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Understanding the Magic of the Bicycle 
Basic Scientific Explanations of the Two-Wheeler’s Fascinating Behavior

Joseph W. Connolly

The bicycle is a common, yet unique mechanical contraption in our world.  In 
spite of this, the bike’s physical and mechanical principles are understood by a 
select few. You do not have to be a genius to join this small group of people who 
understand the physics of cycling. This is your guide to fundamental principles 
(such as Newton’s laws) and the book provides intuitive, basic explanations for 
the bicycle’s behaviour. Each concept is introduced and illustrated with simple, 
everyday examples.

Although cycling is viewed by most as a fun activity and almost everyone 
acquires the basic skills at a young age, few understand the laws of nature that 
give magic to the ride. This is a closer look at some of these fun, exhilarating, 
and magical aspects of cycling. In the reading, you will also understand other 
physical principles such as motion, force, energy, power, heat, and temperature 
as well.
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Preface

A short story about bikes and books
The kid was ten years old and craved a bike that, for reasons of family resources and
parental worry, was unattainable. It would have been easier to get a Red Rider B-B
gun. After winning at bingo four weeks in a row resulted in a pot of twenty dollars,
Mom finally saw that a bicycle was in the stars; the worries became the matter of
prayers. Even many decades ago, a nice new shiny Schwinn or three-speed English
was beyond the twenty dollars. Pursuing newspaper want ads, the kid managed to find
a two-wheeler for twelve dollars. It was an orange and white beauty—the rust gave it
personality. After a few weeks of gleeful cruising areas of town never known to exist, it
was time to spruce up the two-wheeler with a new coat of orange paint—two cans
from the remaining eight dollars. Moderation is not a virtue to a ten-year-old kid with
a can of spray paint—besides, the frame, wheels, pedals and spokes all looked
beautiful in bright orange! The addition of a basket, horn, and light made the bike
even more stunning. The other neighborhood kids agreed with envy.

With the outside dirt and rust gone, this bike must be just as dirty and rusty on the
inside.

A visit to the gas station down the block and fifty cents yielded a couple of milk
bottles filled with kerosene. With an old screwdriver and large pliers, it was not too
hard to remove every moving part inside the bike. The kerosene overflowed as
everything—various size bearings, cones, axels, washers—was simultaneously
crammed into the milk bottles. It was amazing how many disks with tabs came
out of that coaster brake. After a good soaking and wiping dry, it was time to spend
another fifty cents for some grease and put a very large puzzle back together. While
the brake had a lot of similar looking parts, most pieces found a home.

These leftover parts must be extras.

The best way to test everything was on a nice hill. The Orange Beauty climbed that
hill with a quiet ease and grace; the ride down should have been even better. If the
purpose of the brake was to stop the bike, it worked very, very well.

Talk about stopping on a dime!

The journey over the handlebars led to no serious bodily damage—kids grow up
bouncing off the ground. The real damage was to the kid’s heart—it was devastated.
He now had an Orange Monster and years of bike thirst were crushed. The adults
just shook their heads; no one had ever heard of a place that fixed bikes and besides,
there was little left from those bingo winnings. Finally, Mom, as mothers always do,
had a suggestion: ‘Maybe there is a book in the little library, up the street, that will
show you how to fix your bike’.

Sure, fat chance that a one-room library with 200 books would have one on how to fix
bicycles!

xii



Out of other options, what did the kid have to lose? As the saying goes ‘it is better to
be lucky than good’. Sure enough there it was—a book with clear instructions on
how to put those 100 brake pieces back together. With help from the screwdriver and
pliers, the Orange Beauty found its place once again in kid heaven.

And the kid learned something about books that made all the difference in his world.

After two more weeks of riding, the kid managed to crash the Beauty into a curb and
crack off the top bar. It got fixed, but that is another story and lesson learned by the
kid.

Man, that guy was crabby and I even paid him the 25 cents in cash! Next time, maybe I
will look for a book on welding.

Understanding the Magic of the Bicycle
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Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 1

Introduction–the magic of the wheel

Wherever the spirit wished to go, there the wheels went, and they were raised
together with the living creatures; for the spirit of the living creatures was in the
wheels.

New American Bible—Book of Ezekiel, chapter 1, verse 20

Where do we begin our search for an understanding of the unique and powerful
attraction of the wheel? Why does this round form, a shape that can be rolled and
moved with ease, appeal to an almost primordial instinct deep within the soul? Does
the allure of a round figure originate with the Greek metaphysical concept of
perfection of the circle? Does it go back hundreds of centuries earlier to the invention
of the wheel? Early specimens of wheeled vehicles, dating back to the fourth
millennium B.C., have been found in archeological digs in Mesopotamia and
Europe

We offer for speculation that our innate human appreciation and fascination for
round objects, capable of rolling with ease, may be found in human evolution of
hundreds of thousands of years ago. Envision an early ancestor attempting to move
rocks, building a shelter to protect against the wilds. Anyone who has tried to push a
large rock across a yard quickly realizes that, rather than sliding the rock, it is easier
to pry the boulder from one side and flip it over. The next realization is that a rock
with a rounded shape will flip and roll with minimum effort. In a later chapter, we
will see that the difference in effort is due to physical principles of sliding friction
compared to rolling friction (resistance). Although our early hominid ancestors did
not study such a chapter in their physics books, they surely would understand the
ease with which they could move rounded objects.

doi:10.1088/978-1-6817-4441-4ch1 1-1 ª Morgan & Claypool Publishers 2016
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On their own axis as the planets run
Essay on man, iii, Alexander Pope

Yes—the origins of the bicycle may date back to our ancient ancestor’s efforts in
rolling stones!

A tantalizing clue to the human fascination with rolling objects is found in the
etiology of the word walk. It derives from the Anglo-Saxon word ‘wealcam’, which
means to move, revolve, or roll!

Another aspect of our primordial, instinctive appreciation of motion is that once
we find an easier way to move objects—including our own body—we do not revert
to the more difficult. The infant offers a fascinating example. As she struggles to
move about, first by flipping, then by rolling, followed by crawling, she ultimately
takes her first steps! There is no going back; at each ‘step’ there is little retrenchment.
Once the baby takes her first few unsupported steps, crawling is no longer the way to
go. The first steps bring boundless excitement to all—we can only wonder who has
the greater joy—the little one or the parents (figure 1.1)!

We like to move, and we like to move as easily as possible. No doubt, much of the
appeal of a bicycle is due to its ease of motion. It speaks to one of our deep,
instinctive human desires.

The bicycle is a common, yet unique, mechanical contraption in our world. It is
the most efficient mode of human powered transportation. Using the lower body
muscles, a bicycle affords a several-fold gain in efficiency when compared to
walking. Notwithstanding their utilitarian nature, bicycles are fun—they bring joy
and exhilaration to the rider; there is a sense of amazement by observers.

In our world of electronic games and battery-powered gadgets, the bicycle is a
classic toy still capable of delighting young children. Learning to balance and ride a
two-wheeler is one of childhood’s most satisfying memories. There is an experience
of magic in the balancing.

Understanding the Magic of the Bicycle
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Bicycles excite both youngsters and adults who are ‘young at heart’. Once
mastered as a child, the joy of riding a bicycle is never forgotten. The old adage
‘once you learn to ride a bicycle, you never forget’ is indeed true. Grownups are not
immune to the exhilaration and sheer fun of a bicycle. Adults, who have not
ventured onto a bike for decades, can leap upon a bike, pedal away, and feel ten
years old again! Even the most unathletic and awkward feel a sense of grace and
power on a moving two-wheeler.

A traveling bike is visual poetry; merely watching a passing cyclist evokes a sense
of the transcendental.

In the late 1860s as bicycles appeared in major cities of the United States and
Europe, the excitement and attraction of the self-propelled machines were captured
in drawings and paintings by the most famous artists.

Early in his career, the American artist, Winslow Homer, worked as an illustrator
for the legendary Harper’s Weekly magazine. To Homer, the bicycle was a symbol
of change. In his dramatization for the cover of the January 1, 1869 issue, it was ‘out
with the old in a wheelbarrow and in with the new on a bicycle’ (figure 1.2).

In the latter half of the nineteenth century, bicycle crazes swept across Europe and
the United States. These new-fangled contraptions, magically balanced on only two
wheels, stunned observers. A cyclist, gliding by pedestrians, invoked responses
ranging from awe to hostility. A century and a half later, some things have not
changed. There is still awe in the magic of balancing. These machines continue to be
a joy to ride but, unfortunately, continue to invoke a certain amount of hostility.

The self-propelled machines captivated Mark Twain, arguably the finest nine-
teenth century American writer. He wrote of his adventures learning to ride the
bicycle in an essay Taming the Bicycle. Subsequently, Twain in his 1889 novel
A Connecticut Yankee in King Arthur’s Court saw the bicycle as a metaphor for the
horse of the charging knights (figure 1.3).

Figure 1.1. First Steps, after Millet (1890), Vincent Van Gogh. Courtesy of Metropolitan Museum of Art,
www.metmuseum.org.

Understanding the Magic of the Bicycle
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Figure 1.3. A Connecticut Yankee in King Arthur’s Court, Mark Twain [1].

Figure 1.2. Harpers Weekly Winslow Homer January 1, 1869.

Understanding the Magic of the Bicycle
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It was on the 10th day of May 1884 that I confessed to age by mounting
spectacles for the first time, and in the same hour I renewed my youth, to outward
appearance, by mounting a bicycle for the first time … The spectacles stayed on.

speech by Mark Twain

The bicycle represents many things to many people. To Claude Monet the self-
propelled wheeled vehicle was a toy for Jean, his young son (figure 1.4).

Learning to balance and ride a bicycle is one of childhood’s most lasting
memories. The child experiences a sense of freedom and exhilaration that compares
to the excitement when a baby takes his first steps. We are too young to recall the
thrill of our first steps, whereas mastering the two-wheeler is a milestone never
forgotten.

The Impressionist, Camille Pissarro saw the bicycle as an integral part of
nineteenth century urban Paris (figure 1.5). The enlargement of the painting’s lower
region shows many enjoying a bicycle ride on this beautiful spring morning. Pissarro
incorporated bicycle imagery in a number of his other paintings.

Another artist, Toulouse-Lautrec, captured the power and energy associated with
the moving bicycle in a painting of a velodrome, an arena for fast bicycle racing
(figure 1.6). The artist represents the racing cyclist as a blur in the background. There
is no doubt that the ability to ‘go fast’ is one of the bicycle’s attractions. For better or
worse, it is very easy to attain high speed on a bicycle, unmatched in any other form
of human powered locomotion. Even the most unathletic possesses a sense of power
and grace while coasting effortlessly on a bicycle.

Figure 1.4. Jean Monet (1867–1913) on His Hobby Horse (1872), Claude Monet. Courtesy of Metropolitan
Museum of Art, www.metmuseum.org.
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For some, the bicycle is associated with images of beauty and social engagement
by the upper class. The cycle was the heart of large social engagements. Well to do
members of high society embraced the machines. Figure 1.7 captures the refined and
genteel nature of the cycling meets.

Figure 1.5. The Garden of the Tuileries on a Spring Morning (1899), Camille Pissarro. Courtesy of
Metropolitan Museum of Art, www.metmuseum.org.

Figure 1.6. Tristan Bernard at the Velodrome Buffalo (1895), Toulouse-Lautrec. Private Collection.
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Women, enjoying the freedom of independent travel, were especially drawn
toward the bicycle. The appearance of bloomers in the female riders’ dress was a
matter of some outrage. Keen observers saw the bicycle playing a major role in the
early stages of the suffrage movement. Stephan Crane, best known for his classic
novel The Red Badge of Courage, perceived the bicycle foreshadowing profound
changes in society.

Still, a second look at the Boulevard convinces one that the world is slowly,
solemnly, inevitably coming to bloomers. We are about to enter an age of
bloomers, and the bicycle, that machine which has gained economic position of
the most tremendous importance, is going to be responsible for more than the
bruises on the departed fat policeman of the Boulevard.

New York’s Bicycle Speedway 1896 by Stephan Crane

Children quickly appreciate the freedom of independent transportation. At times,
the wheeled toy encourages a child’s spirit to escape the bounds of well-intended
parental restrictions. The face of the young lady in Maurice Prendergast’s water-
color shows a determination to use the adult distraction for a brief moment of
freedom (figure 1.8).

Even the adults find the need to escape every now and then. There are days when
a bicycle ride offers all a rare opportunity for solitude and peaceful reflection away
from stress and pressure. Many of life’s daily tribulations can, at least for a few
hours, be left behind with a peaceful glide on two wheels. Some worries cannot keep
pace at twenty miles per hour (figure 1.9).

Figure 1.7. Fashion of the Hour. Courtesy of Copake New York Antique Bicycle Auction. All rights reserved.
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Figure 1.8. Large Boston Public Garden Sketchbook: A Girl Riding a Tricycle in the Park (1895–97), Maurice
Brazil Prendergast. Courtesy of Metropolitan Museum of Art, www.metmuseum.org.

Figure 1.9. Autumn Solitude. Courtesy of M. Mullen, The Times-Tribune. All rights reserved.
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Turn, turn my wheel! Turn round and round.
Without a pause, without a sound
So spins the flying world away.

Keramos by Henry Wadsworth Longfellow

The verse from Longfellow, composed in reference to the potter’s wheel, conveys
similar feelings to the cyclist enjoying an isolated ride.

Sadly, for many youngsters the bicycle was the unattainable – a first experience of
intensely desiring something that, for one reason or another, could not be realized
(figure 1.10).

This longing for a two-wheeler may have been the first time a child was motivated
by the realization that a dream can be attained through persistence and hard work
(figure 1.11).

While the preceding images represent aspects of the bicycle that appeal to our
human yearnings, no one has better captured the aspect of the bicycle that is the
essence of this book than Norman Rockwell. To the perceptive illustrator of our
life’s most affecting moments, BICYCLES ARE FUN! (figure 1.12).

Yes, to Norman Rockwell, bicycles are REALLY FUN! (figure 1.13).

Sing, riding’s a joy! For me I ride
Robert Browning

No matter what your age (figure 1.14). On a bicycle: you are 10 years old again!
There is no doubt that a few turns of a pedal are the surest way to relive the joys of
childhood. The bike is ‘Rosebud’ on two wheels!

Figure 1.10. Is your child left behind? David Robinson. Cycle Trades of America.

Understanding the Magic of the Bicycle
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Figure 1.12. School this year means more than ever before. Norman Rockwell.

Figure 1.11. New Departure Manufacturing Company advertisement.
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The Child is the Father of the Man
The Rainbow by William Wordsworth

Figure 1.13. Hey fellers! $100 in gold first prize. Norman Rockwell.

Figure 1.14. Hambidge Truth Magazine. Courtesy of Copake New York Antique Bicycle Auction. All rights
reserved.
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What makes this bicycle so much fun? Why do we get this childlike exhilaration
while pedaling the two-wheeler? The bicycle, once mastered, bonds with our
primordial desire to move, to move fast, and to move with ease. The bicycle
extracts from our muscular efforts the maximum, most efficient form of human
propulsion. Even when working hard, straining to push the machine against nature’s
forces of resistance, there is reward; the motion through the air affords a pleasant,
cooling breeze. Another blessing is that, although we struggle mightily against the
dominant resistive force of air resistance, the opponent is invisible, hidden from our
senses. Somehow, this air resistance is a quiet adversary, almost imperceptible; it
never seems to be oppressive.

Although cycling is viewed by most as a fun activity and almost everyone acquires
the basic skills at a young age, few understand the laws of nature that give magic to
the ride. Suppose we take a closer look at some of these fun, exhilarating, and
magical aspects of cycling.

As the reader travels through this book, she will encounter fundamental
explanations for a myriad of the bicycle’s fascinating behavior. For example:

• A bicycle possesses an amazing ability to balance on two wheels. The
balancing is seen as the result of a combination of motion toward the center
of a turn and an inward lean (chapter 12).

• The self-stability of a bicycle, the way in which a falling bicycle picks itself
back up, is a consequence of the tendency of objects to travel in a straight line
(chapters 5 and 12).
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• The need to lean during a turn, an instinctive action learned by the youngest
of riders, is viewed as a necessary component of balancing and turning the
two-wheeler (chapter 12).

• The cause of air resistance and the force’s important significance in suppress-
ing the forward motion of the bicycle is evaluated (chapter 5).

• The role of static friction, which normally opposes motion, is examined for its
role in starting and stopping the cycle (chapter 5).

• The importance of gearing is considered for both the impact on the rider’s
effort and the machine’s speed (chapter 11).

• The ultimate joy of freewheeling, being able to coast along with no effort, is
examined as a consequence of the basic laws of motion (chapters 4 and 5).

• The geared transmission system is analyzed for its efficient conversion of the
rotational motion of the pedals to the forward travel of the two-wheeler. We
will learn how a magnification occurs—the wheels of the bike spinning as
much as ten times faster than the feet (chapters 4, 10 and 11).

• The advantages of a modern bicycle’s multigear system are explored. The
rider has the benefit of selecting a high gear, suited for riding for speed, or a
low gear that eases the challenge of climbing hills (chapters 8 and 11).

• Strenuous physical activity such as cycling requires large expenditures of
energy at high power levels. We will examine the energetics of bicycling as a
consequence of the need to overcome nature’s resistive forces such as gravity,
air resistance, rolling resistance, etc (chapters 5 and 8).

• A byproduct of the strenuous muscular efforts involved in the pedaling is the
large amount of body heat generated. The various mechanisms of heat
transfer are evaluated for their role in cooling the body (chapter 8 and 9).

• The cause of the wheel’s rolling resistance and the mechanism by which a
vertical deformation of the tire opposes the horizontal motion of the bicycle is
considered (chapter 5).

• We examine the reasons for the bicycle offering the most efficient form of human
powered locomotion—hint—it is not the gearing system (chapters 5 and 11).

• A two-wheeler steers with ease; the rider is able to control the machine’s
direction with small forces on the handlebars, sometimes just nudges or small
leans (chapter 12).

• The moving cycle has a natural stability. It is astonishing how the bicycle,
once in motion, is able to leave behind the intrinsic instability of a large mass
perched high above two tiny points of support. Even without a rider, the
moving bike wants to stay upright (chapter 12).

• The reader is asked to consider the ease with which a traveling bike can be
stopped using the small appendages of our hands, especially when compared
to the large lower body muscles needed to get the bicycle into motion
(chapter 11).

• The delight experienced as the struggle of the climb is traded for the
exhilaration of the downhill journey (chapter 6 and 8).

• The relationship between momentum and impulse is viewed as the mecha-
nism through which helmets reduce collision forces on the head (chapter 7).
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In spite of the bicycle’s ubiquitous and fascinating presence in our everyday
world, the bike’s basic physical and mechanical principles are appreciated and
understood by a select few. We invite the reader to join this privileged group. The
mysterious behavior of these two-wheeled ‘toys’ can be understood as a consequence
of simple physical principles.

A word of caution—it is common to find, in books and on the internet,
explanations of the bicycle that are either erroneous or explained at very high
mathematical levels. In this book, the reader will find simple, physically accurate
explanations to a range of complex bicycle behavior. The approach is to start with
fundamental principles, such as Newton’s laws, and develop intuitive, basic
explanations for the bicycle’s behavior. Sprinkled throughout this book are a series
of questions that inquire as to particular aspects of cycling. Each chapter will
develop the answers to these questions.

But… do you have to be a genius to understand both bicycles and physics? No, you
do not have to be a genius to understand the physics of cycling. However, once you do
understand the bike science—everyone will think you are a genius! (figure 1.15).

Thousands of geniuses live and die undiscovered—either by themselves or by
others

Autobiography of Mark Twain

In the following pages, each concept is introduced and an elementary explanation
offered based upon the simplest everyday example. Once the concept is established,
we proceed to illustrate its application to the bicycle. For example, we first explore

Figure 1.15. Dr Albert Einstein on a bicycle. Courtesy of the Archives, California Institute of Technology.
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Newton’s laws as they apply to people pushing on a kitchen table; we then consider
the application of Newton’s laws to the bicycle. In a similar manner, the subtle ideas
of static and sliding friction are examined as they pertain to a box on the floor.
Literally, the next step is to consider how frictional forces enable walking.
We subsequently detail the role of friction in the acceleration and deceleration of
the bike. This approach is employed for many traditional concepts: motion,
momentum, energy, power, rotation, temperature, heat, etc.

But isn’t physics hard? Well, how about riding a bicycle? Don’t we all remember
what it was like when we first tried to balance the two-wheeler? At least we have
never heard of anyone hitting a pothole or a tree and breaking a collarbone while
thinking about the physical world!

We tried and tried; we did not give up. It took effort; it took practice but,
eventually, with a little bit of help from a friend who knew: we did it; we got it right!
It might not have been easy, but with practice, we got good at it. Once we learn the
trick—riding a bike is easy and really, really fun!
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When your own burden is heaviest, you can always lighten a little some other
burden. At the times when you cannot see God, there is still open to you this
sacred possibility, to show God; for it is the love and kindness of human hearts
through which the divine reality comes home to men, whether they name it or not.
Let this thought, then, stay with you: there may be times when you cannot find
help, but there is no time when you cannot give help.

George S Merriam

That is how it is with science. It’s like riding a bike!… and the best news is that we
can use the fun of bicycling to learn the fun of the physical world.

The reader will find that many topics have application beyond the bicycle. For
example:

• Any activity is subject to the principles of motion, force, energy, power, heat,
and temperature. The fundamental laws of nature act on all sporting
endeavors whether they are the quiet, competitive competitions such as
curling or shuffleboard or high-energy engagements found in football or
rugby.

• The mechanics of many moving machines—cars, motorcycles, skateboards
etc, are similar to those of a bicycle. Even ice skating and sprinting share a
common behavior with cycling.

• The concepts of air resistance, friction, and rolling resistance are very
important to an automobile’s behavior

Reference
[1] Twain M 1889 A Connecticut Yankee in King Arthur’s Court (New York: Harper and

Brothers) pp 364–5
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IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 2

The evolution of the bicycle

How has the modern, 21st century bicycle evolved since it was first conceived in
the early 19th century?

This chapter is a brief summary of the evolution of the two-wheeled human powered
machine we call the bicycle. The basic principles and laws of physics are the
foundation for the bicycle’s successful development. For a comprehensive overview
of early efforts to develop mechanical replacements for animals and the invention of
the two-wheeler, the reader is invited to explore excellent monographs by Herlihy,
Velox, JFB, and Ritchie (Appendix A Bibliography).

2.1 Beginnings
The use of animals for transportation originated in a prehistory of many millennia
past. While horses allowed for travel over distances far greater and faster than could
be achieved by walking and running, the animals were an expense and required
substantial amounts of food and care. There was great interest for a contrivance that
provided locomotion over long distances with less human effort and without the
reliance on animals. As far back as the late seventeenth century, the French
mathematician, Ozanam, offered a prize to the first person who devised a human-
propelled machine to replace the horse. Early attempts were based on carriage
designs equipped with pedals and levers driven by humans. These designs were
overly complex and heavy to be propelled efficiently by humans. Trying to adapt a
machine normally pulled by one or more horses, into some type of contraption
suitable for a human to impel, is doomed to fail.

2.2 Baron Karl Von Drais’s running machine
Themachine considered as the true forerunner of themodern bicycle has an interesting
and tragic origin. The triggering event leading to its development was the 1815
eruption of the volcano Tambora in Indonesia. This eruption was so powerful that its
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roar resounded hundreds of miles away. Its significance lay in the large quantities of
dust pumped into the upper level of the atmosphere; the resulting red skies endured for
years. Such large quantities of dust increase the reflection of sunlight, thereby,
reducing the amount of solar energy that strikes the Earth’s surface. Consequently,
there was a reduction of global temperatures; the year after Tambora’s eruption was
called the ‘year without a summer’. The year 1816 was noteworthy in history for its
killing frosts and loss of food crops in the summer months in North America and
Europe. The famine is blamed for tens of thousands of deaths. This massive food
shortage led to a reduction in the number of horses. No doubt, the human population
consumed the available grains and horses were viewed as a food source.

I had a dream, which was not all a dream.
The bright sun was extinguished, and the stars
Did wander darkling in the eternal space,
Rayless, and pathless, and the icy earth
Swung blind and blackening in the Moonless air;

Darkness written in 1816 by Lord George Byron

From this tragedy, we find in 1817, an individual who invented an alternative to
equine powered transportation. He was the Baron Karl von Drais of Baden (now
part of Germany) and his invention was called the Laufmaschine (‘running
machine’). As his machines were replicated in various countries, they were given
different names: the ‘Draisine’ (English), the ‘Draisienne’ (French), the velocipede,
and the dandy horse.

Von Drais’s running machine was a two-wheeled vehicle on which the rider
straddled a saddle. The device was propelled by skipping or skimming the feet along
the ground. Turning handlebars steered the front wheel. The machine was reputed to
have a top speed of 8–10 miles per hour. Examination of the front wheel and fork
mechanism suggests that the device could be balanced with the feet off the ground,
allowing for coasting on level and downhill surfaces. In chapter 12, we will see that a
front wheel, free to turn, is essential to the two-wheeler’s balancing mechanism
(figure 2.1).
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Turns by its handle
The Cyclops by Percy Shelley

Your fine elegant rascal, that can rise,
And stoop, almost together; like an arrow;
Shoot through the air as nimbly as a star;
Turn short as doth a swallow; and be here,
And there, and here, and yonder, all at once.

Volpone, iii Ben Jonson

The original Draisine design, while never immensely popular, persisted for about
fifteen years. Oftentimes, the machines were greeted with derision, considered as toys
for the privileged. Many were quick to point out the hazards to pedestrians.

Their earth-convulsing wheels affright the city.
Hellas by Percy Shelley

As late as 1830, French police and letter carriers made their rounds on these new-
fangled contraptions. However, hills and rough roads limited the efficiency gain of
the rolling machines. Harsh winter weather with snow and icy roads created another
obvious hindrance. The cold steel and wooden machines offered no warmth and
social comfort to an isolated, stranded traveler. No doubt, in these conditions, the
four-legged beast was a superior mode of transportation.

Possibly, the concept of balancing on an inherently unstable contraption may have
intimidated many. A primordial fear of falling likely inhibited the development of a
machine that required keeping the feet off the ground for extended periods. Even on
modern bicycles, many novice riders prefer to keep their saddles low so their feet can
easily reach the ground. Pedals that clip onto the rider’s shoes can invoke a feeling of
helpless entrapment until the rider has mastered the unclipping motion.

Figure 2.1. The Laufmaschine.
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Nevertheless, the desire to develop a replacement for the horse and horse-driven
carriage was not abandoned. For the next few decades, most development in human
power transportation was devoted toward three- and four-wheeled vehicles. These
tricycles and quadricycles imposed a substantial drawback of weight and mechanical
complexity. The vintage image in figure 2.2 also clearly shows a fourth wheel, an
outrigger, designed to prevent the contraption from toppling backward.

As I looked at the living creatures, I saw wheels on the ground, one beside each of
the four living creatures.

New American Bible—Book of Ezekiel, chapter 1, verse15

2.3 The boneshaker
Nearly fifty years after Baron von Drais’s original running machine, a genius came
up with an invention that offered the possibility of effective human-powered
transportation. The device employed minimal use of materials to enhance substan-
tially the efficiency of the human muscles. Who then should get credit for the
development of the first two-wheeled, foot-powered, rotary-cranked, steerable
velocipede that evolved into the modern bicycle? There is much controversy in
this regard. The author David Herlihy offered a detailed summary of the

Figure 2.2. Tricycle. Courtesy of Michelin North America, Inc. All rights reserved.

Understanding the Magic of the Bicycle

2-4



controversy in his book Bicycle [1]. He reports that the carriage mechanic, Pierre
Lallement, testified that it was he who conceived the idea in 1862. Lallement claimed
that his working model was completed in 1863 and demonstrated on the streets of
Paris; unfortunately, Lallement secured no patent for his machine. In 1865, he
moved to the United States with some of the velocipede’s components.

The spring of 1866 is a significant time in the emergence of the bicycle. Now in the
United States, Lallement reassembled his machine and rode it through the streets of
New Haven, Connecticut. An investor, James Carroll, apparently appreciated the
value of the two-wheeler and encouraged Lallement to patent his device. The
application for patent protection was filed in April 1866. Although there was much
later controversy as to who was the true inventor of the ‘bicycle’, the first ‘bicycle’
patent in the world was, indeed, issued to Lallement and Carroll in the United States
on November 20, 1866. In the patent application, the new and useful claim was for
the arrangement of two wheels with treadles and guiding handlebars. Lallement’s
machine could travel at speeds of eight miles per hour (figure 2.3).

Figure 2.3. Lallement patent.
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It can be argued that the original Draisine model and Lallement’s improvements
set a standard for efficient, minimal design that, in substance, has not been modified
in the past one and a half centuries. The basic contrivance has only been improved in
small, incremental steps. While each refinement has resulted in a better machine, the
essence of the first velocipede persists.

A contending claim for the invention of the first bicycle was made later by the
Parisian blacksmith, Pierre Michaux. After 1866, events developed rapidly on both
sides of the Atlantic. Michaux began to manufacture velocipedes that bore a striking
resemblance to the machine pictured in Lallement’s patent application. His
machines appeared in Paris during the spring and summer of 1867. The heavy
wooden wheels were all too effective at transmitting rough road vibrations to the
rider. The machines came to be known as the boneshakers.

2.4 Early refinements
Soon, after the first two-wheeler made its appearance, innovative thinkers began to
change and improve the basic design.

2.4.1 Brakes

Examination of the machine’s historical development shows that certain ‘luxury’
options such as brakes were found in the early Laufmaschines. Interestingly,
children’s bikes from the 1890s were produced without such an essential option.
Even now, modern cycles such as track bikes and stunt bikes come without brakes.

The boneshaker brakes were usually applied to the rear wheels. An examination
of the braking system on a variety of early bicycles reveals that designers sometimes
employed front braking and sometimes rear braking. Complications in stopping the
machine are explored in chapter 11. We will see that brake forces applied to the rear
wheel are not as effective as when applied to the front wheel. Excessive front wheel
braking creates the danger of heading over the handlebars.

2.4.2 Angled fork

A close examination of Lallement’s patent reveals a machine with a near vertical
front fork; however, by the late 1860s, velocipede designs began to show a headtube
and fork that had a slight forward tilt. The angle is similar to a garden rake.
Confusingly, this tilt is often called the fork rake or rake angle. In the boneshaker
(figure 2.4), the angle is about 5° with the vertical. Most modern builders refer to this
geometry as the headtube angle, measured from the horizontal; in figure 2.4, the
angle from the horizontal is about 85°. It is suspected that the original reason for
implementing the fork rake was to reduce the rider’s reach to the handlebar.

Notwithstanding the requirement of a headtube construction robust enough to
withstand the bending torque, there are several profound and compelling advantages
to this tilted fork. Close examination of figure 2.4 shows that the angled fork causes
the steering axis to strike the ground in front of the tire’s point of ground contact. In
this Michaux boneshaker, the steering axis strikes the ground approximately 1.5
inches in front of the tire’s point of contact. The term trail is used to describe this
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parameter. In chapter 12, we examine how trail is an important parameter in
determining the bicycle’s steering characteristics.

The trail also plays a significant role in the magical self-stability of a bicycle.
While Lallement’s velocipede could be pedaled with the feet off the ground and
balanced by steering the machine in the direction of the lean, its vertical fork
provided no ‘castering’ effect to facilitate steering. Chapter 12 explores how an
angled fork results in a force that encourages the bicycle to travel in a straight
line.

2.4.3 Freewheels

Early bicycles had their pedal cranks directly attached to the front wheel. The pedals
rotated as long as the bicycle was traveling. In order to rest the legs, it was necessary
to remove the feet from the pedals and position them on stationary pegs attached to
the fork. To resume pedaling, the rider had to ‘catch’ the revolving pedals.
Innovators soon developed concepts for freewheels that allowed for ‘coasting’—
one of cycling’s greatest pleasures. In his 1869 book, Velox offered a plan for a
ratcheted axle enabling a free wheel design [2]. Velox’s and other ratchet mecha-
nisms did not catch on for many years.

2.4.4 Tubular frame member

Although, for the first few years, velocipede construction relied upon structural
members fashioned from solid wood or iron, the original Michaux patent covered
the use of hollow tubes [3]. By November 1868, racing bicycles from the New York
firm of Pickering and Davis made use of tubular members in their refined
boneshakers [4]. Tubular frames, because of their larger cross sectional diameter,
offered the advantage of increased bending resistance when compared to solid bars
of the same weight.

Figure 2.4. Michaux Boneshaker. Courtesy of Copake New York Antique Bicycle Auction. All rights reserved.
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2.4.5 Wire spokes

By 1869, progress and improvements to the original boneshakers were rapid; a
profound change occurred in spoke designs. The early velocipedes had wheels with
heavy, thick spokes. Such designs may be traced to ancient applications of the wheel.

These clumsy, heavy spokes are even found in the wheels of elegant, bronze and
ivory chariots from the first millennium B.C. Amazingly, these wheel designs
persisted for thousands of years; it was the bicycle and the rider’s desire to ‘go
fast’ with minimal effort that brought about the radical change in the function of
spokes (figure 2.5).

In the construction of traditional heavy wheels, large diameter spokes are
compressed between the hub and the rim. An iron tire, heated and applied to the
rim, held the entire structure in a state of compression. The compressive forces
required thick spokes to avoid the problem of buckling. The result was a very heavy
wheel. When horses supplied the power, they did not complain. However, with
human power, the rider was keenly sensitive to the effort in spinning massive wheels.
In chapter 10, we learn that the weight of the wheel is important due to the concept
of rotational kinetic energy. Spokes, made of thin wires stretched between the hub
and the rim, were a profound improvement. Tensioned wire spokes do not buckle;
the new wheel designs were much lighter.

2.4.6 Wheel sizes

As with most technology, an improvement in one feature leads to changes and
improvements in many other features. Such an evolution is spectacularly evident
with the story of wire wheels. The velocipedes of the 1860s were propelled by pedals
affixed directly to the front wheels; the distance traveled in one pedal rotation is the
circumference of the wheel. The lightness of the wire wheel allowed designers to
increase the diameter of the front wheel; thereby, increasing the distance traveled
with each spin of the pedals. The improvement in the cycle’s speed was immediate
and dramatic.

Figure 2.5. Bronze Chariot Inlaid with Ivory, Etruscan (6th Century B.C.). Courtesy of Metropolitan Museum
of Art, www.metmuseum.org.
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2.5 High-wheelers
In 1872, the ‘speed geared ARIEL’ made a brief appearance. It employed a small
front wheel (34 inches) driven by a gear between the rotating crank and the wheel.
However, the mechanical simplicity of merely increasing the diameter of the front
wheel proved to be the most practical way to gain speed. The 1870s were the era of
the high-wheeler. Many of our classic images of nineteenth century cycling are of
these intriguing and eye catching machines. The mechanical marvels were sometimes
disparagingly referred to as the ‘penny farthing’. The disparity in the coins’ size is a
metaphor for the difference in the bicycle’s front and rear wheels. The ‘Ordinary’ is a
more favorable appellation for the high-wheeler.

The historical drawing in figure 2.6 clearly illustrates a number of significant
details regarding the high-wheeler design. The rider had a lofty, forward position
atop the front wheel. A careful inspection of figure 2.6 shows a front wheel brake
located just forward of the headtube bottom; this brake is positioned to rub against
the tire. Given the small load carried by the rear wheel, it was necessary to apply
braking via the front wheel. The high-wheeler had a reputation for being extremely
susceptible to ‘headers’ (chapter 11) over the handlebars from either hard braking or
striking an obstruction.

In addition to speed increase afforded by the large wheels, the long wire spokes of
the ordinaries offered improved isolation from the jolts of rough roads. Many high-
wheeled bicycles also employed a suspended saddle held at the rear by a coiled spring.

2.6 Further refinements
2.6.1 Tires

And have the citizens gape at her and praise her tires.
The Alchemist, iv Ben Jonson

Figure 2.6. Ordinary [5].
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Since ancient times, when wheels made from wood were subject to rapid wear from
rough roads, wheelsmiths covered the outside of the rim with a replaceable wear
strip. Often, the wear surface was a leather band. Eventually, a more durable metal
strip was utilized.

Wagon and carriage wheels of the nineteenth century still employed the old-
fashioned technology. The common construction technique used a hub connected via
heavy spokes to a wooden rim. An outside covering of a heated metal rim was placed
around the outer perimeter. As this metal band cooled and contracted, it served a dual
function holding the spokes in a state of compression and serving as a replaceable tire.

Such wagon wheel construction was adapted to velocipedes from the Draisine
through the original boneshakers. To somewhat lessen the shaking of the bones,
more refined wheels appeared in the late 1860s. A major improvement was the wheel
from Price that held a solid rubber tire stretched and glued onto the rim. An
illustration in the June 1869 issue of Scientific American shows wheels that were
grooved to hold a rubber tire [6].

The rubber tires, in addition to softening the ride, afforded a better grip and
stopping force when compared to their metal counterparts. The physics is that of the
coefficients of friction (chapter 5). Subsequently, rubber tires were developed with a
hollow core; a wire cable through the core secured the tire to the wheel. The next
improvement in tire technology was the cushioned tire. Designed with a U shaped
cross section, these tires further softened road vibrations.

2.6.2 Geared propulsion

In thehigh-wheeler, the inseamof the rider’s leg limited the size of the frontwheel.Thus,
a turn of the crank would not carry shorter riders as far as their taller counterparts.
The desire to achieve speeds that go beyond the high-wheel’s size restriction and to
avoid the danger of headers led to efforts to ‘gear up’ the bicycle. A significant machine
was developed in 1878—The Xtraordinary by Messrs Singer and Company.

In figure 2.7, we find a photograph of a restored Xtraordinary offered at the
Copake annual antique bicycle auction. A beautiful piece of machinery!

Figure 2.7. Singer Xtraordinary. Courtesy of Copake New York Antique Bicycle Auction. All rights reserved.
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This image shows the adoption of leveraged cranks to turn the front wheels. The
leveraging of the drive mechanism effectively ‘geared up’ the front wheel; this
gearing increases the drive wheel rotation per pedal cycle. By changing the attach-
ment position of the levers, it was possible to vary the effective gear of the machine.
Chapter 11 explores the advantages and disadvantages of leveraged mechanical
systems. The pedal position also affords the rider a lower saddle position, thereby
reducing the possibility of a header.

The lowered rider position has an additional advantage of a reduced profile
through the air. In chapter 5, we consider the significance of air resistance on the
moving rider/bicycle system; air resistance is the primary opposition force to the fast
moving cycle.

While pedaling the Xtraordinary, the feet revolved in an oval motion.

2.7 The safety bicycle
Given the proclivity of a rider being pitched forward over the handlebars on bicycles
with large front wheels, interest developed in returning to velocipedes with small
wheels. These so-called ‘safety’ bicycles, with different size gears in the crank and
rear wheel, could equal the speed of the high-wheelers. Chapter 11 investigates the
principles of gearing up for speed and down for force.

Some early attempts at safety bicycles did not ‘catch on’. However, in 1885,
Messrs. Starley and Sutton introduced a bicycle that combined several concepts.
This type of bicycle became the prototype for almost all future two-wheelers. The
machine employed smaller front and rear wheels and was ‘geared up’ via a chain
that connects rotary cranks and a driving rear wheel. The bicycle was named The
Rover Safety. The ‘Safety’ appellation was intended to emphasize the desirability of
riding closer to the ground and the cycle’s relative immunity against headers. The
saddle position was approximately midway between the front and rear wheels,
resulting in better distribution of forces needed on the front wheel for steering and
the rear wheel for propulsion. Chapters 11 and 12 discuss how to evaluate the
ground forces acting at each wheel and the role played by the ground forces in
accelerating, decelerating, and turning the bicycle.

I would give all of my fame for a pot of ale and safety.
Henry V, iii, 2 William Shakespeare

The initial implementation of the Rover Safety had a vertical steering fork. This
required a system of coupling rods to connect the handlebars to the front wheel. The
‘safety’ aspect of using such a complex linkage to control the steering is debatable.
Another complication for this design is that the saddle position and vertical fork caused
the rider’s feet to be very close to front wheel—creating interference during tight turns.

Within a few months, Starley and Sutton simplified the machine’s design by
substantially raking the front fork and allowing a seated rider to easily reach the
handlebars directly joined to the fork (figure 2.8). The Starley machine received
enthusiastic acceptance. The similarity to modern bicycle designs is a testament to
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the soundness of the design. Many other prominent bicycle manufacturers produced
similar bicycles. The days of the high-wheelers’ popularity were ending.

The self-stability of a bicycle is one of its most magical aspects. A falling bicycle will
tend to steer and right itself back up. This self-stability may be readily demonstrated
even on a riderless bicycle. In chapter 12, we present a step-by-step, intuitive
explanation for one of the bicycle’s truly astonishing and mysterious behaviors.

2.8 Pneumatic tires
Invent some other tires!

Sun’s Darling, iii, I, Dekker and Ford

While solid rubber tires and suspension mechanisms were somewhat effective in
reducing road vibration, they carried a penalty of increased weight. Themost dramatic
improvement in the rideability of the bicycle is the development of air-filled tires.

The pneumatic tire was first invented in 1845 by the Scotsman, Robert W
Thomson [8]. The date preceded the invention of the pedaled velocipede; Mr
Thomson was too far ahead of his time. He envisioned his ‘aerial’ tires to be
applied to carriage wheels and rocking chairs! We suspect the roads in the mid-1800s
were a bit too rough for air-filled tires; although the rocking chair application still
has a certain appeal. It was not until the last decade of the nineteenth century that
James Dunlop of Dublin turned pneumatic tires into a commercial success. He was
prodded into the development of the air-filled tire in response to his ten year old
son’s request to make his tricycle go faster!

Despite the inconvenience of pneumatic tire punctures, there are obvious benefits
from their use:

• An improvement in comfort by affording a cushion against road bumps
• A reduction in energy loss from road bumps; the air tire acts like a spring
absorbing impacts and then returning the energy. The rider’s body is spared
what would otherwise be an inelastic jolt.

• A low rolling resistance requiring less effort from the rider. The soft air tire is
easy to compress compared to a solid rubber construction. In chapter 5, we

Figure 2.8. Rover Safety Sharp [7].
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consider the phenomena and importance of rolling resistance. Professional
racers were the first to embrace enthusiastically the new technology; they
appreciated the wisdom of the ten-year-old kid. Within a few years, the
pneumatic tire replaced the solid and cushioned rubber tires.

2.9 Bearings
Early bicycles used ‘plain’ bearings—merely an axle shaft constrained in a round
bushing. As the shaft turned in its housing, the contact surfaces slid across one
another. As moving surfaces rub, the phenomena of sliding friction causes major
energy losses (chapter 5). Also, plain bearings required frequent lubrication and
quickly wore. As the axle shaft erodes its cylindrical housing, the axle and,
consequently, the wheel are subject to wobble.

A substantial reduction in frictional loss was attained by the invention of ball
bearings by Jules-Pierre Suriray in 1869 [9]. How do these ball bearings work their
magic? Why are they far superior to plain bearings? It is the magic of the wheel. As
the shaft turns, the round bearings revolve within the housing; thus, we have a case
of rolling resistance versus sliding friction. The physics of these resistive forces is
explored in chapter 5.

2.10 Rider position
A variety of body positions may be assumed depending on the rider’s preference and
bicycle design. The rider on the left in figure 2.9 is in an upright position that
presents a larger cross section to the air, whereas, on the right the rider is in a
traditional bent over racing position. This racing position is more aerodynamic. In
chapter 5, the physics of air resistance is explored. At typical riding speeds, air
resistance is the primary force of opposition to the cyclist. Air resistance force is
directly related to the rider’s frontal cross section. In spite of his aerodynamic
position, the rider in the racing stance might be well advised to consider less baggy
clothes.

A second significant factor in riding stance is that the upright position results in a
large fraction of the rider’s weight being carried by the saddle. In the racing position,
less weight is born by the saddle and; therefore, a larger portion of the rider’s weight

Figure 2.9. Ride position [10].
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is transferred onto the pedals. Thus, the downward pedal thrust is a combination of
the rider’s weight plus other muscular effort. The racing stance also enables the rider
to gain additional thrust by pulling up on the handlebars. According to Newton’s
third law of motion (chapter 5), as the rider pulls up on the handlebars, the
handlebars push down on him, thereby, adding to the total downward force on the
pedals.

2.11 Materials
As patches set upon a little breach
Discredit more in hiding of the fault
Than did the fault before it was so patched.

King John, William Shakespeare

Von Drais’s and Lallement’s velocipedes used a top horizontal bar fashioned from
wood into a serpentine shape. Michaux’s early prototypes used a similar top bar. In
his 1869 book, Velox recommended that the stout ash bar be formed by a
wheelwright or coopersmith [11]. It would not be satisfactory to merely saw the
shape from a large plank of wood; the wood grain would run out at the curves
creating weak sections. A common technique to form a curved wooden bar is to
steam bend in a form. The thick member would then require several days to dry
while clamped in the form. Another method employs laminating wood strips that
must be glued and clamped. Such fabrications result in a strong, relatively light-
weight member. Properly fabricated wooden structural members have mechanical
properties comparable to metal. The primary difficulty in wood construction is the
labor and time intensive nature of the steam bending or lamination process. Wood
species selection is also critical.

The wooden top bars were soon replaced with serpentine iron bars. The most
expeditious technique would be to form the bars from cast iron; the geometry of the
bar established by the mold. Cast iron is wholly unsuitable for structural compo-
nents subject to loads. Velox described the use of cast iron as ‘dangerous to the rider
and pecuniary fatal to the manufacturer’. Cast iron has the propensity for
unpredictable cracking failure. Michaux’s early production of cast iron boneshakers
quickly revealed the unsuitability of the brittle material [12]. The jolts and shocks
created by riding the velocipedes on the rough roads of the era led to catastrophic
failures. After only a year or so of using cast iron, the velocipede makers turned to a
much more suitable material—wrought (worked) iron. Wrought iron is forged and
then worked by a skilled blacksmith. The resulting material has a superior and more
predictable response to stress.

The technology developments in bicycle materials have been at the crux of the
two-wheeler’s improvements for over a century. After using iron and steel, the
manufacturers turned to aluminum, then titanium, and now carbon fiber—always
with the goal of a lighter but strong machine (figure 2.10).
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IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 3

A review of basic ideas

You must crack the nuts before you can eat the kernel
Irish Proverb

This chapter is a review of several introductory, background topics. Most of the
material was likely covered in a basic high school curriculum. Even if the reader does
not recall everything from high school, this section will dust off a few cobwebs. If
you really wish to understand the basic science of bicycles, you will need some
familiarity with this chapter’s content. It is important not to become discouraged
and bogged down. You may wish to simply skim the chapter and come back to the
details later. Topics, presented in this chapter, involve ideas and methods common
throughout the book.

The math of physics involves basic concepts from algebra, trigonometry and
vectors. Physics and math teachers are destined to go through life being told by
almost everyone they meet how much that individual did not like math and science.
The author remembers such a conversation as he sat for the first time in the chair of
his new dentist. The thought occurred ‘How dumb can this dentist be for telling a
science professor how bad he was at math and science’. Then, in an instant, the next
thought was which one of us was the dumber—the dentist or the patient who was
about to allow the dentist to insert sharp, fast moving objects into his mouth. In fact,
the dentist was very good at his profession and was quite talented with those sharp
fast moving objects. He would have been better off keeping his inadequacies to
himself.

It is better to remain silent and be thought a fool than to speak out and remove
all doubt.

Attributed to President Abraham Lincoln, Mark Twain and others

The next few sections are a review and summary of basic math that is the
language of physics.
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3.1 Algebra
Basic algebra offers the concise expression of fundamental physical principles. For
instance, Newton’s Second Law is commonly written as:

=F m a

where F is the force acting on the object, m is the object’s mass, and a is the
acceleration of the object. Do not worry about the specific meanings of these terms;
they will be carefully defined and explored in chapter 5. For now, it is just a simple
equation expressing a relationship between the terms.

If we know the force and themass, we can algebraically rearrange the above equation
to solve for the acceleration by dividing both sides of the above equation bym.

=a
F
m

The above equations involve simple multiplication and division; on occasion, a
bit more algebra is needed. For instance, the force of air resistance is very important
to many cyclists. In chapter 5, we learn that the force of air resistance is proportional
to the square of an object’s speed v.

∼ ∼F v v v2

The above is, strictly speaking, not an equation—it is a proportionality. The force
does not equal the square of the speed; rather it is proportional to the square of
the speed. If you double the speed, the force of air resistance increases by a factor
of four =(2 4).2 When your speed changes from 10 mph to 20 mph, the force of
air resistance gets four times larger. It is very hard to pedal against the strong force
of air!

Usually when we have proportionalities, it is useful to convert them into
equations with proportionality factors. In chapter 5, we will see that the air
resistance force also depends on parameters such as the frontal area of the bicycle
and rider, the density of the air, etc. These parameters will be the proportionality
factor.

3.2 Trigonometry
Now that we have brought back those algebra classes, is there other high school
math to revisit? Yes —a little bit of trigonometry. Only a little bit but it is very, very
important. Riding a bicycle in the real world involves forces and motion in three
dimensions; we need some trig to understand the angles and relationships of the
three dimensions. The basic ideas are described with a simple triangle. It is a special
type of triangle—a right triangle (figure 3.1A). One of the three angles is 90°, a right
angle; hence, the name right triangle.

Notice in this triangle that, in addition to the 90° angle, there are two other
angles: θ φand . Another little complication has cropped up; sometimes in science
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the Greek alphabet is used. Does that mean that the equations are going to get so
complicated that the regular Latin/English alphabet of twenty-six lower case and
twenty-six upper case characters will not be enough? No, not at all—the use of
Greek letters is just another quirky thing that science does. Note, there are also three
sides to the triangle—labeled as sides A, B, and C. As drawn, they look like (and
often are) distances. The sides of the triangle can also represent forces, velocities,
accelerations, etc.

This triangle with the three angles and three sides is labeled with a common
nomenclature. The side opposite to the right angle is called the hypotenuse (side C).
Looking at the angle θ, the side opposite to this angle is side B; the adjacent side to
the angle θ is side A. There is a connection between A, B and C. It is called the
Pythagorean theorem. The theorem, named for the Greek mathematician
Pythagoras (570–495 B.C.), established a relation between the three sides of a right
triangle: = +C A B2 2 2

A triangle with A = 4, B = 3 has an hypotenuse:

= + = + = =C C4 3 16 9 25, 52 2 2

Many craftsmen, such as carpenters, know the Pythagorean theorem. The author
learned it when he was about eight years old. The teacher was the author’s maternal
grandfather who ended his formal education at the third grade in order to work in
the coal mines of Northeastern Pennsylvania. If you are stuck with the Pythagorean
theorem, seek out the nearest carpenter or mason.

Using the values for the sides of the triangle allows us to define the trigonometric
functions; the three most common being the sine, the cosine, and the tangent. These
functions are simply ratios of various sides of the right triangle. These are commonly
written with the shorthand notation of sin, cos, and tan.

θ θ θ= = = = = = = = = = = =B
A

B
C

B
C

tan
opposite
adjacent

3
4

0.75, sin
opposite

hypothuse
3
5

0.6, cos
adjacent

hypothuse
4
5

0.8

One other useful relationship is obtained if we write tangent as:

θ θ
θ

= =tan
opposite/hypothuse
adjacent/hypothuse

sin
cos

(3.1)

90°θ

C B = 3

A = 4

C = 5304 ft
B = 500 ft

A = 5280 ft

C  B = 100 ft

A = 100 ft

Figure A Figure B Figure C

θ θ

ϕ

Figure 3.1. (A,B,C) Right triangle.
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What is the use of these trig functions? Consider using a pencil and paper to draw the
triangle of sides 3, 4, and 5 inches. If a protractor is used to measure the angles
θ φand , we will find the angles to be:

θ φ= =36.9 degrees and 53.1 degrees

We conclude that an angle of 36.9° has a sine of 0.600 and a cosine of 0.800. In a
similar manner, we can determine that 53.1° has a sine of 0.800 and a cosine of
0.600. With additional effort, many more triangles could be drawn and a table
constructed with all of the angles and associated sines, cosines, and tangents. Seems
like a lot of work? Well, we do not have to do it—somebody already did. Appendix
C is a tabulation of the common trig functions. Even better than appendix C is the
use of a scientific calculator to obtain trig values. Trig functions are also commonly
obtained online.

3.2.1 Slope of a hill

A fair question might be raised as to the purpose of this trig. Later chapters will have
plenty of applications; hills are a significant aspect of the cycling experience. To
cyclists the steepness of a hill is described by the term slope. The slope is expressed as
a percentage of rise over run. Consider the hill shown in figure 3.1B; suppose you rise
500 ft and travel horizontally one mile long (5280 feet).

= × = × =slope
rise
run

100%
500 ft
5280 ft

100% 9.47%

A tough hill to climb! In chapter 6, we learn that the angle or slope of the hill
determines the fraction of the force of gravity that the rider must overcome. The
angle of the hill is important; this angle is best obtained with the tangent function:

θ = =tan
500 ft
5280 ft

0.095

From appendix C, the angle closest to this tangent value is between 5 and 6 degrees.
If you have a ‘scientific’ calculator, you can skip using the table in appendix C. The
calculator tells us the angle is about 5.4°. A useful relationship between the slope of a
hill and its angle is:

θ= ×slope tan 100% (3.2)

For instance, if you use a carpenter’s level and measure a hill to be 8°, the slope is:

= × = × =slope tan 8 100% 0.141 100% 14.1%

This hill offers another example of the Pythagorean theorem. Suppose we wish to
compare to the reading of our bike’s odometer, this is the distance C:

= + = + =C A B (5280 ft) (500 ft) 5304 ft2 2 2 2 .

Understanding the Magic of the Bicycle

3-4



Later, we examine the concept of vector components. It is proper to say that the
hill, 5280 feet long, has a horizontal component of 5280 ft and a vertical component
of 500 ft. This concept of components is extremely important in the world of physics.

Another example of the trigonometry of triangles is jaywalking. Everyone knows
it is shorter to cut catty-corner across an intersection rather than cross one street,
then the other. Suppose it is 100 ft East across the first street then another 100 ft
North (figure 3.1C). What is the distance jaywalking across the intersection? From
the Pythagorean theorem it will be: = + =C (100 ft) (100 ft) 141 ft2 2 . Therefore,
by jaywalking, we travel 141 feet compared to 200 ft the proper way.

The above example is known to every kid as she cuts through yards on the way
home from school. Amazingly, this concept has great implications! It is the basis of
one of the most important mathematical concepts in the world of physics. We are
referring to the concept of vectors! As the reader progresses through the various
topics and chapters of the book, she might have to pause and scratch her head a bit.
She might even encounter ideas that seem to violate common sense and intuition.
Occasionally, it is a good idea to return to this section and think about cutting across
people’s yards on the way home from school.

3.3 Vectors
Back to our jaywalker (figure 3.1C)—her walk across the street can be called a
displacement. A displacement is an example of a vector. A definition:

a vector is a physical quantity that has both magnitude and direction.

The direction of a vector is as equally important as the magnitude. As she crosses
the street along A, her displacement vector is a magnitude of 100 ft and direction
East. If she had gone 200 ft East, or 100 ft West, she would have ended up in a
different spot. These would be different vectors.

To describe her journey across the streets using vector terminology: ‘100 ft, East’
is her first displacement vector (vector A); ‘100 ft, North’ is her second displacement
vector (vector B). The girl’s displacements are simple examples of vectors. Many
other physical quantities are vectors, e.g. forces (10 lb, ‘to the right’), velocity
(25 mph, ‘South’), acceleration, torques, moments (all defined in later chapters). Is
everything in physics a vector? No, there are some physical quantities where there is
no direction. We call these quantities scalars. An example of a scalar would be the
mass of an object; temperature, energy, power, and density are other examples.

Another common concept is speed; speed is the magnitude of the velocity. If a
bike is traveling 20 mph (no direction specified), we are using the scalar quantity of
speed. If we say ‘20 mph to the right’ (indicating a direction), we are referring to a
vector quantity called velocity.

3.3.1 Specifying direction

Figure 3.1C, illustrates that cutting across the diagonal is a vector C equal to a
distance of 141 ft in a Northeast direction. The use of compass points N, S, E, W or
even the diagonals NE, SW etc. might often be adequate to describe a vector’s
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direction. Eventually, the need for greater accuracy will entail the use of an angular
measure, typically a 360° circle with the zero position at 3 o’clock. Counterclockwise
is a positive sense; clockwise is a negative sense. Twelve o’clock is a +90° angle; the
six o’clock position is 270° or a −90°. With this notation, the three vectors in figure
3.1C are described as:

A is 100 ft at an angle of 0° B is 100 ft at an angle of 90° C is 141 ft at an angle of 45°

What makes these vectors so special and important? There are several benefits—
the first occurs when vectors are represented as arrows (as shown in figure 3.1C).
Using an arrow to represent the vector, the length of the arrow is proportional to the
magnitude of the vector, and the angle of the arrow is indicative of the direction of
the vector. This graphical representation helps to visualize the physical quantity.

To construct the arrow, first establish a legend—a typical legendmight be ‘1 inch of
a drawing is 50 feet of displacement’. Thus, vector A would be 2 inches long with the
arrow pointing to the right (figure 3.1C). A distance of 500 feet is an arrow 10 in long.

The next benefit of the arrow representation is that it provides a simple method to
perform vector arithmetic such as addition and subtraction: vector addition employs
a head to tail method. The description of the head to tail method sounds a bit wordy
and complicated. The head of a vector is the pointy end of the arrow; the tail of the
vector is the feathery end. Also, when the arrow is drawn on the paper, it is usually
ok to slide its position around—as long as we do not change the length of the arrow
or the direction of the arrow.

3.4 Head to tail method of vector arithmetic

The head to tail method gives a powerful, but very simple, technique for under-
standing how many types of vectors interact and combine with one another. In the
above example, we illustrated the vector addition of displacement vectors. Many
other physical quantities such as forces, velocities, accelerations, etc are also vectors.
The head to tail method works for all types of vectors.

As another example: consider a situation in which two or more people exert a
force on a table. A force is defined as a push or a pull. Suppose we have two people
pushing a heavy table across the floor. Figure 3.2 is the view to a fly on the ceiling.

In figure 3.2A, if the first person pushes with a force of 120 lb (F1) and the second
person pushes in the same direction with a force of 40 lb (F2)—what is the resultant
force on the table? How do we add these forces? The two force vectors are drawn in

In order to add two vectors (e.g. A + B = C), slide the second vector B and position its
tail on the head of the first vector A. The sum of the two vectors is found by drawing a
new vector C from the tail of the first to the head of the second. Although it is proper to
call vector C the sum, we normally call it the resultant vector—more often called the
resultant—(figure 3.1C).
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the head to tail manner; the resultant is seen as 160 lb. For clarity, the resultant has
been displaced slightly downward.

What if the pushes were on opposite sides of the table? Figure 3.2B illustrates the
force vectors and the head to tail addition. When we go from the tail of first vector to
head of second vector, we see a resultant force of 80 lb to the right.

In these first two cases, we might have guessed the answer without using arrows
and head to tail method. However, what if the first person pushes to the right (East)
and the second person pushes North? The vector arrangement is shown in
figure 3.2C. How do we get the value of the resultant Fr? One technique is to
carefully draw the arrows according to some legend and then measure the length of
the Fr arrow. A protractor gives the angle. This is called the graphical method. While
it works, we can get a more accurate answer if we make use of our trigonometry skills.

The resultant magnitude is calculated from the Pythagorean theorem:

= + =F F(120 lb) (40 lb) , 126 lbr
2 2 2

r

the angle is found by using the tangent and the functions in appendix C:

θ θ= = = °tan
40 ft

120 ft
0.333; 18.4

Notice that the magnitude of the resultant force is about 126 lb, not much greater
than the magnitude of F1 alone. This is the nature of the geometric triangle; the
person pushing North with 40 lb is adding very little to the overall effort.

What other kinds of vectors will we see in physics? As might be expected in a book
on bicycles—we will encounter velocity vectors. A statement ‘20 mph at an angle of
25°’ specifies a velocity vector. Other vectors are quantities such as acceleration,
momentum, and torque.

3.5 Resolution into components
The above situation, adding a horizontal vector and a vertical vector into a resultant
diagonal vector, can be thought of in a reversed way: any diagonal vector may be
viewed as the sum of a horizontal vector and a vertical vector. The diagonal vector is
made up of horizontal and vertical components. If someone exerts a single force on

θ

Figure A Figure B Figure  C

Fr

F  = 40 lb

F  = 120 lb

F  = 120 lb F  = 40 lb

Fr = 160 lb

F  = 120 lb

F  = 120 lb

F  = 40 lb

Fr = 80 lb

F  = 120 lb

F  = 40 lb

F  = 40 lb

F  = 40 lb

F

2

1

1 2

1

1

2

1

2

2

2

1 = 120 lb

Figure 3.2. (A,B,C) Forces on table.
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the table of 126 lb at an angle of 18.4°, it is equivalent to 120 lb to the right and 40 lb
up. In other words, the 126 lb force has a horizontal component of 120 lb in the
x-direction and a vertical component of 40 lb in the y-direction. The proof of this
statement is seen in the head to tail drawing. When a vector is broken into its
horizontal and vertical pieces, it is said to be ‘resolved into components’.

Any diagonal vector may be resolved into horizontal and vertical components. This
powerful concept will be explored in later chapters to comprehend fully its
implications. For now, consider a few basic examples.

Think of a car traveling Southwest with a magnitude of 50 mph. What are the
horizontal (Vx or West) and vertical (Vy or South) components of the car’s velocity?
The vector drawing is given in figure 3.3.

The nice thing about resolving into horizontal and vertical components is that
you are guaranteed a right triangle; it is then a matter of using sines, cosines, and
tangents. The car’s velocity vector is the hypotenuse of the triangle.

The horizontal (x-component) is the side of the triangle opposite to the angle θ;

hence, we use the sine of the angle θ: ° = V
sin 45

50
x

= × ° = × =V 50 mph sin 45 50 mph 0.707 35.4 mphx

The vertical component involves the cosine of the angle θ: ° =
V

cos 45
50

y

= × ° = × =V 50 mph cos 45 50 mph 0.707 35.4 mphy

The original velocity of the car of 50 mph at an angle of 45 degrees has been resolved
into an x-component of −35.4 mph and a y-component of −35.4 mph.

A vector’s horizontal and vertical components are independent of one another.

3.6 Units of measurement
In this section we confront a frustrating and, frankly, unnecessary complication faced
by many readers studying the physical world. The issue is units of measurement. Units

θ = 45°

V = 50 mph Vy

Vx

Figure 3.3. Velocity of car.

Understanding the Magic of the Bicycle

3-8



indicate specific quantities—how tall you are, how much you weigh, how fast you are
traveling, etc. The problem arises from a lack of logical consistency in the application
of units. For example, forces are measured in pounds in the United States. The
common units in the United States are called United States Customary.

If your weight is 120 lb, this means that the earth’s gravity exerts a downward
force on you of 120 lb. In the metric system, forces are measured in newtons. So
what is your weight in newtons? You may be certain not too many people will
know without taking a few seconds to convert. People from countries that use the
metric system will state their bodyweight in kilograms—this is actually a body mass
not a bodyweight. Another small complication—there are actually two flavors of the
metric system. There was a time when they were referred to as the MKS (meter–
kilogram–second) and the CGS (centimeter–gram–second) units. The MKS system
is currently preferred and it is called the System International ‘SI’ system.

The world of units (or the units of the world) is a mess. Sadly, they complicate
the life of a student trying to understand the physical world. When the author raises
this issue with his fellow physics teachers, he often gets the response ‘but the students
will be better off knowing the metric system’. While it is true that students are better off
knowing the metric system—we are all better off knowing a lot of things! However, we
wonder how much the business of units interferes with the actual learning process in
the study of physics. Maybe it is time to ask the art teachers to teach the metric system
—no doubt, Renoir thought of his canvas sizes in centimeters. Alternatively, the track
coach can do it—the future Olympians might have to compete in a 100-meter dash! At
the very least, we should be consistent and use force units to specify a force such as
weight, and mass units to specify masses. Perhaps, we might also eliminate terms like
kilograms of force or kilometers per hour (the basic unit of time is the second).

Much of physics can be grasped at a fundamental level grounded on experience
and intuition. When we talk to a student in the United States about a rock weighing
5 pounds or a car traveling at 25 miles per hour, she has a feeling for the size of the
rock and the speed of the car. What instinctive feeling does she get for a rock
weighing 107.8 newtons or a car traveling at 8.94 meters per second? Yet, physics is
usually taught in the United States in these unfamiliar units!

To those who might think we are unfairly picking on the metric system, let us
acknowledge the U.S. Customary units have their own set of quirks. Mass is
measured in slugs; that alone sounds strange. We often mix in metric units—for
example, calories for energy, watts to indicate power. We use inches, feet, yards, and
miles for distance. We use ounces, pounds and tons for weight. We have two sizes of
tons—short tons and long tons. Ounces are also units of volume along with pints,
quarts, and gallons. Pressure is stated in pounds per square inch, sometimes—just
pounds. Yes, they are a hodgepodge; however, these units are more familiar to the
student than dynes, kilograms, meters, metric tons, bars, and kilopounds (in the
world of units, this is the horse invented by the committee).

In this book, we will try our best to deal with concepts in familiar units. For the
most part, the units will be U.S. Customary. In spite of the above rant, we
acknowledge that there are times and situations when metric units are preferred.
For some physical concepts, we will consider the quantity in several sets of units. For
example, power is represented in foot–pounds per second, watts, horsepower, or
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even Calories per hour. The calorie is a well-known unit for energy. Sadly, this world
of units is a burden and an unfortunate complication to the joy of physics. It also
causes physics teachers to go out on a bicycle ride to relieve their frustration—all are
welcome to join in the ride.

For future reference, listed in table 3.1 are common units.

3.7 Unit conversions
The complexity caused by the various systems of units will be with us until the sun
burns out. Even if the world suddenly adopted a uniform, consistent set of units,
there would still be an extensive historical record. We best face the issue and learn
how to cope with conversions between units. From time to time, we will have to
convert a physical quantity from one set of units to another—for example: a speed in
‘miles per hour’ to a speed in ‘feet per second’. We might also have to convert from
one system to another—an air pressure in pounds per square inch (U.S. Customary)
to an air pressure in bars (SI units).

Suppose you wish to convert a car’s speed of 60 miles per hour into feet per
second. The basic equivalencies are found in appendix B: 1 mile = 5280 feet, 1 hour =
60 minutes and 1 minute = 60 seconds. The confusion that develops is whether to
multiply or divide by the equivalency. The simplest procedure is to set up a
calculation in which the unit’s words cancel according to the rules of basic algebra:

× × × = ×
×

=60
mile
hour

5280 feet
1 mile

1 hour
60 minute

1 minute
60 second

60 5280
60 60

feet
second

88
feet

second

This particular conversion is especially helpful to remember: 60 mph = 88 ft/s; thus
30 mph = 44 ft/s, 120 mph = 176 ft/s, etc.

To convert the speed into SI metric of km/h, we use the equivalency: 1 mile = 1.61
km. The calculation is set up so that the unit words cancel:

× = × =60 mile
hour

1.61 km
mile

60 1.61
1

km
hour

96.6
km

hour

Table 3.1. Common units of measurement.

Quantity U.S. Customary Metric—SI, MKS Metric, CGS

distance feet (ft) meter (m) centimeter (cm)
mile (mi) kilometer (km)

time second (s) second (s) second (s)
hour (h) hour (h)

force pounds (lb) newton (N) dyne
mass slugs kilogram (kg) gram(g)
energy foot-pound (ft-lb/s) joule (J) erg

calorie
power foot-pound/second (ft-lb/s) watt erg/second

horsepower (hp)
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3.8 Density
The notion of density arises in many physical instances. Density is intuitively easy to
grasp; it is common in our everyday vocabulary. The weight density of a substance is
defined by a basic expression in which w is the weight of the object and V is the
volume; the Greek letter ρ (pronounced rho) is normally used to represent density:

ρ= = w
V

density
weight
volume

or as an equation (3.3)

For instance, a cube of water one foot on a side will have a volume of one ft3 and
weighs 62.4 pounds. Thus, it has a density:

ρ = =62.4 lb
1 ft

62.4 lb/ft
3

3

The above density is properly called the weight density. A mass density is written:

=density
mass

volume

In addition to water, another substance that is extremely important to the cyclist
is air—both on and off the bike. Not only do we breathe air, but also air is quite
‘heavy’ and must be pushed aside by the fast moving rider. Most of the exertion in
riding a bike is caused by the resistance of the ‘heavy’ air.

Sometimes, we hear the expression that something is ‘light as air’; suppose we
consider how ‘light’ this really is. The density of air varies with temperature and
atmospheric pressure. At a typical riding temperature of 60 oF and sea level pressure,
air has a density of 0.0764 lb/ft3. At less than one tenth of a pound per cubic foot, this
does not seem very heavy! This issue requires further consideration. Imagine the
biggest beach ball you could hold with your arms stretched wide—a nice red one,
maybe four foot in diameter. Blow up the beach ball with just enough air to make it
full but still soft. We do not want it to be under high pressure; high pressure represents
extra air that has been crammed inside. How heavy is the air inside the beach ball?

An expression from fifth grade gives the volume of the sphere:

π π= = =V r
4
3

4
3

(2 ft) 33.5 ft3 3 3

to get the weight of the air inside the ball:

ρ= = × =w V 0.0765 lb / ft 33.5 ft 2.56 lb3 3

The air, inside the ball, is fairly heavy; gravity pulls it down with a force of nearly
three pounds! Yet, when you hold a large ball, even with arms outstretched, it does
not seem to be heavy. There is another factor to consider—the buoyant force. Objects
immersed in a fluid are lifted upward by a buoyant force. The Greek scientist,
Archimedes, showed the value of the buoyant force to be equal to the weight of the
displaced fluid. When the ball is immersed in air (as it is on earth), it is buoyed up by a
force equal to the 2.56 lb. Therefore, we have the nice situation of the downward
weight of the ball being 2.56 lb (plus the weight of the plastic shell) and the upward
buoyant force on the ball being 2.56 lb. Thus, holding the ball takes very little effort.
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However, what is not a ‘little effort’ is the force required to push the air aside in
front of a traveling cyclist.

3.9 Concepts of mass
The word ‘mass’ is common in our daily vocabulary. You might hear that the mass
of the national debt is creating economic problems. Perhaps, in a weather forecast,
we hear that a massive snowstorm is imminent. The meteorologist might even say
that a cold air mass is moving into the area. Many medical prescriptions are written
in doses specified in mass units of grams or milligrams. When terms that are
frequently used in everyday speech are encountered in a physics context, we need to
be especially careful in their definition and use. The problems with the word mass are
compounded further by the fact that the concepts of mass and weight are unwisely
interchanged. To make matters worse, there are actually two kinds of mass in the
physical world—inertial mass and gravitational mass. In this book, when we discuss
the mass of an object, it will usually be the inertial mass.

The experiments of Galileo played a critical role in understanding the concepts of
mass. Galileo performed a series of very clear-cut experiments involving balls rolling
on inclined planes. He observed that the balls speeded up when they were rolling
downhill and the balls slowed down as they rolled uphill. Galileo had the insight to
conclude that, if the balls were rolling on a level plane, they would continue the
motion forever (figure 3.4). Of course, in the real world there are factors (such as
friction) that will ultimately end the motion of the ball. Galileo’s genius was his
ability to understand that the factors, that end the ball’s motion, should be
considered as separate from the ball’s tendency to continue its motion. This tendency
for a moving object to remain in motion is called inertia.

BALL SLOWSBALL SPEEDS UP CONSTANT VELOCITY

UPHILLDOWNHILL ON THE LEVEL

Figure 3.4. Rolling balls.

This section offers an intuitive description of the physical concept of mass. Inertia is
not hard to visualize. Consider two boxes on a table; it is best if they are on well-
lubricated wheels. One of the boxes is filled with Styrofoam peanuts and the other is
filled with lead bricks. Without lifting the boxes off the table (or tapping on the side),
how might you tell which box contains the bricks? Just give the boxes a shove. You will
quickly sense that one box offers very little resistance and begins to move easily. The
other box requires a substantial effort to set into motion. You could also try to slide the
boxes quickly from side to side. In chapter 4, we will call these changes in motion
acceleration. The resistance you feel in starting, stopping, and changing the direction of
the motion is called inertia.
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This is actually the definition of inertia:

inertia is resistance to a change in motion

The box filled with Styrofoam possesses little inertia; the box of bricks has lots of
inertia. We are suggesting that you consider inertia as the intuitive physical concept,
and mass as the quantitative measurement of an object’s inertia

mass is the measure of inertia

In U.S. Customary units, the mass of an object is measured in slugs; in the SI
metric system, mass is in kilograms.

A fair question might be ‘why not just lift the boxes in order to determine which
contains the bricks?’ The answer is that, when you lift the boxes, you are sensing
their weight rather than their mass. Weight is a different physical quantity than
mass. Weight is the downward pull of the earth’s gravity. It is not difficult to
conceive a situation in which you cannot sense the weight of the boxes—for instance,
an astronaut in orbit would have no sensation of the box’s weight. Or… if you were
on a falling elevator, there would be no sensation of weight. However, in both
circumstances (the astronaut and the falling elevator) there will still be inertia. The
brick-filled box will be just as hard to shake.

The concept of mass is complicated further by the fact that there are two types of
mass. Inertial mass—is the resistance to acceleration; inertial mass is considered further
in Newton’s Three Laws of Motion. A second type of mass is gravitational mass—the
physical quantity that determines the force of gravity. An object’s gravitational mass
ultimately determines theweight of the object. In chapter 6 (Gravity),wewill see a direct
connection between the mass and the weight of a body: a body of mass one slug has a
weight of 32.2 lb on the surface of the earth. As an expression:

= ×weight mass 32.2 (3.4)in pounds in slugs

Although there is a direct relation between mass and weight, they are different
physical phenomena. For instance in cycling, the mass of the bike/rider system is of
consequence when changing speed (acceleration or deceleration). The weight of the
system is significant only when cycling on hills.

3.10 Center of mass
With a large or extended object, it is useful to consider that all of the mass of the object
is concentrated in one small point—this point is called the center of mass (COM). If
you throw a small round ball across the yard, its path will sweep out an arc called a
parabola. The ball usually spins about its center; however, with a uniform, spherically
symmetric object you will probably not even notice the spinning motion. What
happens if you throw an object with an asymmetrical shape such as a hammer? Take a
hammer and give it a toss across the yard. You will notice a spinning rotational
motion of the handle about the hammer’s head. While the motion looks complex, the
center of mass of the hammer will trace out an arc as smooth as that of the ball. If you
watch the motion of the hammer in slow motion, you will see that there is a point,
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likely a few inches down from the head, which executes the smooth arc. The rest of the
hammer twists and turns about this center of mass point.

Many times the center of a mass of an object will be obvious; for instance, the
center of a yardstick will be at the 18″ mark. Sometimes, the center of mass will be
outside of the body. Consider a doughnut; the center of mass is in the hole. For objects
that are flexible, such as a section of a rope, the center of mass will vary depending on
the shape. If the rope is held straight like the yardstick, the center of mass is at
midpoint; if the rope is bent into a circle, its center of mass is like the doughnut’s. Bend
the rope into a horseshoe and the center of mass will be near the top of the curve. For
a person standing straight up, the center of mass is somewhere in the belly region, bent
over and the person is like a horseshoe. In a system of several objects, such as a rider
on a bicycle, the center of mass of the system will be determined by the relative masses
of the individual pieces. For an adult rider on a modern lightweight bike, the center of
mass will be dominated by the configuration of the rider’s body.

The center of mass of an object is important because we often consider the motion
of an extended body, i.e. a bike rider system, as the motion of its center of mass. We
say that the body is treated as a ‘point mass’—as if all of a body’s mass were
concentrated at this single point.When there is rotation of this body, i.e. the rider goes
over the handlebars, the rotation occurs about the center of mass. When thinking
about the force of gravity on a body, the term ‘center of gravity’ is appropriate.

3.11 Our standard rider
These values are not represented as any type of average; rather, they are the author’s
estimate of a compromise between male and female, tall and short, thin and stout,
young and not so young, upright and crouched stance, and expensive and
inexpensive bikes.

The reader is invited to work all examples with her own personal parameters. The
frontal area may be estimated by making a tracing of body outline on kraft paper.
When the tracing is cut out—it looks like a large gingerbread cookie—it can be
weighed on a kitchen scale and compared to a paper rectangle of known dimensions
(two foot by three foot works well). A simple ratio and proportion yields the rider’s
area. Other more sophisticated methods may be used with digital images of the rider
on her bike; CAD and photo manipulation programs allow for determination of
body shape geometry.

Of course, there is no standard rider; it might be impossible to find even two riders
exactly matched in physical size and cycle. Nevertheless, for purposes of comparison
between sections and chapters, most examples in this book are based on a bike/rider
system of consistent standard physical parameters:

rider weight = 161 lb, rider mass = 5.0 slugs
bicycle weight = 20 lb, bicycle mass = 0.62 slugs
total system weight = 181 lb, system mass = 5.62 slugs
frontal area = 5.38 ft2
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IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 4

Linear motion

This chapter begins an exploration of the basic physical concepts regarding the
motion of an object. In this chapter, we consider linear or straight line kinematics;
in a later chapter, we look at the rotational kinematics of an object moving in a
circle. Although these fundamental and instinctive ideas of motion are used on a
daily basis, it is important to be precise in their definition and application. Special
care is necessary with the terms speed and velocity. Additional distinction needs to
be made between averages of speed and velocity and their instantaneous
counterparts.

4.1 Kinematics—the study of motion
Begin by considering a simple journey—suppose we go on a long bike ride,
a distance of 50 miles in five hours. The concept of speed is defined as:

= = =speed
distance traveled

time
50 mi
5 hr

10 mph

Speed is a fundamental factor in describing the trip. With letters, the above
expression is written:

=v
d
t

(4.1)

with the understanding: v is speed, d is distance traveled, t is the elapsed time

The spirit of the time shall teach me speed.
King John, iv,2 William Shakespeare
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There are times when the equations might start to look a bit overwhelming. Some
folks say they have ‘trouble’ with the math. Keep in mind that the equations, ‘the
math’, are nothing but a shorthand way of expressing simple phrases and ideas. Now
for some subtleties:

4.1.1 Instantaneous speed

If you make this bike ride, the speed, 10 mph, represents your average. It is very
unlikely you got on the bike, pressed on the pedal, and traveled at a constant,
uniform 10 mph the entire trip. You certainly sped up (accelerated), slowed down
(decelerated), stopped at traffic signals, water breaks and so on. Another physical
quantity—the instantaneous speed—is the speed of the moving object at any given
instant (excuse the circular definition). A fair, but not exact, estimate of the
instantaneous speed is the reading of the bike’s speedometer. While there is still
some averaging taking place over a few seconds, the speedometer gives you a feel for
the concept of instantaneous speed.

4.1.2 Velocity

Chapter 3 discussed vectors and scalar quantities. It is important to emphasize the
distinction between speed and velocity. Speed is a scalar quantity; it makes no
reference to a direction. Velocity is a vector; it includes the speed and a specific
direction. We often use an arrow to represent the velocity:

=v
d
t

with the understanding: v is velocity, d is displacement, and t is the elapsed time.
Vector quantities with directions are important. Surely, heading ‘10 mph North’

represents a different trip than heading ‘10 mph South’.

4.1.3 Acceleration

While driving in a car you occasionally hear the phrase ‘step on the accelerator’—
meaning the gas pedal. We expect the car to have a change in its speed—actually, we
should use the term velocity.

As a definition:

acceleration = change in velocity divided by the time for the change.

To write as an equation:

= = Δ
Δ

a
v
t

v
t

change in
change in

(4.2)

The Greek letter Δ (delta) means change in a quantity
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It is important not to forget the vector nature of acceleration. However, there is
still insight to be gained by discussing scalar quantities. Suppose, after stepping on
the gas, the car’s speed changes from 40 mph to 60 mph in a matter of 4 s. The
acceleration is:

= = =a
v
t

change in
change in

20 mph
4 s

5 mph
s

The meaning of this ‘acceleration’ is that for each second of stepping on the gas,
the car’s speed picks up 5 miles per hour. After 1 second of acceleration you will be
moving 45 mph; after 2 s your speed is 50 mph, etc.

Strictly speaking, we are assuming a constant, average acceleration. In chapter 5,
when we discuss forces, we will see that there is a major force opposing the motion of
the car, namely air resistance. Try holding your hand outside an open car window; as
the speed increases, you will notice the force on your hand also increases. The
consequence of the larger force of air resistance is that it gets harder and harder
for the car to gain speed. When the gas pedal is first depressed, the acceleration
might be 10 mph/s; but, as the car approaches 60 mph, the acceleration might be
only 2 mph/s.

Normally, when the physical laws are first examined, motion is considered in the
absence of resistive forces such as air resistance and friction. No doubt, ignoring air
resistance in discussing bicycle motion is too idealistic; as soon as you ride faster
than a few miles per hour, air resistance is literally in your face.

Another example—how about a car that goes from zero to 60 mph (88 ft/s) in
2.73 seconds? For the acceleration, we obtain:

= Δ
Δ

= =a
v
t

88 ft/s
2.73 s

32.2
ft
s2

The definition of acceleration is based on velocity—not speed. Acceleration will occur
when a velocity vector changes in one of three ways:

• in magnitude—for instance, the car goes from 50 mph to 60 mph. The
acceleration is due to change in vector magnitude. This, of course, is a change
in speed.

• in direction—a car on a highway might change direction from North to East
while maintaining a uniform 50 mph. The acceleration is caused by a change in
vector direction.

• in both magnitude and direction. While making a turn on a city street, both the
magnitude and direction of the velocity vector probably change.
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Wow! What would be the cost of this car? Actually, any car can have this
acceleration, even a scrap car without an engine, just push it off the edge of a cliff
and it falls under the influence of gravity! We have a special name for the
acceleration of gravity—we call it ‘g’. The car has an acceleration of one g.

Before leaving this introduction to velocity and acceleration, consider the motion
of a bicycle. Suppose a very strong cyclist is able to go from rest to 20 mph (29.3 ft/s) in
10 s. The acceleration is:

= Δ
Δ

= = = =a
v
t

29.33 ft/s
10 s

2.93 ft/s
2.93 ft/s
32.2 ft/s

0.091 g2
2

2

Although the expression we have been using for the acceleration is fine, occa-
sionally, we will need a bit more sophistication. Instead of using Δv, consider a
notation in which we go from some initial speed vi to a final speed vf . The final speed
is the sum of the initial speed and the contribution from the acceleration.

= +v v a t (4.3)f i

Consider again our rider who was capable of the acceleration 2.93 ft/s2. Suppose
she was already traveling at 15 mph (22 ft/s) when she kicked in with the ten-second
acceleration. What is her final speed at the end of the acceleration period?

= + = + × = + =v v a t 22 ft/s (2.93 ft/s 10 s) 22 ft/s 29.3 ft/s 51.3 ft/s (35 mph)f i
2

An acceleration from 15 mph to 35 mph will encounter much greater air
resistance than the same acceleration from zero to 20 mph. It would take super-
woman to maintain such an acceleration. Let us push the ideas a bit further.

In the case of going from 15 mph to 35 mph, is there a valid meaning to an
average speed? Yes, as long as the acceleration is constant—a steady increase in
speed. We can take the starting value vi and the ending value vf and divide by two.
The average speed vave during this period is:

= + = + =v
v v

2
35 mph 15 mph

2
25 mphave

f i

We can obtain a more general expression by noting:

= ×

= + × = + + ×

d v t

d
v v

t
v at v

t
2

( )
2

(4.4)i

ave

f i i

Grouping terms:

= +d v t a t
1
2

(4.5)i
2

The result is a nice, simple expression that allows us to determine how far we have
traveled while going from rest =v( 0)i to 20 mph (29.3 ft/s):
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= = × × =d at
1
2

1
2

2.93 ft/s (10 s) 147 ft2 2 2

What would be the result using the average speed of 10 mph (14.7 ft/s)?

= = × =d v t 14.7 ft/s 10 s 147 ftave

The results agree! So far, our examples have been situations in which the speed
increases (accelerations); of course, moving objects eventually have to slow down
(decelerations). All of our previous definitions and equations in this chapter apply to
both acceleration and deceleration.

In the case of objects speeding up, the acceleration is positive. When objects
slow down, the acceleration is negative. Suppose our cyclist traveling at 20 mph
(29.3 ft/s) comes to a stop in 10 s, the deceleration is:

= Δ
Δ

= − = − = −a
v
t

v v
t

0 29.33 ft/s
10 s

2.93 ft/sf i 2

4.2 Headwinds and tailwinds
Do head winds and tail winds cancel in a round trip?

Consider a rider with who sets out on a long trip and encounters a head wind that
cuts her speed to 15 mph on the outward leg. On the return trip, the wind is a
tailwind that results in a speed of 25 mph. Will her average be?

+ = =15 mph 25 mph
2

40 mph
2

20 mph

The answer is no! A simple average is not correct; she does not spend an equal time
on the outbound leg versus the homeward leg. The return trip, at the higher speed,
will be a shorter time.

Think of the following analogy—in a badly designed grading scheme, a course
has only two exams—a mid-term, worth one fourth of the final grade, and a final
exam worth the remaining three fourths. A student attains a perfect 100% on the
midterm, gets overconfident, and stops studying. He then proceeds to get 50% on the
final exam. What is his course grade? Will it be the simple average of the two exams
75% for a C+ in the course? Unfortunately, no, a weighted average needs to be
calculated. The final exam is given more weight. The 100% on the midterm earns the
student 100 points; the 50% on the final earns the student only 150 points. Totaling
his points, we get 250 points out of the maximum of 400. His final grade percentage
is just 62.5%. At best, the student receives a D in the course.

How do we create a weighted average for our cyclist with head winds and tail
winds? Let us put some distances on this journey. Assume she rides 40 miles out at15
mph, turns around, and rides 40 miles back home at 25 mph.
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The longest road out is the shortest road home.
Irish Proverb

Obtain the travel times, for the outward leg of the trip: =v 15 mph1

= = =t
d
v

40 mi
15 mph

2.67 hr1
1

for the homeward leg: =v 25 mph2

= =t
40 mi

25 mph
1.60 hr2

The total time is: + =2.67 hr 1.60 hr 4.27 hr
The average speed is:

= =average speed
80 miles
4.27 hr

18.7 mph

The average is less than the simple average of 20 mph. The outward leg, at the slower
speed, is weighted more heavily than the return trip speed. The effect is even more
dramatic if a very strong wind results in a larger speed discrepancy. A wind that
results in a speed 5 mph on the way out and 35 mph on the way home will produce
an average speed of only 8.75 mph. The simple average of 20 mph is even more
inaccurate!

4.3 Riding uphill and downhill
How about riding uphill and then riding downhill? Do the hills cancel in a roundtrip?

The ride downhill is usually a lot shorter time than the ride uphill; the uphill and
downhill segments do not cancel. The analysis is similar to the head wind and tail
wind situation. The times of the uphill and downhill legs will not be the same
(assuming equal efforts by rider). Going fast downhill in a short time interval does
not cancel the long, slow uphill climb.
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Chapter 5

Forces—Newton’s laws of motion

In this chapter, we take major steps toward a discovery and appreciation of the
fundamental laws of nature that underlie so much of the bicycle’s magical behavior.
The primary emphasis is to understand the role of forces in controlling the motion of
the two-wheeler. A rationale is developed for the mechanism by which the bicycle
offers the most efficient form of human powered locomotion. The force of friction,
normally considered a foe to motion, is regarded as a friend. We will learn how
friction accelerates the bicycle forward and how this same friction stops the bike when
needed. Freewheeling, the ability of the bicycle to joyously coast along with no effort
by the rider, is a benefit of inertia—the tendency of an object to remain in motion.

Every rider knows there is effort needed to propel the machine into motion and to
maintain its motion against major resistive forces such as air resistance and gravity.
Our rider must also counter the less significant forces such as the rolling resistance of
the tires and the bearing resistance of the hubs. This chapter reveals the manner by
which these forces develop and evaluates their relative significance.

The operation of the bicycle is shrouded in mystery. The bike, inherently unstable
with a large mass perched above tiny points of support, develops an amazing
stability once set into motion. Most fascinating is that this stability exists with or
without input from a rider. The stability is a consequence of nature’s basic laws of
motion.

In chapter 5, we explore Sir Isaac Newton’s three laws of motion. These laws, that
establish the relationship between forces and motion along with the principle of
universal gravitation, were promulgated in 1687 by Newton in his Principia
Mathematica. The Principia is arguably the most important scientific text ever
written. Newton’s brilliant mind brought a concise, comprehensive, and beautifully
simple approach to understanding motion. The science that studies motion and its
causes is called dynamics. Newton’s laws are the foundation of dynamics. These
laws are very easy to describe, nevertheless, extremely profound and universally
significant. Newton’s laws are used to calculate the motion of a falling apple or the

doi:10.1088/978-1-6817-4441-4ch5 5-1 ª Morgan & Claypool Publishers 2016

http://dx.doi.org/10.1088/978-1-6817-4441-4ch5


orbits of the planets. They were also the basis in determining the trajectories of space
flights that landed astronauts on the moon and, perhaps more importantly, got them
safely back to earth. These same Newton’s laws of motion govern the astonishing
behavior of the bicycle as the rider effortlessly balances on two wheels and glides
with minimal exertion.

Difficulty sometimes arises in applying Newton’s laws because we forget how
straightforward they really are. Occasionally, you might want to reread these laws
and give their simple beauty a chance to be slowly absorbed. The laws of motion are
not highly mathematical; in fact, they may well be the mathematically simplest of all
physics. Two of the three laws do not even involve an equation. One of the nicest
aspects of Newton’s laws is that they can be applied to understand events in our
daily experience. It is easy to encounter and experiment with the laws at will; no
expensive laboratory equipment is needed. A bicycle, with an economical speed-
ometer–odometer, is a traveling physics laboratory.

As the motion of a bicycle is examined, we will learn that there are numerous
forces affecting the two-wheeled contraption. These forces are significant in both the
acceleration and the deceleration of the system. Some of these forces result from the
bike/rider interaction with the environment. External forces occur as a consequence
of the tire’s contact with the ground and some arise from the necessity of the bicycle/
rider system to move air aside. Gravity also has a major effect as the bicycle travels
up and down hills. Some forces are associated with the deformation of a soft tire;
these are described as rolling resistance. There are internal forces, for instance, the
rider pressing on the pedals or the bearings rubbing in hubs. Some forces get a
special name such as the centripetal forces that cause the bicycle to make a turn.
Frictional forces describe various types of tire/wheel/road contact forces. The
complexity of the forces on the bicycle, while not difficult to understand, is subtle
and requires careful thinking and precise choice of words.

When considering the forces on a bike/rider system, it is important to clearly
define which bodies are part of the ‘system’. Forces that act between components of
the system are called internal forces. Forces that arise from interactions outside of
the system are called external forces. For example, if we define the system to be the
bike and the rider, then the thrusts of the rider’s feet on the pedals are internal forces—
within the system. In addition, the pressure of the brake pads on the wheel rims is
considered an internal force. The external forces on the system are forces from the
road, gravity, air, etc. According to Newton’s First Law, the motion of the bicycle can
only be changed through the action of external forces. Before studying the laws of
motion, it is recommended that the reader review the concepts of inertia and mass in
section 3.9.

In chapter 2, we defined a force as a push or pull. We also saw that vectors are a
very useful way to understand forces. The image of a person pushing or pulling on a
table is easy to visualize. Newton’s three laws enable us to understand the manner in
which forces effect and affect the motion of an object. As we consider Newton’s
laws, we will see their application to the table and, for more fun, the bicycle as it
moves in all sorts of circumstances: slow and fast, uphill and downhill, with the wind
and against the wind.
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5.1 Newton’s First Law of Motion
The First Law of Motion is stated as:

A body at rest will remain at rest, or a body in motion at a constant velocity will
remain at a constant velocity unless acted upon by a net external force.

Sounds simple enough? It is—no equations, no calculations! We have actually
seen a version of this law in chapter 3. The First Law of Motion is a restatement of
Galileo’s concept of inertia, the tendency of a body to maintain its constant velocity.
Recall that mass is a measure of inertia. Although the First Law of Motion does not
use an equation, it is loaded with significance and subtlety. Let us dissect a few of its
profound implications:

1. A body at rest or moving at a constant velocity is not accelerating. Whether
the bike is parked in a garage or traveling down a straight highway at 25
mph, the acceleration of the bike is zero. An alternative way to state the First
Law is:

An acceleration of a body requires a net external force.
2. The First Law uses the word ‘velocity’—recall from chapters 3 and 4 there is

a very significant distinction between speed and velocity. An object’s speed
might be stated as ‘20 mph’. The concept of velocity is a vector that combines
the speed with a direction. A velocity vector has both magnitude (20 mph)
and direction (e.g. West).

When it comes to vectors, the direction is of equal importance as the
magnitude.

The implication of the above is that it takes a net external force to
change a body's direction of motion. If you ride a bike and make a turn to
the left, it requires a net force to the left. Sometimes, cyclists will say that
they turn by leaning. Leaning is not the force to effect a turn. While the
basics of forces are examined in this chapter, a complete analysis of
turning is in chapter 12.

3. It takes a net external force to change an object’s motion. The term net force
is based on the concept of vector addition (chapter 2). If you have two people
on opposite sides of the kitchen table each pushing with 50 lb of force, the net
force is zero. If there is no net force, a table at rest will remain at rest.

Often, we refer to the net force as the ‘resultant force’—sometimes, it is
simply called the resultant.

4. The use of the term external force is also a critical aspect of the First Law of
Motion. When applying Newton’s laws, we invoke the concept of ‘the
system’. The system is a collection of objects (or bodies) considered to be
associated with each other. Once we define the objects that comprise the
system, we then decide which forces are ‘external’ to the system and which
forces are ‘internal’ to the system.

In the application of Newton's laws, a decision must be made that clearly
defines the specific bodies that comprise the ‘system’. Forces that act on the
system from outside are considered ‘external’ forces. It requires a net external
force to cause an acceleration of the system.
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With a system definition of ‘the kitchen table’ and the people as ‘external forces’—if
one person pushes with a force of 50 lb and the other pushes with a force of 20 lb, there
will be a net external force on the table of 30 lb. Newton’s First Law states that the
table will not remain at rest because of the net external force. The table will begin to
accelerate; to describe fully the motion we need Newton’s next law of motion.

The amazing thing is that Newton’s laws apply regardless of the bodies chosen to
be included in the system. We simply have to be consistent in deciding internal
versus external forces. In most cases, the objects to be included in the system are
intuitively obvious. If we wish to study the motion of the table, the system is the
table. If we wish to study the motion of a cyclist, the system is the rider plus the
bicycle. Sounds easy? Maybe. If the system is the rider plus bike, we must
acknowledge that the effort of the rider pushing on the pedals is an internal force—
not an external force! A force on the pedal is not the force of the bike’s acceleration.
Nor is the brake pad rubbing on the rim the force of deceleration. What then causes
the bicycle to start and stop? You will have to keep reading; there is much subtlety
involved.

With regard to the kitchen table—the external forces would be due to the people
pushing, the force of gravity, an upward push by the ground, and likely a force of
dragging called friction. Conceivably, if the table were moving fast enough, we
would need to consider a force of air resistance. The primary external forces on the
bike are gravity, ground, friction, rolling resistance, and air resistance. We will
explore each of these in detail.

Where might we best experience Newton’s First Law of Motion on a bicycle?
Certainly, the most fun instance is cruising down a moderate hill at a constant speed.
The downward pull of gravity offsets the upward resistive forces, and the rider is
able to ‘fly’ happily down the hill.

5.2 Newton’s Second Law of Motion
Newton’s Second Law of Motion establishes the relationship between the net
external force on a body and the acceleration of the body. As with the First Law,
the Second Law is simple and concise. It is stated as:

The acceleration of a body is directly proportional to the net external force acting
on the body and inversely proportional to the mass of the body.

The First Law tells us that a net external force causes accelerations. The Second
Law allows for the determination of the magnitude of the acceleration. If the net

Understanding the Magic of the Bicycle

5-4



external force is doubled, the acceleration is doubled. Newton’s Second Law also
states that the acceleration is inversely proportional to the mass. This means, if you
double the mass, the acceleration will be halved.

A simple written expression of Newton’s Second Law is:

=a
F
m
net

where a is the acceleration—the change in velocity with time, Fnet is the net external
force—the vector sum of all forces external to the system and m is mass—the
measure of inertia (the resistance to change in motion).

The expression, simple as its looks, has a very important subtlety. Both force and
acceleration are vectors. Careful consideration reveals that what appears to be one
equation is actually three equations. Forces are vectors, maybe three-dimensional
vectors, and acceleration can be a three dimensional vector. There can be an
independent Second Law for each of the three directions (dimensions)—x, y, z (left
and right, up and down, back and forth). Vertical forces determine vertical
accelerations; horizontal forces determine horizontal accelerations.

Fortunately, most of a bicycle’s motion can be described in terms of one (when
traveling in a straight line) or two (when making a turn or riding a hill) directions.
Also helpful is that the three directions are perpendicular to each other. Thus, forces
and motion in the horizontal do not affect forces and motion in the vertical. Forces
and motion in the left and right direction do not affect forces and motion in the
forward direction. Each vector’s component is independent of the others. The reader
might wish to review the discussion of vector components in chapter 3.

These ideas are so important that we will restate them in slightly different words:
• The horizontal acceleration is only determined by the net horizontal force. The

vertical acceleration is only determined by the net vertical force.
• An acceleration to the left requires a net force to the left; an acceleration to the

right requires a net force to the right.

Can I turn a bike just by leaning?

The answer is no. Later, when we explore the turning behavior of the bicycle, it will be
useful to review the above statements. We will see that a bike making a left hand turn
is accelerating to the left. Newton’s Second Law states that an acceleration to the left
requires a force to the left. While the lean of a bicycle is important during a turn, it
does not create the leftward force. The force on your leaning body is still vertically
downward—the downward force of gravity, aka your weight.

5.3 Units of force, motion, mass
Before moving on to the next Law of Motion, it is best to deal with issues of units.
If you sometimes get frustrated with issues of units, please review the discussion on
units in chapter 3. In the United States Customary units, the following fundamental
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units are used: force is specified in pounds (lb); acceleration is specified in feet per
second squared (ft/s2); mass is specified in slugs. Thus, a force of one pound acting
on a mass of one slug produces an acceleration of one ft/s2.

In the next chapter, we learn that, on the surface of the earth, the acceleration of
gravity is 32.2 ft/s2; one slug of mass weighs 32.2 pounds. Suppose we had a cyclist +
bike system of combined weight w = 181 lb. In order to apply Newton’s Second
Law, we must get her mass in slugs:

= = =m
w

32.2
181 lb

32.2 ft/s
5.62 slugs

2

If she experiences a net forward force of 10 lb, Newton’s Second Law tells us that her
acceleration will be:

= = =a
F
m

10 lb
5.62 slugs

1.78 ft/snet 2

Using concepts of motion from chapter 4, if she starts from rest and the force of
acceleration remains constant for 15 s, her speed will be:

= = × = =v a t 1.78 ft/s 15 s 26.7 ft/s 18.2 mph2

Incidentally, our rider must be quite strong; later in this chapter, we will see that
an opposing force of air resistance begins to build rapidly after about five mph.
Maintaining the constant forward force becomes increasingly difficult and ulti-
mately impossible.

5.4 Newton’s Third Law of Motion
This section explores the last of Newton’s laws of motion. As with the first two laws,
a statement of the Third Law is not difficult. Of the three laws, the Third Law of
Motion is the most commonly quoted in everyday conversations. A simple, precise
statement of Newton’s Third Law of Motion is:

If body A exerts a force (the action) on a second body, B, then body B exerts an
equal and opposite force (the reaction) on body A.

Is the force actually equal and opposite in all cases? Yes! Even if you wad up a
small piece of paper and exert a force of 10 lb in throwing it across the room, the
paper will exert an equal and opposite force on you of 10 lb. The paper might only

Important points to consider: forces always occur in pairs between two bodies; the
forces are equal in magnitude; the forces act on different bodies. One force acts on
body A; the other force acts on body B. Opposite force means opposite in direction. If
body A pushes to the right, body B pushes back toward the left. The second force, the
so-called reaction force, is a real force.
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weigh a few ounces, but it will push back on you with whatever force you exert on it!
To gain further insight in the Third Law of Motion, let us examine a situation of two
ice skaters (figure 5.1A), a 161 lb man (mass of 5 slugs), and his daughter who weighs
40.25 lb (mass of 1.25 slugs).

Suppose they stand facing each other, initially close together. With their palms
touching, one or both push off with horizontal forces. It does not matter who is the
stronger or who does the actual pushing. If he pushes on her with a force of 45 lb, by
Newton’s Third Law she will exert an equal and opposite force on him of 45 lb.
Regardless of how the pushing is done, the force on each skater will be equal and
opposite. Since they are on ice, there are minimal frictional forces that can be ignored.

What can be said about the motion of the skaters? Since the forces are horizontal,
we calculate their horizontal accelerations using Newton’s Second Law:

= = = = = =a
F
m

a
F
m

45 lb
5 slugs

9 ft/s
45 lb

1.25 slugs
36 ft/sman

2
girl

2

The man has four times the mass of the girl and experiences the same force as the
girl; his acceleration is one quarter of the girl’s acceleration. How long are these
accelerations maintained? From Newton’s First Law, we conclude that the man and
his daughter will only accelerate while they experience the horizontal forces. They
accelerate until their hands separate and, in the absence of resistive forces such as
friction and air resistance, they will maintain speed until reaching shore. How fast
will they be moving at the time of separation? Suppose they exert forces on one
another for 0.5 s. From chapter 4 we obtain an expression for their final speeds at the
time of separation.

= = × =
= = × =

v a t
v a t

9 ft/s 0.5 s 4.5 ft/s
36 ft/s 0.5 s 18.0 ft/s

man man
2

girl girl
2

The girl ends up traveling four times faster than her father.
Until now, we have only looked at the horizontal forces and motion. Can we use

Newton’s laws to understand the vertical vectors? Yes! Newton’s laws work in all
directions. Consider the father whose weight is 161 lb (figure 5.1B). This means that
the earth pulls downward on the man with a force of gravity of 161 lb. Why does this
force not produce a vertical acceleration? It would, if the man were in mid-air with
no upward force to resist the pull of gravity. The result is called falling down!

45 lb45 lb

FROZEN LAKE

LAKE PUSHES UP

WEIGHT PULLS DOWN

Figure A Figure B

Figure 5.1. (A,B) Father and daughter on ice.
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However, the man was standing on ice—as long as the ice is nice and thick, the
outcome is no different than if he were standing on solid ground. As he pushes
downward on the ice, Newton’s Third Law tells us that the ice will push equal and
opposite—upward, on the man. The two vertical forces on the man, the downward
pull of gravity and the upward push of the ice, cancel. Since the net vertical force is
zero, the man has no vertical acceleration.

5.5 Role of arm muscles

Do the arms and upper body play any role in delivering force that contributes to the
forward motion of the bike?

During the evolution of the bicycle in the mid-19th century, attempts were made to
add an arm-powered driving mechanism to the ‘Hobby Horse’ (the Draisine). A
simple observation as to the relative size of the arm muscles versus the leg muscles
shows the inferiority of an arm propelled machine. In addition, the upper half of
the body is occupied with steering and, in the case of hand brakes, stopping the
bicycle. Nevertheless, in a modern bicycle where the major effort is delivered by the
lower body, the arms do add some force toward the bike’s propulsion. Once again,
Newton’s laws are the key to understanding the force contributions of the arms.
Consider that the rider pulls upwards on the handlebars when pedaling very hard.
From Newton’s Third Law, the handlebars push down on the hands—this
downward push by the handlebar adds to the force that can be applied to the pedal.

A free body diagram of a rider standing and putting all of his weight onto one
pedal and simultaneously pulling up on the handlebars is shown in figure 5.2. The
image on the left includes the rider and the handlebars and pedal. Figure 5.2B shows
only the forces on the rider.

w

Ffp

Fpf

Fbh

Fhb

PEDAL

HANDLEBAR w

Fpf

Fbh

Figure A Figure B

Figure 5.2. (A,B) Man forces.
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There are two action–reaction pairs as expected from Newton’s Third Law.
At the handlebar: Fhb—the hands pull up on the handlebar and—the handlebar

pushes down on the hands Fbh.
At the pedal: Ffp—the foot pushes down on the pedal and—the pedal pushes up

on the foot Fpf.
Gravity pulls down on the rider with a force equal to his weight w. Newton’s

Second Law tells us that if there is no vertical acceleration, the vertical forces on the
rider must add up to zero:

− + − = = +w F F F w F0 or upon rearrangingpf bh pf bh

If the rider puts all of his weight of 161 lb on one pedal and pulls up on the handlebar
with a force of Fhb= 50 lb (thus Fbh = 50 lb), the pedal must push up on his foot with
a force Fpf of 161 lb+50 lb = 211 lb. From Newton’s Third Law, he then pushes
down on the pedal with a force of Ffp = 211 lb.

The force with which the rider pulls upward on the handlebar is effectively added
to his weight. The consequences of applying such a large force to the pedal while
pulling upward on the handlebars is examined later when we look at the gearing
system in chapter 11.

5.6 Frictional forces—a simple model
Think of trying to push a heavy box across a rough floor. Start with a gentle push;
the box does not budge, perhaps a slightly stronger push—still no movement.
Eventually, if you are strong enough and the floor releases its grip on the box, it
begins to move. You might notice that the force to keep the box in steady motion is
less that the force it took to break it free. Welcome to the phenomena of friction.
Friction is an omnipresent force that develops between surfaces. It is difficult to see
and loaded with complexities easily misinterpreted. This simple act of pushing on the
box needs elaboration. At first, with the easy pushes before the box budges, we say
there is impending motion of the box. Once the box breaks free, there is actual
motion. Another aspect of the friction force is that it is always in opposition to the
direction of impending and actual motion. The definition of friction:

friction is a force between surfaces that opposes motion or impending motion.

For the box along the floor, force is a horizontal vector. If the push is to the right,
the force of friction points to the left. A push to the left results in a friction force to
the right. The definition of friction states that it opposes motion—sometimes it
succeeds in its opposition; sometimes it does not succeed.

When the box has yet to move and the force of friction is opposing impending
motion, it is called static friction. Once the box is actually moving, the frictional
opposition is called sliding friction. In general, static friction is greater than sliding
friction.

How might friction be visualized? In a simple model, think of the bottom of the
box and the floor as having rough surfaces in contact (figure 5.3A). If there is no
attempt at horizontal motion, the rough surfaces are just meshed together and there
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is no horizontal force of friction. A moment’s reflection of figure 5.3A should assist
in understanding how the force of friction only develops as we attempt to slide the
surfaces over one another. The friction force arises as the ridges are compelled, by a
horizontal shove, to ride over one another.

The presence of a lubricant such as oil, grease, wax, or even water will reduce the
force of friction. Have you ever slipped on a wet or recently waxed floor? The
lubricant consists of small particles filling in the hills and valleys of the rough
surfaces. Obviously, an effective lubricant is one in which the small particles are able
to roll and slide past each other (figure 5.3B). Another technique to reduce friction is
to lessen the roughness of the contact surfaces (figure 5.3C). Sanding the surfaces
lessens the heights of the hills and valleys. The smaller hills and valleys are less able
to resist horizontal forces trying to move the box.

This simple model of friction also helps in understanding the reason static friction is
greater than sliding friction. More force is required to get the box moving than is needed
to maintain steady motion. Static friction is visualized as having the rough surfaces fully
meshed together (figure 5.3A). Whereas, once the body is in motion, the rough surfaces
‘ride’ over one another; they do not get a chance to settle in and mesh (figure 5.3D).
Only the tips of the rough edges have an opportunity to catch on each other.

5.7 Static and sliding friction
Think again, what happens when we try to push a heavy 250 lb box across a rough
but level floor. If the pushing force is parallel to the ground, it has no vertical
component that will add or subtract from the box’s weight. In figures 5.4, P is the
force pushing on the box; w is the weight of the box; f is the opposing force of friction

ROUGH BOX

ROUGH FLOOR

MOVING

SEPARATION

SANDED BOX

SANDED FLOOR

Figure A Figure B

Figure C Figure D

LUBRICANT

Figure 5.3. (A,B,C,D) Rough box on floor.
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(it is traditional to use a lower case f for friction). N is the upward (normal) force
from the ground. Notice that the direction of friction is opposite to the direction of
the pushing force.

From the experimentally observed behavior of friction, the force of friction is
modeled as:

• The force of friction does not depend upon the area of contact. Thus, a box of
wood sliding along, with its large face in contact with the ground, experiences
the same friction as if it had been sliding along a small face. No doubt the
broad surface in contact with the floor engages more ridges hooking together;
however, the ridges are not pressed as tightly together as when the box is
resting on a small face. This counterintuitive concept has application when we
think about a comparison in frictional forces between a narrow tire and a
wide tire in contact with the road. Water on the road and grooved tires
invalidate this simple model.

• The force of sliding friction does not depend on the speed of the surfaces. To
the cyclist this is a good thing; it would be an unpleasant surprise if friction
vanished on a high-speed cycle!

• The force of friction is directly proportional to the force pressing the surfaces
together. This is the normal force. (Normal in this context means perpendic-
ular to the contact surfaces—on level land, a telephone pole is normal to the
ground). Thus, we say:

∼f N

This expression is made into an equation with the introduction of a proportionality
constant μ, the coefficient of friction.

μ=f N

In order to avoid a common error, an important aspect of static friction is that the
above expression represents the maximum value of static friction. If no one is pushing
on the box, the force of friction is zero. Until the box breaks free, the force of static
friction is only as large as the applied push. The expressions for friction are best stated:

μ μ= × ⩽ ×f N f Nstatic friction or (5.1)max static static

μ= ×f Nsliding friction (5.2)sliding

P = 5 lb

w = 250 lb
Figure A

f

Figure B

N

P = 100 lb

N (normal force from floor)

w = 250 lbf (friction)

Figure 5.4. (A,B) Pushing a box.
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Values of the frictional coefficient have been measured for a variety of contact
surfaces. A few examples are listed in table 5.1. The coefficient of sliding friction can
be as small as one-half the coefficient of static friction.

A caution: measurements on the coefficient of friction are dependent on the
condition of the samples. Factors such as roughness of wood, presence of liquids,
and oxidation of metals will cause variation in the frictional coefficients. The values
should be considered as approximate; various references show discrepancies in their
listed values [1]. Missing from the table are coefficients for rubber on ice. No doubt
important, but this coefficient is greatly affected by variables such as the hardness of
the rubber and the condition of the ice; it is difficult to find accepted values; values of
0.1–0.2 are ballpark estimates.

There are several pitfalls when trying to understand a situation involving friction.
For example:

• While we say that friction opposesmotion or impending motion, it can also be
the force of acceleration—in other words, it causes the motion. For instance,
it is incorrect to say that friction from the ground always opposes the motion
of the bicycle. We will see in a later section of this chapter that static friction,
which arises between the ground and the tire, is the net external force that
accelerates the bicycle! Thus, friction does not always slow the bike down—it
is also responsible for speeding the bicycle up. In the next few sections, we
explore the mechanism whereby friction in opposing motion actually causes
motion for walking and cycling.

• Static friction is also the force that is most effective in stopping the bicycle. In
a normal stop—one that does not involve any skidding of the tires—it is the
force of static friction between the ground and the tires that causes the
deceleration of the bicycle.

• Skidding of the tires is undesirable since it involves sliding friction.
Examination of table 5.1 reveals that the coefficients of sliding friction are
much smaller than the coefficients of static friction. The effectiveness of
braking is greatly reduced during a skid. A skidding stop can involve
a coefficient of friction as little as one-half of a normal, non-skidding stop.
If the friction coefficient is one-half, the frictional force will be one-half and the
stopping distance will be twice as long in a skid. There is a very good reason
cars are now equipped with anti-lock brakes that activate during a skid.

Table 5.1. Coefficients of friction.

Surfaces μstatic μsliding

Rubber on concrete/blacktop 0.9–4 [1] 0.5–0.8a

Wood on wood (oak) 0.54a 0.32a

Ice on ice 0.05–0.15 [1] 0.02 [1]

a www/roymech.co.uk/useful_tables
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Does sliding friction play any role in a normal stop? Yes, it is a force of
sliding friction that exists between the spinning rims and the brake pads.

• Static friction is a non-dissipative force. It does not generate heat between the
contact surfaces. There will be no heating of the bottom of the tire or the
ground during a deceleration or acceleration caused by static friction.

• Sliding friction is a dissipative force that does generate heat. The force
between the brake pads and the rims is an example of sliding friction. The
force causes the rims and brake pads to become noticeably warm to the touch
during a hard stop. The heating effect may also be readily observed in disk
brakes. Carefully touch the rotors of disk brakes to experience the large
amount of heat generated during a stop.

As another example of the difference between static and sliding friction—have
you ever come inside on a cold day and tried to warm your hands by rubbing them
against one another? As the hands slide back and forth with a force of sliding friction
between them, you will notice the heat generated and nice warm hands. In contrast,
if you merely press your hands together with insufficient sliding effort, the force of
static friction does not warm the hands.

5.8 Friction as the propulsion force in walking

How can a force of friction, usually described as a force that opposes motion, be the
cause of a body's forward motion?

I know him by his gait: he is a friend.
Julius Caesar, i,3

Before we try to understand the motion of the bicycle, let us think about the
propulsion forces of walking. This will assist in understanding the role played by the
various types of friction in the motion of the bicycle.

In order to walk toward the right, the foot must push on the ground toward the left
(figure 5.5A). Since our walker is also pushing with his weight onto the floor, the
resultant force on the floor is down and to the left Ffg. If the floor were covered
with marbles—they would be pushed backward. Your foot would also slip backward.
Now of course, floors are usually not covered with marbles and your foot does not slip.

A force of static friction resists the impending rearward motion of your foot. This
frictional force points in the forward direction! The foot pushes on the ground
downward and toward the rear, and fromNewton’s Third Law, the ground pushes up
(normal force N) and in the forward direction (frictional force f) on the foot. It is this
force of friction from the ground that causes your forward acceleration. It is not your
force on the ground that causes the motion; rather, it is the ground’s force on you!

As you continue to walk, taking step after step, your foot is repeatedly placed in
contact with the ground. In normal walking, the frictional forces between the foot
and the ground are static friction. The ground is stationary, and as the foot pushes
on the ground, it is stationary with respect to the ground—otherwise you are
slipping! We will eventually see that a moving bicycle is much the same. Although it
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is traveling down a road, the bottom of the tire is at rest in contact with the ground.
The force of static friction between the road and the rear tire propels the machine.

Walk a few steps and think about the process described above. You might wish to
envision the result if the coefficient and force of static friction were too small, a
common occurrence on ice.

The process of walking does not consist of a continuous, sustained acceleration
across the room. For one thing, the acceleration ceases when the foot breaks contact
with the ground. Even more significantly, once we have made all this effort to
accelerate the foot and attached leg, we must then decelerate the leg and bring the
foot to rest as it swings forward and strikes the ground. Remember, the ground is at
rest and your feet are at rest as they touch the ground. The situation with the feet not
at rest is called ‘slipping’. Our feet do not ordinarily slip as we walk!

These accelerations and decelerations require muscular forces and energy expendi-
ture on the part of the walker. The use of a continuously rotating wheel and a rotating
leg powering bicycle pedals is much more efficient since there are no decelerations.

5.9 The acceleration and deceleration of the bicycle

How does the force of pressing on the pedals lead to the acceleration of the bike?

Newton’s First LawofMotion states that it takes a net external force to produce a change in
a body’s velocity. Since we usually treat the rider and bicycle as a single body—‘the
system’—any force between the rider and the pedals, or the rider and the handlebars, or the
rider and the saddle, etc, are considered internal forces within the system. Internal forces
cannot effect changes in the velocity of a body. The rider’s force on the components of the
bicycle cannot be the force that produces the system’s forward acceleration. To produce
acceleration, starting the bike from rest or changing its velocity, a net external force is
needed. If the change in motion is horizontal, the net external force needs to be horizontal.

Fw

Fgf

Ffg

N

f

resolve into horizontal (f) and
        vertical (N) components

Figure A Figure B

Fgf

Figure 5.5. (A,B) Walking man.
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There must be some relationship between the rider force on the pedal and the net
external force as required by Newton’s First Law. The explanation of the trans-
mission of the pedaling force to the acceleration force of the bicycle involves a
discussion of the cranks, the chain, the gears, the hub, the spokes and, ultimately, the
wheel. It is best to consider the transmission components in a later chapter (chapter 11).
For now, let us keep things as simple as possible—instead of using the pedals, just
reach down and give the rear wheel a spin with the hand.

5.9.1 Acceleration when starting from rest

Consider a rider heading to the right (figure 5.6A).

The act of pedaling in the normal fashion causes the rear tire to try to spin in a
clockwise sense. In an action very similar to walking, the rear tire pushes on the road
toward the left with a force of friction ftr (figure 5.6B). According to Newton’s Third
Law, the road pushes back on the tire to the right frt. The ground also pushes
vertically upward with the normal force.

It might be helpful to visualize the action of ftr by imagining that the ground is
covered with small marbles; as the tire tries to spin, the marbles are ejected toward
the left (figure 5.6C). The action–reaction pair of forces between the tire and the
ground is difficult to visualize. It is especially hard to see the frictional interaction;
consider the tire–ground interaction in a series of simple diagrams.

First, examine starting the machine from rest. In order to analyze the role of
friction in accelerating the bicycle, consider what occurs as we begin to propel the
machine to the right; remember the interlocking rough surfaces as the cause of
friction. The rough surfaces are represented as a geared wheel meshed with a toothed
ground (figure 5.7A).

Figure A

WHEEL AT REST

Figure B

ACCELERATION TO RIGHT

Figure C

DECELERATION TO LEFT

Figure 5.7. (A,B,C) Toothed wheel on ground.

v,a

ftr

Nr

Figure A Figure B Figure C

frt

Figure 5.6. (A,B,C) Bike and rider.
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As the wheel is given a clockwise spin, the bottom of the tire is trying to move to
the left (figure 5.7B). Friction between the tire and the road resists the impending
motion of the wheel—note the collision of teeth. Since the tire pushes on the ground
toward the left, the ground exerts a rightward force on the bottom of the wheel—
preventing it from rotating. Thus, the overall machine is accelerated to the right.

It is this force from the ground, caused by static friction, that produces the forward
acceleration of the bicycle!

The statement made earlier that friction opposes motion is still true. In this case,
the motion opposed is the rearward slippage at the bottom of the tire.

5.9.2 Acceleration from an existing velocity

Once we understand the actions that result in the initial acceleration of the machine,
we need to consider the events that occur once the bicycle is traveling. A wheel,
rolling along the ground toward the right, has two distinctive types of motion:

The wheel is translating from left to right; call this the translational velocity vt.
The wheel is also rotating about its axle; the rotation will be clockwise as seen in
figure 5.6. This rotational motion causes the top of the wheel to be moving to the
right with velocity vr, and the bottom of the wheel to be moving to the left with
velocity vr. These motions are separate actions—if the wheel was skidding on ice, it
could have translational motion but no rotation. If the wheel was suspended in the
air (or spinning on the ice), it could have rotational motion but no translation. When
a wheel is rolling along the ground, it has both the translational and rotational
motions that are equal and opposite vectors.

The motion of the wheel’s bottom is of particular interest. When rolling, the
bottom has a velocity vtotal that is the vector sum of the translational component to
the right and the rotational component to the left.

= − =v v v 0total t r

The vector sum at the bottom of the wheel is zero; the bottom of the wheel is not
moving! There is a cancelation between the translational component and the
rotational component. This statement might be surprising—although the bike is
traveling to the right, the bottom of the wheel is at rest with respect to the ground.

Suppose a force is applied to the pedal; the wheel tries to rotate clockwise a bit
faster. The increased rotational contribution to the velocity at the bottom of the tire
results in a vector sum that is no longer zero. As the tire is trying to move backward, it
pushes leftward on the ground with the force of static friction. From Newton’s Third
Law, the ground pushes forward on the bicycle (figure 5.7B). This forward force from
the ground is the net external force that accelerates the already moving bicycle.

5.9.3 Deceleration from an existing velocity

How does the act of braking—internal forces between the bicycle's components—lead
to a stopping of a bicycle?

How about braking? Regardless of the type of brakes (rim caliper, disk, coaster, etc),
the action of braking decreases the rotational motion of the wheel. The bottom of
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the wheel now has a net velocity that is no longer zero; the wheel pushes on the
ground to the right. Consequently, Newton’s Third Law states that the ground
pushes back on the wheel to the left. This leftward push from the ground is the
external force of deceleration.

It might be helpful to envision the toothed wheel. As the wheel attempts to spin
more slowly, the wheel’s teeth collide on their right side. The teeth from the ground
exert a force on the wheel toward the left (figure 5.7C).

5.10 Maximum acceleration of a bicycle
5.10.1 Maximum acceleration

One of our youthful instincts when we hop on a bike is a desire to go fast; let us think
about the maximum acceleration possible on a bicycle.

The force of static friction produces the bike’s acceleration; hence, the maximum
force and, therefore, the maximum acceleration, is determined by the magnitude of
the static frictional force. To achieve maximum acceleration the rider must not spin
the rear wheel. When the wheel is spinning, sliding friction applies; the coefficient
and force of sliding friction is less than the coefficient and force of static friction. The
maximum force of acceleration occurs when the rider pedals just hard enough to put
the rear wheel on the verge of spinning. The force of static friction is expressed:

μ= ×f Nmax static r

where:
• μstatic is the coefficient of static friction, typically μ = 0.9static for rubber on a
concrete road.

• Nr is the vertical, upward force on the rear tire (normal force). In the typical
seated riding position, Nr is probably a bit more than one-half (about 60%)
the weight of the bike and rider.

We can calculate the maximum acceleration of the bicycle caused by the largest
possible force of friction. Our standard rider of 161 lb on a 20 lb bike results in
a system mass of 5.62 slugs that must be accelerated. The normal force at the rear
wheel carries sixty percent of the system’s weight:

= × =N 0.6 181 lbs 109 lbr
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The maximum value of the frictional force is:

μ= = × =f N 0.9 109 lb 98.1 lbmax r

Thus, his maximum acceleration is:

= = = =a 17.5 ft/s 0.54 gf
m

98.1 lb
5.62 slugs

2

This result should not be surprising—a force, equal to 54% of the system’s weight
(force of the earth’s gravity), produces an acceleration equal to 54% of gravity’s
acceleration!

The above calculation is based on a seated rider—greater forces could be generated
if the rider shifted more weight toward the rear of the bike. While he cannot change
the system weight of 181 lb, he could create a situation in which 80% of the system
weight is on the rear tire and therefore increase the maximum acceleration.

How realistic is the above situation? Realize that it is a calculation based on the
maximum force of friction with a coefficient near unity. There may be additional
considerations.

Can any rider pedal so strongly that the maximum force of friction is the primary
consideration in the acceleration of the bicycle?

The relationship, borrowed from chapter 11, for a mountain bike in low gear
shows that the force on the pedal is related to the force on the road by:

= ×F F1.22pedal road

a road force of 109 lb requires a pedal force of:

= × = × =F F1.22 1.22 98.1 lb 120 lbpedal road

If the rider were to rise from the saddle and put most of his weight on one pedal, a
force of 120 lb is not difficult to attain.

What are the consequences of a rider applying a large force to the pedal?

While it is easy to generate a large force of acceleration, we must be careful not to
always assume that the outcome is, indeed, a large forward acceleration. The rider/
bike system is not a simple point mass (concentrated in one spot); it is an extended
body capable of rotational motions. There might be trouble with these rotations!

5.10.2 Maximum deceleration

As with acceleration, deceleration is determined by the friction grip between the tires
and the road.

=a
f
m

with the maximum force of friction μ= ×f N :

μ= ×
a

N
m

max
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When the bike is stopping, both wheels can be used; the normal force is the full
system weight of 181 lb.

• for static friction between rubber and concrete μ = 0.9static

= × =a
0.9 181 lb

5.62 slug
29

ft
s

max no skid 2

• when the bike is skidding, the much lower coefficient of sliding friction
applies; let us use μ = 0.45sliding

= × =a
0.45 181 lb

5.62 slug
14.5

ft
s

max with skid 2

Since a skidding deceleration is one half, the stopping distance will be doubled!
An additional complication of hard stops is the phenomena of the header

(chapter 11).

5.11 Velocity and acceleration of a bicycle
For several reasons, the maximum acceleration of the previous section may not be
feasible. These reasons include factors such as the strength of the rider, the danger of
wheelies, reduced friction, etc. In this section, we consider accelerations that are
more realistic. In this initial analysis, we will ignore resistive forces such as air
resistance and rolling resistance. Later, we shall see that these resistive forces are
very small at low speeds. We continue to use a 161 lb rider on a 20 lb bike and a mass
of 5.62 slugs. Perhaps our rider is not exerting her maximum effort. In a leisurely
‘ride in the park’, the typical cyclist’s effort might produce an acceleration force that
is only ten percent of the system weight.

There may be more beautiful times, but this one is ours.
Jean-Paul Sartre

The force of acceleration will be: = × = × =F w0.1 0.1 181 lb 18.1 lb
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For the acceleration, we get:

= = =a
F
m

18.1 lb
5.62 slugs

3.22 ft/s2

How long does it take to attain a speed of 5 mph (7.33 ft/s)? From chapter 4, we have
the expression for velocity with constant acceleration: = +v at vf i

If the rider starts from rest: =v 0i , our equation becomes: = + =v at at0f

rearranging and substituting numbers in:

= = =t
v
a

7.33 ft/s
3.22 ft/s

2.28 sf
2

How far has our rider traveled before she hits 5 mph? From chapter 4, our
expression of distance traveled with constant acceleration:

= + = = =d v t at at
1
2

1
2

1
2

(3.22 ft/s )(2.28 s) 8.37 fti
2 2 2 2

What happens if our cyclist maintains the pedaling effort? The accelerating force
of 18.1 lb resulted in an acceleration of 3.22 ft/s2 and it only took her 2.28 s to hit
5 mph (7.33 ft/s). Will she reach 10 mph in the next 2.28 s? How about 20 mph in
9.12 s? How about 50 mph in 22.8 s? Why not 500 mph in 228 s? For better or worse,
this will not happen. The reason is that from 0 to 5 mph the resistive forces are small.
The primary horizontal force on the rider is the forward force causing the
acceleration. There are, however, resistive forces opposing the motion of the bicycle.
The next section examines in detail the resistive forces.

5.12 Resistive forces on a moving bicycle

Why, in light of Newton's First Law of Motion, do we have to keep pedaling to travel
at a constant velocity?

Newton’s First Law of Motion states that, in the absence of external forces, an
object in motion at a constant velocity will remain in motion at that constant
velocity. The traveling cyclist encounters a variety of external forces opposing the
motion of the system. If the rider wishes to travel at a constant velocity, she must
apply force to the pedals. The force on the pedals ultimately results in the ground
applying a forward force to the bicycle. When the forward force is equal to the total
rearward forces of resistance, the machine travels at a constant velocity.

What are the forces opposing the motion of the bike?

The resistive forces on a traveling bicycle are caused by various physical phenomena.
The primary forces of resistance are:

• gravitational resistance on hills
• air resistance
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• rolling resistance of the tires
• bearing resistance in hubs of wheels

The first force in our list, the resistance of gravity, is due to the weight of the
system—specifically, the component of gravity that is parallel to the hill. Gravitation
effects are explored in chapter 6. The last three forces are listed in the order of their
relative magnitude and consequent impact on the bike’s motion. There are also
other internal but small resistive forces due to chain rollers, etc [2].

5.13 Air resistance
How significant is the effect of air resistance?

You ride by so fast on the headlong blast.
Faust,ii Shelley

To get a feeling for the action and importance of air resistance, we need to think
more about air. Air might appear to have an insignificant mass and weight; after all,
we push it aside all day as we walk about. There are several points to ponder.

Our typical walking encounter with air occurs at slow speed—even a fast walk or
jog might be at a speed of only a few mph. The impact of air resistance dramatically
increases with the speed of the moving object. You can readily observe this effect by
walking at 4 mph holding out your hand; the force of air resistance is imperceptible. In
a car moving at 40 mph, hold out your hand through an open window. At 40 mph, the
force of air resistance on your hand will be 100 times as large! For an even more
dramatic effect, cut a piece of foam board to the same area as the frontal area of a
rider, about 30 inches on a side. While someone else is driving (on an isolated
road with no traffic), hold the foam board out the car window with the board’s
broad surface facing the wind. As the car travels at various speeds, the substantial
forces you experience are equivalent to the force on a cyclist traveling at the same
speeds.

The reason for large air resistance forces is that air is actually quite heavy and
massive. The density of air at ρ° =a60 F nd sea level is 0.00238 slugs/ft3. Recall
from section 3.8 that a beach ball, four foot in diameter, has a weight of 2.56
pounds. Air has a significant mass. In order to derive a simple expression for the
force of air resistance, think of a cube of air (figure 5.8):

As a cyclist moves through air, consider the air as an obstacle that must be pushed
aside. If m is the mass of the air inside the cube, the required force to accelerate this
air is given by Newton’s Second Law:

=F ma (5.3)

The air is initially at rest; suppose it is accelerated up to the speed of the bike and
rider.

Understanding the Magic of the Bicycle

5-21



= Δ = − =a
v

t
v

t
v
t

0
(5.4)

With ρ for the density of air and V for its volume (volume equals area A times
length L)

ρ = =m
V

m
A L

(5.5)

rearranging:

ρ=m AL (5.6)

substituting (5.4) and (5.6) into (5.3), we obtain:

ρ ρ= =⎜ ⎟⎛
⎝

⎞
⎠F AL

v
t

Av
L
t

( ) (5.7)

In equation (5.7) L/t is the distance we must push the air divided by the time. This is
simply v, the speed of the rider. Thus:

ρ ρ= =F Avv Av (5.8)air
2

Spend a few minutes and consider how each of these factors impacts air resistance.
As expected, the density of the air is important; thinner air at high altitudes is easier to
push aside. Also, the cross sectional (frontal) area of the bike and rider A is very
significant. Do you see why many riders like to crouch down and, therefore, reduce the
cross sectional area they present to the air? Although we derived this expression for a
cube shaped object, the actual shape of the cross sectional area is not significant. The
speed of the rider enters as a squared term. The reason is that the velocity of the rider
determines the depth L of the cube; it effectively determines how far the rider must
move the air to get it out of the way. In addition, the speed of the rider determines the
acceleration that must be imparted to the air.

In some ways, the above derivation was overly pessimistic. We postulated that the
air had to be ‘picked up’ and accelerated to the cyclist’s speed. As an analogy,
envision a football player clearing a path for the ball carrier. Our derivation was
equivalent to asking the blocker to grab the opposing player and bring him up to the
blocker’s speed. No doubt, picking up opposing players and carrying them along

A

L

Figure 5.8. Cube of air.
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will invoke a penalty, but it is also a huge waste of effort. Since the blocker merely
needs to clear the path for the runner, it is only necessary to push the tacklers aside.
In a similar manner, the bike rider needs only to push the air aside. A more detailed
analysis of air resistance results in the same basic equation we have derived—only
reduced by a factor of fifty percent. Thus:

ρ=F Av0.5 (5.9)air
2

A complete analysis of air resistance must examine streamlining effects that
result in a further reduction beyond this fifty percent. Also, objects with long
thin shapes encounter skin friction along their length. Further complications
such as turbulence occur when the air speeds are high. We will, however, make
use of the simple expression in equation (5.9) and find good agreement with real
world data.

In order to do calculations of air resistance in U.S. Customary units, the density
of air must be in slugs/cubic feet and the cross sectional area of the rider in square
feet. The speed of the rider must be in feet/second and then the calculated force will
be expressed in pounds. A sample calculation is straightforward with the following
typical values:

• the density of air: ρ = 0.00238slugs

ft3

• the area of our standard rider: =A 5.38 ft2

• the rider’s speed: = =v 20 mph 29.3 ft
s

Results in a force of air resistance:

ρ= = × × × =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟F Av0.5 0.5 0.00238

slugs
ft

(5.38 ft ) 29.3
ft
s

5.50 lbair
2

3
2 2

Sometimes it is useful to write:

ρ= =F Av kv0.5 (5.10)air
2 2

where we have grouped the one-half, the air density and frontal area terms into a
constant term k:

= ρ = × × =
⎛
⎝⎜

⎞
⎠⎟k A0.5 0.5 0.00238

slugs
ft

(5.38 ft ) 0.00640
slugs

ft
(5.11)

3
2

hence

=F v0.00640 (speed in ft/s) (5.12)air
2

Although it simplifies calculations, one must be careful in using this value of k since
it is critically dependent upon: the size and riding position of the rider (frontal area, A),
the density of the air ρ( ), the extent of aerodynamic streamlining (0.5), and the units
selected for the calculation.
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Since most riders in the United States think of their speeds in miles per hour, it is
useful to work with an adjusted k parameter. One mph is 1.47 ft/s; we can adjust the
k factor by 1.472 to obtain:

=F v0.0138 (speed in mph) (5.13)air
2

A few sample calculations demonstrate the impressive impact of air resistance on a
moving cyclist.

at 5 mph, = = × =F v0.0138 0.0138 (5 mph) 0.345 lbair
2 2

at 10 mph, = = × =F v0.0138 0.0138 (10 mph) 1.38 lbair
2 2

at 20 mph, = = × =F v0.0138 0.0138 (20 mph) 5.52 lbair
2 2

at 40 mph: = = × =F v0.0138 0.0138 (40 mph) 22.1 lbair
2 2

Note: there will be insignificant round off discrepancies when comparing calculation
done in ft/s and mph.

The force of air resistance at 20 mph is four times that at 10 mph. The force goes
as the square of the speed. If you double the speed, the force is quadrupled. These
forces of air resistance are dramatic and highly significant to the cyclist. Can speeds
over 40 mph be attained on a bicycle? Yes, professional racers going down hills hit
such speeds. What about the rest of us Sunday afternoon riders? We might not hit 40
mph but we do encounter winds. Have you ever noticed that it can be very difficult
to ride into a head wind? The reason is that the force of air resistance depends upon
the relative speed between the rider and the air. If you are riding at 15 mph (ground
speed) and encounter a head wind of 10 mph, the force of air resistance is equivalent
to riding at 25 mph! Riding at 20 mph into a strong head wind gust of 20 mph results
in an air resistance equivalent of riding at 40 mph.

Her hardy face repels the tanning wind.
Health, Thomas Parnell

The above discussion has concentrated on the force that must be exerted to
overcome the air resistive force on the moving bicycle. Chapter 8 examines concepts
of energy and power. Although the concept of force is certainly important in
understanding the motion of the bicycle, the concept of power, specifically the power
output of the rider, is the primary consideration in understanding the overall effort
required to propel a bicycle over a measurable period of time.

A more sophisticated and mathematically advanced analysis is needed to under-
stand issues such as: laminar/non-laminar flow, Reynolds numbers, and drag
coefficients. In world-class competitive racing, the racers wear clothes that have
near microscopic surface textures. The fabric is designed to control the airflow across
their bodies. Additional consideration should also be given to the effect of air
resistance on the spinning spokes!

In all of the calculations, it is possible to lose grasp of the very significant impact
of the cyclist’s effort in fighting air resistance while traveling at high speeds.
Attempts have been made to cancel the effect of air resistance by drafting fast

Understanding the Magic of the Bicycle

5-24



moving objects. The results have been phenomenal speeds. One of the earliest was on
June 30, 1899 when Charles MMurphy drafted a train on the Long Island Railroad.
He rode on boards placed across the ties. To shield himself from the external mass of
air, Murphy was shrouded within a hood attached to the last car. On a racing
bicycle, Murphy was able to keep up with the train as it traveled one mile in 57.8
seconds—better than 60 mph! He earned the nickname ‘Mile a Minute Murphy’.
Another astonishing speed record was set in 1986 by John Howard. By drafting a
racecar on the ultra-smooth Bonneville Salt Flats, Howard was able to attain a
speed of 152.28 mph.

5.14 Rolling resistance
Earlier in this chapter, we discussed pushing a box across a floor. Sliding the box
involved resistive forces of static and sliding friction. Supposewemake the job easier by
putting the box on wheels and simply roll the box along the floor. No doubt, it is easier
to push the box on wheels; however, the rolling wheels still offer some resistance—the
so-called rolling resistance. Intuition will lead us to suspect that a hard tire on a hard
surface such as a railroad wheel on a steel track will have minimal rolling resistance.
Whereas, a soft tire on a spongy surface encounters a high rolling resistance.

If the rolling resistance of a tire is usually associated with the tire's softness or flatness—
how can the tendency of a tire to flatten in response to a vertical force lead to a force
that impedes horizontal motion?

We have seen in an earlier section of this chapter that horizontal decelerations are
caused by horizontal forces. Vertical forces produce changes in vertical velocities. It
is not obvious at first how the vertical forces, associated with a soft tire and/or a soft
surface, impede horizontal motion. We begin by looking at a few simple diagrams to
gain insight into the physics of rolling resistance.

Figure 5.9A illustrates a hard tire at rest on a soft surface. All of the deformation
is happening to the ground. As the wheel begins moving to the right, it will press the

WHEEL AT REST

FORCE OF TIRE ON GROUND
Figure A

MOVING TO RIGHT

FORCE OF TIRE ON GROUND

Figure B

FORCE OF 
GROUND
ON TIRE

FORCE OF 
GROUND
ON TIRE

Figure 5.9. (A,B) Hard wheel on soft surface.
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ground on the right side (figure 5.9B). By Newton’s Third Law, the ground responds
with an equal and opposite force. There is a horizontal component to these vectors.
The horizontal component of the ground on the tire is the force of rolling resistance.

Many cases of rolling resistance, such as a pneumatic bike tire on a road, involve
a soft tire on a hard surface (figure 5.10A).

Once the wheel starts moving, the ground pushes on the tire and flattens the
bottom right edge of the tire (figure 5.10B and C). Again, there is a horizontal
component to the force from the ground. If we were dealing with ideal elastic
materials that had no energy losses, then the bounce back at the left trailing edge
would give a push to the right and return the energy to the wheel. Unfortunately,
real materials and surfaces do not possess such perfect elasticity. The introduction of
pneumatic tires in the 1890s afforded a substantial reduction in rolling resistance
when compared to solid rubber tires. The air within the pneumatic tire acts as a
spring with reduced losses between the compression on the tire’s leading edge and
the expansion that occurs on the trailing side. In comparison to a solid rubber tire, a
pneumatic tire has less rubber to flex. This flexing of the tire’s fibers results in
a higher rolling resistance.

Later in this book, we will discuss a method that can be used by the reader to
determine the actual resistive forces on a particular bicycle. For now, we make use of
published values of rolling resistance. The rolling resistance of a particular tire
depends upon such factors as type of rubber, construction method, thread design,
and, of course, inflation air pressure. Professor David Wilson quotes values of
rolling resistance that range from approximately one to four newtons of force per
tire [3]. An intermediate value is about 4.5 newtons for two tires. In U.S. Customary
units, this works out to approximately one pound of rolling resistance per bicycle.

=F 1.0 lb (5.14)rolling

At this juncture, it is worth appreciating how small this rolling resistance really is.
Suppose, instead of rolling, the wheels were slid along—in our discussions on static
and sliding friction (sections 5.6 and 5.7), we saw the coefficients of friction for

AT REST

TIRE ON GROUND

FORCE OF

TIRE ON GROUND

BEGIN MOVING TO RIGHT

TIRE ON GROUND

MOVING TO RIGHT

Figure A Figure B Figure C

GROUND ON
TIRE

FORCE OF
GROUND ON
TIRE

FORCE OF
GROUND ON
TIRE

Figure 5.10. (A,B,C) Soft wheel on hard surface.
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rubber on pavement range from 0.5 to 4.0. Using the lowest value of 0.5 for sliding
friction will yield a resistive force on a 181 lb rider/bike system of:

μ= = × =f N 0.5 181 lb 90.5 lb

Thus, the act of rolling a body on wheels requires an effort of approximately one
percent of the force when compared to sliding the same weight. Think back to those
cave dwellers we discussed in chapter 1; it is a lot easier to roll that rock than it is to
slide it. The magic of the wheel!

5.15 Bearing resistance

What is the advantage of using ball bearings to support moving parts?

Strictly speaking, the resistance within the wheel hubs is not external to the bike/
rider system. The bearing resistance plays a similar role as the brake pads acting on
the rims. As the rotational speed of the wheel is reduced, the frictional force from the
ground serves as the external force. Nevertheless, the bearing losses can be modeled
as a resistive force against the bike’s motion.

Ball bearings are commonly used at various locations in the bicycle for the simple
reason that the resistive forces are due to rolling resistance rather than sliding
resistance. Recall our caveman rolling the large rock rather than trying to slide it. For
a more contemporary image, think about sliding a heavy box across a floor. The force
of static friction must be overcome to get the box in initial motion and the force of
sliding friction to continue the motion. The chore would be much easier if you had
placed thousands of ball bearings under the box and rolled it over the bearings.

In the previous section, we saw the wheel’s advantage to be a direct consequence of
rolling resistance being so much smaller than sliding friction. Rolling resistance is
attributed to the deformation of the contact surfaces. The harder the contact surfaces,
the less the deformation; thus, the rolling resistance is smaller. Steel ball bearings
contained within a steel casing will have minimal deformations with very small rolling
resistance. In a wheel axle, supported between the bearings of the hub, the ball bearings
are able to roll as the axle turns. This arrangement offers far less resistance than if the
axle were turning in a tight bushing. The resistive forces of the bushing would be that
of sliding friction. Cylindrical bearings function in much the same way as ball bearings.

Published values for the various resistances of steel on steel are as follows:
steel sliding on steel

μ = 0.6sliding

steel rolling on steel

μ = 0.002rolling

Thus, sliding friction is approximately 300 times greater than rolling resistance [4].
In a bicycle, bearings are found in many locations such as the wheel hubs, bottom
bracket, fork, pedals, etc. Another very important advantage in the use of bearings is
that they are designed as the parts that wear the quickest, but are inexpensive and
simple to replace.
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For a typical value for the bearings resistance of two bicycle wheels, we use: [5]

=F 0.006 lb (5.15)bearing

Note: this value is insignificant in comparison to the other resistances. Since the
other resistances are given to a lower precision, the mathematically exact have
reason to complain. We are including it for the sake of completeness.

The resistive forces on the bicycle may be written as the sum of constant values of
rolling resistance and bearing resistance and an air resistance term that is propor-
tional to the square of the speed:

= + + = + +F F F F F F kv (5.16)tot rolling bearing air rolling bearing
2

Aslightlymore compact expression results ifwe combine the constant termsof bearing
and rolling resistance into a single variable Frb and refer to the overall sum as Ftot:

= +F F kv (5.17)tot rb
2

Table 5.2. Forces of air + rolling + bearing resistances.

Air resistance constant = rolling 0.0138, speed in mph, area = 5.38sq ft

Speed (mph) Air resistance (lb) Rolling (lb) Bearing (lb) Total (lb)

2 0.06 1.0 0.006 1.06
4 0.22 1.0 0.006 1.23
6 0.50 1.0 0.006 1.50
8 0.88 1.0 0.006 1.89
10 1.38 1.0 0.006 2.39
12 1.99 1.0 0.006 2.99
14 2.70 1.0 0.006 3.71
16 3.53 1.0 0.006 4.54
18 4.47 1.0 0.006 5.48
20 5.52 1.0 0.006 6.53
22 6.68 1.0 0.006 7.69
24 7.95 1.0 0.006 8.95
26 9.33 1.0 0.006 10.3
28 10.8 1.0 0.006 11.8
30 12.4 1.0 0.006 13.4
32 14.1 1.0 0.006 15.1
34 16.0 1.0 0.006 17.0
36 17.9 1.0 0.006 18.9
38 19.9 1.0 0.006 20.9
40 22.1 1.0 0.006 23.1

Note: the mathematical step of rounding the total force to one or two decimal places has the effect of ignoring
the bearing resistance.
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We can add the individual contributions of rolling (equation (5.14)), bearing
(equation (5.15)), and air resistance (equation (5.13)) to construct a table of total
resistive force at various speeds. The values of rolling and bearing resistance are
constant with respect to the speed of the bicycle (table 5.2).

The dominance of air resistance is compelling; at all but the lowest speeds (8 mph and
below), air resistance is the most significant force opposing the motion of the bicycle.
Perhaps, it is best to consider the situation from a positive perspective. The advances in
designs and materials have resulted in two-wheelers that operate with minimal forces of
bearing and tire resistances. It is unlikely that scientific and engineering advances will
eliminate the need for air on the planet. Of course, great efforts are made in rider
position, clothing, fairings, etc, to minimize the consequences of having to plow
through the atmosphere.

5.16 Coasting—simplified analysis
One of the really fun aspects of cycling is a consequence of the bike’s ability to
freely coast for long distances. Just as Galileo studied motion in a simplified
manner, we will do the same. Dealing with forces of bearing and rolling
resistance is straightforward. These forces are constant with normal riding speeds;
Newton’s three laws provide an easy analysis. Since air resistance is a function of
the speed, motion analysis including air resistance requires a more complex,
calculus based approach. In this section, we evaluate the motion of the cyclist in
the absence of air resistance (Galileo did the same). A rolling resistance of 1.0 lb
and a bearing resistance of 0.00628 lb result in a force of 1.00628 lb. If we
proceed further with the use of these numbers, we face a serious breach of rules
regarding precision in mathematical calculations. It is mathematically wrong to
simply add these two numbers and pretend we know the total resistance to the
five decimal places. The sum should be rounded to just the rolling resistance. The
problem is that it would be easy to lose this ‘1.0’ (and totally forget about bearing
resistance) in the calculations. Therefore, we will show the total resistance as
1.006 lb.

If this were the only force slowing the bike, how far could we coast from a top
speed of 20 mph (29.3 ft/s)? Using Newton’s Second Law, we get the value for the
deceleration of the bike/rider system of mass 5.62 slugs:

= = − = −a
F
m

1.006 lb
5.62

0.179 ft/s2

The minus sign reflects the fact that the force is in opposition to the direction of
motion; hence, it is slowing down the bike. This analysis is similar to the acceleration
calculation performed earlier in this chapter; only now, there is a force of
deceleration rather than acceleration.
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For the final velocity with constant acceleration: = +v at vf i

If the rider ends at rest: =v 0f

Our equation becomes: = +at v0 i

Upon rearranging and substituting values the time of the coast is:

= − =
−

−
=t

v
a

29.3
ft
s

0.179
ft
s

164 si

2

A coast of almost three minutes! How far has our rider traveled before he comes to
rest from the 20 mph?

From chapter 4:

= +x v att
1
2

i
2

Substituting numbers: = × + − =x 29.3 164 ( 0.179)(164) 2400 ft1
2

2 . A nice long
coast!

This discussion did not include the force of air resistance since it varies with
the speed of the cyclist. A non-constant deceleration requires the calculus which is
beyond the scope of this book. However, we will summarize the results of a
coast from 20 mph subject to the forces of air resistance, rolling resistance,
and bearing resistance as follows: time of coast = 82 s and distance of coast =
820 ft—still nice!

5.17 Force analysis walking versus riding

Why is riding a bicycle more efficient than walking?

Much of the joy of cycling comes from the two-wheeler’s ease of movement. On a
level, hard pavement the machine glides almost effortlessly along. An easy bike ride
might move the rider a distance of ten miles in an hour. Walking, with approx-
imately the same effort, might only cover a distance of a few miles. Yet, both modes
of motion—riding and walking—are primarily driven by the body’s lower muscles.

In this section, we consider the forces involved in the act of bipedal walking/
running and compare the effort to cycling. A force analysis is not always the most
suitable approach in analyzing complex mechanical processes such as human
walking and running. The human body consists of nearly a thousand moving
muscles, tendons, and bones. Forces continuously vary in both magnitude and
direction. Many muscle groups act in opposition to one another. In addition,
direct measurements of the tensile forces exerted by the muscles are invasive and
certainly unpleasant for the experimental subject. Nonetheless, basic physical
principles provide insight as to how the bicycle affords such gains in human
motive efficiency.

Although bipedal walking preceded cycling in both our evolution and childhood
development, an understanding of the mechanics of walking is more complex and
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difficult to comprehend than propulsion on a bicycle. The exact nature of the bipedal
walking/running gait is the subject of extensive modern research [6–9]. While the
mechanics of walking might be complex, one fact is certain; there are basic physical
principles, Newton’s Three Laws ofMotion, to guide us. It might appear puzzling why,
once the human body is inmotion, it is necessary to exert repetitive forces tomaintain its
motion. The explanation lies in the complex nature of the gait. After the initial step,
it is necessary for the body to exert continually a steady series of acceleration, and
surprisingly, deceleration forces. The required forces of exertion are much greater than
what would be required to overcome common resistive forces such as air resistance.

The First Law implies that no net force is required to travel at a constant velocity.
It might appear that the requirement for the human body to constantly exert forces
during uniform walking is a violation of Newton’s law. The reader may rest assured
that the act of walking does not contradict Sir Isaac’s or any other laws of physics.
From the very active research on the forces and mechanics of walking, we can
understand a few key aspects of the human gait.

As the upper body moves, the opposite leg must be swung into motion; another
force of acceleration is required to move this leg.

As the body tries to move forward with the first foot pushing backward on the
ground, Newton’s Third Law tells us that the ground pushes forward on the foot.
The foot and connected leg and upper body are accelerated forward.

As the legs swing forward in front of the body, the feet eventually strike the
ground. Since the ground is at rest, the forward moving foot must be slowed down
(decelerated) to a zero velocity. The body’s lower muscles provide this force of
deceleration. If the forward swinging limbs were stopped only by contact with the
ground, the result would be a significant jar. Thus, a step requires both an
acceleration phase as the leg is brought up to speed and a deceleration phase as
the leg is brought to rest. Walking a mile requires approximately 2000 steps with a
stride of about 30 inches, each step involving the acceleration and deceleration of a
leg. This starting and stopping of the large leg masses requires significant and
repetitive exertion of forces by the body’s lower muscles.

The swinging leg is sometimes compared to a pendulum, and it is commonly
observed that pendulums are capable of swinging for long times after an initial push.
Why is it then necessary to exert effort to maintain the swinging of the legs? It is a
matter of the frequency of the swing. The period, the time it takes a pendulum to
swing back and forth, is determined by the length of the pendulum. A grandfather
clock running too slow or fast is adjusted by moving the pendulum bob up or down.
The human body’s pendulum leg has a natural period of about 1.56 s per step or 0.64
swings per second. This slow rate of natural swing along with a stride length of about
30 inches provides a walking speed of only 1.1 mph.

Such a low speed is a stroll. Walking faster, even a few miles an hour, requires us
to swing our legs faster than their natural pendulum frequency. If we maintain the
same stride length, we would have to swing the leg twice as fast in order to double
the walking speed. A brisk walk at four miles per hour requires almost a quadrupling
of the legs’ natural swing frequency. Thus, the body is forced to swing its legs at what
is, in effect, an unnatural frequency. Forcing the legs to swing at their unnatural,
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resonant frequency requires significant forces from the body’s muscles. In addition,
once we make the effort and get the leg swinging, we must almost immediately have
to exert equivalent forces of deceleration to stop the leg. These muscular efforts,
consisting of short bursts of acceleration and deceleration forces—starting and
stopping the leg swings, are repeated thousands of times per mile—are not ideal
from an efficiency perspective. Cycling with the steady, rotating motion of the lower
limbs does not incur these inefficient accelerations/decelerations.

Another aspect of the human gait is that there is a vertical motion to the body’s
center of mass. As the legs move repeatedly from the vertical to a diagonal position,
there is a lowering and raising of the body’s center of mass. Although lowering of the
center of mass is caused by gravity, it is necessary for the leg muscles to raise the
center of mass back up. Cycling on a level road allows the body’s center of mass to
travel at a constant height. The cyclist does not have to repeatedly raise her center of
mass

There is yet another metabolic cost of bipedal propulsion—we must exert vertical
forces to support the full weight of the body. Again, the bicycle has the advantage
with the saddle supporting a large fraction of the rider’s weight.

It is interesting to wonder why the process of evolution has produced a
bipedal gait with such fundamental mechanical inefficiencies. We might even
speculate why humans did not evolve wheels rather than legs. An obvious retort
is that our legs are called upon to do more than propel the body forward. Our
legs allow us to move forward, backward, and side-to-side. We jump and hop.
We go slow, or fast. We use our leg muscles to help lift heavy weights. Our legs
allow us to crawl, sneak up, and climb up and down. Sometimes, our legs act as
weapons. Try doing all of these actions with a wheel! In fact, the human bipedal
motion is quite good; it allows us to travel long distances—tens of miles on a
daily basis. While our gait may not be mechanically perfect, it is well adapted to
a range of environments.

Estimates for the force required for walking at 5 mph on a level ground suggests
that an average forward force of about eight percent of body weight is necessary [10].
Thus, a 161 lb person needs about 13 lb of forward force. Earlier in this chapter, we
saw that, when cycling at 5 mph, the force of air resistance on a rider would only be
0.345 lb; added to a rolling and bearing resistance of 1.006 lb, the net resistive force
is only 1.35 lb. While riding at higher speeds drastically increases air resistance, a
runner encounters the same atmosphere—in a less compact stance.

Does the mass of the bike not have a metabolic cost? On a level surface, it is only
of consequence during accelerations.

5.18 Average versus instantaneous pedal force
All riders know that the pedaling force varies during the crank cycle. When the
cranks are near horizontal, the rider is able to press harder than when cranks are
vertical. The variation in pedal force, measured in the late nineteenth century, was
represented in the 1896 treatise by Archibald Sharp [11] (figure 5.11).
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The force cycle has a shape familiar in many natural phenomena; mathematically,
the curve looks like a common trig function. The average force will be about 65% of
the peak force.
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IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 6

Gravity

Shall gravity cease if you go by?
Essay on Man, Alexander Pope

Gravity is an omnipresent, attractive force that exists between all masses. The most
obvious, everyday example is the weight of an object. Weight is the force of gravity
between the Earth and another body. If someone ‘weighs’ 150 lb, it is because the
Earth exerts a downward force of gravity of 150 lb on that person. While it is
sometimes stated that Isaac Newton ‘discovered’ gravity, this statement is not quite
correct. It might be more accurate to say that the first monkey who fell out of a tree
discovered gravity. The earth’s force of gravity is pervasive and unavoidable. We
become aware of gravity at a very young age. Even a newborn baby is very anxious
and apprehensive if not securely held; an aversion to falling is a basic human
instinct.

6.1 The basic physics of gravity
If Newton did not ‘discover’ gravity, what did he do? Why is it called ‘Newton’s Law
of Gravity’? Isaac Newton’s insight was to recognize the universal nature of gravity.
The legend of the falling apple is a consequence of Newton’s perception that it was
the same force—the universal force of gravity—that pulls the apple to the Earth as
the force that reaches into space and pulls on the Moon. The force of gravity on the
Moon holds the satellite in orbit about the Earth. Sir Isaac postulated that a force of
gravitational attraction exists between any two masses. Newton went further and
formulated a mathematical expression that allows for the calculation of the force’s
magnitude.

Consider any two masses, m1 and m2, spaced by a distance R between their
centers, figure 6.1A.

Newton stated that the bodies attract each other with a mutual force of gravity, F,
and the attraction is proportional to the product of the masses m and inversely
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proportional to the square of distance R between their centers. The actual value of
the force will depend on the units for mass, distance, and force. Introducing
proportionality constant, G, called the universal gravitation constant (a fudge factor
to make the units come out right), the equation is written:

=F
m m

R
G (6.1)1 2

2

This equation is called Newton’s Law of Universal Gravitation. In U.S. Customary
units, where mass is in slugs, distance in feet and force in pounds, the value for G is

×
−

−3.435 10
ft

slug s
8

3
. An important aspect of Newton’s elucidation of gravity is that

the same G applies to any two masses. The apple and the Earth, the Moon and the
Earth, the Sun and the planets, even objects of cosmic proportion are drawn
together by the same law of gravity. The appellation ‘Universal Law’ is, indeed,
appropriate.

If you had two masses, each 1.0 slug, and they are separated by one foot—maybe
two 32 lb bags of potatoes one foot apart (figure 6.1B)—the force of gravitation
attraction will be:

=

= ×
−

× ×

= ×

−

−

⎛
⎝⎜

⎞
⎠⎟

F
m m

R
G

3.435 10
ft

slug s
(1 slug) (1 slug)

(1 ft)

3.435 10 pounds of force

1 2
2

8
3

2

8

Only 34 nano-pounds, a very small force! You will not be aware of these sacks
pulling on each other. What you would be aware of is how tired your arms feel
holding the bags vertically upward.

6.2 Weight of objects
The force of gravitational attraction between two bags of potatoes is negligible.
However, if a sack of potatoes is influenced by another very large mass, the

m1

F

R WEIGHT

GRAVITATIONAL
FORCE BETWEEN
TWO BAGS OF POTATOES

Figure A Figure B Figure C

EARTH

GRAVITATIONAL
FORCE BETWEEN EARTH
AND A BAG OF POTATOES

F
m2

Figure 6.1. (A,B,C) Two masses.
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gravitational force is quite noticeable. Such is the case when one of the masses is the
Earth (figure 6.1C). The force of the Earth’s gravitational attraction is called
the weight of the potatoes. What makes this force of gravity so noticeable is that the
Earth has an enormous mass ( = ×m 4.09 10 slugse

23 ). The distance between the
potatoes and the center of the Earth is the radius of the Earth = ×R( 2.09 10 ft)7 .
The force of gravity on a single bag (m = 1.0 slug) is:

=

= ×
−

× × ×
×

=

−
⎛
⎝⎜

⎞
⎠⎟

F
m m

R
G

3.435 10
ft

slug s
(1 slug) (4.09 10 slug)

(2.09 10 ft)

32.2 pounds of force

e
2

8
3 23

7 2

In words, we conclude 1.0 slug ‘weighs’ 32.2 lb.

With a small rewrite, we easily obtain another useful result; the law of gravity may
be written as:

= =
⎛
⎝⎜

⎞
⎠⎟F m

m
R

m g
G e

2

and compared to Newton’s Second Law =F ma
Since F is the gravitational force called weight w and g is the acceleration of the

Earth's gravity, we obtain:

=w mg (6.2)

= =
⎛
⎝⎜

⎞
⎠⎟g

G m
R

where 32.2 ft/s (6.3)e
2

2

This last relationship is useful in converting back and forth between a body’s mass
and its weight.

Gravity is a significant factor tiring you out at the end of the day. If you are
standing and your weight is 161 lb, it is necessary to push with the feet against the
floor with a force of 161 lb. By Newton’s Third Law, the ground pushes upward on
your feet resisting the tug of gravity.

6.3 ‘Weight’ of object as measured by a scale
Thus far, in this chapter, we have defined weight as the pull of the Earth’s
gravitational attraction. Confusion develops in that the common use of the word
‘weight’ is associated with the reading of a scale. Often, it is ok to make this
association with the scale. However, what would happen to your scale ‘weight’ if you
stood on the scale inside a brisk elevator? Stand on the scale and note the reading
before pressing any elevator buttons; the scale registers your normal weight. Now
press up; you will see an increase in the scale reading for as long as the elevator is
accelerating upward. There would be a decrease in your scale weight if you had
pressed the down button. These increases and decreases in ‘weight’ only occur
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during periods of acceleration; normal weigh returns when moving at constant speed
between floors.

What if you press the button and the cable breaks? While this is bad news, some
very interesting physics can be observed. With a snapped cable, the elevator will be
in freefall; you and the scale will also be in freefall. In fact, everything inside the
elevator will be falling under the force of gravity. As you look around, the contents
of the elevator will appear to be ‘floating’ about the elevator. If you open a drink and
pour out the contents, they will not land on the floor. The liquid will ‘float’ in front
of you. Now while this is all occurring, look down at the scale; it will read zero
pounds.

If weight is considered as the scale reading, you are indeed ‘weightless’. However,
the reason you are crashing into the Earth is that the planet’s force of gravity is
pulling you down—so you are not ‘weightless’ when weight is defined as the
gravitational force.

In this book, the ‘weight of an object’ means the force of the Earth's gravity.
This broken elevator cable business is no fun. Next time you fly through the air on
your mountain bike, you can experience the same effect without the terror of a
crashing elevator.

6.4 Force of gravity on a slope—the basic physics
Why is the weight of the bike so important—especially for racing bikes?

If a bicycle is traveling on level ground, the downward tug of gravity is countered by
an upward force from the ground and gravity has no effect on the ride. Certainly, in
situations of ascending and descending hills, gravity is a major consideration. The
pull of gravity is both our foe and friend. Riding downhill, gravity pulls us in the
forward direction and acts as a force of acceleration. Traveling uphill, gravity is a
resistive force and tries to decelerate the bicycle.

These are certain signs to know faithful friend from flattering foe.

Sonnets to Sundry Notes of Music, VI. ‘As it fell upon a day’,
William Shakespeare
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An object on a sloped surface does not experience the full downward force of
gravity. It is necessary to look at the components of the forces as they act parallel
and perpendicular to the slope. Figure 6.2 shows a bike rider system on a hill that
makes an angle θ with the horizon.

N is the normal force from the sloped ground pressing upward on the bike; it acts
perpendicular to the hill. The weight of the system is w; notice this force of gravity
pulls vertically downward. The hill’s angle θ, is the same as the angle between w and
the normal. When riding on significant hills, the biggest force to contend with is the
force of gravity—the weight of the bicycle and rider! We will shortly see what it takes
to make a hill ‘significant’.

Usually when we look at vector components, we consider them in terms of
horizontal and vertical directions (x and y). However, in situations involving
slopes, the motion occurs along the hill; hence, it is best to resolve vectors into
the components that are parallel and perpendicular to the sloped surface. We resolve
w into vector components parallel w and perpendicular ⊥w to the surface.
The resolution of the vectors is shown on the right side of figure 6.2:

θ θ= × = ×⊥w w w wcos sin

N w

w||

w⊥

q

w q

q

Figure 6.2. Force of gravity on a cyclist on a hill.
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These expressions should make intuitive sense: the steeper the hill, the greater the angle,
the larger the sine of the angle; therefore, the greater the downward pull of gravity.
The component w , parallel to the hill, is called the slope force:

θ= = ×F w w sin (6.4)llslope

The slope force always points down the hill. If the bike is initially traveling up the
slope, the slope force is a foe—in opposition to the direction of motion. It is referred
to as the slope resistance. However, if the rider were heading downhill, the slope
force is a friend in the direction of motion; it is a force of acceleration.

From chapter 3 equation (3.2), the connection between the slope percentage of a hill
and its angle is:

θ= ×slope tan 100% (6.5)

As an example, we obtain the slope force on a 3% hill; first get the angle (using a
calculator for max accuracy on inverse tangent):

θ θ θ= × = = °3% tan 100%, tan 0.03, 1.718

With rider/bike of weight of 181 lb on this 3% grade, the slope force is then:

θ= × = × ° =F w sin 181 lb sin 1.718 5.43 lbslope

To ride up the hill at a constant speed, it is not necessary to fight the entire 181 lb
force of gravity, rather the much smaller slope force of only 5.43 lb.

Obviously, with steeper grades the slope force is much greater; table 6.1 lists slope
forces for our standard rider on a range of hill slopes.

Table 6.1. Slope force on 181 lb rider/bike system for various slopes.

Slope Angle Slope force

1% 0.573o 1.81 lb
2% 1.146o 3.62 lb
3% 1.718o 5.43 lb
4% 2.291o 7.24 lb
5% 2.862o 9.04 lb
6% 3.434o 10.8 lb
7% 4.004o 12.6 lb
8% 4.574o 14.4 lb
9% 5.143o 16.2 lb
10% 5.711o 18.0 lb
15% 8.531o 26.9 lb
20% 11.31o 35.5 lb
25% 14.04o 43.9 lb
30% 16.70o 52.0 lb
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6.5 Riding uphill at a constant speed

In previous sections, hills were viewed as terrain to coast up and down. On an
average ride, very few slopes can be conquered through one long coast. Normally, as
we ride along and encounter a hill, our first instinct is to try to maintain speed as we
pedal up the hill. In this scenario, the slope resistance represents the additional force
that must be developed from increased pedaling effort. For instance, a 10% slope
would require an additional forward force on the 181 lb bicycle/rider system equal to
the slope resistance of 18.0 lb.

Although maintaining a constant speed while riding up a hill can be physically
challenging, it is an easier situation to analyze from a physics perspective. If you
struggle and maintain a steady uphill speed, the air resistive force is constant and the
math is considerably easier. Therefore, if you are willing to ask your body to pedal
hard enough, you can give your brain a break. A rider traveling at a constant speed
up a hill must overcome the sum of the slope resistance Fslope and the other resistive
forces Fresistive. In table 5.2, we saw that a bicycle traveling at 20 mph experiences a
net resistive force of 6.53 lb due to rolling, bearing, and air resistances. Maintaining
a constant speed of 20 mph going up the 10% slope requires a pedaling effort that
produces a forward force equal to the sum of the opposing forces:

+ = + =F F 18.0 lb 6.53 lb 24.5 lbslope resistive

Is 24.5 lb such a big deal for our strong and fit 161 lb rider? Well, this 24.5 lb is
the net external forward force exerted on the bicycle by the ground. We will fully
discuss the gearing system in chapter 11 and will learn that the bicycle’s gearing
system usually operates at a poor mechanical advantage. For now, we can jump
ahead to chapter 11 (table 11.1) and borrow the fact that, for a typical road
bicycle, the relationship between the rider’s force on the pedal Fpedal and the force
of the road Froad on the rear tire is = ×F F10.5pedal road when the bike is in its
highest gear.
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To overcome the 24.5 lb of opposing force, our rider must exert a downward force
on the pedal of

= × =F 10.5 24.5 lb 257 lbpedal

This is a very large pedal force for a 161 lb rider. In addition to putting all of his
weight on one pedal, he must also pull upward on the handlebar with a force
equal to 96 lb (257 lb − 161 lb = 96 lb). Whether other gears are a better option is
considered in chapter 11. Also, be careful of the wheelie, especially going uphill!

6.6 Terminal speed
In this section, we explore an interesting phenomenon that arises when objects fall
under the force of gravity and simultaneously encounter significant air resistance.

An object falling under the downward force of gravity and the upward resistive force of air
resistance often attains a constant maximum speed called the terminal speed (or terminal
velocity). The use of the word ‘terminal’ has nothing to do with the fact that the object
might smack into the ground with unfortunate consequences. Rather, the word ‘terminal’
refers to the fact that, when the object initially begins to fall under the pull of gravity, it is
in free fall with the acceleration of gravity. As the falling body picks up speed, the force
of air resistance, proportional to the square of the speed, increases rapidly. Eventually,
the upward force of air resistance equals the downward pull of the body’s weight—the
resultant force is zero and, in accordance with Newton’s laws, the body now falls
at a constant speed toward the ground. This constant speed is called the terminal speed.

Consider a large stone of weight 20 lb dropped out of an airplane. When it is first
released, its speed is zero. Thus, there is no force of air resistance; the net force is
simply the stone’s weight and it, therefore, accelerates at 32.2 ft/s2. Under this
acceleration, the falling stone picks up speed and the upward force of air resistance
begins to build. At some point in the descent, the force of air resistance might be 8 lb
upward while the weight is still 20 lb downward. With a net force of 12 lb down, the
stone still accelerates, gaining additional speed. Eventually, if the stone falls far
enough, the speed increases to the point at which the upward force of air resistance
equals the downward pull of gravity. At this point, the net force on the stone is zero
and there is no further acceleration. For the rest of the way down, the stone travels at
this constant speed—this is named the ‘terminal speed’. If the stone had been
dropped from a sufficiently high altitude, it can fall many miles at its constant
terminal speed. An important aspect of terminal speed is that the heavier the object,
the greater will be its terminal speed. In certain athletic events, such as downhill ski
racing, the speeds come close to terminal for a human in a compact position. The
larger skiers have the advantage in the straight downhill sections; this advantage
probably tilts toward the smaller racers when it comes to making a turn.

The bigger they are, the harder they fall.
Robert Fitzsimmons, an early 20th century boxer
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Since this is a book about bicycles, we wonder what would be the terminal speed
of our standard cyclist if she rode out the back of a plane and maintained her cycling
stance heading toward the ground. To obtain the terminal speed, we begin with
expression we developed in section 5.13.

=F v0.00640 , speed in ft/s (6.6)air resistance
2

Terminal speed occurs when the downward pull of gravity on the 181 lb bike/rider
system equals the upward air resistance.

= v181 lb (0.00640 )2

= = =v
181

0.00640
168 ft/s 115 mph

The heavier an object, the greater will be its terminal speed.

6.7 Terminal speed coasting downhill on a bike

Let go thy hold when a great wheel runs down a hill.
King Lear, ii,4 William Shakespeare

Although falling out of an airplane on a bicycle is a rare event, the preceding
concepts have great significance to a cyclist. In this section, we apply the concept of
terminal speed to a rider coasting down a hill—the essence of the joy of the bicycle!
The attainment of terminal speed does not require falling from high altitudes; it does
not even require freefall through the atmosphere. A cyclist, freewheeling down a hill,
will attain terminal speed when the downward pull of the slope force is balanced by the
upward resistive forces (figure 6.3). In chapter 5 equation (5.17), we saw that the total
resistive force Ftot on a moving cyclist consists of constant rolling and bearing
resistance Frb and a force of air resistance that increases with the square of the bike’s
speed.

= +F F k v (6.7)tot rb
2

w||

q

Ftot

Figure 6.3. Terminal speed down a hill.
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=F Fat terminal speed: slope tot

using an expression for the slope force equation (6.4) we obtain:

θ× = +w F kvsin (6.8)rb
2

putting in the values for k (0.0138 when speed is in mph), a rider/bike weight of 181
lb, and rolling resistance of 1.0 lb, and bearing resistance that add to 1.006 lb, we
obtain:

θ× = + v181 lb sin 1.006 0.0138 2

Solving for the terminal speed with the angle as the variable:

θ= × −
v

v

181 lb sin 1.006 lb

0.0138
lb (6.9)

2

As an example, suppose the slope is a 3%, θ = °1.718 (section 6.4):

= × − = − = =v
181 sin 1.718 1.006

0.0138
5.426 1.006

0.0138
320 17.9 mph

With no pedaling effort, our rider happily cruises down this hill at a brisk speed.
No doubt, riding 18 mph on a level road requires a substantial effort by the rider.

Table 6.2 lists terminal speeds for our standard rider for a variety of slopes.

Table 6.2. Terminal speed versus slope.

Terminal speeds at various slopes
Weight of bike/rider system(in lb) = 181
Coefficient - air resistance for speed in mph = 0.0138

Slope (%) Angle(degrees) Terminal speed (mph)

1 0.573 7.7
2 1.146 13.8
3 1.718 17.9
4 2.291 21.2
5 2.862 24.1
6 3.434 26.7
7 4.004 29.0
8 4.574 31.2
9 5.143 33.2
10 5.711 35.1
15 8.531 43.3
20 11.310 50.0
25 14.036 55.7
30 16.699 60.8
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With a rider/bike system that is heavier, the terminal speed will be higher. If you
really want to enjoy a fast downhill coast, ride a tandem. A pair of sturdy tandem
riders can have a system weight of 400 lb and, since the second rider is tucked lower,
the frontal area is nearly the same as for a single rider; rolling and bearing resistance
will also vary little. Thus on the same 3% slope, the terminal speed for our tandem
pair is:

= × − = − = =v
400 sin 1.718 1.006

0.0138
12.0 1.006

0.0138
796 28.2 mph

It is certainly true that ‘the bigger they are, the faster they fall!’

6.8 Personalized determination of resistive force parameters
Is there a simple way to determine the forces of resistance on my own personal bicycle?

To this point, we have done most of our calculations on a bike/rider system with
standard properties. We now develop a simple technique that can be used by cyclists
to determine their personalized resistive forces on their individual bicycle. The
method, despite being extremely straightforward and easy to implement, allows
riders to fine tune their riding stance to minimize the dominant effect of air
resistance.

Table 6.2 was created assuming that we know both the rolling/bearing resistance
of a bicycle and the air resistance coefficient of a bike/rider system. The resistances
were introduced in chapter 5 as typical values. However, do you actually know these
resistance values for your own specific bicycle/rider combination? Probably not—
but the phenomena of coasting downhill to a terminal speed creates an interesting
technique that allows for the personalized determination of the resistance values.
The method is very simple—find two hills of uniform slope and coast down these hills to
the point of terminal speed. We need only to record the values of the terminal speed
and the angles of the two hills. An inexpensive cycle computer is adequate for speed
determination; the angle of the hills may be measured in various ways; common

Understanding the Magic of the Bicycle

6-11



digital protractor-levels or smart phone apps are accurate to a tenth of a degree. For
purposes of calculation, it is important to use angles; slope percentages need to be
converted into angles (equation (3.2)).

For two hills of different slopes, we determine the angle of the hill and the
terminal coasting speed. It is important to maintain the same body position during
the descent. We then apply to each hill the expression (6.8) from the previous
section:

θ× = +w F kvsin (6.8)rb
2

Calling the hills #1 and #2 results in two expressions:

θ× = +w F kvsin (6.10)1 rb 1
2

θ× = +w F kvsin (6.11)2 rb 2
2

As an example, suppose on the first hill of slope 2% θ = °( 1.146 ),1 we reach a
terminal speed of 11 mph, and the second hill of slope 5% θ = °( 2.862 )2 results in
a terminal speed of 25 mph.

Keeping the weight of the system (181 lb) the same, we substitute the numerical
values for each slope:

× = + × = +F k F k181 sin 1.146 11 or 3.62 121 (6.12)rb
2

rb

× = + × = +F k F k181 sin 2.862 25 or 9.04 625 (6.13)rb
2

rb

These equations create the nice algebraic situation of two unknowns Frb and k
and two equations; our algebra teachers tell us it is straightforward to solve for the
unknowns. Subtracting the left sides and the right sides (equation (6.13)—equation
(6.12)) of the above expressions, we obtain

= k5.42 504

For the air resistance coefficient:

= =k
5.42
504

0.0108

substituting this value for k into equation (6.12): = + ×F3.62 121 0.0108rb , we solve
for the combined rolling/bearing resistance:

=F 2.31 lbrb

Perhaps this rider is in a more crouched stance that results in a smaller coefficient of
air resistance than the standard rider. Other possibilities are she has a narrower
frontal area or is riding at a higher altitude. However, her bike has more than twice
the value for the rolling/bearing resistance. Perhaps, her machine needs air in the
tires or grease in the wheel hubs!
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The use of the specific rider values = =k F0.0108 and 2.31 lbrb allows for the
construction of a ‘personalized’ table similar to table 6.2. Our cyclist now has her
own personal version of equation (6.7):

= + = +F F k v v2.31 0.0108tot rb
2 2

The reader is encouraged to go for a nice coast down two hills and develop her own
values. These numbers will be extremely useful in chapter 8 when we examine the
power expenditures of climbing hills.

A bit of further reflection on this chapter’s last two sections reveals that a bike’s
terminal speed affords instant feedback on the efficiency of the riding stance.
Assuming a more crouched position quickly results in a higher terminal speed.
One can also test various wheels and tires for rolling resistance. Who needs a wind
tunnel?
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Chapter 7

Momentum–impulse

Get a bicycle. You will not regret it. If you live.
Taming the Bicycle by Mark Twain

The word ‘momentum’ is common in everyday conversation—one might say that a
certain football team is entering the final quarter with a three-touchdown lead and,
therefore, has the momentum. A sportscaster might say that the fullback’s momentum
carried him past the goal line. When physics concepts and terminology are incorpo-
rated into daily language, we must ensure that the word is carefully defined and applied
in the physical context. Momentum derives from the Latin word for movement, and it
is easy to get the concept of momentum confused with the concept of inertia.

7.1 The basic physics of momentum
Before proceeding with a precise definition of momentum, think of a situation in
which you are going to catch and stop a ball. Which might you prefer?

• A golf ball traveling at 100 mph?
• A bowling ball traveling at 10 mph?

Which ball is most likely to knock you over as you try to catch it? As you think
about it, the mass of the bowling ball is certainly many times that of the golf ball, yet
that golf ball is traveling very fast. A dilemma? There is an answer—it comes from
the physics concept of momentum. Consideration of the balls’ momenta (plural of
momentum) helps decide. The definition of the physical quantity momentum
involves both the mass of the object and the velocity of the object. Both mass and
velocity are of equal importance.

The momentum of an object is defined as the mass of an object times its velocity:

=p m v (7.1)
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Traditionally, the letter p is the symbol for momentum. Since velocity is a vector
and mass is a scalar, the product is a vector. We can calculate the momentum for the
golf and bowling balls.

A golf ball has a regulation weight of 1.62 oz; this converts into a mass of 0.00316
slugs. The ball’s velocity of 100 mph is 147 ft/s. Hence, the momentum of the golf
ball is:

= = × = −
p mv 0.00316 slugs 147 ft/s 0.465

slugs ft
s

There is no special name for the units of momentum.
We do the same calculation for the bowling ball. Suppose the bowling ball has a

weight of 16 lb or 0.497 slugs. The ball’s velocity of 10 mph is 14.7 ft/s. The
momentum of the bowling ball is:

= = × = −
p mv 0.497 slugs 14.7 ft/s 7.31

slugs ft
s

The traveling bowling ball has a much greater momentum and, as we will see, it will
require a much greater force to stop.

7.2 Momentum and Newton’s Second Law
Momentum may be envisioned as evolving from Newton’s Second Law:

=F ma

Since acceleration is change in velocity divided by change in time, we write:

= Δ
Δ

a
v
t

The Second Law becomes:

= = Δ
Δ

F ma
m v

t

Since mv is p the momentum, Δm v is Δp, the change in momentum

= Δ
Δ

F
p
t

(7.2)

We have an alternative form of Newton’s Second Law—net external forces produce
changes in momentum.

7.3 Impulse
Beginning with this new form of Newton’s law (equation (7.2)) and doing a simple
rearrangement, we obtain:

× Δ = ΔF t p (7.3)
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The quantity × Δ ×tF (force change in time) is called the ‘impulse’
In words:

=impulse change in momentum

The change in momentum will be the final momentum pf minus the initial
momentum pi, thus:

× Δ = −F t p p (7.4)f i

Impulse is an extremely useful physical concept that assists in understanding the
behavior of moving objects. Consider a familiar situation such as a catcher catching
a fastball. When the moving ball is brought to rest, the final momentum pf of the ball
in the mitt is zero; hence, the change in momentum equals the momentum of the ball
just before it reaches home plate pi:

Δ = − = − = −p p p p p0 (7.5)f i i i

The impulse momentum expression now becomes:

× Δ = Δ = −F t p p (7.6)i

The catcher has no control over the moving ball’s initial momentum and the change
in momentum (unless he lets it somehow slip past his mitt). The momentum change
is determined entirely by the speed of the ball just before it enters his glove.
However, the catcher does have control over how badly the ball stings his hand.
When catching the ball, he wisely moves his glove backward—thus extending the
time of contact. The impulse, the product of force andΔt, will be the same regardless
of how the catch is made; by moving the glove backward (making Δt as large as
possible), the catcher makes the force as small as possible.

A boxer who ‘rolls with the punch’ is performing an identical action; he is
extending the time of contact of his opponent’s glove, thereby reducing the force
exerted by the glove. The opposite situation occurs when a boxer ‘steps into a
punch’. Stepping into the punch makes Δt small and consequently maximizes the
force on the jaw.

7.4 Momentum and impulse aspects of bicycle accidents
Why wear a helmet? What is the physics behind how it actually protects your head?

Momentum and impulse allow us to appreciate the wisdom of wearing a helmet.
Consider the moving mass to be the rider’s head; suppose it is traveling at the speed
of the bike when the rider hits an obstacle and his head comes to rest. The role of the
helmet is to extend the time of the collision; by making the time for the momentum
change as large as possible, the force is minimized.

How might Δt be maximized? Primarily it occurs by the deformation of the
outside shell and subsequent compression of the foam padding. As the protective
materials ‘give’, they extend the time of contact during which the rider’s head is
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being brought to rest. The larger the Δt, the smaller will be the force on the head.
The mechanics is similar to the catcher and ball.

These are the same principles used in automobile safety equipment—the seat belts
are designed to stretch and the air bags to compress. These actions extend the time of
contact and minimize the forces on the car’s occupants. Would it make sense to
replace the flexible fabric seat belts with heavy steel chains that will not readily
stretch? What if we lined the bike helmet with a concrete like material molded to fit
exactly the shape of the rider’s head?

Suppose we equipped the inside of the bike helmet with highly elastic springs that
would compress and slow down the moving head. Would this be a good idea instead
of compressible padding? No, because the head would bounce backward with a final
speed equal to its initial speed.

If you can keep your head when all about you
Are losing theirs and blaming it on you

If by Rudyard Kipling

Why is a fall that results in a long slide usually safer than a fall that ends in a quick
stop on the ground?

The most serious damage from a fall occurs from large impact forces. With the long
sliding fall, the time Δt( )for the rider to come to rest is large; the longer time results
in a smaller force. Although the force is small, it is usually absorbed by the rider’s
skin that is not especially good at handling forces. Nasty road burns usually result;
not pleasant, but probably better than broken bones caused by quick hard falls onto
arms, shoulders, ribs.
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Chapter 8

Work–energy–power

It’s true hard work never killed anybody, but I figure, why take a chance?
President Ronald Reagan

Working hard climbing that hill, burning enormous energy in a long ride, powerful
sprints at the finish of a race—are phrases familiar to cyclists. However, the words
work, energy, power have so many different meanings that vary with the context.
This chapter is an examination of the physical concept of work and its association
with energy and power. As previously seen, words that are part of our everyday
vocabulary must be carefully defined within the physical context.

8.1 Work
We begin with a word that evokes a variety of emotional responses when used in
daily conversation. The word is work. How often have we said or heard statements
such as:

• Studying physics involves a lot of work
• I have a lot of expenses and need to find some work that pays me at least
$20/hour

• You need to work through the solution to this problem
• If you work out, it will help with your weight loss program
• I am so tired after coming home from work I need a three hour nap

These uses of the word ‘work’ are quite different from the concept of work as we
define and use in physics. In the world of physics, the following are not necessarily
examples of work; in fact, they may involve no work whatsoever:

• actions you are paid to do
• actions that make you tired
• actions that are hard to do
• actions that you do to smooth out problems in relationships
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If the above do not define work in a physical sense, what is work’s physical meaning?
The definition of work is based on the exertion of a force and movement:

=work  force exerted times the distance moved in the direction of the force

In letters:

= ×W F d (8.1)

Where:W is work done, F is force doing the work, and d is the distance moved in the
direction of the force.

Consider a simple example—we push a 20 lb box across a 15 ft wide room with a
horizontal force of 10 lb (figure 8.1A).

The work done by the force is:

= × = × =W F d 10 lb 15 ft 150 ft-lb

Although the force and the distance moved are both vectors, their product ‘work’ is
a scalar quantity—it has no direction; work has magnitude only. In this example, the
magnitude is 150 ft-lb. In U.S. Customary Units, the unit of work is the ft-lb. In the
metric system, where force is in newtons and distance is in meters, the unit of work is
the N-m (newton-meter), also called the joule.

The weight of the box did not factor into the work done by the pushing force. The
distance moved is in the horizontal direction, whereas the weight of the box is a
vertical force. Instead of pushing the box along the floor, we lift the box to waist
level, 3 ft off the floor, and proceed to carry it 15 ft across the room. Is there any
difference in work done as compared to sliding it with the 10 lb push? There will be
work done in the lifting process—to raise it off the ground; we must counter its
weight by exerting a force of 20 lb in the vertical direction. Lifting the box to a height
of 3 ft will require the work:

= × = × =W F d 20 lb 3 ft 60 ft-lb

Of course, if we are holding the box off the ground, we must continue to exert this 20
lb vertical force. If we now walk 15 ft across the room, is there an additional work of

= × = × =W F d 20 lb 15 ft 300 ft-lb?

No, holding the box (even for hours) or carrying it across the room may involve no
work in the physics sense. The reason is that the exerted force is vertical and the

15 ft

BOX WEIGHS 20 lb

15 ft

PUSH WITH 10 lb TO RIGHT

FRICTION IS 4 lb TO LEFT

Figure A - NO FRICTION

PUSH WITH 10 lb TO RIGHT

Figure B - WITH FRICTION

BOX WEIGHS 20 lb

Figure 8.1. (A,B) Push box across room.
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movement across the room is horizontal. After the initial lift, there is no further
movement in the vertical direction. The calculation of work done in carrying the box
across the room looks like:

= × = × =W F d 20 lb 0 ft 0 ft-lb

Carrying the box might make you tired but the horizontal motion involves little
or no work. What if you carry it 15 000 ft? There is still no work! No doubt, your
arms will ache and you will be very tired—but, probably, there is no additional work
beyond that involved in the initial lift. Why the equivocal term ‘probably’ in the
previous sentence? We are assuming a scenario of walking at a constant velocity
across the room. Yes, there would be a horizontal force required to accelerate the
box from rest to some small horizontal velocity. If the acceleration is gradual, this
force of acceleration can be very small. Once you have begun walking with the box,
you would likely move at a steady velocity. All of your efforts are directed toward
holding the box upward against the force of gravity.

What if we carry the 20 lb box up a 16 ft high stairway? If we do not impart
significant speed to the box and merely carry the box at some slow steady rate,
the work done by the 20 lb vertical force through a vertical distance of 16 ft will be:

= × = × =W F d 20 lb 16 ft 320 ft-lb

Naturally, the stairway involves some horizontal movement, but only vertical
displacements result in work done by the vertical force. What of other methods of
vertical travel? A shallow ramp? A steep ramp? A circular ramp? Shimmy up a rope
while hanging onto the box? Since they all involve the same vertical rise of 16 ft, the
work done will be the same in each case, 320 ft-lb. Is it not harder to shimmy up the
rope than walk up the ramp? Yes—but the difficulty of performing an action is a not
a factor in the amount of work performed.

What if you sit at a desk all day, maybe talking on the phone; your company pays
you quite well for your knowledge—is this considered work? Not in the physics
sense! Unless you are exerting forces in the direction moved, you are not doing
physical work. Perhaps, talking on the phone involves a small of work as you lift the
receiver to your ear.

I like work, it fascinates me. I can sit and look at it for hours.
Jerome K Jerome (1859–1927)

8.2 Kinetic energy
Why such a restrictive definition for the term ‘work’? This precise definition of work
gives meaning to the very important concepts of energy and power. To gain a better
understanding of the consequences of performing work, let us return to our original
example of pushing a 20 lb box with a 10 lb force across the 15 ft room. To keep
things simple, suppose the contact between the box and the floor is frictionless; the
floor is waxed or the box is on wheels. From Newton’s Second Law, we can
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determine the acceleration of the box. The 20 lb box will have a mass of 0.621 slugs,
and the acceleration caused by the 10 lb push is:

= = =a
F
m

10 lb
0.621 slug

16.1 ft/s2

The 10 lb force is causing an increase in the box’s speed. In this chapter, we develop a
newway of thinking about the actions—we have seen that exertion of a force, through
a distance in the direction of the force, results in the performance of a physical
quantity called work. The box gains motion; we say it possesses kinetic energy.

Kinetic energy is the energy of a body associated with its motion.
We can obtain an expression that allows the calculation of the kinetic energy of a

moving mass. Assume the box is initially at rest and a constant force F accelerates
the box from zero to some final speed v. The work done is

= ×W F d and writing the force as F = ma we obtain:

= × ×W m a d (8.2)

We can make use of an equation (4.4) from chapter 4:

= = + =d
v v v

t
v

t
2 2 2
ave f i

and the acceleration of the object is written:

=a
v
t

Making these substitutions into (8.2), the expression for work becomes:

= =⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠W m

v
t

v
t

mv
2 2

2

The work done on the box has been converted into kinetic energy KE of the box. We
have a general expression for the kinetic energy of a moving object:

=KE
mv

2
(8.3)

2

In U.S. Customary Units, the units of kinetic energy are the same as those of work:
foot-pounds (ft-lb). In the metric system, the units will be the newton-meter (N-m),
or the joule. Just as work is a scalar quantity, so too is kinetic energy—the kinetic
energy of a moving object has no direction, only a magnitude. In addition to kinetic
energy, we will see other forms of energy and they are all scalar quantities. The scalar
characteristic of energy is an important reason for its popularity in analyzing physics
situations. Although the work creates the kinetic energy of the box, and work and
kinetic energy have the same units of measurement, they are very different concepts.
The work is done by the force of the person; the kinetic energy is gained by the box.
One of our principals (the person) does the work and the other principal (the box) is
the beneficiary.
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As a simple example, consider the case from the previous section in which a 10 lb
force was exerted on a 20 lb (0.621 slugs) box (figure 8.1A). The work done was
150 ft-lb; with no frictional losses, the kinetic energy would also be 150 ft-lb. The
speed of the box may be found from equation (8.3):

= =v
v150 ft-lb

0.621
2

, thus 22 ft/s
2

Kinetic energy is a type of energy called mechanical energy; there are other forms
of mechanical energy. Especially important is gravitational potential energy

Does the work done always lead to a gain in energy? Not always! In our examples
thus far, the force and the distance moved have been in the same direction and the
work done is a positive quantity. Positive work results in gains in energy. A bit of
reflection will reveal that it is possible to exert a force opposite to a direction of
motion. For instance, suppose the box is already traveling to the right when we
encounter it. We might exert a force to the left in an attempt to stop the box. In this
situation, the direction of the box’s motion is opposite to the direction of the force.
The work done is a negative quantity that results in a loss of kinetic energy for the box.

8.3 Frictional effects
In figure 8.1B, we see another example in which a box is pushed along on a floor; in
this situation, there is friction between the bottom of box and the floor. Friction
is opposite the direction of travel; therefore, the work done by friction force is
negative. Assume the coefficient of sliding friction is 0.2. Since the floor exerts a
vertical force N equal to the weight of the box, the force of sliding friction is:

μ= × = × =f N 0.2 20 lb 4 lb

The force of friction will do a negative work:

= × = − × = −W f d 4 lb 15 ft 60 ft-lb

As before, the work done by the girl pushing will be 150 ft-lb. This negative work
results in less kinetic energy for the box when it gets to the right side of the room.
The relationship between the change in kinetic energy of the box and the positive
and negative work done on the box is as follows:

= −KEgain in positive work negative work (8.4)

= × − ×m v F d f d
1
2

(8.5)2

Putting in numbers: ½ =     ×   −   ×  v(0.621 slugs) (10 lb 15 ft) (4 lb 15 ft)2 and solving
for the speed: =v 17 ft/s.
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8.4 Gravitational potential energy
The easiest demonstration of conservative transfers of mechanical energy is to toss a
ball up into the air. As the ball is moving up, the force of gravity points down and
the work done by the gravitational force is negative; the negative work done by
gravity causes the ball to lose its kinetic energy. At some point, the ball has lost all
kinetic energy and has a speed of zero; the ball now begins to fall back to earth and
moves in the same direction as the force of gravity. For the falling ball, the work
done by gravity is positive and the ball gains kinetic energy.

Think further about the ball when it is at the top of its flight—it has momentarily
stopped moving and therefore has no kinetic energy—the negative work done by
gravity has ‘taken away’ the kinetic energy. Nevertheless, at the top of its flight, the
ball does have something; in the next instant, it will begin to fall and regain kinetic
energy. Even if the ball is stuck in the top of a tree, it has ‘something’ when it is up
high. The ball possesses energy of position; this energy of position is called potential
energy. The energy is due to the ball being subject to a gravitational force; the ball
has gravitational potential energy.

Does an object first have to start with kinetic energy (the tossed ball) in order to
later possess gravitational potential energy? No—another simple, common event—
suppose you bend over and lift an object off the floor. Maybe it is a young child—you
have no desire to impart kinetic energy to the kid. You slowly lift the child and hold
him at waist level. If the child weighs 20 lb and you lift him a distance 4 ft off the floor,
your work is:

= × = × =W F d 20 lb 4 ft 80 ft-lb

As you stand holding the child in the air, what happened to the work you
performed? Your work has been transformed; the toddler now has potential energy
as a result of his high position.

Gravitational potential energy is the energy possessed by an object by virtue of its
position being subject to the gravitational force.

Notice the terminology—the gravitational potential energy is possessed by the
object—you did the work—but now the object has the potential energy. You could
put the body on a shelf and walk away; the object still has the energy. Please do not
put the kid on a shelf and walk away!

The final speed is less when compared with the result of 22 ft/s (section 8.3) when there
was no friction; frictional losses cost kinetic energy and speed. Unfortunately, the
energy lost to friction goes into heating the surfaces of the box bottom and the floor;
there is no way to recover these losses to heat. The force of friction is an example of a
non-conservative force. The opposite of a non-conservative force is a conservative force.
With a conservative force, there are no losses of mechanical energy—only transfers
from one type of mechanical energy to another. The most common example of a
conservative force is the force of gravity. The kinetic energy of a bike that is taken
away on a ride uphill is returned to the system on the downhill trip. Sadly, air resistance
and other resistive forces are non-conservative and result in loss of mechanical energy.
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To get an expression for the gravitational potential energy, let w be the weight of
the body and Δh be the vertical distance the object is lifted

=work done  gain in gravitational potential energy

It is common to use the letters PE to symbolize potential energy; a subscript
indicates gravitational potential energy. It is also common to write the weight as the
mass times the acceleration of gravity; thus, we get:

= × Δ = × × ΔPE w h m g h (8.6)g

There is an aspect of gravitational potential energy that sometimes causes a little
confusion. We discussed lifting the child to a height 4 ft off the floor, but what if this
were done in a second story room—maybe 12 ft off the ground? A question arises as
to which height to use: 4 ft, 12 ft or even 16 ft? Keep it simple—just use the height the
object will drop.

8.5 Conservation of energy
We have seen examples in which kinetic energy is converted into gravitational
potential energy and, once an object has potential energy, it can fall and regain its
kinetic energy. When the objects falls, its gain in kinetic energy comes at the loss of
potential energy. These transformations between various types of energy illustrate
one of the most profound and significant principles of the physical world—the
principle of conservation of energy.

We write the conversion between the two forms of mechanical energy as:

changes (gains or losses) inpotential energy= changes (losses or gains) inkinetic energy

Another way to describe the energy conservation of an event as:

(kinetic energy + potential energy)initial = (kinetic energy + potential energy)final

What happens if a 20 lb weight, initially at rest, falls 5 ft to the floor? Consider the
floor to be the zero point of potential energy and ignore frictional losses to air
resistance. The principle of conservation of energy tells us:

+ = +KE PE KE PE( ) ( ) (8.7)initial final

Since the initial KE and the final PE are zero, we write:

=PE KE (8.8)initial final

Principle of Conservation of Energy

The total amount of energy of a system cannot be created or destroyed, rather only
converted from one form of energy to another.
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substituting KE = 1/2 mv2 and PE = mgh:

=
⎛
⎝⎜

⎞
⎠⎟mgh mv( )

1
2

(8.9)initial
2

final

Solving for the speed at which the object hits the ground:

=v gh2 (8.10)

Notice the speed does not depend on mass of object (in absence of air resistance).
For an object dropped from a height h of 5 ft:

= × × = =  v 2 32.2 ft/s 5 ft 17.9 ft/s 12.2 mph2

This result, obtained from energy principles, is the same if obtained using Newton’s
Second Law.

What of a bike rider who flies down a hill 500 ft high? Can we say that she reaches
the bottom of the hill at a speed:

= × × =   =  v 2 32.2 ft/s 500 ft 179 ft/s 122 mph2

No—in chapter 5, we saw the forces of resistance (especially air) are very significant
on a moving cyclist. It cannot be ignored; the simple expression for speed at the
bottom does not apply. One would have to subtract the energy losses to the negative
work done by the resistive forces. The speed dependence of air resistance requires a
calculus based analysis.

Before leaving this section, there is one additional consideration—we have been
looking at the conversion of gravitational potential energy into kinetic energy.
Conservation of energy is reversible; a body projected upward has its kinetic energy
converted to potential energy; the height of the rise may be then calculated.

=

=

=

KE PE

m v mgh

h
v
g

1
2

2 (8.11)

initial final

2

2

8.6 Energy conversion between kinetic and potential on the bicycle
We can consider the application of energy concepts to a bicycle ride of our typical
rider of weight 161 lb on a 20 lb bicycle (system mass of 5.62 slugs). At a speed of
20 mph (29.3 ft/s) the kinetic energy is:

= = × =KE m v
1
2

1
2

5.62 slugs (29.3 ft/s) 2412 ft-lb2 2

Once the bicycle is at the desired speed and kinetic energy, where does this energy go
if you stop pedaling? The kinetic energy of the coasting bike is converted into
frictional losses against air, rolling, and bearing resistance (chapter 5) and, if you
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coast up a hill, into gravitational potential energy. Suppose the losses to resistive
forces are ignored, how high up the hill could you travel from the speed of 20 mph?
We use the expression from the last section (equation (8.11)).

= =
×

=h
v
g2

(29.3 ft/s)
2 32.2 ft/s

13.3 ft
2 2

2

Not very high and the situation is even worse when the resistive forces are considered.

8.7 Power—the basic physics
Once again, we encounter a concept in physics that is also common in our daily
vocabulary. It is important to carefully and precisely define the term before it is used
in physics. The concept is power. You might hear someone say:

• We lost power during the ice storm
• That car has a powerful engine
• Superman is more powerful than a locomotive
• The fullback powered his way through the defensive line
• The hitter is a powerful slugger
• The lobbyists have all the power in Washington

These uses of the word power imply a source of energy or the ability to exert large
forces. These differ from the phenomenon of power in the physical word.

power is the rate of doing work

or

power is the energy gained or lost per time

Before exploring these precise definitions, consider a bizarre example. Suppose we
have 500 lb of sand and need to move it from the ground to the top of a roof 20 ft high.
Do not ask why—the boss says to move the sand—just start moving the sand. Perhaps
there are three options: you could personally move the sand, or you could ask
Superman to move the sand, or maybe you have a trained ant that could move the
sand; have you ever noticed ants love to move and make little piles of sand (figure 8.2)?

The work done on the 500 lb of sand in moving it a vertical distance of 20 ft is:

= × = × =W F d 500 lb 20 ft 10,000 ft-lb

It does not matter who actually moves the sand—you, Superman, or the ant.
Nevertheless, there is a big difference in how the three individuals get the job done;
the difference will be the time required:

• the person—would probably make many trips. Suppose you carry 50 lb at a
time—that will be 10 trips. Let us give three minutes per round trip. Total
time for the human is 1 800 s.

• Superman—is described as ‘faster than a speeding bullet’. Surely, he could
scoop all 500 lb of the sand into his cape and, since he is ‘able to leap tall
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buildings with a single bound’, he could probably just jump to the rooftop in
a quarter of a second. Total time for Superman is 0.25 s.

• the ant—let’s just take a wild guess and suppose it takes him about 100 years;
this is about 3 billion seconds

The three characters—the human, Superman, and the ant—can all do the same
work: 10 000 ft-lb. Where they differ is how long it takes to do this work. The
concept of power, the rate of doing work, is the true distinction between a human,
Superman, and an ant. Power P is the amount of work done per unit of time,
mathematically:

= =  W
t

power
work
time

(8.12)

We calculate the powers of the human, Superman, and the ant by dividing work
done by their times (table 8.1).

Since ft-lb is the unit of work and energy in U.S. Customary units, ft-lb/s is the
unit of power in these units; alternate units of power are the horsepower and, in the
metric system, the watt.

These units of power may be obtained through the following conversions:

= =
= =

= =

1 horsepower (hp) 550 ft-lb/s, 1 ft-lb/s 0.00182 hp
1watt 0.737 ft-lb/s 1 ft-lb/s 1.356 watt
1 hp 746 watts 1 watt 0.00134 hp

500 lb

20 ft

S

Figure 8.2. Sand on roof of house.

Table 8.1. Various power levels to move sand.

work (ft-lb) time (seconds) power (ft-lb/s) power (hp) power (watts)

human 10 000 1 800 5.56 0.010 7.54
Superman 10 000 0.25 40 000 72.8 54 200
ant 10 000 3 × 109 3.33 × 10−6 6.09 × 10−9 4.52 × 10−6
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Another unit of power is the number of calories per hour or calories per day. As
we will see in chapter 9, heat is another form of energy and the calorie is a unit of
heat; thus, calorie/time is a unit of power. While the word spelled ‘c-a-l-o-r-i-e’ may
sound familiar, it is not exactly the same as when we discuss going on a diet and
losing weight or gaining weight by eating rich, fattening foods. In this context, the
word is spelled ‘C-a-l-o-r-i-e’—capitalization matters! A Calorie is equal to 1000
calories. Normally, the Calorie is used to denote the energy content of a food; look
on the nutritional label of a packaged food. That serving of potato chips that
contains 450 Calories actually contains 450 000 calories!

In U.S. Customary units, a calorie of heat is equivalent to 3.09 ft-lb. A calorie
of heat is equivalent in metric units to 4.184 joules of energy.

You often see on a food package’s nutritional label a reference to a ‘normal’
dietary intake of 2000 Calories per day, a measure of power. It might be useful to
examine the conversion into watts:

× × × = =2000 Calories
day

1000 calories
Calorie

4.184 Joules
calorie

1 day
86 400 s

96.9
Joules

s
96.9 watts

Therefore, if you go about your day subsisting on 2000 Calories, you are slightly
less powerful than a 100 watt light bulb! The 2000 Calorie/day power output
corresponds to energy usage in normal everyday activities—walking around,
getting up and down, climbing steps, thinking, eating, digesting, etc. A very active
lifestyle will result in a higher power level. When considering a form of exercise, it
is common to look at the power output in terms of watts or Calories/minute or
Calories/hour.

While the power numbers, in table 8.1, for Superman are truly impressive, and we
really did not expect much from the ant; what can be said of the human? A power
output of 7.54 watts is nothing to brag about. Was our human really trying that
hard? A point to keep in mind is that we are only calculating for the work done on
the sand. Our human must also perform work to get the body’s weight up to the roof
level.

Each trip to the roof involves the weight of the sand and the weight of the person.
Suppose the person weighs 161 lb, for one trip the work is:

+ × =(161 lb 50 lb) 20 ft 4 220 ft-lb

for ten trips, the total work done is 42 200 ft-lb. In addition, by moving faster, maybe
the job can be accomplished in 600 s. The power will be

=  
 

= = =P
42 200 ft-lb

600 s
70.3

ft-lb
s

0.128 hp 95 watt

The above power output is the rate of doing mechanical work. However, the human
body operates at a low efficiency of about 20%. Thus, the total body output will be
five times as large.
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Why is it easier to push a bike up a steep hill rather than ride it up the hill?

It is a question of power: whether you ride or walk the bike up the hill, you travel the
same vertical distance. The gain in potential energy is the same; the work done is the
same. The situation is similar to the ant, human, and superman carrying the sand to
the roof of the house; the expenditure of power depends on the time taken. When
you walk the bike, you can go as slow as you wish, one or two miles per hour,
perhaps even slower. However, while riding a bicycle it is difficult to maintain
balance at very low speeds. Walking the bike up the hill will take longer; hence, the
power level is reduced.

8.8 Power and kinetic energy
In the last section, our discussion of power looked at work that resulted in a gain of
potential energy. The performance of work can also lead to gains in kinetic energy or
frictional heating. Sometimes, work results in an energy gain of all forms of energy—
potential energy, kinetic energy, and frictional heating. What type of human power
generation is associated with kinetic energy? How about sprinting a 100 yard dash
in 10 s?

A speed of 100 yards in ten seconds works out to an average speed of:

= = =v
300 ft
10 s

30 ft/s 20.5 mph

If the runner starts from rest, can we write the power as:

= =

=
m v

t

power
work done

time
gain in kinetic energy

time

power

1
2

(8.13)

2

Assume the sprinter reaches her top speed quickly and is able to maintain this speed
for most of the race. Her top speed will be close to her average. This top speed is
attained quickly; we will use two seconds. If her mass is five slugs, the mechanical
power for the sprint is:

= =
× ×

=
m v

t
power

1
2

1
2

(5 slugs) (30 ft/s)

2 s
1125

ft-lb
s

2.05 hp

2 2

The actual power expenditure will be even higher due to losses, primarily air
resistance, as the runner approaches speeds near 10 mph (chapter 5). Again, the total
body power output will be much larger due to the low efficiency of the body.

An important additional insight to the power requirements for a moving body can
be obtained by returning to the definition of power:

= = = ×
⎛
⎝⎜

⎞
⎠⎟

Fd
t

F
d
t

power
work
time
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We have grouped the distance d and time t into the parenthesis; this ratio is simply
the speed v.

Thus:

= × = ×P F v in words: power force speed (8.14)

This expression gives a method to determine the power output in a variety of
situations. It is especially useful in determining the power output required to keep
objects moving at constant speeds.

As a simple illustration, think of lifting a 50 lb box a height of 4 ft off the ground
in a time of 1.0 s. Lifting the box at a steady speed of 4 ft/s and exerting only enough
force to overcome the box’s weight, there will be no gain in kinetic energy. The
power can be written:

= = × = = =P F v 50 lb 4 ft/s 200
ft-lb

s
0.364 hp 271 watts

(The same result for power is obtained if work is calculated as 50 lb × 4 ft= 200 ft-lb
divided by the time of 1.0 s.)

8.9 Power output to overcome resistive forces on a bike
Chapter 5 examined the forces of resistance on a bicycle; table 5.2 listed the resistive
forces Ftot on a moving bicycle on a level road. Using the speed and the total resistive
force, we apply the expression:

= ×P F v (8.15)tot

From chapter 5 the expression for total resistive force is:

= + = +F F F F k v (8.16)tot rb air rb
2

• Ftot is the total resistive force on a moving cyclist
• Frb is a constant value of rolling resistance and bearing resistance:
• Fair is the air resistance term proportional to the square of the speed, =F kvair

2

Using the typical values from chapter 5:

= =  F k v1.006 lb and 0.00640, in ft/srb

= + = + = +F F F F k v v1.006 0.00640 (8.17)tot rb air rb
2 2

Combining equation (8.17) with equation (8.15) we obtain a very interesting (and
disheartening) equation:

= +P v v1.006 0.00640 (8.18)3

The demoralizing aspect is the second (air resistance) term—the power goes as the
cube of the speed. If you wish to double your riding speed, it is necessary to generate
eight times the power =(2 8)3 !
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We have used the ‘k’ parameter appropriate for speed in ft/s (k = 0.00640) rather
than for speed in mph (k = 0.0138). This is necessary for the power calculation.
Another issue in comparing the various tables of numeric calculations is minor
variations (usually second decimal places) in tabulated data. These variations occur
from calculation rounding.

In table 8.2, equation (8.18) is used to obtain the power to overcome these forces
for a range of speeds. Included are columns that show the power in various units
such as ft-lb/s, watts, horsepower (hp) and Calories per hour.

Table 8.2 comes with a major caveat—it shows the mechanical power needed to
overcome the resistive forces. It does not accurately portray the total power that must
be generated by the cyclist’s body. The muscular efficiency of the rider’s body is
considered in the next section.

Table 8.2. Mechanical power to overcome air + rolling + bearing resistance.

constant = 0.006400 speed in ft/s, area = 5.382 sq ft
rolling resistance of tires = 1.0 lb
bearing resistance = 0.00628 lb

Speed Resistive force Total Mechanical power output

air rolling bearing total
mph ft/s lb lb lb lb ft-lb/s watts hp Calories/hour

2 2.93 0.06 1.0 0.00628 1.06 3 4.2 0.01 5
4 5.87 0.22 1.0 0.00628 1.23 7 9.8 0.01 11
6 8.80 0.50 1.0 0.00628 1.50 13 17.9 0.02 21
8 11.7 0.88 1.0 0.00628 1.89 22 30.0 0.04 35
10 14.7 1.38 1.0 0.00628 2.38 35 47.4 0.06 55
12 17.6 1.98 1.0 0.00628 2.99 53 71.4 0.10 83
14 20.5 2.70 1.0 0.00628 3.70 76 103 0.14 120
16 23.5 3.52 1.0 0.00628 4.53 106 144 0.19 168
18 26.4 4.46 1.0 0.00628 5.47 144 196 0.26 229
20 29.3 5.51 1.0 0.00628 6.51 191 259 0.35 303
22 32.3 6.66 1.0 0.00628 7.67 247 336 0.45 392
24 35.2 7.93 1.0 0.00628 8.94 315 427 0.57 498
26 38.1 9.31 1.0 0.00628 10.3 393 534 0.72 623
28 41.1 10.79 1.0 0.00628 11.8 485 657 0.88 767
30 44.0 12.39 1.0 0.00628 13.4 589 800 1.07 933
32 46.9 14.10 1.0 0.00628 15.1 709 962 1.29 1122
34 49.9 15.91 1.0 0.00628 16.9 844 1145 1.53 1336
36 52.8 17.84 1.0 0.00628 18.8 995 1350 1.81 1576
38 55.7 19.88 1.0 0.00628 20.9 1164 1579 2.12 1843
40 58.7 22.03 1.0 0.00628 23.0 1351 1834 2.46 2140
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8.10 Efficiency considerations in muscular effort
Table 8.2 summarizes the mechanical power output that the rider must expend to
counter the resistive forces. However, no mechanical process is 100% efficient. In a
machine such as the bicycle, there are frictional losses in the chain–gear system.
Evidence for such losses is seen in the wear that occurs in the chain and gear teeth.
Fortunately, these mechanical losses on a well maintained bike are amazingly small.
Modern derailleur systems have an overall mechanical efficiency of nearly 95% [1].
This means that 95% of the mechanical power applied to the front chainring is
delivered to the rear wheel of the bicycle; only 5% is lost to chain/gear friction.
In principle, in order to account for the drive system’s mechanical losses, the
table 8.2 power values should be adjusted to about 5% higher. We are not going to
make this small adjustment because there is another mechanical process that
operates at a much lower level of efficiency. The inefficient process is in the human
musculoskeletal system. At a given level of mechanical output, the body generates a
high level of heat. This heat may be considered as wasted mechanical effort.

The efficiency of muscular effort depends on a variety of factors—fitness levels,
training methods, pedaling rates, etc. Efficiency studies depend on careful measure-
ments of factors such as oxygen consumption. Published values of muscular
efficiency show numbers in the range of 20% [2]; a study in 2007 reveals that the
cycling efficiency can vary by a factor of two fold [3].

If we adopt the 20% muscular efficiency, the overall muscular effort is a
quintupling of the mechanical output. During periods of muscular exertion, the
body generates a 20% mechanical output and the other 80% of the energy goes into
heat. The right side of table 8.3 shows the total body power output as five times the
mechanical output.

At this point in our discourse, a reasonable question might be raised as to the real-
world accuracy of a table of numbers such as table 8.3. The power levels in this table are
‘theoretical calculations’ based on the model for resistive forces discussed in chapter 5.

A source of comparison for the calculated power levels is The Compendium of
Physical Activities [4]. In the Compendium article, hundreds of physical activities are
assigned a rating called METS (metabolic equivalent of task). The METS score is used
in a formula that indicates the activity’s power output in Calories/minute per kilogram
of body mass. By conversion of body mass into weight in pounds and minutes into
hours, we can interpret the Compendium’s METS in units of Calories/hour.

× =METS body weight in pounds
2.095

Calories
h

Cycling at a speed of 20 mph, the Compendium assigns 15.8 METS.
The Compendium offers no guidance as to how to account for the weight of the

bicycle; we will only use the weight of the rider (161 lb), since the machine’s weight is
not important at a constant speed on a level road. Doing the conversion from MET
to Calories per hour, we obtain for the metabolic power:

× =15.8 161 lb
2.095

1214 Calories
h
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Table 8.3 lists a power level at 20 mph of 1513 Calories/hour. The agreement
between numbers calculated from basic physics (table 8.3) and real-world power
measurements (the Compendium) is remarkable. Some discrepancy is to be expected
due to variations in metabolic efficiency, cyclist frontal area, accuracy of measure-
ments, etc. In particular, the assumed efficiency will have a major impact on the
agreement of the numbers.

Another source of published data of cycling power requirements is provided in
Professor Wilson’s book Bicycling Science [5]. Wilson lists the power expenditures
for a 187 lb rider/bike on a ‘tourist bike’ with a frontal area of 5.5 ft2 riding at 16
mph as: tractive power = 149 watts and metabolic heat = 735 watts. If we consider
the tractive power as equivalent to our mechanical power, the total power output
and mechanical efficiency may be written:

+ = =

= × =

(149 watt 735 watt) 884 watt 760
Calories

h

mechanical efficiency
149 watt
884 watt

100% 17%

In spite of some variations in the size, frontal area, and muscular efficiency between
Wilson’s larger rider system (187 lb) and the ‘standard rider’ (181 lb system) in this
book, the agreement with the power level of 842 Calories/hour at 16 mph in table 8.3
is reassuring.

8.11 Average speed versus average power
If I know my average speed, can I just use it to determine my average power?

Since an electronic cycle computer is an inexpensive accessory ($20–$30) that gives
measurements such as distance traveled, ride time, average speed etc, many riders
like to note and keep track of such parameters. It would appear a simple matter to
use the average speed of a ride to infer the average power output. It is especially
interesting to think of the power output in terms of Calories burned per hour. When
viewing the power values in table 8.3, we must be careful to avoid a serious mistake.
The last column, showing the power in Calories per hour, almost encourages this
mistake. A glance at the table shows that riding at 12 mph requires a power
expenditure of 416 Calories/hour, whereas riding at 24 mph demands a power
output of 2490 Calories/hour.

Is it a simple matter to use the average ride speed from the cycle computer and read
across table 8.3 to determine power expenditures, the Calories burned per hour? The
short answer is no! The longer answer is a triple no!! One reason is that the cycle
odometer knows nothing about the wind conditions. Are you riding into the wind or
against the wind? The force of air resistance depends on the effective wind speed
calculated as riding speed plus/minus wind speed. A similar argument can be made
when riding up and down hills. The basic cycle computer knows nothing of slope forces.

What if you are riding with no wind on level ground—can you then use your
average speed to get the average power? The answer is still no. If the ride involves
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any variation in speed, the average speed cannot be used to obtain an average
power.

The power is the product of the exerted force times the speed:

= ×P F v

The primary resistive force is air resistance that depends on the square of the speed:

∼F v2

Thus, for the power required to fight air resistance:

∼P v3

The power is proportional to the cube of the speed. A speed increase from 12 mph to
24 mph requires eight-fold power increase to overcome air resistance!

Consider a numerical example for a two-hour bike ride. You start out easy,
cycling at 12 mph for the first hour of the ride, and then pedal at 24 mph for the next
hour. Your total distance is 36 miles over the two-hour period, an average speed of
18 mph. This is the reading of the bike’s odometer and it is correct. Proper calibration
of cycle odometers results in a distance accuracy of one per cent. Since the time
measurement is also accurate, the average speed is very precise. The error arises when
we use a simple average speed to compute the average power. Table 8.3 shows that at
18 mph the total body output is 1143 Calories/hour. Does this mean that for a two
hour ride we burn 2286 Calories? The answer is no; however, it is one of those bad
news, good news things. The bad news—you cannot use average speeds to get a true
average power. The good news—your true average power will be higher than expected!

From table 8.3, the power for the first part of the trip (at 12 mph) is 416 Calories/
hour and the power for the second half of the trip (at 24 mph) is 2490 Calories per
hour. Thus, the total Calories burned is 2906 Calories—much better than the simple
average result of 2286 Calories!

Only if your ridewere at a constant speedwould it be accurate to use the odometer’s
average speed to get the average power. If the ride consisted of segments, each one at a
constant speed, it would be possible to do a power computation for each segment; you
then total the power. The caution on wind speeds and hills still applies.

The most precise and complete way to determine power is to measure directly the
rider force on the pedal. The pedaling force along with pedaling speed allows a
computation of power ( = ×P F v). Such technology does exist to measure the
force and speed parameters and, thereby, determine instantaneous power expendi-
tures. A summation of the instantaneous powers by the cycle computer allows
determination of total power during the ride. Such technology is substantially more
expensive than a basic cycle computer.
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IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 9

Temperature and heat

Some say the world will end in fire;
Some say in ice.

Fire and Ice by Robert Frost

Outdoor cycling is a quick lesson on the physics of temperature and heat.
Temperature, along with other elements of weather such as moisture and wind,
plays a major role in the cycling experience. To ignore these elements, the rider
invites an encounter with discomfort and even disaster. The terms temperature and
heat, common in daily conversation, need specific definitions and applications. This
everyday use of the words is not misleading: temperature is related to a level of
hotness or coldness; heat is something that can change the temperature. However,
we need to refine these concepts further.

9.1 Temperature and its measurement
We begin with a precise, rigorous definition of temperature (that is not especially
intuitive):

Temperature is a measure of the average kinetic energy (translational) of a
body’s molecules, atoms, and electrons

The molecules, atoms, and electrons are generically referred to as particles. By
itself, this definition is of limited use. Let us think further—in chapter 8 we learned
that kinetic energy is energy of motion; thus, temperature is a measure of the
particles’ motion—specifically, translational motion.

While this precise definition of temperature sounds very technical, it is consistent
with our everyday experiences. Think of a winter morning when your hands feel cold—
a common reaction is to rub the hands together to generate warmth. The reason the
rubbing works is that the motion of our hands is transferred into motion
of the molecules in the skin. Faster molecules have increased kinetic energy, and the
temperature is a measure of this kinetic energy. For an even more dramatic example,
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bounce down a set of steps while sliding your hand along a wooden railing—your hand
will get so hot it almost burns. As a third example—use your own judgment on this
experiment—take a wire coat hanger and rapidly bend it back and forth a few times.
Quickly touch the bent portion of the coat hanger to a sensitive region of skin. The coat
hanger will be hot enough to make you say ‘ouch’! In all of the above examples, the
increased kinetic energies are manifested as a rise in temperature.

Our rigorous definition could be restated as ‘temperature is an indication as to
how fast the atoms, molecules, and electrons are jumping around’. Keep in mind
that the jumping around refers to translational motion. Molecules can also exhibit
other forms of motion such as spinning around and oscillating. The spinning and
oscillating motions do not contribute to an object’s temperature.

While there are various methods of measuring temperature, most rely on the fact
that as an object’s particles move faster they take up more room; hence, the object
expands in size. Consider a classroom in which the students are sitting quietly at
their desks, enthralled at the joy of physics. A room thirty-foot square might
comfortably hold several dozen pupils. The bell rings; suddenly it is recess, and the
students decide to play indoor rugby. As they run about crashing into each other and
into the walls of the room, we might quickly conclude they need a larger playing
volume. If the walls were elastic, the room would expand from the student collisions.
Faster moving objects take up more room than slower moving objects.

Objects expand when their temperature is raised. The change in size allows for the
development of a temperature scale and a thermometer. We might take a section of
that metal coat hanger and use its length to determine the temperature. The absolute
length of the wire is not important; cut it to any convenient size. The important
factor is the change in the length of the wire in response to a change in temperature.
Two temperature points are needed.

What temperature points should be the reference? It would be nice if these points
are easy to reproduce—today, tomorrow or hundreds of years from now—and readily
duplicated worldwide. For these reasons, water at two of its standard phase transitions
is used. The phase transitions occur at the temperature when water turns from liquid
to solid ice and the temperature when water turns from liquid to gas (steam).

The basic experiment is simple—use two glass containers—one with a mixture of ice
and water (the exact percentage is not important), the other with water heated until
boiling with white stuff rising upward (figure 9.1). Notice, we did not say steam is
appearing—steam is the gaseous (i.e. vapor) state of water—individual water mole-
cules. You cannot see these individual molecules. The white stuff rising from a boiling
pot is water droplets—molecules that have already condensed back into the liquid state.

The technique is straightforward—plunge the metal bar into the ice water; give a
few moments for it to stabilize in temperature and size. Once the bar has stabilized,
measure its length. Give this length a number—an arbitrary number. Next, repeat
the experiment at the boiling point with the same metal bar. Assign the boiling point
another arbitrary number. In essence, a similar procedure was performed by Daniel
Gabriel Fahrenheit which resulted in 32o for the ice water mixture and 212o for the
boiling point. Another temperature scale, named after Anders Celsius, uses numbers
0o for ice water and 100o for boiling water.
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Are all temperature scales so arbitrary? Yes, except for one—the Kelvin scale. The
zero (called absolute zero) in the Kelvin scale is approximately −273 oC (−459 oF).
While many cyclists enjoy cold weather riding, few will be riding at absolute zero!

9.2 Heat

Keeping in mind that temperature is a measure of atomic, molecular, and electronic
motion, we regard heat as the energy transferred to or from a body that changes the
body’s atomic, molecular, and electronic motion. Physics teachers get a bit fussy here—
strictly speaking, the term ‘heat’ should be used only when the energy is in transit. In
other words, a pizza right out of the oven is hot, not because it contains a lot of heat;
rather it is hot because there is a high level of atomic, molecular, and electronic motion.
If you take a bite of the hot pizza and it burns your mouth, it is because heat was
transferred from the pizza to your mouth. The delivered heat then raises the temper-
ature of your mouth and you wince.

Consider another example—take two bricks; the first is placed in an oven and
heated to 400 oF and the other is placed in a freezer and cooled to 0 oF. The two
bricks are then put into an idealized insulated chamber; assume the chamber has no
heat transfer with the bricks (figure 9.2A).

400°

FLOW OF HEAT

Figure A

JUST AFTER PLACEMENT IN CHEST

NO FURTHER HEAT FLOW

Figure B

AFTER THERMAL EQUILIBRIUM

0° 200° 200°

Figure 9.2. (A,B) Bricks in insulated chest.

METAL ROD

ICE WATER MIXTURE BOILING WATER

Figure 9.1. Temperature measurement.
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The hot brick contains an intense level of particle motion and the cold brick has
little motion. After being placed in the chest, the hot brick will cool down and the
cold brick will heat up. These changes in temperature are due to heat flowing from
the hot brick to the cold brick. Let us be precise; the heat only exists while it is in
transit—flowing from one body to another. Eventually, if identical bricks are left to
stabilize in a perfectly insulated chamber, where there are no heat losses or gains
with walls of cooler or the outside surroundings, they will come to thermal
equilibrium at 200 oF (figure 9.2B).

The flow of heat normally occurs from warmer objects to cooler objects. The flow
is analogous to a ball rolling on a hill. Usually, the ball rolls from the top of a hill to
the bottom of a hill. Can a ball travel from the bottom to the top? Of course, when
work is done on the ball. Similarly, the performance of work causes heat to flow
from a colder object to a warmer object. This is the situation in your refrigerator or
freezer. The flow of heat in the reverse direction is due to the work being done by the
electric motor driving the compressor. If you put your hand behind or under the
refrigerator, you will notice the warm air associated with the exhaust of heat from
the cooler interior to the warmer surroundings of the kitchen.

9.3 Units of heat
There was a time when heat was considered a unique fluid; it was called the ‘caloric’.
The caloric flowed from a hot body to a cold body. In the latter half of the
nineteenth century, it was recognized that heat is best viewed as a form of energy.
Nevertheless, we often refer to the ‘calorie’ as a unit of measurement for heat.

A calorie of heat is defined as the amount of heat required to change the temperature
of one gram of water by one degree Celsius.

A gram of water has a volume of one cubic centimeter, about the size of a
fingertip. A related unit is the Calorie equal to 1000 calories. In everyday usage, such
as the calorie content of food, the capitalized Calorie is intended; e.g., ‘the serving of
cake contains 450 Calories’. Note: the reader will observe in this chapter the use of
metric units. Even in the United States with its entrenched Customary units, the
Calorie is the most familiar unit of energy.

9.4 Heat generation on a bicycle
It is easy to develop an estimate for the body’s cooling requirements at a particular
level of cycling. Think about our standard rider pedaling to overcome the forces of
air, bearing, and rolling resistance (chapter 5). In section 8.10, we learned that a
rider operating at a 20% muscular efficiency must exert a total body power output
equal to five times the required mechanical power; table 8.3 shows that at a speed of
20 mph (no wind, level road) the total body power output is:

= =P 1296 watts 1513
Calories

hour

Twenty percent of this power goes into moving the rider and bicycle; the other 80%
of the rider’s power:
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× =0.80 1513
Calories

hour
1210 Calories

hour
(9.1)

results in internal heat generation within the cyclist.
A very significant amount of body heat generated during the ride! In order that

the cyclist not overheat, this heat energy must be removed from the body through a
cooling process.

9.5 Mechanisms for heat transfer
How do we keep our bodies from overheating while at rest and while riding a bicycle?

In this section, we examine the mechanisms for the transfer of heat between objects.
These mechanisms for heat transfer are very important to a cyclist riding in warm
weather. The concern is to avoid overheating from the large amount of waste heat
generated. Conversely, when riding in cold weather, the cyclist must guard against
excessive heat loss caused by the moving air.

Traditionally, most physics books list four mechanisms by which heat is trans-
ferred. They are: conduction, convection, radiation, and evaporation.

The basic principle of each mechanism is examined and applied to the cyclist.
Most mechanisms for heat transfer depend upon the temperature difference between
objects. In considering the heat transfer from a cyclist, one of the objects is the
surface of the rider’s body and the second object is the environment. While it is often
stated that the ‘normal’ human body temperature is 98.6 °F, this temperature refers
to the internal core temperature; the exterior surface temperature will be much
lower. In our analysis, we will use a cyclist skin surface temperature of 91 °F(33 °C).

9.6 Conduction
Conduction is caused by collisions between atoms, molecules, and electrons

Suppose one side of an object is at an elevated temperature caused by a high level of
particle motion; these fast moving particles will collide with their slower neighbors
and transfer the motion. It is helpful to visualize the transfer of energy as a row of
dominoes falling down. The motion of a falling domino is transferred to its neighbor
which then falls and transfers the energy to the domino next in line.

Imagine sitting around a campfire. Perhaps, you have an iron poker; instead of
just moving the logs around, take the poker and bury one end into the red-hot
embers. Continue to hold the other end with a bare hand. After holding the poker
for a few minutes, notice that the upper end gets too hot to handle. Heat has been
transferred from the red-hot coals to your hand by means of conduction. The
particles in the red-hot embers crash into the particles at the bottom of the poker;
these collisions continue up the length of the poker until the fast moving particles are
in contact with the skin. Eventually, the molecules in the skin pick up the motion
and begin to move fast. Your hand is hot!

For effective conduction, there must be many closely spaced particles that are free
to move about and near enough to crash into one another. Metals are good heat
conductors due to their electrons’ ability to move freely. In contrast, a material like
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air is a very poor conductor. Although the air molecules are free to move, they are
not in close contact. We readily push the air aside as we move about!

An empirical expression for heat conduction is written as follows:

=
Δ

= × × ΔQ
t

K
A
L

Trate of heat transfer (9.2)

where:
Q/Δt—is the rate of heat flow, often expressed in units such as Calories/hour.
A—is the area of the surface through which the heat flows (m2).
L—is the thickness of the conducting material (m).
ΔT—is the difference in temperature between the warm and cold objects

(degrees Celsius).
K—is the thermal conductivity of the substance; we list a few sample values in

the table 9.1 [1]1.

As expected, the metals, with their free moving electrons, have high thermal
conductivity. The relatively low thermal conductivity of carbon fiber might be
surprising. Given the fact that carbon is a very good conductor of electricity, why
does carbon fiber not have a high thermal conductivity? The carbon fiber is a
composite of strands of carbon held together with an epoxy resin. The epoxy binder
is a poor conductor and, hence, it lowers the overall thermal conductivity of the
carbon fiber matrix. This poor thermal conductivity of carbon fiber results in an
issue with carbon wheels during long descents.

How effective is conduction in the removal of heat from a cyclist? The above
equation (9.2) is more difficult to apply to the human body than to the hot poker or
insulation in the walls of a house. The poker has an obvious length and the walls have
a known thickness. A moving body is an additional complication. Nevertheless, we
try for an estimate:

Surface area: articles in the literature suggest formulae for total body area based
on height and weight [2]. For a 5’10” rider of weight 161 lb, the surface area works
out to about 1.90 m2.

Table 9.1. Values of thermal conductivity.

Material k (in Calories/h-m-oC)

copper 342
air 0.0206
water 0.530
iron 69
aluminum 204
carbon fibera 128

aPackard A, Reynolds Cycling, personal communication

1www.The Engineering Toolbox/thermal conductivity
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Temperature difference: on a warm day, this temperature difference will be small.
The skin temperature of a human is about 91 oF (33 oC); for air temperature, we use
81 oF (27 oC). Thus: Δ = °T 6 C. This is a very small difference in temperature.
Contrast this difference to that of a poker tip embedded in red-hot coals at ~1500 oF.

Thickness of the conducting material: we are referring to the thickness of the layer of
air between skin at 91 oF and the ambient air temperature at 81 oF; this factor is difficult
to estimate. In order to get a feeling for the magnitude of the conductive effect, estimate
a thickness of one inch (0.0254 m). Another consideration in looking at conduction is
the effect of clothing. Assume that with warm weather cycling skins, the thin layer of
fabric does not appreciably affect the conduction of heat from the cyclist’s body.

Substituting the numbers into (9.2):

Δ
= × × Δ

=
– –°

× × °

= =

Q
t

K
A
L

T

0.0206
Calories
h m C

1.90 m
0.0254 m

6 C

9.25 Calories
hour

10.8 watts

2

The conductive heat loss is not significant. The body’s large surface area for heat
flow is offset by the air’s low value of thermal conductivity and the small temper-
ature difference between the rider’s skin and the ambient air. Riding in cold
conditions of 32 oF (0 oC) will result in a much larger temperature difference and
a heat loss of approximately five times the warm weather loss.

9.7 Convection
Convection is a form of heat transfer that occurs when warm fluids rise

To understand convection recall that, as the temperature of an object is raised, the
particles move faster and the size of the object increases. Consider a parcel (an
imaginary balloon) of air sitting just above a hot stove. This parcel of air is heated
via conduction (figure 9.3A). As the temperature of the parcel increases, the parcel
expands and becomes less dense (chapter 3). This heated air, with a lower density
than the surrounding air, will now rise upward due to a buoyant force (figure 9.3B).
The effect is similar to the buoyant force on a helium balloon.

Air is a very good convector; it easily heats up, expands and the parcel of air freely
rises. Have you ever noticed warm air near the ceiling of a heated room? Consider a
room with a source of heat on one wall—a baseboard heater or a potbelly stove—the
warmed air above the heater rises and travels along the ceiling (figure 9.3C). As it cools,
it usually drops on the far side of the room. The cool air is then drawn across the floor
back toward the heater. The draft of cool air can be quite noticeable; you feel chilled.
We will shortly discuss cooling by evaporation and see that moving air increases
evaporative cooling. The circulating parcels of air are called ‘convection cells’.

Convection increases the effectiveness of conduction. In the above discussion, the air
close to the top of the stove was heated by conduction. If the warmed parcel were
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constrained in one place, it would eventually reach the temperature of the stovetop.
Think of convection as a way for warmed air to ‘escape’ and move to the ceiling.
Convection serves to ‘carry away’ the warmed air. In the room’s convective circulation,
new cooler air is moved into place above the stove, thereby, maximizing the conduction
of heat from the stove. Convection has such a major impact on the conductive method
of heat transfer that the two mechanisms are often considered together under the
heading convection. An empirical model for convection of heat from the human body
has been proposed by Wegner [3]. In this model, the rate of heat removal may be
written:

Δ
= × × −Q

t
h A T T( ) (9.3)c s a

where:
Q/Δt—is the rate of heat flow, often expressed in units such as Calories/hour.
A—is the area of the surface through which the heat flows (m2).
hc—is a proportionality constant that varies with the air speed past the body.

The air speed is the sum of the rider’s cycling speed and the atmospheric wind.
Ts and Ta—are respectively the temperatures of the body surface and the

ambient air.

An important aspect in the above equation is that convective heat flow is
proportional to the difference between the rider’s skin and the air temperature. If

HOT STOVE

SURROUNDING AIR

Figure A

HOT STOVE

Figure C

HEATED & EXPANDED
PARCEL OF AIR

HOT STOVE

AIR MOVES ACROSS CEILING

COOL AIR DRAFT ALONG FLOOR

Figure B

PARCEL OF AIR

RISES

WARM AIR 
RISES 

COOL AIR 
DROPS 

Figure 9.3. (A,B,C) Convection.
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the day is warm with the air temperature at or above the rider’s body surface
temperature, there will be no heat removal due to convection.

To get a feeling for the magnitude of convection, let us calculate the convective heat
transfer for a rider of skin area 1.90 m2 and skin temperature of 33 °C (91 °F) cycling
on a nice day of air temperature 23 °C (73 °F). The values of hc, extracted from the
reference article, are for air speeds that are on the low side for a cyclist; the highest air

speed in the article is 5 m/s (11.2 mph). At a speed of 5 m/s, hc
°

≈ 31
watts

m C2
thus:

Δ
= −

=
°

× × ° − °

= =

( )

Q
t

h A T T( )

31
watts

m C
1.90 m 33 C 23 C

589 watts 506 Calories/h

c s a

2
2

We see that, on a pleasant cool day, convection can remove a significant amount of
the cyclist’s heat. A problem arises when the day is warmer. For instance, at an air
temperature of 32 °C (90 °F), the convective heat removal will be only ten percent
(59 watts, 51 Calories/h) of the above values. Riding at higher speeds will increase
the effect of convection but we emphasize that, when air temperature equals or
exceeds skin temperature, convection is ineffective as a body cooling mechanism.

9.8 Radiation
While the word ‘radiation’ sounds bad and the phrase ‘waves of electromagnetic
radiation’ sounds even worse, we will see that there are both nice and not so nice
types of radiation. First, consider something very nice—a quiet, still lake on a warm
summer day. Toss a small rock into the lake and observe the ripples as they travel to
shore. The ripples are a commonplace example of waves. Should the waves pass a
fishing bobbin, you will notice the bobbin moves vertically up and down. The
motion of the water is vertical but this motion, the wave, travels horizontally to
shore. If you look carefully, you will note that the wave consists of hills (crests) and
valleys (troughs). The distance from one peak to the next is the wavelength—maybe
a few inches for this water wave.

In the physical world, there are many other types of waves—sound, a rope shaken
at one end, and an important category called electromagnetic (em) waves. What are
these em waves? Play with two magnets—notice how they repel and attract each
other. These forces of repulsion and attraction occur via a magnetic force field. In
other words, the first magnet emits a force field that travels to the second magnet and
produces the attractive or repulsive force. A second example of a force field is the
electric force field that occurs between two electric charges. These fields might seem
very mysterious and difficult to visualize, but there is another field with which
you are very familiar—the Earth’s gravitational field. Fields are not so mysterious
after all.

Radiation is a form of heat transfer that occurs with electromagnetic (em) waves
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What is an electromagnetic wave? It is a pair of fields, one electric and the other
magnetic, that vibrate and travel like a wave. These em waves are common and easy
to produce; turn on a flashlight and shine it across the room. If the light hits a wall,
we see the shape of the beam. Exactly what comes out of the flashlight? It is a wave
of electric and magnetic fields! A display showing electromagnetic waves arranged
according to their wavelength is called the electromagnetic spectrum (figure 9.4).

These electromagnetic waves encompass radiations that range from radio waves
on the long wavelength side down to x-rays and gamma rays on the short
wavelength side. Some of these electromagnetic waves trigger sensations in the
eye’s retina and are called visible light. Even the colors of visible light differ in their
wavelengths; the reds are the longest visible wavelengths and the violets are the
shortest visible wavelengths.

The waves just longer than red light are called infrared. Our skin perceives the
infrared radiations as heat. Think about sitting around a campfire, a fire that has
been burning for some time with a nice glowing bed of red-hot coals. The heat you
feel on your face is the infrared electromagnetic waves traveling from the coals to
your face. The coals are emitting electromagnetic radiation.

For a body emitting radiations, the amount and specific wavelengths depend
upon the body’s temperature. As with conduction and convection, the radiative
energy transfer from a body depends on the temperature of the body and the
temperature of the surroundings. We get an estimate for the heat transfer via
radiation by means of a relationship called the Stefan–Boltzmann equation.

σ
Δ

= × × × −Q
t

e A T T( ) (9.4)s
4

r
4

e—is called the emissivity; it is a measure of how well objects absorb and emit
radiation. For skin, the emissivity is close to 1.0.

σ—is called the Stefan Boltzmann proportionality constant; it is equal to:

σ = ×
−

−5.67 10
watts

m K
8

2 4

Figure 9.4. Electromagnetic spectrum. Courtesy NASA image the universe.
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Ts and Tr—are the temperatures of the rider’s body, and the surrounding
temperatures. These temperatures must be expressed in the Kelvin temper-
ature scale; the conversion is simple: degrees K = degrees C + 273. For the
rider’s skin temperature (91 oF, 33 oC): Ts = 33 oC = 306 K and for the
surrounding air temperature: (81 oF, 27 oC): Tr = 27 oC = 300 K.

A—is the area of the rider’s skin surface; again we use 1.90 m2.

We substitute into (9.4):

σ
Δ

= −

= × ×
−  

× × −

= =

−⎜ ⎟⎛
⎝

⎞
⎠

Q
t

e A T T( )

1.0 5.67 10
watts

m K
1.90 m (306 K 300 K )

71.9 wattts 61.9
Calorie

h

s
4

r
4

8
2 4

2 4 4

While this magnitude of the radiative heat loss is significant, there is an important
additional consideration for an individual exercising outdoors. In the calculation
above, we used surroundings (27 oC) that are cooler than the skin temperature
(33 oC). The human body was radiating energy to its surrounding environment. What
happens when the surroundings are warmer than the rider’s skin temperature? In this
case, the radiative process causes the heat to flow into the rider! Even in situations of
cool air temperature, surfaces such as dark road pavements can be quite warm from
sunlight. Riding in direct sunlight exposes the cyclist to vast amounts of radiative
energy from the Sun. Overall, for a cyclist riding outdoors on a warm day, the
radiative method of heat transfer is more often a heating rather than a cooling process.

9.9 Evaporation
Why is it necessary to drink so much water on a long bike ride?

The importance of drinking adequate amounts of water and maintaining proper
hydration during strenuous exercise is well known. Along with serious falls and
crashes, dehydration and consequential heat exhaustion and heat stroke are at the
top of cycling hazards. In this section, we explore the physics of water and the role it
plays in keeping the body from overheating. Begin by thinking about a simple
experiment. Consider a pot containing a mixture of water and ice that is placed over
a steady source of heat; a stove set to high heat is ideal. The exact percentage of ice
and water is not important; a fifty-fifty mixture is good. Also needed is a
thermometer to measure the temperature of the mixture and a clock to measure
time; it is best to keep the mixture stirred. The experiment is very easy; every minute
or so, read the thermometer and observe what is happening in the pot. There is not
a direct way of measuring how much heat is added to the pot but, since we are using
a steady source of heat, we can consider the elapsed time to be a measure of the
heat added to the pot. After collecting the data of temperature versus time, a graph
will help visualize the results (figure 9.5 A).
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Since we begin with an ice-water mixture, the starting temperature should be
32 oF (0 oC); recall the discussion of temperature scales in section 9.1. What will be
the temperature after one minute? Is there any ice left? If so, the temperature will still
be 32 oF. The temperature will stay fixed at 32 oF for as long as there is ice and the
pot is properly stirred. The length of the period of fixed temperature depends upon
the amount of ice, water, and the heat delivered by the stove. Observation of the
contents of the pot shows the ice slowly melting. Call this period, when the
temperature is fixed at 32 oF and the ice is slowly melting, region A in the graph.

Eventually, the last bit of ice melts and there is now a steady increase in
temperature. Call this period of rising temperatures region B.

When the temperature climbs to 212 oF, we observe white stuff coming from the
pot (we are trying to avoid calling this white stuff ‘steam’). In addition, bubbles are
forming and rising to the top of the pot—the water is boiling. Suppose the pot sits
there boiling for a while; the temperature is seen as fixed at 212 oF. This portion of
the experiment will be referred to as region C.

A - MELTING

C - BOILING

TIME (HEAT ADDED) ----->

TEMPERATURE

32° F, 0° C

212° F, 100° C

Figure A

80 calories/gm

100 calories/gm

539 calories/gm

Figure B

ICE LIQUID VAPOR

MELTING - 80 calories/gm EVAPORATION- 539 calories/gm

CONDENSATION- 539 calories/gmFREEZING- 80 calories/gm

HEAT ABSORBED FROM SURROUNDINGS

HEAT RELEASED TO SURROUNDINGS

IN TEMPERATURE
B - STEADY RISE

Figure 9.5. (A,B) Phases of water.
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In the three regions of the graph, the water is transitioning between its three
phases—solid (ice), liquid (water), and gas (steam i.e vapor). The heat added to the
pot is the energy source driving these phase transitions.

Region A—The ice is melting. In the frozen state, the water molecules are packed
close together in a highly ordered crystalline arrangement. The water molecules in
this low energy state are happy to sit in one position next to each other. As the heat is
transferred into the ice, the energy serves to break up this close packed arrangement.
In an introductory physics experiment, the amount of heat (called heat of fusion)
required to melt ice is measured to be 80 calories per gram of ice. Eighty calories of
heat must be absorbed by the ice to convert one gram of ice into one gram of water.
After absorbing these 80 calories and melting, the water will still be ‘ice cold’ at the
freezing point of 32 oF (0 oC). The heat of fusion is a two-way street; when water at
32 oF (0 oC) freezes into ice at 32 oF (0 oC), 80 calories per gram of heat are released
to the surroundings (figure 9.5B).

Region B—The temperature of the liquid is steadily increasing toward the boiling
point. The heat transferred into the water is serving to increase the average
translational kinetic energy of the molecules. If you could observe the molecules,
you would see they are moving faster and faster as the temperature climbs. However,
because the water is in the liquid phase, the molecules are still close and touching one
another as they move about. Recall that the definition of the calorie is the amount of
heat required to change the temperature of one gram of water by one degree Celsius.
Therefore, to heat water from its freezing point to its boiling point requires 100
calories per gram (figure 9.5A).

Region C—The water is evaporating. The pot of water is observed to be boiling and
steam is generated. As heat is continuously added to the pot, the energy is acting to
break the individual water molecules free from the bonds that hold one molecule to
another. As the separated molecules break free, they jump out of the pot into the air.
Since water molecules are strongly attracted to each other, a sizeable amount of energy
is needed to separate them. The heat required to do so is called the heat of vaporization.
An elementary physics lab experiment can determine the heat of vaporization; at the
boiling point, it is found to be 539 calories per gram of water. This heat of vaporization
is also a two way process—heat is absorbed by the water as it is turned into a vapor and
heat is released by the vapor as it condenses back into liquid (figure 9.5B).

The evaporation of water removes a substantial amount of heat from the system!
Of course, an open container of water will evaporate without being raised to its

boiling point. Envision the water molecules at the surface. Since the molecules are
moving about with a range of speeds (recall temperature is a measure of the
average motion), there will always be some molecules that exceed the average. The
fastest moving molecules near the surface will escape from the bucket. Little by
little, perhaps over many days, the water molecules jump out of the bucket;
eventually we find the bucket empty and say the water has evaporated. This slower
process of evaporation at less than the boiling point also involves a heat of
vaporization. At a skin temperature of 91 oF (33 oC), a gram of water requires 577
calories to evaporate. The extra energy beyond the 539 calories/gram is a
consequence of the water molecules not moving as fast at the lower temperatures
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as they do at the boiling point; thus, more energy is required to free them from the
liquid phase.

9.10 Cooling effects of evaporation
How does sweating keep us cool?

Strenuous work and exercise produces sweat on the surface of the skin. The presence
of water on the skin serves to remove heat from the body through the evaporation
mechanism. Evaporation is the primary mechanism for removing heat from the
body—as we exercise, we work up a sweat, and our skin gets wet! At a skin
temperature of 33 oC, the evaporation of the water from the skin absorbs 577
calories per gram of evaporated sweat from the surroundings—the surroundings
primarily being the exercising body.

In addition to the evaporation of moisture from wet skin, another mode for
evaporative dispersal of body heat is through panting. The vigorous exhale moves a
substantial amount of vapor from the lungs to the atmosphere. This vapor carries
heat from the body.

Section 9.4 showed that our standard cyclist, riding at 20 mph, generates 1210 Calories/
hour of excess heat. Since conduction, convection, and radiation do not provide
sufficient cooling at skin temperatures, the primary means of cooling during this
strenuous exercise is evaporation. When air temperature is above skin temperature,
conduction, convection, and radiation perform no cooling function; rather, the warm
air serves to add heat to the exercising body. In this situation, the only mechanism for
the body to eliminate heat is evaporation.

How much water should I drink to avoid overheating during a long ride?

Although the body can withstand a short period of dehydration, it is interesting and
straightforward to estimate the amount of water needed to evaporate the excess heat
of 1210 Calories/h from the cyclist. We use a heat of vaporization of 577 calories per
grams of water (do not forget to convert Calories to calories):

= × =1210
Calories

hour
1 210 000

calories
hour

1 gram of water
577 calories/gram

2097 grams of water

This amount of water converts to 2.1 liters or 2.2 quarts. Approximately, three large
water bottles per hour!

Is it appropriate to say that dripping sweat is wasted sweat?

To achieve the cooling effect, the water must evaporate. If the sweat drips or is
blotted off the body, it does not get a chance to evaporate and remove heat from the
body. Do not waste your sweat!
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Besides sweating, are there any other ways that water keeps the rider from overheating?

The benefit of pouring water on the surface of the body is obvious. We can think of
the water as ‘free sweat’ without the danger of dehydration. We can also envision
panting (heavy breathing) as a mechanism for the body to expel water vapor. This
vapor is carrying heat from the body’s core.

Why do I sweat more when I stop riding?

You probably do not sweat more but, during a riding break, you lose the breeze that
aided in the evaporation of the water. Therefore, when you stop, you will notice the
sweat build up on your skin. The overheated feeling you experience during the break
quickly turns into a nice cooling effect once you resume pedaling.

9.11 Role of cycling clothing
Is there a valid purpose for those skintight clothes, or are they just supposed to make
you look cool?

Whether a particular rider looks ‘cool’ in spandex is beyond the scope of this book.
Looking cool is one thing; staying cool—or at least not overheating—is another. An
implication of the evaporation mechanism is that the water vapor must be allowed to
travel away from the body. Recall that the opposite of evaporation is condensation
and that the condensation of water vapor releases heat to the surroundings. If the
vapor condenses back into liquid water near the body, it tends to negate the cooling
process. We now appreciate the importance of wearing clothing that allows the water
vapor to pass to the atmosphere away from the skin. If you find that your clothing is
excessively wet after a hard ride, the water that evaporated and removed heat from
your skin then had a chance to condense and release heat in the vicinity of your body.
The cooling effect of the evaporation has been compromised. Given the importance
of evaporative cooling, it is apparent that riding in waterproof clothes is very bad
idea. The ultimate in exercise clothing is made from modern fabrics that utilize micro
pores. These tiny pores allow the passage of the small water vapor molecules from the
body while blocking the infiltration of the larger drops of liquid water such as rain.

9.12 Wind effects on cooling capacity of evaporation
He sends cold northern blasts
that harden the ponds like solid ground,
Spreads a crust over every body of water,
and clothes each pool with a coat of armor.

New American Bible, Book of Sirach, chapter 43, Verse 20

Whether a body is sweating profusely or not, the evaporation of water from the skin
has a major effect in removing heat from the body. It is the primary reason for the
wind chill effect. Every cyclist has experienced feeling much colder while riding a
bicycle than when at rest. Moving air past the rider assists in the removal of heat
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from the body. In addition to enhancing evaporation, the movement of air increases
other cooling processes such as conduction and convection. The cooling effect and
specific mechanisms are an active area of research [4, 5]. There are various versions
of ‘wind chill’ charts that allow for an estimate of perceived temperature versus the
actual temperature and wind speed. Regardless of the theories and scientific charts,
riders quickly learn the level of clothing that affords the desired comfort level.

Can we estimate the cooling power of this wind driven evaporation? The
evaporation of water from a surface is not trivial to model; factors such as wind,
atmospheric pressure, temperature, and the amount of existing water vapor in the
atmosphere (humidity) all play a role. Interesting models have been developed to
calculate evaporation losses and heating requirements of swimming pools, fish
farms, etc. The resulting empirical equations offer some estimates on evaporative
heat losses from wet surfaces2. The swimming pool model indicates that a cyclist,
traveling 20 mph with fully wetted skin, can experience a wind chill effect of near
3000 Calories per hour (author’s unpublished result). At high levels of humidity, the
evaporative cooling power is reduced by a factor of tenfold; the body’s major
cooling mechanism is seriously compromised.

9.13 Humidity and dew point
Is it really ‘not’ the heat but the humidity?

The efficiency of the body’s evaporative cooling process is strongly dependent on
the amount of water vapor that exists in the atmosphere. In this section, we consider
the ability of a parcel of air to hold water vapor and the dependence on air
temperature. While the molecules of atmospheric water vapor would like to stick to
each other and form droplets, there is a counter tendency for fast moving molecules
to bounce off rather than stick together. Table 9.2 shows, at a range of temper-
atures, the amount of water vapor (in grams) that a given parcel of air (in

2www.engineeringtoolbox.com/evaporation-water-surface-d_690.html

Table 9.2. Water vapor capacity for a parcel of air at standard pressure.

Temp. (°C) Temp. (°F)
Water vapor capacity

(Grams of water vapor per kg of air (g/kg))

0 32 3.5
5 41 5.0
10 50 7.0
15 59 10.0
20 68 14.0
25 77 20.0
30 86 26.5
35 95 35.0
40 104 47.0
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kilograms) can hold. Although this table refers to water in its vapor state, a gram of
water is about the size of fingertip; a kilogram (2.2 lb) of air is found inside a very
large beach ball (chapter 3).

From table 9.2, we note that the capacity of a parcel has a strong dependence on
temperature. Air at 59 oF can hold 10 grams of water vapor per kilogram of air; at
41 oF the parcel can only hold 5 grams of water vapor. This temperature dependence
is a consequence of the water molecules moving faster at higher temperatures and
thus more likely to bounce off rather than stick together and form droplets. On a
muggy day, you will readily observe water droplets forming on the outside of a
drinking glass containing a cold liquid.

The capacity numbers in table 9.2 indicate the maximum amount of water vapor
that a parcel can hold without condensing into droplets. Most of the time, the actual
amount of water vapor in the parcel will be less than the capacity values of table 9.2.
Consider an example of a parcel at 77 oF that has an actual water vapor of 15 gm/kg.
Since the capacity at 77 oF is 20 gm/kg, there is ‘room’ in the parcel for additional
water vapor. The ratio of actual water vapor to the parcel’s capacity is the basis for
the definition of relative humidity:

= ×Relative humidity
actual water vapor

capacity
100%

With the 77 oF parcel containing an actual water vapor of 15 gm/kg, we obtain for
the relative humidity:

= × =Relative humidity
15
20

100% 75%

The temperature and relative humidity have an inverse relationship. Suppose in
the example above, the temperature rises with no change in the actual water vapor.
This might occur as the air is simply warmed during the afternoon. At an afternoon
high of 86 oF, the capacity is 26.5 gm/kg and the relative humidity is only 57%. As
the Sun sets, the temperature might drop to 68 oF. The parcel at 68 oF will have a
capacity of only 15 gm/kg and the relative humidity is now 100%.

Since evaporative cooling is very important in removing heat from an exercising
body, riding a bike in the afternoon environment of 86 oF, 54% humidity might be
more pleasant than the clammy conditions of 68 oF, 100% humidity.

The oft repeated exercise mantra of ‘listen to your body’ is especially appropriate
when cycling in warm weather. The rider is well advised to not only pay attention to
how she feels but also how the brain is reacting. Often, heat stress first affects themind.
Cycling at high speeds requires constant vigilance for road conditions and hazards
such as pedestrians and vehicles. If you find yourself making small judgmental
mistakes, such as dropping a tire off the road edge or hitting small stones and
branches, it may be a sign that your mind has lost a critical level of sharpness.

9.14 Specific heat
Have you ever been hungry—really hungry—and taken a big bite of a hot slice of
pizza, fresh from the oven, and managed to burn the roof of your mouth? Sometimes,
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you do not learn and proceed to take a second bite, burning your mouth again. What to
do? Take a gulp of cold soda, blow on the pizza, wave it around? None of these options
will satisfy your ravenous craving for eating that tasty, mouth-watering pizza and you
might even be asked to leave that fancy pizza parlor. Next time, with your twice-burned
mouth, take a bite from the crust. It will not burn your mouth. What is the difference
between the front of the pizza with juicy cheese, tomato sauce, pepperoni, etc and the
back portion of dry crust? Both portions of the pizza were probably at the same 400 oF
temperature when they came out of the oven. The difference is a physical parameter
called the specific heat, sometimes called the heat capacity.

The amount of heat Q to change the temperature of the object is proportional to
several factors: m is the mass of the object, ΔT is the change in temperature, and c is
called the specific heat

We write an expression:
= × × ΔQ c m T (9.5)

In the CGS metric system, where heat is measured in calories, temperature in Celsius,
and mass in grams, the units of specific heat are calories per gram—degrees C.

It is best to think of specific heat as the number of calories of heat required to
change one gram of a substance by one degree Celsius. Recall in section 9.3, the
calorie was defined as the quantity of heat required to change the temperature of one
gram of water by one degree Celsius. This implies that the specific heat of water is
1.0. How does this compare to other substances? Most common materials have a
specific heat significantly less than that of water; a few are listed in table 9.3 [6].

Water’s high specific heat is due to the water molecules being strongly attracted to
each other; the tendency of water to ‘bead up’ and form drops is a consequence of
this attraction. Since the molecules hang on to each other, it is hard to get them
moving and raise the temperature of water—a large number of calories are needed to
heat the water. A metal has a low specific heat since the atoms are bonded together
by electrons that range throughout the metal. It is easy to increase the motion of
these free moving electrons, therefore easy to raise the temperature of the metal.

Thinking about that pizza again—we tried, but were unable to find the specific
heat of cheese, tomato sauce, pepperoni, and crust. Often, when confronted with a
complex physical analysis, it is best to simplify with a basic model. Assume the

Table 9.3. Specific heats of various materials.

Material
Specific heat (heat capacity)

calories/gm − °C

water 1.0
air 0.241
aluminum 0.215
iron 0.108
carbon fiber [7] 0.359
copper 0.092
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cheese, tomato sauce, and pepperoni to be mostly water and the specific heat is 1.0.
For the crust, we approximate the dry crust as mostly air. The specific heat of air is
0.241. Therefore, it takes about four times as many calories of heat to raise the
temperature of a gram of the cheese, etc as it does to raise the temperature of the
same amount of crust. In addition, these juicy ingredients are more massive than
the crust. When you take that bite, these tasty items deliver to your mouth much
more heat than the dry crust.

Why does the rim of a bicycle get so warm after a long hard stop?

As a moving bicycle is brought to a stop, the sliding friction causes a significant
amount of kinetic energy to be dissipated as heat between the brake pads and the
rim. Typical rim materials, such as aluminum and carbon fiber, are like the pizza
crust; they have a low specific heat and are easy to heat up.

Envision several scenarios involving heavy braking of a bicycle.

Scenario #1: rapid braking from a high speed
We can estimate the heat generated by looking at the kinetic energy change that
occurs as a bike is brought to rest from an initial speed of about 35 mph. (For
consistency with a subsequent calculation use a speed of 35.1 mph). Also, ignore the
losses to air resistance; this energy serves to heat the air, and who worries about
leaving behind a lot of hot air? Assume a worst-case scenario in which all of the bike/
rider kinetic energy is converted into heat that is delivered to one wheel. In addition,
the braking process is sufficiently fast that the spokes conduct little heat from the rim
and there is insignificant energy loss to heat radiation from the rim.

A rider/bicycle system of mass 5.62 slugs traveling at 35.1 mph (51.5 ft/s) will
possess the following kinetic energy:

= = × × = =KE mv
1
2

1
2

5.62 slugs (51.5 ft/s) 7453 ft-lb 2412 calories2 2

(1 calorie = 3.09 ft-lb, appendix B).
What would be the rim’s final temperature if all of this heat were delivered to the

rim of single bike rim? The specific heat of aluminum is 0.214 calories/gm; if the rim
has a mass of 1000 gm, we can rearrange the specific heat expression equation (9.5)
and solve for ΔT :

°

° °Δ =
×

=

−
×

= =T
Q

c m
2412 calories

0.214
calories
gm C

1000 gm
11.3 C 52.3 F

This increase in temperature, added to ambient temperature, will make the wheel
warm to the touch but the rim and tire will be fine.

What occurs in a situation that involves more intense braking? Suppose we
encounter a two-mile long, steep hill of 10% grade?

Scenario #2: riding the brakes down a hill
Our rider decides to cautiously proceed down the hill at a very slow speed; he ‘rides
the brakes’ to hold the speed in check to only a few miles per hour. The result is that
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the bike/rider potential energy at the top of the hill is converted into thermal energy
at the brake pads. To obtain a worst-case result, assume minimal losses to air
resistance and other frictional forces.

A two-mile hill (10 560 ft) with a 10% grade °θ =( 5.71 ) results in a vertical drop
of 1051 ft; the loss of potential energy and equivalent amount of heat is:

Δ = = × × = =PE mgh 5.62 slugs 32.2
ft
s

1051 ft 190 000 ft-lb 61 500 calories
2

It is a bad idea but, if the braking is performed with one wheel, the change in
temperature is:

Δ =
×

=

− °
×

= ° = °T
Q

c m
61 500 calories

0.214
calories

gm C
1000 gm

287 C 549 F

The melting point of aluminum is about 1200 °F; there is no danger of melting the
rim.

Perhaps our assumptions are extreme; however, sometime after a long hard
descent, carefully touch your rim—it is definitely warm. Perhaps even more
dramatic are the hot temperatures generated with disk brakes. Touching the rotors
at the bottom of a long hill can produce an unpleasant burn. The reader is invited to
do the calculation using the specific heat of steel and the mass of a rotor. An
advantage of disk brakes is that the generated heat does warm up the rims.

Scenario #3: no braking until the bottom of a long hill
While this third scenario—flying down a long steep hill—might seem reckless to a
novice rider, it results in minimum temperature impact on the rims. The reason is that
the rider travels down the hill under a condition of terminal speed. From table 6.2 we
see that, for our standard rider, the terminal speed on a 10% slope is 35.1 mph. If the
rider brakes hard at the bottom of the hill, the rise in rim temperature will be the value
calculated in scenario #1, that is a temperature increase of 52.3 °F

The system’s potential energy at the top of the hill is converted into kinetic energy
that, in turn, is lost to frictional heating of the air. Descending at high speed might
well be ‘safer’ in regard to excessive heating of the rims, brake pads, and tires.
Of course, the high speeds and hard braking at the bottom involves other safety
considerations.

Why are carbon rims more susceptible than aluminum to overheating during a
hard brake?

Carbon fiber wheels have a reputation for being more susceptible than metallic
wheels to overheating. They have been determined to reach temperatures over
300 °F in hard braking [8]. The hot wheel temperatures create serious safety issues
such as rim deformation and softening of tubular tire glue. When comparing the
heating effects on different rim materials, several factors need to be considered:
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• Specific heat of the materials. From table 9.3, we see that aluminum has a
specific heat of 0.215; carbon fiber has a specific heat of 0.359. It is ‘easier’ to
raise the temperature of aluminum when compared to the same mass of
carbon.

• Mass of the rims. The advantage of carbon rims is that they can be made
lighter than aluminum rims of the same strength. However, the lower mass
carbon rims make them easier to heat up.

• Thermal conductivity. In table 9.2 of thermal conductivities, we see that
aluminum has a conductivity of 204 Calories/h-m- °C and carbon fiber has a
conductivity of 128 Calories/h-m- °C. In calculations on rim heating, we
assumed that the heat is uniformly dispersed throughout the mass of the rim.
With a rim material of lower conductivity, heat dispersal is less likely to
occur. Aluminum does a better job than carbon fiber in conducting the heat
throughout the entire rim. With carbon, heat generated near the pads will not
be as readily dispersed throughout the rim’s mass.

• Mechanical response to high temperatures. Metals, such as aluminum, will
expand in a uniform manner to temperature changes. Carbon fiber materials,
with their epoxy binders, have a transformation temperature much less than
their melting point. Above this transformation temperature, the material
begins to lose its rigid integrity and the substance becomes more plastic or
rubbery in behavior.
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IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 10

Rotational motion

All things come round to him who will but wait.
Longfellow, Students Tale

We now begin an exploration of the physics of rotary or circular motion. The
application of a few principles is key to understanding many aspects of the bicycle’s
behavior:

• response of the foot pressing on pedals
• gearing systems
• energy of the spinning wheels
• turning of the handlebars
• balancing on a bicycle
• making turns
• self stability of the bicycle
• wheelies and headers

This approach to circular motion makes careful application of Newton’s Laws of
Motion. An understanding of inertia is critical in comprehending many situations of
circular motion. These discussions on circular motion employ the methodology used
in the study of linear motion; first, we look at the kinematics and later the dynamics
of circular motion.

10.1 Kinematics of circular motion
Chapter 4 explored the kinematics of motion with concepts such as distance, speed,
velocity, and acceleration. These motions are properly called ‘linear’ or ‘transla-
tional’ motions. In this section, we will see that there is often another type of motion
associated with moving bodies. The motion is that of rotation; we will explore
concepts such as angular distance, angular speed, angular velocity, and angular
acceleration. No doubt, as the bicycle translates forward, there is quite a bit of
rotational activity. The cranks spin, the gears turn, the wheels rotate, and, when
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making a turn, the entire system revolves about a point at the center of a circle.
The concepts of rotational motion are best understood as analogs to linear motion.

Think of an object moving in a circle at a steady speed. It could be a car or a bike
on a circular racetrack or even the tip of a hand on a clock. In figure 10.1, the clock
face has only one hand—the minute hand. Suppose, initially, the minute hand points
directly upward at twelve o’clock and ten minutes later the hand is aiming at two
o’clock. The hand has swept out an angle θ of 60° in the clockwise sense. We also
envision the tip of hand as sweeping out an arc of length s.

This simple situation introduces a new way to describe angles; we define it to be
the ratio of the arc length s to the length of the clock hand r:

θ = s
r

(10.1)

When an angle is specified in this manner, the units are called radians. To get a
feeling for these units of radians, we put some numbers in the example. Suppose
the length of the second hand is six inches, the circumference of the circle will be
37.7 inch. The arc length from 12 o’clock to 2 o’clock positions will be one sixth of
the circumference or 6.28 inch. Thus for the angle, we obtain:

θ = = =s
r

6.28 inch
6 inch

1.05 radians

Instead of saying the angle is 60°, we could say that the angle is 1.05 radians! Is there
any advantage to the use of radians to measure angles? Yes, but a bit of patience is
necessary to see the advantage develop. If the arc is the full circumference, the arc
length is πr2 and the angle of a full circle of any size is:

θ π π= = = =s
r

r
r

2
2 radians 6.28 radians

The angle for a full circle is 360° or π2 radians. The ratio gives us a useful conversion:

π
° = °

360
2 radian

57.3 per radian
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Figure 10.1. Clock face.
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This example can be extended into rotational motion by considering further
the minute hand as it moves a distance s from 12 o’clock to 2 o’clock in a time
t (normally ten minutes). Using the concepts of chapter 4, we write the linear
speed as:

= =v
s
t

distance
time

(10.2)

Dividing both sides by the length of the hand r:

θ= = =v
r

s
rt

s r
t t

(10.3)

The right side is called the angular speed, usually represented with the Greek letter ω
(lower case omega).

ω θ=
t

(10.4)

Another useful expression connecting the linear speed with the angular speed is
obtained by combining the two previous equations:

ω ω= =v
r

v r; or (10.5)

If our clock is running fine, it traverses the 1.05 radian angle in ten minutes; the
angular speed in radians per second is:

ω = =1.05 radians
600 s

0.00175 radians/s

As an example of the application of these angular concepts to the bicycle—suppose
we ask how many rotations will a wheel make if a cyclist travels 3000 miles? It is
important to use a consistent set of units—get all the distances in feet:

= × =s 3000 mile
5280 ft

mile
15 840 000 ft

A bike, with wheel diameter of 27 inches, has a radius of 1.125 ft; the angle traversed
in the 3000 mile trip is:

θ = = =s
r

15 840 000 ft
1.125 ft

14 080 000 radians

since one revolution of the wheel is π2 radians:

π
= =number of revolutions

14 080 000 radians
2

2 242 038 revolutions

A lot of spinning!

Understanding the Magic of the Bicycle

10-3



10.1.1 Angular velocity

These new angular measurements introduce another way to think of motion. Since
the tips of the clock’s hands are executing angular motion, they have an angular
speed and the associated vector quantity, the angular velocity. The direction of the
angular velocity will initially seem strange—it is given by the right hand rule: To
obtain the direction of an angular velocity vector, stick the thumb out and curl the
fingers of the right hand along the sense of the rotation (clockwise or counter-
clockwise); the angular velocity vector points in the same direction as the thumb.
Figure 10.2 shows a toy car traveling counterclockwise; its angular velocity is
pointing upward. The hands of a wall clock have an angular velocity that points into
the wall. A forward moving bicycle wheel will have an angular velocity that points
along the hub toward the left.

10.1.2 Angular acceleration

In a clock that is operating properly, the hands will run at constant angular speeds/
velocity. However, what if the clock is started up but the minute hand requires a few
seconds to reach its normal speed of 0.00175 rad/s? The hand is undergoing an
angular acceleration; it is gaining rotational speed. The angular acceleration α is
defined as the change in angular speed with time.

α ω ω= −
t

(10.6)
f i

If the hand starts from rest ωi and needs three seconds to reach normal speed ωf , the
angular acceleration is:

α = − =0.00175 radians/s 0
3 s

0.000583 radians/s2

To gain a better understanding of these angular concepts, consider another example
of circular motion—a cyclist riding around a circular path. If she rides at a steady

Figure 10.2. Right hand rule.
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linear speed vi of 10 mph (14.7 ft/s) in a circle of radius 50 ft, her initial angular speed
is written:

ω = = =v
r

14.7 ft/s
50 ft

0.294 radians/si
i

While riding at these constant linear and angular speeds, she is only pedaling hard
enough to overcome the resistive forces described in chapter 5. Table 5.2 shows
that, at 10 mph, she must press on the pedals hard enough to balance a total
resistive force of 2.39 lb. After riding for a time at 10 mph, she decides to add an
extra kick and one half second later her speed vf is 11 mph (16.1 ft/s); thus her final
angular speed is

ω = = =v
r

16.1 ft/s
50 ft

0.322 radians/sf
f

Her linear acceleration is:

= − = − =a
v v

t
16.1 ft/s 14.7 ft/s

0.5 s
2.80 ft/sf i 2

and her angular acceleration is

α ω ω= − = − =
t

0.322 radians/s 0.294 radians/s
0.5 s

0.056 radians/sf i 2

If her acceleration is constant, her average linear and angular speeds are:

ω ω ω

= + = + =

= + = + =

v
v v

t

2
16.1 ft/s 14.7 ft/s

2
15.4 ft/s

0.322 radians/s 0.294 radians/s
2

0.308 radians/s

ave
f i

ave
f i

In the one half second of acceleration, she will traverse an angular distance of

θ ω= × = × = × ° = °t 0.308 radians/s 0.5 s 0.154 radians
57.3

1.0 radian
8.82ave

Another useful expression for the angular acceleration may be obtained by returning
to equation (10.6) and adding a few extra steps:

α ω ω ω= − = Δ = Δ
t t

v r
t
/f i

since
Δv

t
is the linear acceleration a, we obtain a connection between the angular

acceleration and the linear acceleration:

α = a r/ (10.7)
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10.2 Dynamics of circular motion

To produce acceleration the cyclist, riding in the circle, must press hard enough on
the pedal to create a net external force that is greater than the resistive forces.
Newton’s Second Law gives the value of the force; to produce an acceleration of
2.80 ft/s2 on a bike rider system of 5.62 slugs, the net external force in the forward
direction is:

= = × =F ma 5.62 slugs 2.80 ft/s 15.7 lb2

Since the rider’s acceleration is tangent to the circle, this force is also tangent to the
circle. These vectors are illustrated in the figure 10.3 below.

Shown in the right hand drawing (figure 10.3B) is a line representing the circle’s
radius. This situation affords an opportunity to introduce the new physical quantity
torque. The radial distance r is called the lever arm; the product of the lever arm and
the force is the torque. Traditionally, the Greek letter τ (pronounced ‘tau’) is the
mathematical symbol for torque, thus

= ×torque lever arm force

in letters

τ = ×r F (10.8)

The primary advantage of these circular motion concepts occurs when we explore
rotational dynamics—the role of forces in producing angular accelerations. From
Newton’s Laws of Motion in chapter 5, we learned that changes in linear motion of a
body, i.e. accelerations, are caused by net external forces. In the realm of rotational
motion, the rotational analogue to a force is a physical concept called torque. Changes
in rotational motion, i.e. rotational accelerations, are caused by net external torques.

a
F

r

Figure BFigure A

Figure 10.3. (A,B) Circular motion.
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(The next chapter explores further aspects of torque; the more descriptive d⊥ is used
as the symbol for the lever arm.)

To obtain the torque on the cyclist accelerating about the 50 ft circle, we have:

= × = × =torque lever arm force 50 ft 15.7 lb 785 lb-ft

Since the ft-lb is the unit of work and energy in the U.S. Customary system, the units
of torque are typically written as lb-ft; another common unit for torque measure-
ment is the lb-inch.

Returning to Newton’s Second Law:

=F ma

and multiplying both sides by r:

× = ×r F r m a

The left side is torque; on the right side, we use equation (10.7) to substitute for the
acceleration α=a r

τ α α α= = =rm r mr I2

where we have replaced mr2 with a physical expression called the moment of inertia.
The letter I is the symbol for moment of inertia.

=I mr (10.9)2

The units of moment of inertia are ‘slugs-ft2’; they have no special name. The
resulting expression is written:

τ α α τ= =I
I

or

and is the rotational analogue to Newton’s Second Law

= =F ma a
F
m

or

Angular acceleration is the rotational analogue to linear acceleration and moment
of inertia is the rotational analogue to mass; torque is the rotational analogue
to force. Just as we say forces cause linear accelerations, we can say torques
cause angular accelerations. Masses require forces to accelerate; moments of inertia
require torques to change their rotation. Individual forces are summed to obtain a
net external force, individual torques are summed to obtain net external torque.

Each of the linear concepts of motion has a rotational analogue summarized in
the table 10.1.

Although the basic idea of torque has been introduced in this section, it has so
many nuances and applications to the bicycle that we devote the entire next chapter
to the physics of torque.

Before leaving this section, it is worthwhile to point out that, in addition to the
resistive backward forces and the net forward force discussed above, there is another
unbalanced force on the bike/rider system. This force acts perpendicular to the
body’s velocity along the radius directed toward the center of the circle. The force,
called the centripetal force, will be the topic of much discussion in chapter 12.
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10.3 Rotational kinetic energy
This section explores further aspects of rotational motion. A simple situation of a
stone on a rope being whirled in a horizontal circle is a good example (figure 10.4A).
The view from above is also shown (figure 10.4B).

If the rock has a mass m and is traveling at a constant linear speed v, the rock’s
kinetic energy is:

=KE mv
1
2

(10.10)2

With a circle of radius r, the linear speed is related to the angular speed: ω=v r
The kinetic energy becomes:

ω=KE m r
1
2

2 2

Grouping the mass and radius terms:

ω=KE mr
1
2

( )2 2

The term in parentheses is the moment of inertia: =I mr2

Figure A

v

r

Figure B

Figure 10.4. (A,B) Whirling a rock.

Table 10.1. Comparison of linear and rotational motion parameters.

Linear motion Rotational motion

distance: s angle θ (= s/r)
speed: v angular speed: ω (= v/r)
acceleration: a angular acceleration: α (= a/r)
force: F torque: τ (= r × F)
inertia (linear): m inertia (rotational): I
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The whirling rock’s kinetic energy is now considered as a rotational kinetic energy
and is written:

ω=KE I
1
2

(10.11)rot
2

This expression is the rotational analogue to linear kinetic energy equation (10.10).
Putting some numbers into this expression: suppose a rock of mass 0.0311 slugs

(one pound) is whirled at three revolutions per second in a circle of 2.5 ft radius.
The angular speed will be:

ω = × π =3 revolution
s

2 radians
revolution

18.8 radians/s

The rock’s moment of inertia is:

= = × =I mr 0.0311 slugs (2.5 ft) 0.194 slugs-ft2 2 2

For the rotational kinetic energy:

ω= = × × =KE I
1
2

1
2

0.194 slugs-ft (18.8 radians/s) 34.3 ft-lbrot
2 2 2

The reader might wish to verify that this result is the same as obtained by computing
the linear speed based on the circumference of the circle and the time of revolution.
The real value of using rotational concepts comes when we are dealing with non-
point masses such as hoops, disks, rods etc.

10.4 Moment of inertia of non-point masses
Our examples thus far have illustrated moving objects considered as point masses—
that is, all of the object’s mass was concentrated in a size small compared to other
distances in the problem. For example, the diameter of the rock was small compared
to the length of the rope.

The fact that the moment of inertia contains the square of the radius tells us that
the location or distribution of the mass has a major impact on the moment of inertia.
This effect is easy to demonstrate on a kitchen refrigerator door with large shelves
that can hold gallon size bottles of milk. The radius of rotation is determined by the
distance of the milk bottles from the hinge axis. When the bottles are located close to
the hinges, the door is easy to swing; whereas, moving the same bottles out to the
edge of the door makes the door noticeably harder to swing open and close.
Swinging the door provides an intuitive feeling for the moment of inertia.

Just as mass is a measure of a body’s inertial tendency to resist changes in linear
motion, the moment of inertia is a measure of the body’s tendency to resist changes in
rotational motion.
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With rotating bodies, not only is the mass of the body important, but also the
distribution of the mass about the axis of rotation. In general, the moments of inertia
for a body of a specific shape can be obtained using calculus; however, for many
simple shapes it is possible to use intuition to obtain an object’s moment of inertia.
We offer a few below.

Hoop—such as a bicycle rim—if all of the mass is concentrated at a fixed
distance from a central axis rotation, the moment of inertia is the same as a point
mass, that is:

=I mr (10.12)hoop
2

Solid disk—such as a coin rotated about central axis perpendicular to the
face—if the mass were uniformly distributed, we could envision it as a series of
concentric rings and the moment of inertia would be one half that of a ring of the
same mass:

=I mr
1
2

(10.13)disk
2

The same formula would apply for a solid cylinder rotating about its central axis.
Long thin rod—such as a bicycle spoke—if it has a length l and a mass m and is

rotated about an axis on one end, it will have a moment of inertia less than one half
of the point mass:

=I ml
1
3

(10.14)rod
2

The reader is advised to talk to her local calculus teacher for exact proofs of the
above. In the next section, several of these shapes are combined to obtain the
moment of inertia for a bicycle wheel.

10.5 Moment of inertia and rotational kinetic energy
of bicycle wheel

Objects of complex shapes, such as a bicycle wheel, can be divided into a few simple
components. In the wheel, the mass is found in three locations: the periphery (rim,
tire, and tube), the spokes, and the hub. The rim, tire, and tube are hoops; the spokes
are long thin rods; the hub may be approximated as a solid disk. Since all parts
are rotating about the wheel’s center axis, we can sum the individual moments
(figure 10.5).

Since riders of high end bicycles are very conscious of their bike’s weight, there
are published values of the wheel components1. Depending on the price point, there
is considerable variation in masses, the more expensive being the least massive. The
table below lists typical values for mid-priced wheels (Table 10.2).

1www.Wheelbuilder.com is an excellent source of data.
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Rim, tire, tube. Since the rim, tire, and tube share the same geometry, we can
add their masses and consider their radii to be 1.13 ft (27 in diameter wheel).

= = = + +
=

I I m r (0.035 slugs 0.014 slugs 0.007 slugs)(1.13 ft)

0.0715 slugs-ft
rim tire tube hoop

2 2

2

Spokes. The spokes are long narrow rods, rotated about one end; ignore the distance
from the inner end of the spoke to the center of the wheel’s rotation. A typical spoke
length is about 0.820 ft.

= = = =I I ml
1
3

1
3

(0.008 slugs)(0.820 ft) 0.00179 slugs-ftspokes rod
2 2 2

Hub. The construction is complex with bearings, flanges, cones, etc. The good
news is that all parts of the hub are very close to the axis of rotation and will have
minimal impact on the wheel’s overall moment of inertia. A simplification is
obtained by using the geometry of a solid cylinder of radius 0.08 ft.

= = = =I I mr
1
2

1
2

(0.010 slugs)(0.08 ft) 0.00003 slugs-fthub disk
2 2 2

Adding the above three results to get a value for the overall wheel’s moment of inertia:

= + +
= + + =

I I I I

I 0.0715 0.00179 0.00003 0.0733 slugs-ft
wheel rim tire tube spokes hub

wheel
2

Table 10.2. Wheel components mass and geometry.

Component Mass in slugs Geometry

rim 0.035 hoop
tire 0.014 hoop
tube 0.007 hoop
spokes—22 count 0.008 rod
hub 0.010 cylinder

Figure 10.5. Wheel, spokes, and hub.
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The calculation reveals that the spokes and hub contribute only a small amount to
the wheel’s moment of inertia. A careful reader might inquire about the air in the
tire; she is invited to use the air’s mass (about 10 grams) in a similar fashion to the
rim, tube and tire.

Using the wheel’s moment of inertia, the rotational kinetic energy may be
calculated. If the wheel is on a bicycle traveling at 20 mph (29.3 ft/s), the angular
speed will be:

ω = = =v
r

29.3 ft/s
1.13 ft

25.9 radians/s

The rotational kinetic energy of the wheel is:

ω= = =KE I
1
2

1
2

(0.0733 slugs-ft )(25.9 radians/s) 24.6 ft-lbrot
2 2 2

While the front and rear wheels will be slightly different due to spoke counts and hub
construction, doubling the above value gives a good approximation for the rota-
tional kinetic energy of both wheels.

How does this number compare to the translational (linear) kinetic energy of the
total system consisting of the bike and rider? For a 161 lb rider on a 20 lb bike,
including wheels, (5.62 slugs), the translational kinetic energy at 20 mph is:

= = =

= + × = +

=

KE mv

KE KE KE

1
2

1
2

(5.62 slugs)(29.3 ft/s) 2412 ft-lb

2 (2412 ft-lb) 2(24.6 ft-lb)

2461 ft-lb

translation
2 2

total translation rotating wheels

Note that the wheels possess two forms of kinetic energy—translational kinetic
energy associated with the system’s linear speed and rotational kinetic energy due to
the spinning of the wheels.

In this example, the rotational contribution to the total kinetic energy is a small
fraction, approximately 2%, of the total. For a ‘cruiser’ type bike with massive
wheels and tires, the rotational kinetic energy would be several times larger, but
nevertheless small compared to translational kinetic energy.

10.6 Angular momentum
In this section, we continue to explore rotational analogues to linear motion. In
chapter 7 we saw the concept of momentum. For the rock of mass m traveling at a
speed v, the momentum p is defined as:

=p mv (10.15)

Making the following substitutions for the rotational equivalents:

ω= =m
I
r

v rand
2

Understanding the Magic of the Bicycle

10-12



We obtain:

ω ω

ω

= =

=

p
I
r

r
I
r

pr I

( )
2

The right side is called the angular momentum L:

ω=L I (10.16)

The angular momentum is the rotational analogue to linear momentum equation
(10.15).

The whirling rock of section 10.3 may be used for an angular momentum
calculation. The rock of mass 0.0311 slugs is whirled at 3.0 revolutions per second in
a circle of 2.5 ft radius. The moment of inertia is 0.194 slugs-ft2 and the angular
speed is 18.84 rad/s. We obtain for the angular momentum:

ω= = × =L I 0.194 slugs-ft 18.84 radians/s 3.65
slugs-ft

s
2

2

What is the value of this new quantity called angular momentum? As we saw in
chapter 7, linear momentum is changed by net external forces; angular momentum is
changed by net external torques. In the absence of these net external forces and
torques, the momenta are constant. A formal statement of the law of conservation of
angular momentum is:

In the absence of net external torques, the angular momentum of a system is conserved

With no external torques, the initial angular momentum must equal the final angular
momentum:

ω ω
=
=

L L
I I

i f

i i f f

This conservation of angular momentum is easy to demonstrate with the whirling
rock. As the rock is being whirled by the right hand, use the left hand to pull
downward on the rope’s loose end and therefore, reduce the size of the rock’s orbit.
The rope tension is radially directed and produces no torque. As the radius of the
orbit shortens, perhaps from 2.5 ft to 1.25 ft, and the moment of inertia is reduced

= = × =I mr 0.0311 slugs (1.25 ft) 0.0486 slugs-ftf
2 2 2

The final angular speed is now:

ω ω= = = ×
π

=I
I

3.65 slugs-ft
s

0.0486 slugs-ft
75.1 radians/s

1 revolution
2 radians

12.0
revolutions

s
f

i i

f

2

2

As the rope is shortened, the rock spins much faster. Conservation of angular
momentum is gracefully demonstrated by a figure skater when she begins a spin with
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limbs extended. As she draws them toward her body, her moment of inertia is
reduced and she ends up spinning very rapidly.

10.6.1 Direction of angular momentum

Angular momentum is a vector quantity whose direction is as important as its
magnitude. Since the direction of angular speed is given by the right hand curled
finger rule with the velocity vector pointing along the thumb, the direction of the
angular momentum is given by the same right hand rule. If a cyclist curls the fingers
of her right hand in the sense of the wheels’ rotation, she will see that the angular
velocity and angular momentum of the wheels are vectors that point to the left.

Conservation of angular momentum applies to both magnitude and direction. This
conservation of the angular momentum gives a rotating object stability along the
axis of rotation. Angular momentum is a vector and wants to remain pointing in a
fixed direction. A quarterback will impart a spin to a pass in order to minimize the
football’s wobble. Other examples are spinning tops and gyroscopes.

10.7 Role of angular momentum in a bicycle

Does the gyroscopic action of the rotating wheel play a role in balancing a bike?

Why isn’t a bicycle’s balance caused by the gyroscopic action of two wheels rolling
along the ground?

Sometimes, a bicycle wheel is compared to a simple hoop; give the hoop a toss
and, as long as it is rolling, it remains upright. As soon as the hoop loses speed, and
therefore angular momentum, the hoop falls over. Is this not the same mechanism
keeping the moving bicycle up? The answer is no. The magnitudes of angular
momentum for a rolling hoop versus a falling hoop tell the story.

A hoop of any size can be used; it is only important to give it a good roll. Consider
a simple hoop (figure 10.6A) with all of its mass along the circumference; if the
hoop’s mass is 0.3 slugs and radius is 1.5 ft, the moment of inertia is

= = ×   =I mr 0.5 slugs (1.5 ft) 1.13 slugs-fthoop
2 2 2

When traveling at 20 mph (29.3 ft/s), the angular momentum is:

ω= = = × =L I I
v
r

(1.13 slugs-ft )
29.3 ft/s

1.5 ft
22.1

slugs-ft
s

rolling hoop
2

2

Angular momentum is a very important physical concept in any discussion of bicycle
physics. It is significant because it is commonly misunderstood and applied in a flawed
manner. The angular momentum of the rotating wheels is erroneously invoked as the
cause of the bike’s stability. The analogy is drawn to a spinning top or gyroscope.
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This angular momentum direction is given by the right hand curled finger rule, along
the axis of the hoop.

Now think about the angular momentum of a hoop falling over. Viewing the
hoop from behind, it appears as a long thin rod (figure 10.6B).

If the hoop is falling to the left, we approximate it as a rod of length 3 ft rotating
about one end:

= = × =I ml
1
3

1
3

(0.5 slugs) (3 ft) 1.5 slugs-ftrod
2 2 2

As the hoop falls to one side, the angular speed is not constant since the force of
gravity pulls down with an ever-increasing torque. We estimate the average angular
speed by supposing the hoop falls over in one second, traversing an arc of 90° (pi/2
radians):

ω θ= =
t

1.57 radians
1 s

The angular momentum of the falling hoop will be:

ω= = × =L I (1.5 slugs-ft ) ( 1.57 radians/s) 2.36
slugs-ft

s
falling hoop rod

2
2

Considering the ratio:

= =
L

L
22.1
2.36

9.36rolling hoop

falling hoop

The rolling hoop possesses an angular momentum much larger than the same hoop
falling to the side. The tendency for the rolling hoop’s angular momentum to remain
constant affords stability, resisting the tendency of the hoop to fall to the side. The
hoop readily falls when it slows and loses it rolling angular momentum.

Figure A Figure B

VIEW FROM THE SIDE VIEW FROM BEHIND

Figure 10.6. (A,B) Hoop.
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We now apply the same analysis comparing the angular momentum of a moving
bicycle to that of a falling bicycle. First, compute the angular momentum of the bike
wheel discussed in section 10.5. The wheel’s moment of inertia is 0.0733 slugs-ft2 and
the angular velocity when traveling at 20 mph is 25.9 rad/s.

ω= = × =L I (0.0733 slugs-ft ) (25.9 radians/s) 1.90
slugs-ft

s
2

2

Doubling this value for our two-wheeler:

=L 3.80
slugs-ft

s
two wheels

2

Now consider the angular momentum of a cyclist falling to one side. Getting the
angular momentum requires a calculation of his moment of inertia and speed of
falling. We will try for some type of estimate.

A crouched rider on a racing bike has a center of mass somewhere near his
midsection, approximately 3.80 ft above the ground. To get a value for the system’s
moment of inertia, we treat the bike and rider as a point mass and write for the
moment of inertia for the 181 lb (5.62 slugs) system:

= = × =+I mr 5.62 slugs (3.80 ft) 81.2 slugs-ftbike rider
2 2 2

Notice, the rider and bike system has a much larger moment of inertia than that of
the two wheels. This is a significant clue that the rotation of the wheels is not going
to keep the rider upright by some type of gyroscopic effect. To calculate angular
momentum of the falling rider, suppose he falls over in one second (it just seems like
an hour when happening), the average angular speed is then:

ω θ= Δ
Δ

= =
t

1.57 radians
1.0 s

1.57radians/s

Thus, the angular momentum of the falling rider/bike:

ω= = =+L I (81.2 slugs-ft )(1.57radians/s) 127
kg-m

s
bike rider

2
2

Comparing the ratio of the angular momenta of the rotating wheels to the falling
system:

= =
+

L
L

3.80
127

0.0299two wheels

bike rider

The angular momentum of the bike’s rotating wheels is but a small fraction (about
3%) of the bike/rider system’s angular momentum as it is falling sideways. The
rolling wheels’ angular momentum is far too insignificant to stabilize the bike from a
sideways fall.

A second argument can be made against angular momentum being the stabilizing
factor for a bicycle. In a comparison between a modern racing bike with thin
lightweight wheels and a heavy fat wheeled cruiser machine, the racing bike is
extremely stable and no harder to balance than the cruiser. While it is true that racing
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bikes have a nervous, skittish personality, it is a consequence of a short wheelbase and
lightweight construction—not a lack of angular momentum in the wheels.

Finally, one more argument—perhaps the most compelling—can be raised
against the wheel’s angular momentum being the stabilizing factor in a bicycle. If
the front wheel is locked such that the handlebars cannot turn, the bike will
immediately fall over, regardless of how fast the rider spins the wheels. Chapter 12
examines the causes for a bicycle’s stability.
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IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 11

Torque—applications to the bicycle

In the last chapter, we explored rotational motion concepts such as angular speed,
angular velocity, and angular acceleration. Rotational motion was viewed as
analogous to linear motion. The concept of torque was introduced as the rotational
analogue of force; just as net external forces cause accelerations in linear motion, net
external torques produce rotational accelerations in circular motion.

In this chapter, we consider in detail common occurrences of torque, especially
torque’s numerous applications to the bicycle. A note—in the world of engineering,
torques are called moments of force.

11.1 Basic physics of torque
Torque, first seen in the previous chapter, is an extremely important physical concept
that has many nuances and important applications to the human body while on and
off a bicycle. Whether we are pedaling at constant speed, accelerating, decelerating,
or turning, the bicycle is a marvelous application of torque physics. Torques will give
us insight into the bicycle’s gearing and braking efficiencies. Torques will help us
understand stunts such as wheelies and the disasters of headers. We will see why the
front brake is more effective than the rear brake in quick stops.

Consider a familiar event: the opening of a can of paint by prying off the lid with
a long screwdriver. The usual method is to catch the end of the blade under the edge
of the lid and push the handle downward (figure 11.1A).

The downward force exerted by the painter results in a rotation of the screwdriver
about the outside edge of the can. The point of rotation is called the fulcrum—

sometimes called the pivot point (figure 11.1B). This common act is a nice illustration
of the physical quantity torque. Torques cause rotations—in our example, it is the
rotation of the paint can lid. Experience shows that the length of the handle and the
hand’s position on the screwdriver handle will affect the ease in opening the can.
Applying the force at point a will open the can much easier than the same downward
force applied at point b. There are at least two important factors—the magnitude of
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the force and the distance of the force from the fulcrum. Further reflection will reveal
that there is one more factor—the angle at which the force is applied. For instance,
if we apply the force parallel to the screwdriver handle, the lid will not pop off. Torque
involves three factors: the magnitude of the force, the distance from the force’s point
of application to the fulcrum, and the direction of the force. The direction of force is
called the line of action.

With these concepts of the force’s line of action and the lever arm drawn between
the fulcrum and then perpendicular to the line of action, the magnitude of the torque
is defined as:

= ×torque lever arm force

It is traditional to use the Greek letter τ (tau) as the symbol for a torque, with ⊥d for
the lever arm and F for the force. The above expression becomes:

τ = ⊥ ×d F (11.1)

Note: in the previous chapter, when we introduced torques in the context of a body
moving in a complete circle, we used the radius of the circle r as the variable for the
lever arm.

11.2 Rotational equilibrium
Torque is the rotational analogue to force. Just as net external forces are the cause of
linear accelerations, net external torques are the cause of rotational accelerations.

Painting might not be much fun; let us turn to another example that is almost as
much fun as a bike ride. Think about two kids in a playground on a seesaw. Envision
an old-fashioned seesaw consisting of a long board balanced on a pole. Normally,
there is some way to shift the board along its length so kids of different weights can
balance the seesaw. Consider that we have two youngsters—a 60 lb girl and her 30 lb
little brother. How might they balance on a seesaw board that is 12 ft long? Children
learn quickly that the small child must have more of the board on his side of the
balance point. In fact, using intuition and a bit of practice, the kids will realize that,
since the girl is twice the weight of the boy, the boy must be twice the distance from

a

b

Figure  A

FORCE'S
LINE OF ACTION

Figure  B Figure  C

FULCRUM

LEVER
ARM

d⊥b

Figure 11.1. (A,B,C) Opening a can of paint.

Understanding the Magic of the Bicycle

11-2



the fulcrum. Each child will produce the same torque and the net torque is zero—
hence, the seesaw is balanced: it experiences zero net torque.

This simple playground experience introduces a new physical principle—
the principle of rotational equilibrium. It is considered a rotational analogue to
Newton’s First Law. The First Law stated that an object at rest or moving at a
constant velocity will continue to do so unless acted upon by a net external force.
The condition was that of translational equilibrium. When looking at the equilibrium
of forces, we determine if the horizontal forces to the left are equal to the horizontal
forces to the right. Similar conditions apply to vertical forces up and down and to
forces in and out of the paper.

For the situation of rotational equilibrium, where there are no changes in rotational
velocities, the requirement is to have no net torque, i.e. a balance of torques. When
looking at rotations, the nomenclature of left/right or up/down is not appropriate—
that rule of ‘righty tightie/lefty loosie’ was never very clear. It is much better to
describe a rotation about the fulcrum by its sense of clockwise or counterclockwise. In a
two dimensional situation, such as the seesaw, an object will be in rotational
equilibrium if the clockwise torques are equal to the counterclockwise torques.

11.3 Mechanical advantage
The concepts of torque and rotational equilibrium can be developed further with
another example employing lever arms. Consider another common application,
using a long bar to lift a heavy boulder. Suppose a girl is trying to raise a 320 lb rock
by wedging a strong 9 ft bar over a fulcrum and pushing down on the end opposite
from the rock. In figure 11.2, the weight of the rock acts at one end and the girl
pushes downward at the other end.

In figure 11.2, the girl is shown using the fulcrum in two different positions. In
figure 11.2A, the fulcrum is close to her and her force has a small lever arm xg; in
figure 11.2B, the fulcrum is close to the rock and the girl has a large lever arm.
Suppose, in figure 11.2A, the fulcrum is only one foot from the girl’s force, the rock
will be eight feet from the fulcrum.

Figure  A

w =
Fg 

Figure B

320 lb
Fg 

Figure C Figure DDOWN 1 in

UP 8 in
DOWN 8 in UP 1 in

xg = 1 ft xr = 8 ft xg = 8 ft

xr = 1 ft

320 lb

Figure 11.2. (A,B,C,D) Lifting a rock.
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In figure 11.2A, the rock creates a clockwise torque about the fulcrum:

τ = ×8 ft 320 lbcw

The girl must exert a downward force Fg to create a counterclockwise torque:

τ = × F1 ft gccw

If the rock is lifted slowly with minimum acceleration, the torques must be equal:
τ τ=cw ccw

Therefore:

× = × F8 ft 320 lb 1 ft g

Solving for Fg, the girl must exert a downward force of 2560 lb! An unlikely
scenario.

Far better is the arrangement shown in figure 11.2B with the fulcrum one foot
from the stone: the torque equation now looks like:

× = ×

= × = !

F

F

1 ft 320 lb 8 ft

1 ft
8 ft

320 lb 40 lb

g

g

The girl need only exert a force equal to one-eight of the rock’s weight.
This example introduces a concept that helps us think and analyze forces and

torques. This concept is the mechanical advantage—defined as the ratio of the girl’s
lever arm to the stone’s lever arm or as the ratio of the weight of the rock to that of
the girl’s force:

= =mechanical advantage
lever arm of girl’s force

lever arm of stone’s weight
weight of rock

girl’s force
(11.2)

In figure 11.2A:

= =mechanical advantage
1 ft
8 ft

0.125

In figure 11.2B:

= =mechanical advantage
8 ft
1 ft

8

Is there any advantage in trying to lift a stone with the small mechanical advantage
such as figure 11.2A. Yes, there is a benefit; positioning the fulcrum close to the girl
affords her a gain in the speed at which the rock is lifted. If she pushes the left edge of
the board downward a vertical distance of one inch, the rock will be lifted upward a
distance of eight inches in the same time interval (figure 11.2C). A low mechanical
advantage for force results in a large advantage for speed! Figure 11.2B, with the high
mechanical advantage for force, has a low advantage for speed (figure 11.2D).

It would take a super girl to lift the rock as in figure 11.2A; however, what if the
rock only weighed a few pounds? In this case, trading the advantage for force is
worth the gain in speed. We will shortly see that, in fact, most gearing on a bike
operates at a low mechanical advantage for force, the trade being made for the
advantage in speed.
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11.4 Energy aspects of a high mechanical advantage
In the previous section, the girl employing a lever with a high mechanical advantage
is able to lift a 320 lb stone by exerting a force of only 40 lb. There is an eight-fold
gain in the force she is able to apply to the rock. Is she getting something for nothing?
Is there some type of violation of the principle of conservation of energy? What is the
magic here? There is no energy conservation violation and, sadly, no magic. Recall
from chapter 8 that the work done is force multiplied by the distance moved in the
direction of the force. If the girl exerts a downward force of 40 lb and moves the left
end of the lever a distance of 8 ft, she performs an amount of work W equal to:

= = × =W Fd 40 lb 8 ft 320 ft-lb

Performance of work causes the potential energy of the stone to increase. The stone
is raised upward a distance of one foot; thus, the 320 lb stone gains a potential
energy equal to the weight w times the increase in height.

= × Δ = × =PE w h 320 lb 1 ft 320 ft-lb

The work done by the girl equals the gain in the stone’s energy; there is no violation of
energy conservation. The use of the lever has traded force for distance; the lever
arrangement has also traded force for speed.

11.5 Multiple lever system
The concepts of the basic lever system can be expanded into systems of multiple
levers. Maybe, the girl wishes to lift the rock in section 11.3 with a force less than
40 lb. While she could increase her mechanical advantage by using a longer bar or
repositioning the fulcrum, there is another option: the use of multiple levers.
Consider the combination of two levers (and two fulcrums) arranged to push on
one another. The arrangement is illustrated in figure 11.3A.

To lift the rock at the right hand end of the second lever, the girl must lift upward
on the first lever. This action causes a downward force on the second lever. The
second lever provides further ‘gain’ in the girl’s force. If both levers are configured
with the mechanical advantage of eight, the 320 lb rock can be lifted with a force of:

= × × = !F
1 ft
8 ft

1 ft
8 ft

320 lb 5 lbg

The multiple lever arrangement might seem awkward and a reasonable question is
why not use a single board 18 ft long? Two boards can be arranged in a compact

Figure A

Fg w =

F1

Fg 

Figure B

w =

320 lb

320 lb

Figure 11.3. (A,B) Multiple levers.
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manner (figure 11.3B). We will shortly see that the bike acts as a series of multiple,
connected levers.

11.6 Early direct drive bicycles
The propulsion of a bicycle is a nice example of torque physics. Before delving into
the complexities of chains and gears, consider a front wheel driven machine such as
an early boneshaker (figures 2.3 and 2.4). These two-wheelers used a pedal directly
connected to the front wheel (see figure 11.4).

The drive mechanism could not be simpler: the rider’s force Fpedal pressing on the
pedal creates a clockwise torque about the front axle with the crank length as a lever
arm lc.

τ = × = ×F lforce of rider pressing on pedal length of crankcw pedal c

When the wheel tries to spin clockwise, the ground exerts a reaction force Froad on
the wheel. The reaction force produces a counterclockwise torque with the lever arm
equal to the wheel radius rw

τ = × = ×F rforce of road radius of wheelccw road w

If the angular acceleration of the wheel is small, the clockwise and counterclockwise
torques should be almost balanced:

τ τ=
× = ×F l F rw

cw ccw

pedal c road

solving for the ground force:

=
×

F
F l

r
(11.3)road

pedal c

w

For a boneshaker with wheel radius of 15 in and a crank length of 7.5 in, a pedaling
force of 50 lb from the rider results in a road force of:

Figure 11.4. Forces on Boneshaker Velox 52.jpg [1].
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= × =F
50 lb 7.5 in

15 inches
25 lbroad

The machine operates at a force mechanical advantage of:

= =mechanical advantage
25 lb
50 lb

0.500

One-half of the rider’s force on the pedal appears at the ground to propel the
machine. The poor mechanical advantage for force results in a good advantage for
speed. When the pedal makes one revolution, the foot travels a distance equal to
the circumference of the pedal’s circular path with a radius equal to the crank
length:

π= = × × =C l2 2 3.14 7.5 in 47.1 incpedal

In this one revolution, the bike travels the circumference of the front wheel:

π= = × × =C r2 2 3.14 15 in 94.2 inwheel w

The ratio of bicycle travel to pedal travel is:

= =C
C

94.2 in
47.1 in

2.0wheel

pedal

The reward for the rider is that his poor mechanical advantage of 0.5 for force results
in a doubling of distance travel and speed.

11.7 High-wheelers

What are those Victorian high-wheel bikes all about? Why don’t we use them now?

In a direct drive bicycle, such as the boneshaker or high-wheel (figures 2.3 and 2.6),
the rotary crank was directly attached to the bike’s driving wheel. Each turn of the
crank caused the tire to make one revolution; the distance traveled was determined
by the wheel’s circumference. To increase the distance and speed per crank
revolution, it was necessary to make the wheel larger. The ‘High-wheelers’ were
described in terms of the wheel diameter, typically in the range of 50–60 inches. For
instance, with a 52-inch front wheel, one turn of the crank moves the bicycle a
distance:

π= × = × = =Circumference diameter 3.14 52 inch 163 inch 13.6 ft

A pedaling cadence of 60 revolutions per minute results in a speed of 13.6 ft/s about
9.3 miles per hour.

A 60-inch front wheel bicycle travels nearly 16 ft with each rotation of the pedal.
At some point, the size of the front wheel is limited by the inseam distance of the
rider. The reader is encouraged to perform a force analysis of the high-wheeler
similar to that done for the boneshaker in section 11.6. The cranks in the high-wheels
are about 6.5 inch (165 mm).
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This focus on the diameter of the front wheel leads to a parameter called ‘gear
inches’ which, for a direct drive machine, is the diameter of the driving wheel. The
60-inch diameter high-wheel is said to operate at ‘60 gear inches’. While this
nomenclature might seem outdated, it was later used in bicycles that employed levers
and gears to increase the wheel rotation and travel obtained from a single turn of the
crank. Even today, units of ‘gear inches’ describe the gearing arrangement of
modern machines.

There are several significant disadvantages to these direct drive high-wheelers.
The rider is perched atop a 50 to 60 inch wheel leading to the possibility of a
disastrous ‘header’ over the handlebars. The bicycle is difficult to propel uphill; the
rider is essentially stuck in one gear—a high gear. Also, since the size of the big
wheel is determined by the length of the rider’s leg, a shorter rider is at a
disadvantage to a taller rider. A further complication of the direct drive machine
is that the pedals constantly turn; the rider must take his feet off the pedals and place
them on a footrest to get relief while coasting. These disadvantages were addressed
with a series of innovations now common on modern bicycles.

11.8 The safety bicycle
After the development of the high-wheeled bicycle, ingenious thinkers began to
devise lever and gearing systems that would allow bikes to have smaller wheels
that, nevertheless, matched the speed advantages of the big wheeler. Machines
such as the Xtraordinary and the Facile were produced. These bicycles employed
levers attached to the cranks such that one rotation of the pedal produced more
than a single turn of the front wheel. Another bike, the Kangaroo, employed a
chain connected set of gears, the same approach as in a modern bicycle. The
Kangaroo had a wheel diameter of just 36 inches but one turn of the pedal
produced a front wheel travel of 60 inches. While these bicycles offered increased
gear inches without the need for immense drive wheels, they were soon rendered
obsolete by the aptly named ‘Safety’ bicycle. This machine, essentially similar to a
modern two-wheeler, employed relatively small wheels with the rider in a low
position midway between the front and rear wheel. The pedals and cranks were
attached to a front gear connected via chain to a rear gear and wheel. The most
successful of these early safeties were the Rovers offered by Messrs. Starley and
Sutton (figure 2.8).

The need for a large driving wheel was eliminated by use of gear ratios; the
rotating crank is attached to a large front gear, the chainring. This chainring is
connected with a chain drive to a small rear gear, the cog. The ratio of the
chainring teeth to the number of cog teeth determines the rotation of the back tire
for each turn of the crank. For instance, if the front ring had 48 teeth and the rear
gear had 24 teeth, then one turn of the front crank would cause two turns of the
rear gear. A bicycle with a 26-inch rear tire would travel a distance equivalent to a
52-inch wheel. Modern racing cycles operate in upper gears of 140 gear inches or
more.
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11.9 Force transmission in a geared bicycle
To understand the bicycle gearing, it is helpful to ignore the chain and imagine that
the front chainring and rear cog are directly meshed. While the simplicity of such an
arrangement might appeal to those who dislike cleaning and lubricating dirty chains,
this scheme would only be useful on a very short bike that traveled backwards as the
rider pedaled forwards! Figure 11.5 illustrates the direct meshing of the large
chainring, radius Rcr, with the small cog, radius Rco.

The gears revolve about their centers and the gears’ radii are the lever arms of the
torques produced by forces between the gears. Since the teeth have to mesh with
the chain, and in effect with each other, the front chainring and rear cog must have
the same tooth spacing. Thus, the number of teeth is proportional to the diameter
of the gear and, in effect, the actual gear diameters are not important—only the ratio
of the number of teeth in the front chainring to the number of teeth in the rear cog.
The role of the chain is to transmit via tension the force from the front chainring to
the rear cog. The transmission of the pedaling force to the system’s acceleration
force may be considered as a series of steps (figure 11.6A):

1. The rider presses down on pedal thereby producing a torque to rotate the
crank; the length of the crank is the lever arm.

2. The crank is attached to one or several front chainrings.
3. The front chainring rotates due to crank’s torque—as it does, it develops a

tension F1 in the upper portion of the chain and the chain is pulled forward.
4. The forward motion of chain transmits the tension to the rear cog making it

rotate.

RcrRco

Figure 11.5. Gears.

chainring

wheel

chain AB

rear tire
B

cog chainring crank
A

F1

RcrRw Rco lc

Figure A Figure B

Froad F1

crank

Fpedal

cog

Rw

lc

F1F1

Rco

Rcr

Froad Fpedal

Figure 11.6. (A,B) Drivetrain.
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5. The rear cog’s rotation is transferred to the hub.
6. The hub pulls on the spokes.
7. The spokes pull on the wheel rim.
8. The tire, snugly attached to the wheel, tries to rotate and thus puts a

rearward, horizontal friction force on the road.
9. The road exerts an equal and opposite horizontal friction force on the tire.

This forward force propels the machine.

The bicycle’s drive system is visualized as a multilever system (figure 11.6B).
As the rider presses down with a force on the pedal Fpedal, a clockwise torque is

created on the front chainring; the lever arm of the force on the pedal is the length of
the crank lc. As the chainring tries to rotate about point A, it produces a tension F1
in the chain. The tension’s lever arm is the radius of the chainring Rcr. By looking at
the torques on the front chainring, we write:

× = ×F l F R (11.4)pedal c 1 cr

solving for F1:

=
×

F
F l

R
(11.5)1

pedal c

cr

The chain’s tension is transmitted to the rear cog and causes a clockwise torque on
the cog. At the cog, the lever arm of the chain tension is the radius of the cog Rco.
Since the cog is attached to the rear wheel, the rear wheel tries to spin clockwise
about point B and, therefore, exerts a rearward force on the ground. From Newton’s
Third Law, the ground exerts an equal and opposite force on the wheel Froad. This
reaction force, directed toward the front of the bike, is the force of acceleration.

This ground force produces a counterclockwise torque. The lever arm for this
force is the radius of the tire. For the torques on the rear wheel:

× = ×F R F R (11.6)1 co road w

Solving for Froad

= ×
F

F R
R

(11.7)road
1 co

w

Using equation (11.5) to substitute for F1 and rearranging the fractions a bit:

= × ×F F
l

R
R
R

(11.8)road pedal
c

w

co

cr

The last fraction is the ratio of the cog and chainring radii. Since the chainring and
cog gears have the same tooth spacing, we write this fraction as the ratio of the
number of cog teeth nco and chainring teeth ncr.

=R
R

n
n

(11.9)co

cr

co

cr
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Thus:

= × ×F F
l

R
n
n

(11.10)road pedal
c

w

co

cr

11.10 Multispeed gearing—force analysis
The result of the last section equation (11.10) is now applied to road and mountain
machines equipped with multiple chainrings and cogs.

Road bikes
A road bicycle is usually outfitted with two chainrings and eight to ten cogs. Typical
gear tooth counts might be:

Front chain rings 53 and 39 teeth
Rear cogs 10 to 26 teeth

The highest gear is obtained by using the largest chain ring in the front and the
smallest cog in the rear. The lowest gear occurs with the smallest chainring and the
largest cog. Some machines are equipped with a third small chainring of about 30
teeth—often referred to as the ‘Granny gear’; this small chainring provides the rider
with an additional range of low gears, especially useful for hills.

On adult bicycles, the length of crank ranges from 170 mm to 175 mm; we will
use an intermediate crank length of 172.5 mm (6.79 inches). Wheel size varies
slightly depending on type tire and inflation pressure; a wheel radius of 13.5 inch is
common.

Pedaling in ‘high gear’ occurs with largest chainring of 53 teeth and smallest rear
cog with 10 teeth. Substiting the various parameters into equation (11.10):

= × × = × × = ×F F
l

R
n
n

F F
6.79 in
13.5 in

10 teeth
53 teeth

0.0949 (11.11)road pedal
c

w

co

cr
pedal pedal

A rider’s perpendicular force of 50 lb on the pedal produces a forward force from the
road of:

= × =F 0.0949 50 lb 4.75 lbroad

An alternative way to consider the relationship between the pedal and road force is
to rearrange the equation (11.11) result and obtain:

= ×F F10.5 (11.12)pedal road

This gearing arrangement results in the bike operating at a low mechanical advantage
for force; only about 10% of the rider’s effort is delivered as force to ground. The equal
and opposite reaction from the ground is the force of acceleration. This is expected
since the purpose of high gear is to allow for maximum speed.
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The lowest gear for this road bike occurs with a chainring of 39 teeth and a cog of
26 teeth. The relation between pedal and road force is then:

= × × = × × = ×F F
l

R
n
n

F F
6.79 in
13.5 in

26 teeth
39 teeth

0.335 (11.13)road pedal
c

w

co

cr
pedal pedal

upon rearranging:

= ×F F2.99 (11.14)pedal road

The question might arise as to the efficiency of the bicycle drive train—how much of
the applied force is ‘lost’ in friction and other inefficiencies between the gears and the
chain? Frank Berto and Chester Kyle performed careful measurements in a
laboratory environment and concluded that properly maintained drive trains
operate at efficiencies near 95% [2]. The losses are sufficiently small and are ignored
in our calculations.

In many of the above equations, there is a term that is the ratio of the number of
cog teeth to the chainring teeth; it is useful to write the inverse and call it the gear ratio:

= n
n

gear ratio (11.15)
cr

co

When the bike is in high gear, the gear ratio is:

= =gear ratio
53
10

5.3

Making a substitution of equation (11.15) into equation (11.10):

= × ×F F
l

R
1

gear ratio
(11.16)road pedal

c

w

Gear inches
Although the term gear inches, the diameter of the driving wheel in the Victorian
ordinary, was best suited to comparing the big wheelers, it is still used by modern
riders as a parameter describing their gear arrangement. In the notation of this
section, this parameter is:

= × × = × ×R R
n
n

gear inches 2 gear ratio 2 (11.17)w w
cr

co

In high gear, our road bike operates in gearing of:

= × × = × × =R
n
n

gear inches 2 2 13.5 inch
53
10

143 inchw
cr

co

The road bike in high gear would have speed equivalent of a high-wheeler of
diameter 143 inches. The high-wheel rider would need an inseam of 72 inches!
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Development
While many cyclists evaluate their gearing in units of gear inches, another related
and more informative parameter is the development of the machine. The develop-
ment is the distance traveled with each revolution of the pedal—the product of the
rear wheel circumference and the gear ratio:

π π= × × = × ×R R
n
n

development 2 gear ratio 2w w
cr

co

For our road bike in high gear:

π π= × × = × × =R
n
n

development 2 2 13.5 inch
53
10

450 inchw
cr

co

Nearly 38 ft in a single turn of the pedals—the magic of the bicycle!
A useful comparison can be made to the distance traveled by the pedal Cp during

one revolution; it is the circumference of the crank:

π π= × = × = =C l2 2 6.79 inch 42.7 inch 3.56 ftp c

The ratio of distance traveled by the bike to that of the pedal:

=450 inch
42.7 inch

10.5

is instructive when compared to equation (11.12). In return for the rider having
to exert a force on the pedal 10.5 times as large as the force on the road, she
travels 10.5 times further. Once again, we see the principle of the simple lever
(section 11.3).

Mountain bicycles
To apply the above concepts to mountain bicycles, a few changes must be made.
Since mountain bikes have higher bottom brackets, slightly longer cranks are used
when compared to road bikes; common is 175mm (6.89 inches). Mountain bikes also
come with different wheel/tire diameters and wide tires; a 26-inch diameter is
common, although some mountain bicycles now come with 29-inch diameter wheels.
The most important difference in the mountain bike is in the gearing; the front gears
are triple chainrings of smaller size than found on a road bike. For instance: front
chainrings = 44/32/22 teeth and rear cogs = 11 to 34 teeth. Using these numbers we
apply equation (11.10):

In high gear with a 44 tooth chainring and an 11 tooth cog:

= × × = × × = ×F F
l

R
n
n

F F
6.89 in
13 in

11
44

0.133 (11.18)road pedal
c

w

co

cr
pedal pedal

or

= ×F F7.52 (11.19)pedal road
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In low gear with a 22 tooth chainring and a 34 tooth cog:

= × × = × × = ×F F
l

R
n
n

F F
6.89 in
13 in

34
22

0.819 (11.20)road pedal
c

w

co

cr
pedal pedal

or

= ×F F1.22 (11.21)pedal road

Table 11.1 summarizes the various ratios of road force to pedaling force for both the
road and mountain bicycles.

The lowest gear in the mountain bike causes 81.9% of pedaling force to be applied
to the road, whereas the lowest gear in the road bike results in only 33.5% of
pedaling force to be applied to the road. At all gear ratios, the acceleration force
from the ground is but a fraction of the rider’s pedaling effort. Based on our
understanding of the lever concepts from section 11.3, the low mechanical advantage
of the pedaling force results in a gain in the bicycle’s speed.

Are all of those gears on a bike really necessary?

In a bicycle with variable gears, two rings in the front and eight cogs in the rear would
theoretically make the bike a 16-speed. Three chain rings and ten rear cogs would
afford the possibility of 30-speeds. There are two caveats to the described terminol-
ogy. Nomatter what the gearing, ultimately, the speed of the bicycle is determined by
the rotary speed of the crank. Moreover, there is redundancy in the front to back
tooth ratios, i.e. 48/24 would be the same gear as 24/12; other gear ratios might be
very close. There are also certain gear combinations that are mechanically unwise,
for instance, those that require a chain crossing from front to back at an extreme
angle. That 30 speed bike might have only 20 useful gear combinations! So, are all
those gears really necessary? Ask the bike manufacturer’s marketing department.

11.11 Gearing and pedaling cadence

By knowing the wheel radius Rw along with the gear ratio
n
n

cr

co
, it is straightforward

to relate the speed of the bike v to the pedaling cadence. It is best to express all

Table 11.1. Summarizes the various ratios of road force to pedaling force for both the road and mountain
bicycles.

Road bicycle Mountain bicycle

Gear chainring
cog

chainring
cog

High 53:10 = 5.3 = ×F F10.5pedal road 44:11 = 4.0 = ×F F7.52pedal road

= ×F F0.0949road pedal = ×F F0.133road pedal

Low 39:26 =1.5 = ×F F2.99pedal road 22:34 = 0.647 = ×F F1.22pedal road

= ×F F0.335road pedal = ×F F0.819road pedal
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distances in feet. The speed of the cycle is the product of the pedaling cadence in
revolutions per second (cadencerps), the gear ratio, and the distance traveled during
one revolution of the wheel (Cw, circumference of the wheel):

= × ×v
n
n

Ccadence (11.22)rps
cr

co
w

Using wheel radius Rw to obtain circumference π= ×C R2w w and by dividing by 60
to use a cadence in revolutions per minute (cadencerpm), we obtain:

π= × ×v
n
n

R
cadence

60
2 (11.23)rpm cr

co
w

π
= ×

× ×

v

R
n
n

cadence
60

(2 ) (11.24)rpm

w
cr

co

It is important to write both the bike speed and wheel radius in feet. A road bike
traveling 20 mph (29.3 ft/s) with a wheel radius 13.5 inch (1.125 ft) in a high gear
ratio of 5.3 (53/10) will require a pedaling cadence of:

π
= ×

× ×
=cadence

60 29.3 ft/s
(2 1.125 ft) 5.3

47 rpmin rpm

Traveling 50% faster will demand a cadence of 1.5 × 47 rpm = 71 rpm. Many riders
will prefer even higher cadences and lower gear ratios.

11.12 Gearing and pedaling force
We now explore the relationship between the road and pedaling forces required to
overcome factors such as resistance and slope forces.

Riding on level road at constant speed
Let us ponder further the cycling situation described at the end of the previous
section—pedaling a road bike in high gear at a constant speed of 20 mph. To get an
appreciation of the effort required of the rider, we use the results of table 8.3 and see
that, at a speed of 20 mph, the total resistive force on our standard rider is 6.51 lb. A
forward force from the road of 6.51 lb must counter this backward force. If riding in
high gear, the relation of road force to pedaling force (Table 11.1) may be used:

= × = × =F F10.5 10.5 6.51 lb 68.4 lbpedal road

A major effort by our standard rider of 161 lb! Actually, the situation is even worse;
this calculated force is the average force. During the course of a pedal rotation,
the relationship of the leg to the pedal causes the instantaneous force to vary. In the
pedal rotation cycle, there are positions that require rider force higher than the
average of 67.1 lb.
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The speed obtained in high gear is at the expense of a large pedaling force; the use
of a lower gear reduces pedaling force. If riding in low gear, the relation between
road force to pedaling force (table 11.1) is:

= × = × = !F F2.99 2.99 6.51 lb 19.5 lbpedal road

The downside of this low gear is that the rider has to maintain an unrealistic cadence
to move the bike at 20 mph.

Pedaling power
It is instructive to consider the rider’s effort from the perspective of power. Riding at
20 mph in high gear requires a pedaling force that averages 68.4 lb and, during one
revolution of the crank, the pedal travels a distance equal to the crank’s circum-
ference of 42.6 in (3.55 ft). At a cadence of 47 rpm (0.783 rev/s), the speed of the
pedal is:

× =3.55 ft
rev

0.783 rev
s

2.78 ft/s

Recall from chapter 8, the power generated by a force moving a body at a given
speed is equation (8.14):

= × = Fvpower force speed

Substituting numbers: = = × =P Fv 68.4 lb 2.78 ft/s 190
ft-lb

s
A comparison of the mechanical power output in table 8.3 shows that a 20 mph

ride requires a mechanical power output of 191
−ft lb
s

; within minor round off, the

values match!
Using the pedaling force and the pedaling cadence to obtain mechanical power

output provides an ‘instantaneous’ reading to the cyclist.

Climbing hills
In previous discussions, we established that high gears allow the bike to travel fast
while maintaining a comfortable cadence. Let us now examine the role of gear
choice for ascending hills.

In climbing even moderate hills, a substantial portion of the rider’s effort goes
toward overcoming the downward pull of gravity, the slope force (section 6.4). Table
6.1 illustrates that our standard rider ascending a modest 5% grade encounters a slope
force of 9.04 lb. If our rider attacks this hill at 20 mph, she must deal with a total force
equal to the slope force Fslope and the resistive force Ftot of 6.51 lb (table 8.3):

= + = + =F F F 9.04 lb 6.51 lb 15.6 lbtotal slope tot

Riding in high gear would require an average pedaling force:

= × = !F 10.5 15.6 lb 164 lbpedal

Not so easy for our standard 161 lb rider! She would have to push with all of her
weight on one pedal and simultaneously pull up on handlebars to further increase

Understanding the Magic of the Bicycle

11-16



the downward efforts of her body. Much more likely is that she shifts to a lower gear
and also reduces her speed. Perhaps, she drops into the road bike’s lowest gear ratio
of 1.5 (table 11.1) and maintains her cadence, from equation (11.23):

π
= ×

× ×
= × π × ×   = =v

n
n

R2 cadence

60
1.5

2 1.125 ft 47
60

8.3 ft/s 5.66 mphcr

co

w rpm

A major advantage of the speed reduction is that the force of air resistance is greatly
lessened. Using a speed of 6 mph, we obtain from table 8.3 a resistive force of 1.50 lb.
Of course, the slope force remains the same but the sum is significantly reduced:

= + = + =F F F 9.04 lb 1.50 lb 10.5 lbtotal slope tot

The average pedaling force in low gear is then = × =F 2.99 10.5 lb 31.4 lb.pedal

What can be more pleasant—climbing the hill at 6 mph, an easy 47 rpm with a
moderate pedaling force!

The above analysis of the road bike is easy to adapt to the mountain bike by
adjusting for the mountain bike’s lower gear ratios, wheel size, and longer crank. All
things being equal—and they are not—mountain bikes are heavier and equipped
with robust tires of greater rolling resistance; the mountain bikes should be able to
climb a hill roughly twice as steep as the road bike. The road bike is superior for its
top speed in high gear. Aside from the gearing, the road bike has smoother tires and
better rider aerodynamics.Another speed advantage of the road bike is its lower
mass and, therefore, quicker acceleration.

Acceleration

What is the ideal gear for getting a bike up to speed as quickly as possible?

Now that we have looked at the pedaling forces necessary to ride at high speeds of 20
mph and climb moderate hills, it is instructive to consider these pedaling forces in
situations of acceleration. Suppose our standard rider tries to start a road bike in
high gear by standing and applying all of her 161 lb body weight (mass of 5.62 slugs)
to one pedal. The reaction force from the road provides the acceleration; from
table 11.1 the road force in high gear is found to be:

= × = × =F F0.0949 0.0949 161 lb 15.3 lbroad pedal

Starting from rest, the initial force of air resistance is small; we also ignore the small
resistance forces of the bearings and the rolling resistance. The acceleration is
calculated from Newton’s Second Law:

= = = =a
F
m

15.3 lb
5.62 slugs

2.72 ft/s 0.085 ‘g’2

A very small acceleration.
The acceleration produced by the same pedal force in low gear is also obtained

from table 11.1:

= × = × =F F0.335 0.335 161 lb 53.9 lbroad pedal
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and the acceleration:

= = = =a
F
m

53.9 lb
5.62 slugs

9.59 ft/s 0.30 ‘g’2

The low gear provides a much larger initial acceleration. As the bike picks up speed,
the rider shifts into higher gears to maintain a reasonable cadence. The use of a low
gear for starting out is well known to anyone who has operated a manual
transmission car.

Suppose our rider wishes an even greater starting acceleration—she might pull up
on the handlebars and, by Newton’s Third Law, the handlebars would pull down on
her. This downward force from the handlebars adds to the force she delivers to the
pedals (section 5.5). If she is strong and capable of pulling up on each grip with a
force of 40 lb, the total upward force on handlebars is 80 lb. The resultant force on
the pedal is

= + = + =F w F 161 lb 80 lb 241 lbpedal handelbars

In the lowest road bike gear:

= = × =F F0.335 0.335 241 lb 80.7 lbroad pedal

For the acceleration:

= = =a
F

m
80.7 lb

5.62 slugs
14.4 ft/sroad 2

This is almost 0.5 ‘g’. Our rider is a ‘rocket woman’! However, caution is needed in
accepting this number.

Consider that magnitude of the road force =F 80.7 lbroad and the source of this
force is static friction between the rear tire and the road. From chapter 5, the
expression for the maximum force of static friction:

μ=f Nmax static

where μstatic is the coefficient of static friction and N is the normal force between the
road and the rear tire.

For a seated rider, approximately 60% of the system weight is on the rear tire
(N = 0.6 × 181 lb = 108.6 lb). Standing will shift these weight proportions, but to
simplify the analysis, let us keep our rider in a crouched position and use the 60/40
ratio. Using a coefficient of friction of 0.9 gives:

= × =f 0.9 108.6 lb 97.7 lbmax

These numbers illustrate that, with a slightly smaller coefficient of static friction or a
greater upward pull on the handlebar, the rear tire is close to spinning. The same
effect is observed when an automobile driver ‘gives it too much gas’ when trying to
pull out of an icy parking spot. Another possible complication that develops when
large forces are applied to the bike’s back wheel is the ‘wheelie’, i.e., the lifting of the
front tire. This wheelie effect is evaluated in a later section with a torque calculation.
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It is worth noting that no amount of pulling (or pushing) on the handlebars is
going to change the system weight of 181 lb and, therefore, the total vertical force
exerted on the ground. The forces she exerts on the handlebars or transfers to a pedal
by standing are internal forces in the system defined as ‘bike + rider’. The only way
that the rider could increase the downward force onto the ground would be to stand
and then somehow crash onto the seat; try jumping on a scale to see this effect. Of
course, the increase in weight is brief and is preceded by a reduction in weight when
the rider initially lifted herself upward.

The considerations of this section show that maximum acceleration will not be
obtained in the highest gear—but if the gear ratio is too low, the wheels might spin—
so what works best? Probably a fairly low gear, but maybe not the absolute lowest.

11.13 Braking

Are both front and rear brakes equally effective at stopping the bike?

In a later section, we establish that during a hard stop a large fraction of the system
weight is transferred to the front tire. This reduction of the normal force at the rear
tire will proportionally reduce the rear tire’s stopping effectiveness.

Which type of brake is best—rear coaster or hand lever?

We suspect that rear coaster brakes were introduced out of concern that children
might not possess sufficient grip strength for handlebar lever brakes. While rear
coaster brakes are not as common as they were 50 years ago, they are still found on
contemporary bicycles for young (3–6 years old) children. Another benefit is that
rear coaster brakes have good immunity to dirt and damage. They also have
significant disadvantages including:

• The aforementioned reduced stopping effectiveness during a hard stop
• Young children get confused in making the transition from the forward
pedaling motion to the rearward actions needed to stop with a coaster brake

• The rearward braking motion is ineffective when the cranks are near the
vertical, another issue with kids

• Poor mechanical advantage due to small lever arm of hub
• Loss of braking if foot slips off pedal or the chain breaks
• Complex disassembly and repair
• Difficult inspection for wear or broken parts

The rear coaster brake action occurs inside the rear hub and cannot be observed;
we will not examine the physics of the coaster’s operation. The reader may be assured
that there are torques involved in reducing the rotational speed of the wheels.

Why does it take the large muscles of our lower body to accelerate the bike yet we
can stop with the forces developed by our relatively small hands?

The efforts of the hands operate at a high mechanical advantage for force. The
forces of propulsion function at a low mechanical advantage for force; the trade-off
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being that the propulsion forces offer a gain in speed. We begin our analysis of
bicycle braking by looking at the handlebar levers, the first component in a modern
road or mountain bike braking system.

Brake levers
The brakes on a bicycle reveal another application of torques to cycling. When the
cyclist decelerates the machine with hand brakes, there are several locations where
torques are important:

• The hand levers—where forces exerted by the fingers, produce torques causing
a rotation of the lever and the development of tension in brake cable wire.

• The caliper brakes—that rotate as a result of the torque produced by cable
wire tension.

• The rims or disk brake rotors—when squeezed by pads cause a torque that
slows the wheel’s rotation.

• The contact between the tire and the road—where the road’s force of friction
produces a rearward pointing force. This horizontal force of the road on the
bike is the cause of the machine’s deceleration.

The grip forces in hand brakes have a large mechanical force advantage due to the
brake lever’s geometry. In both the vertical levers found in road bikes and the
horizontal levers typical of mountain and hybrid bikes, we find substantial
mechanical advantages.

Figure 11.7 illustrates a right side horizontal bike lever. Squeezing the brake lever
with the hand produces a clockwise torque about the lever’s point of rotation; the
lever pulls on the cable and the cable produces an equal and opposite force on the
lever. The tension in the cable results in a counterclockwise torque on the lever.
(Although the hand’s force is usually delivered by three or four fingers, we have
represented the force as a single vector.) The finger’s lever arm is 3.0 inch and the
cable’s lever arm is 1.0 inch. Although the maximum grip strengths of most adults is
surprisingly high, with a range from about 60 to 110 lb [3]; we will use a modest hand
grip force of only 20 lb. Once the brake pads contact the rim, the rider continuously
holds the lever in position and there is a balance of torques about the point of rotation:

=
× = ×

t t
T3.0 inch 20 lb 1.0 inch

cw ccw

c

Solving for cable tension:

=T 60 lbc

The hand force operates at mechanical advantage of 3X. While this is an impressive
tension in the cable, the braking force is amplified further by the brake pads at
the rim.

Rim brakes
There are several types of rim brakes—these include center pivot side pull calipers,
dual pivot side pull calipers, center pull, and cantilevered ‘V’ brakes (linear pull).
The various types differ in construction, ease of adjustment, reach of the brake
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pads, and ‘grabbing force’; they all offer an increased mechanical advantage to
the cable’s tension. Figures 11.7B and 11.7C illustrate the center pivot side pull
caliber brake.

The brake consists of two asymmetrically shaped arms upon which are mounted
the left and right hand brake pads. The tension in the brake cable results in a force
being applied to the two caliper arms (figure 11.7C). As the cable pulls up on one
arm, the cable housing pushes down on the other arm. The individual brake arms are
shown in an exploded view in figures 11.8A and 11.8C. The force on the left arm
Fhousing and the force on the right arm Fcable will each be one-half of the tension in
the brake cable. We have previously shown that a 20 lb squeeze on the brake lever
will result in a cable tension of 60 lb; the cable tension can be split between the
housing and cable resulting in a force of 30 lb on the respective brake arms.

As the cable develops tension, it pulls upward on the right side (‘u’ shaped) arm
(fgure 11.8C); this arm rotates clockwise causing the pad to press against the rim
with a force Fpr. The rim then exerts an equal and opposite force on the brake pad
Frp. A similar pair of action–reaction forces develop on the ‘y’ shaped left side
caliber arm (figure 11.8A). Since the ‘u’ shaped brake arm is on the outside, it is
easier to observe its operation and measure the lever arms of the forces. Writing the
torques on the right pad brake arms (figure 11.8C)

=
× = ×

t t
l F l F

cw ccw

c cable p rp

3 in

1 in point of rotation AXEL
WHEEL
(rear view)

CABLE

rim

pivot

Figure A Figure B Figure C

CABLE

tire

Fh - force of hand
Tc - tension in cable

Figure 11.7. (A,B,C) Brake system.

Fhousing
PIVOT

RIM

Figure A

Fpr

PIVOTlc

Fcable

Figure B Figure C

Fpr
FrpFrp

lp

Figure 11.8. (A,B,C) Caliber brake exploded.
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Solving for the force exerted on the rim by the brake pad:

= ×
F

l F
l

rp
c cable

p

By Newton’s Third Law, the force of the pad on the rim Fpr will be equal and
opposite. The geometry of the left and right brake arms will determine the forces’
lever arms. Using values of 3 inch for the cable tension’s lever arm and 1.5 inch for
the pad force’s lever arm, a cable tension of 30 lb results in a pad force Fpr:

= × = × =F
l F

l
3 inch 30 lb

1.5 inch
60 lbpr

c cable

p

The rim is squeezed from both sides with this magnitude. This force is the ‘normal’
or perpendicular force in the frictional interaction with the rim. The frictional force
is a vector tangent to the rim’s circumference (figure 11.9). Since the wheel’s radius is
the force’s lever arm, a large torque is possible at the rim.

The frictional contact between the brake pad and the rim is that of sliding friction.
The coefficients of friction will vary depending on specific combinations of pad and
rim materials. As long as the contact surfaces are clean and dry, the frictional
coefficients will be high, typically 0.6 or greater.

Using this value, we write the frictional force from one pad as:

μ= × = × =f F 0.6 60 lb 36 lbk pr

With a pad on each side, the total frictional force on the rim is double this value.
There is ample force available to stop tire rotation.

Since the rim is spinning, the force is sliding friction. Sliding friction always
generates heat; on bikes with metallic rims, the heat is well dissipated; however, the
heat can be a problem with carbon rims.

The forces of the brake pads on the rims are internal forces to the bike/rider
system; they do not decelerate the system. Only net external forces can change an
object’s velocity. The brake pad forces create a torque that reduces the rotational

FORCE OF FRICTION

PAD FORCE IS NORMAL TO THE RIM
VECTOR DIRECTION IS INTO PAGE

BICYCLE TRAVELING TO RIGHT

Figure 11.9. Brake forces on rim.
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speed of the wheel. In section 5.9, we saw that reducing the rotation of the wheel
causes the wheel to push on the ground with a forward pointing frictional force. The
ground then pushes with a rearward friction on the wheel. This backward push from
the ground is the deceleration force. The primary limitation in decelerating the
bicycle is the frictional contact between the tire and the road and the necessity to
avoid large decelerations that trigger headers. In the absence of skidding, both the
acceleration and deceleration of the bicycle are due to static friction with no
generation of heat between the wheels and the ground.

11.14 Wheelies
We now evaluate the ‘wheelie’—the lifting of the front tire during a large forward
acceleration. The wheelie is a consequence of large torques developed at the rear tire
as a rider pedals hard in a low gear. For the discussion of the wheelie, and headers in
a subsequent section, we use an analysis and geometry similar to that of Wilson [4].

In (figure 11.10), NR and NF are the normal forces exerted by the road on the rear
and front wheels; the weight (181 lb) of the rider/bike system is shown at the center of
mass (COM). The forward force of propulsion is due to friction at the rear wheel
Froad. There is no force of air resistance since the bike is just starting to move; the other
resistive forces are not shown since they are small compared to the propulsion force.
We apply the concepts of rotational equilibrium (section 11.3) and sum torques about
the system center of mass. With the COM as the point of torque computation, the
frictional force on the rear wheel produces a torque that is trying to rotate the bike
counterclockwise about the center of mass; the clockwise torque is due to the vertical
normal force on the rear. An additional counterclockwise torque is due to the normal
force on the front wheel; however, we note that at the instant the wheelie begins, the
front tire lifts from the ground andNF vanishes. The rear normal force has a lever arm
of 17 inch and the front normal force has a lever arm of 25 inch; the road force has a
lever arm of 45 inch. Since the system weight of 181 lb passes through the COM, it has
a zero lever arm and does not create a torque about the COM.

For the condition in which the clockwise and counterclockwise torques cancel:
τ τ= (11.25)cw ccw
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thus:

× = × + ×N N F17 inch ( 25 inch) ( 45 inch)R F road

Consider the vertical forces on the system: since there is no vertical acceleration, the
forces sum to zero:

+ − =N N 181 lb 0R F

The wheelie develops when the front wheel loses all contact with the ground and
therefore:

=N 0F

All of the system weight is now on the rear wheel:

=N 181 lbR

Putting these numbers into the torque expression (11.25):

× = × + ×F181 lb 17 inch (0 25 lb) ( 45 inch)road

and solving for the road’s force of friction:

= × =F
181 lb 17 inch

45 inch
68.4 lbroad

The acceleration that induces the wheelie may be calculated:

= = = =a
F

m
68.4 lb

5.62 slugs
12.2

ft
s

0.379 ‘g’road
2

We can think of the ‘cause’ of the wheelie as excessive, forward pointing, frictional
force on the bottom of the rear wheel.

Does such a magnitude of frictional force require a large coefficient of friction? It
is easy to calculate:

μ = = =f
N

68.4 lb
181 lb

0.378
R

This is a relatively low coefficient; recall from table 5.1 that the coefficient of static
friction between rubber and blacktop is about 0.9. To obtain the pedal force

a

COM

w

NF

45 in

NR

Froad

17 in   25 in

Figure 11.10. Wheelie.
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required to produce the wheelie in low gear, we use the expression (table 11.1) from
earlier in this chapter:

= × = × =F F2.99 2.99 68.4 lb 205 lbpedal road

If our 161 lb rider rises slightly off the seat, applies all of her weight to the pedal, and
pulls up on the handlebars with an additional 44 lb, it is not hard to produce the
wheelie! The reader may wish to verify that, if the rider sits further back on the
bicycle and, thereby, reduces the lever arm of NR, the wheelie will occur at a lower
pedaling force and acceleration.

11.15 Headers

Figure 11.11A illustrates the forces on a rider who is applying the brakes. There
are normal (vertical) forces and ground friction at the bottom of each tire. All
torques are computed about the COM. The system weight has a zero lever arm.
Another force, air resistance, acts near the rider’s mid-section; its lever arm is small
and the air resistance torque is ignored. The indicated distances are the lever arms of
the forces as measured from the COM.

The header is the opposite of the wheelie in both cause and action. The wheelie is
triggered during a rapid start by an excess of forward directed, frictional force on the
rear wheel. The header is a consequence of excessive, rear directed, frictional braking
force on the front wheel. Hard braking with the front wheel creates the most dangerous
condition. While there is no joy on a bike when going headfirst over the handlebars, the
event involves interesting physics. Perhaps, if the reader is convalescing with a broken
collarbone, she can study this section to better understand and avoid the header. The
basic physical event for somersaulting the rider over the handlebars occurs when the
overall system rotates in the forward direction. This rotational scenario, the classical
header, develops without colliding with any obstacle.

The intuitive explanation of the header is that, with increasing decelerations, the
rear tire carries less and less of the system weight. At some point, this force on the rear
tire is zero; the back wheel has lifted off the ground. We now have the rider in the
dangerous condition for a header over the handlebars.
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The braking forces exert a clockwise torque about the COM; this torque results in
the rear wheel lifting and weight being transferred to the front tire (figure 11.11B).
The front normal force must equal the system weight and all stopping force takes
place at the front tire.

We have depicted an upright rider; in reality, the rider might change lever arms by
slipping further back on the seat and also bend and lower her center of mass.

The torque equation at the onset of the header:

τ τ=
× = ×F N45 inch 25 inch

cw ccw

road front F

Since the front wheel supports entire system weight: =N 181 lbF .
We obtain for the frictional force triggering the header

= × =F
181 lb 25 inch

45 inch
101 lbroad front

The deceleration at onset of header is:

= = = − = −a
F
m

101 lb
5.62 slugs

18.0
ft
s

0.559 ‘g’
2

The ‘cause’ of the header is too large of a rearward frictional force on the bottom of the
front wheel.

What coefficient of ground friction is needed?

μ = = =f
N

101 lb
181 lb

0.558, a relatively low coefficient

Given the mechanical advantages of the brake lever systems (section 11.14), a
stopping force of 101 lb is not difficult to produce; if you brake too hard, you can
easily flip the bike into a header.

Froad rear Froad front

v

COM

NR

w

45 in

25 in

COM

w

45 in

25 in

a

Figure A - NORMAL BRAKING

17 in

Figure B - DURING THE HEADER

Froad front

NF NF

Fair

Figure 11.11. (A, B) Headers.
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In a ride downhill, the upward pointing force of friction is increased by the need
to counter the component of the weight parallel to the hill. Consequently there is an
increased danger of a header that develops when riding down a hill.

Why do rear brakes lose effectiveness during a hard stop?

During deceleration, there is shifting of weight from the back tire to the front tire. As
the rear normal force is reduced, the frictional stopping force is also reduced. The
rear brakes lose effectiveness during quicker stops. This reduced effectiveness is
especially important on bikes equipped with only rear coaster brakes, common on
many American cruiser bikes and children’s bikes. The author has also observed
poorly designed children’s bikes, from well-known manufacturers, that have a single
hand brake that operates on the rear wheel. This is the worst possible combination of
a child’s low hand strength braking with a wheel that loses contact with the ground
during a hard stop.

Is there any way to safely demonstrate a ‘header’ without danger of going over the
handlebars?

There is a very simple and safe way to demonstrate the physics of the header. With
the bike at rest, stand with your feet on the ground and straddle the bike’s top tube.
Squeeze hard on the rear brake lever and ‘lock’ the rear wheel. Simultaneously push
the bike forward by the handlebars; you will observe that, although the rear wheel is
locked, the bike merely slides along the ground. The rear wheel does not induce a
header since the braking force is lost as soon as the wheel lifts ever so slightly off the
ground. If you repeat the experiment and lock the front tire, the bike will not slide.
The bike acts as if the front wheel is ‘glued’ down. The rear tire rises up and the
system rotates about the front tire’s ground contact.
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IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Chapter 12

Centripetal acceleration—turning
and bicycle stability

Finally, in this last chapter, we comprehend how the simple and beautiful laws of
physics harmonize and progenerate the magical charm of the bicycle’s balance. The
mystery of the bike is unraveled as an imperceptible interplay of motion and the
forces of gravity and friction. The physical concepts work their enchantment
unbeknownst to the rider.

What makes the bike turn? How do the internal forces of the rider on the bike create
the necessary external force to change a bike’s direction?

12.1 Review of Newton’s laws—centripetal force and acceleration
Before examining the motion of an object executing circular motion, we pause to
recall that Newton’s First Law of Motion (chapter 5) tells us that an object at rest or
traveling in a straight line will continue to do so unless acted upon by a net external
force. From Newton’s Second Law, we saw that the net force produces a change of
velocity, an acceleration, in the direction of the force. Most of our acceleration
examples were objects traveling in straight lines, e.g. a bike starting from rest,
speeding up, or slowing down. These accelerations resulted in a change in the
object’s speed, the magnitude of the velocity vector.

It is important to keep in mind that the definition of a vector involves both the
magnitude and the direction of the vector. An object traveling at a constant speed but
undergoing a change in direction will be accelerating. If you are walking down the
street and make a left turn at an intersection, you underwent an acceleration!
The acceleration was associated with the change in your direction. The acceleration
to the left requires a force to the left. Take a walk down the street and carefully
observe your actions during this left turn. You push on the ground to the right and,
from Newton’s Third Law, your rightward push on the ground results in the ground
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pushing on you toward the left. This force from the ground is the net external force
that accelerates your velocity with a change in the vector’s direction. There does not
have to be a change in the vector’s magnitude; your speed can be constant during
this entire walking and turning process.

As another example, envision riding your bike at a constant speed around a
circular racetrack. The magnitude of your velocity does not change; however, the
direction of your velocity constantly changes. Suppose you are going counter-
clockwise around the track; at one point you are heading north; an instant later you
are going northwest; eventually, your bearing is west. Round and round you go with
a continuous change in direction. The rider and bicycle are continuously accelerating
without any gain or loss of speed. The acceleration is a consequence of the change in
the velocity’s direction rather than its magnitude.

From the work of Galileo and Newton, we learned that accelerations are
produced by net external forces. The net external force and the acceleration are
both vectors and will be in the same direction. Gravity, ground contact forces,
and air resistance are the usual external forces to the bike/rider system. Forces
between the rider and the bike and various components of the bike such as
pedals, handlebars, and seat are not external forces; rather, they are internal
forces within the system. Internal forces cannot accelerate the motion of the
system.

Another important aspect of motion is inertia. Inertia is the tendency of an object
to travel at constant velocity—in a straight line at a constant speed. The mass of an
object is a measure of its inertia. Newton’s First Law of Motion states:

An object at rest will remain at rest and an object in motion in a straight line will
remain in motion in a straight line unless acted upon by a net external force.

The implication of Newton’s laws is that, when an object is traveling in a circle, it
must be continuously acted upon by a net external force. If this net external force is
removed, the object’s inertia causes the body to travel in a straight line. Common
examples are the circular motion of the Moon orbiting the Earth, a bucket of
water swung in a circle, a rock whirled on a string, and a cyclist making a turn. In
chapter 10, we used the situation of whirling a rock on a string as an example of
circular motion (figure 10.4). As we think about this rock’s velocity, we see it is
constantly accelerating. It is not speeding up, being whirled faster and faster; rather,
the rock is accelerating because of the velocity’s change in direction. The net external
force on the rock is the tension in the string; if the string breaks, the rock’s inertia
causes it to fly off in a straight line.

To obtain an expression for the acceleration, a bit of intuition is needed—imagine
you are the one holding the end of the string. Instead of just whirling the rock at a
constant speed as discussed above, you now whirl the rock faster and faster. You will
notice that it is necessary to exert an increasingly larger force pulling inward on the
rope. The acceleration and required force on the rock is proportional to the square
of the rock’s speed. You experience the same effect if you shorten the radius of the
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rock’s orbit. The acceleration and force are inversely proportional to the orbit
radius. The acceleration is written:

=a
v
r

(12.1)
2

and the force is:

= =F ma m
v
r

(12.2)c c

2

The acceleration and force are both directed toward your hand at the center of the
circle! Traditionally, the adjective centripetal is used to describe the acceleration and
the force. The word centripetal comes from a union of Latin words; it means ‘to go
to the center’. The centripetal acceleration is pointing toward the center of the turn—
as the object travels in its circular path, it is accelerating toward the center. A net
external force, appropriately named the centripetal force, produces this acceleration.
A subscript c indicates centripetal quantities.

Consider the circular motion of an object as being comprised of two independent
elements:

• Inertia—the tendency to travel in a straight line with constant velocity
(Newton’s First Law).

• Acceleration—the change in the object’s velocity toward the center of the
circle.

What is the source of these forces pulling a body toward the center? A few
examples:

• In the case of the Moon orbiting the Earth, the centripetal force is the Earth’s
gravity; the Earth pulls on the Moon just the Earth pulls on you.

• In the case of a rock whirled on a string, the centripetal force is the tension in
the string. If the string breaks, the rock flies off in a straight line tangent to the
circle.

• In the case of a bicycle making a turn on a level surface, the centripetal force
is the force of friction from the ground.

• In the case of a bicycle making a turn on a banked road, the centripetal force
is a component of the road’s normal force.

The concept of circular motion is the most difficult to grasp in all of basic physical
science. For the student and instructor, a difficult topic has been made even more
challenging by the use of the terms centrifugal acceleration and centrifugal force.
Although centrifugal concepts have valid physical meaning in certain studies of
motion, they are always misused in elementary explanations. Unfortunately, gener-
ations of teachers and their students have been confused by the term. It is commonly
stated that objects, moving in a circular path, will fly off in a straight line due to the
centrifugal force. We hear that, during a washer’s spin cycle, the water is forced out of
the wet clothes by centrifugal force. Or, the passenger in the turning car was pushed
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into the door by the centrifugal force. Even worse, we find scientific instruments called
centrifuges! Let us put this concept to rest—at least in this book. There is no force
causing the water in wet clothes to fly outward. There is no force causing the passenger
to be pushed into the door of the turning car. Centrifuges do not exert centrifugal
forces.

Keep it simple, in basic physical explanations: there are no centrifugal forces!!!
Why then does the water get spun out of the clothes; what causes the passenger

to be pressed into the door? It is inertia, the tendency for a body to travel in a
straight line.

Objects, traveling along a curved path, are accelerating due to the change in their
velocity vector’s direction. This acceleration requires a force; should the force be
insufficient (maybe you let go of the rope or hit a patch of ice when turning on a bike),
the body moves in a straight line due to inertia.

12.2 Making a turn

What is the source of the centripetal force that causes a wheeled vehicle to turn?

For a bicycle or car on a level (not banked) surface, the centripetal force is friction
between the tires and the road. Since the centripetal force must point toward the
center of the turn, the force is horizontal.

It is best to explore the role of friction with a simple example—a tricycle ridden by
a young child on level ground; we use a tricycle to avoid issues of balancing.
Although precocious, our youngster has not yet studied physics in preschool; she
simply pedals merrily along. The diagrams in figure 12.1 show the horizontal ground
forces on the wheels. Initially, the child is traveling straight (figure 12.1A).
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Figure 12.1. (A,B,C,D) Tricycle wheel.
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The horizontal ground forces on the rolling tricycle are simple—rolling resistance
and static friction with the ground. With a rigid wheel and hard ground, rolling
resistance is nil. The force of static friction serves to keep the wheels spinning
(chapter 5) but causes no loss of speed since there is no work involved. Even a two-
year-old knows the actions required to steer—she turns the handlebar and redirects
the front tire (figure 12.1B). The youngster’s force on the handlebar grips is internal
within the tricycle/rider system.

The road forces on the two rear wheels are unchanged and can be ignored; notice,
the front wheel is no longer aligned with the direction of travel. Since the road force
is a frictional force, it will oppose the motion. The force’s direction is opposite to the
velocity vector. With the force of friction at an angle to the front wheel, the force can
be resolved into components parallel and perpendicular to the wheel (figure 12.1C).
The component parallel to the wheel f behaves similarly to the rear wheel
forces. The component perpendicular to the wheel ⊥f is the force responsible for
changing the direction of the tricycle. This component of static friction, between the
wheel and the ground, is the centripetal force that produces the centripetal
acceleration toward the center of the curvature (figure 12.1D).

The events, described above for a kiddie on a tricycle, apply to many other
wheeled vehicles such as bicycles and autos. Let us look into the parameters for the
turn, using the expression for the centripetal force:

=F m
v
r

c

2

And the force of friction:

μ μ= =f N mg (12.3)

As the centripetal force:

μ =mg m
v
r

2

The mass cancels out and we solve for the speed:

μ=v gr (12.4)

How fast can she make a turn of a tight radius of 25 ft?
• with a high coefficient of friction between the tires and the road, e.g. μ = 0.9

μ= = × × = =v gr 0.9 32.2 ft/s 25 ft 26.9 ft/s 18.3 mph

• on a patch of ice with low friction μ = 0.1

μ= = × × = =v gr 0.1 32.2 ft/s 25 ft 8.97 ft/s 6.1 mph

The ability to turn is independent of the body’s mass. Of course, in a situation of
zero friction, there is no centripetal force and the body continues in a straight
line path.
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12.3 Banked surface

Why is it better to have a ‘banked’ road when making a turn?

A banked roadway helps provide the centripetal force needed to make a turn.
Consider figure 12.2A, which illustrates the rear view of a rider making a right hand
turn on a banked surface. Suppose that the surface makes an angle θ with the
horizontal. Notice, the road is banked toward the inside of the turn; the upward
push from the road is angled toward the center of turn.

The normal force of the road is not vertical and, therefore, has a component
pointing toward the center of the turn Nx; this horizontal component from the ground
functions as a centripetal force. In most situations, this force acts in concert with
friction but, if the banking angle is sufficiently large, the role of friction is minimized.

12.4 Equilibrium and stability
Throughout this book, we looked at many situations in which the net external force
is zero (chapters 5 and 6). When the external forces sum to zero, the object has no
linear acceleration; it is described as being in translational equilibrium. We have also
explored situations in which the net external torque is zero (chapter 10); the object
has no rotational acceleration; it is said to be in rotational equilibrium.

Objects in a condition of translational and rotational equilibrium are referred to as
stable; stable objects are balanced, i.e. they will not fall over. However, as we will see
shortly, it is possible for an object to possess neither translational nor rotational
equilibrium but yet be ‘stable’ and not fall to the ground. The next few sections explore
common conditions of stability in both equilibrium and non-equilibrium situations.

12.5 Equilibrium and stability with multiple points of support
Consider a body supported at multiple points, for example a table.

The force of gravity on the table is considered acting at a single point—the center
of mass or center of gravity. If the table sits on a level floor, the downward force of
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Figure 12.2. (A,B) Banking of road.
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weight and upward normal forces from the floor sum to zero and there is no linear
acceleration; also, there are no unbalanced torques and, hence, no rotational
acceleration. The table is in equilibrium.

What happens if the table is sitting on a sloped surface (figure 12.3A)? Initially,
consider a small slope of 10 °. The force of gravity now has a component parallel w
to the slope (section 6.4) but, if there is sufficient friction, the table remains in
equilibrium and does not slide down the hill. The table is in translational equilibrium
since the forces sum to zero. If the hill is steep enough, or if the coefficient of friction
is too small, the upward force of friction might not match the downward component
of gravity and the table accelerates down the hill. The table is not in translational
equilibrium since the forces do not sum to zero.

Concern for an object perched on a steep slope does not end with the possibility of
the object sliding down the hill. Another, and perhaps more disastrous, result, is
having the table topple over. Even when the friction is high, the table can tip; it can
be rotationally unstable. Figure 12.3B shows the weight and its line of action on a
steep slope. There is an important change in the line of action of the gravitational
force—it is now to the right of the lower legs; the weight produces a clockwise torque
and the table topples. A stable table requires that the weight’s line of action falls
between the legs’ contact with the floor. A tall narrow table with closely spaced legs
will topple more readily than a low wide table.

We have an easy and intuitive method of determining an object’s rotational
stability: does a vertical line drawn from the object’s center of gravity pass between
the points of support? If so, the object is rotationally stable. Most tables are very
stable—what of other objects? A human standing on two feet will be stable. Stand on
one foot—not so stable. A body with a single point of support located below the
center of gravity will be in delicate balance. In the next section, we examine the
balance of objects with a single point of support.
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Figure 12.3. (A,B) Stability of table.
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12.6 Stability of runners
Before moving to a discussion of the bicycle’s stability, we offer for consideration
another joyous sight—a little kid, maybe two years old, running round and round in
tight circles. In addition to being fun to watch, the child demonstrates an example of a
body stable and in balance under conditions of translational and rotational non-
equilibrium. Observe carefully as the youngster runs at top speed in a tight (maybe 10
ft) circle. You will see that the child is leaning toward the center of the circle (figure
12.4A). No doubt, toddlers are smart and, while they have not yet studied physics, they
intuitively understand the basic principles. Running at a constant speed in a circle
involves centripetal forces and centripetal accelerations. To balance in this condition of
translational non-equilibrium, her body must also be in rotational non-equilibrium—

she must lean in the direction of the acceleration—toward the center of the circle!

This simple, easy to observe, example is a perfect model for the marvel of
balancing on a bicycle. We can learn a lot from these little kids!

12.7 Stability of sprinter

Use your legs, take the start, run away.
Merchant of Venice,ii, Shakespeare

Perhaps our little two-year-old bundle of energy has progressed a decade or two later
to a medal winning sprinter. Sprinters exhibit a phenomenon that is very easy to
observe. When a sprinter accelerates from the start block, her body must lean
forward as shown in figure 12.4B. Her center of gravity is forward of the leading
foot. Since she is accelerating, her body is not in translational equilibrium and since
her center of gravity is not above her single point of support, she is not in rotational
equilibrium!

In spite of the lack of either translational equilibrium or rotational equilibrium,
the sprinter is very stable; she does not fall to the ground. To gain an intuitive
understanding of this situation, consider what would occur if the sprinter did not
lean. Suppose she stands straight up and begins to run (figure 12.4C). As her feet
accelerate to the right, inertia causes her center of mass to be left behind and she falls
backwards (counterclockwise).

w

a, F

Figure B

a, F

Figure C Figure DFigure A

w w

Figure 12.4. (A,B,C,D) Lean of kid and sprinter.
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What if she did the opposite—leaned forward and did not accelerate (figure
12.4D)? Her body would rotate clockwise and she would topple over. In the normal
technique for sprinting, she leans forward at the same time her feet accelerate. Her
stability is a consequence of the linear acceleration of her feet producing a counter-
clockwise rotation, and an angular acceleration of her overall body creating a
clockwise rotation. Intuitively, we can consider the two rotations as canceling.

The need to lean ceases when the runner reaches top speed and continues at a
constant velocity.

12.8 Equilibrium and stability with single point of support
Is it possible to support an object with a single support point?

It is easy to support and balance an object when the single point of support is above
the center of gravity and you do not have to be a track star; all you need is a broom
or umbrella. Figure 12.5A illustrates a broom held with the heavy section (center of
mass and gravity) in the lower position.

When the broom is held as in figure 12.5A, it is in both translational and
rotational equilibrium. If the broom is subjected to sideways displacement, it returns
to the stable position. ‘Stable equilibrium’ describes a body supported from above its
center of mass.

What happens when the broom is held upside down as shown in the next figure
(figure 12.5B)? To avoid accidently applying a torque with the hand, we must keep
the palm open and not grip the handle. The broom in figure 12.5B is precarious.
Objects with the center of gravity above the point of support are in a condition of
‘unstable equilibrium’. Even when balanced on a rigid support such as the floor, the
object is easily toppled by small disturbances (breezes, vibrations) that slightly
displace the center of gravity to the side of the support point. The result is that the
force of gravity creates a torque about the support point and the broom’s angular
acceleration rotates it into a fall (figure 12.5C).

Is it not simple to balance a broom in the upside-down position? Yes—with a bit
of practice. As long as the hand is free to move, we can keep the broom from falling
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Figure 12.5. (A, B, C) Stability of brooms.
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by continuously repositioning the hand left and right, to and fro under the broom’s
center of gravity. Stamina is the primary limitation. However, the broom will be
balanced over the point of support for only a small percentage of the time; most of
the time the broom will be ‘falling’ one way or the other. If the hand is restricted in
its movement, the broom falls.

12.9 Stability of broom when not in equilibrium
Themost commonway to keep the broom from falling is to constantly shift the hand—as
discussed in the last paragraph. Nevertheless, there is another way to ‘balance’ the
broom—especially for the swift footed. It is possible to travel with the broom in a stable
but non-equilibriumposition by imitating the sprinter. If the broom leans past its point of
support and accelerates in the direction of the lean, the broomwill not fall (figure 12.6A).

In order to maintain this maneuver, you need lots of room and swift legs.
Actually, it is not your speed that matters; rather, it is your ability to maintain the
acceleration. The forces on a leaning broom are shown in figure 12.6B:

N—the upward force exerted by hand.
f—the horizontal force of friction between hand and bottom of broom.
w—weight of broom, shown at its center of mass (COM).

We analyze the motion of the broom as independent, separate actions: transla-
tional motion across the room and rotational motion about the broom’s center of
mass.
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Figure 12.6. (A,B,C) Accelerating brooms.
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The horizontal translation of the center of mass is determined by summation of
the forces, a straightforward application of Newton’s Second Law of Motion. The
only horizontal force is the frictional force exerted by the open hand:

=f ma (12.5)

If the broom is moved at constant height, there is no vertical acceleration and the
vertical forces sum to zero. The upward force from the hand N, equals the
downward pull of gravity w:

=N w

In section 6.2 (equation (6.2)), we developed the expression:

=w mg

or

=N mg (12.6)

The broom’s rotation is determined by the net torque, calculated about the center of
mass (point B). L is the distance along the broom from the base (point A) to the
COM at point B, the angle of the broom’s lean is θ.

Force N with a lever arm of θL sin produces a clockwise torque about the COM;
force f with its lever arm of L cos θ produces a counterclockwise torque. If the
broom is not ‘falling over’, its rotational acceleration α is zero and the torques must
sum to zero:

τ τ
θ θ

=
=NL fLsin cos (12.7)

cw ccw

or after eliminating L: θ θ=N fsin cos

θ
θ

θ

θ

= = = =

=

f
N

ma
mg

a
g

a
g

sin
cos

tan

tan
(12.8)

We have an important relationship between the acceleration of the broom and the
angle at which it must lean. For example, if you wish to accelerate this broom at
10 ft/s2, the broom must be leaning at an angle of:

θ = = =a
g

tan
10 ft/s

32.2 ft/s
0.311

2

2

looking up the angle in appendix C or using a calculator: θ = = °−tan 0.311 17.31 .
While a broom leaning at 17.3° is not a problem, the acceleration of 10 ft/s2 might

offer a challenge. After just three seconds, your speed will be 30 ft/s, near 20 mph!
Thinking back to the sprinter—the same principles and results apply. Given a

particular acceleration out of the starting block, equation (12.8) can be used to
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obtain her required lean angle. The physics and mathematical analysis of the
broom’s lean and acceleration are identical to the sprinter. We can intuitively view
the stability of these as a combination of a linear acceleration at the bottom and an
acceleration of the COM caused by the rotation of the boom.

Note: we have described the only way to move a broom in a continuous, steady
motion across the room. You cannot move the broom at a constant velocity—only
under conditions of constant acceleration. It might be possible to move in a semi-
steady fashion through a series of quick jerks back and forth, i.e. we make it ‘fall’
one way and then quickly move the bottom of the broom ahead and make it fall
backward. By continuously repeating these actions, the broom could translate across
the room. The motion, however, is not a steady forward movement.

There is another aspect to the broom’s motion that is common to that of the
bicycle; it is a countermove. Before beginning the acceleration of the broom to the
right, you must make a quick move to the left. Inertia, the tendency of the broom’s
mass to stay at rest, causes the COM to remain in the original location and the
broomstick is now leaning toward the right. What transpires if you do not make the
quick countermove to the left? Suppose you begin with acceleration of the broom’s
bottom to the right. Try it! The broom will be leaning left and you had better be
prepared to accelerate to the left.

12.10 Stability of bicycle when not in equilibrium
What makes the bike balance?

The actions of riding and balancing a bicycle are very similar to the balancing of
runners and brooms. In the previous few sections, we discussed the stability of a
sprinter, a broom, and an enthusiastic kid. All of these examples were in neither
translational equilibrium nor rotational equilibrium. Yet, despite this lack of
equilibrium, the sprinter, the broom, and the kid are very stable; they do not fall
down! They are balanced in spite of being in states of non-equilibrium. Their
stability is a consequence of the fact that they simultaneously lack both translational
and rotational equilibrium. These considerations are very important in understanding
the stability—‘balancing’—on a bicycle.

In considering the motion of the sprinter and the broom, there are three important
concepts that have direct application to a turning bicycle. They are:

• The broom’s COM must be leaning past the point of support. The broom is not
in rotational equilibrium.

• The base of the support must be continuously accelerated. The broom is not in
translational equilibrium. If the acceleration ceases, the broom falls over!

• A force of friction provides the accelerating force.
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Why must we lean while making a turn on a bicycle?

The difference between the bicycle and circling toddler (figure 12.4A) compared to
the sprinter and broom is that the sprinter and broom are undergoing linear
accelerations, whereas the turning bike and happy kid are undergoing centripetal
accelerations toward the center of the turn. Just as the sprinter and broom must lean
in the direction of the acceleration, so must the bicycle and kid lean in the direction
of the acceleration, toward the center of the circle. The bike and the kid running in
circles are most similar in that they lean as they undergo a centripetal acceleration
toward the center of the circle!

Once again, we see a connection between bikes and kids—it is baked into
physics!!!!

The view from behind our rider, as he is making a right hand turn, illustrates the
lean toward the center of the turn (figure 12.7A). The reasoning, developed for the
broom in is perfectly applicable to the bicycle system. (Compare figures 12.6B and
12.7B and substitute the head of the rider for the broom bristles).

Section 12.9 gave an expression for the accelerated broom’s angle of lean.
The rider/bike geometry is shown in figure 12.7B. The system center of mass is
somewhere in the middle of the rider’s body. There is no vertical acceleration of the
system; the COM stays at the same height. If the road is not banked, all of the
centripetal force is due to friction. The analysis is exactly like that of the leaning
broom; the result is the same condition on the angle of the lean:

θ = a
g

tan (12.9)

w
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Figure 12.7. (A,B,C) Geometry of lean.
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The important difference between the broom and the bicycle is that the broom must
undergo a linear acceleration—across the room; the bicycle’s acceleration is a
centripetal acceleration into the center of the turn! From section 12.1, the expression
for centripetal acceleration is:

=a
v
r

(12.10)
2

Combining the above two equations:

θ = v
gr

tan (12.11)
2

This expression gives the required lean angle for a given speed and radius of turn.
Notice, the lean angle does not involve the system’s mass; it is a good thing that a
heavily loaded bike will have the same lean angle as one lightly loaded. Otherwise,
the adage ‘once you learn how to ride a bike, you never forget’ might not be true as
our weight increases with age. Perhaps, even more important is that the lean angle of
a very heavy bike system—such as a tandem—is identical to that of a solo machine.

How is it possible for the rider to know the exact angle at which to lean the bike?

Any errors in the rider’s angle of lean θ are easily compensated by steering into a
turn of slightly different radius; she adjusts the radius of the turn r such that the
above condition (equation (12.11)) is met.

Thus, we have the secret to balancing a bike.

What occurs next is mostly up to the rider; she might change the combination of
turn radius, speed, and lean angle. Alternatively, she could shift her weight; or,
perhaps, wind causes a lean to the opposite side. She now makes a subtle adjustment
in steering direction and executes a turn in the new direction of the lean. While our
cyclist may be trying to ride in a straight line, careful observation will reveal the
actions of leaning one way, steering into the lean, and then leaning the opposite way
and now steering into the new lean. The experienced rider repeats these actions
continuously and subconsciously. What might be considered a ride in a straight line
is actually a series of turns of very large radii; figure 12.7C is a top view of a rider,
trying to travel in a straight line but, nevertheless, tracing out a serpentine path.

The two-wheeler is always in a state of unstable equilibrium with its points of support—
the tires’ contact with the ground—below the center of mass. Once the rider lifts her
feet off the ground and begins to travel, the machine leans to one side. In order not to
fall over, the bike must be steered in the direction of the lean and, with the bike now
executing a turn, has a centripetal acceleration. The combination of the lean and
centripetal acceleration results in a condition of balance.
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Life is like riding a bicycle. To keep your balance you must keep moving.
Dr Albert Einstein

For the individual leaning to ride, the challenge is realizing that the bike must be
moving for it to balance; it is not possible to execute circular motion without the bike
being in motion. The learner must also develop a knack for turning into the direction
of the falling bike’s lean. In a later section, we will see that bicycles possess a self-
stability owing to the front fork design; a leaning bicycle will automatically steer into
a turn. The neophyte must learn not to fight the bike’s self-steering action.

If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you
Except the Will which says to them: “Hold on!”

If by Rudyard Kipling

A few specific calculations, using equation (12.11), illustrate the balance con-
dition. Suppose we have a rider/bike system of 181 lb (5.62 slugs) making a turn at
20 mph (29.3 ft/s) in a circle of radius 100 feet.

First, solve for the angle of lean:

θ θ= =
×

= = = °−v
gr

tan
(29.3 ft/s)

32.2 ft/s 100 ft
0.267, tan 0.267 14.91

2 2

2

Solving for the magnitude of the acceleration:

= = = =a
v
r

(29.3 ft/s)
100 ft

8.59 ft/s 0.267 ‘g’
22

2

We can also get the necessary force of friction:

= = × =f ma 5.62 slugs 8.59 ft/s 48.3 lbs2

And the required minimum coefficient of static friction:

μ = = =f
N

48.2 lb
181 lb

0.267min

The good news is that this coefficient is well below the coefficient for rubber-road
contact of 0.9 (table 5.1).

The results of these calculations and other combinations of speed and turning
radius are shown in table 12.1.

The bottom two rows in table 12.1 involve extreme leans. Can this be done? We
are not sure of 40 mph turns by your average Sunday afternoon cyclist, but bicycle
and motorcycle racers routinely perform high-speed turns. The balancing and
turning of motorcycles are subject to the same laws of physics as bicycles.
Perhaps, the reader has observed a little trick used by high-speed racers—they
extend their knee toward the inside of the turn. The leans are so extreme for the
motorcyclists that they wear kneepads. In our calculations on the system center of
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mass, we normally envision a (head to toe) symmetrical bike and rider as seen from
behind; by extending the knee toward the inside of the turn, the rider is able to move
the center of mass off the line of symmetry. This maneuver results in the machine
maintaining a more vertical orientation providing road contact closer to the tire’s
center.

The other issue with the 40 mph speeds is that the friction coefficients are high; a
banked road is necessary.

Why do riders fall over if they make a turn that is too fast and sharp for ground
conditions?

Look carefully at the forces on tire bottom (figure 12.7B); the force of friction
pointing to the right is keeping the bottom of the wheel from kicking out to the left.
This force, producing a counterclockwise torque about the COM, opposes the
clockwise torque produced by the normal force. If, in the course of making a turn,
you hit an area of low friction (a wet section of road or loose gravel), the force of
friction is insufficient and the bike rotates clockwise slamming the rider sideways
onto the ground. The author speaks from experience on this experiment.

12.11 Self stability of a bicycle

What is meant when people say a bicycle possesses ‘self stability’?

We have seen that a turning bicycle must lean; conversely, a leaning bike must turn.
Since a bike/rider system has a center of mass perched far above the road support,
the machine readily leans to one side or the other. Much of the skill in learning to
ride is to accept the lean and steer into a turn. A lean to the opposite side requires a
steer into the new direction. A cyclist can ride for hours subtly executing the proper
combinations of leans and turns. The skills become intuitive and the actions are
subconscious. To get a feeling for these delicate and continuous actions, try to ride
along a painted road line. No matter how hard you strive, the bike wanders from
one side of the line to the other.

In addition to intuitive skills and a deep-rooted aversion to falls, the rider is
facilitated by important features in the machine’s design. Aspects in the fork and
front wheel design afford the bicycle a significant property of self-stability. The
self-stability allows even a riderless bicycle to travel and balance in an astonishing
manner. The bicycle’s stability has been the subject of much speculation, scientific

Table 12.1. Parameters when making a turn.

v r (ft) a (ft/s )2 θ f (lb) μmin

20 mph (29.3 ft/s) 100 8.59 0.267 ‘g’ 14.9o 48.3 0.267
20 mph (29.3 ft/s) 50 17.2 0.533 ‘g’ 28.1o 96.7 0.533
40 mph (58.6 ft/s) 100 34.3 1.07 ‘g’ 46.9o 192.8 1.07
40 mph (58.6 ft/s) 50 68.7 2.13 ‘g’ 64.8o 386.2 2.13
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research, and analysis. It is also common to find erroneous explanations of the
stability. Serious efforts have developed models and theories that quantify and allow
for predictive evaluations of the machine’s stability. The interested reader may wish
to explore the scientific literature to gain an appreciation for the complexity of the
concepts, and the level of mathematical sophistication that is brought to a rigorous
analysis [1]. Since the basic approach of this book is to understand the physical
behavior of the bicycle with minimum use of mathematics, we offer simplified,
intuitive, explanations of the bicycle’s self-stability. Most bicycle models are based
on frame, fork, and wheel configurations that originated in the nineteenth century.
These early designs, likely evolved from empirical methods of trial and error, persist
in modern machines.

You will never plow a field by turning it over in your mind.
Irish Proverb

In order to grasp many aspects of the physical world, it is best to use the
experimental method—your own personal powers of observation—look, measure,
think, look again; do your own experiments. In the next few paragraphs, we discuss
simple experiments that illustrate important aspects of the bike’s stability.

Experiment #1: instability caused by a locked fork
Any good science experiment needs a control—an experiment in which the event of
interest does not occur. Is there a way to eliminate or reduce the bike’s stability?
Yes—it is very easy. If the front fork is prevented from freely turning, such as by
removing the upper and lower headtube bearings and tightening the locking nuts,
the bicycle with a locked front wheel will lean and fall as soon as it begins moving.
Another method for locking the fork is to brace the handlebar/fork/wheel system in a
forward position and drill a hole straight through the headtube and fork. Lock the
fork by inserting the drill bit through the holes; removal of the bit unlocks the
steering mechanism.

A bike with a locked front fork will quickly fall—with or without the rider! If you
try to ride this bicycle—be forewarned: you will not be able to ‘balance’ the machine
regardless of how fast you pedal and spin the wheels! The bicycle will fall over in a few
feet. Wear a helmet; keep the saddle low, and do not clip into pedals!

The stability of a bike is inherently dependent on the free rotation of the front fork.

Experiment #2: stability of a riderless bicycle
The reader is encouraged to demonstrate the self-balancing phenomena of a riderless
bike for herself. All it takes is a bike with a straight frame, good air in the tires, and a
front fork that is free to turn. Unless someone catches the bicycle, it will eventually
crash. Best to use an inexpensive bike; most ten-dollar flea market finds will work
fine. Also, since a riderless bicycle is capable of traveling far (miles?), be certain that
the bicycle does not encounter objects.

The ideal location for experimenting with a riderless bike is an open area with a
gentle downward slope. Run alongside the bicycle and give a moderate push on the
saddle; do not jerk or twist the handlebars. The slope will ensure that the machine
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maintains its forward speed. As the bike travels away, it begins falling to one side.
Observation is the key to a good experiment; notice, as the bicycle leans to one side,
the front wheel steers into the lean; the bicycle now moves along an arc and then
quickly rights itself back up. Next, the machine then leans in the opposite direction
and the sequence is repeated. The process can occur many times. It is quite
marvelous to see the riderless bike travel long distances—the primary limitation
being when the two-wheeler loses speed and cannot right itself from a lean.

These experiments show that the bike with a front fork, free to rotate, has
remarkable self-stability; it is able to ‘balance’ itself and travel long distances with
no rider control. It is worthwhile repeating the riderless bike experiment with the
front fork locked—the bike falls immediately.

To understand the bicycle’s stability, we need to look close at several key aspects
of the front fork design.

12.11.1 Weight distribution of the handlebar– fork– front wheel

Before examining the bicycle, you can get a sense of the gravitational effect on the
front fork by holding a heavy book (a twenty pound physics book is ideal) in your
hand with the arm straight at an angle of about 45 ° to the vertical (figure 12.8A).
Think of your fore and upper arms as the axis of rotation. A slight twist of the arm
results in the weight being off to the side and gravity pulling the arm into further
rotation. Now, instead of rotating your arm, lean your body to one side. Once again,
the weight of the book causes the arm to rotate further. This example is a nice model
for the behavior of the front fork design. The handlebar–fork–front wheel apparatus
is designed with a center of mass forward of the fork’s axis of rotation as it passes
through the headtube. Inspection of the stem shows that the handlebar is forward of
the axis and the wheel is also held forward of the axis by means of a sweeping curve
at the bottom (figure 12.8B). Usually mountain bikes do not have a curved fork;
rather, they employ a bend in the fork as it exits the headtube.

AXIS OF ROTATION

HEADTUBE

CENTER OF MASS

Figure BFigure A

MECHANICAL
HEAD TUBE

ANGLE

Figure C

TRAIL

TRAILTRAIL

Figure 12.8. (A,B,C) Fork detail.
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If you stand next to a bike, hands off the handlebar, and lean it to one side, the
front wheel automatically turns into the direction of the lean. This rotation of the
front wheel is not caused by any force from the ground; we can eliminate ground
forces and still observe this effect. Get the front wheel off the ground; use a repair
stand or even suspend the bike in the air with a couple of ropes attached to the top
tube. When a bike leans, the front wheel automatically turns due to the gravitational
pull on the fork’s off-axis center of mass.

It is simple to observe the opposite effect when the bike is back on the ground.
Just stand next to an upright bike and turn the handlebar; the bike leans in the
direction of the turn.

Due to the interaction of the bicycle’s components—a leaning of the bike causes the
front wheel to turn. If the bike is moving, the leaning bike now travels along a circular
arc. Conversely, if the rider deliberately turns the handlebars, the bike automatically
leans in the direction of the turn. The turning/leaning bicycle meets the condition of
stability/balance described in section 12.10.

12.11.2 Trail of the front wheel contact with the ground

The bicycle fork is angled forward; the angle of the headtube (typically about 72°)
determines the angle of the fork. A straight line through the headtube is called the
steering axis. The fork rotates about this steering axis line (figure 12.8B). The
headtube angle is a specification given in a manufacturer’s catalog. Note: to add
confusion to a complicated topic, the headtube angle is also called the ‘rake angle’ or
‘rake’ of the fork.

Another experiment: sit on the bike’s seat, lean forward, and look carefully from
above the headtube toward the ground. You will see that the line of the steering axis
projects to a point on the ground that is forward of where the tire makes ground
contact. The front tire touches the ground a few inches behind the steering axis
intersection with the ground (figure 12.8B). It helps to have an assistant mark these
points on the ground. The front wheel ‘trails’ the steering axis. The trail of the bicycle
is the distance between the projected point from the steering axis and the front tire
contact. Careful inspection of figure 12.8B shows that the trail is a consequence of
the slanting headtube/fork arrangement. Who first conceived such a sloped arrange-
ment and why is not known; it may have been introduced as a scheme to position the
handlebar closer to a seated rider. Whatever the purpose for its introduction, the
sloped headtube/fork is the reason for the magical self-stability in the bicycle and
contributes greatly to the ease with which the machine can be balanced and steered.
Typically, the trail is a few inches; the trail of the bicycle is another design parameter
given in a manufacturer’s catalog.

Now, for an additional small complication; although the trail is specified, it is not
the horizontal trail that matters. Rather, it is a component of the trail perpendicular
to the steering axis, the so-called mechanical trail, that is the significant parameter
(figure 12.8C). Since the headtube angles are large, the mathematical difference
between the trail and its mechanical trail counterpart is only about 5%.

While the trail of the front wheel is a very important factor in the self-stability of
the bicycle, one can sometimes have too much of a good thing. That is, too much
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trail will make the bicycle difficult to steer. The curved sweep at the bottom of the
fork pushes the wheel forward and, therefore, reduces the amount of trail. In
mountain bikes with suspension forks, the trail is reduced by a bend in the fork just
below the headtube. Another experiment worth trying is to rotate the handlebars
180o (you might have to remove cables). With the sweep pointing backwards, the
trail is greatly increased. The machine will be very stiff to steer.

How do the design of the bicycle and the laws of physics bring about this magical
stability?

The point at which the tire contacts the ground is significant; this is the location where
ground friction acts and serves as the centripetal force on the machine. The trail of the
front fork causes this centripetal force to act at a point behind the steering axis.

While still straddling the resting bike, lean it to the left and allow the handlebars to
rotate toward the left. Since the bike is not moving, there will be no centripetal force;
your helper can play the role of the centripetal force. Ask him to push with his finger
on the right bottom side of the front tire (he would be pushing into the paper in
figure 12.8B). Your helper’s finger is acting as an artificial centripetal force. The
force of the push causes the front tire to become straight; the push creates a torque
about the bicycle’s steering axis. The force’s lever arm is the mechanical trail.

In a turning bike, the centripetal force is applied by the ground friction to the bottom of
the front wheel. The trail results in the centripetal force acting behind the steering axis
and this force generates a torque that tries to straighten the front wheel. If the bicycle is
turning toward the right, the centripetal force is also directed toward the right and, as it
pushes on the bottom of the wheel, it tends to make the handlebars rotate counter-
clockwise as observed by the rider. In order to maintain the right hand turn, the rider
needs to apply a steady clockwise torque to the handlebars.

A turning wheel, mounted in such a manner that it tries to straighten out, is said
to be castered. An automobile driver is keenly aware of this effect. If, during a turn,
the hands are loosened from the steering wheel—the steering wheel returns to the
straight ahead position. Thus, to maintain the turn, it is necessary for the driver to
keep a steady torque on the steering wheel. Upon exiting the turn, the driver loosens
her grip and allows the car’s tires to straighten out. Supposedly, shopping carts
employ castered wheels to ensure straight-line steering.

If you are ever lucky enough to find a shopping cart that actually steers well,
check out the caster effect on the wheels.

There are several benefits from the caster effect.
One desirable feature of castering is that it encourages the vehicle, such as a bike

or car, to travel in a straight line. When wind or road bumps push the vehicle to the
side, the machine tends to straighten out and continue in a direct line. The role of
the operator is to not resist the tendency of the machine to continue on its straight
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path. A second benefit of castering occurs when the operator desires to make a turn;
castering offers a small resistance to the force of turning. This negative feedback
requires that the operator maintain steering torque. The opposite, a positive
feedback steering mechanism, will sharpen or ‘take over’ a turn; it would then be
necessary to restrain the steering wheel or handlebar to avoid dangerous
oversteering.

12.12 Summation of bicycle stability
Although the various factors, discussed above, act simultaneously in small, almost
imperceptible increments to give the bicycle its stability, it is worthwhile to think of
these actions in a step-by-step manner and get a feeling for the interplay of the
factors. Consider, once again, the riderless bike traveling in a straight line. The
rotations of the front fork are as viewed by an imaginary rider as she looks down
from above the handlebars.

Step 1. the bike begins to lean to one side (right).
Step 2. the front wheel rotates (clockwise) into the lean. This action is the result

of the front fork assembly having its center of mass in front of the
steering axis; the gravitational pull on the unsupported mass causes the
front wheel to turn in the direction of the lean.

Step 3. with the front wheel rotated, the bike executes a turning arc to the right.
The radius of turn depends on the front wheel’s rotation; with the
riderless bike, the radius is usually large.

Step 4. the bike, leaning and moving along the circular path, is now undergoing
a centripetal acceleration toward the center of the circle. The centripetal
force is due to friction contact between the tire and the ground.

Step 5. the centripetal force, acting through a lever arm of the mechanical trail,
produces a torque that causes the front wheel to rotate opposite
(counterclockwise) to that of step 2.

Step 6. the front wheel is turned into alignment with the frame and rear wheel.
The result is a moving bike still leaning toward the right but with the
front wheel aligned with the frame.

Step 7. since the front wheel is pointing straight ahead, the bike has lost its
centripetal force and now wants to travel in a straight line, tangent to
the circular path. This behavior is similar to the rock, whirled in a
circle, flying off in a straight line if the string breaks. The tendency to
travel in a straight line is inertia.

Step 8. we now have a leaning, moving bicycle with the inertial tendency to ‘fly
off’ in a straight line. However, the bike differs from the rock—the bike
is not free to fly through the air. Rather, the wheels are in contact with
the ground and friction prevents the bottom of the bike from moving
off along the tangent. While the bottom of the bike is ‘pinned’ to the
ground, the bicycle’s center of mass is free to move along the tangent.
This inertial action of the center of mass results in the bike coming out
of the lean and righten to the vertical.
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Step 9. as the bike comes out of its lean, it likely continues past the vertical and
is now leaning in the opposite (left) direction. We now are back to step
1 with a turn toward the left.

With a rider, steps 1 through 5 make it easier to balance and turn.

Why does a bike need some minimum speed in order to balance?

As long as the bike has sufficient forward speed, the sequence of steps can be
repeated many times. Steps 4 and 5 are ineffective with a slow moving bike. Recall

that the centripetal force is given by the expression: = =F ma mv
rc c
2

.
At low speeds, there is insufficient centripetal force to straighten out the front

wheel and the bike loses its self-stability. A bike moving too slowly will be very
difficult to balance and ride.

Why do we first countersteer in the opposite direction before beginning a turn?

This phenomenon is identical to the motions required to get the balanced broom to
travel in a specific direction. The countersteer puts the bike into a lean. This
countersteer is subtle and many riders are not even aware they do it. If you make a
determined effort not to countersteer—just try to force a right turn—you will find
yourself going left! The forced turn to the right becomes the countersteer for a left
hand turn! Our instinctive distaste for falling controls subconscious behavior on the
bicycle.

Is it accurate to say a rider turns the bike by leaning her weight rather than turning the
handlebar?

A bicycle will travel in the direction the front tire is pointing; if the handlebar is not
turned, the bike travels in a straight line. A horizontal turn requires a horizontal
force; body weight is a vertical force, it does not point toward the center of turn. It is
common, but somewhat erroneous, to say that the body lean turns the bike. Of
course, as described in Step 2 above, the body lean does cause the front wheel
rotation that now results in a centripetal turning force.

Why does a bike fall over when it encounters street grates or ruts in ice?

Especially hazardous to riders are situations such as street drain grates or ruts in ice.
These dangers trap the front wheel and prevent it from turning—the fork is locked!
The explanation is simple: if the front wheel cannot turn, the bike cannot balance;
therefore, you fall. Trapping of the rear wheel does not cause a loss of balance.
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Common unit conversions

Mass/weight equivalents on the surface of the Earth:
1.0 kg weighs 9.81 newtons(N)
1.0 kg weighs 2.205 lb
1.0 slug weighs 32.2 lb

= =g 9.81 m/s 32.2 ft/s2 2

Mass: 1.0 slug = 14.6 kg
Force: 1.0 lb = 4.45 N
Distance: 1.0 m = 39.37 inches = 3.28 ft

1.0 mile = 1.609 km
Speed: = =1.0 m/s 3.60 km/h 2.24 mi/h

=1.0 mi/h 0.447 m/s
=88 ft/s 60 mph

Energy: − =1.0 ft lb 0.3241 calories
Power: = = =− −1.0 1.356 1.356 1.356 wattsft lb

s
N m

s
joules

s

= × × = = 96.9 watts2000 Calories
day

2 000 000 calories
day

4.184 joules
calorie

1 day
86,400 s

96.9 joules
s

Power: = × × = =100 watts 86 042 86100 joules
s

1 calorie
4.184 joules

3600 s
s

calories
hour

Calories
hour

1.0 horsepower (hp) = 550 ft-lb/s,1 ft-lb/s = 0.00182 hp
1.0 hp = 746 watts, 1 watt = 0.00134 hp
1 ft-lb/s = 1.356 watts = 1.165 Calories/hour
1.0 watt = 0.737 ft-lb/s
1.0 calorie of heat is equivalent to 4.184 Joules of energy
1.0 calorie of heat is equivalent to 3.09 ft-lb
1.0 Calorie = 1.0 kilocalorie = 1000 calories
one ‘serving’ of potato chips = 150 Calories = 150 000 calories

doi:10.1088/978-1-6817-4441-4ch14 B-1 ª Morgan & Claypool Publishers 2016

http://dx.doi.org/10.1088/978-1-6817-4441-4ch14


IOP Concise Physics

Understanding the Magic of the Bicycle
Basic scientific explanations to the two-wheeler’s mysterious and fascinating behavior

Joseph W Connolly

Appendix C

Trigonometric values

Angle sin cos tan angle sin cos tan

1 0.0175 0.9998 0.0175 46 0.7193 0.6947 1.0355
2 0.0349 0.9994 0.0349 47 0.7314 0.6820 1.0724
3 0.0523 0.9986 0.0524 48 0.7431 0.6691 1.1106
4 0.0698 0.9976 0.0699 49 0.7547 0.6561 1.1504
5 0.0872 0.9962 0.0875 50 0.7660 0.6428 1.1918
6 0.1045 0.9945 0.1051 51 0.7771 0.6293 1.2349
7 0.1219 0.9925 0.1228 52 0.7880 0.6157 1.2799
8 0.1392 0.9903 0.1405 53 0.7986 0.6018 1.3270
9 0.1564 0.9877 0.1584 54 0.8090 0.5878 1.3764
10 0.1736 0.9848 0.1763 55 0.8192 0.5736 1.4281
11 0.1908 0.9816 0.1944 56 0.8290 0.5592 1.4826
12 0.2079 0.9781 0.2126 57 0.8387 0.5446 1.5399
13 0.2250 0.9744 0.2309 58 0.8480 0.5299 1.6003
14 0.2419 0.9703 0.2493 59 0.8572 0.5150 1.6643
15 0.2588 0.9659 0.2679 60 0.8660 0.5000 1.7321
16 0.2756 0.9613 0.2867 61 0.8746 0.4848 1.8040
17 0.2924 0.9563 0.3057 62 0.8829 0.4695 1.8807
18 0.3090 0.9511 0.3249 63 0.8910 0.4540 1.9626
19 0.3256 0.9455 0.3443 64 0.8988 0.4384 2.0503
20 0.3420 0.9397 0.3640 65 0.9063 0.4226 2.1445
21 0.3584 0.9336 0.3839 66 0.9135 0.4067 2.2460
22 0.3746 0.9272 0.4040 67 0.9205 0.3907 2.3559
23 0.3907 0.9205 0.4245 68 0.9272 0.3746 2.4751
24 0.4067 0.9135 0.4452 69 0.9336 0.3584 2.6051
25 0.4226 0.9063 0.4663 70 0.9397 0.3420 2.7475
26 0.4384 0.8988 0.4877 71 0.9455 0.3256 2.9042
27 0.4540 0.8910 0.5095 72 0.9511 0.3090 3.0777
28 0.4695 0.8829 0.5317 73 0.9563 0.2924 3.2709
29 0.4848 0.8746 0.5543 74 0.9613 0.2756 3.4874
30 0.5000 0.8660 0.5774 75 0.9659 0.2588 3.7321
31 0.5150 0.8572 0.6009 76 0.9703 0.2419 4.0108
32 0.5299 0.8480 0.6249 77 0.9744 0.2250 4.3315
33 0.5446 0.8387 0.6494 78 0.9781 0.2079 4.7046
34 0.5592 0.8290 0.6745 79 0.9816 0.1908 5.1446
35 0.5736 0.8192 0.7002 80 0.9848 0.1736 5.6713
36 0.5878 0.8090 0.7265 81 0.9877 0.1564 6.3138
37 0.6018 0.7986 0.7536 82 0.9903 0.1392 7.1154
38 0.6157 0.7880 0.7813 83 0.9925 0.1219 8.1443
39 0.6293 0.7771 0.8098 84 0.9945 0.1045 9.5144
40 0.6428 0.7660 0.8391 85 0.9962 0.0872 11.4301
41 0.6561 0.7547 0.8693 86 0.9976 0.0698 14.3007
42 0.6691 0.7431 0.9004 87 0.9986 0.0523 19.0811
43 0.6820 0.7314 0.9325 88 0.9994 0.0349 28.6363
44 0.6947 0.7193 0.9657 89 0.9998 0.0175 57.2900
45 0.7071 0.7071 1.0000 90 1.0000 0.0000 undefined
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