BY KATIE SYLOR-MILLER
AND JULTA EVANS

whot's this?

If you find git confusing, don't worry! You're not alone.
People who've been using it every day for years still
make mistakes and aren't sure how to fix them.

A lot of git commands are confusingly named (why do
you create new branches with git checkout?) and
there are 20 million different ways fo do everything.

$ man it resef

In the first and second
form, copy entries from
<tree-ish> to the index.

‘I'O H\e wrong brancb\ In the third form, set
the current branch head

?
WHOA' do L dO. (HEAD) to <commit>,

0, - optionally modifying index
moujbe 3|+ rese+? and working tree to match.
The <tree-ish>/<commit>
defaults to HEAD in all
actual A forms.

man paqée is this even
English?

oh no I committed

This zine explains some git fundamentals in plain
English, and how to fix a lot of common git mistakes.

we're here
—
—" o helpY

creator of
https://ohshitgit.com

Table of Contents

X Si-} fundamentals *

a SHA is alw%s the same o8 ..o H

a branch is a poiriter Yo o commit i 5
HEAD is the commit you have checked Y5 oA 6
every commit has ou parentio. it }
mistokes you CON'F TR oo B

woh shit! mistakes & how Yo fix theme

T need +o change the message on my last commit+.....9
T committed but T need to make one small changel.........10
1 acciden‘l’a"l:s committed +o the wrong branch T.....11-12
T +ried +o run a diff but no‘Hm‘ng happened T.......... 13
T have a merge conflictl . —
T committed o file that s\noulc\ be ngnored' .15
T tebased and now I have 1,000 conflicts to fixT....16
il want to split My commit into 2 commi¥sVnnnvive |
T want Yo undo some.‘H\inS feom S commits ago T 18
14did something terribly wrong, does git have a

magic M MACNING T oo eeeeeeeeeeeeeeereeeesssenen e e 1

A SHA cx\uatés refers
to the same code

Let's start with some fundamentals! If you understand
the basics about how git works, it's WAY easier to fix
mistakes. So let's explain what a git commit is!

Every git commit has an id like 3f29abcd233fa, called
a SHA ("Secure Hash Algorithm"). A SHA refers to both:

see them with

the changes that were made in that commit< gt show ’
a snapshot of the code after that commit was made

No matter how many weird things you do with gh;, checking
out a SHA will always give you the 'code. It's
like saving your game so that you can go back if you die &

You can check out a commit (ike this: SHAs ace long,

butyou can just
¥~ use the first

b6 chacacters

git checkout 3f29ab

This makes it way easier to recover from mistakes!

ok, let's commit, 00
%’ thats 3£290b

1T rea\\«j screwed

up this file, let's
90 back to the

version from

3¥290b

A branch is a pointer
Yo o commit

A branch in git is a pointer to a commit SHA:

main — 2e9fab

awesome-feature — > 3hofean

fix-typo —> 775506

Here's some proof! In your favourite git repo, run
this command:

$ cat .git/refs/heads/main

o
this is a text file
Con+ainin3 “ZeC(f-ab..."

Understanding what a branch is will make it MUCH easier
to fix your branches when they're broken: you just need
to figure out how to get your branch to point at the right
commit again!

3 main ways to change the commit a branch points tfo:
* git commit will point the branch at the new commit
X git pull will point the branch at the same commit as

the remote branch
% git reset COMMIT_SHA will point the branch at COMMIT_SHA

5

HEAD is +he commit
you hove checked oot

In git you always have some commit checked out. HEAD
is a pointer to that commit and you'll see HEAD used a
lot in this zine. Like a branch, HEAD is jusf a text file.
Run cat .git/HEAD or git status to see the current HEAD.

Examples of how to use HEAD:

— show the diff for the current commit:

git show HEAD

— UNDO UNDO UNDO UNDO: reset branch to 16 commits ago

git reset --hard HEAD~16HEAD~16 means

16 commits ago
— show what's changed since 6 commits ago:

git diff HEAD~6
— squash a bunch of commits together
git rebase -i HEAD~8

this opens an editor,
use “'Fixup" to Squash
6 commits together

every, commit
has o parent

Every commit (except the first onel!) has a parent commit!
You can think of your git history as looking like this:

E‘ojrrvr\(rey:_\‘;' HEAD “make co¥s blue”

pacent [309d66] HEAD “add cats”

v :
9ond + [09Zeab | HEAD “fixtypo”

HEAD always refers to the current commit you have

“iniYial commit”

checked out, and HEAD” is its parent. So if you want to go
look at the code from the previous commit, you can run

git checkout HEAD*

commits don't always have

1 parent. Merge commits
ac\'ua\B have 2 paren‘l's!

git log shows you all the ancestors of the current
commit, all the way back to the initial commit

mistakes you cant fix

Most mistakes you make with git can be fixed. If
you've ever committed your code, you can get it
back. That's what the rest of this zine is about!

Here are the dangerous git commands: the ones
that throw away uncommitted work.

Al git reset --hard COMMIT

(D Throws away uncommitted changes
(@ Points current branch at COMMIT

Very vseful, but be careful to commit first if
you don't want fo lose your changes!

& git clean

Deletes files that aren't tracked by git.

of A'lfec*o(:_')
& git checkout BRANCH FILE ™

Replaces FILE with the version from BRANCH.
Will overwrite uncommitted changes.

3

, I need to chancje the message
on my last commit?

——— e - e ™ - o ——— - -

Then edit the commit message & save!

git commit --amend will replace the old commit with
a new commit with a new SHA, so you can always
go back to the old version if you really need tfo.

i You run 'gi’r commit’ but change your
mind, you can always abort by deleting

the commit message, saving, and quitting.
Or quit withoul saving!

s T committed but I need +o
make one small chanje!

® Make your change

@ Add your files with git add
@ Run:

this usua\lcj hoppens to me when
T wcorge{' to run tests/ linters
before COmmiHing!

You can also add a new commit and use

git rebase -i to squash them but this is
about a million times faster.

’1 QCCiden‘l'a\\g Commi‘H‘ed
to the wrong branch'.

@ Check out the correct branch
git checkout correct-branch
(2 Add the commit you wanted to it

git cherry-pick c52filc

use ‘git show wrong-bmnch'
to find this

correct-branch

. *
correct branch /*Eszﬂc o e \ *c52f‘|c
N\ S T 7 Cherry pick o
/ cherry piC /
®main 4P \ /o
cherry-pick makes a. new ®main
' commit with +he same

changes as c52f1c, but
a different parent.

(@) Delete the commit from the wrong branch

git checkout wrong-branch
\Vgit reset --hard HEAD*

be careful when running 'gﬁ reset —hard ¥
1 always run ‘git stotus' first to check
for uncommitted changes

T committed something fo
main that should have been
on o brand new branch !

(1) Make sure you have main checked out:

git checkout main

(2) Create the new branch:

git branch my-new-branch

(3 Remove the unwanted commit from main:

git status
§7git reset --hard HEAD~

careful!

(@ Check out the new branch!

git checkout my-new-branch

‘9\‘\' branch and "git checkout -b’ both

creotre o new branch. The Jdifference is

‘git checkout -b" also checks out the branch
12

, T4cied o ron a diff
but no+hin3 happened?

did Yoo know there are
% 3 ways +o diff 84

Suppose you've edited 2 files:

$ git status
On branch main
Changes to be committed: s’togea changes

o Gadded vith ‘gt odd)
modified: staged.txt

Changes not staged for commit:

unstaged
changes

Here are the 3 ways git can show you a diff for
these changes:

modified: unstaged. txt

—s git diff: unstaged changes
_y git diff --staged: staged changes
—»git diff HEAD: staged+unstaged changes

A couple more diff tricks:

—» git diff --stat gives you a summary of
which files were changed & number of
added/deleted lines

— git diff --check checks for merge
conflict markers & whitespace errors

T have a
2 merge conflict 71

Suppose you had main checked out and ran
git merge feature-branch.

If that causes a merge conflict, you'll see
something like this in the files with conflicts:

<< HEAD

if x == 0: Je &)
e Trom ma
return false co n

if y == 6:
return true

elif x ==0: code from
return false feature-branch

>S>>>>>>> d34367
To resolve the conflict:

O Edit the files to fix the conflict
@ git add the fixed files

@ git diff --check: check for more conflicts.

' or qit rebase
(H)git commit when you're done. <+ S noe £

you're rebasing!

You can uvse oo GUI *o ViSUa“lj
resolve conflicts with "git merge_‘\'ool’.
Meld (meldmerge.org) is o great choice!

should be ignored!

Did you accidentally commit a 1.5GB file along
with the files you actually wanted to commit?
We've all done it.

(D Remove the file from Git's index:
git rm --cached FILENAME
This is safe: it won't delete the file
(2) Amend your last commit:

git commit --amend

@(Opﬁona() Edit your .gitignore so it doesn't
happen again

now your coworkers wont be stuck
downloading o. HUGE git commit]

, L committed o file that

! stacted (ebas-‘ng and
now I have 100000 0O
conflicls to fix '

This can happen when you're rebasing many
commits at once.

(") Escape the rebase of doom:

git rebase --abort

(2) Find the commit where your branch diverged
from main:

git merge-base main my-branch

(3 Squash all the commits in your branch together:

git rebase -1 $SHA_YOU_FOUND

K output of

@ Rebase on main: git merge-base
goes here

git rebase main

o\H—erna‘\'ive\g, if you have 2
branches with many conflicting
commits, you can just merge!

, T want +o spli‘|" Moy

commit into 2 commits!

(1) Stash any uncommitted changes (so they don't
get mixed vp with the changes from the commit):

git stash

@ Undo your most recent commit:

git reset HEAD*

7

safe: this points your branch at the
parent commit but doesnt change any files

@ Use git add to pick and choose which files you
want to commit and make your new commits!

@661’ your uncommitted changes back:
git stash pop

You can use git add -p if yoou
wont To commit some changes

Yo o file but not others?!

, T wont t6 undo SomeH'\ing
from 5 commits agol

If you made a mistake but want to keep all of
the commits since then, git revert is your friend!

git revert will create a reverse patch for the
changes in a commit and add it as a new commit.

(D Find the commit SHA for the commit you
want to undo.

@ Run:

git revert $SHA_YOU_FOUND

@ Enter a commit message for the revert commit.

Now all of the changes you made in that commit
are undone!

this is super usefol if you
push a. bad commit to o
shared repository and need
to undo it!

g = T did some‘H'n'nS +erriblb wrong,
Y does gi“’ have o magic
+ime machine ?

Yes! It's called git reflog and it logs every single thing
you do with git so that you can always go back.

Suppose you ran these git commands:

(D) git checkout my-cool-branch
@ git commit -am "add cool feature"
(3)git rebase main

Here's what git reflog's output would look like.
It shows the most recent actions first:

(@ rebase: 245fc8d HEAD@{2} rebase -i (start)
@ commit: b623930 HEAD@{3} commit

(D checkout: 01d7933 HEAD@{4} checkout

If you really regret that rebase and want to go back,
here's how:

git reset --hard b623930 r\ 2 woys o refer
/ to that commit
4

git reset --hard HEAD@{3} before the rebase

19

love this?
hitps:// ohshit 3‘4'\'.c_om

