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Preface

The field of evolutionary computation (EC) can no longer be considered an esoteric one. Today, after about thirty years of research, a rich corpus of theory exists and nnany successful real-life applications are witnessing the usefulness of EC heuristics in many fields. EC is a family of population-based methodologies inspired by the interplay of natural selection and variation. However, both the theory and the applications have tended to focus mainly on mixing populations. also called panmictic populations. These are populations in which there is no particular structure: any member of the population is equally likely to "meet" any other member. But Darwin realized long ago that populations may have a spatial structure and that this spatial structure may have an influence on population dynamics. For instance, he remarked how, when they were isolated on islands, some species evolved differently from others that lived in more open environments. If we look around us. we too find that geographical separation factors have helped shape evolution. There are many examples, but one well-documented case is the spread of genontic traits in lmntan populations due to geographical separation followed by migrations and mixing [29]. Also, as early as the 1960s. the book by 'MacArthur and Wilson [9-1] used models of geographical separation and migration to explain the spread and extinction of species. Thus, complete pan►nixia, although it can be achieved in the laboratory, appears only as a limiting case in nature. where spatial-separation effects seem to play an important role.

Today, it appears very clearly that topological structure largely determines the dynamical processes that can take place in complex systems. The study of both the structure and the dynamics of a given system is thus mandatory. if one wants to understand and possibly exploit all the possibilities. A 1 'hv. thus, has evolutionary computation concentrated on mixing populations'' One possible answer is that using a mixing population is both easier and good enough for many purposes and that the mathematical analysis of the dynamics of such populations is also usually easier. The next quest ion is, t huts: do spatially structured populations have a role in EC, i.e. are they a worthy object of study'.' I believe that the answer to this question should be positive. On the one hand, spatially structured populations are not new in EC: they have been nncch less studied than panniictic ones, but the empirical results available to (late show beyond doubt that they can have beneficial effects. Secondly, there is actually only a very low cost associated with setting up and running a structured population instead of a panmictic one. Sometimes, as in the case of cellular populations, the cost of some genetic operations is even lower than that for a inixing population. So, experimenting with structured populations is generally easy and does not entail fundamental changes to the EC paradigm. On the other hand. spatially structured population models and their dynamical behavior are interesting objects in themselves: their interest goes beyond their mere utility as an empirical way of improving results in EC. This will be seen particularly in conjunction with some irregular population structures that have been found to be extremely significant in many fields.



Often, the main motivation for using structured evolutionary algorithms (EAs) is the possibility of physically distributing computational tasks over different, machines and having these tasks executed in parallel. This is cornmorn practice, and is an advantage as far as computing times are concerned, especially for heavy-duty computations. However, the models and their implementations are two orthogonal factors. One may very well have a potentially parallelizable structured EA model and run it on standard sequential hardware. From the point of view of the model nothing changes, if the sequence of operations is the same, but of course the time to completion is likely to be less on truly parallel hardware. In this book I shall mainly describe models. Their actual implementation will be left unspecified in general, although some general comments on implementations will he given in an appendix to help pract it inners.

Spatial or relational aspects are important in population dynamics, but the precise timing at which things happen also has an influence on the global population behavior. For this reason. I believe that space and time should be considered together, and this is precisely the point of view taken here. Thus synchronously and asynchronously evolving populations will be analyzed, especially with respect to cellular regular and irregular structures.

There is thus a double motivation for writing the present book. The first is the feeling that, these considerations are indeed important, and the second is the fact that, a broad, unified treatment of the field is lacking. Indeed, there exists an excellent book by Cantu-Paz on parallel genetic algoritbins (GAs) [24]. But, as the title indicates, although the treatment is deep, the scope is rather specialized to master slave and island CAs. Likewise, the several review articles that have appeared are useful, but they lack many details.

A word of caution is in order here. Spatially structured populations are relevant in many contexts, both in the natural sciences and in artificial iuod- els. It would have been all impossible task for me to try to give a decent account of all those different areas of investigation. Thus, it should be made clear that I only describe in this book structured populations as they are used in evolutionary algorithms. And even then, not all the families of I;As will be equally represented, for I shall concentrate on genetic algorithms and genetic programming. This last point is not a problem, for most considerations will extend naturally to other EAs. Other interesting families of EAs, such as nuiltiobjective EAs and EAs with constraint handling are not dealt with directly. This is a pity. since most problems of practical interest are of this kind. However, I had to keep the length of the book to a reasonable size for a monograph, and many ideas will also be applicable, mutatis mutandis, to these more specialized EAs.



This book does not try to cover real-life applications either. There have been many applications of structured EAs in many fields but our focus is on models. theory. and the empirical properties of structured EAs. The interested reader will find an abundant sampling of successful applications of spatially structured EAs in the proceedings volumes of mainstream conferences such as the Genetic and Evolutionary Computation Conferences (GECCO). Parallel Problem Solving from Nature (PPSN), and the Congresses on Evolutionary Computation (CEC). Thus, the book is more suitable for advanced undergraduate and graduate students. However, it should also be useful for professionals and practitioners who would like to use structured populations in their applications of EAs.

Illany other interesting objects of study, such as more general populationbased artificial life systems, swarm intelligence models, natural-population, ecological, and social simulations, are not part of the book's subject matter either. In spite of this, several general conclusions that depend on the population structure will also teach us something valuable in apparently different contexts.

Another choice that had to be made concerns the level of acquaintance with EAs that is required for the reader to benefit from this book. It would have been nice to make the book self-contained by adding one or two introductory chapters on the main families of EAs. However, there are today several good introductory books on EC. some of which are listed in the references (e.g. [46], [99], [54]), or [145], if one looks for a more concise treatment. Thus, introducing this material with the necessary detail would duplicate existing work and would make the present book thicker and more awkward to write and read. Because of this, I have decided not to include such detailed introductory material, capitalizing on the assumption that the typical reader is likely already to possess a good knowledge of EC in general. However, if this is not the case, the present book will have to be supplemented with an introductory book on EAs.

Most books are the result of collective work, be it implicit or explicit, and this one is no exception. I have drawn from the work of many researchers who have paved the way for a better understanding of structured EAs in the last ten years. Closer to me, there are many colleagues who have contributed work, ideas, discussions, and suggestions. I should thus thank many people, but I would like to single out the following persons, for their help has been really outstanding. My former and present graduate students F. Fernandez. M. Giacobini, and L. Vanneschi, and my colleagues E. Alba, G. Spezzano, and A. Tettamanzi all contributed time and ingenuity to our comuuoti work on evohitionary computation using structured populations during the last few years. Just looking at the references will give au idea of my debt to all of them. M. Giacobini and L. Vanneschi also read several chapters and drew many of the figures. Other people helped in shaping my thinking about, structured EAs. especially M. Sipper, who also made useful continents on Chap. 7.



Other people have provided support in several ways. In particular, I would like to thank Gusz Eiben, the Natural Computing Series Editor, for his encouragement and positive attitude toward this work. I am also deeply thankful to Springer's staff and Ronan Nugent, who provided invaluable help.

To all of them, arid to the many who are not explicitly named, many thanks.

June, 2005

Marco Toniassiui



[image: ]




Contents

1 Setting the Stage for Structured Populations
 .............. 1


1.1 Useful Definitions for Graphs
 ............................. 2


1.2 Jlain Graph Structures of Populations
 ..................... 5


1.2.1 Island or Mtilt ipopulation Models
 ................... 6


1.2.2 Cellular Models
 ................................... 7


1.2.3 Other Topologies
 .................................. 8


2 Island Models
 ............................................. 11


2.1 IIistorv and Background
 .................................. 11


2.2 Homogeneous and Heterogeneous Islands
 ................... 14


2.3 Theoretical Results
 ...................................... 14


2.4 Asynchronous Islands
 .................................... 17


3 Island Models: Empirical Properties
 ....................... 19


3.1 An Experimental Investigation
 ............................ 19


3.2 Description of the Test Problems
 .......................... 19


3.3 1lultipopulation GP Parameters
 ........................... 20


3..1 Performance Measures and Statistics
 ....................... 21


3.5 Number of Subpopulations and Their Size .................. 2:3



3.5.1 Isolated Populations vs. Standard GP ................ 2:3



3.5.2 Communicating Islands vs. Standard GP
 ............. 27


3.6 Comparing Communication Topologies
 ..................... 30


3.7 Migration Parameters .................................... 3:3



:3.5 Sununarv of Case Stud...
 .................................. 37


3.9 The Role of Diversity ..................................... :37



3.9.1 Diversity Measures ................................ 3S



3.9.2 Experimental Results
 .............................. 40


3.9.3 Sunnnarv
 ......................................... 44


3.10 Asynchronous Island Models
 .............................. 44


3.10.1 Experimental Results
 .............................. 46




4 Lattice Cellular Models
 .................................... 53


4.1 Takeover Time
 .......................................... 54


4.2 Synchronous cEAs
 ....................................... 55


4.3 The Time Dimension: Asynchronous c4;As
 .................. 57


4.4 Models and Their Validation
 .............................. 59


4.5 Mathematical Models
 .................................... 59


4.5.1 Limitations of Logistic Modeling
 .................... 60


4.5.2 The Ring Structure
 ................................ 62


4.5.3 The Torus Structuree
 ............................... 66


4.6 Experimental Validation
 .................................. 70


4.6.1 Ring Structure
 .................................... 70


4.6.2 Torus Structure
 ................................... 73


4.7 Rectangular Toroidal Structures
 ........................... 76


4.7.1 Validation of the Rectangular Toroidal Models
 ........ 78


4.8 Varying the Radius
 ...................................... 79


4.9 Sunimarv
 ............................................... 80


5 Lattice Cellular Models: Empirical Properties
 ............. 85


5.1 cGA Case Study
 ........................................ 85


5.2 Varying the Lattice Shape
 ................................ 86


5.3 Selection Pressure, Grid Shape and Time
 ................... 87


5.4 Test Suite
 .............................................. 88


5.4.1 Discrete Optimization Problems
 ..................... 90


5.4.2 Experimental Analysis
 ............................. 93


5.4.3 Continuous Optimization I'rol)lenis
 .................. 96


5.4.4 Experimental Analysis
 ............................. 97


5.5 Cellular Genetic Programming
 ............................ 100


5.5.1 Experimental Results
 .............................. 100


5.5.2 Fitness Evolution
 .................................. 100


5.5.3 Diversity Evolution
 ................................ 101


5.6 Summary ...............................................104



6 Random and Irregular Cellular Populations
 ................ 107


6.1 Random Graphs
 ......................................... 108


6.2 Selection Intensity in Random Cellular Populations
 .......... 109


6.3 Experimental Results
 .................................... 111


6.4 Sniall-World Networks
 ................................... 113


6.11 Some Graph Statistics ............................. 1 1 6



6.4.2 The Watts Strogatz Model
 ......................... 118


6.4.3 The I3arahasi Albert Model
 ........................ 119


6.5 Selection intensity in Small-World Networks
 ................ 120


6.5.1 Watts Strogatz Model
 ............................. 120


6.5.2 f3arabasi Albert Model
 ............................ 122


6.6 Sununaiy
 ............................................... 124




7 Coevolutionary Structured Models
 ........................ 125


7.1 What Is Coevolution'.'
 .................................... 125


7.2 Cooperative Coevolution
 ................................. 126


7.3 Competitive Coevolutioii: Hosts and Parasites
 ............... 127


7.4 A Case Studv: Coevolution of Celhilar Automata
 ............ 130


7.4.1 Cellular Automata
 ................................. 131


7.4.2 The Majority Task
 ................................ 131


7.5 Artificial Evolution of CAs for the Majority Task
 ............ 133


7.5.1 Coevolving Uniform CAs for the Majority Task
 ....... 134


7.5.2 Coevolving Nonuniform CAs for the Majority Task
 .... 137


7.5.3 Results for the Density Task
 ........................ 139


7.6 Summaryy
 ............................................... 141


8 Some Nonconventional Models
 ............................. 143


8.1 Nonconventional Island Models
 ............................ 144


8.1.1 The Injection Island Model
 ......................... 144


8.1.2 Islands with Variable Population Sizee
 ................ 145


8.2 Nonconventional Cellular Models
 .......................... 151


8.2.1 The Patchwork ?Model
 ............................. 152


8.2.2 Dynamic Neighborhoods in Cellular Evolution Strategies153



A Implementation Notes
 ..................................... 157


A.1 Computing Environment
 ................................. 158


A.1.1 NIPI
 ............................................. 158


A.2 Implementation of Island EAs
 ............................. 159


A.2.1 Synchronous Islands
 ............................... 159


A.2.2 Asynchronous Islands
 .............................. 165


A.2.3 Summary
 ......................................... 168


A.3 Implementation of Lattice Cellular EAs
 .................... 168


A.3.1 Synchronous Cellular EAs
 .......................... 168


A.3.2 Asynchronous Cellular EAs
 ......................... 170


A.-1 Performance Measures and Speedup
 ....................... 170


AS A Remark on Pseudorandom Number Generators............
 173


References
 ..................................................... 177


Index
 .......................................................... 189





1

[image: ]


Setting the Stage for Structured Populations

The aim of this initial chapter is to introduce some concepts related to structured populations in such a way that they are seen in the more general context of graphs or networks. With only a small cost in mathematical notation, this will allow its to discuss many apparently distinct features of populat ions under the umbrella of an existing and well-established mathematical notation.

Structured populations are just populations in which any given individual has its own neighborhood, which is smaller. sometimes much smaller. than the size of the population. In other words, instead of all the other individuals in the population being consirered as potential mates as in panTaictic populations, only those that are in the same neighborhood can interact. Although this "isolation by distance" is often associated with geographical separation. this is not strictly required in evolutionary-algorithm (EA) models. where only the "relational aspect- matters. In fact, there are many examples of biological niches and isolated or semi-isolated populations in biology in which physical distance is the key factor keeping these demos nearly independent of each other. And niauy such biologically inspired models have been proposed for EAs. However, what counts is the neighborhood relationship. and this can be of any type. as long as it makes algorithmic sense. We shall see many examples of this in the following chapters. Thus, we are led to the conclusion that the important idea is the ensemble of relations among individuals, be they truly spatial or not. The mathematical objects that are required for describing this state of affairs are graphs. This means that we do not always need the concept of a metric space and an associated distance, such as the Euclidean (listance. More often. distances between individuals will he given by the network itself, as measured along the path that links the two individuals in the graph. In these relational graphs the rules governing the construction of the graph do not depend upon any external metric between the vertices. For example, the electrical supply network of a given region would be a kind of spatial graph, since the distances between the graph nodes (generators. transformers and so on) are relevant, while the network of acquaintances in a society conveys only relationships, although other kinds of non-Euclidean distances can be associated with such networks. In the realm of population graphs, and with a slight abuse of language, I shall often call these population structures topologies, be they truly spatial or not.



Since graphs are a suitable ninthennatical description for structured populations, I shall give here it short introduct.ioI1 to the relevant concepts and definitions that will be used in t lie rest of the hook. Graph theory is a welldeveloped branch of discrete inat hemat ics and it would be impossible, and also useless, to try to give an account of it here, however brief. Instead, I ,hall limit myself to the introduction of the concepts that are really useful to us. In Chap. 6, we shall need a few more ideas about graphs. Since these concepts are not needed yet, I shall defer their presentat,iou to the relevant place.

1.1 Useful Definitions for Graphs

For ease of reference, I collect here it few definitions and some nomenclature for graphs that will be used t I iroughout this work. The treatment is necessarilti. brief: a more detailed account, can be found, for example, in [22].

Let V be a uonempty set called the set of vertices or nodes, and let E be a symmetric binary relation on V, i.e. a set of unordered pairs of vertices. G = (E, V) is called an undirected graph, and E is the set of edges or links of G. In a directed graph edges have a direct ion, i.e. they go from one vertex to another, and the pairs of vertices are ordered pairs. Figure 1.1 shows an undirected and a directed graph.

[image: ]
Fig. 1.1. (a) Au undirected graph. (b) A directed graph



A subgraph of G is a subset of a graph's edges and associated vertices that constitutes a graph. That is. G (V.E is a subgraph of G (E, V) if V' C V and E' C E. For example, the set of vertices 1 , 2, 1, 5 in the graph G shown in Fig. 1.1 a induces a subgraph of G.



When vertices (u, r) of an undirected graph G form an edge. they are said to be adjacent or neighbors. The neighborhood of a vertex v is the set of vertices that are adjacent to r in G. not including r. For example, the neighbors of vertex 4 in Fig. 1.1 (a) are 2. 3, and 5. The degree k of a vertex is the number of edges impinging on it (or. equivalently, the number of neighbors). For directed graphs. one can correspondingly define the ontdegrec of a vertex r, which is the number of edges that leave c. and the indegree. which is the number of edges that enter the vertex r. The adjacency relation is not symmetric for directed graphs. For example. vertex 1 in the graph in Fig. 1.1 b has an outdegree of 2 and an indegree of 0.

A path from vertex u to vertex r in a graph G is a sequence of edges that are traversed when going from a to r with no edge traversed more than once. The length of a path is the number of edges in it. For example. the sequence (1.2.3. 5.4) is it path from vertex 1 to vertex 4. The shortest path between two vertices a and r is the path with the smallest length joining a to r. Thus. in Fig. 1.1 a, the sequences (1.5,4) and (1.2.4) are the two shortest paths from node I to node -1. Edges can have weights associated with them in some applications, and these weights are used in the calculation of the path lengths. If nothing is stated, each edge has a unit weight.

Cyclic paths are particular paths in a graph whose first and last vertices are the same. A tour is a particular cycle that contains every vertex. Again referring to Fig. 1.1 a. (1, 2.4, 5. 1) is a cycle, while (1.2.3, 4, 5, 1) is a tour.

[image: ]
Fig. 1.2. An unconnected graph with two connected components



The maximum distance (path length) between any two connected vertices of a graph is called the diameter of the graph.

A graph is connected if there is a path between any two vertices. A graph that is not connected consists of a set of connected components, as illustrated in Fig. 1.2.

A completely connected undirected graph G with IVY = N vertices has all edge between any two vertices. The total number of edges is thus N(N- 1)/2. Figure 1.3 shows an example of such a graph with N = 5.



A claque in an undirected graph G is a completely connected subgraph of G.

A .sparse graph has a number of edges El << N(N - 1)/2. A dense graph has a muuher of edges x N2.

A star graph, is a network in which there is a particular node (the center) that is connected to all the other nodes, while the rest of the nudes are connected only to the center (Fig. 1.4).

[image: ]
Fig. 1.3. A complete graph with five vertices



[image: ]
Fig. 1.4. A star graph



Finally, all hyperyraph is like an undirected graph, but each edge cumiects an arhitra rV siihset of vertices and is called a hypercdye.

A graph C in which all the vertices have the smile degree k is called k- rcyular. Complete graphs are obviously regular. Another important class of regular graphs for us is the family of lattice graphs. A d-lattice (or (1-dinieu- sional lattice) is an miweighted. iuidirected graph in which each vertex has t he same degree k, with k > 2 and A• > 2d. For example, wit h d = I and A• = 2 and with d = I and A• = 4, one obtains the ring structures shown in Fig. 1.5.
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With d = 2 and k = 4 we have a torus. which is a topological entity with periodic boundaries (see Fig. 1.6).

[image: ]
Fig. 1.6. A torus topology. This is obtained by wrapping the rows and columns of it two-dimensional grid around on themselves



Some of these graph types have been often used in evolutionary' computation. and the dynamical properties of populations structured in these was will be studied in detail in Chaps. -1 and 5.

1.2 Main Graph Structures of Populations

I shall now introduce the principal structures of populations that have been used in EAs, and these will be the base types for our analysis. Here I shall discuss only their graph-like properties. The (Ivnaniical evolutionary processes taking place in the populations will form the stain thetie of the book and will he dealt with in detail in the following chapters. Networks can be considered as the backbone on which dynamical processes take place. Therefore, networks are a prerequisite for describing the behavior of complex systems. Of course, the static and dynamic views are not divorced in reality, since there are unt- tual interactions between them. Think, for instance, of the communication processes taking place on a network that, is itself continually changing, such as the Internet. However, our artificial structures are simpler, and it is useful to single out and consider their static structure first.



1.2.1 Island or Multipopulation Models

Here the idea is simply to divide a large patitnictic population into several smaller ones. This model is usually called the island model or multipopulation model, and is schematically illustrated in Fig. 1.7. Each subpopulation runs a standard sequential EA, and individuals are allowed to migrate between populations with a given frequency. The migration directions an represented in the figure by arrows.

[image: ]
Fig. 1.7. A tnultipopulation structured model. Each "blob" represents it panuiictic subpopttlation. Subpopulatious are loosely connected by periodically sending and receiving individuals according to the pattern shown by the arrows



In graph theory terms, each subpopulation is a vertex of the graph. and the edges are given by the migration links between islands. Note that the graph is usually a directed one. At a lower level, each island could be seen virtually, in turn, as containing a population structured as a complete graph. Several patterns of connection have traditionally been used. The most common ones are rings, two-dimensional and three-dimensional lattices, stars, and hypercnbes. We shall deal with these nuxlels at length in Chaps. 2 and 3.



[image: ]
Fig. 1.8. (a) A one-diuiensional-ring cellular population structure. (b) A two-dimensional-grid cellular population structure. In both cases each node is a single individual, and the edges wrap around in the grid case



1.2.2 Cellular Models

In cellular models, also called diffusion models, the individuals making up the population are usually disposed according to a regular lattice topology, i.e. it lattice graph (see Sect. 1.1). Two examples in one dimension and two dimensions, respectively. can be seen in Fig. 1.8, where the different shapes of the nodes represent potentially distinct individuals. In graph theory terms. each individual is a vertex of the graph, and edges link adjacent individuals. i.e. neighbors. In these cellular populations, each individual interacts only with a few other individuals in its neighborhood, and all genetic operations are local. Lattice-graph cellular populations will be examined in detail in ('hap. 4. Of course, we are by no weans limited to cellular models that are mapped onto regular lattices, although this has been the rule in the EA world. We shall see in ('hap. 6 that many other graph topologies are possible and useful, including random and irregular structures.

Finally, it is worthwhile to wake a continent on an interesting proposal of Sprave [141]. who suggested using the hvpergraph formalism to describe structured EA populations. Hypergraphs (see Sect. 1.1) are a generalization of simple graphs in which edges ntay span a subset of vertices. Hypergraphs can thus model any population structure. including the limiting panmictic case. Sprave's suggestion is attractive because it allows an elegant unified description of structured populations. However, for the sake of simplicity. and also because some new graph structures (see ('hap. 6) are rather clumsy to represent with hvpergraphs. I have chosen to stick with the more standard view of simple graphs.



1.2.3 Other Topologies

It is of course possible to design and inipletnient population topologies more complex than the ..basic„ types described above. For example, one could have it rnmltipopulatiou structure in which each sttbpopiilatiou ha.s a cellular topology. Alternatively, it would be possible to have it hierarchical island system, in which each island at an upper level contains a niuuher of islands at a lower level. Exchanges would then be limited to taking place between islands at, the sauce level.

[image: ]
Fig. 1.9. A hierarchical EA model in which the populations in the loosely connected islands have a lattice structure.



Several other possibilities spring to mind as well. Figures 1.9 and I. I(1 provide a schematic view of two hierarchical, or hybrid, population structures such as t boss described above.

[image: ]
Fig. 1.10. A hierarchical EA model in which each island at the outer level contains a mull ipopulat ion HA. The communications between islands at the ironer level are more frequent than the migrations at the outer-island level





Some of these structures, or analogous ones, have indeed been used in empirical work with good results. It would be tempting to try to extend the analysis that we shall do for the simpler cases to these wore complex situations. However, I feel that our tools are not yet sharp enough to successfully deal with these more difficult cases (note than an analysis of a hierarchical master slave EA model has been presented by C'antti-Par in Chap. 8 of his book [24]). On the other hand. the simpler topologies already offer an extremely rich behavior and constitute a large field of investigation in themselves. As a consequence, I shall lituit myself in the following to the description and analysis of "pure" island and cellularly structured population models.
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Island Models

2.1 History and Background

This chapter is devoted to the island or n►ultipopulation model, as it is closer to the original pannnictic setting. As such, the corresponding EAs do not need a radical restructuring and are just simple variants of the standard ones.

As was observed in Chap. 1. the phenomenon of the formation of niches is common in biology. Niches impose mating restrictions, and thus the possibility of species differentiation. Islands and high, isolated valleys, for example. are the kinds of natural environments that can favor such evolutionary phenomena. Biologists have been aware of this for a long time, and Darwin himself commented on it. Although diversity tends to be low in each deme. overall population diversity is maintained through isolation. When other individuals have the possibility of interacting with previously isolated denies, interesting evolutionary processes may follow, such us colonization. extinctions. and punctuated equilibria, which are "jerky, or episodic, rather than a smoothly gradual, pace of change in evolution", in the words of Gould [491, one the fathers of the concept.

Thus, observations of real biological populations offer it number of ideas to evolut ionarv-computation researchers trying to improve the efficiencY of their algorithms. In fact. these researchers were quick to take inspiration from the biological world as multipopulation EAs started to appear in the 1980s. We n►av cite. among others, the pioneering work of Grefenstette [73], Grosso [74]. Tanese [144]. and ('ohoon et al. [32] on genetic algorithms. In the case of evolution strategies, Rudolph [123] implemented one of the first distributed models, and the work of Duncan [42] was an important milestone in evolutionary prograninming.

The purported advantages of island EAs are that theti• are supposed to explore a problem's search space more evenly and that they may fight population stagnation thanks to a better capability for maintaining overall diversity. We shall see that most empirical results to date. and some lheoret ical conclusions. tend to confirm these hopes.



[image: ]


Initialize s subpopulations of size 'n each

generation. = 0

[image: ]


It appears from the above schemata that, in addition to the usual EA parameters, the model needs a few new otres: the number of sttbpopttlat ions, t he frequency of migration of individuals, the ntuhber of migrating individuals, and the commnhicatioh topology. The existence of these additional degrees of freedom makes the algorithm more flexible, but also more difficult to control, since the parameters may interact in ntany ways. Uhfortuhately, there is no general theory to help its select suitable values for tlresc paraaheters except, to some extent, ill the case of genetic algorithms (GAs), as we shall see. To date, these parameters usually been set set enrp1rically, Inilding oil the experience of previous work. Nevertheless, we shall see in ('hap. 3 that there have been some svsternatic explorations of the parameter space that call be helpful ill this respect.

Usually, the In uiigrating individuals are the top III in the original snhl)ol>u- Iation, or chosen from among the hest. Several individual-rel)Iacenuut policies have been described in the literature. One of the most common is for the in migrating individuals to displace the in worst individuals in the destination suhpopulation. This is also the policy used in the simulations described here.



Several topologies for migration between islands can be used. The most common one is the "ring... in which populations are topologically disposed along it circle and exchanges take place between neighboring subpopulations. as illustrated in Fig. 2.1. Another possibility is 'meshes of islands possibly toroidally interconnected. in which migration occurs between nearest-neighbor nodes (see Fig. 2.2). One possible drawback of these static topologies is that some bias might be int roduced by t he repeat hug exchange pact ern. Dynamical topologies, where destination nodes change with time, seeu► more useful for preserving diversity in the subpopulatiou. For example, good results have been obtained with the use of a "random topology [50], where the destination population is randou►ly chosen at run time.

Different topologies have different diameters (see Sect. 1.1). The diameter of the graph contains an indication of the speed at which information will travel through the network, which is an important consideration for structured EAs. as we shall see. The shorter the diameter, the faster information will travel across the network. Rings have a large diameter O(n), where n is t lie number of subpopulations. while square grids have a diameter O( n ). Other topologies. such as random graphs and small-world graphs (see Chap. 6) have it shorter diameter O(log n): the situation is the saute for hypercubes. Completely connected graphs and star graphs obviously have a diameter of one. Section 3.6 presents empirical results on the influence of the topological arrangement of the subpopulations on the evolutionary process.
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Fig. 2.1. Island model with ring topology. The subpopulatio is are arranged in a ring and individuals are exchanged between neighboring populations clockwise
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Fig. 2.2. Grid island topology. Populations c(» nnnuiicate With their north, south, west, and east neighbors. The grid is folded into a torus



2.2 Homogeneous and Heterogeneous Islands

In the previous description it has been tacitly assumed that the EA parameters, the subpopulation size, and the representation of individuals are the same in all Ole islands. If this is the case, the 1;A is called hotn.ogriccotc.s. This is the simpler and custontaty choice, but it need not, always he the case. Indeed. it is possible, and sometimes useful, to have different paranieters and/or different representations ill different islands. It is also possible, as ill some panutict is I:As, to allow for islands of variable size. We shall call I hese island models collectively hetcrcoycnt.coits and non.stciutdard. in this chapter and the two that follow, we shall deal with homogeneous island models exclusively. In fact, these models are wellknowit and easy to implement, and t Iuey usually give good results, as we shall see in the following chapter. Moreover, there is a fair amount of theoretical results for them, which is not the case for the heterogeneous models. However, we cannot ignore heterogeneous models only on the grounds that thev are difficult to understand, since good results have been obtained in practice. Thus. in Chaps. 7 and 8. I shall present some of these models.

2.3 Theoretical Results

The early work oil island l:As was largely empirical in character. There was a general feeling that sparsely communicating subpopctlations were advantageous in terms of proble ti-solving capabilities, and they also saved contptnting tiute, when implemented on parallel or (list ributed hardware. However, the reasons why the models were efficient were largely unknown. It was also unclear how one should choose the several new parameters that were needed. Another important question is the following: what are the problem classes that benefit most from a distributed population setting and why'?



Thus, a basic understanding of the workings of island EAs is necessary but. even today, there is no clear-cut answer to the questions above. Some progress has been made, however. especially by Cantu-Paz for binary-coded GAs as described in his book [24] and the articles mentioned therein. Before describing Cantu-Paz's main results, I shall briefly comment on early investigations aimed at understanding the main dynamical aspects of multipopulation EAs.

One of the first attempts to theoretically analyze an island model GA was published by Pettey and Leuze [116]. In this work, a schema theorem was derived for an island system in which individuals chosen uniformly at random are sent to all other populations in each generation. Pettey and Leuze proved that this model maintains the same efficiency as does a panmictic-population GA, and that the expected number of trials can be bounded from above by an exponential function, i.e. the same global behavior that is observed for panmictic GAs. While the analysis (lid not take into account the effect of varying parameters such as the island size, the migration rate, and the migration frequency. it was a useful first step.
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As I said above, the recent work of ('ant►i-Paz on GA island models is the most thorough and quaint itative to date ill the field. Here I shall only highlight the main results. For the details, the reader is referred to Cantu Pa.z's excellent presentation in [24].

Cantu-Paz and Goldberg [25] extended Goldberg's previous work 166] oil the sizing of single populations for multiple islands. Of course, the size of the populations is t lie single most important factor t hat will influence t lie behavior of, the collective system: islands that are too small will fail to provide enough diversity and will converge prematurely. On the other hand, if the islands are too large with respect to a single population that solves the problem. extra useless work will be performed. Cant ti-Paz and Goldberg focused oil modeling the speedup offered by the iuultipopulation system for reaching a solution of the same average quality as t lie one found by use of' the serial process. They treated two important bounding cases of uniltipopulation (:As: a set of completely comiected islands, and a set of isolated islands. In the coiu- plete-graph case, the migration rate and frequency were set to the maxinnnn value, i.e. every island exchanged individuals with every other island ill each generation. The main conclusions were that the speedup with respect to the single panniictic population was better for the communicating system thaii fir the isolated mode. Cantri-Paz and Goldberg also found that, for these limiting cases, there was an optimal number of islands and a corresponding island size that maximized the speedup.

Chapters 5 and 6 of Cantu-Paz's book [24] extend the analysis to arbitrary topologies, an arbitrary number of' islands, arbitrary sizes, and arbitrary migration rates. Nlarkov chain methods are used for modeling the evolutionary process, and the accuracy of the ►uodels is tested experimentally on fully deceptive functions by varying the parameters of interest. The observation is that the solution quality improves will) higher inigrat ion rates and denser topologies. However, the communication cost tends Co increase in this case, and there is a trade-off between solution quality and algorithmm speed. It is also shown that different topologies with the same number of neighbors per island reach almost equivalent solutions. We shall see in l.he next chapter Chat, experimental results tend to qualitatively confirm these rmodcl predictions. With a fixed topology, the optimal nnumber of' islands is found to be

"Tt

where it is the population size, Tj- is the time required to evaluate an individual, and T,. is the mean t irne required to communicate with another demne.



2.4 Asynchronous Islands

Timing considerations will come up often in this book, for the temporal sequence of operations can make a notable difference to the resulting dynamical processes. We shall see that these ideas have more significant consequences in the case of cellular systems in Chaps. 4 and 5. But it is worth introducing some concepts of synchronous and asynchronous evolution for niultipopula- tion models too. Essentially. synchronous systems work in lockstep as if they were reacting to the ticks of a global clock. Of course, there can be different degrees of lockstep. In computer hardware, for example. in each clock cycle one or more elementary operations are executed. In island models. which are rather coarse-grain. there is more freedom: the islands evolve independently for a certain time, then they synchronize and send and receive a certain number of individuals. At the end of this --handshaking" phase. the islands are computed again in an independent manner. This description corresponds essentially to the pseudocode of Sect. 2.1. Of course, synchronous send and receive implies that everything must wait for the slowest process to finish the current generation before the exchange takes place. Although we are not talking about computer implementations here. it is worth noticing that this idle wait might cause it synchronization overhead whenever the model is implemented on physically replicated hardware. In practice, most EAs take on average the same time to process the same number of individuals. and thus the differences are small, except in the case of variable-length-representation EAs. such as in genetic programming.

Asvnchronous systems, on the other hand. do not have a global clock and need not synchronize at specified points of the computation. In Chap. 4 we shall study an extreme case of this: cellular As in which each individual is updated at arbitrary times. Here we consider a coarser-grain model of asvn- chronism based on communicating islands. In this case, the algorithm is essentials- unchanged except for the fact that sending and receiving individuals may be clone at independent times: an island sends a boat of migrants at some point in time, and the destination island gets the individuals when it is ready to (10 so.

Asynchronous operation may simply arise naturally from the fact that, perhaps, different islands take different times to evaluate their individuals and the s-stem does not wait for the slowest island to reach the synchronization point. Asynchronous communication between islands may also be the result of it deliberate algorithmic choice. For example. Alunetonio et al. [109] have suggested that the exchange of migrants may be triggered by each subpopulation by measuring a parameter related to its fitness distrihntion and phenotypic diversity.

In these asynchronous algorithms, after a certain time, the different islands will be working in different generations. To some extent. the situation is similar to what happens in steady-state EAs. where the whole population is not changed at once but rather only a part of it, and successive generations have a degree of overlap. Lin et al. [93] have presented a study of the various possibilities and of their possible advantages and drawbacks.



Asynchronous island models are more difficult to analyze theoret ically hut have often been found useful in applications. Examples of asynchronous island EAs and their empirical characterization will be discussed at the end of the next chapter.





3
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Island Models: Empirical Properties

3.1 An Experimental Investigation

In the preceding chapter we have seen how the island model EA is structured and how it works. Some theoretical results have also been presented. In the present chapter I shall try to provide empirical evidence for the practical usefulness of the model.

The island model has been very popular among EA researchers because it is easy to iniplenient and usually gives satisfactory results. There have been many empirical investigations and applications, some of which are listed in the references (see, for instance, [7, S, 11, 93] and the recent review [5]).

In order to illustrate the main features of island EAs,I shall present here a rather systematic case study using genetic programming (GP) that originally appeared in [51] and to which the reader is referred for more details. Fernandez and Vanneschi's PhD theses also contain a wealth of information on the topic [39, 150]. Readers unfamiliar with GP might consider consulting [17] or [89]. The case study will be integrated with an investigation of the behavior of population diversity. and with a comparison between synchronous and asynchronous island models.

3.2 Description of the Test Problems

The choice of test problems in an empirical investigation is always a difficult task. Ideally, one would like to consider many problems of variable difficulty and belonging to different classes, including real-life problems. However, time and computational resources are limited. This is why, usually, only a few problems are included in the benchmark. Genetic programming makes the situation even worse, since it is in general more time-consuming than other EAs.

Here I address a set of problems chosen from those that have been classically used for testing GP: the even-ii-parity problem, the symbolic regression problem, and the problem of the artificial ant on the Santa Fe trail, since there is a large amount of accumulated knowledge on these in the C.P coutununity ([89, 92]). Results on real-life probletrts calf be found in [51].



The following is a brief description of the test, problems. For more detailed explanations, see [891.

Even-Parity-4 Problem

The hoolean even-parity-k function of k hoolean arguutents returns true if an even nurnther of its arguments evaluates to true, otherwise it, returns false. If k: = 4, then 16 fitness cases trust be checked to evaluate the fitness of an in(ividual. The fitness is computed as 16 minus the number of hits for the 16 cases. Tlnus a perfect individual has fitness 0, while the worst individual has fitness 16. The set of functions is the following: h' = {NAND, NOR}. The terminal set in this problem is composed of four different hoolean variables T = { a, 6, c, d 1.

Artificial Ant on the Santa Fe Trail

In this problem, an artificial ant is placed on a 32 x 32 toroidal grid. Sonte of the cells in the grid contain food pellets. The goal is to find a navigation strategy for the ant that utaxintizes its food intake. The saute set of functions an(1 terminals as in [89] was used in the study described here. The fitness function is the total number of food pellets lying on the trail (89) minus the anunutt, of food eaten I)y the ant during its path. This turns the problem into a ntinitnizatiou one, like the previous one.

Symbolic Regression Problem

The aitn here is to find a program which uiiatches a given equation. The classic polynomial equation f (.r) = r.t + .r'1 + r2 + r is used, and the input. set is composed of the values 0 to 999 (1000 fit uiess cases). For this pruhlenl, the set of fuuct.ions used for (.P individuals is the following: F={*, //, +, -}, where // is like / but returns 0 instead of error when the divisor is equal to 0, thus allowing syntactic closure. The fitness is defined as the stmt of the squared errors at each test point. Again, a lower fitness means a better solution.

3.3 Multipopulation GP Parameters

In all the experiment's, the same set of GP parameters was used: geueratioual GP, crossover rate 95%, mutation rate (1.1`%,, tourna►uent selection of size 10, ramped half-and-half initialization, ntaxinnun depth of individuals for the creation phase 6, nlaxinnuu depth of individuals for crossover 17, and elitisrut (i.e. survival of the best individual into the newly generated population for panmictic populations; the same was done for each subpopulation in the distributed case). Furthermore, to avoid complicating the issue, I refrained from using advanced techniques such as ADFs, tailored function sets, and so on. Only plain GP was used in the experiments.



As already noted, a number of new parameters must be considered in the island model of parallel, distributed GP:

• the number of populations,

• the number of individuals per population,

• the communication topology,

• the number and type of migrating individuals, and

• the frequency of migration.

The main difficulty faced by the experimenter is that the simultaneous setting and tuning of all the parameters is a monumental, and probably hopeless, task. In practice, tuning is done one parameter at a time, which gives less than optimal results since the parameters are interdependent and interact in complex ways. However, this is a feasible task, and it allows one at least to investigate suitable parameter ranges for a series of problems, and the qualitative ways in which some of the parameters interact with each other.

On the basis of some theoretical results for multipopulation GAs [24], it is assumed that the number of populations and the number of individuals per population are more important and are studied first, keeping the other parameters fixed at reasonable values on tell basis of previous empirical knowledge. Once a satisfactory set of values has been obtained for the fundamental parameters, finding good values for the others becomes possible by means of extensive simulations.

3.4 Performance Measures and Statistics

For the kind of experiment described here, whose aim is to understand what are the conditions that make island EAs more efficient than panmictic EAs, we are not interested so much in obtaining perfect solutions for each problem by using special parameter settings, special techniques for maximizing performance, or special knowledge about the problem. Instead, we are concerned with the dynamics of evolution and how the convergence process takes place in the distributed case, as compared to standard GP, over many runs, in order to find statistical regularities and robust and reproducible behavior. To compare efficiency, we need a performance measure. Usually, the number of fitness evaluations is an acceptable metric for EAs, since all the other parts of the algorithm either have negligible complexity or have the same cost for different runs of the same problem. However, this metric is inadequate for GP, in which, owing to the variable-length representation, individuals may have widely different complexities during evolution.



The data are thus analyzed by means of the effort of computation, which is defined as the total number of nodes that GP has evaluated in a population for a given number of generations. Note that,, strictly speaking, one should take into account the fact that evaluation times may he different for different operators, but this simplification is still useful as a first approximation. Clearly, this measure is problem-specific, but it is useful for comparing different solutions of the same problem.

One last remark about performance evaluation is that it, is not my intention here to compare actual execution times. Island models can be run on several machines simultaneously, which can provide quite good speedups, since the communication phases are short with respect to computation. However, as already noted, I wish to concentrate on the merits of the models themselves as new kinds of evolutionary algorithms, and not on their tune efficiency.

Reporting on performance comparisons in the field of EAs is a notoriously difficult issue. For problems for which the solution is not known, such as hard real-life optimization problems, a useful figure of merit is the ►nean best fitness (MBF), that is, the average over all runs of the best fitness values at termination [47]. The very concept of termination is a fuzzy one. Indeed, in the above situation, one does not know in advance whether the global optimum has been reached. Consequently, one common approach is to take the measure after a specified amount of computational effort. For problems with known solutions, such as those that are studied here, the above measure is not entirely adequate, because a sizable part of the runs are unsuccessful for the prescribed effort, (using a larger effort would help in some cases but would become prohibitively expensive). This prevents one from knowing whether increasing the length of the runs would have been useful and in which cases. Thus, the measured MBF says little about the problem-solving capabilities of methods. Instead, when the solution is known, the success rate (SR), defined as the ratio of successful to the total number of runs for a specified computational effort, is a good indicator of the algorithmic effectivity [47].

Thus, the main performance indicator used here is the SR. However, to give a more complete picture of the whole evolutionary process, we also present mean fitness curves against computational effort, and fitness histograms giving the relative frequency of the solutions found at a given effort value. The mean fitness curves are useful for getting a visual feel for the workings of different algorithms with respect to each other over time. The histograms allow one to know not only the number of perfect solutions but also how many solutions were close to optimal, which gives an idea of the "dispersion" of the solutions at the end of the runs.
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3.5 Number of Subpopulations and Their Size

In this section two of the parameters affecting the performance intilt ipopulation GP are studied, namely the number of populations and their size. The interesting limiting case of isolated subpopulations is presented first. and then communication, and thus migration, is introduced. Numerical experiments. described in [51], allow one to find suitable population sizes, or rather size regions, for each test problem such that using larger populations is useless or even harmful. Using smaller populations, on the other hand, may cause the search to fail to converge most of the time. Therefore, the number of individuals found in those numerical experiments will be used in what follows.

All the curves that appear in this section are averages over 100 independent runs of the same experiments and are labeled by two integers p and n, where p is the total number of populations and n is the number of individuals contained in each population. Thus, for example, "1 2500" means a single population of 2500 individuals (standard (;P). while "5 500" means five populations with 500 individuals per population. The runs have a maximum length of 500 generations. and the maximum effort in each case was fixed so as to be achievable within this limit. Here I only show some of the results for simplicity, and to avoid bothering the reader with too much data and graphics. This should be enough to demonstrate some general lessons. The full data set is discussed in [51].

3.5.1 Isolated Populations vs. Standard GP

The distinctive aspect of island GP is the exchange of individuals among subpopulations. A bounding case arises when the populations evolve in isolation. This bounding case has been analyzed by Cantu-Paz for GAs [24]. A single population of N individuals can be subdivided into it subpopulations which run in parallel on m < it machines or sequentially on a single processor because the runs are independent. The best fitness is obtained by selecting the best individual from the subpopulations at the end of the runs. Obviously. this population structure does not require any change to the standard GP algorithm. On the other hand, the number of individuals in each subpopulation is lower than that used when only one population is employed. Consequently. the search space region explored by a subpopulation is smaller than that explored by the whole population. Therefore, the time gains offered by the distributed system might be offset by an insufficient quality of the evolutionary search. But if a given number of individuals, say 1, happens to be enough for solving a given problem, larger populations, which need more computational effort, represent a waste. A question thus arises: is it better to use several smaller subpopulations or a larger population with the sane total number of individuals? The answer depends on the nature of the search space and on the size of the populations used for the search.
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Fig. 3.1. The artificial ant problem. Standard GP vs. IMGP. (a) Average fitness against effort for 1, 2, 5, and 10 populations and a total number of 2500 individuals over 100 executions. (b) Number of successes in 100 runs for three values of the total effort. (c) Histogram of the relative frequency of the solutions found by standard GP for an effort. E = 3 x 10". (d) Histogram of the relative frequency of the solutions in the case of 10 populations of 250 individuals each, for the same value of the effort



Artificial Ant Problem

Figure 3. 1 shows that, for a total number of individuals equal to 2500, isolated- nmltipopulation GP (IMGP) performs better than standard GP, although the standard deviations on the success rates (Fig. 3.1 b) indicate that, the improvement may be only marginal. IMGP with two, five, or ten populations gives the best results, as depicted in the effort curves (Fig. 3.1 a), while using one single population slightly decreases the performance. The same effect is apparent in the histograms of the relative frequency of the solutions, where it can also be seen that even when perfect solutions are not found, better solutions tend to be discovered in the multipopulation case. With smaller populations (500 individuals, results not shown here to save space), the general trend is similar. However, the best average fitness reached with 500 individuals is worse, as is the number of hits in all cases. This is because the ant problem is a difficult and deceptive problem for GP (see [92] for an in-depth analysis), and 500 individuals represent too small a sample for this problem.



Even-Parity-4 Problem

Figure 3.2 illustrates results obtained on the Even-Parity-4 problem with a population size of 1000 individuals. Even-Parity-4 instead of the more usual Even-Parity-5 was chosen because the latter is more difficult, requiring larger populations and more computing time, and its low success rate cannot provide useful data for statistical analysis. For a total population size of 1000, the general trend is that isolated populations are more efficient than a single large population. The standard deviations (Fig. 3.2 b) in the case of the 1 1000 and 10 100 experiments show that the difference in success rate is significant. This behavior is qualitatively confirmed by the average fitness graphs. It appears that ten populations of 100 individuals each represent a good choice, while two populations of 500 individuals perform slightly worse. The histograms of the relative frequency of the solutions for standard GP and for ten populations confirm that the number of perfect solutions found in the multipopulation case is always higher, and even when perfect solutions are not found. the distributed case tends to find better individuals.

However, results not shown here indicate that there is no clear advantage for the multipopulation case with a total of 500 individuals, because the sub- poptilations become too small, although the distributed case offers the benefit of a shorter computation time if the runs take place simultaneously.

The number of populations is a crucial issue: we must balance it against the number of individuals per subpopulation in order to carry out an effective search and. on the other hand. explore different areas of the search space.

Symbolic Regression Problem

Figure 3.3 depicts results obtained by means of standard GP and with isolated populations for the symbolic regression problem, for 100 GP runs with a total population size of 250. The figure shows that isolated populations have a slight edge. although the effects of distribution have only marginal statistical significance, as judged by the standard deviations on the success rates (see Fig. 3.3 b). Moreover, note that the symbolic regression problem used here (small degree, no adjustable constant coefficients) is easier than either the ant or the even-parity problem (i.e. a higher number of individuals with a perfect fitness is found with less computational effort). The trend continues with smaller populations, but there is a limit on the number of individuals that can do a good job. For instance, note how the extreme case of 50 populations containing only five individuals each shows a degradation in performance in Fig. 3.3 a. Experiments with a total number of 500 individuals (not reported here) show the same behavior, except that the rnultipopulation case is more favorable. This is probably because 500 is a large population size for this problem, and dividing the population into several smaller ones still produces subpopulations that are large enough to allow us to find good solutions; in other words, a single population of 500 individuals expends more effort, than necessary for obtaining good-quality solutions.
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Fig. 3.2. The even-parity-4 problem. Total population size 1000. Standard GP vs. IMGP. (a) Average fitness against effort for 1, 2, 5, and 10 populations and a total number of 1000 individuals over 100 executions. (b) Number of successes in 10(1 runs for three values of the total effort. (c) Histogram of the relative frequency of the solutions found by standard GP for an effort E = 2.5 x 10s. (d) Histogram of the relative frequency of the solutions in the case of 10 populations of 100 individuals each, for the same value of the effort
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3.5.2 Communicating Islands vs. Standard GP

The isolated-population situation is an interesting limiting case, but one of the purported advantages of island GP is the possibility of exchanging information between the subpopulations. Thus, the next logical step is to introduce communication, i.e. migration of individuals between denies.

The important point here is, again, the number of subpopulations and their size. In order to limit the number of free parameters, the other parameters were chosen as follows:



• communication topology: random;

0 frequency of exchange: every ten generations;

• number of individuals exchanged: 10% of the population size.

These values are not arbitrary: they have been used before in empirical work with good results and should form an acceptable first approximation. Their variation is studied later in Sects. 3.6 and 3.7, where it will be seen that this choice is a reasonable one.

Artificial Ant Problem
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Figure 3.4 clearly shows that five communicating populations of 500 individuals each are more effective than a single population of 2500 individuals. In fact, both the curves of average fitness vs. computational effort and the table of the number of hits show better performance for the distributed case, as confirmed by the standard deviations; the relative-frequency histograms show that the distributed case finds solutions of better quality.

The case of five communicating populations can also be compared with the case of five isolated populations for the same problem (see Fig. 3.1). We observe that the average fitness curve goes below a value of 4 when communication is allowed. whereas it only reaches a value near 6 in the isolated case. Moreover, the number of successes is higher when populations communicate, and the histogram of the relative frequencies of solutions shows that more solutions of better quality are found when communication is allowed. The differences are significant in the case of island GP vs. standard GP, while they are not significant for the isolated-population case. This observation refers to a fixed value of the computational effort, which is the same in both cases. Clearly. if it were given more generations to run, the isolated case could eventually reach the same performance level but the effort would be larger.

Even-Parity-4 Problem

In Fig. 3.5. we can see again that island GP with a random topology performs significantly better than standard GP for all the population sizes reported in the figure. In particular, (list ributiug the individuals into ten populations gives the best results, as is apparent from both the average-fitness curves and the number-of-hits table. The relative-frequency histograms confirm the trend, with a higher number of perfect solutions found and a clustering of good solutions that is shifted toward better fitness values in the distributed case. The trend favors smaller multiple populations up to a point. However, if we use too small a population size, the number of islands and the migration cannot compensate for the loss of search power, as can be seen in Fig. 3.5 for the extreme case of 50 populations of It) individuals each, where performance degrades.

Symbolic Regression Problem

Figure 3.6 depicts the results obtained for the symbolic regression problem with 250 individuals. Again, we see that distributing the individuals into five or ten populations is beneficial for this problem, its shown by the number of successes and the standard deviations. With respect to the analogous isolatedpopulation case, one can say that the results are almost the same, which can be explained by the simple nature of the problem. At any rate, the nndtipop- ulation case is more favorable than standard GP for both communicating and isolated populations in this case.

The tables in Fig. 3.7 summarize the differences between standard GP. isolated-iuultipopnlation GP (IMGP), and communicating-island GP for the test problems, for some typical population sizes and numbers of subpopulations. One can see that the differences between island GP and standard GP are always significant, while this is not always the case for IMGP compared with standard GI'. Migration thus offers a significant, advantage, at least for the test problems used here.



3.6 Comparing Communication Topologies

Now we investigate the influence of island communication topology on the evolutionary process, one of the main themes of this book. The topologies used here are the ring (or "circle"), the two-dimensional grid, and the random topology (see Sect. 3.1). The rings considered are one-way, i.e. messages always travel from a population to a neighboring oue in the same direction. In the two-dimensional grid, messages are sent from an island to its four south, north, west. and east nearest neighbors. On the other hand, in the random topology. the destination population is chosen randomly at run time. All the results described in this section have been obtained by averaging 100 independent runs of the same experiment. A total number of individuals equal to 1Oc1 of the total population size was exchanged between populations every 10 generations. Figure 3.8 shows results for the artificial ant problem in the case of nine populations of 50 individuals each.
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Fig. 3.5. The even-parity-4 problem. Standard GP vs. island GP with random communication topology (see text for the other communication parameters). (a) Average fitness against effort for a total number of 500 individuals over 100 executions. (h) Number of successes in 100 runs for three values of the total effort. (c) Histogram of the relative frequency of the solutions found by standard GI' for an effort E = 12 x 107. (d) Histogram of the relative frequency of the solutions in the case of 10 populations of 50 individuals each, for the same value of the effort
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Fig. 3.7. Summary of the behavior of GP (first data column), IMGP (second column), and conuuunicating-island GP (third column) for the test. problems for some selected population sizes. The number of successes and their standard deviations are shown



The graph of fitness against effort shows that the ring and random topologies achieve better results than does the grid topology. In any case, however, both the utuuher-of-hits table and the histograms of the relative frecpteuc;y of solutions show that, the differences between results obtained with the various topologies used are marginal, it fact that is also confirmed by the standard deviations oil the success rates.

Figure 3.9, showing results for 16 populations of 100 individuals each, confirms this trend, with the curves of the circle and random topologies being even closer, while the grid topology shows the worst performance.

Figure 3.10 depicts results for the even-parity-4 problem in the case of nine populations of 50 individuals.

Here the grid topology gives the best results, in agreement with the findings of Andre and Koza [11], although the influence of communication topology on the evolutionary process appears to he marginal.

In conclusion, at least, for the problems studied here, the differences between the results obtained with the various topologies are narrow, and thus topology does not scent to be the most factor in tnultipopulation GP. On the other hand, the random and ring topologies possess an advatttage in terms of couununication efficiency. In fact, an s-suhpopulation ring or random svstetn sends only .s messages at each iteration, whereas an tt x it = .s grid topology sends 4 x s tuessages, all of the same size. When all this considered, using a random topology seems to he advisable in view of the above results, given that this topology is easy to implement and seems more natural, as it does not prescribe a fixed exchange pattern.
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Fig. 3.8. The artificial ant problem. Island GP with three different communication topologies. (a) Average fitness against effort for 9 populations of 50 individuals each over 100 executions. (b) Number of successes in 100 runs for three values of the total effort. (c) Histogram of the relative frequency of the solutions found with a grid communication topology for an effort E = 10 x 107. (d) Histogram of the relative frequency of the solutions for a ring topology for the same value of the effort



These results are not surprising. After all, multipopulation EAs represent only a relatively small change with respect to a pannrictic population: most of the time, the system evolves as if it were made of a number of independent mixing populations. The periodic "perturbations" caused by migrants leaving and entering populations do not fundamentally change the picture.

3.7 Migration Parameters

Up to now, it has been implicitly assumed that the values of the number of migrants (107c of the island size) and of the frequency of migration (every ten generations) were suitable. But these are two free parameters of the system, and they could have been chosen differently. It is true that these parameters were chosen not at random, but rather by an examination of values previously used with success. It is nevertheless advisable to get at least a feeling for their influence oil the evolutionary process in order to be able to make an educated guess about this influence.



Let us call the number of* individuals that are exchanged between islands the grain, and t,lu' unuiber of generations that, ('lapses between two successive exchanges of individuals between subpopidat.ions the pcriud. The graphs shown in Figs. 3.11 and 3.12 illustrate the fitness level reached as the period and the grain are varied, after fixing a maximum effort of computation for each problem. This threshold was fixed at the value of the effort reached after 500 generations. The experiments were run with five populations of 100 individuals each, for the artificial ant and even-parity problems. The curves are averages of 100 independent executions of the same experiment.
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Fig. 3.9. The artificial ant problem. Island GP with three different communication topologies. Average fitness against effort for 16 populations of 100 individuals each, over 100 executions
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Fig. 3.10. The even-parity-4 Problem. Island GP with three different couununication topologies. Average fitness against effort for 9 populations of 50 individuals each, over 100 executions





Even-Parity-4 Problem

Results for this problem are shown in Fig. 3.11, where fitness curves are given as a function of the grain for a number of values of the period. This figure shows that the best value of the fitness is reached by the curve representing a period of 10, for a value of the grain equal to 10. We also note that for low grain values it is preferable to exchange individuals at each iteration (i.e. period = 1). For values of the grain from 5 to 20 it is better to exchange individuals every 10 iterations, but a value of the period equal to 5 also gives satisfactory results. For values of the grain greater than 25, it is better to exchange individuals less frequently, i.e. each 20 or 25 iterations. This was expected, since too much mixing of the populations slows down the convergence process.

[image: ]
Fig. 3.11. The even-parity-4 problem. Fitness as a function of the grain for several values of the period. Five subpopulations of 100 individuals each, with random communication topology



Artificial Ant Problem

The averaged results for the ant problem are depicted in Fig. 3.12. This figure shows that the best value of the fitness is reached ]rv the curves representing periods of 5 and 10, for a value of the grain equal to 10. We also notice that for low values of the grain, it is in general better to exchange individuals at, each iteration (i.e. period = 1). For values of the grain from 5 to 25 it, is better to exchange individuals with a period of 1, 5, or 10 iterations. For values of the grain greater than 30, exchanging individuals less frequently gives better results owing to a smaller mixing effect in the subpopulations. However, for the ant problem, large values of the grain always give worse results.
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Another work on GP that deals with the influence of the number of individuals exchanged is [11]. The authors of [11] studied the effort of computation as a function of the grain and found that a grain of 5'% of the population worked best. Other values around 4 8%, are also good, thus confirming qualitatively the present study. The communication topology used in [11] was two-dimensional grid instead of a random topology, and the authors of that work did not study the frequency of migration, since their system used an asynchronous message-passing pattern.

The results obtained for migration parameters confir►u that, on the whole, the ranges of' values that have been empirically chosen over the Years are reasonable. For best results, the number of individuals to be sent to another population should he about 1(l`X of the population size, and the exchanges should take place every five to ten generations. The results also make it clear that if few individuals are exchanged, then it is best for this to be (lone fre- (fuently. In contrast. it large grain should go hand in hand with a low frequency of excf►ange, otherwise the genetic material in the populations does not have tine to improve sufficiently from one exchange to the next. But too large a grain slows down the convergence process, since this brings about a ho- inogenization effect that counters the necessary genetic drift of the artificial evolution. All things considered, frequent exchanges of a few individuals are to he preferred to infrequent migrations of large blocks.



3.8 Summary of Case Study

This case study sheds some light on the behavior of multipopulation GP. Two fundamental aspects are the overall size of the working populations and the number of islands. One can see empirically that, as long as the size of the suhpopulations is above a mininnun threshold, it distributed system is more effective than a single panniictic population of the same total size. This is true even for the case of isolated islands. but the best results are obtained when it certain amount of migration is allowed. Obviously, the useful range of population size is problein-dependent and has to be determined empirically (hut see the previous chapter for some attempts at sizing the populations based on theoretical principles).

Other, finer aspects of island EAs have also been studied. Concerning the migration topology, the broad conclusion is that the communication architecture does not have a marked influence on the results. However, the random topology is at least as good as the ring and the grid, two other widely used graphs. The number of individuals that migrate and the frequency of ►nigra- tion are consistently similar across problems. and confirm the range of values used in previous work.

The considerations above are based on a small number of problems. However, many other cases showing similar behavior are documented in the literature (see. for instance. [5] and references therein), especially for island GAs, giving strength to the empirical conclusions.

Several reasons have been invoked in the literature to justify the undeniable practical effectiveness of island EAs. Preservation of diversity is one benefit that is commonly attributed to island and other structured EAs. Another suggest ed advantage is the possibility of enhancing the explorative characteristics of the EA owing to the semi-isolation of the populations. Actually, although these capabilities are potentially available. whether or not they are put to good use will depend on the type of problem and on the choice of parameters. To help its get a feel for one of these factors, the next section looks into the issue of diversity in utultipopulation GP.

3.9 The Role of Diversity

Diversity among the individuals in a population plays an important role in EAs. One of the shortcomings of standard EAs is their inability to maintain diversity in the population. This lack of diversity can lead to a number of problems, such as converging to nonglobal optima and not being able to react to changes in the environment. Poor diversity is especially troublesome when one is dealing with multimodal problems or using EAs to solve dynamical problems.



In genetic programming, the process converges when the elements of the phenotypic pool are identical or nearly so, in spite of the fact that the genotypic pool might still show some syntactical diversity. When this occurs, the crossover operator ceases to produce new good individuals, and the algorithm allocates all of its trials in a very small subset of the program space. Unfortunately, this often occurs before the true optimum has been found; this behavior is called premature convergence. The mutation operator provides a mechanism for reintroducing lost diversity, but it does so at the cost of slowing down the learning process.

Both genotypic and phenotypic diversity play a role in GP, and the two are not necessarily correlated in a straightforward manner [23]. In particular, the phenomenon of "bloat", the tendency of GP code to grow in size with generations is well known, and it often gives rise to large nonfunctional portions of the tree that could increase genotypic but not phenotypic diversity, and cannot increase the capability of the system to produce better solutions either.

Several "explicit" approaches have been proposed for maintenance of diversity within a population. Of these, fitness sharing is the oldest [10], while multiobjective optimization methods [38] try to preserve diversity by considering fitness, size, and diversity as simultaneous objectives to be satisfied. While these methodologies are worthwhile in their own right, here we shall examine only "implicit" diversity maintenance through the spatial structure of the population.

3.9.1 Diversity Measures

A good survey and discussion of diversity measures in pantnictic GP has been presented in [23]. Other EA families will need different measures, of course, but, the concepts are the same. For example, in binary-coded GAs, the Hamming distance is often used. The measures used here are based on the concepts of entropy and variance, and are employed to evaluate the phenotypic (i.e. based on fitness) and genotypic (i.e. based on the syntactical structure of individuals) diversity of populations. Phenotypic diversity is related to the number of different fitness values of the individuals. The corresponding phenotypic entropy H,,(P) [121] of a population P is

N H1,(P) _ -Efilog(f,), J-1 (3.1)

where fj is the fraction nj/N of individuals in P having fitness j, and N is the number of fitness values in P.



Genotypic entropy can be used to measure genotypic diversity. However. GP individuals are usually represented as variable-size trees, and a tree distance measure is needed to define structural differences between trees. One useful definition of tree distance has been proposed by Ekart and Nemeth [48]. The distance between two trees Ti and T2 is calculated in three steps. (1) Tr and T2 are overlapped at the root node and the process is applied recursively, starting from the leftmost subtrees. (2) For each pair of nodes at matching positions, the difference between their codes (possibly raised to an exponent) is computed. (3) The differences computed in the previous step are combined into a weighted sum. Formally, the distance between two trees Tt and T2 with roots Rt and R2 is defined as follows:

[image: ]


where d(Ri. R2) = (1c(Rt) - c(R2)1)`, childi(Y) is the ith of the in possible children of a generic node Y, if i < m, or the empty tree otherwise: and c. evaluated on the root of an empty tree, is 0. The constant k is used to give different weights to nodes belonging to different levels, and z is a constant usually chosen in such a way that z E N.

With this definition of tree distance at hand, we can now define the genotypic entropy H,q(P) of a population P as follows:

N HU(P) -Y-gllog(gi)• (3.3)

where gj is the fraction of individuals having a given distance from the origin. which has been chosen arbitrarily as the empty tree.

The variance gives an alternative metric for diversity. The variance of a population P is defined as follows:

N _ 1 (P) N 1 1 Y(ri - 2)2. i=t (3.4)
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3.9.2 Experimental Results

This section describes the results related to diversity for t he simulations of the CP test problems described earlier. All the curves represent average values over 100 independent CP runs.

Artificial Ant Problem

[image: ]
Fig. 3.13. Artificial ant, problem. 1000 total individuals. Thee curves are averages over 100 runs. (a) Genotypic entropy using structnral distance. (h) Genotypic variance using structural distance. Gray curves: pauucictic population. Black curves: entropy of the aggregated subpopulations



Figure 3.13 a depicts the behavior of the genotypic ent ropv calculated by using structural tree distances. The gray curve represents the entropy of one pannrictic population, while the black curve shows the aggregated entropy of all islands, i.e. the entropy of all the individuals in the islands considered as a single population. Figure 3.13 1) shows the genotypic variance for each generation. N'e observe t hat genotypic diversity. after all initial reorganization (an increase in the the case of entropy, and a decrease in the case of the variance), tends to remain constant over time. This is in agreement with the findings in [23]. The jagged behavior of the nndtipopulatioll curves when groups of individuals are sent and received is not surprising: it is dnc to the sudden change in diversity when new individuals enter a subpopiilation. If we do not consider these oscillations, the genotypic diversity of the paunrictic populate Lion and that of the aggregated subpopulations earl he considered to he very similar.

The behavior of the genotypic diversity in individual islands can be seen ill Fig. 3.14, where only two populations are reported to avoid cluttering the drawing. The general behavior in the islands is similar to t hat of a single larger. population. However, two effects are visible: first, the diversity of the islands is lower and, second, the diversity fluctuations are larger. Both phenomena are easily understandable if we remember that the population size is smaller in the individual islands.
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Fig. 3.14. Artificial ant problem. Genotypic entropy (a) and variance (b) using structural distances, in two subpopulations of 200 individuals each
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Fig. 3.15. Artificial ant problem. 1000 total individuals. Phenotypic entropy (a) and variance (b). Gray curves: panmictic population. Black curves: entropy of the aggregated subpopulations



Figure 3.15 shows graphs of the phenotypic entropy and variance for both the panmictic population and the multipopulation case. It is apparent here that, unlike the genotypic diversity, the phenotypic diversity tends to decrease steadily with time, which is in agreement with the results of [23] for panmictic GP. The same behavior has often been observed in GP runs: see, for instance, [92]. The interesting remark that we can make is that, even though the average phenotypic diversity tends to oscillate in the multipopulation case as groups of individuals are sent and received, it remains higher globally than in the paninictic case.



Symbolic Regression Problem

[image: ]
Fig. 3.16. Symbolic regression problem. 250 total individuals. Genotypic entropy (a) and variance (h) calculated using structural tree distance. Gray curves: panmictic population. Black curves: entropy of the aggregated subpopulations



The genotypic entropy and variance obtained with the structural tree distance are shown in Fig. 3.16. We see that,, after an initial transient period, the genotypic diversity remains approximately constant during the evolution. Moreover, while the genotypic variance has more or less the same values for the multipopulation and the panmictic systems, the genotypic entropy is higher for the single panmictic population. The smaller values of genotypic entropy in the multiisland system do not seem to affect performance, as we saw in Sect. 3.5.2.

Figure 3.17 shows the phenotypic diversity (as measured by entropy and variance) for the nnilt ipopulation and the pantnictic systems. It appears that, on average, the phenotypic diversity is higher in the iintltiisland case. This is a qualitative confirmation that distribution helps in maintaining phenotypic diversity. An inspection of Figs. 3.16 and 3.17 suggests that there is little correlation between genotepic and phenotypic diversity (which is in agreement with [23). and is probably due to bloat, neutral networks in genotypic space. and nonfunctional code [92]). Moreover, no apparent correlation seems to exist between the ability of GP to find good-quality solutions and the genotypic diversity. On the other hand, the capacity of GP to find good-quality solutions seems to be correlated with the phenotypic diversity, at, least in these experiments.
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Fig. 3.17. Symbolic regression problem. 250 total individuals. Phenotypic entropy (a) and variance (h). Gray curves: panmictic population. Black curves: entropy of the aggregated subpopulations



Ei en-Par tty-4 Problem

In Fig. 3.18, we observe that a pattern of genotypic diversity similar to that found for the artificial ant problem (Fig. 3.13) emerges again: the genotypic diversity changes in the initial part of the evolution: the entropy increases and the variance decreases, and then levels off and stays practically constant. For the islands, there are oscillations at migration times, but otherwise the behavior is quite similar to that of the panmictic system.
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Fig. 3.18. Even-parity-4 problem. 500 total individuals. Genotypic entropy (a) and variance (b) calculated using the structural distance. Gray curves: panmictic population. Black curves: entropy of the aggregated subpopulations



Also, for this problem. the phenotypic diversity (the entropy and variance are shown in Fig. 3.19) always decreases on average during evolution, but it remains higher for the nutltipopulation system.
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Fig. 3.19. Even-parity-4 problem. 500 total individuals. Phenotypic entropy (a) and variance (b). Gray curves: pautnictic population. Black curves: entropy of the aggregated subpopulatious



3.9.3 Summary

We have seen how using loosely coupled populations instead of a single panmictic one may help in maintaining diversity during GP runs. By defining indices of genotypic and phenotypic diversity and by monitoring their variation over a large number of runs in three standard test problems, it has been shown experimentally that, diversity evolves differently in the nnilt ipopttla- tion case. In fact, while genotypic diversity is not much affected by splitting a single population into multiple ones, phenotypic diversity, which is linked to fitness, remains higher in the nntltipopulat ion case for all problems studied here. Thus, the low correlation between the evolution of genotypes and problem-solving behavior is confirmed in the distributed setting [23]. Given that better convergence properties have been empirically established for distributed GP in this chapter, it is tempting to attribute this observation to the behavior of the diversity. Although the data suggest that this could indeed be the case, maybe through an implicit control of the bloat phenomenon (as suggested in [60]), a direct effect cannot be established, only a plausible indication.

In conclusion, using multiple loosely coupled populations is a natural and easy way to maintain diversity and, to some extent, avoid premature convergence ill GP. Of course, more complicated methods for promoting diversity (e.g. [38, 48]) may he used in the subpopulations in conjunction with the natural distribution of the genetic material offered 1>y the latter.

3.10 Asynchronous Island Models

This last section deals with the empirical effect, of asynchronous conunu- nicat.ions in island-based G.P. We have already seen general descriptions of asynchronous island models in Sect. 2.4. Here, some experimental results are reported on the benchmark problems of this chapter for two asynchronous inultipopulation GP models, and are compared with the synchronous island model and with standard GP (more details can be found in [149]).



Two asynchronous island models were used for these experiments: a model with a master process that coordinates the individual exchanges, and a model without a master process. In these models. blocks of migrants are sent synchronously. and are received asvnchronously in the destination islands. As we have seen in Chap. 2, both the sending and receiving could be asynchronous instead. The synchronous model that the results are compared with is a standard one, except that, as in the first asynchronous algorithm, it has a special master process that takes care of receiving blocks of individuals and dispatching them to the target population. This arrangement containing a master process is irrelevant from the point of view of the abstract model, except maybe for fault-tolerance considerations, but it makes it easier to implement any island interconnection topology.

Asynchronous Communication with Master

The behavior of the populations can be described by the following algorithm:

• Create a random population of programs
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At the same time. the master executes the following steps:
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Asynchronous Communication Without Master

In this model each population executes the following steps:

• Create a random population of programs
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GP Parameters

III all the experiments performed, the same set of GP parameters was used: generational GP, crossover rate 95'%;, mutation rate 0.1%, tournament selection of size 10, ramped half-and-half initialization, nmxinnuu depth of* individuals for the creation phase 6, maximum depth of individuals for crossover 17, no elitism. The suhpopulations were connected using a ring topology, and a number of individuals equal to the 10% of the size of the suhpopulat ion were exchanged between denies every 10 generations.

The systeuts were compared with respect to t he computational effort spent to reach a given average solution quality, and the phenotypic entroln•, as defined in Sect. 3.9, was used to gauge the diversity in the populations.

3.10.1 Experimental Results

Fitness vs. Computational Effort

Owing to the stochastic nature of the evolutionary process, all the results shown here were obtained by averaging 60 independent urns of' the same experiments. Curves are drawn for the three distributed models and for the reference standard (;P model. III order to assess the statistical significance of the results, standard deviations of' the nrearr fitness are also presented. Figures :3.20, :3.21, and '3.22 show graphs of fitness and standard deviation versus connputational effort for the even-parity-5 problem, the artificial ant problem, and I he symbolic regression problem, respectively. The craves for the symbolic regression problem look like straight lines because of the fast convergence of this easy problem. From these figures, we observe that the distances between the curves for the distributed models and those for the sequential versions are always larger than the standard deviations, while this is not the case if we compare the curves of the parallel models between each other. One can thus conclude that, for all the cases presented, the island models have a faster convergence than the panmictic model, while the speeds of convergence of the synchronous and asynchronous models can be considered statistically equivalent.



Population Phenotypic Entropy

The results for this quantity were obtained by averaging 60 independent runs of the same experiments. The curves relating to multipopulation models were obtained by averaging the phenotypic entropies of all the subpopnlations at each iteration. Figures 3.23. 3.24 and 3.25 show the population entropy versus the generation number for the even-parity-5 problem, the artificial ant problem, and the symbolic regression problem. respectively. These figures show that, the paumictic iuodel has a fast phenotypic entropy increase in the first, few generations and a slow decrease in the rest of the execution. The synchronous model shows a sudden decrease in the entropy each time the generation number is a multiple of 10 (messages are sent synchronously every ten generations), and a sudden increase in the imunediately following few generations. This behavior, dne to the sudden arrival of new good individnals, was found earlier in Sect. 3.9.2.
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Fig. 3.20. Fitness and its standard deviation against computational effort for the even-parity problem. Upper graphs, 5 populations of 300 individuals, lower graphs. 10 populations of 150 individuals. Sequential version (a panmictic population of 1 500 individuals) shown in black





The asynchronous models, oil the other hand, show an oscillating behavior, due to the fact that messages are received whenever they arrive, and not at fixed times. In all cases, migrating individnals seems to help to alleviate stagnation in ill(' populat ions, thus confirming one of the intuitions that are the basis of distributed evolutionary algorithms.

To summarize the findings of this section, tote can say that asyncluonons operation does not cause a marked difference in the behavior of the island model. Except, during the few generations after the recept.iou of new individuals in an island, the average behavior is roughly the sante for synchronous and asynchronous uutltipupulatiorn models. Oil the other hand, the advantage of those models over the panuiictic model is once again confirmed with respect to coniput.ationcl effort, the quality of the solutions found. and overall diversity.
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Fig. 3.21. Fitness and its standard deviation against effort for the ant problem. IJpper graphs, 5 populations of 300 individuals, lower graphs, 10 populations of 150 individuals. Sequential version (a panmictic population of 1500 individuals) shown in black
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Fig. 3.22. Fitness and its standard deviation against effort for the symbolic regression problem. Upper graphs. 5 populations of 300 individuals, lower graphs. 10 populations of 150 individuals. Sequential version (a panmictic population of 1500 individuals) shown in black
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Fig. 3.23. Phenotypic entropy against generation number for the even-parity-5 problem (5 populations of 300 individuals each). Curves for the sequential version (a panmictic population of 1500 individuals) are shown too





At this point, since we have been using the same few test functions throughout this chapter, the reader might be led to believe t hat t he empirical evidence presented in favor of the island model might he limited to those particular problems and (). To indicate that this is not the case, it is perhaps usehil to give pointers to a few other experimental investigations with island models, in addition to those already mentioned in ('hap. 2.

Starkweather et al. [143], using a steady-state replacement scheme, showed that for most of their test, functions and for iuost experinuntal conditions, a ring island topology outperformed a panmictic population of the same total size. These authors used a migration scheme that swapped migrants between populations on the ring first between first-neighbor islands, then between second-neighbors. and so on modulo the ring size.
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Fig. 3.24. Phenotypic entropy against generation number for the artificial ant problem (5 populations of 300 individuals each). Curves for the sequential version (a paninictic population of 1500 individuals) are shown too
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Fig. 3.25. Population phenotypic entropy against generation number for the symbolic regression problem (5 populations of 300 individuals each). Curves for the sequential version (a pannictic population of 1500 individuals) are shown too





Andre and Koza [11] used a multipopulation GP system in which the interconnection topology was a two-dimensional grid. The send and receive operations for the migrating individuals were fully asynchronous. Andre and Kota found that the algorithm was more efficient than a panmictic one on Boolean even-parity functions.

Alba and Trova performed a rather systematic study of structured GAs. including multipopulation models and their convergence and population diversity behavior [8]. Using a completely different set of test functions suited to GA encoding, they showed that both synchronous and asynchronous islands outperformed the panmictic model. In addition, they found that, in a physically distributed environment, both showed excellent speedup, with the asynchronous version being more efficient than the synchronous one owing to a lower communication overhead.

Alan' v other studies not reported here, including real-life applications, tend to lead to the same conclusions. In fairness, it should he mentioned that, although there seems to be a general consensus about the advantages offered by multipopulation EAs. some dissenting voices have been raised for example. Punch's work on multipopulation GP [119]. However, Fernandez et a]. have argued in [51] that this apparent discrepancy may be due to insufficient significance of the statistics.

Finally, I would like to remind the reader that any EA can be improved by combining it with a problem-specific local search heuristic or with tailored operators. giving rise to what is known as a hybrid EA. Of course. the same can he done in the case of island GAs, although I shall not present the corresponding kind of algorithm explicitly here. An early example of an island hybrid EA in the field of function optimization is the work of hliihlenbein et al. [108]. in which a local optimizer is used.
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Lattice Cellular Models

Lattice-structured populations were defined in graph-theoretic terms in Sect. I.I. This kind of spatially structured EAs was introduced early on in EA research by GorgesSchleuter, Alanderick, and coworkers [70, 96] and has been used quite often since then. Thanks to the geographical isolation of the individuals in the population, these populations feature slow diffusion of good solutions through the lattice, and thus, for a given selection method, their evolution leads to a more explorative behavior than panmictic EAs. The reasons for this behavior will become clear in this chapter. These aspects have been found useful for inultimodal and other kinds of problems, as we shall see in the next chapter. where I describe the application of cellular EAs (cEAs) to a set of test problems.

Lattice cellular EAs represent a more radical departure from the panmictic population scheme than do the island models that we have studied earlier. They are thus more useful in understanding the properties of populations in which locality is a key factor. In this chapter, we turn our attention to the dynamical properties of these structured populations. As an important case study, I shall present models for the global, emerging selection pressure in cEAs. Selection is an extremely important operation in artificial evolution: it is the process of choosing individuals for reproduction or survival and it thus provides the driving force in EAs. Another advantage of studying selection in isolation stems from the difficulties in mathematically modeling the interplay of selection and variation operators. Our goal is to explain how population topology influences the behavior of an EA, and this is easier to see when different effects are first treated separately.

In this chapter we shall also study in depth the influence of the timing of events on the evolutionary process, a subject that we have encountered already in connection with island models (see Chap. 2). The influence of asynchronous operations was seen to be relatively minor there. With cellular populations. however, we shall see that time matters, and the interplay of time and topological structure is a very interesting one, with rather important consequences for the dvnamnics of evolution.




The following section gives a brief description of the concept of' selection pressure, or selection intcnsit;yI,
 and the related idea of takeover there.
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4.1 Takeover Time

Selection rust hods are characterized by their takeover time. The takeover t irn.e is the t into it takes for a single, best individual to take over the entire population. III other words, it represents the speed at which the best solution it the initial population propagates and conquers the whole population under the application of the selection operator alone. It can also be seen as a simplified infective process, in which infection means being replaced by the best individual and in which infected individuals remain infected forever. The takeover tirue can be estimated experimentally by rncasuring the proportion of the best individual as a function of tilnc, under the effect of selection only, without any variation operator. A shorter takeover time indicates a higher selection pressure, and thus a more exploitative algorithm. If the selection intensity is lowered, the algorithm becomes more explorative. Select ion pressure is thus it key parameter in the operation of an EA: with high selection pressure, diversity in the population is quickly lost, and the search stagnates, unless a large population is used or a lot of disruption is caused by the variation operators. Or the other hand, it' the selection pressure is weak, convergence slows down and the search nnay wander ill the problem space without focusing on very good solutions. Au effective search thus requires a careful trade-off between the selection unet hod, the Variation operators, and other EA parameters such as the population size. We shall see some of these effects in the empirical studies described in the next chapter.

Theoretical takeover tinier have been derived by Goldberg and Deb [67] and by 13aick 114] for pane ictic populations and the select ion uiet hods used across the families of' LAs. These Iimes turn out to he logarithmic in the population size, except in the case of' proportional selection. which is a factor of n slower, where it is the population size.

It has been shown empirically it [126] that the selection pressure induced on the entire population becolres weaker when we move from it pammnictic to a square-grid population of the same size, with synchronous updating of the cells. A theoretical study of' the selection pressure ill the case of ring and array topologies it one-dimensional cEAs has been done by Rudolph [124]. Abstracting from specific selection methods, he splits the selection procedure into two stages: inn the first stage an individual is chosen in the neighborhood of each individual, and then, ill the second stage, for each individual it is decided whether- the other chosen individual will replace it in the next time step. Using only replacement methods in which extinction of the best by chance cannot happen, i.e. nonextinctive selection. Rudolph derived the expected takeover tunes for the two topologies as a function of the population size and the probability that. in the selection step, the individual with the best fitness is selected in the neighborhood.



In the rest of this chapter, I shall complete and extend the theoretical results on selection pressure in lattice-structured cellular ?As. including both synchronous and asynchronous cell update modes. for one- and two-dimensional grids.

4.2 Synchronous cEAs

We begin with a description of how a standard synchronous cEA works. A lattice cEA maintains a population whose individuals are spatially distributed in cells according to a regular lattice structure such as the grid shown in Fig. .1.1. Each cell is occupied by one individual: therefore, the terms cell and individual may be used interchangeably.
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Fig. 4.1. A grid cellular structure with a Moore neighborhood highlighted in gray around the central black cell



A cEA starts with the cells in a random state and proceeds by successively updating them using evolutionary operators. until a termination condition is satisfied. Updating a cell in a cellular EA means selecting parents in the individual's neighborhood, applying genetic operators to them, and finally replacing the individual if the offspring obtained has a better fitness (other replacement policies can be used). The following is a high-level pseudocode description of an algoritlun for a general cEA:
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This chema of an algorithm can he specialized for different types of EAs. For instance, in cellular genetic algoritlnns (cGAs), two parents might be selected by binary tournament, linear ranking, or fitness-proportionate select iou applied to the (shall) selection pool caalstituted by the cells belonging to the neighborhood of a given cell, including that cell itself. R.econlbination might be done on the selected individuals using a standard crossover technique, followed by nnttatioll. However, nmltiparent techniques have also been proposed [106]. Finally, replacement of the cell might be done ill several ways: the most, common way is for one offspring to replace the cell if it is better, but a probabilistic choice or a policy of always replacing the cell is also conuiion [70, 961.

Gorges-Schleuter gave extensions of the generic cFA to cover evolution strategies (ES) by using a local-pool form of the classical (A,1i)-ES selection, it) which, out of A offspring, /i are chosen to form the next population [72]. Mutation and, possibly, recombination are the usual ES operators .

The phases of thc chEA take place si nultaneously for all cells iii the tat t ice. On truly parallel hardware, this feature can be exploited to speed up the computation. On a single machine, the virtually parallel update is simulated by using an extra grid, which keeps the updated cells as they are produced. This grid will replace the old one at the end of one update please, or generation. Remember, however, that, here we are not (Iiscussing iluplenlentatioll issues, but only the models. lnlplelnentatious are discussed ill Appendix A.

In tl>e study described here, we consider cEAs defined on a one-dimensional lattice of size it or a square lattice of size in x in.. l3ot h the linear cEA and t lie two-dimensional case have periodic boundary conditions, i.e. the structures are a ring and it torus respectively; the latter is the topological structure depicted in Fig. 1.6.

Let, us denote by S the (finite) set of states that a cell can take up or, equivalently, the set, of different individuals that can occupy a cell at any given Neste: this is the set of points in the (discrete) search space of the problem. Let K, be the set of neighbors of a given cell i, and let IQ = !i be its size. The local transition function 0(•) can then be defined as

0 :51` -, S,



which maps the state s, E S of a given cell i into another state from S, as a function of the states of the K cells in the neighborhood K,. The implicit form of the stochastic transition function 0(•) is

[image: ]


where P is the conditional probability that cell r, will assume a certain value froth the set S at the next time step t + 1. given the current (at time t) values of the states of all the cells in the neighborhood. We are thus dealing with probabilistic automata, as was pointed out by Toniassini [146] and Whitley [157], and the set S should be seen as a set of values of a random variable. The probability P will be a function of the particular selection and variation methods used.

[image: ]
Fig. 4.2. Some neighborhoods used in cEA work. From left to right: Linear5, more commonly known as the von Neumann neighborhood in cellular automata work; Compact!), also called Moore: and Conmpact13. a radius-2 von Neumann neighborhood



The main neighborhoods that we consider in this chapter are the radius-1 neighborhood in the linear case, which comprises the cell itself and its first right and left neighbors and, in the two-dimensional case, the von Neumann neighborhood, also called Linear 5 (IN,I = 5). which is constituted by the central cell and the four first-neighbor cells in the directions north, east, south, and west (see Fig. -1.2). Other neighborhood structures are possible. and sorne- tinmes used. as depicted in the figure. For the sake of completeness, I should mention the fact that the neighborhood need not have a regular geometrical shape: sometimes. irregular neighborhoods have been used in which individuals are selected by performing short random walks around the central cell [33].

4.3 The Time Dimension: Asynchronous cEAs

Synchronous update, with its idealization of a global clock, is customary in cEAs and cellular automata, and most results have been obtained using this model. However, perfect synchronicity is only an abstraction: in physical or biological situations, the synchronicity assumption is untenable. In fact, in any spatially extended system, signals cannot, travel faster than light. Hence, for given dimensions it is impossible for a signal emitted by a global clock to reach any two computing elements or agents at exactly the same time, which poses the problem of latching the signal for the units to work in synchronous mode. Indeed, in biological and sociological environments, agents normally act at different, and possibly uncorrelated times, which seems to preclude a faithful globally synchronous simulation in most cases of interest (see, for example. [20] and [80]). Of course, this "uuphysicality" is not a problem in artificial evolutionary algorithms, where we are free to use any solution that makes sense cotnputat ionally, even when it is not defendable on biological grounds. But there are other reasons that make asynchronous cEAs potentially useful as problem solvers, as we shall see.



In the asynchronous case, cells are updated one at a time in some order. There are thus many ways for sequentially updating the cells of a cEA, including "utixed" ones in which whole blocks of cells are updated asynchronously with respect to each other. while cells belonging to the block are updated in parallel [137]. Here I consider four commonly used asynchronous update methods for cellular automata in which cells are are updated one by one [128]:

• In fixed line sweep (I,S), the ii cells are updated sequentially from left to right for rings, and line by line. starting from the upper left corner cell, for grids.
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• The method of new random sweep (NRS) works like FR.S, except, that a new randotn cell permutation is used for each sweep through the array.

• In ureiforrrra choice (UC), the next cell to be updated is chosen at random with uniform probability and with replacement. This corresponds to a binomial distribution of the updating probability.

A time step is defined as the process of updating it, tithes sequentially, which corresponds to updating all the n cells in the grid for LS, FRS, and NRS, and possibly fewer than n different cells in the uniform-choice method, since some cells tuight be updated more than once. Fixed line sweep is a rather degenerate updating policy, always imposing a one-hv-one sequential scan of the array. In spite of this, it can be useful at times, and is also all interesting bounding asynchronous case to consider.



4.4 Models and Their Validation

There have been a number of investigations attempting to characterize the theoretical properties of cEAs. In [37] Davidor offered a schema propagation analysis of a two-dimensional cGA with local fitness-proportionate selection and a probabilistic replacement policy for the offspring. He showed that convergence within a neighborhood is rapid but, thanks to the slow diffusion of individuals through the grid from neighborhood to neighborhood, there is less disruption and the risk of premature convergence is lower.

Rudolph and Sprave [125] have shown how cGAs can be modeled by a probabilistic-automata network and have provided proofs of complete convergence to a global optimum based on Alarkov chain analysis for a model with a fitness threshold.

Several results have appeared on selection pressure in cEAs. Spiessens and Manderick [1401 made some early guesses at the form of propagation of the individuals in it two-dimensional grid under local fitness-proportionate selection and suggested that the growth should follow a quadratic law. They also studied the time complexity of the cellular EA.

Sarnia and Dc .long performed empirical analyses of the dynamical behavior of cGAs [126. 127], focusing on the effect that the local selection method, and the size and shape of the neighborhood have on the global induced selection pressure. Recently, Giacobini et al. have successfully modeled the selection pressure curves on cEAs in one-dimensional rings and two-dimensional, torusshaped grids [61, 62. 63. 65]. Here I shall follow this line of work, and the reader is referred to the original articles for more details.

In the next section I shall introduce some mathematical background that is needed in order to understand the models and, for the two-dimensional case, the approximations that are required to ►uake the models workable. The models will then be described and validated experimentally. Finally. I shall offer some more general considerations on the effect of changing the grid shapes or scaling the neighborhoods size.

4.5 Mathematical Models

Let us consider the random variables 17,(t) E {0, 11 indicating the presence in cell i (1 < i < n) of a copy of the best individual (V (t) = 1) or of a worse one (t (t) = 0) at time step t. where n is the the population size. The random variable

~~(t) _ ~~(t) r-~ (4.1)

denotes the number of copies of the best individual in the population at time step t. Initially V, (1) = 1 for some individual i, and V j(1) = 0 for all j $ i.

Following Rudolph's definition [124], if the selection mechanism is nonextinctive, the expectation E[T]. where T = min{t > I : N(t) = n}, is called the takeover time of the selection method. In the case of spatially structured populations the quantity E,[T], denoting the takeover time if cell i contains the best individual at, time step 1, is termed the takeover true with initial cell i. Assuming a uniformly (listributed initial position of the best, individual over all cells, the takeover time is therefore given by



E[T] Eli = 1 ES[T]. (.1.2)

In the following subsections, recurrences are given that describe the growth of the random variable N(t) in cEAs with different, regular lattice topologies for the synchronous and the four asynchronous update policies described in Sect. 4.2. We consider nonextinctive selection mechanisms that, select the hest, individual in a given neighborhood with a probability in the interval (0, 11.

4.5.1 Limitations of Logistic Modeling

It has been well known since the work of Verhulst[152] in the 19th century, that the assumption of logistic growth is a reasonable model for biological populations with bounded resources [110]. It is easy to see that, this behavior also holds for the growth of the best individual in the artificial evolution of a finite panmictic population [67]. In fact, if we consider a population of size it, the number N(t) of copies of the best individual in the population at, time step t is given by the following recurrence:
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where t), is the probability that the best individual is chosen. This recurrence can be easily transformed into one that, describes a discrete logistic population growth in discrete tune:
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Such a recurrence can he approximated in analytic fornn by the standard continuous logistic equation
 2:
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where the growth coefficient cY depends on the probability 7p,,. This is the approach taken in [127] for synchronous cEAs in order to fit the measured growth curves as a function of a single structural parameter.



This can be useful as a first approximation, but, as suggested by GorgesSchleuter and Spiessens and Manderick [72, 1401, in the artificial evolution of locally interacting, spatially structured populations, the assumption of logistic growth does not hold anymore. Instead, in these locally interacting structures, although the curves have the familiar "S shape" denoting growth followed by saturation. they are not exponential but rather are polynomial, with a time dependence x t`t, where d is the lattice dimension.

In fact, in the case of a ring or a torus structure we have a linear or a subquadratic growth, respectively. We complete here Gorges-Schleuter's analysis, which holds for unrestricted growth, extending it to bounded synchronously updated spatial populations.

For a structured population, let us consider the limiting case, which represents an upper bound on the growth rate, in which the selection mechanism is deterministic (i.e. where p., = 1). and a cell always chooses its best neighbor for updating. If we consider a population of size it with a ring structure, and consider a neighborhood radius of r (i.e. the neighborhood of a cell contains 2r + 1 cells), the following recurrence describes the growth of the nurnber of copies of the best individual:
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This recurrence can be described by the closed equation N(t) = 1 +2rt, which clearly shows the linear character of the growth rate.

In the case of a population of size n on it toroidal grid of size n x n (assuming ii odd) and a von Neumann generalized neighborhood structure of radius r (see Sect. 4.8), the growth of the number of copies of the best individual can be described by the following recurrence:

[image: ]


which reduces to the following:
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This growth is described by a convex quadratic equation followed by a concave one, as the two closed forms of the recurrence clearly show:



[image: ]


Figure 4.3 depicts graphically the growth described by the above equat ions for a population of 81 individuals on a 9 x 9 torus structure using a radius-I von Neuinain neighborhood.

[image: ]
Fig. 4.3. Example of deterministic growth of N(t) for a population of 81 individual, on a 9 x 9 torus structure with a von Neumann neighborhood



Thus, a more accurate fit should take into account the nonexponent.ial growth followed by saturation (the crowding effect). We address such studies in the following sections for the cases of one- and two-dimensional regular lattice topologies with synchronous and asynchronous evolution.

4.5.2 The Ring Structure

hi a linear cEA, the cells are arranged along a line. Uependiig of whether the last and first individuals communicate or not, we have a ring or a linear topology, respectively. Here we assume the first case (ring), which is more cotnmoi. Each cell has the same number of neighbors on both sides, and this number depends on the radius r. We shall consider first the simplest case, r = 1, which steams that there are three neighbors, including the central cell it self.

At each time step t, the expected number of copies N(t) of the best individual is independent of its initial position. Therefore, the expected takeover time is E[T] = E,[T],Vi.

Synchronous Takeover Time

Since we are assutniig neighborhoods of radius 1 and N(0) = 1, the set of cells containing a copy of the best individual will always he a connected region of the ring. Therefore, at each time step, only two more cells (the two adjacent to the connected region of the ring) will contain a copy of the best individual, with probability p. The growth of the quantity N(t) can be described by the following recurrence:
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The closed form of this recurrence is trivially E[N(t)] 2pt + 1. and therefore the expected takeover time E[T] for it synchronous ring cEA with n cells is
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Rudolph [124] gave analytical results for a ring with synchronous update for a generic probability of selection p. Although obtained in a different way. the expression above and his equation give nearly the same results for large population sizes it. In fact, his equation, for large n, reduces to nl2p- 1/4. while the equation above gives nl2p - 112p. Since the first term quickly dominates over the second for large n, the two expressions can be considered equivalent.

Asynchronous Fixed-Line-Sweep Takeover Time

Let us consider the general case of an asynchronous fixed-line-sweep cEA. in which the connected region containing the copies of the best individual at tune step t is B(t) = {1..... k}. 1 < l < k < n. At each time step the cell I - I will contain a copy of the best individual with probability p, while the cells k + j (with j = I ..... n - k) will contain it copy of the best individual with probability p'. The recurrence describing the growth of the randout variable N (t) is therefore
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Since the closed form of the recurrence above is
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we conclude that the takeover time for an asynchronous fixed-line-sweep cEA with a population of size 71 is
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Asynchronous Fixed- and New-Random-Sweep Takeover Times

The mean behaviors of the asynchronous fixed-random-sweep and new- randoni-sweep update policies over all the possible pert ntitat ions of the sweeps are equivalent. I therefore give only one model, describing the growth of the random variable N(t) for both policies.

Let us consider again the general case in which the connected region containing the copies of the best individual at time step 1 is 13(1) _ {l, ... , k} (with 1 < l < k < rt). The cells 1 - 1 and k + I have it probability p of containing a copy of the best individual at the next time step. For symmetry reasons, let us consider only the part of the ring at the right-hand side of the connected region. The cell k + 2 has a probability 1/2 of being contained in the set of cells after cell k + 1 in the sweep, so it has a probability (1)/2)1) of containing a copy of the best individual in the next t.i►ue step. In general, a cell k + j + I has it probability 1/2 of coming after cell A + j in the sweep, so it has a probability (1)/2).►p to contain a copy of the best individual in the next, time step. The recurrence describing the growth of the random variable N(t) is therefore
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which can be transformed into the recurrence
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The closed forth of the recurrence above is

[image: ]




and we conclude that the expected takeover time for a fixed- (or new-) randomsweep asynchronous cEA with a population of size n is
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Asynchronous Uniform-Choice Takeover Time

To model the takeover time for asynchronous uniform-choice cEAs, it is preferable to use cell update steps a instead of time steps in the recurrences. As in the case of the other update policies, the region containing the copies of the best individual at update step it is a connected part of the ring B(u) = {l, ... , k} (with 1 < l < k < n). At each update step the two cells 1 - 1 and k + 1 have a probability 1 /n of being selected, and each cell has a probability p, if selected, of containing a cops' of the best individual after the selection and replacement phases. The recurrence describing the growth of the random variable N(u) counting the number of copies of the best individual at update step u thus becomes
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which can be transformed into

[image: ]


We can easily derive the closed forum of the above recurrence

[image: ]


Since a time step is defined as 71 update steps, where n is the population size, the expected takeover tithe for a uniform choice asynchronous cEA is
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We notice that the expected takeover time for a uniform-choice asynchronous cEA is equal to the expected takeover time for a synchronous cEA.

It should be noted also that the present asynchronous uniform-choice update model is very similar to what goes under the name of nonlinear voter model in the probability literature [43].



4.5.3 The Torus Structure

We consider chAs defined on a square lattice of finite size n x n. The neighborhood is the von Neuntattn neighborhood, which is constituted by a central cell pills the fotur hrst-neighbor cells in the directions north, east, south, and west (see Figs. 4.1 and 4.2).

Because of the wrapping properties of the torus, at each time step t the expected number of copies N(t) of the best individual is independent of' its initial position. Therefore, the expected takeover time is E[T] = E',[T],Vi.

We have seen in Sect. 4.5.1 the limiting case of growth with deterministic selection (i.e. a mechanism that selects the hest individual in the neighborhood with probability p = 1). In that case, the time variable t in the equations determines the half-diagonal of a square rotated by 45° (see Fig. .1.3). When it probabilistic select ion method is modeled, the exact recurrences, corresponding to those derived for the ring topology in file previous subsection, become very complicated. Ill fact, as rut be seen in Fig. 4.4, the phenomenon that has to be modeled implies different selection probabilities at different locations in the grid.

[image: ]
Fig. 4.4. Example of growth of N(t) with probabilistic selection for a population of 81 individuals oil it 9 x 9 torus structure



To keep the models simple and easily interpretable, the geometry of the lu•opagatiou is approximated as the growth of it rotated square ill the torus (sec Fig. 4.5). Using this geometric growth, the side length ,s and the halfdiagonal d of the rotated square can be approximated by

s = N ( t ) , d = N

[image: ]
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With these quantities. we shall now focus on synchronous and asynchronous takeover times. using the relevant probabilities in each case.

Synchronous Takeover Time

Let us consider the growth of such a region with a selection niechanistn that has probabilities pt. P2. p3, p4, and p, of selecting the best individual when there are respectively 1. 2. 3. 4 and 5 copies of it in the neighborhood. Assuming that the region containing the copies of the best individual expands such that it maintains the shape of a square rotated by 45°. we can model the growth of .V(t) with the following recurrence
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It is extremely difficult to find a closed analytic forth of this recurrence, as is also the case for the asynchronous models considered next. Therefore, only the explicit recurrences will be given in each case.

Asynchronous Fixed-Line-Sweep Takeover Time

This update method. which is meaningful in a ring topology, can be criticized in the case of a toroidal topology. In fact, there is no biological parallel for this update ntechanisnt. A precise model for such an update would be very complicated, since it is difficult to approximate the shape of the region containing the copies of the best individual. In order to keep the model simple and understandable. the shape of the growing region is approximated here by a square stretched in the southeast direction, growing with probability p, on the northeast side, p2 on the southeast side, and p, in the southerly direction.

Let its suppose that in any line the cells containing it copy of the best individual at time step t have indices I to k. In the next time step. the cell t - I will contain a copy of the best individual with probability p, while the cells k + j (with j 1..... it ti) will contain it copy of the best individual with probability pJ. The number of copies of the best individual in the line in the next time step is
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For large n. we can approximate this quantity by the limit (2p - p2)/(1 - p). Therefore, we can model the growth of N(t) with the following recurrence
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Asynchronous Fixed- and New-Random-Sweep Takeover Time

The behaviors of fixed random sweep and new random sweep averaged over all the possible pernntta.tions of the individuals on the grid are equivalent in the toroidal case also. Thus, only one model is needed to describe the growth of the random variable N(t) for both policies.

In ally one tune step, the probability of one individual oil the border of the region being taken over by the best is p2, while an individual at, distance 2 from the region can be replaced by the best. with probability (det,ails can be found in [65] )

[image: ]


It is sufficient to model the growth up to distance 2 because, as can been seen in Fig. 4.6, the probability at, distances > 3 becomes negligible.

[image: ]
Fig. 4.6. Probability of an individual being replaced 1)y a copy of the best individual (y axis) a s a function of the distance (x axis) from the region formed by copies of the best, for asynchronous fixed (and new) random sweep. Note that the curve is traced continuously for clarity but the probability is calculated only at discrete points





Thus, we can model the growth of N(t) with the following recurrence:
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Asynchronous Uniform-Choice Takeover Time

The ways in which an individual can be replaced in a time step in this case are the same as for fixed and new random sweep (see above). In the present case, the average probability of an individual coining before another in a time step is 1/n; therefore, an individual at distance 2 from the region is replaced with probability
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The probability is already very small at distance 2 (see Fig. 4.7). Thus, only individuals at distance 1 from the region are considered.

[image: ]
Fig. 4.7. Probability of an individual being replaced by a copy of the best individual (y axis) as a function of the distance (x axis) from the region formed by copies of the best for uniform choice. Note that the curve is traced continuously for clarity but the probability is calculated only at discrete points



In terms of time steps. the growth of N(t) can be modeled with the following recurrence:
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4.6 Experimental Validation

In this section, a set, of validation tests to evaluate the accuracy of the mathematical models in the previous sections are presented. Since cEAs are good candidates for using selection methods that are easily extensible to small local pools, we have used binary tournamenft and linear ranking in the experiments. Fitness-proportionate selection could also be used, but it suffers from stochastic errors in small populations (e.g. at a neighborhood level), and it is more difficult to model theoretically, since it requires knowledge of the fitness dis- Irlblltlon fllnctioll.

The binary tournament selection mechanism is the same as the one described by Rudolph [124]: two individuals are randomly chosen with replace nlent in the neighborhood of a given cell, and the one with the better fitness is selected for the replacement phase.

In linear ranking selection the individuals in the neighborhood of a given cell are ranked according to their fitness: each individual then has it probability 2(.s - i)/(.s(s - 1)) of being selected for the replacement phase, where ,s is the number of cells in the neighborhood and i is its rank in the neighborhood.

4.6.1 Ring Structure

For the study described here, the cEA structure has a ring topology of size 1024 with neighborhood of radius 1. Only the selection operator is active: for each cell, it, selects one individual ill the neighborhood of the cell (the (-(,]I mid its two adjacent right and left, neighbors). The selected individual replaces the old individual only if it has a better fitness.

Binary Tournament Selection

Figure 4.8 shows the experimental growth curves of the best individual for the synchronous and four asynchronous update methods. We may notice that the mean curves for the two asynchronous met hods fixed and new random sweep show a very similar behavior. The graph also shows that the asynchronous update methods give an emergent selection pressure greater than or equal to that in the synchronous case, increasing from the case of uniform choice to that of line sweep, with fixed and new random sweep in between.

The numerical values of the mean takeover tunes for the five update methods, along wit It their standard deviations, are shown in Table A.I, where it can be seen that the fixed-random-sweep and new-random-sweep uiet hods give results that are statistically indistinguishable, and can therefore be described by it single model, as we assumed in Sect. 4.5.2. The sauce can he said for the synchronous and nuiforum-choice methods, as our models predicted.

Since the neighborhood has radius I, at most. one individual with the best fit mws will be present in the neighborhood of any cell under consideratioll, except for the last update, when there are two of them. It turns out that the probability for an individual that has a copy of the best individual in its neighborhood being ,elected is p = 5/9. Using this probability in the models described in Sect. 4.1, theoretical growth curves can be calculated. Figure 4.9 shows the predicted and experimental curves for the five update methods. and the mean square error between them.



Looking at the curves, it is clear that the models faithfully predict the observed takeover times. Moreover, the equivalence between new random sweep and fixed random sweep. as well as that between synchronous and uniform choice, is fully confirmed.

Linear Ranking Selection

Figure -1.10 shows the experimental growth curves of the best individual for the syuchronous and four ativuchronous update methods. We can observe in the linear ranking case the same behavior as that which previously emerged in the binary tournament case: the mean curves for the cases of synchronous and asynchronous uniform choice are superposed. and the mean curves for the two asynchronous methods for fixed and new random sweep show very similar behavior. The graph shows that the asynchronous update methods give a greater emergent selection pressure than do the synchronous methods. increasing from the case of uniform choice to that of line sweep, with fixed and new random sweep in between.



[image: ]
Fig. 4.8. Takeover times with binary tournament selection: mean values over 100 runs. The vertical axis represents the number of copies N(t) of the best individual in each population as a function of the time step t
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The numerical values of the mean takeover times for the five npdate nmth- ods, along with their standard deviations, are shown in Tattle 1.2. Again, the results show that the two random-sweep methods are statistically equivalent, which is also the case for the synchronous and till ifortn-choice methods.

[image: ]
Fig. 4.9. Comparison of the experimental takeover time curves (full lines) with the model (dashed) in the case of binary tournament selection for four update inethods: synchronous (a), asynchronous line sweep (b), asynchronous fixed random sweep (c), and synchronous new random sweep (d). Asynchronous uniform choice gives the same curve as does synchronous update, and therefore the corresponding curve has been omitted. In each graph, the mean square error between the predicted and experimental curves is shown



[image: ]
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Fig. 4.10. Takeover times with linear ranking selection: mean values over 100 runs. The vertical axis represents the number of copies N(t) of the best individual in each population as a function of the time step t



With this linear ranking selection method, a cell that has it copy of the best individual in its neighborhood has a probability p = 2/3 of selecting it. Using this value in the models described in Sect. 4.1, theoretical growth curves can be calculated. Figure .1.11 shows the predicted and experimental curves for the five update methods, and the mean square error between them. As can be seen, the agreement between theory and experiment is excellent.

4.6.2 Torus Structure

This section describes the validation of the models for the torus shape. The cEA structure used has a torus topology of size 32 x 32 with a von Neumann neighborhood. Only the selection operator is active: for each cell, it selects one individual in the neighborhood of the cell. and the selected individual replaces the old individual only if it has a better fitness. Results are presented for the two selection methods of binary tournament and linear ranking.

Binary Tournament Selection

Figure 4.12 shows the growth curves of the best individual for the panmictic, synchronous, and three asynchronous update methods. The mean curves for the two asynchronous methods. i. e. fixed and new random sweep, show a very similar behavior, and thus only the results for new random sweep are plotted. The graph shows that the asynchronous update methods give an emergent selection pressure greater than in the synchronous case, increasing from the case of uniform choice to that of line sweep, with fixed and new random sweep in between (similarly to our findings for the ring topology).

The numerical values of the mean takeover tines for the five update metih- ods, together with their standard deviations, are shown in Table 4.3. where it can be seen that the fixed-random-sweep, and new-random-sweep methods give results that are statistically indistinguishable. However, this time the differences between the uniforrn-choice and synchronous update are meaningful in the case of torus.



[image: ]
Fig. 4.11. Comparison of experimental takeover tittle carves (full lines) with the model (dashed) in the case of linear ranking selection for four update methods: synchronous (a), asynchronous line sweep (6), asynchronous fixed random sweep (c), and asynchronous new random sweep (d). Asynchronous uniform choice gives the same curve as does synchronous update, and therefore the corresponding curve has been omitted. In each graph, the mean square error between the predicted and experimental curves is shown
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Fig. 4.12. Takeover times with binary tournament selection. Mean values over 100 rums. The vertical axis represents the fraction of the best individual in each population as a function of the time step t



Since a von Neumann neighborhood is used, the probabilities pr, P2 and p;; of selecting the best individual when there are 1, 2, and 3 copies of it in the neighborhood are 9/25. 1625, and 21/25, respectively. Using these probabilities theoretical growth curves can be calculated from the growth equations. Figure 1.13 shows the predicted and experimental curves for the five update methods. It can be observed that the agreement between theory and experiment is very good, in spite of the approxiitatiois made in the models.

Linear Ranking Selection

Figure 1.1.1 shows the growth curves of the best individual for the panitic- tic, syichronous. and three asynchronous update methods for linear ranking selection. We can observe the same phenomenon as that which emerged in the binary tourttaitent case: the average curves for the two asynchronous update methods of fixed and new random sweep show very similar behavior. Thus. only the results for new random sweep are plotted. The graph shows that the asynchronous update methods give an emergent selection pressure greater than that for the synchronous method. increasing from the case of uniform choice to that of line sweep. with fixed random sweep in between. The rnunerical values of the mean takeover times for the five update methods. together with their standard deviations. are shown in Table 4.-I. Again, the results show that the two random-sweep methods are statistically equivalent. While the uiiforit-choice and synchronous methods are not.

For it von Neumann neighborhood. the probabilities pr. P2. and ps of selecting the best individual when there are 1. 2. and 3 copies of it in the neighborhood are 2/5. 7/10 and 910. respectively. Theoretical growth curves can be calculated using these probability values ill the models. Figure 1.I5 shows the predicted and experimental curves for the five update methods. The agreement between theory and experiment can be considered very good.



4.7 Rectangular Toroidal Structures

It has been shown in the literature [4, 6, 41] that varying the ratio of' the grid axes in a t,wo-dimensional CFA is another simple way to control the global selection pressure. In this sect ion, we address the prediction of takeover regimes for cEAs whose population shape is toroidal but not square. Since different kinds of rectangular shapes could be used in a toroidal cEA. I present the model's behavior when this variation is taken into account.
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Fig. 4.13. Comparison of experimental takeover time curves (full line) with the 111odel (dashed) in the case of binary tournament selection for four npdate methods: synchronous (a), asynchronous line sweep (h), asynchronous fixed random sweep (c), and uniform choice (d)
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Let us suppose a rectangular toroidal structure of size a x b, with a > b: the same geometrical approximation used in the case of a square toroidal structure (see Fig. 4.5) can be applied in this case. This time, the models will describe the growth of a rotated square until its area is equal to b2/2, followed b} a composition of b linear growths until the area of the region is ab - b2/4, and then a final quadratic saturation (see Fig. 4.16).

The recurrences modeling the synchronous and the three asynchronous evolutions will therefore be made up of the initial condition (N(0) = 1), followed by the equation describing the unrestricted growth of the square (until N(t) = V/2), then the composition of b linear growths (until N(t) = ab - b2/4), and finally the saturation equation. Since the expressions are rather cumbersome, only the final recurrence for the synchronous case is given here. The interested reader can find the detailed derivations, including the asynchronous cases. in [65].

For synchronous evolution the recurrence is
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Fig. 4.14. Takeover times with linear ranking. Mean values over 100 runs. The vertical axis represents the fraction of the best individual in each population as a function of the time step t
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Fig. 4.15. Comparison of experimental takeover time curves (full lines) with the uuolel ((ashed) in the case of linear ranking selection for four update methods: synchronous (a), asynchronous line sweep (h), asynchronous fixed random sweep (c), and uniform choice (d)
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Fig. 4.16. Geometric approximation of growth with probabilistic selection ill it rectangular toroidal structured population



4.7.1 Validation of the Rectangular Toroidal Models

The cf:A striotores used for this purpose hacl rectangular torus topologies of sizes 64 x I6 a11(I 128x8 with a radius-] von Neu11taun ueighborhoo(1. The cl?A was run for the two topologies as in the previous experiments, thing binary totu•nautetit 011(1 the linear ranking selection. The results (sunnnarize(I in Table 4.5 for binary tournament and in Table 4.6 for linear ranking selection) show similar behavior to the ring and torus topologies. In fast, the longest takeover time always corresponds to a synchronous update. and the takeover times for the four asynchronous evolutions are ranked with fixed line sweep being the fastest, uniform choice being the slowest. and fixed and new random sweeps. which are statistically indistinguishable, in between.
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As expected, the selection pressure induced using different grid sizes reduces as the grid becomes thinner [6, 41]. Figure 4.17 shows the different growth curves that result when the values of the axes of the grid are changed from those for a square to those for a thin rectangle. when the binary tournament and the linear ranking selection schemes are used.

As it can be seen in Figs. 4.18 and 4.19. the models successfully predict the experimental curves. When linear ranking selection is used, the accuracy of the models is comparable, but the curves are not shown for brevity.

4.8 Varying the Radius

Sarnia and De Jong have shown convincingly that the neighborhood's size and shape have an important influence on the induced global selection pressure in grid-structured populations [126, 127]. To complete the study, in this section the basic value of I used for the radius until now is changed by using a generalized von Neumann neighborhood of radius 2 in both one- and twodimensional regular lattices. Such a neighborhood is defined as containing all the individuals at distances smaller than or equal to the radius, where the Manhattan distance is used on the two-dimensional grid.

The equation for a ring with radius 2 is as follows:
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Fig. 4.17. Growth curves for synchronous evolution oil toroidal structures with different ratios of axes using (a) binarv tournament selection, and (b) linear ranking selection. Mean values over 100 independent runs
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where p; is the probability that a copy of the best individual is selected when i copies of it are present in the neighborhood.

Using the same geonret,rical approximation described in Sect. 1.5.3, it is possible to obtain the model equations for a torus with a radius-2 generalized von Neumann neighborhood. However, since the expressions are rather involved, they are omitted here. Details can be found in [65].

The models have been tested using a binary tournament selection utech- anisnt: comparisons between the predicted and actual curves ill the case of synchronous update are shown in Fig. 4.20. The models are still accurate, and could be extended to larger-radius generalized von Neumann neighborhoods.

Although it is not apparent from the explicit recurrences, one can suppose that when the radius tends to ni12 in the ring case, and when it tends to V/-11 ill the grid case, then the curves tend to the pauntictic limit. This can be clearly seen in Fig. 4.21 a and Fig. 4.21 b for the ring and torus cases respectively, where experimental carves for several radii are plotted.

4.9 Summary

In this chapter we have seen mathematical models that can accurately predict the growth curves and the takeover time regime and values for it broad range of cellular evolutionary algorithms on regular lat t ices. Both rings and toroidal topologies have been studied. Two selection methods that are often used with stnall selection pools have been used for the experimental validation of the models: tournament and linear ranking. Other selection methods, such as (it, A) or (/t + A) used in evolution strategies could also be studied, since the models need only the actual probability of selection to be inserted into the equations.
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Fig. 4.18. Experimental curves for a rectangular 64 x 16 topology with binary tournament (a). Comparison of experimental takeover time curves (full lines) with the model (dashed) in the case of linear ranking selection for five update methods: synchronous (b), asynchronous line sweep (c). asynchronous fixed random sweep (d). asynchronous new random sweep (e). and uniform choice (f)
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Fig. 4.19. Experimental curves for a rectangular 128 x 8 topology with binary tournament (a). Comparison of the experimental takeover time curves (full lines) with the model (dashed) in the case of linear ranking selection for five update methods: synchronous (b), asynchronous line sweep (c), asynchronous fixed random sweep (d), asynchronous new random sweep (e), and uniform choice (f)
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Fig. 4.20. Comparison of experimental takeover time curves (full lines) with the model (dashed) in the case of binary tournament selection for synchronous update in the case of a ring with radius-1 (a) and radius-2 (b) neighborhoods. and for a torus with radius-1 (c) and with radius-2 (d) generalized von Neumann neighborhoods



The main observation, already noted before by several researchers, is that the selection intensity in the population is lower in lattices than in panmictic populations. We have also seen, and this was previously unknown since Duly the customary synchronous update method was used, that different asynchronous policies give rise to significantly different global emergent selection pressures, and can thus he used to control the explorative or exploitative character of the algorithm to some extent, without resorting to ad hoc tricks in the select ion methods.

Another way that can be used to control the selection intensity in cLAs is through the size and shape of the neighborhood or, in the two-dimensional case, by statically or dynamically adapting the ratio of the grid axes, with "Hatter" rectangular shapes giving lower global pressures.

In conclusion. cellular evolutionary algorithms on regular lattices are a simple and straightforward way of structuring the population that allows the selection pressure to be controlled to an extent that makes tuning of the algorithm to the problem easier. Thus. they offer a high degree of flexibility in prohleni-solving. Iii the next chapter, we shall see how these considerations can be put into practice, by empirically studying a number of test problems wit It cl:As.
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Lattice Cellular Models: Empirical Properties

The previous chapter has laid the foundations for cellular evolutionary algorithms for populations structured as regular lattices. In the present chapter I would like to show how these lattice cEAs behave in practice on it number of benchmark problems. Ideally. we would like the theoretical trends to he confirtued by the computer experiments. This has been the case for the global emergent selection intensity. However. now the picture hecolnes more complex and more realistic, since we are studying full-fledged cEAs with selection. as well as variation operators.

Several articles on the application of cEAs to optimization problems have appeared, some of which are listed in the references (e.g. [16. 69. 71]). To illustrate the main ideas. I shall use here some material from two previous studies, one on cGAs [41], and the other on cellular genetic programming (cGP) [57]. This chapter is intended to be self-contained but the original references have more details. should the reader wish to study the issues more deepl.'.

Following the analysis in the previous chapter. the main points that I would like to illustrate here are the influence of the update mode and the grid shape on the character of the search. Concerning synchronous and asynchronous cell update policies, there is nothing new: these policies will be identical to those introduced in Chap. -1. For the influence of grid shape influence, I shall use the concept of a "rectangular grid that was analyzed earlier. and the ratio of the grid axes.

5.1 cGA Case Study

The algorithmic schema employed in the study is similar to the one that appears in Sect. 4.2: it is just specialized to GAs:
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This is t lie classical synchronous cEA. The asynchronous variants are similar, except t hat the updating of the cells does not take place virtually simultaneously but rather in some specified sequential order, as explained in the previous chapter.

5.2 Varying the Lattice Shape
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rad . (x, - y)2 + F (y, - y)2 x', y= _,=ly* n* n* (5.1)

This definition always assigns different numerical values to different grids. Although it is called a -radius", rad measures Hie dispersion of ii pat t eras. Other measin-es for symmetrical topologies would allocate the saute 11111nerica.l value to different topologies (which is undesirable). The definition (5.1) not only characterizes the grid shape but call also provide a va.ltie of the radius for the neighborhood. As proposed in [126], the grid-to-neighborhood relationship tali he duantified by the ratio of their radii:



1'OtiO,. radNeighborhood rCldToNologg

When we are solving a given problem with a constant number of individuals (n = n*, to make fair comparisons), the radius of the topology will increase as the grid becomes thinner (Fig. 5.1b). Since the neighborhood is kept constant in size and shape throughout the study described here (we always use Linear 5. also called the von Neumann neighborhood, Fig. 5.1a), the ratio will become smaller as the grid becomes thinner.

[image: ]
Fig. 5.1. (a) Radius of von Neumann neighborhood. (b) 5 x 5 = 25 and 3 x 8 = 24 grids. Approximately equal number of individuals with two different ratios



After we have presented this characterization of the radius and topology by means of a ratio, the main question still remains: what is the importance of such a ratio measure? The answer, of course, is that, as we saw in the previous chapter, reducing the ratio means reducing the global selection intensity on the population. thus promoting exploration. This is expected to allow a higher diversity in the genotypic pool. which could hell) improve results in difficult problems such as multimodal or epistatic problems. On the other hand, the search performed inside each neighborhood guides the exploitation of the algorithm. Thus, we want to investigate how the ratio affects the search efficiency over a variety of domains.

5.3 Selection Pressure, Grid Shape and Time

Here I shall recall a few concepts from the previous chapter for ease of reference. There we saw that synchronous and a few asynchronous cell update policies give rise to a variable global selection intensity. and thus to a variable takeover time. Indeed, if we keep the shape of the grid constant (say a square) but we allow the cell update mode to change. we observe such an effect on the selection pressure. In fact, it is found that the global selection pressures induced by the various asyncl►rououS policies fall between the low synchronous limit and the high pannict.ic bound (see Fig. 5.2 and [62]). Thus, by varying the update policy it is possible to influence the explorative or exploitative character of the Search.
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Fig. 5.2. Takeover times with tournament selection ill a 32 x 32 grid with a von Neumann neighborhood. Mean values over 1(10 runs. The vertical axis represents the fraction of the population consisting of the best individual a,s it function of tine



Turning now to the effects of' the grid shape, an interesting result is that algorithms with a similar ratio show a similar selection pressure, as stated in [127]. In Fig. 5.3 we can see growth curves for two algorithms with different neighborhood and population radii, but with similar ratio values. The cases plotted are those of a 32 x 32 population with a von Neumann neighborhood, and a population of size 64 x 64 with a Con►pact21 (C21) neighborhood. lit a C21 neighborhood. a central cell is surrounded by two cells in all direct ions and the four corner cells are cut ot►t.

Now, to observe how the shape of the grid influences the induced selection pressure of the algorithm, the growth curves for several different cCAs using the von Neumann neighborhood and six possible grid Shapes are plotted in Fig. 5.4 for a population of 1024 individuals. Note that the selection pressures induced in synchronous rectangular grids is lower than that indicated by the curve for a synchronous square grid (32 x :32 population), which, as we fotnnl before, tueans that thinner grids favor a nmre explorative Style of search. This figure can be compared with Fig. 4.17, in which it linear scale is used for time.

5.4 Test Suite

Choosing a set of test problems for benchinutrking purposes is always risky exercise, a fact that was already noted in ('hap.3. Indeed, no test suite can represent all the kinds of problems that are likely to arise in practice. Moreover, even if this was possible. the no-free-lunch (NFL) theorem. or theorems. [160] tell us that, averaged over all problems and problem instances. the performance of all search algorithms is the same. In spite of this, people normally want to solve specific problems for which there is extra information available. This problem-specific knowledge can thus be used to improve the search, since the NFI. theorem does not prevent one finding an excellent, searcher for a given problem or problem family: all that it says is that this same algorithm will be bad on some other problems. Therefore, alt hough no algorithm can be said to be superior in all cases, there is still scope for algorithms that behave well on particular problems or problem classes.
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Fig. 5.4. Takeover times with binary tournament selection in populations of 1024 individuals with different grid shapes and a von Newmann neighborhood. Mean values over 100 runs. The vertical axis represents the proportion of the best individual in the population as a function of time. The horizontal axis is on a logarithmic scale





Incidentally, we can also see that the NFL theorems do not, rifle out the possibility of constructing a portfolio of searchers, each of which, while not optimal, is at least particularly good for a given family of problems or problem instances, or problem subspace. Of course, how to efficiently organize the set of algorithms in order for them to search effectively as a function of easily computed and significant fitness landscape indices or of the progress of the search, is an open problem. An original approach is suggested in [H I [ .

Another important consideration is that the tests in this chapter have only an illustrative purpose. The cEA used, a straightforward genetic cellular algorithm, has not been tuned, nor does it include local search capabilities or problem knowledge other than what, is contained in the individual representation and the fitness function. Of course, such improvements would be needed if the algorithms were intended to compete with the best solvers for a given problem or problem class. Here we are mainly interested in comparing ('EAs among themselves as a function of two important parameters that have been dealt with at length in the last and present chapters: operation timing and grid shape.

That, said, this benchmark is rather representative because it contains several important, features found in optiunizatiou, such as epistasis, nniltiniodalily, deceptiveness, and problem generators. Moreover, in order to be more complete, both combinatorial (discrete) optimization problems and coutinnous ones are used. These are important ingredients in any work that tries to evaluate algorithmic approaches with the objective of obtaining reliable results, as stated by Whitley et al. in [1513]. For convenience of presentation, I shall discuss the two main problem classes (discrete and contiunuous) separately. Let, its begin with the combinatorial problems'.

5.4.1 Discrete Optimization Problems

The problems used here are the massively umlt intodal deceptive problem (NINIDP), the ntultintodal problem generator P-PEAKS, the error-correctingcode (ECC) design problem. and the problem of maximum cut of a graph (NIAXCIJT). Although there cannot be all optional choice, as explained above, this set of problems seem at least to be rather representative of different degrees of difficulty and of various important application domains. Given the coutpntational limitations that any experiment must face, this should be enough for its to obtain a good level of confidence in the results.

The problems are briefly described below in order to make the discussion self-contained, as far as possible.



Massively Multimodal Deceptive Problem (MMDP)

The AIAIDP is a problem that has been specifically designed to be difficult for an EA [68]. It is made up of k deceptive subproblems (si) of 6 bits each, whose values depend on the number of ones (unitation) in a binary string (see Fig. 5.5). It is easy to see that these subfunctions have two global maxima and a deceptive attractor at the midpoint.
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Fig. 5.5. Basic deceptive bipolar function (s,) for NINIDP



In the NIAIDP, each subproblem s, contributes to the fitness value according to its unitation(Fig. 5.5). The global optimum has a value of k and is attained when every subproblem is composed of zeros or six ones. The number of local optima is quite large (22k), while there are only 2k global solutions. Therefore, the degree of multimodality is regulated by the parameter k. We use here a considerably large problem instance with k = 40 subproblems. The instance we try to maximize for solving the problem is shown in the following equation, and its maximum value is equal to k:
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Multimodal Problem Generator (P-PEAKS)

The P-PEAKS problem [84] is a inultimodal problem generator. A problem generator is an easily parameterizable task which has a tunable degree of epistasis, thus allowing one to derive instances of increasing difficulty at will. Also. using a problem generator removes the opportunity to hand-tune algorithms to a particular problem. therefore allowing more fairness when comparing algorithms. With a problem generator. the algorithms are run on a high number of random problem instances, since a different instance is solved each time the algorithm runs, the predictive power of the results for the problem class as a whole is increased.

The idea of P-PEAKS is to generate P random N-bit strings that represent the location of P peaks in the search space. The fitness value of a string is the number of bits that the string has in common with the nearest, peak in that, space, divided by N (as shown in 5.3). By using a small/large number of peaks we can obtain weakly/strongly epistatic problems. In the work described here we have used an instance of P = 100 peaks of length N = 100 bits each, which represents a medium to high epistasis level [6]. The maximum fitness value for this problem is 1.0. The fitness value is given by
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Error-Correcting-Code Design Problem (ECC)

The ECC problem was presented in [95]. We shall consider a. three-tuple (n, 117, d), where it is the length of each codeword (number of bits), Al is the number of codewords, and d is the minimum hamming distance between any pair of codewords. The objective is to find a code which has a value of d is large as possible (reflecting greater tolerance to noise and errors), given previously fixed values of ii and M. The problem studied here is a simplified version of that in [95]. In our case, we search half of the codewords (Al 2) that, will make tip the code, and the other half is made up by the complement of the codewords computed by the algorithm.

The fitness function to be maximized is
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lllaxiTnuTu Cut of a Graph (MAXCUT)

The MAXCUT problem looks for a partition of the set of vertices (V) of it, weighted graph C = (V, E) into two disjoint subsets V, and V1 such that the stun of the weights of the edges with one endpoint in V0 mid the other one in V, is maximized. Individuals are encoded as binary strings (.r i , x2, .....r„ ) of length it, where each digit corresponds to a vertex. If it digit is 1 then the corresponding vertex is in the set t ; if it is 0 then the corresponding vertex is in the set. V. The function to he maximized [87] is
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Note that uy, contributes to the sum only if nodes i and j are in different partitions. While one can generate random instances of a graph to test the algoritI nt. here we have used the case "cut20.09", with 20 vertices and a probability 0.9 of having an edge between any two randomly chosen vertices. The maxinuun fitness value for this instance is 56.740061.

5.4.2 Experimental Analysis

Although a full-length study of the problems presented in the previous subsection is beyond our scope. I shall present results comparing synchronous and asynchronous cGAs. and also cGAs that have different values of the ratio but the same neighborhood shape (von Neumann). Again, note that the aim here is not to compare the performance of cGAs with state-of-the art algorithms and heuristics for cotnbiuatorial and numerical optimization. To achieve this, at least the cGA parameters would have to be timed and local search capabilities would have to be built into the algorithm. which is not the case here. Thus. the results pertain only to the performance of the different cGA update methods. with different ratios, relative to each other.

The results were obtained using Xell c1.0. a custom simulation program written in Java. with three different static ratios, and with the four as'•n- chronous update modes previously described. The cGAs based on these ratios were scnchronous. The configuration of the algorithm is detailed in Table 5.1, while the static ratios used are shown in Table 5.2.
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The following tables show the results for the problem suite: AINIDP. Table 5.3: P-PEAKS. Table 5.4: ECC, Table 5.5: and AIAXCUT, Table 5.6. One hundred independent runs were performed for each algorit hnt and for every problem in the test suite. The tables report the average of the final best fitness over all runs, the average number of time steps needed to obtain the optimum value (if obtained), and the hit rate (percentage of successful runs). Therefore, the final distance from the optimum (especially interesting when the optimum is not found), the effort expended by the algorithm, and its expected efficacy, respectively, are reported.
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From inspection of these tables some conclusions can be clearly drawn. First, the asynchronous algorithms tend to need a smaller number of generations to locate an optimum than do the synchronous ones, except in the case of the NINIDP problem. Statistical tests not shown here (see [41]) confirm that the differences between the asynchronous and synchronous algorithms are significant. This indicates that the asynchronous versions perform more efficiently with respect to cEAs with different static ratios, a result that confirms the influence of the more intense selection of asynchronous cEAs.



Conversely, if we pay attention to the success (hit) rate, it can be concluded that the synchronous policies with various ratios outperform the asynchronous algorithms (except for the ECC problems): slightly in terms of the average final fitness, and clearly in terms of the probability of finding a solution (i.e. the frequency of location of the optimum).

Another interesting result is the fact that we can define two classes of problems: those solved by all methods to optimality (100% hit rate) and those in which no 100% rate is achieved at all. The former seem to be suitable for straight cEAs, while the latter need some help, for example by including local search.

In order to summarize the large set of results and draw some useful conclusions, a final ranking of the algorithms following three different metricsis presented: average best final solution, average number of generations for success, and hit rate. Table 5.7 shows the three rankings, which go from 1 (best) to 7 (worst) according to the three criteria.
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As one would expect after the previous comments, synchronous algorit huts with "narrow" and "rectangular" ratios are in general more accurate tlinu all the asynchronous algorithms, according to the criteria of average best final fitness and of hit ratio, at least for the test, problems used here, with it special leading position for narrow population grids. On the other hand, the asynchronous versions clearly outperform any of the synchronous algorithms in terms of the average muttber of genera t ions, with it trend towards NRS as the best-ranked flavor of cGA for the test suite.

In summary, asynchronous algorithms seem to be numerically more efficient (faster) than synchronous ones for the P-PEARS. and NIAX('IIT problems, but not, for the 1NIINIDP. On the other hand, syncltrotnous algorithms ait.perform asynchronous ones in terms of the hit rate for these benchmarks, which could he an important issue for many applications. In particular, the more explorative character of the narrow population structure, with its correspondingly lower select ion pressure, seems to allow a more accurate search in most cases. Again, it has to be pointed out that the results cannot he immediately generalized to other problems or problem types. However, the picture that emerges from this empirical investigation is a coherent one, and it essentially confirms the importance of selection intensity considerations.

5.4.3 Continuous Optimization Problems

In this and the next subsection, the empirical tests on combinatorial opti- inization problems are extended to sonic continuous functions. The functions that were selected for the study are three typical noiltimodal numerical benchmarks: Rastrigitt's (RASTR.) and Ackley's (A('KL) functions, and it fractal (FRAC) function. In contrast to the binary-coded problems above. here real coding is used. There are well-known reasons for this choice, a good discussion of which can be found in ('hap. 5 of ylichalewicz's book [99] ; the floating-point itnpletnentation described in that hook was used here.

Rastngins Function (RASTR)

The generalized Rastrigin function is it sinttsoidally utodulate I function with a global ntinitninu of zero at. the origin. It, is a typical example of a nonlinear nniltitnodal function. It was first proposed by Rastrigin as it two-dimensional function and has been generalized by Miildenbein and Schierkanip-Vooseu in [107]. This function is fairly difficult owing to its large search space and its large number of local ntininia, although the function is separable and the local mininia are symmetrical:
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The constants are given by A = 10 and w = 27r. The domain of variables u:i, i = 1, ... , n, is -5.12 < xi < 5.12, and n = 10. The function has a global minimum at the point f (0) = 0.



Acklcy's Function (.4C'KL)

Acklev's function is a nniltiniodal test function obtained by cosine niodula- tion of an exponential function. Originally proposed by Ackley [1] as it twodimensional function, it has been generalized by Buck et al. [15]. Unlike Rast- rigin's function, Ackley's function is not separable, even though it also shows a regular arrangement of the local optima. The function is defined by
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The constants are a = 20. b = 0.2. and c = 2ir. The variables x, i = 1, ... , n are in the domain -32.768 < x, < 32.768. This function has a global miuinnim at the point f (0) = 0.

Fractal Fanction (FRAC)

This function has been taken from [14], where its construction, as well as the motivations for introducing it as a test problem. are given. The function allows the degree of ruggedness to be controlled, and it is likely to capture features of real-world noisy objective functions. The function is defined as follows
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where

I C(z) < (I)I-12 1 if 0. if 0,
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and

The constants were D = 1.85 and b = 1.5 in the experiments. The 20 variables .r, (i = I..... 20) varied in the range [-5,51. The infinite suni in the function C'(_-) was calculated in practice by starting with j = 0 and alternating the signs of the j values. The sum was stopped when the relative difference between its previous and present values was lower than 10-" or when j = 100 was reached.

5.4.4 Experimental Analysis

For the study described here. we use the same asynchronous update policies and grid-axei ratios as were employed for the combinatorial problems. On the other hand, since the representation of the individual was now of floating-point type, specific genetic operators were needed. The operators and parameters used are detailed in Table 5.8 (see also [991).



The results of the experiments are reported in the following tables: RASTR, Table 5.9; ACKL, Table 5.10; and FRAC, Table 5.11. As in the discrete prob- leius, these tables contain values for the average of the final best fitness, the average number of generations needed for finding it, and the hit rate. These three values were calculated over 100 independent runs. For these three realcoded problems, a run was stopped successfully as soon as an individual was found with a fitness within 0.1 of the optimum.
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The results obtained on continuous problems are not. as clear as in the discrete case. With respect to the average number of generations needed to find an optimal solution, the asynchronous algorithms are not always faster than the synchronous ones: examples are the ACK1, and FRAC problems. but the differences are not always statistically significant. Also, unlike what was observed in the case of discrete problems, the success rates of the asynchronous algorithms are often higher than those of the synchronous ones. The FRS cEA is the only algorithm which is able to find the solution in all executions for the FRAC problem.
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These results show that although the search behavior of a cEA is certainly related to its induced selection pressure, several other factors enter into the global picture. The actual behavior results from the interplay of selection, representation, and the particular genetic operators used and their parameters. And, of course, we should not forget that, in the end, the nature of the particular fitness landscape is the single most important feature of the problem that influences the search.

In order to summarize these results. Table 5.12 gives a ranking of the algorithms for all the problems in terms of the average solution found, the number of generations needed to find an optimal solution, and the success rate. It can be seen from this table that there exists a trend for asynchronous algorithms to perform better than synchronous ones in terms of the average solution found and the success rate, while synchronous algorithms with a variable ratio seem to be more efficient than asynchronous algorithms in general (The "square" and "LS" algorithms are the except ions).
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5.5 Cellular Genetic Programming

To pursue the empirical analysis, in this section I present another experimental invest,igat,ion of cellular evolutionary algorithms, this time based on genetic programming. This case study uses the same test functions that were described in Sect. 3.2, to which the reader is referred for an introduction. In ('hap. 3 we studied the empirical behavior of multiple. communicating GP populations i.e. island GP, for these problems. In this section we shall compare this population structure with a cellular populat ion of the same size on a square two-dimensional toroidal lattice, on the same benchmark problems.

While cGAs or cellular evolution strategies (cESs) are rat her common, celhilar genetic programming (cGP) has rarely been used. However, there are no particular reasons for this lack of interest, and cGP is certainly a worthy nneuiber of the evoliitionarv-conipitt ing family, as some investigations have clearly shown [55, 139].

For the experitnent.s described here, the parameters were the same as those of Chap. 3 for standard genetic programming and island GP. For cGP, a two-dimensional square grid with periodic boundary conditions and a von Neumann neighborhood was used. The algorithm was synchronous, select ion was clone by binary tournament. the crossover and nnttation were the same as in the "standard" version of GP (see Sect. 3.2), and the central individual was replaced by the hest individual in the neighborhood after the genetic operations.

5.5.1 Experimental Results

I shall show a summary of the results in two areas, as in ('hap. 3: contlat- tational effort versus time. and diversity. Details of the implementation and more data can he found in [57].

5.5.2 Fitness Evolution

The averages of the best, fitness against effort are reported in Fig. 5.6 for the three test problems and for the three populatiorn structures: panntict ic, islands, and toroidal grid. Again, we can see how the ..magic of* st ritct tired population" manages to improve results in a significant manner. indeed. both cUP and island GP find better solutions quicker than standard GP on the average. And this is confirmed by statistical significance tests (see [57])

On the other haul, cGP and island GP are not easy to tell apart statistically and have roughly similar problem-solving performances. For the art ificial ant problem (Fig. 5.6(a)) the cellular model outperforms the island uuxlel, re yuiring less effort to reach t he same average Sol lit ion fitness level. For the even parity and symbolic regression problems (Fig. 5.6(b) and (c)), cGP shows a quick improvement of fitness at the beginning of t he runs, but t hell t lie curve levels-off and the island system curve crosses it over and converges to better average solution quality. This behavior is related to these particular problems and to exploitation/exploration characteristics of the algorithms, as we have seen. The issue will taken up again below when analyzing the diversity evolution behavior of the algorithms, a feature that is directly related to exploration/exploitation character. For even harder test problems it might pay to be less exploitative i.e.. cGP might have an edge in these cases.



5.5.3 Diversity Evolution

In the following paragraphs the evolution of diversity is studied for multipopulation and cellular genetic programming. For the sake of comparison. the results for standard (;P are also reported in the figures. The various diversity measures have been defined in Sect. 3.9 of Chap. 3. Apart from those. for cGP, and any cEA, it is possible to define other statistical measures that are related to diversity. These statistics take into account the local, slow diffusion nature of cEAs and are certainly more relevant at, the cell assembly level. For brevity these will not be dealt with here, but, the interested reader can find the relevant definitions in [27], and their application to cGP in [571.
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Fig. 5.6. Best mean fitness vs. computational effort. Ant problem (a), even-parity-4 problem (b). and symbolic regression problem (c) (note the logarithmic scale on the abscissae in (c)). The curves are averages over 100 independent runs
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Fig. 5.7. Phenotypic entropy against generation number. Ant problem (a), even .1 parity problem (b), and symbolic regression problem (c) Curves are averages over 100 independent runs.



Phenotypic Diversity

We first discuss the phenotypic behavior. Figure 5.7 shows the phenotypic entropy for the three test problems. Entropy represents the amount of disorder of the population, thus low entropy means low diversity. However, since the phenotypic measure compares the number of different fitness values, it could be interpreted as the number of groups having the same fitness value. Thus high entropy can be considered as the presence in the population of a high number of small groups of individuals, each group having the same fitness value, while low entropy would mean a low number of large groups of individuals.



In this perspective, the fact that the cellular model always has a lower phenotypic entropy with respect to both the island and the panmictic models. as can be seen in the figure, can be interpreted as the presence in the population of a low number of groups each containing mane individuals having the same fitness value. This is confirmed by the low phenotypic variance of the cellular model shown in Fig. 5.8. The jigged behavior of the curves referring to the subpopulations in the island model is due to the sudden change in diversity when the new individuals enter the population at fixed generation numbers, since the migration model is synchronous.

Low phenotypic diversity in the cellular model can be explained by the slow diffusion of the information across the grid that induces patches of individuals having similar characteristics. It is worth to point out that low phenotypic entropy does not imply worst problenn-solving capabilities for cGP. Indeed, looking back at the curves in Fig. 5.6 clearly shows that the quality of the average solutions found. as well as the effort that is spent are comparable to those of the island model, as already noted in the previous section.

Genotypic Diversity

As in the case of phenotypic entropy, Fig. 5.9 shows that genotypic entropy is lower for the cellular model with respect to both the island and the pannnictic ones, while genotypic entropy for the island model is almost the saute as for the panmictic model for ant and parity problems, and lower for svnnbolic regression.

This behavior suggests that. as regards the cellular model, there are few groups of individuals having the same distance from the empty tree, each group being composed by many trees. However, as Fig. 5.10 suggests, trees in the population are very dissimilar among them because the variance is high, thus the distance of each tree from the origin tree is substantially different from the average distance of all the trees from the origin tree.

The coexistence of high genotypic diversity and low phenotypic diversity in the cellular model could seem contradictory. However this apparent conflicting behavior can be explained by the fact that though the trees are structurally different, this does not iiuply that their fitness rust be different too. In the cellular case it means that almost all the trees have good fitness values and this explains the good convergence of the cellular model. In addition, we know that the sanne overall behavior is observed in GP for the test problems irrespective of the population structure. The only important difference is that in cGP the diversity is strongly related to the geographical position in the grid, a situation that cannot be detected from the global diversity measures but that is clearly apparent from local statistics (see [27. 57]).
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Fig. 5.8. Phenotypic variance against generation number. Alit problem (a), even .1 parity problem (b), and symbolic regression problem (c) Curves are averages over 100 independent, runs.



5.6 Summary

In this chapter it rather systematic exploration of the empirical properties of cLAs has been presented. The results oil the t est problems for cGAs confirm, with some exceptions. t hat the problem-solving capabilities using the various update/ratio tuodes are correlated to their induced selection pressures, showing that exploitation plays an important role. It is clear that the role of exploration Wright he more important oil even harder problem instances, but t his aspect can be addressed in the algorit lulls by using snore explorative settings, as well as by using different cI;A strategies at different times during the search dynastically. This last idea has been put to practice in [-1] where the grid ratio is changed automatically in a self-adaptive manner.

For the discrete optimization prohleuts asynchronous algorithms are gen- era11F faster than svuehruuolls otter for most problems, as expected from the respective selection pressures. On the other hand, synchronous algorithms outperform asynchronous ones in terms of the hit rate for the problems studied. This trend is less clear in the continuous problems, where the differences among the algorithms are smaller. Flatter grids further favor exploration over exploitation. In conclusion. cEAs seem to possess a number of natural degrees of freedom that can he easily tuned as a function of the problem, thus offering a richer range of behaviors than panmictic algorithms.



Finally, the experiments on the seldom used synchronous cGP have shown that it is more efficient than standard GP and roughly equivalent to multipopulation GP for the problems studied.
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Fig. 5.9. Genotypic entropy against generation number. Ant problem (a), even 4 parity problem (h), and symbolic regression problem (c) Curves are averages over 100 independent runs.
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Fig. 5.10. Genotypic variance against generation number. Ant problem (a), even 4 parity problem (h), and symbolic regression problem (c) Curves are averages over 100 independent runs.
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Random and Irregular Cellular Populations

In Chap. 3, 1 described and analyzed the replication and propagation of individuals under the effects of selection in cellular populations possessing a regular lattice structure. This kind of topology is a natural one. and it has often been used in the theory and applications of cEAs. We have seen that the lattice topology has a strong influence on the selection pressure. and tints on the explorative or exploitative character of the search. However. regular lattices are just a class of possible structures. Nothing prevents us from giving the population any graph structure that we please. The most general graph structure is, in a sense, the random graph, to be defined below. We shall thus investigate the similarities the differences between pantnictic populations and cellular populations that are randomly structured, in the first part of this chapter. But the story does not end here. The last few years have seen a dramatic increase of interest in the structure of the big networks that forth part of our daily environment such as the World Wide Web, the Internet. electrical power networks, and mtany others. These networks have properties that are unparalleled in lattices or random networks. In turn, the structure of these networks gives rise to a wide range of dynamical behaviors. We shall tints examine the influence that these kinds of topologies stay have on cellular evolutionary algorithms in the second part of the chapter. The reader is warned that these kinds of population topologies are seldom, if ever, used in EA work. In spite of this. I have chosen to include them for a number of reasons, some of which will become clear further ahead in the chapter.

The following section is an introduction to random graphs to an extent that, though brief. should be sufficient to understand the subject matter of this chapter. The reader is advised at this point to go back to Sect. 1.1 to find the relevant concepts and definitions related to graphs.



6.1 Random Graphs

The random-graph model was formally defined by Erdos and Re►ivi at the end of the 1950s [21]. In its simplest form, the model consists of N vertices joined by edges that are placed between pairs of vertices unifornnly at random. In other words, each of the possible N(N - 1)/2 edges is present wit Ii probability p and absent with probability I t). The model is often called GN,r, to point out the fact that, rigorously speaking, there is no such thing as a random graph, but rather an ensemble GN,r, of equiprohable graphs.
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The expected number of edges of a random graph belonging to GN.1, is clearly (1 /2)N(N - 1)p. but since each edge has two ends, the average number of edge ends is N(N - 1)7), which in turn means that the average degree of a vertex in a random graph is

N(N - 1)1~ = N I )p - Np, ( •) = N ( (G. I )

for sufficiently large N.

Another important property of it connected random graph is that, the average path length is of the order of log N.

The Erdos and Renyi model has a numher of interesting properties that are outside the scope of this book (see for example [211). However, one rather surprising property is worth mentioning: the presence of a critical point at which a phase tran.sition takes place. Indeed, Erdiis and IUnyi proved that for small values of (k) there are few edges in the graph, which is globally disconnected, and the connected components are sunall. Above a critical value of (k) = 1, however, a large connected component appears, which is called the giant componend and whose size is proportional to N. Below the critical point, i.e. for (k) < 1, the typical size of the sinall components is O(IogN). For the sake of illustration, although it is too snnall for the statistics to be fully reliable. Fig. 6.1 depicts a random graph wit h N = -10 and to = 0.1. The graph is sparse, with an average degree (k) of about four, and t here is a giant connected component. There are also sonic unconnected vertices, which are connpouenits of size one.
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Fig. 6.1. A small random graph with 40 vertices and a probability of connection of two vertices p equal to 0.1



The concepts outlined above will now be used in modeling select ion intensity in randomly structured cellular populations.

6.2 Selection Intensity in Random Cellular Populations

The random graph is it well-studied structure in mathematics, biology, and the social sciences. For example, models of infection transmission in a population of individuals with random links between them have been known for years [111]; likewise. information transmission in society and in the ecououcv has sometimes been modeled using a random graph structure. Most propagation models are based on differential equations. Instead, here we use discrete models based on difference equations. which seems more suitable for finite evolving spatial populations.

Equation (4.1) defines the random variable N(t) denoting the number of copies of the best individual in the population at time step t. Below we give the recurrences describing the growth of the random variable .V(t) in evolving populations in cEAs structured on graphs for the synchronous and two of the asynchronous update policies described in Chap. 4. In general. such recurrences take the common form

71 E[N(t)] _ P[N(t - 1) = it (i. + a, (t - 1)) , (6.2)

where A, (t - 1) = N(t) - .ti'(t - 1), given N(t - 1) = i, is a random variable as well. This random variable will depend on the update ntethocl. Let us suppose that at, time step t - 1 there are i. copies of the best individual. At the next time step, each of the other n - i individuals will contain a copy of the best, with a probability depending on its number of neighbors, the number of its neighbors containing a copy of the best and the select ion operator. The first, two conditions can be seen as random variables, both depending on the topology of the population.



Therefore, in (6.2) we have

II -2R-I , a;(t - 1) _ E P[K = j] E P[B, = l]p,,,,(j.l), -i 1=0 (6.3)

where K denotes the number of neighbors of an individual, 131 stands for the number of copies of the best individual in it neighborhood of j individuals, and ps,.i(i, l) is the probability of selecting a copy of the best, individual from the l best, of j neighbors.


According to the definitions in Sect. 6.1, random graphs with n vertices belonging to the family G,,,q can be constructed by taking all possible pairs of vertices and connecting each pair with probability q'.
 In the general case of a cEA in which a population structured as a random graph with a probability 0 < q < 1 of having an edge between any pair of vertices evolves, the random variables K and Bi of (6.3) have the following probability functions:
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since any of the j neighbors of an individual has a probability i/(n - 1) of containing a copy of the best individual.

We have seen that cellular evolutionary algorithms are good candidates for using selection methods that, are easily extensible to small local pools, such as ranking and tournament. The equations for the growth of individuals for those local selection policies are muatheiuatically rather complicated for randomly structured populations, involving higher moments of the distribution. Therefore, here I use a simplified selection policy, called uniform selection, which gives rise to a useful and interesting model.

This selection mechanism randomly selects an individual in the selection pool (i.e. the neighborhood of a given individual). The selected individual then replaces the first individual under consideration if it has a better fitness. Such an operator is similar to the local parent selection introduced by GorgesSchleuter in [72], except that it (ti+A/p, v)-LES is used instead of a (ii, ./lc, v)LES, with ti = x (h being the upper limit for the life span) and p = I (p being the mmiher of selected ancestors).



In a cEA whose population is structured as a random graph, since the number of edges incident on a given edge is a binomial random variable, we can use the mean-field hypothesis. which consists in taking for all vertices the average number of neighbors q(n - 1). In this way, any vertex "sees" the same isotropic average environment. Under this hypothesis, the expected number of copies of the best individual in a neighborhood not containing a copy of the best at time step t is E_[By(„_l)[ = qN(t). We shall see that this approximation is good unless the probability q is very low. In the case of uniform selection. the probability that a copy of the best is selected at time step t is

p tii(q(n - 1).qN(t)) = ggN(t) n N(t) l (6.4)

This approximation, valid when the mean-field hypothesis can be used, gives a probability equal to that of the paninictic case, where the graph describing the topology of the population is a complete graph. In fact, for this structure, each individual has exactly K = n - 1 neighbors, and the number of copies of the best individual in a neighborhood not containing a copy of the best at time step t is B„_n = N(t). In the case of uniform selection, the probability that a copy of the best is selected at time step t is

~ i11(n 1, N(t)) = N (t) p . (6.5)

Therefore, the selection pressure for a randomly structured population is similar to that for a pannictic one, when the mean-field hypothesis can be applied.

For synchronous update, using (6.2) and (6.5), the recurrence for N(t) can be written as
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which is a typical form of a discrete logistic recurrence.

The two asynchronous policies can be treated in a similar manner. Since the derivation is rather cumbersome. the resulting growth equations are omitted here but can be found in [641.

6.3 Experimental Results

We report experimental data for the three update policies and pannictic and randomly structured populations using uniform selection. The synchronous and two asynchronous update modes were used, the latter being new random sweep and uniform choice. See Chap. 4 for the definitions of the asynchronous modes.

In all the curves in Fig. 6.2 the population grows exponentially at first and then saturates, giving the usual signioidal shape for the growth curves. However, oue cant distinguish the three update policies very clearly, with NR.S being faster than the synchronous mode. The U(' policy starts in a similar waysinlilar to NUS and then joins the synchronous case when sat.nration sets in.
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Fig. 6.2. Theoretical growth curves for the three update policies (a). Experimental growth curves for the pannlictic case (b), it random graph with q = 0.1 (c), and it random graph with q = 0.01 (d), for the three update policies. 'fhe population size is 1024. The experimental curves in (b), (c), and (d) are averages over 100 independent rills



Figure 6.2 a depicts the theoretical (1 urves corresponding to tlle three update nuxles specified above. Of course, according to the. mean-field approxillmtiott, the paunuct is and random-graph cases are actually the same. This is clearly confirmed by Figs. 6.2 b,(, which show the experimental curves for the paninictic case and the random-graph case with probability q = 0.1. Figure 6.2 d shows the experimental random-graph case with q 0.(11: we observe that for low probabilities, the mean-field hypothesis gives a worse approximiltion to ill(, experimental results. It should be noted that for low q values there is it nonnegligible probability t hat t he generated random graph is disconnected. To avoid these cases, we considered only connected graphs in our experinte►tts, randomly sampled from the family' G„.y of all possible random graphs with n vertices and edge probability q.



Table 6.1 gives the predicted and experimental average takeover times for the three update modes. Results are reported for the paninictic case and the two randouily generated graph structures previously described .
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In Figs. 6.3 and 6.4. it direct comparison is provided by superposing on the same graph the theoretical curves for the synchronous (a), asynchronous NRS (b), and asynchronous CC (c) updates. and ten randomly chosen corresponding experimental curves. This is more informative than it comparison with the average experimental curves since the theoretical result is an expectation curve. Figure 6.3 reports results for the random graph with q = 0.1: it is clear that there is it very good agreement between the predictions of the models and the experiments. As stated above, we cannot hope that such an agreement will also hold for random graphs with a very low probability q. In fact, Fig. 6.4 shows that the approximation is much worse. This is understandable qualitatively on the following grounds. In a random graph, the node degree is binomially distributed by construction. Therefore. for 1024 vertices, the average number of neighbors of an individual is about 100 for q = 0.1 and about 10 for q 0.01. Thus the standard deviation in the latter case is about 3, while it is about 9 in the former. This means that many nodes will have very few edges in the q = 0.01 case, which will slow down the propagation rate of the best individual.

6.4 Small-World Networks

Random graphs are interesting objects as they can be used to establish general quantitative properties that are present in those graphs with very high probability (this is a mathematical statement that will not be further qualified here). In our context of structured EAs, we have seen that randomly structured cellular populations have interesting properties that can he modeled quantitatively, to some extent. They are also it useful model for generating problem instances for testing network algorithms [130], and they are used in other ways too. But, are random graphs a, useful model of the networks that. permeate society'? Actually, social scientist felt qualitatively as early as the 1950s that social and professional links and acquaintances did not follow a random structure (see, for instance, Milgranis's experiment in [181). For example, if a person has some relationship with two others, then the latter two are more likely to know each other than are two arbitrary persons. This does not fit the random-graph model, however. where the likelihood that two given nodes are connected is the same independent of any other consideration.



A quantitative answer to this question carne only it few years ago, opening up it Hurry of research that is reshaping complex-system thinking to a large extent, and is still far from slowing down. In a groundbreaking paper, Watts and Strogatz [155] proposed a network construction algorithm that gives rise to graphs having the following properties: the path length from any node to any other node is short, as in random graphs, but, unlike random graphs, there is local structure in the network. Watts and Strogatz called their networks small-world netuworks, a term that has been in use for a long time in the field of social games to point out the fact that there is a small separation between any two persons in a social network.
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Fig. 6.3. Theoretical curves (black) and experimental curves (gray) for a randomgraph population with q = 0.1 using synchronous update (a), and asynchronous NHS (h), asynchronous U(' (c)





The discovery of these new properties was made possible by the abundance of online network data and the computer power to treat this data, something that was not available to social scientists at earlier times. Now it was finally feasible to measure and analyze "real" networks with hundreds or even tens of thousands of nodes. Following Watts and Strogatz's work, many networks have been studied both man-made and natural: the Internet, the World Wide Web, scientific collaboration and coauthorship networks, metabolic and neural networks, air traffic, telephone calls, and many others. Two recent, excellent reviews of this work are to be found in [9. 111]. Most of these studies have confirmed that, indeed, real networks are not random in the sense of randomgraph theory. and they possess a number of extremely interesting properties.

The field of networks is literally exploding. and here 1 do not have enough space to pursue the big picture any further. The interested reader is referred to the reviews previously mentioned and to the popular books [15. 15-1] as excellent cut iv points. Reference [22] contains more advanced material. flow ever, to innake the previous considerations More quantitative, to die extent that they can be used for structured populations, we now uee<I to briefly jilt rodncc a number of additional concepts related to graphs .
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Fig. 6.4. 'T'heoretical curves (black) and experimental curves (gray) for a randomgraph population with q = 0.01 using synchronous update (a), asynchronous NRS (b). and asynchronous LAC (c)





6.4.1 Some Graph Statistics

Drawing and visualizing a network with up to a few tens of uodcs tray help in understanding its structure. However, when there are hundreds or thousands of nodes this is no longer possible. For this reason, a ntunber of statistics have been proposed to describe the main features of a graph. Taken together, these statistics say a lot about the nature of the network, as we shall see.

Four statistics are particularly useful: the average degree, already defined in Sect. 6.1, the clnstcrin.g coefficient; the average path length.; and the degrcc distribution function. I shall now briefly describe these graph measures. A fuller treatment can he found in [9, 153[.

Clustering Coefficient
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( C; _ E = ~ L 1). \2) k( (6.7)
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The clustering coefficient of a random graph is simply (k) -- p, where N is the total nuunher of vertices and p is the probability that there is an edge between any two vertices. The chtsteriug coefficient of a connplete graph is 1, slice each of a node's neighbors are connected to each of her by definit ion.

Fora regular one-dianensional lattice, C is given by the following fornnda [1531:

3(k - 2) 4(k - 1), (6.ti)



where k > 2 is the (constant) number of nodes that are connected to a given node. C is thus independent of N for a regular lattice, and approaches 3/4 as A• increases.

Average Path Length

Vie denote the shortest path between nodes i. j E V(G) by 1,,. The average. or mean, path length (L) of G is defined as

(L) = 2 1,~. N(N - 1) (6.9)

The calculation of (L) for a large graph is compute-intensive. For this reason, approximate sampling techniques. rather than complete enumeration. are used for large N.

The mean path length gives an idea of "how long" it takes to navigate a network. Random graphs and small-world networks share the property that (L) scales as log N and thus most vertices in these networks are connected by it short path. This is not the case in c1-dimensional regular lattice graphs. where (L) scales as N'/`1. For instance, in a ring, (L) scales linearly with N and is inversely proportional to k. the number of neighbors.

Degree Distribution Function

The degree distribution P(A•) of an undirected graph G is a function that gives the probability that a randomly selected vertex has degree k. P(k) can also be seen as the fraction of vertices in the graph that have degree k. Similar definit ions also apply for the in-links and out-links of the vertices in it directed graph. For a random graph with connection probability p, the probability P(k) that a random node has degree k is given by

(N- (6.10)

This is the number of ways in which k edges can be selected front a certain node out of the N - I possible edges, given that the edges can be chosen independently of each other and have the same probability p. Thus P(k) is it bimnuial distribution peaked at P((k)) Np, as already found in (6.1). Since this distribution is strongly peaked around the mean, most nodes will have similar degrees. and low- and high-degree nodes, say a few standard deviations away front the mean, have it negligible probability, since the tails fall off very rapidly. Networks having this degree distribution will thus be rather lionlogelleolls.

But most real networks do not show this kind of behavior. In particular, in scale-free graphs, which seem to be common in real life [9], P(k) follows a power-law distribution: P(k) = ck-', where c and 1 are positive constants. In these networks. while most nodes have a low degree. there is a small but nonnegligible amount, of highly connected nodes, and this has a profound influence on the dynamics of processes structured in this way. Other degree distributions are also possible, but need not concern us here.



The degree distribution function, together with the other statistics, are thus a kind of rough "signature" of the type of network and can be helpful in predicting the urain aspects of the properties of the network.

In the following sub-sections, I describe the small-world models that were used to run the numerical experiments described later in this chapter.

6.4.2 The Watts--Strogatz Model

Although this niodel was a real breakthrough in the technical sense when it appeared, today it is clear that it is not a good representation of real networks such as the World Wide Web or the Internet as it retains many features of the Lrdos and Renyi random graph. In fact, various scale-free and other types of graphs [10, 1111 have been successively proposed as more faithful description of the kinds of big technological, liuman, and biological networks we observe. Iii spite of thin, the Watts-Strogatz model, because of its siutplicity of construction and richness of*behavior, still provides an interesting exercise in art ificial systems where there is no "natural" constraint oil the type of connectivity.
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Fig. 6.5. (a) Regular one-dimensional lattice with k = 4. (b) A small-world graph obtained by randomly rewiring some of the nearest-neighbor links



According to Watts and Strogatz [153, 1551, a small-world graph can he constructed starting from a regular ring of nodes in which each node has !neighbors (A< N) by simply systematically going through successive nodes and "rewiring" a link with a certain probability /3. When the relevant edge is deleted, it is replaced with an edge to a randomly chosen node. If rewiring an edge would lead to a duplicate edge, it is left unchanged. Figure 6.5 schetna- tically depicts this process for a small ring with k = 4. This procedure will create it number of shortcuts that join distant parts of the lattice. Shortcuts are defined to be edges that join vertices that would be more than two edges apart if they were not connected directly.



Another, nearly equivalent construction starts with a ring lattice with N nodes and k neighbors per node, and shortcut links are added with a certain probability between random pairs of nodes, as depicted in Fig. 6.6.
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Fig. 6.6. A small-world network obtained by adding a few shortcuts between random vertices in a regular lattice




Shortcuts are the hallmark of small worlds and, while (L) scales logarithtni- cally in the number of nodes for a random graph. in Watts Strogatz graphs it scales approximately linearly for a low rewiring probability 3 and tends to the random-graph limit as the probability increases.
 This is due to the progressive appearance of shortcut edges between distant parts of the graph. which obviously contract the path lengths between many vertices. However, small worlds typically have a higher clustering coefficient than do random graphs. Small-world networks have a degree distribution P(k) that is close to binomial for intermediate and large values of the rewiring probability 3. while P(k) tends to a delta function for 3 0, since in this case we recover the regular lattice.
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6.4.3 The Barabasi-Albert Model

Albert and Barab~si were the first to realize that real networks grow incrementally and that their evolving topology. is determined by the way in which new nodes are added to the network. They proposed an extremely simple model. based on these ideas, that, is still useful [9]. One starts with a small clique (a completely connected graph) of 'trio nodes. At each successive tune step, it new node is added such that its in < rrt)) edges link it to in nodes already in the graph. When the nodes to which the new node connects are chosen it, is assumed that the probability 7r that a new node will be connected to node i depends on the degree k, of i such that, nodes that already have many links are more likely to be chosen over those that have few. This is called pivfcivntial attaclanent and is an effect that can be observed it) real networks. The probability 7r is given by
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where the sum is over all nodes already in the graph. lRarahasi and Albert have shown that the model evolves into it stationary scale-free network with a power-law probability distribution of the vertex degree P(k) k-', with -y' 3.

There exist other, more general and more refined models that, are capable of producing graphs with a power-law degree (list ributiou (see e.g. [22] ). I Iowever, the basic 13arab~isi Albert model is enough for our initial investigation.

6.5 Selection Intensity in Small-World Networks

In all the experiments described below, it population of size of 102,1 and a total nutmber of edges of the same order as that of a random graph with q = 0.01 were used. The selection utechamisrnt emtployed was uniform selection in all cases. All the carves presented are averages of 100 independent runs.

6.5.1 Watts-Strogatz Model

For the simulations, Watts Strogatz small-world networks with 1021 individuals were generated starting from a ring with k = 10 neighbors, i.e. a regular radius-5 one-diutensional lattice. In this way the meat) number of neighbors is almost equal to that of it random graph with q = 0.01.

Figure 6.7 shows growth curves with synchronous update for different values oft Iie rewiring probability /3 and for the original ring. The trend is clear: when /3 is increased from 0 (the ring cas(,) to 0.8 (topologies approaching that of it random graph), the selection pressure increases slowly at first, and then very quickly at, around /3 = 0.005. This can he easily understood if one takes into account how the mean path length and the clustering coefficient vary in a small-world graph. From Fig. 6.8, one can see that for /3 around (1.005 there is a sudden drop in the average patli lengtli from values that pertain to a lattice to values t hat are close to t hat of a random graph. This means Oat, suddenly, many short paths become available through the network between most nodes. which explains the higher growth rate.



Figure 6.9 depicts growth curves for synchronous update, and for the two asynchronous policies in small worlds with 3 = 0.005. As in the case of panmictic populations and random graphs. new random sweep is faster than uniform choice, which in turn is faster than synchronous update. The experimental takeover times are to be compared with those of random graphs with the same average number of edges, i.e. Fig. 6.2 d. Clearly, the corresponding small-world graphs induce a lower global selection pressure.
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Fig. 6.7. Growth curves for synchronous update with different values of the rewiring probability .3. The rightmost curve is for a ring (.3 = 0). The leftmost curve corresponds to 3 = 0.8. which is almost in the random-graph region
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6.5.2 Barabasi Albert Model

Scale-free graphs were generated according to the Barabasi Albert model described in Sect. 6.4.3. The starting point was a clique of In() 14 nodes, and 1021 I I = 1010 individuals were added, each creating In = 10 edges with preferential attachment, following the algorithm.

Figure 6. 10 shows the behavior of the growth curves for the three update policies used here. For the position of the initial befit individual, any vertex is equally Iikely. The order of the curves is the sauce as that observed for random graphs and Watts Sirogatz sn>all-world networks. The inversion in the last part of the uniform-choice curve is due to the fact t hat cells are chosen with replacement, and thus the last few uonconquere I individuals are increasingly unlikely to be chosen. Apart from this effect, the takeover times are very close to those observed for the corresponding random graphs. This confirms that scale-free graphs are a topology in which propagation is at least as fast as in random graphs, Which, for example, has important consequences for infection rates [11 I].

But Scale-free graphs have other surprising properties. In particular, those networks are extremely tolerant to attacks on randomly chosen target nodes, which is due to the fact that there are few important (highly connecte(l) nodes and many unimportant (sparsely connecte(l) ones. On the other ha)d, deliberate suppression of highly connected nodes is likely to produce a lot of damage [9]. The different status of highly connected codes was deuwiistrate l in an experiment where the initial best individual was always placed on a "hub" node (see Fig. 6.11). In this case the takeover time is very short, shorter than t he random-graph case (see Fig. 6.2 and Table 6.1). This is also known to happen in infectious processes, where scale-free conuuunicat ion patterns have the effect of eliminating the so-called infection thereshold [I 11].
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Fig. 6.10. Growth curves for synchronous, new-random-sweep, and uniform-choice asynchronous update in scale-free graphs. The initial best individual was uniformly distributed at random among the nodes
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Fig. 6.11. Growth curves for synchronous evolution in scale-free graphs when the initial best individual is placed on a highly connected node



Table 6.2 summarizes the numerical results for the takeover times in Watts Strogatz and scale-free topologies for the synchronous and the two asynchronous update Iuet hods.

It is clear that the effect of small-world topologies on the dynamical properties of processes taking place on it network could be exploited in evolutionary computation by letting the topology adapt or self-organize dynamically in order to control the selection pressure. and thus the explorative or exploitative characteristics of the algorithm.
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6.6 Summary

In the first part of this chapter, using general stochastic models for the growt.it of the best, individual, we have seen that populations structured as random graphs behave in the same way as panntictic populations of the same size, except when the graph is very sparse. A practical consequence of this result is that it appears unnecessary to use the whole population as a selection pool, given that the random-graph case, using a fraction of the population, shows the saute behavior a.s does the panntictic one. The models and experiments also confirm the results of ('hap. 4 for regular lattices, i.e. that the selection pressure can be varied by using different updating scheme,.

In the second part of the chapter we examined experimentally the growth of the best individual in two families of networks that are neither regular nor random: the Watts Strogatz model and the 13arabtisi Albert model. It appears that the propagation properties of an individual and the global induced selection pressure are qualitatively similar to those found in panrntictic populations and random graphs. However, the iuhotnogeueity of' these small-world networks opens ill) new possibilities for evolutionary computation when the nature of each given node is taken into accotutt. Thus, for example, hubs in scale-free networks largely determine the dynamical properties of the population. By controlling these features, or allowing the population network to self-organize, it is possible to change the selection pressure and thus the characteristics of the algorithm within a wide range. Interesting evolutionary algorithms could be designed along these lines.





7
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Coevolutionary Structured Models

7.1 What Is Coevolution?

Straight evolutionary algorithms use the analogy of a single-species population and it suitable definition of a fitness function to rank and select the individuals in the population. The situation in nature is mach more complex than what this simple metaphor seems to suggest. Indeed. in biological populations there is a continuous interplay between individuals of the same species. and also encounters and interactions of various kinds with other species. The environment, too. does not stand still, but is continuously changing. This makes the familiar view of a fixed fitness landscape (see. for instance, [86] and references therein). in which individuals "climb" through the landscape in order to improve their fitness. hardly adequate. The problem is that the landscape as seen by a given individual is being continually changed by the other individuals and species, and it is not at all clear how a suitable fitness function could be defined.

The points at issue call be clearly seen when one observes such ecological systems as symbiosis. host parasite systems. and prey predator systems. in which either organisms mutually support each other, one exploits the other, or they fight against each other. For instance, nmtualistic relations between plants and fungi are very common. The fungus invades and lives among the cortex cells of the secondary roots and. ill turn, helps the host plant absorb minerals from the soil. Another well-known example is the "association" between the Nile crocodile and the Egyptian plover, a bird that feeds on ally leeches attached to the crocodile's gums, thus keeping them clean. This kind of "cleaning symbiosis" is also common in fish.

Other modes of coevolution involve competitive interaction between two specific species. The Plethodon salamander is a good example: in the Great Smoky Mountains. two species of salamander compete strongly. as evidenced by the fact that each species will increase its population size if the other is removed. Another classic example is that of foxes feeding on rabbits.



The customary analogy here is the coevohttionary arms race: it plant has chemical defenses, an insect evolves the biochemistry to detoxify these compounds, the plant ill t urn evolves new defenses t hat the insect in t urn " needs.. again to detoxify, and so oil. A less innocent example is I he coevolut ion of pathogens in the face of improvements in the effectiveness of antibiotics.

Now, how can we harness the concepts of coevolution for solving problems for which it is difficult or impossible to define a suitable fitness function? A good example is the playing of gaines. In games such as chess and checkers, t here are so many different possible moves that it is pract ically impossible to exhaustively evaluate all the possible available strategies, given the possible moves and countermoves. One approach is simply to evaluate a player's fitness relative to the other, in a two-player game. as being simply the outcome of the game: won, lost, or perhaps drawn. In this wy, a player can iteratively learn, by punishment and reward. to play a better game, without any direct external guidance. This example would be worth pursuing further, but here I would like only to stress the principle: when there is no clear fitness function. it useful strategy is simply to coa.dapt to the opponent's moves. This sitmation is similar in spirit to the coevolutiomary interactions in nature described above. The interested reader will find an excellent discussion of the issues, and many ideas to harness for coevolut ionary problem-solving in Chap. 14 of NIichalewicz and Fogel's book [100].

Following an established pattern, I shall divide coevoltttionary methods into two train classes: coopcratirue coevolution and competitive cocr701Utiof. This hinary classification is certainly simplistic for biological systems, but it is useful fur our purposes in the context of artificial evolution. Cooperative cuevolutionary models are artificial evolutionary svsteuts in which a number of different species or groups, each representing it different part of a problem, cooperate in order to find partial solutions, which are then combined in sonic way to solve the global problem. In competitive coevolntion, on the other hand, the different species, popnlat ions, or groups prosper or decay at the expense of each other, as typically exeutplified by coevolutiouary game-playing (see above). Again, the reader is referred to [1001 fur it fuller discussion.

Most structured coevolutionat.v algorithms are of the celh►lar type. Thus, in keeping with the spirit of the main theme of this book, in this chapter we focus oil coevolntionatv problem-solving using that kind of population topology. But before doing that., it brief description of a cooperative approach is provided next.

7.2 Cooperative Coevolution

There are several examples of artificial cooperative coevolut ion ill the literature. One of the best known is Potter and 1)e longs coada.ptcd-conupon.cnts architecture [118]. When coadapt ed components are used, the problem is decomposed into a nuutber of' species that each solve a portion, or component. of the global task. The decomposition of the problem is in general not known from the start, and the evolutiouarv system trust be able to address this issue, by using prior knowledge or favoring the emergence of subcomponents. A similar decomposition problem appears in genetic programming. for which techniques that automatically identify blocks of useful code that can be encapsulated and reused have been proposed [122].



A second issue has to do with relationships between components. In the easiest case, components are independent of each other, and can thus be evolved in separate breeding populations. But in most problems of interest there are interdependences among the parts, and these interactions are handled by the architecture by evolving the species in parallel and evaluating them in tiie context of each other.

In Pott and De tong's system. each species is evolved in its own population and adapts to the environment through the repeated application of an EA. But the number of species is not fixed: species can disappear when they seem not to contribute enough to the global goal, and new species can be created. Communication between populations (species) is limited to an occasional broadcast of representative individuals.

There are two levels of credit assignment: at the species level, the fitness of all individual is evaluated keeping the representatives of the other species fixed. On the other hand. when an evaluation of the level of the contribution of one species to the global goal is needed, individuals from different species are merged within a shared-domain model to form a composite solution to the target problem.

Finally, in order to be able to apply the model to complex cases in which components need to be represented in different ways, for example in robotics and other fields, heterogeneous representations are supported, such as real parameter encoding, rule systems, and so on.

One interesting feature of the coadapted-components architecture is the natural mapping that there is between the different populations and an island model. Indeed, each species has its EA and communication is sparse. making a tnultipopulation model. possibly heterogeneous, an obvious one.

This coevolutionary architecture has been applied with success to several problems ranging front function optiutization to evolving neural networks. learning sequential decision rules. and more. A recent detailed account of the system's philosophy (an be found in [118] and references therein.

7.3 Competitive Coevolution: Hosts and Parasites

The classical work on competitive coevolutiou is Hillis's pioneering study of sorting networks [76. 77]. Sorting networks are comparison networks that sort their inputs i.e., for any input sequence. the output sequence is monotonically increasing [3.1]. Tints, if (at. u2..... a„) is the input sequence and (bi, b 2 ,---, b,,) is the output sequence of t he network then we have br < bz ... < b, for every input sequence.
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Fig. 7.1. A coevolved network that sorts 16 numbers using 61 comparisons. Redrawn from [77]



The size of the sorting network depends oil the number of elements in the list to he sorted. Figure 7.1 depicts graphically one such network for the case n 16, the case that was studied by Hillis. Each horizontal line represents an element of the list to be sorted. Each vertical line represents a comparison to be made between the elements indicated. If the elements are out of order, the network will swap them. Comparisons and exchanges proceed from left to right in the figure, and comparisons ill the sauce column can be made in parallel if truly parallel hardware is used.

A popular problem in the 1960s was to determine the nrininnrni number of comparisons needed for correctly sorting n inputs. The case 're = 16 was studied in detail, and soon people found networks that did the job with 65 comparisons, then 63 and 62, and, finally, Green found a network that only needed 60, which is the one displayed in Fig. 7.2. This is the best result known to date, but no one has shown Yet that, it is it lower bound.

As it happens, at the end of the 1980s. Ilillis had just finished co-designing and building a massively parallel computer, the Connection Machine CM-2, and commercialized it through a spin-off company. This supercomputer was very famous at the time, for it, implemented several innovative ideas in computer architecture. Today, the Connection Machine no longer exists, and this kind of single-instruction-streani, single-data-stream data-parallel computer is restricted to particular computational niches. However, the machine had a (list inct ive advantage: representing regularly structured networks was very easy with this architecture, by distributing network points over the niany simple processors of the machine, one or a few points per processor. The physical machine's cornummication network, though not as simple as a regular lattice it was it, hypercuhe was such that points that were neighbors in the lattice were also stored in neighboring processors at a single vertex of the hypercube. Thus, the machine was eminently suited for homogeneous computational tasks oil grids such as cellular automata and discretized partial differential equations. Hillis took advantage of this by using a structured population from the beginning.



In his experiments. Hillis first used a large population of 64 536 sorting networks arranged in a two-dimensional torus topology. The initial population was random except for the fact that part of the chromosome was initialized in such a way as to represent the exchanges that are common to all known sorting networks designed. The encoding of a sorting network is rather involved and will not be reported here. Hillis designed crossover and mutation operators that were tailored to the representation in order to always produce valid networks as offspring. Each individual was ranked according to its percentage of success on the 2t'' possible binary sequences, since it sorting network that correctly sorts all possible 2" binary sequences will correctly sort any numerical sequence [341. Actually. Hillis used a random sample of the possible test cases to attribute it score to it network. Selection and crossover were local. However, instead of using a straight von Neumann or Moore neighborhood. Hillis used short random walks around each individual to select a mate. So, the algorithnt was local but the neighborhood was irregular. Using this choice. the best network found had 65 exchanges. a relatively disappointing result. Hillis observed that good solutions spread through the grid and formed patches. separated by crosses formed by had individuals. This is indeed the usual behavior of cellular EAs.

Two major causes for the relative inefficiency of the process were identified: one was the existence of local optima from which it was difficult to escape, and the second was related to the test cases. After a few generations. most of the test cases were sorted correctly by almost all networks, which means that the fitness differences were sotall, thus providing lit t Ie selection pressure on the population. Hillis then decided to make the test cases themselves evolve. Ill another series of experiments, lie added a second population evolving on the san►e grid as the networks. The second population was made ill) of individuals which each were a small group of 10 to 20 test cases. Hillis's biological inspiration was that of a host parasite or prey predator coevolut ion. In the artificial case, the parasites were the test cases, and the hosts were the networks. Networks were scored according to how well t hey sorted the test caves, whereas the parasites were scored for their capabilities to make the networks fail to sort the test cases, i.e. the two fitness functions were complementary.
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Fig. 7.2. The best sorting network known. It sorts 16 elements using 60 comparisons. Redrawn following [77]





This coevohztionary algorithm relieves both of the problems found with the straight evolution of networks o►tly. The parallel evolution of the population of parasites stakes it more difficult for tit(, systenn to remain stuck ill it local optimum since, as soon as it network becomes rather good at sorting the test cases, it has to make it leap forward, given that the test cases are also improving, and thus making its task harder. The steady evolution of parasites alias test cases also means that the test cases that remain ill the population are tIte ..hard" ones, t hose tliat challenge the sorting ability of' the networks better. By harnessing this anus race between networks and test cases Hillis was able to coevolve a network that needed oul.v ti 1 exchanges, very close to the known best of 60. The resulting network is shown in Fig. 7.1.

Aside from the fact that Hillis's result was valuable in itself, it was above all one of the first that showed convincingly that coevolutiouary ideas from biology can he profitably used in problem-solving with artificial evolution. This work thus paved the way for more sophisticated artificial coevolutionary systems, which have since been used in several areas with success (see [100]).

7.4 A Case Study: Coevolution of Cellular Automata

Cellular automata (('As) are discrete dynamical systems that, have been used successfully for sinnilat ing physical. chemical, social, and biological systems that are difficult or impossible to ►uodel using differential erluat ions or other standard nrathenurtical methods [31]. ('As are constructed from many identical or similar simple components. but their collective behavior u►ay be fairly complex. They are thus an ideal means for investigating basic emergent comput at ional capabilities and other properties of complex syst en►s.

A general problem is to find architect ores for it decentralized complex System, such as it CA, that behave in specified ways. However, designing CA rules such that a given macroscopic behavior emerges is not it simple task. lugemuity and trial-and-error can help, but there is no general methodology that call be applied ill all cases.

Evolutionary and coevolntioiary ilgorit hms have been quickly recognized as being effective in taking that burden away from the designer by letting the power of artificial evolution aitonratically find solutions to the problem of the design of CA rules. The work of Packard was one of the first that advocated this idea [112]. followed by that of Mitchell and coworkers [103. 102], and Sipper [132, 134]. Here we shall describe only the evolution of CA rules. But both the rules and the connectivity of the network of automata could be made to evolve, giving rise to arbitrary graphs of the kinds described in the previous chapter [136. 147].



7.4.1 Cellular Automata

CAs are dynamical systems in which space and time are discrete. A standard lattice CA consists of an array of cells, each of which can be in one of a finite number of possible states. Here we shall consider only Boolean automata, for which the cellular state s E E = {0, 1}. The regular cellular array (lattice) is d-dimensional, where d = 1, 2. 3 is used in practice. In a one-dimensional lattice, the topology used here, a cell is connected to r local neighbors (cells) on either side, where r is referred to as the radius (thus, each cell has 2r + I neighbors, including itself).

CAs are usually updated synchronously in discrete time steps, according to a local rule. identical for all cells. The state of a cell at the next time step is determined by the current states of the surrounding neighborhood of cells, including the cell itself:

c+1 r . Si = f (s_...... , S..... , sri+r), +1 { J . Z2, ~i.
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Configurations evolve in time according to a global update rule 0, which applies in parallel to all the cells: sf+1 = O(sr).

This is the model investigated in this chapter, together with a simple extension termed non aniforim cellular automata [134]. Such automata function in the same way as uniform ones, the only difference being that the cellular rules that need not he identical for all cells.

7.4.2 The Majority Task

Evolutionary algoritI n►s have been used to help evolve suitable rules for several CA tasks. Here we concentrate on a theoretically important example. the density task, also called the rnajoHty task. The majority task is a prototypical distributed computational task for CAs. For a finite CA of size N. it is defined as follows. Let p° be the fraction of ones in the initial configuration (IC) s°. The task is to determine whether p° is greater than or less than 1/2. If p° > 1/2 then the CA must relax to a fixed-point configuration of all ones: otherwise it roust relax to a fixed-point config] rat ion of all zeros, after a nnnr- her of tithe steps of the order of the lattice size N (N is odd to avoid the case p() = 0.5, for which the result is undefine(l). This computation is trivial for it computer having a central control. Indeed, .lust, scanning the array and adding up the number of, say, hits equal to I will provide the answer in O(N) time. However, this is nontrivial for a snutll-radius one-dimensional ('A, since such a ('A can only transfer information at finite speed, relying on local information exclusively, while the density is a global property of the configuration of states [103]. I~'igure 7.3 shows the operation of a ('A obtained through artificial evolution.
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Fig. 7.3. The operation of an evolved one-dinursional, ra di is-3 CA for the density task. 'I'lae ('A cell states are represented horizontally (black stands for I and white for 0). "l'itue increases down the page. The CA rile was obtained through artificial evolution by Mitchell et al. [102]. The density p° is O.Ilti and the lattice size N is 149



It has been shown 1 hat the density task cannot be solved perfect Iy b Y it uniform. two-state ('A with it finite radius [91], although it slightly modified version of the task can be shown to adroit it perfect solution by such an antoutaton [28] or a combination of automata [59].

The pe formaw-c P of a given CA on the majority task is defined as the fraction of correct classifications over 10► ran<Ion►ly chosen IC's. The IC's are sampled accordirng to a biuo►uial distribution (i.e. each hit is independently drawn with a probability 1/2 of' being 0). Clearly, this (list rib►ttion is strongly peaked around pc' - 1 /2 and thus it creates a difficult case for the ('A to solve.

The lack of it perfect, solution does not prevent one from searching for ini- perfect solut ions of as good a quality as possible, given also that no upper bound on classification accuracy has been found. In general, given a desired global behavior for a CA for example, capability to solve the density task - it is extremely difficult to infer the local CA rule that will give rise to the emergence of a desired computation, owing to possible nonlinearities and large-scale collective effects that cannot in general be predicted from the local CA updating rule alone. Since exhaustive evaluation of all possible rules is out of the question except for elementary (d = 1. r = 1) automata, one possible solution to the problem is to use evolutionary algorithms, as first proposed by Mitchell et al. [102. 103] for uniform CAs and by Sipper for nonuniform ones [133].



The density task is actually a form of machine-learning problem, since the CA must approximately solve the problem on the basis of only a relatively small sample of ICs. given that for N = 149. the value used here, there are 2149 possible ICs. There is thus a problem of generalizing the results to unseen ICs. and there is also the question of scalability of the task: how does a given evolved CA rule. or combination of rules in the nonuniform case, perform as N becomes larger and larger"

7.5 Artificial Evolution of CAs for the Majority Task

The early work of Mitchell et al.. employing it standard GA, showed that evolution of CAs for the density task is possible but it is hard (see [35] for a recent review). Indeed. only it small fraction of the evolutionary runs gave rise to good-quality automata. This is an indication either that the problem space is difficult to search, or that a standard GA is not entirely suitable for the search, or both. Actually. recent research has shown that the space of automata is indeed a hard one to search, and thus any heuristic will face difficulties [151].

Mitchell and Crutchfield's group has been able to identify three main types of CA strategy that a GA tends to evolve. The first type is called '`default strategies": these classify all bit strings into a single density class. either the class of all zeros or all ones. Of course. these rules have a performance of around 0.5 since about half of the random IC sample will be classified correctly. They are thus no better than simply classifying an IC by throwing an unbiased coin. The second type is made up of CAs that employ "blockexpanding" strategies. Block-expanding strategies are a little better than default strategies, as they rely on the presence on sufficiently large blocks of zeros or ones in the IC. If such blocks exist. these strategies tend to converge to the corresponding fixed point. Since the existence of sizable blocks of zeros or ones is correlated with the density of the IC. there is more than a 0.5 chance that the CA will converge to the right fixed point. Block-expanding strategies rely mainly on local information and are not robust in global terms. Both default and block-expanding strategies are easily evolved, but they are unsatisfactory.



In it small number of cases, a third type of much more sophisticated strategies have been identified that, are able to achieve the desired global coordination required for approximately solving the density task with high efficacv: the "entheddcd particle„ strategies. These strategics rely on tlic existence of spatio-temporal propagating patterns that, can be made visible after filtering the "uninteresting" regular background. ('rut,chfield and coworkers have shown how global CA computat ions can he interpreted in t erns of those propagating particles and their interactions for some global ('A hsks, including the majority task. (see [35] and references therein for it detailed explanation).

In spite of the difficulty of the problem, evolutionary algoritlu is have been relatively successful oil the density task, and several groups have been able to find C'As with a performance of around 0.8 or more. This work is discussed in detail in [35] and will not be reported here. Some of the best ('As were obtained with coevolutiouaty algorithms. For example, ,luillc, and Pollack, using it coevolut ionary approach, obtained P = 0.86 for the standard ring size N = 1-1) which, to the best of the author's knowledge, is the best result at the time of, writing [85].

Despite the success of coevolutionary algorithms, it has been observed that sometimes they are unable to provide continuous progress in the performance of the populations, giving rise to stagnation and lockup into average performance states or to fluctuations among relatively mediocre solutions. According to [85], this Inav be due to an inability of the changing envirotnnettt to provide useful information for the learners to be able to further improve their behavior. One of the utain reasons for this state of affairs is the phenomenon known by the colorful name of "Red Queen effect" [115]. Roughly speaking. the effect consists of the following: individuals are evaluated in it constantly changing environment of fitness cases; as it result, they tend to perform well against the current population of test cases, forgetting some of the traits that made theta effective on other groups of test cases seen before. Thus, the two populations perform well against each ot her but they are less effective against opponents chosen from outside. In other words. they have poor generalization capabilities. It is as if the individuals did not care about solving the original optimization problem. and were busy just finding ways to beat current good representatives of the other population. Several remedies have been stug- gested to improve the effectiveness of straight competitive coevolutiou. Here, in keeping with our emphasis on structured EAs, I shall describe coevolutionary approaches that make use of spatially structured coevolving populations.

7.5.1 Coevolving Uniform CAs for the Majority Task

In [1131. Pagic and llogeweg compared spatially structured coevolviug populations with completely mixing ones for the ptu•pose of evolving good solutions to the majority-task problem. In both cases they used two antagonistic populations. one representing two-state, radius-3 ('As, while the other was formed from the initial configurations that the CAs worked with. This is entirely analogous in spirit to Ilillis's host parasite approach for sorting networks described above, with the ('As playing the role of hosts and the k's that of parasites.



As ill the original work of the Santa Fe group. in Pagie and Hogeweg's study both CAs and Ws are represented as bit strings. A CA rule is encoded as it bit string containing the next-state (output) bits for all possible neighborhood configurations, listed in lexicographic order: for example. for ('As with r = 1. the genonte consists of eight bits, where the bit at position 0 is the state to which neighborhood configuration 000 is mapped. and so on until hit 7. corresponding to neighborhood configuration 111. The rule number is the number that is obtained when the string of the rule's output bits is interpreted as a decimal number. Ill the present case, with a radius-3 CA (seven neighbors). the rule table is of size 27 = 128.

The topology of the two populations is a two-dimensional lattice of size 30 x 30 with periodic boundary conditions, with each lattice point representing one ('A and one IC. The population of automata starts with random CAs represented by hit strings generated according to a binomial distribution, while the I('s are initialized with all-zero bit strings. Evolution is done synchronously. In the mixing model, the topology of the two populations is the saute but the individuals are randomly shuffled in the grid at each time step. which approximates a panntictic situation.

The fitness evaluation and genetic operators are local. The fitness of a CA is based on the nine l('s in its :Moore neighborhood. CAs are scored by running them on the nine neighbor IC's for about 2_V steps each. Credit is given only in the case of successful classification. With respect to the standard GA approach, where each ('A is evaluated on hundreds of ICs. here the fitness evaluation is sparse. This does not seem to be a drawback, however. In fact. sparse fitness evaluation for both the CAs and the ICs seems to be a positive factor for the evolutionary process. as was the case in Hillis's work. The fitness of an IC is based on the CA located in the same cell only.

Previous studies using coevolution for the majority task showed a tendency for the K's to thickly evolve toward densities around 0.5. This is understandable. since the Ws are trving to make the task of the classifier C'As harder and harder. To avoid this problem, Pagie and Hogeweg used a density-dependett fitness function that gives more weight to low and high density values.

Selection is probabilistic in Pagie and Hogeweg's study, based on the rank of the nine individuals in the Moore neighborhood of a given individual. Each (_'A in tlte' population is replaced by the winner of a tournament including that ('A itself and its eight neighbors, using the rank order of the individuals. l('s are selected in the saute way. After selection and replacement, bit-Hip mutation is applied to both ('As and ICs with a rate of 0.0016 per bit for ('As and (1.0(1:31 per bit for I('s. These values correspond to an expected number of 0.2 mutation events for ('As and 0.5 for ICs. when multiplied by the population size (900). Crossover is not used.



The results of this empirical investigation were rather interesting. The mixing model was never able to evolve CAs that employed sophisticated classifica. tiot strategies, and the best, perfornr<tnce values were always around 0.5 0.6 and were obtained with default or block-expanding strategies. The performance values of the best CAs coevolved in the spatially local model were much better, around 0.75, and corresponded to CAs that, used more complex particle-based strategies to solve the problem.

The evolutionary dynamics observed when individuals remained localized in space and when they were globally mixed at each time step were extremely different. Red Queen dynamics were seen to occur in the mixing model, characterized by oscillations of the types of CAs and ICs that were present in the population, and an ensuing loss of efficiency in the search. On the other hand, in the spatially embedded coevolutionary model, spatial patterns could forth with well-defined frontiers that changed slowly for both the ('A and the 1C population. In this case, the interactions between individuals remain local in space and time, giving rise to many competitions between local species in the patches. This enhances the efficiency of the evolutionary process in the sense of the optimization and generalization capabilities of the resulting CAs. Diversity measures in the two models support these findings. Once again, it has been empirically confirmed that the spatial structrtre of populations stay promote diversity and speciation for "free" so to speak, without the use of complicated explicit sharing and modified-fitatess techniques.

Pagie and Hogeweg's investigation shed some light on the ntechanistns at work in a spatial coevolutionary algorithm with two antagonistic species, but was not intended to find highly optimized classifiers for the majority-task problem. In a follow-np study, Pagie and Mitchell [11,11 compared the spatially embedded coevohttionarv model described above with a straight evolutionary spatial model of the saute kind. The size of the grids was the same, 30 x 30, but in the second model only the CAs evolved. The other EA parameters, including the fitness evalltation, were the saute as in the previous study, except t hat. ill the evolutionary setting, t he populat ion of ICs slid not evolve but was generated anew at each time step, being selected at random front a tntifornt density distribution itt which each density in [0, 1] was equally likely. l3y the way, I his is how I Cs were produced at each generation in the original panntictic GA [103] .

Pagie and Mitchell found t hat the coevolut ionary spatially st ruct turd model led to a much higher frequency of evolution of CAs emplc)ying sophisticated strategies than did the standard structured evolutionary algorithm. In fact, out of a total of' 100 rims, coevoltttion found particle strategies 86 tunes, while straight evolution was successful only two tunes. Of course, hot h models evolved default and block-expanding strategies ill all runs. 'T'hese results are striking: the evolutionary model is nearly always unable to make the transition to effective density classification strategies, while the coevohttionary model does so most of the tithe.



Pagie and Mitchell attributed the difference between the two models to a mechanism related to the way in which ICs are generated. In the evolutionary model, block-expanding CAs can prosper in the population because they are evaluated on ICs that are randomly generated according to it uniform distribution of densities. However. these C'As generalize poorly when run on ICs drawn from a binomial distribution. In the coevolutionary model, on the other hand, block-expanding ('As can be fooled and exploited by the population of coevolving ICs. This occurs because an IC with low density of zeros or ones can incorporate it "deceptive" block of bits of the same type, which would lead block-expanding strategies to reach the wrong fixed point and thus to ntiscla.ssify the I('. This effect lowers the fitness of the current generation of block-expanding ('As and pushes the system to discover more sophisticated strategies that do not fall into the trap of deceptive blocks. More generally. Pagie and ;Mitchell remark that in the coevoltttionary model, l('s evolve in such a way as to exploit the population of CA rules in the case of particle strategies also. In order to evaluate this effect, in another set of runs they modified the coevolutiouary model such that no particular bit patterns could form. This was done by representing ICs as density values, rather than explicit bit strings. The modified coevolutiouary model was less efficient than the original one: particle strategies were evolved in 23 out of 100 runs instead of 86`7( of the time. However. it was still more efficient than the plain evolutionary model.

The higher efficiency of the original coevoltttionary model has a downside in that the out-of-sample performance P of coevolved CAs is somewhat lower than for ('As coevolved with the modified model. Indeed. the average P value was 0.76 for the former and 0.80 for the latter. The maximum values reached about 0.85. The explanation is that in the original model, ICs evolve particular bit patterns which exploit weaknesses in the CA population. As it result. the CAs also undergo selection to adapt to these ICs. But these strings, being atypical. are not present in large numbers in the out-of-sample I('s. on which performance is ultimately measured.

7.5.2 Coevolving Nonuniform CAs for the Majority Task

Sipper [132. 133] introduced a coevoltttionary approach for evolving nonuniform ('As for several computational tasks. including the density task.Nonuni- forut cellular automata relax the constraint that each cell contains the same rule, allowing different rules for different cells. The use of nonuniform ('As opens up new possibilities for global cellular computing, increasing the degrees of freedom that evolution can play with. In fact, for it one-dimensional CA of size N = 149 and radius 3, the search space has a size 2125 for uniform CAs, while the size increases to (212$)149 in the case of a nonuniform grid. it hit--(, search space. vastly larger than the search space of uniform CAs. It is a remarkable fact that. in spite of this more than astronomical size. structured coevolution manages to find high-performance solutions for the density task and for other problems. This may be due in part to the fact that the increased freedom in choosing cell rules stakes many different nonuniform C'As more or less equally good at the task, and we shall see that this added freedom in cell roles will permit a reduction of the ('A radius. The coevolutionary approach suggested by Sipper is called the cellular proyralaminy algorithms and is explained below.



The Cellular Programming Algorithm

A cell's rule table is encoded as a bit string in Wolfram's notation, as explained at the beginning of Sect. 7.51.1. Rather than employing a population of evolving, uniform ('As, as with genetic algoritluu approaches, cellular programming involves a single, nonuniform ('A of size N, with cell rules initialized at random. Initial configurations are then generated at random, ill accordance with the task at hand, and for each one the CA is run for Al = O(N) time steps. Each cell's fitness is accumulated over C initial configurations, where a single run's score is I if the cell is in the correct, state after Al iterations, and 0 otherwise. After ever 'v C configurations, evolution of rules occurs by application of crossover and mutation. This evolutionary process is performed in a completely local manner, where genetic operators are applied only between directly connected cells. It is driven by n+f,(e), the number of fitter neighbors of cell i after c configurations. The pseudocode of' the algorithm is shown in Fig. 7.4.

Crossover between two rules is performed by selecting at random (with utuifornu prohahility) a single crossover point and creating a new rule by cout- hining the first rule's but string before the crossover point with the second rule's bit string from this point onward. Mutation is applied to the hit string of a rule with a prohahilit;V of 0.001 per hit.

There are two main differences between the celhtlar programming algorithm and the standard genetic algorithm. (a) The latter involves a population of evolving, uniform CAs; all ('As are ranked according to fitness, with crossover occurring bet ween any two individuals in t he populat ion. Thus, while t he ('A stns in accordance with a local rule, evolution proceeds in a global manner. In cont rast. t he cellular programming algorit htn proceeds locally in the sense that each cell has access only to its locale, not only dewing the run but also during t he evolutionary phase, and no global fitness ranking is perfonucd. (b) The standard genetic algorithm involves a population of zndcpcodcn.t problem solutions; the CAs in the population are assigned fitness values independent, of one another, and interact only through the genetic operators in order to produce the next generation. In contrast, in cellular programming the ('As in the grid cocvolve since each cells fitness depends upon its evolving neighbors. This may also be considered a form of symbiotic cooperation. Actually, the approach call be considered both as a cooperative coevolutionary approach and, at the same time, a competitive one in the sense that rules are also competing for "roost" in the lattice.
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Fig. 7.4. Pseudocode of the cellular programming algorithm

Note also that there is a difference between the cellular programming algorithm and classical cellular EAs or coevolving EAs such as those described in Sect. 7.5.1. The latter are also structured and local, but the population represents different potential solutions to the problem, whereas the CA grid is "the solution" when the cellular programming algorithm terminates.

7.5.3 Results for the Density Task

Recall that Mitchell et al.. as well as the other researchers, found that a lattice radius of 3 was needed for a uniform ('A to approximately solve the majority task with high performance. Sipper studied the task using noinniiform. one dimensional, minimal-radius (r = 1) ('As of size N = 149. Owing to the ronuuiformity, the search space involved is still vastly larger than the 212s of radius-3 uniform ('As. In fact, since each cell contains one of 2s possible rules this space is of size (2s)la!) = 2'102. The most important result is that evolved, nonuniform, r = l CAs show high performance on the task, rivalling that of uniform radiics-3 CAs, in spite of their smaller radius (see [132. 1331 for details).



The cellular programming algorithiu used randomly generated initial configurations. unifornilvv (list rihut ed over densities in the range [0, 1], with the CA being run for it! 1510 tine steps (thus, compilation time is linear Willi grid size). It was found that the nonuniform C'As that coevolved consisted of a grid in which one rule dominated, a situation referred to as quasi-iiniforniity [133]. Basically, in a quasi-miiform CA, the number of distinct rides is extremely small Willi respect to the mile-space size; fort lienmure, the rules are (listriblited such that a subset of dominant, rules occupies most. of the grid.

[image: ]
Fig. 7.5. One-dimensional density task: operation of a coevolved nonuniform r = I ('A. The grid size is N = 149. White squares represent cells in state 0, and black squares represent cells in state 1. The pattern of configurations is shown through time (which increases down the page). Initial configurations were generated at random. (a) Initial density of ones is 0.40. (b) Initial density of ones is 0.60. The CA relaxes in both cases to it fixed pattern of all zeross or all ones, correctly classifying the initial configuration. Reproduced from [13,11 with the author's permission



Figure 7.5 demonstrates the operation of one such coevolved ('A. In this example the grid consists of 1-16 cells containing rule 226, two cells containing rule 224, and one ce]I containing mule 234. The nondoninant rules act as ..bluffers", preventing information from flowing too freely, and making local corrections to passing signals.
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The density task can be extended in a straightforward manner to twodimensional grids, an investigation that Sipper carried out [133], attaining notably higher performance than in the one-dimensional case. Furthermore. computation tithe, i.e. the number of time steps taken by the CA until convergence to the correct final pattern, was shorter. Figure 7.6 demonstrates the operation of one such coevolved CA. Qualitatively, we observe the CA's "strategy" of successively classifying local densities. with the locality range increasing over titre: "competing" regions of density 0 and density 1 are manifest, ultimately relaxing to the correct fixed point.

7.6 Summary

The conclusion of this chapter is that coevolutiomary algorithms are an ex- treniely rich and powerful heuristic for machine learning and coadapt at ion. Coevolutiom call indeed significantly improve the results of an evolutionary search and is probably the only practicable approach when there is no knowl edge about it suitable fitness function. Coevoltttion also has a few drawbacks, related to t he Red Queen effect and the persistence of mediocre staple states. I lowever, ways have been found to avoid most pitfalls.



Another empirical observation is that, once again, structured coevolvi►rg pop►►lat.ions seen to offer implicit advantages with respect. to panu►ictic ones. Confirming the observations ill previous chapters, the benefits seen► to be related to the slow mixing and the preservation of diversity offered by the lattice structures. For example, we have seen how the debilitating Ned Queen effect that is so often present in coevolutiouary dynamics is mitigated by the use of st tact ►n-ed populations.

Finally, the case study of CA rule evolution for the majority task showed that coevolution of structured populations offers several distinct advantages for this difficult problem, in the form of both competitive coevolution and the cooperative scheme of the cellular programming algorithm.





8
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Some Nonconventional Models

In this last chapter I would like to go beyond the established, relatively straightforward structured-population models and provide it glimpse of other. more complex models that have been proposed. Indeed, nature is by no means mean in providing ideas and inspiration. and evolutionary-computing researchers are very imaginative. As a result. many new models have appeared, some of which seem promising. As mentioned before, we prefer simpler models, when t hev work well, because t hose are t he ones t hat are easier to anal vze uiatheuiatically. The price to pay for using more complex ideas and models is just that: even when they work satisfactorily, they are more difficult to understand and to describe. However. the fact that we are unable to really understand the dynamical properties of these models today should not prevent its from using them. as long as they prove efficient. Some day we might be better equipped to analyze their behavior and we could then include some of those models in our problem-solving toolkit. After all. 20 years ago even simple EAs were poorly understood by today's standards. and we are now in the position of using them nearly routinely.

As it matter of terminology. the coevolntiouarv structured models of the previous chapter might also he considered nonstandard. After all. the subpopulations or network vertices are not homogeneous, as was the case for all the elementary models described earlier. However, given the large amount of research that exists and their particular features. coevolutionarv structured E As well deserve a chapter oft heir own. The same is true for the general graph population topologies described in Chap. 6. In addition. topology-modified homogeneous structured models using more complex. perhaps hierarchical network topologies for communication can also be considered nonconventional. However, as explained in Sect. 1.2.3. we still know too little about these models, and therefore I prefer to leave them aside.



8.1 Nonconventional Island Models

A uuulber of' iionconvetitiona1 mo(lels based oil sparsely coulnlunicating subpopulations have been proposed. They operate at the level of either the evolutionary parameters, the population composition, or the hierarchy of exchanges between poplilations. For the sake of illlustration, I have clloseu to present, two mo(lels out of the many that have been proposed: the injection island model au1d a system that uses variable-size populations.

8.1.1 The Injection Island Model

The injection island GA was proposed by Lin et al. in [93]. It is an extension of the customary island model GA in which the subpopulations are not honulge- neous; rather they search at different levels of resolution in the problem space. Also, the subpopulatiou fitness function atnd the represent atioii of individuals may differ among islands. The idea is to search at a lower resolution in some of the islands and "inject" high-performance individuals into higher-resollit ion islands to fine-tune the solutions. In general, low-resolution evaluation will be less demanding and costly than fitness evaluation at higher levels. At the same time, different GA parameters clay be used ill different-level islands, lllchl(hng illlitatlon and crossover rates, as Well as cotlllnlnlicatioll rates.

The different resolutions of the GA representation are obtained by encoding problem solutions with different numbers of bits. Thus an injection island GA has uniltiple subpolnilations that encode the same problem using different block sizes.

Each subpopulation searches independently for a good individual at its own resolution. At regular iutervals, individuals are exchanged between populations. Exchanges are only allowed up the ladder from a lower-resohition to a higher-resolution code. This is reasonable, since in going from a lowresolution to a high-resolution island translation to the appropriate block size is required, and this can be clone without loss of information only f,ronl lowerto higher-resol tit ion. Oil the basis of this role, Liu et al. considered several static cotmlilt lication topologies for sending individuals. An example is depicted graphically in Fig. 8.1. In the figure, islands with different levels of resolntion evaluate fitness using iucreasingly precise and sophisticated defilli- I ions, which are corresponditlgly increasingly coluputatioually expensive.

Lin et, al claim several advantages for the injection island GA with respect to both standard paiimictic ("As and hxxnogeneons island GAs. They enumerate the following beneficial effects:

• Building blocks of lower resolution can be found and uuaititaiued at that resoluIioii level. They can later be refined by a child island at a higher re'sollttiotl.

• The search space size at lower levels is effectively reduced ill size, which allows one to find promising solutions faster, and theti inject theul into higher resolution islands for refinement.
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• Nodes that are connected in the ladder share port ions of the saute search space and can thus cooperate in finding and refitting good solutions.

• The algoritliiii favors finding an efficient problem partitioning. through a divide-and-conquer strategy.

The injection island approach has been tested on difficult beuchuiark problems. including deceptive functions, and on real-life problems [4-1]. An application to it difficult engineering problem, in particular. showed that the met hodology of searching at different levels of resolution is robust and outperforms standard island GAs in terms of solution quality and computer time. The structure of the algorithm can also easily acconnnodate searching for a untlticriterion objec•tiye function by using each individual criterion as the fitness function of it subpopulation. On the other hand, compared with a standard island G.A. the structtire of the algorithm requires more care in choosing appropriate representation levels and in tutting the model's 1 aratueters.

8.1.2 Islands with Variable Population Size

Lyolutionarv algorithills. owing to their population structure, expend a cout- paratively large amount of computational effort to solve probleuts. This --pop- ulatiort' effect is more marked when algorithms use variablc-size chrontosontes. which has been traditionally the case in genetic progrartuniug. In fact, it has been observed that GP individuals tend to steadily grow in size as generations are computed. The phctiontenon goes tinder the name of bloat, and there have been several proposals aimed at preventing such an inordinate growth (see [92] for a rather coutplete survey). For instance, the fitness function niav embody a penalty associated with the size of the individuals, so that short individuals are favored. Another proposal is to set a limit oil the maximum size. Multiobjective techniques have also be applied to GP in such a way that both the size of individuals and the fitness are considered as simultaneous criteria to be optimized [38]. Most of these techniques have some drawbacks: either they change the way ill which fitness is computed, thus influencing the structure of the fitness landscape and the main characteristics of the problem, or they require additional computational costs to be implemented, often thwarting their positive effects on size. Moreover, most, proposed solutions focus on the size of individuals and do not take into account the global problem of population growth as a whole.



In some studies [52, 53, 1201, bloat and t he reduction of conuputationaI effort have been approached employing another perspective: given that the increase in the size of individuals produces an overall growth in the population, the population size is trade variable, in an attempt to control the computational effort required for evaluating individuals. Variable-size populations have seldom been used: two studies pertaining to GAs are [13, 45]. Another structured model, called the patchwol'k model [90], will be described ill Sect. 8.2.1.

Adding and Suppressing Individuals

If one looks at a typical EA riot, one usually sees that fitness improves quickly at the beginning of the rim, while it tends to level off later in the run. This suggests that many individuals of low quality do not contribute to the overall population fitness at the beginning, while individuals tend to become fitter but more uuiforut and do not provide sufficient evolvability later ill the run. Ill practice, since the population is partially converged, it is as if there were frrncr iudividuals. This leads to the idea of deleting individuals when fitness is still improving vigourously, and of adding new individuals when the population stagnates. Of course, one would like the system to do this automatically i.e. that it should self-adapt its population size dining the run.

In (120] it was suggested that the number of individuals to be deleted or added should be sonic function of the slope of'the fitness versus contpntlit ional effort curve. When fitness is rapidly improving, a proportionally larger number of individuals is deleted. When fitness tends to stagnate and the slope of the curve is less than a given value, individuals are added to the population. Of course, the numerical details can vary widely. The original reference contains details about the actual numerical expressions used and how they were chosen.

Ali important question is: which individuals are deleted and where do new individuals come from? To avoid losing good genetic material and to fight bloat, given a number of iudividuals to he deleted, they are chosen from the worst ill the population, and of those, the largest are selected. Individuals to he added are not generated anew; instead, thew come from another island and are chosen from the best in that island. Their number is determined in such it way that the original population size times a constant is not exceeded. Again, fine details can he found in the original reference.



Results for the Test Problems

The test problems described in Chap. 3 were used in the studies described in what follows: the symbolic regression problem, the artificial ant problem and the even-parity problem. The parameters of the GP system were also the same as before. The topology of the system comprised five islands connected according to a random comnnuiication topology. The only difference from the standard model was the presence of a piaster process that receives immigrants and sends the appropriate amount to a random island, since the sizes of the populations are not the same.

[image: ]
Fig. 8.2. Average fitness results vs. computational effort. Each curve is an average over 100 runs. (a) Artificial ant. (b) even-parity-5. (c) symbolic regression



Evolution of A veragc Fitness

Figure 8.2 depicts the average fitness of the ensemble of islands for the three benchniark problens as a function of the computational effort. The labels Nil. N12. A13. and \14 stand for four slightly different automatic methods for adding individuals when the system detects that, the population must, grow. The details are not very important, and can be found in [I20]. The values are averages over 100 independent executions for each problem and for each method. The thick black curves refers to the standard nitiltipopulation model, i.e. the model with fixed-size subpopulations.



For the ant problem (Fig. 8.2 a), we see that all four methods using a dynamic population size give better results with respect to the standard fixedsize-island model. For instance, to reach an average fitness of about 15, the standard (listributed model needs a computational effort of about 5.5 x 10'', while the same average fitness level is reached by the M 1, M2, M3, and M4 variable-island-size methods with an effort that lies approximately between 2x10`'and Ix10('.

The even-parity-5 and symbolic regression problems (Figs. 8.2 b, c) show the saute general trend, i.e. the variable-size methods are all superior to the standard method but, the differences are smaller. Indeed, the standard deviations at the end of the evolution for each problem (not shown in the figures to avoid cluttering theta) indicate that,, while the differences are significant between the standard model and the ensemble of varying-popnlat ion-size utodel5 for the ant problem, they are not for the other two problems, the differences between the various curves being of the same order as the standard deviation.

The success rate is a good performance indicator when the solution of the problem is known, which is the case here (see Sect. 3.4 for a discussion of this issue). Success rates for each problem are reported in Table 8.1 with their standard deviations. These numbers confirm that, for the ant problem, models with variable-size islands, whatever the method used for suppression and addition of individuals, are better than the standard model. For the evenparity-5 and sylnholie regression problems, the results are still favorable to the dynamic island models, since there is always a met hod among the four that is better than the standard island model. However, for the remaining methods, the differences are within the standard deviations and thus their statistical significance is doubtful.

Evolution of Proyrarra Size

Figure 8.3 shows the evolution of the size of the programs ill the populations with time. It is easily seen that, in general, the methods 1\11, 112, 113 and A14, that automatically adjust the population size in the islands offer an easy and implicit means for limiting bloat. This has already been found to he the case for the standard constant-size-island model with respect to standard panntict,ic genetic programming [60]. Therefore, variable-size populations are a really effective and transparent, way for limiting bloat. Now, in the figure it is apparent that method N13 is less effective than Ml, M2, and M,l in this respect. But since method M3 is allowed to add individuals to ill) to twice the original population size, it, is clear that, this has a negative influence on bloat. Ilowever, the other three ntethods offer perforrnatices that are equivalent Co \13, and thus program growth can be controlled best by using one of theta. It is clear that, since bloat is not controlled explicitly in the system. it would be possible to add other bloat-reducing techniques. A good candidate could be Poli's "Tarpeian" method. which is theoretically justified and extremely easy to implement [117].



Population Size

In Fig. 8.4 the evolution of the total population size for each problem and each model is plotted. Our first remark is that, except in two cases, where the size is allowed to grow past its initial value, the population size in the adaptivesize models always remains smaller than in the standard model (horizontal lines). This explains why the computational effort required is lower for the same accuracy of the solution. We also see that the evolution of the total population size for the four variable-size methods is clearly correlated with the curves of program size shown in Fig. 8.3. This shows empirically that it is possible to fight bloat by automatically adjusting the size of the populations during the run. Considering that the total population size nearly always stays below the constant size of the standard island system. one might fear that, diversity would tend to be lost in the variable-size system. However, in [1201 it was experimentally shown that this wars not the case, which is reassuring.



[image: ]




It is already empirically well known that multipopulation models are, in general, advantageous with respect to the standard panniictic model, as we have seen in detail in Chap. 3. With varying-size niultipoptilation systems one finds even better results both in terms of success rates, and from the point of view of the expenditure of effort and program size. But some caution is called for the findings shown here are empirical, and therefore, they cannot be extrapolated beyond the simple benchmark problems studied. However, the results are encouraging and show that self-adjusting, variable-size tuultipopu- lation systems have something to offer in the way of limiting the computational effort and efficiently solving problems with EAs.
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Fig. 8.3. Average population length times total population size is represented to a function of generation number. The averages are over 100 independent runs for each problem and for each model. The thick curves refer to the standard island model, while the other curves refer to the varying-size-population models (see boxes). (a) Artificial ant, (b) even-parity-5, (c) symbolic regression





8.2 Nonconventional Cellular Models

In the same way that the island model admits an almost endless series of variations, there are also several structured models that are based on the straight cellular structure of Chaps. 4 and 5 but differ from it in some important respect. I shall present two representative models of this class in this section. The first one is in fact a hybrid variant, while the second uses dynamical neighborhood stritctitres.
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Fig. 8.4. Population size as a function of the generation number. Curves are averaged over 100 runs for each problem and for each model. (a) Artificial ant, (b) even-parity-5. (c) symbolic regression





8.2.1 The Patchwork Model

This model was introduced in [90]. The tuaiii idea was to obtain inspiration from concepts ill ecology and population biology. Thus, individuals in the system are mobile agents that live ill an ecological niche and interact with their neighborhood by gathering information through sensors, and possibly act on their local environment. Individuals have other attributes such as a maximum life span, mortality, and breeding abilities.

Agents live in a spatial structure that has the shape of a two-dimensional grid. However, each cell in the grid can contain a number of individuals from zero up to a maximum, not, just one as in standard cellular EAs. As in cEAs, individuals can migrate to neighboring patches according to some migration policy. Thus, the systems combines to ,once extent the properties of the island and cellular models. Individuals are actaually relatively complex agents that act in a two-dimensional virtual world, in a manner similar to many "Alife" models. Individuals can snake decisions and adapt their behavior wit h respect to the environment that t hey see close to their patch. Decisions are sclied- iiled and executed, resolving any collision that may result from incompatible decisions.

Each agent in the population is composed of two parts: its genonte and its motivation network. The genotnc is built from a solution vector, a set of standard deviations, and a paratuetcr vector. The solution vector x is used to calculate the agent's fitness through an evaluation function that is assuuted to be known. The vector of standard deviations cr is used to intplentent ntu- tation: xr+t = xr + N(0, (7), where N(0, (T) is a vector of normally distributed independent randout uumbcrs with zero mean and standard deviatnuts a. Thc parameter vector p is used in the decision process of t ltc agents, which is a relatively Complex process that uses the agent's states, its hiputs gathered through sensors front their neighborhood, and the agent's rnotination, variables. In fact, the agents have a set of adaptive behavioral roles that will determine each individual's actions. This is done through the decision-maker that determines and schedules a behavior. Thc following is a psendocode of the control structure of the Patchwork model (rewritteii front [90]):

initialize population

generation = 0

evaluate population
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Each agent also has a reproductive behavior and a limited lifetime. Individuals nnay die either because they have reached a maximal age or because their mortality. which is anticorrelated with fitness. is high. Offspring also may die when their fitness is low and their number exceeds the available room in it patch. This behavior makes the population size in each patch a variable.

A simplified version of the patchwork system has been tested on some continuous function optimization problems in [90]. Many potential effects of the full-fledged model are absent. but the flavor is the same. The results were good. although the system's complexity is to some extent overkill with respect to the problems chosen. However, of course, many more suitable applications could he found for the system.

In conclusion, the patchwork system is an interesting hybrid structured evolutionary system that is somewhat reminiscent of other spatially extended Alife agent-based systems such as Holland's ECHO system [78] and Langton's SViARM [101]. The aim with these ''ecological" simulation environments is to model complex adaptive systems. However, their nnauy features and details. while they are an advantage for the appropriate problems, are probably not well suited for straight optimization, where simplicity, speed, and problemdependent information are easier to obtain within standard heuristics such as simulated annealing, tabu search, ant algorithms, and classical structured EAs augmented with local search.

8.2.2 Dynamic Neighborhoods in Cellular Evolution Strategies

Cellular models, which are based on slow diffusion of individuals through a regular grid have been described and analyzed at length in Chaps. 4 and 5. ACeinert et al. [156] have recently proposed a dvnannical, self-organizing parallel evolution strategy model inspired by some previous work of Halpern [75]. This model also has relationships to the random-graph-based population structures of ('hap. 6, although those were static. while the present model is characterized by it dynamically changing topology.

At the beginning, the population structure is a random graph with N vertices. An adjacency matrix L describes the connectivity of the population. while L1 gives the structure of the local neighborhood of node j = I..... _ti". Another matrix .11 describes the connections of next-nearest neighbors, and it can always he calculated from L.



The two main parts of the algorithm are the following. In the first phase, the neighborhood structure L, of individual j is altered as a function of the prede- fiued neighborhood dynamics. Connections can be added or deleted according to those rules. After the "topology-variation" phase, an evolution strategy [129] is applied to each individual locally in order to generate A offspring. Individuals for recombination are chosen from the local neighborhood L„ and the best offspring replaces individual j. The evolution is synchronous, and the two parts of the algorithm are iterated until a termination criterion has been reached.

Two set of rules were used to vary the neighborhood structure: deterministic and probabilistic rules.

Deterministic Topology Adaptation

hi the deterutiuistic case, following Halpern, the new neighborhood depends directly on the neighbor's fitness. Each individual possesses two lists sorted by fitness: a list of neighbors and a list of next-nearest neighbors. There is a detaching and an attaching rule (Weinert et al. call them "coupling" and "(Iecoupling" rules, respectively). The detaching rule says that the connections to a certain percentage of the least fit neighbors will be suppressed. The attaching rule, on the other hand, says that, new connect ions will be created to a given percentage of the best next-nearest, neighbors. During time, this dynamics will tend to favor links between fit individuals, while less fit individuals will be dismissed and could even become isolated.

Probabilistic Topology Adaptation

The idea here is to let, the topology of the system self-organize in such a way that each individual always has some neighbor, and such that, genetic operations that have been successful have an effect on the subsequent evolution. The detaching rule stipulates that, a connection to a neighbor is suppressed if recombination with that neighbor produces an offspring that is worse than the best offspring generated at that site in the current generation.

The attaching rule works as follows: if the number of connections to an individual falls below a given threshold, a. given number of new links to randonily chosen individuals are established.

Weinert et. al. implemented the system on a parallel multiprocessor ma- chinc. They performed a number of experiments, comparing the two structured schemes above with a standard pamnictic evohition strategy, and a parallel ES with a complete but static cornnntnicatiou graph, respectively. The functions used for the experiments were a 30-dimensional sphere model
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and the 10-dimensional Rastrigin function (see also Sect. 5.4.3)

[image: ]


Several interesting observations were made in [156]. First, in the self-organized dynamic-lattice algorithms, the deterministic rules tend to produce isolated individuals. while the probabilistic topology update rules reintroduce connections, and thus prevent individuals from becoming permanently detached. With respect to it reference ES model with complete static connectivity between individuals. the dynamic ES with deterministic topology-change rules has a higher convergence speed. On the other hand, the convergence velocity of the dynamic niodel with probabilistic link updates is similar to that of the standard ES. Overall, it was remarked that it parallel ES with probabilistic communication links between individuals yields it relatively slow strategy with it very good convergence probability. The authors of [156] also measured speedup and found it appreciable but far from linear owing to a relatively costly communication overhead: the main gains are in terms of convergence probability and speed. especially for the m oltimodal Rastrigin function.

The overall impression is that the kinds of self-organizing structures used there hold some promise for improving evolutionary heuristics that use structured populations. It uiay be of interest to couple the main ideas presented here with populations structures that are less random, such as the graphs described in the second part of ('hap. 6.





A
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Implementation Notes

In this hook. I have stressed models rather than implementations. This is convenient, since it allows a homogeneous mathematical and structural treatment independent of any material computational constraints. In fact, it is the case that any given structured model can be implemented in several different ways on parallel or distributed hardware. This is one of the reasons why I consider the models to be more fundamental than their implementations. Indeed, it has too often been the case in the past that a model has been designed on the basis of the available hardware, a consideration that tends to limit the model's generality. Thus, structm•ed EAs have often been identified with various kinds of parallel or distributed hardware. The problem with this approach is that while the ►uodels have an independent abstract value in themselves, their mapping onto actual computational systems is time- and technology-dependent. since hardware solutions evolve at quite a rapid pace.

On the other hand, when the need for an efficient structured EA arises in any given application field, the chances are that the problem is it difficult one and t hat it needs large amounts of computing time. It thus becomes important in practice to be able to implement a suitable structured model in such a way that it can make efficient use of the available computational resources. In view of this situation. I think that it is useful to include in this appendix a number of considerations on how to efficiently implement the main structured EA models that have been described. especially those that are at the satue time algorithmically interesting from the evolutionary-computation point of view and easy to map onto available computer hardware. The main purpose is thus to give succinct descriptions of those parts of the algorithms that have to take the underlying programming model into account, in order to benefit from the performance gains.



A.1 Computing Environment

The preCediug paragraph implicitly asks the following question: what is the underlying computational configuration that we should use'? There is not a unique answer to that question. A systematic description of parallel and distributed hardware is beyond the scope of these notes. The reader can find more detailed information in the review article [5] and in the references cited therein. However. some considerations will help to understand the choices rttade in this area.

Its the last, 20 years several waves, or fads, of high-performance computers have appeared, only to become obsolete a few Years later. Thus, singleinstruction, nntltiple-data (SINID) data-parallel computers such as the Connection Machine have nearly disappeared, except in specialized fields Stich its signal processing. The sane can he said of vector supercomputers, which survive only in some high-performance-contpul.ing organizations. Shared-ntemorv parallel computers are still relatively popular, but they do not need to be considered separately since software tools exist for coding parallel programs in message-passing style for these target architectures. The nntltiple-instruction, multiple-data (MIMI)) style of parallel computer architecture is still alive, but mainly in the form of computer farms or networked clusters, where advantage is taken of inexpensive off-the-shelf processor technology together with existing or specialized network infrastructure. It is this kind of computer configuration, which is likely to be available to most research groups, that will be the target of our description, rather than costly esoteric parallel computers.

Having selected the kind of hardware environment, we still have to decide what, software tools are going to be used. Here, as well, there are several reasonable aIteruat fives (see, for example, [ri]). However, for most I ractical applicat ions, some form of message-passing plus process uianagenteat software will he perfectly acceptable. Again, there are several possibilities. Here we shall describe the use of the NIP I software package, a popular process com- tuttnication and management tool that is sufficiently standardized aid easy to obtain and install.

A.1.1 MPI

NIII (Message Passing Interface) is a library of message-passing routines [142] that has been standardized. and is portable across a broad base of computing platforms. The NIPI application programmer's interface (API) was defined in the ntid-1990s by a large group of people front academia, government, and industry. The interface reflects people's experiences with earlier message-passing libraries, such as PVM. The goal of the group was to develop a single library that could be implemented efficiently on a variety of nntltiple-processor etivironux+nt's, including true parallel Nit Ml) machines and workstation (lusters. This distributed progranutting ettvirontuent is rather complete. as it supports process-to- process communication, group communication. setting up and managing communication groups. and interacting with the environment. However. only a handful of primitives are really required to efficiently program distributed EAs, which is an advantage, since the complete environment is rather complex. The interested reader should refer to the offi- cal MIPI site [1-12]. where useful information is given. In the following sections I shall outline implementations of the main classes of structured EAs using theNIPI library, with all emphasis oil island EAs. The program fragments will concentrate on process management and on the communication parts of the algorithm only. assuming that the standard evolutionary operations and their implementation are well known to the reader.



A.2 Implementation of Island EAs


NItilt ipopulation'
 EAs can be implemented very naturally using one subpopulation per processor on networked machines or NIIh1D parallel computers. One big advantage of island EAs when implemented on distributed/parallel hardware is that their communication and synchronization requirements are rather reduced. which limits the overhead of working in distributed mode. In the following two subsections. we shall see an outline of how these models call be implemented using NIPI and standard networked machines. The examples will deal with the genetic programming case. Other EA heuristics such as GAs or ESs can be dealt with in it similar way, and are even easier to implement owing to the fixed-size representation of individual.
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A.2.1 Synchronous Islands

The computation of a synchronous-island model for a EA can basically be t bought of as it collection of NIPI processes, each process representing a population for the specific GP problem. The processes/populations can be evolved in parallel and can exchange information using the NIPI primitives. The messages exchanged by these processes are (copies of) groups of GP individuals, and the conuuunication happens through another process called the master which runs in parallel with the others and implements a given communication topology.

The code used for all the simulations presented in this book was imple- ineuted in C'++ and used the AIPICH library [10.1, 105, 138]. and it was designed starting from the public-domain GPC++ package [58].

Let cfg be a reference to one instance of the GP process: cfg.NumberOfGenerations be the maximum number of generations the GP system has to perform and let freq be the number of generations elapsed [image: ]
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The main loop contained ill this code is the one that allows the systeut to execute the iterative EA process. The statement. "pop->generate (*newPop)" allows t he system to create a uew populat ion (recorded in t he variable newPop) by the successive application of the select ion, crossover, and nntt at ion operators. After that, the newly generated population replaces the old one, which is deleted from nienwry by means of the delete method. The behavior of this method is the deallocation of the tuetuory that has been allocated to pop. Its impleureutation will not be described here. Of course, the copying of the new population into the old one and the deletion of the old one, are executed only if generational EA is being executed. The case of the steady-state functioning of the algoritInn is not described here. After the population has been updated, its individuals are sorted on the basis of their fitness. This sorting algorit hnt places the best individual contained in the population in the first indexing position (index 0) and the worst one in the last position. The last step is the commmunication of a group of (good) individuals to another island. which takes place once every freq generations. This is realized by the send and receive methods which use the MPl-Send and MPI_tecv operations. The parameters of the send method are the process number (pid) that the information is sent to (the process with pid = 0 in this case, i.e. the master process) and the number of individuals to be exchanged. Analogously, the parameters of the receive method are the sender and the number of individuals to be exchanged. Here is a fragment of code describing the behavior of the send method:
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The for loop at the beginning of this method allows the method to group into the same data structure all the information that has to be sent (i.e. all the information contained in all the individuals to be exchanged). The pack method is used to compress the information that is necessary to reconstruct a single individual. This method uses the MPI_Pack primitive. Each packed individual is stored in it line of the global buffer data structure. Recording all the information in it single data structure allows the method to call just one MPI-Send primitive in order to send all the requested individuals to the master. This is very important, because it allows the system to save the time overhead derived from the execution of many different send operations. with their associated latency times. The implementation of the pack method can be described by the following program fragment:
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Basically, the MPI-Pack primitive is called to insert, into the compressed structure called buffer, the information contained in each node of the tree to be packed. For this reason. when the current node represents a function, the pack method has to be called recursively over all its sons. The code would be simpler for a fixed-size data structure such as a hit string or a vector of real parameters.

The following fragment of code describes the implementation of the receive method:

[image: ]




[image: ]


Syuunetrically to what happens in the send method, a package containing a group of compressed individuals is received from the master using a single MPI-Recv primitive call. Then. the information is uncompressed by the unpack method. which receives as input one line of the global buffer structure (i.e. one compressed individual) and returns an instance of the MyGP class containing all the information stored in that individual that is needed in order to reconstruct the tree. The received individuals are placed at the bottom of the sorted population, i.e. they replace the worst ones. The containerSize0 method returns the total number of individuals that make up each subpopulation. The implementation of the unpack mathod can be described by the following code fragment:
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Each node of the tree to be reconstructed is uncompressed by one call to the MPI_Unpack primitive. For this reason, the method is called recursively over the sons of each nonterminal node. Each uncompressed node is transformed into a gene by means of the createGene method, whose description can be found in [58].

The last part of this subsection is dedicated to a description of the algorithm for the master process. It is very simple and can be described by the following code fragment:
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The itaster process keeps track of all the slave processes to which a group of individuals has already been sent, by tneaiis of the vector of flags called already-calculated. It executes a loop like the one executed 1) v the slave processes, in order to iterate over the generations. At every freq generations, it receives a package from each slave process attd, for each one of t hems it sends the package to a new process. whose pid has been calculated 1>y the calculate destination method. This tuethod is used to irnpleutettt the particular topology chosen. IAor instance, intplenteutatiou of a the random topology can he described by the following code fragment:
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It it case. the calculate_destination met 110(1 generates a random nunt- her (called destination in the code fragment), representing the pid of a slave process. If a package has already been sent to the process whose pid is equal to destination during this generation (i.e. if already-calculated [destination] equals -1). then the list of the process pids is covered until one process t hat has not received a package yet is found. That process is returned as the destination of the next package shiputent.

A.2.2 Asynchronous Islands

In the case of asynchronous conuuunication atnoug islands. no niaster process is iniplentented: an idea of the conununication topology is integrated into each process/population. The high-level code executed by each process/population, in the simple case of it ring topology, looks as follows:

[image: ]
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This time, the send and receive methods are both itnpleulented using nonblocking NIPI primitives. For this reason, tests for termination of communications must be performed. This is the reason for the presence of the variables request-send. request-receive, status-send and status-receive, representing the hanging requests of sending and receiving a group of individuals and the status of these requests. In order to make parallel execution more efficient, a vector of requests is used, allowing the system to wait for termination of all the hanging communication operations at, one time. As the code fragment above shows, once a receive operation is completed, the content of the message is read and unpacked (via the unpack method, which is exactly the same as in the case of synchronous islands described in Sect. A.2.1). Received individuals replace the worst ones as usual, since the population has been sorted by fitness before executing the communications. The same test for termination is implemented for the status of the send operation (code omitted for siniplicit_v). Tests for termination of the sending and receiving operations are implemented by the MPI_Test function, which returns it variable, called test in the above fragment. If the value of test equals one, the communication operation is completed and the execution can proceed.

The implementation of the send method is slightly different from the case of synchronous communicat ions described in Sect. A.2.1, the main differences being that a value is returned by the method, representing a handle for the request for execution of the current operation, and that tlie AMPI funct ion used is MPI_Isend, i.e. the nonl>locking send primitive of NIPI. Here is a fragment of code describing the behavior of the send method:
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The send method returns a variable of type MPl-Request. indicating a handle for the request for execution of the current asynchronous send.

Analogously. the implementation of the asynchronous receive method can be described by the following code fragment:
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In this case also, the AIPI function used for communication is a nonblocking one (MPI_Irecv) and the value returned by this method is a variable of type MPI Request. representing a handle for the request for execution of the current receiving operation. Given that it is necessary to unpack the received message only when the receive operation is completed and given that it is more efficient to test all the receive operations at once, and to proceed with the unpacking of the first received message. the unpack operation is called outside the receive function, as shown above. This is not the case for the send function, since the pack operation must be performed before the MPI_Isend.



A.2.3 Summary

In conclusion. straightforward island models are easy to implement oil distributed or parallel ruachines, and have been empirically shower to be ('Ili- cient prof>lein-solvers both from the algorithrnric point of view and in terms of elapsed time. A useful description of how practically to build one such computational cluster is given in ]83].

Several evohetieneary-coneputation packages that incline the possihilit, v of distributing the load over multiple macleiues and of counuunicat ing hci ween t hone are publicly available. The following short list, wit li pointers to relevant web pages, is not meant to he exhaustive: it is just au indication of where to find this kind of software at the time of writing.

• The DREAM Project (various European partners):
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• Open I3EAGLL (Laval University):
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• I':('.1 (George Mason University):
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• (.ALOPI'S and lilgl> (Michigan State University):
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A.3 Implementation of Lattice Cellular EAs

Regular grid EAs are easy to itiipleineut on distributed or parallel systems in the svnchronous case. Difficulties inav arise only in two cases: when they are to function asyn< hronousl' in time and when the computational load is different oil different ('I'lls. These cases are briefly discussed below.

A.3.1 Synchronous Cellular EAs

At the beginning of' the 1990s. the hardware of choice for implementing svn- clronous (LAs was SINII) machines such as the Connection Machine and Nlaspar. Lattice population structures can be mapped straightforwardly onto such architectures, with one or more individuals (cells) per computational unit. In the frequent case where there are more cells than processors, several cells are assigned to each processor; The processors are multiplexed and deal with each cell sequentially. Today. however, this data-parallel uuachine architecture has been relegated to specialized computational tasks and is no longer easily available. Nevertheless, using the NIII message-passing paradigm on a standard networked or nnrltiprocessor system, it is easy to inapleurent syu- clronous cellular I;As simply by domain decomposition. As au example of the technique, we slay take the case of a two-dimensional grid (see ('hap. 4). Figure A.1 scheniatically depicts the situation: each processor gets a portion of the grid to work with and does its work independently of the other processors. Each processor in fact implements a standard sequential algorithm to synchronously update each individual in its grid patch and does not need to access the memory of other processors except for the points on the border region. Those points need the values of the individuals nearby in the surrounding patches, as only first neighbors interact. Tits, the only communication heeded is the swapping of edge values between neighboring regions. which. since these regions are managed by different processors. requires those processors to send and receive the corresponding messages, and this needs to be done before each titne step. Since the workload on all processors is analogous, communication can he synchronously blocking, which maintains the same update order as in the sequential case. If the surface/perimeter ratio of the patches in the domain decomposition is sufficiently high, so as to ininintize communication overhead. then performance is good on workstation clusters.



[image: ]
Fig. A.1. Domain decomposition of a two-dimensional lattice. The square domain is broken into square subdomaius. subdomains are assigned to different processors, and each processor simultaneously and independently works on its subdomain. Only individuals in the shaded regions need to be communicated between processors



There can be a problem with the aaahove scheme only when the workload of each processor is not the same. This can happen, for instance, in genetic programming. where the evaluation phase. which is usually the more timeconsuming. can take widely different times owing to the different size and complexity of difefrent individuals. If the differences are severe, performance will stiffer since the computational time per update step will be determined by the slowest processor. This problem can be solved in two ways: either one has to use load-balancing techniques. or one can dispense with strict generational evolution. A clever load-balancing solution, with performance analysis, has been suggested by Spezzano and coworkers and can be found in [56]. The second solution is easier, as it floes not require explicit load balancing and can be implemented similarly to asynchronous islands. However, it changes the nature of the algorithm. which can no longer be considered as equivalent to the sequential synchronous version.



A.3.2 Asynchronous Cellular EAs

Asynchronous cellular EAs using random cell update rules such as uniform update or random-sweep update (sec Chaps. 4 and 5) are difficult to implement efficiently on standard distributed hardware. Straightforward domain decomposition techniques such as the one described in the previous subsection will not work when one single random cell is updated at each t irate step. However, variations of those models can be implemented efficiently. For instance, in the random-sweep tnodel, the list of cells to be updated is a random pernntta- tion of the it cells in the lattice. Assiune that, as before, each processor is assigned one square sublattice to work with. Once the permutation of cells has been generated, all the subpertnutations pertaining to each stthblock are known. Each processor also has the information about which cell is connected to which in the subblock, i.e. the x y coordinates of all the cells. Border values can be exchanged between processors as before. By ignoring changes at the boundaries between lists, the algorithm can now be parallelized efficiently, since each processor will work simultaneously and independently on its own list. The only overhead, apart from sparse communication, arises from the setup of the lists in each processor.

A.4 Performance Measures and Speedup

It should be clear that t he kind of performance we are interested ill here is t he time efficiency of the algorithms, and not, their quality as problem solvers in the evolutionary sense, an aspect that has been dealt with at length in the rest of the book. The discussion here closely parallels that given in [5]. Computing the speedup of a parallel algoritltnt is a well-accepted way of measuring its efficiency. Although the use of speedup is verv cotntnon in the field of deterministic parallel algoritInns, it has been adopted in the field of parallel EAs in several flavors, not all of theta with a clear meaning. In this section I shall present some concepts related to speedup and discuss their meaning when applied to evaluation of the efficiency of a given parallel/distributed EA.

I shall begin by revisiting the traditional definition of speedup. The well known definition (see e.g. [2]) relates the (worst) execution time of the best sequential version, Ti, to the (worst) execution time of the parallel version of the algorithm on in processors, T,,:

5111 T, ~ Tire



With this definition we can distinguish between:

• sublinear speedup S,,, < in,

• Iinhar speedup Sill = m, and

• superlinear speedup S,,, > m.

The first modification we need to introduce in the standard definition of speedup is to consider average times in the ratio. The reason is that EAs are stochastic algorithuns in which a single execution is not statistically significant. This means that we need to average a sufficient number of statistically independent runs in order to have representative time values, and hence
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However. even when we use average tithes, the traditional definition remains unclear in the field of evolutionary algorithms since it makes the assumption that we are aware of the best algorithm to solve the problem. Let its call this the strong definition of speedup (Type I in Table A.1). Some practical problems arise with this definition. Firstly, it is difficult, if not impossible. to decide whether or not a sequential EA is the best algorithm, since oftentimes it is the only existing algorithm that has been tried for the problem (e.g.in the case of new applications). Secondly, it is usual when analyzing EAs to study a large set of problems: the strong definition requires the researcher to be aware of the fastest algorithm that solves any of the problems being tackled. This scenario is often not a realistic situation when heuristics are involved.

These reasons have traditionally led researchers to measure the speedup by comparing their own sequential and parallel algorithms. Let its introduce a weak definition of speedup (t}-pe II in Table A.1) to the extent to winch it is possible that a different algorithm exists (probably not an EA) that solves the problem faster in sequential mode. This definition will allow its to compare our parallel EA against well known sequential EAs. therefore studying the speedup without the need to involve nonevolutionarY algoritlints in the analysis.
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The next important point relating to a weak definition is the stopping criterion. Speedup could be studied by imposing a predefined global number of iterat ions on both the sequential and the parallel LA. Let its call t his a measure of type 11.13 (Table A. 1). Its general, this kind of measure is unfair, since it compares two algorithms that are working out solutions of different, fitness (quality), thus breaking the fill idatnetttal statement that they are "solving" the same problem with the "same„ precision. This stopping criterion can be usefitl in some other situations where, for example, the same effort is allocated to different algorithms to compare their final error, but not, when speedup is to be measured. Ot her researchers [26] have also ntentioned these considerations.



Therefore, we need a meaningful and fair termination criterion. The obvious candidate is to stop the algorithms that are being compared when a solution of the sane quality has been found. usually an optimal solution. This is called an orthodox weak definition, or type 1I.A.2 (Table A.1).

Let its try to get a deeper understanding of the orthodox weak defirnition. One important consideration is the composition of the sequential EA. If' we were to follow the old-fashioned concept, that a "sequential" FA is a "panntictic" EA, we would compare a paninictic (sequential single-population) EA with, for example, a distributed HA of d islands, each one running on a different processor. We call this it pananixia versus wrrr,I comparison (type 11.A.I its Table A. I ). But the algorit hill running on it single processor is panmict is in this case, while the d islands that are using d processors represent a distributed migration model whose algorithmic behavior is quite different from that of the pamniclic one. This can sometimes produce a very different result for the numerical effort needed to locate the solution. and thus very different search times can he obtained (in general, faster and more accurate search for the distributed version, see Chap. 3). In fast. it could lead to obtaining it superlinear speedup, since a distributed LA running parallel islands can locate it solution more than d times faster than the partntictic one [8], although this need not always be the case.

In order to have a fair and meaningful definition of speedup for parallel :As, we need to consider exactly the same algorithm (for example, the (listributed algoritlun with d islands) and then only change the number of processors, from 1 to (1, ill order to measure the speedup (orthodox weak definition). In any case, the speedup measure should be as fair and as close to the traditional definition of' speedup as possible.

Another important point, and all obvious result in parallel computing, is the Anidlial's law [82], namely that adding more processors usually causes a loss of efficiency. Only some models are scalable (more efficient) with an increasing number- of processors. Normally, if we add snore processors, thert we should at, the same time increase the population sizes, in order to keep a good cornputatiou-to-conununication ratio.

We now turn to it striking point. Many authors have analyzed parallel 1;As, attending to different criteria, and ma>nv have obtained superlinear speedup when rising a parallel ioachiane [12, 19, 131]. After having discussed alternative methods to measure the speedup we still have to address one question: is it really possible to obtain superlincar speedup in parallel EAs" 'I'll(, answer to this question is "yes". In short, the sources for superlinear speedup are (see [3] for more details)



• there is a higher chance of finding an optimum by using more processors, owing to the intrinsically heuristic nntltipoint nature of parallel EAs:

• splitting a large global population into smaller subpopulations that fit into the processor caches provides faster algorithms than using a single main meniory: and

• the operators work on nmch smaller data structures and they do so in parallel, which is an additional source of speedup.

A.5 A Remark on Pseudorandom Number Generators

I shall end this appendix on technical matters with a short discussion of the possible dangers of generating and using pseudorandom numbers (PRNs) in evolutionary algorithms. The issue has been dealt with its [98] and references therein. to which I shall refer for further experimental details.

EAs are stochastic heuristics that use PR\s rather heavily. Typically. nondeterministic decisions are made when an initial population is generated. when individuals are selected for reproduction. and in the application of most variation operators. Thus, we flutist be reasonably certain that our methods for generating PR-Ns are good enough. First, let us briefly review some important concepts in the field. The presentation here is necessarily limited: the reader will find an excellent in-depth study of the issue in Knuth's classic book [88].

Although one could think of using some natural phenomenon believed to be random. more pragniatically. pseudorandom number generators are used: these are deterministic algorithms that generate strings of numbers that, for most purposes, appear to be random. Given that these sequences cannot be really random. their degree of randomness is gauged by applying a number of statistical tests, such as those described in [88. 97].

In the following the treatment is limited to uniformly distributed sequences of pseudorandom numbers. which is the distribution most often used in EAs: however, there are well-known ways for obtaining sequences distributed in other ways starting from uniformilv distributed ones.

Random number generators must possess several properties if they are to he useful in lengthy stochastic simulations such as those used in computational physics. The most important properties from this point of view are good results on standard statistical tests for randomness. computational efficiency. a long period. and reproducibility of the sequence.

There exist man- ways for generating random numbers oil it computer, the most popular one being the linear congraential generators. linear congruential generators are based on the following recurrence formula:
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The value in > 0 is called the modulus, a is the multiplier, and c is an additive constant. Reference [88] describes in great detail how to pick suitable values for these parameters. The sequence clearly has a maximum possible period of in, after which it starts to repeat itself. Linear congruential generators are very popular among researchers, and most mathematical software packages include one (or more).

Lagged-Fibonacci generators are also widely used. They are of the form
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The numbers r and p are called lags, and there are methods for choosing them appropriately (see [88]). The operator op can be one of the following binary operators: addition, subtraction, multiplication, or exclusive or.

A third widespread type of generator is the linear feedback shift register (LFSR) generators. A pseudorandom sequence is generated by the linear recursion equation
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Linear feedback shift registers are popular generators among physicists and computer engineers. There exist forms of LFSR. that are suitable for hardware implementation.

Another popular type of PRN generators is based on cellular automata [79, 148]. It has been shown that these generators can be of very good quality and can easily he implemented in hardware.

In [98] Meysenburg and Foster, using several widely used PRN generators and a set of standard GP test problems, did not, find any statistically significant influence of the quality of the generator on the results. On the other hand, Daida et al. [36] found that PRN generators had an effect on the quality of solutions, using another test problem and different generators. On the whole, it seems unlikely that, standard good generators will cause any large bias in EA algorithms, although the influence on other aspects of the population such as diversity has not yet been sufficiently investigated. After all, the sequences needed are not very long, as a quick back-of-the-envelope calculation shows. With a population size of 1000, a run that lasts 100 generations, and assuming that all the individuals will be affected by selection, one-point crossover, and mutation, one has of the order of 3 x 10'; x 102 = 3 x 105 random numbers in the sequence. This is a far cry from typical statistical-physics simulations which may require on the order of 1010 random numbers. At this scale, correlations and other effects, such as too short a period, that may remain hidden in shorter sequences may become important, and indeed some Monte Carlo simulations in physics have been shown to be heavily biased owing to statistical problems in the random-number sequences. The problem does not seem to be as serious for EAs, as we have seen, unless the generator is a really bad one. However, a wise conclusion for this section could perhaps be the. following. While different PRN generators do not seem to have asignificant effect on EA computation, we are tending to use larger and larger populations and longer runs, which in turn require more PRNs. Therefore, to be on the safe side. it is a good idea to employ reliable generators, since usually they do not cost more to implement and use. Extra care has to be taken when multiple processes are used, for in this case there is the risk that the same seed may be chosen in different processes. which would lead to spurious correlations. This can be easily avoided in several ways: one possibility is to use the clock time as the seed.
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