, individuals from the parent and the offspring population are chosen according to their fitness values to build the parent population of the next generation.

Genetic Algorithms

Genetic algorithms (GAs) introduced by Holland (1975), work in discrete search spaces. Here, bitstrings of length n are used to represent possible solutions. The other main difference with evolution strategies is that crossover is seen as the variation operator that has the main effect of getting good solutions. Working with a population of size μ, in each iteration μ children are produced by using crossover. Mutation is seen as the minor variation operator.

If it takes place, it is often applied to each child that has been produced by crossover. Then each bit is flipped with a certain probability p, where often p = 1 /n is chosen. The major selection method for GAs is fitness proportional selection. This method is used to select the individuals that are used to obtain new solutions as well as to select the individuals from the parents and

3.1 Evolutionary Algorithms

27

children to form the population of the next generation. Another variant is to produce only a few children in each iteration. In the extreme case, one child is produced. This is known as the steady state GA. A lot of theoretical work for GAs has been concentrated on schemata. A schema fixes some positions in the bitstrings such that a search space of a smaller dimension is obtained. It is assumed that genetic algorithms combine schemata to obtain better ones. This

implicitly assumes that the function which should be optimized is separable and comforms to the so-called building block hypothesis. This hypothesis says that functions are optimized by separating the variables and optimizing functions that depend on these partitions. It is assumed that such a partitioning is found by a GA and that the different blocks can be optimized in parallel.

The problem is that even simple functions are not separable. Despite the fact that the schema theorem considers the behavior of a GA in only one step, the major lack is that the building block hypothesis has no clear formulation that can be verified or falsified.

Evolutionary Programming

Evolutionary programming (EP) (Fogel, Owens, and Walsh, 1966) considers a representation that is fit to the problem. This means that the different parameters that have to be optimized can have different codomains. The main

variation operator is mutation, which can be handled very flexibly, and EP

makes usually no use of crossover operators. In a standard approach, a parent population of size μ produces μ children by mutation. The new parent population consists of μ individuals from the parents and children that have been selected by a probabilistic selection method (e.g., fitness-proportional selection). In the selection step, it is important to ensure that a best individual of the parents and the children is integrated into the new parent population such that the best solution found will not get lost during the optimization process.

Genetic Programming

Genetic programming (GP) developed by Koza (1991) is an evolutionary computation approach that has become very popular in recent years. Instead of

searching the considered search space, one tries to construct good computer programs that solve the given task. Therefore, individuals are possible computer programs, usually represented as trees that represent expressions. These trees are evolved during the evolution process. Similarly to the other approaches, a set of computer programs constitutes a population, and a parent population creates an offspring population using crossover and mutation. The fitness of a program is given by its performance with respect to the evaluation of some test cases. To select individuals from the parents and the children for the new parent population, often fitness-proportional selection is used.

28

3 Stochastic Search Algorithms

3.2 Ant Colony Optimization

Ant colony optimization (ACO) is another bio-inspired approach to solve op-

timization problems. Introduced by Colorni, Dorigo, and Maniezzo (1992), it has been shown to be especially successful for solving combinatorial optimization problems. A good overview of the different techniques used in this field is given in the book of Dorigo and St¨

utzle (2004). In contrast to EAs, where

solutions are constructed from the current set of solutions, solutions are in this case obtained by random walks on a so-called construction graph which

is usually a directed graph. ACO algorithms are inspired by the search of an ant colony for a common source of food. It has been noticed that ants find

very quickly a shortest path to a source of food. The information about which path to take to get to the food is distributed between the ants by them leaving a piece of information, called pheromone, on the path. As longer paths to the source take much more time than shorter paths, shorter paths are more often visited. This implies larger pheromone values on shorter paths after a small amount of time.

Construction of Solutions

The above-mentioned ideas are used to solve optimization problems. Solutions of a given problem are obtained by random walks of ants on a construction

graph that has positive values, the pheromone values, on the edges. These

values influence the random walks in the way that edges with large values

have a larger probability of being traversed. In addition, the model of ACO

algorithms allows us to include heuristic information to guide the random

walks. This information additionally influences the probability of which vertex to visit next in the random walk.

In an ACO algorithm, each ant of the colony exploits the construction

graph to search for an optimal solution. We assume that the ant colony is

a set A = {a 1 , . . . , ak} of k ants. Each ai has memory that can be used to store information about the path it has followed so far. This memory can

be used to build feasible solutions, compute a heuristic value η, evaluate the solution that has been found, and retrace the path backwards. An ant has a

start state and one or more termination conditions. In a single step, the ant moves from a current vertex v of the construction graph to one of its successors. This move is chosen based on a probabilistic rule and depends on the

pheromone values on the edges, heuristic information associated with compo-

nents and connections in the neighborhood of v, the ant’s private memory, and the problem constraints. When adding a component to the solution the

ant builds up, the algorithm may update the pheromone value of the con-

nection that corresponds to this solution. This is not always done. Usually the pheromone values are updated after the complete solution has been built.

Here, the ant retraces the path it has taken to build the solution and increases the pheromone values along these edges.

3.2 Ant Colony Optimization

29

Let C = (V, E) be the construction graph of a given problem. The pheromone value of an edge e = (u, v) ∈ E is denoted by τ(u,v). In addition it is possible to assign to each edge (u, v) ∈ E a piece of heuristic information η(u,v). We assume that an ant is at vertex u and denote the set of allowed successors by N (u). Due to the problem constraints, this set may be a subset of the successors of u in C. The probability that the ant visits the vertex v ∈ N (u) in the next step is given by

[τ(u,v)] α · [η(u,v)] β

 p

 v =

 .

[τ

 w∈N (v)

(u,w)] α · [η(u,w)] β

Here α, β ≥ 0 are parameters that determine the importance of the

pheromone values and the heuristic information, respectively.

Updating Pheromone Values

In the update procedure of an ACO algorithm, the pheromone values are

usually decreased by an amount that depends on the value before the update

and the evaporation factor ρ, 0 ≤ ρ ≤ 1. Let τ(u,v) be the pheromone value on edge (u, v) ∈ E before the update. The value is decreased to (1 − ρ) τ(u,v) in a first step. This implies that information about which paths are taken so far gets lost during the run of the algorithm and helps to escape from local optima. In addition, the pheromone values on edges an ant ai has traversed are increased by a value Δi that may depend on ρ as well as on the function value of the solution the ant ai has constructed. Hence, the pheromone value τ

of edge (u, v) after the update is given by

(u,v)

 k

 τ

= (1 − ρ) τ

 Δ

(u,v)

(u,v) +

 i.

 i=1

There are different possibilities which ants to take into account for the

update. If all ants of the colony leave pheromone values on the edges this

is known as the AS-update rule. This is the update rule of the Ant System

(AS) which was the first ACO algorithm proposed in the literature (Colorni

et al., 1992). Using the AS-update, the amount by which an ant increases a pheromone value should depend on the function value of the constructed

solution as otherwise the pheromone values are totally independent of the

function f that should be optimized. If this is not the case, it would not be possible to direct the search. In the case of the IB-update rule, where IB stands for iteration-best, the ants that have constructed the best solutions of the last iteration update the pheromone values along the edges they have taken. Such an update introduces a much stronger bias towards the best solutions found

so far. In the case of the best-so-far update, BS-update for short, this bias is even more extreme. Here, the pheromone values on the edges of a best

solution constructed since the first iteration of the algorithm are increased in each iteration.

30

3 Stochastic Search Algorithms

3.3 Other Stochastic Search Algorithms

In this section, we describe other import stochastic search algorithms that have been proposed. One important method is randomized local search (RLS).

This can be seen as a simplification of the perhaps simplest evolutionary

algorithms called (1+1) EA. In the case of a runtime analysis of (1+1) EA,

RLS is often considered in a first step and the results are later adjusted to the EA. Local search procedures work with a predefined neighborhood and have

problems if there is no better solution in this neighborhood than the current one. Then they get stuck in local optima. To escape from local optima, the

Metropolis algorithm (MA) allows us to accept worsenings with a certain

probability that depends on a parameter that is called the temperature. It

has been shown to be useful in an approach called simulated annealing (SA)

to vary this temperature over time, starting with a high temperature and

cooling it down during the run of the algorithm.

3.3.1 Randomized Local Search

Apart from sampling in each iteration a search point from the given search

space uniformly at random, randomized local search seems to be the simplest stochastic search algorithm that can be considered. RLS works in each iteration with one single solution s. A new solution s is constructed from s by choosing one individual from the neighborhood of s. s is replaced by s if s

is not inferior to s. The definition of the neighborhood is a crucial parameter.

If it is too small, RLS often gets stuck in local optima. If the neighborhood is too large, even individuals that are close to the current solution may only get a too small probability of being chosen in the next step, and RLS behaves like random sampling of search points from the search space independently

of s. Considering problems from the search space { 0 , 1 }n, RLS often uses a neighborhood that is defined by all search points that have Hamming distance 1 or 2 from the current solution s.

3.3.2 Metropolis Algorithm

In contrast to RLS, the following two approaches accept worsenings during the optimization process. The acceptance of a worsening depends on the difference between the fitness values of s and s and on a so-called temperature T . In the case of the Metropolis algorithm (MA), this temperature is a fixed parameter and therefore constant during the optimization process. We assume that we

are considering a function f that should be maximized. In the case where f (s) ≥ f (s) holds, s is replaced by s. In the other case s is replaced by s

)

with probability M (s, s, T) = e− f(s) −f(s T

, where M is called the Metropolis

function.

MA has been subject to rigorous analysis with respect to its runtime for the NP -hard graph bisection problem (Jerrum and Sorkin, 1998). Let G = (V, E)

3.3 Other Stochastic Search Algorithms

31

Fig. 3.1. Connected triangles with two different weight profiles

be an undirected graph where |V | is even. A bisection of G is a partitioning of V into sets L and R with |L| = |R| = n/ 2. The cut width of a bisection is defined as the number of edges that have exactly one endpoint in L and one endpoint in R. One is interested in finding a bisection with minimum cut width. Jerrum and Sorkin have considered MA for finding an optimal bisection of a random graph G = (V, E) where an edge between vertices of the same partition occurs with probability p and an edge between vertices of L and R

occurs with probability r. In the case where p − r = Θ(nΔ− 2) for a parameter Δ with 3 / 2 < Δ ≤ 2, such a random graph specifies with high probability a planted bisection of density r that separates L and R, which have a slightly higher density p (Bui, Chaudhuri, Leighton, and Sipser, 1984). Then it can be shown that MA for an appropriate choice of T finds the optimal solution in about O(n 2) steps with high probability if Δ ≥ 11 / 6.

3.3.3 Simulated Annealing

Simulated annealing (SA) can be seen as MA that uses different temperatures during the run of the algorithm. Starting with a temperature T 0, the temperature is decreased during the optimization process according to a cooling schedule. Such a cooling schedule can be adaptive or non-adaptive. In the case of a non-adaptive cooling schedule, the temperature Ti is known in advance for all time steps i. In the case of adaptive cooling schedules, the temperature for a given time step i may depend on the history of sampled search points.

For a long time, there were only artificial example functions (Sorkin, 1991)

where it could be proven that a cooling schedule can be useful in reducing

the runtime significantly. Wegener (2005b) has presented the first “natural”

example where this is the case. He has shown that SA can outperform MA

for each fixed temperature on a class of instances of the minimum spanning

tree problem. Wegener has investigated connected triangles (see Figure 3.1)

with m = 6 n edges and 4 n + 1 vertices. The structure of this graph is the same as the triangle part of the graph we will investigate in Chapter 5 for the analysis of evolutionary algorithms until they have computed a minimum

spanning tree. The number of triangles equals 2 n. Each triangle gets a weight profile (w 1 , w 2 , w 3), which is the ordered vector of the three edge weights. The basic idea is to construct weight profiles such that for each fixed temperature it is hard to optimize all triangles while an appropriate cooling schedule is able to optimize all triangles. Wegener uses n triangles with the weight profile (1 , 1 , m) and n triangles with the weight profile (m 2 , m 2 , m 3). Then he distin-

32

3 Stochastic Search Algorithms

guishes between high temperatures (T ≥ m) and low temperatures (T < m).

He shows that high temperatures are not able to optimize the triangles with the weight profile (1 , 1 , m) and low temperatures are not able to optimize the triangles with weight profile (m 2 , m 2 , m 3) in a polynomial number of steps.

Hence, different temperatures are necessary to find an optimal solution solution quickly. An optimal solution can be obtained in a polynomial number of steps by using an appropriate cooling schedule in SA.

4

Analyzing Stochastic Search Algorithms

In this chapter, we introduce the stochastic search algorithms for single-

objective optimization that will be subject to the analyses throughout this book. We start by describing algorithms for single-objective optimization

problems in Section 4.1. There, we consider different variants of RLS and variants of a well-known evolutionary algorithm called (1+1) EA. Afterwards, we introduce some basic methods methods for analyzing stochastic search algorithms.

4.1 Simple Stochastic Search Algorithms

In this section, we introduce the stochastic search algorithms that we will consider for single-objective optimization problems. We investigate heuristics for discrete search spaces. Most of the problems we examine in this book are graph problems where one searches for a good set of vertices or edges. In this case, solutions can be represented as binary strings where each bit corresponds to a vertex or an edge. All our algorithms are described for the minimization of a given fitness function f but can also be easily applied to problems where the goal is to maximize a given fitness function.

4.1.1 Randomized Local Search

Randomized local search (RLS) in the binary case produces from a current

solution s ∈ { 0 , 1 }n a new one s by flipping a randomly chosen bit (see Algorithm 1). We index the algorithm with the subscript “b” to indicate the binary search space and the superscript “1” to emphasize that only one

bit is flipped. We will sometimes also refer to the bit-flip operators in RLS

algorithms as mutation operators.

For all stochastic search algorithms, we consider no stopping criterion to be defined. In applications this is, of course, necessary. Often such an algorithm is stopped after a predefined number of iterations or if no progress has been made F. Neumann, C. Witt, Bioinspired Computation

33

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 4, © Springer-Verlag Berlin Heidelberg 2010

34

4 Analyzing Stochastic Search Algorithms

Algorithm 1 RLS1b

1. Choose s ∈ { 0 , 1 }n uniform at random.

2. Choose i ∈ { 1 , . . . , n} uniform at random and flip the i th bit of s.

3. Replace s with s if f (s) ≤ f (s).

4. Repeat Steps 2 and 3 forever.

Algorithm 2 RLS1 , 2

b

1. Choose s ∈ { 0 , 1 }n uniform at random.

2. Choose b ∈ { 0 , 1 } uniform at random.

If b = 0, choose i ∈ { 1 , . . . , n} uniform at random and define s by flipping the i th bit of s.

If b = 1, choose (i, j) ∈ {(k, l) | 1 ≤ k < l ≤ n} uniform at random and define s by flipping the i th and the j th bits of s.

3. Replace s with s if f (s) ≤ f (s).

4. Repeat Steps 2 and 3 forever.

for a certain number of steps. We consider the algorithms we analyze as infinite stochastic processes and are interested in the number of fitness evaluations until a given task has been achieved. In the case of exact optimization, the number of fitness evaluations until an optimal solution has been produced is investigated. Often the expectation of this value is analyzed and called the expected optimization time of the considered algorithm. Especially in the case where one cannot hope to compute optimal solutions in a polynomial number

of steps, e.g., for NP -hard problems, one is interested in the number of fitness evaluations until the algorithm has produced a good approximation of an

optimal solution.

Flipping one single bit is not useful for most graph problems. Often the

number of 1s (or edges) is the same for all good search points, e.g., for traveling salesperson problems (TSPs) or minimum spanning trees. Then, all Hamming

neighbors of good search points are bad, implying that we have many local optima. Therefore, we work with the larger neighborhood of Hamming distance 2

and investigate a variant of randomized local search given in Algorithm 2. This time the superscript “1,2” is used for clarification.

4.1.2 A Simple Evolutionary Algorithm

The evolutionary algorithms that we consider for single-objective optimization problems use a population of size 1 and produce at each time step one single child. They can be seen as variants of RLS, which we introduced in the last section, with a more flexible mutation operator. Usually, a mutation operator in this scenario should be able to search globally. Here, each search point of the considered search space should get a positive probability of being chosen

4.1 Simple Stochastic Search Algorithms

35

Algorithm 3 (1+1) EAb

1. Choose s ∈ { 0 , 1 }n uniform at random.

2. Produce s by flipping each bit of s independently of the other bits with probability 1 /n.

3. Replace s with s if f (s) ≤ f (s).

4. Repeat Steps 2 and 3 forever.

in the next step. Again we consider the algorithm for the search space { 0 , 1 }n first. The perhaps simplest evolutionary algorithm that can be considered in this case is (1+1) EAb. Starting with a randomly chosen bitstring s of length n, the algorithm produces in each iteration a child by flipping each bit of s with probability 1 /n. (1+1) EAb for minimizing a fitness function f is given in Algorithm 3.

(1+1) EAb has been the subject of the first analyses of evolutionary al-

gorithms with respect to their expected optimization time. In the beginning, the behavior of this algorithm on pseudo-boolean functions that depend on n variables was considered. Some of first main results were obtained by Droste et al. (2002). It has been shown that the expected time to reach an optimal search point by this algorithm in the considered search space is always bounded above by nn, as the probability to choose an optimal search point in the next step is at least n−n. More detailed analyses consider pseudo-boolean functions with different properties. One major result is that the expected optimization time on linear functions is O(n log n). The class of functions of degree 2 is too huge to get a polynomial upper bound on the runtime for each function, as optimizing polynomials of degree at least 2 is NP -hard.

4.1.3 Algorithms for Multi-Objective Optimization

In this case of multi-objective optimization, one searches for a set of optimal solutions instead of a single one. We want to examine multi-objective evolutionary algorithms (MOEAs) that are generalizations of RLS1 and (1+1) EA

b

b.

Therefore, we investigate and analyze a simple algorithm called SEMO (Sim-

ple Evolutionary Multi-Objective Optimizer) due to Laumanns, Thiele, and

Zitzler (2004).

The fitness of a search point s is given by a vector f (s) = (f 1(s) , . . . , fk(s)).

W. l. o. g., we assume that each function fi should be minimized and write f (s) ≤ f (s) iff fi(s) ≤ fi(s) holds for all i, 1 ≤ i ≤ k. A solution s domintates a solution s iff f (s) ≤ f (s) and f (s) = f (s) holds. If s dominates s we also say that f (s) dominates f (s).

SEMO (see Algorithm 4) starts with an initial solution s ∈ { 0 , 1 }n that is chosen uniformly at random. All non-dominated solutions are stored in

the population P . In each step a search point from P is chosen uniformly at random and one bit is flipped to obtain a new search point s. The new

36

4 Analyzing Stochastic Search Algorithms

Algorithm 4 SEMO

1. Choose an initial solution s ∈ { 0 , 1 }n uniformly at random.

2. Determine f (s) and initialize P := {s}.

3. Repeat

a) Choose s ∈ P randomly.

b) Choose i ∈ { 1 , . . . , n} randomly.

c) Define s by flipping the i th bit of s.

d) Determine f (s),

e) Let P be unchanged, if there is an s ∈ P such that f (s) ≤ f (s) and f (s) = f (s)

f) Otherwise, exclude all s where f (s) ≤ f (s) from P and add s to P .

Algorithm 5 Global SEMO (GSEMO)

1. Choose an initial solution s ∈ { 0 , 1 }n uniformly at random.

2. Determine f (s) and initialize P := {s}.

3. Repeat

a) Choose s ∈ P randomly.

b) Define s by flipping each bit of s independently of the other bits with probability 1 /n.

c) Determine f (s),

d) Let P be unchanged, if there is an s ∈ P such that f (s) ≤ f (s) and f (s) = f (s)

e) Otherwise, exclude all s where f (s) ≤ f (s) from P and add s to P .

population contains for each non-dominated fitness vector f (s), s ∈ P ∪ {s}, one corresponding search point, and in the case where f (s) is not dominated s is chosen.

Applying SEMO to a single-objective optimization problem, we obtain

RLS1 where in each step a single bit is flipped. Giel (2003) has introduced b

an algorithm called Global SEMO (GSEMO), which is shown in Algorithm 5.

This algorithm differs from SEMO by using the more general mutation opera-

tor of (1+1) EAb. GSEMO applied to single-objective optimization problems

equals (1+1) EAb.

We will analyze the algorithms until they have achieved certain goals for

different combinatorial optimization problems. In the case of polynomially

solvable problems, we are interested in the time until a solution is produced for each Pareto optimal objective vector, whereas in the case of NP -hard problems we are interested in the time to achieve a good approximation of the Pareto front. We will also examine how multi-objective models of single-objective

optimization problems can help to speed up stochastic search algorithms. In this case, we are mainly interested in the quality of a particular solution in the population, namely the one solving the single-objective optimization problem.

4.2 Basic Methods for the Analysis

37

4.2 Basic Methods for the Analysis

Until the early 1990s, theory on evolutionary algorithms mainly dealt with

the convergence of EAs or results that showed the behavior of an EA in one

single iteration. The first runtime analysis of an EA was given by M¨

uhlenbein

(1992). Evolutionary algorithms are stochastic search algorithms, but for a long time they were not analyzed in the way randomized algorithms normally

are. The main reason for this is that the people who worked on theoretical

aspects of evolutionary computation had a different background than peo-

ple in theoretical computer science or discrete mathematics. With regard to evolutionary algorithms as a class of randomized algorithms, a lot of strong methods are available. Such methods have already been applied in the field

of randomized algorithms (Motwani and Raghavan, 1995). A very important issue when analyzing the runtime of EAs is the application of large deviation inequalities such as Chernoff bounds or Markov’s inequality. Another useful method is to follow the considerations of the coupon collectors problem. Since the mid-1990s, a lot of new methods for analyzing the runtime of EAs have

been obtained. In this section, we want to discuss some important methods

that have been used. These methods will be applied in our analysis of evolutionary algorithms for combinatorial optimization problems.

To show how to apply different methods that have been developed, we

consider the class of linear pseudo-boolean functions. A linear pseudo-boolean function f : { 0 , 1 }n → R is defined by

 f (x) = w 1 x 1 + w 2 x 2 + · · · + wnxn, where wi ∈ Z.

W. l. o. g., we assume that all wi attain non-negative values. The case of (partially) negative weights can be handled analogously to the following investigations, as a weight wi = 0 determines independently of the other weights whether the bit xi has to be set to 1 or 0 in an optimal solution. In the case where some weights are 0, the function value does not depend on the corresponding bits. The upper bound given in Theorem 4.4 also holds in this case, but the lower bound given in Theorem 4.3 needs the condition that there are Θ(n) weights distinct from 0.

4.2.1 Fitness-Based Partitions

This simple method has been used for a wide class of problems. We assume

that we are considering a stochastic search algorithm that works in each iteration with one solution that produces one offspring. All variants of RLS and (1+1) EA we have discussed in Section 4.1 fit into this scenario. Assume that we are working in a search space S and consider w. l. o. g. a function f : S → R

that should be maximized. S is partitioned into disjoint sets A 1 , . . . , Am such that A 1 <f A 2 <f · · · <f Am holds, where Ai <f Aj means that f (a) < f (b)

38

4 Analyzing Stochastic Search Algorithms

Fig. 4.1. Illustration of fitness-based partitions

holds for all a ∈ Ai and all b ∈ Aj. In addition, Am contains only optimal search points. An illustration is given in Figure 4.1. We denote for a search point x ∈ Ai by p(x) the probability that in the next step a solution x ∈ Ai+1 ∪ · · · ∪ Am is produced. Let pi = min a∈A p(x) be the smallest i

probability of producing a solution with a higher partition number.

Lemma 4.1. The expected optimization time of a stochastic search algorithm that works at each time step with a population of size 1 and produces at each time step a new solution from the current solution is upper bounded

 by

 m− 1(1 /p

 i=1

 i) .

 Proof. The expected time of a success for independent Bernoulli trials with probability p is 1 /p. Hence, the expected time to produce from a search point x ∈ Ai a search point x with x ∈ Aj, j > i, is upper bounded by 1 /pi.

This implies that the expected time until an optimal search point has been

produced is upper bounded by

 m− 1(1 /p

 i=1

 i).

To come up with good upper bounds using this method, one has to use

a good partitioning of the search space such that there are not too many

partitions and that there is a high probability of leaving the current partition and producing a search point in a better one.

We consider a simple example. OneMax : { 0 , 1 }n → R is a simple linear pseudo-boolean function where wi = 1, 1 ≤ i ≤ n, holds. It is defined by

OneMax(x) =

 n

 x

 i=1

 i and should be maximized. The function returns for

a bitstring x of length n the number of 1s in x. We consider (1+1) EAb for maximization problems, where a new solution is accepted if its fitness value is not smaller than the value of the best solution up to now.

Theorem 4.2. The expected optimization time of (1+1) EAb on OneMax is O(n log n) .

4.2 Basic Methods for the Analysis

39

 Proof. The search space is partitioned into n + 1 sets A 0 , . . . , An where Ai contains all solutions x with OneMax(x) = i. Assume that the currently best solution x belongs to An−k. Then there are exactly k 0-bits that can be flipped to obtain an improvement. The probability of an improvement in the

next step is at least k (1 − 1) n− 1 ≥ k . Hence, the expected waiting time for n

 n

 en

an improvement is upper bounded by en/k. Summing up the waiting times for the different values of k we get

 n

 n

 en

 1

= en ·

= O(n log n) .

 k

 k

 k=1

 k=1

In the case where one works with a larger population, often an individual

with the highest partition number in the population is considered. Then one can analyze the time until this individual has become an optimal one. The

method works in nearly the same way as in the case of a population of size 1, but one often has to add an additional factor to choose the right individual in the next step.

4.2.2 Chernoff Bounds and Coupon Collectors

Large deviation inequalities have widely been used in the analysis of randomized algorithms. In the case of stochastic search algorithms, they are often useful for showing the typical behavior of such a heuristic. We consider (1+1) EAb which chooses the initial solution x uniformly at random from { 0 , 1 }n by setting each bit with equal probability to 0 or 1. Hence, n Bernoulli trials are considered where Prob(xi = 1) = Prob(xi = 0) = 1 / 2, 1 ≤ i ≤ n, holds.

The expected number of 1s in the initial solution is therefore n/ 2 and there are at most 2 n/ 3 1s in the initial bitstring with probability 1 − e−Ω(n) using Chernoff bounds (see Appendix A.5).

In the coupon collector’s problem (Motwani and Raghavan, 1995), n different coupons are given and at each time step a coupon is chosen uniformly at random from among all coupons. Let t be the number of trials. Then one studies the number of trials until each of the n coupons has been chosen at least once. The expected number of trials until each coupon has been chosen at least once is Θ(n log n) (see Appendix A.13). Using Chernoff bounds and the ideas of the coupon collectors problem, it is easy to obtain a lower bound of Ω(n log n) on each linear pseudo-boolean function with non-zero weights.

To show how to use Chernoff bounds and the ideas of the coupon collectors

problem, we present the proof which can be found in Droste et al. (2002).

W. l. o. g., we assume that all weights attain positive values. Hence, the only optimal solution is the bitstring (1 , . . . , 1).

Theorem 4.3. The expected optimization time of (1+1) EAb on each linear pseudo-boolean function with non-zero weights is Ω(n log n) .

40

4 Analyzing Stochastic Search Algorithms

 Proof. Using Chernoff bounds, the expected number of 0s in the initial bitstring is at least n/ 3 with probability 1 − e−Ω(n). To obtain the proposed lower bound, we analyze the expected time until each of the 0-bits has been flipped at least once under the condition that there are at least n/ 3 0-bits after initialization. This is done in a similar fashion as in the case of the coupon collector’s theorem.

Let t be a specific number of steps. The probability that a specific 0-bit has not been flipped at least once in t steps is (1 − 1 /n) t. Hence, the probability that it has flipped at least once in t steps is 1 − (1 − 1 /n) t, and the probability that each of the n/ 3 0-bits has flipped at least once is (1 − (1 − 1 /n) t) n/ 3. The probability that at least one of the n/ 3 0-bits has never flipped during t steps is 1 − (1 − (1 − 1 /n) t) n/ 3. Hence, the probability that at least one 0-bit has not been flipped during t = (n − 1) ln n steps is 1 − (1 − (1 − 1 /n)(n− 1) ln n) n/ 3 ≥

1 − e− 1 / 3.

Altogether, the optimization time of (1+1) EA b is Ω(n log n) with probability at least 1 − e− 1 / 3 − e−Ω(n) = Ω(1), which proves the theorem.

4.2.3 Expected Multiplicative Distance Decrease

The method of the expected multiplicative distance decrease has been de-

veloped to analyze the runtime behavior of stochastic search algorithms on

problems with a large number of different values that the fitness function may attain. For example, this is the case for the minimum spanning tree problem where an exponential number of spanning trees with different weights is possible.

The method is illustrated in Figure 4.2. It can be applied to problems where we are able to transform each solution s into an optimal solution s opt by a set O = {o 1 , . . . , or} consisting of r operations that all have the same probability of happening in the next step. We assume that this probability can be lower bounded by α and that the set of possible fitness values contains only integers. For simplicity, the value of r does not change in all considerations.

Note that the number of operations until s opt has been reached depends on the solution s. W. l. o. g., we assume that O = {o 1 , . . . , or }, O ⊆ O, is 1

the set of operations necessary to turn s into s opt. Then r − r 1 operations are added such that one can work at each time step with the same value of r. It is important that the application of each of the operations of O lead to a solution s that is not inferior to s. This implies that each operation of O applied to s is accepted. W. l. o. g., we assume that the considered fitness function f should be maximized. Let d = f (s opt) − f (s) be the distance (measured as the difference of the function values) of s from an optimal one. As all operations have the same probability, the expected decrease in the distance when producing a

solution s by an operation that is chosen uniformly at random from the set O

is at least f(s opt) −f(s) . Note that non-accepted operations of O \ O contribute r

a distance decrease of 0. The expected distance of s from s opt is

4.2 Basic Methods for the Analysis

41

Fig. 4.2. Illustration of the expected multiplicative distance decrease (1 − 1 /r) · (f (s opt) − f (s)) after 1 step, and the expected distance after t such steps is

(1 − 1 /r) t · (f (s opt) − f (s)) .

Let

 d max = max (f (s opt) − f (s))

 s∈{ 0 , 1 }n

be the maximum distance of any search point in the search space from an

optimal one. After having executed t randomly chosen operations of O, the expected distance to an optimal solution is at most (1 − 1 /r) t · d max. Choosing t = c · r · log d max, c an appropriate constant, the expected distance is at most 1 / 2. Using Markov’s inequality (see Appendix A.4), the probability that the distance is at least 1 is upper bounded by 1 / 2. As the set of possible fitness values contains only integers, the probability of having achieved an optimal solution (i.e., the distance is 0) is at least 1 / 2. This implies that the expected number of operations belonging to the set O until an optimal solution has been achieved is at most 2 t = O(r · log d max). The probability of an operation belonging to the set O is at least r · α. Using this, the expected optimization time is O((r · α) − 1 r · log d max) = O(α · log d max).

We consider linear pseudo-boolean functions and define w max = max i |wi|.

Applying the method of expected multiplicative distance decrease, we show in a simple way an upper bound on the expected optimization time of (1+1) EA b on each linear pseudo-boolean function, which is according to Theorem 4.3

42

4 Analyzing Stochastic Search Algorithms

optimal as long as the weights are polynomially bounded in n. W. l. o. g., we assume that wi ≥ 0, 1 ≤ i ≤ n, holds.

Theorem 4.4. The expected optimization time of (1+1) EAb on linear functions is upper bounded by O(n(log n + log w max)) .

 Proof. The set of operations O contains all steps where only one single bit flips.

Hence, O contains r = n operations. The set O contains all operations flipping one single 0-bit. As wi ≥ 0, 1 ≤ i ≤ n, each operation of O is accepted. The probability of one specific operation of O is 1 /n · (1 − 1 /n) n− 1 ≥ 1 /(en) := α

and d max ≤ n · w max holds. Using the method of expected multiplicative distance decrease, the expected optimization time is upper bounded by

 O(n log d max) = O(n(log n + log w max)).

Note that the given upper bound is O(n log n) as long as all weights are polynomially bounded in n. It is possible to obtain a more general upper bound of O(n log n) even if the weights are not polynomially bounded. This proof is much more complicated than the one presented here and can be found in Droste et al. (2002).

4.2.4 Cover Time of Random Walks

In the following, we show how classical results on random walks on a given

graph can be used for the analysis of stochastic search algorithms. In particular, we show how results on the cover time of a random walk can be directly used to give bounds on the runtime of this class of algorithms when dealing with plateau functions.

Plateaus are regions in the search space where all search points have the

same objective vectors. Consider a function f : { 0 , 1 }n → R and assume that the number of different objective values for that function is N . Then there are at least 2 n/N search points with the same objective value. Often, the number of different objective values for a given function is polynomially bounded. This implies an exponential number of solutions with the same objective value.

Nevertheless, such functions where N is polynomially bounded are easy to optimize for evolutionary algorithms if for each non-optimal solution there is a better Hamming neighbor, which means that an improvement can be made

by flipping a single bit of a non-optimal solution. Polynomial upper bounds for such functions and typical stochastic search algorithms can be obtained by using the method of fitness-based partitions introduced in Section 4.2.1.

If this is not the case, the search for a stochastic search algorithm may

become much harder. In the extreme case, we end up with the function NEEDLE , where only one single solution has objective value 1 and the remaining ones get an objective value of 0. Here, typical stochastic search algorithms require an exponential number of steps to reach the optimal solution as the function does not give any hints towards the optimum. The behavior of (1+1) EAb

4.2 Basic Methods for the Analysis

43

Algorithm 6 Random Walk on a graph G = (V , E) Start at a vertex v ∈ V .

repeat

Choose a neighbor w of v in G uniformly at random.

Set v := w.

until stop

on plateaus of different structures has been studied by Jansen and Wegener

(2001).

We want to relate the behavior of stochastic search algorithms on plateau

functions to random walks on a given graph, and we consider the following

problem. Given a connected graph G = (V, E), a random walk starts at a vertex v ∈ V and moves in each step to a neighbor of the current vertex that is chosen uniformly at random from among all neighbors. An algorithm

describing this random walk procedure is stated in Algorithm 6.

Definition 4.5. Given an undirected connected graph G = (V, E) , the cover time of a random walk on G is the number of steps until each vertex v ∈ V

 has been visited at least once.

The following result has been obtained by Aleliunas, Karp, Lipton, Lovász,

and Rackoff (1979).

Theorem 4.6 (Upper bound for Cover Time). Given an undirected connected graph G = (V, E) with n vertices and m edges, the cover time is upper bounded by 2 |E|(|V | − 1) .

To illustrate how to use this bound for the analysis of stochastic search

algorithms, we consider the function SPC (short path with constant values), which was introduced by Jansen and Wegener (2001). Let |x| 0 denote the number of zeros in a bitstring x. The function SPC is defined as

⎧

⎨ |x| 0

:

 x ∈ { 1 i 0 n−i, 0 ≤ i ≤ n}

 SPC(x) := ⎩ n + 1 : x ∈ { 1 i 0 n−i, 0 ≤ i < n}

2 n

:

 x = 1 n.

We denote by SP := { 1 i 0 n−i, 0 ≤ i < n} the set of search points that constitute the plateau of fitness n + 1. Consider the graph GSP = (V, E) with V = {v 0 , v 1 , . . . , vn} shown in Figure 4.3. The vertex vi corresponds to the search point 1 i 0 n−i. The edge set is given by E = {{vi, vi+1 }, 0 ≤ i ≤ n − 1 }, i.e., an edge is present between two vertices if the corresponding search points have Hamming distance 1. The graph GSP consists of n + 1 vertices and n edges. Hence, the cover time of a random walk on GSP is upper bounded by 2 n 2. This observation is very useful to bound the expected optimization time of RLS1 on SPC as shown in the following theorem.

b

44

4 Analyzing Stochastic Search Algorithms

Fig. 4.3. Graph GSP and corresponding search points of SP ∪ { 1 n}

We want to point out the relation between the search process of RLS1 on

b

 SP ∪ { 1 n} and the random walk on GSP. We identify search points with their corresponding vertices in the graph GSP. Note that once a solution with a corresponding vertex in this graph has been obtained, no search point that

does not have a corresponding vertex in the graph is accepted. The optimum

has been reached if the vertex vn has been visited for the first time. We call a step of the algorithm relevant if it is accepted by the algorithm. RLS1 always b

flips exactly one bit in each mutation step. Hence, a relevant step consists of moving to a neighbor of the current solution in the graph. This step is

unique in the case where the current solution is 0 n. Then, only the mutation step flipping the first bit is accepted. For a search point x corresponding to a vertex vi, 1 ≤ i ≤ n − 1, the probability of moving to vi− 1 as well as the probability of moving to vi+1 is 1 /n, as the bit xi or the bit xi+1 has to be flipped. Both accepted mutation steps occur with the same probability. Hence, in the next mutation step, the neighbor of vi is chosen uniformly at random.

In summary, we have shown that with regard to the relevant steps when

we are at a vertex vi, 1 ≤ i ≤ n− 1, RLS1 acts like the random walk algorithm b

on the graph GSP. This implies that the expected number of relevant steps until the solution 1 n has been obtained for the first time is at most 2 n 2 after a solution of SP ∪ { 1 n} has been obtained for the first time.

Theorem 4.7. The expected optimization time of RLS 1 on SPC is upper b

 bounded by O(n 3) .

 Proof. As long as no search point of SP ∪{ 1 n} has been produced, RLS1 max-b

imizes the number of zeros in the bitstring. RLS1 behaves as on the function b

OneMax. The only difference is that it maximizes the number of zeros instead of the number of 1s. Hence, after an expected number O(n log n) steps, a solution of SP ∪ { 1 n} is obtained using similar arguments as those in the proof for (1+1) EA on OneMax (see Theorem 4.2).

We already know that the expected number of relevant steps to reach the

optimum after having reached a solution of SP∪{ 1 n} is upper bounded by 2 n 2.

A relevant step happens with probability at least 1 /n in the next mutation step, and the expected waiting time for such a step is therefore upper bounded by n. Hence, after an expected number of at most 2 n 3 steps, the optimum is found after a search point of SP ∪ { 1 n} is first produced. This completes the proof.

4.2 Basic Methods for the Analysis

45

4.2.5 Gambler’s Ruin Theorem and Drift Analysis

Closely related to the previous discussion of random walks is the analysis

of a simple combinatorial game, whose basic properties often reappear in the stochastic processes induced by search algorithms. This time the random walk is not necessarily “fair,” i.e., not all neighboring states are necessarily chosen with the same probability. Typically, the game is formulated as a Markov

process on the state space S = { 0 , . . . , b}, where 0 and b are absorbing states.

In state i, 1 ≤ i ≤ b − 1, the probability of moving to state i + 1 is denoted by p, and the probability of going to state i − 1 by q := 1 − p. Hence, the process necessarily changes state by +1 or − 1 until an absorbing state has been reached, and the transition probabilities are the same for all non-absorbing states. Starting in state a, 1 ≤ a ≤ b − 1, we are interested in the absorbing state that is eventually reached. Interpreting the state space as the capital of a gambler and b as the capital of the bank, we are confronted with a game where the gambler either wins or loses one unit of money with a certain probability in each step until either the bank or he is ruined.

The following list of results is commonly subsumed under the headline

“gambler’s ruin theorem” (Feller, 1968). We only state those propositions that will be relevant in the course of this book.

Theorem 4.8 (Gambler’s Ruin Theorem). If p = q = 1 / 2 , the probability of the gambler’s game ending at state 0 equals

 qa = 1 − a ,

 b

 and the expected duration of the game is

 Da = a(b − a) .

 If q = p then

 rb − ra

 qa =

 ,

 rb − 1

 and

 a

 Da =

 − b · ra − 1

 q − p

 q − p rb − 1

 where r = q/p.

The theorem is often used in the case q > p, i.e., when there is a tendency towards decreasing the state. We see that qa becomes close to 1 in this case, particularly if b a. If the initial capital is low compared to the capital of the bank and the game is in favor of the bank, the probability of the gambler’s ruin is high. This scenario reappears in situations where stochastic search algorithms tend to walk towards an undesired state. Due to the nature of

the above expression, the gambler’s ruin theorem allows then for exponential lower bounds (with respect to the parameter b) on the optimization time.

46

4 Analyzing Stochastic Search Algorithms

Fig. 4.4. Illustration of the scenario underlying the drift theorems for lower bounds A drawback of the gambler’s ruin theorem is that it restricts the change

of state to either +1 or − 1, i.e., assumes a local behavior of the process.

Therefore, it can often be directly applied to processes induced by RLS1 while b

it is not well suited to model the behavior of the (1+1) EA, which is allowed to flip all bits in a step. This allows us, in principle, to move from any state to any other state in a single step. Still, the (1+1) EA is inclined to perform only small changes. Therefore the intuition of the gambler’s ruin theorem can still be carried over in many cases. Since it is more convenient to deal with a positive value for the expected direction of the movement, we now turn

things around and wait for a Markov process to reach the lower limit of the interval [a, b] given a starting point above state b. With the aim of showing that the whole interval is not passed in exponential time, we intuitively need the following two conditions (see also Figure 4.4):

•

In the interval at time t, there must be a drift, an expected displacement, towards increasing the state. This will be made precise by the first condition of the following theorem.

•

Drift alone is not enough. In exponentially long phases, the probability

must be exponentially small of leaving the interval towards the optimum

using large jumps. The random step length towards the optimum has to

exhibit exponential decay, which is formalized by the second condition.

The idea behind the following theorem goes back to Hajek (1982). The variant presented here is due to Oliveto and Witt (2008).

Theorem 4.9 (Simplified Drift Theorem). Let Xt, t ≥ 0 , be the random variables describing a Markov process over a finite state space S ⊆ [0 , N] and denote Δt(i) := (Xt+1 − Xt | Xt = i) for i ∈ S and t ≥ 0 . Suppose there exist an interval [a, b] in the state space, two constants δ, > 0 and, possibly depending on
 := b − a, a function r(
) satisfying 1 ≤ r(
) = o(
/ log(
)) such

 that for all t ≥ 0 the following two conditions hold:

 1. E(Δt(i)) ≥ for a < i < b,

 2. Prob(Δt(i) ≤ −j) ≤

 r()

 for i > a and j ∈ N

(1+ δ) j

0 .

 Then there is a constant c∗ > 0 such that for T ∗ := min {t ≥ 0 : Xt ≤ a |

 X 0 ≥ b} it holds that Prob(T ∗ ≤ 2 c∗/r()) = 2 −Ω(/r()) .

4.2 Basic Methods for the Analysis

47

The theorem contains a sharp concentration result for the random vari-

able T ∗. Not only is the expected first hitting time for states less than a (given starting state at least b) exponential, but the exponential time holds also with high probability.

As an example of an application of the simplified drift theorem, reconsider the function

1 if x = 1 n,

 NEEDLE(x) =

0

otherwise.

mentioned in Section 4.2.4.

Informally speaking, the NEEDLE function is difficult since every search point except the all-1s string has the same value. Therefore, the simple search algorithms (1+1) EAb and RLS1 walk randomly on a plateau of exponential

b

size and tend to sample search points that have only about half the bits

correct for a long time. It is well known that the algorithms need expected optimization time 2 Ω(n) (Garnier, Kallel, and Schoenauer, 1999). Using the simplified drift theorem, we can give a short proof for this result.

Theorem 4.10. The optimization time of RLS 1 and (1+1) EA b

 b

 on the

 NEEDLE function is at least 2 Ω(n) with probability 1 − 2 −Ω(n) .

 Proof. We set a := 0, b := n/ 3 and denote by Xt, t ≥ 0, the number of zero-bits in the search point at time t. By Chernoff bounds, the initial value X 0

satisfies X 0 ≥ b with probability 1 − 2 −Ω(n).

Let us consider some Xt such that Xt = i for a < i < b. Both algorithms flip each bit (not necessarily independently) with probability 1 /n. Using the linearity of expectation, the expected number of 0-bits flipped equals i/n and the expected number of 1-bits flipped is (n − i) /n. We obtain n − i

 n − 2 i

 E(Δt(i)) =

 − i =

 ≥ 1 ,

 n

 n

 n

3

where we used i < b. This already establishes the first condition of Theorem 4.9 for both search algorithms.

The second condition is almost trivial to prove for RLS1 since its mutation b

operator guarantees that Prob(Δt(i) < − 1) = 0. We set r(
) = 2 and δ = 1,

which implies that

 r()

 ≥ 1 for j ∈ { 0 , 1 }. Hence, Prob(Δ

(1+ δ) j

 t(i) = −j) ≤

 r()

for j ∈ N

(1+ δ) j

0. For (1+1) EAb, we observe that the probability of flipping

at least j bits in a single step is at most

 j

 j

 n

1

 ≤ nj 1

1

=

 ≤ 2 .

 j

 n

 j!

 n

 j!

2 j

Thus, the above choices for r(
) and δ also work for (1+1) EAb. We have

established the second condition for both algorithms.

Since optimizing NEEDLE is equivalent to reaching an Xt-value of 0, Theorem 4.9 and the assumption X 0 ≥ b together yield that the optimization time

48

4 Analyzing Stochastic Search Algorithms

of the search algorithms is at least 2 Ω(b−a) = 2 Ω(n) with probability at least (1 − 2 −Ω(n)) · (1 − 2 −Ω(b−a)) = 1 − 2 −Ω(n).

Conclusions

We have defined basic evolutionary algorithms for single and multi-objective optimization that are often used in their complexity analysis. These algorithms are simplified algorithms but capture important features of algorithms that are used in practice and allow us to treat them in a rigorous fashion. Furthermore, we have introduced basic tools for the analysis of stochastic search algorithms and exemplified these methods by presenting results on some pseudo-Boolean

functions. We will make use of the methods presented in this chapter during our investigations of combinatorial optimization problems that are carried out in the remaining part of this book.

Part II

Single-objective Optimization

5

Minimum Spanning Trees

In this chapter, we study the behavior of stochastic search algorithms on an important graph problem. We consider the well-known problem of computing a minimum spanning tree in a given undirected connected graph with

 n vertices and m edges. The problem has many applications in the area of network design. Assume that we have n computers that should be connected with minimum cost, where costs of a certain amount occur when one computer is connected to another one. The cost for a connection can, for example, be the distance between two considered computers. One needs to make n − 1

connections between these computers such that all computers are able to

communicate with each other. Considering a graph as a model for a possible

computer network, it has n vertices and one searches for the set of edges with minimal cost that makes the graph connected.

This classical minimum spanning tree (MST) problem has the following

description. Given an undirected connected graph G = (V, E) on n vertices and m weighted edges, find an edge set E ⊆ E of minimal weight, that connects all vertices. The weight of an edge set is the sum of the weights of the considered edges. Weights are positive integers. Therefore, the solution is a tree on V , a so-called spanning tree. One can also consider graphs which are not necessarily connected. Then the aim is to find a minimum spanning

forest, i.e., a collection of spanning trees on the connected components. All our results hold also in this case. To simplify the presentation, we assume that G is connected.

The famous algorithms due to Kruskal (1956) and Prim (1957) have worst-case runtimes of magnitude O((n + m) log n) and O(n log n + m), respectively; see any textbook on efficient algorithms (Cormen et al., 2001; Mehlhorn and Sanders, 2008). Karger, Klein, and Tarjan (1995) have given a randomized greedy algorithm that computes a minimum spanning tree in time O(m) with high probability. Greedy algorithms use global ideas. Considering only the

neighborhoods of two vertices u and v, it is not possible to decide whether the edge {u, v} belongs to some minimum spanning tree. Therefore, it is interesting to analyze the runtimes obtainable by more or less local search heuristics F. Neumann, C. Witt, Bioinspired Computation

51

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 5, © Springer-Verlag Berlin Heidelberg 2010

52

5 Minimum Spanning Trees

like randomized local search and evolutionary algorithms. We present such

results, due to Neumann and Wegener (2007).

One goal is to estimate the expected time until a better spanning tree has

been found. For large weights, there may be exponentially many spanning

trees with different weights, which means that the distance from a starting solution to an optimal one may be exponentially. Then it is important to

know how much progress a stochastic search algorithm can make with respect

to an optimal solution. Therefore, we have to analyze how much better the

better spanning tree is. To do this, we make use of the method of expected

multiplicative distance decrease. Infact this method has been developed for analyzing stochastic search algorithms until they have computed a minimum

spanning tree. In Chapter 7, we will see that this method can also be used for analyzing stochastic search algorithms on an NP -hard scheduling problem.

Having analyzed evolutionary algorithms for the minimum spanning tree

problem, we turn to ant colony optimization. It is widely assumed and ob-

served in experiments that the choice of the construction graph has a great effect on the runtime behavior of an ACO algorithm. The first runtime analyses of ACO algorithms for the optimization of pseudo-Boolean functions were carried out in Doerr, Neumann, Sudholt, and Witt (2007c); Gutjahr (2007);

Neumann, Sudholt, and Witt (2009); Neumann and Witt (2009). The construction graph used in these papers is a general one for the optimization of pseudo-Boolean functions and does not take knowledge about the given problem into account. ACO algorithms have the advantage that more knowledge

about the structure of a given problem can be incorporated into the construction of solutions. This is done by choosing an appropriate construction graph together with a procedure which allows us to obtain feasible solutions. The choice of such a construction graph together with its procedure has been observed experimentally as a crucial point for the success of such an algorithm.

We examine ACO algorithms that work on construction graphs which seem

to be more suitable for the MST problem. The results we present are due to

Neumann and Witt (2010). First, we consider the input graph itself. It is well known how to choose a spanning tree of a given graph uniformly at random by using random walk algorithms (Broder, 1989; Wilson, 1996). Our construction procedure produces solutions by a variant of Broder’s algorithm. We show a

polynomial, but relatively large, upper bound for obtaining a minimum span-

ning tree by this procedure if no heuristic information influences the random walk. Using only heuristic information for constructing solutions, we show

that a simple ACO algorithm together with the Broder-based construction

procedure does not find a minimum spanning tree or even does not present a

feasible solution in polynomial time.

After that, we consider a more incremental construction procedure that

follows a general approach proposed by Dorigo and St¨

utzle (2004) to obtain

an ACO construction graph. We call this the Kruskal-based construction pro-

cedure as in each step an edge that does not create a cycle is chosen to be included into the solution. Using such a construction procedure, we are able

5.1 Representation for Evolutionary Algorithms

53

to show the resulting algorithms are more efficient than simple evolutionary algorithms. Our analyses show how ACO algorithms for combinatorial optimization can be analyzed rigorously and are a first step in understanding ACO algorithms on more complicated structures. In particular, we provide

insight into the working principles of ACO algorithms by studying the effect of the (guided) random walks of these algorithms.

Having motivated the analysis of stochastic search algorithms on the min-

imum spanning tree problem, we now give a survey on the rest of this chapter.

In Section 5.1, we describe our model of the minimum spanning tree problem.

The theory on minimum spanning trees is well established. In Section 5.2,

we deduce some properties of local changes in non-optimal spanning trees

which will be used in our analyses. In Section 5.3, we analyze evolutionary algorithms with respect to their computational complexity, and we study the impact of the construction graph for ACO algorithms in Section 5.4.

5.1 Representation for Evolutionary Algorithms

There are many ways to choose the search space for evolutionary algorithms

when applying them to spanning tree problems. This problem has been inves-

tigated intensively by Raidl and Julstrom (2003). Their experiments point out that one should work with “edge sets”. The search space equals S = { 0 , 1 }m, where each position corresponds to one edge. A search point s ∈ S corresponds to the choice of all edges ei, 1 ≤ i ≤ m, where si = 1. The weight of edge ei is denoted by wi; w max = max1 ≤i≤m wi and w min = min1 ≤i≤m wi refer to the maximum and minimum weight of the given input graph. In many

cases, many search points correspond to non-connected graphs and others correspond to connected graphs with cycles, i.e., graphs which are not trees. If all graphs which are not spanning trees have the same “bad” fitness, it will take exponential time to find a spanning tree when we apply a stochastic search

algorithm. We will investigate two fitness functions f and f .

Let

 f (s) = (c(s) , e(s) − (n − 1) , w(s)) be the first fitness function, where c(s) is the number of connected components

of the graph described by s, and e(s) =

 n

 s

 i=1

 i is the number of edges in

this graph and w(s) =

 m

 w

 i=1

 isi is the weight of the chosen edges. The

fitness function has to be minimized with respect to the lexicographic order and takes the weight of all edges into account for which the corresponding bit si = 1 holds. The most important issue is to decrease c(s) until we have graphs connecting all vertices. Then we have at least n − 1 edges, and the next issue is to decrease e(s) under the condition that s describes a connected graph.

Hence, we look for spanning trees. Finally, we look for minimum spanning

trees.

It is necessary to penalize non-connected graphs since the empty graph has

the smallest weight. However, it is not necessary to penalize extra connections

54

5 Minimum Spanning Trees

Fig. 5.1. Bijection. Continuous edges belong to a minimum spanning tree T , dashed edges correspond to a spanning tree S

since breaking a cycle decreases the weight. Therefore, it is also interesting to investigate the fitness function

 f (s) = (c(s) , w(s)) ,

which should also be minimized with respect to the lexicographic order.

The fitness function f is appropriate in the black-box scenario, which uses as little problem-specific knowledge as possible. The fitness function f contains the knowledge that optimal solutions are trees. This simplifies the analysis of stochastic search algorithms. Therefore, we always start with results on the fitness function f and discuss afterwards how to obtain similar results for f .

5.2 Properties of Local Changes

The theory on minimum spanning trees is well established. Here we want to

show how an arbitrary spanning tree can be turned into an optimal solution

in a specific way that can be used later for analyzing the runtime of stochastic search algorithms. We identify a tree T by its set of edges. Let e ∈ E \ T be an edge that is not contained in T . We denote by Cyc(T, e) the edges of T that are contained in the cycle created when introducing e into T . We can construct from a spanning tree T another spanning tree T by introducing an edge e ∈ E \ T into T and removing one edge of Cyc(T, e) from T . Such operations are called exchange operations. In this section, we recall some facts from the theory of minimum spanning trees that show that an arbitrary spanning tree

 T can be turned into an optimal solution T ∗ by a set of exchange operations where each operation is directly applicable on T and its execution of the operation does not lead to a weight increase. Using this, we can estimate the weight decrease possible when considering the current spanning tree T .

The following result was proven by Kano (1987) using an existence proof.

Later, Mayr and Plaxton (1992) gave an explicit construction procedure, which we present in the following.

5.2 Properties of Local Changes

55

Theorem 5.1. Let T be a minimum spanning tree and S be an arbitrary spanning tree of a given weighted graph G = (V, E) . Then there exists a bijection Φ from T \ S to S \ T such that for every edge e ∈ T \ S, Φ(e) ∈ Cyc(S, e) and w(Φ(e)) ≥ w(e) .

 Proof. Let C and D be disjoint subsets of E. The graph G = G[C, D] is constructed from G by contracting the edges of C and deleting the edges of D. We determine the bijection between the disjoint spanning trees T = T \ S

and S = S \ T of the graph G = G[T ∩ S, E \ T \ S]. It is easy to see that Cyc(T , e) ⊆ Cyc(T, e) holds for all e ∈ T . Let t be the heaviest edge in T and s be any edge in S for which t ∈ Cyc(T , s) and s ∈ Cyc(S, t) holds. We can determine such an s by removing t from G. This partitions the vertices of T

into two classes. Let s be the edge in S that connects these two components.

Note that s ∈ Cyc(S, t) and t ∈ Cyc(T , s) holds as s and t connect the two components of T \ {t}.

 T is a minimum spanning tree of G, which implies that w(t) ≤ w(s). Set Φ(t) = s and determine the next component of the bijection by repeating the procedure on the graph G[s, t]. T [s, t] is a minimum spanning tree of G[s, t].

In addition, for all e ∈ T [s, t],

 Cyc(S[s, t] , e) = Cyc(S, e) \ {s} ⊆ Cyc(S, e) ⊆ Cyc(S, e) holds. Hence, the next assignment of an edge e ∈ T [s, t] to Φ will be guaranteed to satisfy Φ(e) ∈ Cyc(S, e). The process is iterated until for each e ∈ T

a corresponding Φ(e) ∈ S has been determined.

An illustration of the bijection is given in Figure 5.1. Note that the bijection gives a set of edge exchanges to transform an arbitrary spanning tree into a minimum spanning tree.

We denote by w opt the weight of minimum spanning trees and want to show the following. For a search point s representing a non-minimum spanning tree, there are either many weight-decreasing local changes which, on average, decrease f (s) by an amount that is not too small with respect to w(s) − w opt, or there are few of these local changes which, on the average, cause a larger decrease of the weight. This enables use to use the method of the expected

multiplicative distance decrease presented in Section 4.2.3. Distance is in this case measured by the weight difference w(s) − w opt. The statement of the decrease by these local changes is made precise in the following lemma.

Lemma 5.2. Let s be a search point describing a non-minimum spanning tree T . Then there exist some k ∈ { 1 , . . . , n − 1 } and k different accepted 2 -bit flips such that the average distance decrease of these flips is at least (w(s) − w opt) /k.

 Proof. Let s∗ be a search point describing a minimum spanning tree T ∗. Let k := |T ∗ \ T |. Then there exists a bijection Φ : T ∗ \ T → T \ T ∗ such that

56

5 Minimum Spanning Trees

 Φ(e) lies on the cycle Cyc(T, e) and the weight of Φ(e) is not smaller than the weight of e due to Theorem 5.1.

We consider the k 2-bit flips flipping e and Φ(e) for e ∈ T ∗ \ T . They are accepted since e creates a cycle which is destroyed by the elimination of Φ(e).

Performing all the k 2-bit flips simultaneously changes T to T ∗ and leads to a distance decrease of w(s) − w opt. Hence, the average distance decrease of these steps is (w(s) − w opt) /k.

The analysis of stochastic search algorithms will be simplified if we can

ensure that we always have the same parameter k in Lemma 5.2. This is easy if we allow also non-accepted 2-bit flips whose distance decrease is defined as 0. We add n − k non-accepted 2-bit flips to the set of the k accepted 2-bit flips whose existence is proven in Lemma 5.2. Then we obtain a set of exactly n 2-bit flips. The total distance decrease is at least w(s) − w opt since this holds for the k accepted 2-bit flips. Therefore, the average distance decrease is bounded below by (w(s) − w opt) /n. We state this result as Lemma 5.3.

Lemma 5.3. Let s be a search point describing a spanning tree T . Then there exists a set of n 2 -bit flips such that the average distance decrease of these flips is at least (w(s) − w opt) /n.

When analyzing the fitness function f instead of f , we may accept non-spanning trees as improvements of spanning trees. Non-spanning trees can be improved by 1-bit flips eliminating edges of cycles. A 1-bit flip leading to a non-connected graph is not accepted and its distance decrease is defined as 0.

Lemma 5.4. Let s be a search point describing a connected graph and consider the fitness function f . Then there exist a set of n 2 -bit flips and a set of m − (n − 1) 1 -bit flips such that the average distance decrease of these flips is at least (w(s) − w opt) /(m + 1) .

 Proof. We consider all 1-bit flips concerning the edges that are not contained in the minimum spanning tree T ∗. If we try them in some arbitrary order we obtain a spanning tree T . If we consider their weight decrease with respect to the graph G described by s, this weight decrease can be only larger. The reason is that a 1-bit flip, which is accepted in the considered sequence of 1-bit flips, is also accepted when applied to s. Then we apply Lemma 5.3 to T . At least the same weight decrease is possible by adding ei and deleting a non- T ∗

edge with respect to G. Altogether, we obtain at least a weight decrease of w(s) − w opt. This proves the lemma, since we have chosen m + 1 flips.

5.3 Analysis of Evolutionary Algorithms

In this section, we analyze the computational complexity of evolutionary algorithms for computing a minimum spanning tree. We start by presenting

5.3 Analysis of Evolutionary Algorithms

57

upper bounds on the expected optimization time of RLS1 , 2 and (1+1) EA b

b.

Afterwards, we present matching lower bounds and discuss how stochastic

search algorithms can be sped up by using other mutation operators or par-

allelization.

5.3.1 Upper Bounds

The fitness function f penalizes solutions that are not connected or have more than n − 1 edges. In the case of f , unconnected graphs are penalized.

We first show that RLS1 , 2 and (1+1) EA

b

b using the fitness functions f and

 f construct connected graphs efficiently. In the case of f it is also easy to show that spanning trees are obtained in a small amount of time. We use the method of fitness-based partitions (see Section 4.2.1) and partition the search space into fitness levels with respect to the number of connected components or the number of edges for connected graphs.

Lemma 5.5. The expected time until RLS 1 , 2 or (1+1) EA b

 b working on one

 of the fitness function f or f has constructed a connected graph is O(m log n) .

 Proof. The fitness functions are defined in such a way that the number of connected components will never be increased in accepted steps. For each

edge set leading to a graph with k connected components, there are at least k − 1 edges whose inclusion decreases the number of connected components by 1. Otherwise, the graph would not be connected. The probability of a

step decreasing the number of connected components is at least 1 · k− 1 for 2

 m

RLS1 , 2 and 1 · k− 1 for (1+1) EA

b

 e

 m

b. Hence, the expected time until s describes

a connected graph is bounded above by

 n

 1

 em ·

= O(m log n) .

 k − 1

 k=2

Lemma 5.6. If s describes a connected graph, the expected time until RLS 1 , 2

 b

 or (1+1) EAb constructs a spanning tree for the fitness function f is bounded by O(m log n) .

 Proof. The fitness function f is defined in such a way that, starting with s, only connected graphs are accepted and that the number of edges does not

increase. If s describes a graph with r edges, it contains a spanning tree with n − 1 edges, and there are at least r − (n − 1) edges whose exclusion decreases the number of edges. If r = n − 1, s describes a spanning tree. Otherwise, by the same arguments as in the proof of Lemma 5.5, we obtain an upper bound of

 m

1

 em ·

= O(m log(m − (n − 1))) = O(m log n) .

 r − (n − 1)

 r= n

58

5 Minimum Spanning Trees

This lemma holds also for RLS1 , 2 and the fitness function f . RLS1 , 2 does b

b

not accept steps including only one edge or only two edges if s describes a connected graph. Since RLS1 , 2 does not affect more than two edges in a step, b

it does not accept steps in which the number of edges of a connected graph is increased. This does not hold for (1+1) EAb. It is possible that the exclusion of one edge and the inclusion of two or more edges creates a connected graph whose weight is not larger than the weight of the given graph.

In the following, we prove an upper bound of size O(m 2(log n + log w max)) on the expected optimization time for arbitrary graphs using the method

of expected multiplicative distance decrease (see Section 4.2.3). This bound relies on the properties of minimum spanning trees, which we have stated in Section 5.1 and is O(m 2 log n) as long as w max is polynomially bounded. But it is always polynomially bounded with respect to the bit length of the input.

Theorem 5.9 shows that the bound is optimal.

Theorem 5.7. The expected time until RLS 1 , 2 or (1+1) EA b

 b working on

 the fitness function f constructs a minimum spanning tree is bounded by O(m 2(log n + log w max)) .

 Proof. By Lemmas 5.5 and 5.6, it is sufficient to investigate the search process after finding a search point s describing a spanning T . Then, by Lemma 5.3,

there always exists a set of n 2-bit flips whose average distance decrease is at least (w(s) −w opt) /n. The choice of such a 2-bit flip is called a “good step”. The probability of performing a good step equals Θ(n/m 2) and each good step is chosen with the same probability. A good step decreases the difference between the weight of the current spanning tree and w opt on average by a factor not larger than 1 − 1 /n. This holds independently of previous good steps. Hence, after N good steps, the expected difference in the weight of T and w opt is bounded above by (1 − 1 /n) N · (w(s) − w opt). Since w(s) ≤ (n − 1) · w max and w opt ≥ 0, we obtain the upper bound (1 − 1 /n) N ·D, where D := (n− 1) ·w max.

If N := (ln 2) · (n − 1) · (log D + 1) , this bound is at most 1 . Since the dif-2

ference is not negative, by Markov’s inequality, the probability that the bound is less than 1 is at least 1 / 2. The difference is an integer implying that the probability of finding a minimum spanning tree is at least 1 / 2. Repeating the same arguments, the expected number of good steps until a minimum spanning tree is found is bounded by 2 N = O(n log D) = O(n(log n + log w max).

By our construction, there are always exactly n good 2-bit flips. Therefore, the probability of a good step does not depend on the current search point.

Hence, the expected time until r steps are good equals Θ(rm 2 /n). Altogether, the expected optimization time is bounded by

 O(N m 2 /n) = O(m 2(log n + log w max)) .

Applying Lemma 5.4 instead of Lemma 5.3, it is not too difficult to obtain the same upper bound for the fitness function f . The main difference is that a good 1-bit flip has a larger probability than a good 2-bit flip.

5.3 Analysis of Evolutionary Algorithms

59

Fig. 5.2. Example graph TG with p connected triangles and a complete graph on q vertices with edges of weight 1

Theorem 5.8. The expected time until RLS 1 , 2 or (1+1) EA b

 b working on

 the fitness function f constructs a minimum spanning tree is bounded by O(m 2(log n + log w max)) .

 Proof. By Lemma 5.5, it is sufficient to analyze the phase after having constructed a connected graph. We apply Lemma 5.4. The total distance decrease of the chosen 1-bit flips and 2-bit flips is at least w(s) − w opt if s is the current search point. If the total distance decrease of the 1-bit flips is larger than the total distance decrease of the chosen 2-bit flips, the step is called a 1-step.

Otherwise, it is called a 2-step.

If more than half of the steps are 2-steps, we adapt the proof of Theorem 5.7

with N := 2 N since we guarantee only an expected distance decrease by a factor of 1 − 1 /(2 n). Otherwise, we consider the good 1-steps which have an expected weight decrease of a factor of 1 − 1 /(2 m) for m = m − (n − 1).

Choosing M := 2 · (ln 2) · m · (log D + 1) , we can apply the proof technique of Theorem 5.7, where M plays the role of N . The probability of performing a good 1-bit flip equals Θ(m/m). In this case, we obtain the bound O(M m/m) = O(m(log n + log w max)) for the expected number of steps, which is even smaller than the proposed

bound.

5.3.2 Lower Bound

After having given upper bounds we show lower bounds on the expected

optimization time. To do this, we investigate the example graph TG shown in Figure 5.2. The graph TG consists of a connected sequence of p triangles and the last triangle is connected to a complete graph on q vertices. The number of vertices equals n := 2 p+ q and the number of edges equals m := 3 p+ q(q− 1) / 2.

We consider the case of p = n/ 4 and q = n/ 2 implying that m = Θ(n 2). The edges in the complete graph have the weight 1 and we set a := n 2. Each triangle edge has a weight which is larger than the weight of all edges of the complete graph altogether. Theorems 5.7 and 5.9 prove that this graph is a worst-case instance with polynomial weights.

Theorem 5.9. The expected optimization time until RLS 1 , 2 and (1+1) EA b

 b

 find a minimum spanning tree for the example graph TG equals Θ(m 2 log n) =

 Θ(n 4 log n) with respect to the fitness functions f and f .

60

5 Minimum Spanning Trees

 Proof. The upper bounds are contained in Theorems 5.9 and 5.7. Here we prove the lower bound by investigating typical runs of the algorithm. We

partition the graph TG into its triangle part T and its clique part C. Each search point x describes an edge set. We use the following notation:

•

 d(x): number of disconnected triangles with respect to the edges chosen by x,

•

 b(x): number of bad triangles (exactly one 2 a-edge and the 3 a-edge are chosen),

•

 g(x): number of good triangles (exactly the two 2 a-edges are chosen),

•

 c(x): number of complete triangles (all three edges are chosen),

•

con G(x): number of connected components in the graph,

•

con C (x): number of connected components in the clique part C of the graph,

•

con T (x): number of connected components in the tree part T of the graph.

We investigate four phases of the search. The first phase of length 1 is

the initialization step producing the random edge set x. In the following, all statements hold with probability 1 − o(1).

 Claim. After initialization, b(x) = Θ(n) and con C (x) = 1.

 Proof. The statements can be proved independently since the corresponding parts of x are created independently. The probability that a given triangle is bad equals 1 / 4. There are n/ 4 triangles and b(x) = Θ(n) by Chernoff bounds.

We consider one vertex of C. It has n/ 2 − 1 possible neighbors. By Chernoff bounds, it is connected to at least n/ 6 of these vertices. For each other vertex, the probability of not being connected to at least one of these n/ 6 vertices is (1 / 2) n/ 6. This is unlikely even for one of the remaining vertices. Hence, con C (x) = 1.

For the following phases, we distinguish between the steps by the number

 k of flipping triangle edges and call them k-steps. Let pk be the probability of a k-step. For RLS1 , 2, p

b

1 = Θ(n− 1), p 2 = Θ(n− 2) and pk = 0, if k ≥ 3. For (1+1) EAb and constant k

 k

3 n/ 4 −k

3 n/ 4

1

 pk =

1 − 1

= Θ(nkm−k) = Θ(n−k) .

 k

 m

 m

For a phase of length n 5 / 2, the following statements hold. The number of 1-steps equals Θ(n 3 / 2), the number of 2-steps equals Θ(n 1 / 2), and there is no k-step, k ≥ 3.

 Claim. Let b(x) = Θ(n) and con C (x) = 1. In a phase of length n 5 / 2, a search point y where b(y) = Θ(n) and con G(y) = 1 is produced.

5.3 Analysis of Evolutionary Algorithms

61

 Proof. By Lemma 5.5, the probability of creating a connected graph is large enough. Let y be the first search point where con G(y) = 1. We prove that b(y) = Θ(n). All the 2-steps can decrease the b-value by at most O(n 1 / 2). A 1-step has two ways to destroy a bad triangle.

•

It may destroy an edge of a bad triangle. This increases the con G-value.

In order to accept the step, it is necessary to decrease the con C -value.

•

It may add the missing edge to a bad triangle. This increases the weight by at least 2 a. No triangle edge is eliminated in this step. In order to accept the step, it is necessary to decrease the con C -value.

However, con C (x) = 1. In order to decrease this value, it has to be increased before. A step increasing the con C -value can be accepted only if the con T -value is decreased in the same step at least by the same amount. This implies that triangle edges have to be added. For a 1-step, the total weight is increased without decreasing the con G-value and the step is not accepted.

Hence, only the O(n 1 / 2) 2-steps can increase the con C -value. By Chernoff bounds, the number of clique edges flipping in these steps is O(n 1 / 2). This implies that the number of bad triangles is decreased by only O(n 1 / 2).

 Claim. Let b(y) = Θ(n) and con G(y) = 1. In a phase of length n 5 / 2, a search point z where b(z) = Θ(n), con G(z) = 1, and T (z) is a tree is produced.

 Proof. Only search points x describing connected graphs are accepted, in particular, d(x) = 0. Let z be the first search point where T (z) is a tree. Then con G(z) = 1 and we have to prove that b(z) = Θ(n) and that z is produced within n 5 / 2 steps. A 1-step can be accepted only if it turns a complete triangle into a good or bad triangle. Such a step is accepted if no other edge flips.

Moreover, c(x) cannot be increased. In order to increase c(x) it is necessary to add the missing edge to a good or bad triangle. To compensate for this

weight increase, we have to eliminate an edge of a complete triangle. Remember that we have no k-steps for k ≥ 3. If c(x) = l, the probability of decreasing the c-value is at least 3 l/(em) and the expected time to eliminate all complete triangles is O(m log n) = O(n 2 log n). Hence, n 5 / 2 steps are sufficient to create z. The number of bad triangles can be decreased only in the O(n 1 / 2) 2-steps implying that b(z) = Θ(n).

 Claim. Let b(z) = Θ(n), con G(z) = 1, and T (z) be a tree. The expected time of finding a minimum spanning tree is Ω(n 4 log n).

 Proof. First, we assume that only 2-steps change the number of bad triangles.

Later, we complete the arguments. The expected waiting time for a 2-step

flipping those two edges of a bad triangle that turn it into a good one equals Θ(n 4). The expected time to decrease the number of bad triangles from b to b − 1 equals Θ(n 4 /b). Since b has to be decreased from Θ(n) to 0, we obtain an expected waiting time of

62

5 Minimum Spanning Trees

⎛

⎞

 Θ⎝ n 4 ·

(1 /b)⎠ = Θ(n 4 log n) .

(∗)

1 ≤b≤Θ(n)

Similarly to the coupon collector’s theorem (see Appendix A.13) we obtain that the optimization step if only 2-steps can be accepted equals Θ(n 4 log n) with probability 1 − o(1). Hence, it is sufficient to limit the influence of all k-

steps, k = 2, to a time period of αn 4 log n for some constant α > 0. Again with probability 1 −o(1), the number of 4-steps is O(log n) and there are no k-steps for k ≥ 5. The 4-steps can decrease the number of bad triangles by at most O(log n). Because of the weight increase, a k-step, k ≤ 4, can be accepted only if it eliminates at least k/ 2 triangle edges. Moreover, it is not possible to disconnect a good or a bad triangle. Hence, a 4-step cannot create a complete triangle. As long as there is no complete triangle, a 3-step or a 1-step has to disconnect a triangle and is not accepted. A 2-step can only be accepted if it changes a bad triangle into a good one. Hence, no complete triangles are created. The 4-steps eliminate O(log n) terms of the sum in (∗). The largest terms are those for the smallest values of b. We only have to subtract a term of O(n 4 log log n) = o(n 4 log n) from the bound Θ(n 4 log n), and this proves the claim.

This completes the proof since the sum of all failure probabilities is

 o(1).

5.3.3 Speed-Up Techniques

Theorems 5.9, 5.7, and 5.8 contain matching upper and lower bounds for RLS1 , 2 and (1+1) EA

b

b with respect to the fitness functions f and f . The

bounds are worst-case bounds and one can hope that the algorithms are more

efficient for many graphs. Here we discuss what can be gained by other evo-

lutionary algorithms.

First, we introduce more problem-specific mutation operators. It is easy

to construct spanning trees. Afterwards, it is good to create children with the same number of edges. The new mutation operators are:

–

If RLS1 , 2 flips two bits, it chooses randomly a 0-bit and a 1-bit.

b

–

If s contains k 1-bits, (1+1) EAb flips each 1-bit with probability 1 /k and each 0-bit with probability 1 /(m − k).

Jansen and Sudholt (2005) have analyzed this mutation operator in greater detail. One important result of their work is that simple but not trivial pseudo-boolean functions can be optimized by evolutionary algorithms in time O(n), which breaks for the first time the Θ(n log n) bound that is often the result of the analysis on simple pseudo-Boolean functions.

For spanning trees, the probability of a specific edge exchange is increased from Θ(1 /m 2) to Θ(1 /(n(m − n + 1))). The following result can be obtained by adjusting the proofs to the modified mutation operators.

5.4 Analysis of Ant Colony Optimization

63

Theorem 5.10. For the modified mutation operators, the bounds of Theorems 5.7, 5.8, and 5.9 can be replaced by bounds of size Θ(mn log n) and O(mn(log n + log w max)) respectively.

When using larger populations, we have to pay for improving all members

of the population. This holds at least if we guarantee a large diversity in the population. The lower bound of Theorem 5.9 holds with overwhelming probability. Hence, we do not expect that large populations help. The analysis in the proof of Theorems 5.7 and 5.8 is quite precise in most aspects. There is only one essential exception. We know that the weight distance to w opt is decreased on average by a factor of at most 1 − 1 /n and we work under the pessimistic assumption that this factor equals 1 − 1 /n. For large populations or multi-starts the probability of having sometimes much larger improvements may increase for many graphs.

It is more interesting to “parallelize” the algorithms by producing more

children in parallel. The algorithm (1+ λ) EAb differs from (1+1) EAb by producing in each iteration independently λ children from the single individual of the current population. The selection procedure selects an individual with the smallest f -value (or f -value) from among the parent and its children. In a similar way, we obtain λ-PRLS1 , 2 (parallel RLS1 , 2) from RLS1 , 2. In the proofs b

b

b

of Theorems 5.7 and 5.8, we have seen that the probability of a good step is Θ(n/m 2). Choosing λ = m 2 /n, this probability is increased to a positive constant. We have seen that the expected number of good steps is bounded

by O(n(log n + log w max)). This leads to the following result.

Theorem 5.11. The expected number of generations until λ-PRLS 1 , 2 or b

 (1+λ) EA b with λ := m 2 /n children constructs a minimum spanning tree is O(n(log n + log w max)) . This holds for the fitness functions f and f .

If we use the modified mutation operator defined above, the probability

of a good step is O(1 /m) and we obtain the same bound on the expected number of generations as in Theorem 5.11 for λ := m.

Crossover operators are considered important in evolutionary computa-

tion. But one-point crossover or two-point crossover is not appropriate for edge set representations. It is not possible to build blocks of all edges adjacent to a vertex. For uniform crossover, it is very likely to create graphs which are not spanning trees. Hence, only problem-specific crossover operators seem to be useful. Such operators are described by Raidl and Julstrom (2003). It is difficult to analyze stochastic search algorithms with these crossover operators. Up to now, no results which prove better runtime bounds than the ones presented in this chapter have been obtained for such algorithms.

5.4 Analysis of Ant Colony Optimization

In this section, we investigate the computational complexity of ACO algo-

rithms for the computation of minimum spanning trees. We focus in partic-

64

5 Minimum Spanning Trees

Algorithm 7 MMAS

Set τ(u,v) = 1 /|A| for all (u, v) ∈ A.

Compute a solution x using a construction procedure.

Update the pheromone values and set x∗ := x.

repeat

Compute x using a construction procedure.

if f (x) < f (x∗) then

set x∗ := x.

end if

update the pheromone values.

until stop

ular on the impact of the chosen construction graph. Formulating the MST

problem as a problem of pseudo-Boolean optimization with the fitness func-

tions presented in the previous sections, similar results as in the previous section can be obtained. This is due to the fact that simple ACO algorithms for pseudo-Boolean optimization behave like (1+1) EAb when choosing a certain parameter setting (Neumann and Witt, 2009). Hence, many results on (1+1) EAb for combinatorial optimization problems can be transfered to ACO

algorithms in this scenario. However, it is more natural to investigate construction graphs which are more related to the given problem. As the MST problem is a graph problem, it seems natural to take the input graph as a construction graph into account.

We study a variant of the Max-Min Ant System (MMAS) introduced by

St¨

utzle and Hoos (2000). In our MMAS, solutions are constructed iteratively by different construction procedures on a given directed construction graph C = (X, A). In the initialization step, each edge (u, v) ∈ A gets a pheromone value τ(u,v) = 1 /|A| such that the pheromone values sum up to 1. Afterwards, an initial solution x∗ is produced by a random walk of an imaginary ant on the construction graph and the pheromone values are updated with respect to this walk. In each iteration, a new solution is constructed and the pheromone values are updated if this solution is not inferior (with respect to a fitness function f) to the best solution obtained so far.

Our construction procedures construct in each iteration a tree T of the given graph. Therefore, the fitness of a solution is given by the weight of the edges contained in T . We consider the expected number of solutions that are constructed by the algorithm until a minimum spanning tree has been

obtained for the first time. We call this the expected optimization time of the MMAS.

5.4.1 Broder-Based Construction Graph

Since the MST problem is a graph problem, the first idea is to use the input graph G to the MST problem itself as the construction graph C of the MMAS.

5.4 Analysis of Ant Colony Optimization

65

Algorithm 8 BroderConstruct(G, τ, η)

Choose an arbitrary node s ∈ V .

 u := s, T = ∅.

while not all nodes of G have been visited do

P

Let R :=

 {

[τ

 u,v}∈E

 {u,v}] α · [η{u,v}] β .

[τ

Choose neighbor v of u with probability

 {u,v}] α·[η{u,v}] β .

 R

if v has not been visited before then

set T := T ∪ {u, v}.

end if

Set u := v.

end while

Return T .

(Note that each undirected edge {u, v} can be considered as two directed edges (u, v) and (v, u).) However, it is not obvious how a random walk of an ant on G is translated into a spanning tree. Interestingly, the famous algorithm of Broder (1989), which chooses uniformly at random from all spanning trees of G, is a random walk algorithm.

We will use an ACO variant of Broder’s algorithm as given in Algorithm 8.

As usual in ACO algorithms, the construction procedure maintains pheromone

values τ and heuristic information η for all edges of the construction graph G.

In the MST problem, we assume that the heuristic information η{u,v} of an edge {u, v} is the inverse of the weight of the edge {u, v} in G. α and β are parameters that control the extent to which pheromone values and heuristic

information is used.

Obviously, Algorithm 8 outputs a spanning tree T , whose cost f (T) is measured by the sum of the w-values of its edges. After a new solution has been accepted, the pheromone values τ are updated with respect to the constructed spanning tree T . We maintain upper and lower bounds on these values, which are common measures to ensure convergence (Dorigo and Blum, 2005). We assume that after each update, the τ -value of each edge in the construction graph attains either the upper bound h or the lower bound
. Hence, for the

new pheromone values τ after an update, it holds that

 τ {u,v} = h if {u, v} ∈ T

and

 τ {u,v} =
 if {u, v} /

 ∈ T .

So the last constructed solution is indirectly saved by the n − 1 undirected edges that obtain the high pheromone value h. The ratio of the parameters

 and h is crucial since too large values of
 will lead to too large changes of

the tree in subsequent steps whereas too large values of h will make changes of the tree too unlikely. We choose h and
 such that h = n 3
 holds and will

argue later on the optimality of this choice.

Note that choosing β = 0 or α = 0 in Algorithm 8, only the pheromone value or the heuristic information influences the random walk. We examine

the cases where one of these values is 0 to study the effect of the pheromone

66

5 Minimum Spanning Trees

values or the heuristic information separately. First, we consider the case α = 1

and β = 0 for the Broder-based construction graph. This has the following consequences. Let u be the current node of the random walk and denote by

 R :=

 {

 τ

 u,v}∈E {u,v} the sum over the pheromone values of all edges that are incident on u. Then the next node is chosen proportionally to the pheromone values on the corresponding edges, which means that a neighbor v of u is chosen with probability τ{u,v}/R.

For simplicity, we call the described setting of α, β, h, and
 the cu-

 bic update scheme. To become acquainted therewith, we derive the following simple estimations on the probabilities of traversing edges depending on the pheromone values. Assume that a node v has k adjacent edges with value h and i adjacent edges with value
. Note that k + i ≤ n − 1 and h = n 3
. Then

the probability of choosing an edge with value h is

 kh

= 1 −

 i

 ≥ 1 − 1 ,

 kh + i

 kn 3 + i

 n 2

where among the edges with values h one edge is chosen uniformly at random.

The probability of choosing a specific edge with value
 is at least

 ≥

1

=

 .

 + (n − 2) h

 nh

 n 4

This leads us to the following theorem, which shows that the MMAS in

the described setting is able to construct MSTs in expected polynomial time.

Theorem 5.12. The expected optimization time of the MMAS using the procedure BroderConstruct with cubic update scheme is O(n 6(log n + log w max)) .

 The expected number of traversed edges in a run of BroderConstruct is bounded above by O(n 2) except for the initial run, where it is O(n 3) .

 Proof. We use the following idea of Theorem 5.1. Suppose the spanning tree T ∗ was constructed in the last accepted solution. Let T = T ∗ \ {e} ∪ {e}

be any spanning tree that is obtained from T ∗ by including one edge e and removing another edge e, and let s(m, n) be a lower bound on the probability of producing T from T ∗ in the next step. Then the expected number of steps until a minimum spanning tree has been obtained is O(s(m, n) − 1(log n+log w max)).

To prove the theorem, it therefore suffices to show that the probability of the MMAS producing T by the next constructed solution is Ω(1 /n 6).

To simplify our argumentation, we first concentrate on the probability

of rediscovering T ∗ in the next constructed solution. This happens if the ant traverses all edges of T ∗ in some arbitrary order and no other edges in between, which might require that an edge has to be taken more than once. (This

is a pessimistic assumption since newly traversed edges are not necessarily included in the solution.) Hence, we are confronted with the cover time for the tree T ∗. The cover time for trees on n nodes in general is bounded above by 2 n 2 (Motwani and Raghavan, 1995), i.e., by Markov’s inquality, it is at most

5.4 Analysis of Ant Colony Optimization

67

4 n 2 with probability at least 1 / 2. We can apply this result if no so-called error occurs such that an edge with pheromone value
 is taken. According

to the above calculations, the probability of an error is bounded above by

1 /n 2 in a single step of the ant. Hence, there is no error in O(n 2) steps with probability Ω(1). Therefore, the probability of rediscovering T ∗ in the next solution (using O(n 2) steps of BroderConstruct) is at least Ω(1). Additionally, taking into account the number of steps O(n 3) for the initial solution (Broder,

1989), we have already bounded the expected number of traversed edges in a run of BroderConstruct.

To construct T instead of T ∗, exactly one error is desired, namely e has to be traversed instead of e. Consider the ant when it is for the first time on a node on which e is incident. By the calculations above, the probability of including e is Ω(1 /n 4). Note that inserting e into T ∗ closes a cycle c. Hence, when e has been included, there may be at most n − 2 edges of ˜

 T := T ∗ \ {e}

left to traverse. We partition the edges of the forest ˜

 T into two subsets: The

edges that belong to the cycle c are called critical and the remaining ones are called uncritical. The order of inclusion for the uncritical edges is irrelevant.

However, all critical edges have to be included before the ant traverses edge e.

We are faced with the following problem: Let v 1 , . . . , vk, v 1 describe the cycle c and suppose w. l. o. g. that e = {v 1 , vk}. It holds that e = {vi, vi+1 } for some 1 ≤ i ≤ k − 1. Moreover, let vs be the node of c that is visited first by the ant. W. l. o. g., 1 ≤ s ≤ i. With probability Ω(1 /n 4), the edge e is traversed exactly once until a new solution has been constructed. Hence, after e has been taken, the ant must visit the nodes vk, vk− 1 , . . . , vi+1 in the described order (unless an error other than including e occurs), possibly traversing uncritical edges in between. To ensure that e has not been traversed before, we would like the ant to visit all the nodes in {v 1 , . . . , vi}, without visiting nodes in {vi+1 , . . . , vk}, before visiting vk by traversing e. We apply results from the fair gambler’s ruin problem given in Section 4.2.5. The probability of going from vs to vi before visiting vk is at least Ω(1 /n). The same lower bound holds on the probability of going from vi to v 1 before visiting vi+1.

These random walks are still completed in expected time O(n 2). Hence, in total, the probability of constructing T is Ω((1 /n 4) · (1 /n) · (1 /n)) = Ω(1 /n 6), as suggested.

We see that the ratio h/
 = n 3 leads to relatively large exponents in the

expected optimization time. However, this ratio seems to be necessary for our argumentation. Consider the complete graph on n nodes where the spanning tree T ∗ equals a path of length n − 1. The cover time for this special tree T ∗

is bounded below by Ω(n 2). To each node of the path, at most two edges with value h and at least n − 3 edges with value
 are incident. Hence, the ratio is

required to obtain an error probability of O(1 /n 2). It is much more difficult to improve the upper bound of Theorem 5.12 or to come up with a matching lower bound. The reasons are two. First, we cannot control the effects of steps where the ant traverses edges to nodes that have been visited before in the

68

5 Minimum Spanning Trees

construction step. These steps might reduce the time until certain edges of T ∗

are reached. Second, our argumentation concerning the cycle v 1 , . . . , vk, v 1

makes a worst-case assumption on the starting node vs. It seems more likely that vs is uniform over the path, which could improve the upper bound of the theorem by a factor Ω(n). However, a formal proof of this is open.

ACO algorithms often use heuristic information to direct the search pro-

cess. In the following, we set α = 0 and examine the effect of heuristic information for the MST problem. Recall that the heuristic information for an edge e is given by η(e) = 1 /w(e). Interestingly, for the obvious Broder-based graph, heuristic information alone does not help us find MSTs in reasonable time, regardless of β. On the following example graph G∗ (see Figure 5.3),

either the runtime of BroderConstruct explodes or MSTs are found only with exponentially small probability. W. l. o. g., n = 4 k + 1. Then G∗, a connected graph on the nodes { 1 , . . . , n}, consists of k triangles with weights (1 , 1 , 2) and two paths of length k with exponentially increasing weights along the path.

More precisely, let

 k

 T ∗ :=

 { 1 , 2 i}, { 1 , 2 i + 1 }, { 2 i, 2 i + 1 } , i=1

where w({ 1 , 2 i}) = w({ 2 i, 2 i + 1 }) := 1 and w({ 1 , 2 i + 1 }) := 2. Moreover, denote

 k

 P ∗ := { 1 , 2 k + 2 } ∪

2 k + i, 2 k + i + 1 ,

1

 i=2

where w({ 1 , 2 k + 2 }) := 2 and w({ 2 k + i, 2 k + i + 1 }) := 2 i, and, similarly, k

 P ∗ := { 1 , 3 k + 2 } ∪

3 k + i, 3 k + i + 1 ,

2

 i=2

where w({ 1 , 3 k + 2 }) := 2 and w({ 3 k + i, 3 k + i + 1 }) := 2 i. Finally, the edge set of G∗ is T ∗ ∪ P ∗ ∪ P ∗. Hence, all triangles and one end of each path are 1

2

glued by node 1.

Theorem 5.13. Choosing α = 0 and β arbitrarily, the probability that the MMAS using BroderConstruct finds an MST for G∗, or the probability of termination within polynomial time, is 2 −Ω(n) .

 Proof. Regardless of the ant’s starting point, at least one path, w. l. o. g. P ∗, 1

must be traversed from noded 1 to its other end, and for least k − 1 triangles, both nodes 2 i and 2 i + 1 must be visited through node 1. For each of these initially undiscovered triangles, the first move into the triangle must go from 1

to 2 i, otherwise the resulting tree will not be minimal. If the triangle is entered at node 2 i, we consider it a success, and otherwise (entrance at 2 i + 1) an error. The proof idea is to show that for too small β, i.e., when the influence

5.4 Analysis of Ant Colony Optimization

69

Fig. 5.3. Graph G∗ consisting of k triangles and two paths of length k of heuristic information is low, with overwhelming probability at least one triangle contains an error. If, on the other hand, β is too large, the ant with overwhelming probability will not be able to traverse P ∗ in polynomial time 1

due to its exponentially increasing edge weights.

We study the success probabilities for the triangles and the path P 1. Given that the ant moves from 1 to either 2 i or 2 i + 1, the probability of going to 2 i equals

(η({ 1 , 2 i})) β

1

=

(η({ 1 , 2 i})) β + (η({ 1 , 2 i + 1 })) β

1 + 2 −β

since η(e) = 1 /w(e). Therefore, the probability of k − 1 successes equals, due to independence, (1 + 2 −β) −k+1. This probability increases with β. However, for β ≤ 1, it is still bounded above by (2 / 3) k− 1 = 2 −Ω(n).

Considering the path P ∗, we are faced with the unfair gambler’s ruin 1

problem (see Section 4.2.5). At each of the nodes 2 k + i, 2 ≤ i ≤ k − 1, the probability of going to a lower-numbered node and the probability of going

to a higher-numbered one have the same ratio of r := (2 −i+1) β/(2 i) β = 2 β.

Hence, starting in 2 k + 2, the probability of reaching 3 k + 1 before returning to 1 equals

 r

=

2 β

 . This probability decreases with β. However, for

 rk− 1

2 kβ − 1

 β ≥ 1, it is still bounded above by 2 /(2 k − 1) = 2 −Ω(n). Then the probability of reaching the end in a polynomial number of trials is also 2 −Ω(n).

5.4.2 A Kruskal-Based Construction Procedure

Dorigo and St¨

utzle (2004) present a general approach on how to obtain an ACO construction graph from any combinatorial optimization algorithm. The

idea is to identify the so-called components of the problem, which may be objects, binary variables etc., with nodes of the construction graph and to allow the ant to choose from these components by moving to the corresponding

nodes. In our setting, the components to choose from are the edges from the edge set { 1 , . . . , m} of the input graph G. Hence, the canonical construction graph C(G) for the MST problem is a directed graph on the m + 1 nodes

70

5 Minimum Spanning Trees

Algorithm 9 Construct(C(G) , τ, η) v 0 := s; k := 0.

while N (vk) = ∅ do

P

Let R :=

[τ

 y∈N (v

(v

 k)

 k ,y)] α · [η(vk ,y)] β .

[τ(v

Choose neighbor v

 k ,vk+1)] α ·[η(vk ,vk+1)] β

 k+1 ∈ N (vk) with probability

.

 R

Set k := k + 1.

end while

Return the path p = (v 0 , . . . , vk).

 { 0 , 1 , . . . , m} with the designated start node s := 0. Its edge set A of cardinality m 2 is given by

 A := (i, j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i = j , i.e., C(G) is obtained from the complete directed graph by removing all self-loops and the edges pointing to s. When the MMAS visits node e in the construction graph C(G), this corresponds to choosing the edge e for a spanning tree. To ensure that a walk of the MMAS actually constructs a tree,

we define the feasible neigborhood N (vk) of node vk depending on the nodes v 1 , . . . , vk visited so far:

 N (v

 k) :=

 E \ v 1 , . . . , vk

 \ e ∈ E

 V, {v 1 , . . . , vk, e} contains a cycle .

Note that the feasible neighborhood depends on the memory of the ant about

the path followed so far, which is very common in ACO algorithms (Dorigo

and Stützle, 2004).

A new solution is constructed using Algorithm 9. Again, the random walk of an ant is controlled by the pheromone values τ and the heuristic information η on the edges. As in the Broder-based construction graph, we assume that the η(u,v)-value of an edge (u, v) is the inverse of the weight of the edge of G

corresponding to the node v in C(G).

A run of Algorithm 9 returns a sequence of k + 1 nodes of C(G). It is easy to see that k := n − 1 after the run. Hence the number of steps is bounded above by n, and v 1 , . . . , vn− 1 is a sequence of edges that form a spanning tree for G. Accordingly, we measure the fitness f (p) of a path p = (v 0 , . . . , vn− 1) simply by w(v 1) + · · · + w(vn− 1), i.e., the cost of the corresponding spanning tree. It remains to specify the update scheme for the pheromone values. As

in the case of the Broder-based construction procedure, we only consider two different values h and
. To allow the ant to rediscover the edges of the previous

spanning tree equiprobably in each order, we reward all edges pointing to

nodes from p except s, i.e., we reward (m + 1)(n − 1) edges. Hence, the τ -

values are

 τ

= h

if v ∈ p and v = s

and

 τ

=

otherwise .

(u,v)

(u,v)

5.4 Analysis of Ant Colony Optimization

71

We choose h and
 such that h = (m − n + 1)(log n)
 holds. In this case,

the probability of taking a rewarded edge (if applicable) is always at least 1 − 1 / log n.

We consider the case where the random walk to construct solutions is only

influenced by the pheromone values on the edges of C(G). The following result can be obtained by showing that the probability of obtaining from the current tree T ∗ a tree T = T ∗ \ {e} ∪ {e} is lower bounded by Ω(1 /(mn)). The proof can be carried out in a similar fashion as done for Theorem 5.12.

Theorem 5.14. Choosing α = 1 and β = 0 , the expected optimization time of the MMAS with construction graph C(G) is bounded by O(mn(log n +

log w max)) .

 Proof. Let e 1 , . . . , en− 1 be the edges of T ∗ and suppose w. l. o. g. that the edges of T are e 1 , . . . , en− 2 , e where e = ei for 1 ≤ i ≤ n− 1. With probability Ω(1), exactly n − 2 (but not n − 1) out of the n − 1 nodes visited by the MMAS

in C(G) form a uniformly random subset of {e 1 , . . . , en− 1 }. Hence, en− 1 is missing with probability 1 /(n − 1). Furthermore, the probability of visiting e

rather than en− 1 as the missing node has probability at least Ω(1 /m). Hence, in total, T is constructed with probability Ω(1 /(nm)). Again we use the proof idea of Theorem 5.1. It suffices to show the following claim. Suppose the MMAS has constructed the spanning tree T ∗ in the last accepted solution.

Let T = T ∗ \ {e} ∪ {e} be any spanning tree that is obtained from T ∗ by including one edge e and removing another edge e. Then the probability of producing T by the next constructed solution is Ω(1 /(nm)).

Let e 1 , . . . , en− 1 be the edges of T ∗ and suppose w. l. o. g. that the edges of T are e 1 , . . . , en− 2 , e where e = ei for 1 ≤ i ≤ n − 1. We show that with probability Ω(1), exactly n− 2 (but not n− 1) out of the n− 1 nodes visited by the MMAS in C(G) form a uniformly random subset of {e 1 , . . . , en− 1 }. Hence, en− 1 is missing with probability 1 /(n − 1). Furthermore, we show that the probability of visiting e rather than en− 1 as the missing node has probability at least Ω(1 /m). Hence, in total, T is constructed with probability Ω(1 /(nm)).

We still have to prove the statements on the probabilities in detail. We

study the events Ei, 1 ≤ i ≤ n− 1, defined as follows. Ei occurs iff the first i− 1

and the last n − i − 1 nodes visited by the MMAS (excluding s) correspond to edges of T ∗ whereas the i th one does not. Edges in C(G) pointing to nodes of T ∗ have pheromone value h and all remaining edges have value
. Hence,

if j − 1 edges of T ∗ have been found, the probability of not choosing another edge of T ∗ by the next node visited in C(G) is at most (m − (n − 1))

1

=

 .

((n − 1) − (j − 1)) h

(n − j) log n

Therefore, the first i− 1 and last n−i− 1 nodes (excluding s) visited correspond to edges of T ∗ with probability at least

72

5 Minimum Spanning Trees

 n− 2

1

1

1 −

 ≥ 1 − (ln(n − 1) + 1) +

 ≥ 1 − ln n = Ω(1)

(n − j) log n

log n

log n

log n

 j=1

(estimating the (n − 1)-th Harmonic number by ln(n − 1) + 1) and, due to the symmetry of the update scheme, each subset of T ∗ of size n − 2 is equally likely, i.e., has probability Ω(1 /n). Additionally, the probability of choosing by the i th visited node an edge e not contained in T ∗ equals

 ≥

1

 ,

(n − i) h + k

(n − i + 1)(m − n + 1) log n

where k is the number of edges outside T ∗ that can still be chosen; note that k
 ≤ h. Hence, with probability at least c/((n − i + 1) mn log n) for some small enough constant c (and large enough n), Ei occurs and the tree T is constructed. Since the Ei are mutually disjoint events, T is constructed instead of T ∗ with probability at least

 n− 1

 c

= Ω(1 /(mn))

(n − i + 1) mn log n

 i=1

as suggested.

In the following, we examine the use of heuristic information for the

Kruskal-based construction graph. Here it can be proven that strong heuristic information helps the MMAS mimic the greedy algorithm by Kruskal.

Theorem 5.15. Choosing α = 0 and β ≥ 6 w max log n, the expected optimization time of the MMAS using the construction graph C(G) is constant.

 Proof. We show that the next solution that the MMAS constructs is with probability at least 1 /e a minimum spanning tree, where e is Euler’s number.

This implies that the expected number of solutions that have to be constructed until a minimum spanning tree has been computed is bounded above by e.

Let (w 1 , w 2 , . . . , wn− 1) be the weights of edges of a minimum spanning tree.

Let wi ≤ wi+1, 1 ≤ i ≤ n − 2, and assume that the ant has already included i − 1 edges that have weights w 1 , . . . , wi− 1, and consider the probability of choosing an edge of weight wi in the next step. Let M = {e 1 , . . . , er} be the set of edges that can be included without creating a cycle and denote

by Mi = {e 1 , . . . , es} the subset of M that includes all edges of weight wi.

W. l. o. g., we assume w(ei) ≤ w(ei+1), 1 ≤ i ≤ r − 1.

The probability of choosing an edge of Mi in the next step is given by

 s

(η(e

 s

(η(e

 k=1

 k)) β

 k=1

 k)) β

 r

=

 ,

(η(e

 s

(η(e

 r

(η(e

 l=1

 l)) β

 l=1

 l)) β +

 l= s+1

 l)) β

where η(e

 s

 s

 j) = 1 /w(ej) holds. Let a =

(η(e

(1 /w

 k=1

 i)) β =

 k=1

 i) β and

 b =

 r

(η(e

 l= s+1

 l)) β . The probability of choosing an edge of weight wi is

5.4 Analysis of Ant Colony Optimization

73

 a/(a + b), which is at least 1 − 1 /n if b ≤ a/n. The number of edges in M \ Mi is bounded above by m, and the weight of such an edge is at least wi + 1.

Hence, b ≤ m · (1 /(wi + 1)) β.

We would like m · (1 /(wi + 1)) β ≤ s · (1 /wi) β/n to hold. This can be achieved by choosing

log(mn/s)

 β ≥

log(mn/s)

=

 ,

log((wi + 1) /wi)

log(1 + 1 /wi)

which is at most

(log(mn/s)) /(wi/ 2) ≤ 6 w max log n since mn ≤ n 3 and ex ≤ 1 + 2 x for 0 ≤ x ≤ 1. Due to our choices, the ant traverses the edge with weight wi with probability at least 1 − 1 /n. Therefore, the probability that in every step i such an edge is taken is at least (1 −

1 /n) n− 1 ≥ 1 /e, as suggested.

The result of Theorem 5.15 does not necessarily improve upon Kruskal’s algorithm since the computational efforts in a run of the construction algorithm and for initializing suitable random number generators (both of which are assumed constant in our cost measure for the optimization time) must

not be neglected. With a careful implementation of the MMAS, however,

the expected computational effort with respect to the well-known uniform

cost measure could be at least bounded above by the runtime O(m log m) of Kruskal’s algorithm.

Conclusions

The minimum spanning tree problem is one of the fundamental problems that

is efficiently solvable. Several important variants of this problem are difficult, and stochastic search algorithms have a good chance of being competitive on them. As a first step towards the analysis of stochastic search algorithms on these problems, simple algorithms have been analyzed on the basic minimum

spanning tree problem. The asymptotic worst-case (with respect to the prob-

lem instance) expected optimization time for simple evolutionary algorithms has been obtained exactly. The analysis is based on the investigation of the expected multiplicative distance decrease (with respect to the difference in the weights of the current graph and of a minimum spanning tree). The results presented in this chapter may be generalized to the computation of a

minimum weight basis of a weighted matroid (Reichel and Skutella, 2007).

On the other hand, it has been investigated for which search algorithms and problems one may consider a transformation of the weights such that better

bounds can be obtained (Reichel and Skutella, 2009). This leads to an upper bound of O(m 2 log n) for RLS1 , 2 on f and f . The bound for (1+1) EA b

b

74

5 Minimum Spanning Trees

given in this paper is O(m 3 log n), which is worse than the one presented in this chapter unless w max is very large.

We studied simple ACO algorithms and investigated the impact of different

construction graphs. In the case of the Broder-based construction procedure a polynomial, but relatively large, upper bound was proven. In addition, it was shown that heuristic information can mislead the algorithm such that

an optimal solution is not found within a polynomial number of steps with

high probability. In the case of the Kruskal-based construction procedure,

the upper bound obtained shows that this construction graph leads to a bet-

ter optimization process than simple evolutionary algorithms. In addition, a large influence of heuristic information makes the algorithm mimic Kruskal’s algorithm for the minimum spanning tree problem.

6

Maximum Matchings

The maximum matching problem is a very well-studied combinatorial opti-

mization problem. Given an undirected graph G = (V, E), a matching is a subset E ⊂ E of the edge set such that no two edges in E share a common endpoint. The maximum matching problem asks for a matching of maximum

cardinality. Such problems arise, e.g., in team planning when edges of a graph denote possible collaborations of workers and the aim is to find a biggest partition of the workers into teams of size 2. Therefore, matching problems have numerous generalizations to hypergraphs and weighted graphs, which will not be discussed in this chapter. The maximum matching problem should not

be confused with the maximal matching problem, where the aim is to find a

subset of edges which is maximum with respect to inclusion, i.e., no proper superset of the matching is a matching.

The maximum matching problem is solvable in polynomial time. The best

algorithms for the general case run in time O(

 |V |·|E|) (Micali and Vazirani,

1980), which is also the best bound known for the special case of bipartite graphs (Hopcroft and Karp, 1973). However, the algorithms for the latter case are much simpler to describe and to analyze. All of them rely on the

fundamental concept of so-called augmenting paths, which will be explained in detail below. Augmenting paths represent a way to improve the size of a

matching by performing local changes along the path. Hence, there is some

hope that locally searching algorithms are able to find maximum matchings.

This motivated early analyses of stochastic search algorithms for this problem, most notably a study by Sasakik and Hajek (1988) with respect to simulated annealing.

The contents of this chapter are based on and follow closely the works

by Giel and Wegener (2003, 2004, 2006), who concentrate on variants of randomized local search and (1+1) EAb for the maximum matching problem. In

Section 6.1, we describe the investigated search algorithms and fitness functions precisely and supply additional concepts for the analysis. Section 6.2

deals with a general result on the approximation capability of the algorithms.

For certain graph classes, exact solutions to the problem can be found in

F. Neumann, C. Witt, Bioinspired Computation

75

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 6, © Springer-Verlag Berlin Heidelberg 2010

76

6 Maximum Matchings

expected polynomial time, which will be presented in Section 6.3. However, there are also graph instances for which no optimal solutions are found within polynomial time, with high probability. A worst-case result in this vein is described in Section 6.4.

6.1 Representations and Underlying Concepts

Giel and Wegener (2003, 2004, 2006) work with the following model of the maximum matching problem. Let n = |V | denote the number of vertices and m := |E| the number of edges of the graph for which a maximum matching is sought. Again, the encoding for binary search spaces is straightforward. When working with bitstrings of length m (!), a search point s = (s 1 , . . . , sm) ∈

 { 0 , 1 }m is interpreted as the characteristic vector of the chosen subset of edges.

If s describes a valid matching, the fitness function f : { 0 , 1 }m just returns the number of chosen edges, i.e., f (s) = s 1 + · · · + sm. As in Chapter 5,

several ways to handle invalid search points, in this case non-matchings, make sense. One way would be to assign large negative f values to them and to force the search algorithm to start from the empty matching, i.e., the all-zeros string. This kind of initialization is used in Sasaki’s (1988) definition of simulated annealing. We stick with the uniform initialization used in the common stochastic search algorithms and introduce a component in the fitness function to direct the search towards valid matchings. The following idea

is similar to that in Chapter 5 with the MST problem, where the number of connected components was to be minimized first in order to direct the

algorithm to trees.

If d(v) > 1 edges incident on a vertex v are chosen by the search point s, a penalty p(v) of value d(v) − 1 is assigned to the vertex; otherwise, p(v) = 0.

Hence, exactly the vertices that are in accordance with the definition of a matching have no penalty. The penalty p(s) of the search point is simply the sum of all vertex penalties, and the fitness function equals

 f (s) = (−p(s) , |s| 1) .

This function has to be maximized in lexicographic order. As soon as a value of 0 has been obtained with respect to the first component, only valid matchings are considered.

The stochastic search algorithms studied are a randomized local search

algorithm on the one hand and (1+1) EAb on the other hand. As for the

MST problem studied in Chapter 5, a neighborhood of size 1 is not sufficient.

In order for the search algorithm to accept a different matching, it can be necessary to flip out one edge and to include another edge. Of course, if there is an edge that is neither included in the current matching nor incident on another matching edge, then this edge can be chosen and leads to a larger

matching. We call such edges free edges since both of its vertices are free, i.e.,

6.2 Approximation Quality for General Graphs

77

not incident on any matching edges. However, the lack of free edges does not mean that a matching is maximum. Instead, a characterization of optimality

is based on the above-mentioned augmenting paths. We call a path through

the vertices v 1 , . . . , vk an alternating path of length k − 1 with respect to a current matching if the edges {v 2 i, v 2 i+1 }, 1 ≤ i ≤ k/ 2, belong to the matching and the other edges do not belong to it. If additionally v 1 and vk are free vertices, which is only possible for even k, i.e., an odd number of edges, then the path is called augmenting. In this case, we swap matching and non-matching edges along the augmenting path, which means that we remove

from the matching all edges on the path that so far belong to the matching

and add to the matching those edges on the path that do not belong to it.

This procedure leads to a valid matching of increased (that is, “augmented”) cardinality. A single free edge appears as the special case of an augmenting path of length 1. The following theorem is a fundamental characterization of optimal matchings.

Theorem 6.1 (Hopcroft and Karp, 1973). A matching is of maximum cardinality if and only if there exists no augmenting path with respect to the matching.

(1+1) EAb can flip all edges of an augmenting path at once. A local

search algorithm cannot do this in a single step. However, it can approach the improved matching by flipping two adjacent edges. If v 1 , . . . , vk is augmenting then {v 1 , v 2 } can be turned into a matching edge and {v 2 , v 3 } into a non-matching edge. This results in v 3 becoming free and v 3 , . . . , vk forming a new and shorter augmenting path. This motivates us to study the algorithm

RLS1 , 2 defined in Definition 2. The only change is that we apply both search b

algorithms for maximization, i.e., the condition f (s) ≤ f (s) is replaced by f (s) ≥ f (s) in the definition of both RLS1 , 2 and (1+1) EA b

b (see Algorithms 2

and 3).

6.2 Approximation Quality for General Graphs

The stochastic search algorithms start from a completely random string. The definition of the fitness function and the elitist selection of (1+1) EAb and RLS1 , 2 ensure that only matchings are accepted as future search points once b

a valid matching has been found. This happens efficiently as the following

lemma shows.

Lemma 6.2. RLS 1 , 2 and (1+1) EA

 b

 b find search points that represent match-

 ings in expected time O(m log m) .

 Proof. We argue as in the proof of the coupon collector’s problem (Section 4.2.2). Let k = −p(s) be the sum of the vertex penalties with respect to the search point s. Then k is less than 2 m, the sum of all vertex degrees.

78

6 Maximum Matchings

Until a valid matching is found, only the first component of the fitness function is relevant, i.e., new search points are only accepted if they have a lower total penalty. By definition, there are at least k/ 2 ≤ m edges chosen by s, whose elimination decreases k. The probability of a specific 1-bit mutation equals Θ(1 /m) for both algorithms. Hence, the expected waiting time to decrease k is bounded by O(m/k). Summing up for 1 ≤ k < 2 m and estimating

the Harmonic series according to

2 m 1 /k = O(ln m) yields the claim.

 k=1

The aim of this section is to show that the search algorithms are able

to find good approximate solutions to the maximum matching problem for

arbitrary graphs. The result is also based on the result by Hopcroft and Karp

(1973). The main idea is as follows. Given a matching that is far away from optimality, there must not only be one, but many augmenting paths. The

pigeonhole principle guarantees the existence of a relatively short augmenting path. This is made precise by the following lemma.

Lemma 6.3. Let G = (V, E) be a graph, M a non-maximum matching, and M ∗a maximum matching. Then there exists an augmenting path with respect to M whose length is bounded from above by L := 2 |M |/(|M ∗| − |M |) + 1 .

 Proof. Let G = (V, E) be the graph whose edge set is defined by E :=

 M ⊕ M ∗, where ⊗ denotes the symmetric difference, i.e., the exclusive OR of the search points. The graph G consists of vertex-disjoint cycles and paths.

Each cycle and each path of even length has the same number of M and M ∗ edges. Paths of odd length alternate between M and M ∗ edges. There is no odd-length path starting and ending with an M edge. Otherwise, it would be an augmenting path with respect to M ∗. Hence, there are |M ∗| −

 |M| disjoint augmenting paths with respect to M. At least one has at most

 |M|/(|M∗| − |M|) M edges and, therefore, at most L edges.

By means of the preceding lemma, we arrive at the announced result on

the approximation quality of the search algorithms.

Theorem 6.4. For > 0 , RLS 1 , 2 and (1+1) EA b

 b find a (1 +) optimal

 matching in expected time O(m 2 1 /) independently of the choice of the first search point.

 Proof. The first phase of the search finishes when a matching is found. By Lemma 6.3, this phase is short enough to be captured by the proposed runtime bound. Afterwards, let M be the current matching, and let M ∗ be an arbitrary maximum matching. The search is successful if |M ∗| ≤ (1 +) |M |. Otherwise, by Lemma 2, there exists an augmenting path for M whose length is bounded from above by L := 2 |M |/(|M ∗| − |M |) + 1. Since |M ∗| > (1 +) |M |, we conclude that

 |M|

 |M∗| − |M| < − 1 .

Consequently,

6.3 Upper Bounds for Simple Graph Classes

79

 |M|

 ≤

 − 1 = − 1 − 1

if − 1 is not an integer,

 |M∗| − |M|

 − 1 − 1 = − 1 − 1

if − 1 is an integer.

In any case, L ≤ 2 1 / − 1.

The probability that (1+1) EAb flips exactly the edges of an augmenting

path of length
 is (1 /m) (1 − 1 /m) m− = Θ(m−). The expected waiting time is therefore Θ(m). It is sufficient to wait |M ∗| ≤ m times for such an event, where
 is always at most L. This proves the result for (1+1) EAb.

RLS1 , 2 can flip the augmenting path in
/ 2 + 1 steps. In each of the first

b

/ 2 steps, the length of the augmenting path is decreased by 2 by flipping the first two or the last two edges, and in the last step the remaining edge of the augmenting path is flipped. The probability that a phase of length

/ 2 + 1 is successful is bounded from below by Ω((m− 2) / 2 	 · m− 1) =

 Ω(m−), where we used the fact that the length
 of an augmenting path is

odd. The expected number of unsuccessful phases preceding a successful phase is O(m). Again, we have
 ≤ L. The difference with the case of (1+1) EAb

is that a phase may consist of more than one step. However, in each step

the probability that a phase is continued successfully is bounded from above by O(m− 1). Hence, the expected phase length is O(1). This also holds under the assumption that a phase is unsuccessful. The length of the successful

phase equals
/ 2 + 1. Hence, the expected number of steps to improve the

matching again is bounded from above by O(
 + m) = O(m), which proves

the theorem.

The previous theorem also implies that the simple stochastic search algo-

rithms are PRASs (polynomial-time randomized approximation schemes) in

the sense of Definition 2.8. The following corollary, which follows from Theorem 6.4 by using Markov’s inequality, makes this explicit. We just let c be a constant such that Theorem 6.4 holds for the bound c · m 2 1 /	.

Corollary 6.5. If we run RLS 1 , 2 or (1+1) EA

 b

 b for 4 cm 2 1 /	 iterations, we

 obtain a PRAS for the maximum matching problem, i.e., independently of the choice of the first search point, the probability of producing a (1 +) optimal solution is at least 3 / 4 .

6.3 Upper Bounds for Simple Graph Classes

After seeing that RLS1 , 2 and (1+1) EA

b

b find good approximations to max-

imum matchings in expected polynomial time, we are interested in graphs

where even maximum matchings can be found in expected polynomial time.

We start with the simple graph called path. As the name suggests, it consists of a path of m edges. This graph allows a matching of maximal size for connected graphs, namely m/ 2 . The analysis of the search algorithms on this graph contains typical aspects of their behavior on more complicated instances.

80

6 Maximum Matchings

As in Chapter 5, there are typically many steps of RLS1 , 2 and (1+1) EA b

b

leading to infeasible search points, in this case search points that do not encode a matching. Such steps slow the search algorithms down, but cannot be

avoided without introducing problem-specific knowledge, which is not always available. In the forthcoming analysis, we account for such steps by the consideration of so-called relevant steps, where the exact definition will depend on the situation. Denoting by R the number of relevant steps and by T the total number of steps until a certain goal is achieved, the following argumentation is typical. If an expected number of E(R) relevant steps is necessary and every step is relevant with probability at least p, then the expected total number of steps E(T) is at most p− 1 · E(R).

We start with a simple upper bound for RLS1 , 2 on the path graph.

b

Fig. 6.1. An augmenting path (indicated by gray area) and environments of possible mutations leading to extensions or shortenings (dotted)

Theorem 6.6. For a path of m edges, the expected optimization time of RLS 1 , 2 is O(m 4) independently of the choice of the first search point.

 b

 Proof. By Lemma 6.2, the expected waiting time for a matching is small enough to be captured by the O(m 4) bound. The size of a maximum matching equals m/ 2 . If the current matching size is m/ 2 −i, there exist at least i augmenting paths and one of length at most
 := m/i. In every step, we con-

ceptually select a shortest augmenting path P ; hence the considered P might be different in the course of optimization. Now a step is called P relevant if it is accepted and P is altered. The probability of a P relevant step is Ω(1 /m 2). This is due to the following observations. If the length of P is at least 3, it is lower bounded by the probability that a pair of edges at one end of P flips; otherwise the path consists of only a free edge, and the considered probability is even Ω(1 /m). If we can show that an expected number of O(
 2) P relevant steps is sufficient to improve the matching by one edge, then

 m/ 2 O((m/i)2) = O(m 2) P relevant steps are sufficient, and the expected i=1

optimization time is O(m 4).

If |P | ≥ 3, there are no free edges. Only mixed mutation steps, where a non-matching edge and a matching edge flip, can be accepted. Since each non-matching edge e has at least one neighbor e in the matching, e must flip, too.

That means that only a non-matching edge e incident on a free vertex together with a matching edge e such that e and e have an endpoint in common can flip. In the considered case of a path graph, only pairs of neighbored edges located at one end of an alternating path can flip in accepted steps. Such a pair consists of either two neighbored edges outside P or two edges inside P , in both cases with one edge incident on an endpoint of P . (See Figure 6.1

6.3 Upper Bounds for Simple Graph Classes

81

for an illustration, where either the first two or the last two edges in one of the dotted boxes are allowed to flip together.) The first case increases the length of P and the second one decreases it. Since P might be aligned with an endpoint of the whole graph itself, the situation can even be in favor of decreasing steps. Hence, P is shortened with probability at least 1 / 2 if a pair of neighbored edges flips. If |P | = 1, the probability that the length of P is decreased to 0 is at least 1 /(2 m) since a 1-bit mutation of RLS1 , 2 is sufficient.

b

In contrast, the probability that the path grows at either end is at most

 − 1

2 ·(1 / 2) · m

= 2 /(m(m− 1)) in this case. Hence, the conditional probability 2

that the next P relevant step is decreasing is at least 1 /(1 + 4 /(m − 1)) ≥ 1 / 2, for m ≥ 5.

Taking the two cases together, we are confronted with a random walk on

the numbers { 0 , 1 , 3 , 5 , . . . ,
} describing the current length of P . This walk

goes from a state to the lower neighboring state with probability at least 1 / 2

and to the higher neighboring state otherwise. Since we are interested in reaching state 0, we may pessimistically assume the transition probabilities to be exactly 1 / 2 and arrive at the scenario relevant for Theorem 4.7. The graph on which the random walk takes place is itself a path; hence its number of

edges is trivially bounded by
. The time to reach state 0, i.e., one end of

this path, is bounded by the cover time for the graphs, which is O(
 2) using

Theorem 4.7.

Basically the same ideas as in the proof of Theorem 6.6 can be used to prove also the bound O(m 4) for (1+1) EAb. However, the analysis is complicated by the fact that the latter search algorithm can flip many bits in a step. We are only interested in P relevant steps. For our analysis, we define P clean steps, which are P relevant steps causing only small changes in P . Then, a phase including Θ(
 2) P relevant steps is called P clean if all its P relevant steps are P clean. The idea is to prove that a phase is P clean with probability Ω(1) and that a P clean phase plus the next P relevant step improve the matching with probability Ω(1).

Theorem 6.7. For a path of m edges, the expected optimization time of (1+1) EAb is O(m 4) independently of the choice of the first search point.

Fig. 6.2. An augmenting path (indicated by gray area) and the environments Eu and Ev (dotted); free vertices are indicated by a circle

 Proof. For the definition of P ,
, and P relevant steps, see the proof of Theo-

rem 6.6. With the same arguments as used there, it suffices to prove that the expected number of P relevant steps to improve the matching is O(
 2).

82

6 Maximum Matchings

 P clean steps are only defined for situations without free edges. Let u and v be the endpoints of P , and let Eu be the set of edges where at least one endpoint has at most a distance of 3 from u, and analogously for Ev (see Figure 6.2 for an illustration). Then we call a P relevant step a P clean step if

•

at most three edges in E := Eu ∪ Ev flip and

•

at most two of the flipping edges in E are neighbors.

We describe the effect of clean steps on P . The free vertices partition the graph into alternating paths (see also Figure 6.2 for an example). As there is no free edge, there is an augmenting path of at least three edges between a free vertex and the next free vertex. Hence, a P clean step cannot flip all edges of P because this would require flipping a block of three edges in E.

Consequently, P cannot vanish in a P clean step; however, it is possible that new free vertices are created between u and v. Then, we interpret this event as a step shortening P by at least two edges. It is impossible that a P clean step lengthens P by more than two edges, i.e., at least four edges, since this requires flipping more than three edges in E. Thus, P clean steps lengthen P only by 2, and to this end it is necessary to flip a pair of neighbored edges outside the augmenting path but touching either u or v (the situation already discussed in Figure 6.1). For a P clean step to decrease the length of P by at least 2, it is sufficient to flip a pair of neighbored edges at either end of the augmenting path (see again Figure 6.1). Since at most three edges of E may flip, at most one of the discussed pairs of neighbored edges can flip in a P relevant step.

Hence, P relevant steps either lengthen or shorten P , and the probability of shortening steps is only larger than the probability of lengthening steps.

As the aim of a phase is to produce an improved matching or some free

edge, it is convenient to include these good events into P clean steps. We broaden our definition of P clean steps and call accepted steps that produce a free edge or improve the matching P clean, too. Now, we upper bound the probability of P relevant but not P clean steps (in situations without free edges).

A necessary event to violate the first property is that four out of at most 16 edges of E flip. The probability of this event is O(1 /m 4). For the second property, let k denote the length of the longest block B of flipping edges in E. The probability that a block of length k ≥ 4 flips is upper bounded by the probability of the event that one out of at most ten potential blocks of length 4 in E flips. The probability of this event is O(1 /m 4). A mutation step where k = 3 produces a local surplus of either one non-matching edge or one matching edge in B. If the surplus is not balanced outside B, the step is either not accepted because the fitness would decrease or the step is clean because the matching is improved. To compensate for a surplus of one

non-matching edge, one more non-matching edge than the number of flipping

matching edges must flip elsewhere. This may be a non-matching edge next

to B but outside E if B is located at a border of E. The probability of such a step is only O(1 /m 4). If B is not located at a border of E, another block B of at least three edges not neighboring B has to flip. This results in

6.3 Upper Bounds for Simple Graph Classes

83

a probability of at most O((1 /m 3) · (m · 1 /m 3)) = O(1 /m 5). If a local surplus of one matching edge has to be balanced, either only another matching edge

flips and, because a free edge is created, the step is clean, or another block of at least three edges flips. The probability of the last possibility is again O(1 /m 5). Altogether, the probability of a P relevant but not P clean step is O(1 /m 4), and the conditional probability that a P relevant step is not P clean is O(1 /m 2). Hence, a phase of O(
 2) = O(m 2) P relevant steps is clean with

probability Ω(1).

Pessimistically assuming that shortenings shorten the path by exactly two

edges and that the probability of shortening in a clean, relevant step is exactly 1 / 2, we treat this as a fair random walk as in the last paragraph of the proof of Theorem 6.6. Hence, an expected number of O(
 2) clean relevant

steps reduces the length of P to at most 1. By Markov’s inequality, this happens with probability Ω(1) in c
 2 clean relevant steps if c is a large enough

constant. Afterwards, at least one free edge exists, and a step is P relevant with a probability of Ω(1 /m), Hence, the next P relevant step improves the matching with probability Ω(1).

The results from the previous two theorems deserve some discussion. On

the one hand, paths are difficult since augmenting paths tend to be rather long in the final stages of optimization. On the other hand, paths are easy since there are not many ways to lengthen an augmenting path. As indicated above, the relatively large time bound O(m 4) = O(n 4) can the explained by the characteristics of general (and somehow blind) local search. As the search algorithm does not “know” that only matchings are valid search points, it keeps wasting a lot of steps by producing invalid search points and rejecting them immediately. Moreover, while the analysis focuses on a shortest augmenting

path, there may be many steps which alter the search point at a completely

different place. In the case of O(1) augmenting paths and no selectable edge, a step is relevant only with a probability of Θ(1 /m 2), and the expected number of relevant steps is O(m 2) = O(n 2). Actually, the search on the level of second-best matchings is responsible for this. If the number of edges is odd, the path graph has a unique maximum matching consisting of m/ 2 edges.

Therefore, any second-best matching of size m/ 2 = m/ 2 − 1 has only one augmenting path P . We show that the simple search algorithms have an expected optimization time of Ω(m 4) if the initial situation is a second-best matching and P is not too short.

Theorem 6.8. For a path of m edges, m odd, the expected optimization time of RLS 1 , 2 and (1+1) EA

 b

 b is Θ(m 4) if the initial situation is a second-best

 matching with an augmenting path of length Ω(m) .

 Proof. The upper bounds follow from Theorems 6.6 and 6.7. For the lower bounds, we would like to exploit the properties of the random walk describing the length of the augmenting path, analyzed in the two theorems and

illustrated in Figure 6.1. Note that only 2-bit flips of RLS1 , 2 are possible in b

84

6 Maximum Matchings

relevant steps. Hence, as long as the augmenting path P is not adjacent to a border of the path graph itself and at most two edges flip, we are confronted with a fair random walk increasing or decreasing the length of the path with probability 1 / 2 each in relevant steps. Only if P is at a border can the probability of decreasing the length be greater than 1 / 2 in relevant steps. This corresponds to the scenario of the gambler’s ruin theorem with p = q = 1 / 2

(see Theorem 4.8) except for the fact that the game might be changed when P

touches a border. If we assume P to be at distance Ω(m) from both borders and to have initial length Ω(m), then an endpoint of the path has to move by a distance of Ω(m) or the whole path has to shrink in length by at least Ω(m) before the process differs from the fair gambler’s ruin game. Using a = Ω(m) and b − a = Ω(m) in Theorem 4.8, the expected number of steps needed for the process to move by at least Ω(m) states is Ω(m 2). It is easy to see that Ω(m 2) is not only a lower bound on the expectation, but that Ω(m 2) relevant steps are also needed with probability Ω(1). (If the latter did not hold, we would immediately obtain a better bound on the expectation by repeating independent phases.) Since a relevant step has probability Θ(1 /m 2), the lower bound for RLS1 , 2 follows.

b

For (1+1) EAb, the considered 2-bit flips have also probability Θ(1 /m 2) but we must also take into account 2 k-bit flips for k ≥ 2. We pessimistically assume that the latter only decrease the length of P and show that this additional decrease is at most half the initial length of P . Then, the length of P is always at least Ω(m) and the probability of a step flipping exactly the edges of P is small enough. If 2 k edges flip in an accepted step, they form one or two blocks where the last or first edge of a block is adjacent to one of the exposed endpoints of P . Thus, there are O(k) possibilities for an accepted 2 k-bit flip, and the expected decrease by means of 2 k-bit flips in a single step is 2 k · O(k/m 2 k) = O(k 2 /m 2 k). The sum for all k ≥ 2 is O(1 /m 4). Hence, the expected decrease by steps flipping more than two bits is O(1 /m 4) in each step. Within βm 4 steps, this expected decrease is O(1) and the decrease is less than half the initial length of P with probability 1 − o(1) if the constant β > 0

is small enough.

Giel and Wegener (2004, 2006) extend the previous results from paths to trees, i.e., connected graphs without cycles. They conjecture that path graphs represent the most difficult instance within the class of tree graphs since a path is a tree with maximal diameter and the diameter bounds the length of

a longest augmenting path.

We do not present the complete involved analysis that Giel and Wegener

(2004, 2006) perform for RLS1 , 2 on trees since such a presentation would be b

beyond the scope of this book. However, it is possible to present the gen-

eral idea behind why RLS1 , 2 finds maximum matchings on complete trees in b

expected polynomial time. More precisely, the authors obtain the following

theorem.

6.4 A Worst-Case Result

85

Theorem 6.9. The expected time until RLS 1 , 2 finds a maximum matching b

 on a complete kary tree, k ≥ 2 , is bounded by O(m 7 / 2) independently of the choice of the first search point.

When RLS1 , 2 operates on complete k ary trees, there are two essential b

differences with respect to the path graph. Given a situation without free

edges and an augmenting path P shorter than the diameter, there must be a free vertex v at one end of P that is not a leaf (vertex of degree 1) of the graph. This means that v must have degree k, which implies that there are k− 1

ways to lengthen and only one way to shorten P . Each of these possibilities is chosen with the same probability, and for k ≥ 2, RLS1 , 2 is confronted with b

an unfair game that is biased towards increasing the length of P . In terms of the gambler’s ruin theorem (Theorem 4.8), the event of P reaching its maximal length D, where D is the diameter of the graph, corresponds to the gambler’s ruin. The probability of the gambler’s gain, i.e., reaching length 0

before length D, starting from a worst-case length D − 1, equals 1

1 − (k − 1) D − (k − 1) =

 ,

(k − 1) D − 1

(k − 1) D− 1

which is exponentially small in D. On the other hand, it holds that D ≤

2 log m since the depth of the k ary tree is at most log m. Inserting k

 k

this into the above formula results in a probability of Ω(1 /poly(n)) for the gambler’s gain. Since the expected length of the unfair game is also polynomial (Theorem 4.8), we obtain an overall expected polynomial time until the matching is improved.

Finally, using much more sophisticated arguments, Giel and Wegener

(2004, 2006) extend the analysis to the case of arbitrary trees. They obtain the following theorem.

Theorem 6.10. The expected time until RLS 1 , 2 finds a maximum matching b

 in a tree with diameter D is bounded by O(D 2 m 4) independently of the choice of the first search point.

The authors also believe that basically the same results hold for (1+1) EAb, but in the case of arbitrary trees it is much more difficult to control the effect of steps flipping more than two bits than it is for the path graph. This concludes the presentation of the positive results. In the following section, we explore the limits of the search algorithms.

6.4 A Worst-Case Result

The result of Theorem 6.4 shows that RLS1 , 2 and (1+1) EA b

b represent good

approximation algorithms for the maximum matching problem. However, in

the worst case they are not able to find an optimum in expected polynomial

86

6 Maximum Matchings

time. The analysis by Giel and Wegener (2003, 2006) is based on a graph class that was introduced by Sasakik and Hajek (1988). The graph Gh, for odd
 = 2
 + 1 is best illustrated by placing its n := h(
 + 1) vertices in h rows

and
 + 1 columns on a grid, i.e., V = {(i, j) | 1 ≤ i ≤ h, 0 ≤ j ≤
}. Between

column j, j even, and column j + 1, there are exactly the horizontal edges

 {(i, j) , (i, j + 1) }, 1 ≤ i ≤ h. In contrast, there are complete bipartite graphs between column j and column j + 1 for odd values of j. The graph G 3 , 11 is shown in Figure 6.3. The unique perfect matching M ∗ consists of all horizontal edges between the columns j and j + 1 for even j. The set of all other edges is

 ∗

 ∗

denoted by M . Obviously, we have m = |M |+ |M | = (
+1) h+
h 2 = Θ(
h 2)

for the number of edges.

Fig. 6.3. The graph Gh,, h = 3, = 11, and its perfect matching For the forthcoming analyses, it is sufficient to consider second-best (also called almost perfect) matchings of size |M ∗|− 1 for the graph Gh, and to show that the final improvement takes in expectation an exponential time. Given

an almost perfect matching, there is only one unique augmenting path left

(a formal proof for this fact is already contained in the proof of Lemma 6.3).

This augmenting path has the following properties.

Lemma 6.11. Let Q be the unique augmenting path for an almost perfect matching in the graph Gh,. Then

 •

 Q “runs from left to right”, i.e., it contains at most one vertex from each column,

 •

 if the endpoints of Q are not in the first or last column, there are 2 h lengthenings and two shortenings by 2 -bit flips; otherwise there are h lengthen-ings and still two shortenings.

 Proof. For the first property, assume that two vertices belonging to the same column both lie on Q. Due to the structure of Gh,, this implies in particular the existence of an odd column j with this property. Then Q runs along adjacent edges e = {(i, j) , (i, j + 1) } and e = {(i, j) , (i, j + 1) }, both of

 ∗

which are in M . Either e or e is contained in the almost perfect matching, and w. l. o. g., this is the case for e. We consider Q as running from left to right in row i, then changing direction via e and e, and subsequently running to

6.4 A Worst-Case Result

87

Fig. 6.4. An almost perfect matching in Gh, and its augmenting path; the free vertices are marked by a circle

the left in row i. We exploit the fact that e is not included in the almost perfect matching. Hence, as long as Q continues along row i to the left, the almost perfect matching can only contain M ∗ edges. This implies that Q will not change to another row again and ends at a free vertex (i, j) in the very same row. If also (i, j − 1) is a free vertex, then edge {(i, j − 1) , (i, j) } is free; hence there is another augmenting path in contradiction to the fact that we have an almost perfect matching. If (i, j − 1) is not free, the almost perfect

 ∗

matching must include another M edge, which again implies the existence of another augmenting path.

As a consequence of the first property and the fact that we are dealing

with an almost perfect matching, at least one endpoint of Q is adjacent to

 ∗

 h different M

edges that are not contained in the almost perfect matching.

If the other endpoint of Q is not in the first or last column, this also holds for the other endpoint. This implies the second property.

Lemma 6.11 implies that the search algorithms are confronted with an unfair game if h ≥ 3. The tendency towards increasing the length of Q will provably result in an exponential expected optimization time. To formalize

this, we use a potential function, denoted by P , which maps search points (i.e., selections of edges) to integral values. For the sake of convenience, this function is defined only for almost perfect matchings and denotes the current length of the unique augmenting path for such a matching; hence, P takes only odd values. Note that P is not injective. In particular, we cannot determine from the P value whether the augmenting path is adjacent to a border of the Gh,. Assuming a worst-case perspective, we assume one endpoint of the path to be at a border. Then there are, according to Lemma 6.11, h 2-bit flips increasing and two such flips decreasing the potential. Giel and Wegener

(2003, 2004) consider also the case h = 2, which is of some special interest since G 2 , is the only planar graph in this class of graphs. However, much additional effort is required in this case to show that the augmenting path is likely to be far away from a border and that the game is, therefore, still unfair. In the following, we present the analysis only for the case h ≥ 3.

The proof strategy for an exponential lower bound with respect to the

search algorithms RLS1 , 2 and (1+1) EA

b

b is as follows. As already mentioned,

we consider only second-best matchings. Starting from such a search point,

with overwhelming probability, O(m 3) steps are enough to obtain either the

88

6 Maximum Matchings

perfect matching or an augmenting path of maximal length, which is
 accord-

ing to Lemma 6.11. We estimate the probability of which of these two events happens first. If the augmenting path has reached length
, we prove that it is

very likely to need exponentially many steps to obtain the perfect matching.

To obtain this result, it is required that
 be polynomial in m. We are mainly

interested in the case 3 ≤ h ≤
, implying that
 = Ω(m 1 / 3). Then, 2 is

exponential in m. In a phase of this length, it is quite likely that (1+1) EA performs certain steps of exponentially small probability, which can change the current matching at a significant number of places and not only locally.

Therefore, the following analysis will again be easier to conduct for RLS1 , 2.

b

We concentrate now on specific P values. If the P value is 1, i.e., we have a free edge, it is likely we will find the perfect matching in the next step.

Lemma 6.12. For RLS 1 , 2 and (1+1) EA

 b

 b starting with an almost perfect

 matching with a P value of 1 , the following holds. The probability of reaching an almost perfect matching with a P value of at least 3 is Θ(h/m) .

 Proof. Since P = 1, the augmenting path consists of a free edge. To improve the matching, it is sufficient that only the free edge flip, and it is necessary that this edge flip. Therefore, the probability of creating the perfect matching is Θ(1 /m). To increase P , it is sufficient that one of the h or 2 h edge pairs lengthening the augmenting path flip. (If also the free edge flips, the path moves to another position. Then, at least a matching edge has to flip and

additionally, one of the h or 2 h pairs lengthening this augmenting path.) Hence, the unconditional probability of reaching a situation where P ≥ 3

equals Θ(h/m 2). The conditional probability of reaching P ≥ 3 rather than P = 0 is, therefore, Θ(h/m).

We prove the worst-case result for RLS1 , 2 first. Assuming a P value of at b

least 3, we will apply the results of the gambler’s ruin theorem from Theo-

rem 4.8. From the perspective of a lower bound, increasing the P value to its maximum before improving the matching is a success. Hence, increasing P

by 2 (recall that only odd values are taken) corresponds to the gambler’s

winning a unit of money and decreasing P corresponds to his losing a unit.

The probability ph of winning is at least h/(h + 2) if the P value is at least 3, pessimistically assuming that one endpoint of the augmenting path is at a

border of Gh,. Since only h ≥ 3 is considered, we have ph ≥ 3 / 5, i.e., an unfair game. More generally, we obtain rh = (1 − ph) /ph ≤ 2 /h for the setup of Theorem 4.8. Given an initial P value of P 0 ≥ 3, the probability of reaching a P value of
 before a value of at most 1 is at least

 − P

 P

 P

 r 0

 r 0 − 1

1 − r 0

1 − r

 h

 h

=

 h

=

 h

 ,

 r − 1

 r − 1

1 − r

 h

 h

 h

where
 :=
/ 2 is the number of different values greater than 1 the P value can take and P := P

0

0 / 2 is the number of possible P values greater than 1

6.4 A Worst-Case Result

89

and less than or equal to P 0. Since rh < 1, the probability under consideration P

is at least 1 −r 0. Our considerations are summarized by the following lemma, h

which pessimistically assumes the matching to be improved once the P value has dropped to 1.

Lemma 6.13. For RLS 1 , 2 starting with an almost perfect matching with a b

 P value of P 0 ≥ 3 , the probability of constructing an augmenting path of maximal length before the perfect matching is at least 1 − (2 /h) P 0 / 2 	.

For (1+1) EAb, we have to estimate the probabilities of steps where many

flipping bits influence the augmenting path. In order to simplify the analysis, we interpret the following event as a loss of the whole game. At least the

leftmost i ≤ 4 and the rightmost j ≥ 4 − i edges of the augmenting path flip.

The probability of this event is bounded from above by O(1 /m 4). Now, the only way of decreasing the P value by 1 without losing the game is by flipping exactly the two leftmost or the two rightmost edges of the augmenting path.

The probability of this event equals 2(1 /m)2(1 − 1 /m) m− 2. This leads basically to the same probabilities as in Lemma 6.13, but we have to take into account the probability of Θ(1 /m 3) of turning a search point with a short augmenting path of length 3 into the perfect matching. We obtain the following result, which provides in essence the same bounds as the preceding lemma.

Lemma 6.14. For (1+1) EAb starting with an almost perfect matching with a P value of P 0 ≥ 3 , the probability of constructing an augmenting path of maximal length before the perfect matching is at least 1 − O(1 /m) −

((2 /h) + O(1 /m)) P 0 / 2 	.

 Proof. Since we pessimistically consider the event of a P value of 1 as the event that the perfect matching is created, we can include the event that an augmenting path of length 3 is flipped in the event in which the gambler loses one unit of money. Since 2-bits are necessary and sufficient, the probability that a step changes the augmenting path is Θ(1 /m 2). The probability of flipping an augmenting path of length 3 is Θ(1 /m 3). Therefore, it is sufficient to increase the value of rh from the above analysis by O(1 /m).

In addition, there is a probability of O(1 /m 4) for each step that the game is immediately lost because the P value changes by more than 1. If we can prove that the game is finished anyway within O(m 3) steps with probability at least 1 − O(1 /m), the probability of observing a step of probability of O(1 /m 4) until the end of the game is O(1 /m). This is accounted for by first the term

 −O(1 /m) in the bound of the lemma.

We are left with the claim on the number of steps until the end of the game.

Using ph > 1 / 2 in Theorem 4.8, we obtain DP 0 / 2 	 = O(
), which means that

the expected number of steps of (1+1) EAb is O(
m 2) = O(m 3) since a step

is relevant, i.e., changes the length of the path, with probability Ω(m 2). The bound O(m 3) holds also with probability 1 − 2 −Ω(m). By Chernoff bounds, there is with probability 1 − 2 −Ω(m) a surplus of at least
/ 2 increasing steps

90

6 Maximum Matchings

within some cm relevant steps, c an appropriate constant. Also by Chernoff bounds, there are with probability 1 − 2 −Ω(m) at least cm relevant steps within cm 3 steps of (1+1) EAb, c another appropriate constant. This proves the lemma.

Putting the previous arguments presented until Lemma 6.13 together, we obtain a first lower bound on the runtime of RLS1 , 2.

b

Lemma 6.15. Starting with an almost perfect matching and an augmenting path of maximal length, the probability that RLS 1 , 2 finds the perfect matching b

 within 2 c steps, c > 0 an appropriate constant, is bounded from above by 2 −Ω() .

 Proof. We essentially apply the argumentation leading to Lemma 6.13. Starting from a P value of
, the value k :=
/ 2 = Ω(
) or, if k is even, the

value k − 1 has to be taken at least once before 0 is reached. Starting from k − 1 (analogously for k), we have an unfair game where the probability of the gamber not winning (where winning means returning to a P value of
) is

bounded from above by

 (k− 1) / 2 	

1 − rh

 ≤

2 −c

 / 2 	

1 − rh

for some constant c > 0. The game is repeated until it is lost (i.e., a P value of at most 1 is reached) for the first time. The probability of losing at least once in 2 c games is bounded from above by 2(c−c) = 2 −Ω() if the constant c < c is chosen small enough.

To prove a corresponding result for (1+1) EAb, we still exploit the fact

that the game is unfair, i.e., there is a drift towards increasing the P value.

However, we cannot apply the gambler’s ruin theorem any longer since, as

mentioned above, exponentially long phases allow for steps that change the

situation in a significant number of places. Therefore, the simplified drift theorem (Theorem 4.9) will be applied.

Lemma 6.16. Starting with an almost perfect matching and an augmenting path of maximal length, the probability that (1+1) EAb finds the perfect matching within 2 c steps, c > 0 an appropriate constant, is bounded from above by 2 −Ω() .

 Proof. To apply Theorem 4.9, we set a := 0 and b :=
/ 2 − 1. The random

variables Xt are obtained by taking the random P values at the respective time points, dividing them by 2 and rounding the result up. In this way, we obtain a process on the state space { 0 , 1 , . . . ,
/ 2 }.

Given a current Xt value of i, where i ≤
/ 2 − 1, we need an estimate

of the expected change of this value. The probability of increasing the value

6.4 A Worst-Case Result

91

by 1, i.e., lengthening the augmenting path of length 2 i − 1 by 2, is bounded from below by

 m− 2

 p 1(i) ≥

 h

1 − 1

 m 2

 m

since at least one end of the path is not at a border of Gh, and there are h appropriate 2-bit flips. Here we use the fact that i ≤
/ 2 − 1, i.e., the

augmenting path can still be lengthened. On the other hand, the probability of decreasing the Xt value by j ≥ 2 is bounded from above according to 2 j

1

 p−j(i) ≤ (j + 1) · m

since it is necessary to flip the 2 k leftmost edges and the 2(j − k) rightmost edges of the augmenting path for some k ∈ { 0 , . . . , j}. For p− 1(i), we need a better bound that is at least by a constant factor smaller than p 1(i). We estimate

 m− 2

3

 p− 1(i) ≤

2

1 − 1

+

 m 2

 m

 m 4

since there are exactly two ways of flipping exactly two edges, and otherwise one has to flip at least the 2 k, 0 ≤ k ≤ 2, leftmost edges and the 4 − 2 k rightmost edges of the augmenting path.

Since most other mutations of (1+1) EAb will be rejected in this setting

due to worse fitness, we use the condition C rel that a step is relevant, meaning it is accepted and changes the matching. Of course, if we obtain a lower bound on the required number of relevant steps, this also bounds the actual number of steps of (1+1) EAb from below. The probability p rel of a relevant step is bounded according to

 m− 2

1

1 − 1

 ≤ p rel ≤ 2 h + 2 .

 m 2

 m

 m 2

The lower bound holds because, unless the optimum has been found, there

always are two edges that, when flipped, lengthen or shorten the augmenting path. The upper bound holds because there are at most 2(h + 1) = 2 h + 2

couples of edges adjacent to a border of the augmenting path that, when

flipped, lengthen or shorten the path. The probability that more than two

bits flip and the step is relevant is lower since at least one of the 2 h + 2

couples considered in the bound has to be flipped anyway.

Let R(i) = (Δ(i) | C rel) denote the random increase of the Xt value in relevant steps, given a current value of i. We first concentrate on the contribution of steps of length 1, i.e., we consider R 1(i) := R(i) · 1 {|R(i) | ≤ 1 }. Thus,

 m− 2

 m− 2

 p

 h

 ·

2

 ·

1(i)

1 − 1

1 − 1

+ 3

 E(R

 m 2

 m

 m 2

 m

 m 4

1(i)) =

 − p− 1(i) ≥

 −

 p

2 h+2

2 h+2

rel

 p rel

 m 2

 m 2

 m− 2

(h − 2) 1 − 1

=

 m

 −

3

 ≥ 1 − O(m− 2)

2 h + 2

 m 2(2 h + 2)

8 · e

92

6 Maximum Matchings

since h ≥ 3. The unconditional decrease Δ− (i) = −Δ(i) · 1 {Δ(i) < − 1 }, for

 > 1

negative steps of length greater than 1, is in expectation at most

 ∞

 ∞

 E(Δ− (i)) ≤

 j · p

 j · (j + 1) · 1

 > 1

 −j (i) ≤

 m 2 j

 j=2

 j=2

 ∞

 ≤ 6

2 m 2

+

= O(m− 4)

 m 4

 m 2 j

 j=3

using p−j ≤ (j + 1) /m 2 j. Hence, the total conditional drift is E(Δ− (i))

 E(R(i)) ≥ E(R

 > 1

1(i)) −

 ≥ 1 − O(m− 2) − O(m− 4) · em 2

 p rel

8 · e

1

=

 − O(m− 2) ,

8 · e

which is bounded from below by a constant such that the first condition of

Theorem 4.9 has been established.

The second condition follows with δ = 1 and r = 8 from

 j

 p−j ≤

 j + 1

1

1

min 1 ,

 · em 2

 ≤ min 1 ,

 ≤ 8 ·

 p rel

 m 2 j

 m 2 j− 7

2

for m ≥ 2. From Theorem 4.9, the lemma follows.

We summarize our results. Note that the exponentially small failure prob-

ability 2 −Ω() = 2 −Ω(m 1 / 3) from Lemma 6.15 is captured by the O(1 /m) term of the following lemma.

Theorem 6.17. Starting with an almost perfect matching and an augmenting path of length 2 k +1 , the probability that (1+1) EAb finds the perfect matching within 2 c steps, c > 0 an appropriate constant, is bounded from above by O(1 /m) + ((2 /h) + O(1 /m)) k if 3 ≤ h ≤
 and k ≥ 1 . For RLS 1 , 2 , the bound

 b

2 −Ω() + (2 /h) k holds.

So far, we have only considered the case of almost perfect matchings and

shown that it can take exponential time to achieve the final improvement. We return to the question of whether an almost perfect matching will be reached.

Lemma 6.18. If (1+1) EAb or RLS 1 , 2 do no start with the perfect matching, b

 an almost perfect matching is constructed before the perfect matching with a probability of Ω(1 /h) .

 Proof. Let M denote the set of edges selected by the current search point, and let d := |M ⊕ M ∗| denote the Hamming distance to M ∗. We investigate the situations when M is neither an almost perfect nor the perfect matching; this includes the case where M is not even a matching. Then, any step producing an almost perfect matching will be accepted.

6.4 A Worst-Case Result

93

For (1+1) EAb, the probability of producing M ∗ in the next step is Θ(1 /md). We argue that this probability is at most by a factor of O(h) larger than the probability of producing an almost perfect matching in the next step.

If M ⊕M ∗ contains at least one M ∗ edge, this edge is not included in M . Then the step where everything works as in the step creating the perfect matching, except for the M ∗ edge, produces an almost perfect matching. The probability Θ(1 /md− 1) of this step is even larger than the probability of the step creating M ∗. If M ⊕M ∗ contains no M ∗ edge, all M ∗ edges are included in M , and there are |M ∗| ways to produce an almost perfect matching by additionally flipping an M ∗ edge. Their probability is Θ(|M ∗|/md+1) = Θ(1 /(hmd)). The ratio of the relevant probabilities is always at least Ω(1 /h).

For RLS1 , 2, a necessary event is a situation where d ≤ 2. We argue that in b

any situation where d = 1, the next step produces M ∗ with a probability that is at most by a factor O(h) larger than the probability that it produces an almost perfect matching. In situations where d = 2, the first probability will be proven to be even smaller than the last probability since we investigate the next two steps.

Let us consider the case d = 1. Then we are only interested in the case where M is a superset of M ∗ since otherwise M would be almost perfect.

 ∗

Let M = M ∗ ∪ {e}, implying that e is an M edge. The next step produces M ∗ with probability Θ(1 /m). If e and another edge of M flip, an almost perfect matching is obtained. This happens with probabiliy Θ(|M ∗|/m 2) =

 Θ(1 /(hm)). The ratio is Ω(1 /h).

Finally, assume d = 2. Then a necessary event to produce M ∗ is that each of the two edges in M ⊕ M ∗ flips at least once in the next two steps.

The probability of this event is Θ(1 /m 2). If M ⊕ M ∗ contains two M ∗ edges, both are free, and the first step produces an almost perfect matching with

a probability of Θ(1 /m) by flipping only one of these edges. If M ⊕ M ∗

 ∗

contains one M ∗ edge and one M edge, the first step removes the latter edge from M with probability Θ(1 /m) and produces an almost perfect matching.

 ∗

Finally, if M ⊕ M ∗ contains two M edges then M = M ∗ ∪ {e 1 , e 2 } is a non-

 ∗

matching where e 1 and e 2 are the two M edges. Any step flipping e 1 and an arbitrary M ∗ edge in the first step will be accepted even though it leads still to a non-matching. The reason is that the penalty term in the underlying fitness function (cf. Section 6.1) decreases by at least 1 and optimization proceeds in lexicographic order. If the second step flips e 2, an almost perfect matching is obtained. Ths probability of these events is Θ((|M ∗|/m) ·(1 /m)) =

 Θ(1 /(hm 2)), and the ratio of the relevant probabilities is again bounded from below by Ω(1 /h).

Taking the previous lemma, Lemma 6.12, and Theorem 6.17 together, we obtain that the 2 Ω() bound of the theorem holds with a probability of Ω(1 /(hm)) if we start with any search point which is not the optimum. If h ≤
 then it holds that
 = Ω(m 1 / 3), and if h is a constant, then
 = Ω(m).

Altogether, given a initial search point that is not the optimum, we obtain

94

6 Maximum Matchings

an exponential lower bound of 2 Ω() = 2 Ω(m 1 / 3) for the expected optimization time. This is summarized by the following theorem.

Theorem 6.19. For Gh,, 3 ≤ h ≤
, the expected optimization time of

 RLS 1 , 2 and (1+1) EA

 b

 b is 2 Ω() if the initial search point is not the perfect matching.

For example, if the initial search point is drawn uniformly at random, the

probability of not starting with the perfect matching is 1 − 2 −Ω(m). In general, the precondition of not starting with the optimum is the weakest condition

one can think of. Early analyses of simulated annealing for the maximum

matching problem (Sasakik and Hajek, 1988) are based on the deterministic choice of the empty matching as initial starting point. Theorem 6.19 is far less restrictive in this sense.

However, Theorem 6.19 contains a result on the expected optimization time, only. This statement goes back to Lemma 6.12 and Theorem 6.17,

which imply a lower bound of Ω(1 /(hm)) on the probability of observing an exponential optimization time. Giel and Wegener (2004) improve upon this bound and show that an exponential time holds with probability 1 − 2 −Ω() if h = ω(log n). Very careful analyses are required to show these improved results, and the interested reader is referred to the works by Giel and Wegener

(2003, 2004, 2006).

Conclusions

In this chapter, we have analyzed the simple search algorithms RLS1 , 2 and b

(1+1) EA for the maximum matching problem. Optimal solutions are found

on simple graph classes like paths in expected polynomial time. More gen-

erally, solutions that are only by a factor 1 + away from optimality can be found in expected polynomial time. This proves that the algorithms are

polynomial-time randomized approximation schemes (PRASs) for the prob-

lem. Consistently with this result, the limits of the search algorithms have been determined. On a worst-case graph, the expected time until the optimal solution is found was proven to be exponential.

The analyses make use of the techniques presented in Section 4.2. Most notably, the gambler’s ruin theorem and the drift theorem were used to investigate the stochastic processes behind the algorithms.

7

Makespan Scheduling

In this chapter, we study the simple scheduling problem introduced in Sec-

tion 2.1. Given n jobs with positive processing times p 1 , . . . , pn, schedule them on two identical machines in a way such that the makespan, i.e., the overall completion time, is minimized. Let x ∈ { 0 , 1 }n be a decision vector. Job j is scheduled on machine 1 iff xj = 0 holds and on machine 2 iff xj = 1 holds.

Hence, the goal is to minimize

 n

 n

 fp

(x) := max

 p

 p

 ,

1 ,...,pn

 j xj ,

 j (1 − xj)

 i=1

 i=1

where the index p 1 , . . . , pn is often omitted for the sake of readability. Note that the representation is redundant in the sense that a search point x and its bitwise binary complement ¯

 x lead to the same f value.

We see that the problem is very easy to describe and leads to a pseudo-

boolean fitness function in a natural way. In the domain of theoretical computer science, this is a very well-studied problem also known as PARTITION: a set of n numbers has to be split into two subsets such that the numbers in the two subsets sum up to a maximum value as small as possible. In the best case, there is a perfect partition with value (p 1 + · · · + pn) / 2. In the following, we also refer to our scheduling problem briefly by the name PARTITION.

Despite its simplicity, PARTITION is an NP -hard problem with an NP -

complete decision variant. Hence, we cannot hope for exact solutions in polynomial time. However, the problem is perfectly suited for investigating the capabilities of stochastic search algorithms to approximate optimal solutions.

There are efficient approximation algorithms based on the knapsack problem

which guarantee solutions with an approximation ratio 1 + in time O(n 3 /), i.e., polynomial in n and 1 / (Hochbaum, 1997). Of course, an approximation ratio of 2 is trivially obtained by placing all jobs on the same machine.

In this chapter, we investigate the simple search algorithms RLS1 and

b

(1+1) EAb for the minimization of functions fp

induced by instances to

1 ,...,pn

the PARTITION problem. The results are due to Witt (2005). We will start F. Neumann, C. Witt, Bioinspired Computation

95

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 7, © Springer-Verlag Berlin Heidelberg 2010

96

7 Makespan Scheduling

in Section 7.2 with a worst-case perspective, which means that the maximum approximation ratio obtainable in polynomial time over all possible instances is elaborated on. Later, we will relax this perspective by appropriate average-case models, which will be dealt with in Section 7.3.1. Both sections rely on concepts and tools developed in the following section.

7.1 Representations and Neighborhood Structure

Like many of the analyses in previous chapters, we focus on the progress

that our stochastic search algorithms achieve by local steps. Our aim is to characterize search points having better Hamming neighbors. To this end,

some notions and notations are helpful.

Given the processing times of the n jobs, we assume w. l. o. g. throughout this section that they appear sorted in nonincreasing order, i.e., p 1 ≥ · · · ≥ pn.

Moreover, we denote by P := p 1 + · · · + pn the sum of all processing times, which rephrases our lower bound on optima by P/ 2. As long as a current point x ∈ { 0 , 1 }n leads to a worse f value, the two machines have different loads. We briefly refer to the machine with higher load as the fuller machine and call the other machine emptier. A local step of a search algorithm might improve a current solution by shifting a job from the fuller to the emptier machine. We describe sufficient conditions for such steps to be successful.

Suppose that a current solution x is given and we know that there exists a job, say job i, on the fuller machine with processing time pi. If f (x) ≥

 P/ 2 + pi/ 2 holds for this search point, the loads of the machines differ by at least pi. Hence, a step shifting job i from the fuller to the emptier machine will be accepted. More generally, for an arbitrary search point x, let s(x) denote the smallest processing time of the jobs scheduled on the fuller machine. We call s(x) the critical job size with respect to x (and, implicitly, the underlying instance to the PARTITION problem). Our sufficient condition for improvable solutions now reads as f (x) ≥ P/ 2 + s(x) / 2; see Figure 7.1 for an illustration.

Only if the current f value is less than this bound can the search algorithm be stuck in a local optimum. Therefore, P/ 2 + s(x) / 2 is a possible barrier for locally searching algorithms, and it would be nice to have upper bounds on s(x).

Fig. 7.1. A sufficient condition for locally improvable solutions

7.1 Representations and Neighborhood Structure

97

In general, given an arbitrary instance to the problem and an arbitrary

search point x, there can be no better bound on s(x) than p 1, i.e., the processing time of the largest job. If the processing times of the jobs differ heavily, P/ 2 + p 1 / 2 might be very close to P ; hence our characterization of improvable situations would be trivial. However, after the algorithm has taken some improving steps and has obtained an already relatively good – but not optimal – solution, we might be able to conclude that there must be some quite

small jobs on the fuller machine, leading to much better estimates on the

critical job size s(x). Actually, we will describe situations where the critical job size is guaranteed to respect a certain bound for the rest of the optimization process. This will be possible since RLS1 and (1+1) EA

b

b do not accept

worsenings.

Given a bound s∗ on the critical job size that is maintained for the rest of the optimization, we can estimate the progress of the search algorithms towards the possible barrier P/ 2+ s∗/ 2 using the techniques from Section 4.2. We allow for barriers L ≥ P/ 2 in a slightly more general setting and bound the expected time to reach that barrier using the fitness-level method (Lemma 4.1).

Moreover, we present an improved bound for the case where solutions slightly worse than the barrier are sufficient. In that case, the method of expected multiplicative distance decrease (see Section 4.2.3) gives very good time bounds.

Lemma 7.1. Let a current search point of RLS 1 or (1+1) EA b

 b on an arbitary

 instance to the PARTITION problem be given. Suppose that the critical job size is guaranteed to be bounded from above by s∗ for all following search points of value greater than L + s∗/ 2 . Then the algorithm reaches an f value at most L + s∗/ 2 in expected time O(n 2) .

 Proof. The proof uses a fitness-based partition which has to be defined carefully. In particular, since we are dealing with minimization, we now assume Ai >f Ai+1 for the sets of the partition.

Let r be the smallest i such that pi ≤ s∗, i.e., thanks to p 1 ≥ · · · ≥ pn it holds that pi ≤ s∗ for all i ≥ r. We define

 r+ i− 1

 r+ i

 Ai :=

 x P −

 pj ≥ f (x) > P −

 pj

 j= r

 j= r

for 0 ≤ i ≤ n − r and A

 n

 n−r+1 := {x | f (x) ≤ P −

 p

 j= r

 j }. Some sets might

contain search points of value less than L + s∗/ 2, which we pessimistically ignore in the following. Using the expected time until set An−r+1 is reached, we obtain an upper bound on the expected time to reach the barrier L + s∗/ 2.

Consider some x such that f (x) > L + s∗/ 2. By our assumptions, there must be a job from pr, . . . , pn on the fuller machine whose move to the emptier machine decreases the f value by its processing time or leads to an f value of at most L + s∗/ 2. If x ∈ Ai, there is, thanks to pr ≥ · · · ≥ pn, even a job from pr, . . . , pr+ i with this property. Moving this job to the emptier machine by a

98

7 Makespan Scheduling

1-bit flip of the search algorithm has probability at least 1 /(e n) and, again due to pr ≥ · · · ≥ pn, leads to some x ∈ Aj such that j > i. The expected waiting time for such a step is at most e n. After at most n − r + 1 sets are left, the f value drops to at most L + s∗/ 2. Hence, the total expected time is O(n 2).

We now turn to a result that is obtained by the method of expected mul-

tiplicative distance decrease.

Lemma 7.2. Let a current search point of RLS 1 or (1+1) EA b

 b on an arbitary

 instance to the PARTITION problem be given. Suppose that the critical job size is guaranteed to be bounded from above by s∗ for all following search points of value greater than L + s∗/ 2 . Then for any γ > 1 and 0 < δ < 1 , (1+1) EAb (RLS 1) reaches an f value at most L + s∗/ 2 + δP/ 2 in at most e n ln(γ/δ)

 b

 (n ln(γ/δ)) steps with probability at least 1 − γ− 1 . Moreover, the expected number of steps is at most 2 e n ln(2 /δ) (2 n ln(2 /δ)).

 Proof. Let r be the smallest i such that pi ≤ s∗. Moreover, consider a current search point x satisfying f (x) > L+ s∗/ 2. We are interested in the contribution of the so-called small jobs pr, . . . , pn to the f value and estimate the average decrease of the f value using the method of expected multiplicative distance decrease.

Let d(x) := max {f (x) − L − s∗/ 2 , 0 } denote the distance of the f value from the barrier L + s∗/ 2. By our assumptions, d(x) is a lower bound on the contribution of small jobs to f (x). Moreover, f (x) ≥ P/ 2 and f (x) > L+ s∗/ 2

together imply d(x) ≤ P/ 2. As long as d(x) > 0, all steps moving only a small job to the emptier machine are accepted and decrease the d value by its size or lead to an f value of at most L + s∗/ 2. Let d 0 be some current d value. Since a 1-bit flip of (1+1) EAb has probability at least 1 /(e n), the expected d decrease is at least d 0 /(e n) and the expected d value after the step, therefore, is at most (1 − 1 /(e n)) d 0. The expected d value dt after t steps is at most (1 − 1 /(e n)) td 0.

For t := e n ln(γ/δ), we have dt ≤ δd 0 /γ ≤ δP/(2 γ). Markov’s inequality implies that dt ≤ δP/ 2 with probability at least 1 − 1 /γ. Moreover, we can repeat independent phases of length e n ln(2 /δ) . The expected number of phases until the d value is at most δP/ 2 is at most 2, implying the lemma for (1+1) EAb.

The statements regarding RLS1 follow in the same way, taking into account

b

that a 1-bit flip has probability 1 /n.

7.2 Worst-Case Analysis

7.2.1 Approximations Obtainable in Expected Polynomial Time

In this section, we will study bounds on the approximation ratios obtainable by the search algorithms within polynomial time regardless of the problem

7.2 Worst-Case Analysis

99

instance. This is a classical worst-case analysis, and we cannot hope for exact solutions in polynomial time due to the NP -hardness of the problem at hand.

Theorem 7.3. Let > 0 be a constant. On every instance to the PARTITION

 problem, (1+1) EAb and RLS 1 reach an f value with approximation ratio 4 / 3+

 b

 in an expected number of O(n) steps and an f value with approximation ratio 4 / 3 in an expected number of O(n 2) steps.

 Proof. We define L := max {p 1 , P/ 2 } and are interested in an upper bound on the smallest job on the fuller machine. To this end, we still have to distinguish between two cases. The first case holds if p 1 + p 2 > 2 P/ 3. Recalling p 1 ≥ · · · ≥

 pn, this implies p 1 > P/ 3 and, therefore, P − p 1 < 2 P/ 3. Hence, if we start with p 1 and p 2 on the same machine, a step separating p 1 and p 2 by putting p 2 onto the emptier machine is accepted, and these jobs will remain separated afterwards. The expected time until such a separating step occurs is O(n).

We claim that for all following search points x of value at least f (x) > L, the critical job size is bounded from above by p 3. This holds since by the definition of L, the biggest job is not sufficient for obtaining an f value greater than L. Now, since p 3+ · · ·+ pn < P/ 3, we know that pi < P/ 3 for i ≥ 3. When working with s∗ ≤ P/ 3, search points of value L+ s∗/ 2 have an approximation ratio of

 L + s∗/ 2 ≤ P/ 2 + s∗/ 2 ≤

 P/ 6

4

1 +

=

 L

 P/ 2

 P/ 2

3

since L ≥ P/ 2. Likewise, search points of value L + s∗/ 2 + δP/ 2 have an approximation ratio of 4 / 3 + δ. Hence, the first statement of the theorem follows for δ := by Lemma 7.2 and the second one by Lemma 7.1.

If p 1 + p 2 ≤ 2 P/ 3, we have pi ≤ P/ 3 for i ≥ 2. Since p 1 < P/ 2, this implies that the critical job size is always at most p 2 ≤ P/ 3. Therefore, the theorem holds also in this case.

The approximation ratio 4 / 3 that the search algorithms are able to obtain within expected polynomial time is at least almost tight. We present a simple worst-case instance where both RLS and (1+1) EAb get stuck at approximation ratios close to 4 / 3 with probability Ω(1). This instance is called P ∗ in

 	

the following.

Definition 7.4. Let n be even and > 0 be an arbitrarily small constant.

 Then the instance P ∗ = {p

 	

1 , . . . , pn} is defined by p 1 := p 2 := 1 / 3 − / 4 and pi := (1 / 3 + / 2) /(n − 2) for 3 ≤ i ≤ n.

Note that the total processing time P := p 1 + · · · + pn has been normalized to 1 for the instance P ∗, which is only a cosmectic aspect and does not play a

 	

crucial role. However, it is important that the processing times in the instance be highly diverse: the times p 1 = p 2 of the two big jobs are almost as large as the total processing time of all n − 2 small jobs.

It is worth noting that the instance P ∗ has an exponential number of

 	

perfect partitions. Each solution that puts one big job and half of the small

100

7 Makespan Scheduling

jobs on each machine is such a perfect partition. However, the difference in job sizes can trick the search algorithm into bad local optima as follows: suppose the two big jobs are on one machine and all the small jobs on the other one.

Then the current makespan is p 1 + p 2 = 2 / 3 − / 2. A step that tries to move a big job from the fuller to the emptier machine would make the previously

emptier machine have a makespan of (1 / 3 + / 2) + 1 / 3 − / 4 = 2 / 3 + / 4. This is worse than the previous makespan by an amount of 3 / 4. To compensate for this, one would need at least (3 / 4) /p 3 = Ω(n) small jobs. An illustration is given in Figure 7.2.

Fig. 7.2. A worst-case instance

In the following theorem, we make our ideas precise. As a technical detail, we do not wait for all small jobs to be scheduled on the emptier machine but for only for almost all of these.

Theorem 7.5. Let be any constant s. t. 0 < < 1 / 3 . With probability Ω(1) , both (1+1) EAb and RLS 1 need on the instance P ∗ at least nΩ(n) steps to b

 	

 create a solution with a better approximation ratio than 4 / 3 − .

 Proof. The proof idea is to show that the search algorithm reaches a situation where the two big jobs are one the same machine and at least k := n −

2 − (n − 2) / 2 small jobs are on the other one. Since < 1 / 3, at least k jobs yield a total processing time of at least 1 / 3 + / 2 − (/ 2)(1 / 3 + / 2) =

1 / 3 + / 3 − 2 / 4 ≥ 1 / 3 + / 4. To leave the situation by separating the big jobs, the search algorithm has to transfer small jobs of a total processing time of at least / 4 from the emptier to the fuller machine in a single step. For this, (n − 2) / 2 small jobs are not enough. Flipping Ω(n) bits in one step of (1+1) EAb has probability n−Ω(n), and flipping Ω(n) bits at least once within ncn steps is, therefore, still exponentially unlikely if the constant c is small enough. For RLS1 , the probability is even 0. The makespan is at least 2 / 3 −/ 2

b

unless the two big jobs are separated, which corresponds to an approximation ratio no better than (2 / 3 − / 2) /(1 / 2) = 4 / 3 − . This will imply the theorem if we can prove that the described situation is reached with probability Ω(1).

The open claim is shown by considering the initial search point of the

search algorithm. With probability 1 / 2, it puts the two big jobs onto the same machine. Therefore, we estimate the probability that enough small jobs are

transferred from this machine to the other one in order to reach the situation,

7.2 Worst-Case Analysis

101

before a bit at the first two positions (denoting the large jobs) flips. In a phase of length cn for any constant c, with probability (1 − 2 /n) cn = Ω(1), the latter never happens. Under this assumption, each step moving a small

job onto the emptier machine is accepted. By the same idea as that in the

proof of Lemma 7.2, we estimate the expected decrease of the contribution of small jobs to the f value. Reducing it to at most an / 2fraction of its initial contribution suffices for obtaining at least k jobs in the emptier machine. Each step leads to an expected decrease by at least a 1 /(e n)fraction. Since is a positive constant, O(n) steps are sufficient to decrease the contribution to at most an expected / 4fraction. By Markov’s inequality, we obtain the desired fraction within O(n) steps with probability at least 1 / 2. Since c may be chosen appropriately, this proves the theorem.

7.2.2 The Success Probability for Certain Approximations

The worst-case example P ∗ studied in the previous subsection suggests that

 	

the search algorithms are likely to arrive at a bad approximation if they mis-place big jobs. If we take the worst-case perspective on what is doable in

expected polynomial time then the probability Ω(1) of getting stuck in a local optimum as proved in Theorem 7.5 necessarily limits our result to the relatively bad approximation ratio of only 4 / 3 − .

However, with similar techniques as before, it can easily be shown for P ∗

 	

that the search algorithms are able to find an optimal solution with probability Ω(1) in polynomial time if they separate the two big jobs in the beginning.

This is a finer result from a more relaxed perspective and relates to the success probability within polynomial time. Even if the expected optimization

time of a search algorithm is exponential, it might have a good probability of finding optima in polynomial time (Droste et al., 2002). Multiple restarts of the search algorithms will help us find the optimum within polynomial time

with a probability very close to 1.

An obvious question is whether the observation regarding the success

probability on P ∗ can be generalized to arbitrary instances to the PARTI-

 	

TION problem. We can achieve this in the following way. In order to obtain a (1 +) approximation in polynomial time according to Lemma 7.1, the critical job size should be bounded above by P . Due to the ordering p 1 ≥ · · · ≥ pn, all objects of index at least s := 1 / are bounded by this volume. Let those jobs be called small and the first s − 1 jobs be called large; see Figure 7.3 for an illustration. The idea is to bound the probability that the search algorithm distributes the large jobs in such a nice way that it makes mistakes only with the small jobs, resulting in a critical job size of at most ps. Interestingly, this is essentially the same idea as that for the classical approximation (PTAS, see Definition 2.7) scheme for the PARTITION problem presented by Graham

(1969).

Hence, as long as does not depend on the input size, we can achieve almost arbitrarily good approximations in polynomial time. In the following,

102

7 Makespan Scheduling

Fig. 7.3. Example of large and small jobs, s = 3

we will show that the search algorithms are able to achieve similar results with certain properties. Actually, the analysis is based on the above-described distinction of large and small jobs and a simulation of Graham’s PTAS. Even if the search algorithm does not know the latter’s algorithmic idea, it is able to behave accordingly by chance.

Theorem 7.6. Let an arbitrary instance to the PARTITION problem be given and choose ≥ 4 /n. Then, with probability at least 2 −(e log e+e) 2 /	 ln(4 /) − 2 /	, (1+1) EAb creates a solution of approximation ratio (1 +) in e n ln(4 /))

 steps. The same holds for RLS 1 with n ln(4 /)) steps and a probability of at b

 least 2 −(log e+1) 2 /	 ln(4 /) − 2 /	.

 Proof. Let s := 2 / ≤ n/ 2 + 1. Since p 1 ≥ · · · ≥ pn, it holds that pi ≤ P/ 2

for i ≥ s. If p 1 + · · · + ps− 1 ≤ P/ 2, the critical job size for all search points of value at least P/ 2 + ps/ 2 is always bounded above by ps and, therefore, by

 P/ 2. Therefore, in this case, the theorem follows for δ := / 2 and γ := 2 by Lemma 7.2.

In the following, we assume p 1 + · · ·+ ps− 1 > P/ 2. Consider all partitions of only the first s − 1 jobs, i.e., the large jobs. Let L∗ be the minimum makespan over all these partitions and let L := max {P/ 2 , L∗}. A search point and its complement lead to the same f value. Hence, there at least two search points such that the contribution of the large jobs to the makespan is at most L.

Since the initial solution is drawn uniformly, the probability is at least 2 −s+2

that the big jobs in the inital solution contribute at most L to the makespan.

As long as the big jobs are not moved, we can be sure that the critical job size for search points of f value greater than L is at most ps ≤ P/ 2, and we can apply the arguments from the first paragraph. The probability that in a phase of t := e n ln(4 /) steps it never happens that at least one of the first s − 1 bits flips is bounded from below by

e n(ln(4 /))+1

 s e ln(4 /)

1 − s − 1

 ≥ e − e(ln(4 /))(s− 1) 1 − s − 1

 ,

 n

 n

which is at least 2 −(e log e+e) 2 /	 ln(4 /) since s − 1 ≤ n/ 2. Assuming this to happen, we apply Lemma 7.2 for δ := / 2 and γ := 2. Hence, (1+1) EAb

7.3 Average-Case Analysis

103

reaches a solution of approximation ratio (1 +) within t steps with probability at least 1 / 2. Altogether, the desired approximation is reached within t steps with probability at least

1 · 2 − 2 /	+2 · 2 −(eloge+e) 2 /	 ln(4 /) ≥ 2 −(eloge+e) 2 /	 ln(4 /) − 2 /	.

2

The statement for RLS1 follows by redefining t := n ln(4 /) .

b

Theorem 7.6 allows us to design a PRAS (see Definition 2.8) for the PARTITION problem using multistart variants of the considered search algorithms. The idea is as follows. If
(n) is a lower bound on the probability that a

single run of the algorithm achieves the desired approximation in O(n ln(1 /)) steps, then this holds for at least one out of 2 /
(n) parallel runs with a prob-

ability of at least

1 − (1 −
(n)) 2 /(n) ≥ 1 − e − 2 > 3 / 4 , which is the success probability required in a PRAS.

We terminate each run definitely after O(n ln(1 /)) steps. Hence, the computational effort c(n), i.e., the number of f evaluations, incurred by the parallel runs can be bounded according to

 O(n ln(1 /)) · 2(e log e+e) 2 /	 ln(4 /)+ O(1 /) .

For > 0 a constant, c(n) = O(n) holds, which is a polynomial in n. Moreover, c(n) is still a polynomial for any = Ω(log log n/ log n). Hence, the multistart strategy is really a PRAS. This is the second example where a stochastic

search algorithm is characterized in such a way. Compared to the result for the maximum matching problem in Section 6.2, the statement from this section might be considered even more promising since we are dealing with an

NP-hard problem.

7.3 Average-Case Analysis

7.3.1 Introductory Results

So far, the analyses in this chapter were based on a pessimistic model. All possible instances to the problem had to be taken into account, resulting in all statements dealing implicitly with the worst case. It is commonly objected that this perspective of worst-case instances might be very unlikely in applications or that they do not even appear at all.

A well-established relaxation to the worst-case perspective is a so-called

average-case analysis. The average is taken of a set of instances, each of which obtains a certain probability of occurrence, in the simplest case uniform over the considered set. In such a model, even the behavior of a deterministic

104

7 Makespan Scheduling

algorithm has to be analyzed in a stochastic environment. A classical example is the average-case analysis of QuickSort (Cormen et al. , 2001), where each initial order of the objects to be sorted is equally likely and an expectation of the runtime is computed. The worst-case runtime Ω(n 2) in the deterministic case decreases to an expectation of only O(n log n) in the average-case model.

We aim at an average case of stochastic search algorithms, which entails

two sources of randomness. We have to deal with random inputs and random

decisions of the search algorithm at the same time. This might explain why

average-case analyses of stochastic search algorithms are relatively rare and our attempt is one of the first such analyses. As a result, we must restrict ourselves to fairly simple distributions on the set of possible instances.

Two distributions are considered:

Uniform distribution model, where each job size pi is drawn independently from the unit interval [0 , 1].

Exponential distribution model, where each job size pi independently follows an exponential distribution with parameter 1, i.e., Prob(pi ≥ t) =

 e−t for 1 ≤ i ≤ n.

Using the properties of the two distributions, the expected job size is 1 / 2 in the first and 1 in the second model. It is crucial for our analyses that we assume independence of the random job sizes. We also drop the assumption that the

jobs appear sorted in decreasing size since it would introduce dependencies. If we change our perspective from random job sizes pi to a sorted representation, this will be made explicit in the following.

Our two models slightly abuse the definition of the PARTITION problem

in that the random job sizes are positve reals rather than integers now. By limiting the precision of the numbers and normalizing the job sizes, however, we can easily arrive at an instance according to the original formulation. This is a technical detail that will not be discussed hereinafter.

A different motivation for our average-case models is taken from the lit-

erature. In the last two decades, some average-case analyses of deterministic algorithms for the PARTITION problem have been performed. The first such

analyses studied the LPT (longest processing time) rule, a greedy algorithm displayed as Algorithm 10.

Algorithm 10 Longest Processing Time (LPT)

1. Sort the jobs according to decreasing processing time.

2. For i = 1 , . . . , n, schedule the i th job on the currently emptier machine (breaking ties arbitrarily)

Extending a result that showed convergence in expectation, Frenk and Rin-

nooy Kan (1986) were able to prove that the LPT rule converges to optimality

7.3 Average-Case Analysis

105

at a speed of O(log n/n) almost surely in several input models, including the above-mentioned uniform distribution and exponential distribution models.

Further results on average-case analyses of more elaborate deterministic algorithms are contained in a survey by Coffman and Whitt (1995).

In our random input models, the optimum f value is itself random and an appropriate generalization of the approximation ratio is no longer obvious.

Therefore, for a current search point, we now consider the so-called discrepancy measure also studied by Frenk and Rinnooy Kan (1986). The discrepancy denotes the absolute difference of the loads of the two machines; formally, we have |f (x) − f (¯

 x) | as the discrepancy of a search point x. As a first observation, we show that the random initial search point is likely to have a relatively high discrepancy.

Lemma 7.7. With probabilty Ω(1) , the initial discrepancy of (1+1) EAb and

 √

 RLS is Ω(n) in both the uniform and the exponential distribution models.

 Proof. We show that the discrepancy is a consequence of a bias of the binomial distribution. Let F be the random random number of jobs which are scheduled on the first machine by the initial search point. Since each bit of the initial search point is drawn uniformly and independently, F follows a binomial distribution with parameters n and 1 / 2. It is well known (Jansen and Wegener, 2001) that such a random variable is likely to exceed its expectation in the order of its standard deviation; more precisely, the probability of the

 √

event F ≥ n/ 2 + c n is Ω(1) for a constant c > 0. Let us assume this event

 √

to happen. Then there are Ω(n) more jobs on the first than on the second machine, which does not say anything about the discrepancy so far.

 √

Let p f , . . . , p f , where k = n/ 2 + c n, denote the processing times of the 1

 k

jobs on the first machine (without assuming any specific order), and accordingly p s , . . . , p s

on the second machine. Note that the initial search point

1

 n−k

decides on which machine to schedule a job independently of the job size.

Hence, we can apply the principle of deferred decisions (Motwani and Ragha-

van, 1995). This principle means that the outcomes of random variables are only revealed at the time when they are first needed. Here, we assume the processing times to be chosen independently after the initial schedule has been fixed. If we study only n − k of the jobs on the first machine, we can compare their processing times to those of the jobs p s , . . . , p s

. Since no specific order

1

 n−k

is assumed, p f + · · · + p f

follows the same distribution as p s + · · · + p s

.

1

 n−k

1

 n−k

By symmetry, p f + · · · + p f

 ≥ p s + · · · + p s

holds with probability Ω(1).

1

 n−k

1

 n−k

 √

If we can show that p f

+ · · · + p f = Ω(n), we have proved the lemma.

 n−k+1

 k

The last claim follows in almost the same way for both random models.

For 1 ≤ i ≤ n, we have Prob(pi ≥ 1 / 2) = 1 / 2 in the uniform distribution model and Prob(pi ≥ 1 / 2) ≥ e− 1 / 2 ≥ 1 / 2 in the exponential distribution

 √

model. Note that there are Ω(n) jobs in the set p f

 , . . . , p f . Counting

 n−k+1

 k

the jobs of size at least 1 / 2 among these and applying Chernoff bounds, we

 √

obtain that p f

+ · · ·+ p f = Ω(n) with probability Ω(1). All assumptions n−k+1

 k

together hold with probability Ω(1), which proves the lemma.

106

7 Makespan Scheduling

We continue by showing a simple upper bound on the discrepancy after

polynomially many steps in the uniform distribution model.

Lemma 7.8. The discrepancy of (1+1) EAb (RLS 1) in the uniform distrib

 bution model is bounded from above by 1 after an expected number of O(n 2) (O(n log n)) steps. Moreover, for any constant c ≥ 1 , it is bounded from above by 1 with probability at least 1 − O(1 /nc) after O(n 2 log n) (O(n log n)) steps.

 Proof. Recall the argumentation behind the critical job size defined in Section 7.1. If the discrepancy is greater than 1, steps flipping one bit can improve the f value by the job moved or lead to a discrepancy of less than 1. By a fitness-level argument as in the proof of Lemma 7.1, we obtain the O(n 2) bound for (1+1) EAb. This holds for any random instance. Hence, by Markov’s inequality and repeating phases, the discrepancy is at most 1 with probability 1 − O(1 /nc) after O(n 2 log n) steps. The statements for RLS1 follow immedi-b

ately by the Coupon Collector’s Theorem (see Section 4.2.2).

The preceding upper bound on the discrepancy was easy to obtain; how-

ever, for (1+1) EAb, we can show that with a high probability, the discrepancy provably becomes much lower than 1 in a polynomial number of steps. The

reason is as follows. All proofs so far considered only local steps; however, (1+1) EAb is able to leave local optima by flipping several bits in a step. In particular, it can swap two jobs that are on different machines, which changes the makespan by the difference of the two job sizes. This allows for further improvements of the f value until there are no more possible operations swapping two jobs.

Using this observation, we extend the set of jobs used to determine the

critical job size by “difference jobs” of size pi − pj, 1 ≤ i, j ≤ n, such that pi > pj, and pi is on the fuller and pj on the emptier machine. The aim is therefore to bound the difference jobs in our random instance. To this end, we finally sort the n random job sizes p 1 , . . . , pn decreasingly. Let X(1) ≥ · · · ≥

 X(n) be the resulting sequence, which is now a sequence of dependent random variables. The X(i), 1 ≤ i ≤ n, are typically called order statistics (David and Nagaraja, 2003). We state useful properties that hold for the order statistic in our models.

Uniform distribution model. For 1 ≤ i ≤ n − 1 and 0 < t < 1 it holds that Prob(X(i) − X(i+1) ≥ t) = Prob(X(n) ≥ t) = (1 − t) n.

Exponential distribution model. For 1 ≤ i ≤ n it holds that X(i) =

 n Yj , where Y

 j= i j

1 , . . . , Yn is a sequence of independent, exponentially

distributed random variables with parameter 1 (the same sequence is used

in all X(i)).

With respect to the uniform distribution model, the properties immedi-

ately allow us to bound the size of the “difference jobs” X(i) − X(i+1) if we know that X(i) is on the fuller and X(i+1) on the emptier machine. With regard to the exponential distribution model, a little bit more work is required

7.3 Average-Case Analysis

107

to estimate the size of the difference jobs. However, the basic ideas of the upcoming analyses are contained in the proofs for the uniform distribution

model.

7.3.2 Asymptotically Vanishing Discrepancies

The following theorem bounds the discrepancy of (1+1) EAb in the uniform

distribution model.

Theorem 7.9. Let c ≥ 1 be an arbitrary constant. After O(nc+4 log n) steps, the discrepancy of (1+1) EAb in the uniform distribution model is bounded from above by O(log n/n) with probability at least 1 − O(1 /nc) . Moreover, the expected discrepancy after O(n 5 log n) steps is also bounded by O(log n/n) .

Before giving the proof, we try to interpret the result. First, the solution of (1+1) EAb after a polynomial number of steps converges to optimality in expectation. Second, the asymptotic discrepancy after a polynomial number of steps is at most O(log n/n), i.e., convergent to 0, with probability 1 −O(1 /nc), i.e., convergent to 1 polynomially fast. This is almost as strong as the above-mentioned result for the LPT rule proved by Frenk and Rinnooy Kan (1987).

 Proof. By Lemma 7.8, the discrepancy is at most 1 after O(n 2 log n) steps with probability at least 1 −O(1 /n 2). Since the discrepancy is always bounded by n, the failure probability contributes only an O(1 /n) term to the expected discrepancy after O(n 5 log n) steps. From now on, we consider the time after the first step where the discrepancy is at most 1 and concentrate on steps

flipping two bits. If an accepted step moves an object of size p from the fuller to the emptier machine and one of size p < p the other way round, the discrepancy may be decreased by 2(p − p). We look for combinations where p − p is small.

Let X(1) ≥ · · · ≥ X(n) be the order statistics of the random job sizes. If for the current search point there is some i s. t. X(i) is the order statistic of a job on the fuller and X(i+1) on the emptier machine, then a step exchanging X(i) and X(i+1) may decrease the discrepancy by 2(X(i) −X(i+1)). If no such i exists, all jobs on the emptier machine are larger than every job on the fuller machine. In this case, X(n) can be moved onto the emptier machine, possibly decreasing the discrepancy by 2 X(n). Hence, we need upper bounds on both X(i) − X(i+1) and X(n).

Let t∗ := (c + 1)(ln n) /n, i.e., t∗ = O(log n/n) since c is a constant. We obtain (1 − t∗) n ≤ n−c− 1. By the above-mentioned properties of order statistics, this implies that with probability 1 − O(1 /nc), X(i) − X(i+1) ≤ t∗ holds for all i and Prob(X(n) ≥ t∗) = O(1 /nc+1). Now assume X(i) − X(i+1) ≤ t∗ for all i and X(n) ≤ t∗. If this does not hold, we bound the expected discrepancy after O(nc+4 log n) steps by 1, yielding a term of O(1 /nc) = O(1 /n) in the total expected discrepancy. By the arguments explaining the critical job size,

108

7 Makespan Scheduling

there is always a step flipping at most two bits that decreases the discrepancy as long as the discrepancy is greater than t∗.

It remains to estimate the time to decrease the discrepancy. Therefore, we

need lower bounds on X(i) − X(i+1) and Xn. Let
∗ := 1 /nc+2. We obtain

Prob(X(i) − X(i+1) ≥
∗) ≥ e − 2 /nc+1 ≥ 1 − 2 /nc+1. Hence, with probability 1 − O(1 /nc), X(i) − X(i+1) ≥
∗ for all i. Moreover, X(n) ≥
∗ with probability

1 − O(1 /nc+1). We assume these lower bounds to hold, introducing a failure probability of only O(1 /nc). The contribution of this failure probability to the expected discrepancy is negligible, as above. A step flipping one or two specific bits has probability at least n− 2(1 − 1 /n) n− 2 ≥ 1 /(e n 2). Hence, the discrepancy is decreased by at least
∗ or drops below t∗ with probability Ω(1 /n 2)

in each step. The expected time until the discrepancy becomes at most t∗

is, therefore, bounded from above by O(
∗n 2) = O(nc+4), and, by repeating

phases, the time is at most O(nc+4 log n) with probability 1 − O(1 /nc). The sum of all failure probabilities is O(1 /nc).

We finally elaborate on a result for the exponential distribution model

similar in flavor to Theorem 7.9. The line of proof will also be similar, but more arguments are needed to bound the size of the “difference jobs.”

Theorem 7.10. Let c ≥ 1 be an arbitrary constant. With probability 1 −

 O(1 /nc) , the discrepancy of (1+1) EAb in the exponential distribution model is bounded above by O(log n) after O(n 2 log n) steps and by O(log n/n) after O(nc+4 log2 n) steps. Moreover, the expected discrepancy is O(log n) after O(n 2 log n) steps and it is O(log n/n) after O(n 6 log2 n) steps.

The proof of the theorem relies on the following probabilistic argument.

Lemma 7.11. Let Sk denote the sum of k independent, exponentially distributed random variables with parameter 1 . Then Prob(Sk > 2 k) = 2 −Ω(k) .

 Proof. It is well known (Feller, 1971) that Sk follows a gamma distribution, i.e.,

2 k

(2 k) k− 1

Prob(Sk ≥ 2 k) = e − 2 k 1 +

+ · · · +

 ≤ k e − 2 k(2 k) k− 1 .

1!

(k − 1)!

(k − 1)!

By Stirling’s formula, the last expression is bounded above by

 −(k− 1)

e − 2 k+(k− 1) · 2 k− 1 · k · kk− 1 = e − 2 k+(k− 1) · 2 k− 1 ·k· 1 − 1

= 2 −Ω(k) .

(k − 1) k− 1

 k

 Proof (Theorem 7.10). Each job has an expected size of 1 in the exponential distribution model. At first, this bounds the initial discrepancy trivially by n.

In the following, all failure probabilities will be bounded by O(1 /n 2). In the case of a failure, we will tacitly bound the contribution of the failure to the expected discrepancy after O(n 2 log n) or O(n 6 log2 n) steps by the expected

7.3 Average-Case Analysis

109

initial discrepancy multiplied by the failure probability, which yields a con-tribtuion of O(1 /n). Next, we will show that with probability 1 − O(1 /nc), the critical job size of all search points is always O(log n). Together with Lemma 7.1, this claim implies the theorem for the situation after O(n 2 log n) steps.

To show the claim, we again consider the order statistics X(1) ≥ · · · ≥

 X(n) of the random job sizes. Our goal is to show that with high probability, X(1) + · · · + X(k) ≤ P/ 2 holds for k := δn and some constant δ > 0.

Afterwards, we will prove that X(k) = O(log n) with high probability.

Each job in the exponential distribution model has a size of at least 1

with probability e − 1 > 1 / 3. By Chernoff bounds, P ≥ n/ 3 with probability 1 − 2 −Ω(n). To bound X(1) + · · · + X(k), we use the above-mentioned identity

 X

 n

(i) =

 Y

 j= i

 j /j. Hence,

 n

 Yi

 X(1) + · · · + X(k) = Y 1 + 2 · Y 2 + · · · + k · Yk + k 2

 k

 i

 i= k+1

 k

 n/k

(i+1) k

 ≤

1

 Yj +

 Yj,

 i

 j=1

 i=1

 j= ik+1

where Yj := 0 for j > n. Essentially, we are confronted with n/k sums of k exponentially distributed random variables each. By Lemma 7.11, a single sum is bounded above by 2 k with probability 1 − 2 −Ω(k), which is at least 1 − 2 −Ω(n) for the values of k considered. Since we consider at most n sums, this statement also holds for all sums together. Hence, with probability 1 − 2 −Ω(n), the considered expression is bounded above by

1 /δ

 2 δn

2 δn +

 ≤ 2(δn + 1) ln(1 /δ + 2) ,

 i

 i=1

which is strictly less than n/ 6 for δ ≤ 1 / 50 and n large enough. Together with the above lower bound on w, this implies that with probability 1 − 2 −Ω(n), the critical job size is always bounded above by the n/ 50 th largest size.

How large is X(n/ 50)? Since with probability at least 1 − n e −(c+1) ln n ≥

1 − n−c, all random variables Yj are bounded above by (c + 1) ln n, it follows that with at least the same probability, we have

 n

 Yj

 Xn/ 50 =

 ≤ (c + 1)(ln n)((ln n) + 1 − ln(n/ 49)) j

 j= n/ 50

(for n large enough), which equals (c + 1)(ln(49) + 1)(ln n) = O(log n). The sum of all failure probabilities is O(1 /nc), bounding the critical size as desired.

We still have to show the theorem for the case of O(nc+4 log2 n) steps. Now we assume that the discrepancy has been decreased to O(log n) and use the

110

7 Makespan Scheduling

same idea as that in the proof of Theorem 7.9 by investigating steps swapping X(i) and X(i+1) or moving X(n). Above, we have shown that with probability 1 − O(1 /nc), the smallest job on the fuller machine is always at most X(k) for some k ≥ n/ 50. Since X(k) −X(k+1) = Yk/k, we obtain X(k) −X(k+1) ≤ 50 Yk/n with the mentioned probability. Moreover, it was shown that Yj ≤ (c + 1) ln n for all j with at least the same probability. Altogether, X(k) − X(k+1) ≤

50(c + 1)(ln n/n) =: t∗ with probability 1 − O(1 /nc). Since X(n) = Yn/n, Prob(X(n) ≤ t∗) with probability 1 −O(1 /nc), too. In the following, we assume these upper bounds to hold. This implies that as long as the discrepancy is greater than t∗, there is a step flipping at most two bits and decreasing the discrepancy.

It remains to establish lower bounds on X(k) − X(k+1) and X(n). We know that X(k) − X(k+1) ≥ Yk/n and obtain Prob(X(k) − X(k+1) ≥ 1 /nc+2) ≥

e − 1 /nc+1 ≥ 1 − 1 /nc+1 for any fixed k and Prob(X(n) ≥ 1 /nc+2) ≥ 1 − 1 /nc+1.

All events together occur with probability 1 −O(1 /nc). By the same arguments as those in the proof of Theorem 7.9, the expected time until the discrepancy becomes at most t∗ is O(nc+4 log n), and the time is bounded by O(nc+4 log2 n) with probability 1 − O(1 /nc). The sum of all failure probabilities is O(1 /nc).

This proves the theorem.

Conclusions

In this chapter, we have studied (1+1) EAb and RLS1 on an NP -hard schedul-b

ing problem. Two different perspectives were taken, namely regarding the

worst-case and average-case models. In the worst case, the approximation

ratios obtainable in polynomial time are bounded by roughly 4 / 3. Using a result on the success probability and employing multistart variants of the

search algorithms, we obtain a drastic improvement. The simple algorithms

then serve as polynomial-time randomized approximation schemes. An even

more encouraging result is obtained in the two average-case models investi-

gated. With growing problem size, the makespan converges to optimality.

8

Shortest Paths

Computing shortest paths in a given graph is one of the fundamental problems in computer science. The input is given by a connected directed graph G =

(V, E) where V = {v 1 , . . . , vn} is a set of n vertices and E is a set of m edges. In addition, there is a weight function w : E → N which assigns positive integer weights to the edges. We denote by w max = max e∈E w(e) the maximum of the weights of all edges and distinguish between two problems. In the single-source shortest-path (SSSP) problem, there is one designated vertex s ∈ V and the task is to compute a shortest path from s to every other vertex vi ∈ V \ {s}.

W. l. o. g., we assume s = v 1 throughout this chapter. The length of a path is measured by the sum of the weights of the edges that are used in this path.

A generalization of the SSSP problem is the all-pairs shortest-path (APSP)

problem, where the task is to compute from each vertex vi ∈ V a shortest path to every other vertex vj ∈ V \ {vi}. The SSSP and APSP problems can be solved by using Dijkstra’s algorithm and the Floyd-Warshall algorithm,

respectively. Using appropriate data structures, single-source shortest paths and all-pairs shortest paths can be computed in time O(m + n log n) and O(nm + n 2 log n), respectively (Mehlhorn and Sanders, 2008).

The basic algorithms for computing shortest paths in a given graph date

back to the 1950s. However, the computation of shortest paths is still an important field of research. This especially holds for planning tasks in road networks where additional properties of the network can be taken into account

(Bast, Funke, Sanders, and Schultes, 2007; Sanders and Schultes, 2006). On the other hand, several related problems in the area of routing and planning are NP -hard, and stochastic search algorithms have found many applications in this area. Examples are vehicle routing (El-Fallahi, Prins, and Calvo, 2008;

Rizzoli, Montemanni, Lucibello, and Gambardella, 2007) and routing problems in computer networks (Dorigo and St¨

utzle, 2004; Farooq, 2008; Kim and

Choi, 2007). Therefore, it seems to be important to understand the basic problem of computing shortest paths in the context of stochastic search algorithms from a theoretical point of view in order to gain new insights that can help practitioners solve related problems arising in applications.

F. Neumann, C. Witt, Bioinspired Computation

111

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 8, © Springer-Verlag Berlin Heidelberg 2010

112

8 Shortest Paths

The chapter is organized as follows. We start by analyzing evolutionary

algorithms for the computation of shortest paths and study in Section 8.1

how a variant of the (1+1) EA can solve the SSSP problem. For the APSP

problem, we examine a population-based approach which computes for each

pair of vertices a shortest path between them. The results presented in Section 8.2 show that using crossover and mutation as variation operators leads provably to faster evolutionary algorithms than algorithms that rely only on mutation. Having presented different results for evolutionary algorithms, we turn in Section 8.3 to ant colony optimization and point out that this kind of stochastic search algorithm leads even to better runtime bounds than the ones presented for evolutionary algorithms.

8.1 Single Source Shortest Paths

In the following, we discuss evolutionary algorithms for the SSSP problem.

We will examine two approaches that rely on the fact that an optimal solution of the SSSP problem can be represented by a shortest path tree.

8.1.1 Evolutionary Algorithms

The SSSP problem consists of finding for each vertex vi ∈ V \{s} a path from s to vi. Scharnow, Tinnefeld, and Wegener (2004) have examined a representation of possible solutions where for each vertex vi its predecessor p(vi) is stored. In this way directed graphs containing exactly n − 1 edges are represented. An optimal solution is a shortest path tree which contains for each vertex vi ∈ V \{s} a shortest path from s to vi. Note that we fixed s = v 1. Therefore, the search space consists of all I = (p(v 2) , . . . , p(vn− 1)) ∈ {v 1 , . . . , vn}n− 1

where p(vi) = vi. A search point I is a vector of length n − 1 which stores for each vertex vi ∈ V \ {s} its predecessor.

A mutation carries out a set of local operations. A local operation for the SSSP problem picks one vertex vi = s uniformly at random and replaces the predecessor p(vi) of vi with another predecessor p(vi) ∈ V \ {vi, p(vi) }. For a mutation step, we choose S from a Poisson distribution with parameter λ = 1

and perform sequentially S+1 local operations. The (1+1) EASP which we will analyze for the SSSP problem is given in Algorithm 11. The algorithm uses a fitness function f to determine whether to replace the current individual with the offspring.

We will investigate two different approaches for defining the fitness of a

search point I. Consider a candidate solution I = (p(v 2) , . . . , p(vn− 1)). Associated with I consider the subgraph TI of the input graph G consisting of those pairs (vj, p(vj)) which are edges in G. If there is a path in TI from the source s to vj, s = vj, it has to be unique. Let γ(vj) denote the unique path in such cases. Whenever such a unique path γ(vj) exists for a vertex vj, we define its cost fj(I) to be the sum of the weights of the edges in γ(vj). On

8.1 Single Source Shortest Paths

113

Fig. 8.1. Graph G marked with a tree given by the individual I = (v 1 , v 5 , v 1 , v 2 , v 4) Algorithm 11 (1+1) EASP

1. Set I = (p(v 2) , . . . p(vn)) where each p(vi) ∈ V \ {vi} is chosen uniformly at random.

2. Choose S from a Poisson distribution with parameter λ = 1 and perform S + 1

local changes chosen uniformly at random to produce I.

3. Replace I with I if f (I) ≤ f (I).

4. Repeat Steps 2 and 3 forever.

the other hand, if vj is unreachable from s in TI , then the cost fj(I) is set to a large penalty value, i.e., fj(I) = d penalty := n · w max. First, we consider a multi-criteria fitness function which assigns to each search point a vector consisting of n − 1 components. In this vector, the length of the path from s to vi is stored for each vertex vi = s. Later on, we investigate a single-criterion fitness function which takes the sum of the lengths of the different paths into account.

8.1.2 Multi-Criteria Fitness Function

We consider the multi-criteria fitness function f mult defined as

 f mult(I) = (f 2(I) , f 3(I) , . . . fn(I)) .

We define f mult(I) ≤ f mult(I) iff fi(I) ≤ fi(I), 2 ≤ i ≤ n. Using f mult in the (1+1)EA SP we will see that the algorithm is able to follow the ideas of Dijkstra’s algorithm for the computation of shortest paths. This leads to a polynomial bound on the expected optimization time. The basic result can

be found in Scharnow et al. (2004) and the refined analysis which we present in the following is due Doerr, Happ, and Klein (2007a). To show an upper bound on the optimization time, we take the depth of the shortest path tree

114

8 Shortest Paths

into account. We introduce the edge radius of the vertex s in the graph G, which is given by the following definition.

Definition 8.1. The edge radius
G(s) of a vertex s ∈ V of a given weighted

 graph G is the maximum number of edges in any shortest path with the minimum number of edges from s to v, i.e.,

G(s) = max { min |γ|}

 v∈V

 γ∈Γv

 where Γv := {γ | γ is a shortest path from s to v} and |γ| denotes the number of edges in γ.

We use the abbreviation
 =
G(s) and take this parameter into account

for analyzing the expected optimization time.

Theorem 8.2. The expected optimization time of (1+1) EASP using the fitness function f mult is O(n 2(log n +
)) .

 Proof. We distinguish between two cases depending on the parameter
. First,

we investigate the case
 ≥ log n and show an upper bound of O(n 2
). Consider

a vertex v = s and fix a shortest path γ := (s = v 1 , v 2 , . . . , v = v+1) where

 ≤
. Note that such a path exists according to Definition 8.1. There may be different possible shortest paths from s to v and optimal sub-paths of γ may be exchanged for different optimal sub-paths. However, this can only speed

up the optimization process.

As γ is a shortest path from s to v, the sub-path γ = (s = v 1 , v 2 , . . . , vj) is a shortest path from s to vj . We investigate a typical run and consider a phase of length cn 2
 where c is an appropriate constant. We assume that the current

search point I already contains shortest paths from s to v 2 , . . . , vj , j <
 + 1.

The local operation which sets p(vj+1) = vj happens with probability at least 1 /(en 2) in the next step. It produces from I a search point I which contains shortest paths from s to v 2 , . . . , vj , vj+1. We call such an operation a success. A success happens in the next iteration with probability at least p = 1 /(en 2) independently of previous steps if a shortest path from s to v has not been obtained. If a shortest path from s to v has already been computed, we consider one fixed mutation operation that happens with probability at

least p = 1 /(en 2) and define it as a success. Hence, a success happens in each iteration with probability at least p = 1 /(en 2) and we investigate the number of successes. Note that a shortest path from s to v has been obtained if the number of successes is at least
.

When considering a phase of length cn 2
, the expected number of successes

is cn 2
/(en 2) = c
/e. Using Chernoff bounds the probability that the number

of successes is less than (1 − δ) c
/e is upper bounded by e−cδ 2 /(2 e). Choosing

 δ = 1 − e/c, the probability of having less than

(1 − δ) c
/e = (1 − (1 − e/c)) c
/e =

8.1 Single Source Shortest Paths

115

successes is upper bounded by

 e−c(1 −e/c)2 /(2 e) = e−c,

where c = c(1 − e/c)2 /(2 e). Our previous computation holds independently for each vertex v = s. There are n − 1 vertices for which a shortest path has to be computed. The probability that a shortest path has not been computed

for at least one vertex v = s is therefore upper bounded by (n − 1) e−c.

Remember that we work under the assumption that
 ≥ log n holds. Hence,

within a phase of cn 2
 steps all shortest paths have been computed with

probability at least

 α = 1 − (n − 1) e−c = 1 − O(n 1 −c) .

The expected number of phases of lenth cn 2
 is upper bounded upper by α− 1

which leads to an upper bound of α− 1 cn 2
 = O(n 2
) on the expected time to

compute an optimal solution.

In the case where
 < log n holds, we consider a phase of cn 2 log n steps, c again an appropriate constant. Following the ideas of the first case, an optimal solution has been obtained with probability at least

 α = 1 − (n − 1) e−c log n = 1 − O(n 1 −c) and an optimal solution has been found after an expected number of at most

 α− 1 cn 2 log n = O(n 2 log n) steps. This completes the proof.

The previous theorem shows that (1+1) EASP solves the SSSP efficiently

when using the multi-criteria fitness function. A basic property when using this fitness function is that shortest paths that have been obtained during the optimization process cannot get lost. This might happen when considering a single-criterion fitness function which takes the sum of the different path lengths into account. We want to examine such an approach in the next

section.

8.1.3 Single-Criterion Fitness Function

Using penalty values is a common approach for handling constraints

(Michalewicz, 1995) and leads the algorithm towards feasible solutions. When large penalty values are used for vertices v that are not connected to the source, it does not seem necessary to use a multi-criteria fitness function.

Therefore, we investigate a single-objective fitness function which leads

the algorithm towards valid solutions. The fitness of a candidate solution I is given by

116

8 Shortest Paths

 n

 f sing(I) :=

 fi(I) ,

 i=2

which returns the sum of the different path lengths. Note that vertices not connected to s contribute a large value d penalty = n · w max to the fitness value.

This kind of fitness function has already been proposed in Scharnow et al.

(2004). However, it took quite some time until Baswana, Biswas, Doerr, Friedrich, Kurur, and Neumann (2009) were able to show that it leads to a polynomial upper bound on the expected optimization time of (1+1) EASP.

The idea is to show that there is always a set of local operations which reduces the difference between the fitness of the current solution and an optimal one by the fraction 1 /n. This enables us to use the method of the expected multiplicative distance decrease and leads to the following result.

Theorem 8.3. The expected optimization time of (1+1) EASP using the fit-

 ness function f sing is O n 3 · (log n + log w max) .

 Proof. Let Iopt be an optimal search point and Topt be the corresponding shortest path tree. We define the total distance of the current solution I from an optimal one as

 d = f sing(I) − f sing(I opt) .

The total distance can be split into d(vi) = fi(I) − fi(I opt), 2 ≤ i ≤ n. We

define d(v 1) = 0. Note that d =

 n

 d(vi). Hence, there is at least one vertex

 i=2

 v with distance at least d/n. Consider the path γ = (s = v 1 , v 2 , . . . , v = v) from s to v in T opt. Obviously,

 d(v) = d(v) − d(v 1) =

 d(vj) − d(vj− 1) ≥ d/n

 j=2

holds.

Consider two vertices vi and vi+1 in γ for which d(vi) < d(vi+1) holds. At such a pair of vertices the distance increases and we call the edge (vi, vi+1) positive. Note that if (vi, vi+1) is a positive edge, vi has to be connected to the source as otherwise d(vi+1) ≤ d(vi). On the other hand, p(vi+1) = vi holds as otherwise (vi, vi+1) is not a positive edge. Setting p(vi+1) = vi implies that d(vi+1) = d(vi). Hence, such an operation is accepted and reduces the distance by d(vi+1) −d(vi). Considering all positive edges in γ, we can achieve d(v) = 0

by setting p(vi+1) = vi for each positive edge (vi, vi+1) in γ. Each of these operations is accepted and the total distance decrease is at least d/n. Denote by k, 1 ≤ k ≤ n− 1, the number of positive edges in γ. We may add n−k non-accepted operations changing the predecessor of a particular vertex such that the total number of considered operations is n. The probability of choosing one of these operations in the next step is Ω(n/n 2) = Ω(1 /n) and the average distance decrease of these n operations is at least d/n 2. Hence, the expected distance after such an operation has happened is (1 − 1 /n 2) · d. Following the

8.2 All Pairs Shortest Paths

117

ideas of the expected multiplicative distance decrease (see Section 4.2.3) and taking into account that the distance of the initial solution is upper bounded by d max = (n − 1) d penalty = (n − 1) · n · w max, the expected optimization time

is upper bounded by O n 3 · (log n + log w max)

8.2 All Pairs Shortest Paths

Having examined how evolutionary algorithms can cope with the SSSP prob-

lem we turn to the APSP problem. For the APSP problem we examine

population-based evolutionary algorithms. Each individual of the population P is a path. Our goal is to evolve an initial population consisting of a set of paths into a population which contains for each pair of vertices (u, v), u = v, a shortest path from u to v. The approach and the results that we present in this section are due to Doerr, Happ, and Klein (2008).

We investigate two evolutionary algorithms for the APSP problem. The

first one, called Steady State EASP (see Algorithm 12), works with mutation as a variation operator. Our second algorithm, called Steady State GASP

(see Algorithm 13), relies on crossover and mutation. Both algorithms start with a population P := {Iu,v = (u, v) |(u, v) ∈ E} of size |E| which contains all paths corresponding to the edges of the given graph G. The variation operators produce in each iteration one single offspring. In Steady State EASP

an offspring is obtained by choosing one individual uniformly at random from the population and applying a mutation operator. In Steady State GASP,

either with probability pc a crossover operator is applied to two randomly chosen individuals of P or (if this is not the case) mutation is used as in Steady State EASP. Note, that both algorithms are equivalent if pc = 0. In the following, we assume that 0 < pc < 1 is a constant. The selection operator only accepts individuals that are paths in the graph. In addition, it ensures diversity with respect to the different pairs of vertices. Each individual Iu,v that is a valid path is indexed by the start vertex u and the end vertex v. In the selection step an offspring is only compared to an individual of the current population that has the same start and end vertex. It is ensured that for each pair of vertices (u, v), u = v, at most one individual Iu,v is contained in the population. This implies that the population size of our algorithms is always at most n(n − 1).

The mutation operator takes an individual Iu,v from the population and applies sequentially S + 1 local operations. Here, S is a parameter that is chosen according to the Poisson distribution with parameter λ = 1. In a local operation, the current path is either lengthened or shortened by a single edge. Assume that the current individual represents a path γ = (u =

 v 1 , v 2 , . . . v , v = v+1) from u to v consisting of
 edges, and denote by

 E−(v) and E+(v) the set of incoming and outgoing edges of a vertex v in G.

Then an edge

 e = (x, y) ∈ E−(u) ∪ E+(v) ∪ {(u, v 2) , (v, v) }

118

8 Shortest Paths

Algorithm 12 Steady State EASP

1. Set P = {Iu,v = (u, v) | (u, v) ∈ E}.

2. Choose an individual Ix,y ∈ P uniformly at random.

3. Mutate Ix,y to obtain an individual Is,t.

4. If there is no individual Is,t ∈ P , P = P ∪ {I }

 s,t ,

else if f (I

 }

 s,t) ≤ f (Is,t), P = (P ∪ {I

 s,t) \ {Is,t}

5. Repeat Steps 2–4 forever.

Algorithm 13 Steady State GASP

1. Set P = {Iu,v = (u, v) | (u, v) ∈ E}.

2. Choose r ∈ [0 , 1] uniformly at random.

3. If r ≤ pc, choose two individuals Ix,y ∈ P and Ix,y ∈ P uniformly at random and perform crossover to obtain an individual Is,t,

else choose an individual Ix,y ∈ P uniformly at random and mutate Ix,y to obtain an individual Is,t.

4. If Is,t is a path from s to t then

a) If there is no individual Is,t ∈ P , P = P ∪ {I }

 s,t ,

b) else if f (I

 }

 s,t) ≤ f (Is,t), P = (P ∪ {I

 s,t) \ {Is,t}.

5. Repeat Steps 2–4 forever.

is chosen uniformly at random. If

 e ∈ {(u, v 2) , (v, v) },

the edge is removed. This means that either the first edge or the last edge in the path is removed, leading to an individual I

or I

 v 2 ,v

 u,v consisting of
 − 1

edges.

If

 e ∈ (E−(u) ∪ E+(v)) \ {(u, v 2) , (v, v) }, the edge is added and the path is lengthened. Here, a new individual I

or

 x,v

 I

is produced that contains
 + 1 edges. Note that a local operation applied

 u,y

to a valid path always leads to a new valid solution, which implies that the mutation operator only constructs solutions which are paths.

In Doerr et al. (2008), different crossover operators have been discussed which are all motivated by the 1-point crossover operator known from binary encodings. We discuss one of them and note that the other operators lead

to the same runtime bounds. Our crossover operator chooses two individuals

 Iu,v and Iw,x uniformly at random from the population and produces a new individual I

if v = w holds. Note that the crossover operator only constructs u,x

a valid solution, namely a path from u to x, iff the end vertex of the first individual equals the start vertex of the second individual.

8.2 All Pairs Shortest Paths

119

First, we will consider how Steady State EASP can solve the APSP prob-

lem. Later on, we will show that the use of crossover leads to improved runtime bounds.

8.2.1 Results for Steady State EASP

In the following, we consider the algorithm that uses only mutation as variation operator. We already know that the (1+1) EASP introduced in Section 8.1

computes a shortest path from a predefined vertex s to any other vertex v = s in the given graph in time O(n 3). Therefore, the APSP problem can be solved by applying the (1+1) EASP for each given vertex in the graph. This leads to n runs of the algorithm which can be carried out sequentially and leads to a solution for the APSP problem by evolutionary algorithms in expected time

 O(n 4). Note that these n runs of the (1+1) EASP can also be carried out in parallel.

We now study Steady State EASP and show that this algorithm produces

in expected time O(n 4) a population which contains for any two vertices u and v an individual representing a shortest path from u to v. The actual upper bound again depends on the edge radius
 :=
(G) defined in Definition 8.1.

Lemma 8.4. Let
 ≥ log n. The expected time until Steady State EASP has

 found all shortest paths with at most
 edges is O(n 3
) .

 Proof. To prove the lemma, we can reuse the ideas used in the proof of Theorem 8.2. In this proof an upper bound of O(n 2
) has been shown for the case

where
 ≥ log n holds. The major difference is that Steady State EASP works with a population whose size is bounded by O(n 2).

Consider two vertices u and v, u = v, and let γ := (v 1 = u, v 2 , . . . , v+1 =

 v) be a shortest path from u to v consisting of
,
 ≤
, edges in G. As γ is a

shortest path from u to v, the sub-path γ = (v 1 = u, v 2 , . . . , vj) is a shortest path from u to vj . Again, we investigate a typical run but consider this time a phase of length cn 3
 where c is an appropriate constant. We assume that the

current population already contains individuals that represent shortest paths from u to v 2 , . . . , vj , j <
 + 1.

Then there is a local operation which picks the individual representing the shortest path from u to vj and produces an individual representing a shortest path from u to vj+1. The probability that such a step happens in the next iteration is at least 1 /(2 n 3) as the population size is bounded by n 2 and the probability of appending the right edge to the shortest path from u to vj is at least 1 /(2 en). We call such an operation a success. A success happens in the next iteration with probability at least p = 1 /(2 en 3) independently of previous steps. If a shortest path from u to v has already been computed, we consider one fixed mutation operation that happens with probability at least p = 1 /(2 en 3) and define it as a success. Hence, a success happens in each iteration with probability at least p = 1 /(2 en 3). We may lower bound the

120

8 Shortest Paths

probability of having for each pair of vertices enough successes by α = 1 −o(1) using similar calculations as in the proof of Theorem 8.2.

As the number of edges in any shortest path is upper bounded by n − 1

we get the following theorem.

Theorem 8.5. The expected optimization time of Steady State EASP is O(n 4) .

Doerr et al. (2008) have investigated a worst-case example for Steady State EASP. The example is the complete directed graph where all edges

in the path (v 1 , v 2 , . . . , vn) get weight 1 and all other edges get a large weight of n. For this input graph they have shown a lower bound of Ω(n 4) on the expected optimization time.

8.2.2 Results for Steady State GASP

Our investigations for the Steady State EASP have shown that this algorithm computes a population representing for each pair of vertices a shortest path in expected time O(n 4). Due to the lower bound for the complete directed graph given by Doerr et al. (2008), the question arises about whether the computation can be sped up by using a crossover operator. We will examine

Steady State GASP where the probability of using crossover is a constant. To make sure that both operators, mutation and crossover, are used we require

 pc ∈ { 0 , 1 }. All the following results hold if the crossover probability is chosen as an arbitrary constant, i.e., pc ∈]0 , 1[and pc = Ω(1).

Theorem 8.6. The expected optimization time of Steady State GASP is

 √

 O(n 3 . 5 log n) .

 Proof. The main idea is that the mutation operator constructs for any pair

 √

of vertices for which a shortest path of at most
∗ :=

 n log n edges exists

such a solution. For pairs of vertices for which no shortest path of at most
∗

exists, the crossover operator constructs a shortest path by joining shortest paths of a smaller number of edges.

Mutation is used with probability 1 −pc = Ω(1) in each iteration. Hence, all shortest paths with at most
∗ edges are obtained in expected time O(n 3
∗) =

 √

 O(n 3 n log n) = O(n 3 . 5 log n) due to Lemma 8.4.

In the following, we work under the assumption that all shortest paths

with at most
∗ edges have already been obtained and examine how to obtain

shortest paths consisting of more than
∗ edges by crossover.

We assume that the population contains an individual Iu,v which represents a shortest path from u to v if there exists such a path containing at most k edges. We consider a pair of vertices x and y for which a shortest path of at most r, k < r ≤ 2 k, edges exists. The shortest path from x to y of length r can be split up at 2 k −r positions such that two paths of lengths at most k are obtained. Hence, there are 2 k − r pairs of paths in the population which can

8.3 Analysis of Ant Colony Optimization

121

be joined to obtain the desired path of length r. Each of these pairs of paths is selected with probability at least 1 /n 4 in the next step as the population size is upper bounded by n 2. Taking the number of different pairs into account, the probability of selecting two paths from the population which are joined by the crossover operator to the desired shortest path from x to y is Ω(2 k+1 −r).

 n 4

Note that this probability is Ω(k) for r ≤ 3 k . There are at most n 2 paths of n 4

2

at most r edges. Assuming that all shortest paths consisting of at most k edges are already contained in the population, the expected number of additional

steps until all shortest paths containing at most 3 k are in the population is 2

 O(n 4 log n) using arguments from the coupon collectors problem. The upper k

bound on the expected optimization time can be computed by summing up

over the different values of k, namely

 √

 n log n, c ·

 n log n, c 2 ·

 n log n, . . . , c log (n/ n log n)

 c

 · n log n,

where c = 3 / 2. Hence, the expected optimization time is upper bounded by

 √

log (n/

 n log n)

 c

 ∞

 n 4 log n

 O

 √

 c−s

= O(n 3 . 5

log n)

 c−s = O(n 3 . 5

log n)

 n log n

 s=0

 s=0

Using a more sophisticated analysis, the upper bound on the expected op-

timization time of Steady State GASP may be improved to O(n 3 . 25 log1 / 4 n).

We refer the interested reader to the original work of Doerr and Theile

(2009). In this work, also a worst-case graph is given and a lower bound of Ω(n 3 . 25 log1 / 4 n) on the expected optimization time of Steady State GASP

is proven.

8.3 Analysis of Ant Colony Optimization

In this section, we revisit the ACO framework that was introduced in Sec-

tion 5.4. Both the SSSP and APSP problems are considered, based on studies by Attiratanasunthron and Fakcharoenphol (2008) and Horoba and Sudholt

(2009). Shortest path problems are maybe the most natural combinatorial optimization problems to be treated by ACO since these search algorithms

were inspired by the way ants find shortest paths to food sources.

Both the SSSP and the APSP problems make sense in the simple case of

undirected, weighted graphs. ACO algorithms, however, implicitly direct edges according to the direction they are being traversed by the artificial ants. Since it turns out to be more convenient, we replace the SSSP problem in this section with the single-destination shortest path (SDSP) problem, where the aim is to find shortest paths from every vertex to a specified destination vertex. Given a directed graph, the two problem variants can be converted into each other

122

8 Shortest Paths

just by turning around the directions of all edges. Hence, the SSSP and SDSP

problem are conceptually equivalent, but the consideration of a destination will ease the presentation of the ACO framework.

Throughout this section, we denote by d the destination vertex of the SDSP

problem. The ACO approach is population-based and uses n = |V | ants that proceed, to some extent, independently. From each vertex u ∈ V , there is one ant au heading for the destination. The walk of each ant is again controlled by pheromone values τ : E → R+ that are global variables in the algorithm (so the same pheromone values control different ants). Heuristic information is not used. In order to complete the path construction in linear time, we

disallow vertices from being visited more than once. This leads for ant au to the procedure described in Algorithm 14. Note that the destination d is not necessarily reached if the ant takes wrong decisions. In this case, we define the length of the path output by Algorithm 14 to be infinite.

Algorithm 14 Path construction from u to d

 i ← 0.

 pi ← u.

 V 1 ← {p ∈ V \ {p 0 } | (p 0 , p) ∈ E}.

while pi = d and Vi+1 = ∅ do i ← i + 1.

P

Choose pi ∈ Vi with probability τ ((pi− 1 , pi)) /

 τ ((p

 p∈V

 i− 1 , p)).

 i

 Vi+1 ← {p ∈ V \ {p 0 , . . . , pi} | (pi, p) ∈ E}.

end while

return (p 0 , . . . , pi).

While the ants walk through the graph to probabilistically construct short

paths from their start vertex to d, each ant memorizes the best path it has found so far. Initially, all best-so-far paths are empty, which corresponds to infinite length. Pheromone initialization and update will be described below.

The top-level framework of the ACO approach, called MMASSDSP, is dis-

played in Algorithm 15. Note that one iteration of the main loop corresponds to n constructed solutions and, therefore, n evaluations of the objective function.

Finally, pheromone update and initialization are similar as in Section 5.4.

Since we want the first path to choose successors of a vertex uniformly, we initialize for each vertex u ∈ V the pheromones on the outgoing edges e = (u, ·) according to τ (e) = 1 / outdeg(u), i.e., inversely proportional to the outdegree of the vertex. Vertices of outdegree 1 are special since we keep the value τ (e) = 1 fixed on the unique outgoing edge e throughout the run of the algorithm. When pheromones are updated, the n best-so-far solutions p∗, . . . , p∗

1

 n

are consulted, where solution p∗ , 1 ≤ u ≤ n, is used to update the pheromones u

on the outgoing edges of u according to

8.3 Analysis of Ant Colony Optimization

123

Algorithm 15 MMASSDSP

Initialize pheromones τ and best-so-far paths p∗ 1 , . . . , p∗n.

loop

for u = 1 to n do

Construct a simple path pu = (pu, 0 , . . . , pu,) from u to d with respect to τ .

 u

if w(pu) < w(p∗u) then

 p∗ ←

 u

 pu

end if

end for

Update pheromones with respect to p∗ 1 , . . . , p∗n.

end loop

min {(1 −ρ) ·τ(e)+ ρ, τ max } if e = (u,v) ∈ p∗, τ (e) ←

 u

max {(1 − ρ) · τ (e) + ρ, τ min } if e = (u, v) /

 ∈ p∗.

 u

Here, τ max and τ min are again bounds on the pheromone values that are typical for the MMAS approach. We will consider different choices of these bounds

but ensure in any case that τ max + τ min = 1.

8.3.1 Single-Destination Shortest Path

In this section, we show that MMASSDSP finds the shortest path in polynomial time. The exact bound depends on the parameters, one of which was relevant

in the analysis of evolutionary algorithms earlier in this chapter. Namely, we consider the maximum outdegree Δ(G) := max v∈V outdeg(v) and the edge radius
(G) of the graph (see Definition 8.1). To show the forthcoming theorem, a careful inspection of pheromone values is necessary.

Lemma 8.7. For every vertex u with outdeg(u) > 1 it holds that

1 ≤

 τ (e) ≤ 1 + outdeg(u) · τ min .

 e=(u,·) ∈E

 Proof. Initially the sum of pheromones on outgoing edges of u equals 1. As-

sume for induction that

 τ (e) ≥ 1. If the pheromones are not capped by the

bound τ max then (1 − ρ)

 τ (e) + ρ ≥ 1 holds after the pheromone update. If at least one pheromone is capped at τ max then the sum of pheromones is still at least τ max + τ min ≥ 1 as outdeg(u) ≥ 2.

For the second inequality, observe that the sum of pheromones can only

increase if a pheromone value is maximized with the lower border τ min. The

reason is that

 τ (e) ≥ 1 implies that (1 − ρ)

 τ (e) + ρ ≤

 τ (e) ≥ 1.

Consider an edge e with (1 − ρ) τ (e) < τ min. When its pheromone value is set to the lower border then the difference from the former value is at most τ min −τ (e)+ ρ·τ (e) ≤ τ min ·ρ, where we used τ (e) ≥ τ min and ρ ≤ 1. If currently

 τ(e) ≤ 1+outdeg(u) ·τ min then the sum of the pheromone values after the

124

8 Shortest Paths

next update is at most (1 − ρ)(1 + outdeg(u) τ min) + ρ + outdeg(u) τ min · ρ =

1 + outdeg(u) · τ min. Hence, the second inequality follows by induction.

As an immediate consequence, we obtain the following direct relation be-

tween pheromone values and probabilities that ant au, i.e., the ant starting at u, chooses an edge (u, ·). We suppose τ min ≤ 1 / outdeg(u) since τ min should be chosen below the initial pheromone value of 1 / outdeg(u).

Corollary 8.8. If τ min ≤ 1 / outdeg(u) for every edge e = (u, ·) then τ (e) ≤ Prob(ant au chooses edge e) ≤ τ(e) .

2

 The lower bound also holds for every other ant leaving vertex u and every edge e = (u, v) unless v has already been traversed by the ant. The upper bound also holds for every other ant and every edge e = (u, ·) unless the ant has travesed a successor of u before.

 Proof. The upper bound holds since

 τ (e) ≥ 1 according to

 e=(u,·) ∈E

Lemma 8.7 and the probability of choosing edge e is proportional to τ (e).

For the upper bound, we note that

 τ (e) ≤ 1 + outdeg(u) τ

 e=(u,·) ∈E

min ≤ 2

since τ min ≤ 1 / outdeg(u). If some successors of v have already been visited, this only increases the probability of visiting an unvisited neighbor.

Moreover, we need a technical lemma to analyze the number of iterations

that suffice to raise a pheromone value from its lower to its upper border and vice versa.

Lemma 8.9. Suppose that edge e is rewarded in each iteration of MMASSDSP.

 Then τ (e) = τ max holds after at most T ∗ := log(τ max /τ min) /ρ iterations. If e is never rewarded then τ (e) = τ min holds after also at most T ∗ iterations.

 Proof. Both statements are proved together by investigating the following symmetrical situation: Let e 1 be an edge with initial pheromone value τ min =

1 − τ max and e 2 be an edge with initial value τ max. Assume further that e 1

is rewarded in each iteration while e 2 is never rewarded. Obviously τ (e 1) +

 τ (e 2) = 1 holds in the beginning, and the sum of pheromone values remains 1

since for all following iterations

(1 − ρ) τ (e 1) + ((1 − ρ) τ (e 2) + ρ) = τ (e 1) + τ (e 2) − ρ(τ (e 1) + τ (e 2)) + ρ = 1 .

Hence, the time τ (e 1) reaches τ max equals the time τ (e 2) reaches τ min. We therefore only study the time for the latter.

Since e 2 is never rewarded, it holds that τ (e 2) = (1 − ρ) t · τ max after t iterations or the lower pheromone border is reached. Solving the equation

(1 − ρ) T · τ max ≤ τ min

with respect to T yields T ≤ ln(τ min /τ max) / ln(1 − ρ) which, using ln(1 − ρ) ≤

 −ρ, implies the lemma.

8.3 Analysis of Ant Colony Optimization

125

The following theorem gives two upper bounds for MMASSDSP, each con-

sisting of two additive terms. Intuitively, the first terms cover waiting times until improvements of best-so-far paths have been found. The second terms

grow with 1 /ρ. They reflect the time to adapt the pheromones after a change of the best-so-far path. This time is called freezing time by Neumann et al.

(2009). The theorem is restricted to acyclic graphs but allows (other than the results from the beginning of this chapter) negative weights. A statement for graphs that may contain cycles but no negative weights is given afterwards.

Theorem 8.10. Consider a directed acyclic graph G. The expected number of iterations of MMASSDSP on G with τ min := 1 /n 2 is O(n 3 + (n log n) /ρ) .

 Let Δ := Δ(G) and
 =
(G) . Choosing τ min = 1 /(Δ
) the expected number

 of iterations is O(nΔ
 + n log(Δ
) /ρ) .

 Proof. We start by defining the following notions. Call an edge (u, v) incorrect if it does not belong to any shortest path from u to d. We say that a vertex u has been processed if a shortest path from u to d has been found and if all incorrect edges leaving u have pheromone τ min.

The proof proceeds inductively. We estimate the expected time (where

time is measured in iterations of the main loop of MMASSDSP) until a vertex u has been processed given that all vertices reachable from u on shortest paths from u to d have already been processed. To this end, we first consider the expected time until a shortest path from u to d has been found for the first time. We say then that vertex u has been optimized. By Corollary 8.8, the probability of choosing an outgoing edge of u that belongs to a shortest path from u to d is at least τ min / 2. Since all vertices reachable from u have been processed, all incorrect edges at any reachable vertex v have pheromone τ min and the probability of choosing some incorrect edge is at most outdeg(v) τ min.

Hence, the probability of continuing in the construction procedure on an edge on a shortest path is at least 1 − outdeg(v) τ min ≥ 1 − 1 /
 if τ min ≤ 1 /(Δ
). As

there is, by definition, a shortest path with at most
 edges, the probability

that no incorrect edge is chosen on the way from v to d is at least (1 − 1 /
) − 1 ≥

1 /e. Together with the choice of an appropriate successor of u, the probability of optimizing u is at least τ min /(2 e).

The expected time until u is optimized is thus at most 2 e/τ min. Afterwards, the update mechanism of MMASSDSP ensures that a shortest path

from u to d is reinforced automatically in each iteration. The precise path may change, but it is guaranteed that only shortest paths are rewarded

and hence the pheromone on incorrect edges decreases in every iteration.

Lemma 8.9 states that ln(τ max /τ min) /ρ iterations are enough for the vertex to become processed; hence the expected time until u is processed is at most 2 e/τ min + ln(τ max /τ min) /ρ.

Finally, the inductive argument is made precise. Let v 0 = d, v 1 , . . . , vn− 1

be a topological ordering of the vertices starting from the destination d, i.e., for every edge (u, v) ∈ E it holds that v precedes u in the ordering. Such a topological ordering exists since G is assumed to be acyclic. Consequently, all

126

8 Shortest Paths

shortest paths from vi to d only use vertices from {v 0 , . . . , vi− 1 }. If v 1 , . . . , vi− 1

have been processed then we can wait for vi to be processed using the above argumentation. The expected time until all vertices v 1 , . . . , vn− 1 have been processed is bounded by 2 en/τ min + n ln(τ max /τ min) /ρ. Choosing τ min = 1 /n 2, we obtain the bound O(n 3 + (n log n) /ρ), and choosing τ min = 1 /(Δ
), we

obtain O(nΔ
 + n log(Δ
) /ρ).

The bound from the previous theorem can be improved by a factor of
/n

if the shortest paths are unique and
 is not too small. Moreover, we can drop

the assumption of acyclic graphs and again demand positive weights instead.

Theorem 8.11. Consider a directed graph G with positive weights where all shortest paths are unique. If
 :=
(G) ≥ ln n holds, the number of iterations

 of MMASSDSP on G with τ min = 1 /(Δ
) is bounded from above by O(Δ
 2 +

 log(Δ
) /ρ) with probability at least 1 − 1 /n 2 . The bound on the number of iterations holds also in expectation.

 Proof. The main change from the proof of Theorem 8.10 is that here the vertices to be processed are enumerated in a different order. Since all shortest paths are unique, they all have length at most
, and we wait for MMASSDSP

to process every shortest path in reverse order. Doing this, we exploit the fact that all weights are positive and additionally use a concentration result similar to the one from the proof of Theorem 8.2.

Let u be an arbitrary but fixed vertex and let u = v , v− 1 , . . . , v 0 = d be the unique shortest path of length
 ≤
 from u to d. Since all weights are

positive, all shortest paths from vi to d, 1 ≤ i ≤
, use only vertices from

 {v 0 , . . . , vi− 1 }. Hence, if v 1 , . . . , vi− 1 have been processed then we can wait for vi has been processed. Since τ min = 1 /(Δ
), the probability of finding a

shortest path from u to d given the processed successors is at least τ min /(2 e) using the same argumentation as that in the proof of Theorem 8.10.

Given processed successors, let Ti denote the random time (number of iterations) until vi is optimized (recall that this notion does not yet imply vi to be processed). Consider random variables X 1 , . . . , XT that are independently set to 1 with probability τ min /(2 e) and to 0 otherwise. The random first point of time T ∗ where X

1

1 = 1 stochastically dominates the random time until v 1 is

optimized. As v 1 becomes processed after an additional (deterministic) waiting time of at most F := ln(τ max /τ min) /ρ iterations, T ∗ + F stochastically 1

dominates T 1. Inductively, we have that T ∗

 +
F stochastically dominates T

and hence the time until u is processed.

Let T := 16 e
/τ

 T

min and X :=

. We have E(X) = T · τ

 i=1

min /(2 e) = 8
.

By Chernoff bounds,

Prob(X <) ≤ Prob(X ≤ (1 − 7 / 8) · E(X)) ≤ e− 8 ∗(7 / 8)2 / 2 < e− 3 ∗ ≤ 1 /n 3 , where we used the assumption
 ≥ ln n. Hence, the probability that u is not

processed after T +
F = O(Δ
 2 +
 log(Δ
) /ρ) iterations is at most 1 /n 3. By

8.3 Analysis of Ant Colony Optimization

127

the union bound, the probability that there is an unprocessed vertex remaining after this time is at most 1 /n 2. This proves the first statement of the theorem.

The preceding argumentation holds for arbitrary initilization of the ACO

algorithm, in particular, if the pheromone values have assumed an arbitrary value. Hence, we can repeat the argumentation with another phase of T +
F

iterations if the algorithm does not find all shortest paths within the first T +
F iterations. The expected number of phases is 1 + o(1), which implies the bound on the expected number of iterations.

Horoba and Sudholt (2009) also show a lower bound that is tight with the upper bound from Theorem 8.11 if ρ = Ω((log n) /n), and almost tight with a gap of at most O(log2 n) otherwise. The underlying graph is similar to the example mentioned above following Theorem 8.5. All vertices are lined up on a single path that contains all shortest paths as subsets. Then MMASSDSP

has to optimize n − 1 vertices sequentially with respect to increasing distance from the destination.

The lower bound shows that no significant improvements are possible with

the setting of Theorem 8.11. However, there is room for improvement if the degrees of the vertices differ significantly. Rather than choosing τ min = 1 /(Δ
)

for all vertices, we set the pheromone bounds of edges adaptively with respect to the vertices they are leaving. More precisely, for every vertex u, we restrict the pheromone values of the outgoing edges e = (u, ·) to the interval

[τ min(u) , τ max(u) = 1 − τ min(u)]. The choice τ min(u) := 1 /(outdeg(u)
) yields

the following bound.

Theorem 8.12. Consider a directed acyclic graph G. Let
 :=
(G) . Then

 the expected number of iterations of MMASSDSP on G with τ min(u) =

1 /(outdeg(u) ·
) for all vertices u ∈ V is O(
|E| + (n log n) /ρ) .

 Proof. The structure of the proof is the same as that for Theorem 8.10.

Only the expected time (number of iterations) until the vertices consid-

ered in topographical ordering have been processed is (are) added up more

carefully. The expected time until vertex u has been optimized is at most 2 e/τ min(u) = 2 e outdeg(u)
. Since τ min(u) ≥ 1 /n 2, the processing time for vertex u is at most 2 e outdeg(u)
+log(τ max /τ min) /ρ = O(outdeg(u)
+(log n) /ρ).

Adding this up over n − 1 vertices and noting that

outdeg(u) = 2 |E|

 u∈V

yields the result.

8.3.2 All Pairs Shortest Paths

It is straighforward to compute shortest paths between all pairs of vertices by calling the MMASSDSP ACO algorithm sequentially for all n destination vertices. This can also be done in parallel by letting ants head for all destinations and extending the pheromone values on edges to vector-valued values. That is, we have ants au,v and best-so-far paths p∗

for every start vertex u and every

 u,v

destination v. For every v, we introduce a pheromone function τv : E → R+

0

128

8 Shortest Paths

such that τv(e) denotes the pheromone value on edge e ∈ E that controls the ants heading to v and is updated by these ants. The resulting algorithmic framework is called MMASAPSP and displayed in Algorithm 16. Note that the framework is nothing else than a parallelization of Algorithm 15. For this reason, it is easy to obtain results in the vein of Theorem 8.11 also for MMASAPSP. Basically, the number of constructed solutions grows by a factor

of n.

Algorithm 16 MMASAPSP

For all v ∈ V , initialize pheromones τv and best-so-far paths p∗ 1 ,v, . . . , p∗n,v.

loop

for all v ∈ V do

for all u = v do

Construct a simple path pu,v from u to v with respect to τv.

if w(pu,v) ≤ w(p∗u,v) then

 p∗

 ←

 u,v

 pu,v

end if

end for

Update pheromones with respect to p∗ 1 ,v, . . . , p∗n,v.

end for

end loop

Remarkable improvements over the plain parallelization can be obtained

by introducing a small dose of interaction into MMASAPSP. Consider an ar-

bitrary ant au,v heading for destination v. The idea is to give au,v access to additional pheromone trails beside τv and let it follow these “foreign” trails with a certain probability. More precisely, the decision to follow a foreign trail is made with probability 1 / 2. In this case, an intermediate destination w ∈ V is chosen uniformly at random and the ant travels first to w using the pheromone information τw; afterwards it travels from w to the actual destination v using its own pheromone vector τv. This path construction with (possible) interaction is stated as Algorithm 17. The pheromone update for ant au,v always applies exclusively to the pheromone values τv.

Theorem 8.13. Consider a directed graph G with positive weights where all shortest paths are unique. Let
 :=
(G) and Δ := Δ(G) . If
 ≥ ln n holds, the

 number of iterations of MMASAPSP with interaction on G with τ min = 1 /(Δ
)

 is O(n log n + log(
) log(Δ
) /ρ) with probability at least 1 − 1 /n 2 . The bound on the number of iterations holds also in expectation.

 Proof. As a preparation, we introduce concepts similar to those in the proof of Theorem 8.10. For an arbitrary pair of vertices (u, v), we denote by
u,v the

maximum number of edges on a shortest path from u to v. We call an edge incorrect with respect to v if it does not belong to a shortest path to v. We call the pair (u, v) optimized if a shortest path from u to v has been found.

8.3 Analysis of Ant Colony Optimization

129

Algorithm 17 Path construction from u to v for MMASAPSP with interaction Choose b ∈ { 0 , 1 } uniformly at random.

if b = 0 then

Construct a simple path from u to v with respect to τv.

else

Choose w ∈ V uniformly at random.

Construct a simple path p = (p 0 , . . . , p) from u to w with respect to τw.

Construct a simple path p = (p

0 , . . . , p

) from w to v with respect to τv .

if p = w then p ← (p 0 , . . . , p , p 1 , . . . , p) else p ← p end if end if

return p.

Finally, we call (u, v) processed if it has been optimized and the pheromone values τv(·) on all incorrect edges (u, ·), i.e., all incorrect edges leaving u, equal τ min.

The actual proof divides the run of MMASAPSP into phases such that

all pairs (u, v) with a certain bound on the
u,v-value are processed in a

phase. Since the bound increases by a factor 3 / 2 from phase to phase, the total number of phases is bounded by α := log(
) / log(3 / 2) . While going

from one phase to the next, we exploit the ants’ capability of using foreign pheromone trails and let them follow shortest paths with lower
u,v-values

between previously processed pairs. More precisely, the i th phase, 0 ≤ i ≤
,

finishes when all pairs (u, v) satisfying (3 / 2) i− 1 <
u,v ≤ (3 / 2) i have been

processed. Hence, the aim for the 0th phase is to process all pairs (u, v) such that (u, v) ∈ E.

We reserve t∗ := (ln(2)) /ρ iterations at the beginning of the first phase. We fix an arbitrary pair (u, v) such that (u, v) ∈ E. The probability of optimizing (u, v) in the t th iteration, 1 ≤ t ≤ t∗, is at least (1 − ρ) t− 1 /(4 Δ) since the ant au,v decides with probability 1 / 2 to head directly for v (instead of following foreign pheromone trails) and chooses (u, v) with probability at least (1 −

 ρ) t− 1 /(2 Δ). The latter bound follows from Corollary 8.8 along with the fact that τv(u, v) ≥ (1 /Δ) · (1 − ρ) t− 1 after t − 1 iterations. Hence, the probability of not optimizing (u, v) within the first t∗ iterations is at most t∗

 ∗

 ∗

 − 1

1 − (1 − ρ) t− 1

 ≤ e− 1 · P t

(1 −ρ) t

4 Δ

 t=0

= e− 1 −(1 −ρ) t

4 Δρ

 .

4 Δ

 t=1

Since ρ ≤ 1 /(23 Δ log n) ≤ 1 /(8 Δ ln(2 n 4)) and, therefore, 1 −(1 −ρ) t ≥ 1 / 2, the last probability is at most e− ln(2 n 4) = 1 /(2 n 4). By the union bound, the probability that there is a pair (u, v) ∈ E left after the t∗ iterations that is not optimized is at most 1 /(2 n 2). By Lemma 8.9 (which applies also to MMASAPSP), all optimized pairs become processed after at most ln(τ max /τ min /ρ) iterations.

Hence, the total length of the first phase is chosen to be t∗ + ln(τ max /τ min) /ρ

iterations.

130

8 Shortest Paths

Consider phase i, i ≥ 1, where all pairs (u, v) with
u,v ≤ (3 / 2) i− 1 have

already been processed. Now let (u, v) be a pair where (3 / 2) i− 1 <
u,v ≤

(3 / 2) i. If ant au,v decides to use foreign pheromone information to head for an intermediate vertex w and chooses w on the middle third of a shortest path pu,v from u to v, then both
u,w ≤ (3 / 2) i− 1 and
w,v ≤ (3 / 2) i− 1 hold. The

probability of choosing w in the desired way is at least (1 / 2) ·(1 / 3) ·(
u,v/n). In

this case, the ant follows the shortest path from u to v via w with a probability of at least (1 − 1 /
) − 1 ≥ 1 /e since (u, w) and (w, v) have been processed by assumption. Altogether, the probability of optimizing (u, v) in a single iteration of phase i is at least (1 / 2) · (1 / 3) · (
u,v/n) · (1 /e) ≥ (3 / 2) i− 1 /(6 en). By reserving t∗ := 6 en ln(2 αn 4) /(3 / 2) i− 1 iterations for phase i, the probability of not i

optmizing a pair (u, v) with (3 / 2) i− 1 <
u,v ≤ (3 / 2) i in the phase is at most

(1 − (3 / 2) i− 1 /(6 en)) t ≤ 1 /(2 αn 4). By the union bound, all such pairs are optimized within t∗ iterations with probability at least 1 − 1 /(2 αn 2). We already i

know that optimized pairs become processed after at most ln(τ max /τ min) /ρ additional iterations. Altogether, the number of iterations reserved for all phases is at most

 α

ln 2

 6 en ln(2 αn 4)

+

+ α · ln(τ max /τ min)

 ρ

(3 / 2) i− 1

 ρ

 i=1

 α

 i− 1

 ≤ ln 2

2

 α ln(Δ
)

+ 6 en ln(2 αn 4) ·

+

 ρ

3

 ρ

 i=1

= O(n log n + log(
) log(Δ
) /ρ) .

Summing over all phases, the total failure probability is at most 1 /(2 n 2) +

 α · 1 /(2 αn 2) = 1 /n 2. This proves the first statement of the theorem. The second statement follows since the weaker upper bound O(n 3 + (n log n) /ρ) on the expected number of iterations of MMASAPSP follows easily using the

proof ideas for Theorems 8.10 and 8.11. In the case where the time bounds set up for the phases are not sufficient, we estimate the number of iterations by the weaker bound. The contribution to the total expected number of iterations is at most (1 /n 2) · O(n 3 + (n log n) /ρ) = O(n log n + log(
) log(Δ
) /ρ).

Since each iteration of MMASAPSP constructs n 2 solutions, the bound of the last theorem corresponds to O(n 3 log n + n 2 log(
) log(Δ
) /ρ) evaluations

of the objective function, which is an optimization time of O(n 3 log n) if ρ is chosen appropriately. This beats the bound for Steady State GASP presented

in Theorem 8.6 (and also the lower bound Ω(n 3 . 25 log1 / 4 n) given by Doerr and Theile (2009)). Hence, the ACO variant can be called the most efficient algorithm among the stochastic search algorithms considered in this chapter.

Conclusions

We have considered different search algorithms for the computation of shortest paths. For the single-source shortest-path (SSSP) problem, a simple evo-

8.3 Analysis of Ant Colony Optimization

131

lutionary algorithm was investigated on two different fitness functions. With respect to the all-pairs shortest-paths (APSP) problem, a population-based

evolutionary algorithm using crossover is compared to the same algorithm

without crossover and a benefit of the crossover-based variant is proven. Finally, both the SSSP and the APSP were solved by ACO algorithms with

a nontrivial colony. A variant using interaction leads to even better runtime bounds than the ones presented for evolutionary algorithms.

9

Eulerian Cycles

In this chapter, we analyze stochastic search algorithms on arc routing problems. For such problems, the choice of a good representation is not straightforward, and it has a large impact on the success of stochastic search algorithms.

The Eulerian cycle problems is the simplest problem belonging to the wide

class of arc routing problems, and we consider this problem as an example

of how the choice of the representation influences the runtime of stochastic search algorithms.

Euler initiated the study of graph theory with the famous seven bridges

problem (Euler, 1741). The generalization of the seven bridges problem can be described as follows and is known as the Eulerian cycle problem. Given an undirected connected graph G = (V, E) on n vertices and m edges, the task is to compute a cycle such that every edge is used exactly one time. Euler proved that a tour of all edges in a connected undirected graph without repetition is possible iff the degree of each vertex is even. Such graphs are known as Eulerian graphs. If an Eulerian cycle exists, we call G Eulerian. In the rest of this chapter, we assume that G is Eulerian.

The Eulerian cycle problem can be solved in time O(m + n) by the algorithm of Hierholzer (1873) (see Algorithm 18). This algorithm computes cycles in the given graph and joins them together such that an Eulerian tour is obtained.

Stochastic search algorithms do not have the knowledge that the problem

can be solved by computing cycles and building up the solution by putting

the cycles together. We will see that they are able to compute a single cycle and integrate another cycle if the solution is not optimal. Hence, they follow the idea of the algorithm without having this global knowledge.

We do not and cannot hope to compete with the best algorithms for the

Eulerian cycle problem. This can be different for generalizations of the problem. For example, the problem of finding the largest Eulerian subgraph of

a given graph and the mixed Chinese postman problem (see Edmonds and

Johnson, 1973) are NP -hard and stochastic search algorithms have a good chance to be competitive on these problems. For other NP -hard variants such F. Neumann, C. Witt, Bioinspired Computation

133

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 9, © Springer-Verlag Berlin Heidelberg 2010

134

9 Eulerian Cycles

Algorithm 18 Algorithm of Hierholzer

1. Find a cycle C in G

2. Delete the edges of C from G

3. If G is not empty go to step 1.

4. Construct the Eulerian cycle from the cycles produced in Step 1.

as the capacitated arc routing problem, evolutionary algorithms have been

developed and successfully applied (Lacomme, Prins, and Ramdane-Ch´

erif,

2001).

We consider stochastic search algorithms that use different representations to find an Eulerian cycle. The representation of permutations has successfully been applied to difficult combinatorial optimization problems such as the traveling salesperson problem (see Michalewicz and Fogel, 2004 for an overview).

We start with this general approach as it is important to understand how

evolutionary algorithms, using this encoding, work on simple problems. Later on, we investigate a representation based on adjacency list matchings, which is more related to the Eulerian cycle problem, and show that it leads provably to a better runtime behavior of stochastic search algorithms.

9.1 Edge Permutations

In this section, we examine how the general approach of representing solutions by permutations of the edges can solve the Eulerian cycle problem.

9.1.1 Algorithms

To find such a cycle, we use a permutation of the edges of G. The search space Sm contains all permutations of the edges of G. A search point π ∈ Sm corresponds to the order of using the edges for the Eulerian tour. Usually a permutation does not correspond to an Eulerian tour. It normally describes

a walk w which is part of such a tour. The ideas can be used to define the fitness function walk, which is appropriate for the Eulerian cycle problem.

The fitness of a permutation π is given by

 walk(π) := length of the walk implied by π,

where we start with the first edge in π and extend the walk if the edge on the second position has one vertex with the first edge of π in common. This walk can be further extended if the third edge has one vertex which is equal to the ”free” vertex of the second edge. We can extend the procedure to build up a walk of length
 implied by π. In the rest of this section, the walk will

be named by w. Usually a walk w is written as a sequence of vertices and

9.1 Edge Permutations

135

Algorithm 19 RLSp

1. Choose π ∈ Sm randomly.

2. Choose i und j uniform at random and define π by executing jump(i, j) on π.

3. Replace π with π if walk(π) ≥ walk(π).

4. Repeat Steps 2 and 3 forever.

Algorithm 20 RLSa

1. Choose π ∈ Sm randomly.

2. Choose i uniform at random and define π by executing jump(i, 1) on π.

3. Replace π with π if walk(π) ≥ walk(π).

4. Repeat Steps 2 and 3 forever.

denoted by w = (v 0 , v 1 , . . . , v). This implies a set of edges that is a subset of the edge set E. To make the connection to the fitness function walk more precise, we represent a walk w by a sequence of directed edges and denote it by w = (v 0 , v 1) , (v 1 , v 2) , . . . , (v− 1 , v).

The fitness function describes the processing order in which to use the

edges for a tour starting with the edge on position 1. The fitness of a permutation can therefore be easily evaluated. If the resulting walk is short, most edges in the permutation do not have to be considered.

In the case where we are searching for a good permutation of the input ele-

ments, jumps and exchanges are popular operators that lead to new solutions (see Section 3.1.2). Both operators have been integrated into one mutation operator by Scharnow et al. (2004) for the sorting problem. We consider the jump operator in this section and show that it leads to an efficient optimization process.

We investigate a variant of RLS with permutations of the edges. The algo-

rithm RLSp executes in one mutation step exactly one jump operation. This

jump is chosen according to the uniform distribution from among all possible jumps, which means that the positions i and j are chosen uniformly at random from the set { 1 , . . . , m}. Our algorithm starts with a permutation π chosen randomly from the set Sm that consists of all permutations of m elements. We will analyze such stochastic search algorithms until they have found a good permutation of the edges of a given graph for the Eulerian cycle problem. The underlying fitness function walk should be maximized. Therefore, we describe RLSp as shown in Algorithm 19.

We also want to examine whether a slight modification of the mutation

operator leads to significantly better results. The idea is to use asymmetric jumps which choose one edge uniformly at random and place this edge at the

first position of the permutation. The algorithm RLSa (Algorithm 20) differs from RLSp by using this asymmetric mutation operator.

136

9 Eulerian Cycles

Working with a mutation operator that allows more than one jump opera-

tion in a single mutation step, we obtain variants of (1+1) EA for the Eulerian cycle problem. All results given in this section can be generalized to a variant of (1+1) EA, where the number of jump operations in a single mutation operation is chosen according to a Poisson distribution with parameter λ = 1.

We do not want to give the full proofs (which can be found in Neumann, 2008

and Doerr, Hebbinghaus, and Neumann, 2007b) as they follow similar ideas as those for RLSp and RLSa, but involve more technicalities.

9.1.2 Runtime Analysis

In the following, we show an upper bound of O(m 5) on the expected optimization time for RLSp on the proposed fitness function.

Theorem 9.1. The expected time until RLSp working on the fitness function walk constructs an Eulerian cycle is O(m 5) .

 Proof. The fitness walk(π) of a search point π can take values from { 1 , . . . , m}, where the optimum is reached if walk(π) equals m. Our goal is to show that an improvement, i.e., a solution of fitness at least
 + 1, has been obtained

after an expected number of O(m 4) steps.

W. l. o. g., the walk w implied by π is of the form (v 0 , v 1) , . . . , (v− 1 , v) and has length
 ∈ { 1 , . . . m − 1 }. If v 0 = v holds, we say that w is a path, and otherwise we say that w is a cycle. In the first case, we consider a typical run consisting of a phase of cm 2 steps, c an appropriate constant, and show that an improvement has been reached with probability Ω(1) within this phase.

Hence, the expected number of such phases to reach an improvement is upper

bounded by α− 1. In the second case, we show that either an improvement has been reached in expected time O(m 4) or a path of length
 has been

produced. If a path of length
 has been produced before the improvement,

we may return to the first case.

 Claim. Let w be a path described by π of length
 ∈ { 1 , . . . , m − 1 }. Consid-

ering a phase of length cm 2, c an appropriate constant, an improvement has been achieved with probability at least α = Ω(1).

 Proof. We work under the assumption that w has not been turned into a cycle of length
 before having achieved an improvement. If v 0 = v holds, there is an edge incident to v which can be placed after {v− 1 , v}. Such a jump lengthens the path and has probability at least 1 /m 2. In this case, the expected time for an improvement of π is bounded by m 2. Using Markov’s inequality, the probability that that an improvement has been achieved within a phase of cm 2 steps is at least 1 − 1 /c.

However, it might happen that the path turns into a cycle of length
 before

an improvement has been obtained. This can happen if the edge e = {v− 1 , v 0 }

9.1 Edge Permutations

137

is put on position
 (assuming that it exists in the set of edges E). Our goal

is to bound the probability for this event in the following.

Let k be the position of e in π. The operation jump(k,) takes e and puts it directly in position
. The probability for this event is 1 /m 2. Therefore,

the probability of an improvement is at least as high as the the probability of executing this jump. Hence, an improvement happens before this jump with

probability at least 1 / 2.

If k =
 + 1, jump(
, ∗ 1), where ∗ 1 ∈ {
 + 1 , . . . , m}, can be executed such

that e is put in position
. The probability of this operation is m− . However,

 m

with probability m−− 1 , jump(k, ∗

 m

2) with ∗ 2 ∈ {
 + 2 , . . . , m} is executed.

After this has happened, the probability of putting e in position
 is again

1 /m 2, and an improvement happens with a probability of 1 / 2 before this event.

The probability of executing jump(k, ∗ 2) before jump(
, ∗ 1) is m−− 2 ≥ 1 / 3.

2 m− 2 − 3

Altogether with probability at least α = (1 − 1 /c) · 1 = Ω(1), an improve-6

ment has been achieved during the considered phase.

If v 0 = v the analysis for an improvement is more complicated. In this case, w is a cycle C. If the graph is Eulerian and w is not an Eulerian tour, there is at least one vertex vk on C which is also a vertex on another cycle C having vk in common with C (see Figure 9.1). We want to show that an improvement is reached in expected time O(m 4).

 Claim. Let w be a cycle described by π of length
 ∈ { 1 , . . . , m − 1 }. The

expected time to produce an improvement is O(m 4).

 Proof. We bound the time the reach an improvement by O(m 4) when starting with a cycle under the condition that no path of length
 has been produced

before. If we reach a path of length
 before the improvement, we already

know that after an additional phase of length cm 2, an improvement happens with probability α = Ω(1). This implies that an improvement is reached in expected time α− 1(O(m 4) + O(m 2)) = O(m 4) when starting with a cycle.

We inspect the case where w is a cycle whose corresponding permutation π does not start with the vertex vk. We call an operation relevant if it changes w and is accepted.

1. Case i, j ∈ {
 + 2 , . . . , m}: These operations are not relevant as they do

not change w.

2. i ∈ { 1 , . . . , +1 }, j ∈ {
+2 , . . . , m}: If i ∈ { 1 , . . . ,
}, the cycle is destroyed.

If i =
 and the edge at position
 + 1 contains v− 1, a path of length

is constructed. If i =
 + 1, an improvement may happen if the edge at

position
 + 2 contains v. Otherwise, w is unchanged.

3. i ∈ {
 + 2 , . . . , m} and j ∈ { 1 , . . . , + 1 }: If j ∈ { 2 , . . . ,
}, the cycle

property is destroyed and either the fitness is decreased or a path is con-

structed. If j =
 + 1, an improvement is reached if the edge at position i

contains v. The same holds for j = 1 if the edge at position i contains v 0.

The walk w remains unchanged for all other cases where j =
 + 1 holds.

138

9 Eulerian Cycles

Fig. 9.1. Situation in which w is a cycle C that does not include all edges of G.

Then there is another cycle C which has one vertex vk with C in common 4. i, j ∈ { 1 , . . . , + 1 }: If i or j ∈ { 2 , . . . ,
 − 1 }, we destroy the cycle. These

steps are not accepted by the algorithm.

If i =
 + 1 and j = 1, an improvement may happen if the edge on position

 + 1 contains v 0. If i =
 + 1 and j =
, the cycle may be turned into a

path of length
.

An operation where i = 1 and j =
 or i =
 and j = 1 shortens the walk

by at least 1 and is not accepted. The algorithm accepts the two jump

operations jump(1 ,) and jump(
, 1). These operations revolve the cycle.

The only two relevant operations that produce from a cycle w another cycle w are jump(1 ,) and jump(
, 1). All other relevant operations produce a path

of length at least
.

If w is a cycle C which is not an optimal solution, then there is at least another cycle C that shares with C at least one vertex vk.

To reach an improvement we examine how to construct a cycle

 w∗ = (vk, vk+1) , . . . , (v− 1 , v 0) , . . . , (vk− 1 , vk) .

We investigate how this can be done by the two jump operations jump(1 ,) and jump(
, 1). If we have not reached such a walk, there is exactly one jump

which places the edge e = {vk, vk+1 } one position further to the left and one which places e one position further to the right. The probability of placing e further to the left is in each relevant step 1 . Hence, the algorithm performs a 2

random walk shifting the edge e to the left or to the right with equal probability. Using the results on fair random walks presented in Section 4.2.4, the expected number of relevant steps when starting with e in the permutation is O(m 2) as the number of edges in w is upper bounded by m. Each relevant step happens with probability 1 /m 2, which implies that an expected number of O(m 4) steps suffices when starting with e.

The vertex vk is also a vertex in another cycle C. Hence, there are two edges {vk, vs} and {vk, vt} in C. If we place one of these edges at position

 + 1 or 1 (see 3.), we have lengthened the walk and achieved an improve-

ment. On the other hand, the operations jump(1 ,) and jump(
, 1) put e at

position
 and position 2, respectively. This yields a probability of at least 12

for an improvement in the next relevant step. Therefore, the algorithm has to

9.1 Edge Permutations

139

produce a cycle starting with vk at most twice in expectation, which implies that the expected time to reach an improvement is O(m 4).

There are at most m − 1 improvements, which leads to an upper bound of O(m 5) on the expected optimization time of RLSp.

In Doerr et al. (2007b), it has been shown that RLSp needs an expected number of Ω(m 4) steps to find an Eulerian cycle if the given graph consists of two cycles that contain m/ 2 edges and share one single vertex v. The reason for this lower bound is that the random walk revolving the cycle needs Ω(m 4) to produce a permutation that starts with an edge containing v.

We want to discuss whether using asymmetric jumps leads to more effi-

cient evolutionary algorithms and examine RLSa in the following. Using an

asymmetric jump operation has the following effect. In the case where the

current solution is a path, the upper bound on the expected waiting time to lengthen the walk reduces from O(m 2) to O(m). In the case where the current solution is a cycle, the algorithm performs a directed walk instead of a random walk. This reduces the expected time for an improvement significantly,

as shown in the following theorem.

Theorem 9.2. The expected time until RLSa has computed a Eulerian cycle is bounded by O(m 3) .

 Proof. RLSa executes only jumps to the first position in the permutation.

We assume that our current solution represents a walk of length
. Again, we

assume that the walk is of the form (v 0 , v 1) , . . . , (v− 1 , v). If
 ≥ 2 holds, a

jump is only accepted if the edge e = (vi, vj) at position i, which is jumped to position 1, contains v 0 or v 1. If the edge e contains v 1, a path of length at most 2 is obtained as v 0 ∩ e = ∅. If e contains v 0, this may either lead to an improvement if e = {v− 1 , v} or revolve the cycle.

We distinguish between two cases. In the first case, the current walk is

a path. Then there exists at least one edge e = {v− 1 , v} that can jump to position 1 and lengthen the walk. In this case, the expected waiting time for an improvement is O(m).

In the second case, w is a cycle C that is not a Eulerian cycle. Then there is at least another cycle C that shares a vertex vk with C. As for RLSp, we consider the time to construct a walk

 w∗ = (vk, vk+1) , . . . , (v− 1 , v 0) , . . . , (vk− 1 , vk) .

This is achieved by executing
 − k times the operation jump(
) :=

 jump(
, 1). Each of these jumps happens with probability 1 /m, and the expected time to produce a cycle which starts with vk is therefore at most (
 − k) m = O(m 2). Afterwards, an improvement can be achieved by jumping one of the edges {vk, vs} and {vk, vt} contained in C to position 1. On the other hand, jump(
) is also accepted and revolves the cycle further. However,

the probability that the next accepted mutation step is an improvement is at

140

9 Eulerian Cycles

least 2 / 3. Altogether, the expected time for an improvement is upper bounded by O(m 2) in the second case. The number of improvements is at most m − 1, which completes the proof.

9.2 Adjacency List Matchings

In the previous section, we have shown that simple stochastic search algo-

rithms representing possible solutions as permutations of the edges achieve an Euler tour of a given Eulerian graph in expected polynomial time. In the following, we want to examine how representations that are more related to

the given problem speed up the optimization process.

The fitness function walk considers a walk starting with the first edge in the permutation. This walk is extended as long as possible, resulting in the fitness value of a permutation of the edges. The idea that leads to a more efficient optimization process is to consider not only one specific walk, but a set of walks which can be merged such that an Eulerian tour is obtained. This idea has

been used by Doerr and Johannsen (2007), who have chosen a representation of possible solutions for the Eulerian cycle problem based on adjacency list matchings. We will see that this representation in combination with suitable mutation operators leads to significantly improved runtime bounds.

9.2.1 Algorithms

The representation by adjacency list matchings is based on a phenotype-

genotype mapping which is often used in evolutionary algorithms. Solutions

are represented in the genotype space and are mapped via a specific function to the phenotype. The Eulerian cycle problem consists of finding a tour in the graph such that each edge is used exactly once. Therefore, it seems appropriate that solutions in the phenotype space consist of different edge-disjoint paths and cycles in the graph.

Phenotype

We first describe how these ideas are represented in the phenotype and dis-

cuss the genotype representation afterwards. A phenotype consists of different walks that can later be joined such that an Eulerian tour is obtained. A path of length k is given by a sequence of vertices (v 0 , v 1 , . . . , vk) such that there is an edge ei = {vi− 1 , vi} ∈ E, 1 ≤ i ≤ k, and v 0 = vk holds. Similarly, a cycle of length k + 1 consists of a sequence of vertices (v 0 , v 1 , . . . , vk, v 0) such that there is an edge ei = {vi− 1 , vi}, 1 ≤ i ≤ k and ek+1 = {vk, v 0 }. As we consider the Eulerian cycle problem, we require that all edges be different, but allow that vertices appear more than once.

A phenotype is a cover C = {C 1 , . . . , Cr} for the given graph. It consists of a set of r edge-disjoint paths and cycles which cover all edges of G. The

9.2 Adjacency List Matchings

141

Fig. 9.2. Graph G with six vertices and nine edges and four edge-disjoint walks, fitness of a cover C = {C 1 , . . . , Cr} is given by the number of edge-disjoint walks, i.e.,

 f (C) = r.

An optimal solution has fitness 1 as it uses all edges in a single walk, which implies that this walk is an Eulerian cycle.

Genotype

We have to give a suitable representation for the genome. This is based on

adjacency lists, which are a common representation for graph problems. For

each vertex v ∈ V , we store its neighbors in G in a list Av. As the graph is Eulerian, the number of entries in each list is even. In total, we have n lists and the total number of entries in all lists is 2 m as each edge {u, v} contributes an entry u to list Av and an entry v to list Au.

The idea behind the adjacency list matching is that we can match two

vertices u and w in a list Av such that a path u, v, w of length 2 is obtained.

A matching Mv of a list Av is a set of disjoint pairs of vertices. Mv is called perfect iff all vertices in Av are matched. A matching M = ∪v∈V Mv is a set of n matchings, one for each list Av. M is called perfect if for each v ∈ V , Mv is a perfect matching.

In Doerr and Johannsen (2007), it is shown that there exists a mapping between the phenotype space of paths of G and the genotype space of matchings.

This mapping is used to match search points in the genotype to a collection of paths in the phenome. We present the theorem giving the mapping from

the genotype to the phenome in the following.

Theorem 9.3. There exists a 1 ↔ 1 correspondence between the phenotype space and the genotype space. Moreover, this 1 ↔ 1 correspondence maps cycle covers of G to perfect matchings and vice versa.

142

9 Eulerian Cycles

 Proof. The idea behind the mapping is that unmatched vertices correspond to end vertices of a path and matched vertices to interior vertices of paths and cycles.

First, we show that a walk cover defines a matching M . Let C =

 {C 1 , . . . , Cr} be a cover consisting of r walks (either paths or cycles), where each edge e ∈ E only occurs at most once in all walks. For a vertex v ∈ V

and u, w ∈ Av, {u, w} ∈ Mv holds iff there exists a walk or a cycle Ci such that the {u, v} and {v, w} are subsequent in Ci. Each edge e = {u, v} appears exactly once in C (u once in Av and v once in Au). Hence, M is a matching.

Now, we show that a matching M defines a walk cover C of G. The empty matching defines of a set of m paths u, v corresponding to the edges {u, v} ∈ E

in G. Let M be a non-empty matching, v ∈ V and {u, w} ∈ Mv. We define recursively a walk cover C corresponding to M . Let M = M

 v

 v \ {u, w} and

 M = (M \ Mv) ∪ M and let C be the cover corresponding to M . Since u v

and w are not matched in M , there exist either two walks (v, . . . , u, v) and (v, w, . . . , v) or one path (v, u, . . . w) in C. In the first case, the walk cover C is defined as the walk cover C, where the two walks are joined to one walk (v, . . . , u, v, w, . . . , v). In the second case, the walk cover C is defined as C, where the path is replaced by the cycle (v, u, . . . , w, v).

Due to this 1 ↔ 1 correspondence, we identify a matching M with its walk cover C and vice versa.

We want to illustrate the use of adjacency list matchings and consider the

Eulerian graph G given in Figure 9.2. Consider the matching M = ∪ 6 M

 i=1

 vi

with

 Mv = {{v

1

2 , v 4 }},

 Mv = {{v

2

1 , v 4 }},

 Mv = ∅,

3

 Mv = {{v

4

1 , v 2 }, {v 5 , v 6 }},

 Mv = {{v

5

2 , v 6 }},

 Mv = {{v

6

4 , v 5 }}.

This matching corresponds to the set of walks

 C = { (v 1 , v 2 , v 4 , v 1) , (v 2 , v 5 , v 6 , v 4 , v 5) ,

(v 2 , v 3) ,

(v 3 , v 5) }.

Mutation

The mutation operator works on the genome, i.e., it matches or unmatches

vertices in the adjacency lists. It carries out a sequence of local operations. In

9.2 Adjacency List Matchings

143

Algorithm 21 Local operation

Input: u, w, Av

1. If u and w are unmatched, Mv := Mv ∪ {u, w}.

2. If {u, w} ∈ Mv, Mv := Mv \ {u, w}.

3. If u is matched to some w and w is unmatched, Mv = (Mv \ {u, w}) ∪ {u, w}.

4. If w is matched to some v and u is unmatched, Mv = (Mv \ {w, v}) ∪ {u, w}.

5. If u is matched to some w and w is matched to some u, Mv = (Mv \ ({u, w} ∪ {u, w}) ∪ ({u, w} ∪ {u, w}).

Algorithm 22 (1+1) EA M

1. Choose a matching M .

2. Define M in the following way. Choose from a Poisson distribution with parameter λ = 1 and perform sequentially + 1 randomly chosen edge-based mutation operations to produce M from M .

3. Replace M with M if f (C) ≤ f (C).

4. Repeat Steps 2 and 3 forever.

a local operation, two vertices u and w from an adjacency list Av are chosen.

A question that arises is about how to pick the vertices u and w that are used in the operation. We discuss the edge-based approach where u is chosen uniformly from all 2 m vertices in all lists. Other approaches can be found in

Doerr and Johannsen (2007).

Suppose that u is in list Av. Then w is chosen uniformly at random from Av. Hence, the probability of choosing a specific pair (u, w) in list Av is 1

,

2 d(v) m

where d(v) denotes the degree of vertex v in G. Having chosen u and w, a step of the local operation works as follows. If u = w, nothing is changed.

Otherwise, an operation according to the different cases given in Algorithm 21

is executed. The important cases are 1 and 5, which are necessary for achieving the improvements by the stochastic search algorithm. Case 1 joins two walks into a single one. Case 5 joins two cycles into a single cycle.

Analyzing stochastic search algorithms based on adjacency list match-

ings in Section 9.2.2, we will also consider the special case where we always work with perfect matchings. In this case, nothing is changed if {u, w} ∈ Mv as deleting {u, w} from Mv would destroy the property of having a perfect matching.

Finally, we can describe a variant of the (1+1) EA (see Algorithm 22) that works in the genotype space. Possible solutions are represented as adjacency list matchings. The mutation operator carries out sequentially a number of

 + 1 local operations, where
 is chosen from a Poisson distribution with

parameter λ = 1 to produce an offspring M .

144

9 Eulerian Cycles

9.2.2 Runtime Analysis

We first consider (1+1) EAM which always works with a perfect matching.

A perfect matching represents different cycles in the phenoype that have to be joined during the optimization process. We are not allowed to produce

solutions consisting of unmatched vertices in this case. Hence, only local operations due to Case 5 in Algorithm 21 are executed. As there is a 1 ↔ 1

correspondence, between matchings and walk covers we identify a matching

 M with its walk cover C.

Theorem 9.4. The expected optimization time of (1+1) EAM working with perfect matchings is O(m log m) .

 Proof. The algorithm works at each time step with a perfect matching. All walks are cycles. Hence, only the number of different cycles determines the fitness. Assume that the number of cycles of the current solution M is r. We want to compute a lower bound on the probability of obtaining a matching

of at most r − 1 cycles in the next step and use the method of fitness-based partitions (see Section 4.2.1) according to the different possible values of r afterwards.

To reduce the number of cycles, the mutation operator has to join two

cycles into one. We know that each cycle shares at least one vertex v with another cycle as the graph is Eulerian. Consider such a vertex v and assume that s(v) cycles c 1 , . . . , cs(v), s ≥ 2, have this vertex in common. We count the number of pairs (u, w) in Av such that the edges {u, v} and {v, w} are in different cycles of c 1 , . . . , cs(v). Let di be the number of vertices in ci, 1 ≤ i ≤

 s(v), that are incident to vertex v. We know that d s(v)

 i ≥ 2 and

 d

 i=1

 i = d(v).

The total number of pairs (u, w) for list Av is d(v)2, and the number of pairs where both vertices belong to cycle ci is d 2. Hence, the number of pairs that i

are in different cycles is

 s(v)

 d(v)2 −

 d 2 ≥ s(v) · d(v) .

 i

 i=1

Therefore, the probability that two cycles sharing the vertex v are joined is at least

 s(v)

 s(v) · d(v) ·

1

=

 .

2 d(v) m

2 m

Let V ⊆ V be the set of vertices that are contained in at least two of the

cycles given by M . Clearly,

 v∈V s(v) ≥ r. This implies that the probability

of joining two of the r cycles in the next step is at least r/(2 m). A perfect matching consists of at most m/ 3 cycles. Using the method of fitness-based partitions, the expected optimization time is upper bounded by

 m/ 3

 2 em/r = O(m log m) .

 r=2

9.2 Adjacency List Matchings

145

When working with perfect matchings during the whole optimization pro-

cess, the evolutionary algorithm has to join the different cycles and produces an Eulerian cycle in expected time O(m log m). This shows that joining cycles is much easier for the representation by adjacency list matchings than by the standard approach, which uses a permutation of the edges.

The general approach for an evolutionary algorithm using adjacency list

matchings would be to start with an arbitrary matching and evolve this into a perfect matching describing an Eulerian cycle. We want to examine the

runtime of this approach in the following.

Theorem 9.5. The expected optimization time of (1+1) EAM working with arbitrary matchings is O(Δ(G) m log m) , where Δ(G) denotes the maximum degree of the given input graph G.

 Proof. Let M be a matching whose corresponding cover C has fitness f (C) =

 r, 1 ≤ r ≤ m. In the following, we show that there are r/ 2 operations, where each one improves the fitness of C by at least 1 and happens with probability Ω(

 k

). Afterwards, we use the method of fitness-based partitions to obtain

 mΔ(G)

the upper bound on the expected optimization time.

We distinguish between paths and cycles of the matching M and examine how to improve the fitness of the current solution. First, we consider the case of a path. Let u be an end vertex of such a path and Av the list in which u is not matched. The number of vertices in Av is even, which implies that there is another unmatched vertex w in Av. Setting Mv = Mv ∪ {u, w} reduces the number of walks by 1. Consider the case of a cycle defined by M . As G is Eulerian, there exists a least one vertex v in the cycle which is also contained in another path or cycle. Hence, there exists a mutation that connects the

cycle to another component and reduces the fitness by at least 1.

As each of the r walks has at least one local operation that joins two components, the number of different mutations leading to an improvement is

at least r/ 2 . Hence, f (C) = r implies that the probability of an improvement in the next step is Ω(

 r

). Using the method of fitness-based partitions

 Δ(G) m

according to the different values of r, the expected optimization time is upper bounded by O(mΔ(G) log m).

Conclusions

The Eulerian cycle problem is a fundamental problem in graph theory belong-

ing to the class of arc routing problems. Several important problems belonging to this class are difficult and stochastic search algorithms have a good chance of being competitive on these problems. We examined how such algorithms

working with different representations of possible solutions can deal with the basic Eulerian cycle problem. Our results showed that a general approach representing possible solutions by a permutation of the edges of the input graph

146

9 Eulerian Cycles

leads to an expected optimization time when using jump operations in the

mutation operator. Later on, we examined a more problem-specific represen-

tation based on adjacency list matchings and showed that this leads provably to more efficient stochastic search algorithms.

Part III

Multi-objective Optimization

10

Multi-objective Minimum Spanning Trees

In this chapter, we analyze multi-objective evolutionary algorithms (MOEAs) on an NP -hard multi-objective combinatorial optimization problem, namely the multi-objective minimum spanning tree problem. Many successful evolutionary algorithms have been proposed for this problem (Knowles and Corne,

2001; Zhou and Gen, 1999). In Chapter 5, we showed that stochastic search algorithms are able to compute minimum spanning trees in expected polynomial

time. The analysis is based on the investigation of the expected multiplicative distance decrease (where the distance is measured as the weight difference

between the current solution and an optimal one) and serves as a starting

point for the analysis of the multi-objective minimum spanning tree problem.

The problem of computing multi-objective minimum spanning trees can

be stated as follows. Given an undirected connected graph G = (V, E) on n vertices and m edges and for each edge e ∈ E a weight vector w(e) =

(w 1(e) , . . . , wk(e)), where wi(e), 1 ≤ i ≤ k, is a positive integer, the goal is to find for each objective vector q of the Pareto front F a spanning tree s with w(s) = q. In the case of at least two weight functions, the problem is NP -hard (see Ehrgott, 2005). Papadimitriou and Yannakakis (2000) have given a fully polynomial-time approximation scheme (FPTAS) to compute

an -approximation of the Pareto front. This algorithm is based on a pseudo-polynomial algorithm given by Barahona and Pulleyblank (1987). The results given in these papers make use of matrix multiplication algorithms and do not give insights into how the problem may be tackled by using stochastic search algorithms. In this chapter, we consider the case k = 2 and examine which parts of the Pareto front can be computed by simple MOEAs in pseudo-polynomial time. The results we present are due to Neumann (2007).

The outline of this chapter is as follows. In Section 10.1, we introduce the algorithms that are subject to our investigations. In Section 10.2, we show that the extremal points give a 2-approximation of the Pareto front. We analyze GSEMO in Section 10.3 with respect to the expected time until it has produced a population that includes for each extremal point of the Pareto

front a corresponding spanning tree, and finish with some conclusions.

F. Neumann, C. Witt, Bioinspired Computation

149

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 10, © Springer-Verlag Berlin Heidelberg 2010

150

10 Multi-objective Minimum Spanning Trees

10.1 Representation

Again, we use the edge set encoding for our algorithms. The search space

equals S = { 0 , 1 }m, where each position corresponds to one edge. A search point s corresponds to the choice of all edges ej, 1 ≤ j ≤ m, where sj = 1

holds. Let w max be the maximum weight of w

, w

 i

 i, w max = max w max

 i

min =

min w max, and w

 i

ub = n 2 · w max. The fitness of an individual s is described by a vector f (s) = (f 1(s) , . . . fk(s)) with fi(s) := ((c(s) , e(s) − (n − 1) , wi(s)) ,

where w

 m

 i(s) :=

 wj s

is the value of edge e

 j=1

 i

 j and wj

 i

 j with respect to

the function wi, c(s) is the number of connected components in the graph described by s, and e(s) is the number of edges in this graph. Each fi should be minimized with respect to the lexicographic order. Note that the number

of connected components and the number of chosen edges is the same for a

particular search point s in each objective function fi.

The fitness function f is a generalization of the first fitness function used for RLS1 , 2 and (1+1) EA

b

b in Chapter 5 to the multi-objective case. Again, the

most important issue is to decrease c(s) until we have graphs connecting all vertices. The next issue is to decrease e(s) under the condition that s describes a connected graph. Finally, we look for Pareto optimal spanning trees.

The fitness function f penalizes the number of connected components as well as the extra connections. This is not necessary since breaking a cycle decreases the fitness value. Therefore, we are also interested in the fitness function f (s) = (f (s) , . . . f (s)) with 1

 k

 f (s) := ((c(s) , w

 i

 i(s)) ,

which generalizes the second function of Chapter 5 to the multi-objective case.

Note that the fitness functions f and f compute the same objective vector if s describes a spanning tree. This implies that the Pareto fronts for a given connected graph G contain the same objective vectors. As both fitness functions take only the weight vectors on the edges into account if s is a spanning tree, the Pareto sets of f and f consist of all Pareto optimal spanning trees.

When considering a spanning tree T , we can create another spanning tree T by integrating an edge e ∈ E\T into T and removing one edge of the created cycle Cyc(T, e). Using such local changes we can transform a spanning tree T

into another spanning tree S. The properties of such local changes have been examined in detail in Section 5.2. We will also make use of these results to obtain upper bounds on the runtime of simple MOEAs for the multi-objective

minimum spanning tree problem.

10.2 Extremal Points of the Convex Hull

Let F be the Pareto front of a given instance. If we consider the bi-objective problem, the convex hull of F , denoted by conv (F), is a piecewise linear

10.2 Extremal Points of the Convex Hull

151

Fig. 10.1. The convex hull of the Pareto front F

function (see Figure 10.1). Note that for each spanning tree T on the convex hull there is a λ ∈ [0 , 1] such that T is a minimum spanning tree with respect to the single weight function λw 1 + (1 − λ) w 2 (Knowles and Corne, 2001). We will use this in Section 10.3 to transform an arbitrary spanning tree S into a desired Pareto optimal spanning tree T on conv (F) using Theorem 5.1.

Let q 1 and qr be the Pareto optimal objective vectors with minimal weight with respect to f 1 and f 2, respectively. We denote by gi, 1 ≤ i ≤ r − 1, the linear functions with gradients mi describing conv (F). Then i < j holds for two linear functions gi and gj iff mi < mj. Hence, the linear functions are ordered with respect to their increasing gradients. Let qi = (xi, yi), 2 ≤ i ≤

 r − 1, be the intersecting point of gi− 1 and gi. Our aim is to analyze the expected time until a simple MOEA has produced a population that includes

a spanning tree for each vector of F = {q 1 , q 2 , . . . , qr}. We call the vectors of F the extremal points of the Pareto front.

The general idea of evolutionary algorithms is to create good approxi-

mations of optimal solutions for a given task. In the case of multi-objective problems, the task is to approximate the Pareto front.

Definition 10.1. A solution x is called a c-approximation of a solution x∗

 if f 1(x) ≤ c · f 1(x∗) and f 2(x) ≤ c · f 2(x∗) holds. We also call the vector (f 1(x) , f 2(x)) a c-approximation of the vector (f 1(x∗) , f 2(x∗)) in this case. A set P of solutions is called a c-approximation of the Pareto front F if there exists for each solution x∗ of the Pareto set a solution x in P that is a c-approximation of x∗.

In the case of the minimization of two arbitrary functions with positive

function values, the extremal points of the Pareto front give a 2-approximation of the Pareto front. This is shown in the following theorem.

152

10 Multi-objective Minimum Spanning Trees

Fig. 10.2. Possible Pareto optimal vectors between two extremal points qi and qi+1

Theorem 10.2. In the minimization of two objective functions with positive objective values, a set P containing for each extremal point a solution is a 2 -approximation of the Pareto front.

 Proof. Consider the different possibilities for an arbitrary solution x∗ of the Pareto set together with its Pareto optimal objective vector q = (q 1 , q 2), which is not an extremal point. Assume that xi < q 1 < xi+1 holds for some i ∈ { 1 , . . . , r − 1 }. This has to be the case because otherwise q would be dominated or the extremal points are not Pareto optimal. The situation for

the two extremal points qi and qi+1 is shown in Figure 10.2. If q 2 ≥ yi, q is not Pareto optimal as it is dominated by qi. Let dx = xi+1 −xi and dy = yi+1 −yi.

Consider the vector s = (s 1 , s 2) with s 1 = xi + (dx/ 2) and s 2 = yi − (dy/ 2) in the objective space. As a 2-approximation of a vector q that dominates a vector q is also a 2-approximation of q, it is not necessary to consider the vectors dominated by s. Note that s is a point on the linear function gi which separates the possible vectors that have to be considered into two classes, Class 1 and Class 2. Class 1 includes all vectors q with xi < q 1 < xi + dx/ 2

and yi − dy/ 2 < q 2 < yi, and in addition the vector s. Class 2 includes all vectors q with xi + dx/ 2 < q 1 < xi+1 and yi+1 < q 2 < yi − dy/ 2.

Clearly, xi ≤ q 1 and yi+1 ≤ q 2. In the following, we show that if q belongs to Class 1, yi ≤ 2 · q 2 holds and that if q belongs to Class 2, xi+1 ≤ 2 · q 1

holds. Hence, either qi or qi+1 is a 2-approximation of q.

If q belongs to Class 1 then q 1 ≤ xi + (dx/ 2) holds. In this case, we get q 2 ≥ yi + (q 1 − xi) · mi

 ≥ yi + (dx/ 2) · mi

 yi+1 − yi

= yi + (dx/ 2) xi+1 − xi

= yi + (1 / 2)(yi+1 − yi) ,

which implies that 2 · q 2 ≥ 2 yi + yi+1 − yi ≥ yi.

If q belongs to Class 2 then q 2 < yi+1 − (dy/ 2) holds. In this case, we get

10.3 Analysis of GSEMO

153

 q 1 ≥ xi+1 + (q 2 − yi+1) · (1 /mi)

 ≥ xi+1 − (dy/ 2) · (1 /mi)

 xi+1 − xi

= xi+1 − (dy/ 2) yi+1 − yi

= xi+1 − (1 / 2)(xi+1 − xi) ,

which implies that 2 · q 1 ≥ 2 xi + xi+1 − xi ≥ xi+1.

10.3 Analysis of GSEMO

In GSEMO, the first search point is chosen uniformly at random from the

underlying search space. All results in this section hold for an arbitrary initial solution.

We start by analyzing GSEMO until it produces a population consisting

of solutions which are connected graphs.

Lemma 10.3. GSEMO working on the fitness function f or f constructs a population consisting of connected graphs in expected time O(m log n) .

 Proof. Due to the fitness functions, no steps increasing the number of connected components are accepted. The current population P consists at each time step of solutions having the same number of connected components, as

otherwise the solution s with the smallest number of connected components would dominate a solution with a larger number of connected components

in P . The decomposition of the objective space due to the number of connected components is shown in Figure 10.3. If P consists of search points with
,
 ≥ 2, components, there are for each search point in P at least

 − 1 edges whose inclusion decreases the number of connected components.

The probability of a step decreasing the number of connected components

is therefore at least 1 · − 1 , and its expected waiting time is bounded by e

 m

 O(m/(
 − 1)). After we have decreased the number of connected components

for one solution, all solutions with more connected components are deleted

from the population. Hence, the expected time until the population consists only of solutions describing connected graphs is upper bounded by

1

 em

1 + . . . +

= O(m log n) .

 n − 1

Now we bound the expected time until P includes corresponding solutions for the objective vectors q 1 and qr. Later, these solutions will serve as a basis for collecting solutions for the remaining extremal points.

Lemma 10.4. GSEMO working on the fitness function f constructs a population that includes for each of the objective vectors q 1 and qr a spanning tree in expected time O(m 2 nw min(log n + log w max)) .

154

10 Multi-objective Minimum Spanning Trees

Fig. 10.3. Decomposition of the objective space due to the number of connected components

 Proof. Using Lemma 10.3, we work under the assumption that P consists of individuals describing connected graphs. In this case, all individuals of P

have the same number of edges. If there are N edges in each solution there are N − (n − 1) edges whose exclusion decreases the number of edges without increasing the number of connected components. Hence, the probability of

decreasing the number of edges in the next step is at least 1 · N−(n− 1) , and e

 m

we can bound the expected time to create a population consisting of spanning trees by

1

 em

1 + . . . +

= O(m log(m − n + 1) = O(m log n) .

 m − (n − 1)

If P consists of spanning trees, the population size is bounded from above by (n− 1) w min because there is only one spanning tree for each value of one single function in the population. We show an upper bound on the expected time to create a population including a spanning tree with vector q 1. The expected optimization time of (1+1) EAb in the case of one cost function is bounded

by O(m 2(log n + w max)); see Theorem 5.7. We are working with a population of size O(nw min) and consider in each step the individual with the smallest weight with respect to the function w 1. In each step this individual is chosen

with probability Ω

1

. Following the ideas in the proof of Theorem 5.7,

 nw min

we can upper bound the expected time until P includes a spanning tree having minimal weight with respect to w 1 by O(m 2 nw min(log n + log w max)).

1

It remains to bound the expected time to create, from a population with a

minimal spanning tree S with respect to w 1, a population with a spanning tree T which is minimal with respect to w 1 and also Pareto optimal. If |S \ T | = k

10.3 Analysis of GSEMO

155

holds, we can consider pairs of edges si, ti with si ∈ S \ T and ti ∈ T \ S

due to the bijection given by Theorem 5.1. As S and T are both minimum spanning trees with respect to w 1, w 1(si) = w 1(ti) holds for i = 1 , . . . k because otherwise we are able to improve T or S with respect to w 1. This contradicts the assumption that S and T are both minimum spanning trees with respect to w 1. w 2(ti) ≤ w 2(si) holds for i = 1 , . . . , k because otherwise we are able to improve T with respect to w 2 without changing the value of w 1 – a contradiction to the assumption that T is Pareto optimal. Hence, there are k exchange operations which turn S into T and the expected time to create T

from S is bounded by O(m 2 nw min(log n + log w max)) using the ideas in the 2

proof of Theorem 5.7.

Altogether we obtain an upper bound of O(m 2 nw min(log n + log w max +

1

log w max)) = O(m 2 nw

2

min(log n + log w max)) to construct a spanning tree with

vector q 1. After we have constructed a population including a spanning tree for q 1, we can upper bound the expected time to create a population including for each of the vectors q 1 and qr a spanning tree by O(m 2 nw min(log n+log w max)) using the same arguments as before, and this proves the lemma.

We give a similar bound for the fitness function f . The main difference is that we can only guarantee a population size bounded by O(mw min).

Lemma 10.5. GSEMO working on the fitness function f constructs a population that includes for each of the objective vectors q 1 and qr a spanning tree in expected time O(m 3 w min(log n + log w max)) .

 Proof. We consider the expected time to create a spanning tree with vector q 1. At each time step, the population size is bounded by mw min, because there is only one search point for each value of one single function in the population. We consider in each step the connected graph with the minimal

weight with respect to w 1 in P . Using the ideas of Lemma 10.4, a connected subgraph with minimal costs with respect to w 1 is constructed in expected time O(m 3 w min(log n + log w max)). This is a spanning tree because otherwise 1

the weight of w 1 can be decreased. After that, we consider the spanning tree with minimal weight with respect to w 1 in P . We are in a position to minimize the weight of this spanning tree with respect to w 2 and this can be done in expected time O(m 3 w min(log n + log w max)) using the ideas of Lemma 10.4.

2

The expected time to create a spanning tree with vector qr can be bounded in the same way.

In the following, we work under the assumption that F = F holds, which means that the Pareto front consists only of extremal points. In this case

we call the Pareto front strongly convex. Let d(T, T) = |T \ T | denote the distance of two spanning trees T and T , which equals the minimal number of exchanges of two edges for constructing T from T .

Lemma 10.6. Assume that the Pareto front F is strongly convex. For each spanning tree T with w(T) = qi, 1 ≤ i ≤ r − 1 , there is a spanning tree T

 with w(T) = qi+1 and d(T, T) = 1 .

156

10 Multi-objective Minimum Spanning Trees

Fig. 10.4. The strongly convex Pareto front and the classification of exchange operations creating a spanning tree T with vector qi+1 from a spanning tree T with vector qi.

 Proof. As T and T are different, d(T, T) > 0 holds. We assume that T is a spanning tree with vector qi+1, which has minimal distance from T . Working under the assumption that d(T, T) > 1 holds for all spanning trees T with vector qi+1, we show a contradiction. We can apply Theorem 5.1 because for each spanning tree T of the convex hull conv(F) there is a λ ∈ [0 , 1] such that T is a minimum spanning tree for the single weight function λw 1 + (1 −

 λ) w 2. We partition the different exchange operations exchange(e, e) inserting e and deleting e due to Theorem 5.1 into four groups (see Figure 10.4).

Let d = exchange(e, e) and w(d) = (w 1(e) − w 1(e) , w 2(e) − w 2(e)) be the vector describing the weight changes of this operation. d belongs to group 1

if w 1(d) < 0 and w 2(d) > 0, to group 2 if w 1(d) ≥ 0 and w 2(d) ≥ 0, to group 3 if w 1(d) < 0 and w 2(d) < 0, and to group 4 if w 1(d) > 0 and w 2(d) < 0.

There is no exchange operation d with w(d) = (0 , 0) because otherwise T is not a spanning tree with vector qi+1 and minimal distance from T . All other operations belonging to group 2 are not possible because the remaining operations applied to T would construct a spanning tree dominating T – a contradiction to the assumption that T is Pareto optimal. Operations belonging to group 3 are not possible because they would construct a spanning tree dominating T . Let qi = (xi, yi), 1 ≤ i ≤ r. There is no exchange operation belonging to group 4 which constructs a spanning tree T with value xi < w 1(T) < xi+1 because qi+1 lexicographically follows qi in the Pareto front. There is also no operation belonging to group 4 constructing a spanning tree with value w 1(T) ≥ xi+1 and w 2(T) ≥ yi+1 because otherwise the remaining operations applied to T construct a spanning tree which dominates T – a contradiction to the assumption that T is Pareto optimal.

Let M be the set of exchange operations constructing T from T , M 1 ⊆ M

be the set of operations belonging to group 4, and M 2 ⊂ M be the subset of operations belonging to group 1. Note that M 1 ∪ M 2 = M holds due to

10.3 Analysis of GSEMO

157

previous observations. We assume that M consists of more than one operation.

As xi+1 > xi holds, M 1 is not empty. Let v = (vx, vy) be the vector of the spanning tree constructed when all operations of M 1 are applied to T .

 vx > xi+1 and vy < yi+1 holds because otherwise we produce a spanning tree with vector qi+1 by one single operation (a contradiction to d(T, T) > 1), construct a spanning tree dominating T , or the remaining operations applied to T construct a spanning tree dominating T . We consider the linear function tv with the gradient mv intersecting the points qi+1 and v. As F is strongly convex, mv ≥ mi > mi− 1 holds. To construct a spanning tree with vector qi+1, M 2 cannot be empty. Let w = (wx, wy) be the vector of the spanning tree constructed when the operations of M 2 are applied to T and let tw be the linear function with gradient mw defined by qi and w. As F is strongly convex, mw ≤ mi− 1 holds, which implies that mv > mw. Let z = (zx, zy), zx < 0 , zy > 0, be the vector such that qi + v + z = qi+1. As the operations of M applied to T construct T with vector qi+1, wx = zx must hold. Taking the gradient mw into account, we can compute the value of the second component as

 vy + mw · zx > vy + mv · zx = yi+1 .

A contradiction to the assumption that the operations of M applied to T

construct a spanning tree T with vector qi+1. Hence, T has to be constructed from T by one single operation belonging to group 4.

Let |F | be the number of Pareto optimal objective vectors. Note that

 |F | ≤ (n − 1) w min holds. In the following, we show an upper bound on the expected time until the population P includes a corresponding spanning tree for each vector of a strongly convex Pareto front F .

Theorem 10.7. The expected time until GSEMO working on the fitness function f or f has constructed a population that includes a spanning tree for each vector of a strongly convex Pareto front F is bounded by O(m 2 nw min(|F | +

log n + log w max)) or O(m 3 w min(|F | + log n + log w max)) , respectively.

 Proof. We consider the fitness function f . Due to Lemma 10.4, the expected time to create a population including spanning trees for the Pareto optimal vectors q 1 and qr is bounded by O(m 2 nw min(log n + log w max)). We assume that the population includes a spanning tree for each qj, 1 ≤ j ≤ i. For each spanning tree T with vector qi, there exists a spanning tree T with vector qi+1 and d(T, T) = 1. The probability of choosing the individual representing T in the next mutation step is at least

1

because the

(n− 1) w min

population size is bounded by (n − 1) w min. As d(T, T) = 1 holds for at least one spanning tree T with vector qi+1, the probability of constructing such a T , after having chosen the individual x describing T , is at least

1

 m− 2

1 − 1

 ≥ 1 . Hence, the expected time to create a spanning tree

 m 2

 m

 em 2

with vector qi+1 is bounded by O(m 2 nw min). As there are |F | Pareto optimal vectors, the expected time until GSEMO constructs a spanning tree for

158

10 Multi-objective Minimum Spanning Trees

Fig. 10.5. Situation to compute the next extremal point

each Pareto optimal vector of a strongly convex Pareto front is bounded by

 O(m 2 nw min(|F | + log n + log w max)). The ideas can be easily adapted to f

using Lemma 10.5 and the upper bound mw min on the population size.

We consider the general case now and give an upper bound on the expected

time until GSEMO has constructed a population including a spanning tree for each extremal point q ∈ F of an arbitrary Pareto front F. Let C = conv (F) be the set of objective vectors on the convex hull of F . Note that |C| ≤

(n − 1) · w max holds.

Theorem 10.8. The expected time until GSEMO working on the fitness function f or f has constructed a population that includes a spanning tree for each vector q ∈ F is bounded by O(m 2 nw min(|C| + log n + log w max)) or O(m 3 w min(|C| + log n + log w max)) , respectively.

 Proof. Again, we consider the fitness function f and adapt the ideas to achieve the upper bound for f . By Lemma 10.4, the population P includes spanning trees for the vectors q 1 and qr after an expected number of O(m 2 nw min(log n + log w max)) steps. To transform a spanning tree of conv(F) into another spanning tree of conv(F), we use the set of exchange operations described by Theorem 5.1. Let T be a spanning tree with vector qi, 1 ≤ i ≤ r − 2, and suppose that T is a spanning tree with vector qi+1 and minimal distance to T . We denote by M the set of exchange operations classified as in the proof of Lemma 10.6 that construct T from T . Using the

10.3 Analysis of GSEMO

159

arguments in the proof of Lemma 10.6, there are no exchanges belonging to group 2 or 3 in M . We show that each subset of M applied to T constructs a spanning tree on gi. Suppose that a subset M ⊆ M of the operations constructs a spanning with a vector v not lying on gi. This vector has to lie above gi because otherwise it is outside of conv(F). To construct a spanning tree with vector qi+1 on gi, the operations of M = M \ M have to construct a spanning lying below gi – a contradiction to the assumption that gi is part of conv(F).

We consider the spanning tree T with the lexicographic greatest vector v = (vx, vy) on gi in the population (see Figure 10.5). If v = qi+1, T can be constructed from T by a set N of exchanges of two edges, where each single exchange operation executed on T yields a spanning tree with a vector on gi. As vx < xi+1 holds, there is at least one operation in this set N

which constructs a spanning tree on gi with vector s = (sx, sy) where vx < sx ≤ xi+1 holds. Such a spanning tree is a spanning tree of conv(F). Let Ci be the set of Pareto optimal vectors on gi, 1 ≤ i ≤ r − 2, excluding the lexicographic smallest vector and including the lexicographic greatest vector.

The expected time to construct a population including spanning trees for the vectors of {q 1 , . . . qi, qi+1 , qr} from a population P having spanning trees for the vectors of {q 1 , . . . , qi, qr}, 1 ≤ i ≤ r − 2 is therefore upper bounded by O(m 2 nw min |Ci|).

As |C| = 1+

 r− 2 |C

 i=1

 i| holds, the expected time, starting with a population

including spanning trees for q 1 and qr, to construct a population including a spanning tree for each vector of F is bounded by O(m 2 nw min |C|). Together with Lemma 10.4 we obtain the proposed bound.

To prove the upper bound for f , we use Lemma 10.5 and the upper bound of mw min on the population size. Together with previous ideas we obtain an upper bound of O(m 3 w min |C|) after constructing a population which includes spanning trees for q 1 and qr and this proves the theorem.

Conclusions

The multi-objective minimum spanning tree problem is one of the best-known

multi-objective combinatorial optimization problems. We have analyzed evo-

lutionary algorithms with respect to the expected time until they produce

solutions of the Pareto front. In the case of a strongly convex Pareto front, we have achieved a pseudo-polynomial bound on the expected time until the

population includes for each Pareto optimal objective vector a corresponding spanning tree. For an arbitrary Pareto front, we have considered the extremal points of the Pareto front. These points are of particular interest as they give a 2-approximation of the Pareto front. It has been shown that the population includes a solution for each extremal point after a pseudo-polynomial number of steps.

11

Minimum Spanning Trees Made Easier

In the previous chapter, we analyzed simple MOEAs on a given multi-objective optimization problem. In this chapter, we consider a multi-objective model of the minimum spanning tree problem. A single-objective model for the computation of minimum spanning trees has already been examined in Chapter 5.

Our goal is to show that sometimes single-objective optimization problems can be solved much more easily by using a multi-objective model of the problem.

This approach has opened a new research area in the field of multi-objective optimization and we want to discuss different results in the remainder of this book.

Sometimes, people try to turn multi-objective problems into single-objec-

tive ones, e.g., by optimizing a weighted sum of the fitness values of the single criteria. This may be useful in some applications but, in general, we do not obtain the information contained in the Pareto front and the corresponding search points. Many variants of evolutionary algorithms specialized for multi-objective optimization problems have been developed and applied, for a survey see the monographs of Deb (2001) and Coello Coello, Van Veldhuizen, and Lamont (2007). A conclusion from this discussion is that “multi-objective optimization is more (at least as) difficult than (as) single-objective optimization”. This is true at least if the fitness values for the different criteria are

“somehow independent”. Without such an assumption, there is no reason to

believe in the conclusion above.

The question arises about whether working in the more general framework

of multi-objective optimization can lead to better understanding of a given problem or help us design more efficient algorithms for single-objective problems. Note that many single-objective problems have additional constraints

that classify feasible and unfeasible solutions of the given search space. Such constraints can be relaxed such that additional objectives have to be optimized. Then the set of minimal elements contains the solution of the cor-

responding constrained single-objective problem. This has already been con-

sidered in the average case analysis of a well-known algorithm for the 0/1

knapsack problem. Beier and V¨

ocking (2004) have considered different input

F. Neumann, C. Witt, Bioinspired Computation

161

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 11, © Springer-Verlag Berlin Heidelberg 2010

162

11 Minimum Spanning Trees Made Easier

distributions for this problem and shown that the number of minimal ele-

ments in the objective space is polynomially bounded. This implies that the well-known algorithm of Nemhauser and Ullman (1969) has an expected polynomial runtime for these distributions. A welcome by-product of a successful multi-objective approach is more information (a set of minimal elements instead of only one specific element) with even less computational effort.

We discuss the following scenario. The considered problem is a single-

objective problem. It is possible to add some further criteria such that the Pareto front of the newly created multi-objective optimization problem is not too large and such that the solution of the multi-objective problem includes the solution of the single-objective problem. Solving the multi-objective problem instead of the single-objective problem implies computing the Pareto front instead of a single optimal value. Each considered search point contains more information than in the single-objective case since it contains also the fitness values for the additional criteria. At least in principle it is possible that this additional information improves the search behavior of evolutionary algorithms.

This would imply that for solving difficult single-objective optimization problems one should also think about the possibility of modeling the problems as generalized multi-objective optimization problems.

The purpose of this chapter is to show that the considered scenario is

not a fiction. We do not investigate artificial problems to support this claim but one of the combinatorial optimization problems contained in each textbook, namely the computation of minimum spanning trees. (Nobody should

expect that evolutionary algorithms computing minimum spanning trees beat

the well-known problem-specific algorithms.) In Chapter 5, we have already considered the runtime behavior of RLS1 , 2 and (1+1) EA

b

b on this problem.

In Section 11.1, we introduce the two-objective variant of the minimum spanning tree problem which is the subject of our investigations and distinguish it from other multi-objective variants of the minimum spanning tree

problem. In Section 11.2, we prove upper bounds on the expected optimization time of some evolutionary algorithms for multi-objective optimization

applied to our problems. It turns out that they are asymptotically smaller

than the lower bounds for the worst-case instances of simple evolutionary algorithms for the single-objective case. In order to investigate what happens for small problem dimensions and typical problem instances we present several

experimental results in Section 11.3. We finish with some conclusions.

11.1 A Two-Objective Model

In Chapter 5, we have considered RLS1 , 2 and (1+1) EA b

b for the minimum

spanning tree problem. We have penalized edge sets which do not describe

connected graphs (and in one model additionally, edge sets containing cycles) and have shown the following results:

11.2 Analysis of the Expected Optimization Time

163

•

The expected optimization time of RLS1 , 2 and (1+1) EA

b

b is O(m 2(log n +

log w max)) where w max is the largest weight of the considered graph.

•

There are graphs with n vertices, m = Θ(n 2) edges, and w max = Θ(n 2) such that the expected optimization time of RLS1 , 2 and (1+1) EA

b

b equals

 Θ(m 2 log n).

We discuss the reason for the expected optimization time of RLS1 , 2 and b

(1+1) EAb. If a search point describes a non-minimum spanning tree, 1-bit

flips are not accepted. The new search point describes either an unconnected graph or a connected graph with a larger weight. We have to wait until a mutation step includes an edge and excludes a heavier one from the newly created cycle. The expected waiting time for a specified 2-bit flip equals Θ(m 2).

As already mentioned, the considered algorithms penalize the number of

connected components. This motivates the following two-objective optimiza-

tion model of the minimum spanning tree problem.

•

The search space S equals { 0 , 1 }m for graphs on m edges and the search point s describes an edge set.

•

The fitness function f : S → R2 is defined by f (s) = (c(s) , w(s)) where c(s) is the number of connected components of the graph described by s and w(s) is the total weight of all chosen edges.

•

Both objectives have to be minimized.

We state some simple properties of this problem that are direct conse-

quences of the presented model.

•

The parameter c(s) is an integer from { 1 , . . . , n}.

•

The first property implies that the populations of SEMO and GSEMO

contain at most n search points and the Pareto front contains exactly n elements.

•

The parameter w(s) is an integer.

We have to be careful when discussing this model of the minimum spanning

tree problem. In Chapter 10, we have discussed another type of multi-objective minimum spanning tree problem. Each edge has k different types of weights, i.e., w(e) = (w 1(e) , . . . , wk(e)). Unconnected graphs are penalized, and the aim is to minimize f (s) where s is not legal if s does not describe a connected graph, and f (s) is the sum of all w(ei) where si = 1 otherwise. Similarly to other optimization problems, this multi-objective variant of a polynomially solvable problem is NP -hard.

11.2 Analysis of the Expected Optimization Time

The essential steps are 1-bit flips. In SEMO and GSEMO the initial search

point is chosen uniformly at random from { 0 , 1 }m. We discuss another possibility.

164

11 Minimum Spanning Trees Made Easier

•

The first search point is s = 0 m describing the empty edge set. This is quite typical, e.g., for simulated annealing. We call the variants of SEMO

and GSEMO using this initialization SEMOz and GSEMOz, respectively.

Our analysis is simplified by knowing that P contains 0 m. Note that f (0 m) = (n, 0) belongs to the Pareto front and 0 m is the only search point s with c(s) = n. First, we investigate the expected time until the population contains the empty edge set when starting with an arbitrary initial solution of the considered search space.

One might expect that we only have to wait until all edges of the initial

search point s have been excluded. This is not true. It is possible that we accept the inclusion of edges since this decreases the number of connected

components (although it increases the total weight). Later, we may exclude

edges of the new search point s without increasing the number of connected components. It is possible to construct a search point s which dominates s.

Then s is eliminated and all search points in the population (perhaps only one) have more edges than s.

Hence, the situation is more complicated. Instead of the minimal number

of edges of all search points in P , we analyze the minimal weight of all search points in P . One search point s∗ with minimal weight has the largest number of connected components (otherwise, the search point s∗∗ with c(s∗∗) > c(s∗) is dominated by s∗ and will be excluded from P). We analyze w(s∗) and apply the method of the expected multiplicative distance decrease (see Section 4.2.3)

and measure distance by w(s∗). We have reached the aim of our investigations if w(s∗) = 0 since this implies s∗ = 0 m. After initialization, w(s∗) ≤ W :=

 w 1 + · · · + wm ≤ m · wmax.

Lemma 11.1. The expected time until the population of SEMO or GSEMO

 contains the empty edge set is O(mn(log n + log wmax)) .

 Proof. We only investigate steps where the solution with minimal weight s∗

is chosen for mutation. The probability of such a step is always at least 1 /n since |P | ≤ n. Hence, the expected time is only by a factor of at most n larger than the expected number of steps where s∗ is chosen.

By renumbering, we may assume that s∗ has chosen the first k edges.

We investigate only steps flipping exactly one bit. This has probability 1 for SEMO and probability at least e − 1 for GSEMO. These steps are accepted if they flip one of the first k edges. If the edge i is flipped, we obtain a search point whose weight is w(s∗) − wi and the minimal weight has been decreased by a factor of 1 − wi . The average factor of the weight decrease equals w(s∗)

⎛

⎞

1

⎝

(1 −

 wi) +

1⎠ = 1 − 1

 m

 w(s∗)

 m

1 ≤i≤k

 k+1 ≤i≤m

if the choice of a non-existing edge is considered as a weight decrease by

a factor of 1. The result 1 − 1 does not depend on the population. After m

11.2 Analysis of the Expected Optimization Time

165

 M := (ln 2) · m · (log W + 1) steps choosing the current s∗, the expected weight of the new s∗ is bounded above by (1 − 1 /m) M · W ≤ 1 . Applying 2

Markov’s inequality, the probability that w(s∗) ≥ 1 is bounded above by 1 / 2. Hence, w(s∗) < 1 holds with probability at least 1 / 2. Since weights are integers, w(s∗) < 1 implies w(s∗) = 0. The expected number of phases of length M until w(s∗) = 0 is at most 2. Hence, altogether the expected waiting time for s∗ = 0 m is bounded above by 2 · n · M = O(mn(log n + log wmax)) for SEMO. The corresponding value for GSEMO is larger at most by a factor

of 3.

One may expect that the upper bound given in Theorem 11.1 is not exact for many graphs and starting points.

After having analyzed the expected time to produce a population that

includes the empty edge set, we analyze to expected optimization under the

condition that the empty edge set is included in the population.

Theorem 11.2. The expected optimization time of SEMOz or GSEMOz is O(mn 2) .

 Proof. As long as the algorithm has not reached its goal, we consider the smallest i such that the population contains for each j, i ≤ j ≤ n, a Pareto optimal search point sj with f (sj) = (j, w(sj)). This implies that the graph described by sj consists of j connected components and has the minimal possible weight among all possible search points describing graphs with j connected components. After initialization, the population includes 0 m which has the smallest weight among all search points representing graphs with

 n connected components. Hence, i is well defined. The search point sj is only excluded from the population if a search point s with f (s) = f (s j

 j

 j) is

included in the population. Hence, the crucial parameter i can only decrease and the search is successful if i = 1.

Finally, we investigate the probability of decreasing i. It is well known that a solution with i − 1 components and minimal weight can be constructed from a solution with i components and minimal weight by introducing the lightest edge that does not create a cycle. Therefore, it is sufficient to choose si for mutation (probability at least 1 /n) and to flip exactly one bit of a lightest edge connecting two components in the graph described by si (probability at least 1 /m for SEMOz and at least 1 /(e m) for GSEMOz). Hence, the expected waiting time to decrease the parameter i is bounded above by O(nm). After at most n − 1 of such events the search is successful.

Corollary 11.3. If the weights are bounded above by 2 n, SEMO and GSEMO

 find the Pareto front in the two-objective variant of the minimum spanning tree problem in an expected number of O(mn 2) rounds.

For dense graphs, this bound beats the bound O(m 2 log n) for the application of RLS1 , 2 and (1+1) EA

b

b to the single-objective variant of the minimum

spanning tree problem.

166

11 Minimum Spanning Trees Made Easier

11.3 Experimental Results

The theoretical results are asymptotic ones. They reveal differences for worst-case instances and large m. We add experimental results that show what happens for typical instances and reasonable m. In order to compare randomized algorithms on perhaps randomly chosen instances, one may compare the

average runtimes, but these values can be highly influenced by outliers. We have no hypothesis about the probability distribution describing the random runtime for constant input length. Hence, only parameter-free statistical tests can be applied. We apply the Mann-Whitney test (MWT) (Swinscow and

Campbell, 2001) that ranks all observed runtimes. Small ranks correspond to small runtimes. If the average rank of the results of algorithm A 1 is smaller than that of A 2, MWT decides how likely it can be that such a difference or a larger one can occur under the assumption that A 1 is not more efficient than A 2. If the corresponding p-value is at most 0 . 05, we call the result significant, for 0 . 01 very significant, and for 0 . 001 highly significant. The statistical evaluation has been performed with the software SPSS. The tables contain the

considered class of graphs, the average rank AR of different algorithms, and the p-value for the hypothesis that the algorithm with the smaller AR-value is likely to be faster.

The experiments consider the following graph classes.

•

uniform

 n

 n: these are complete graphs with m =

edges and the weights

2

are chosen independently and uniformly at random from { 1 , . . . , n}.

•

uniformbd n: each possible edge is chosen with probability 3 /n leading to a small average degree of 3, unconnected graphs are rejected and the

construction is repeated, and the weights of existing edges are chosen as

for uniform n.

•

plane : the n vertices are placed randomly on the points of the two-n

dimensional grid { 1 , . . . , n} × { 1 , . . . , n}, and the weight of an edge is the rounded Euclidean distance between the vertices.

•

planebd : the n vertices are placed as for plane

but each edge is only

 n

 n

considered with probability 3 /n as for uniformbd n.

These graph classes reflect different choices of weights (one non-metric and one metric) and the possibility of dense and sparse graphs. Our algorithms are RLS1 , 2, (1+1) EA

b

b, SEMO, and GSEMO. The index z denotes the case where

the initial search point is the empty edge set (or all-zero string). Without an index the initial search point is chosen uniformly at random. The runtimes

of RLS1 , 2 and (1+1) EA

b

b denote the number of fitness evaluations until a

minimum spanning tree is constructed. The runtimes of SEMO and GSEMO

denote the number of rounds until, in one experiment, P contains a minimum spanning tree or until f (P) equals the Pareto front. In each experiment, the compared algorithms are considered for 100 runs leading to an average rank

of 100 . 5.

11.3 Experimental Results

167

Table 11.1. Comparison of SEMO and GSEMO with different initial solutions until they have computed the Pareto front

Class

AR SEMOz AR SEMO p-value AR GSEMOz AR GSEMO p-value

uniform12

92.76

108.25

0.058

89.35

111.66

0.006

uniform16

83.51

117.49

 < 0 . 001

91.28

109.72

0.024

uniform20

99.12

101.89

0.735

94.21

106.80

0.124

uniform24

98.01

102.99

0.543

93.65

107.35

0.094

uniform28

94.62

106.38

0.151

94.48

106.52

0.141

uniform32

91.24

109.76

0.024

96.76

104.24

0.361

plane

81.61

119.39

 < 0 . 001

88.14

112.86

0.003

12

plane

94.51

106.49

0.143

89.38

111.63

0.007

16

plane

97.17

103.83

0.416

95.15

105.85

0.191

20

plane

93.33

107.67

0.080

103.11

97.89

0.524

24

plane

90.58

110.43

0.015

93.09

107.91

0.070

28

plane

94.55

106.45

0.146

97.44

103.56

0.455

32

We analyze the influence of the initial search point. First, we consider the time until the Pareto front is computed. The results are shown in Table 11.1

and can be summarized as follows.

Result 1 In 23 out of 24 experiments the variant starting with the empty edge set has the smaller AR-value. Only eight results are significant, among them five very significant and two of these highly significant.

If we are only interested in the computation of a minimum spanning tree,

we may expect that one sometimes computes a minimum spanning tree with-

out computing the empty edge set. Indeed, the influence of the choice of

the initial search point gets smaller. For the classes uniform n, n = 4 i and 3 ≤ i ≤ 11, there is no real difference between SEMOz and SEMO, while the AR-values of GSEMO are in eight of the nine experiments smaller than those

for GSEMOz. For the classes plane , n = 4 i and 3 ≤ i ≤ 11, SEMO

 n

z beats

SEMO (seven cases) and GSEMOz beats GSEMO (7 cases). We do not show

the results in detail since they are not significant (with the exception of three out of 36 cases). The remaining experiments consider the more general case

of an initial search point chosen uniformly at random.

We do not consider the worst-case instances for RLS1 , 2 and (1+1) EA b

b

presented in Chapter 3. This would be unfair to these algorithms. Nevertheless, the experiments of Briest, Brockhoff, Degener, Englert, Gunia, Heering, Jansen, Leifhelm, Plociennik, Roglin, Schweer, Sudholt, Tannenbaum, and

Wegener (2004) indicate that, for n and m of reasonable size, dense random graphs are even harder than the asymptotic worst-case examples. This leads

to the conjecture that SEMO beats RLS1 , 2 and GSEMO beats its counterpart b

(1+1) EAb. Here, the runtime measures the rounds until a minimum span-

ning tree is constructed. Table 11.2 shows that our conjecture holds for the

168

11 Minimum Spanning Trees Made Easier

Table 11.2. Comparison of SEMO and GSEMO with their single-criteria counterparts on complete uniform and complete geometric instances

Class

AR RLS1 , 2 AR SEMO p-value AR (1+1) EA

b

b AR GSEMO

 p-value

uniform12

146.36

54.64

 < 0 . 001

147.79

53.32

 < 0 . 001

uniform16

148.45

52.55

 < 0 . 001

149.28

51.72

 < 0 . 001

uniform20

149.74

51.26

 < 0 . 001

149.40

51.60

 < 0 . 001

uniform24

150.00

51.00

 < 0 . 001

150.29

50.71

 < 0 . 001

uniform28

150.40

50.60

 < 0 . 001

150.23

50.77

 < 0 . 001

uniform32

150.50

50.50

 < 0 . 001

150.50

50.50

 < 0 . 001

plane

141.43

59.58

 < 0 . 001

145.04

55.96

 < 0 . 001

12

plane

144.25

56.75

 < 0 . 001

148.28

52.72

 < 0 . 001

16

plane

149.47

51.53

 < 0 . 001

149.54

51.46

 < 0 . 001

20

plane

149.95

51.05

 < 0 . 001

149.89

51.11

 < 0 . 001

24

plane

150.40

50.60

 < 0 . 001

150.36

50.64

 < 0 . 001

28

plane

150.34

50.66

 < 0 . 001

150.28

50.72

 < 0 . 001

32

considered cases. Note that the average rank of 100 runs of one algorithm is at least 50 . 5. In several experiments, the AR-value of SEMO or GSEMO comes close to this value. For n ≥ 20, all values are at most 51 . 6 and for small values of n the AR-values are smaller than 60. We can state the following result.

Result 2 It is highly significant for all considered graph classes and graph sizes that SEMO outperforms RLS 1 , 2 and GSEMO outperforms (1+1) EA b

 b.

The theoretical analysis of the algorithms gives values of O(m 2 log n) for RLS1 , 2 and (1+1) EA

b

b and O(mn 2) for SEMO and GSEMO (if the weights

are reasonably bounded). For complete graphs, m = Θ(n 2) and we get values n 4 log n versus n 4. For sparse graphs, m = Θ(n) and we get values n 2 log n versus n 3. Although these are only upper bounds, one may expect different results for the sparse graphs from uniformbd n and planebd . Table 11.3 shows n

that this is indeed the case and we obtain the following result.

Result 3 It is highly significant for uniformbd n and n ≥ 24 and for planebd n and n ≥ 16 (and the considered values of n) that RLS 1 , 2 outperforms SEMO.

 b

 Similar results hold for (1+1) EAb and GSEMO, but the results are highly significant only for large values of n, namely n ≥ 32 , for both graph classes.

Note that the last group of experiments considers values of n up to 100.

Conclusions

It has been investigated whether the multi-objective variant of a single-variant optimization problem can lead to more efficient optimization processes. This is indeed the case for the well-known minimum spanning tree problem and

11.3 Experimental Results

169

Table 11.3. Comparison of SEMO and GSEMO with their single-criteria counterparts on uniform and geometric instances with bounded average degree

Class

AR RLS1 , 2 AR SEMO p-value AR (1+1) EA

b

b AR GSEMO p-value

uniformbd12

91.91

109.09

0 . 036

101.44

99.57

0 . 819

uniformbd16

90.62

110.39

0 . 016

103.54

97.46

0 . 458

uniformbd20

89.79

111.22

0 . 009

98.98

102.02

0 . 710

uniformbd24

73.19

127.82

 < 0 . 001

91.53

109.47

0 . 028

uniformbd28

78.01

122.99

 < 0 . 001

93.03

107.98

0 . 068

uniformbd32

77.92

123.08

 < 0 . 001

80.85

120.15

 < 0 . 001

uniformbd40

73.02

127.98

 < 0 . 001

84.37

116.63

 < 0 . 001

uniformbd60

65.40

135.60

 < 0 . 001

71.22

129.78

 < 0 . 001

uniformbd80

56.70

144.30

 < 0 . 001

58.72

142.28

 < 0 . 001

uniformbd100

54.99

146.01

 < 0 . 001

58.47

142.53

 < 0 . 001

planebd

97.56

103.45

0 . 472

105.24

95.77

0 . 247

12

planebd

81.88

119.13

 < 0 . 001

96.79

104.22

0 . 364

16

planebd

81.06

119.95

 < 0 . 001

101.70

99.30

0 . 769

20

planebd

84.45

116.55

 < 0 . 001

86.52

114.48

0 . 001

24

planebd

81.94

119.06

 < 0 . 001

88.45

112.55

0 . 003

28

planebd

71.53

129.47

 < 0 . 001

80.86

120.14

 < 0 . 001

32

planebd

67.18

133.82

 < 0 . 001

74.57

126.44

 < 0 . 001

40

planebd

56.59

144.41

 < 0 . 001

60.69

140.31

 < 0 . 001

60

planebd

52.98

148.02

 < 0 . 001

59.60

141.40

 < 0 . 001

80

planebd

52.21

148.79

 < 0 . 001

52.30

148.70

 < 0 . 001

100

randomly chosen dense graphs. For sparse connected graphs, it is better to

use the single-objective variant of the problem. The results are obtained by a rigorous asymptotic analysis of the expected optimization time and by experiments on graphs of reasonable size.

We will see in the following chapters that a multi-objective approach for

a single-objective optimization problem can also help with other problems. In particular, we examine NP -hard combinatorial optimization problems belonging to different areas of combinatorial optimization and show how a multi-

objective approach can help us achieve better results than single-objective ones.

12

Covering Problems

In this chapter, we investigate the behavior of stochastic search algorithms on a class of covering problems. Such problems occur frequently in combinatorial optimization and it is therefore important to understand how stochastic search algorithms may deal with them. We will mainly consider the vertex

cover problem, which is a well-known problem on graphs, but also extend our investigations to the much broader class of set covering problems. The goal is show the impact of different approaches that may be applied to covering

problems.

In recent years, a number of publications regarding stochastic search algo-

rithms for the vertex cover problem have appeared. First, some simple evolutionary algorithms for single-objective optimization have been investigated on this problem. It is shown in Friedrich, Hebbinghaus, Neumann, He, and Witt

(2007) that a natural single-objective approach which minimizes the number of vertices and penalizes the number of uncovered edges has an exponential optimization even on simple bipartite graphs. Additional negative results regarding the single-objective search algorithms were presented by Oliveto, He, and Yao (2009) and Oliveto, He, and Yao (2008), who show that the use of populations in single-objective formulations does not necessarily allow for a significant increase in success probability. Based on these negative results, the combination of evolutionary algorithms and classical approximation algorithms was studied by Friedrich, He, Hebbinghaus, Neumann, and

Witt (2009). The idea is to start with a solution produced by an approximation algorithm for the vertex cover problem and improve it over time by

the stochastic search process of the evolutionary algorithm. The combination of evolutionary algorithms and different approximation algorithms is investigated and the benefits and limitations of this approach are pointed out. As a reaction to inherent worst-case assumptions, Witt (2009) studies the problem in random graphs and points out domains where a memetic local-search algorithm is efficient. We start this chapter with a presentation of the results by

Friedrich, Hebbinghaus, Neumann, He, and Witt (2007). Later, extensions by F. Neumann, C. Witt, Bioinspired Computation

171

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 12, © Springer-Verlag Berlin Heidelberg 2010

172

12 Covering Problems

Oliveto et al. (2009) and an alternative view taken by Kratsch and Neumann

(2009) are dealt with.

In Section 12.1, we introduce the problems investigated in this chapter. We start our analyses with investigations of (1+1) EAb and RLS in Section 12.2.

After carrying out these investigations, we consider multi-objective models and prove that they can significantly help us come up with better stochastic search algorithms in Section 12.3. In this section we also present a characterization of the multi-objective models as so-called fixed-parameter algorithms.

12.1 Problem Formulation and Representation

We first investigate the vertex cover problem mentioned in Section 2.1 as a classical NP -hard problem. Recall that the input is given by an undirected graph G = (V, E) and the task is to compute a minimum set of vertices V ⊆ V such that each for each edge e, e ∩ V = ∅, i.e., each edge contains at least one of the vertices in V .

As we are looking for optimal subsets, we are able to proceed as in the

previous chapters and to encode solutions as bitstrings. We consider the search space { 0 , 1 }n where each bit xi of a search point x corresponds to a vertex vi of the given graph G. The vertex vi is chosen in the solution x iff xi = 1.

The task is to find a solution x with a minimum number of vertices that covers all edges. This motivates us to introduce a fitness function which is based on the number of uncovered edges of x (u(x)) as well as the number of chosen vertices (|x| 1). Note that u(x) may be used to direct the search process towards a feasible solution, i.e., a solution x for which u(x) = 0 holds. We consider the fitness function

 f (x) = (u(x) , |x| 1) ,

which takes into the account the number of uncovered edges and the number

of chosen vertices. When considering (1+1) EAb our aim is to minimize f with respect to the lexicographic order, i.e., the main goal is to minimize the number of uncovered edges, which leads to solutions that are vertex covers.

Afterwards, the number of chosen vertices is minimized.

Taking a multi-objective view on the problem, we do not give a preference

to u(x) or |x| 1. Instead, we treat these two objectives in the same way and optimize with respect to Pareto dominance. In the end, we pick the solution with u(x) = 0 and compare its number of chosen vertices to the number of vertices chosen in a minimum vertex cover.

The set cover problem generalizes vertex cover in the following way to weighted set systems. We are given a ground set S = {S 1 , . . . , Sm} and a collection C 1 , . . . , Cn of subsets of S with corresponding positive costs c 1 , . . . , cn.

We assume

 n

 Ci = S,

 i=1

12.2 Single-objective Optimization

173

i.e., S can be covered by the collection of subsets. Furthermore, we denote by c max = max i ci the maximum cost of a subset for a given instance. The goal is to find a minimum-cost selection Ci , . . . , C , 1 ≤ i

1

 ik

 j ≤ n and 1 ≤ j ≤ k,

of subsets such that all elements of S are covered. Note that the vertex cover problem for a given graph G = (V, E) is a special set cover problem where S = E and Ci denotes the set of edges incident to vertex vi and ci = 1 for i ∈ { 1 , . . . , n}.

The set cover problem is, as a generalization of vertex cover, NP -hard. It cannot be approximated better than by a factor ln m unless certain assumptions from complexity theory do not hold (Feige, 1998; Raz and Safra, 1997).

It is well known that Chv´

atal’s simple greedy algorithm (Chv´

atal, 1979)

achieves a worst-case approximation ratio of O(log m). In considering stochastic search algorithms for the search space { 0 , 1 }n, a search point x ∈ { 0 , 1 }n

encodes a selection of subsets. The function p(x) =

 n

 c

 i=1

 ixi measures the to-

tal cost of the selection and u(x) denotes the number of elements of S that are uncovered. We use the same ideas as above and arrive at vector-valued fitness functions. Considering RLS1 and (1+1) EA

b

b for the set cover problem, the

fitness of a search point x is given by the vector f (x) = (u(x) , p(x)), which should be minimized with respect to the lexicographic order. In the multiobjective setting with the algorithms SEMO and GSEMO, we would like to

minimize u(x) and p(x) at the same time and consider Pareto dominance.

12.2 Single-objective Optimization

12.2.1 The Vertex Cover problem

We start with the runtime behavior of (1+1) EAb and RLS1 for the vertex

b

cover problem. One result is that these algorithms are not able to achieve a good approximation even for bipartite graphs. Since the initial search point is drawn uniformly at random, it does not necessarily represent a valid vertex cover. In this case, the fitness function points the search towards such solutions.

Theorem 12.1. The expected time until RLS 1 and (1+1) EA b

 b have produced

 a (not necessarily minimum) vertex cover is O(n log n) .

 Proof. We prove the theorem for (1+1) EAb using the method of expected multiplicative distance decrease presented in Section 4.2.3. As the proof only works with 1-bit flips and all 1-bit flips are equally likely, the result also holds for RLS1 . Choosing all vertices is certainly a vertex cover and each vertex b

that has not been chosen before and is incident to an uncovered edge leads

to an improvement with respect to the fitness function. Let k be the number of vertices that are incident to at least one uncovered edge. The number of uncovered edges is reduced from u(x) to 0 by these k accepted 1-bit flips.

As the prior aim is to minimize the number of uncovered edges, there are

174

12 Covering Problems

Fig. 12.1. The considered complete bipartite graph B = (V, E) for n = 9 and ε = 13

no accepted steps increasing the number of uncovered edges. Non-accepted

1-bit flips contribute a value of 0 to the reduction of the number of uncovered edges. We consider the expected decrease of u(x) of an arbitrary 1-bit flip.

Note that the probability of such steps is at least (1 /n)(1 − 1 /n) n− 1 ≥ 1 /e.

Choosing a 1-bit flip uniformly at random from among all 1-bit flips, the

expected number of uncovered edges after this step is at most (1 − 1 /n) · u(x), and after t steps this expected value is at most (1 − 1 /n) t · u(x). Choosing t∗ = cn log n, c an appropriate constant, this value is strictly less than 1 / 2.

As the number of uncovered edges is an integer, the probability of obtaining a vertex cover after t∗ 1-bit flips is at least 1 / 2 using Markov’s inequality.

This implies that the expected number of 1-bit flips to obtain a vertex cover is at most 2 t∗ = O(n log n). The result follows as the probability of flipping a single bit in the next mutation step is at least 1 /e and the expected waiting time for this event is therefore upper bounded by e.

Friedrich et al. (2007) prove that the previous upper bound is the best possible. They present the complete graph on n nodes as an instance where also a lower bound of Ω(n log n) holds for the expected time until a minimum vertex cover is found. The proof goes back to the coupon collector’s theorem; see Section 4.2.2. The interested reader is referred to the original work for more details.

In the following, we are dealing with the approximation quality of the

single-objective search algorithms. The aim is to present an instance where RLS1 and (1+1) EA

b

b may get stuck with arbitrary bad approximations. This

instance is a complete bipartite graph B = (V, E), where V = V 1 ∪ V 2 consists of two sets of non-equal size and the edge set E = { {vi, vj} | vi ∈

 V 1 ∧ vj ∈ V 2 } consists of all edges that connect these two sets. W. l. o. g., we assume |V 1 | < |V 2 |. A minimum vertex cover is the set V 1 but both algorithms have a chance to determine the set V 2 as vertex cover. We consider the case V 1 = {v 1 , v 2 , . . . , v	n} and V 2 = {v	n+1 , v	n+2 , . . . , vn}, 0 < ε < 1 / 2 and not necessarily constant.

12.2 Single-objective Optimization

175

The idea for the upcoming results is as follows. If RLS1 has chosen all

b

vertices of V 2 but some vertices of V 1 are missing, the algorithm cannot produce an approximation better than a factor of (1 − ε) /ε. On the graph B, the expected optimization time of RLS1 is therefore infinite, as the next theorem b

shows.

Theorem 12.2. With probability ε, RLS 1 cannot obtain an approximation b

 better than a factor of (1 − ε) /ε for B within a finite number of steps. In particular, the expected time to produce an approximation better than a factor of (1 − ε) /ε on B is infinite.

For the proof of Theorem 12.2, we will use the following lemma, which may be of independent interest.

Lemma 12.3. A bin contains k red and
 blue balls. We take out the balls at

 random from the bin without replacement until there is either no red or no blue ball left. With probability k/(
 + k) , there is no blue ball left, and with

 probability
/(
 + k) , there is no red ball left.

 Proof. We take an alternative view on the model. Instead of taking out the balls until there is either no red or no blue ball left, we take out the balls at random from the bin without replacement until there is no ball left in the bin.

The color of the last ball taken out of the bin clearly determines the ball color that has been removed at the time when there is only a single color left. Since

every one of the + k orders of taking out all balls is equally likely and there k

are + k− 1 orders in which the last ball taken out is blue, the probability k

that the last ball is blue is

 + k − 1

 + k

(
 + k − 1)!
! k!

=

=

 .

 k

 k

 k! (
 − 1)! (
 + k)!

 + k

This proves the lemma.

We are now able to prove Theorem 12.2.

 Proof (Theorem 12.2). In the phase until the larger or the smaller vertex set is chosen completely by RLS1 , only steps that increase the number of vertices b

are accepted. This is because a reduction of the number of vertices in this phase reduces also the number of covered edges and thus the fitness value.

Moreover, if the larger vertex set is the vertex set that is first determined completely by RLS1 , there is no chance for RLS1 to determine the optimal

b

b

solution, since only steps that reduce the number of vertices in the smaller vertex set are accepted. In this situation, the optimization time is infinite.

Therefore, we have to prove that this happens with positive probability.

For this purpose, we apply Lemma 12.3. This is possible since the uniform choice of the initial search point is equivalent to the following procedure: We first choose a k ∈ { 0 , 1 , . . . , n} following the binomial distribution B(n, 1 / 2).

176

12 Covering Problems

In other words, we choose k with probability n (1 / 2) n. Afterwards, we choose k

successively k of the n vertices without repetition. It is easy to verify that the obtained search point is uniform on { 0 , 1 }n. Lemma 12.3 is now applied starting with the empty subgraph and identifying the choice of a vertex in the initial search point with the event that the corresponding ball is taken out of the urn. Therefore, the probability is ε that the larger set of vertices is the first set that is completely chosen by RLS1 . This proves the theorem.

b

Theorem 12.2 shows that the approximability of RLS1 for the vertex cover b

problem can be arbitrarily bad. Choosing, e.g., ε = 1 /n, leads to a graph where V 1 consists of one single vertex. In this case, RLS1 does not obtain an b

approximation better than a factor of n− 1 with probability 1 /n. Note that an approximation of almost that quality can be obtained for an arbitrary graph by choosing all vertices of the given input.

Now we consider the behavior of (1+1) EAb on the graph B. After ob-

taining the vertex set V 2 and discarding the set V 1, (1+1) EAb cannot obtain a better approximation ratio than (1 − ε) /ε without flipping at least εn bits.

If ε is not too small, (1+1) EAb can only leave this local optimum in the next mutation step with a probability that is exponentially small. Therefore, the expected optimization time under the condition that such a solution is

produced before the optimal solution is exponential. The following theorem

shows that this can lead to almost arbitrarily bad approximation ratios of

roughly n 1 −δ, δ > 0 a constant.

Theorem 12.4. Let δ > 0 be a constant and nδ− 1 ≤ ε < 1 / 2 . The expected optimization time of (1+1) EAb on B (with |V 1 | = εn and |V 2 | = (1 − ε) n) is exponential. Moreover, the expected time to produce an approximation better than a factor of (1 − ε) /ε is exponential.

 Proof. We investigate a run of two phases. In the first phase, we examine the probability that a vertex cover including all vertices of V 2 with at least one vertex missing in V 1 is constructed. In the second phase, we give a lower bound for the probability that a local optimum is obtained by removing all

vertices of V 1. This local optimum can only be left by including all vertices of V 1 and removing at least εn vertices of V 2.

The first phase consists of 12 en ln n mutation steps. First we prove that (1+1) EAb obtains a vertex cover including all vertices of V 2 within this phase with probability at least 1 / 4. We consider only the effect of steps that flip exactly one bit in V 2 and no other bit; these steps are called simple V 2 -steps in the following. The probability of a simple V 2-step is ((1 − ε) n)(1 /n)(1 − 1 /n) n− 1 ≥ (1 − ε) /e. Thus, the average waiting time for such a simple V 2-step is at most e/(1 − ε). We apply Markov’s inequality on the waiting time for k(1 − ε) /(2 e) of such steps. Hence, with probability at least 1 / 2, there are in k steps of (1+1) EAb at least k(1 − ε) /(2 e) simple V 2-steps. Using 1 − ≥ 1 / 2, this means that the considered phase of 12 en ln n mutation steps contains with probability at least 1 / 2 at least 3 n ln n such

12.2 Single-objective Optimization

177

simple V 2-steps. Considering this number, we apply the method of expected multiplicative distance decrease in a more precise way than in Theorem 12.1,

where distance denotes the number of uncovered edges.

Let N be the current number of uncovered edges. All simple V 2-steps that add a vertex of V 2 are accepted and the total distance decrease of these steps is N since choosing all vertices from V 2 is clearly a valid vertex cover. Simple V 2-steps removing vertices of V 2 contribute a distance decrease of 0. There are, altogether, (1 − ε) n simple V 2-steps. Thus, a simple V 2-step decreases the number of uncovered edges by an expected factor of 1 − 1 /((1 −ε) n) ≤ 1 − 1 /n.

Since N ≤ n 2, the expected number of uncovered edges after t simple V 2-steps is at most (1 − 1 /n) t · n 2. Assuming 3 n ln n such steps, the expected number of uncovered edges after the phase is at most n 2(1 − 1 /n)3 n ln n ≤ 1 /n, which is strictly less than 1 / 2. Hence, using Markov’s inequality and the bound 1 / 2

on the probability of having enough simple V 2-steps, a cover is produced by means of simple V 2-steps with probability at least (1 / 2) · (1 / 2) = 1 / 4 in this phase.

Now we prove a lower bound on the probability that after 12 en ln n steps of (1+1) EAb, at least one vertex of V 1 has not been chosen. This is exactly the case if (1+1) EAb completely discovers V 2 before completely discovering V 1.

We base the analysis on the assumption that 12 en ln n steps lead to a vertex cover including all vertices from V 2 and note that this assumption does not decrease the probability of an unchosen vertex from V 1. By Chernoff bounds, there are with probability 1 − 2 −Ω(εn) = 1 − 2 −Ω(nδ) at least |V 1 |/ 3 = εn/ 3 ≥

 nδ/ 3 unchosen vertices in V 1 in the initial solution. The probability that after 12 en ln n mutation steps of (1+1) EAb, a single vertex is chosen at least once is 1 −(1 − 1 /n)12 en ln n. Thus, the probability that at least one of the initially not chosen vertices of V 1 is not chosen after 12 en ln n mutation steps of (1+1) EAb is

 nδ

12 en ln n

3

 nδ

3

1 − 1 − 1 − 1

 ≥ 1 − 1 − 1

 n

 n 13 e

 ≥

 nδ− 13 e

1 − e− nδ− 13 e

3

 ≥ 1 −

1

=

3

 ≥ nδ− 13 e .

1 + nδ− 13 e

1+ nδ− 13 e

6

3

3

For this estimation we used the fact ex ≤ 1 /(1 − x) for x < 1. Altogether, the probability that (1+1) EAb chooses all vertices of V 2 before choosing all vertices of V 1 is bounded from below by (nδ− 13 e/ 6) ·(1 / 4) = nδ− 13 e/ 24. Hence, the probability is at least bounded by an inverse polynomial from below.

We consider a second phase of n 3 / 2 mutation steps and show that all vertices of V 1 are removed with probability at least 1 / 15. Let us assume that we start this phase with all vertices of V 2 and all but one vertex of V 1 in the current solution. This is the worst case for our analysis. In this phase (all vertices of V 2 and some vertices of V 1 chosen) the only mutation steps accepted by (1+1) EAb are the following. Either all missing vertices of V 1 are chosen

178

12 Covering Problems

and at least as many vertices of V 2 are removed (“bad event”), or all vertices of V 2 are kept and the number of vertices in V 1 is decreased or stays the same by adding and removing some vertices (“good event”). The former mutation

step has a probability of at most n−k, where k denotes the current number of missing vertices in V 1. For the latter kind of mutation steps we restrict ourselves to 1-bit flips reducing the number of vertices in V 1. The probability of such a mutation step is at least (εn−k) /(en) ≥ 1 /(en). For our calculations we take only those two kinds of mutation steps into account, the “good event”

with probability at least (εn − k) /(en) and the “bad event” with probability at most n−k, since all other accepted mutation steps reduce or preserve the number of vertices in V 1. The probability that the “good event” occurs before the “bad event” is at least 1 /(1 + n−k) = 1 − e/(nk− 1 + e). Thus, the en

 en

probability that the vertices of V 1 were all removed by (1+1) EAb before the

“bad event” occurs is at least

 εn− 1

 n− 1

2

1

1 −

 e

 ≥

1

1 − e

 ≥ e−e/ 2 >

 .

 nk− 1 + e

1 + e

 n

1 + e

15

 k=1

The expected waiting time for removing all vertices of V 1 by (1+1) EAb is O(n log n) and therefore all vertices of V 1 are removed within n 3 / 2 steps with probability 1 − o(1) using Markov’s inequality (always assuming that the

“bad event” does not occur during this phase). Hence, the probability that

(1+1) EAb determines the local minimum V 2 as vertex cover is at least (1 −

 o(1)) · nδ− 13 e/ 360. But if the current solution is V 2, every accepted mutation step has to add all the vertices of V 1 (and remove at least |V 1 | vertices of V 2).

This occurs with probability at most n−εn = n−Ω(nδ). Thus, the expected time until an approximation better than a factor of (1 − ε) /ε is determined is at least

(1 − o(1)) · nδ− 13 e · nΩ(nδ) = nΩ(nδ) .

360

This proves the theorem.

The preceding theorem proves that also the simple (1+1) EAb gets stuck

on the bipartite graph class with at least constant probability. Multi-start variants of the algorithms can improve the success probability both for (1+1) EA and RLS1 drastically (Oliveto et al. , 2009) while the straightforward use of b

populations in single-objective formulations does not necessarily allow for a significant increase in success probability (Oliveto et al. , 2008). We do not go into these results but present an instance which builds upon the bipartite graph class we have just considered. This instance is very difficult for the search algorithms in two respects. First, the probability of finding an optimum is so small that even multistart variants fail with overwhelming

probability. Second, the approximation ratio where the search algorithms are stuck is 2 − o(1), i.e., roughly the approximation ratio guaranteed by the best problem-specific algorithms for the vertex cover problem (Karakostas, 2005).

12.2 Single-objective Optimization

179

Fig. 12.2. Graph ˜

 B consisting of independent copies of the bipartite instance from

Figure 12.1

The following instance has, in essence, been proposed and investigated by

Oliveto et al. (2009). We present a slightly simplified variant, which will be

 √

called ˜

 B in the following. This graph consists of N :=

 n independent copies

of the graph B on N vertices each and := N − 2 / 3 = n− 1 / 3. More precisely, (k)

(k)

the vertex set of ˜

 B equals the disjoint union of the sets V

and V

for

1

2

(k)

(k)

all k ∈ { 1 , . . . , N }, where |V

 | = N and |V

 | = (1 −) N. For each k,

1

2

(k)

(k)

there is a complete bipartite graph on the sets V

and V

; this subgraph

1

2

is denoted by Bk in the following. The edge set of ˜

 B equals the union of the

edges of the Bk; hence there are no edges between different subgraphs. See Figure 12.2 for an illustration.

It will be shown that at least RLS1 needs with overwhelming probability

b

exponential time to obtain a better approximation ratio than 2 − o(1). The underlying idea is to consider the situation after the algorithm has reached a local optimum. We will prove that each subgraph has a probability of at

most 1 − of being optimized, i.e., that only the N vertices in the corresponding V 1 set are chosen. Hence, this happens for an expected number of at most (1 −) N of the N subgraphs. Otherwise, (1 −) N vertices are chosen to cover the subgraph. In expectation, this happens for at least N subgraphs.

The total expected number of vertices in the cover is then at least

 N · (1 −) N + (1 −) N · N = 2 n − 2 2 n = (1 − o(1)) · 2 n using = o(1) while an optimal vertex cover consists of only n vertices. This corresponds to the desired approximation ratio 2 − o(1). Since the subgraphs are independent, Chernoff bounds can be applied such that an approximation

ratio 2 − o(1) holds also with overwhelming probability.

We make the ideas precise for RLS1 .

b

Theorem 12.5. With probability 1 − 2 −Ω(n 1 / 12) , RLS 1 needs on ˜

 B an infinite

 b

 number of steps in order to obtain a solution with an approximation ratio better than 2 − o(1) .

 Proof. For each subgraph Bk, 1 ≤ k ≤ N , the ideas of Theorem 12.2 are applied. Steps that flip a vertex belonging to Bk are called relevant with respect to Bk. As long as there are uncovered edges with respect to Bk, the relevant steps add vertices from the corresponding V 1 and V 2 sets of the subgraph in the manner analyzed in Theorem 12.2. Hence, when all edges

180

12 Covering Problems

(k)

of Bk are covered for the first time, the set V

has been completely chosen

2

with probability exactly . This happens independently for each subgraph. By Chernoff bounds, the probability that this happens for less than (1 − n− 1 / 24) ·

 N subgraphs is 2 −Ω(n− 1 / 12 	N) = 2 −Ω(n 1 / 12) according to Chernoff bounds.

Otherwise, at least

((1 − n− 1 / 24) · N) · (1 −) N + ((1 −) N) · N = (1 − o(1)) · 2 n vertices are in the cover, corresponding to an approximation ratio of 2 − o(1).

Since RLS1 flips only one bit per step, the corresponding search point will b

never be improved.

It would be nice to have a result in the flavor of Theorem 12.5 also for (1+1) EAb. However, this would mean that we would have to bound the

probability by at least that a subgraph ends up with the larger vertex set (the V 2-set) chosen. The proof of Theorem 12.4 reveals only a significanly smaller constant for this probability. One reason for this is that the balls-and-bins game cannot be applied in the same manner as for RLS1 . In fact,

b

steps flipping several bits might change the game in favor of the smaller vertex set. Consider a 2-bit flip removing a vertex from V 2 and adding at the same time a vertex from V 1. Since vertices in V 1 have a comparatively large degree of |V 2 | (as opposed to the degree |V 1 | for the vertices from V 2), the number of uncovered edges might be decreased considerably by the considered step. The opposite step, removing a vertex from V 1 in favor of V 2, would be rejected in this case. Hence, the probability of (1+1) EAb ending up with the set V 2

completely chosen seems to be lower than that for RLS1 .

b

Due to these difficulties, Oliveto et al. (2009) consider a modified (1+1) EAb that starts not from a random search point but from the all-ones string, i.e., the vertex cover choosing all the vertices. This algorithm behaves as follows on the ˜

 B instance: Considering an arbitrary subgraph Bk, the first step relevant for Bk is studied. If this step flips only one bit of Bk, the probability of (k)

removing a vertex from V

equals . This wrong decision leads with proba-

1

(k)

(k)

bility 1 − o(1) to the removal of more vertices of V

until only V

covers

1

2

the edges of Bk. To support this, the authors exploit the fact that a sub-

 √

graph contains only N =

 n vertices. Hence, given that a step is relevant

for Bk, the probability of flipping at least j ≥ 2 vertices of Bk is at most

 √

 √

(n/n) j− 1 = (1 / n) j− 1. This means that most steps relevant for a subgraph flip only one vertex in it. Subgraphs where too many j-bit flips, j ≥ 2, are observed, can be taken out of the consideration without spoiling the approximation ratio 2 − o(1). The final result is as follows.

Theorem 12.6. With a probability exponentially close to 1 , (1+1) EAb initialized with the all-ones string needs on ˜

 B an exponential number of steps in

 order to obtain a solution with an approximation ratio better than 2 − o(1) .

12.2 Single-objective Optimization

181

12.2.2 The Set Cover problem

Finally, we generalize the negative results obtained for the graph B to the set cover problem. The idea is to consider subsets Ci, 1 ≤ i ≤ n, that correspond to the set of edges incident to the different vertices of B and assign large costs to subsets corresponding to vertices in V 2 and small costs corresponding to vertices in V 1. We make this precise and denote our class of instances by C∗.

Let

 S = {{v 1 , vεn+1 }, . . . , {v 1 , vn},

 {v 2 , vεn+1 }, . . . , {v 2 , vn},

 . . .

 {vεn, vεn+1 }, . . . , {vεn, vn}}

be the ground set,

 Ci = {{vi, vεn+1 }, . . . , {vi, vn}}

with ci = 1, 1 ≤ i ≤ εn, and

 Ck = {{vk, v 1 }, . . . , {vk, vεn}}

with ck = c max, εn + 1 ≤ k ≤ n, be the subsets with associated costs, where c max ≥ 1. We assume that c max is a large value (e.g., c max = 2 n) to show that the approximation achievable by RLS1 and (1+1) EA

b

b in expected polynomial

time may be arbitrarily bad.

In the proofs of the Theorems 12.2 and 12.4, we examine the probability that RLS1 and (1+1) EA

b

b obtain the larger partition of the bipartite graph

before the smaller one. As long as a vertex cover has not been obtained,

each mutation step decreasing the number of uncovered edges is accepted.

We can translate the arguments given in the proofs to the set cover instance.

Vertices in the graph B are mapped to sets of C∗. Again, each mutation step reducing the number of uncovered elements is accepted and the probability

of choosing the sets Ci, 1 ≤ i ≤ n, before the sets Cj, n + 1 ≤ j ≤ n, can be bounded in the same way as for the graph B. Therefore, we can generalize the Theorems 12.2 and 12.4 to C∗ in the following way.

Theorem 12.7. With probability ε, RLS 1 cannot obtain an approximation b

 better than a factor of ((1 − ε) c max) /ε for C∗ within a finite number of steps.

 Moreover, the expected time to produce an approximation better than a factor of ((1 − ε) c max) /ε on C∗ is infinite.

Theorem 12.8. Let δ > 0 be a constant and nδ− 1 ≤ ε < 1 / 2 . The expected optimization time of (1+1) EAb on C∗ is exponential. In particular, the expected time to produce an approximation better than a factor of ((1 − ε) c max) /ε

 is exponential.

Theorems 12.7 and 12.8 show that the approximation quality achievable in expected polynomial time can be made arbitrarily bad as long as c max grows.

182

12 Covering Problems

12.3 Multi-objective Optimization

12.3.1 General Results

In this section, we turn our view to the multi-objective approaches SEMO

and GSEMO and investigate these on the vertex cover and the more general

set cover problems. We also revisit the instances discussed in the last section, namely the bipartite graph B and its generalization to a set cover instance C∗.

In contrast to the single-objective formulations, the multi-objective ones have the ability to find optimal solutions for these instances efficiently. The main reason for this is that the multi-objective model makes the algorithm behave more like a greedy algorithm. With regard to the instance B, each vertex of V 1 is incident on (1 − ε) n edges while each vertex of V 2 is incident on εn edges. A greedy algorithm that starts with the empty vertex set and adds in each step a vertex which covers a largest number of edges uncovered up to now ends up with V 1 and produces therefore an optimal solution. Examples of such greedy algorithms for the vertex cover problem are discussed in Papadimitriou and Steiglitz (1998). We will comment on the relationship between greedy algorithms and multi-objective optimization in greater detail when the set

cover problem is studied.

We start with the announced positive result for the simple bipartite graph

instance.

Theorem 12.9. The expected optimization time of SEMO and GSEMO on

 the bipartite graph B is O n 2 log n .

 Proof. We prove the theorem for GSEMO. All subsets of V 1 are Pareto optimal. The objective vector of a subset V ⊆ V 1 with |V | = k is (m − k (1 − ε) n, k). The Pareto front contains the |V 1 | + 1 = εn + 1 objective vectors (m, 0), (m − (1 − ε) n, 1), (m − 2 (1 − ε) n, 2), . . . , (0 , εn), where m = ε (1 − ε) n 2. The population size is bounded by O(n) as a population can never contain two individuals with equal number of vertices.

First, we determine the time until the Pareto optimal search point 0 n

with value (m, 0) is found. Since it is the only one with |x| 1 = 0, it is never removed from the population again. One way for GSEMO to get “closer” to

(m, 0) is to select the individual with the smallest |x| 1-value from the current population and mutate it so that the |x| 1-value decreases. By the Coupon Collector’s theorem (see Section 4.2.2), this shows that (m, 0) is included in the

population after O n 2 log n steps with high probability since the population size is bounded by O(n).

We now bound the time to discover the whole Pareto set after (m, 0) is found. Since the probability of flipping a single bit in one step is at least 1 /e, the probability to get from one Pareto optimal solution (m − k (1 − ε) n, k) to the “next” Pareto optimal solution (m−(k+1) (1 −ε) n, k+1) is (εn−k) /(e n).

Using again the linear size of the population, the expected number of steps to

gain the whole Pareto front is at most

 	n− 1(en 2) /(εn − k) = O n 2 log n , k=0

12.3 Multi-objective Optimization

183

which completes the proof. As only 1-bit flips are used in the proof, the result also holds for SEMO.

We now turn our view to the set cover problem. In the following, we want

to support our claim that a multi-objective model might be superior to a

corresponding single-objective approach as it has the ability to simulate a greedy approach using partial solutions.

We start by showing that the expected optimization time of SEMO and

GSEMO on C∗ is polynomial. The following properties hold for the multiobjective model of the set cover problem. The all-zeros string is Pareto optimal since it covers no elements at zero cost. Moreover, any population of the multiobjective algorithms, which is a set of mutually non-dominating search points, can have at most m + 1 elements.

Theorem 12.10. The expected optimization time of SEMO and GSEMO

 on C∗ is O(mn (log cmax + log n)) .

 Proof. To prove the theorem, we generalize some ideas already used in the proof of Theorem 12.9. The Pareto front consists of the objective vectors (m, 0) , (m−(1 −ε) n, 1) , (m− 2(1 −ε) n, 2) , (0 , εn), and a solution corresponding to the objective vector (m − i(1 − ε) n, i), 1 ≤ i ≤ εn, chooses exactly i subsets from the set {C 1 , . . . , Cεn} of subsets with costs 1. We first consider the time until the search point 0 n with Pareto optimal objective vector (m, 0) is included in the population.

To estimate this time, we consider the expected multiplicative decrease of

the minimum p-value for the current population. The probability of choosing an individual with minimum p-value from among all individuals in the population is Ω(1 /m) as the population size is bounded above by m + 1. Since flipping a single bit decreases the p-value by an expected factor of 1 − 1 /(en) or better, the expected time until the all-zeros string is reached is bounded above by O(mn (log c max + log n)).

After obtaining a Pareto optimal solution x with objective vector (m −

 k(1 −ε) n, k), 0 ≤ k < εn, there are εn−k subsets of cost 1 that can be chosen to obtain a Pareto optimal solution whose objective vector is (m − (k + 1)(1 −

 ε) n, k+1). Taking into account the upper bound on the population size as well as flipping one of the desired bits in x, the probability that such a step happens in the next iteration is at least (εn − k) /(enm). Hence, the expected time to obtain for the “next” Pareto optimal objective vector a corresponding solution is upper bounded by O((mn) /(εn − k)). Summing up over the different values of k, a solution for each Pareto optimal objective vector is produced after an expected number of O(mn log n) steps under the condition that the search point 0 n has been obtained before, which completes the proof.

Up to now, we have pointed out classes of problems where the multi-

objective approach achieves better approximations than the single-objective one. We have also shown that the single-objective algorithms can only achieve

184

12 Covering Problems

an almost trivial approximation ratio within an expected polynomial number

of steps. In contrast to this we point out in the following that the multi-

objective model leads to good approximations within an expected polynomial

number of steps. Here, we are in particular interested in the expected number of steps until a solution x with u(x) = 0 has been produced that is a good approximation of an optimal one.

We will show that SEMO and GSEMO are able to efficiently find approx-

imate solutions to arbitrary instances of the NP -hard set cover problem. As mentioned in Section 12.1, the following approximation quality is, up to a constant factor, the best we can hope for in polynomial time for arbitrary

instances, unless P = NP (Raz and Safra, 1997).

Theorem 12.11. For any instance of the set cover problem and any initial search point, SEMO and GSEMO find an (ln(m) + 1) -approximate solution in

 an expected number of O m 2 n + mn (log n + log c max) steps.

 Proof. The proof idea is to show that SEMO is able to proceed along the lines of the greedy algorithm for set cover introduced by Chv´

atal (1979); see also

Vazirani (2001) for a detailed presentation. Let H

 m

 m :=

1 /i be the m th

 i=1

harmonic number and Rk := Hm − Hm−k, 0 ≤ k ≤ m, the sum of the last k terms of Hm. While the greedy algorithm is able to find Hm-approximate solutions, SEMO creates Rk-approximate solutions that cover k elements for increasing values of k, i.e., it arrives at partial solutions that are at least as good as in the greedy algorithm. This procedure can be viewed as a kind

of greedy algorithm based on the archive of non-dominating solutions. The

expected time until the all-zeros string 0 n is reached is bounded above by O(mn (log c max + log n)) using the same ideas as those in the proof of Theorem 12.10.

Let OPT be the cost of an optimal solution. Let c(x) = m − u(x) be the number of elements of S covered in a solution x. The remainder of the proof studies the so-called potential of the current population, which is the largest k such that there is an individual x in the population where c(x) = k and p(x) ≤ Rk · OPT. The potential is well defined since now the all-zeros string is always in the population.

It is easy to see that the potential cannot decrease. We examine the ex-

pected time until the potential increases at least by 1. To this end, we apply the analysis of the greedy algorithm by Chv´

atal (1979) and use the notion of

cost-effectiveness of a set, defined as the cost of the set divided by the number of newly covered elements. If there are n − k elements left to cover and we add the most cost-effective set to cover some of these, all the newly covered elements are covered at a relative cost of at most OPT /(n − k). Hence, if the cost of the selection was bounded above by Rk · OPT before and k ≥ k +1 elements are covered after the step, the cost is at most Rk · OPT afterwards. The probability of choosing an individual that determines the current potential is bounded below by Ω(1 /m). The probability of adding a most cost-effective set is bounded below by 1 /(en) as it suffices to flip a certain bit. Since the

12.3 Multi-objective Optimization

185

potential can increase at most m times, the expected time is O m 2 n until an Rm-optimal, i.e., Hm-optimal, individual covering all elements is created.

12.3.2 Specialized Bounds for Vertex Cover

This section is based on a recent study by Kratsch and Neumann (2009) and takes a closer look at the vertex cover problem using multi-objective algorithms. In particular, we replace the O(log n) approximation ratio delivered by Theorem 12.11 with a ratio that is bounded by OPT. This improves upon the previous bound if OPT is sufficiently small. Moreover, by introducing

speed-up techniques similar to those in Section 5.3.3, we can obtain a bound on the expected optimization time that is polynomial if OPT is assumed to be fixed. Runtime bounds of this kind are considered in the area of so-called fixed-parameter tractable (FPT) algorithms (see Downey and Fellows, 1999, for an introduction to this area), which motivates Kratsch and Neumann (2009) to characterize a variant of GSEMO as an evolutionary FPT algorithm.

In the following, we again consider GSEMO in the multi-objective formu-

lation of the vertex cover problem. We have already explained that its pop-

ulation size is bounded from above by n + 1 and that the all-zeros string 0 n is reached after an expected number of O(n 2 log n) steps (see the proof of Theorem 12.9 for more details). Afterwards, the idea is to wait for GSEMO

to create a partial solution that “approximates” a minimum vertex cover in

certain respects. More precisely, for an arbitrary search point x, we define the residual graph R(x) as the induced subgraph on the vertices that are not chosen by x; for example, R(0 n) is the input graph G itself. Our partial solutions correspond to residual graphs with maximum degree OPT.

We bound the time until GSEMO obtains certain partial solutions. Later

it will be shown how these solutions can be extended to valid vertex covers with approximation ratio OPT.

Lemma 12.12. The expected number of steps of GSEMO until the current population contains for the first time a search point x satisfying the following two properties is bounded by O(OPT · n 4) :

 1. The vertices chosen by x form a subset of a minimum vertex cover,

 2. the residual graph R(x) has maximum degree OPT .

 Proof. We start our considerations at the first point of time where the all-zeros string 0 n is contained in the current population of GSEMO. The expected time for this is O(n 2 log n) and is covered by the bound O(OPT · n 4). In the remaining proof, the expected time until finding a so-called good search point, i.e., a search point satisfying the two properties, is bounded by O(OPT · n 4).

We denote by L ⊆ V the set of vertices in the input graph that have a larger degree than OPT. Every optimal vertex cover must include all the

vertices in L since otherwise the more than OPT neighbors of a vertex in L

186

12 Covering Problems

vertices would have to be chosen. We assume L = ∅ since otherwise 0 n would be a good search point.

The expected time until a good search point is found is bounded by means

of a potential function taking on at most O(|E| · OPT) different values. We will prove that if there is no good search point in the current population, the potential is decreased in the next step with probability Ω(1 /n 2), which implies the bound O(n 2 ·|E|· OPT) = O(OPT · n 4) and, therefore, the lemma.

With respect to a population P , the value si, 1 ≤ i ≤ OPT, denotes the smallest number of uncovered edges from among all search points x in P

satisfying |x| 1 ≤ i, i.e., search points choosing at most i vertices. The current potential of P is defined as the sum of its si-values.

Let a population P including 0 n be given and denote by k the largest index such that P contains search points x 0 , . . . , xk with objective vectors (0 , s 0) , . . . , (k, sk) and selecting only vertices from L. This condition is trivially fulfilled for the point 0 n; hence k is well defined. If k = OPT then

 |L| ≥ OPT, which means that xk is optimal since L is a subset of a vertex cover of size OPT. Hence, we assume k < OPT since otherwise there is nothing to show. For the same reason, we assume that xk does not constitute a good search point. Now the idea is to show that xk can be mutated into a search point that is better in at least one si-value and, therefore, has a lower potential. The probability of the corresponding mutation will be bounded

by Ω(1 /n 2).

The definition of k ensures that xk chooses only vertices from L, which, as mentioned above, are a subset of a minimum vertex cover. This is the first property of a good search point. Hence, since xk is assumed not to be good, the second property must be violated, which means that the residual graph

 R(xk) has a vertex of degree at least OPT + 1. Let v be such a vertex. We distinguish between two cases:

 Case 1: sk − sk+1 ≤ OPT . Then choosing xk and flipping in v leads to a search point choosing k +1 vertices and leaving at most sk −(OPT+1) < sk+1

edges uncovered. This search point dominates the search point with objective vector (k + 1 , sk+1), and, therefore, improves the sk+1-value.

 Case 2: sk − sk+1 > OPT . Then P contains a search point xk+1 with objective vector (k+1 , sk+1) that, due to the definition of k, selects at least one vertex u outside L. Hence, u has degree at most OPT and flipping u out leads to a search point choosing k vertices and leaving at most sk+1 + OPT < sk edges uncovered. This search point dominates the search point with objective vector (k, sk) and improves the sk-value.

In both cases, we have identified a mutation improving the potential. Since this mutation changes only one bit and the population size is O(n), its probability is Ω(1 /n 2). This completes the proof.

The partial solutions studied in Lemma 12.12 are useful for approximating optimal vertex covers since the residual graphs of such solutions have a bounded maximum degree. More precisely, given such a partial solution x,

12.3 Multi-objective Optimization

187

there are at most (OPT − |x| 1) · OPT uncovered edges since OPT − |x| 1 vertices of degree at most OPT suffice to cover all of them. This will be exploited in the following theorem.

Theorem 12.13. The expected number of steps until GSEMO finds an OPT -

 approximation to the vertex cover problem is bounded by O(OPT · n 4) .

 Proof. We start our considerations at the first point of time where the current population contains a search point satisfying the conditions of Lemma 12.12.

Let x be such a search point. Then |x| 1 ≤ OPT and the maximum degree of R(x) is at most OPT. Hence, as mentioned above, the number of uncovered edges with respect to x satisfies u(x) ≤ (OPT − |x| 1) · OPT. This implies

 |x| 1 + u(x) ≤ OPT2. If x is dominated by any solution x then |x| 1 + u(x) <

 |x| 1 + u(x) ≤ OPT2. Hence, in all following steps, there is a search point y in the population such that |y| 1 + u(y) ≤ OPT2.

In the following, we again consider a potential function u(P) for the current population P , defined as the minimum u-value among all search points x in P

that satisfy |x| 1 + u(x) ≤ OPT2. We already know that the u-value and thus the potential are bounded from above by OPT2 and note that the potential

cannot increase in the run of GSEMO. Now let y be a search point that determines the current potential. If u(y) = 0 then |y| 1 ≤ OPT2, which means that y represents an OPT-approximation. Hence, it remains to estimate the number of steps until the potential drops to 0.

We consider still y, a search point determining the current potential. Assuming u(y) > 0, there is at least one vertex v ∈ R(y) incident on an uncovered edge. Choosing y for mutation and flipping in v leads to a search point y with

 |y| 1 + u(y) ≤ |y| 1 + u(y) ≤ OPT2 and u(y) < u(y). By the choice of y, the new search point y cannot be dominated by any other search point in the current population; hence y is accepted and leads to a population with decreased potential. Since the considered step has probability Ω(1 /n 2) and the potential can take on at most OPT2 values, the potential reaches 0 after at most O(OPT2 · n 2) = O(OPT · n 4) steps.

The previous theorem proves that GSEMO obtains an OPT-approximation

in expected polynomial time, which is an important supplement to the

 O(log n) bound from Theorem 12.11 and yields a significant improvement if OPT is not too big. Although one cannot hope to obtain a general polynomial bound for the NP -hard vertex cover problem, it would also be nice to have a bound on the expected number of steps until an optimal vertex cover

is produced. Trivially, this expected optimization time of GSEMO is bounded from above by O(n OPT+1) since it is sufficient to wait for a step that flips OPT

bits of the all-zeros string. This bound is polynomial only if OPT does not depend on n. However, it is well known that an optimal vertex cover can be found in time 2 O(OPT) using the ideas of fixed-parameter algorithms (Downey and Fellows, 1999). Bounds of this kind cannot be proved for random search, the plain (1+1) EA, nor the original GSEMO. Nevertheless, Lemma 12.12

188

12 Covering Problems

shows that GSEMO is “close” to such an optimization time bound. To make

this clear, we introduce a different mutation operator that shares similarities with the speed-up techniques of Section 5.3.3. The new mutation operator is problem-specific and asymmetric since it favors flipping in vertices that are incident on uncovered edges.

Given a current search point x ∈ { 0 , 1 }n for the vertex cover problem, we now use the mutation operator described as Algorithm 23. GSEMOalt denotes GSEMO with this new mutation operator. It is easy to verify that also Algorithm 23 Alternative mutation operator in GSEMOalt

1. Let U (x) ⊆ E denote the set of edges that are not covered by x and S(x) ⊆ { 1 , . . . , n} the vertices being incident on the edges in U (x).

2. Choose b ∈ { 0 , 1 } uniform at random.

3. If b = 0 or S(x) = ∅ flip each bit of x independently with probability 1 /n.

4. Otherwise flip each bit of S(x) independently with probability 1 / 2 and each other bit independently with probability 1 /n.

GSEMOalt reaches the all-zeros string in an expected number of O(n 2 log n) steps and that Lemma 12.12 also applies to GSEMOalt. The reason is that GSEMOalt uses the standard mutation operator of GSEMO if b = 0, i.e., with probability at least 1 / 2. Based on these prerequisites, we prove the following theorem.

Theorem 12.14. The expected optimization time of GSEMOalt for the vertex cover problem is bounded by O(OPT · n 4 + n · 2OPT+OPT2) .

 Proof. We start our considerations with a population containing a so-called good search point, i.e., one satisfying the two conditions of Lemma 12.12. The expected time until such a population is obtained appears as O(OPT · n 4) in the bound of the theorem.

Since a good search point is, by definition, a subset of a minimum vertex

cover, we wait for a step that chooses a good search point and mutates the bits corresponding to the missing vertices from the minimum vertex cover. Let x be an arbitrary good search point. The residual graph R(x) has maximum degree OPT and a vertex cover of size OPT −|x| 1. Each vertex in such a vertex cover can be adjacent to at most OPT non-isolated vertices, implying that R(x) has at most (OPT − |x| 1) + (OPT − |x| 1) · OPT ≤ OPT + OPT2 non-isolated vertices. These are each independently flipped with probability 1 / 2 if b = 1

holds in the alternative mutation operator. All n ≤ n − 1 isolated vertices of R(x), however, are not flipped with probability at least (1 − 1 /n) n− 1 ≥

1 /e. Altogether, x is chosen and mutated into a minimum vertex cover with probability at least Ω((1 /n) · 2 − OPT+OPT2). Since this holds for any good search point, the expected time to obtain a minimum vertex cover from a

good search point is at most O(n · 2OPT+OPT2).

12.3 Multi-objective Optimization

189

The previous theorem contains a runtime bound in the style of parameter-

ized complexity and shows how stochastic search algorithms combined with

a problem-specific component are able to follow the ideas of FPT algorithms.

Kratsch and Neumann (2009) continue their research further in this direction by introducing a modified fitness function. Here the objective of minimizing the number of uncovered edges is replaced. Instead, the objective value of a linear program is minimized, where the linear program corresponds to

a relaxation of an integer programming formulation of vertex cover. In this model, strong characterizations of fractional solutions to the problem can be exploited. Kratsch and Neumann (2009) show an improved approximation ratio of 2 for GSEMO and also an improved bound for GSEMOalt where the

expected runtime is, in essence, dominated by the term n · 4OPT instead of n · 2OPT+OPT2. We refer the interested reader to the original work for further details.

Conclusions

In this section, we have considered the vertex cover and the more general set cover problems. Here the single-objective search algorithms (1+1) EAb and

RLSb are likely to get stuck at solutions whose approximation ratios are close to trivial. Multi-objective models represent a promising alternative. For the set cover problem, a simple GSEMO obtains the asymptotically best possible approximation ratio of O(log n). Moreover, using insights from the domain of parameterized complexity, an alternative approximation ratio bounded by OPT

has been proved. Finally, by introducing an asymmetric mutation operator to GSEMO, bounds on the expected optimization time were obtained that match

the requirements for fixed-parameter tractable algorithms. All analyses show that the archiving strategies of multi-objective algorithms enable the search to proceed in a structured way and also to make decisions that resemble thos of components of problem-specific greedy algorithms.

13

Cutting Problems

In this chapter, we consider another important class of problems belonging

to the field of combinatorial optimization. We study cutting problems in a

given weighted graph. The minimum s- t cut problem is one of the basic, classical problems in combinatorial optimization, operations research, and

computer science (Cormen et al., 2001). Evolutionary algorithms have produced good results for various kinds of difficult cutting problems (Duarte, Sánchez, Fernández, and Cabido, 2005; Liang, Yao, Newton, and Hoffman,

2002; Puchinger, Raidl, and Koller, 2004).

The basic minimum s- t cut problem has the following formulation. We are given a connected directed graph G = (V, E) on n + 2 vertices and m edges and a function c : E → N+ that imposes positive integer costs on the edges.

We denote by c max = max e∈E c(e) the largest cost among all edges. Two nodes s, t ∈ V are distinguished. We call s the source node and t the target node.

An s- t cut S ⊆ E is a set of edges such that there is no path from s to t when the edges of S are deleted from E. The cost of a subset of E is defined as the sum of the costs of its elements. In the minimum s- t cut problem, the goal is to find an s- t cut S ⊆ E of minimum cost. The minimum s- t cut problem is highly related to the problem of computing a maximum flow from s to t. A flow in G is a vector in R |E| (one component for each edge) such that: 1. 0 ≤ flow ((u, v)) ≤ c((u, v))

 ∀(u, v) ∈ E

2.

 flow ((u, v)) =

 flow ((v, u))

 ∀v ∈ V \ {s, t}

(u,v) ∈E

(v,u) ∈E

Here the function c : E → N+ imposes capacity constraints for the flow that can be sent along each edge. The value of the flow from s to t in G

(denoted by |flow |) is given by the value of the flow that leaves s, i.e.,

 |flow| =

 flow ((s, u)) .

(s,u) ∈E

The maximum flow in a given directed graph is the maximal value of a

flow that can be sent from s to t without violating the capacity constraints.

F. Neumann, C. Witt, Bioinspired Computation

191

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3 13, © Springer-Verlag Berlin Heidelberg 2010

192

13 Cutting Problems

Due to the classical maximum flow minimum cut theorem (Papadimitriou and

Steiglitz, 1998) the maximum flow from s to t in a given network equals the value of a minimum s- t cut.

The two mentioned basic problems can be solved in polynomial time.

We consider different variants of evolutionary algorithms for this problem

and present rigorous runtime results that are due to Neumann, Reichel, and

Skutella (2008). Besides the classical minimum s- t cut problem, there are many other variants of cutting problems some of which are NP -hard. Examples are the maximum cut problem and the minimum multicut problem

(see Korte and Vygen, 2005). The minimum multicut is a generalization of the minimum s- t cut problem. Instead of one source-sink pair, k source-sink pairs (si, ti), i = 1 , . . . , k, are given and the goal is to find a set of edges of minimum cost that disconnects every sink ti from its associated source si, i = 1 , . . . , k. We examine this problem as a generalization of the basic minimum s- t cut problem and present results based that have been obtained by

Neumann and Reichel (2008).

We start by analyzing single-objective and multi-objective approaches for

the minimum s- t cut problem. In Section 13.1, we investigate two simple single-objective approaches and present instances where they fail to achieve a minimum cut in polynomial time. In Section 13.2, we show that a multiobjective approach leads to a minimum s- t cut in expected polynomial time.

Furthermore, our results show that this multi-objective approach computes

in expected polynomial time to a factor k-approximation for the multicut problem consisting of k pairs of sink and terminal nodes.

13.1 Single-objective Approaches

We start by considering two single-objective models for the minimum s- t cut problem. The first one is node-based, the second is edge-based. In the node-based approach, we are searching for a partitioning of the vertices into two subsets, one containing s and the other containing t, such that the cost of the edges connecting the s to the t side of the cut is minimal. In the edge-based approach we search for a subset of edges of minimal cost such that the deletion of those edges disconnects t from s, i.e., the chosen edges constitute a cut.

13.1.1 Node-Based Approach

The minimum s- t cut problem consists of splitting the input graph into two components such that the cost of the edges crossing the partitions is minimal.

Therefore, it seems natural to assign the vertices of V \ {s, t} to either s or t such that the graph is split into two partitions S and T of vertices where s ∈ S and t ∈ T holds. Obviously, the edges leading from S to T constitute a cut and the goal is to minimize the cost of such a solution. The underlying search space is { 0 , 1 }n, where vi ∈ S iff xi = 0 and vi ∈ T iff xi = 1, 1 ≤ i ≤ n.

13.1 Single-objective Approaches

193

Fig. 13.1. Illustration of graph Gk

Fig. 13.2. Illustration of graph Gk,

The fitness of a search point x is given by

 cost (x) =

 c(e) ,

 e∈E∩(S×T)

which computes the sum of the cost of all edges leading from S to T .

The node-based approach has a major drawback that has been pointed out

in Neumann et al. (2008). The problem is that it imposes local optima with a large inferior neighborhood that make it hard to escape for stochastic search algorithms. We discuss such a class of instances in the following. To ease the presentation we use real-valued costs on the edges. However, an appropriate scaling can be used to come up with a corresponding class of instances that uses positive integer costs.

Consider the graph Gk (see Figure 13.1) given by a chain consisting of k interior vertices. Obviously, an optimal cut has cost 0 and assigns all vertices V \ {s, t} to the source node s, i.e., the search point 0 k is the global optimum. However, the search of a single-objective algorithm such as RLS1b

and (1+1) EAb leads to a cut which assigns all vertices V \ {s, t} to t, which constitutes a local optimum of cost 1, i.e., the search point 1 k is a local optimum. The probability of getting stuck in a local optimum becomes even

higher if different copies of the graph Gk that share the vertices s and t are considered. Such a graph, called G , is depicted in Figure 13.2 and contains k,

a chain part consisting of
 copies of the graph Gk. In addition, it contains a

star part consisting of n − k
 vertices that is directly connected t. Choosing

 k = Θ(n 1 / 5) and
 = Θ(n 1 / 5), mutations affecting the chain part become unlikely in comparison to the clique part. In this way, the effect of mutation steps flipping more than one bit in the chain part can be controlled in a similar way to that in the proof of the lower bound of (1+1) EAb for the computation of a minimum spanning tree (see Theorem 5.9). Then it can be shown by investigating a typical run that RLS1 and (1+1) EA

b

b working on the fitness

194

13 Cutting Problems

function cost compute with probability 1 −o(1) a local optimal solution which is not optimal with respect to at least one Gk in the chain part. We state the following theorem whose proof can be found in Neumann et al. (2008).

Theorem 13.1. With probability 1 − o(1) , the optimization time of RLS 1 and b

 (1+1) EAb on G

 is 2 Ω(n 1 / 10) .

 k,

13.1.2 Edge-Based Approach

A solution to the minimum s- t cut problem is a set of edges. Therefore another natural approach is to work with a set of edges in stochastic search algorithms.

The drawback of this approach is that not each edge set constitutes an s- t cut.

We now consider such an edge-based approach to obtain a minimum s-

 t cut. We work with bitstrings of length m = |E| and consider RLS1 and b

(1+1) EAb. Note, that (1+1) EAb flips each bit with probability 1 /m in a mutation step.

As not every search point of the underlying search space represents a

feasible solution, we have to penalize search points that do not represent an s- t cut. For a search point x, we do this by considering the value of a maximum flow that can be sent from s to t after taking out the chosen edges. Note that the flow value is 0 iff x represents a cut. Let E(x) := {ei ∈ E | xi = 1 } denote the subset of E corresponding to the 1s in a bitstring x. The fitness of a search point x ∈ { 0 , 1 }m is given by

 f (x) := cost (x) + α · flow (x)

for some α > 1, where cost (x) :=

 c(e) and flow (x) denotes the max-

 e∈E(x)

imum value of an s- t flow in the graph G(x) := (V, E \ E(x)). The capacity of an edge e ∈ E equals its cost c(e). The fitness function should be minimized.

Note that flow (x) vanishes if and only if E(x) contains an s- t cut of G.

Hence, flow (x) is a penalty term that penalizes bitstrings that do not correspond to a feasible solution. If E(x) contains an s- t cut of G, the fitness function equals the value of the corresponding cut. A factor α ≤ 1 is unsuitable, since the empty set would have fitness smaller (or equal) than the global optimum.

It is well known that the value of a maximum flow in the graph is equal

to the value of a minimum cut in the graph. However, considering just the

value of a maximum flow, it is hard to gain structural information about the minimum cut. Therefore, it is interesting to examine whether stochastic search algorithms can take advantage of the value of a maximum flow in G(x) for a given solution x.

In the following, we consider a class of graphs where simple stochastic

search algorithms such RLS1 and (1+1) EA

b

b fail to obtain a minimum s- t

cut when working with the introduced fitness function. Again, we show that

13.1 Single-objective Approaches

195

Fig. 13.3. Illustration of graph Hk

Fig. 13.4. Illustration of graph Hk,

the search space can contain local optima with a large inferior neighborhood which are produced by these algorithms before achieving an optimal solution.

The instance is based on a graph Hk (see Figure 13.3), which consists of two vertices s, t and one interior vertex v. There are k + 1 edges of cost 1 leading form s to v and k edges of cost 1 + , where 1 /k < < 2 /k, leading from v to t. As > 1 /k holds, all edges having weight 1 constitute a minimum s- t cut.

The graph has the following property. If the number of chosen (1 +)-edges is at some point of time larger than the number of chosen 1-edges by at least 2, then this property also holds for all later time steps if only 1-bit flips occur.

This implies that if RLS1 chooses an initial solution which satisfies the stated b

property, it will end up in the local optimum which consists of all (1+)-edges.

The probability of getting stuck in a local optimum becomes even higher

when different copies of the graph Hk that share the vertices s and t are considered. Such a graph, called H , is depicted in Figure 13.4 and contains k,

a bundle part consisting of
 copies of the graph Hk. In addition, it contains

a clique part consisting of n −
 − 1 vertices that is directly connected to t.

All edges in the clique part have cost δ, where 0 < δ ≤ (α − 1) /n 2, which implies that the influence of the edges in the clique part with respect to the fitness function is low. Choosing
 = Θ(n 1 / 10) and k = Θ(n 4 / 10), bit flips in the bundle part become less likely than in the clique part. Again, a typical run investigating the effect of 1-bit flips can be considered in order to show that with probability 1 − o(1) a local optimum is reached which is not optimal with respect to at least one Hk. This leads to the following theorem, whose proof can be found in Neumann et al. (2008).

Theorem 13.2. With probability 1 − o(1) , the optimization time of RLS 1 and b

 (1+1) EAb on H

 is 2 Ω(n 1 / 10) .

 k,

196

13 Cutting Problems

13.2 Multi-objective Model for the Multicut Problem

We have seen in the previous section that simple single-objective approaches may get stuck in local optima when dealing with the minimum s- t cut problem. This even holds if the fitness function takes into account the value of a maximum flow that can be sent from s to t by using the unchosen edges. We now consider a multi-objective approach for stochastic search algorithms to solve the minimum multi-cut which is a generalization of the minimum s- t cut problem. For the special case of the minimum s- t cut problem, we will show a polynomial upper bound on the expected time to compute a minimum cut

and obtain approximation results for the general case.

The minimum multicut problem can be stated as follows. We are given a

connected directed or undirected graph G = (V, E) on n vertices and m edges and a cost function c : E → N+ that imposes positive integer weights on the edges. Let {(s 1 , t 1) , . . . , (sk, tk) } be a set of k pairs with si = ti, 1 ≤ i ≤ k.

The source of commodity i is given by si, the target by ti. We denote by c max = max e∈E c(e) the largest cost among all edges.

A multicut S ⊆ E is a set of edges such that there is no path from si to ti in (V, E \ S) for any commodity i. The cost of a subset of E is defined as the sum of the costs of its elements. The goal is to find a multicut S ⊆ E of minimum cost.

To deal with the multicut problem we consider a generalization of the

multi-objective approach to the multicut problem presented in Neumann and

Reichel (2008). We want to consider a multi-objective model which takes into account the cost of a set of edges as well as the flow that can be sent through the network after the chosen edges have been deleted. Let Fi denote the value

of a maximum s

 k

 i- ti flow in G and define F :=

 F

 i=1

 i. We denote by F ∗ the

sum of all flow values of a maximum multicommodity flow in G and by C∗

the cost of a minimum multicut of G. Note that F ∗ ≤ C∗ ≤ C := m · c max.

Furthermore, we have F ∗ ≤ F =

 k

 F

 i=1

 i ≤ k · F ∗ ≤ k · C ∗ ≤ k · C .

We consider the fitness function f : { 0 , 1 }m → N2, f (x) = (cost(x) , f low),

where cost (x) =

 c(e), flow (x) :=

 k

 flow (x), and flow (x) de-

 e∈E(x)

 i=1

 i

 i

notes the value of a maximum si- ti flow in G(x) := (V, E \ E(x)).

Our goal is to show that the multi-objective model leads to an F/C∗-

approximation for the multicut problem. Note that F/C∗ ≤ k; hence in the worst case we get a k-approximation. For the case k = 1, F = C∗ holds due to the maximum flow minimum cut theorem, which implies that a minimum

 s- t cut is obtained.

We denote by L = {x ∈ { 0 , 1 }m | cost(x) + flow (x) ≤ F } the set of search points whose objective vectors lie on or below the line given by the two objective values (0 , F) and (F, 0). Figure 13.5 shows a graphical representation of the objective space for the general case.

The figure shows the case where the sequence F ∗, C∗, F , k · F ∗, k · C∗

is strictly increasing. Note that subsequent values may coincide and that C

can be as small as C∗. Minimum multicuts x∗ have objective vector (C∗, 0);

13.2 Multi-objective Model for the Multicut Problem

197

Fig. 13.5. Objective space of the fitness function f (x) = (cost (x) , flow (x)) for the multicut problem

 k-approximations lie on the the segment from (C∗, 0) to (min {k · C∗, C}, 0).

The following lemma shows that the search points of L represent subsets of F/C∗-approximations of minimum multicuts.

Lemma 13.3. Let x ∈ L. Then E(x) is a subset of an F/C∗-approximation of a minimum multicut of G.

 Proof. Since x ∈ L we have cost(x) + flow (x) ≤ F . Let S denote a minimum multicut of G(x). Then E(x) ∪ S is a multicut of G with cost(E(x) ∪ S) =

 cost (x) + cost (S). Since S is a minimum multicut of G(x), its cost is not larger than the sum of the cost of the individual minimum si- ti cuts, i.e., cost (S) ≤ flow (x). Hence, we have cost(E(x) ∪ S) ≤ cost(x) + flow (x) ≤ F ≤

 k · F ∗ ≤ k · C∗, which implies that E(x) ∪ S is an F/C∗-approximation of a minimum multicut of G.

Note that for k = 1 the set L is given by all search points x for which cost (x) + flow (x) = F holds. This is an immediate consequence of the maximum flow minimum cut theorem. The preceding lemma implies the following

condition for F/C∗-approximate solutions which will be essential for the analysis of the algorithms.

Corollary 13.4. Let x ∈ { 0 , 1 }m such that flow (x) = 0 . Then E(x) is an F/C∗-approximation of a minimum multicut of G if and only if x ∈ L.

In the following, we examine how to obtain from a solution x ∈ L with flow (x) > 0 another solution x ∈ L for which flow (x) < flow (x). As a minimum multicut is a solution z ∈ L for which flow (z) = 0; this is essential for our upper bound on the time to achieve an F/C∗-approximation of a minimum multicut. For x ∈ { 0 , 1 }m and e ∈ E, let x(e) be the value of bit corresponding to edge e in x. We define x+ e ∈ { 0 , 1 }m by x+ e(e) = 1 and x+ e(e) = x(e) for e = e. We can bound flow (x+ e) in terms of flow (x) as follows.

198

13 Cutting Problems

Lemma 13.5. Let x ∈ { 0 , 1 }m and e ∈ E. Then flow (x+ e) ≥ flow (x) − kc(e) .

 Proof. By the (single-commodity) maximum flow minimum cut theorem, we have

 flow (x+ e) ≥ flow (x) − c(e) i

 i

for each commodity i. Hence, we get

 k

 flow (x+ e) ≥

(flow (x) − c(e)) ≥ flow (x) − kc(e) .

 i

 i=1

Now, we investigate how introducing an edge of a minimum si- ti cut for some i in G(x) changes the cost and flow value of a solution x.

Lemma 13.6. Let x ∈ { 0 , 1 }m such that flow (x) > 0 for some commodity i.

 i

 Let e ∈ E \E(x) be an edge of a minimum si-ti cut of G(x) . Then flow (x+ e) ≤

 flow (x) − c(e) and cost(x+ e) + flow (x+ e) ≤ cost(x) + flow (x) .

 Proof. Since flow (x) > 0 the minimum s i

 i- ti cut of G(x) is not the empty set.

Let x ∈ E \ E(x) be an edge from such a minimum si- ti cut. By the (single-commodity) maximum flow minimum cut theorem we have flow (x+ e) =

 i

 flow (x) − c(e). Furthermore, flow (x+ e) ≤ flow (x) holds for j = i. Sumi

 j

 j

mation over i yields the first claim.

Since cost (x+ e) = cost (x) + c(e), the second claim follows directly from the first one.

Lemma 13.6 shows that we can make progress in L towards an F/C∗-

approximation by choosing an edge e ∈ G(x) that belongs to a minimum si- ti cut in G(x) for some i. The following corollary is an immediate consequence of the preceding lemma and the definition of L.

Corollary 13.7. Let x ∈ L a search point such that flow (x) > 0 . Then there exists a 1 -bit flip leading to a search point x ∈ L with flow (x) < flow (x) .

After having examined some basic properties for the multi-objective model,

we are now able to show runtime results for stochastic search algorithms First, we consider GSEMO and prove an upper bound on the expected time until

this algorithm has achieved a F/C∗-approximation of the multicut problem.

Theorem 13.8. The expected time until GSEMO working on the fitness function f constructs an F/C∗-approximation of a minimum multicut is

 O(F m(log n + log c max)) .

 Proof. The size of the population P is at most F as GSEMO keeps at each time step at most one solution per fixed flow value. First, we consider the time until 0 m ∈ L has been included into the population. Note that cost(0 m) = 0.

Afterwards we study the time until x ∈ L with flow (x) = 0 has been included.

13.2 Multi-objective Model for the Multicut Problem

199

Algorithm 24 DEMO (Diversity Evolutionary Multi-objective Optimizer) 1. Choose x ∈ { 0 , 1 }m uniformly at random.

2. Determine f (x) and initialize P := {x}.

3. Repeat

a) Choose x ∈ P uniformly at random.

b) Create an offspring y by flipping each bit of x independently with probability 1 /m.

c) Let P unchanged if there is an z ∈ P such that b(z) ≤ b(y) and (b(z) =

 b(y) or cost (z) + flow (z) < cost (y) + flow (y)). Otherwise, exclude all z with b(y) ≤ b(z) and add y to P .

By Lemma 13.3, the edge set E(x) is an F/C∗-approximation of a minimum multicut.

The expected time until GSEMO working on the fitness function f constructs 0 m is O(F m(log n + log c max)). This can be proved using the technique of the expected multiplicative distance decrease where distance is measured with respect to min x∈P cost(x).

Now we bound the time until a cut with the claimed approximation qual-

ity has been constructed. Once again we apply the method of the expected

multiplicative distance decrease, now with respect to the flow value. Let x be the solution with the smallest flow value in P ∩L. Note that min x∈P ∩L flow(x) does not increase during a run of GSEMO.

Consider a mutation step that selects x and performs an arbitrary 1-bit flip. Such a step is called a good step. The probability of a good step is lower bounded by Ω(1 /F). By Lemma 13.3, E(x) is a subset of an F/C∗-

approximation of a minimum multicut, which can be obtained by including the remaining edges one by one. Therefore, a randomly chosen 1-bit flip decreases the minimum flow value in P ∩ L on average by a factor of at least 1 − 1 /m.

Using the method of the multiplicative distance decrease with respect to

the flow value the expected time until x ∈ L with flow (x) = 0 has been discovered is O(F m(log n + log c max)).

We can state the following corollary for the minimum s- t cut problem.

Corollary 13.9. If k = 1 , the expected time until GSEMO working on the fitness function f constructs a minimum s-t cut is O(F m(log n + log c max)) .

The upper bound on the expected optimization time of GSEMO is only

polynomial if c max = poly(n) holds. The reason for the pseudo-polynomial bound is that the population size can only be upper bounded by F . In fact, it is not too hard to come up with instances whose number of Pareto optimal objective vectors is exponential in the number of vertices. Due to this, the question arises about whether one has to keep for each Pareto optimal

objective vector a corresponding individual in the population.

200

13 Cutting Problems

Dealing with a large Pareto front, multi-objective evolutionary algorithms

usually do not keep for each nondominated objective vector one corresponding solution. Instead they work with a smaller population size and ensure diversity of the search points in the population with respect to the objective values.

One popular diversity mechanism that has been proposed in the literature

is the so-called -dominance approach (see Laumanns, Thiele, Deb, and Zitzler, 2003). Here, objective vectors that are close to each other are grouped together and only one representative of such a group is kept.

We consider the DEMO algorithm (Diversity Evolutionary Multi-objective

Optimizer) which differs from GSEMO by its partitioning of the objective

space into boxes. A box includes objective vectors that are similar to each other and the algorithm keeps at most one individual per box in the population.

The objective space is partitioned into boxes by using the function

 b : { 0 , 1 }m → N2

with

log(1 + cost (x))

 b 1(x) :=

log(1 +)

and

log(1 + flow (x))

 b 2(x) :=

 ,

log(1 +)

where , 0 < < 1 is a parameter that determines the size of the boxes. This has the consequence that the population size of DEMO is upper bounded, as

stated in the following lemma.

Lemma 13.10. The population size |P | of DEM O is upper bounded by B ≤ log(1 + C) = O(− 1 log C) = O(− 1(log n + log c max)) .

log(1 +)

 Proof. Since the bi(·), 1 ≤ i ≤ 2, value is a nonnegative integer and the population contains at most one search point per box, the population size is upper bounded by

min { max b 1(x) , max b 2(x) }.

 x∈{ 0 , 1 }m

 x∈{ 0 , 1 }m

Hence, we have B ≤ log(1 + C) / log(1 +) ≤ 2 log(1 + C) / = O(− 1 log C).

To obtain the upper bound on the runtime of DEMO, we first consider

the time until the search point 0 m has been included in the population and analyze the time to achieve an F/C∗-approximation afterwards. DEMO does not keep all nondominated objective vectors found so far. The following lemma shows that for each search point x = 0 m there is a 1-bit flip which produces from x a solution x with a small b 1-value. Such operations will be essential for bounding the time until the solution 0 m has been included in the population.

13.2 Multi-objective Model for the Multicut Problem

201

Lemma 13.11. Let ≤ 1 /m and x ∈ { 0 , 1 }m a search point such that cost (x) > 0 . Then there exists a 1 -bit flip leading to a search point x ∈ { 0 , 1 }m with b 1(x) < b 1(x) .

 Proof. Consider all 1-bit flips that remove a single edge from E(x). Among all resulting search points, consider a point x that minimizes y := cost (x).

Let y := cost (x).

The repeated removal of edges in E(x) yields the search point 0 m. Let

 := |E(x) | ≤ m. Since y was minimal, y ≤ (1 − 1) y holds. Since ≤ 1 ≤ 1

 m

and
 ≤ y, we have

(1 +)(1 + y) ≤ 1 + + (1 +) 1 − 1 y

 ≤

 y

1

1 +

+

1 +

1 − 1 y = 1 + y.

 2

This implies that

log(1 + y)

1 +

 ≤ log(1 + y)

log(1 +)

log(1 +)

and finally b 1(x) < b 1(x).

Using Lemma 13.11, we now bound the expected time until DEMO has produced a population which includes the search point 0 m.

Lemma 13.12. The expected time until DEMO working on the fitness function f includes the search point 0 m into the population is O(m− 2(log2 n +

log2 c max)) .

 Proof. The archiving strategy of DEMO guarantees that whenever a non-empty box becomes empty, another search point whose box dominates the

considered box is included into the population. Therefore, min x∈P b 1(x) will never increase during the run of the algorithm.

Since the population size is bounded by B, the probability of picking a search point x ∈ P with minimal b 1-value is Ω(1 /B). By Lemma 13.11, there exists at least one 1-bit flip leading to a search point x with b 1(x) < b 1(x).

The probability of generating such a search point x is Ω(1 /m). After at most B such steps, the b 1-value is zero, implying that we have found the search point 0 m. Hence, the expected time to include 0 m in the population is O(B 2 m) = O(m− 2 log2 C) = O(m− 2(log2 n + log2 c max)) .

This concludes the proof.

To come up with an upper bound for DEMO, it is necessary to examine

how the algorithm progresses from a solution x ∈ L to a solution of x ∈ L

with b 2(x) < b 2(x). The following lemma points out that this is possible by carrying out a special 1-bit flip.

202

13 Cutting Problems

Lemma 13.13. Let ≤ 1 /m and x ∈ L be a search point such that flow (x) > 0 . Then there exists a 1 -bit flip leading to a search point x ∈ L with b 2(x) < b 2(x) .

 Proof. By Lemma 13.7, there exists at least one 1-bit flip leading to a search point x ∈ L with flow (x) < flow (x). Among all such search points, consider a point x that minimizes y := flow (x). Let y := flow (x).

The repeated application of Lemma 13.7 yields an F/C∗-approximation E(x∗) of a minimum multicut of G. Let
 := |E(x∗) | − |E(x) | ≤ m. Since

 y was minimal, y ≤ (1 − 1) y holds. Since ≤ 1 ≤ 1 and
 ≤ y, we have

 m

 b 2(x) < b 2(x) by the same calculation as that in the proof of Lemma 13.11.

Finally, we are able to prove the following theorem, which shows that

the expected runtime of DEMO with an appropriate choice of is always polynomially bounded with respect to the given input.

Theorem 13.14. Choosing ≤ 1 /m, the expected time until DEMO working on the fitness function f constructs an F/C∗-approximation of a minimum multicut is O(m− 2(log2 n + log2 c max)) .

 Proof. Due to Lemma 13.12, the search point 0 m ∈ L has been included into the population after an expected number of O(m− 2(log2 n+log2 c max)) steps.

Hence, it is sufficient to consider the search process after having found a search point x ∈ L.

The archiving strategy of DEMO guarantees that whenever a non-empty

box becomes empty, another search point whose box dominates the considered

box is included into the population. Moreover, the tie-break rule ensures that a non-empty box with a search point x ∈ P ∩ L will never exchange that search point for a search point x ∈ L. Therefore, min x∈P ∩L b 2(x) will never increase during the run of the algorithm.

Since the population size is bounded by B, the probability of picking a search point x ∈ L with minimal b 2-value from among the search points in L

is Ω(1 /B). By Lemma 13.13, there exists at least one 1-bit flip leading to a search point x ∈ L with b 2(x) < b 2(x). The probability of generating such a search point x is Ω(1 /m). After at most B such steps, the b 2-value is zero, implying that we have found a multicut. Since x ∈ L, this multicut is an F/C∗-approximation of a minimum cut. Hence, the expected time to obtain an F/C∗-approximation of a minimum multicut is

 O(B 2 m) = O(m− 2 log2 C) = O(m− 2(log2 n + log2 c max)) .

This concludes the proof.

For the minimum s- t cut problem, we get the following results as an immediate consequence of the previous theorem.

Corollary 13.15. If k = 1 and ≤ 1 /m, the expected time until DEMO working on the fitness function f constructs a minimum s-t cut is O(m− 2(log2 n+

log2 c max)) .

13.2 Multi-objective Model for the Multicut Problem

203

Conclusions

Finding minimum cuts in a given graph is one of the fundamental combina-

torial optimization problems. We have examined how stochastic search algo-

rithms can deal with this problem. Investigating two natural single-objective approaches, we have pointed out that they have to deal with local optima that have a large distance from the global one. This leads to exponential lower

bounds on the runtime of RLS1 and (1+1) EA

b

b. Taking a multi-objective

view on the problem, we have shown that GSEMO can solve the minimum

 s- t cut problem efficiently. To deal with a large number of trade-offs we have proposed using the -dominance approach leading to the algorithm DEMO.

We have shown that this algorithm solves the minimum s- t cut problem as well as the generalized multicut problem in expected polynomial time.

The benefits and drawbacks for the use of the -dominance approach have been investigated in greater detail by Horoba and Neumann (2008). There are other diversity mechanisms that have been used in evolutionary multiobjective optimization, such as the density estimator or the use of the hy-

pervolume indicator to direct the search. In Horoba and Neumann (2009),

an approach using the density estimator is compared to the approach using

 -dominance as well as the approach of keeping all nondominated objective vectors. It is pointed out in which situations one mechanism is favored over the other. For the hypervolume indicator, the first runtime analysis was presented by Brockhoff, Friedrich, and Neumann (2008). We refer the interested reader to the mentioned papers for further reading. For future research, it would be interesting to see how the other mentioned mechanisms can help us

deal with combinatorial optimization problems that encounter an exponential number of trade-offs.

A

Appendix

We present some elementary mathematical material that is used throughout

this book. Most of these basics in mathematics can be found in Feller (1968,

1971) and Motwani and Raghavan (1995).

A.1 Probability Distributions

Definition A.1 (Binomial distribution). A random variable X follows the binomial distribution with parameters n and p if

 n

Prob(X = k) =

 · pk · (1 − p) n−k

 k

 for k ∈ { 0 , . . . , n}. Its expectation is E(X) = np.

 Illustratively, the random variable X counts the number of successes in n independent Bernoulli trials with probability p for a success.

Definition A.2 (Geometric distribution). A random variable X follows the geometric distribution with parameter p if

Prob(X = k) = pk · (1 − p)

 for k ∈ N0 . Its expectation is E(X) = 1 /p.

 Illustratively, X counts the number of consecutive successes before the first failure in independent Bernoulli trials with success probability p.

Definition A.3 (Poisson distribution). Let λ be a positive real number. A random variable X follows the Poisson distribution with parameter λ if

 λke−λ

Prob(X = k) =

 k!

 for k ∈ N0 . Its expectation is E(X) = λ.

F. Neumann, C. Witt, Bioinspired Computation

205

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3, © Springer-Verlag Berlin Heidelberg 2010

206

A Appendix

A.2 Deviation Inequalities

Proposition A.4 (Markov’s inequality). Let X be a random variable assuming only non-negative values. Then for all t ∈ R+ ,

 P rob(X ≥ k · E(X)) ≤ 1 /k.

Proposition A.5 (Chernoff bounds). Let X 1 , X 2 , . . . , Xn be independent Poisson trials such that for 1 ≤ i ≤ n P rob(Xi = 1) = pi, where 0 < pi < 1 .

 Let X =

 n

 X

 n

 p

 i=1

 i, μ = E(X) =

 i=1

 i. Then the following inequalities hold.

 μ

 eδ

 P rob(X ≥ (1 + δ) μ) ≤

 δ > 0

(1 + δ)(1+ δ)

 P rob(X ≥ (1 + δ) μ) ≤ e−μδ 2 / 3

0 < δ ≤ 1

 P rob(X ≤ (1 − δ) μ) ≤ e−μδ 2 / 2

0 < δ ≤ 1

Proposition A.6 (Chernoff-Hoeffding bound). Let X 1 , . . . , Xn be independent random variables such ai ≤ Xi ≤ bi for 1 ≤ i ≤ n. Denote

 X =

 n

 X

 i=1

 i. Then for any δ ≥ 0 the following inequalities hold.

P n

 P rob(X ≥ μ + δ) ≤ e− 2 δ 2 /

(b

 i=1

 i −ai)2

P n

 P rob(X ≤ μ − δ) ≤ e− 2 δ 2 /

(b

 i=1

 i −ai)2

A.3 Other Useful Formulas

Proposition A.7 (Union bound). For a finite or countably infinite sequence A 1 , A 2 , A 3 , . . . , of events

Prob (∪i≥ 1 Ai) ≤

Prob(Ai) .

 i≥ 1

Proposition A.8 (Law of total probability). For an event A and a partition of the sample space Ω into mutually disjoint events B 1 , . . . , Bk, i.e.,

 ∪k B

 i=1

 i = Ω, it holds

 k

Prob(A) =

Prob(A | Bi) · Prob(Bi) ,

 i=1

 where Prob(A | Bi) denotes the conditional probability of A, given Bi.

A.3 Other Useful Formulas

207

Proposition A.9 (Stirling’s formula). For any n ∈ N

 √

 √

2 πnnne−n < n! <

3 πnnne−n

 holds.

Proposition A.10 (Inequalities with e).

 ex ≥ 1 + x for x ∈ R

 e−x ≤ 1 − x for 0 ≤ x ≤ 1

2

 ex ≤

1

 for x < 1

1 − x

 n

 n− 1

1 − 1

 ≤ e− 1 ≤ 1 − 1

 for n ∈ N

 n

 n

Proposition A.11 (Binomial coefficients). Let n ≥ k ≥ 0 . The binomial coefficients are defined as

 n

 n

 n!

=

=

 ,

 k

 n − k

 k!(n − k)!

 and it holds

 n k

 k

 ≤ n ≤ nk ≤ ne

 .

 k

 k

 k!

 k

Proposition A.12 (Harmonic sum). Let H

 n

 n =

1 /i be the nth Har-

 i=1

 monic sum. Then for any n ∈ N

 Hn = ln n + Θ(1) .

Proposition A.13 (Coupon collector’s theorem). In the coupon collector’s problem, n different coupons are given and at each trial a coupon is chosen uniformly at random. Let X be a random variable describing the number of trials required to choose each coupon at least once. Then

 E(X) = nHn

 holds, where Hn denotes the nth Harmonic number, and

lim Prob(X ≤ n(ln n − c)) = e−ec

 n→∞

 holds for each constant c ∈ R .

References

Aarts E, Lenstra J K (2003) Local Search in Combinatorial Optimization.

Wiley

Aleliunas R, Karp R M, Lipton R J, Lovász L, Rackoff C (1979) Random

walks, universal traversal sequences, and the complexity of maze problems.

In: Proceedings of the 20th Annual Symposium on Foundations of Com-

puter Science (FOCS ’79), IEEE Press, 218–223

Attiratanasunthron N, Fakcharoenphol J (2008) A running time analysis of

an ant colony optimization algorithm for shortest paths in directed acyclic graphs. Information Processing Letters 105(3):88–92

Barahona F, Pulleyblank W (1987) Exact arborescences, matchings and cy-

cles. Discrete Applied Mathematics 16:91–99

Bast H, Funke S, Sanders P, Schultes D (2007) Fast routing in road networks with transit nodes. Science 316(5824):566

Baswana S, Biswas S, Doerr B, Friedrich T, Kurur P P, Neumann F (2009)

Computing single source shortest paths using single-objective fitness func-

tions. In: Proceedings of the 10th International Workshop on Foundations

of Genetic Algorithms (FOGA ’09), ACM Press, 59–66

Beier R, Vöcking B (2004) Random knapsack in expected polynomial time.

Journal of Computer and System Sciences 69(3):306–329

Briest P, Brockhoff D, Degener B, Englert M, Gunia C, Heering O, Jansen T,

Leifhelm M, Plociennik K, Röglin H, Schweer A, Sudholt D, Tannenbaum

S, Wegener I (2004) Experimental supplements to the theoretical analysis

of eas on problems from combinatorial optimization. In: Proceedings of

Parallel Problem Solving from Nature VIII (PPSN ’04), volume 3242 of

Lecture Notes in Computer Science, Springer, 21–30

Brockhoff D, Friedrich T, Neumann F (2008) Analyzing hypervolume indi-

cator based algorithms. In: Proceedings of Parallel Problem Solving from

Nature X (PPSN ’08), volume 5199 of Lecture Notes in Computer Science,

Springer, 651–660

F. Neumann, C. Witt, Bioinspired Computation

209

 in Combinatorial Optimization, Natural Computing Series,

DOI 10.1007/978-3-642-16544-3, © Springer-Verlag Berlin Heidelberg 2010

210

References

Broder A (1989) Generating random spanning trees. In: Proceedings of the

30th Annual Symposium on Foundations of Computer Science (FOCS ’89),

IEEE Press, 442–447

Bui T N, Chaudhuri S, Leighton F T, Sipser M (1984) Graph bisection algo-

rithms with good average case behavior. In: Proceedings of the 25th Annual

Symposium on Foundations of Computer Science (FOCS ’84), IEEE Press,

181–192

Chen J, Kanj I A, Xia G (2006) Improved parameterized upper bounds for

vertex cover. In: Proceedings of the 31st International Symposium on Math-

ematical Foundations of Computer Science (MFCS ’06), volume 4162 of

Lecture Notes in Computer Science, Springer, 238–249

Chvátal V (1979) A greedy heuristic for the set-covering problem. Mathemat-

ics of Operations Research 4(3):233–235

Coello Coello C A, Van Veldhuizen D A, Lamont G B (2007) Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer, 2nd edition

Coffman E G Jr, Whitt W (1995) Recent asymptotic results in the probabilis-

tic analysis of schedule makespans. In: Chrétienne P, Coffman E G, Lenstra

J K, Liu Z(eds.) Scheduling Theory and its Applications, Wiley, 15–31

Colorni A, Dorigo M, Maniezzo V (1992) An investigation of some properties

of an “ant algorithm”. In: Proceedings of Parallel Problem Solving from

Nature II (PPSN ’92), Elsevier, 515–526

Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to Algorithms.

McGraw-Hill, 2nd edition

David H A, Nagaraja H N (2003) Order Statistics. Wiley, 3rd edition

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley

Doerr B, Happ E, Klein C (2007a) A tight analysis of the (1+1)-EA for the

single source shortest path problem. In: Proceedings of the IEEE Congress

on Evolutionary Computation (CEC ’07), IEEE Press, 1890–1895

Doerr B, Happ E, Klein C (2008) Crossover can provably be useful in evo-

lutionary computation. In: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO ’08), ACM Press, 539–546

Doerr B, Hebbinghaus N, Neumann F (2007b) Speeding up evolutionary algo-

rithms through asymmetric mutation operators. Evolutionary Computation

15(4):401–410

Doerr B, Johannsen D (2007) Adjacency list matchings — an ideal genotype

for cycle covers. In: Proceedings of the Genetic and Evolutionary Compu-

tation Conference (GECCO ’07), ACM Press, 1203–1210

Doerr B, Neumann F, Sudholt D, Witt C (2007c) On the runtime analysis of

the 1-ANT ACO algorithm. In: Proceedings of the Genetic and Evolution-

ary Computation Conference (GECCO ’07), ACM Press, 33–40

Doerr B, Theile M (2009) Improved analysis methods for crossover-based al-

gorithms. In: Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO ’09), ACM Press, 247–254

References

211

Dorigo M, Blum C (2005) Ant colony optimization theory: A survey. Theo-

retical Computer Science 344:243–278

Dorigo M, Maniezzo V, Colorni A (1991) The ant system: An autocatalytic

optimizing process. Technical Report 91-016 Revised, Politecnico di Milano

Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press

Downey R G, Fellows M R (1999) Parameterized Complexity. Springer

Droste S, Jansen T, Wegener I (2002) On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276:51–81

Duarte A, Sánchez Á, Fernández F, Cabido R (2005) A low-level hybridization between memetic algorithm and VNS for the max-cut problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO

’05), ACM Press, 999–1006

Edmonds J, Johnson E L (1973) Matching, Euler tours and the Chinese post-

man. Mathematical Programming 8:88–124

Ehrgott M (2005) Multicriteria optimization. Springer, 2nd edition

Eiben A, Smith J (2007) Introduction to Evolutionary Computing. Springer

El-Fallahi A, Prins C, Calvo R W (2008) A memetic algorithm and a tabu

search for the multi-compartment vehicle routing problem. Computers and

Operations Research 35(5):1725–1741

Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commen-

tarii academiae scientiarum Petropolitanae 8:128–140

Farooq M (2008) Bee-Inspired Protocol Engineering. Springer

Feige U (1998) A threshold of ln n for approximating set cover. Journal of the ACM 45(4):634–652

Feller W (1968) An Introduction to Probability Theory and Its Applications, volume 1. Wiley, 3rd edition

Feller W (1971) An Introduction to Probability Theory and Its Applications, volume 2. Wiley, 2nd edition

Fogel L, Owens M, Walsh M (1966) Artificial Intelligence through simulated

evolution. Wiley

Frenk J B G, Rinnooy Kan A H G (1986) The rate of convergence to optimality of the LPT rule. Discrete Applied Mathematics 14:187–197

Frenk J B G, Rinnooy Kan A H G (1987) The asymptotic optimality of the

LPT rule. Mathematics of Operations Research 12(2):241–254

Friedrich T, He J, Hebbinghaus N, Neumann F, Witt C (2009) Analyses of

simple hybrid evolutionary algorithms for the vertex cover problem. Evolu-

tionary Computation 17(1):3–20

Friedrich T, Hebbinghaus N, Neumann F, He J, Witt C (2007) Approximat-

ing covering problems by randomized search heuristics using multi-objective models. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’07), ACM Press, 797–804, extended version to appear in

Evolutionary Computation

Garnier J, Kallel L, Schoenauer M (1999) Rigorous hitting times for binary

mutations. Evolutionary Computation 7(2):173–203

212

References

Giel O (2003) Expected runtimes of a simple multi-objective evolutionary

algorithm. In: Proceedings of the IEEE Congress on Evolutionary Compu-

tation (CEC ’03), IEEE Press, 1918–1925

Giel O, Wegener I (2003) Evolutionary algorithms and the maximum matching

problem. In: Procedings of the 20th Annual Symposium on Theoretical

Aspects of Computer Science (STACS ’03), volume 2607 of Lecture Notes

on Computer Science, Springer, 415–426

Giel O, Wegener I (2004) Searching randomly for maximum matchings. In:

Electronic Colloquium on Computational Complexity (ECCC), report no.

76

Giel O, Wegener I (2006) Maximum cardinality matchings on trees by ran-

domized local search. In: Proceedings of the Genetic and Evolutionary Com-

putation Conference (GECCO ’06), ACM Press, 539–546

Gottlieb J, Julstrom B A, Raidl G R, Rothlauf F (2001) Prüfer numbers: A

poor representation of spanning trees for evolutionary search. In: Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO

’01), Morgan Kaufmann, 343–350

Graham R L (1969) Bounds on multiprocessing timing anomalies. SIAM Jour-

nal on Applied Mathematics 17:263–269

Gutjahr W J (2007) Mathematical runtime analysis of ACO algorithms: Sur-

vey on an emerging issue. Swarm Intelligence 1:59–79

Hajek B (1982) Hitting-time and occupation-time bounds implied by drift

analysis with applications. Advances in Applied Probability 13(3):502–525

Hierholzer C (1873) Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6:30–32

Hochbaum D (1997) Appromixation Algorithms for NP-hard Problems. PWS

Publishing Company

Holland J H (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press

Hoos H H, Stützle T (2004) Stochastic Local Search: Foundations & Applications. Elsevier/Morgan Kaufmann

Hopcroft J E, Karp R M (1973) An n 5 / 2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2:225–231

Horoba C, Neumann F (2008) Benefits and drawbacks for the use of epsilon-

dominance in evolutionary multi-objective optimization. In: Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO ’08),

ACM Press, 641–648

Horoba C, Neumann F (2009) Additive approximations of Pareto-optimal

sets by evolutionary multi-objective algorithms. In: Proceedings of the 10th International Workshop on Foundations of Genetic Algorithms (FOGA ’09),

ACM Press, 79–86

Horoba C, Sudholt D (2009) Running time analysis of ACO systems for short-

est path problems. In: Proceedings of the 2nd International Workshop on

Engineering Stochastic Local Search Algorithms (SLS ’09), volume 5752 of

Lecture Notes in Computer Science, Springer, 76–91

References

213

Jansen T, Sudholt D (2005) Design and analysis of an asymmetric mutation

operator. In: Proceedings of the IEEE Congress on Evolutionary Compu-

tation (CEC ’05), IEEE Press, 497–504

Jansen T, Wegener I (2001) Evolutionary algorithms – how to cope with

plateaus of constant fitness and when to reject strings of the same fitness.

IEEE Transactions on Evolutionary Computation 5(6):589–599

Jerrum M, Sorkin G B (1998) The Metropolis algorithm for graph bisection.

Discrete Applied Mathematics 82(1–3):155–175

Kano M (1987) Maximum and k-th maximal spanning trees of a weighted

graph. Combinatorica 7(2):205–214

Karakostas G (2005) A better approximation ratio for the vertex cover prob-

lem. In: Proceedings of the 32nd International Colloquium on Automata,

Languages and Programming (ICALP ’05), volume 3580 of Lecture Notes

in Computer Science, Springer, 1043–1050

Karger D R, Klein P N, Tarjan R E (1995) A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM 42(2):321–328

Kennedy J, Eberhart R C (1995) Particle Swarm Optimization. In: Proceed-

ings of the IEEE International Conference on Neural Networks, volume 4,

IEEE Press, 1942–1948

Kim S J, Choi M K (2007) Evolutionary algorithms for route selection and rate allocation in multirate multicast networks. Applied Intelligence 26(3):197–

215

Knowles J D, Corne D (2001) A comparison of encodings and algorithms

for multiobjective spanning tree problems. In: Proceedings of the IEEE

Congress on Evolutionary Computation (CEC ’01), IEEE Press, 544–551

Korte B, Vygen J (2005) Combinatorial Optimization: Theory and Algo-

rithms. Springer, 3rd edition

Koza J R (1991) Evolving a computer program to generate random numbers

using the genetic programming paradigm. In: Proceedings of the 4th Inter-

national Conference on Genetic Algorithms (ICGA ’91), Morgan Kaufmann,

37–44

Kratsch S, Neumann F (2009) Fixed-parameter evolutionary algorithms and

the vertex cover problem. In: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO ’09), ACM Press, 293–300

Kruskal J B (1956) On the shortest spanning subtree of a graph and the

traveling salesman problem. In: Proceedings of the American Mathematical

Society, volume 7, 48–50

Lacomme P, Prins C, Ramdane-Chérif W (2001) A genetic algorithm for

the capacitated arc routing problem and its extensions. In: Proceedings of

Applications of Evolutionary Computing, EvoWorkshops 2001: EvoCOP,

EvoFlight, EvoIASP, EvoLearn, and EvoSTIM, volume 2037 of Lecture

Notes in Computer Science, Springer, 473–483

Laumanns M, Thiele L, Deb K, Zitzler E (2003) Combining convergence and

diversity in evolutionary multiobjective optimization. Evolutionary Com-

putation 10(3):263–282

214

References

Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiob-

jective evolutionary algorithms on pseudo-boolean functions. IEEE Trans-

actions on Evolutionary Computation 8(2):170–182

Liang K H, Yao X, Newton C S, Hoffman D (2002) A new evolutionary ap-

proach to cutting stock problems with and without contiguity. Computers

and Operations Research 29(12):1641–1659

Mayr E W, Plaxton C G (1992) On the spanning trees of weighted graphs.

Combinatorica 12(4):433–447

Mehlhorn K, Sanders P (2008) Algorithms and Data Structures: The Basic

Toolbox. Springer

Micali S, Vazirani V V (1980) An O(

 |V |·|E|) algorithm for finding maximum

matching in general graphs. In: Proceedings of the 21st Annual Symposium

on Foundations of Computer Science (FOCS ’80), IEEE Press, 17–27

Michalewicz Z (1995) A survey of constraint handling techniques in evolutionary computation methods. In: Evolutionary Programming, 135–155

Michalewicz Z, Fogel D B (2004) How to solve it: Modern heuristics. Springer Motwani R, Raghavan P (1995) Randomized Algorithms. Cambridge University Press

Mühlenbein H (1992) How genetic algorithms really work: Mutation and hill-

climbing. In: Proceedings of Parallel Problem Solving from Nature II (PPSN

’92), Elsevier, 15–26

Nemhauser G, Ullman Z (1969) Discrete dynamic programming and capital

allocation. Management Science 15(9):494–505

Neumann F (2007) Expected runtimes of a simple evolutionary algorithm for

the multi-objective minimum spanning tree problem. European Journal of

Operational Research 181(3):1620–1629

Neumann F (2008) Expected runtimes of evolutionary algorithms for the Eu-

lerian cycle problem. Computers and Operations Research 35(9):2750–2759

Neumann F, Reichel J (2008) Approximating minimum multicuts by evo-

lutionary multi-objective algorithms. In: Proceedings of Parallel Problem

Solving from Nature X (PPSN ’08), volume 5199 of Lecture Notes in Com-

puter Science, Springer, 72–81

Neumann F, Reichel J, Skutella M (2008) Computing minimum cuts by ran-

domized search heuristics. In: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO ’08), ACM Press, 779–786

Neumann F, Sudholt D, Witt C (2009) Analysis of different MMAS ACO

algorithms on unimodal functions and plateaus. Swarm Intelligence 3(1):35–

68

Neumann F, Wegener I (2007) Randomized local search, evolutionary algo-

rithms, and the minimum spanning tree problem. Theoretical Computer

Science 378(1):32–40

Neumann F, Witt C (2009) Runtime analysis of a simple ant colony optimiza-

tion algorithm. Algorithmica 54(2):243–255

Neumann F, Witt C (2010) Ant colony optimization and the minimum span-

ning tree problem. Theoretical Computer Science 411(25):2406–2413

References

215

Nocedal J, Wright S (2000) Numerical Optimization. Springer

Oliveto P S, He J, Yao X (2008) Analysis of population-based evolutionary algorithms for the vertex cover problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’08), IEEE Press, 1563–1570

Oliveto P S, He J, Yao X (2009) Analysis of the (1+1)-EA for finding approximate solutions to vertex cover problems. IEEE Transactions on Evolution-

ary Computation 13(5):1006–1029

Oliveto P S, Witt C (2008) Simplified drift analysis for proving lower bounds in evolutionary computation. In: Proceedings of Parallel Problem Solving

from Nature X (PPSN ’08), volume 5199 of Lecture Notes in Computer

Science, Springer, 82–91

Papadimitriou C H, Steiglitz K (1998) Combinatorial Optimization: Algo-

rithms and Complexity. Dover

Papadimitriou C H, Yannakakis M (2000) On the approximability of trade-

offs and optimal access of web sources. In: Proceedings of the 41st Annual

Symposium on Foundations of Computer Science (FOCS ’00), IEEE Press,

86–92

Prim R C (1957) Shortest connection networks and some generalizations. Bell System Technical Journal 36:1389–1401

Puchinger J, Raidl G R, Koller G (2004) Solving a real-world glass cutting

problem. In: Proceedings of the 4th European Conference on Evolutionary

Computation in Combinatorial Optimization (EvoCOP ’04), volume 3004

of Lecture Notes in Computer Science, Springer, 165–176

Raidl G R, Julstrom B A (2003) Edge sets: an effective evolutionary coding of spanning trees. IEEE Transactions on Evolutionary Computation 7(3):225–

239

Raz R, Safra S (1997) A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings

of the 29th Annual ACM Symposium on the Theory of Computing (STOC

’97), ACM Press, 475–484

Rechenberg I (1973) Evolutionsstrategie – Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Frommann-Holzboog

Reichel J, Skutella M (2007) Evolutionary algorithms and matroid optimiza-

tion problems. In: Proceedings of the Genetic and Evolutionary Computa-

tion Conference (GECCO ’07), ACM Press, 947–954

Reichel J, Skutella M (2009) On the size of weights in randomized search

heuristics. In: Proceedings of the 10th International Workshop on Founda-

tions of Genetic Algorithms (FOGA ’09), ACM Press, 21–28

Rizzoli A E, Montemanni R, Lucibello E, Gambardella L M (2007) Ant colony

optimization for real-world vehicle routing problems. Swarm Intelligence

1(2):135–151

Sanders P, Schultes D (2006) Engineering highway hierarchies. In: Proceedings of the 14th Annual European Symposium on Algorithms (ESA ’06), volume

4168 of Lecture Notes in Computer Science, Springer, 804–816

216

References

Sasakik G H, Hajek B (1988) The time complexity of maximum matching by

simulated annealing. Journal of the ACM 35:387–403

Scharnow J, Tinnefeld K, Wegener I (2004) The analysis of evolutionary al-

gorithms on sorting and shortest paths problems. Journal of Mathematical

Modelling and Algorithms 3(4):349–366

Schwefel H P (1981) Numerical optimization for computer models. Wiley

Sorkin G B (1991) Efficient simulated annealing on fractal energy landscapes.

Algorithmica 6(3):367–418

Stützle T, Hoos H H (2000) Max-min ant system. Future Generation Com-

puter Systems 16(8):889–914

Sudholt D, Witt C (2010) Runtime analysis of a binary particle swarm opti-

mizer. Theoretical Computer Science 411(21):2084–2100

Swinscow T D V, Campbell M J (2001) Statistics at square one. BMJ Pub-

lishing Group, 10th edition

van Laarhoven P, Aarts E (1997) Simulated Annealing: Theory and Applica-

tions. Springer

Vazirani V (2001) Appromixation Algorithms. Springer

Wegener I (2005a) Complexity Theory – Exploring the Limits of Efficient

Algorithms. Springer

Wegener I (2005b) Simulated annealing beats Metropolis in combinatorial

optimization. In: Proceedings of the 32nd International Colloquium on Au-

tomata, Languages and Programming (ICALP ’05), volume 3580 of Lecture

Notes on Computer Science, Springer, 589–601

Wilson D B (1996) Generating random spanning trees more quickly than the

cover time. In: Proceedings of the 28th Annual ACM Symposium on the

Theory of Computing (STOC ’96), ACM Press, 296–303

Witt C (2005) Worst-case and average-case approximations by simple ran-

domized search heuristics. In: Proceedings of the 22th Symposium on The-

oretical Aspects of Computer Science Proceedings (STACS ’05), volume

3404 of Lecture Notes on Computer Science, Springer, 44–56

Witt C (2009) Greedy local search and vertex cover in sparse random graphs.

In: Proceedings of the 6th Annual Conference on Theory and Applications

of Models of Computation (TAMC ’09), volume 5532 of Lecture Notes in

Computer Science, Springer, 410–419

Wolpert D, Macready W G (1997) No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation 1(1):67–82

Zhou G, Gen M (1999) Genetic algorithm approach on multi-criteria minimum

spanning tree problem. European Journal of Operational Research 114:141–

152

Document Outline

	Foreword

	Preface

	Contents

	Basics

	Introduction

	Combinatorial Optimization and Computational Complexity

	Combinatorial Optimization

	Computational Complexity

	Approximation Versus Exact Optimization

	Multi-objective Optimization

	Stochastic Search Algorithms

	Evolutionary Algorithms

	Ant Colony Optimization

	Other Stochastic Search Algorithms

	Analyzing Stochastic Search Algorithms

	Simple Stochastic Search Algorithms

	Basic Methods for the Analysis

	Single-objective Optimization

	Minimum Spanning Trees

	Representation for Evolutionary Algorithms

	Properties of Local Changes

	Analysis of Evolutionary Algorithms

	Analysis of Ant Colony Optimization

	Maximum Matchings

	Representations and Underlying Concepts

	Approximation Quality for General Graphs

	Upper Bounds for Simple Graph Classes

	A Worst-Case Result

	Makespan Scheduling

	Representations and Neighborhood Structure

	Worst-Case Analysis

	Average-Case Analysis

	Shortest Paths

	Single Source Shortest Paths

	All Pairs Shortest Paths

	Analysis of Ant Colony Optimization

	Eulerian Cycles

	Edge Permutations

	Adjacency List Matchings

	Multi-objective Optimization

	Multi-objective Minimum Spanning Trees

	Representation

	Extremal Points of the Convex Hull

	Analysis of GSEMO

	Minimum Spanning Trees Made Easier

	A Two-Objective Model

	Analysis of the Expected Optimization Time

	Experimental Results

	Covering Problems

	Problem Formulation and Representation

	Single-objective Optimization

	Multi-objective Optimization

	Cutting Problems

	Single-objective Approaches

	Multi-objective Model for the Multicut Problem

	Appendix

	Probability Distributions

	Deviation Inequalities

	Other Useful Formulas

	References

cover_image.jpg
Bioinspired
Computation in
Combinatorial
Optimization

index-1_1.jpg
\

1

n) \
NATURAL COMPUTING SERIES

Frank Neumann - Carsjen‘ Witt

Bioinspired Computation
“in Combinatorial Optimization

“Algorithms:and Their
_Computational Complexity

@ Springer

