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Preface

I am The Physicist! Since 2006 I have run a web site, www.AskThePhysicist.com,
where I answer questions about physics. The site is not intended for answering
highly technical questions; rather the purpose is to answer, with as little mathematics
and formalism as possible, questions from intelligent and curious laypersons. For
several years before my retirement from the University of Georgia I ran a similar
Q&A site for the Department of Physics and Astronomy there. Over the last decade
I have answered more than 4000 questions on line and uncounted more by brief
email replies. I have found this very rewarding because it is an extension of my more
than 40 years experience teaching and because I learn something new almost every
day. The questions I receive reveal what aspects of physics interest people and what
principles they do not grasp. They reveal a wide-spread thirst to understand how
physics describes, on many levels, how our Universe works. It is gratifying that the
site has on the order of 50–100 000 visits per month, far more than the number of
questions asked; I interpret this to mean that there are many visits by people who
simply like to read and learn.

This first book is about classical mechanics. Usually ‘classical’ calls to mind
Newtonian mechanics and that is indeed where modern physics started. Since
Newtonian mechanics provides the basis for so much of physics, it is logical that it
should be the subject of the first book. Today, though, classical mechanics has come
to include the theory of special relativity; after all, special relativity is the correct
mechanics to which Newtonian mechanics is only an excellent approximation for
most aspects of our everyday lives. The first section in each chapter of the book will
consist of an overview of what I consider to be the bare-bones introduction to the
material. To avoid having this read like a textbook, I mainly give the overview for
one-dimensional situations, avoiding vector formalism which would at worst
frighten away those with limited knowledge of physics or mathematics, or at best
leave them yawning. I will fill in some gaps in the overview sections in the appen-
dices; I will indicate when a specific appendix would be helpful in understanding the
answer to a specific question.

So, if you, the reader are coming to this book with little or no physics knowledge,
these overviews are for you; the overviews are what you absolutely must have to get
anything from the book. And, since this is not a textbook and there is no way to
include all the details and subtleties of physics, there will be the occasional question
and answer which you will not really understand or which will require you to do a
little research on your own. If you are coming to the book with prior physics
knowledge, you might want to skip the overviews, although there is always the
possibility that you could gain insight or benefit from reviewing the basics.

The bulk of the book is devoted to sections which will contain mainly categorized
groups of Q&As from the web site, sort of a Best of Ask the Physicist. Enjoy and
learn!
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Chapter 1

Newtonian mechanics

1.1 Overview
Question: If a curling stone weighs 20 kg and is traveling at a speed of 0.5 m s−1,
with how much force did the curler throw it?
Question: What force is exerted when a 300 lb man falls 3 ft?
Question: I don’t completely understand Newton’s third law of motion. It says for
every action, there is an equal and opposite reaction, but when we apply force to a
book, why doesn’t the book apply the same force to us? And why are we able to
push the book wherever we want, if, according to third law of motion, the book
should also have an equal reaction force?
Question: If a bullet was traveling at 823m s−1 and hit an object that stopped it
dead, how much force would be exerted on the target?

Every day I get questions like these, questions which say to me ‘I have a feeling for
what force is, a push or a pull, but I have no idea how forces are related to the
motion’. In the 18th century Isaac Newton (1642−1727) conceived three simple laws
which tell us how we can understand how forces affect the physical world. In order
to understand how the world works, not to mention be able to read this book, we
must understand these three laws.

1.1.1 Newton’s first law

Imagine a book sitting on a table. It is at rest. There are two forces on it, its own
weight (the force of the Earth pulling it down) and the force of the table keeping it
from falling to the ground. Newton’s first law simply states that, because the book is
at rest, the magnitude of the weight (pointing down) must be equal to the magnitude
of the table force (but pointing up), or, to put it more elegantly, the net force is zero.
If questioner #3 above were pushing with a force just right so that the book moved
with constant speed across the table, there would be two new forces on the book, the
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pusher pushing and the table resisting (called friction); but all forces (now four of
them) on the book still add up to zero. An object which is at rest or moving with
constant speed in a straight line is said to be in equilibrium. Newton’s first law can be
expressed as follows. The net force on an object in equilibrium is zero. This law may
seem obvious today, but it was revolutionary when Newton first stated it. Before
Newton it was assumed that the natural state of an object was to be at rest and, in
order to keep something moving, there had to be a force pulling or pushing it.

When we get to Newton’s second law, the first law will seem to be an unnecessary
special case of the second. But the first law plays a much more important role than
that. Suppose we ask the question ‘Is a law of physics always true?’ The answer,
perhaps surprising, is no; there are usually conditions under which a law is true.
Thinking about the first law, imagine that you are inside an accelerating car. You are
at rest inside the automobile (in equilibrium according to the first law) but you feel
the seat back pushing forward on you, an unbalanced force. Therefore Newton’s first
law is untrue in this automobile. Whenever you find that Newton’s first law is true
you are in what is called an inertial frame of reference. This is the more important
role played by the first law, as a test whether Newton’s laws are true laws for you.

When you have found one inertial frame, you have found them all because any
frame which moves with constant velocity relative to another is also an inertial
frame. (This is proved in the appendix G.) Any frame which accelerates relative to
an inertial frame is not one. Because the Earth rotates and revolves around the Sun,
it is accelerating (see appendix D) and not an inertial frame. Fortunately, the
accelerations involved are small enough to be negligible for many examples in
everyday life. Later in the book, though, there will be examples of physics in non-
inertial frames.

Incidentally, inertial frames get their name from an alternative name of the first
law, the law of inertia. Inertia means unwillingness to change and the first law says
that you need to push or pull on something at rest or moving with constant velocity
to change its motion.

1.1.2 Newton’s second law

In order to discuss the second law, a brief detour to discuss units is imperative.
Whole books have been written on this topic and I will be brief, assuming the reader
already has a good sense of how we normally measure length, mass and time. I will
usually use SI units, mass is a kilogram (kg), length is a meter (m), and time is a
second (s). These are all operationally defined in rather complicated ways, but it is
sufficient to simply think of a meter stick and a stopwatch for almost everything
which will be discussed in this book. 1 kg= 1000 grams and 1 gram is the mass of
1 cm3 of water; or, you might like to think of a kilogram as having a weight of about
2.2 lb if you are in a country which uses imperial units. Note that I have not talked
about how force is measured; that is part of what the second law is all about.

A brief discussion of acceleration is also in order. Everyone is comfortable with
what velocity is, the distance traveled divided by the time to travel it; a scientist
would call this the rate of change of position. Almost nobody, in my experience, is
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really comfortable with what acceleration is. It is simply the rate of change of
velocity. A dropped ball, for example, gains about 10 m s−1 in velocity for each
second it falls; after 1 s it is falling with a speed of 10 m s−1, after 2 s with a speed of
20 m s−1, 30 m s−1 after 3 s, etc. The acceleration is a= 10 (m s−1) s−1= 10m s−2.

To discover Newton’s second law you must interact with nature. We will never
find physical laws by just sitting at a desk and thinking; we must make measure-
ments which tell us how things happen. Newton’s second law is about how exerting a
force on a mass changes its motion, i.e. how force, mass and acceleration are related.
The experiment I propose is pretty simple: push or pull on a mass with a force and
measure the acceleration. First vary the mass and hold the force constant, then vary
the force and hold the mass constant. Hopefully, the resulting data will lead to some
general law. But there is a problem. At this stage, force is a qualitative concept,
a push or a pull, and if we cannot measure it then how can we vary it or even hold
it constant? But, I can imagine having a machine which always exerts the same force.
I could push with my hand using the muscles in my arm with very roughly the same
force each time. Or, I could attach a spring to the mass and always pull with a force
such that the spring was always stretched by the same amount, an improvement over
my hand/arm machine. Oh, and I will call the force my machine exerts 1 baker (B).
So, let’s do the first part of the experiment with one of my constant-force machines,
pulling with a force of 1 B, on various masses. The data might look like the
graph shown in the left panel of figure 1.1. Note that this makes sense because if the
mass is large, then the acceleration is small and vice versa. The problem is that it is
difficult to quantify the relationship between the two variables because the data
lie on a curve, not a straight line. Suppose that, instead, we plot the acceleration
as a function of the reciprocal of the mass (1/mass) as shown in the right panel of
figure 1.1. This gives us a straight line which means the acceleration is proportional
to the reciprocal of the mass, a ∝ 1/m.Next, we hold the mass constant while we vary
the force, first using one 1 B machine, then two, then three, etc. We would find that
two gave twice the acceleration as one, three triple the acceleration, etc. In other
words the acceleration is proportional to the force, a ∝ F. Simple algebra says that
therefore a ∝ F/m. To me, this is Newton’s second law, a statement of experimental
facts—acceleration is proportional to force and inversely proportional to mass.

Figure 1.1. Typical data, in arbitrary units, showing the relationship between mass and acceleration for a
constant force.
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Since it is much more convenient to convert this to an equation, we introduce a
proportionality constant C, a=CF/m. The choice of C determines how we will
measure force. The most clever choice, of course, would be C= 1 resulting in F=ma,
the way we usually see the second law written. One unit of force, called a
newton (N), is that force which, when applied to an object with a mass of 1 kg,
results in an acceleration of 1 m s−2, 1 N= 1 kg·m s−2 and is approximately 0.225 lb.
In conclusion, the second law is both a statement of an experimental fact and a
definition of a unit of force.

1.1.3 Newton’s third law

The third law essentially says that forces in nature always appear in pairs and that
if object A exerts a force on object B, object B exerts an equal and opposite force on
object A. I will refer to those two forces as a Newton’s third-law pair and they always
add up to zero. If you think about it, you will see that an alternative way of stating
the third law is that the net force on an isolated system of interacting objects is zero,
where an isolated system is one which has no forces acting on it other than the forces
among its members.

There is often great confusion surrounding the third law. Carefully note from my
first statement of the third law that the forces of a third-law pair are never on the
same object. One of the questions cited at the beginning of this chapter wondered
how we could move a book across a table since the action and reaction force always
cancel out. But only one of those forces is on the book and only forces on the book
determine how the book moves. For the same reason, we should not make the
mistake of identifying equal and opposite forces automatically as third-law pairs.
For example, the weight of a book sitting on a table points down and the force the
table exerts on the book is equal but points up; these are equal and opposite because
of the first law, they have nothing to do with the third law.

1.1.4 Linear momentum

Newton, in his landmark book Philosophiæ Naturalis Principia Mathematica, did
not write the second law as F=ma, rather he said that the rate of change of motion is
equal to the force. It will be important to understand what this means if we are to
understand many of the Q&A examples in this book. Recall that the acceleration is
the rate of change of velocity; it is customary in mathematics and physics to write
this as a=Δv/Δt where Δv is the change in velocity and Δt is the elapsed time. For
example, if the velocity increases from 4 to 8m s−1 over a period of 2 s, the accel-
eration is (8− 4)/2= 2m s−2. So now we can write F=ma=m(Δv/Δt)=Δp/Δt where
p=mv is what Newton meant by the ‘motion’; p is called the linear momentum
today. (Note that since m is constant in F=ma, mΔv=Δ(mv).) If the net force on a
collection of objects is zero, the rate of change of linear momentum must be zero—
linear momentum never changes! This is called conservation of linear momentum.
Conservation principles are extremely useful in physics. Notice that conservation of
linear momentum implicitly invokes the third law since the net force on an isolated
system must be zero.

From Newton to Einstein

1-4

http://books.google.co.in/books?id=Tm0FAAAAQAAJ&pg=PA1&redir_esc=y#v=onepage&q&f=false


1.1.5 Energy

The mathematics behind the idea of energy is more complex and will be handled in
appendix A of this book for the interested reader. The idea is that if a force is exerted
on an object as it moves through some distance, work is done on the object which
changes its energy. For many situations, the force is constant and along the path of
the object so that the work can be written simply asW= FswhereW is the work and s
is the distance traveled. Now, what changes if you do work on an object? Well, that is
really an easy question to answer qualitatively if you understand the second law—if
you push in the direction it is moving it speeds up and if you push opposite the
direction it is moving is slows down. In other words, force causes acceleration which
means either speed up or slow down in physics, so what changes is speed. Without any
derivation (see appendix A), here is the way that speed changes: W=Δ(1

2
mv2)=

1
2
mvfinal

2− 1
2
mvinitial

2. This is often called the work–energy theorem. When you do

work, you change the quantity K= 1
2
mv2 which is called the kinetic energy of the

object. Note that if there is no work done on a system its kinetic energy never changes.
Again, we have discovered a conservation principle, conservation of energy, which
states that a system on which no forces do work will have its total energy constant.
Something called potential energy is useful, but for the most part it will not be needed
for this book. I will briefly discuss and define potential energy in appendix A and
write the potential energy for weight, mgy.

Finally, the unit to measure energy and work is the joule (J), 1 J= 1 kg·m2 s−2.
You are also probably familiar with the unit of power, the rate at which energy is
used or created, the watt (W). 1 W= 1 J s−1. A 100 watt light bulb consumes 100 J of
energy each second.

1.1.6 This is all wrong!

As we shall learn in the second part of this book, Newtonian mechanics, as framed
above, is only an excellent approximation to the true classical mechanics, special
relativity. F=ma is wrong, K= 1

2
mv2 is wrong, p=mv is wrong. But, this need not

bother us here in chapter 1 because only when speeds become comparable to the
speed of light, c= 671 000 000mph, might you notice that Newtonian mechanics is
not right. Interestingly, Newton’s expression for the second law, F=Δp/Δt, is correct
after linear momentum is slightly redefined.

1.2 Newton’s laws misunderstood
At the beginning of section 1.1 were listed several questions which demonstrate how
Newton’s laws are often misconstrued. Let us now look at some of those questions
along with the answers.

Question: Can you explain to me what exactly keeps molecules moving? With no
energy being added, they should just eventually stop, shouldn’t they? Where does
this energy that keeps them moving come from? In the end, does it all come down
to radiation from the Sun?

From Newton to Einstein
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Answer: You have fallen into one of the most common traps regarding mis-
understanding how the Universe works. Newton’s first law states that an object
which experiences no net force will continue to move with constant speed in a
straight line. What this means is that if something is moving and nothing is pushing
or pulling on it, then you do not have to do anything to keep it moving. In terms of
energy, if something has a certain amount of energy, then it will retain that energy
until some external agent changes it; this is called conservation of energy. I am not
sure what you have in mind with your question, but probably the molecules moving
around in a gas. As you probably know, the temperature of a gas is a measure of the
average kinetic energy per molecule. If the gas is in thermal equilibrium with the
walls, then when a molecule hits the wall it rebounds (on the average) with the same
kinetic energy it had beforehand. You don’t have to do anything to keep it moving.
Incidentally, if Newton’s first law were not true we would never have sent probes to
the distant planets like Saturn and Jupiter or even the close ones like Mars and
Venus. The reason is that if we had to keep the probe moving by burning an engine
the whole way we could never carry enough fuel. What actually happens is that we
burn up almost all the fuel escaping the Earth and acquiring a high speed and then
we just turn off the engines and coast the rest of the way.

Question: If a curling stone weighs 20 kg and is traveling at a speed of 0.5 m s−1,
with how much force did the curler throw it in N?
Answer: You cannot determine the force needed to give a particular mass a
particular speed. Just to make that plausible, suppose you push on the 20 kg stone
with a force of 2 N for 1 s; surely it will have a different result than if you push on
the 20 kg stone with a force of 2 N for 2 s. There are two (in the end, equivalent)
ways you can think about this problem:

• The impulse delivered by a force F in a time t is Ft. The linear momentum of
an object with mass m and speed v is mv. The change in momentum is equal
to the impulse and so, if the object starts at rest, Ft=mv. For example, in
your case Ft= 10 kg·m s−1 so you could push with a force of 10N for 1 s.

• The work done by a force F pushing over a distance s is Fs. The kinetic
energy of an object with mass m and speed v is 1

2
mv2. The change in

kinetic energy is equal to the work and so, if the object starts at rest,
Fs= 1

2
mv2. For example, in your case Fs= 2.5 kg·m2 s−2 so you could push

with a force of 10 N for a distance of 0.25 m.
In both cases, be sure to note that what the force is depends on how long or far

it is applied.

Here the questioner thinks that the speed something acquires depends on how
hard you push it, so that if you know its speed you know how hard it was pushed.
But, it is acceleration, not speed, to which force is related and, as the answer shows, a
small force over a large distance or time has the same effect as a large force over a
small distance or time.

Sometimes the question can be answered if particular constraints are placed on it.
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Question: We are working to produce a safety harness and the strap material we
are using has a maximum Newton rating—we were trying to get an idea of what
Newton rating would be needed to support a 300 lb man if he fell 3 ft. Being
hunters (tree stand safety harness)—perhaps we are wording the question
incorrectly.
Answer: What matters is how long it takes the falling guy to stop. The mass of a
300 lb guy is about 130 kg, the acceleration of gravity is about 10m s−2, and so the
weight of the guy is about 1300 N. You need that strong a strap just to hang him
there at rest. If he falls 3 ft (about 1 m) he will be going about 4.5 m s−1. So, let’s
call F the average force needed to stop him and t the time it takes him to
stop; I reckon that F ≈ 130(10+ (4.5/t)). For example, if he takes 1

4
s to stop,

F ≈ 3600N ≈ 809 lb to stop him. The straps are probably pretty unstretchy, so
your best bet would be to make the harness out of a stretchy material because,
don’t forget, the bigger F is the more it is going to hurt during the stop.

Note that the average acceleration as he is stopping is Δv/Δt which is where the
4.5/t came from; a= 4.5/t. So the strap needs to do two things, hold up the weight
(mg) and provide the acceleration (ma) where m= 130 kg.

Question: If a bullet was traveling at 823m s−1 and hit an object that stopped it
dead how much force would be exerted on the target?
Answer:Here is the questionwhich I get in one formor another which indicates how
poorly understood the concept of force is! You cannot get the force because it
depends on how quickly the bullet stops. If you mean by ‘stopped it dead’ that it
stops instantaneously, then the force would be infinite. The average force is the
change inmomentum (mass times velocity) divided by the time to stop. So, you need
also the mass of the bullet. Suppose the bullet had amass 0.02 kg, then the change in
momentum (0.02× 823) is about 16 kg·m s−1. If it stops in 0.01 s the average force is
1600N= 360 lb, if it stops in 0.001 s the average force is 16 000N= 3600 lb.

This next question comes up often. Newton’s third law says all forces have
an equal and opposite mate. Why don’t they all add up to zero so that nothing
ever moves?

Question: If action and reaction are always equal in magnitude and opposite in
direction, why don’t they always cancel one another and leave no net force to
accelerating a body?
Answer: Newton’s third law states that if one object exerts a force on a second, the
second exerts an equal and opposite force on the first. Therefore, the ‘action/reaction’
forces are never exerted on one body. If you select a body to study, its motion is
determined only by the forces exerted on it, not by forces exerted by it. Students
often make mistakes with this ‘action/reaction’ thing because they tend to identify
any pair of equal and opposite forces as being an ‘action/reaction’ pair. For
example, a 1 lb book sitting on a horizontal table has two forces on it, its 1 lb weight
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pointing down and a force of 1 lb which the table exerts up on it (usually called the
normal force); these have nothing to do with Newton’s third law but are equal and
opposite because the book is in equilibrium and the force the table exerts is therefore
required to be 1 lb up. If we now look at the table, the book exerts a 1 lb force down
on it because of Newton’s third law; the ‘action/reaction’ pair is the force the table
exerts on the book and the force which the book exerts on the table. Lots of novice
physics students want to say that the weight of the book is the 1 lb force down on the
table—this is totally false since this is a force on the book, not the table.

1.3 Air drag
If you have ever taken an introductory physics course, an often encountered phrase is
‘neglecting air drag’ or ‘neglecting air friction’. It is often a good idea to make
approximations when you are just starting to learn something, deal with the relatively
simple cases first. If you have a marble that you drop from 3m, it is a very good
approximation to neglect air drag, but what if you drop a cotton ball from 3m or a
marble from 1000m? There are many examples of motion of objects where air drag is
important and many questions I get are about cases where air drag is important.

Most problems of interest for objects moving through air can be well approxi-
mated as encountering a drag force Fd proportional to the square of the speed v of
object, Fd ∝ v2. In fact, there is a fairly good expression for the proportionality
constant necessary to make this an equation: Fd=Cv2= (CdAρ/2)v

2 where Cd is the
drag coefficient which depends on the shape of the object, A is its cross-sectional
area, and ρ is the density of the air. A reasonable approximation if SI units are used
is for C= 1

4
A. An important thing to recognize if air drag is important is that there is

what is known as a ‘terminal velocity’, vt, the speed which an object moving through
the air tends toward. If dropped, it speeds up to vt, if projected at a higher speed it
slows to vt. It is easy to calculate vt because it is the speed where the drag force (up)
becomes equal to the weight force (down), Cvt

2=mg or vt=√(mg/C). So, contrary
to the simple Galileo-story result that all objects fall with the same acceleration, if
two objects having identical shapes and sizes are dropped, the more massive one
wins because the terminal velocity is larger because it is proportional to the square
root of the mass.

One thing to keep in mind as we look at a few examples is that whenever
you include air drag, your calculation is approximate. The details of air drag are
very complicated and best done numerically with big computers if you are designing
an airplane!

Often, questions involving air drag are about sports as these next three questions are.

Question: How much does a lacrosse ball (2 inch diameter) slow down (horizontal
velocity only) if thrown at 80mph from the instant it is released until it reaches a
point 10 m away, taking into account air resistance.
Answer: I prefer to work in metric units so 80 mph is about v0= 35m s−1 and the
diameter is about D= 6 cm= 0.06 m. I will also need the mass of a lacrosse ball
which I looked up to be about m= 0.15 kg. Now, for a ball of this size traveling
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through air with this velocity, the air resistance force is proportional to the
square of the velocity. Therefore Newton’s second law is of the form −Cv2=
ma=m(dv/dt) where C is a constant which can be calculated approximately as
C = 0.22D2 for a sphere in air. Therefore we must solve the differential equation
(dv/dt)+ 0.00079v2= 0. (I completely ignore gravity because the ball starts with
zero velocity in the vertical direction and flies for only a very short time.) If you
know differential equations, then this is not particularly difficult to solve. I will do
that later. For starters, however, it is instructive to make a reasonable approx-
imation and see what we get. I am going to say that I expect, over so short a
distance as 10m and starting with such a large initial velocity, that the accel-
eration will not change much. So I will say that the acceleration at the beginning,
a0=−0.00079× 352=−0.97m s−2, does not change much over the flight. So we
have a uniform acceleration problem and we can say x= v0t+ 1

2
a0t

2= 10 and
solve for t; I find that t= 0.29 s. Finally, we can obtain the estimated final
velocity, v= v0+ a0t= 35− 0.97× 0.29= 34.7m s−1. So the ball loses about 0.9%
of its initial velocity.

For anyone interested in the exact solution of the differential equation, here it
is. The solutions to the equation are v= v0/(1+ kt) And, x= (v0/k)ln(1+ kt) where
k=Cv0/m. Solving these I find that t= 0.29 s and v= 33.2m s−1. So, only about
5% of the velocity is lost.

The previous question was done in two ways. One very important thing to know
in science is how to make approximations to make a problem more manageable
without getting incorrect results. One of the things which makes air drag problems
tricky is that the force depends on the speed and so the acceleration does also. In this
problem I suggested that, since the time it takes a fast lacrosse ball to go a short
distance must be really small, the velocity, and therefore the acceleration, does not
change very much. Then we can use the equations for uniform acceleration to solve
the problem, much more familiar to many of you than the more difficult solution to
the differential equation. And the exact and approximate solutions give you pretty
much the same result.

This next question is about baseball. It is well known that a curve ball happens
because of air drag but I had not realized how much a ball slows down in the brief
time it takes a fastball to reach the plate. Here I use the ‘exact’ solution (in quotes
because all air drag calculations are approximate).

Question: Based on physics, is a 90 mph fastball slower or faster than a 95mph
fastball? At work we are trying to determine if the 95mph fastball loses energy
faster than a 90mph fastball. Your answer is greatly appreciated.
Answer: You are asking two questions; if a 95mph ball loses energy faster than a
90mph fastball (it does) and if the one which starts out faster ends up slower (it
does not). For the details of the following, see the earlier lacrosse ball answer.
Following the (exact) solution in that earlier answer, I find that the 95mph ball
reaches the plate in 0.47 s and arrives at the plate with a speed of about 80.8mph.
The 90mph ball reaches the plate in 0.50 s and arrives at the plate with a speed of
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about 76.3 mph. So, each loses about 14mphwith the faster ball losing a bit more.
This surprised me but I found another reference saying that something like 10mph
is what is lost, so my calculations are reasonable. So they do not lose energy
significantly differently (the faster pitch lost more speed in a shorter time so its
average rate of change of speed was indeed bigger). (I used 3 inches for the dia-
meter, 0.145 kg for the mass, and 60 ft 6 inches for the distance to the plate.) There
is certainly no way that one could characterize a 95mph fastball as slower than a
90mph fastball.

Often I am called on to settle arguments. Here is an example involving air drag
and the sports of tennis and badminton.

Question: A friend of mine and I have an argument over which is the faster sport,
tennis or badminton. The criterion is how long it would take to serve a tennis ball/
shuttlecock from one side of an Olympic sized tennis/badminton court to the
player waiting on the other side assuming that both are standing on the out of
bounds line. We are assuming ideal conditions and that the players in both cases
are equally strong and fast.
Answer: You may not realize it, but your question is mostly about air drag on
projectiles. I seem to get more questions about air drag than just about anything
else except maybe variations of the twin paradox. Maybe that is because it is
perhaps the most important phenomenon mostly swept under the rug in most
elementary physics courses. There are several instances of earlier questions
involving baseballs and lacrosse balls which are very similar to this one. For high
speed projectiles, air drag is very important; e.g. a 100mph baseball loses about
10 mph by the time it crosses the plate. Approximations have to be made to
quantify the situation you are interested in, but I feel the results I will present are
pretty close to what happens on the court. The approximations are:

• I neglect gravity because the times involved are sufficiently short that the
ball/shuttlecock will not fall far or very much change its vertical speed.

• I assume that the drag is proportional to the square of the speed—twice the
speed, four times the force of drag. This is an excellent approximation for
these speeds, these objects.

• The form of the force I use is F ≈ 1
4
Av2 where A is the cross-sectional

area presented to the wind. Here A= πR2 where R is the radius of the ball or
the outer circle of the feathers. This probably slightly overestimates the force
for the tennis ball (whose ‘hairs’ have the function of decreasing the drag)
and underestimates it for the shuttlecock (whose ‘feathers’ are designed to
increase drag).

• Data for tennis:
v0= 73m s−1= 163mph
R= 0.032m= 1.26 in
m= 0.057 kg= 2 oz
back line to back line distance: 24m

• Data for badminton:

From Newton to Einstein

1-10



v0= 92m s−1= 206mph
R= 0.025m= 1 in
m= 0.005 kg= 0.18 oz
back line to back line distance: 13.4 m

I used the fastest recorded serves for the velocity off the racquets, v0. If
you integrate F=ma, you get the following solutions: v= v0/(1+ kt) and x= (v0/k)
ln(1+ kt) where k= 1

4
Av0/m. Here are the results:

• The tennis ball takes 0.39 s to travel the distance, arrives with a speed of
52m s−1 (116 mph), a loss of 21m s−1 (47 mph) or 29%.

• The badminton shuttlecock takes 0.30 s to travel the distance, arrives with
a speed of 25 m s−1 (56 mph), a loss 67m s−1 (150 mph) or 73%.

I will leave it to you to argue about what these numbers tell you about which ‘is
the fastest sport’. According to your criterion, the shuttlecock arrives earlier but
with a much lower speed. The shuttlecock starts off the fastest because it has a
smaller mass and can therefore have a larger acceleration from the force from
the racquet. But it slows down very rapidly mainly because of its small mass.
Figure 1.2 shows the speeds as functions of time over the flight time of each.

Finally, in our exploration of air drag, here are a few questions in which terminal
velocity is the focus.

Question: If I were to drop an empty wine bottle out of an airplane flying at say
35 000 ft above the ocean at 300mph, would the bottle hit the surface of the water
hard enough to break the bottle? I read somewhere something about terminal

Figure 1.2.
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velocity being 120mph, so would the resistance of the atmosphere slow the wine
bottle to 120mph by the time it made impact with the ocean? And would
120mph be enough to shatter the wine bottle, or would it depend on how choppy
the seas were versus a flat water surface?
Answer:When I answer questions involving air drag and terminal velocity, I usually
use the approximation that (in SI units) the force F of air drag is F ≈ 1

4
Av2 where A

is the area presented to the wind and v is the speed. So, as something falls, the faster
it goes the greater the drag force on it so that, eventually, when the drag equals
the weight, the object will be in equilibrium and fall with constant speed. Since the
weight W is mg where m is the mass and g= 9.8m s−2, the terminal velocity vt can
be calculated: 1

4
Avt

2≈mg or vt≈ 2√(mg/A). So the terminal velocity depends on the
mass and size of the falling object and your 120mph is most likely not correct. Also,
how it falls determines the terminal velocity since it has a much bigger area falling
broadside than with the top or bottom pointing down. I figure that if it falls
broadside there will be a bigger force on the fat side than the neck which will cause a
net torque which will make it want to turn with its neck pointing down; so I will
assume that is how it falls. I happened to have an emptywine bottle inmy recycle bin
which has a mass of about 0.5 kg and a diameter of about 8 cm. When I calculate
the terminal velocity I get vt ≈ 63 m s−1 = 140 mph. The 120 mph number
you heard was probably a typical terminal velocity of a human, and it is just
coincidence that the wine bottle has a terminal velocity close to that.

It is hard to say whether it would break or not. I think probably not. Suppose
that it took 1 s to stop. Then the average force on the bottle would be F=ma=
(0.5 kg × 63m s−1)/(1 s)= 31.5 N ≈ 7 lb which the bottle should be able to with-
stand easily. I know that they say that at high speeds hitting the water is like
hitting a brick wall, but if the stopping time were 0.1 s the force would still only be
about 70 lb.

Question: If you shoot a bullet straight up into the air, its velocity at the very top
of the trajectory is zero, even if only for an instant, as its upward velocity slows to
nothing before becoming downward velocity. Downward vertical velocity then
increases in the earthward direction. Would the velocity ever become dangerous if
it landed on a living person? Is the weight of the bullet important? Does the
atmosphere restrict the downward velocity?
Answer: A falling bullet experiences a downward force of its own weight and an
upward force of air drag. The result of the air drag, which increases with speed, is
to have the falling object eventually reach a maximum velocity called the terminal
velocity which is determined by its weight and its geometry (which is why you can
jump out of an airplane with a parachute). A .30 caliber bullet weighing about
10 grams has a terminal velocity of about 90 m s−1 (about 200mph) and a .50
caliber bullet weighing about 42 grams has a terminal velocity of about 150m s−1

(about 335mph). A bullet traveling 60 m s−1 (about 130mph) can penetrate the
skull so, yes, a falling bullet is dangerous. Dozens of people are killed every year
by celebratory gunfire.
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Question:Why is it difficult to calculate the terminal velocity for a cat falling from
a high roof top?

Answer: I do not know what you mean ‘difficult to calculate’. We can estimate it
pretty easily, but certainly not do it precisely. First of all, any calculation having
to do with air friction is going to have approximations and assumptions. For
something like a cat, roughly 2 kg (4.4 lb), falling, it is a very good approximation
to say that the drag force is proportional to the square of the velocity. It turns out
that a fairly good approximation for the force is F= 1

4
Av2 where A is the area the

falling object presents to the onrushing wind and v is the velocity (this is only for
SI units). Since it depends on A, it depends on how the cat orients itself: if in a ball
he will fall much faster than if all spread out. Suppose we take the area of a falling
cat to be about 20 cm × 40 cm= 0.08 m2. Then the force will be about 0.02v2.
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Now, the cat’s weight is about mg= 2 × 9.8 ≈ 20N. When the force of air friction
is equal to the weight force down, the cat will fall with a constant velocity called
the terminal velocity: 0.02vt

2= 20, so vt=√(20/0.02) ≈ 30m s−1= 67mph. If you
google ‘terminal velocity of a cat’ you will find the number 60 mph, so my
approximations were evidently reasonable. There, now, that wasn’t so difficult,
was it?

This last question is interesting in that, since cats have a relatively low terminal
velocity, they usually survive falls from high buildings. In fact, they are more likely
to survive falls from higher than seven stories because, at the time they reach
terminal velocity, they instinctively relax and spread out. The next question concerns
an animal with a much smaller terminal velocity.

Question: Why is it that if you blow a spider suspended by her web she floats out
but then when this pendulum swings back it stops when the web is vertical and
doesn’t swing back and forth? Is it due to the air friction as it comes back to
equilibrium or perhaps the dynamic structure of the web strand that absorbs
energy that would have made the web swing back and forth?
Answer: It is caused by air drag. This is called a damped oscillator. If there were no
air, the spider would swing back and forth with constant amplitude, just like a
clock pendulum (apart from the little friction from bending the thread she hangs
from). A spider has so little mass that her terminal velocity is very small—drop her
off the roof and she will not get hurt because she quickly comes to some constant
velocity because the air drag, which can be approximated as being proportional to
her speed, quickly becomes equal to her weight. If the air drag is not too big, the
pendulum will swing back and forth with ever decreasing amplitude; this is called
underdamped. For larger drag, as in the case of your spider, she never crosses over
the equilibrium and just slowly approaches the bottom of her swing; this is called
overdamping. There is a third possibility called critically damped, but it is qua-
litatively just like overdamping, so let’s not go there.

1.4 Gravity and Kepler’s laws
Gravity is the force which you are most aware of. This is strange because, gravity is the
weakest force in nature. How can that be? The only reason that it is so pervasive in
your life is that there happen to be very huge accumulations of mass scattered
throughout the Universe (like the Earth, the Sun, etc) and mass is the source of
gravitational force. Newton discovered that two objects of massM1 andM2, separated
by a distance r, exert a force F on each other given by F=GM1M2/r

2 where G= 6.67×
10−11 N·m2 kg−2 is the universal constant of gravitation. Now you can appreciate what
a weak force gravity is: two 1 kgmasses separated by 1m exert a force on each other of
6.67× 10−11 N; this is about 100 times smaller than the weight of one speck of dust.

How did Newton figure this out? Astronomy was a science which was around
long before physics. Amazingly accurate measurements of the positions of planets
were made by the Danish astronomer Tycho Brahe and his assistant German
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astronomer Johannes Kepler in the 16th century, nearly a century before Newton’s
birth. Using these data, Kepler was able to describe how the planets move in their
orbits using his now-famous three laws; the laws, however, were purely empirical,
meaning that they resulted from just describing data, not any physical principle.
Newton’s triumph was that his law of gravitation was able, along with his three laws
of mechanics, to explain Kepler’s laws.

Finally, note that near the Earth’s surface the force W on a mass m is approxi-
mately W =m(GM/R2) ≡mg where M = 6 × 1024 kg and R = 6.4 × 106 m are the
mass and radius, respectively, of the Earth. So g, the acceleration due to gravity, is
g= 9.8 m s−2.

A reasonable question was how Newton could know G. He never did.

Question: How was the value of G= 6.67 × 10−11 derived? How did Newton get
the value of the constant G?
Answer: G is a fundamental constant of nature, it cannot be derived. Newton
did not get the value of G, the best he could do was get the product GM where
M is the mass of the Sun. He shows that GM= 4π2a3/T2 where a is the semimajor
axis of the orbit of a planet and T is the period. This is a derivation of Kepler’s
third law and is the real triumph of Newton. It was 70 years after Newton’s death
that the first measurement of G was made by Cavendish. You can also
get MEarthG=R2g where MEarth is the mass of the Earth, R is the radius of the
Earth, and g= 9.8 m s−2; so Newton could have found the ratio MEarth/M
without knowing G.

You have probably heard the legendary tale of Galileo dropping balls from the
Tower of Pisa, finding them all falling in the same time. It is a question frequently
submitted to Ask The Physicist.

Question: Why do two objects of different masses reach the ground at the same
time and what are the factors that affect their motion?
Answer: The motion of a mass m is determined by Newton’s second law, F=ma,
where F is the net force on m and a is its acceleration. A mass in free fall (no air
friction) has only one force on it, its own weight W which is the force with which
the Earth pulls on it. It turns out that the weight is proportional to the mass, that
is W=mg where g is a proportionality constant called the acceleration due to
gravity. So, if you have two masses, m and M, you can calculate their accelera-
tions, a and A, respectively: A=W/M= g and a=W/m= g. Since both have the
same acceleration, they fall identically. (You can see why g is called the accel-
eration due to gravity.) The factors which must be satisfied for this to be true are
that air friction is negligibly small and the masses must be small compared to the
mass of the Earth.

It turns out that there is a profound physical truth here. There are really two kinds
of mass we have discovered now. One is inertial mass, the property which resists
acceleration when you push on it; the other is gravitational mass, the property which
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allows objects which have it to create and feel gravity. The fact that different masses
have the same acceleration implies that the two masses are identical. Experiments
bear this out to remarkable accuracy. This is important in general relativity, the
modern theory of gravity, and will be revisited in chapter 3.

I have had many variations of the next question. Above, the important role in
physics history played by Kepler’s laws was emphasized. Here is a question the
answer to which states these laws and uses two of them.

Question: The Earth orbits around the Sun. If we stopped the Earth in orbit and
then let it fall straight towards the Sun, how long would it take to reach the Sun?
Answer: The questioner sent me a bunch of data about the masses of the Sun and
Earth, the radius of the Earth’s orbit, and Newton’s universal constant of
gravitation. But, you do not need any of that stuff—all you need to know is
Kepler’s first and third laws and the fact that the period of Earth’s (approxi-
mately circular) orbit is one year. Kepler’s laws are as follows.

• The first law states that the orbit of a planet is an ellipse with a semimajor
axis a and with the Sun at one focus of the ellipse.

• The second law states (not needed for this question) that a planet in its
orbit sweeps out equal areas in equal times, so it moves faster as it gets
closer to the Sun.

• The third law states that the square of the period T of an orbit is pro-
portional to the cube of its semimajor axis, T2 ∝ a3.

The Earth’s orbit is very nearly circular and a circular orbit has a semimajor
axis equal to the radius of the circle, so a1 = RO where RO is the radius of the
Earth’s orbit; the eccentricity of a circle is 0. The other extreme is an ellipse with
eccentricity 1 which is a straight line from the Sun to the Earth and so the semi-
major axis for a ‘dropped Earth’ is a2=RO/2. (To help you visualize this, figure 1.3
shows an elliptical orbit very close to the straight line orbit; just squeeze it a little
bit flatter.) If we can cleverly deduce the period of this orbit, one-half that period
will be the answer to your question. Using the third law,

= = =

= √ =

( )T T a a R R

T T

/ / / /2 8

/ 8 0.354 years.

1
2

2
2

1
3

2
3

O
3

O
3

2 1

So, the time to go half a period is 0.177 years= 64.6 days.

To actually do this problem by brute force, integrating Newton’s second law
for the gravitational force which changes as the Earth falls into the Sun, is very
tricky and certainly beyond the understanding of the average interested layperson.
This problem emphasizes, once again, an important thing to learn in science—it is
often most illuminating to make reasonable approximations to difficult problems.
The solution above is not actually perfectly accurate, it treats the Sun and the Earth

Figure 1.3.
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as point masses which is certainly not true. Also, the Earth would have infinite
velocity when it turned around in its straight line orbit and its acceleration would be
infinite at that time, obvious nonsense. But, if we realize that the real end of the trip
is at the surface of the Sun and that distance is tiny compared to the total distance to
the Earth’s orbit, most of the time must have been spent in the fall to the surface, the
tiny amount farther being a negligible contribution. I show in appendix B that the
time neglected is less than about 9 min of the 64.6 day total. As we shall see in
chapter 2, for Newtonian mechanics to be applicable the speed must be much
smaller than the speed of light and in this case the Earth has about 0.4% the speed of
light when it gets to the surface, again shown in appendix B.

The following question is also a frequent one. Variations on ‘what happens when
I drop a stone in a hole drilled through the Earth?’

Question: A sky-diver is falling toward Earth. A tunnel has been previously
excavated completely through the Earth at exactly the location of the skydiver’s
landing. He continues his dive through the tunnel without touching the sides of
the tunnel. I believe that Newton would have had him stop at the Earth’s core.
Where would Einstein have him stop?
Answer: First, since this is clearly an idealized problem, let us neglect air friction
(which is, of course, not negligible because the sky-diver has a terminal speed before
he hits the ground). Until he enters the tunnel he is accelerating with a constant
acceleration down.When he enters the tunnel, he experiences less and less force as he
goes deeper because there is less and less of the Earth pulling on him (all of the Earth
outside him exerts no force) until finally at the center he has zero force on him but he
has his highest velocity of thewhole trip since he has been speeding up thewhole time.
Now as he moves away from the center he slows down. When he re-emerges at the
other end of the tunnel he has exactly the same speed as he hadwhen he entered it. He
continues until he reaches thealtitude fromwhichhe originally jumpedatwhichpoint
he turns around and begins the process all over again. Newton and Einstein would
both agree on this. If air friction were included, he would not go as far and if he
happened to stop at the center of the Earth, he would stay there forever. If the air
friction were included, the general solution to the problem would be that he would
oscillate back and forth going less far each time until he finally stopped in the center.
There is an interesting aspect of this problem: if the Earth had its mass uniformly
distributed through its volume (it does not), when the sky-diver is inside the tunnel, he
moves exactly like he were a mass on an ideal spring.

The next question has to do with golfing on the Moon.

Question: My son has a question that I can’t seem to find an answer to
researching on the web. What force is behind a golf ball when hit on the Moon?
I appreciate your time on answering this for my son.
Answer: I think there is some confusion about what force is here. Here are all the
forces a golf ball experiences here on Earth:

• The club, traveling with some speed, hits the ball and exerts a contact force
on it for a very short time but it is a very big force and it results in the ball
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acquiring a very large velocity. As soon as the ball leaves the club, there is
no force ‘keeping it moving’. If there were no other forces, it would keep
going forever with the speed with which it left the club.

• Once it is started, gravity pulls down on it which is the force which
eventually does bring the ball back to the ground.

• As it flies through the air, it experiences air drag which can be very
complicated. Essentially, it is a force trying to slow it down and the bigger
the speed is the bigger this force is.

• If it happens to be spinning, the air drag can act asymmetrically so that the
ball curves. This is what is called a hook or a slice in golf (depending
whether it curves left or right, respectively, for a right-handed golfer).

• Of course, when it hits the ground, it experiences forces from the ground
which ultimately bring it to rest.

What is different on the Moon?
• If the club is the same club with the same speed, there is no difference for
this force. Therefore, the ball launches just the same as on Earth.

• The Moon is much smaller than the Earth and the result is that the gravity
on the Moon is much weaker. Therefore, this force (trying to pull the ball
back down) is much smaller and the ball will go a lot farther.

• Since there is no air on the Moon, there is no drag and this also results in
the ball going much farther.

• The ball will not curve on the Moon, regardless of how much spin it has.
• When it hits the ground, things are about the same as on Earth except that
all the forces are smaller, again because of gravity being smaller, so the ball
rolls farther before it stops (also because it is going much faster when it hits
the ground than it would have been on Earth).
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1.5 Physics of everyday life
Physics applies to many every-day situations. Even analogies between societal issues
and physics can be found, as the next question illustrates.

Question: It’s a question the answer to which I wish to use as an analogy when I
make talks to citizen groups regarding homelessness; and specifically in response
to the complaint by some in the audience that the homeless need to just pick
themselves up by their own bootstraps and stop being a burden on society. I keep
trying to explain to them that once one has fallen all the way down (as opposed to
just tipping over a little, or even falling to one’s knees; and especially once they’ve
slipped so through certain kinds of society’s cracks), it actually takes more effort
to get back up again than it took to knock the person down. (And, trust me, it
does.) [The Physicist: The questioner wishes to compare the energy necessary to
tip over a cylinder of radius R whose center of gravity is a distance h above the
floor to the energy required to lift it back up.] What is the amount of energy
needed to tip it over from vertical to horizontal compared to the amount of
energy needed to tip it back up and make it vertical again? I’m looking for a ratio.
Answer: Figure 1.4 illustrates the situation described below. (See appendix C.)
To tip it over, you have to move the center of gravity (COG) so it is above the
point on the floor where the cylinder touches the floor; to do this you must raise the
COG a distance d= h[√(1+ (R/h)2)− 1]. The work necessary to do this is Wfall=
mgh[√(1+ (R/h)2)− 1]. If R is much smaller than h, this may be approximated as
Wfall ≈ 1

2
mgh(R/h)2. The work necessary to lift it back up isWlift =mg(h−R). Again,

if R is much smaller than h, Wlift ≈ mgh. So, the ratio is Wlift/Wfall ≈ 2(h/R)2. For
example, if h= 5R,Wlift/Wfall ≈ 50; it takes 50 times the work to lift as to push over!

Question: Could you explain why the driver of a car must keep her foot on the
accelerator to maintain a constant speed and therefore why energy is needed to
maintain the car’s speed?
Answer: Wouldn’t it be great if we could have a car which had no energy loss?
Unfortunately, the world has forces which we cannot avoid which take energy
away from something moving along. These fall into the category of frictional
forces: a spinning wheel has friction in its bearings which will eventually cause it
to stop; an object moving thought the air has air resistance which will eventually

Figure 1.4. A cylinder upright, about to tip over, and fallen.
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stop it as it moves along; the tires are not perfectly elastic and as they roll they are
being continually deformed and undeformed and energy is lost. Without all these
forces, we could accelerate up to speed and disengage the engine from the wheels
and turn it off and just cruise. However, one can work hard to minimize these
forces in the design of cars; making the cars aerodynamic, reducing the weight,
and other tricks can minimize the energy we lose.

Bicycle stability involves some pretty heavy physics, but some aspects of it can be
understood fairly easily as in the following question. Look for this question to come
up again in section 1.6.

Question: Why, when a cyclist is turning round a bend, why does he lean inward?
Answer: Figure 1.5 is a simplified picture of the bike and cyclist, the circle
representing the center of mass. Now, the sum of all the vertically directed forces
must add to zero, −mg+N= 0 which tells you that N=mg. And, the sum of all
the horizontally directed forces must equal mass times acceleration, Ff = mv2/r.
So, given m, v and r, you now know all the forces. But you still need to know the
angle of lean for the cyclist to not topple over. This is achieved by summing all
torques (about the center of mass) and setting it equal to zero (so that it does not
start to rotate in the plane of the page), Στ= 0 =NL sin θ− FfL cos θ=mgL sin θ−
(mv2L/r)cos θ. And so, solving for θ, θ= tan−1(v2/rg). (See appendices C and D.)

The physics of towing something is illustrated in the next two questions.

Question: If I am towing a vehicle from a standing start is there an equation for
calculating the amount of force I would be using for example if I tow a vehicle
that weighs twelve tonnes because it has wheels and is therefore not a ‘dead
weight’ how do I work out how much force I would be exerting on the tow rope/
towing vehicle and also how would I factor in different gradients as it would

Figure 1.5. A bicycle turning a curve.
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obviously require greater force on an upslope. This came up in my workplace
where our towropes are rated to three tonnes and I was trying to explain that it
does not mean you could not tow a vehicle over that weight.
Answer: This is a good question to illuminate elementary Newtonian physics.
Your referring to ‘dead weight’ really has no meaning in physics, but you
apparently mean that the object can move with little friction. So, let’s assume there
is no friction; this is, of course, never true, but it puts an upper limit to anything I
do. On level ground, any force will move the vehicle if there is no friction. What
matters is how quickly you start it moving, in other words what the acceleration is.
For example, suppose you have a 4 lb fish hanging on a 5 lb test line; if you pull it
up slowly you will land it, but if you try to jerk it up really fast the line will break.
The physical principle in play here is Newton’s second law, F=ma where F is the
force, m is the mass, and a is the acceleration of m due to F. So, in your case, m=
12 t= 12 000 kg; the maximum force you can apply is 3 t= 29,420N because the 3 t
rating means that it can hold up a 3 t mass which has a weight of 3000 × 9.8 N. So
the maximum acceleration is amax= 29 420/12 000= 2.45m s−2= 5.5 mph s−1. This
means that if you speed up to 5.5 mph in 1 s, the rope will almost break. Of course,
there will be friction and so to be safe I would recommend a factor of roughly two,
an acceleration of about 3 mph s−1 would probably be safe. Here is an equation you
can use (which does not include any safety factor): amax= 22(MT/MV) mph s−1

where MV is the mass of the vehicle, and MT is the mass rating of the towrope. If
you are trying to tow up a hill whichmakes an angle θwith the horizontal, you need
to apply a factor of sin θ to the equation above, amax= 22(MT/MV)sin θ, because
some of the vehicle’s weight is now directed down the hill instead of straight down.
If the grade is 300, for example, sin θ= 1

2
.

The next question is a little different because rather than worrying about the tow
line breaking you need to worry about traction of the wheels of the towing vehicle as
well as its power, ability to deliver the energy.

A similar question: Watching a TV commercial showing how mighty a pickup
truck is—it’s towing the space shuttle, which weighs (according to the announcer)
292 000 lb (146 tons). Now I know that it’s not as if the pickup is lifting
146 tons—I figure the load on the little pin hooking the shuttle to the pickup will
be (initially) 146 tons times the coefficient of friction for the tarmac upon which
both vehicles are riding—am I right?
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Answer: Assuming there is negligible friction in the bearings of the carriage for
the shuttle, it is not hard to get the shuttle moving with a small acceleration. In the
previous question, though, the numbers were much smaller than in your case where
there is what appears to be a steel towing bar which would far exceed the strength of
a towrope to tow things with weights of several tons rather than several hundred.
So, with such a strong ‘towrope’ you might think that you could have as big an
acceleration as you like. For example, if the breaking strength of the pin (probably
the weakest link) were 100 tons, my little formula above would say that you could
have an acceleration up to about 22× (100/146)≈ 15mph s−1 (0−60 in 4 s)! This will
obviously not happen. There are two considerations you need to think about. First,
the force which provides the acceleration is actually the static friction between the
truck wheels and the road; the biggest this force can be is f= μW where μ is
the coefficient of static friction and W is the weight of the truck. For rubber on
dry concrete, μ ≈ 0.7 and the weight of a Toyota Tundra pickup is about 3 tons, so
f= 3× 0.7 ≈ 2 tons; so, the maximum acceleration is only about 0.3mph s−1. The
second consideration is how rapidly the truck can deliver the energy needed tomove
the load, in other words its power rating of about 300 hp. I calculate that the
maximum accelerationwith a 146 ton loadwould be about 4mph s−1. So, it appears
that the main limiting factor on the acceleration is the possibility of the tires spin-
ning. Keep in mind that these are all just rough estimates, but they give the general
picture. (See appendix E.)

Many questions I have received ask things like if a box is full of birds which
are flying, does it weigh less than if they were all roosting. These questions can get a
bit convoluted although the question after the next one will be such a question.
A simpler question is about a juggler.

Question: Is a juggler, while juggling three weights or any number really, lighter at
all times than she would be if she merely carried the weight about her person? If so
then by how much, when and why? If not then what does happen to their weight
while they juggle at the various times they are and are not in contact with the
juggled objects?
Answer: First, I am a stickler for the use of the word weight. The juggler’s weight is
the force which the Earth exerts on her and so it is always the same unless she
overeats or goes on a diet. But, the apparent weight (what would be read by a scale
she is standing on) depends what is going on with the balls. If all the balls are in the
air at some time, her apparent weight will be her actual weight. If she is simply
holding one ball, the scale will read her weight plus the ball’s weight. If she is in the
process of juggling one of the balls, she is exerting an upward force which will be
larger than the weight of the ball (Newton’s second law); but, because of Newton’s
third law, we can conclude that the ball exerts an equal and opposite force on her;
and so the force read by the scale will be larger than the weight of the ball plus
juggler. Only if she throws a ball downward would her apparent weight be smaller.

Now the bird-in-a-box problem.
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Question: If there is a trailer full of birds and the birds are sitting on the bottom,
does it weigh the same as if all the birds are flying?
Answer: (In this answer, when I say ‘weigh’ it means what a scale would read.)
There is more than one answer to this question. Let us assume that the birds are
hovering or moving with constant velocities. In that case, each bird stays in flight
because the air exerts a force up on it equal to the bird’s weight; but Newton’s
third law requires that the bird therefore exerts an equal downward force on the
air. The air is part of the trailer, so the net weight of the whole truck is unchanged.
Another possibility would be if the birds have an acceleration with a vertical
component; the simplest example is that all the birds are in freefall inside
(probably not what you had in mind by ‘flying’) in which case the birds would not
contribute to the weight (neglecting any air friction or buoyancy) and the overall
weight would be smaller. Or, if all the birds were at some instant accelerating
upward, the air would be exerting an upward force on them greater than their
weight so the trailer would measure heavier.

To finish off this section, here is a clever way to exert a force much bigger than the
maximum force with which you can push.

Question: Today on NPR’s Cartalk, someone called in a physics question. I
would like to have a definite answer (very easy for you I’m sure). Here it is: A
lady’s car is stuck in the mud. She of course is alone with no phone and is a
physicist. She ties a rope to her car bumper and a nearby tree. She then finds the
mid-point of the rope and pushes with max effort which she estimates to be 300N.
The car just begins to budge with the rope at about a 5° angle. With what force is
the rope pulling on the car? Ray, co-host of Cartalk, said to find the sine of 5
degrees and then multiply by 300. Then he changed it to cosine of 5 degrees and
multiply by 300. If any of these is right, I don’t understand why.
Answer: One of my favorite shows! Neither of the answers is right which is sur-
prising since Tom and Ray are both are MIT grads. Here is how you do the
problem (see figure 1.6). The point where she is pulling is in equilibrium, so the
vector sum of the three shown vectors (her 300N pull and the tensions in the two
halves of the rope) must equal zero. The components perpendicular to her pull
must add to zero, so the tension (T) in each side of the rope is the same. This
comes from T1 cos(5°)−T2 cos(5°)= 0, so T1=T2=T. Similarly, the components
parallel to her pull must sum to zero, so 300−T sin(5°)−T sin(5°)= 0. So,
T= 300/(2 sin(5°))= 1721 N.

Figure 1.6.
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1.6 Accelerated frames and fictitious forces
In section 1.1 we discussed noninertial frames, frames where Newton’s first law is
false and Newton’s second law cannot be applied. A noninertial frame is, essentially,
any frame which accelerates relative to any inertial frame. Amazingly, it is possible
to force Newtonian mechanics to be valid in an accelerating frame if you judiciously
add forces which do not exist, called fictitious forces. It is easiest to start the
discussion of fictitious forces with a question involving linear acceleration.

Question: What is the force that causes you to fall over when a moving bus comes
to an immediate stop? I’m having an argument with my teacher over what the
answer is, it would be great if you could explain!
Answer:When the bus is stopping, it is accelerating and so it is a noninertial frame.
That means that Newton’s laws are not valid if you are riding inside the bus. But, if
we watch you from the bus stop, Newton’s laws do apply and we conclude that
if you move with the bus, there must be a force which is causing you to accelerate
also. Friction provides a force which, except under extreme circumstances, accel-
erates your feet along with the bus; but, unless you are holding on to something,
there is nothing to provide a force on your upper body which therefore tends to
keep going forward as the bus stops. All this says that the reason you fall forward is
not due to any force, rather it is due to the lack of a force. There is, though, another
way to look at this problem. If you are in an accelerating frame, like the bus, you
can force Newton’s laws to be true by adding fictitious forces. In the bus which has
an acceleration a you can invent a fictitious force Ffictitious on any massm in the bus,
Ffictitious=−ma; the negative sign means that the fictitious force points in the
direction opposite the acceleration. If you do that, Newton’s laws become true
inside the bus and the force Ffictitious may be thought of as being the force which
provides your acceleration. Note that the acceleration is opposite the direction the
bus is moving when it is stopping, and so the fictitious force is forward as you know
if you have fallen over in a stopping bus. When the bus is speeding up you tend to
fall backwards. Since there are two answers here, depending on how you choose
to view the problem, maybe you and your teacher are both right!

From this you learn that the secret to making Newtonian mechanics work in
noninertial frames is to add fictitious forces to masses m whose direction is opposite
the direction of the acceleration a of the frame and of magnitude ma. Let us now
re-examine the bicycle going around a curve which we looked at earlier. Here we
encounter that best-known of nonexistent forces, the centrifugal force.

Question: Why when a cyclist is turning round a bend, does he lean inward?
Answer: Figure 1.7 shows the forces (real and fictitious) on the cyclist. The circle
represents the center of mass of the system. Since he is moving in a circle of radius r
and with speed v, he experiences a centripetal acceleration ac = v2/r to the left. The
forces on him are his own weight mg, the normal force N up from the road, and
the frictional force Ff which is the force providing the acceleration. If you want to
apply Newton’s second law in the frame of reference of the cyclist, which is not an
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inertial frame, you must add the fictitious centrifugal force mac as shown in
figure 1.7. Note that if he were not leaning, there would be an unbalanced torque
about the point where the tire touches the ground, τ=mLv2/r where L is the dis-
tance to the center of mass, which would cause him to rotate clockwise, that is to
fall over. When he leans, though, the weight also exerts a torque, so the two torques
can balance if the angle is just right: mgL sin θ=mLv2 cos θ/r, or θ= tan−1(v2/rg).

The centrifugal force is often suggested in sci-fi movies or books as a source of
artificial gravity. Imagine that you are inside a very large hollow cylinder with radius
R which is rotating around its axis such that the speed of the outer surface of the
cylinder is v. You and the cylinder, your home, are in outer space with no gravity
around. If you are at the inside surface and rotating with the cylinder, you are in a
noninertial frame with acceleration, pointing toward the axis, of v2/R. Then, if v and
R have been chosen such that v2/R= g, you will experience an apparent force mg,
just as if you were standing on the surface of the Earth. Of course, R must be
much larger than your height or else your head and feet will experience different
accelerations. Suppose that R= 200m; taking g ≈ 10m s−2, v=√2000= 45m s−1.
The circumference of the cylinder is 2πR= 1257m, so the time to make one revo-
lution is 1257/45= 280 s= 0.47 h; the rotation is at a rather lazy rate of about two
rotations per hour, a reasonable model for a space habitat. (See appendices C and D.)

The work–energy theorem, W= 1
2
mvfinal

2− 1
2
mvinitial

2 is derived (see appendix A)
starting with Newton’s laws. The following question asks whether this is true in
noninertial frames.

Question: Is work–energy theorem valid in noninertial frames?
Answer: The work–energy theorem says that the change in kinetic energy of an
object is equal to the work all forces do on it. Imagine that you are in an
accelerating rocket ship in empty space, a noninertial frame. You have a ball in

Figure 1.7. A bicycle turning a curve.
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your hand and you let go of it. You observe this ball to accelerate opposite the
direction in which the ship is accelerating and therefore see its kinetic energy
change. But, there are no forces acting on it so no work is done. Another way you
could come to this conclusion is that the work–energy theorem is a result of
Newton’s laws and Newton’s laws are not valid in noninertial frames. You can,
though, force the work–energy theorem to be valid if you introduce fictitious
forces, a way to force Newton’s laws to work in noninertial frames. If you invent
a force on the objects of mass m in the accelerating (a) rocket ship above of
Ffictitious=−ma, this force will appear to do the work equal to the change in
kinetic energy. (See appendix C.)

1.7 Wagers, arguments and disagreements
The Physicist is often called on to settle disputes. There are already a couple
examples in earlier sections, the accelerated bus question and the badminton/tennis
question. Here are a couple of others.

Question: My friend and I had a drunken argument. I would like independent
council to weigh in (there’s $300 on the line). I was given a unique bottle opener
by a friend who is a brewer for a craft brewery in the northeast. It is a flat piece of
wood with a smooth screw embedded near one end. The argument is as follows.

• Person A: There is less force required to open the bottle pulling up with the
screw positioned between the cap and the user (top panel in figure 1.8).

Figure 1.8. A unique bottle opener, person A above, person B below.
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• Person B: There is less force required to open the bottle pressing downwith the
cap positioned between the screw and the user, (bottom panel in figure 1.8).

Can you prove either argument successfully?
Answer: The questioner also provided the information that R= 94/16′′ and
d= 17/16′′. To answer the question I will compute the force which the nail exerts
on the bottle top for equal forces by the user. Whichever of these is the biggest is
the winner. Doing this is a simple first-semester physics statics problem, most
easily done by summing the torques in each case about the point on the bottle cap
just opposite the nail; that point is a distance R from the end where F is applied
for person A and a distanceR− 2d for person B. I find that the nail exerts a force of
FB = F [(R/d)− 2] for person B and a force of FA= F(R/d) for person A; person A is
the winner of the bet. For your numbers, R/d= 5.53 and the ratio of the forces is
FA/FB= 5.53/3.53= 1.57, making option A 57% bigger, quite definitive. (If a $300
bet is really on the line, don’t forget to reward The Physicist!) (See appendix A.)

I am pleased to report that these barroom physics enthusiasts did indeed send
a generous contribution to Ask The Physicist! Here is another question, this one
about friction.

Question: I am writing in the interest of hopefully resolving a question which had
arisen in my workplace. One gentleman poses the hypothetical situation of a
motionless tank sitting on solid ice which he describes as ‘very slick and smooth—
so much so that if one were to toss a penny across the surface then it would glide
on endlessly’. He posits that the tank is then started and attempts to move for-
ward. His position is that the tank will not be able to move as the treads would
simply spin on the ice. His detractor posits that the treads are moved by the
wheels inside the treads and that this would be able to propel the tank forward.
So, would this tank be able to move forward or not? If so, what properties of
physics would make it be able to move and, if not, why would this tank not be
able to move forward? The gentleman’s scenario also posits that there is no
friction between the tank treads and the ice. Is it realistic, physically speaking, to
posit these two surfaces touching and no friction existing between them?
Answer: How genteel you are! The gentleman who says that the tank will not
move forward if the ice is perfectly frictionless is correct. It is the force of friction
which accelerates the tank forward, not the force which the wheels exert on the
treads; if the wheels exert a force on the treads, then Newton’s third law says the
treads exert an equal and opposite force on the wheels so the two cancel each
other out if you are looking at the tank as a whole. No it is not possible to have a
perfectly frictionless surface; it is possible to get a good enough approximation,
however, to do an experiment which should convince the second gentleman.

There is an important lesson here. The force which propels a wheeled vehicle is
the force of static friction between the wheels and the surface they are rolling on (or
the force of kinetic friction if they are spinning).

Here is a dispute regarding torques and center of gravity.
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Question: I have a question related to weight/mass placement on a bar. My friend
and I are weight lifters. We got into a discussion about the center of gravity on
the bar. Here is the question. We are using a 45 lb plate on each side and also have
a 5 and 10 on each side, each taking up the same space and the end of the bar is
the same distance from the last weight and will not change. Does it change
anything if the weights are not in the same order, from one side to the other? My
friend says the side with the 45 lb plate close to the end is slightly heavier because
the ratio has changed. I say nothing has changed because the weights on the bar
are still taking up the same space. I believe it would only change if the distance to
the end of the bar is changed, which it is not. I hope I explained this well enough.
Answer: Assuming that the bar itself is uniform (has its center of gravity (COG) at
its geometrical center), the COG of the total barbell depends on the location
of the weights. Relative to the center of the bar, the position of the center of
gravity may be written as COG= (45x1+ 10x2+ 5x3− 45x4− 10x5− 5x6)/120
where the xi are the distances of weights from the center. Suppose that the weights
are placed symmetrically (x1= x4, x2= x5, x3= x6); then COG= 0, the center
of the bar. Now, suppose we interchange two of the weights, exchange the 45 lb
with the 10 lb on one side:

= + + − − −

= + − −
= −

( )
( )

x x x x x x

x x x x

x x

COG 45 10 5 45 10 5 /120

45 10 45 10 /120

(35/120)( );

2 1 3 4 5 6

1 2 2 1

1 2

since x1 ≠ x2, COG ≠ 0, the barbell is no longer balanced. If that explanation is too
mathematical for you, try a more qualitative argument. Each weightW a distance D
from the center exerts a torque about the center and the magnitude of that torque is
WD. The net torque due to all weights must be zero if the bar is to balance at its
center. This means that the sum of all theWDs on one side must be precisely equal to
those on the other if the barbell is to be balanced about its center. If you change the
D on only one side, the bar will not be balanced at its center. (This qualitative
argument is just the mathematical argument in words.) What certainly does not
change is the total weight. (See appendix C.)

1.8 These are a few of my favorite things
This final section in chapter 1 collects some of my favorite questions and answers,
questions which I found very interesting or questions from which I learned or just
plain cool questions.

This first question surprised me greatly. I would never have guessed that gravity
would pull two dice separated by a few centimeters together in a matter of hours.

Question: Two dice are suspended in outer space with no visible forces acting on
them. Their centers of mass are 10 cm apart, and they each have an identical mass
of .0033 kg. How long would it take for the force of gravity between them to cause
them to touch? (We will assume they are volumeless for ease in calculation).
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Answer: This seems a very difficult problem because the gravitational force between
them changes as they get closer and so it is not a case of uniform acceleration.
However, this is really just a special case of theKepler problem (the paths of particles
experiencing 1/r2 forces) which I have done in detail before. You can go over that
in detail. For your case, K=Gm1m2= 6.67× 10−11× (3.3× 10−3)2= 7.26× 10−16

N·m2 kg−2, the reduced mass is μ=m1m2/(m1+m2)= 0.0033/2= 1.65× 10−3 kg,
and the semimajor axis a= 2.5 cm= 2.5× 10−2 m. Now, from the earlier answer,
T=√(4πμa3/K)= 5.98× 104 s. The time you want is T/2= 2.99× 104 s. This is only
8.3 h and seemed too short to me. To check if the time is reasonable, I calculated the
starting acceleration and assumed that the acceleration was constant and each die
had to go 5 cm; this time should be longer than the correct time because the accel-
eration increases as the masses get closer. The force on each die at the beginning
is K/r2= 7.26× 10−16/0.052= 3.04× 10−13N; so, the resulting initial acceleration is
F/m= 3.04× 10−13/3.3× 10−3= 9.21× 10−11m s−2. So, assuming uniform accelera-
tion, 0.05= 1

2
at2= 4.61× 10−11t2. Solving, t= 3.3× 104 s. So, the answer above is,

indeed, reasonable.

The following question is one of my very favorites because it is so deceptively
simple and yet so subtle to understand. I pondered this on and off for several
days and finally needed to talk it over with some other physicists. I would like
to acknowledge a very useful discussion over pizza with friends and colleagues
A K Edwards, W G Love, R S Meltzer and R L Anderson.

Question: My question has to do with traction and the movement of a wheel (a
wheel alone). Traction is essential for its movement both linear and circular. But
if we throw a wheel forward it rolls some meters and then it stops (and falls).
Which force is responsible for the decrease in its velocity? Because if traction is
parallel to the ground facing backwards, then linear movement’s negative
acceleration is explained but not angular negative acceleration. If traction is
parallel to the ground facing forward then angular negative acceleration is
explained but not linear. If traction is zero then which force decreases both
velocities linear and angular?
Answer: One of the reasons I love doing Ask the Physicist is because I often learn
things I did not know or had never thought about. You would think that a guy who
has been teaching introductory physics courses for nearly 50 years would find this
question simple. But, indeed I was puzzled by it because, as I have found by
thinking about it and talking to some friends, I wasn’t thinking beyond the friction
force (which questioner calls traction) being simply the only force in the horizontal
direction and obviously stopping the forward motion after some distance. I never
addressed the angular acceleration of the wheel before. What frictional forces are
important to understand the rolling of a wheel? Most introductory physics classes
talk only about the contact forces of static friction and kinetic friction. Kinetic
friction is not applicable to this problem because the wheel is not slipping on the
ground, and static friction might be important, but not necessarily. If we have a
round wheel rolling on a flat horizontal surface (don’t look at figure 1.9 yet!), there
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are three possible forces—the weight which must be vertical, pass through the
center of mass, and (assuming it is a uniform wheel) pass through the point of
contact; the friction, which must be parallel to the surface and pass through the
point of contact; and the normal force which must be perpendicular to the surface
and pass through the point of contact. If you now sum torques about the point of
contact (as noted by the questioner), there are none! So, there can be no angular
acceleration; if we have stipulated that the wheel does not slip, then there can be no
linear acceleration either and the wheel will roll forever and no friction is required.
But we all know better! A real wheel will eventually slow down. The key is that
there is no such thing as a perfectly round wheel or a perfectly flat surface, one or
both must be deformed. In that case, we have to think about a new kind of friction
called rolling friction, the friction the wheel has because of the rolling. This is dif-
ferent from the static friction, and static friction may still be present to keep the
wheel from slipping. A perfectly round wheel cannot have rolling friction as I
showed above, it must deform which means that there is no longer a ‘point (or line)
of contact’ but now an area of contact. Since the normal force is only constrained to
act somewhere where the two are in contact, it is now possible (in fact inevitable)
that this force will not act through the center of mass of the wheel. That is the whole
key to answering this question. So, finally, the answer: refer to figure 1.9 where I
have drawn the forces mg, N, and f. The weight is still constrained to be vertically
down and pass through the center of mass (blue cross). The normal force is con-
strained to be vertical and act somewhere where the wheel and ground are in
contact, drawn a distance d to the left. The frictional force (which now includes both
static and rolling friction) is constrained to act at the surface and parallel to it. I
choose a coordinate system with x to the left and y up; the axis (red cross) about
which I will sum torques is at the ground directly under the center of mass and
positive torque results in an angular acceleration which is positive when acceleration
of the center of mass is positive (counterclockwise around the axis). All is now
straightforward: ΣFx=−f=ma, ΣFy=N−mg= 0, Στx=Nd= Iα= Ia/L where I is
the moment of inertia about the red cross and L is the distance from the red cross to
the blue cross. Finally, N=mg, a=−f/m, and d= fI/(Lm2g). (See appendix C.)

Figure 1.9. A ‘real’ wheel rolling.
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Sometimes I find myself in a debate which, like in the following case, lets me
view a question I had dismissed with an open mind and coming around to common
ground with the questioner. Here is the disturbing thing, though: after finally
having given an answer to his question which explained how a blown-out tire at
high speed could retain its roundness (but definitely not without the presence of the
sidewalls), the questioner wrote thanking me for proving that sidewalls were not
needed at high speeds! Guess he was less able to listen to the other side of the
argument than I was.

Question: In 1973 a physics instructor explained that the sidewalls of a regulation
tire need not be present if the velocity of the vehicle was above a speed of
65+mph. I tried to explain this to family members at Christmas and was scoffed
at and then ridiculed. The physics instructor had previously worked at a GMC/
Chevrolet plant. His job had been to change out instruments on GM cars running
around a track and in excess of 100mph. In one of the test runs his driver advised
him that they had had a blowout and he needed to get out from under the dash
quickly and get safety belted in. Then the driver slowed down and at some critical
speed he almost, but not quite, lost control and they did not crash but came close
to it. The instructor was a good instructor in that he made the physics relevant to
the real world. Also this is why tires need sidewalls as they won’t hold up in
gravity and below a specific velocity.
Answer: This is nonsense. If there is no air pressure to connect the tire to the axle,
which would be the case if there were no sidewalls, what is going to hold up the
weight of the car?

Follow-up question: No not really. If you get the tire up to speed, as well as
providing forward momentum, the circumference and the center point about
which the tire is rotating will hold the tire up even if there is a blow out as the
forward speed or acceleration is sufficient to hold it up and will prevent collapse
of the tire above a critical speed. Once the speed drops below this critical speed,
the tire will start to collapse and, according to the physics instructor, all hell broke
loose on the track and only the driver’s expertise insured that they were able to
stop safely. If you are above the critical speed, the outer rim of the tire need not
have anything to hold it up. The key elements are:

1. Tires are inflated to the recommended PSI.
2. The vehicle was an experimental test GMC product running in excess of

100mph.
3. When the driver announced that there had been a blowout, the car was

under control and my physics teacher was not aware anything was amiss.
4. He was alive to prove it to the class, using physics concepts that escape me.

Answer: Well, maybe I misunderstand something here, but let’s boil this problem
down to the simplest equivalent I can think of: imagine a tire with sidewalls and
just an axle which is supported by the sidewall, shown on the left in figure 1.10.
Now, we would agree, I believe, that if the sidewall suddenly disappeared, the axle
would fall because there would be nothing holding up that weight. How is that
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situation any different if the car is moving? So, let’s agree that ‘the sidewalls…
need not be present’ is wrong because there has to be some physical contact of the
outer surface of the tire and the axle. So, my first answer was a knee-jerk response
to the notion that the sidewalls were not needed.
The answer you will like:However, there is still a way that you might have a point.
When the blowout occurs, the pressure inside the tire is lost; this pressure is
typically 30 PSI= 21 000Nm−2 above atmospheric pressure (which is about
100 000Nm−2). If the car is sitting still, this loss of pressure results in the wheel
collapsing because the sidewalls alone are insufficient to hold up the weight of the
car unless the force due to the pressure pushing on the outer part of the tire holds
the sidewalls taut. Now, imagine that you are driving with some speed V and
viewing a spinning tire from its axis, you see every point on the outer surface of
the wheel accelerating with an acceleration V2/R where R is the radius of the tire.
Therefore, every little piece of the tire with mass m experiences a (fictitious) force
(called the centrifugal force) of mV2/R. That would be equivalent to there being a
pressure P exerted on that little piece of tire of P=mV2/(aR) where a is the area of
that little piece. But, every little piece behaves like this, so it is equivalent to a
pressure of P=MV2/(AR) acting on the outer surface where M is the mass of the
tire (assuming the sidewalls are a small fraction) and A= 2πRW is the area
of the outer surface and W is the tread width. So, if that pressure is equal to
21 000Nm−2, it will be like the blowout never happened! I took R ≈ 16 in ≈ 0.4m,
W ≈ 12 in ≈ 0.3m, and M ≈ 20 lb ≈ 9 kg and solved 21 000=MV2/(AR)=MV2/
(2πR2W) and found V= 27m s−1= 60mph. (Incidentally, the ‘forward momentum’

has nothing to do with it.)

The following question was fun because it got me thinking about how strong a
rotating structure has to be. I am not an engineer and only claim to do an order-of-
magnitude calculation here, but it seems to jive pretty well with estimates given by
the questioner.

Question: I’ve read about space habitat concepts for a while and I’ve run into an
interesting concept. The concept I’ve run into is the McKendree cylinder which is
basically an O’Neill cylinder made of carbon nanotubes. The O’Neill cylinder
made of steel would be 32 km long and 6 km in diameter. The McKendree

Figure 1.10. Tires with (left) and without (right) sidewalls.
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cylinder would be 4600 km long and 460 km in diameter. And the maximum
length for the McKendree cylinder is 10 000 km and diameter of 1000 km. So the
McKendree could be built a lot bigger than an O’Neill one because the carbon
nanotubes have greater endurance. But a habitat of thousands of kilometers
seems to be really big when compared to what we can build from other materials.
And as I recall we don’t have any ways to produce carbon nanotubes in large
quantities. Is it theoretically possible to build a habitat 10 000 km long and
1000 km wide out of carbon nanotubes? And is the McKendree cylinder more of a
theoretical design than a practical design that actually could be built?
Answer: I presume that the issue is more a strength issue than anything else. To
illustrate how the strength of the material and its mass determine the size the
habitat can be, consider a rotating string of beads, each of mass m. The rotation
rate must be such that a= v2/R= g where v is the tangential speed of each bead.
Therefore each bead must experience a force F=mg. This force can only come
from the two strings attaching each bead to its nearest neighbors and, from
figure 1.11, F=mg= 2T sin θ. But, we will imagine many, many beads on this
string and we will call the distance between them d; so we can make the small
angle approximation that sin θ ≈ θ= d/R. Solving for T, T=mgR/(2d). Now
imagine that the beads are atoms; d will be about the same for steel or carbon, g is
just a constant, msteel ≈ 5mcarbon, and the Young’s modulus of carbon nanotubes
is about five times bigger than steel, Tsteel ≈ Tcarbon/5. So, Rcarbon/Rsteel ≈ (Tcarbon/
Tsteel)/(mcarbon/msteel) ≈ 25. Your numbers are Rcarbon/Rsteel ≈ 460/6= 77; I would
have to say that my calculation is pretty good given that I have made very rough
estimates and I am not an engineer! I do not know what considerations would
limit the length of the habitat. (Of course, neither of these models is currently
practical to actually build, so call them theoretical if you like. However, there
would certainly be no problem building them if resources and manufacturing
capabilities were available.) (See appendix D.)

Figure 1.11. Forces on the edge of a rotating space station.
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IOP Concise Physics

From Newton to Einstein
Ask the physicist about mechanics and relativity

F Todd Baker

Chapter 2

Special relativity

2.1 Overview
Open just about any textbook which includes the theory of special relativity and you
will find that the first thing covered will be the Michelson–Morley experiment and the
failure to detect the luminiferous æther. Everywave that physics knew traveled through
some medium—sound through air, water waves through water, standing waves
through a violin string—and if you took away the medium, the wave no longer could
exist. Light was a puzzle, though, since it seemed to travel through a vacuum, empty
space. It was therefore assumed that there must be some medium, the luminiferous
æther, which supported light waves and permeated all of the Universe. Generations of
physicists and physics students have grown up believing that the failure to detect any
evidence of the luminiferous æther was the impetus for the theory of special relativity.
In fact, Albert Einstein in his 1905 paper, ‘On the Electrodynamics of Moving Bodies’
was motivated by a longstanding curiosity about the nature of electromagnetism and
the properties of light. Although he was apparently aware of the failure to detect the
æther, since it wasmentioned briefly in the introduction to the paper, he said in later life
that he did not really remember that it played any role in his development of relativity.

Although it is not a focus of this book, to understand the birth of the theory of
relativity one must have at least a qualitative understanding of electromagnetism.
During the 18th and 19th centuries many scientists had studied the properties of
electric and magnetic forces as well as the relations between the two. Around 1870
James Clerk Maxwell took all that was known about electromagnetism and con-
densed it into his four famous equations. A summary, in words, of the essence of
Maxwell’s equations can be found in one of my Ask The Physicist answers:

Answer: The laws of electromagnetism are perfectly symmetric: a changing
magnetic field causes an electric field and a changing electric field causes a
magnetic field. The first of these is called Faraday’s law and the second is part of
Ampere’s law. You seem to think that only a permanent magnet is magnetism.
In fact, any moving electric charge causes a magnetic field. The most common
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source of magnetic fields is simply an electric current. Here are some facts about
electric and magnetic fields:

• electric charges cause electric fields,
• electric currents (moving charges) cause magnetic fields,
• changing magnetic fields cause electric fields, and
• changing electric fields cause magnetic fields.

An amazing result derived from Maxwell’s equations was that they predicted the
existence of waves of electric and magnetic fields. The speed c of these waves was
found to be determined by only two well-known constants, the permittivity of free
space ε0 and the permeability of free space μ0, c = 1/√(ε0 μ0) = 3 × 108 m s−1.
(Essentially, these constants quantify the strength of electric and magnetic fields, see
appendix F.) Surely it is not just a coincidence that this is precisely the speed of light,
well known and accurately measured by the 19th century. Although it had been long
known that light was a wave, it was not known what was doing the ‘waving’; now it
was clear that electric and magnetic fields comprised light waves.

Presumably, Maxwell’s equations were for a frame of reference at rest in the æther.
To find the form in another inertial frame which has a velocity v in the +x direction
should have been simple—just transform the equations by replacing x by x − vt
everywhere; this is called a Galilean transformation (see appendix G). The trouble is
that, in doing that, the transformed equations contained impossible contradictions. The
Dutch physicistHenrikLorentz found adifferent transformationwhich seemed towork
but therewas no basis for it, it was purely empirical. Einstein, in his 1905 paper, actually
showed that Lorentz’s transformation resulted from applying two simple postulates:

1. The laws of physics are the same in all inertial frames of reference; this is
called the principle of relativity.

2. The speed of light is the same for all observers regardless of their motions or
the motion of the source.

In fact, only the first postulate is needed because Maxwell’s equations are laws of
physics and they predict that the speed of light in vacuum depends only on known
constants of nature, not which inertial frame you happen to be in.

In the more than a decade of answering questions I have never written down the
Lorentz transformation and I do not intend to start now! (I do, however, write them in
appendix G for completeness.) Once you have accepted that the speed of light is a
universal constant, it follows rather nonmathematically that moving clocks run slow,
moving sticks are shorter,movingmasses get bigger, and all the other fascinating results
of relativity which have so changed the way we think about how the Universe works.

2.2 Newtonian mechanics is wrong
Electromagnetism is the key that opened the door to special relativity, but relativity
is mainly a new version of Newtonian mechanics. But that can only mean that the
old mechanics is wrong. But how can that be? For more than two centuries
Newtonian mechanics had been perfected into a beautiful science describing
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virtually everything around us. As we shall see, the effects on mechanics of the speed
of light being universal only become apparent when objects have speeds which are
comparable to the speed of light; of course, our everyday life never encounters such
speedy objects, so whatever we come up with as a new theory must reduce to
Newtonian mechanics if the speed v is small compared to c, v≪ c.

The notion that the speed of a ray of light is the same in all inertial frames flies in
the face of our intuition. Consider the following question.

Question: What is the velocity of a person if he is on a train that is traveling at
50m s−1 east and he is running at 2 m s−1 west?
Answer: Every time I get this kind of question (which is often) I have to emphasize—
who is measuring the velocity? If it is somebody in the train, the velocity is
2m s−1 west. If it is somebody on the ground, it is 48m s−1 east. (See appendix G.)

This is called velocity addition. It is common sense, right? If you walk 2m s−1

with the train your speed as observed by somebody at the station is 52 m s−1,
backwards on the train at 2 m s−1 would be 48 m s−1. The velocity addition formula
in one dimension may be written as v′ = v + u which means, in words, that if you are
traveling with speed u and there is another car approaching you with speed v, his
speed of approach to you is v′. For example, if you are going 60 mph north and
another car is going 50mph south, you see the other car approach you with a
velocity of 110mph: v′ = 50 + 60 = 110mph.

But, suppose we apply this to light with speed c in our frame. In another frame
moving toward you with half the speed of light and opposite the light direction, the
other frame should see the light to have a speed of 1.5c. but, it does not, it also sees c.
So, if the velocity addition formula is wrong, it should show up at high speeds. Here
is a question which illustrates this problem.

Question: Hello, I used to have a Feynman book that had this scenario and I
forgot how he explained it. I have since lost the book and was wondering if you
could explain it. I have a spaceship moving at 180 000 km s−1 and inside of that
spaceship I have another spaceship moving at 180 000 km s−1. To the observer on
the ground the second spaceship is moving at 360 000 km s−1. That exceeds the
speed of light please explain what would happen.
My first response: Your recollection is wrong. I am sure Feynman never said the
speed of the second space ship exceeds the speed of light because it doesn’t.
Follow-up: Ya, he may have never said this, but can you explain what would
happen in that scenario?
Answer: The equation which describes what is called ‘velocity addition’ in rela-
tivity is v′ = (u + v)/[1 + (uv/c2)] where u is the speed of the first ship, v the speed of
the second ship (relative to the first), c the speed of light (300 000 km s−1), and v′ is
the speed of the second ship seen by a stationary observer. Note that if u and v are
both very small compared to the speed of light, then the quantity (uv/c2) is very
close to zero so that v′ ≈ (u + v), which is what you expect to be correct, is
approximately true. However, in the example you cited the speeds are not
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small compared to c (they are 60% of c). If you do the arithmetic you will find that
v′ = 265,000 km s−1.

So, why does your intuition fail here? Quite simply because intuition is based on
experience and you have absolutely no experience with objects moving with half or
60% the speed of light. The principle of relativity demands that c be a universal
constant and that means that Newtonian mechanics must be wrong. Strictly
speaking, the velocity addition formula is Galilean relativity (see appendix G), it is
not part of what Newton introduced as mechanics. Still, if it is wrong, the
implication is that Newtonian mechanics is wrong for the following reason. In
Galilean relativity the addition formula for acceleration addition is a′ = a, that is
all inertial frames see the same acceleration. If this were not true, then if you
exerted a force on a mass m, one frame would say that the force was ma while the
other would say the force exerted was ma′. How could they disagree on the
magnitude of a force?

In the following sections you will see many unexpected and astonishing con-
sequences of the speed of light being a universal constant of nature.

2.3 Relativity of time, time dilation
The thing I find is most surprising to those first encountering special relativity is that
all clocks in the Universe do not tick at the same rate. It never occurs to us that a
clock moving by might be running slowly, not because it is a faulty clock and not
because it ‘looks like’ it is running slower. Time really runs slower in a moving
frame. The reason is that when Galilean relativity (see appnedix G) is revised to
allow for the constancy of the speed of light, it is found that time and space are
irrevocably tied together. In the one-dimensional case, where the relative velocity is
along the x directions, not only does x′ depend on v and t, t′ depends on v and x. The
Lorentz transformation, shown in appendix G, demonstrates this. However, trying
to understand everything starting with the Lorentz transformation just adds math-
ematical opacity for the average layperson. In more than a decade of answering
questions I have never found it necessary to write it down. There are other, more
qualitative, ways to ‘skin this cat’. But, you do need to accept that c is a universal
constant. Since time is the intuitive hangup, I start there. Imagine a clock sitting on
your desk which consists of a light source and a light detector at one end and a
mirror at the other, the source aimed at the mirror; the two are separated by a
distance L. The source emits a short pulse of light, the light goes up to the mirror in
the time L/c, the reflected light ruturns to the detector in time L/c, another pulse is
sent and the clock goes ‘tick’. So, the time between ticks is τ = 2L/c. For example, if
L = 1.5 m, the time between ticks is 2 × 1.5/3 × 108 = 10−8 s. So this clock ticks every
10 ns. This is a perfectly good clock and any clock you have sitting next to it will
certainly run at the same rate—when this clock ticks off 10 years, so will a pendulum
clock, so will an atomic clock, so will your wrist watch; even a biological clock like
your body will tick off 10 years. Now, your friend, who also thinks this is a great
clock, is moving past you with some very large speed. When you watch her clock,
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you will see that the path followed by the light is no longer of length L each way but
a longer distance (see figure 2.1) given by √[L2 + (vt/2)2] = (ct/2) where t is the time
you see her clock tick once. So, solving this, you find that t = (2L/c)/√[1 − (v/c)2] =
τ/√[1 − (v/c)2]. Her clock, which we have agreed is a perfectly good clock, runs more
slowly than yours by a factor of γ = 1/√[1 − (v/c)2] (called the gamma factor). This is
called time dilation. For example, if the speed of the moving clock is 80% the speed
of light, γ = 1/√[1 − (0.8)2] = 1/0.6 = 1.67, so when 1.67 s ticks on your clock, only
1 s ticks on hers.

2.4 Relativity of length, length contraction
Having just studied the light clock, the following question provides a perfect
introduction to length contraction, how moving lengths are actually shorter.

Question: I was wondering if you could explain how length contraction works.
I’ve already done some background research and I understand the mathema-
tical reasons my textbook gives me, I was just wondering if you could give some
kind of analogy that would enable me to picture the effects of length contrac-
tion, and better yet allow me to explain it to my friends in a way they can
understand.
Answer: I don’t know a simple one-step way to intuitively understand length
contraction. But, I know a good two-step way starting with intuitively under-
standing time dilation. Time dilation is pretty easy to understand in one simple
example, the light clock. From that point, length contraction can be understood
as a natural consequence of time dilation. Here is how it goes. Imagine a bomb
which has a fuse of 1 s. A bomb is a clock which ticks once. If that bomb is
moving by us with a speed of 99% the speed of light, the elapsed time before
detonation measured by an observer at rest will be 1/√[1 − (0.99)2] = 7.09 s. So,
the distance it will travel is 0.99 × 3 × 108 × 7.09 = 2.1 × 109 m. But, the bomb
will measure in his own frame that he should last 1 s and go 0.99 × 3 × 108 × 1 =
2.97 × 108 m, only about 1/7 the distance we measure. If you think about the
distance we measure as a long stick of length 2.1 × 109 m in its own frame, then
the bomb sees this stick moving by him with speed 99% the speed of light, so to

Figure 2.1. Stationary (left) and moving (right) clocks.
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reconcile his results with ours he must measure that length to be 2.1 × 109 ×
√[1 − (0.99)2] = 2.97 × 108 m.

So, the idea is that if you watch your friend’s clock go past you, the elapsed time for
one of her ticks is γτ, so the distance you see her go is d= vγτ= 2vγL/c. Imagine that you
have a stick on your floor that has a length dwhich she just traverses in one click of her
clock. Now, from her point of view, she sees her clock tick with a time 2L/c and in that
time the stick, which she sees moving past her with speed v, just passes her. That means
that she sees the stickhavinga lengthofd′= 2vL/c.Comparing, d′= d/γ= d√[1− (v/c)2],
a shorter length. This is called length contraction. It is important that length contraction
occurs only along the direction of motion, not perpendicular to that direction.

2.5 The twin paradox
Perhaps the most famous of relativity examples is the twin paradox where one
brother travels to a distant star and back and the other stays home on the Earth. The
following question illustrates why it is called a paradox.

Question: In the ‘twin paradox’, the twin that ‘moves’ ages more slowly. But don’t
they both ‘move’, since movement is relative? So, using the same logic, wouldn’t
the twin at home age less than the twin in the spaceship since the twin at home
(relatively) ‘moves’ away from the spaceship? How can time be slower for one
than the other since they both move, relative to each other?
Answer: You have hit on why they call it a paradox! However, there is really no
paradox at all because there is an inherent asymmetry between the two twins.
Think of the ‘distance’ to the destination star as a stick between the Earth and the
star. The moving twin sees this stick contracted because of his motion whereas the
earthbound twin does not. Hence, the moving twin sees a shorter distance he must
travel and so it takes him less than the (classically) expected time. The following is
the answer to an earlier question about the twin paradox.
Answer: My favorite way to understand the twin paradox is to suppose that each
twin, using his own clock, sends a light pulse to his brother once a year. Each brother
receives all the pulses from the other but the moving brother sends fewer since,
because of length contraction of the distance to the object he travels to, he has less far
to travel in his frame than his brother observes. To make things concrete and the
arithmetic neat, I have chosen the distance out to which the traveling brother goes to
be 8 light years away and back and his speed to be 80% the speed of light. This is
shown in figure 2.2. Since the traveling brother sees, because of length contraction, a
distance to the star of only 4.8 light years, he sends out six light pulses on the way out
and six on the way back, and all are received by the earthbound brother, so both
agree that he has aged 12 years. The earthbound brother, of course, sends out
20 pulses and the traveling brother receives them all so both agree that he has aged
20 years. So, there is no paradox because each brother agrees on the ages of both.

The twin paradox leads very naturally to the next section.
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2.6 How things look, how things are
You will often read, even in textbooks, that length contraction and time dilation are
how things appear to be. This is really misleading because it implies that we are
dealing with optical illusions. In fact, how things appear to be are often quite dif-
ferent from how they actually are. Moving sticks can look longer than they are and
moving clocks can look like they are running faster. Let us return to figure 2.2;
during the first 18 years the earthbound brother sees his brother’s clock to be going
more slowly than his and during the last 2 years he sees it going much faster. And
neither of these rates can be computed using the appropriate gamma factor; these
time rates are not how time is, but rather how time appears to be. The following
question gets at this time appearance issue.

Figure 2.2. The twin paradox.
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Question: Say there is a father and son. The father is the first astronaut to attempt
to ‘time travel’ into the future by flying his rocket around a black hole at extre-
mely high velocities, so that for a given period of time (say an hour) it is a lot
longer on Earth (say 10 h). My true question is, if the father could somehow
communicate to his son in real time, what would this conversation sound like?
Would the son hear his dad talking extremely fast? or would the distance between
them make up the distance in ‘time travel’. If it was the distance that is the factor,
what if the dad was on a super train traveling at similar speeds on Earth?
Answer: Refer to figure 2.2 in section 2.5. As explained in the twin paradox
answer, the traveling twin (the father in your question) takes 6 years to go each
way while the stationary twin (son) has 10 years elapse each way. Each (father
and son in your case) sends out one light pulse each year and by looking at the
spacing of those pulses you can deduce how a conversation would sound. Here is
a summary of how each sounds to the other:

• On the trip out, the father hears the son slowed down by a factor of 3
(2 yearly signals from home in 6 years).

• On the trip home, the father hears the son speeded up by a factor of 3
(18 yearly signals from home in 6 years).

• For the first 18 years, the son hears the father slowed down by a factor of 3
(6 yearly signals from dad in 18 years).

• For the last 2 years, the son hears the father speeded up by a factor of 3
(6 yearly signals from dad in 2 years).

Of course, it cannot really be a conversation because of the long transit times of
the signals; rather each is just speaking, reciting poetry or something. Higher
speeds would lead to more extreme numbers but similar conclusions. Overall,
note that the father has aged 12 years while the son has aged 20 years. I always
like to emphasize that how time appears to elapse on a moving clock is not the
same as the time which actually does elapse; for example, during the last two years
for the son, the father’s clock looks like it is running faster than the son’s whereas
it actually is running slower.

Just as the rate at which a clock runs and the rate at which it appears to run are
different things, the length objects are and the length they appear to be are not
necessarily the same either, as the following question illustrates.

Question: Due to length contraction, you notice that a passing train appears to be
shorter than when it is stationary. What do the people in the train observe about
you? If you are on a train that is going really fast, do the people on the ground
look shorter, longer, or the same?
Answer: Length contraction causes the lengths parallel to the direction of motion
to be shortened. So, a fat man standing at the station would become a skinny man
(side to side, but not front to back) and no shorter as measured by someone on the
train. Similarly, as measured by someone on the platform, a fat lady standing on
the train would become a skinny woman but no shorter. You will note that I did
not say that these folks ‘look skinnier’ because physicists normally do not care
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how something looks, they care about how something is. This is a very important
distinction and one which even authors of physics books often fail to make.
How something looks may be very different from how something is. Hence, your
question is incorrectly stated (‘…appears to be shorter…’) although I believe I
know what you meant. Below I wish to wax eloquent on how things look/are.
I will restrict this to one-dimensional objects like sticks moving along the direc-
tion of their lengths, directly toward or away from the observer. When a physicist
talks about the length of something, here is what she means: measure the posi-
tions of the two ends of the object at the same time; the difference of those
positions is the length. When you look at a stick, you are not observing the stick
ends where they were at one time but you are seeing the farther end as it was
sometime earlier than when you see the closer end. Of course, this does not matter
if the stick is at rest, but if it is moving it does matter. For everyday moving sticks,
there is no perceptible change in the apparent length of sticks because speeds are
much less than the speed of light. But what if the speed is really big, let’s say 80%
the speed of light? Then, as I will shortly show, the effect is really big. But before
we go into how long the stick looks or appears, we better be sure we understand
how long the moving stick is. The result from special relativity, using the defi-
nition of length I gave above, is that the moving stick is shorter by a factor of
√(1 − (v2/c2)), so if v = 0.8c (i.e. 80% the speed of light), the length of the moving
stick is only 60% its length when at rest. (This effect is called length contraction.)
So now, figure 2.3 shows the situation if the stick is coming toward you (you are
on the right). Light (red arrow) leaves the far end of the stick and does not catch
up with the near end of the stick until the stick has gone a long way (four stick
lengths) and now light from the far (red arrow) and near (green arrow) ends move
forward to your eye. So the stick looks to be 5 times longer than it actually is and
3 times longer than if it were at rest! Now, if the stick is moving away from you,
the situation is very different and is shown in figure 2.4. (The scales of the two
figures are different; note the different rest lengths. I had to do this so the ‘much-
shorter’ and ‘much-longer’ figures would be about the same size.) The moving
stick is still 60% of its at-rest length, but now the near end moves away to ‘meet’
the light from the far end; the result is that the stick, as shown in figure 2.4, looks
much shorter than it is. It now appears to be only 1

3
the rest length or 5

9
the actual

(moving) length. Note that in neither case does the stick appear to be its actual
length. So, maybe you can now understand why I often make a big deal about
relativity being about how things are, not how things appear.

Figure 2.3. The appearance of a stick moving towards you at a high speed.
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The above example was very simplified for sticks moving straight at or away
from you. For more three-dimensional objects the analysis gets much more involved
but leads to some fascinating results. A wonderful animation showing that a sphere
moving by you at high speed looks just like a sphere can be seen at http://th.physik.
uni-frankfurt.de/~scherer/qmd/mpegs/lampa_terrell_penrose_info.html. It looks like
a sphere even though it is really very ‘squashed’ into a pancake shape.

2.7 Linear momentum, force, energy
The following question illuminates why the Newtonian definition of linear momen-
tum is not useful because it is not a conserved quantity for an isolated system. Instead,
linear momentum is redefined in such a way that it is, in special relativity, conserved
and is approximately the Newtonian definition for small velocities.

Question: I understand the Lorentz transformation and how you can get time
dilation and length contraction from it. What I cannot understand is why mass
increases by a factor γ = 1/√[1 − v2/c2].
Answer: Length and time are what we call kinematic quantities. Mass, force and,
more importantly, linear momentum and energy are what we call dynamic prop-
erties. So, just like in an introductory physics course where, after we learn how to
describe motion (kinematics), we next want to understand how motion can be
changed; in classical physics this leads us to Newton’s laws. What happens in
relativistic physics is that we quickly find that Newton’s second law, in the form
F = ma is no longer a true law of physics; that is, if two observers both measure the
acceleration of a mass m they will get different answers for a, so that would mean
that force is no longer a useful concept in that context. Another way to demon-
strate that Newton’s second law is no longer valid is to write the second law as
Newton did, F = dp/dt where p = mu is the linear momentum and u is the velocity
of the particle; in Newtonian mechanics, this led to momentum conservation for an
isolated system, dp/dt = 0. Alas, momentum defined in this way is not conserved in
the theory of special relativity. Because momentum conservation is such a powerful
and useful principle, we seek a redefinition of linear momentum such that it is
conserved for isolated systems and reduces to the old definition for small speeds.

Figure 2.4. The appearance of a stick moving away from you at a high speed.
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If we define momentum as p = γmu we find that momentum is conserved in an
isolated system and p ≈ mu for small u. So, you see, the gamma factor comes from
redefinition of momentum, not redefinition of mass. Almost all introductory
physics texts say that it is mass which increases, and this is certainly a possible
interpretation of the new definition of momentum. I prefer to say that m is the
inertial mass of an object at rest and that p = γmu. However, there is nothing wrong
with saying that the definition of momentum is Newtonian and the mass (inertia)
turns out to depend on its speed.

Sometimes it is most convenient to say that m is the mass at speed v, is m = γm0

and I will sometimes do that; just be aware that in those instances the rest mass will
be denoted m0. With this definition of linear momentum, we can now rederive the
work–energy theorem relativistically which means calculating the work done and
equating it to the change in kinetic energy. The result is that K = γmc2 −mc2 and, for
small v, it is shown that K ≈ 1

2
mv2 (see appendix A). Now suppose that we rewrite the

kinetic energy equation as γmc2 = K + mc2. On the left we have some kind of energy
and on the right we have kinetic energy plus some other kind of energy; if the particle
is at rest, the ‘some kind of energy’ and the ‘other kind of energy’ are the same, mc2.
mc2 is called the rest mass energy of the particle with mass m, energy which an object
has by virtue of its having mass. γmc2 is the total energy m has, the sum of its kinetic
and rest mass energies, E =K + mc2. Finally, if you write γmc2 in terms of the
momentum p = γmv, it is easy to show that E = √(p2c2 + m2c4).

Aha! We have just derived the famous equation E = mc2! But, because of possible
confusion with what m means, you have to be careful. With my meaning of m, the
rest mass of the particle, E = mc2 means the energy of a particle at rest. If by m you
mean the increased mass with velocity, then m = γm0 where m0 is the rest mass, and
E = mc2 means the total energy of a particle with mass m. This confusion is the
source of a great many questions I have answered wondering why a photon which
has no mass can have energy.

Question: Einstein’s famous E = mc2 doesn’t seem to hold for a photon which is
massless but has energy. What am I missing?
Answer: I often get this question. It originates with taking a famous equation and
not understanding when it is applicable. E = mc2 is the energy of a particle of
mass m at rest; a photon is never at rest and therefore this equation is not
applicable to it. The energy of any particle is E = √[m2c4 + p2c2] where p is the
linear momentum. Note that if p = 0, the particle is at rest and indeed E = mc2. If
m = 0 then E = pc.Massless particles have momentum. The only massless particle
we know is the photon which has an energy E = hf where h is Planck’s constant
and f is the frequency of the corresponding electromagnetic wave. So the
momentum of a photon is hf /c.

Finally, Newton’s second law takes the same form as before except momentum is
redefined. It is interesting to now do the simplest Newton’s second law problem, a
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mass m experiencing a constant force F. Recall that the nonrelativistic solution to
this problem is x = 1

2
(F/m)t2 and v = (F/m)t.

Question: If you could drop a rock down an infinitely deep well with a constant
gravitational ‘pull’, what formula would describe its velocity in terms of time
falling? I know it starts as v = at and approaches v = c, but what does it do in
between?
Answer: Let us stay away from gravity since the definition of a uniform grav-
itational field is problematical. But, I think what you are interested in is what is
the velocity if the applied force on a mass m is constant. I know that an object
with zero net force has dp/dt = 0 where p = mv/√[1 − (v/c)2]. Now, I am going to
define a constant force F to be one for which the rate of change of momentum
is constant, that is dp/dt = F where F is the constant. As noted by the questioner,
v ≈ Ft/m for small time and v ≈ c for large time. It is very easy to integrate
dp/dt = F to get momentum as a function of time, p = Ft. Putting in what p is
in terms of v and solving for v, I find v/c = (Ft/(mc))/√[1 + (Ft/(mc))2]. This
function has the correct properties at small and large t and is shown in the graph
in figure 2.5. This is the correct v(t) for a constant rate of change of momentum F.
Note added later: Someone expressed interest in the position as a functionof time for
this problem. This is straightforward to do by integrating dx= vdt.Doing this I find
x= (mc2/F)(√[1+ (Ft/(mc))2]− 1).Note that this has the expected properties that for
small time, x ≈ 1

2
(F/m)t2, and for large time, x ≈ ct. (I assumed x = 0 at t = 0.)

Figure 2.5. A graph showing time dependence of velocity for a constant force applied.
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A related problem, which I will do in section 2.10, is the motion of a particle experi-
encing constant weight mg which differs from constant force in that m varies with v.

2.8 The universal speed limit
We have already seen an indication that the speed of light is the fastest possible speed
in the Universe. In section 2.2 when the velocity addition theorem was discussed, we
found the correct expression was v′ = (u + v)/[1 + (uv/c2)]. This equation says that you
cannot find something going faster than c provided that both u and v are less than c;
for example, suppose that you are going with the speed 0.9c and somebody is coming
toward you with the speed of 0.9c. Then the speed you see him approaching you is
v′= (0.9 + 0.9)c/(1 + 0.81) = 0.994c. So, you cannot get above light speed by velocity
transformation. But, why not just brute force it, pushing really hard for a really long
time. Chuck Yeager broke the sound barrier so why can’t we break the light barrier?

Question: I know that nothing can travel at or faster than the speed of light. But,
just simply why? What equations or whatever says no?
Answer: Because the mass of an object, that is its inertia, increases as the velocity
increases. Therefore it gets harder and harder to accelerate it as it goes faster
and faster. The expression for themass of an objectm as a function of its velocity v is
m=m0/√(1− (v2/c2)) where c is the speed of light andm0 is themasswhen it is at rest.
Note that as v approaches c, m approaches ∞ so it is impossible to push beyond c.
Anotherway to look at it is from the perspective of energy. The energy of a particle is
E = mc2 = m0c

2/√(1 − (v2/c2)), so the energy required to accelerate the mass to the
speed of light is infinite and there is not an infinite amount of energy in the Universe.

So, you can forget about brute-forcing it against the ‘light barrier’. But, folks really
want to go faster than c and keep coming upwith clever scenarios (which don’t work!).

Question: Let’s say I have a metal rod about a half an inch thick and 300 000 km
long. Then say I give one end of said rod amighty whack with a hammer, propelling
it forward by one inch in a mere fraction of a second. My questions is, wouldn’t the
impact of my hammer cause the other end of the rod to move forward one inch just
as rapidly as the end where I whacked it? And would this violate Einstein’s law that
states that nothing can move faster than c? Or would the far end of the rod have to
wait 1 s after my whacking my end before moving forward by one inch?
Answer:Have you thought about the implications of your question? Ifigure themass
of the rod would be about 1010 kg. Suppose that you exert a constant force such that
after 0.1 s it ismovingwith a speed of about 0.5 m s−1; it would havemoved about an
inch in this time. The force is the change in momentum divided by the elapsed time
so, roughly speaking, the required force is about 1012 N.Where are you going to get
such a force? Anyhow, to the meat of your question: no, the other end would not
start moving instantaneously. It could not begin moving until at least 1 s later than
your end started moving for the reason you state: no information can travel faster
than c. In reality, it would bemuch longer than 1 s because your ‘mighty whack’will
compress the rod and this compression will move with the speed of sound in the
metal and this compression is what travels to the other end to move it.
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2.9 Energy from mass, mass from energy
Where do we get our energy? Can we ever hope to see mass turned into energy? Or
do we see it happening all around us every day?

Question: I know Einstein said E = mc2 and basically all matter can be equated
to some quantity of energy; then why do we go to the gas station to fill our cars?
Why can’t we use garbage, which is mass and has energy, to power our cars? How
can we convert matter to energy? I know we can burn gasoline to use perhaps 1

4
the heat content in the form of expanding gas to apply pressure to the piston in the
engine. Has anyone invented a converter that changes matter to energy yet? We
eat food and basically run on sugar which fuels a chemical based process. Any
other matter converters?
Answer: Most of the energy mankind uses comes from chemistry. Burn coal or
gasoline, for example. When you eat and metabolize food, chemistry is going on.
The energy which is extracted comes from—guess what—mass! For example,
when you burn coal the main thing which is happening is that carbon is com-
bining with oxygen to form carbon dioxide. One carbon dioxide molecule has a
smaller mass than one carbon atom plus one oxygen molecule. So, chemistry is
the best known example of your ‘matter converter’. The problem is that an
extremely tiny fraction of the mass is converted to energy, something like
0.00000001%, so chemistry is a very inefficient source of energy. Now, to get more
efficiency we have to work not with atoms but with nuclei of atoms. If a heavy
atomic nucleus can be induced to split (fission), the mass of the fragments is
smaller than the mass of the initial nucleus by an amount much bigger than with
chemistry, something like 0.1% which is a huge improvement over chemistry; this
is how nuclear reactors work. Also from nuclear physics, you can take very light
nuclei and make them combine (fusion) and get something like 1% of the mass
converted into energy; this is how stars work and so, you see, solar energy comes
from ‘matter converters’ too and so does wind energy since the Sun is the energy
which causes winds to blow. If you want to get 100% efficient you have to go
to particle–antiparticle interactions in particle physics. When an electron and
its antiparticle the positron meet, their mass completely disappears and all the
energy comes out as photons. Did you ever see the Back to the Future movies?
Doc came back from the future where they had invented a small appliance called
‘Mr Fusion’ to do what you want, to convert garbage into the huge amount of
energy needed to power the time machine.

And, the other way around, matter from energy.

Question: Conversion of mass to energy (fission) has been demonstrated many
times in laboratory and field tests. Has conversion of energy to mass also been
demonstrated in laboratories?
Answer: Yes. A couple of examples:

• A very energetic photon (massless) can spontaneously turn into an electron–
positron pair; this is called pair production.
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• The mass of a nucleus is always less than the sum of all the constituent
proton and neutron masses. Suppose you remove a neutron from a
nucleus; it will take work because that neutron is bound in the nucleus.
Hence, the final system of neutron and the original nucleus minus one
neutron has a greater mass if both objects are at rest. So let’s just say that
the nucleus, having a mass smaller than the sum of its parts, is an example
of converting energy into mass because there is more mass after you dis-
assemble it by adding energy (doing work).

2.10 These are a few of my favorite things
As in chapter 1, I collect here a few of my favorite miscellaneous answers about
special relativity.

Question: According to special relativity, as an object accelerates, gets closer to
the speed of light its mass increases. Since the mass increases the gravitational
force increases, so it is not a constant force like you have worked out before, but
an increasing weight problem.
Answer: To know how the mass varies (if you interpret relativistic momentum
that way), just calculate m0/√(1 − β2) where m0 is the rest mass and β = v/c. It
occurs to me, though, that it might be of interest to redo that calculation for a
force which is not constant but which has a value mg = m0g/√(1 − β2) where g is
the acceleration due to gravity in whatever strength field you wish to examine.
I will not give all the details here, just the results. We start by integrating the
relativistically correct form of Newton’s second law:

β β√ − = = √ −⎡⎣ ⎤⎦( ) ( )m g p t t m v/ 1 d /d (d/d ) / 10
2

0
2

integrated gives

β β= + −gt c/
1
2

ln[(1 )/(1 )]

solved for β gives

β = − − + −gt c gt c(1 exp( 2 / ))/(1 exp( 2 / ));

put this into the mass and get

β= √ −( )m m/ 1/ 1 .0
2

These are plotted in figure 2.6. Note that the result for a constant force m0g is
shown as a dashed line for comparison. Potential energy is not a useful concept
here. Note that the time to get to near c, t≈ 3c/g, is about 2.9 years for g= 9.8m s−2.
At that time the moving mass is about 10 times greater as shown in figure 2.7.
A more lengthy discussion of a mass in a uniform gravitational field (including
general relativity) can be seen here.
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Figure 2.7. A graph showing the time dependence of the mass falling in a uniform gravitational field.

Figure 2.6. A graph comparing time dependence of velocities for a constant force (m0g) and for a gravitational
force (mg).
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The notion that relativity implies that time is like a fourth dimension and the form
of the Lorentz transformation, mostly neglected in this book, are touched on in the
next question.

Question: I read A Brief History of Time, but it has left me confused. Can you
please explain the 4 dimension rule. How time and distance are related.
Answer: You need to learn the theory of special relativity. It requires only algebra to
understand its basic concepts. Essentially, if we demand that the speed of light in
vacuum is the same for all observers (by now a well-documented experimental fact),
the inescapable conclusion is that space and time are not separate entities but are
‘entangled’. The ‘entanglement’ is much like that of the three spatial dimensions. An
example is the rotation of a coordinate system shown in figure 2.8. Note that the
components of the vector in the black coordinate system (x,y) are not the same as in
the rotated (red) coordinate system (x′,y′). In fact, (x′,y′) depend on what (x,y) are:

θ θ
θ θ

′ = +
′ = − +

x x y
y x y

cos cos
sin sin .

The rotation ‘mixes up’ the spatial dimensions. It turns out that in special rela-
tivity, the transformationbetween spaceand time ifone system ismovingwith speed v
with respect to the other looks very much like a rotation in ‘four-dimensional space’
because x (the direction of the relative velocity) and t get mixed up:

γ

γ

γ

′ = −

′ = −

= −
−

( )

( )

x x vt

t t vx c

v c

( )

/

1 ( / ) .

2

2
1
2

The fact that this transformation mixes up these two dimensions leads us to
recognize that space and time are no longer separate unrelated concepts. Instead,

Figure 2.8. Rotated Cartesian coordinate systems.
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we should think of ‘space–time’ which includes both time and the three dimensions
of space, thereby suggestive of a four-dimensional world. Moving from one inertial
frame to another is analogous to a rotation is space–time.

One of the cornerstones usually introduced early in a study of special relativity is
the notion of simultaneity. I have not touched on this topic, so the question below
addresses this omission.

Question: I’m reading Relativity by Albert Einstein and in it he says that
simultaneity is relative and uses the example of two lightning strikes at points ‘A’

and ‘B’ and an observer at the mid-point between the two ‘M’. Einstein states that
an observer on a train moving from ‘A’ to ‘B’ observing the lightning strikes just
as the observer reaches ‘M’ will see that strike ‘B’ occurs before ‘A’ (as the train is
moving toward the light from ‘B’ and away from the light coming from ‘A’). Does
this mean that an event only becomes real when the light from it reaches the
observer? Or could one legitimately say ‘These two events happened simulta-
neously, but I saw the flash from ‘B’ before I saw the flash from ‘A’.’?
Answer: The relativity of simultaneity is not how it looks, but rather how it is. In
relativity you have to be careful how you define a time interval so that you correct for
such things as the time it takes light to reach you. The converse is also true, a distant
star is seen right nowbut as itwas long ago. I always find the following examplemore
convincing than the lightning at the ends of the train example. In the center of one of
the cars there is a flashbulb which flashes (see figure 2.9). Light reaches the front and
rearwalls of the train at the same times.However, an observer on the side of the track
watching the car go by sees the rear wall come forward to meet the oncoming light
and the front wall running away from the light coming at it. Hence the event cor-
responding to the flash at the back wall occurs earlier for the observer at rest. (It is
crucial to realize that both observers see all light moving with the same speed.)

Finally, when the Large Hadron Collider came on line at CERN, there were a
number of panicy outcries fearing that something catastrophic would happen, like a
mini black hole being created and sucking in the whole Earth. Here are a couple of
questions along those lines.

Figure 2.9. Left: observer on the train. Right: observer by the tracks.
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Question: I understand that matter gains in mass as you accelerate it towards the
speed of light, and that as you approach the speed of light, mass tends toward
infinity, meaning you would need an infinite force to ‘push’ it beyond the speed of
light, and that’s one of the reasons why nothing can exceed the speed of light.
However, I also understand that with increased mass comes increased gravity,
so... When they accelerate those sub-atomic particles to velocities approaching
the speed of light at CERN, why don’t they suddenly start exerting lots of gravity
and sucking the entire CERN campus toward them?
Answer: First, a little perspective. If I were to bring a baseball into the CERN
campus, I think you would agree that it would not ‘suck in’ everything grav-
itationally. So, an accelerated proton better be a whole lot more massive than a
baseball! Suppose the speed of the protons were 99.99999999% (that’s ten nines)
of the speed of light. Then you can calculate the mass of a proton going this fast as
m = 1.7 × 10−27/√(1 − 0.99999999992) = 1.2 × 10−22 kg. The proton has increased
mass by a factor of about 70 000 and that is still far from a baseball mass.
Question: This lady lost her legal battle to have the Large Hadron Collider shut
down. She believed that the atom smasher could create a black hole and suck up
the Earth. The courts sided with the scientists. The scientists said it’s not possible,
and even if it did create a black hole, it would be a micro black hole and collapse
in on itself. That seems to go against the laws of physics and quantum physics. We
now know that matter sucked up by a black hole is permanently imprinted on the
black hole’s surface and the size of the black hole increases. Did I miss something?

Answer: I do not normally answer astrophysics questions, but I can deal with this
one, I think. First, some cosmic rays (radiation which strikes Earth from space)
have energies much greater than the proton energies in the LHC and if a black

From Newton to Einstein

2-19



hole could be created and have sucked in the whole Earth, that would have
happened long before we evolved. Second, you did miss something—Hawking
radiation whereby a black hole can radiate energy. For something to be ‘sucked
into’ the black hole, it must come within the Schwartzchild radius which is

= × × ≈ ×− −Gm c m m2 / 6.67 10 /(3 10 ) 1.5 102 11 8 2 27

where m is the mass of the black hole. The maximum kinetic energy of each
proton in the collider is 7 TeV which is about equal to the mass energy of 7000
protons, so the heaviest black hole they could make would have a mass of about
14 000 protons, about 2.3 × 10−23 kg; the corresponding Schwartzchild radius is
3.5 × 10−50 m! It seems to me that even if this black hole never evaporated, it
could go a really long time before it got close enough to anything to suck it in.
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IOP Concise Physics

From Newton to Einstein
Ask the physicist about mechanics and relativity

F Todd Baker

Chapter 3

General relativity

3.1 Overview
There is a story about Albert Einstein, probably apocryphal, but amusing and
instructive. As you probably know, his first job was as a clerk in the Swiss Patent
Office and he could easily complete all his responsibilities quickly and then spend the
rest of the day thinking about physics. One day, while watching a workman paint a
building across the square, the workman fell from his ladder. Einstein thought to
himself, ‘there is no experiment which he can do which could distinguish whether he
was in free fall in a gravitational field or was in an inertial frame in empty space’.
This is, in essence, the equivalence principle which, along with a generalized principle
of relativity, provide the basis for the general theory of relativity. General relativity
is an extremely mathematical theory, well beyond the scope of this book to discuss.
But, as for much of physics, a good qualitative understanding based on compre-
hensible principles can be achieved. To that end, let us carefully state the two
principles I would consider essential to understand.

• The principle of relativity is now stated as: the laws of physics are the same in
all frames of reference, not just inertial frames.

• The equivalence principle states that there is no experiment you can do which
can distinguish whether you are in an accelerating frame of reference, accel-
eration a, or in a gravitational field whose local gravitational acceleration is a.

General relativity is the theory of gravity. It tells us why masses attract each other
with what appears to be a force but is actually a deformation of the four-dimensional
space–time. Euclidean geometry is no longer valid, the shortest distance between
two points is no longer a straight line.

3.2 Examples
The equivalence principle can be used on everyday problems, not just esoteric
gravitational scenarios, as illustrated in the following example. (This example also
demonstrates that sometimes The Physicist can get it wrong!)
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Question: Suppose we have Bob the astronaut sitting without a space suit in a
spaceship full of air on a mission to Mars. Bob is very fond of balloons and is
holding on to a nice, big, red helium balloon via a piece of string. Bob is sitting
facing the front of the spaceship. Mission Control decides to slowly accelerate the
spaceship. In which direction will the balloon move relative to Bob? Why?
Answer: I do not like this question because the reason a helium balloon floats is
that the buoyant force, which floats it, arises because the pressure in the air is
bigger underneath the balloon than above it; on a mission in empty space, the
pressure everywhere in the cabin is the same and so the balloon would not go up!
Let’s just have Bob ride in an accelerating car right here on Earth. There are
three forces on the balloon, its weightW, the buoyant force B, and the tension in
the string T. B and T are both vertical, and so, for the balloon to have an
acceleration in the direction of the acceleration a of the car, T must have a
horizontal component in the direction of a. All this is shown in figure 3.1.
Therefore the balloon will move backward opposite the direction of the accel-
eration. In the spaceship where there would be no buoyant force and no weight,
the balloon would appear to accelerate backwards until the string was straight
and ‘horizontal’.
‘Enhanced’ answer: It has been pointed out to me (thanks to Michael Weissman at
Ask the Van) that my answer would be correct only if there were no air in the
spacecraft (contrary to the stipulations of the question) and the explanation of the
balloon in the accelerating car was flat-out wrong! What I failed to think about
was that if there is air in the cabin, forward acceleration will cause the pressure at
the rear of the cabin to be greater than at the front; therefore there would be a
buoyant force on the balloon from back to front. So, if the mass of the balloon is
less than the mass of an equal volume of air, the direction the balloon would move
would be forward, not rearward. If you are familiar with the equivalence prin-
ciple, it is even easier to understand. The equivalence principle states that there is
no experiment you can perform which can distinguish between an accelerated
frame and being in an unaccelerated frame in a uniform gravitational field with the
same acceleration (due to gravity). So, if the acceleration of the ship were g, the

Figure 3.1. Forces on a buoyant balloon.
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balloon would have to behave just the same as it would on Earth except forward
now would play the role of up on Earth, so the balloon would go forward just like
the balloon on Earth would go up.

For the car with acceleration a on Earth, there would be a forward buoyant force
whose magnitude would be ρairVa in addition to the forces shown in figure 3.1 and
B = ρairVg, W = ρheliumVg; here V is the volume of the balloon, ρhelium and ρair
are the densities of the air in the car and the helium in the balloon, respectively.
Without going into detail, I find

θ ρ ρ ρ ρ

ρ ρ ρ ρ

= − −
= − −
= −

( ) ( )Va Va Vg Vg

a g

a g

tan /

( / )( )/( )

/ .

air helium helium air

air helium helium air

Here θ is the angle T makes with the vertical in figure 3.1; the fact that tan θ
(and therefore θ) is negative means that the balloon will move forward, not
backward as in the figure.

One of the first experimental verifications of general relativity came from observing
light being bent by a strong gravitational field, one of the key predictions of the
theory. In 1919 observations of starlight being bent by the gravity of the Sun during
a solar eclipse were made and shown to be consistent with general relativity pre-
dictions. Using the equivalence principle, it is fairly easy to understand why gravity
bends light even though it does not have any mass, as illustrated by the following
question.

Question: My 11 year old has asked me, ‘Does gravity bend light?’ I did high
school physics about 20 years ago, so am very rusty and not up to date with
current thought. I have looked at this discussion topic on the archives of many
forums, but have ended up very confused by the differing opinions/explanations.
I would really like an answer which is easy to explain to a child, but yet not so
simplistic that it is inaccurate. Am I asking the impossible? She has read about the
nature of light and also about gravity, and can’t understand how light can be
affected by gravity, when it has no mass. Is it because photons are energy and so
can be used instead of mass? Or is it that the gravitational pull around massive
stars affects the ‘space’ around it and light just follows the stretched paths? If this
is true, how can some authors say that the light is still moving in a straight line
even when it is following a curved path?
Answer: Here is one explanation, probably the easiest for your daughter to
understand: light being affected by gravity is a result of the equivalence principle
in general relativity. This states that there is no experiment which you can per-
form to distinguish between your being in a gravitational field or in an accelerated
frame of reference. Thus, for example, imagine that you are in an elevator which
accelerates upward; if light enters through a hole in the side of the elevator it will
clearly appear to fall like a projectile because of the acceleration of the elevator.
So, the same thing will appear to happen in a gravitational field the acceleration
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due to which is exactly the same as the acceleration of the elevator. Hence, light
will ‘fall’ in the Earth’s gravitational field with an acceleration of 9.8 m s−2.

Here is another: If we look at the world as having a Euclidean ‘flat’ geometry
and watch a ray of light pass a very massive object, we see the light bend. But, the
way that general relativity describes the world says that, if we are in the vicinity of
a massive object, the space itself is not Euclidean but is curved; in this space the
light follows a ‘straight line’ in that non-Euclidean geometry. Think about
moving on a two-dimensional space like the surface of the Earth. The shortest
distance between two points on Earth is not really a straight line, but it is a
straight line in that space.

So, if gravity bends light, doesn’t that mean that it exerts a force on it and so you
can speed it up if it is traveling toward a mass? No, it doesn’t as the following
question shows.

Question: Doesn’t the fact that a black hole can bend light prove that something
can travel faster than the speed of light? As light is pulled toward the black hole it
would accelerate, since it is already traveling at the speed of light the moment it
started moving toward the black hole it would be going faster than the speed of
light would it not? Just curious.
Answer: No, the light does not speed up as it falls into the black hole. What
happens is that, as you would expect, it gains kinetic energy as it falls but light’s
energy is all kinetic. But, your idea of kinetic energy is probably 1

2
mv2, but this

obviously cannot be true for light since it has no mass. The energy of a photon is
hf where h is Planck’s constant and f is the corresponding frequency of the
electromagnetic wave. So, what happens when a photon gains energy is that
the frequency increases; this is known as a gravitational blue shift (the color of the
light moves to shorter wavelengths) and happens when a photon approaches any
massive body, not just a black hole. A photon moving away from a large mass
experiences a gravitational red shift, a loss of energy.

Another consequence of the equivalence principle is a gravitational time dilation,
this is in addition to the time dilation in special relativity. I will not go into the details
here, but it is completely equivalent to the gravitational red/blue shift. Essentially,
clocks run slower as a gravitational field increases, so a clock upstairs will run faster
than one in the basement. Both gravitational and velocity time dilations must be
taken into account if extremely accurate time measurements are required for a
particular technology. GPS systems are one such technology; the time of transit of
radio signals between satellites and you are the basis of locating you and corrections
for time dilation (both kinds) are imperative for the amazing accuracy of GPS. Here
is a question about gravitational time dilation which will give you a feeling for the
magnitude of the effect.

Question: How much faster does time pass, out in the middle of nowhere in a
space that is not effected by gravity? Like how much faster will time go compared
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to a clock on Earth if we stuck another clock out in a magical spot in space where
the gravitational pull of galaxies would not effect it?
Answer: The equation for gravitational time dilation is √(1 − (GM/(Rc2))) where
G is the universal gravitational constant, M the mass of the object, R the distance
from the object and c the speed of light. At the surface of the Earth this is
approximately 1 − 7 × 10−10 and for R =∞ it is 1. So time passes about 7 × 10−8 %
faster in empty space.

Science popularizations often use some variation of the following model to
explain the bending by mass of space–time. Imagine a bowling ball on a trampoline;
the trampoline is pushed down leaving it not flat. Now imagine putting a marble on
the edge of the trampoline; it will move toward the bowling ball, not because of
some force but because the trampoline is warped. I think it is a really good simplistic
way of qualitatively understanding what is going on. But many questioners at
AskThePhysicist.com are thinkers and bothered by this model. How can you employ
gravity in an example which purports to explain gravity, they ask. How can you
possibly describe warping of four-dimensional space by a two-dimensional model?
The next question demonstrates my take on this.

Question: My question is about gravity. In the depictions I have seen of the
Einstein model of gravity, planets and stars are shown as depressing a plane of
space–time into a well like depression into which other objects tend to fall. I am ok
with this depiction. However, it seems to make the assumption that space is a plane
and has only two dimensions. When I observe the Universe, I see three dimensions.
It would seem to me that these ‘gravity wells’ should exist in three dimensions not
the two generally depicted. In the two-dimensional illustrations, these gravity wells
seem logical and simple—the Sun for example presses down to form a depression in
the two-dimensional plane and the Earth falls in towards it in an orbit. But space is
not two-dimensional. These ‘wells’ or depressions should exist in an infinite number
of orientations in a three-dimensional space. Why are they only shown as if the
fabric of space is like a sheet of paper, in two dimensions and not in an infinite
number of orientations as would be the case in a three-dimensional space?
Answer: My stock answer to this kind of question is that the ‘trampoline illus-
tration’ of deformed space–time is meant to be a cartoon to illustrate the idea, not
an accurate rigorous representation of the theory of general relativity. You must
not take it too seriously or literally. It is also practically impossible to draw a
picture of deformed three-dimensional space. To draw deformed two-dimensional
space is easy because you use the third dimension to show the deformation. To
draw a deformed three-dimensional space would require a fourth spatial
dimension which cannot be drawn. To make things even worse, what is really
deformed in general relativity is space–time, so you would have to somehow
envision drawing a four-dimensional figure in five dimensions.

An important issue in modern astrophysics and cosmology is the quest for a
theory of quantum gravity.
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Question: My question is in regards to relativity and quantum mechanics. I’ve
heard physicists say on TV programs and in books that relativity and quantum
mechanics are incompatible and describe two different phenomena. Do these two
theories contradict one another? Is the Universe contradictory or is there anything
in the Universe that can definitively be defined or described as a contradiction?
Answer: You have to be careful that when somebody refers to ‘relativity’, you
know what they are referring to. The theory of special relativity, which predicts
things like time dilation, length contraction, E = mc2, etc, is perfectly compatible
with quantum mechanics; there is something called relativistic quantum
mechanics. What is probably being referred to by your sources is the theory of
general relativity which is the best current theory of gravity. No one has been
successful in developing a theory of quantum gravity. I would not so much
describe them as ‘incompatible’ as I would call them non-unified’.

The following is one of the most interesting questions I have answered. This is for
real connoisseurs of the equivalence principle!

Question: Suppose you have radiation detectors fixed on the ground on Earth.
Will they detect radiation coming from a charged particle in free fall near them?
The first answer that comes to mind is: Yes, they will detect radiation because the
particle is accelerated, and electrodynamics predicts that accelerated charges must
radiate in this situation. According to the Equivalence Principle, this situation is
equivalent to detectors fixed on an accelerated rocket with acceleration g moving
in the outer space and far away from the influence of other bodies. If the answer
to the previous question is yes, then the detectors on the rocket should also detect
radiation coming from a charge in free fall as observed by the reference frame of
the rocket. But a charge in free fall in this reference frame is at rest in the inertial
reference frame fixed with respect to the distant stars, and a charge at rest in an
inertial frame should not radiate. Is it possible that detectors fixed on the rocket
detect radiation but detectors at rest in the inertial frame do not? Is radiation
something not absolute, but relative to the reference frame?
Answer: This is a fascinating question and points to an experiment which would
seemingly violate the equivalence principle. The answer to your first question is an
unequivocal yes, an electric charge accelerating in free fall in a gravitational field
radiates electromagnetic waves, an electric charge not accelerating does not
radiate. But, suppose that you are falling along with the charge; relative to you
the charge is not accelerating and therefore not radiating. Or, equivalently,
suppose that you are in a spaceship in empty space with your rockets turned on. If
you release an electric charge inside, it will ‘accelerate’ toward the rear of the ship
and therefore radiate because the equivalence principle states that there is no
experiment you can perform which can distinguish between the accelerating
frame and a static gravitational field. However, the charge will move with con-
stant speed relative to an inertial observer nearby and therefore not radiate. In
both cases we have an electric charge both radiating and not radiating, a seeming
paradox. Although I had not heard of this paradox before, apparently it has been
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a topic of many articles. The most recent of these, by Almeida and Saa, has
evidently laid the paradox to rest. They demonstrate in this article that observers
for whom the charge is not accelerating ‘…will not detect any radiation because
the radiation field is confined to a space–time region beyond a horizon that they
cannot access…’ and ‘…the electromagnetic field generated by a uniformly
accelerated charge is observed by a comoving observer as a purely electrostatic
field’. Like all ‘paradoxes’ in relativity, there is not really a paradox; rather a
radiation field in one frame may be a static field in another. Basically, you nailed
it when you said ‘radiation [is] something not absolute, but relative to the refer-
ence frame’.

One of the predictions of general relativity is that disturbances like supernovae or
black holes rotating around massive stars result in gravitational waves. So it is
natural to ask what the speed of gravity itself is. For example, if all of the Sun’s mass
suddenly disappeared, how long would it be before we knew it, before our trajectory
became a straight line instead of our orbit? Interestingly, this speed has never been
measured. The following question addresses this point.

Question: What is the speed of gravity? If you don’t have an exact speed calcu-
lated, is it faster than the speed of light?
Answer: No one has ever measured the speed at which the gravitational force
propagates. In Newtonian physics we calculate orbits by assuming that the forces
are instantaneously transmitted, but nobody believes this—it just works pretty
well because realistic propagation times are bound to be very short over the
distances of interest. A better theory of gravity is general relativity. Here
the theory predicts that gravity is due to distortions of space–time caused by
the presence of mass and these distortions are predicted to propagate with the
speed of light. In general, all the physics we know forbids any information pro-
pagating faster than light speed. Finally, we believe that a theory of quantum
gravity will someday be found in which the quanta which transmit the force will
be massless particles called gravitons (similar to photons which transmit the
electromagnetic force). Massless gravitons, like all massless particles, would have
a speed equal to the speed of light so the force which they transmit would move
with that speed. There is a very enlightening essay on John Baez’s blog.

Finally, I need to expose the rebel in me! Cosmology, for which general rela-
tivity is gospel, is focused on two additional important questions, puzzles if you
like, dark matter and dark energy. As the answer to the final question of this
chapter shows, my take on these questions is decidedly not mainstream. So, here I
am, like many of my questioners, an outsider who looks critically at something at
which he is not expert.

Question: We’ve all been reading about dark matter and dark energy for some
years now and I believe you’ve said that you (among many others) are not yet
persuaded that dark energy and dark matter exist. If matter and energy, as
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traditionally and conventionally understood, comprise only a very small part of
the substance of the Universe, does it follow that classical mechanics, thermo-
dynamics, relativity and quantum theory, etc, correspondingly apply only to that
(seemingly) tiny aspect of the world? Is there any reason to think that the laws and
theories of physics that humanity has discerned to date would apply also to dark
matter and dark energy?
Answer: First, a disclaimer: as I state on the site, I am not an expert in astro-
physics, astronomy, or cosmology, so you can take my opinion with at least a
grain of salt or ignore it altogether! I would not say ‘many others’! Most astro-
physicists, astronomers and cosmologists talk about dark matter as if it is surely
there but just not directly observed yet. My own point of view is that I need to see
some direct evidence before I accept that such a thing really is there; there is lots
of indirect evidence of dark matter—the dynamics of galaxies, the time when
galaxies first began to form, to name a couple—but it is altogether possible that
we do not understand gravity as well as we assume that we do. The best theory of
gravity, general relativity, makes many assumptions which are not necessarily
true over really large distances. If this were the case, maybe dark matter is the
21st century equivalent of the lumeniferous æther and is something we are looking
for in vain because there is no such thing. There are lots of good ideas about what
dark matter might be (including WIMPS, for which some evidence has recently
been observed in the observed excess of high-energy positrons) and I will be
happy to accept experimental evidence when it happens. Dark energy is a dif-
ferent matter in that it has not caused a search for some ‘stuff ’. There is already a
place for dark energy in general relativity, known as the cosmological constant; in
other words, many cosmologists do have the point of view that dark energy does
result from an incomplete theory of gravity.
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Chapter 4

Wacky questions: sci-fi, super heroes, computer
games, fantastic weapons, etc

4.1 Wacky questions
I love these kind of questions. And I love it that gamers, trekkies, sci-fi movie fans,
and the rest stop to think about whether the things they encounter could ever really
be possible. Mostly, it is just a matter of looking at the realities of either classical
mechanics or relativity to see how crazy some of the assumptions are! For the most
part, these questions stand on their own, do not require any additional commentary.

Question: I’m hoping you can settle a bet between my father and myself. We are
both movie buffs, and work together. While working we discussed the Ah-nuld
movie Eraser. I’m going to make the assumption you have never seen the movie
which revolves heavily around the manufacture of man-portable super-railguns
that fire aluminum rounds at ‘close to the speed of light’. Being firearms enthu-
siasts as well, we discussed the flaws in their idea (beyond the fact no technology
in the near future would allow such a weapon as the one depicted to be made, let
alone one man-portable). Where we came to a disagreement was why for other
reasons it would be useless. While we agree that the mooks Ah-nuld tears through
as he does in every movie would be out of luck, in practical situations the weapon
would be useless but we disagree why. My father believes that a 4 gram bullet (our
assumptions) traveling 80% of c would immediately flatten out and quickly lose
all of its kinetic energy due to its low mass and aluminum’s relatively soft nature
upon striking anything solid such as a door, or brick. I say a round with the same
dimensions would explode on contact with something solid (again like a brick) as
thework-heatingwould vaporize a piece of aluminumwith thatmass. If it could even
get there without being melted by atmospheric friction. As I’ve submitted questions
to you before we decided we would—drum roll—ASK THE PHYSICIST!!! Are
either of us correct? The loser has to buy the next Pizza we order.
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Answer:Neither of you is addressing the real issue here—a 4 gram bullet traveling
at 80% the speed of light has an almost incomprehensible amount of energy. So,
saying that this weapon would ‘be useless’ is way off the mark. Saying that it is
impossible to make such a weapon is a different issue which I will address after
talking about what such a speedy bullet would do. You are probably not inter-
ested in the details, so I will just give you the kinetic energy such a bullet would
have—about 5 × 1014 J. To put that in perspective, if you took that energy and
delivered it to the power grid over a period of a day, this would be the equivalent
of a 6 gigawatt (6 × 109W= 6 billion J s−1) power station. The largest power
station in the US has a power output of about 4 gigawatts. Or, the energy of the
Nagasaki atomic bomb was about 1014 J, 1/5 of the energy of your 4 gram
bullet. So to argue whether the bullet’s flattening or exploding is the reason it
would not do much damage sort of misses the point, don’t you think?! If the
bullet takes 10 s to deliver its energy to whatever can take it, you are still talking
about the energy of 5 WWII-era atomic bombs being delivered. I would not
want to be within 50 miles of that. Finally, it means that the ‘gun’ has to deliver
all that energy in an unimaginably short amount of time (I presume that since, if
it is ‘man-portable’, the gun must be no more than a few feet long). I figure that
a force on the bullet of more than 2 million lbs would be required during the
time it was in the gun; do you think an aluminum bullet could withstand such a
force? And, Newton’s third law says that, if the gun exerts that force on the
bullet, the bullet would exert that force on the gun. Imagine the recoil! This is
such a ridiculous scenario, I don’t think we even need to beat a dead horse and
talk about what air friction would cause to happen as it flew to the target.

Question: What would the yield of a 5000 ton iron slug accelerated at 95% of c by
say a bored Omnipotent be? Would it be enough to mass scatter a planet?
Answer: I get the strangest questions sometimes! So, 5000 metric tons= 5 × 106 kg.
The kinetic energy would beK=E −mc2=mc2[(1/√(1− 0.952))− 1] ≈ 1024 J.
The energy U required to totally disassemble a uniform sphere of mass M of
radius R is U= 3GM2/(5R) where G= 6.67 × 10−11 is the universal gravitational
constant. So, taking the Earth as a ‘typical’ planet, U= 3 × 6.67 × 10−11 ×
(6 × 1024)2/(5 × 6.4 × 106) ≈ 2 × 1032 J. So your god’s slug is far short of supplying
enough energy to totally blast apart the Earth.

Question: I was watching Babylon 5 and in there was a description of an Earth
Alliance space ship weapon. The weapon was a gun that has two very conductive
parts on both sides and a conductive armature in the middle and electricity
somehow launches the projectile. The gun is 60 m long, has two barrels with each
capable of firing two shots per second simultaneously. The projectile is 930 kg in
mass (1.7 m long 20 cm in diameter) to a velocity of 41.5 km s−1. The barrel of this
electric gun is 60 m long. Is this kind of gun physically possible to build?
Answer: I always like to look first at the energetics when answering questions like
this. Assuming that the acceleration of the projectile is uniform, I find that the
time it would take to traverse the barrel is 0.029 s and the average acceleration is
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1.4× 106m s−2. Thus, the average force on the projectile would be F=ma= 1.4×
106× 930= 1.3× 109N= 280 000 000 lb. I do not think you could have a projectile
which would not be destroyed by such a force. But, suppose the projectile could
withstand this force; the energy which youwould have to give it would beE= 1

2
mv2=

8× 1011 J. Delivering this energy in 0.029 s would require a power input of
P= 8× 1011/0.029= 2.8× 1013W= 28 TW; for comparison, the current total power
output for the entire Earth is about 15 TW.Or, if you think of the energy being stored
between shots, and there are four shots per second,P= 8 × 1011/0.25= 3.2 × 1012=
3200GW; the largest power plant currently on Earth is about 6 GW. And, this
power source needs to be on a ship? I do not think this gun is very practicable!

Question: Hi! I was playing a video game called Mass Effect 2 and in the game a
drill instructor gives a lesson about the main gun of a Mount Everest class
dreadnought that is the first dreadnought class made by the largest human gov-
ernment in ME Universe known as Systems Alliance. The main gun is a rail gun
that accelerates one 20 kg ferrous slug to 4025 km s−1 and it takes 5 s to charge.
The slug impacts with kinetic energy of 1.62 × 1014 J which is 38.7 kt of TNT. The
main gun is 800m long and built into the superstructure of an 888m long dread-
nought that has mass of at least one million tons. Would there be any problems of
having our future warships operating in space equipped with this kind of weapon
and does this design sound feasible? And in the game’s lore it is stated that an
impact from this weapon levels entire city blocks. Would this projectile moving at
4025 km\s be able to level a city block in a metropolitan area because the Turians
(a species inMass Effect) fired these slugs to human cities on the colony of Shanxi
leveling a city block clean of even the sturdiest skyscrapers.
Answer: Gamers and sci-fiers have asked questions like this before. That is good,
to think about the physics and how it might affect the practicability of these kinds
of weapons in the real world. Your numbers are right, the kinetic energy of a
20 kg mass traveling at a speed around 4 × 106 m s−1 is about 1.6 × 1014 J.
(The speed is just a little above 1% the speed of light, so classical calculations
should be ok.) The energy of the atomic bomb dropped on Nagasaki was about
1014 J, so this should answer your question about whether or not there is adequate
energy to demolish a city block—easily!

• It takes 5 s to charge, so let’s see what the required power input would be:
P=E/t= 1.6× 1014/5≈ 3 × 1013W= 30 TW. The average power consump-
tion of the entire Earth is 15 TW. Where are you going to get this kind of
power in the middle of empty space? Maybe you can just carry hundreds
of atomic bombs with you?

• And, let’s talk about the launch. If the acceleration over the 800m is
uniform, it would take about 4 × 10−4 s resulting in an acceleration of
1010 m s−2. That means that the force necessary to give this acceleration to
a 20 kg mass is 2 × 1011 N ≈ 45 billion lb. Do you think an iron slug could
withstand such a force?

• Given the time of acceleration, what is the power delivered to the slug?
P=E/t= 1.6 × 1014/4 × 10−4 s ≈ 4 × 1017W.
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• Unlike the previous two answers, recoil for this gun should not be a serious
problem. If the mass of the ship is a million metric tons, 109 kg, the recoil
velocity should only be about 20 × 4 × 106/109= 8 cm s−1.

I think you would agree that this device would be totally unworkable in the
real world.
Added comment: In my comment above stating that recoil would not be a pro-
blem, I have to take that back. Even though 8 cm s−1 is not very fast, that speed is
acquired in a very short time, 4 × 10−4 s, so the acceleration of the ship is very
large, a= 0.08/4 × 10−4= 200m s−2 which is approximately 20g, quite a jolt!

Question: In the Halo video game series there are Magnetic Accelerator Cannons
in orbit around planets that can launch a 3000 ton magnetic projectile to 4% light
speed. These cannons use the principle of the coil gun. These projectiles have a
kinetic energy of 2.16 × 1020 J which translates to around 51.6 gigatons of TNT.
So these cannons seem to have really unrealistic velocities for these projectiles.
What would be the problems in developing these cannons to defend the human
species from possible alien invaders? I know energy is one but I’ve heard that if
you were to accelerate a projectile to these kinds of speeds they would turn into
plasma from the sheer amount of energy being transferred into them.
Answer: I think you will get the picture of why this is a preposterously impossible
weapon if you read an earlier answer. There the speed was much higher but the
mass much smaller. Here are the practical problems in a nutshell.

• To accelerate it to this speed in a reasonable distance the force required
would be so large as to totally disintegrate the projectile and the cannon
for that matter.

• Think about the recoil of the cannon. Unless its mass was much bigger
than 3000 tons, much of the energy expended would be wasted, not to
mention the disruption of the orbit. This would be a good reason to have it
mounted on the ground rather than orbit.

• Where are you going to get the necessary energy? I agree with your
number for the kinetic energy of the projectile (1

2
mv2 works fine for this

relatively low speed and a ton here is a metric ton), ~2.16 × 1020 J. Suppose
it took 1 min to get this much energy; then the power required would be
2.16 × 1020/60 ≈ 3.6× 1018W= 3.6× 109 GW. This is about 1 440 000 times
greater than the current total power generated on Earth of about 2500 GW.
(Of course, that does not take into account the recoil energy of the cannon
itself.)

• Oh yeah, I almost forgot. There is no evidence whatever for alien bad guys.

Finally, one of my favorite books as a kid was Ringworld by Larry Niven. Here
I calculate the kinematics of projectile motion on such a rotating environment.

Question: Could centrifugal force actually be used to simulate gravity like in so
many sci-fi stories? One of my favorite sci-fi stories is the Ringworld by Larry
Niven. The Ringworld of the title is a giant ring shaped structure the size of
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Earth’s orbit. It’s centered on a star and has a habitable inside edge, gravity on
this inside edge is simulated by the structure spinning fast enough to make objects
feel as heavy as they would at 99.2% Earth gravity. If I were stood on a real
structure like the Ringworld, and I jumped up in the air, would I fall back down
or fly off into space?
Answer: Yes, centrifugal force could be used to simulate gravity, as long as the
radius of the ring is large compared to the size of the objects. In such a scenario,
the centripetal acceleration should be set equal to g, so g=Rω2 where ω is the
angular velocity in radians per second. So, the figure 4.1 shows the ring as viewed
from outside. You now jump straight up with a speed v. However, note that you
also have a tangential velocity of Rω so your actual velocity is √(v2+R2ω2). So
you see what will happen is that you will go in a straight line with constant speed
(because there are no forces on you) along that velocity until you again strike the
ring; it will seem that you jumped and came back down. You can calculate the
time you were in the air and how high you went by doing some pretty straight-
forward geometry/trigonometry.

I find the two angles labeled θ above are the same so

θ ω θ ω ω= √ + = √ +( ) ( )v v R R v Rsin / and cos / .2 2 2 2 2 2

From these you can find the length of the chord (the length of your flight)

θ ω= = √ +( )C R Rv v R2 sin 2 / ,2 2 2

the height h you go above the surface

θ ω ω= − = − √ +( )( )h R R R v R(1 cos ) 1 / ,2 2 2

and the time you are in the air

ω ω= √ + = +( ) ( )T C v R Rv v R/ 2 / .2 2 2 2 2 2

Now, let’s compare these with the time and height on Earth. Remember that
ω=√(g/R) and I will take R to be very large compared to v2/g. So, now I find that

Figure 4.1. The path of a ‘vertically’ launched projectile in a rotating gravity simulator.
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These two approximate results are just the same as for a projectile launched
straight up on Earth. Keep in mind, though, that R must be large. Also, you do
not want to jump with a velocity which has a component parallel to the axis of
rotation. If you are too close to the edge, you will miss the ring when you ‘fall
back’. (See appendix D.)
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Chapter 5

Epilogue

5.1 Ask the psychic
It is amazing how many visitors to the Ask the Physicist web site think they are
asking the psychic. In spite of the disclaimers I have put on the home page, nearly
every day I receive at least one question asking me to use my mystical powers to help
guide their daily lives or explain remarkable phenomena. And, it is not just ignorant
people who cannot spell—computer algorithms don’t seem to get it either. A few
years ago I tried to use GoogleAds on the site to generate a little money; to my
horror, many ads generated by Google’s software were for ‘Free Psychic Readings’!
And, if you have ever tried to talk to a human being at Google, forget it; I just gave
up using GoogleAds when I couldn’t stop the psychic ads—what better way to
destroy the credibility of a serious science site than with ads for palmists and
clairvoyants? Gathered here are some of my favorites from Ask the Psychic. (By the
way, unlike the serious parts of this book, questions in this chapter are not edited.)

Question: Me and my gf were chatting one night over the computer. I was
thinking about holding her hand and she immediately tells me her hand got
warmer we kept experimenting with this until I could see every detail about her
room even though I’ve never seen her room. Eventually after about 3 h of
experimenting I started to read her thoughts. Even stranger still I asked her to put
her hand on her computer and when I did I felt myself get shocked with like an
other worldly energy and she felt it too. Now I know about half her memories and
she knows mine. Help! I don’t know what’s going on.
Question: Will Cynthia come back and want to be with me?
Question: Hello, my name is John and I have just one question. If I try to
communicate with my loved ones that have passed, is it possible to help me in life?
Question: Where did my sons hampster disappears to?
Question: Okay so I REALLY like this kid Branden. And I’m having dreams
about me and him dating. I talk to him everyday we text, video chat and call each
other. I have recently moved so we stay in touch. He’s told me that he thinks I’m
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cute and pretty. But he likes someone other than me. So you knowing that, do you
think me and him will EVER get together?
Question: where is my wii controller
Question: Have Jermaine Hogan ever cheated on me
Question: What did I see? I few days ago I was sitting in front of my pc reading
something. I took a casual glance down my body (chest) and saw kind of vapor
coming out from my body, surrounding it. Later on I found On YouTube a film
showing humans radiating heat captured by an infrared cam. What I saw looked
a bit like that. The movement of this ‘fog’ or ‘vapor’ reminded me of real vapor.
Question: I would liked to know about my future and do I actually have a twin
brother who know I’m still here waiting for him.

And, finally, the perennial favorite,
Question: am I pregnant.

5.2 Off-the-wall hall of fame
Although I emphasize that I require single, concise, well-focused questions,
inevitably I get lengthy questions (dissertations, really) from people wishing to get
the stamp of approval of a professional physicist on their personal theory of
something or other. If these submissions are not questions but rather assertions, then
they are often questions which start with something like “…is it possible that…”

Of course a scientist is often loathe to say that something is impossible even if he
believes it to be—then you get attacked for being closed-minded. Best to just file
these away in my Hall of Fame rather than try to get into a dialog with a crazy
person! Here are a few good ones.

Question: in fullmetal alchemist alchemy is a scinace of understading mater then
bracking it down and recontucting it why cant a black hole do that just in a
difrent part of the universe. i firlmy beliove that black holes are cheat cuts to
difrent parts of space. i just dont have the brain to prove it in a sctaic eqation but i
qam will to work with those who have the resorces and mind to do so. i would like
to be apart of a group to do this.
Question: I was wondering about the propagation of our AC/DC electricity and
I was blessed with the thoughts of an electrostatic vortex that could be created by
properly encasing the wires and putting them closer to the ground, if not
underground, to allow the power a conduit that does not have to work against
gravity any harder. I considered what is the best conduit for static electricity and
I thought wool! We can create a fluffed wool mesh that can encase power lines
and that will be encased with a mirrored lining and non conducive rubberized
plastic casings to reflect free falling electrons (power loss) that will magnetically
charge the wool as they pass back and forth through it until they begin to cling to
the mesh and create an electromagnetic vortex surrounding the whole of the
current propagated so that there will be no loss and discharge of electrons and
power can begin to flow without power loss. It would be simple to configure and
design an electrostatic alternator and diodes to change electromagnetic static
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electricity back into AC/DC current. The current that comes through the lines to
household will be an even more pure sine wave and it will get the atrocious power
lines, and buzz, out of the air. What do you think? Do you understand what
I mean? I think it was where Tesla was headed but he thought just to remove
static electricity from the air. The fact that we release our static electricity into the
air, creating a surplus of it, may be detrimental to environmental health and it
may also affect the orbit of the earth. Statically charged radio frequencies can
create electromagnetic vortexes in the atmosphere that can affect synaptic flow
and electrical equipment failure and malfunction. We need to secure this invisible
enemy and begin to get our moneys’ worth from it.
Question: I have some questions which are really important to me because they
have literally speaking ruined my life and have caused a lot of phobias in my mind
and soul, sir, i have a strange feeling everytime that anytime the earth will start
rotating and i would not be able to sustain that and will die due to my motion
phobia. Sir, is it really possible that the earth will start rotating and we will be able
to see it? (I do know that earth is rotating with a constant acceleration) but could
anything happen that would disrupt the constant nature, and we will be able to
see it? i mean as a lot of traffic is moving on the surface, so they should cause
acceleration and deacceleration to the earth’s movement. sir, plz reply me asap as
i can’t travel by any means due to this circular movent phobia and everything.
Question: this question is concerning negative matter (−e) and positive matter
(+e) in relation to wormholes

1 is the opposite of −1.
1 is ‘more than everything’
as we know 1 is more than nothing
1 is also less than 2
therefore 2 is more than more than everything or 1 is less than everything
1 is more than nothing −1 is less than everything
1=−1 1 and 1 are opposites 1,1,−1 1>−1
−1= 1 1 and −1 are opposites of
is 1 is a positive matter (+e) than that positive and two opposites, the opposite
of a positive is a negative 1 and −1 are negative, but 1= 1 so for every +e there
is a −e which is of equal value and a −e which is of lesser value
I am lost in all of this and how it could be applied to negative matter in black
holes and their wormholes(if present)?

Question: A step beyond the physics of the physical world there is the precept of
meta-physics or that spirit known as ‘Karma’ in the world. The precepts of ethical
force that becomes contrived by the actions of one that bring either falter or
reward from that spirit of ethics and the force that our higher power has invested
in its effects as per action/reaction. In this sense, would it stand to reason that in
the use of trees for paper and paper products (so frivolous a use of such a precious
resource) when there is highly renewable water grasses (cypress and papyrus
grasses) and modern technology to alleviate such a waste of our precious trees. In
that we have not developed a process to derive paper from these alternate
resources I believe that the human condition suffers from the spirits of the forests
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that are as alive as any self respecting human being. I also believe that the animal
populations of the water punish us (degrade the quality of human life) for not
cleaning our waste waters more effectively by recreating the natural osmosis that
promotes the sedimentary processing of the waters in underground systems. We
could recreate the conditions of underground lakes and create an electromagnetic
osmosis that we could intensify to make a sedimentary time machine and do in
1 year what takes 1000 naturally. Do not even answer this question because
I know I am right; just use sense and get to work on these projects. I have many
more to follow.
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Appendix A

Energy

A1.1 Work-energy theorem in Newtonian mechanics
Although I use calculus so that I have generalized to forces which might vary, I do
the calculations in one dimension for clarity. First, derive the work–energy theorem
in Newtonian physics:

=
=
=
=

F p t
m v t
m v x x t
m v v

d /d
(d /d )
(d /d )(d /d )
(d /dx) .

Rearranging,

=F x mv vd d .

Integrating,

∫ ∫= = = − = ΔW F x m v v mv mv Kd d
1
2

1
2

.2
2

1
2

A1.2 Potential energy
Suppose there is some force, call it the internal force Fint, which is always present for
some particular problem and that all other forces doing work are represented by F.
Then

∫ ∫ ∫
∫

= + = + = Δ

Δ − =

W F x F x W F x K

K F x W

d d d

d .

int ext int

int ext

doi:10.1088/978-1-6270-5497-3ch6 A-1 ª Morgan & Claypool Publishers 2014

http://dx.doi.org/10.1088/978-1-6270-5497-3ch6


Now, the indefinite integral ∫− F xd1 is just some function of x, call it U(x), so

∫− = − = ΔF x U x U x U xd ( ) ( ) ( ).1 2 1

U is called the potential energy. So now we define the total energy as E=K+U and
rewrite the work–energy theorem as

Δ =E Wext

where Wext is the work done by external forces which are all forces for which a
potential energy function has not been included in the energy. So, you see, the
potential energy is really just a clever book-keeping device to keep track of work
done by a force which is always present.

In this book, you will seldom need to understand potential energy. The one
simple case which you might need is the gravitational potential energy. In that
case the force is F1=−mg (the – sign because it points down) and so Ugrav(y)=mgy.
(We usually use y for the vertical direction rather than x.)

A1.3 Energy in special relativity
In the theory of special relativity everything is the same except p is redefined:

=

= √ −

= √ −

= √ −

= −
−

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
( )
( )

( )

( )

( )

( )

F p t

m v v c t

m v v c x x t

mv v v c

mv v c v x

d /d

d / 1 / /d

d / 1 / /d (d /d )

d / 1 / /dx

1 / d /d .

2 2

2 2

2 2

2 2 3/2

Rearranging,

= −
−( )F x mv v c vd 1 / d .2 2 3/2

Integrating,

∫ ∫ γ γ= = − = − = Δ
−( )W F x m v v c v mc Kd 1 / d ( ) .2 2 3/2 2

2 1

If the particle started from rest, γ1 = 1 and ended at speed v, γ2 = [(γ − 1)/√(1 −
v2/c2)], then

γ= −K mc ( 1).2
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Be sure to note that m is the rest mass. Now, this does not look much like 1
2
mv2

for small v, so we need to look a little more closely. If v≪ c,

√ − ≈ + + ⋯v c v c1/ (1 / ) 1
1
2

/2 2 2 2

This is just a binomial expansion, (1+ z)n ≈ 1+ nz+ 1/2n(n− 1)z2 +⋯ So now we
can write

≈ + + ⋯ − ≈
⎛
⎝⎜

⎞
⎠⎟K mc v c mv1

1
2

/ 1
1
2

.2 2 2 2

Rearranging the equation for K above,

γ= −K mc mc .2 2

This equation says that ‘the kinetic energy is something minus some constant’. We
interpret this to mean that the ‘something’ is the total energy E and the constant mc2

is the energy something has by virtue of its mass, even if at rest. So, we can finally
write the total energy as E= γmc2. So, if the particle is at rest, γ= 1 and E=mc2.
Although I will not work it out, a little algebra leads to the very useful expression for
the total energy in terms of the momentum:

γ= = √ +E mc p c m c( ).2 2 2 2 4
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Appendix B

Approximations in Kepler’s laws

The purpose of this appendix is to show that the last small distance of the Kepler
straight-line orbit which I did in an example in chapter 1 does not significantly
contribute to the total time; also to show that the speed does not become relativistic
until very small distances from the force center. The radius of the Earth’s orbit is
RO= 1.5 × 1011 m and the radius of the Sun is RS= 7 × 108 m. The mass of the Earth
isME= 6 × 1024 kg and the mass of the Sun isMS= 2 × 1030 kg. The potential energy
function isU(r)=−GMSME/r. So, for the Earth stopped in its orbit its total energy is

= −E GM M R/1 S E O

and the energy at the Sun’s surface, now with velocity V, is

= − +E GM M R M V/
1
2

.2 S E S E
2

Conserving energy, E1=E2 and solving for V,

= √ −

= × √ × − ×
= × −

V GM R R{2 [(1/ ) (1/ )]}

1.63 10 [(1/7 10 ) (1/1.5 10 )]

1.25 10 m s .

S S O

10 8 11

6 1

The first thing to note is that this speed is still much smaller than the speed of
light, about 0.004c, so relativistic corrections are not necessary. If the Sun and Earth
were point masses, the Earth would continue accelerating from here. If it kept going
at speed V it would take a time t=RS/V= 560 s to reach the center; the actual time
would be much shorter than this because of the acceleration. But the total time to
fall to the surface was found to be about 65 days, so we can conclude that the error
made in the approximations was truly negligible.
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Appendix C

Rotational physics

Newton’s laws, as described in chapter 1, section 1.1, applies to objects which can do
nothing but move along lines in response to forces; this kind of motion is called
translational motion. But, this is not the most general way objects can move. Imagine
a stick which you have grasped at one end and thrown; the stick does indeed seem to
follow a path like a small ball would, but it also spins like a propeller as it moves
along that path. Objects can also rotate and Newton’s laws need to be extended to
include the possibility of rotation. Description of rotational physics often runs to two
to three chapters in a physics textbook and most of the formalism is not needed here.
It is, though, important to the purposes of this book to include some basic ideas.

Torque plays the role of force. Where a net force causes an acceleration (speeding
up or slowing down), a net torque causes an angular acceleration (spinning faster or
slower). Torque is a little trickier than force to understand because it matters where
the force is applied and in what direction. My favorite way to explain it is to
imagine closing a door. You must push on the door somehow. But suppose you
push on the edge of the door where the hinges are—it will not close no matter how
hard you push. Now suppose you push on the edge of the door opposite where the
hinges are but you push straight toward the hinges—it will not close no matter
how hard you push. Torque τ is defined as the component of the force perpendicular
F⊥ to the moment arm L times the length of the moment arm, τ = F⊥L = FL sin θ.
You must choose an axis around which to calculate torques. If you call the torque
positive as I have for the example in figure C.1, and it tends to cause the moment

Figure C.1. A force F exerting a torque.
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arm to rotate clockwise as you can see it does, then every other torque which tends
to cause clockwise rotation must also be positive and torques which tend to cause
counterclockwise rotation must be negative. Most of the questions answered are
equilibrium problems where all the torques add to zero. If there is a net torque,
there will be an angular acceleration α and Newton’s second law takes the form
τ= Iα where I is the moment of inertia, that which plays the role of mass in rota-
tional physics. You need not worry about how to calculate I, it will always be given
in any problems in this book. For example, the moment of inertia of a solid uniform
disk of radius R and mass M is I = 1/2MR2. The name makes sense because if m is
the resistance to acceleration (inertia), I is the resistance to angular acceleration
(moment of inertia).
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Appendix D

Centripetal acceleration

Acceleration is a vector, it has both a direction and a magnitude. So, contrary to
common nomenclature, a car driving around a curve with constant speed is
accelerating. And, you should know that you cannot turn a corner going a constant
speed on an icy road, that is, without the force provided by the friction between
your tires and the road. So, if you believe Newton’s second law, there must be
some acceleration even if you are going with a constant speed. You usually think of
acceleration as change in speed, but when you are turning there is also an acceleration
due to the change in direction of your velocity. This acceleration is called centripetal
acceleration. This word, centripetal, has its origin in Latin: the centri- part is pretty
obvious, center, the -petal part is from the Latin peto, I seek; centripetal acceleration
points toward the center of the circle you are traveling in. You may know the word
centrifugal. Here, -fugal comes from the Latin fugo, I flee. Centrifugal acceleration
points away from the center of the circle you are traveling in and there is no such thing
although we will find the (fictitious) concept of centrifugal acceleration useful. Think
of a stone tied to a string of length R and moving with some constant speed v. Would
the stone move in a circle if the string were not there? Of course not. The string exerts
a force (called the tension in the string) on the stone which points along the string at
the center of the circle. Any introductory physics text can give you a derivation of the
magnitude of the centripetal acceleration ac, I just give the result, ac = v2/R.
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Appendix E

Friction

When two surfaces are in contact with each other and sliding, they exert forces on
each other. The force which is parallel to the surface of contact is called the frictional
force. Friction can be exceedingly complicated, but for many real-world situations it
is true that the frictional force f is approximately proportional to how hard the two
surfaces are pressed together; that force is usually called the normal force N and is
the force which the two surfaces exert on each other perpendicular to their surfaces.
So, f ∝ N. The simplest example is if the surfaces are horizontal so that N=mg
(because of Newton’s first law). For any given situation you need to measure both f
and N to find the proportionality constant to make this an equation, f= μkN. μk is
dimensionless (a ratio of forces) and called the coefficient of kinetic friction and, to a
very good approximation for every-day situations, depends only on the materials in
contact; μk is large for rubber on dry asphalt (0.5–0.8) and small for teflon on teflon
(0.04), for example.

If the surfaces are not sliding, they may or may not exert forces parallel to the
surfaces on each other. For example, if a book sits on a horizontal table, there is no
frictional force. But, if you push gently horizontally, it does not move so there must
be a frictional force equal in magnitude but in the opposite direction as your force.
As you push harder and harder, the friction gets bigger and bigger until, eventually,
the book pops away. The maximum frictional force you can get, fmax, is proportional
again to N and the proportionality constant is the coefficient of static friction, μs;
fmax= μsN. In general, the static frictional force may be written as f < μsN. It is always
true that μs> μk because when fmax is reached the formerly static object accelerates.
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Appendix F

The constants of electricity and magnetism

Most textbooks introduce the unit of charge (coulomb) before the unit of current
(ampere). I have done it a little differently here because the thing which is actually
operationally defined is the ampere. Since this book does almost no electricity and
magnetism, there is no real reason to introduce the coulomb first. In addition, most
laypersons have a much better idea what an ampere is than what a coulomb is.

Two long parallel wires, each of length L and separated by a distance r carry
electric currents I1 and I2. They are observed to exert equal and opposite forces
(Newton’s third law) on each other and the magnitude of this force is proportional to
each of the currents, the length of the wires, and inversely proportional to the
separation: F ∝ LI1I2/r. Choosing a proportionality constant μ0/(4π)= 10−7 defines
what the unit of electric current is: F/L= μ0I1I2/(2πr). So, if two wires are carrying
equal currents, are separated by 1m, and the force per meter each wire experiences
is 2× 10−7 Nm−1, then each wire is carrying an electric current of 1 ampere (A).
Since electric current is the rate at which electric charge is flowing, knowing the
ampere also lets us know the electric charge unit we will use, called the coulomb (C)
because 1 A= 1 C s−1. To set the scale relative to everyday life, 1 A is a typical
household current. The charge on an electron is −1.6 × 10−19 C, so a current of 1 A
corresponds to 1/1.6× 10−19= 6.25 × 1018 electrons s−1. So, the first constant μ0,
called the permeability of free space and which sets the scale of magnetic fields in the
system of units we use, is exactly (because we defined it that way)

μ π π= × = × ×− − − −4 10 N A 4 10 N s C .0
7 2 7 2 2

We now know what a coulomb is. If we go to a laboratory and measure the
force F between two electric charges, Q1 and Q2, separated by some distance r
we find that F ∝ Q1Q2/r

2. Now, to make this an equation we need to measure the
proportionality constant because we know how charge and length are measured.
Doing this, we find that F =Q1Q2/(4πε0r

2); this is called Coulomb’s law. Note that
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we have chosen to write the proportionality constant (which we have measured) as
1/(4πε0). So, the second constant ε0, called the permittivity of free space and which
sets the scale of electric fields in the system of units we use, is exactly (because we
measured it)

ε = × ⋅− ( )8.85 10 C / N m .0
12 2 2

Maxwell’s equations predictwaveswhich have a velocity of 1/√(ε0μ0)= 3× 108m s−1.
This is truly one of mankind’s most remarkable intellectual achievements!
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Appendix G

Galilean and Lorentz transformations

If one inertial frame (x, y, z, t) is at rest and another (x′, y′, z′, t′)moves in the+xdirection
with speed v, and at t = t′ = 0 the origins were coincident, the equations of Galilean
relativity are:

′= −
′=
′ =
′ =

x x vt
y y

z z
t t

Figure G.1 shows a blue ball with its x-coordinates indicated at time t = t′. The
ball also has velocity u and acceleration a, both in the x-direction. To find u′ and a′ is
simply a matter of applying the definitions of velocity and acceleration:

′ = ′ ′ = − = − = −
′= ′ ′ = ′ = − = − =

u x t t x vt x t v u v

a u t u t u t v t a a

d d d d ( ) d d

d d d d d d d d 0 .

Note that the assumption most wrong is that clocks in both coordinate systems
run at the same rate.

Figure G.1. Two inertial frames with relative velocity v.
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The corresponding Lorentz transformations are:
x′ = γ(x − vt)
y′ = y
z′ = z
t′ = γ(t − vx/c2)
u′ = (u − v)/(1 + uv/c2)
a′ is too complicated to write and of no particular use.
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