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Preface

Early drafts of this book were written for a course I first taught in the Fall of 2013 at
the University of Wisconsin–Fox Valley, in Menasha, Wisconsin.

I assume no specific prior knowledge of the reader except for a very basic
understanding of physical units, dimensions and scientific notation (these topics are
reviewed in appendix D for readers unfamiliar with them). The mathematics
presented in the text is rudimentary, with only the most basic of algebra (more
detailed derivations or those that require calculus are relegated to the appendices). If
you have little experience with photography, it is my goal that The Physics and Art
of Photography will help form a useful foundation from which to learn about
photography in whatever way that works best for you. If you are a seasoned pro, but
looking to set off in a new direction, then I still hope that you will find much here
that is fresh and inspiring, and it is my goal that the book will help to open new
possibilities. The Physics and Art of Photography is in three volumes:

Volume 1: Geometry and the nature of light
Part I: Some preliminary ideas
Part II: The nature of light
Part III: Geometry and two-dimensional design

Volume 2: Energy and color
Part I: Energy and photography
Part II: The art and science of color

Volume 3: Detectors and the meaning of digital
Part I: The physics of light detectors
Part II: Photography as an art and the meaning of digital

The Physics and Art of Photography covers some material that is typical of
discussions that link physics and photography. But it is also personal; it is very much
my own take on the two subjects. I would not say that my personal views regarding
science and art are controversial, but they are perhaps somewhat unconventional.
There are few details here that other artists and scientists are likely to strongly
disagree with. It is, rather, what I have chosen to emphasize, what I have left out all
together, and the particular connections I point to, that most shows my own
personal likes and dislikes.

Since my formal training is in physics and astronomy, while I am essentially self-
trained in art (with informal mentoring from many others), the science part of this
book is perhaps more conventional and straightforward than is my portrayal of art.
And so my choice of physics-related topics should give one a fairly balanced and
conventional taste of that subject as it relates to photography. Regarding photog-
raphy as an art, however, I am surely on shakier ground.

Certainly, I do not pretend to present a comprehensive or balanced overview of
art photography; I am unqualified to attempt such a thing. But I do try to make a
case that the particular thin slice that I present here has some merit and is worth
spending a little time to consider, even if it turns out not to be your particular cup of
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tea. This book is a bad place to get a sense of what are the hot topics in ArtForum,
but I believe that it does at least point to important and interesting questions about
art photography in general. And since it is my goal to get you thinking, it doesn’t
matter much whether you agree with me or not. Thus it is fitting that my discussion
of art is more personal, since my own art is the wee bit for which I really do know
about what I am talking.

And so one might complain that The Physics and Art of Photography is a very
long artist’s statement, justifying the value and relevance of my own art. That may
be partly true, but I do try to approach it in a way that emphasizes broad questions,
rather than the particular answers I try to give (tentatively) with my own art. And I
hope this book does help a little to make you a better photographer, and as such I do
spend time on some of the very basic technical aspects of photography that I find
important. But in doing so, I try to use these technical issues as points of departure
to consider the status of photography as an art, finally exploring some issues relating
to this status in the digital age.

This book may also be read as a manifesto of sorts for the aspects of science that
have always moved me the most. I am interested in science not for the technological
gizmos it has produced, or for some notion of inevitable human ‘progress.’ Rather,
science is, for me, part of the study of nature. My interest in Einstein’s General
Relativity, for example, is essentially the same as my interest in bird watching.
Because I have spent some time learning a bit about birds, I can now walk through
the woods free of binoculars, looking only at the ground at my feet, and a world is
open to me just by the sounds I hear. And when I stumble on my way up the stairs,
as a physicist I can take comfort in the idea that my shin in contact with the
stair prevented me from following my normal straight-line path through four-
dimensional spacetime.

You will find throughout the book illustrations from my own photography as
examples. This is convenient, since I know my own pictures and the stories behind
them, and I don’t need permission to use them. But of course I also want you to look
at other photography, and so I have included some examples from a few other artists
whose work I admire.

A useful companion is The Photography Book (Phaidon Press, 2014), which
presents hundreds of photographs, spanning the entire history of photography. Each
has a short analysis, with cross references to other photographs that are related. The
photographs, only one per photographer, are arranged in alphabetical order by
photographer’s name. Thus, the ordering of the pictures is thematically random,
which often results in unusual juxtapositions on facing pages. I sometimes refer to
pictures in The Photography Book as examples, and so it is useful to have it handy.
But all of these pictures are famous and can easily be found online as well.

The reader will also find, scattered throughout the three volumes and their
appendixes, details and examples from what I call ephemeral process (EP)
photography. EP photography is my own invention—sort of—and I spend so
much time on it because it is perfect for illustrating many of the concepts in The
Physics and Art of Photography in a way that I believe goes directly to the heart of
the matter. Furthermore, it is accessible. The materials and equipment are
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inexpensive, it requires no specialized facilities (such as a darkroom), and it is
surprisingly versatile. But most importantly, it is a lot of fun.

The larger concerns of The Physics and Art of Photography are to give the reader
some background that is helpful for asking important questions about the nature of
art and science. But the practice of photography is the point of departure for these
bigger issues, and as such The Physics and Art of Photography does contain a lot of
simply practical information as well. And so The Physics and Art of Photography has
five basic goals:

1. To ask basic questions about how photography fits in as an art, and about
the nature of art itself.

2. To ask basic questions about the nature of physics as part of the study of the
natural world, and about the nature of science itself.

3. To gain some practical knowledge that will allow the reader to more easily
learn technical aspects of photography, as they are needed.

4. To gain some practical knowledge that will help the reader more easily learn
to be a better photographer.

5. To expose the reader to a set of interesting photographic processes and tools
that are not usually covered in a beginning photography course.

One of the themes of this book is the meaning of digital technology and what it
has to say regarding photography as an art form. This may seem like I am speaking
out of turn here, since I have neither formal training in art, nor have I ever been a
professional photographer using professional digital equipment. Nevertheless, there
is a sense in which I am well-positioned to say something of interest about these
issues.

My own photography is almost entirely devoid of the use of a digital camera. I
often use equipment and old physical processes that are about as far removed from
modern digital photography as one could imagine. But I use these in new ways that
depend absolutely on the digital; many of my photographs could not exist without
modern digital processing and scanning and printing. This kind of interplay between
the old and new is one of the running themes of The Physics and Art of Photography.

And despite my collection of old cameras, I am not a knee-jerk hater of digital
imaging technology. In fact, I am one of its early practitioners, having used digital
cameras and sophisticated digital image processing long before most photographers.
My formal training is in astronomy, and I was there (in graduate school) for the
digital revolution as it transformed astronomy in the 1980s. The CCD digital
detectors used in modern digital cameras were fairly new then, and still too
expensive (and with insufficient resolution) to be of much practical use for
photographers. I am the last person one would want to ask about the latest multi-
thousand-dollar model of DSLR camera. But I do have a decades-long under-
standing of some of the most basic underlying principles of digital photography.
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The Physics and Art of Photography, Volume 1
Geometry and the nature of light

John Beaver

Chapter 1

What is science; what is art?

One purpose of this book is to use photography as a point of departure to learn a bit
about both science and art, and how they relate to each other. And so it may be
helpful to take a brief tour of the nature of each in turn, before really diving into the
material. The difficulty is that there is much more to both art and science than what
can be captured in any kind of short description. And so I will not really answer the
questions ‘what is science?’ or ‘what is art?’ in any comprehensive way or with nice
one-sentence definitions of these two odd and complex things that humans do.

I will say only a little about the nature of science in general, and then almost
nothing about the overall nature of art. This is mostly because I am much more
qualified to attempt such a ‘big picture’ description for science. I have been teaching
science for a few decades now, mostly at an introductory level to non-scientists. And
so I have had to think long and hard about just what it is that I am teaching and why
I am doing it. My relationship with art on the other hand is less formal, more
personal and more recent. Please note that in what follows I am talking about the
natural sciences. The social sciences have much in common, but also much that is
different, and I leave it to others to talk about them.

Much has been written about the nature of science, and it is a subject of ongoing
debate. My brief and very-incomplete discussion follows the general approach of
Sokal and Bricmont (1998, chapter 4) but also informed by Chomsky (2000,
chapters 4 and 5); it should be taken as only one approach to this complex topic.

1.1 The coherence of our experience
One key aspect of science is that it favors explanations that economically tie
together, accurately, a broad range of experience that otherwise would seem to be
connected only by coincidence. What may seem on the surface to be a coincidental
connection is instead evidence that there is a deeper understanding to be sought, in
which all of the facts come together in a natural way.

doi:10.1088/2053-2571/aae1b6ch1 1-1 ª Morgan & Claypool Publishers 2018
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When a scientific explanation works well at connecting the seemingly uncon-
nected, we are left to consider that either there is something to it, or the Universe is
conspiring, as a sort of joke, to make it only seem as though the explanation is
correct. It is tempting to give a simple, short example right here; the problem is that
for any real example it is always a very long story.

But this is what happens when we find a compelling explanation in science: many
seemingly-disconnected facts all fit exactly into one simple scheme, called a theory.
And this theory allows one to correctly predict or explain, again and again, new facts
that one hasn’t yet even looked for or considered. And so we are then left with three
choices:

1. It is simply a coincidence that our theory gets it so right, so often.
2. There is a conspiracy by some cosmic intelligence, either malevolent or at

least with an odd sense of humor, to arrange things intentionally so that it
only looks like our theory is correct, when actually the theory is completely
wrong.

3. There is some kind of truth to our theory. It is at least on the right track, at
the moment, although details will likely need to be modified as we learn
more. And perhaps some day we will see it, not as something that stands
alone, but rather as only a part of a larger, more complete theory.

Science chooses the third option whenever it gets to the point that the first option seems
too unlikely to take seriously. In science we basically reject the second option out of
hand, with neither argument nor apology. As a human being, one may very well
accept option 2 in a particular case; science is only one of the many things we
humans do. But whatever that is, it isn’t science.

1.2 Truth in science
We never prove a theory true in science. When a scientist says (quoted in a news
story, for example) that a particular theory has been ‘proven,’ they are being
somewhat glib, and they do not mean it in the strictly mathematical sense.

Rather, they mean that the theory is compelling. That is, it is rational to believe
the theory has at least a conditional and tentative truth. And more importantly, the
evidence is great enough that it is, in a sense, irrational to believe the theory is
completely wrong.

Basically, to say that a scientific theory has been proven is to say that of the
options in section 1.1 above, option 1 is, in the face of new evidence, too unlikely to
take seriously. And so we are faced with either option 2 or option 3, and if we are
acting as a scientist then we dismiss option 2 out of hand, and so choose option 3.

Now of course in real life it is never so clear-cut as I have laid out here. For it
is always the case that evidence is limited and uncertain. This means that for any
given theory that gets all of the available evidence correct—that ‘gets it right’ so to
speak—there will also be an infinite number of other theories that do the same thing.
So why then, in a given case, do we pick the particular theory we do?

The Physics and Art of Photography, Volume 1
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Well, often, we don’t. We disagree, at least for a while. But we do pretty much
agree, as scientists, that theories that explain more, but still manage to do it with less
complexity, are the theories that are more likely to be correct. This is sometimes
called Occam’s razor, and it serves as a rule of thumb for choosing between
competing theories with equal explanatory power. But even given Occam’s razor,
it is not always clear, in a given case, which theory really is the least complex; there
are always different ways to look at it. And so we often disagree about the details, in
the short term, only approaching overall agreement in the long term as more is
learned.

Clearly, this is not really a proof at all; any particular scientific theory, no matter
how compelling, is never the only explanation possible for all of the evidence. And
since there are other logically possible explanations, then the theory has not been
proven in the mathematical sense. Rather, the scientist makes a much less-strong
claim about their theory—simply that it seems unreasonable to disbelieve it.

1.2.1 Proving a theory false

We can’t really prove a scientific theory to be true, but it might seem that it should be
easy to prove that an untrue theory is false. In theory (pun intended), a theory is
falsified if it predicts something in particular to be true, and then we go out and
check and find that the prediction was incorrect. So it would seem that it should be
easy to prove a theory incorrect; simply find one fact that it gets wrong.

But surprisingly, even to prove a theory false is, in practice, rarely a straightfor-
ward process. For maybe the observed ‘fact’ is wrong, not the theory. Furthermore,
real theories are usually subtle. That is, they use simple principles that when applied
to particular circumstances predict extremely complex results. This means that, since
the world is a complicated place, applying any given theory to a particular real-
world situation can be surprisingly difficult. In fact, it is often too difficult to do
exactly.

Newton’s laws of gravity and motion are a good example. These laws are simple
enough that, when expressed in the correct mathematical language, they can be
written on the side of an envelope (see figure 1.1). Yet it can be maddeningly difficult

Figure 1.1. Newton’s laws of motion and gravity are simple in a mathematical sense. When expressed in the
right mathematical language, they can be written on an envelope. But applying them to real-world situations
can be maddeningly complex.
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to figure out exactly what they predict in even seemingly-simple real-world
situations. It is so difficult that we are usually forced to make (hopefully) reasonable
approximations. This leaves open the possibility, when a theory seems to give the
wrong answer in a particular case, that it is not the theory that is incorrect. Rather, it
may be that we have made invalid approximations when we applied the theory.

And so in the 19th century it was noticed that the application of Newton’s laws to
the orbit of the planet Mercury gives answers that are just slightly different from the
planet’s actual measured orbit. Faced with this, should 19th-century scientists have
immediately rejected Newton’s laws and looked for something better? Certainly not,
for there were many imaginable explanations for the discrepancies in Mercury’s
orbit that did not conflict with Newton’s laws (several were suggested at the time).
And so, since Newton’s laws worked so enormously well in so many zillions of cases,
it would have been unreasonable to reject it because of this one discordant fact,
when other explanations could easily be imagined.

I have chosen this example for its irony, because it turns out in retrospect that the
discrepancy in Mercury’s orbit really is caused by a failure of Newton’s laws of
gravity and motion. Einstein in 1915 superseded these laws with a more elaborate
and complete theory called General Relativity (GR). One of the first things he
demonstrated was that GR gives the same answer as Newton’s laws whenever
Newton’s laws agree with experiment. But GR also gives the right answer for
Mercury’s orbit, whereas Newton’s gravity gives a slightly incorrect answer.

A very tiny discrepancy in the orbit of one planet seems like a poor reason to
discard Newton’s laws, a wildly successful theory for 250 years, and replacing it with
something much more complex and strange. But this was not Einstein’s primary
motivation. Furthermore, this successful prediction (postdiction really) was only one
of the many reasons (and not the most important one) why most other physicists
fairly quickly adopted GR as the new best theory of gravity (Weinberg, 1992,
chapter 5).

In short, Einstein provided no ‘proof’ that GR is correct. Instead, he argued that
as a scientific theory it is compelling. So, what then was his argument? It is a long
story!1

But back to the ‘failure’ of Newton’s laws regarding the orbit of Mercury; this
example is the exception. Every day, facts are discovered that, if they are taken
literally, conflict with some tried-and-true theory. But upon closer examination, it is
almost always the ‘facts’ that are wrong, not the tried-and-true theory. So it is
prudent to be conservative and require extraordinary evidence for extraordinary
claims.

1.3 Operational definitions
One necessary tool for the physical sciences is the operational definition, which is not
at all like a dictionary definition. The dictionary appeals to our existing intelligence

1There are many excellent books on this topic, many of which are accessible to the lay reader; Rucker (1977) is
a good example.
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and knowledge, and most of the words defined have meanings that are somewhat
fuzzy and vague by nature.

In the physical sciences we must define our terms so they are useful not just for
describing our existing knowledge, but also for extending it inways thatwe can’t predict
ahead of time. And the definition must mean exactly the same thing to everyone.

Fortunately, this is not quite so difficult as it sounds. Instead of tying ourselves up
in knots writing a whole book just to carefully define a single word, we instead
describe a procedure, a set of steps to follow. Basically, it is a recipe. ‘Do this, now do
that, attach this thing here, read the meter, plug that number into this equation. And
that thing that comes out in the end—that is what I’m talking about.’ And so a given
physical quantity is defined by the very method that is used to measure it.

A good example is the quantity mass, which is defined by what is, in essence,
instructions for performing a particular experiment. When this experiment is
performed, the concept of mass naturally arises, and is thus named in context.
Interestingly, it has long been known that there are actually two very different
operational definitions for mass—one in terms of inertia and the other in terms of
gravitation. Experimental evidence over 200 years showed that these two very-
different definitions gave, essentially, the same answer. This was considered to be a
strange and mysterious coincidence until Albert Einstein resolved the issue in 1915,
in the context of developing his new theory of gravitation, GR.

The use of operational definitions means that terms in physics are defined much
more precisely than are the words we use in our everyday speech. This means that,
for the most part, if one particular word (velocity, for example) is used correctly in a
given physical context, then every other word used in the same context would be
incorrect. This is in contrast to the more vague and fuzzy meanings of the words we
use in our everyday speech, where the meanings overlap somewhat; one word might
be the ‘best,’ but often several other words are also non-wrong. This is, unfortu-
nately, made more complicated by the fact that many words in physics are
pronounced and spelled just like words we use in our everyday speech, and so it is
tempting to wrongly apply those same vague meanings in the context of physics.
Some common offenders are force, energy and momentum. These words have precise
operational definitions in physics. In a given physical context, in a given sentence,
only one is correct; the others are wrong.

1.4 Inspiration and perspiration
Einstein’s famous phrase that ‘…genius is 99% perspiration and 1% inspiration’ has
much truth in it for both science and art. An artist needs many tools to draw from in
order to act upon inspiration when it arises. It does no one any good if your genius is
only in your own mind, and it can’t get out.

A good example is The Bird Cage, which can be seen in figure 1.2. It received a
little bit of attention, having been selected for a couple of national juried exhibitions,
one in New York City. I certainly wouldn’t say it is a work of ‘genius,’ whatever that
means exactly. But I do believe one can say some good things about that particular
picture.
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How did I do it? It is such a long story, that I am not sure even where to begin.
This is a good thing, because if I did know where to start, I might proceed. And if
I proceeded to recount all that went in to that picture, you would be a very bored
reader indeed. It is not that there is nothing interesting to say about how that picture
came about. But most of the story is mundane, the result of what can only be
described as a long slog through a lot of work.

This example is particularly illustrative because, in order to make that picture,
I had to develop a new photographic technique that I call cyanonegative photog-
raphy, and much of the power of this particular photograph is intimately connected
to the technique used to make it.

To take advantage of inspiration when it arises, one needs tools. For a musician,
the seemingly endless scale exercises are part of the necessary preparation for
creative acts such as improvisation and composition. A photographer must under-
stand principles of two-dimensional design in order to get more than the lucky shot,
and this takes practice. Without having studied many topics very hard, an
astronomer is just a person stumbling around in the dark. So part of the purpose
of this book is simply to give you some useful tools. Make of them what you will!

1.5 Criticism and self esteem
Criticism is an absolutely necessary part of both science and art. To succeed in
either, one must have a thick skin. Perhaps I should put it differently; it may sound

Figure 1.2. The Bird Cage. John Beaver, 2004.
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as though I am saying that one must develop an ability to tolerate abuse, and that is
not at all what I mean. Rather, one needs to be able to distance oneself, and look at
one’s own work as if it were seen from the outside.

This ability to look at one’s own work with some distance is necessary in order to
hear the criticism of others without being paralyzed by it. Don’t take it personally!
Notice the exclamation mark. And to emphasize this, I say it again, but also with
italics. Don’t take it personally! Instead, criticism can be seen as information—
sometimes useful, sometimes not—rather than a statement about one’s ultimate
worth as a human being.

The role of criticism in art is well known, but it is every bit as important in
science, and a successful scientist internalizes the positive dynamics of criticism early
on. In fact one tries very hard to anticipate critique, and to answer it before it occurs.
This may seem as though it is simply deference to the authority (perhaps legitimate,
perhaps not) of others. But for a successful scientist, it is not. Rather, it is an essential
part of keeping oneself honest, and also for simply getting things done. Without
looking critically at one’s own work, how else can one tell whether or not it is even
finished? One must actively look for flaws to find and address them.

As I write this, I am faced with a dilemma2. I have been working for three years
on a photometric analysis of a single star cluster in the constellation Scutum. In
collaboration with a colleague from UW Oshkosh, I have been working on a
photometric analysis of this cluster. Although the cluster is an important and famous
one, no one had previously studied this cluster in the particular way we have.

The problem is that our data are not fully cooperating, and it is my part of the
analysis that is problematic. Much of it is as one would expect, but some of it makes
no sense. Meanwhile, we discover (literally today, as I write this) that someone else
will soon present similar data on this very same cluster. What to do?

Well, we make the best of it. I work very hard to get the most coherent, most
interesting, and the most honest results I can out of our data. And I do it as fast as
possible. Perhaps all of that work will come to something, perhaps not3. But in any
event, I have learned a lot by doing it, and I now have many new tools at my
disposal. And so when inspiration arises at some later date, it is more likely that I
will be able to make the most of it.

Self-criticism is particularly important for photography because it is so easy to
quickly accumulate a lot of photographs. And so a big part of making a good
photograph is the ability to tell the bad from the good—in order to show the good
ones to others, and throw away (or archive) the bad ones. This takes practice,
because it is easy to become attached to one’s own photographs, even when they are
awful.

Once, lying in bed awake at 3 a.m., I had a great idea for a series of photographs.
I won’t go into the details. Suffice to say that it was a very clever idea, but pulling it
off required a significant amount of work. I finished the first couple of photographs,

2 I wrote this sentence in November of 2012.
3 By December, 2013 all was well. The research project finally came together and we published a paper (Beaver
et al 2013).
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of which I was very proud, and excitedly began the detailed planning for the rest of
them. But events required me to leave town for a while, and so I had to temporarily
set this project aside.

When I returned, I pulled out my notes and the two photographs I had already
taken, and I really looked at them. The pictures were pretty bad. And the more I
stepped back from myself and tried to see, through the eyes of others, the finished
product I had planned, the more I realized that my whole idea was rather lame.

So it goes. Afterwards, was it difficult to part with a project with so much time
invested? No, not really; I’ll make other pictures instead. Was the time I spent
wasted? Possibly, but I doubt it. Much of the experience of thoughtfully but
wrongheadedly making those bad pictures will likely find practical use someday,
some way. I’m just thankful that I stopped myself before I hurt someone by hanging
those dreadful things on the wall4.

1.6 Looking at art
How can one look at something and know whether or not it is art? In the novel
Bluebeard (Vonnegut 1987, p 148), the protagonist gives the following response
(attributed to the painter Syd Solomon) when asked how to tell a good painting from
a bad one: ‘All you have to do, my dear, …is look at a million paintings, and then
you can never be mistaken.’

To know how to look at art, there is no substitute for looking at a lot of it. Go to
museums as often as possible, and look at not only photography, but also painting
and sculpture. As a simple, practical matter to get much more out of this book, look
at every single picture in its companion, The Photography Book (Cooke and
Kinneberg 2014), read the descriptions and consider the cross-references.
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Geometry and the nature of light

John Beaver

Chapter 2

What light is

The properties of light underlie much of photography; it is, after all, the photo in the
word itself. Light has several different aspects, and we will look at each of these in
turn. In particular, light has a wave-like nature, a particle-like nature, and a
geometric nature.

When a photographer speaks generally of light, they often mean a combination of
several different things (see figure 2.1). One of these is the intensity of the light on the
subject, in relation to how the camera will need to be set for a proper exposure. But
they may also be speaking of a subtle combination of the intensity, angle and color

Figure 2.1. Algae No.2 John Beaver, 2005. A photographer could mean many different things when talking
about ‘light’ for a photograph such as this.
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of the light on the subject. For example, the magic hour of one to two hours before
sunset is famous for its ‘light.’ And this reputation comes from a complex
combination of many aspects of light, only some of which are physical. For just
as important are aesthetic concerns that have as much to do with the human mind as
with physically definable aspects of light.

We will take up many of these issues throughout The Physics and Art of
Photography, but in this chapter we concentrate on some strictly physical aspects
of light that are independent of photographic concerns. We will see that a better
understanding of these physical aspects of light will give us a stronger foundation for
understanding some of the more subtle ways in which light relates to photography as
an art.

There is no really good two-sentence definition of light, and so I will simply
describe, as best I can, its properties. There is a unified, coherent physical description
of light, and it is quite a long and complex story to go through in detail. But there are
a few ways to approach the physical nature of light that, although simplified in
various ways, still manage to capture the majority of its properties.

The biggest simplification is to describe light as a series of rays that travel in
straight lines until altered by various devices such as lenses or mirrors. This is the
subject of geometrical optics, and we take that up in chapter 6, as it has many
practical applications for photography.

In this chapter we go a bit deeper, but even so there are two approaches, each of
which works best for particular circumstances. One is to model light as a stream of
particles, and the other is to view light as a wave phenomenon. It is the latter
approach that turns out to be most useful for the purposes of photography, and so
we will spend more effort on waves than particles.

So if we can describe light in these three seemingly different ways, then what is
light really? Well, it is what it is, and its physical nature is a bit unlike anything in our
direct intuitive experience. So in order to fully answer that question, we would have
to go into a full description of its physical nature, and that means a study of quantum
physics and much else that is beyond the scope of this book. But suffice to say that
the full quantum description of light is a coherent theory that both incorporates and
unifies (and thus explains) its wave-like, particle-like and ray-like natures.

So we will describe light separately as waves, particles and rays, and try to lay out
under what circumstances each model is most appropriate. And although this
approach is not entirely correct, and strictly speaking is not entirely coherent either,
in practice it actually works most of the time.

2.1 The speed of light
Light carries energy from one place to another, and so by means of it events in one
location can influence events at another location. How fast does this influence travel?
Very fast; try to open the refrigerator door before the light comes on.

Many years ago, my friend Doug Fowler bought a new Chevrolet half-ton pickup
truck. It was the ‘Custom Deluxe’ model, meaning it was so stripped down and
featureless that it lacked even a radio. It came off the assembly line in Flint,
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Michigan in 1976. Doug drove the car to college at the University of Montana,
regularly driving it back and forth between the Rocky Mountains and his home
town of McDonald, Ohio. Eventually, Doug moved back to Ohio, and that is where
I met him, while a student in the physics and astronomy department at Youngstown
State University.

I went to graduate school at Ohio State, and Doug went back out west, this time
all the way to Bellingham, Washington. Eventually, he ended up back in Ohio again,
although he drove the truck westward many times, including visiting me in Flagstaff,
Arizona one summer while I was working at Lowell Observatory.

Finally, around 1991 or so, I ended up with his by then much-used truck. When I
moved to Wichita, Kansas, in 1993, all of my possessions went west in that truck.
It was already on its second engine, and even that one was unhappy about the trip. I
had to change the oil twice on the way because the piston rings were so shot. About a
month or two after I arrived in Wichita, it went to its final resting place in some
salvage yard in Sedgwick County, Kansas.

What did the odometer read after all of that? Very nearly 186 000 miles, the
distance light travels in one second:

The distance light travels in one second is comparable to the total distance
traveled by an automobile that has been through a dozen or so years of
moderately-heavy driving.

This speed, the speed of light in a vacuum, is such a fundamental quantity, that it
has its own special symbol, c. It has a value of = × −c 2.998 10 m s 18 .1 This is
roughly 300 000 km s−1, or 186 000 miles s−1.

A speed is a distance per time, and with such a large speed as this, one can get a
mental grip on either the distance or time, but not both. And so if we talk about an
intuitive interval of time—the second, the distance light travels is outside our direct
intuitive experience. 300 000 km is nearly seven times around the circumference of
Earth.

We can make the light-travel distance manageable—30 cm for example, just
slightly under one foot. And so we could express the speed of light as a little under
one foot in a billionth of a second (1 ns), or 30 cm ns−1. But now it is the time that is
far too small for our direct experience. In section 2.1.1 we try to meet both the huge
distance and the small time somewhere in the middle.

2.1.1 The speed of light with a shortwave radio

I moved from Wichita in the summer of 1997, again hauling (in a different vehicle,
obviously) my belongings halfway across the country—this time eastward, to
Appleton, Wisconsin. Because I was starting a new job teaching physics and
astronomy at a two-year campus of the University of Wisconsin, I spent much of
that summer preparing for my upcoming courses.

1A brief overview of physical dimensions, units and scientific notation can be found in appendix D.1.
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But one of the first things I did upon moving in to an apartment was to set the
clocks. In my family2, this had always been accomplished by using a shortwave radio
to tune in WWV—a transmitter broadcasting from Fort Collins, CO, and operated
by the National Institute of Standards and Technology (NIST). The NIST uses
WWV to broadcast standard time signals on several shortwave frequencies.

And so on the evening of June 30, 1997 I tuned my radio to 10MHz, the WWV
frequency I most expected to deliver a good signal. Within less than 45 s, I heard
something I had never heard before on WWV—a female voice. For WWV
announces each new minute with a male voice. As soon as the female voice
announced the minute, the familiar male voice repeated the same announcement.

I knew what was up. The conditions were just right, for the first time in my life, to
receive not only WWV from Colorado, but also WWVH, its sister station in Hawaii.
For just this situation, the two stations use different voices for their every 60 s
announcements, and one finishes before the other begins.

I immediately recorded the broadcast, and my quick thinking has paid off; for
two decades now, I have used this recording to torture physics and astronomy
students. As the first lab exercise in many of my beginning physics and astronomy
courses, the students take a digital sample of my tape recording, and use graphical
analysis to measure the time of arrival of the signals (Beaver 2000).

Figure 2.2 shows the approximate paths traveled by the two radio waves as they
arrived at my receiver in Wisconsin. Shortwave radio waves have the ability to
bounce back and forth between the ground and layers of ionized gases (called the
ionosphere) in Earth’s upper atmosphere. And so they can, in effect, bounce around
the curvature of the Earth. This ziggzaggy route means the radio waves really

2My family included many ham radio operators.

Figure 2.2. The paths of radio waves broadcasting simultaneous time signals from both Hawaii and Colorado,
and arriving in Wisconsin, as mapped by Google Earth. Since the signal from Hawaii had further to travel, it
arrived slightly later. Recording available at https://doi.org/10.1088/978-1-64327-332-7.
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traveled a little bit further than what is shown here; but the difference is less
than 10%.

What does this have to do with the speed of light? First, light is an electro-
magnetic wave, and both visible light and radio waves are but two example of the
many kinds of these waves. And so to measure the speed of radio waves is to
measure the speed of light, because from a physical standpoint, radio waves are a
kind of light, even though we can’t see them with our eyes.

And so we have the following. Two signals were sent simultaneously from two
different locations. Both signals traveled at the same speed—the speed of light. Both
arrived at my receiver in Appleton, but one had to travel a greater distance to get
there. Thus, the signal from Hawaii arrived later than the signal from Colorado. If
one listens carefully to my recording, it is just possible to hear that each of the clicks
is doubled, as if one tapped two fingers on the table, but with one finger slightly
behind the other.

See figure 2.3 for a graph of two seconds of the data. Just a quick glance at the
time axis on the graph (my students do this more precisely) shows that there is a
difference of about 0.02 s between the arrival of the signals. To calculate the speed
then, all one needs to do is divide the excess distance the Hawaii signal traveled by
the excess time it took to arrive.

One can easily use an online tool such as Google Earth to see that the ground-
level distance for the WWVH signal is about 6.9 × 106 m while for the WWV signal
it is roughly 1.4 × 106 m. And so if we divide the difference in those travel distances
by the excess 0.02 s for the arrival of the WWVH signal, we have:

× − × = × −6.9 10 m 1.4 10 m
0.02 s

2.8 10 ms (2.1)
6 6

8 1

This is a little less than the speed of light, but remember that the radio waves
really bounced between the ground and the ionosphere, and so the distances used in
equation (2.1) are a little too small. Taking that small difference into account gives
the correct answer (Beaver 2000).

Figure 2.3. A graph of sound level versus time for 2 s of the signals received from WWV and WWVH. Left:
The signals arrive as ‘clicks’ once every second. Right: a magnified detail of the time of arrival of the first click
shows that it is actually two closely-spaced clicks. The first signal arrived from Colorado, and about 0.02 s
later, the signal arrived from Hawaii.
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2.1.2 Relativity and the speed of light

The speed of light is unlike other speeds; all other speeds are relative. The
speedometer in a car measures the speed of the car relative to the road and,
incidentally, to the tree alongside the road. The speed relative to another car
following behind is quite different. And this difference is not just philosophical; it
has real physical consequences, as would be immediately evident if your car came
into contact with one or the other.

The speed of light, on the other hand, is absolute. It is the same for all observers
regardless of their relative motion. This may seem impossible, but it is not, and the
fact is well established by experiment. Light always travels (in a vacuum) at the
same speed of 300 000 km s−1, regardless of any relative motion between the source
or observer. If I shine a flashlight at you while running towards you at 200 000 km s−1,
the light goes away from me at 300 000 km s−1 and it moves toward you at that
same 300 000 km s−1, even though the source of the light is moving toward you at
200 000 km s−1.

This basic fact about light was first hinted at by Maxwell’s complete theory of
electricity and magnetism, formalized in the early 1860s. But it took four decades
until sense was made of that idea; it is the foundation for Einstein’s Special
Relativity, first published in 1905.

When light interacts with matter—a piece of glass in a camera lens is a good
example—then it may travel at a significantly slower speed. This has important
consequences for photography; it is the reason we can bend light with lenses.

2.2 Geometry
Whether light behaves as a wave or as a stream of particles, it travels in straight lines
until it interacts with matter in some way. Thus some of the most important aspects
of light are more about the geometry of straight line rays of light, deflected by
various objects.

And so we can often analyze light with geometry alone, only using particular
details from our knowledge of electromagnetic waves when it is absolutely
necessary. This approach is called geometrical optics, and we will use it often.
And so when we talk about a ray of light, we are implicitly using this geometrical
approach because it is convenient, even though we know light is really much more
complicated than this. When we need to use the more-correct wave or particle
models of light, we will. But otherwise, why make things unnecessarily complicated?

2.3 Waves
Wave phenomena allow the transfer of energy from one place to another without
actual stuff having to make the trip (see figure 2.4). Move your hand up and down in
the water at one end of the bathtub, and eventually the rubber duck at the other end
bobs up and down too. Yell, ‘Hurry up!’ to your room mate in the bathroom and
very quickly their eardrums vibrate, even though no air from your mouth traveled to
their ear.
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Light has this nature too, although it is not ‘stuff’ vibrating like most other waves.
Rather, a light wave alters the very electrical and magnetic properties of space itself,
even in a vacuum where there is nothing of substance to move. We call theses electric
and magnetic properties fields, and so an electromagnetic wave is a changing pattern
of the electric and magnetic fields. These changing fields can, in turn, affect matter,
and that is essentially what happens when light has some physical influence. Since
matter has its own electric and magnetic properties, it is affected by the changing
electric and magnetic fields of a passing electromagnetic wave.

One might point out that if no stuff actually makes the trip when a wave moves
from one place to another, what do we really mean then by the ‘speed’ of a wave? If
the wave is very complex, then this question may have a complex answer. But for a
simple wave, there is a simple answer—a wave is a repeating pattern in space that
moves as time passes. The speed of the wave, then, is the speed at which this pattern
moves.

This calls to attention the fact that a wave by its very nature is extended in both
space and time. It is a pattern spread out in space that moves with time. And even at
a given location, the wave changes as time passes. And so there is no real meaning to
assigning a precise location and time to a wave. We can talk about what the wave
does at a particular place and time, but we need to consider all of the other places
and times in order to describe any particular wave. In this way, it is very unlike, say,
a stone moving through space, which has a much-more precisely definable position
at any specific time.

Figure 2.4. Shoreline and White Caps. John Beaver, 2006.
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Like all waves, light in its purest form has four basic attributes: speed, amplitude,
wavelength and frequency. We will consider each of these in turn.

2.3.1 Amplitude

As a light wave passes a point in space, the electric and magnetic fields change back
and forth. The fields themselves actually point perpendicular to the direction of
motion of the wave, and as the wave passes they alternately grow in strength, reach a
maximum value, weaken to zero, then reverse direction and do the same. The
maximum strength of the electric or magnetic field as the wave passes is called the
amplitude of the wave.

For light, the amplitude is related to the brightness of the light. All else being
equal, the larger the amplitude—the greater the maximum strength of the electric or
magnetic field as the wave passes—the brighter the light. But if one doubles the
amplitude, the brightness of the light does not also double; instead it quadruples.
And so the brightness of the light scales with the amplitude squared.

This scaling by squaring has another consequence. The electric and magnetic
fields alternately switch back and forth in direction, and we can describe this with
positive and negative numbers. But the brightness of the light is proportional to the
square of this, and the square of a number is always positive, even if the number
being squared is negative. Thus, although the fields reverse directions, it is only the
magnitude of the strength of the fields that represents the amplitude of the wave. This
may seem to be a distinction without a difference, but it has profound and surprising
consequences whenever two or more waves interact with each other, in a phenom-
enon called interference. We will revisit this idea in section 3.6.

2.3.2 Speed, wavelength and frequency

Let us consider a wave traveling down a string, in the way that a wave travels down
a garden hose when one end is waved up and down. For now, let us imagine the
string to be infinitely long, so we can ignore the interesting complication of waves
reflecting off the ends of the string. If one were to take a flash picture of the wave,
freezing it in time, a repeating pattern in space would be evident. One can represent
this pattern in the form of a graph, as in figure 2.5.

The meaning of the amplitude of the wave is clear from the diagram. But there is
another equally-important measure. The distance over which the wave completes
one repetition is called the wavelength of the wave. It is a length, so our SI unit (see
appendix D.1) of wavelength is the meter (m). By historical convention, we use the
Greek letter λ (lambda) as our symbol for wavelength. The human eye is only
sensitive to a very narrow range of wavelengths, between about 0.4 to 0.7 millionths
of a meter, and so it is this range of wavelengths that defines what we call visible
light.

These tiny lengths make the meter a bit cumbersome, and other smaller units are
more commonly used when referring to the wavelength of light. The most common
of these are described in table 2.1. Thus we can represent the range of visible
wavelengths as ‘0.4 μm to 0.7 μm.’ Or if we prefer, we could say the same thing as
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‘400 nm to 700 nm.’ As an alternative, if we can find the special symbol in our word
processor, we could say with complete equivalence, ‘4000 Å to 7000 Å.’

We can also represent a wave in terms of changes in time, rather than in space.
Figure 2.6 looks, at first glance, the same as figure 2.5, but look at the horizontal
scale. Instead of showing the wave at different points in space (at a given instant of
time), figure 2.6 shows the wave as time passes (but at some particular point in
space). And so the period, T, of the wave is the time required for one repetition of the
wave to pass a particular point in space, as the wave goes by. In SI units, the period
is measured in seconds; for most electromagnetic waves of concern to photography,
it is a tiny fraction of a second. More commonly we refer to the frequency, f, the
reciprocal of the period:

=f
T
1

(2.2)

The frequency then would be measured in inverse seconds, labeled s−1, or Hertz
(Hz). It is the number of wavelengths that go by per second.

While the period for electromagnetic waves is typically a very small number, the
frequency is thus typically a very large number. There are two reasons for this. First,

Figure 2.5. Wavelength (λ) and amplitude (A) of a wave. Notice that the horizontal axis of the graph is length.
The wavelength is the distance over which the wave repeats itself, at a particular point in time.

Table 2.1. Useful small units for wavelength.

Unit Symbol Meters Notes

Micron or micrometer μ or μm ×10−6 1000 μm = 1 millimeter
Nanometer nm ×10−9 1000nm = 1 μm
Angstrom Å ×10−10 10 Å = 1 nm
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the wavelengths of visible light are very tiny. Secondly, the speed of light is very
large.

Clearly, the faster is the speed of the wave, the more wavelengths would go by in
one second. But also, the shorter the wavelength, the more that would go by per
second, for a given speed. Thus we have a relation between the frequency, f, the
wavelength, λ, and the speed of light, c:

λ=c f (2.3)

Since the speed of light, c, is a constant, then we can see that there is a relation
between wavelength and frequency. Thus any given wavelength corresponds to a
particular frequency, and vice versa. We can rearrange equation (2.3) as follows:

λ
=f

c
(2.4)

λ = c
f

(2.5)

These are reciprocal relations; if frequency is larger, then wavelength is smaller, and
vice versa. It also means that, for light, we can choose either frequency or
wavelength for our description. If given one, the other can be easily calculated.

2.3.3 The electromagnetic spectrum

Different wavelengths (or frequencies) of electromagnetic waves interact with matter
in different ways. Since both the absorption and emission of light are examples of
such interactions, one would need different strategies to produce light of vastly

Figure 2.6. Period (T ) and amplitude (A) of a wave. Notice that the horizontal axis is time. The period is the
time over which the wave repeats itself at a particular point in space. The frequency ( f ) of the wave is simply
one over the period.
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different wavelengths. Likewise, different methods are required to detect light of
very different wavelengths.

It was not known that light is an electromagnetic wave until the late 1800s. And it
wasn’t until the 20th century that most forms of electromagnetic waves were finally
identified. Some types had previously been detected, but it wasn’t recognized until
much later that they were just different wavelengths of electromagnetic waves. And
so different ranges of wavelength of electromagnetic waves have different names, in
part for historical reasons.

Table 2.2 shows the ranges of possible wavelengths, along with their customary
names. Taken together, this is called the electromagnetic spectrum. Keep in mind
that the ranges of wavelengths or frequencies are only approximate; the boundaries
are fuzzy and overlap each other. The names really come from the different ways in
which we produce or detect them, and that has changed over the years as technology
has changed.

And so let us very briefly consider each of these basic parts in turn. I will start at
the long-wavelength bottom of the list; this may seem strange, but remember that
long wavelength is the same as low frequency.

• Radio waves are made by moving an electrical current back and forth in a
wire, and radio waves induce currents to oscillate back and forth in wires they
pass through.

• Microwaves can be thought of as very high-frequency radio waves. They can
sometimes be made in the same fashion, but other processes (besides
electronic circuits) are also used to produce them. Because of their shorter
wavelength, they can be focused with special mirrors and more easily guided
along paths.

• Infrared light is usually produced in ways similar to visible light, but the
wavelengths are too long for the human eye to detect it.

• Visible light is the name for the narrow range of wavelengths (about 400–700 nm)
to which they human eye is sensitive. Different wavelengths of visible light
produce different color sensations; violet for short wavelengths and red for
long wavelengths, with blue, green, yellow and orange in between.

• Ultraviolet light also is often produced in ways that are similar to visible light,
but the wavelengths are too short to be detected by our eyes.

Table 2.2. The electromagnetic spectrum.

Name Typical λ (m) Typical size f (Hz)

Gamma ray < × −1 10 11 Atomic nucleus > ×3 1019

x-ray × −1 10 11 – × −3 10 8 Atom ×1 1016 – ×3 1019

Ultraviolet × −1 10 8 – × −4 10 7 Virus ×7.5 1014 – ×3 1016

Visible light × −4 10 7 – × −7 10 7 Bacteria ×4.3 1014 – ×7.5 1014

Infrared × −7 10 7 – × −1 10 3 Protozoa ×3 1011 – ×4.3 1014

Microwaves × −1 10 4 – 0.1 Person ×3 109 – ×3 1012

Radio > 0.1 Building < ×3 109
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• x-rays have wavelengths similar to the size of individual atoms, and so they
usually interact with matter in ways that involve individual atoms on a one-
on-one basis.

• Gamma rays, with their enormous penetrating power, interact directly with
the tiny nuclei of atoms. And thus they are associated most strongly with
nuclear reactions.

We will discuss different examples in more detail as we go along. But for most of The
Physics and Art of Photography we will consider the specific properties of visible
light, and wavelengths of infrared and ultraviolet that are close to visible light, since
these wavelengths are of most practical interest for photography.

2.4 Particles
A wave is spread out in space, and it transfers more energy as more time passes; this
fact will be very important when we consider the physics of exposure in photog-
raphy. But there are situations where light doesn’t act like this at all. Instead it acts
like a stream of particles (called photons), each of which individually delivers its
energy all at once and at a particular place. It was the development of quantum
physics, in the early 20th century, that finally unified these two seemingly-opposed
wave-like and particle-like natures of light.

A particle affects other particles by way of collisions, which cause sudden changes
at particular places. A wave, on the other hand, gradually causes things to happen
over spread-out regions of space. And so the two ideas—waves and particles—seem
on the surface to be utterly contradictory. It is beyond the scope of this book to go
into detail as to how quantum mechanics unifies these two seemingly incompatible
concepts, but it does.

Suffice to say that sometimes light behaves more like a wave and sometimes more
like a particle. The particle-like picture for light is most important regarding how
light is actually detected by a light-sensitive material: film, say, or the CCD digital
detector in a digital camera. By ‘detection’ we mean that light causes some physical
change in the detector that can be recorded in some way, thus eventually producing
an image for us. If one looks carefully enough, this physical detection occurs at
particular instants of time, and at particular locations on the detector. It is in this
way, then, that light behaves like a stream of particles.

This is not to say that when light behaves like a stream of particles that our
discussion of light as a wave will be invalid. For even when light behaves like
particles, its wave-like nature is still important. In fact there is always a fundamental
connection between the two ways of looking at light.

We describe light as a wave in terms of its amplitude and wavelength (or
frequency), whereas a particle would be represented by the energy and momentum it
could transfer in a collision. One of the central results of quantum physics is that in a
given situation, the wave-like and particle-like natures of light are explicitly
connected to each other. If we denote the energy and momentum of a single photon
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by, respectively, E and p, they are always related to the wavelength, λ and frequency,
f, of the light by the following:

=E hf (2.6)

λ
=p

h
(2.7)

In these equations the letter h represents a very tiny number, one of the fundamental
constants of nature, known as the Planck constant. The overall consequence is that
light of short wavelength or high frequency (when it is acting like a wave) is made of
individual photons (when it is acting like a stream of particles) each of which has a
high energy and large momentum.

Thus one can take a source of light and allow it to interact with matter in a wave-
like way. From that interaction, one can measure the wavelength. Then take the
same source of light and allow it to interact in a particle-like way, and in the process
measure the momentum of those particles (photons). If one does both, the measured
momentum of the photons is related to the wavelength of the light by equation (2.7).

What about the brightness of the light? We have already seen that it is related to
the square of the amplitude of the electromagnetic wave. But what is the ‘brightness’
of a particle of light—a photon? To answer this question for an individual photon is
to delve into some of the subtle strangeness of quantum physics (we will consider
these interesting issues somewhat more in Volume III of The Physics and Art of
Photography). But there is a simple answer for a stream of many photons. For light
of a particular wavelength, a brighter light means that there are more photons per
second.

Reference
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The Physics and Art of Photography, Volume 1
Geometry and the nature of light

John Beaver

Chapter 3

What light does

When matter produces light, it is called emission; chapter 4 lays out some of the ways
in which this can happen. But when light reaches matter, many different things can
happen. We call this an interaction, and several different types of light–matter
interactions are described in the next several sections.

Like matter, light carries both energy and momentum as it travels through space.
But unlike matter, light can pass through other light unaffected; light waves from
multiple sources can coexist in the same place at the same time and still retain their
separate identities. This basic fact leads to the rather surprising phenomena of
interference and diffraction, subjects we take up in sections 3.6 and 3.7.

3.1 Reflection, absorption and transmission
What happens when light arrives at some new material, a piece of glass for example?
To help us make sense of this, it is useful to talk of the plane of interface between the
two materials—the material the light came from and the different material the light
has arrived at. The plane of interface then, is the boundary surface between those two
materials. A good example is the boundary surface one side of a glass window makes
with the air next to it. The other side of the glass window would then form a second
plane of interface with the air next to it. The plane of interface may be literally flat as
in this example, but it could also be curved. Think, for example, of the boundary
between a crystal ball and the air around it.

When light arrives at a plane of interface with a new material three basic things
can happen. Some of the incoming (incident) light can bounce off (reflection), some
can pass through into the new material (transmission) and some can disappear
altogether (absorption). More often than not, all three of these happen at once, to
varying degrees.

But light carries energy, and energy must be conserved. So ultimately, the energy
of the incident light must be equal to the sum of the energies of the reflected,
transmitted and absorbed light. That is to say, the energy carried by the incident
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light cannot just disappear; it must be divided up somehow between these three
different things that happen to it.

In the case of reflection and transmission, the light itself does not disappear, and
so the energy from the incident light carries over to the energies of the reflected and
transmitted light. Absorption is different; when light is absorbed its energy is
transferred to other forms of energy (most commonly thermal energy). And so the
energy as carried by light decreases, while other forms of energy (thermal energy for
example) increase by the same amount.

A complication is that all of these three processes, reflection, transmission and
absorption, depend on the wavelength of the light. Ordinary window glass is a good
example. At a visible wavelength of 500 nm, window glass transmits a lot of light
and reflects little. At wavelengths 20 times that, however, in what we call the thermal
infrared part of the electromagnetic spectrum, window glass does the opposite; very
little passes through and much more of it reflects. So keep this in mind as we go
along. What is good for the goose wavelength may not be good for the gander
wavelength.

3.2 Specular reflection
When light bounces off a smooth and shiny surface, it obeys a simple rule, known as
the law of reflection. Figure 3.1 illustrates the geometry of this type of reflection.
Here we have a reflective material on the right, and incident and reflected rays on the
left, labeled with the Greek letter θ (theta: it’s use is traditional for angles) with
subscripts ‘i’ and ‘r’ to represent, respectively, ‘incident’ and ‘reflected.’ Specular
reflections most commonly occur in two situations:

1. Light encounters a smooth, opaque but shiny (usually metallic) surface. This
is the ordinary example of a mirror.

2. Light encounters a smooth interface between two different transparent
materials.

Figure 3.1. The law of reflection. The reflected ray of light makes the same angle with the surface as the
incoming (incident) ray. But instead of measuring the angle the ray makes with the surface itself, it is more
convenient to measure the angle made with a line normal (perpendicular in any direction) to the surface.
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If instead of a single ray, a whole bundle of rays all parallel to each other arrives
at that same shiny surface, they all reflect by the same angle, since they all arrive at
the same angle. This organized type of reflection is called a specular reflection, and it
is the sort that is produced by a mirror. In section 3.4 we consider equally-important
diffuse reflections that are not so organized.

We define the direction of these two rays according to an angle made not to the
reflective surface, but rather to a line normal to that surface. Here the word ‘normal’
means ‘perpendicular to a plane in all directions parallel to that plane.’ Place your
pencil normal to your horizontal desktop, and you can draw a 90° angle between the
pencil and the desktop in all horizontal directions. See figure 3.2. And so in this
particular case the pencil points vertically. This is an unambiguous way to describe
the relation between a line and a plane, and so we will use it whenever we describe
the relation of a light ray to some plane (a new material the ray suddenly encounters,
for example).

Given figure 3.1, the law of reflection can be expressed very simply—the angle of
reflection is equal to the angle of incidence. That is to say:

θ θ= (3.1)r i

But what if the reflective surface is curved? The same relation still holds, so long
as we take our angles to mean they are made to the normal of the flat plane locally
tangent to the curved surface. A plane tangent to a curved surface means it touches
the curved surface at no other nearby points; see figure 3.3. And so we still have, at
any given location, a local law of reflection. It is just that the curve of the surface
makes the normal lines (and thus the reflected rays as well) point in different
directions for different parts of the curve. A curved mirror can thus be used to
converge or diverge parallel rays of light.

Figure 3.2. A pencil positioned normal to the plane of a horizontal wood floor. When describing rays of light
compared to flat planes, we measure the angles compared to the normal, not the plane itself.
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3.3 Refraction
While the speed of light in vacuum is a universal constant, the speed is altered when
it travels through a transparent material such as water or glass. This is because light
is a changing pattern of electricity and magnetism (an electromagnetic wave), and
physical materials (glass for example) alter the electric and magnetic properties of
space. In the cases of most interest to photography, materials such as transparent
glass or plastic weaken electric fields, and this causes light waves to slow down.

It is helpful to define some terms. Let us say that we have two transparent
materials, which we label 1 and 2. They could be water and glass, glass and air, air
and acrylic, acrylic and water, or any other combination of two transparent
materials. As light travels from material 1 to material 2, the plane of interface is
the two-dimensional boundary—the surface—where the two materials meet.

See figure 3.4. According to tradition, I’ve labeled the angles with the Greek letter
theta, θ, and I’ve put subscripts on them to denote which side we are talking about.
The key finding is that when this happens, the light makes different angles in the two
materials. This bending of light by a sudden change of material is called refraction.

The reason the two angles are different is because the speed of light suddenly
changes when passing from material 1 to material 2. In the case I illustrate here, the
angle with the normal is smaller in material 2 than in material 1. It turns out that this
means that light must travel more slowly in material 2. The mathematical relation
between the two angles is fairly simple, and it is called Snell’s law, or the law of
refraction:

θ θ=n nsin sin (3.2)1 1 2 2

n1 and n2 are pure numbers (without units or dimensions), and their values are
properties of the two materials themselves. This index of refraction of a material is a

Figure 3.3. Specular reflection from a curved mirror. The ordinary law of reflection can be applied, but it will
come out differently for different points on the mirror. And so we imagine a plane tangent to the surface at a
particular point on the mirror, and measure the angle the ray makes with the normal to this imaginary tangent
plane.
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number greater than or equal to 1, and it is usually determined experimentally for a
given transparent material.

The specific example shown in equation (3.2) illustrates one of the most important
properties of the law of refraction: the angle with the normal is smallest on the side
where the index of refraction is largest. As is the case for reflection, we apply Snell’s
law to a curved surface by measuring the angles with the normal to the plane tangent
to the curved surface at each point. See figure 3.5 for an example of light refracted to
the bottom of a lake by the wavy surface of the shallow water.

And so what does the law of refraction have to do with the speed at which light
travels in the two materials? A purely geometrical analysis of light provides no
answer except that ‘it is what it is,’ and this is how we observe light to behave when
we perform experiments.

Figure 3.4. Refraction and the plane of interface between two materials. The plane of interface is the border
between two different kinds of transparent materials. As light changes speed going from one material to the
other, it bends at this plane of interface. It does this in such a way that it makes the smallest angle with the
normal in the material through which light travels the slowest, and thus has the largest index of refraction, n.

Figure 3.5. The wavy surface of the water refracts sunlight into a complex pattern on the lake bottom.
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For a physical explanation of Snell’s law, we must consider the wavelike nature of
light. To do this we will use one of the most important tools of wave optics:
Huygen’s construction, invented by C Huygens in 1678.

But first, let us define the concept of a wave front. If light moves coherently in a
particular direction in a given region of space, we can imagine a line that connects all
of the places where a particular wave is at a peak. In physical terms, for a light wave,
this could be the points in space where, at a given instant of time, the electric field is
at its maximum. In three dimensions this region would be a plane (not necessarily
flat), but on a two-dimensional (2D) drawing this will appear as only a line (not
necessarily straight). An important point is that the direction of travel of a wave is
always perpendicular to the wave front. Since our ‘rays’ point in the direction of travel
of the light wave, it follows that the wave fronts are perpendicular to the rays.

Huygen’s construction says that if the location of a wave front is known, the next
one can be found by imagining an infinite number of spherical wavelets emanating
simultaneously from different parts of the first wave front, and all propagating for
the exact same amount of time. The next wave front is then marked by a tangent that
connects the edges of all of those spherical wavelets. For a 2D drawing, this means
we can imagine circular waves propagating outward from every point on the first
wave front. We stop them at a time of our choosing, connect them with a tangent
line, and we have found the next wave front.

So let us look at an example such as figure 3.4, but this time drawn with a wave
front indicated perpendicular to the incident ray; see figure 3.6. I have chosen to put
the first wave front so it is starting right at the boundary between material 1 and
material 2. I pick a point on the incident wave front, and I allow just enough time to
pass for an imaginary spherical wave coming from that point to just make it to

Figure 3.6. Wave fronts in refraction. Because light travels more slowly in the material on the right (higher
index of refraction), a wave front in that material travels a smaller distance in the same amount of time.
Connecting the wavefronts, according to Huygen’s construction, shows that the light must bend in toward the
normal as it enters the higher-index material.
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material 2. Meanwhile, I allow another imaginary spherical wave to begin at the
exact point the ray intersects with material 2.

But remember that light travels more slowly in material 2, so in the same amount
of time, this imaginary circular wave doesn’t travel as far. So where is the next wave
front? Huygen’s construction says that one simply needs to connect those circular
waves with tangents. This second wave front is completely within material 2 while
the first wave front was completely within material 1. If we recall that the rays are
always perpendicular to the wave fronts, we have now found in what direction must
be the second ray.

Clearly, the ray in material 2 makes a smaller angle with the axis than does the ray
in material 1. In fact, if we analyze figure 3.4 with a little trigonometry, it is not hard
to show that there is a fairly simple mathematical relation between θ1 and θ2:

θ θ=c
v

c
v

sin sin (3.3)
1

1
2

2

where c is the speed of light in a vacuum, v1 is the speed of light in material 1 and v2
is the speed of light in material 2. It is easy to see that equation (3.3) is Snell’s law—
equation (3.2)—so long as we make the following identification for each of the two
materials:

=n
c
v

(3.4)

where n is the index of refraction in a particular material and v is the speed of light in
that material.

In a purely geometrical optics, the index of refraction is simply a number that is
measured by experiment for a given material—a piece of glass, for example. Wave
optics and Huygen’s construction reveal its physical meaning. The index of
refraction tells us by what factor the material reduces the speed of light as compared

Table 3.1. Angles of refraction for rays of light entering glass (with n =
1.5) from air. The incoming (incident) ray in the air makes an angle θi with
the normal. It is then refracted, and so makes a different angle, θr, with the
normal while inside the glass.

θi θr

0° 0°
10° 6.65°
20° 13.18°
40° 25.37°
60° 35.26°
80° 41.03°
85° 41.62°
88° 41.78°
89° 41.80°
89.5° 41.81°
89.9° 41.81°
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to c, its speed in vacuum. And so, for example, if the index of refraction of a
particular type of glass is n = 1.523, it means simply that light travels 1.523 times
more slowly in that particular type of glass than it does in a vacuum.

The second column of table 3.2 gives approximate indexes of refraction for some
different materials. Since in all but rather odd circumstances a light wave travels
more slowly in a material than in a vacuum, indexes of refraction are greater than
1.0. An important point to remember is that the index of refraction of air is 1.0003,
very nearly 1.0 exactly. A perfect vacuum really does have an index of refraction of
exactly 1.0 (this should be obvious from its definition), and most gases have
approximately that value as well.

Notice that Snell’s law makes no reference to which side the light was coming
from and which side it was traveling toward. Snell’s law simply says that the angle is
smallest where n is largest. And so we could reverse the arrows on the rays in figure
3.4 and it would still be a valid diagram.

The same could not be said, however, for figure 3.7, where we have taken into
account the fact that when light gets to a sudden change in material, a certain
percentage will reflect, instead of passing into the material and refracting. If we
reverse the arrows on the top image, the result instead is something like what is
shown in the bottom image, where the ray of light moves from plastic to air instead
of from air to plastic. Notice the refracted rays do the same thing in both diagrams;
the angle is larger in air and smaller in plastic. But not so for the reflected ray; it
always reflects from whichever side the light is incident.

The images in figures 3.7 also illustrate a common misconception about light rays.
A light ray is an abstract idea; the ray itself is not visible from the side; you can only
see it if it points directly at your eye. A laser makes a very good approximation of a
ray of light, and so why does the ‘ray’ of laser light show up in these pictures even
though the lasers point not towards the camera, but rather crosswise to our vantage
point?

It is because of a trick. I used a particular combination of laser and plastic to take
advantage of fluorescence, a topic we consider in section 3.8. In this example, a small
fraction of the laser light is absorbed by the plastic, and that energy is used by the

Table 3.2. Critical angles for light coming from various materials into air.

Material Index of refraction θcrit

Water 1.33 48.8°
Plexiglass 1.49 42.2°
Salt 1.54 40.5°
Crown glass 1.52–1.62 38.1°–41.1°
Flint glass 1.57–1.75 34.8°–39.6°
Sapphire 1.77 34.4°
Lanthanum glass 1.82–1.98 30.3°–33.3°
Diamond 2.42 24.4°
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plastic to emit its own light. But it emits that light not in the direction the laser light
was traveling, but rather in random directions. So the path of the laser light is
marked by the fluorescent glow of the plastic sending light in all directions—
including toward the camera. For the part where there is no plastic, I let the laser
beam partially graze along the surface of a sheet of white paper. You see the little bit
of the intercepted beam, scattered toward you by diffuse reflections from the paper,
and thus tracing out its path. Notice that there is a portion of the laser light’s path
(on the left side) for which neither of these tricks is performed—and that part of the
beam is invisible from the vantage point of the camera.

The amount of refraction depends not only on the angle of incidence, but also on
the ratio of the indexes of refraction of the two sides. As an example, table 3.1 gives
values for the angles of refraction, given various angles of incidence, for the special
case of a ray of light passing from air (n = 1.0) into some type of glass with n = 1.5.

3.3.1 Total internal reflection

Notice in table 3.1 that for a ray of light passing from air to glass, the angle of
refraction seems to approach a maximum value (41.81° in this case), as the angle of
incidence approaches 90°. Clearly, the angle of incidence cannot be greater than 90°,

Figure 3.7. Top: as light arrives at a sudden change in index of refraction, the light will refract upon entering
the new material. But a portion of the light will also reflect off the plane of interface. Here, light traveling
through air (material #1) refracts as it passes into plastic (material #2). Notice that θ1 (air) is larger than θ2
(plastic), because the index of refraction of air is smaller than that of plastic. Bottom: the same arrangement as
in the top image, but with the light instead coming from inside the plastic and refracting as it emerges into the
air. Notice that, exactly as in the top image, θ1 (air) is larger than θ2 (plastic), because the index of refraction of
air is smaller than that of plastic. But this time the reflected ray is inside of the plastic instead of in the air.
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simply as a matter of logic. Figure 3.8 shows this limiting case, which can only be
approached.

Remember that for refraction, one can reverse the arrows and the diagram will
still be valid. Table 3.1 shows the angles of incidence and refraction for rays of light
in air entering into a piece of glass with index of refraction n = 1.5. But we could
instead imagine the reverse—rays of light coming from the glass and emerging into
the air—and all we would need to do is reverse the columns of table 3.1.

But a moment’s thought reveals something odd. The reversed table would only
show angles of incidence of 41.81° or smaller, and those would have refracted angles
of almost 90°. And so what would happen if one simply made the angle of incidence
greater than 41.8°? The numbers in the table seem to imply that a refracted angle of
greater than 90° would result. But what would that even mean? An angle with the
normal of greater than 90° means the light has not even left the glass.

So what does Snell’s law say happens in this case? You can find out by using a
calculator to plug n1 = 1.0, n2 = 1.5 and θ = °452 into Snell’s law, and asking it to
solve for θ1. It will give you an error message. Snell’s law is simply invalid for this
case, and something else happens that is not predicted by Snell’s Law alone.

Let us now consider the reflected ray in the bottom image of figure 3.7. If we were
now to gradually increase the angle of incidence, four things would happen:

1. The angle of refraction would increase, according to Snell’s law. Since it is in
the side with the smaller index of refraction, the angle of refraction would
increase faster than we increase the angle of incidence.

2. The reflected ray would increase according to the law of reflection. Which is
say that the reflected ray would increase so it is always equal to the angle of
incidence.

3. The refracted ray would get dimmer.
4. The reflected ray would get brighter.

Figure 3.8. If light comes from a material with a larger index of refraction, there will be a particular angle of
incidence at which the refracted ray would be 90°. For angles of incidence equal or greater than this, there is no
refracted ray, and all of the light reflects internally. This is called total internal reflection, and it is often used in
place of mirrors made with shiny metal coatings.
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As one increases the angle of incidence, the refracted ray gets dimmer and dimmer,
disappearing completely as the angle of refraction approaches 90°. Simultaneously,
the reflected ray gets brighter, becoming as bright as the incident ray as the refracted
ray disappears. If one then increases the angle of incidence even further, there is only
a reflected ray, bouncing inside the glass and never getting out into the air. This is
called total internal reflection, and it is very useful; it is, for example, a way to make a
mirror from nothing but clear glass. See figure 3.9 for a demonstration.

From table 3.1 it is clear that, for the case of a ray of light trying to get out of a
piece of glass with air around it, so long as the angle of incidence is greater than
about 42°, the light will reflect inside the glass. This is called the critical angle, θcrit,
and we can calculate it as follows1:

θ = − n
n

sin (3.5)crit
1 1

2

⎛
⎝⎜

⎞
⎠⎟

Table 3.2 shows indexes of refraction and critical angles for several different
materials, assuming air (n = 1.0) is on the other side of the interface.

Total internal reflection hasmany practical uses. The right-angle prism of figure 3.9
is in some cases a better way to reflect light than the shiny metal surface of a good
mirror. Fiber optics employ thin transparent fibers of glass or plastic. Once a ray of
light enters, it inevitably meets the outside edge of the fiber at a very large angle to the
normal, and so undergoes total internal reflection many times as it bounces from one
edge to the other, even if thefiber is tied into knots.And evenbeads ofwater canact like
little mirrors, if there is a layer of transparent air trapped underneath. See figure 3.10.

3.3.2 Dispersion

The index of refraction for a typical transparent material is not actually a simple
constant; it depends somewhat on the wavelength of the light. Most often, n is

Figure 3.9. A 45° glass prism used to reflect light by 90°. Left: the light meets the backside of the prism at less
than the critical angle. It mostly passes through, deflected by refraction. Notice, however, that a small portion
of the light reflects off the surface internally, like a mirror. Center: the light meets the back face of the prism at
very nearly the critical angle, and refracts almost parallel to the back face of the prism. Notice that the
internally reflected portion is now much brighter. Right: the ray meets the back surface at greater than the
critical angle, and all of the light reflects internally.

1 In equation (3.5), sin−1 represents the arcsine or inverse sine of the number. This is the angle one would have
to take the sine of in order to get that number. And so the ° =sin(0 ) 1 and = °−sin (1) 01 .
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slightly larger for shorter wavelengths. This means that the angle of refraction for a
given incident ray of light depends on the wavelength of the light, with shorter
wavelengths usually refracted by larger angles. This effect is called dispersion, and a
graph of index of refraction versus wavelength, for a given material, is called the
dispersion curve of the material.

The left side of figure 3.11 shows examples for some different types of glass.
Notice that the graph also shows overall differences in index of refraction. And so
for example at any given wavelength SF10 glass has a greater index of refraction
than BK7 glass. But the blue curve for SF10 is its dispersion curve—it shows a
different index of refraction for each wavelength. Also notice that some of the
dispersion curves seem to zoom up to huge values at some very short wavelength in
the ultraviolet part of the spectrum. The dispersion curve for F2 flint glass, for
example, increases very rapidly at a wavelength of about 0.25 μm (250 nm). What
the dispersion curve does not show is that the glass also becomes less and less
transparent at these wavelengths. And if the glass does not transmit light, then the
index of refraction is a moot point.

Most sources of light consist of many wavelengths simultaneously. And thus, if a
ray of such a source of light enters a piece of glass, it is not all refracted at the same
angle. Shorter wavelengths are refracted at a greater angle, and so the piece of glass
disperses light of many wavelengths (but one direction) into many different
directions (but each consisting of only one wavelength). See the right side of figure
3.11 for an illustration.

Dispersion can be either useful or a pain in the neck, depending on the situation.
If one wants to measure the spectrum of a source of light, then a wedge-shaped piece
of glass (a prism) can do the trick. Different wavelengths will refract at different
angles, and so one can measure them separately, as the prism will deflect them by
different angles. If the dispersion curve for the type of glass is known, one can
mathematically convert this information into wavelength, and thus produce a graph
of brightness versus wavelength—a spectrum.

Figure 3.10. Left: tiny hairs on the surface of these leaves of American Lotus trap air underneath the water
drops. When light rays passing through the water drop encounter this layer of air at greater than the critical
angle of 48.8°, total internal reflection occurs. And so the transparent drops of water look like little mirrors
reflecting the sky. Right: a bundle of optical fibers uses total internal reflection to guide light around tight
curves.
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But if the goal is instead to design a lens to produce sharp images, then dispersion
is the enemy. It means that if one designs the shape of the lens so as to focus red light,
then blue light will not be in focus, because the two wavelengths are refracted by
different angles. This basic problem is called chromatic aberration, and it is discussed
in more detail in chapter 6, section 9.6. For now, suffice to say that overcoming
chromatic aberration usually requires both much cleverness and expense.

If we consider the phenomena of dispersion, refraction and total internal
reflection, we can begin to see why different transparent materials ‘look’ different.
A diamond has facets, and this means light refracts as it makes different angles with
the different facets. But also, there is dispersion, so different colors refract differ-
ently, and one can see colors even with white light. Finally, many rays get trapped
inside, undergoing total internal reflection multiple times before finally meeting a
facet at less than the critical angle, and so escaping. Thus a diamond can look
colorful and glittery.

Why does a piece of glass ground to exactly the same shape not look as impressive
as a diamond? It is because of the considerably-smaller index of refraction of glass
compared to diamond, which means less dispersion, smaller angles of refraction, and
less internal reflection.

3.4 Diffuse reflections
It is often the case that when light reflects off an object, a single ray will reflect in
many directions because of microscopic irregularities in the surface. This is called a
diffuse reflection, in contrast to the specular reflection already discussed. If one could
look closely enough, a diffuse reflection is really a myriad of specular reflections.
Instead of one ray, there is really a bundle of many parallel rays very close together.
If the surface is rough, then each individual ray in this thin bundle hits a seemingly
randomly-oriented surface, and thus goes off in its own peculiar direction.

Figure 3.11. Left: dispersion curves for several different types of glass. The vertical axis represents index of
refraction while the horizontal axis is wavelength. The shaded area marks the visible portion of the spectrum.
We can use the dispersion curve to read the index of refraction for any particular wavelength. For most
materials the index of refraction is higher at shorter wavelengths. This property of dispersion means that
different wavelengths bend by different amounts when light of many wavelengths refracts in the material
(graphic: Geek3 - Own work, CC BY 4.0). Right: an example of dispersion by a piece of glass.
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A mirror is a surface that makes only specular reflections and no diffuse
reflections. To be a good one, the mirror surface must be smooth down to the level
of the wavelength of the light itself. And so, for example, if one grinds glass with
successively finer and finer abrasives, it will appear perfectly smooth only once the
abrasives (and thus the scratches made in the glass) are smaller than the wavelength
of light used to reflect off it. At that point is will produce a good specular reflection,
and thus appear mirror-like and shiny. With larger scratches, from larger abrasives,
the surface will appear dull from the diffuse reflection.

Diffuse reflection is the most common process by which we ‘see’ solid, opaque
objects. A cat (see the left side of figure 3.12) does not create light of its own, at least
not in the visible part of the spectrum. We see light coming from it because light
from some other source has reflected off it, making diffuse reflections with every part
of the cat. Thus rays of light go off in every direction from each part of the cat, just as
if it were emitting its own light. Our eyes intercept whatever rays, coming from each
part of the cat, happen to be going in our direction. The rest go elsewhere (toward a
frightened mouse, for example).

We can see the difference between specular and diffuse reflections by looking at
the right side of figure 3.12. The rays of light that came from the different objects in
the picture, and arrived at the camera, were all due ultimately to reflection from the
room lighting. Light coming from the eggs was due to diffuse reflection. In this case,
some parts appear light while other parts appear dark because of differing amounts
of diffuse reflection; whatever was not reflected was absorbed. Since those diffuse
reflections go off in all directions, it is guaranteed that some of the rays from each
part of the eggs make it to the camera.

The light coming from the glass surfaces, however, was due to specular
reflections. In addition some light reflected diffusely off the eggs in the background
has passed through the glass, its path altered by refraction on its way to the camera.
In these cases, what appears light and what appears dark is much more complex; it

Figure 3.12. Left: Boris and Quail Eggs. John Beaver, 2010. A cat does not emit light of its own in the visible
part of the spectrum. We see it because of the diffuse reflection of light from other sources. Right: Bottle and
Quail Eggs. John Beaver, 2012. The light from the eggs is due to diffuse reflection (see section 3.4) while that
from the surfaces of the metal and glass is due to specular reflections. In addition, some light from behind has
passed through the glass and been altered by refraction (see section 3.3).
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depends on the location of the camera, the location of the light source, and the angle
and curvature of the surfaces themselves as they both reflect and refract the light.

3.5 Scattering
A light ray is scattered if, upon interacting with matter, it splits into many rays in
random directions. A diffuse reflection from a solid, opaque object can be thought of
as a form of scattering, but the term is usually used to describe other physical
processes that deflect light randomly from within transparent or semi-transparent
materials.

There are many kinds of scattering, but there are two main categories, wave-
length-dependent and wavelength-independent scattering. Wavelength-dependent
scattering occurs when different wavelengths are scattered by different amounts.
Wavelength-independent scattering on the other hand affects all wavelengths
equally.

3.5.1 Wavelength-dependent scattering

The most common experience of wavelength-dependent scattering is called Rayleigh
scattering, and it occurs when light interacts with particles, such as individual atoms
or molecules, that are much smaller than the wavelength of the light. Rayleigh
scattering of sunlight by air molecules is responsible for the blue of the sky on a clear
day. As individual photons encounter individual air molecules (N2 or O2), a certain
percentage of the light will deflect off in a different direction. But short wavelengths
scatter by larger angles than long wavelengths.

In this case, much of the deflection is at angles less than 90°, and so it is mostly
scattering into the same overall direction, a process called forward scattering. A
significant fraction, however, is also back scattered to angles between 90° and 180°.

Since it is the shorter-wavelength blue light that scatters the most, when one looks
up at a cloudless daytime sky one sees blue light. This blue sky light comes from the
Sun, ultimately, but it is light that would have missed you, had it not been deflected
in your direction by Rayleigh scattering.

On the other hand, the setting Sun appears noticeably reddish. In this case you are
seeing the light that has not been scattered out of your line of sight. Since it is the
blue light that mostly scatters off in other directions, you see sunlight that has had
blue light subtracted from it. Thus the Sun appears more reddish.

A kind of wavelength-dependent scattering very much like Rayleigh scattering
can also occur with much larger particles, closer in size to the wavelength of the light
itself. For visible light, that means particles that are just a bit too small to be seen
with an ordinary microscope. But this size is still enormous compared to the
individual atoms and molecules that cause Rayleigh scattering.

This type of scattering from larger particles is called the Tyndall effect, and
probably the most commonly-seen example is the blue smoke from the tailpipe of an
automobile engine that is burning oil and needs an overhaul. The smoke looks blue
for the same reason the sky looks blue. You see it by light from other sources
scattering off of it, and short wavelengths scatter more than long wavelengths. Not
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all smoke does this, because in order for the Tyndall effect to be prominent, the
smoke particles must be the right size.

The Tyndall effect can also be seen in certain liquids that have sub-microscopic
globules of one material suspended in another. A tiny bit of milk mixed with water
sometimes works, and looks bluish when illuminated from the side. Glass can be
manufactured with impurities that emphasize the Tyndall effect, and these opales-
cent glasses are often used for their ornamental properties.

Figure 3.13 shows two photographs of an opalescent glass egg. When white light
(of a mix of wavelengths) shines on it, you see only the light scattered toward you.
And so it appears blue. When you look through it at a source of light behind it, on
the other hand, you see the reddish light that has not been scattered.

3.5.2 Wavelength-independent scattering

Wavelength-independent scattering occurs when light interacts with particles of
matter that are significantly larger than the wavelength of light. In that case, the
physics is simpler, but the overall effect is similar; an incoming parallel bundle of
rays is ‘scattered’ into many rays traveling in many directions. But the seemingly-
random nature comes not from the probabilistic laws of quantum physics as
individual photons interact with matter, but rather from the too-complex-to-
describe microscopic details of the scattering material.

Light shining on microscopic particles of dust provides a good example. If one
takes a high-power laser pointer and shines it up into the night sky, it seems as
though one can see the beam of light. But the light from the laser is all going in the
same direction, and this is not toward you (or at least it had better not be). What you
are seeing is light scattered toward you from zillions of microscopic dust particles

Figure 3.13. Tyndall-effect scattering in an egg-shaped piece of opalescent glass. The photo on the left was
taken with the egg against a black background and illuminated from above. We see the mostly-blue light that is
scattered back towards us. The photo on the right was taken with the egg illuminated from behind. In this case
we see the light that was not scattered by the egg on its way to us. Since mostly blue light is scattered, what is
left over appears reddish in color.
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located all along the beam. Since this scattering occurs most strongly in the
backward direction, the beam is more visible if one looks along it from behind.

Fog provides another example of scattering from relatively large particles.
Microscopic droplets of water suspended in the air alter the directions of the rays
of light by both refraction and total internal reflection. If the fog fills a given space,
then a portion of the light that reaches you may have been scattered many times
before it gets to you. But fog scatters all visible wavelengths equally, for the most
part.

A puffy white cloud in the blue sky appears as it does due to scattering. It is, after
all, nothing but countless microscopic, transparent droplets of water or crystals of
ice. These tiny particles deflect light rays, each according to the basic laws of
refraction and reflection. But the details are far too complex to follow individually,
and so the light is scattered in random directions.

In dense fog, light is scattered many times before it gets to you, and it appears as
though the air itself is emitting light. Light rays coming from more distant objects
have more opportunities to scatter on their way to you, and so the light coming
directly from objects is more diminished with greater distance. But while light that
would have reached you (had there been no fog) is scattered out of your line of sight,
other light—from random directions that would have missed you had there been no
fog—is scattered in your direction. Thus the diminished light from distant objects is
filled in by a random glow, and this reduces contrast.

Fog has little effect on your view of nearby objects, but it has a profound effect on
distant objects. For photography, this means the presence of fog can add depth to a
picture. Haze causes a mixture of both wavelength-dependent and wavelength-
independent scattering, and it too can add depth to a landscape. It makes distant
objects appear of lower contrast and slightly more bluish or purplish in color.
Painters often use the term perspective to mean, in a generic sense, any type of depth
cue. And so when a painter adds features that mimic the visual effects of haze
scattering in order to show depth in a painting, it is called atmospheric perspective
(see figure 3.14). But for a photographer, who must deal with whatever haze there
happens to be when taking a picture, the lowering of contrast by haze scattering may
or may not be desirable.

3.6 Interference
It is possible to put a thin coating of transparent material onto the surface of a glass
lens that actually increases the amount of light that passes through the lens. It is
surprising that one could put something on glass to make it more transparent; would
not anything you put on it simply absorb more light and make matters worse? How
could the coating cause more light to pass through?

When looking through a typical glass lens,most loss of light is due not to absorption
in the glass, but rather because a significant percentage of the light reflects off the glass
surface instead of passing through. An anti-reflection coating decreases the reflection,
while increasing the transmission. It is easy to recognize such a lens from the faint
greenish or bluish tint of light that glances off the lens surface.
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It is possible to do this by taking advantage of the wave nature of light, in this case
making use of a phenomenon called thin-film interference, just one example of the
phenomenon of interference in general. All kinds of waves, not light alone, are able
to interfere with each other; this is one of the defining properties of waves.

If two waves are present at the same place at the same time, they add together. A
given wave, at a given point in space and time, causes some kind of disturbance, and
this disturbance can be in either one direction or its opposite. We can (arbitrarily)
call one direction positive and the other negative. For light it is the direction of the
electric and magnetic fields. For sound in air, it is the direction of slight displace-
ments of air molecules.

If one of the two waves is trying to make stuff zig, while the other is trying to make
it zag, it is possible for both effects to cancel out, leaving nothing, an effect called
destructive interference. Constructive interference, on the other hand, means that both
waves are trying to cause the same disturbance at the same place and time—and so a
wave of twice the amplitude results. There are also all of the possible circumstances
in between, where the two waves either partially add or partially cancel each other.
See figures 3.15 and 3.16.

There are many ways, in practice, to make this happen. For light, one can split a
wave with some kind of obstacle, and then send both waves off on different paths,
eventually bringing them back together. When they recombine, they will most likely
no longer line up with each other, and so they will interfere. Thin-film interference is
a good example. If one takes a very thin layer of transparent material, light falling
on it will reflect partly off the top and partly off the bottom. See figure 3.17. These
two reflected waves will then interfere, either constructively or destructively

Figure 3.14. Rio from Sugar Loaf Mountain. John Beaver, 2012. Atmospheric perspective, which can give a
sense of physical depth to a picture, is here introduced by haze and fog.
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depending on the details of the index of refraction of the film, its thickness, and what
material is on either side.

And so an anti-reflection coating on a lens is cleverly chosen so that visible
wavelengths of light interfere destructively for reflection, but constructively for
transmission. Technically, for a single thin layer, this only happens completely for a
rather narrow range of visible wavelengths. But if one usesmany layers of coatings, all
carefully chosen in thickness and index of refraction, then a broad range of reflecting
wavelengths can be canceled, while transmitted wavelengths are reinforced.

Thus one can find three types of lenses: uncoated, single-coated and multi-coated.
Uncoated lenses reflect, typically, about 10% of the light that falls on them,
transmitting 90%. This might not seem so bad, but most optical systems (camera
lenses included) require many lenses, each reflecting 10% of the light at every

Figure 3.15. When two waves arrive in the same place at the same time, they may undergo constructive
interference (left) or destructive interference (right), or something in between the two (graphic: Haade, Wjh31,
Quibik - Own work, CC BY 3.0).

Figure 3.16. The waves made by these water striders show interference. At any given location, the height of the
water is given by the sum of whatever waves happen to be at that place and time. In some places, waves can
cancel out, while in others they add together.
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boundary, both front and back. And that is bad, and not only because less light gets
through, resulting in a dimmer image. Worse still, half of those internally-reflected
rays domake it through eventually, but they are no longer where they should be, and
so they add a diffuse glow to the image which reduces its contrast.

Single-coated lenses help with this greatly, but the best lenses are multi-coasted.
Multi-coated lenses only reflect about 1% of the light (thus transmitting 99%). Since
a real optical system contains many lenses, the best is ‘fully multi-coated,’ which
means all lens elements are multi-coated at every surface.

Figure 3.18 shows examples of the reflections from the surfaces of both coated
and uncoated lenses. Notice that each lens showsmultiple reflections; what looks like

Figure 3.17. A wave can reflect off both the front and back surface of a thin transparent film. The two reflected
waves undergo interference due to the fact that they have now traveled by different paths, and so are no longer
in phase. Whether constructive or destructive interference occurs (or something in between) depends on the
details of the wavelength of the light and the thickness and index of refraction of the thin film, as well as what
materials are on either side of the film (graphic: Nicoguaro - Own work, CC BY 4.0).

Figure 3.18. The lens on the left (from the 1950s) is single coated, while the even-older lens on the right is
uncoated. Note the slightly-purplish and much-fainter reflections from the coated lens.
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a single lens is actually several lens elements one behind the other, and each surface
causes a reflection. But note also that the reflections off of the coated lenses are much
dimmer than the reflections off the surfaces of the uncoated lenses.

The purplish color of the reflections from the coated lenses arises because, while
some wavelengths interfere destructively, others interfere constructively. The type
and thickness of these lens coatings have been chosen to give destructive interference
for reflected light that has wavelengths near the middle of the visible spectrum. But
this means that reflected wavelengths near the violet edge of the visible spectrum are
not canceled so well. And so the reflection appears purplish in color from these
single-coated lenses. Multi-coated lenses show reflections that are even dimmer still,
and in most versions show a slight greenish tinge.

3.7 Diffraction
Recall Huygen’s construction, from section 3.3. It says that we can find the location
of the next wave front by imagining a bunch of spherical wavelets propagating from
the most recent wave front. We can use this to determine what happens when light
encounters some kind of obstacle. For example, we can use Huygen’s construction
to determine what happens to light when it encounters a thin slit (see figure 3.19).
The next wave front can be found by imagining spherical wavelets emitted
simultaneously from every location along the slit.

But we know that when one adds up light waves, they interfere. So to figure out
what would happen, one would need to add up those waves at every point, taking
into account the fact that, by the time they all get to a particular point in space, each
had traveled a different distance, and so would be in a different part of its wave cycle.
The specific part of a wave cycle is called the phase of a wave, and it is the difference
in phase between two waves that results in either constructive or destructive
interference.

Figure 3.19. Huygen’s wavelets propagating from a thin slit and interfering with each other. Huygen’s
construction allows us to model this by imagining many tiny wavelets emitted simultaneously from different
parts of the slit. In some places these wavelengths will line up and cause constructive interference, while in other
places they will cancel each other out (graphic: Arne Nordmann (norro) - Own illustration, CC BY-SA 3.0).
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And so an infinite number of wavelets, sent out from all parts of the slit, arrive
together at some distant point in space. But they arrive with different phases, and so
they interfere with each other. This situation is called diffraction: the addition of an
infinite number of waves, all of different phases (and sometimes also of different
intensities). The mathematics of this requires calculus, which is intimately concerned
with the business of adding up an infinite number of slightly different things. Here I
will simply give you the answers for some important cases. Even without working
through the mathematics in detail, we can still recognize some basic principles of
diffraction theory:

1. When light encounters an obstacle that restricts it to a particular region of
space, it will spread out into the region that one would expect there to be a
shadow. Sending light through a slit is a good example. It will spread out
beyond the confines of the slit.

2. The angle of spreading is greater for a smaller restriction (a narrower slit, for
example). And so a more narrow slit causes the light to spread out more.

3. All else being equal, the spreading out of the light is greater for longer
wavelengths and less for shorter wavelengths.

4. The spreading of the light is proportional to the ratio of the wavelength to
the size of the obstacle. So, for a slit, it is the value of the wavelength divided
by the width of the slit that decides how much the light spreads out.

5. This process of diffraction will produce an alternating pattern of constructive
interference (bright light) and destructive interference (dim light). The size of
this pattern when projected onto a screen is proportional to the ratio of the
wavelength to the size of the obstacle. Such a pattern is called a diffraction
pattern, and the bright regions of constructive interference are called fringes.

Consider the single slit as an example. The left side of figure 3.20 shows the
diffraction pattern for a slit, both as an image and as a graph of intensity versus
position. If the slit has a width, a, then θ is the angle by which the diffraction pattern
spreads, as measured from its center. Most of the light ends up in one central region
of constructive interference. The half-width of this bright central fringe is given by:

θ λ= asin (3.6)

where λ is the wavelength of the light. Notice that it is the ratio of λ to a that counts—
not either one by itself. If a is much greater than the wavelength of the light, then the
angle between the fringes is very small. For example, if a = 1 cm, then for green light
of λ = 500 nm, we have sin θ = 5.0 × 10−5, which is an imperceptibly small angle, and
the diffraction pattern would not even be visible.

If one wants a noticeable diffraction pattern, the slit must be much smaller. For
example, if one shines 500 nm light through a slit the width of a human hair, about
50 μ across, then:

θ = ×
×

−

−sin
500 10 m
50 10 m

(3.7)
9

6
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= 0.01 (3.8)

θ⟹ = −sin (0.01) (3.9)1

= °0.57 (3.10)

This is still a small angle, but if the screen is far enough from the slit, it would make a
noticeable pattern.

What if it is not a slit, but rather some other shape, a circular hole for example?
The same basic principles apply, but the detailed formula is different. In the case of a
circular hole, the diffraction pattern is something like a bullseye; see the right side of
figure 3.20. The half width of the central spot is given by a formula almost the same
as equation (3.6); it differs by only a factor of 1.22.

A bunch of tiny circular dots, all the same size, will also give essentially the same
pattern as a circular hole, although with less contrast. Figure 3.21 shows the
diffraction patterns made by shining lasers through smears of red blood cells.
Clearly, the angle of diffraction is relatively large, and so the blood cells must be
small indeed.

Another general feature of diffraction, evident from figure 3.21, is that the size of
the diffraction pattern depends not only on the size of the obstacle, but also on the
wavelength of the light. Equation (3.6) implies that a longer wavelength of light, all
else being equal, will produce a larger diffraction pattern. Equation (3.6) is for the
special case of a single slit, but the same rule holds true for any diffraction pattern.

Figure 3.20. Left: the diffraction pattern from coherent light shining through a single slit. The pattern as
projected onto a screen is at the bottom. At the top is a graph of the pattern’s brightness versus position. A
more narrow slit produces a larger diffraction pattern. For the pattern to be large enough to see easily with the
naked eye, the width of the slit must be microscopic in size. Right: diffraction pattern for a circular hole. A
circular hole produces a bullseye pattern. Light shining through a smaller hole will produce a larger pattern.
For the pattern to be large enough to see easily with the naked eye, the hole must be microscopic in size.
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3.8 Fluorescence
Some materials can absorb the energy from light of a particular wavelength, and
then use that energy to re-emit light of a completely different wavelength, in a
process called fluorescence. Most commonly, light of violet and near-ultraviolet
wavelengths are absorbed, and then light of wavelengths closer to the middle of the
visible spectrum is emitted.

Sunlight contains a fair amount of violet and near-ultraviolet (UV) light, and so
fluorescent dyes can make something appear brighter than white. Unbleached paper
looks duller than new white copy paper because the latter has a fluorescent dye that
absorbs some of the energy of the non-visible UV, and uses this energy to re-emit
visible light. This mostly-bluish added light makes the color whiter overall, but it
also makes it look brighter. The non-fluorescent unbleached paper can only reflect as
much visible light as falls on it. The fluorescent paper does this too, but then adds its
own visible light, the extra energy coming from absorbed UV.

3.9 Polarization
There is an additional aspect to electromagnetic waves, apart from the four
properties—amplitude, wavelength, frequency and speed—discussed in chapter 2,
section 2.3. In an electromagnetic wave, the electric and magnetic fields point
perpendicular to each other, and the wave travels in a direction perpendicular to
both. But this leaves open an infinite number of possibilities. For example, if an
electromagnetic wave is traveling directly upward, then the electric field must point
perpendicular to that—i.e., horizontally. But does the electric field point horizon-
tally north, south, east, west or one of the infinite possibilities in between? Any one
particular choice of orientation of the electric and magnetic fields is called a
polarization of the wave.

Figure 3.21. Left: lasers of three different wavelengths shine through smears of human red blood cells. The
diffraction pattern is large because the cells are so tiny. The central portion of the bulls-eye pattern is smallest
for the violet (short wavelength) light and largest for the red (long wavelength) light. Right: two lasers of the
same wavelength shine through different smears of red blood cells. The diffraction pattern on the left appears
slightly larger because the smear was made with red blood cells from a dog, and they are slightly smaller than
the human red blood cells used on the right.
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For most sources of light, countless individual atoms and molecules are each
producing light in their own fashion, with little coordination between them. Thus
many waves are emitted each with its own essentially random polarization. The
overall effect is that all polarizations are present at the same time. This is called
unpolarized light, and it is the light one gets from, say, an ordinary light bulb. If, on
the other hand, a source of light contains mostly only one polarization, we say the
light is polarized, as in figure 3.22. In practice, this is a more-or-less thing, rather
than either-or, and so we find ourselves often describing light as weakly polarized or
strongly polarized. This just means that, while all possible polarizations are present,
one of them is more strongly represented than the rest.

There are many ways in which light interacts with matter, for which polarization
is a crucial factor. A good example is the Rayleigh scattering discussed in section 3.5.
Not only does the amount of scattered light depend on the wavelength, it also
depends on the polarization. And so, for a given scattered angle, some polarizations
scatter more than others. For Rayleigh scattering in the Earth’s atmosphere, it turns
out that light scattered by an angle of 90° is strongly polarized. Why? Because only
one particular polarization scatters well at this angle. On a clear, cloudless day of
low humidity, the light of the sky comes mostly from Rayleigh scattering. And so the
part of the sky, making a circle around the Sun, that is everywhere 90° from the Sun
is thus strongly polarized.

Reflections provide another example. Recall from section 3.1 that a certain
percentage of a light wave will reflect when it encounters a sudden change in
transparent material, such as when it encounters a piece of glass or the surface of
water. This reflected wave may be strongly polarized, depending on the angle of the
reflection. At a particular angle, called the Brewster angle, the reflected light is
completely polarized.

You don’t directly see the effects of polarization because, to the human eye, one
polarization looks just the same as any other. But there are clever and important
ways to distinguish between them with special filters, and we will take up this topic
again in volume 2 of The Physics and Art of Photography.

Figure 3.22. A polarized electromagnetic wave traveling from left to right. The electric and magnetic fields
(marked E and B) in a polarized wave maintain a particular orientation. In an unpolarized wave the fields have
random orientations perpendicular to the direction of travel (and to each other) (graphic: P.wormer - Own
work, CC BY 3.0).
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Chapter 4

Sources of light

4.1 Light and its spectrum
There are many ways in which light can be created by matter. Some of these
processes are best understood from within the particle model of light, while others
are more easily explained in terms of waves. Nonetheless, any particular method for
producing light is essentially an interaction between light and matter, and the
wavelength (or frequency) of the light is of crucial importance.

For any method of producing light will inevitably not create all wavelengths
equally. If by ‘light’ we mean the entire electromagnetic spectrum, then this fact is
true in spades. For example, to make electromagnetic waves of a frequency of one
million Hertz, simply use an electronic oscillator circuit to make a current go back
and forth in a wire at that frequency. A frequency of one million Hertz is in the radio
part of the electromagnetic spectrum, and so this is essentially the basis of a radio
transmitter.

But for visible light with frequencies several powers of ten higher, this strategy
simply will not work. Instead, however, one can just heat up a tungsten wire to a
high temperature, and the individual tungsten atoms will vibrate at high frequency
and visible light (and infrared too) will be emitted.

The point is that any particular method of producing light will make some
wavelengths well and other wavelengths poorly, or not at all. And so to really describe
a particular source of light,we need to describe howmuch of eachwavelength has been
produced. Such a description is called a spectrum (plural, spectra) of the light source,
and the most productive way to represent it is with a graph.

Figure 4.1 shows the spectra of the two stars that make up the binary stars system
Albireo, also called β (beta) Cygni. The horizontal axis of the graph is wavelength,
with short wavelength on the left and long wavelength on the right. The axis goes
from about 4200 Å to 6000 Å (420–600 nm), and this is within the range of
wavelengths sensitive to the human eye. The spectrum of one of the stars is marked
in red while the other in blue. Clearly, β Cygni A emits more long-wavelength (red)
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light than short-wavelength light (blue), while the opposite is true for β Cygni B.
Thus one can see from this graph that they would not appear the same color overall;
β Cygni A appears yellowish to the eye, while β Cygni B appears more bluish. We
will use this idea of the spectrum of a light source many more times throughout this
book; it is one of the most important tools for understanding light. In the case of β
Cygni and other stars, for example, astrophysicists can determine many things about
their physical natures by analyzing the spectra of the light they emit.

4.2 Thermal radiation
The term thermal radiation refers to electromagnetic waves emitted due to the
normal motions of atoms and molecules in some material. Whether it be liquid, solid
or gas, the atoms and molecules that make it up are constantly in motion. Although
the individual particles are moving with a wide range of energies (called kinetic
energy), there is in many circumstances a meaningful average. This average of the
kinetic energies of the individual particles in a material is directly related to what we
call temperature. Thus the atoms and molecules making up a hot potato are moving,
on average, with greater energy than are those of a frozen potato.

These motions of the individual atoms and molecules generate electromagnetic
waves, and the waves produced have a wide range of frequencies, just as the atoms
and molecules have a wide range of energies. Thus a spectrum of frequencies (or
wavelengths) is produced. If all of the individual atoms and molecules are in perfect
balance with each other—and with the light they produce—then a particular kind of
spectrum is produced called a blackbody spectrum. That perfect balance of matter

Figure 4.1. The spectra of two stars making up the binary star system β Cygni. Each colored line represents the
spectrum of one of the stars. The fine-scale squiggles result from noise (random measurement uncertainty), but
the overall trends in the spectra are accurate. The spectra span the range from 4200Å to 6000 Å (420 nm to
600 nm), thus covering the range from blue-violet on the left to orange-red on the right. βCygni A is yellow in
color, and so emits more long-wavelength light than short-wavelength light. βCygni B on the other hand, is
blue, and emits more short-wavelength light than long (data from Beaver 2012).
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and light, called thermodynamic equilibrium, ensures that the details of the blackbody
spectrum depend only on temperature.

Figure 4.2 shows three different blackbody spectra, with temperatures of 3000 K,
4000K and 5000K, where the ‘K’ stands for kelvin, our SI unit of absolute
temperature. The kelvin scale starts at absolute zero, and room temperature is
roughly 300K. The surface temperature of the Sun is 5770K, so the temperatures
represented in figure 4.2 are very high indeed. Nearly all of the chemical elements are
vaporized at 5000K.

The graph is silent about what type of material made these spectra for a very
simple reason—it doesn’t matter. A 5000K blackbody is a 5000 K blackbody,
whether it is produced from calcium, carbon, cobalt or vaporized chocolate-chip
cookies.

The overall shape of a blackbody spectrum is that of a broad hump, with a peak
at some particular wavelength. There is a particular mathematical formula that
describes the exact shape of a blackbody spectrum, but there are two basic features
that are obvious from the graph alone. First, the hump is bigger—which means more
energy is emitted—if the temperature is higher. This is a huge effect, as the
brightness is related to the total area under the graph. Notice how much larger is
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Figure 4.2. The blackbody spectra for several different temperatures. Blackbody radiation is the most ideal
form of thermal radiation. The range of wavelengths corresponding to the visible spectrum is highlighted in
rainbow colors. The curve marked 5000 K is similar to the spectrum of the Sun (5770K would be closer). Note
that higher-temperature objects are brighter and radiate at predominately shorter wavelengths. The curve
marked ‘classical theory’ shows how badly theory fit the data before the development of quantum physics.
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the area under the 5000K graph as compared to the 3000K graph. It turns out that
the brightness of a blackbody scales with the fourth power of the temperature. And
so a doubling of the temperature increases the brightness by 24 = 16 times.

It is also clear from figure 4.2 that a higher temperature produces a blackbody
peak at a shorter wavelength. This is described by a simple inverse proportionality.
As an example, we can see from the graph that a 3000 K blackbody ‘peaks’ at about
1 μm (1000 nm). And so a room-temperature 300K blackbody, with one tenth the
temperature, peaks at ten times that wavelength, or 10 μm, in a region of the
spectrum known as the thermal infrared. Table 4.1 shows the peak wavelength for
different temperatures.

A blackbody the temperature of the Sun, a little less than 6000K, peaks right in
the middle of the visible spectrum. The part of the Sun’s atmosphere that makes the
visible surface of the Sun is not in perfect equilibrium (if it were, the light could not
escape). And so the visible spectrum of the Sun is not quite the same as a blackbody—
but it is a rough approximation of one, with the same overall shape. Notice that the
light from an ordinary light bulb is on average of much longer wavelengths than that
of the Sun. This has important implications for photography that we will discuss in
more detail in volume 2 of The Physics and Art of Photography.

Figure 4.2 also shows the spectrum of a 5000K blackbody as predicted by the
electromagnetic theory of the late 19th century, and it is a catastrophic failure of
agreement between theory and experiment. At the dawn of the 20th century Max
Planck demonstrated that the observed shape of the blackbody spectrum could be
explained only if one assumed that energy came in discrete clumps, or quanta. This
Planck quantum hypothesis was the first step in the development of quantum physics,
and the idea was extended by Einstein and others to form the modern concept of the
photon—a particle of light. And so although we observe the spectrum emitted by a
blackbody as a wave phenomenon, the fact that light can act as individual particles
is essential to its creation.

4.3 Non-thermal radiation
Thermal motion of atoms and molecules is not the only way to produce light, and so
not all sources of light emit with a spectrum approximately like that of a blackbody.
A given laser pointer, for example, emits only one wavelength of light, not a broad

Table 4.1. Peak wavelengths for different temperature blackbody spectra.

Temperature (K) Peak wavelength Part of E–M spectrum Example

2.7 K 1100 μm Microwave Cosmic microwave background
300 K 10 μm Thermal infrared Room temperature objects
3000 K 1 μm Near infrared Light bulb filament
6000 K 0.5 μm Visible light Visible surface of Sun
10 000 K 0.3 μm Near ultraviolet Visible surface of Vega
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range like a thermal source. And there is no simple connection between temperature
and the wavelength of the laser. An ordinary fluorescent light is another good
example. Mercury vapor is excited by a high voltage, and the individual mercury
atoms in the gas emit light of only very specific wavelengths, characteristic of
mercury gas. This produces an emission-line spectrum. Most wavelengths are devoid
of light altogether, while at certain very specific wavelengths, a lot of light is emitted.

Some of the brightest emission lines in the spectrum of mercury are in the
ultraviolet part of the spectrum, which wouldn’t do us any good if we wanted to use
this as a source of light to see by. But in a fluorescent lamp, this light is reprocessed.
Before it gets out of the lamp, it strikes a powder of small crystals, called phosphors,
that line the inside of the glass lamp. These crystals have the ability to absorb
ultraviolet light and use its energy to emit its own visible light. Since the phosphors
emit a range of many wavelengths after excited by ultraviolet light, the overall effect
is that the invisible ultraviolet light is converted to visible light. If phosphors with the
right properties are chosen, the overall effect is a whitish light. But it is not produced
by high temperatures, and the spectrum is very different from that of sunlight.

Figure 4.3 shows the spectrum of a typical fluorescent light. One can see the
Mercury emission spectrum poking through, but superimposed on this is the broad
spectrum of the glowing phosphors. Although the overall perception by the eye of
fluorescent light is roughly similar to that of white light, it is a very different
spectrum. Thus we will need to take this into account when taking photographs with
fluorescent light.

Figure 4.3. The spectrum of a fluorescent tube light. The numbered peaks are emission lines from the spectrum
of mercury. The smooth parts of the spectrum is due to the glowing phosphors excited by the ultraviolet
emission lines in the Mercury spectrum.
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Non-thermal sources of light such as lasers and emission-line sources produce
light at the atomic level. That is, each atom produces its own light, emitting
individual photons. And so the particle-like nature of light must be considered to
understand these sources. They are one-on-one interactions between light (in the
form of individual photons) and matter (in the form of individual atoms). As such,
the spectrum of the light produced depends critically on the type of atoms emitting the
light. This is the opposite of the case of thermal radiation. For purely thermal
radiation, only the temperature matters; the type of atom is irrelevant. Many real
sources of light, when considered in more detail, involve a combination of both
thermal and non-thermal emission.

Reference
Beaver J and Conger C 2012 Extremely low-cost point-source spectrophotometry (ELCPSS)

Society for Astronomical Sciences 31st Annual Symp. on Telescope Science 113–20
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Chapter 5

Wavelength reconsidered

We have described many different ways in which matter can both create light and
also alter light that interacts with it: absorption, reflection (diffuse and specular),
refraction, scattering and emission (thermal and non-thermal). We have seen how
emission processes produce a spectrum of light—different amounts of light emitted
at different wavelengths. But all of these processes depend critically on the wave-
length of the light. And this means that for one particular region of the electro-
magnetic spectrum (visible light, for example), one or more of these processes may
be important while others are negligible. But at some other region of the electro-
magnetic spectrum (infrared, for example) the situation could be entirely different.

Let us reconsider, for example, Boris the cat in figure 3.12. In the visible part of
the spectrum, we see Boris by diffuse reflection of light that has arrived at him, but
was created by other means. In this particular case, Boris was illuminated by an
incandescent light bulb—a white-hot tungsten filament that emitted light by means
of (mostly) thermal radiation.

The light emitted by the light bulb and arriving at Boris had a spectrum similar to
the red curve in figure 4.2; it was mostly visible light (400–700 nm, or 0.4 μ–0.7 μ) and
the infrared part of the spectrum right next to visible light, what is sometimes called the
near infrared (700 nm to about 5000 nm, or 0.7 μ to 5 μ). In this case, the film that took
the picture ignored whatever near-infrared light reflected from Boris, only recording
the little bit thatwas in the visible part of the spectrum.And so the picture shows visible
light, emitted by a light bulb and reflecting diffusely off of Boris.

Every part of Boris also absorbed a portion of the visible light that arrived there.
But his stripes absorbed a little more, and so they reflected a little less, and thus
appear slightly darker in the picture.

Figure 3.12 shows only what happened to visible light; it says nothing about other
wavelengths. And so what about that near-infrared light that also illuminated Boris,
but was not detected by the film and so is not represented in the picture? What would
have happened if we had instead taken the picture with a camera that is sensitive not
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to visible light, but instead only to near-infrared light? Would the picture have been
different?

See figure 5.1 where I have photographed a different cat1, Tobias, with two
different cameras, one sensitive to visible light (left) and the other sensitive to near-
infrared light (right). Just because the striped part of the fur absorbs more (and so
reflects less) visible light, it does not follow that it must also do so for near-infrared
light.

For both visible light and near-infrared light, we see what is reflected by Tobias;
the source of the light is elsewhere. But for thermal infrared light, Tobias is the
source. In figure 5.2 I photographed him with an ordinary visible-light digital
camera on the left. But the right-hand image was made with a thermal imaging
camera, sensitive mostly between the wavelength range 8–14 μm.

Figure 5.1. Tobias the cat illuminated by sunlight, and photographed with, left: visible light (0.4–0.7 μm).
Right: near-infrared light (0.7–1 μm). The stripes of Tobias absorb more (and so reflect less) visible light than
the surrounding fur, but not so for near-infrared light.

1Rest in peace, Boris, under the peonies!

Figure 5.2. Tobias illuminated by daylight, and photographed with, left: visible light. Right: thermal-infrared
light. The visible-light image depicts how well Tobias reflects or absorbs visible light (0.4–0.7 μm). But the
thermal-infrared image shows mostly how well Tobias (and his surroundings) emit light in the wavelength
range 8–14 μm. The window glass is transparent to visible light, but it blocks thermal infrared light from
passing through, while reflecting some off its surface like a mirror.
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Thermal infrared (TIR) is called such because it is the range of wavelengths
emitted by objects at roughly room temperature. But the amount emitted depends
strongly on temperature, and since Tobias is warmer than his surroundings, he emits
more thermal infrared than anything in the picture.

The window glass is transparent to visible light, but it is opaque to TIR light; it
does, however, reflect a significant fraction. Thus none of the outdoors for which
Tobias pines is visible in the TIR view, and it looks as though he is sitting in front of
a mirror admiring his own handsome reflection.

The TIR image looks almost as though it were a negative, but it is not; the
brightest parts of the picture are those that emitted the most TIR light. The gaps and
crevices in Tobias’s fur reveal areas that are shadowed from reflected visible
daylight, and so they appear dark in the visible-light picture. But they also reveal
the skin of Tobias, which is much warmer than the outer parts of his fur. And so
those are some of the brightest areas in the TIR image.
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Chapter 6

Geometry and the picture plane

The history of geometrical optics is tied intimately to the history of the visual art that
pre-dates photography. Look at paintings from the middle ages and they are unlike
photographs in many ways. For example, the sizes of forms in the paintings were not
necessarily connected in a representational manner, as they are in a typical photo-
graph, to the sizes and distances of objects in the real world. Instead, the size and
positioning of forms in a medieval painting often had more to do with what was
more or less important (see for example Duby, 1992, chapter 1). It was not until the
Renaissance that painters really worked out the details of linear perspective, allowing
one to duplicate a scene on canvas akin to what would later appear in photographs
(Fichner-Rathnus, 1992, pp 333–4).

Photography clearly has much to do with the connection between the three-
dimensional (3D) world and two-dimensional (2D) art, for at its most basic level a
camera takes rays of light from the 3D world and redirects them to a 2D surface. But
the ‘fourth dimension’ of time is also important. It is now common to see
photography as an act of freezing a moment of time, and photographers often
take advantage of this. See, for example, the disturbing use of this power in
Execution of Vietcong Prisoner by Eddie Adams.

A case can be made that the idea that an instantaneous moment of life can be
captured with paint on canvas came into its own with the Impressionists, who were
very much influenced by then-new photography. In volume 3 of The Physics and Art
of Photography we revisit this question of the relation between painting and
photography.

6.1 From 3D to 2D
Part of the essence of photography is that elements of the inherently 3D world are
directed onto a 2D surface. At first glance, one might think that, as with a camera,
this is exactly what the human eye does. Rays of light from the world are focused by
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the eye’s lens and cornea onto specific locations on the two-dimensional surface of
the retina. But it is much more complex than that.

Part of the reason that 2D art works at all is that our brains seem to be specifically
structured such that we can easily attach worldly, 3D meaning to patterns on a flat
surface. Presumably, this is because the brain must make sense of the essentially 2D
information coming from the eye. How the eye/brain does this is extraordinarily
complex and only partially understood, but much of the detail has little direct
counterpart in the operation of a camera.

For one thing, the image from a camera (or eye) lens literally represents only
directions in space, not distances. An image is only a 2D representation, and yet we
construct a 3D universe out of that image.

This fact is particularly (and painfully) obvious to an astronomer. Take a picture
of the night sky, and one sees a pattern of bright dots—stars. But there are an infinite
number of possible 3D arrangements of those stars consistent with that same picture.
To determine that third dimension of distance requires much additional information
that is not available in the photograph alone, and this task is a central preoccupation
of astronomers.

But the human brain, in its second-by-second workings, doesn’t really operate in
this considered, mathematical way. The brain adds its own interpretation to the mix
of data coming from the eye; it makes stuff up, in a sense. And so it is possible to
take advantage of this fact and trick the brain; the phenomena of optical illusions
provides evidence for this, and clues to the actual mechanisms at work.

6.2 The human brain’s construction of three-dimensional reality
Experiments have shown that the image on the retina of the human eye is very
different from what we actually perceive as sight. The human eye in its construction
has much in common with a camera; a lens focuses an image onto a surface (the
retina) that is sensitive to light. But the similarity ends there. Much is sometimes
made of the fact that the image on the retina is, like in a camera, upside down; but
that is not such a big deal. Most of ‘seeing’ is in the brain, not in the eye. Flipping the
image right-side up is the least of it.

Some of the research carried out in the 1950s and 1960s by the Russian
psychologist Alfred Yarbus provides a good example (Yarbus 1967). Yarbus
recorded the eye movements of observers as they performed certain tasks. He found
that for even something so simple as looking at a motionless face, the human eye
darts around all over the place; see figure 6.1 for an example. It seems that we tend to
look at the eyes and mouth a lot, as can be seen from the eye movement trajectories
he recorded. If one pointed a video camera at the same face, and moved it according
to such a trajectory, the resulting video would likely be unintelligible.

Yet somehow the brain makes sense of this seemingly confusing information
coming from the eye. Clearly the brain constructs an image from this information,
rather than simply recording it. And that image is of a 3D world with objects in it.
And what we ‘see’ not only ignores much of the irrelevant information coming from
the retina, it also includes elements not even present in that stimulus; the brain

The Physics and Art of Photography, Volume 1

6-2

http://en.wikipedia.org/wiki/Optical_illusion


makes stuff up. And this means that we can attach meaning to even the simplest
marks on a flat surface. For painters and photographers, who make images on a flat
surface, this is a lucky break! A photograph is just a flat piece of paper with marks
on it. But we can see the world when we look at a good one.

6.3 Linear perspective and the Camera Obscura
Which came first, the camera or the light sensitive material that goes in the camera
to make the photograph? It is a surprise to most people that the correct answer is the
camera, which preceded the invention of photo-sensitive materials by a couple of
hundred years. But when one realizes that the word camera is simply the Latin word
for an enclosure, then maybe it is not so strange. Long before cameras were used to
record images, they were used to view them. The camera obscura is simply a ‘dark
box.’

It has been known for centuries that one can use geometry to produce images.
Place a small hole in one side of a dark box, and each ray of light coming from
objects in the world will be restricted by the hole to only one spot on the opposite
side of the box. See figure 8.1. Thus, an image of the outside world is automati-
cally reconstructed on the inside of the box. This basic idea underlies both the
ancient camera obscura, and the modern pinhole camera we discuss in detail in
chapter 8.

A glass lens allows one to (among other things) brighten this otherwise dim
image, and this too has been known for centuries, at least since the 1500s. When
light-sensitive materials were invented in the 1800s, the already-existing camera
obscura developed into the photographic camera (Marien, 2002, pp 3–7).

Figure 6.1. An illustration tracking the eye movements of a subject looking at a photograph of a face, work
pioneered by the Russian psychologist Alfred Yarbus. Even when looking at something so simple, the human
eye is constantly darting about. Yet we perceive a motionless image (graphic: SpoonSpa, Simon Viktória, CC
BY 2.0 Generic).
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One simple way to view the image in a camera obscura is to make the dark box
very large, and put yourself inside. The photographer Abelardo Morell has been
doing this with great success. He uses paint to black out the windows of a room with
a view, and then scratches a small hole in the paint. An upside down image of the
outside world appears on the opposite wall. This is, in effect, a giant pinhole camera
with the photographer inside. Very little light enters through the small hole, and so
the image is very dim—barely visible to the naked eye. He photographs this image
with a separate camera, set up inside the room, using a long time exposure to make
up for the dim light.

A not-very-impressive example of this same technique is shown in figure 6.2. The
darkened room of my physics classroom was photographed with a long time
exposure. The image on the wall is from a small hole in the blinds opposite. The
photograph has been inverted so the camera obscura image, of the grounds outside
the lab, is upright.

The camera obscura and related optical and sighting devices were instrumental in
the discovery of mathematical rules for laying out a realistic perspective in paintings,
what art historians call linear or mathematical perspective. Some have speculated
(the thesis is still controversial) that some of the Flemmish painters of the 17th
century (Vermeer in particular) used a camera obscura to properly locate the details
in their paintings (Steadman 2001). In 15th century Italy, Filippo Brunelleschi
performed experiments with a sighting device much like a camera obscura in order
to work out the first formal methods for incorporating precise linear perspective into
paintings and drawings.

Figure 6.2. My physics classroom photographed from the inside. A small hole in the blinds produced the
image of what is outside the lab. The picture has been turned upside down, and so the room appears inverted
but the camera obscura image is upright.
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6.4 The picture plane
Photographs are often representational; forms in the photograph are meant to
directly represent things in the real world. But as is the case for all 2D art, there is
more to it than that. An important element is the picture plane–the flat plane
representing the 2D surface of the photograph itself. While this concept of the picture
plane as a physical surface is of crucial importance for painting, it is sometimes
downplayed or ignored in photography, which often strives to be purely
representational.

This can be seen in the way many photographs are displayed. A mat is used to
overlap the image area of the print. And so the opening in the mat appears as a
window, with the picture behind. The intent seems to be to hide the fact that one is
looking at a piece of paper; only the representation of the image matters.

Many photographers however, aligning themselves somewhat more with the
history of painting and the early history of photography, go out of their way to draw
attention to the picture plane. One method is to use alternative printing processes
that introduce their own elements in the form of random detail and textures (Rexer
2002). We will explore some of these printing processes in more detail in volume 3
of The Physics and Art of Photography. Often the goal here is similar to that of
traditional art printmaking. The image is the same, but each print is slightly
different, and thus unique, due to the handmade process. And the more-interesting
and less-uniform surface of the paper itself is often evident. And so it is not just an
image; it is an image on a flat piece of interesting paper, and the paper is the picture
plane.

But the negative process of film photography allows for another interpretation of
the picture plane. One does not normally view a photographic negative directly;
rather one looks at a positive print made from it. But the negative also represents a
flat plane, and it is what was actually inside the camera at the moment the photograph
was taken.

Thus in negative-based film photography, we actually have a possibility for two
picture planes: the surface of the print itself, and the surface of the negative that was
used to make the print. Details in each can draw attention to these two flat surfaces,
forming an additional element in the formal construction of the picture. This is an
especially important point in the modern age, where many pictures never exist as a
physical print. Thus the picture may be an image on a large computer screen or on a
tiny smart phone, depending on who is looking at the picture. Where then is the
picture plane? Is the concept still meaningful when no physical image surface exists?

Figure 6.3 shows an image made from an old type of Polaroid large-format
negative film. This type of film made its own instant print and a high-quality instant
negative, that could then be printed in the darkroom. No darkroom was needed to
produce the negative itself; one just needed to clear off the developer goo, in daylight
in the field, with a simple sodium sulfite solution (often carried around by the
photographer in a bucket).

In this case, I allowed the goo to remain on the negative, and in fact rubbed it in
the dirt to make it even more yucky. I then allowed the negative to dry without
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washing it. The result was a bad negative that would have been difficult, if not
impossible, to print in a traditional darkroom. But it was possible to scan it with a
high-quality scanner, and then use digital techniques to reverse it to a printable
positive image.

The result is that the surface of the negative is introduced as a picture plane,
independent of the manner in which the image is printed or displayed. In this
particular case the flat plane of the negative plays off of the seemingly-curved plane
of the table introduced by the distortion and vignetting of the particular lens used.

In the chapters that follow we explore this 2D nature of photography, and how it
relates to our 3D world. We will see that even a virtual image that never exists as a
physical object still has abstract relations between the parts of its 2D ‘surface.’ In
volume 3 of The Physics and Art of Photography we revisit some of these ideas in
consideration of the physical processes by which light from the world interacts with,
and changes, a flat surface in order to form an image. And we explore some methods
by which nature can have its own say in the making of photographic art, in ways
that are only partially under the control of the artist.
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Chapter 7

Light and shadow: photograms

A photogram is a camera-less photograph. An object is placed in direct contact with
some light-sensitive material and then exposed to light, directly recording the
object’s shadow. Many of the earliest photographs were photograms, for the simple
reason that the earliest light sensitive materials were of such low sensitivity that their
use in a camera was impractical. Some of the first photographs using light-sensitive
silver salts on paper, by William Henry Fox Talbot, were photograms of botanicals;
he called them ‘photogenic drawings.’ And the first book to be illustrated with
photographs was Photographs of British Algae: Cyanotype Impressions by the
botanist and photographer Anna Atkins. She used John Herschel’s newly-invented
cyanotype process to illustrate her 1843 book with direct photograms of the
specimens.

Since a photogram is essentially a shadow, it is important to understand some of
the basics of how shadows are formed:

1. A shadows is larger than the object casting it if the source of light is very
near. The object and its shadow are roughly the same size if the source of
light is distant.

2. A large light source produces a shadow with fuzzy edges. A small light source
produces a shadow with sharp edges.

3. The shadow of an object closer to a screen is sharper-edged than the shadow
of the same object placed more distant from the screen.

4. Multiple light sources produce multiple shadows. But depending on the
geometry, light from one source can partially fill in the shadow from another
light source.

5. The Sun in a clear blue sky produces shadows that are partially filled in by
the blue light of the sky, contrasting with the slightly yellowish (in
comparison) non-shadow area from the direct sunlight. Thus we have the
well-known rule that on a clear day, shadows are bluish in color.
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6. The shape of a shadow is distorted by the geometry of the projection angle
onto the surface the shadow is cast upon.

With these points in mind, carefully examine the cyanotype photogram Paloverde
in figure 7.1, where I have digitally reversed the original blue-tone negative to a
positive. Some of the branches appear very sharp, while others are blurry. This gives
the photogram a look of depth, as if it were a photograph taken with a camera using
a shallow depth of focus. But this was simply a piece of light-sensitive paper held
next to a tree branch while it was exposed by the Sun; no camera was involved. The
branches touching the paper made sharp-edged shadows, while the branches in front
of and further from the paper made fuzzier shadows.

Early photographic detectors were far less sensitive to light than those of the
modern era, and so they lent themselves naturally to the making of photograms. But
many contemporary photographers have found old photogram techniques to be
useful tools for making new art, and so there is now a strong revival of these old
processes (Rexer 2002). We explore these issues in some detail in volume 3 of The
Physics and Art of Photography, but in appendix A of this volume, I describe how to
make your own photograms, with both the traditional cyanotype process and my
own new/old ‘ephemeral process’ photography (Beaver 2017). Both techniques are
inexpensive, accessible, and a lot of fun.

Figure 7.1. Paloverde (John Beaver, 2005). In this photogram, the shadows of the branches that were in direct
contact with the light-sensitive paper appear sharp, while those that were some distance away produced blurry-
edged shadows. The effect looks similar to the selective focus of a camera lens; but here no camera was used.
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7.1 Shadows and the source of light
A photogram is, essentially, a capture of a shadow cast directly onto a light-sensitive
material. And so to experiment with photograms is to explore the nature of shadows.
For the right-hand image in figure 7.2, I used ephemeral process photography to
directly record the shadow cast by the object shown in the left-hand image. When the
shadow is seen in context, it is clear that it is illuminated by a single source of light to
the upper right of the cordial glass. But the photogram itself seems distorted; the
circular base looks exactly as it does on the object, but the rest looks very different.

The seeming distortion arises from the fact that the photogram is a projection of
light rays from the source through the object. And so the shadow of the top of
the glass is to the side of the shadow of the bottom of the glass. It is also evident that
the shadow of the top of the glass seems a bit disproportionately large, compared
to the proportions of the different parts of the object that cast the shadow. Since the
bottom of the glass was in direct contact with the light sensitive paper, it appears
the same shape and size, and in the same position, as the object itself. Not so, for the
top of the glass, some inches above the surface of the paper.

Careful inspection of the photogram in figure 7.2 also reveals that the blurriest
portion is from the top of the glass, the most distant from the paper, while the
sharpest portion is from the base that was in direct contact. We have already seen
that objects more distant from the shadow surface cast blurrier shadows.

Figure 7.3 shows four photograms, all made with the object in the same
arrangement as in figure 7.2. But for each I have changed the light source. For
the first and third photograms, the source of light was positioned relatively close to
the object, while for the second and fourth the light was positioned far away. But for
both the first and second examples I used a very tiny source of light (shining through
a small hole), while for the third and fourth I used a light that had a large emitting
surface area.

Figure 7.2. Left: a cordial glass illuminated by a single source of light located to the upper right. Right: a
photogram made with this same illumination. The shape of the photogram is distorted by the angle of
projection.
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Let us first think about the relative distortions of size, and put the issue of
sharpness or blurriness of the shadows aside for the moment. Comparing the first
image to the second, we see that when the source of light is close by (as in the first
image), objects more distant from the detector (and thus closer to the light source)
appear larger than life. The same is clearly true when comparing the third and fourth
images. As compared to the third image, the light source was moved farther away
for the fourth image, and so the shadow of the top of the glass appears closer to its
real proportion compared to the bottom.

For the first and third pictures, which show considerable distortion in the size of
the top of the glass, the light source was only a few times further away than the
distance between the top of the glass and the light-sensitive paper. And thus the light
rays were spreading out significantly when they reached the nearby top of the glass.
Following these same rays to the light-sensitive paper, they continue to spread, and
so make an enlarged shadow of the top of the glass.

If the source of light is very far away, on the other hand, the light rays are nearly
parallel, and so this effect is much less noticeable. Our most common source of light
for outdoor photography, the Sun, is very far away indeed. And so for shadows cast
by the Sun, the distortions in size illustrated by the first and third image in figure 7.3
do not occur.

The first and third images were both made with the light positioned at roughly the
same distance. Yet one is very blurry while the other is very sharp. The same is true
for the pair of the second and fourth images. Here the difference results from the
physical size of the light source. For both pairs, the smaller light source produced
the sharper shadow. But the distance of the light source also affects the sharpness of
the shadow. The first and second shadows were both made by the same small light
source; yet the second, made with the light source farther away, is clearly sharper.
The same relation holds true for the third and fourth images. The same source of
light moved farther away produces a sharper shadow.

Figure 7.3. Four photograms of the same crystal cordial glass. From left to right: small light close up; small
light far away; large light close up; large light far away. Notice that for all four examples the bottom of the
glass (in direct contact with the light-sensitive paper) is identical. But the size of the top of the glass is more
exaggerated for the images made with the close-up lights. Also notice that the shadows are sharper when the
light source is either smaller or farther away (or both). And for all four photograms, the sharpest shadows are
from the parts of the glass that were closest to the light-sensitive paper.
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A more distant light source produces a sharper shadow, while a physically larger
light source produces a blurrier shadow. And so what if the light source is both larger
and more distant? Will the shadow be blurrier or sharper? The answer is that it
depends; we must look at the details for the particular case in question.

Consider again the four examples in figure 7.3. If we rank them from sharpest to
blurriest, it is clear they would be in the order 2–1–4–3. Table 7.1 gives the relevant
data for the four examples—the size of the light source and its distance from the
light-sensitive paper—in order of increasing blurriness. By looking at each of the two
variables individually, it is far from obvious why they would be in this particular
order. But the fifth column of the table provides the answer. Here I have divided the
distance to the light source by its size. It is clear that the smaller this ratio, the
blurrier the shadow.

If we invert this ratio, instead dividing the size of the light source by its distance,
we get numbers (fractions in this example) that are larger with increased blurriness,
and smaller with increased sharpness (sixth column). This measure, the size of a light
source divided by its distance, is closely related to the important concept of angular
size or angular diameter. The angular size of an object is how large it appears as seen
from a particular vantage point. The Sun is nearly a million miles across, but it has
roughly the same angular size as a dime held at arms length. With this concept of
angular size, we can now state the following simple rule for shadows:

As seen from the point of view of the object casting the shadow, a source of
light with a relatively small angular size will produce relatively sharp shadows,
while a source of light with a relatively large angular size will produce
comparatively blurry shadows.

Photographers often refer to sharp shadows as hard (especially if they are also of
high contrast), while referring to blurry shadows as soft (especially if they are also of
low contrast). Hard shadows may give a sense of drama to a photograph, while soft
shadows tend to have a more relaxed feel. Portrait photographers often work in the
controlled environment of a studio in part to exert detailed control over the hardness
or softness of shadows cast by one part of a subject’s face onto other parts. To

Table 7.1. In order of increasing blurriness from top to bottom, column one lists the four examples from figure
7.3. Columns 3 and 4 list the distance and size of the light source that illuminated the cordial glass to make
these four photograms. From either of those columns alone, it is unclear why the rows of the table should be
ordered in this way. But by dividing distance by size (or size by distance), one can see that neither the size nor
the distance alone is the crucial issue, but rather how they compare to each other.

Example Description Distance (cm) Size (cm) Distance/Size Size/Distance

2 Sharpest 132 0.64 206 0.0048
1 Less sharp 41 0.64 64 0.016
4 Blurrier 132 7.6 17 0.058
3 Blurriest 41 7.6 5.4 0.185
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greatly soften shadows, a compact source of light may be enclosed in a large soft box
that spreads the source of light over a large area.

7.2 Laser photograms
To make a photogram with perfectly sharp shadows, either the object must be thin
and in direct contact with the light sensitive material, or the light source must
appear, from the location of the photogram, as a only a tiny point. Since the Sun has
a significant angular size, and so does not appear as only a tiny point, photograms of
three-dimensional objects have fuzzy edges if sunlight is used. One could, in theory,
make a mask that blocks all of the Sun except what comes through a tiny hole. But
then the light would be too dim.

One solution I have discovered is to expose the photogram by ‘scribbling’ over it
with a laser mounted from a fixed point. An example can be seen in figure 7.4. To do
this I placed objects on light-sensitive paper, and patiently scribbled over it with the
laser, exposing only one part at a time. The entire process took about 5 min.

But to produce such a sharp image in this way, the laser beam must come from
exactly the same location the entire time. And so I mounted the laser on a tripod, but
in such a way that it could pivot somewhat about the center of its light-emitting part.
I could point the beam in different directions (within limits), and so expose any
portion of the light-sensitive paper. But from the point of view of the light-sensitive
paper, the beam always originated from exactly the same location. And thus the

Figure 7.4. The Six Cornered Snowflake, John Beaver 2016. A laser swiveling about a fixed point was used to
expose a photogram of three-dimensional crystals. Since the beam always came from the same fixed location, it
was as if the source of light were a point source, and so the shadows are perfectly sharp.
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effect, regarding the sharpness of the shadows, was the same as if the photogram had
been illuminated with a point source of light.

Figure 7.4 was made using ephemeral process photography combined with an
inexpensive deep-violet 405 nm laser pointer. The same laser can be used to make a
photogram with cyanotype, although one must move the laser much more slowly
(and so the process takes much longer). See appendix A for details on how to make
your own photograms with cyanotype and ephemeral-process photography.
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Chapter 8

Ray optics 1: pinhole photography

A lens uses refraction to redirect many light rays to the same place, and this allows
for the creation of both bright and detailed images. We will consider lenses in more
detail in chapter 9, but there is much about the formation of an image that has
nothing to do with the lens per se. Rather it is about simple geometry. And so before
we analyze lenses, it is helpful to consider the geometrical aspects of the simplest of
all ways to record an image—the pinhole camera.

Let us consider that light undergoes diffuse reflection off of some object in the
world—a cat, for example, such as in figure 3.12. The diffuse reflection means that
every part of the cat reflects light in all directions at once. From the point of view of
someone looking at the cat, or taking its picture, it is as if every point on the cat is
emitting light in all directions. We know, of course, that the cat is only reflecting
visible light, but if it were emitting its own light, a ray diagram of that process would
be very similar.

We will adopt this approach as we go along in the next several sections. We will
describe an object as if it is emitting, from each point on it, rays of light pointing in
all directions. Of course, we can’t literally draw all of these rays, as there would be
an infinite number of them. Instead we choose to depict only those rays that,
strategically, allow us to figure out what we want.

Consider for example rays of light coming from an object and then focused to an
image by a lens. When analyzing this situation we gain nothing by depicting the
plethora of light rays coming from the object that miss the lens all together. But in
many circumstances, by being only a little clever, we will be able to disregard most of
the rest of the rays as well, choosing only those that are necessary in order to
determine whatever it is that we want to know. In fact, we will often be able to
accomplish our task by considering only two out of the infinite number of rays
coming from the object.
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A pinhole camera is essentially a dark box with a hole in it. A small hole in one
side of a box is used to restrict light rays so as to form an image on the opposite side
of the box. The image is then recorded with some light sensitive material.

One way to accomplish this is to use black and white enlarging paper, such as
would be used for making prints in a darkroom, as the ‘film.’ While in the dark,
place the paper on the inside of the box and put a piece of black tape over the
pinhole. Then set the camera up outside on a tripod or stand of some kind, and
uncover the hole. After enough time has passed (typically a minute or so), the print
paper will be exposed. Cover the hole, carry the entire camera into the darkroom,
remove the paper and develop it. A positive can be made from the negative print that
results by placing it in contact with a second sheet of print paper, and shining diffuse
light through the paper1.

Figure 8.1 shows the geometry of a pinhole camera and why an image is formed.
Since light can only enter through a small hole, only one ray from a given part of the
object makes it into the camera. And then geometry does the rest; that ray can only
go to one specific place on the light detector. And so each part of the object exposes
its own place on the detector, and an image is formed. The image is, of course,
upside down.

The left side of figure 8.2 shows the same diagram as figure 8.1, but with a larger
hole. The big disadvantage of a pinhole camera is that the light enters only through a
pinhole. This means the image is very dim, and requires either very bright light or
very long exposures (or both). So one might very much want a larger hole for a
brighter image. But clearly, a large hole means that rays from one point on the
object go to a range of positions on the image. In other words, a larger pinhole
should mean a blurrier image. So there is an inevitable trade-off for a pinhole
camera; a brighter image means a blurrier image.

1 There are many how-to guides available in print and online to fill in practical details for this process and its
many variations, if you want to try it for yourself.

Figure 8.1. Formation of an image in a pinhole camera. Light rays reflect from the tip of the arrow in all
directions, but only one can make it through the small hole in the pinhole camera. Thus rays from each part of
the object are guided each to their own separate place to form an upside-down image of the object.
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We can compensate for a dimmer image by taking a longer exposure. And so if
the subject is motionless and the camera is on a stable mount, then perhaps one
could make the image as sharp as one likes simply by using the tiniest possible hole,
even if one had to wait all week for a proper exposure to build on the film. But this
will only work up to a point because of the phenomenon of diffraction.

Recall that because of the wave nature of light, a ray of light passing through a
tiny hole spreads out to form a bullseye pattern. And the tinier the hole, the more the
light spreads out. This means that the light passing through a tiny pinhole will not
simply travel in a straight-line ray; it will spread out, and dramatically so if the
pinhole is only a little bigger than the wavelength of the light. See the right side of
figure 8.2 for an illustration.

Imagine taking picture after picture with a pinhole camera, each time using a
slightly smaller hole. For large holes, diffraction has little effect. And so at first,
because of simple geometry, smaller holes would yield sharper images. But as one
tried smaller and smaller holes, eventually the images would stop getting sharper
and sharper. Instead, because of diffraction, smaller holes would make the image
blurrier.

And so there must be a particular size hole that gives the sharpest image. Images
from pinholes both larger and smaller than this optimum size would be blurrier—
large holes give a blurry image because of geometry, while tiny holes give a blurry
image because of diffraction. This is the best one can do with a pinhole camera; we
are up against the very nature of light itself.

With a little bit of calculus and some algebra, one can derive an equation for that
optimum pinhole size. The details of the calculation and its motivation are in
appendix C, but the result is very simple, and given by equation (8.1)2.

λ≈D F2.44 (8.1)

Figure 8.2. Left: a larger hole in a pinhole camera would let in more light and thus produce a brighter image.
But the image would be blurry since many different rays from any given point on the object are allowed to
strike many different locations on the detector at once. Right: if the hole is too small, the image in a pinhole
camera will also be blurry; diffraction at the pinhole will spread the rays out on their way to the detector.

2 There are slightly different ways to define what is the ‘sharpest’ image, and so there are other versions of
equation (8.1) that are slightly different. When applied to specific numerical examples, however, they give
similar results.
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where D is the best diameter of the pinhole and λ is the wavelength of the light. If we
choose λ = 550 nm (the middle of the visible part of the spectrum), and convert the
units so D comes out in millimeters, we have:

≈D
F

(mm)
(mm)

27
(8.2)

I also define the focal length, F, of the pinhole camera—the distance between the
pinhole and the light detector. And so a pinhole camera with a focal length of 8 inches
(about 200 mm) should have a pinhole about half a millimeter across in order to
produce the sharpest possible images.

8.1 Focal length and angle of view
The distance between the pinhole and the light detector is the focal length, but what
about the other dimensions of a pinhole camera? And what is the difference between
a large focal length on the one hand and a small focal length on the other? To answer
these questions, we must distinguish between four different concepts: focal length,
detector format, image size and angle of view. There is another quantity, focal ratio,
that relates to focal length in a different way; we consider focal ratio in section 8.4.
All of these concepts apply not only to pinhole cameras, but to all cameras in
general.

Focal length: The focal length, F, is the distance between the pinhole and the
light detector.

Image size: the size of the image on the detector, directly measured in some unit
of length.

Detector format: the physical size of the light detector in the camera. Is the
detector ×6 9 cm or is it 8 × 10 inch?

Angle of view: the range of directions that can be imaged at once, as seen from
the pinhole looking toward the subject.

We consider each of these in turn, and the relations between them.

8.1.1 Image size

The size of the image, si, on the detector of a pinhole camera depends on three
factors: the size, so, and distance, d, of the subject, and the focal length, F, of the
camera. The relation between these four quantities is simple, and follows directly
from the law of similar triangles, as applied to figure 8.1:

=s s
F
d

(8.3)i o

And so for a given subject at a given distance, a camera with a longer focal length
will produce a larger image of that subject. We shall see in chapter 9 that equation
(8.3) is strictly-speaking not true for the case of an image formed by a lens, although
it is often at least approximately true even then.

The Physics and Art of Photography, Volume 1

8-4



8.1.2 Detector format

Most cameras are built around the particular light detector they employ. And so
some cameras are designed to use a roll of light sensitive film, each frame of which is
a rectangle that measures ×36 24 mm. And so the detector format of such a camera
is ×36 24 mm. Such a camera has long been called ‘35 mm’ as a shorthand.

There have been literally dozens of different detector formats in widespread use
over the history of photography. But for any given camera, it is usually the one thing
that is fixed and unchangeable by the photographer. A 35 mm camera uses a format
of ×36 24 mm and only that format, by way of its fundamental design.

The typical pinhole camera is the exception. It can be made by taping a piece of
darkroom enlarging paper to the inside of a box. The light-sensitive paper can be
purchased in many sizes, and it can be easily cut smaller. And so the photographer
can put whatever size piece of paper they want in their pinhole camera, so long as it
fits in the box. And if it does not, they can simply find a different box.

Equation (8.3) for the image size holds whatever the detector format. It may be
that a particular desired image does not fit on the detector, because the format is too
small. But even then, the part of the image that does fit will follow equation (8.3) for
the part of the subject that is imaged.

Often we are concerned in the end with neither the image size nor the detector
format per se. Rather, we may care instead about how the two compare to each
other. And so consider two cameras of the same focal length situated right next to
each other, both pointing at the same subject. The image size of the subject, as
measured in inches, would be the same in both cameras. But if one camera has a
larger detector format than the other, then that image will be a smaller percentage of
the full picture. Does the picture only include your friend’s head, or does it include
their whole body as well?

8.1.3 Angle of view

Figure 8.3 illustrates the concept of angle of view, θ, for a pinhole camera. The angle
of view depends on two factors: the focal length and the detector format. It is clear
from these diagrams that for a given focal length, a larger detector will produce a
larger angle of view. But for a given detector size, a longer focal length will produce
a smaller angle of view.

Since many cameras have a detector format that is rectangular, a camera’s angle
of view may have different values for the horizontal and vertical parts of the picture.
As such, the angle of view is sometimes described by that given by the diagonal of
the format.

If one bisects the angle of view in any of the diagrams in figure 8.3, two right
triangles are formed inside the camera. It is easy to show with a little trigonometry
that the relations between the detector size, S, the focal length, F, and the angle of
view, θ, are given by:

θ
=F

S
2 tan( 2)

(8.4)
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θ=S F2 tan( 2) (8.5)

⎛
⎝⎜

⎞
⎠⎟θ = − S

F
2 tan

2
(8.6)1

A large angle of view is often called wide-angle while a small angle of view is
sometimes called telephoto. This terminology is more clear if one thinks of it in terms
of most professional cameras; they have a fixed detector size, but use interchange-
able lenses of different focal lengths.

Imagine that I build two pinhole cameras, both to hold an eight-inch square piece
of darkroom paper, but one of them has a longer focal length than the other. The
one with the longer focal length would then have the smaller angle of view, as shown
in the bottom of figure 8.3. But also for that camera, the longer focal length means
that the image of a particular object (a squirrel, say) would be larger. On the other
hand, the camera with the shorter focal length, and thus the larger angle of view,
would show more than just a single squirrel. It would also show the squirrel’s friends
gathered around it in a large crowd. With my telephoto pinhole camera, I can see
only the one squirrel, albeit in much greater detail. And so, unless I am able to read
the sign it is carrying, with my smaller angle of view I would not know that it is only
one of a mighty crowd of squirrels in open rebellion, angry and dangerous.

Figure 8.3. Top: two different angles of view, both with the same focal length. The larger detector on the left
produces a larger angle of view. Bottom: two different angles of view, both with the same size detector. The
shorter focal length on the left gives a larger angle of view.
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Pictures taken with an angle of view of about 35–40° seem approximately
‘normal’ to most people, and so that is often the dividing line between what is
called wide angle (or short focus) and what is called telephoto (or long focus). From
equations (8.4), one can see that an angle of view of 40° means the camera’s focal
length is about 1.4 times greater than the size of its detector.

8.2 Distortion and angle of view
Figure 8.4 illustrates two different ways to produce an image of a given object to be a
specific size on the detector. One can either use a long focal length from far away or
a short focal length from close up. In this example, the sizes of both the image and
object are exactly the same, but the angle of view and the distance between the
subject and the camera are different. If the object is simply an arrow on a flat wall,
then both situations would produce identical images.

But a picture taken in the real world usually includes a variety of subjects of
different sizes and distances, and three dimensional shapes that have depth. And this
means very different results can arise when using different angles of view, even if
they produce the exact same image size for the main subject.

Let us consider as an example two ways of making an image of the head of
Tobias, the cat. Figure 8.5 shows the geometry of Tobias as imaged by a short focal
length from close up. Although his nose is only about 1/3 the width of his head
overall, in this image his nose would appear almost as big as the rest of his head.

An image of Tobias of roughly the same size could be made instead by using a
long focal length from far away, as in the top example in figure 8.4. But in that case
the image of the nose, as compared to the head overall, would be much closer to
their real proportions.

From far away, the ears are only a tiny percentage farther away than the nose.
But from close-up, the back of the poor kitty’s head is twice as far from the camera
as is his nose. This means that the image that results shows a much larger nose as
compared to the size of his head. See figure 8.6 for the comparison of the two cases.

And so using a long focal length from far away will form an image such that the
different parts of the image are in proportion to the actual sizes of the objects. Using

Figure 8.4. Two different ways to achieve the same size image of an object. On the top a long focal length is
used from far away. On the bottom a short focal length is used from close up. Although the object portrayed in
the diagrams will appear the same in both cases, objects at both nearer and farther distances will be portrayed
differently.
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a short focal length from close up, on the other hand, has the effect of making the
nearer objects look larger in comparison to more distant objects.

Using a long focal length (and narrow angle of view) tends to make things look
flat, with little depth; distances seem compressed together. Using a short focal length
(and wide angle of view), on the other hand, exaggerates depth and makes nearby
objects look disproportionately large.

As humans, we are used to looking at things from a ‘moderately close’ distance,
and so pictures taken from far away with a long telephoto seem unnaturally flat.
Likewise, pictures taken with a very short focal length from very close up seem
unnatural as well, but in the opposite sense. In practice, photographers have devised
rules of thumb, guidelines, for what is the most useful angle of view for common

Figure 8.5. If the head of a cat is imaged at a large distance with a long focal length (telephoto), the sizes of the
images of the nose and the back of the head are nearly proportional to their real sizes. But if instead an image
of roughly the same size is made by moving close up with a short focal length (wide angle), then the image of
the nose is disproportionately large compared to the image of the more-distant back of the cat’s head.

Figure 8.6. The results of taking pictures of Tobias with two very-different angles of view. Left: a short focal
length lens was used from close up, as in figure 8.5. Right: a long focal length lens was used from far away. In
the wide-angle, close-up view, the nose was significantly closer to the camera than the ears, and so looks
disproportionately large.
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situations. An example is the rule that for a ‘natural-looking’ head shot, the angle of
view should be roughly 20° (this corresponds to a 100 mm lens with 35 mm film). But
as always, it is your picture. It is up to you to decide what is the most appropriate
angle of view for the subject matter and the effect that you desire.

8.3 Vignetting
For a given value of the focal length, F, how large a light detector could one use in a
pinhole camera? Would a pinhole camera with a focal length of only two inches, for
example, produce an image that would cover a detector that is 8 × 10 inches?

Light coming straight in along the axis of the pinhole passes through a circle of a
particular diameter. The brightness of the light that enters along that path is
proportional not to the diameter of the pinhole, but rather to its area, πr2 for a
circular hole of radius, r.

But light rays passing through the hole at an angle see not a circle, but an ellipse,
as in figure 8.7. This ellipse has the diameter of the pinhole as its long axis, but it is
smaller than that along its short axis. Clearly, this off-axis ellipse has a smaller area
than the pinhole itself, and so less light passes through at an angle.

This means that the image will be brightest in the center, exactly opposite the
pinhole, and progressively dimmer farther from the center. This effect is called
vignetting, and figure 8.8 shows a graph of brightness versus angle due to the
differing appearance of the pinhole shown in figure 8.7. It turns out to follow a
simple mathematical rule; the brightness is proportional to the cosine of the angle
from the axis. One can see from the graph that at angles greater than 60°, only half
the light enters the camera compared to rays passing straight through the hole.
Clearly, an angle of view of 120° would produce significant vignetting.

In practice, vignetting is much more severe than one would expect from figure 8.8,
since there are other factors besides the elliptical projection of the pinhole. See figure
8.9. For one thing, the thickness of the pinhole material enters into the calculation,
and this means that there may be angles for which no light passes through at all.
Furthermore, the edges of the detector are farther from the pinhole than is the
center, and this causes additional vignetting.

Figure 8.7. A circular hole appears elliptical, with smaller area (and thus admitting less light), when seen from
an angle. Thus, the center is the brightest part of an image formed by a pinhole camera.
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Figure 8.8. A pinhole camera naturally produces an image with vignetting, since light rays entering from an
angle ‘see’ a hole of smaller area. This graph shows the percentage of light that makes it through the pinhole, at
different angles.

Figure 8.9. Polar(oid) Bear, Teresa Patrick 2005. This wide-angle image from a pinhole camera shows
vignetting at the corners.
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8.4 Focal ratio
The ratio of the focal length, F. of the camera to the diameter, D, of the pinhole is
called the focal ratio, f, of the camera:

=f
F
D

(8.7)

The focal ratio of a pinhole camera is an important measure for a single reason—it is
one of the factors that determines the exposure when the image is recorded by the
detector. This topic is considered in detail in Volume 2 of The Physics and Art of
Photography, but from the definition alone one can see that a smaller focal ratio
means a larger hole, and so results in a brighter image.

For a camera with a lens instead of a pinhole, there is a second reason why the
focal ratio is important; we consider that topic in chapter 9.
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Chapter 9

Ray optics 2: lenses

For a pinhole camera there is a necessary trade-off between image sharpness and
image brightness, and the image sharpness has a natural limit set by the wave nature
of light. We could, however use the property of refraction to redirect light rays from
the edges of a large hole so that they end up at the same place on the image as do
light rays passing through the center of the hole.

A wedge-shaped piece of glass, a prism, will do the trick. Near the edge of the
hole, the rays must be deflected at a greater angle (see the left side of figure 9.1), and
so a more-angled wedge is required. Nearer the center of the hole, the light rays need
not be deflected as much, and so a flatter piece of glass would be needed. All of these
little prisms can be put together into one smooth shape, called a lens (see the right
side of figure 9.1). You may have noticed that a lentil has basically the same shape,
and that the words ‘lens’ and ‘lentil’ have much in common (see figure 9.2).

And so a lens allows one to get around the inherent geometric restrictions of using
a pinhole to make an image. We can now, in principle, use as large a hole as we
want, so long as we can design a lens to deflect all of the light rays to their correct
places on the image. In practice, there are of course limitations, and we will talk
some more about those later. But for now, let us put a lens on our camera and see
what happens.

9.1 Focus
One consequence of using a lens to form an image instead of a pinhole is that, for a
given distance to the object, there will be only one lens–film distance for which the
lens will bring the light rays from one point on the object to a single point on the
image. This should be clear from figure 9.1. If one were to move the detector closer
to or farther from the lens, the light rays would not all meet at one spot.

This is not the case for a pinhole camera. It is true that, because of the effects of
diffraction and ray geometry, there is an optimum focal length for a given pinhole
size. But this is a subtle effect, and it does not depend at all on the distance to the
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subject. So for a pinhole camera, simply use the right size pinhole for your focal
length, and everything at all distances will be equally in focus.

Introduce a lens, however, and for a given object distance there will be only one
image distance for a perfect focus. This means that one cannot, in principle, get
objects of different distances to all be in focus at once. It also means there must be
some mechanism for adjusting the lens–film distance to achieve perfect focus for a
given object. This is called, of course, focusing the camera, and there are many
strategies for accomplishing this, all of them greatly complicating the construction of
a camera. One of the appeals of pinhole photography is that no focus mechanism is
needed, thus making the construction of a pinhole camera simpler.

We can use the most basic simple lens as an example to illustrate some important
points about the focus of any lens. Figure 9.3 shows that light rays coming from a
point on a nearby object diverge at a steep angle as they arrive at both sides of the

Figure 9.1. Light from a large opening could, in principal, be redirected to a common focus by appropriately-
placed prisms, as illustrated on the left. On the right is a cross section of a double convex lens. Each part of the
lens acts as a prism to refract light by different angles, such that they all reach a common focus.

Figure 9.2. Lenses and lentils.
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camera lens. Light rays coming from a distant object, on the other hand, are more
nearly parallel.

It should not be surprising that a given lens, which must bend the light rays
inward to get them to converge, will bend those coming from the distant object at a
steeper angle than those coming from the nearby object. For the nearby object with
greatly diverging light rays, some of the refractive power of the lens must be used
simply to straighten the rays before it can bend them inward. Thus the image
distance for a nearby object is greater than for a more distant object.

What if we slightly change the distance of the two objects in figure 9.3? For the
nearby object, a small difference in distance will make a big difference in how much
the light rays are diverging when they arrive at the lens, and so will cause a
significant difference in image distance. And so for nearby objects, small difference
in distance lead to large differences in focus. For the distant object on the other
hand, a slight change in distance will make much less difference in the angle of the
light rays as they arrive at the lens. And so the focus changes little between two
objects that are at different, but both very-distant, locations.

If the object were an infinite distance away, the light rays would be exactly
parallel. But even if the subject is only very far away, the light rays arrive practically
parallel to each other. For most lenses, put the subject one mile away or two miles
away and the light rays are still so close to parallel that one can’t tell the difference
between them. And so every lens has an ‘infinity’ setting, but don’t take the meaning
literally.

9.2 Focal length
For a pinhole camera, we referred to the focal length, F, as simply the distance
between the pinhole and the detector, the image distance. But for a camera with a
lens, the focal is the image distance for an object at infinity. Said another way, the
focal length is the distance required for a lens to bring parallel light rays to a focus.
Since light rays coming from infinity are parallel, these two statements say the same
thing. For a pinhole camera, the image distance and the focal length are the same
thing. For a camera with a lens, this is only true if the object is very distant. For
nearby objects, the image distance is greater than the focal length.

We can use the ray diagram in figure 9.4 to investigate the geometry of a lens in
focus. The lens is represented by the vertical line in the center. The horizontal dashed
line is the axis of the lens, an imaginary line everywhere perpendicular to the plane of

Figure 9.3. As they reach the edges of a given lens, rays of light from nearby objects diverge at a greater angle
than those from objects far away.

The Physics and Art of Photography, Volume 1

9-3



the lens. The arrow on the right represents an object to be imaged, and the arrow on
the left side is the image of that subject.

In this diagram we only consider light rays from the tip of the arrow. There are an
infinite number of such rays scattering off in all directions, but we only need to
consider two of them, called principal rays. The first principal ray passes through the
exact center of the lens. Since the center of the lens is flat, this ray passes undeflected.
The second principal ray passes parallel to the axis of the lens. Since all light rays
arriving at the lens parallel to the axis are—by the definition of F—focused at a
distance from the lens equal to the focal length, then this ray must also cross the axis
at that point.

If we then project these two principal rays further we see that they cross each
other. If the lens is shaped correctly, any other ray emitted from the tip of the arrow
and intercepted by the lens would also cross at that same point. Thus, the two
principal rays show the location of the image of the tip of the arrow.

It is easy to confirm that if we do the same thing for a point half way down the
arrow, the rays converge halfway between the lens axis and the image of the arrow’s
tip. Thus an image of the arrow is reconstructed as shown in the diagram. And so we
have a lens, an object and an image of that object. We call the distance between the
object and the lens the object distance, do. And we call the distance between the lens
and the image the image distance, di. The other distance that is relevant is the focal
length, F. This is a property of the lens itself; ultimately it depends on the shape of
the lens and the type of glass from which it is made.

The two principal rays and the three distances, do, di and F, form a set of triangles.
And so it only takes a little bit of geometry and trigonometry to see that there must
be some mathematical relationship between those three quantities. I won’t work
through the details, but here is the answer:

Figure 9.4. A ray diagram for a converging lens. Only two principal rays are needed to locate the image. The
arrow on the right represents the object, and the lens (vertical straight line in the center) forms an upside-down
image of it on the left. The distance at which rays parallel to the axis of the lens (the horizontal line in the
center) come to a focus is called the focal length, F, of the lens. The distance between the lens and the image is
the image distance, di, while the distance between the lens and the object is the object distance, do.
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This is called the thin lens equation, and it says in words that the reciprocals of the
image and object distances add to give the reciprocal of the focal length. As we will
discuss later, real lenses are almost always more complicated than this, but even for
those cases, the thin lens equation is still a good starting point, as it is often
approximately true even then.

So let us consider some implications of this equation. To help with this, it is useful
to solve equation (9.1) for each of the three quantities separately:
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These three relations imply the following:
1. For a pinhole camera, the focal length is simply the image distance. But for a

camera with a lens, the focal length is a property of the lens, whatever the
image distance happens to be.

2. Equation (9.2) shows that one can determine the focal length of a lens if one
knows even one combination of image distance and object distance. Measure
the distance between lens and subject. Then find the best focus (by, for
example, moving a screen back and forth near the lens) and measure the
image distance. Finally, use equation (9.2) to calculate the focal length.

3. For an object at infinity—or so far away that it might as well be at infinity—
the image distance is equal to the focal length. And thus another way to
determine the focal length of a lens is to simply measure the image distance
for an object that is very, very far away (the Moon, for example).

4. Pick a focal length, and then plug different values for the object distance into
equation (9.3), and it soon becomes clear that if the object distance is smaller,
then the image distance is larger. Move the object closer to the lens, and the
focus moves farther from the lens.

5. Equation (9.3) shows that if the object distance is less than the focal length of
the lens, a negative image distance results. This means that there is no image
at all of the kind we have been talking about. The light rays diverge so much
that the lens is unable to even bring them parallel, let alone bring them
together to a focus. Thus there is no real image—an image that can be
focused onto a screen, piece of film or digital light detector. And so a camera
lens cannot focus on a subject that is closer to the lens than its own focal length.
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9.3 Depth of focus and focal ratio
In practice, careful focusing is sometimes very critical and other times not all that
important. Consider the difference between the two examples in figure 9.5. Both
have the same object distance, focal length and image distance. But the lens on the
right has a larger diameter, D. Clearly, if one moves the detector in the right-hand
example only slightly, there is a large error in how well the rays come together. But
for the left-hand example, with a smaller diameter lens, the rays are less angled. And
so the detector would have to be moved much farther to cause an equal error in
focusing.

We can ask a different but related question. If the detector is located so as to form
a perfectly focused image of a particular subject, by how much could I move that
subject closer or farther away, and still achieve a not-perfect, but still-acceptable
focus? This range of subject distances that still produce an acceptable focus is called
the depth of focus or depth of field.

For the same reason that careful focus adjustment is more critical for the right-
hand example in figure 9.5, the larger lens also has a smaller (more shallow) depth of
focus. For a given focus setting, there is a smaller range of subject distances that are
in acceptable focus for the large lens than for the small lens.

Since depth of focus is about the angle the rays make at the edge of the lens, it
cannot be about lens diameter alone. For what if I made a lens with twice the
diameter, but also twice the focal length? Clearly, everything would scale together
and so the angles would be the same (so long as the object were also twice as far
away). And thus depth of focus is primarily about not lens diameter, D, but rather
how the lens diameter compares to the focal length, F. We have already defined a
quantity that makes this comparison—the focal ratio, f = F/D. A smaller focal ratio
means a larger diameter lens, as compared to its focal length. And so we have the
following rule:

A smaller focal ratio means a more shallow depth of focus. A larger focal ratio
means a larger depth of focus.

Figure 9.5. Left: ray diagram for a small diameter lens. Right: ray diagram for a large diameter lens. Since the
rays converge to focus at a greater angle for the larger-diameter lens, the plane of focus must be located more
precisely. And this means one must focus the larger lens more carefully than the smaller lens.
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These effects of depth of focus are more pronounced, for all lenses, at small image
distances, simply because the rays coming from the subjects are less parallel for
nearer subjects. And so one must change the focus a lot when focusing on objects six
inches and then twelve inches away. But for practically any lens one might ever use,
the difference in focusing at ten miles compared to focusing at twenty miles is tiny
indeed.

Most real camera lenses include a set of thin metal leaves that can slide against
each other to make a hole of adjustable size in order to vary the aperture—the size of
the hole where the light gets in. And so one can vary the aperture, the effective size of
the lens, even though the glass lens itself is fixed. This is called an iris or aperture
stop, and the adjustments are labeled with the focal ratio that results. For this reason
focal ratio is often referred to as ‘f-stop.’ Sometimes, to emphasize that f is a ratio, it
is instead written as ‘f/.’

For most lenses, the f settings come in discrete increments, called steps. Recall
that there is another reason to adjust f apart from depth of focus: the focal ratio is
one of the factors that determines exposure when a picture is taken. And so the focal
ratio steps are chosen to be equal steps in exposure, not depth of focus. This topic is
considered in detail in volume 2 of The Physics and Art of Photography, but I note a
key result here: equal steps in exposure are related not to focal ratio directly, but
rather to its square.

This means that doubling the focal ratio changes the exposure by a factor of four
rather than a factor of two. Since photographers choose exposure steps such that
they result in successive doubling (or halving) of exposure, then our steps in f must
be square roots of successive factors of two. And so successive steps in focal ratio are,
for example, 1 , 2 , 4 , 8 , 16 , 32 , 64 , etc. Approximating these square
roots, the f settings on a typical camera lens is some subset of 1.4, 2, 2.8, 4, 5.6, 8, 11,
16, 22, 32, 45, 64, 90.

9.4 Zone focusing
The infinity setting on a camera lens is set for the exact focus at—literally—infinity.
But because any given lens has a certain depth of focus, it means that things even
‘beyond infinity,’ if there could be such a thing, would be in focus as well. The
landscape photographer often wants a large depth of focus, with not only the most
distant objects but also subjects as close as possible to be in acceptable focus. We
have already seen that a large focal ratio is the best choice for this situation. But one
can do even better by putting the best focus somewhat closer than infinity—such that
infinity is still in acceptable focus. But now the range of acceptable focus has been
moved even closer. Such a setting is called hyperfocal infinity, and many manual-
focus camera lenses have marks to allow one to set them that way.

With an understanding of depth of focus, one can predict ahead of time what
range of distances will be in acceptable focus for a particular combination of focus
and f. This leads naturally to the idea that one can pre-focus the camera lens for the
situation. Whenever only a restricted range of distances is the center of interest, one
can pre-set the lens focus to the middle of that range of distances. If the focal ratio is
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then picked so that the depth-of-focus extends for the full range of distances of
interest, then one can pre-focus in this way. This process of carefully choosing a pre-
set focus and focal ratio to give the required depth of focus, is called zone focusing.

Zone focusing was common before the arrival of cameras with electronic
autofocus, and many old cameras included markings to make zone focusing easier.
But even now, zone focusing is sometimes useful. The autofocus process is not
instantaneous, and so there is an inevitable slight delay for the camera to focus. Zone
focusing, when used appropriately, is faster than autofocus. Zone focusing may also
be a good choice when the scene includes many subjects moving rapidly in different
directions; an autofocus mechanism may be unable to quickly and correctly identify
a proper focus subject.

9.5 Ray tracing
For the design of a real camera lens, the thin-lens approximation is far too crude.
For the simplest type of lens, with two surfaces that are simply sections of spheres,
rather than some more complex shape, there is an equation (called the lensmaker
equation) that allows one to find the focal length, F, given the curvature of each side
and the dimensions of the lens. But even this is too crude as anything but a starting
point for the complex situations faced by lens designers

Instead, optical systems are designed with the aid of ray tracing. Rays coming
from the object are followed geometrically until they reach an interface—a sudden
change of material, such as from air to the first surface of a glass lens, or from one
type of glass to another. At that point of contact with the new surface, geometry is
used to find the angle of incidence and then Snell’s law is used to calculate the angle
of refraction. The ray is then followed geometrically until it reaches the next
interface. And on and on, until the image point is finally reached. See figure 9.6 for
an example of rays traced through two very simple, but decidedly non-thin lenses.

It should be obvious that the tedious calculations of ray tracing are much easier
now than before the advent of the computer.

Figure 9.6. The thin lens approximation is too crude for precise optical design. Instead, individual rays are
‘traced’ from the source to the image, with Snell’s law applied at each interface.
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9.6 Aberrations and distortion
A camera lens has a lot of work to do. It must bring light rays of many
wavelengths, coming from many directions, all to a proper focus at the right
part of the detector. In practice, no single lens can do all of this, and so a real
camera ‘lens’ incorporates many different lens elements to correct each other’s
mistakes. See figure 9.7 for an example of a photograph taken with only a simple
double-convex lens. In this section we consider the typical distortions and the three
most important aberrations—errors in bringing the image to a proper focus—that
are inevitable with a simple lens.

9.6.1 Spherical aberration

A spherical lens surface is one that is shaped like a slice off the edge of a sphere. This
is the easiest type of surface to make, by a long shot, for the simple reason that all
parts have the same curvature. Lenses that have non-spherical surfaces are called
aspherical, and they are much more expensive to manufacture. The problem is that
spherical lenses do not form perfect images because different parts of the lens have
different focal lengths; it is not really the correct shape needed to bring all of the rays
to a common focus.

Figure 9.8 shows parallel rays traced through two lenses. They look almost
identical to the eye, but they are not. The left-hand lens is spherical, while the right-
hand lens has a more-complex hyperboloidal curvature. Spherical aberration means
that rays of light passing through the edge of lens focus more closely than rays
passing through the center of the lens. The (difficult to manufacture) hyperboloidal
curvature eliminates spherical aberration in this particular example, but other

Figure 9.7. This photograph was taken with a simple single-element magnifying glass attached to a 35 mm
camera. It resulted in large amounts of distortion and aberrations.
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aberrations arise when the light rays are not parallel or arrive at the lens at an angle
to the lens axis.

9.6.2 Coma

Even if a simple lens has the correct aspherical shape to bring on-axis light rays to a
proper focus, it will still mis-focus light rays coming in from an angle to the lens axis.
The result can be seen in figure 9.9. Severe coma spreads out light from point sources
into fan shapes that point away from the center of the image. The effects of coma are
greater farther from the image center, and with a wide-angle lens.

9.6.3 Chromatic aberration

The focal length of a thin lens is related to the index of refraction of the glass it is
made from. Since a larger index of refraction means the light rays coming from air
bend at a larger angle, a larger index of refraction results in (all else being equal) a

Figure 9.8. Although these two lenses appear almost identical to the casual eye, the mathematical shapes of
their curvature are different. The example on the left is a spherical lens, while the lens on the right has a more-
complex hyperboloidal curvature. The spherical aberration of the left-hand example is obvious from the closer
focus of rays from the edge of the lens than from the center. Chromatic aberration has been ignored in both of
these examples.

Figure 9.9. Parallel rays entering a simple lens at an angle focus in different places, making a point spread out
into a comet-shaped blob.
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shorter focal length. But the index of refraction of glass is not a simple number; it
depends on wavelength. This is the dispersion discussed in chapter 3, section 3.3.2.

The examples of dispersion curves in figure 3.11 show that shorter wavelengths
have a larger index of refraction. And thus, combining these two relations, one
would expect an ordinary lens to focus shorter wavelengths to a shorter focus, and
longer wavelengths to a longer focus.

See figure 9.10 for an example of rays traced through a simple lens, with this
dispersion accounted for. Notice that the short-wavelength violet rays focus more
closely, while the long-wavelength red rays focus at a larger distance. This error in
focus is known as chromatic aberration.

Even though it is about wavelength, and thus color, chromatic aberration is
important for black and white photography as well as color photography; even
black and white detectors are sensitive to many wavelengths at once. And so those
different wavelengths coming from the same subject would all focus differently,
resulting in a blurry image.

One way to reduce chromatic aberration is to use a filter to restrict the light
entering the camera to only a narrow range of wavelengths. See figure 9.11 for an
example. But this is usually not a very practical solution, for two reasons. First, a
more narrow range of wavelengths also means less light enters the camera, and so a
proportionally longer exposure is needed. But also, if only a narrow range of
wavelengths is admitted, then color photography is impossible.

The best way to reduce chromatic aberration is to abandon the use of a single,
simple lens. We combine a strong—but low dispersion—converging lens with a
weaker—but higher dispersion—diverging lens. The two lenses are made of different
types of glass so they have different amounts of dispersion. The trick is to choose the
types of glass and the shapes of the lenses such that the combination still acts as a
converging lens; the diverging lens is weaker than the converging lens regarding the
overall bending of light rays. But the dispersion of the diverging lens does cancel the
dispersion of the converging lens.

Figure 9.10. Even if spherical aberration is corrected, a simple lens will focus different wavelengths of light
differently because of the dispersion of the glass.
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See figure 9.12, where I have traced rays of many wavelengths through such a
combination—called an achromatic lens, or simply an achromat. Chromatic
aberration can be reduced even further by combining more than two lenses. A
lens combination that effectively eliminates nearly all detectable traces of chromatic
aberration over the range of visible wavelengths is often called an apochromatic lens.

9.6.4 Aperture and aberrations

One way to reduce aberrations in general is to use a lens with a very large focal ratio.
Regarding chromatic aberration, for example, one can see from figure 9.11 that the
rays entering the edges of the lens are refracted by a greater angle—but also those
rays show greater dispersion. The rays entering through near the center of the lens,
on the other hand, are bent very little and show much less dispersion.

For any given lens, all aberrations are generally worse when more of the lens is
used. And so a common way to get a sharp image with a not-so-great lens is to ‘stop

Figure 9.11. Both of these images were taken with the same simple double-convex lens, and they show
pronounced chromatic aberration. But the detail is sharper in the example on the right because a filter was used
to greatly restricted the range of wavelengths of light. The image is still blurry, especially at the edges, because
spherical aberration and coma still remain.

Figure 9.12. Chromatic aberration can be partially corrected if at least two lenses, of different dispersions and
indexes of refraction, are strategically combined. In this example, the positive lens on the left is stronger than
the negative lens on the right, so the overall effect is that of a positive converging lens. But the negative lens has
a higher dispersion, and cancels out the dispersion of the positive lens.
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it down’ to a very small aperture. This is especially true for lower-quality lenses that
are not very well corrected for aberrations (see figure 9.13).

If we take this idea to the extreme, we are back to pinhole photography, where the
image is formed simply by geometry. Even then, however, the image would still be
blurred by diffraction; no amount of lens-design cleverness can sidestep the fact that
light is a wave. But also, one often wants to use a large aperture because more light is
needed, or a shallow depth of focus is desired.

9.6.5 Distortion

Even if a lens does a good job at getting all of the rays in good focus, they may not
end up on the detector in the desired locations. For example, it might be that a
particular straight line in the subject might focus to a perfect line on the detector, but
that it appears curved instead of straight. This is called distortion, and as with
aberrations it is difficult to design a lens that produces a distortion-free image.

For a wide-angle lens especially, there is an important sense in which it is
impossible. The detector is a flat surface, and it is recording the image of light from a
three-dimensional world. And so it is often a choice of what type of distortion is the
least-undesirable. A familiar example is the barrel distortion produced by a fisheye
lens. See the left-hand image in figure 9.14 for an example. In this type of distortion
straight lines passing through the center of the image appear straight, but straight
lines off-center seem to curve around the image center.

Figure 9.13. If a larger focal ratio (smaller aperture) is used, aberrations are greatly reduced. Both of these
images were taken with the same simple double-convex lens, and they show pronounced coma and both
chromatic and spherical aberration. But the detail is sharper in the example on the right because an aperture
stop was used to only allow rays passing through near the center of the lens to enter the camera.
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The right side of figure 9.14 shows an image from a lens of nearly the same focal
length as the image on the left. But it was made with a (considerably more expensive)
rectilinear lens, rather than a fisheye. For this image, all straight lines in the subject
appear as straight lines on the image, no matter where on the image they are. But the
result is that areas are distorted; objects near the edges of the image appear larger
than they really are.

9.7 Resolution
Let us imagine we want to take a photograph of the stars at night. This example
brings up many technical details regarding exposure, but let us put those aside for
now. A star, as seen from Earth, is essentially a point of light1. But because of
diffraction, the light from the star will not form a perfectly point-like image, even if
the lens is perfect, with no aberrations. Instead, the image will be the bullseye
diffraction pattern of a circular opening (see chapter 3, section 3.7). Thus the point-
like object will be imaged as something larger than a point. And if one tried to image
two stars much closer together than the size of that diffraction pattern, then they
would be indistinguishable as two stars; they would instead blur together as one.

This means the size of the diffraction pattern determines a maximum theoretical
resolution—the maximum amount of detail one can discern in the image. To achieve
a higher resolution, a point must form an image that is more like a point. That is, one
wants the diffraction pattern to be smaller. For a particular wavelength of light (say
the 500 nm in the middle of the visible spectrum), this means one needs a larger lens.

There is no way around this basic fact; it arises from the very wave nature of light
itself. The size of the lens limits the detail in the picture, and for a given wavelength
of light, nothing can increase it but to use a larger lens. This is not the same thing as

Figure 9.14. Left: The World is Flat, John Beaver 2010. This image, taken with a fisheye lens, shows
considerable barrel distortion, which curves the horizon line. Right: What Happened, John Beaver 2012. This
image, taken with a wide-angle rectilinear lens, preserves straight lines. But sizes of objects are exaggerated at
the edges of the image.

1As an example, the Sun and the nearest major star, α Centauri, are typical stars of similar size to each other,
and the distance between them is typical of the distances between stars in our part of the Galaxy. Yet the scale
of the distance, compared to the sizes of the stars, is like ping pong balls spaced hundreds of miles apart.
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magnification. Magnify the image all one wants, but once the maximum detail is
visible, there is nothing more to see. A large blur is still only a blur.

For most everyday photography, one does not often come up against this
theoretical limit to resolution. Because of the aberrations discussed in section 9.6,
the image usually has much less detail than this anyway. And so for most lenses, the
resolution is improved by using a smaller lens aperture setting, simply because less of
the imperfect lens is used. This is especially true for low-quality lenses.

But for some very high-quality lenses used for technical applications, there is a
particular aperture, somewhere between the minimum and maximum settings, that
gives the highest resolution. Larger apertures give a higher theoretical resolution
because of diffraction, but smaller apertures have less-severe aberrations, and so
there is some happy medium in between.

9.8 Lens design
What photographers call a ‘lens’ is actually a combination of three to as many as a
dozen or more individual lenses of different shapes and spacing, and even different
types of glass. Because of this we usually refer to the combination of many lenses
that work as a unit, and that one attaches to a camera, as a ‘lens’, while each
individual glass lens inside it is called a lens element. And so a given camera lensmay
contain many lens elements.

There are really only two ways to design a camera lens with minimal aberrations
and distortions, even at small focal ratios. One can use a combination of many,
many lens elements, each correcting for the aberrations of the others. Or one can use
fewer lens elements, but with complex aspherical surfaces. Both choices are
expensive. But using a large number of lens elements has the added disadvantage
that every lens surface, both front and back, reflects a little bit of light. One problem
with this is that the reflected light decreases the brightness of the image, since if it is
reflected then it doesn’t pass through. But even worse is the fact that about half of
these reflected light rays do eventually make it through the lens and onto the image—
but they end up completely in the wrong place.

Most of this unfocused light is spread diffusely over the image, and this adds an
overall diffuse light to the image and thus reduces contrast. For color photography,
not only is the contrast reduced, but the colors are less brilliant too. And if there is a
very small and bright source of light (the Sun for example) within view of the lens
(even if it is out of the picture), then a flare can be produced—an oddly-shaped
streak of light on the image produced solely from these errant reflections.

Long ago, it was nearly impossible to make precision aspherical lens elements,
and so there was an inevitable trade-off between making a sharper image with fewer
aberrations and distortion and using fewer lens elements. Thus one could buy a lens
that had a large aperture and produced sharp, low-distortion images, but it would
inevitably produce pictures of low contrast due to the large number of lens elements.
A high-contrast lens, with only a few lens elements, would have noticeable
aberrations at small focal ratios. Many of these old and simple high-contrast lens
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designs were completely unusable at focal ratios less than about f/4, which is very
modest by modern standards.

Modern lenses are much improved for three principal reasons. First, it is no
longer impossible to make precision aspherical lens elements. It is still expensive, but
not absurdly so. Secondly, a lens can now be fully multi-coated (see chapter 3,
section 3.6) with antireflection coatings that use wave interference to cancel out most
of the reflections. Thus, many more lens elements can be used to cancel aberrations,
without reducing the contrast to unacceptably low levels. Third, computers can be
used to optimize the design of the lens over a wide range of conditions. Thousands of
rays can be now be easily traced through a particular complex lens design, so it can
be tested before it is even manufactured. A good modern lens is still expensive, but
an expensive lens today makes a much more ‘perfect’ image than did its equivalent-
dollar counterpart of 50 years ago.

See the left-hand image in figure 9.15 for an example of a modern camera lens
disassembled to show the individual lens elements. Such a lens also has a complex
mechanical construction; the spacings between many of the lens elements must
change in a precise way as the lens is focused to different distances. This particular
example also had an adjustable focal length, so both wide-angle and telephoto
pictures could be taken with the same lens (called a zoom lens). The zoom feature
greatly adds to both the optical and mechanical complexity.

And so, are old camera lenses useless today? Not to me. A perfect image does not
necessarily make a perfect picture. The right-hand image in figure 9.15 was taken
with an intentionally-awful lens—just a single-element double-convex lens. For
many years now, the Soho Photo Gallery in Tribeca, NY has hosted an annual
Krappy Kamera Competition. The only rule is that the picture must be taken with
an awful lens. In 2005 I won second place with this picture, and so I guess I can be
almost as Krappy as the best.

Figure 9.15. Left: a modern camera lens contains many lens elements and precision moving parts. Right: St.
Mary’s Church. John Beaver 2003. This picture was taken with only a simple double-convex lens.
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Chapter 10

Symmetry

10.1 Transformations and invariance
Everyone knows that the image in a mirror is reversed left-to-right; it seems too
obvious to mention that the image in a mirror would be just what we call a mirror-
image. But with this obvious fact comes an obvious question. Why does a mirror
show an image that is reversed left-to-right, but not top-to-bottom? A mirror is
simply a flat, reflective plane—how does it know the difference between left-and-
right on the one hand and up-and-down on the other? The answer is surprising to
many: a mirror reverses neither left–right nor top–bottom; we are the ones who do
the reversing.

To make the picture on the left side in figure 10.1, I used a permanent marker to
write the letters L, R, T and B (for left, right, top and bottom) on a sheet of two-tone
origami paper. When I hold the paper in front of the mirror, the image of the letters
has the same orientation as my direct view of them. The object on the left (the letter
L) is on the left, the object on the right is on the right, and the same is true for top
and bottom. If an object is to the left of center, its image is also to the left of center.
And the analogous rule holds true for objects that are above, below or to the right of
center. So why then do the words and letters appear reversed when one views them in
a mirror?

The trick is obvious—the mirror images of the letters in the left-hand image in
figure 10.1 are of the marker bleed-through, as if the letters were objects floating in
space rather than simply written onto a surface. What one usually means by the
phrase ‘image in the mirror’ is not what is represented by the left-hand image in
figure 10.1, but rather that of the image on the right, where I have rotated the paper
180° to face the mirror.

The point is that when we look into a mirror, we want to see the image as if we
were looking not from our vantage point in front of the mirror, but rather from the
vantage point of the virtual image behind the mirror. And so we imagine ourselves
(or the sheet of paper with writing on it) undergoing a transformation. When I stand
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in front of the mirror, objects behind me but to my left also appear to the left in the
mirror. But for me to see those objects I would have to turn around—and then they
would be to my right.

So back to our original question: why does this work for left/right but not for top/
bottom? The answer is that it in fact does work just as well for a top/bottom reversal.
It is all about how I transform the paper in order to position it according to the
mirror’s perspective, rather than my own. In figure 10.1, I have rotated the paper
180° about a vertical axis passing through the center of the paper. But I can also
rotate it 180° about a horizontal axis, as in figure 10.2. In this case the letters instead
read correctly left-to-right, but reversed top-to-bottom. Note that the vertical stem
of the L is still on the left as it should be, but the horizontal bar is now on the top
rather than the bottom.

And so text usually appears reversed left-to-right (but not top-to-bottom) when
seen in a mirror simply because we most often rotate the text horizontally, about a
vertical axis, so that it faces the mirror.

This concept of a transformation—a precisely defined change—is one half of the
important concept of symmetry. Figure 10.3 shows the images in a mirror of the
words ‘WOW - OXIDE,’ both rotated and unrotated about a horizontal axis (on
the top) and a vertical axis (on the bottom). For the rotation about the horizontal
axis, the word ‘WOW’ has reversed top-to-bottom, while the word ‘OXIDE’ seems
to have not. But for the rotation about the vertical axis, the word OXIDE has
reversed left-to-right, while the word WOW has not.

The reason of course is that for each kind of rotation, one of the two words has a
particular kind of symmetry, while the other does not. The concept of symmetry is
highly intuitive, but it is important for us nonetheless to define it precisely. An
important mathematical way to define symmetry is as follows: a symmetry is an
invariance under a transformation.

A transformation is a precisely-defined change, while an invariance is a precisely-
defined quantity that remains the same. And so a symmetry is when there is
something that stays the same while some other thing is changed in a particular way.
And so for our example of the word ‘OXIDE,’ the two-dimensional shape of the
word remains the same when it is rotated 180° through a horizontal axis passing

Figure 10.1. Left: the images of object reflected in a mirror appear in the same left/right/top/bottom
orientation as they do in real life. Right: by ‘mirror image,’ we usually mean the image in the mirror once
we have rotated it (about a vertical axis) to face the mirror. It is our act of rotation, not the mirror, that reverses
left and right.
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through its center. Thus, ‘the two-dimensional shape of the word’ is the invariance,
while ‘rotate the word 180° through a horizontal axis passing through its center’ is
the transformation. The word ‘WOW,’ of course, has a similar kind of symmetry.
But the appropriate transformation is instead ‘rotate the word 180° through a
vertical axis passing through its center.’

Figure 10.2. We can instead rotate the object about a horizontal axis to face the mirror. In this case, left and
right are not reversed, while top and bottom are.

Figure 10.3. Top: the sheet of paper undergoes a rotation about a horizontal axis through the paper. The word
OXIDE is invariant under this transformation, but the word WOW is not. Bottom: the sheet of paper
undergoes a rotation about a vertical axis through the paper. The word WOW is invariant under this
transformation, but the word OXIDE is not.
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10.2 Symmetry in physics
If all physical laws can be distilled down to a few simple rules, what are they? When I
say ‘simple,’ I mean simple when expressed in the appropriate mathematical
language—a language that may be as yet unknown, and almost certainly difficult
to learn. The search for the answer to this basic question has been one of the primary
concerns of theoretical physics over the past 100 years.

And the notion of symmetry—invariance under a transformation—plays a crucial
role. It has been known for centuries that there are conserved physical quantities in
nature—calculable quantities that stay the same as other measurable quantities
change in complex ways. Two important examples are momentum and energy. The
conservation of momentum as a principle was at least partially understood even
before Isaac Newton; the conservation of energy was established as a principle by
the mid 1800s, and hinted at much earlier.

And so the law of conservation of energy and the law of conservation of
momentum are two examples of eight known conservation laws. Each conservation
law specifies a conserved quantity that can be calculated exactly. And even as other
measured quantities (velocity, position, acceleration, etc) change with time in
complex ways, the conserved quantity stays the same. These conservation laws
are some of the most powerful tools available to a physicist when she applies
physical principles to the real world.

If one thinks of a conservation law as a statement that a particular quantity stays
the same as everything else changes, it is not too difficult to see that this idea seems
related in some way to the concept of symmetry. A symmetry is, after all, an
invariance (something that stays the same) under a particular transformation
(something that changes).

The two concepts do seem similar, but they are clearly not the same. For one
thing, a symmetry involves a particular transformation (change), while a conserva-
tion law involves a quantity that stays the same even as all other quantities change.

But despite this difference, symmetries and conservation laws are intimately related,
a fact first clearly established by the German mathematician Emmy Noether (figure
10.4) in 1915 (published in 1918). She proved what is now known as Noether’s First
Theorem, which states that for every conserved quantity, there is an associated symmetry.

This means, for example, that if the quantity energy is conserved for all physical
laws, then there must be some symmetry that all of those physical laws share.
Furthermore, she showed how to determine precisely what symmetry is associated
with each conservation law. For the example of the conservation of energy, the
symmetry is this: the very laws of physics themselves are invariant (remain the same)
under the transformation of a translation in time.

Another way to say this is that as time passes, the laws of physics themselves do
not change. The inevitable result of this symmetry is that a particular quantity (the
total energy of a system) is conserved. The reason then, that all of our physical laws
seem to conserve energy, is that they all share this basic symmetry.

Two other important cases are momentum and angular momentum. Both are
conserved quantities, and each is associatedwith a different symmetry. The conservation
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ofmomentumarises because—so it appears—the lawsofphysics donot change fromone
place to another. Angular momentum, on the other hand, is conserved because the laws
of physics do not depend on what direction one is pointed in space.

What if, for example, one proposed a physical law that did change in some way as
time passed? Well, then that law would violate the conservation of energy. And so
the fact that, in practice, the conservation of energy works—it seems to hold up to
careful measurement in all circumstances—is evidence that nature itself does have
the particular symmetry of invariance under a translation in time.

Whatever the basic rules at work that nature uses, it seems that they do not
change as time passes, or from one place to another, or when pointing in different
directions. If they did, then we would not observe energy, momentum and angular
momentum to be conserved quantities.

When we say that physical laws have symmetries such as invariance under
translations in space and time, we are making claims about Nature. But how do we
test whether or not these claims are true? Noether’s First theorem shows us the way.
The conserved quantities associated with these symmetries are measurable, and so
we can measure them in experiments that test whether or not they are conserved. As
we build more and more experimental evidence for a particular conservation law,
Noether’s First theorem demonstrates that we also provide evidence for that
particular symmetry of Nature.

10.2.1 Symmetry and mirrors, again

I have described two particular types of symmetry that seem to be related to mirrors:
rotate a flat object placed parallel to a mirror half way about either a horizontal or
vertical axis, and it looks the same as before it was rotated. And this means that the
reflection in a mirror of the rotated surface also looks the same. But we have also

Figure 10.4. Emmy Noether (1882–1935) first established the mathematical connection between conservation
laws and symmetry.
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seen that this kind of symmetry really has nothing to do with mirrors, per se. The
transformation is our act of rotation such that the object that was facing us, now
faces the mirror. And so ‘mirror symmetry’ is a misleading term for invariance
under such a transformation. But clearly, a mirror does perform some kind of
transformation. So what is it? The answer is obvious only if we consider three-
dimensional objects.

We have seen that up, down, left and right are preserved when looking in a
mirror. The reflection in the mirror of an object to the left of us also appears to the
left, and the same is true for up and down. But what about the other dimension—
distance? This is where the reflection in a mirror makes a real transformation.
Consider figure 10.5; objects closest to the camera are the most distant in the
reflection. This is a real transformation of nearer and farther; notice that the nearest
example to the camera of Castor canadensis is in focus, but its reflection is not. That
is because I set the camera focus on the nearby rodent, while its reflection is the most
distant part of the picture.

And so, by a mirror transformation we really mean this: a mirror transformation is
a reflection about a plane, rather than a half rotation around a line. Thus mirror
symmetry is invariance under this definition of a mirror transformation.

This gives us another way of thinking about the symmetry of the word WOW.
Instead of transforming the word by rotating it about a vertical line through its
center, we can accomplish the same end result by putting a vertical plane through the
center of the ‘O’ and reflecting it about that plane. So WOW does have mirror
symmetry—but it is not the mirror of figure 10.3.

Figure 10.5. The image in a mirror is a transformation of nearer and farther. If an object is 1 m in front of a
mirror, its image is 1 m behind the mirror.
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We can easily extend this kind of mirror symmetry to three-dimensional objects.
Place an imaginary vertical plane through the center of a three-dimensional object.
If what is on the right side of the plane is exactly the same as the reflection in the
plane of the left side, then we say the object has bilateral symmetry.

Mirror transformations are even more important when we consider motion.
Imagine that I stand in front of a mirror and a bee flies from my left shoulder to the
mirrorandback, then landingonmyright shoulder.And so thebee started fromthe left
side,moving both towards the right and also further away.When it reached themirror,
it then—while still moving toward the right—moved closer and closer to then land on
my right shoulder. But what about the bee’s reflection in the mirror? The reflection of
the bee alsomoved from left to right. But the reflection first moved closer and closer to
me, and then, after reaching the mirror, moved farther and farther away.

We can consider an even more-dramatic example of a mirror transformation. Let
us imagine that the bee instead flies in a horizontal circle in front of the mirror, and
that as seen from above, it travels clockwise around its circular path. Clearly, the
bee’s reflection in the mirror also travels in a circular path. But as seen from the same
vantage point, the bee’s reflection in the mirror moves counterclockwise around its
circular path. And so a mirror transformation turns clockwise motion into counter-
clockwise motion.

10.2.2 Mirror symmetry and P-invariance

The relation between the motion of a particle and the motion of its reflection in a
mirror is called by physicists a P transformation, and it points to another symmetry
and associated conservation law. Symmetry under a P transformation is called P
invariance, and it leads to what physicists call the conservation of parity (Sachs 1987
section 2.3). As is the case with the symmetries associated with the conservation of
energy, momentum and angular momentum, P invariance applies not to the motions
of particles themselves, but rather to the physical laws that describe those motions.

Let us now reconsider the bee flying in a clockwise motion in front of the mirror.
Let us pretend to use Newton’s laws of motion to analyze all of the forces acting on
the bee in order to make it fly in its circular path. To say that Newton’s laws obey the
conservation of parity means that we can apply those same laws to the bee’s
reflection, and the reflected motion of the bee will be accurately predicted.

Todo this, however,wemust also apply the P transformation to the forces acting on
the bee, and to its initial motion.Whenwe do this, Newton’s laws do in fact predict the
reflectedmotion of the bee. This particular example is simple, for if the bee is traveling
in aperfect circle at a constant speed, the forces acting on the beemust addup to a force
of constant magnitude that always points toward the center of the circular motion.
Clearly, if the force acting on the bee is toward the center of the circular path, so too is
the reflection of that force in the mirror; the reflection of the force on the bee points
toward the center of the reflection of the bee’s circular path.

The conservation of paritymeans that, regarding fundamental physical law, there is
nothing special about clockwise versus counterclockwise. It is all simply your point of
view. This seems rather obvious; whether a clock runs clockwise or counterclockwise,
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for example, is only a matter of from which side one views it. A clock hanging on
the wall runs clockwise when seen from the vantage point intended—in front of the
clock’s face. But go around the wall to the room on the other side and use your
superpower x-ray vision to view the secondhandof the clock through thewall, and you
will see it move counterclockwise instead.

Considerations of conservation of parity have played an important role in
physics, giving meaningful clues to the nature of fundamental physical law. And
even though conservation of parity seems, on the surface, to be an obvious truism, it
is not always true. We consider this odd fact further in section 10.4.

10.3 Symmetry in art
Physicists have their own operational definition of symmetry, but the word is often
used by artists in a somewhat different way—usually to specifically signify what we
have here called mirror symmetry (for two-dimensional works) or bilateral symme-
try (for three-dimensional works). But there are other forms of symmetry evident in
two-dimensional art as well that can be described as an invariance under a
transformation. I will first describe some examples of this formal symmetry, and
then describe the related idea of balance.

10.3.1 Formal symmetry in art

Although photography—an example of two-dimensional art—is the main concern
of this book, no discussion of symmetry can omit the example of a clay vase formed
on a potter’s wheel. Azimuthal symmetry is defined according to a particular axis in
space, called the symmetry axis. If an object has azimuthal symmetry it means that
one can rotate the object about the symmetry axis by any angle, and it still looks the
same. For the potter’s vase, it is the very act of forming the wet clay on a spinning
platform that imposes this symmetry.

There are many examples of mirror symmetry in two-dimensional art; figure 10.6
shows a couple of my own. The grid in the background of the image on the left has a
mirror symmetry when reflected about a vertical plane cutting through the center.
Note that the same is not true for a reflection about any horizontal plane that cuts
through the image, because of the uneven barrel distortion. And yet, there is still a
sense that it has this type of mirror symmetry as well. Symmetry is so ingrained into
our consciousness, that we ‘fill in’ the missing pieces with our imagination in order to
give it symmetry. And so if one reflects the background of the image about a
horizontal plane that cuts through the lowest horizontal line in in the grid, we can
easily imagine the symmetrical form that would be created. I believe that part of the
power of this particular image is that we see that cut-off part of the picture in our
minds, even though it is not really there.

This basic idea that symmetrical forms can be implied or suggested is very
important for art. It is one example of how a picture can evoke images that are not
even in the picture. A picture is not only worth a thousand words, it is worth a
thousand pictures.
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There are many forms of symmetry evident in the right-hand image in figure 10.6.
First, it is made of four parts of two different types, and they are arranged
symmetrically. We can describe this particular symmetry in a couple of ways.
Clearly, we could rotate the whole thing in its own plane by 180°, and we would still
have the same arrangement of its four parts. But this particular symmetry is better
captured by noting that it has mirror symmetry about a plane that cuts through the
image across either diagonal.

The grid-like pattern in the origami-folded paper on the upper right and lower left
clearly have many types of mirror symmetry, but what about the other two pieces?
These patterns are best described by what is often called N-fold symmetry. Rotate (in
its own plane) the pattern on the upper left by one fourth of a complete circle, and it
is still the same pattern. This means we can rotate it four times to come back to its
original orientation, and each of those four rotations produces the same shape. This
is called four-fold symmetry, and by that same measure, it is clear that the figure on
the lower right has six-fold symmetry.

There are many connections between the forms found in nature and those used by
the artist, a fact well documented in Nathan Cabot Hale’s fascinating study
Abstraction in Art and Nature (Hale 1993). N-fold and bilateral symmetries are
particularly common in European art of the middle ages—perhaps because those
same symmetries are so often found in nature. And so a rose window on a medieval
cathedral (see for example Duby 1992, cover) is like the petals of a flower. And the
bilateral symmetry of the arrangement of figures in a 13th-century liturgical
illustration (see for example Duby 1992, pp 31–2) is shared with the arrangement
of appendages on vertebrates such as hummingbirds, whales and beavers.

10.3.2 Balance in two-dimensional art

Although it still finds its home in architecture, formal symmetry is much less
common in the two-dimensional art of the Renaissance and later. I believe there is a

Figure 10.6. Left: Self Portrait with Grid #2. John Beaver, 2004. The background grid pattern in this
photograph exhibits several types of symmetries. Right: Celebration. John Beaver, 2015 (folding by Elizabeth
Breese and John Beaver). The overall arrangement of the pieces has mirror symmetry about both diagonals.
The upper-left piece has four-fold symmetry while the piece on the lower right has six-fold symmetry.
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rather obvious reason that art evolved away from formal symmetry as it became
more self aware: since any particular formal symmetry can be described by a set of
simple mathematical rules of transformation and invariance, then where does the art
come in? In more recent two-dimensional art, obvious formal symmetries most often
appear as the exception that proves the rule. Its obvious presence in a contemporary
work is intentional and glaring, and begs for a specific interpretation.

But there is a related concept that is still very strong—that of balance (Preble and
Preble 1994 pp 92–3). The word balance is used in many ways by artists, but a picture
has visual balance if it appears to be in a sort of equilibrium of weight (Barrett 2011).
The idea of visual weight is a subjective combination of perceived size and weight that
makes some forms in the picture look—well, heavier—than others. There is no
operationally-defined mathematical way to capture this concept. One must instead
have a bit of faith that it will be knownwhen it is seen.And so the picture is said to have
visual balance if the weights of its elements appear to be in a sort of almost
gravitational equilibrium. It is almost as if one asks, ‘if a shaft and frictionless bearing
were passed through its center, would the painting want to twist one way or the other?’

There is a physical analogue to this. The center of mass of some object is the
average location of its parts—except that one must calculate the average by counting
higher-mass parts more in the average than lower-mass parts. For a two-dimen-
sional object, if one allows it to freely rotate about a shaft placed through it, then it
will want to rotate such that its center of mass is below that pivot point. And so if
one places the rotating shaft directly through the object’s center of mass, it will have
no tendency to rotate either one way or the other.

An important case is when the center of mass of the object is below the
geometrical center. From one point of view, it is unbalanced; the object is weighted
below-center. But there is something different about this type of unbalance, because
clearly the object would have no tendency to pivot either one way or the other if the
pivot point is placed through its center. And if one did give it a push, it would desire
to return to its original position. This is called by physicists a stable equilibrium, and
something like it is probably also a part of the artists’ concept of visual balance.

If on the other hand the object’s center of mass is above a pivot point at its
geographical center, then it might possibly be in equilibrium—so long as the center
of mass is exactly above center. But all it takes is a gentle nudge from a fly sneezing
in the Andromeda Galaxy, and it will flip one way or the other. This is also called an
equilibrium, but it is instead an unstable equilibrium.

It may be that one could gather these physicists’ ideas of center of mass and stable
and unstable equilibrium and produce some kind of detailed mathematical model of
the artists’ idea of visual balance. But I doubt it, and I am skeptical that it would be
worth the bother to try. The artist knows it when they see it, whether or not it can be
defined in operational terms.

10.4 Asymmetry and broken symmetry
If symmetry is so important, then what about its absence? There are two important
types of non-symmetry:
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1. Asymmetry: one can identify no type of symmetry, no matter how hard one
tries. A perfect asymmetry implies that even if small features are ignored,
there is still no identifiable symmetry.

2. Broken symmetry: there would be an obvious symmetry, if it were not for
some particular small detail.

And so an amoeba is asymmetrical, as is its larger cousin, The Blob. And the small
mole on Marilyn Monroe’s left cheek breaks the bilateral symmetry of her face.

Broken symmetries have played an important role in the search for the most
fundamental physical laws. A good example is the mirror symmetry of P invariance,
which seems so obvious, and which leads to the conservation of parity. But in 1956 it
was discovered, surprisingly, that a certain physical process (called the weak
interaction) sometimes violates the conservation of parity (Sachs 1987 p xi).

And this is not the only case. Two other well-known almost-symmetries are seen
to be sometimes broken—namely the reversal of time (called T invariance), and the
inversion of electric charge (called C invariance). And so these three most-of-the-
time symmetries—C, P and T invariance—are broken in certain cases. And this
means that the conservation laws associated with these symmetries are, in those
same special cases, violated.

The gradual recognition by physicists of these broken symmetries led to much
reconsideration of the so-called ‘standard model,’ the gathering together of the
fundamental physical laws as currently understood. And it was discovered that these
broken symmetries lead to a different and more subtle symmetry that (so far) does
appear to hold as a fundamental property of nature. And so it seems that a
particular combination of C, P and T invariance does hold, even though the
symmetries of C, P and T are all broken when looked at separately from each
other. This new symmetry is called CPT invariance, and so far although many
questions remain, it does seem to be one of the fundamental symmetries of nature.

But there is another, even more important sense to the physicist’s idea of a broken
symmetry. CPT invariance is an example of a symmetry in nature that is deeper
(and apparently more accurate) than the imperfect, sometimes-broken symmetries of
C, P or T invariance alone. But physicists began to realize in the 1960s that
symmetry at the level of a theory can even describe a physical reality that lacks that
symmetry (Weinberg 1992 chapter 8). This may seem to be a contradiction, but it is
not, and physicists call it spontaneous symmetry breaking. For it seems that some of
the laws of physics are such—at their most fundamental level—that the theory itself
has a simple but deep symmetry. When that theory is applied in practice to the real
world, the symmetry is broken, and so produces the complex often-asymmetrical
reality we experience. The elementary particle physicist Steven Weinberg (Weinberg
1992 p 195) described it like this:

It is principles of symmetry that give our theories much of their beauty. That is
why it was so exciting when elementary particle physicists started to think about
spontaneous symmetry breaking in the early 1960s. It suddenly came home to us
that there is much more symmetry in the laws of nature than one would guess
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merely by looking at the properties of elementaryparticles. Broken symmetry is a
very Platonic notion: the reality we observe in our laboratories is only an
imperfect reflection of a deeper and more beautiful reality, the reality of the
equations that display all the symmetries of the theory.

For the artist, the breaking of an obvious formal symmetry in a picture can be a
powerful tool. It evokes, raising questions rather than giving simple answers. Some
of my own photography makes use of simple lenses, and their pronounced
aberrations impose a simple radial symmetry on the image. The seated subject in
figure 10.7 (left side) breaks that symmetry, and our expectations of the symmetries
of a grid play off its here-distorted depiction, calling attention to the cross-like form
to the left of the subject. The image on the right side of figure 10.7 has an even more
pronounced radial symmetry; it was exposed by shining a laser through a smear of
red blood cells (kindly donated by a colleague). The symmetry of the diffraction
pattern is broken by the shadow forms, and the expected bilateral symmetry of the
recognizable eyeglasses is broken by their distorted shape.
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Figure 10.7. Left: Self Portrait with Grid #1. John Beaver, 2004. Compare this to the left-hand image in figure
10.6. Some of the symmetries present in that image are implied here, partly because of our expectations
regarding the grid-like structure. But here those symmetries are broken. Right: Revolution of the Tear Duct,
John Beaver, 2018. The background illumination has a very simplistic radial symmetry that contrasts with the
asymmetry of the shadow forms, and the (literally) broken symmetry of the deformed eyeglasses.
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Chapter 11

Two-dimensional (2D) design

A common mistake of the beginning photographer is to take the ‘capture the instant’
aspect of photography too literally. A picture is not really a capture of a moment of
your visual experience. Rather, it is a flat surface with marks on it. And they had
better be interesting marks, or no one will want to look at your picture.

I find it useful to think of what I call a visual event—a moment of your experience
in seeing the world. This can be very powerful, and it is a natural impulse to want to
capture that with a camera. But the experience of looking at a photograph is different
from the photographer’s experience of the visual event that triggered its taking.

You were there before and after the moment. You experienced motion directly, of
either yourself or the subject, or both. You had cues of depth not directly connected
to the two-dimensional (2D) image you literally saw. This is not to mention all of the
non-visual sensory experience, and the context of your particular state of mind when
it happened.

The viewer of your picture has none of this; they have only your picture. If you
want them to have an experience like the one you had when you took the picture,
you will have to trick them into it. And more commonly, you may want them to
have a completely different experience, and there is nothing wrong with that.

Thus, there is an important sense in which every photograph is abstract, just as is
every painting. In the end, the artist uses marks on a flat surface to cause things to
happen in the mind of the person looking at their picture. But instead of paint
applied directly by hand, the photographer uses straight-line rays of light coming
from the 3D world and redirected by lenses, in an ordered fashion, onto some light-
sensitive material.

This is not to say that a photograph is, in essence, the same as a painting. That a
photograph is taken at a particular moment, from light coming from the real world
often beyond the artist’s control, can be a fact that is of the utmost importance. The
knowledge of this inevitably changes the way one looks at a photograph, and thus it
changes what one sees.
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Imagine a parallel universe in which Robert Capa had never taken his famous
photograph Death of a Loyalist Soldier, and that instead the painter Chuck Close
had produced a photorealist painting that happened to look exactly like it in every
detail. Would it be the same picture? We explore these issues in more detail in
volume 3 of The Physics and Art of Photography. Here we discuss some of the
properties of a picture that relate only to the formal arrangement of its parts.

11.1 Elements of 2D design
2D design is the intentional arrangements of formal elements in a picture. A
picture’s 2D design may have a deep connection to its content; the interplay between
the two may be much of the point. But the design elements can still be considered
separately from that content.

First we should agree upon some terminology. There are many different but
overlapping ways to choose such a terminology (see for example Ocvirk et al 2009,
Preble and Preble 1994, Barrett 2011, Brainard 1991), but I list below terms as I will
use them in this chapter. And so we can read a picture, or a part of it, as having some
combination of these fundamental elements:

Point: A dot, of no particular size or shape.
Line: A line, either curving or straight. This could be simply an edge of a shape,
and it may not necessarily be continuous.
Shape: A 2D shape in the geometrical sense, such as a circle or triangle.
Form: A representation of a 3D object, such as a ball or a cone. So a pyramid is
a form and a triangle is a shape.
Size: The physical dimensions of a form, line or shape.
Value: The darkness or lightness of a mark.
Texture: The visual effect of a mark. Is it rough or smooth, furry or glassy?
Color: The hue and saturation of a mark.
Space: The space taken up by objects is called positive space, while the space in
between objects is called negative space.
Depth: The perceived distance from the observer, often separated into fore-
ground, background, and, sometimes, middle ground.

11.2 Figure and ground
A particular form is figure. while all that is not that form is ground. There is a formal
sense to this, even when the picture does not represent anything identifiable in the
world. So, for example, consider a red triangle on a blue background. Note the
ground in ‘background.’ It is difficult to get around the notion that we seem to see a
thing in contrast to all that is not that thing.

It is also well known that one person’s figure can be another’s ground, and vice
versa. There are famous optical illusions whereby the figure and ground reverse,
depending on the state of mind at the particular moment one sees it. A red circle on a
green background can also be a green square with a red hole in it. The most famous
example is the ‘faces-vase’ illusion made popular by the Danish psychologist (Edgar
Rubin).
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In representational images, and especially in photography, depth is often used to
distinguish between figure and ground. Thus a figure can be in front of the
background and behind the foreground, although a given photograph may not
have all three of these elements. Nevertheless, a common problem in photography is
to make a clear distinction between figure, foreground and background. There are
many tricks for this, but one we will talk about in detail in chapter 12, section 12.3 is
the use of selective focus. There are many other depth cues as well, and we discuss
some of them in section 11.7.

11.3 Lines
Apparently, our brains will often see a line even when it is not there in any literal
sense. Thus, for example, we often speak of a ‘dotted line,’ which if one thinks about
it is something of a contradiction in terms. It is, after all, just a bunch of dots. But if
the dots ‘lie along a line,’ then we see a line, that just so happens to be made of dots.
Furthermore a form, such as an arm, may create what one sees as a line in a
photograph or painting. Even the edges of a series of unconnected forms can form a
line in an image, and the eye/brain will likely see that line (perhaps unconsciously)
whether or not that is the artist’s intent.

Lines are important because they connect, and thus establish a relationship
between, different elements in a picture. Furthermore, our eyes tend to follow them
when we look at a picture. Where, then, do the lines lead? Do they lead the eye off
the picture entirely (probably an unwise choice), or do they lead from one thing to
another in a way that establishes important connections between different forms?
And finally, lines can form boundaries, signaling our minds to attach separate
meaning to different forms.

Hale (1993) discusses the meaning of line in art, and how the Impressionists
recognized that line is an abstract concept that does not really exist in nature. It is,
rather, something we impose upon the natural world.

The history of astronomy provides an interesting historical example of the power
of lines. In the late 19th and early 20th centuries, the planet Mars was the subject of
much interest to astronomers. Photography had not yet advanced enough to be
useful under the dire conditions of recording the telescopic view of the tiny planet,
and so it was still the reign of the visual observer.

As seen through a telescope, Mars has barely-discernible surface features that
appear with very low contrast. Furthermore, the image constantly wavers and
shimmers, going repeatedly in and out of focus, due to distortions caused by Earth’s
atmosphere. Astronomers of the time squinted for hours attempting to map out the
most subtle of details.

They saw far more than what was actually there, a fact later proved by close-up
photographs from orbiting spacecraft. In particular, many astronomers saw an
intricate network of lines on the red planet. This fit in with, and added to, an idea
that was popular at the time—that Mars had once been inhabited by an ancient
civilization, now perished, that had established a grand network of irrigation canals
to bring water from the poles to the more temperate regions.
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Figure 11.1 shows an early 20th century drawing of Mars made by the
astronomer Percival Lowell, along with a late 20th century image from the
Hubble space telescope.

11.4 Geometric shapes
Just as we easily see lines, we also naturally see geometric shapes, especially simple
ones such as circles, triangles and rectangles. Often a picture can be broken up into a
series of geometric shapes independently of the forms they may represent in the
world. These shapes have their own formal qualities in addition to the subject of the
picture.

11.5 Value and contrast
Marks (lines, shapes, points, etc) may be distinguished by a difference in value from
the surroundings. And so a line may be represented by a lower value (darker) linear
mark on a higher value (brighter) background. The term contrast refers to the
difference in value between a mark and its surroundings. A mark of high contrast
shows a large difference in value between it and its surroundings, while a mark of
very low contrast has a value barely distinguishable from its surroundings.

11.6 Hue and saturation
Hue (for example, is it red or green?) does not tell the whole story of the color of a
mark. Even when one allows for differences in value along with hue, there is more to
say. That is, one can have two marks that are the same hue and the same value, but
have different levels of saturation. A pure color has the highest possible saturation.
For the case of pigments, one can lower the saturation by adding grey. If the right

Figure 11.1. On the left is a drawing of Mars made in the early 20th century by Percival Lowell; on the right is
a late 20th-century photograph of Mars from the Hubble Space Telescope (NASA, J. Bell (Cornell U.) and M.
Wolff (SSI)).
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shade of grey is chosen, one then obtains a color of the same hue and value, but with
‘less color,’ and this is what we mean by less saturation.

Elements of a photograph can be distinguished by hue and saturation, as well as
value and contrast. And one sees a figure differently if it is against a ground of
contrasting hue as opposed to adjacent hues. Furthermore, strongly saturated
colors stand in stark contrast to colors of low saturation, even if of the same hue.
See figure 11.2.

11.7 Depth cues
A sense of depth can be added to a picture by many different cues. Here are just a
few:

• Atmospheric perspective, as discussed in chapter 3, section 3.5. Because of
scattering of haze in the atmosphere, more distant forms appear at lower
contrast and saturation, and may have a more bluish hue.

• The perspective of converging lines. Place in your photograph railroad tracks
converging into the distance, and a sense of depth is ensured. Your photo-
graph may be mocked as cliché but at least it won’t appear ‘flat.’ See the left-
hand picture in figure 11.3.

• Forms may appear more or less distant depending on their vertical placement
in the picture. This is especially true for pictures of landscapes. Objects closer
to the top of the picture usually appear as more distant, while those closer to
the bottom of the picture seem to be closer. If there is a horizon line, however,
then the opposite is true for the parts of the picture that are above the
horizon. See figure 2.4 for an example.

Figure 11.2. Left: Road to Peace, John Beaver 2007. Most of the features in this picture are delineated by low
contrast marks. The exceptions are the figure at the center and the areas of low-value background peeking
through the trees. Right: Waiting for the Jaguar, John Beaver 2018. The forms in this photogram are set off
from the background with high contrast in both value and hue.
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• Nearby objects may overlap more-distant objects, but not the reverse. This
may seem like an obvious statement, but intentionally allowing figures to
overlap is one way of showing depth. In the picture on the right side of figure
11.3, the sense of depth arises almost entirely from the multiple overlapping
of the apples, branches and leaves.

11.8 Unity and repetition
The way design elements relate to each other is an important part of composition. A
set of diagonal lines made by one set of forms can be echoed in another form in a
different part of the picture, implicitly linking the two. An image has unity if all of
the formal elements of design are in harmony with each other.

One way to establish unity is with repetition. When one formal element is repeated
in a different context elsewhere in the picture it is a bit like a canon in music; one
melodic line is altered in some simple way. The altered line is then played at the same
time and the two (or more) lines harmonize with each other. Elements in a
photograph can do this too. As an example see figure 11.4; diagonal lines are
repeated on different scales in the backs of the chairs, the floor decking, the pattern
on the shirt and, on a very fine scale, in the hair of the figure.

One can also look for unity in the color palette, something we will consider more
fully in volume 2 of The Physics and Art of Photography. And one can attribute
other design elements to the picture taken as a whole. Look again at figure 11.4. The
placement of the figure makes the picture rather top-heavy, which gives it a sense of
uneasiness. The planking in the bottom two frames seems to form ‘supports’ for the
figure at the top. But the planks are skewed at odd angles, and so it looks as though
the whole structure would fall apart. This effect is partly balanced by, and in
contrast to, the very stable support of the chairs directly supporting the figure.

Like other aspects of 2D design, there can be too much of a good thing. Many
bad photographs lack unity, but the presence of perfect unity does not, by itself,

Figure 11.3. Left: Chair, John Beaver 2003. The converging lines formed by the edges of the shiny tarp give a
sense of depth to the photograph. Right: Apples, John Beaver 2007. The sense of depth arises from the
overlapping of elements in the image.
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make a good picture. In fact, one may intentionally subvert the unity of a picture to
add tension to a photograph.

And so in figure 11.4, there is a second kind of repetition in the uniform
rectangular arrangement of the four individual image transfers themselves. This is
a very stable arrangement, much at odds with the unstable-looking pattern of
skewed lines. It does, however, harmonize with the relaxed expression of the figure.
And so one might say this photograph, taken as a whole, lacks unity. Some elements
relate to an angular and unstable, almost vibrating picture, while other design
elements are of its opposite, with a sense of regularity, peace and stability.

But there is another way to look at it. Perhaps rather than a lack of unity, this
particular photograph has two different kinds of unity. It is saying two things at once,
and these two ideas play off each other to make a more interesting photograph that
evokes conflicting emotions in the viewer. That complexity of interpretation does
not necessarily mean that it is a good picture. The point is that one can intentionally
subvert the unity of a photograph; but to subvert something, one must understand it.

11.9 Rhythm
A regular, repeated pattern that moves from one part of a picture to another is called
rhythm. It may be simple and regular, such as the boards of a fence or a pattern of
bricks on a wall. But rhythm may also be more organic and flowing, like a pattern of

Figure 11.4. Self portrait, John Beaver 2005. The diagonal lines, repeated in the backs of the chairs, the
decking, the rail of the deck, and the pattern on the shirt, and the hair of the figure, provides a sense of unity to
the photograph. But the regular arrangement of four photographs provides a different kind of unity that
contrasts with the diagonal lines, and this adds tension.
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choppy waves in the ocean. Or instead rhythm can be progressive, showing a
migration, not necessarily in a straight line, of forms from one place to another. See
figure 11.5 for examples of all three.

11.10 Framing
At some point, one must decide what is part of the picture and what is not. And the
overall shape of the picture can have a large impact. Is it a long, skinny rectangle or
square? If rectangular, is it oriented vertically (portrait) or horizontally (landscape)?

The inclusion, or not, of a single element can drastically affect the composition of
a picture. Does that tree on the right side have space to its right, and so looks like a
vertical form in the picture? Or instead does the edge of the picture cut through the
middle of the tree, and so the tree acts instead as part of a frame? See figure 11.6.

11.11 Composition: some useful rules of thumb
Are there rules of design that should not be broken? Probably no one would make
such a strong claim. Many rules, however, do have reasons, and it is probably wise

Figure 11.5. Some examples of rhythm. Left: the rails of the deck and the planks of the floor have regular
rhythm. Center: the lines made by the whitecaps have flowing rhythm. Right: the birds show progressive rhythm.
They are separate birds, but they look like multiple images of the same bird, moving from lower-left to upper-
right, as time passed.

Figure 11.6. Celeste with Cat, John Beaver 2008. The tree on the right side of the picture can either be a vertical
form or it can be part of a frame, depending on how the photograph is cropped. The example on the right is
simpler, with a clear center of interest. In the more mysterious version on the left, the eye sometimes wanders
away from the center of interest, to travel down the path at the right edge of the frame. Which is better?
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to understand them. It is often said that a rule cannot be successfully broken until it
is first understood.

I would not argue with that, but I would put it differently. There are fundamental
principles—facts if you will, as best we understand them. If you do such and such in
your picture, then particular things are likely to happen when someone looks at it.
Do you want those things to happen or not? Thus we are talking not about rules
from an authority, and we either obey or disobey them. Rather, we are trying to
understand the consequences of our actions so we can act accordingly.

Note that this list is neither exhaustive nor definitive. Some would include others,
but not include some of these, or use different names for similar ideas.

11.11.1 The rule of thirds

A common way to make a boring picture is to either center a single form, or to bisect
the frame with forms either vertically or horizontally (or both). Place a flat horizon
line right in the middle of a picture where the only strong forms are the bright sky
and the dark foreground, and one likely has a dull picture indeed. The rule of thirds
proposes dividing the frame into thirds, both horizontally and vertically, with
imaginary lines. Then place the forms at the intersections of these lines, thus
avoiding bisecting the image.

11.11.2 The rule of odds

An odd number of similar forms in an image is easier to compose than an even
number of the same forms. This is because the two outermost forms provide a frame
for the symmetric arrangement of inner forms. Put two artichokes in a picture and
your brain says, ‘Which one do I look at? What am I supposed to do? What’s the
right answer?’ Put three artichokes and your brain sees it as one symmetrical form
comprised of three elements, and the outer two frame the one between.

11.11.3 The rule of space

For a form that is moving, leave some space in front of it. Otherwise, it will ‘move’
right out of the picture when one looks at it. If a figure is looking in a particular
direction, leave some space toward where they are looking. Otherwise the viewer will
follow the figure’s eyes right off the picture. Intentionally violating this rule adds an
element of tension (see the right-hand side of figure 9.14).

11.11.4 The rule of simplicity

Keep it simple. There should be a center of interest in the photograph, a subject if
you will. A corollary of this rule is that one should avoid clutter. A common reason
camera-phone pictures are often uninteresting is that the subject is lost in a confusing
background clutter. What is one supposed to look at?

But on the other hand, there are many successful images for which there is no
identifiable subject at any particular location in the picture. In the left-hand image in
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figure 11.7, it is the geometrical patterns within the textures, combined with larger
shapes arising from differences in hue and value, that form the composition.

11.11.5 The rule of diagonals

Diagonal lines are more interesting than horizontal lines. They add a dynamic
element to the picture; in extreme cases they are unsettling. See the right-hand image
in figure 11.7.

11.11.6 The rule of triangles

Triangular forms with the base at the bottom add a peaceful and stable quality to an
image, while inverted triangular forms can result in a sense of tension and uneasiness
in the viewer.

11.11.7 The golden rectangle and the rule of the golden mean

There is a particular proportion of a rectangle that has held fascination for many, for
many centuries. The ratio of the lengths of the sides of the golden rectangle are such
that, if one sections off a square, the remaining section forms a rectangle of the same
proportions. See figure 11.8. The small rectangle has the same proportions as the
larger rectangle it has been sectioned from by the square.

With a little algebra (see appendix B), it is easy to show that the golden ratio—the
ratio of the sides of the golden rectangle—must be approximately 1:1.618.

The mathematical elegance of the golden rectangle has inspired some artists to
prefer over the rule of thirds, a rule of the golden mean. Instead of thirds, we split
up the picture plane into segments of 3/8 and 5/8, which approximates the golden
ratio ( = ≈: 1.67 1.6185

8
3
8

). The portion of 5
8
itself, compared to the whole, also

approximates the golden ratio: = ≈1: 1.60 1.6185
8

. Since one of the purposes of the
rule of thirds is to avoid bisecting the image, the rule of the golden mean
accomplishes this as well, but with a different feel.

Figure 11.7. Left: Sumac (John Beaver, 2007). This photograph has no particular center of interest, and so it
violates the so-called rule of simplicity. The photograph is more challenging than those that have an obvious
center of interest. Right: The Ties that Bind (John Beaver, 2013). Diagonal lines move the viewer’s eye around
the picture more than do horizontal and vertical lines.
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11.12 Some examples of 2D design in photography
So let us look at a few specific examples from only the first few pages of The
Photography Book (Cooke and Kinneberg 2014). Here I point out only some of the
most obvious elements of composition in these photographs; it is a useful exercise to
search for additional examples.

11.12.1 The Lambeth Walk by Bill Brandt

Notice the converging lines of the apartment building, which provide a strong depth
cue. But also, they are echoed in the converging lines formed by the line of faces and
the row of arms And so one cannot look at the picture without connecting the girls
to the row of working-class tenement houses. This repeated form appears once again
in the dancer’s blouse.

11.12.2 Child with Toy Hand Grenade by Diane Arbus

Converging lines from the tree shadows provide depth. The two vertical forms of the
twin tree trunks are echoed, almost, in the single suspender strap, calling attention to
the fact that one strap is missing. The two sets of out-of-focus figures in the distance,
frame the picture. The placement of the subject does not obey the rule of thirds, but
neither is the picture bisected.

11.12.3 Marilyn Monroe, Hollywood by Eve Arnold

Forms in the chair back are echoed canonically in the figure. The rule of space is
used, giving her room to see in the direction her head is pointing (although her eyes
are pointed at us). The line of the arm leads you right to the central figure, as do the
triangular shape of the exposed foot and leg brace on the chair. The picture is framed
to allow a small amount of space beyond the backdrop, emphasizing the posed
nature of the event being photographed.

Figure 11.8. A golden rectangle has the dimensions such that, if one sections off a square, another golden
rectangle remains. And so in this example =

+
b
a

a
a b

. This leads to a ratio of approximately 1:1.618 between the
sides.
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11.12.4 Dovina with Elephants by Richard Avedon

The rule of threes is used to frame the central figure. Violating a standard ‘rule’ of
composition, the body and arms of the central figure bisect the picture plane with a
strident, high-contrast form. Symmetrical forms are also used; note the bend in the
front legs of the two elephants framing the figure. The line of the white scarf leads
right to the neck and head of the figure, which then leads they eye directly to the eye
of the elephant. The right-hand elephant is framed so as to add tension to the
picture, as it leads off the edge. The chain on the foot forms a line also leading the
eye off the picture. The central figure itself forms an inverted triangle, adding
instability to that form, but it is made stable by the anchors of the two elephants.

11.12.5 Andean Boy, Cuzco by Werner Bischof

One can see use of the rule of space, and an avoidance of bisecting the image
(although the rule of thirds is not exactly followed). The position of the legs turns the
figure into a stable triangle, and this form is echoed by the triangle made by the flute,
hands and back edge of the sack. Differences in contrast are used both to differ-
entiate between figure and ground (both foreground and background), and also to
add depth (through atmospheric perspective). The curved pattern of lines in the cloth
is repeated in the agricultural terraces in the background.
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IOP Concise Physics

The Physics and Art of Photography, Volume 1
Geometry and the nature of light

John Beaver

Chapter 12

The view camera

The lens of the most familiar type of camera has an axis that is centered on, and
perpendicular to, the plane of the light detector. One can adjust the distance between
the lens and the detector, in order to focus. But that is the only way in which the lens
and detector can move relative to each other. A view camera, on the other hand has
movements, adjustments, other than focus, for changing the relation between the lens
and the detector.

A common way to accomplish this is to dispense with the dark box altogether.
Instead, we mount the lens and detector separately, each on its own standard: a front
standard for the lens and a rear standard for the detector. If we mount both standards
separately on a common rail, this allows each to separately shift and swivel, while
allowing us to move the two standards closer or farther apart in order to focus. We
then use a flexible bellows to connect the two and keep out the light.

What I have described is a special type of view camera called a monorail, as
shown in figure 12.1. Although relatively heavy and bulky, it allows for the greatest
flexibility in movements. There are more compact versions, called field cameras or
technical cameras, that fold up for portability, the trade-off being somewhat greater
limitations in the movements (see figure 12.2).

The name ‘view camera’ comes not so much from the movements themselves, but
from the way focus is achieved. The lens is allowed to project onto a ground-glass
screen mounted in the rear standard. This screen can be examined directly from the
outside in order to compose and focus the image (see the right-hand image in figure
12.1). The screen is then replaced by the light detector, and the picture is taken.

Nearly all view cameras have removable lenses, so different focal lengths can be
used. Although some have used a single large shutter at the focal plane itself (right in
front of the film), most have the shutter mounted right on the lens. This means that
each lens has its own separate, built-in shutter, and also its own adjustable iris for
changing the focal ratio.

doi:10.1088/2053-2571/aae1b6ch12 12-1 ª Morgan & Claypool Publishers 2018
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Since the addition of mechanical movements requires a certain amount of physical
space to accomplish, a view camera is usually also a large-format camera: a camera
with a detector that is 4 inch by 5 inch or larger. Typical sizes are 4 × 5, 5 × 7 and
8 × 10; a single frame of 35mm film, on the other hand, is less than 1 inch by 1.5
inch. Cameras with detectors even larger than 8 × 10 are called ultra-large format1.

Figure 12.1. A monorail view camera that uses 4 × 5 inch sheet film. The lens is attached to a front standard
while the focus screen and film are mounted on a rear standard. Both are attached so they can slide along a rail,
and a flexible bellows keeps light out. This arrangement allows for standards that can accomplish a wide
variety of movements (section 12.1). The image to the right shows the ground-glass focus screen. On this
particular monorail the entire focus screen can rotate in order to accommodate both portrait and landscape
formats without needing to tilt the camera itself.

Figure 12.2. A vintage German-made Linhof Technika III technical camera, that uses 4 × 5 inch sheet film.
This particular example was originally made in 1950, but it has had some recent modifications. A technical
camera has many, but not all, of the same movements (left image) found on a monorail. Others can be ‘faked.’
But unlike a monorail, a technical camera folds up (right image) into a small box. A field camera (not shown) is
similar, but made of wood, somewhat bulkier but lighter and yet more rugged, and usually with more limited
movements than a technical camera.

1 Film formats with sizes in-between 35mm and 4 × 5 are called medium format.
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Since it is very difficult and expensive to make a digital detector even as large as 35
mm film, large format cameras almost always use traditional film, most typically in
the form of individual sheets (rather than rolls).

The sheets of film are most-commonly placed in a two-sided film holder, each side
with its own light-tight cover that can be removed once the holder is in the camera,
just before taking the picture. The film holders are loaded with film individually in
the darkroom. See figure 12.3 for some examples.

A large-format view camera with movements opens up new possibilities and
raises new issues:

• Since the picture must be composed on the view screen before the film is even
put in place, a view camera is impractical for photographing moving subjects.

• Since sheet film is used instead of roll film, each individual exposure can be
processed differently to better control for contrast.

• Since the view screen shows exactly what will be on the film (the screen is
removed and the film put in its place), one can very carefully control every
detail of the composition of the photograph.

• The camera movements allow one to alter the geometrical perspective of the
image. One can control what lines are parallel and what lines converge.

• The camera movements allow one to alter the orientation of the focal plane.
The plane of focus no longer must be parallel to the film. It can now be, for
example, at an angle stretching from the nearby left to the distant right.

• The elaborate setup and the careful focusing, arranging of movements and
composing ensures that one takes fewer photographs, but spends much more

Figure 12.3. Examples of film holders for different formats of sheet film. Clockwise from upper left (all sizes in
inches): ×3 41

4
1
4
film holder, with sheet film partially inserted; 4 × 5 holder with film loaded; dark-slide cover

for the 4 × 5 holder; 8 × 10 film holder with dark slide and sheet of film; a special ‘graphmatic’ ×2 31
4

1
4
holder

that can hold six sheets of film, with an internal mechanism to allow rapid shuffling from an exposed sheet to
the next unexposed sheet.
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time on each one. Thus use of a view camera emphasizes quality over
quantity.

• The larger format view cameras (8 × 10 for example) are so big and heavy
that one finds that the most interesting subjects are often within 20 feet of the
car.

12.1 Description of movements
A view camera with full movements allows for the following adjustments of both the
front and rear standard (except for rotation, which applies only to the back):

• Focus: This is the basic movement that most cameras possess, so ubiquitous
that is sometimes not called a movement at all. But for a view camera, focus
means that the distance between the front and rear standard can be changed.
On some view cameras the rear standard is fixed while the front standard can
move forward and back, on either a rail or a set of tracks. On others
(monorails especially), both standards can be moved independently of each
other. Sometimes the tripod mount can be moved independently as well. The
focus movement is usually limited in several ways:

○ The monorail or focus tracks are only physically so long. Many
monorail view cameras have rails that can be extended.

○ There is usually also a minimum distance at which one can physically
place the front and rear standard before their mechanisms touch each
other.

○ The bellows will only stretch so far, and will only compress so tightly.
For this reason many view cameras have interchangeable bellows, to
make it adaptable for both very short focus or very long focus lenses.

In addition, the other movements listed below both affect and are affected
by the focus range.

• Rise: The standard moves vertically upward.
• Fall: The standard moves vertically downward.
• Shift: The standard moves to the left (left shift) or right (right shift), as seen
from behind the camera facing the subject.

• Swing: The standard pivots about a vertical axis. As seen from above the
camera, a clockwise rotation is called right swing, while a counter-clockwise
rotation is called left swing. Some view cameras are not equipped with swing,
but in my opinion it don’t mean a thing if it ain’t got that swing.

• Tilt: The standard pivots about a horizontal axis. If the top of the standard is
tilted forward (toward the subject) it is called forward tilt. If the top of the
standard is tipped rearward, it is called backward tilt.

• Rotation: The view screen and film holder rotates so as to change the
orientation of the rectangular piece of film. Cameras that have this feature
are said to have a rotating back. In some cases, the back does not fully rotate,
but the view screen and film holder can be removed and re-positioned at a 90°
angle.
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See figure 12.4 for illustrations of some common examples of front movements, as
demonstrated with a 4 × 5 monorail camera.

The full list of movements can be found in table 12.1. Most view cameras have
only a subset of these movements. But it is often the case that two movements can be
combined to give the same effect as a third movement. For example, one inch of
front rise, while lowering the tripod by one inch, has the same effect as one inch of
rear fall. And if one uses both front and rear forward tilt of 15°, while also using the
tripod to point the entire camera upward by 15°, it has almost the same overall effect
as front rise. Thus many view cameras save on complexity (and thus expense, weight
and bulkiness) by choosing a strategic base of movements, with the intention that the
rest can be ‘faked.’

12.2 Movements and the image circle
The movements of a view camera are necessarily limited by the physical mechanism.
The front and rear standards will shift only so many inches, or swing by only so
many degrees. But the lens itself provides another constraint. Recall the concept of
vignetting from chapter 8 in the context of a pinhole camera. Vignetting is a feature
of lenses too, although it can be mitigated somewhat by clever lens design. Even so,

Figure 12.4. Front movements on a 4 × 5 monorail view camera. Left: front rise. Center: front right swing.
Right: front forward tilt.

Table 12.1. The possible movements for a view camera. Most view cameras have only some of these
movements.

Front rise Front fall Front left shift Front right shift
Rear rise Rear fall Rear left shift Rear right shift
Front right swing Front left swing Front forward tilt Front backward tilt
Rear right swing Rear left swing Rear forward tilt Rear backward tilt
Front focus Rear focus Tripod mount movement Back rotation
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every lens has a maximum angle of view, outside of which no light is able to pass
through the lens.

Thus the image made by a given lens lies within a circle formed by the intersection
of the maximum angle of view and the image plane at the light detector. This is
called the image circle, and it is an important feature of any lens used for large
format photography with a view camera.

For one thing, the diameter of the image circle must be larger than the diagonal of
the film format. The diagonal of 4 × 5 inch film, for example, is (by the Pythagorean
theorem) + ≈4 5 6.42 2 inches, and so a lens for this format must have an image
circle at least that large. If it does, the lens is said to cover the format.

See figure 12.5 for an example of a picture taken with a lens that does not cover
the format. Notice the clear presence of an image circle, outside of which there is no
image at all. But near the edge of the image circle, there is an image but it is darker.
And so in this case there is an image circle that does not cover the format, and it
shows partial vignetting at the edges of the image circle.

Movements make the issues of coverage and vignetting even more important. A
lens that covers a particular piece of film without movements may not do so when
movements are employed. As an obvious example, consider the case of a lens that
has an image circle only slightly larger than the diagonal dimension of the 4 × 5 film
being used. With no movements, all is well. But clearly, if one employs two inches of
rear shift, part of the detector will be moved right out of the image circle.

This is most obvious for rear rise, fall and shift, but all movements (even focus)
can move part of the film out of the image circle, thus causing vignetting. For this

Figure 12.5. An example of a picture taken with a lens that does not cover the particular film format used. The
image circle is smaller than the film, and the picture shows pronounced vignetting.
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reason most view cameras have a view screen with clipped corners; the corners of the
ground glass screen are literally cut off. The focus screen in the right-hand image of
figure 12.1 shows an example. When composing the picture the photographer looks
through those holes at the lens. If the full aperture of the lens is visible from all four
corners, then no vignetting will occur.

This can be a more-or-less thing rather than an either-or thing. For it is possible
that, as seen from a particular corner of the film, some but not all of the lens aperture
is visible. Figure 12.6 shows two views through the clipped corner of a view camera
screen, showing partial vignetting and no vignetting.

Partial vignetting most often occurs with large lens apertures, and this can lead to
a fading out of the image at the edges. For a very small aperture, the lens is pretty
much either blocked or not (as seen from the film). And so vignetting at small
apertures tends to give a sharp-edged circular cutoff of the image.

Clearly, in order for a view camera lens to allow for movements without
vignetting, its image circle must be significantly larger than the film being used.
For a given focal length it is usually more expensive, sometimes considerably more,
to produce a lens with a large image circle than with a small image circle. This is
especially true for a wide-angle lens, since a wide-angle lens already, by definition,
has a large angle of view; to allow for movements the angle of view must be even
larger still.

Figure 12.7 shows for comparison two lenses with very different image circles and
angles of view. The lens on the left—although it is physically much smaller—has a
larger aperture by which light enters the camera (it has both a longer focal length
and a smaller focal ratio). The lens on the right is physically so much larger because
it is better corrected for aberrations and has a much larger image circle and angle of

Figure 12.6. Views from the clipped corners of a view camera focus screen. On the left the lens is set for a small
focal ratio. As seen from one of the clipped corners of the view screen, the lens appears as a crescent. This
means that although some light will still get to the corner of the picture, it will be dimmer there than at the
center of the image (from where the lens would appear as a full circle). And so the image would cover the entire
negative, but it would show vignetting at the corners. In the view on the right, the lens has been stopped down
to a relatively large focal ratio, and the circular profile means that the light would be undiminished at the
corners in this case, and a picture so taken would show no vignetting.
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view, allowing for its use as a wide-angle lens for large format with movements. The
lens on the left, on the other hand, was intended for only medium format, and with
no movements. It takes a lot of glass to get all of those light rays, coming from such
a wide range of angles, to their proper places on the film.

12.3 Selective focus
In section 9.3 we considered the use of a large lens opening (small focal ratio) to
achieve a shallow depth of focus. This can be useful to ensure that only the subject is
in focus, while rendering other parts of the picture blurry. In a traditional camera,
this plane of best focus is perpendicular to the film, and lies all at the same distance
from the camera.

But the use of movements on a view camera introduces new possibilities. Look
carefully at the images in figure 12.8. These two photographs were taken with large
apertures, and so for each there is a well-defined plane of best focus—an imaginary
flat plane out in the world, for which objects are rendered in good focus, while
objects on either side of this imaginary plane are rendered in poor focus.

The difference is that the plane of focus for these images is not all at the same
distance, and it is not parallel to the film. In the left-hand image, the plane of best
focus is vertical, but it runs from nearby on the left (putting the plant in the window
in focus, while the distant background is blurry) to the distant right (putting the right
side of the window out of focus while the distant trees on the right side are sharp).

A similar technique was used for the right-hand image in figure 12.8, which shows
what seems to be an in-focus path going almost straight away from the camera. The

Figure 12.7. Left: 114mm f/4.5 Voigtländer Anastigmat Skopar. Right: Schneider 90 mm f/5.6 Super
Angulon. Even though the Skopar on the left has an aperture that is physically over 50% larger, the lens is
much smaller and lighter. This is because the Super Angulon on the right is better corrected for aberrations,
and has a much larger image circle. The Skopar was meant to cover film with a diagonal of only 5” (58° angle
of view), without movements. The Super Angulon, on the other hand, has an image circle of 9.25” with a 105°
angle of view. This allows it to easily cover 4 × 5 inch film with room for substantial movements.
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left-hand image in figure 12.9 is more subtle. But close inspection shows that while
the table cloth is blurry, the top of the candle and the top of the pomegranate and
spoon are in perfect focus. Although the picture was taken at a downward angle, the
plane of best focus lies almost parallel to, but slightly above, the table.

These alterations of focus can be done only with a view camera. The trick is to
angle the lens, relative to the film. The images in figure 12.8 were produced with
front swing, and for the left-hand image in figure 12.9 I used front forward tilt. The
geometry of these movements is shown in figure 12.10, and it demonstrates that
the plane of the lens lies at an angle somewhere in between the planes of the film and
the plane of best focus.

Control of the angle of the plane of best focus opens up many exciting
possibilities, and can solve many technical problems. Say for example that one
wants to photograph several people in a line, among a lot of clutter. It would be nice
to use selective focus to isolate the people from the clutter around them. But without

Figure 12.8. Left: Out the Window. John Beaver 2008. Front swing allows one to put the foreground in focus
on one side of the picture while the background is in focus on the other side. Right: Creative Nonviolence (for
Kathy Kelly). John Beaver 2008. I used front swing to make an in-focus path running from lower left to upper
right.

Figure 12.9. Left: Pomegranate. John Beaver 2006. Front forward tilt was used to place the plane of best focus
parallel to, but above, the table. Right:Mask. John Beaver 2011. Front swing was used to connect the forehead
of the subject to the corresponding part of her angiography mask.

The Physics and Art of Photography, Volume 1

12-9



camera movements, the only way to do this would be to photograph them from
directly in front. A large aperture could then put foreground and background objects
out of focus.

But what if one wants to compose the picture, for dramatic effect perhaps, from
an angle instead? From an angle, without movements, one cannot use selective focus
to isolate only the people in focus, since they are all at different distances. With a
view camera, however, one simply swings the lens until the plane of best focus lies
along the line of people.

Large amounts of front swing or tilt (or both) can sometimes be cleverly used, in
conjunction with large apertures for shallow depth of focus, to draw the eye in such a
way to focus on two widely separated elements in the photograph, forcing
comparison. For the right-hand image in figure 12.9, I used this to draw the viewer’s
eye to both the forehead of the subject and the in-focus geometric pattern on the part
of her angiography mask (for treatment of a brain aneurysm) corresponding to her
forehead.

12.4 Controlling perspective
A rectilinear lens takes straight lines in the world and projects them onto the image
also as straight lines. But this does not mean that parallel lines in the world also
appear parallel in the picture. For example, look upward from near a tall building.
The sides of the building are (presumably) parallel, but they appear to you as
converging off into the distance.

This is just an inevitable consequence of linear perspective—the mapping of lines
in the three-dimensional (3D) world onto a 2D surface. But without access to all of
the depth cues that one unconsciously employs while looking at that building in the
real world, a photograph of the same scene can give the impression that the building
is falling over backwards. This is yet another example of how the experience of
looking at a photograph can be very different from seeing the same scene in real life.
Sometimes an ‘unaltered’ photograph is less realistic than an altered one.

For both of the wide-angle images in figure 12.11 I used ordinary cameras that
were incapable of movements. For the image on the left I centered the building, and

Figure 12.10. If a view camera is used to angle the lens with respect to the film, then the plane of best focus out
in the world is also at an angle. In this case the plane of the lens lies at an angle in-between the planes of best
focus (marked by the ‘object’ in the diagram) and the film (marked by the ‘image’ in the diagram). This
technique of selective focus can be used to solve technical problems or as an important part of the composition
of a photograph (see figures 12.8 and 12.9 for examples).
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it looks like it is falling over backwards. For the image on the right I centered the
horizon line instead, and so the perspective appears normal. The trade-off is,
however, that half of the picture is foreground. That works for this particular
composition, but for many pictures it would not.

Thus it is often desirable to alter the linear perspective as seen by the camera, and
this can only be done with movements. While front swing and tilt are the preferred
ways to alter the angle of the plane of best focus, perspective is best altered by the use
of rear-standard movements.

The example of photographing a tall building from close up (with a wide-angle
lens) is a textbook case. If one points the camera exactly horizontal, then the parallel
vertical sides of the building will also appear parallel on the film. But then the
building will only be in the top half of the picture; the bottom half will be foreground
(and perhaps the top of the building will be out of the frame). If one tilts the camera
upward, to precisely frame the building, then normal linear perspective will force the
parallel sides of the building to converge, and the picture will look like a building
falling over backwards.

The solution is simple. Point the camera horizontal, so the sides of the building
appear parallel, and then simply move the rear standard (and thus the film) vertically
until the building is centered in the picture. Since the image is upside down, one must
use rear fall to recenter the building. If the camera lacks rear movements, then front
rise will accomplish the same thing as rear fall. If it matters that the lens is then

Figure 12.11. Left: San Francisco, John Beaver 2012. Right: Power, John Beaver 2006. Both of these wide-
angle images were taken with cameras incapable of movements. If the tall building is centered (left) it appears
as if it is falling over backwards. If on the other hand, the horizon line is centered (right), then the building
appears normal, but half of the picture is foreground. Employing rear fall (or front rise) would have allowed
me to center the buildings while correcting the perspective.
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positioned a couple of inches higher than it was before, and so it is now seeing from a
slightly different vantage point, then simply use the tripod to lower the entire camera
by the same amount. Thus front rise, one of the mechanically simplest movements to
incorporate into a camera, can be used to solve one of the most common technical
problems. As such, if a view camera has only one movement, it is likely to be front
rise.

12.4.1 Altering perspective with a pinhole camera

A pinhole camera is an excellent tool for photographic experiments that alter
geometrical perspective in unusual ways. It is the simplest of cameras—a dark box
with a tiny hole. And since the exposure times are measured in seconds or minutes, a
complex mechanical shutter is unnecessary. But also, the most commonly used light
detector for a pinhole camera is black-and-white enlarging paper meant for
producing prints in the darkroom from black-and-white negatives. Since the light
detector is a piece of paper, it can be angled, folded, or curved at will, as it is placed
in the pinhole camera. And thus one can do all that a view camera can do, and more,
regarding alterations of perspective.

Recall that a pinhole camera does not have a particular best-focus distance, and
so whatever the distance between the detector and pinhole, the focus is essentially
the same. This means that one can twist and bend and tilt the light-sensitive paper to
the heart’s content, and all of the image will be in the same focus. For a pinhole
camera this is, admittedly, an imperfect focus—but it does mean that one can
explore perspective effects independent of effects of selective focus.

Figure 12.12. The Greenhouse. John Beaver 2015. These two pinhole photographs were made simultaneously
in opposite directions. Two sheets of light-sensitive paper were folded together, using origami techniques, into
a cube. A pinhole was placed on each side of the cube, and placed inside an identical origami cube made from
opaque black paper. Once developed and flattened, the images show a perspective that is not possible to see
from any particular vantage point.
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Whereas the typical use of view-camera movements is to correct perspective to a
‘natural’ look, the pinhole photographer is more likely to take advantage of the
everything-goes nature of a pinhole camera to produce an image with a strikingly
unnatural perspective.

For figure 12.12 I attempted the most extreme example I could think of. I took
two square sheets of light-sensitive enlarging paper, punched a hole in the center of
each sheet, and taped over each hole a small piece of sheet-metal with the proper-size
pinhole for a pinhole camera. I then used origami techniques to fold the two sheets
of paper into a cube, thus forming a pinhole camera2. But it had two pinholes, each

Figure 12.13. Top: this ephemeral process pinhole image was made with the light detector curved around the
inside of a cylinder. Bottom left: the pinhole camera, with the just-exposed negative in place. The pinhole can
be seen as the small piece of brass on the front of the cylinder. Bottom right: the same view as imaged with an
ordinary wide-angle lens. The pinhole camera made a wider view, and the straight street seems to bend.

2 I placed this origami pinhole camera inside a similar origami cube made with opaque black paper, so that
light could enter only through the pinholes, and not through the backside of the not-entirely-opaque light-
sensitive paper.
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forming an image on the opposite side of the camera—and the camera was formed
from the light-sensitive paper itself. To make the exposure, I uncovered both
pinholes simultaneously, and each made an image on the opposite side of the
cube. But since the light-sensitive paper was folded in a complex way, each part of
the paper formed a different perspective of the same subject once it was unfolded
and flattened.

A more typical example can be seen in figure 12.13, where the detector was curved
around the inside of a cylinder, with the pinhole placed opposite. The edges of the
picture are closer to the pinhole than they would be if the detector were flat. This
means the part of the image at the edges is at a smaller scale than it would be with an
ordinary camera—and thus objects in the center seem overly large. If the camera is
pointed horizontally, horizontal lines curve around the center, while vertical lines
remain straight.
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Appendix A

Make your own photograms

A photogram is a shadow print made by exposing a light-sensitive material to light
while it is in contact with opaque or translucent objects. I describe here two
photographic processes, suitable for photograms, that are easy, inexpensive, and
require no darkroom or other specialized equipment.

A.1 Cyanotype photograms
Cyanotype was one of the earliest photographic processes. It is a printing out
process; the light sensitive paper turns dark as light interacts with it. No chemical
developing agent is used. A liquid sensitizer is brushed by hand onto watercolor
paper, and allowed to dry. Once dry, it will turn a deep Prussian blue when exposed
to ultraviolet light. The Prussian blue pigment is insoluble, but the unexposed
sensitizer will dissolve in water. Thus the remaining unexposed sensitizer can be
simply washed away in order to make a permanent image.

Cyanotype is most sensitive only to ultraviolet (UV) light, of wavelengths shorter
than 400 nm. Sunlight is the best easily-available source of this light. An ordinary
incandescent light bulb emits very little UV, and so such a light source can be used as
a ‘safelight’ in order to work with the sensitizer and sensitized paper both before and
after exposure. The procedure is as follows:

1. Prepare the liquid cyanotype sensitizer. It should be a bright yellow–green
color.

2. Choose a suitable piece of paper.
3. In subdued incandescent light, coat the paper with the cyanotype sensitizer.

Coat only the amount of paper that you expect to use that day. Already-
sensitized paper does not keep!

4. Allow the paper to dry in the dark for at least 30 minutes. If it feels cool to
the touch, then it is not yet completely dry.
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5. Assemble your photogram in subdued light. The paper can be taped to a
board, and a sheet of glass can be used to hold objects in place.

6. Cover your photogram assembly with something opaque and carry it into the
sunlight. When uncovered and exposed to sunlight, the uncovered parts
should immediately begin to turn blue. A full exposure, producing the
deepest possible blue, will cause the sensitizer to first turn deep blue-green,
but then begin to fade to a lighter shade of blue, as if it is being bleached by
the sunlight. In direct sunlight on a clear day, expect that you will need to
expose your photogram for at least a few minutes or longer (it depends in
part on the particular cyanotype sensitizer formula). It could take hours on a
day of heavy overcast (wait for a sunny day).

7. Under subdued light, wash the photogram gently in several changes of water.
There should be no hint of yellow–green sensitizer left. The blue color will
become more intense as the paper dries and the sensitizer oxidizes. If you
need instant gratification, put a tiny bit of hydrogen peroxide in your first
rinse bath to cause the sensitizer to oxidize immediately. The final result is
the same either way.

8. Allow the paper to dry.

With this basic background in mind, further details and advice on preparing the
sensitizer solution, choosing, coating and drying the paper—as well as sources for
the chemicals (pre-mixed or in powdered form)—are easily available. Detailed
descriptions for this and many other techniques can be found in James (2016), and
online at http://www.alternativephotography.com. The most comprehensive source
on cyanotype is Ware (2016).

A.2 Ephemeral process photograms
Ephemeral process (EP) (Beaver 2017) is in many ways simpler and less expensive
even than cyanotype. But unlike cyanotype, EP results in an image that is still
sensitive to light. The sensitivity of the finished product, however, is low enough that
it can be scanned, and the image captured digitally. Or as an alternative, it can be
stored in a light-tight container, and viewed for short periods under subdued
lighting. The image can also be chemically ‘fixed’ to make it permanent. This has
both advantages and disadvantages that I consider in the last section.

Ephemeral Process uses black-and-white silver gelatin enlarging paper, intended
for use in the darkroom to make permanent prints from projected negatives.
Ordinarily, one would expose the paper to very dim light, which produces an
invisible latent image. This latent image is then chemically amplified with a developer
to make a visible ‘blatant’ image. This image would then ordinarily be treated with a
chemical fixer to render it no longer sensitive to light.

But EP uses this paper in a manner more like cyanotype—it is exposed to enough
light that it prints out with no use of a chemical developer. Thus, the image becomes
visible as exposed, and photograms can be made in very much the same way as
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cyanotype. We then leave the image unfixed. And so neither a developer nor a fixer is
used.

The trick is that the printing-out process can be greatly enhanced by brushing on
a simple accelerator solution, rendering the paper temporarily up to hundreds of
times more sensitive to light. And so the paper when dry may be much less sensitive
than cyanotype, allowing for easy handling in subdued lighting. But when
‘accelerated,’ it may be rendered many times more sensitive than cyanotype.
Exposure times in full sunlight may be as little as 10 seconds.

A hand-brushed effect can be easily achieved if the accelerator is brushed on to
only part of the paper; the un-brushed parts will remain relatively unaffected by the
exposure to light. Once the exposure is finished, the paper is simply taken to dim
lighting and washed and dried, rendering it back to its very low sensitivity state. It
can then be stored in the dark, viewed briefly in dim light, or scanned to permanently
capture a digital image.

A.2.1 Accelerator formulae

So what is this magic ‘accelerator?’ The mechanics of the accelerating process are
described in detail in Volume 3 of The Physics and Art of Photography, but the key
ingredient is water. In fact water alone has a significant accelerating effect on most
enlarging papers. The accelerating effect is, for most papers, greatly enhanced over
plain water by adding an oxygen scavenger such as sodium sulfite or ascorbic acid
(vitamin C).

I recommend ascorbic acid, as it is safe and can be easily purchased in powdered
crystals, sometimes even at the grocery store. Sodium sulfite is also an excellent,
inexpensive and easily-available oxygen scavenger, and it is considered to be mostly
non-hazardous. It has some advantages over ascorbic acid, but it does cause an
allergic response in some people, and direct contact to the skin (or inhalation of the
dry powder) should be generally avoided.

Finally, in order to make the accelerator brush more easily onto the paper, I use
xanthan gum as a binder. It works better (for this purpose) and is far less expensive
than a traditional art-medium binder such as gum arabic. It can be easily found
online or in the gluten-free baking section of many grocery stores; the smallest
package will last a lifetime for this purpose. My preferred formula is this:

1. Mix together dry:
(a) 1/8 tsp xanthan gum powder.
(b) 1/8 tsp ascorbic acid (dry powdered crystals).

2. Mix the dry ingredients with 1/2 cup water and shake well. The xanthan gum
will want to form lumps. This can be mitigated somewhat by carefully
sprinkling tiny bits onto the surface of the water, shaking, and then repeating
the process. But even if lumps form, they should dissipate within 24 h. The
accelerator solution should work for at least a couple of weeks.

Ascorbic acid will stain some papers brown, especially if either the exposure time
or concentration is too high. The ascorbic acid solution also dries fast, and so it can
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be problematic for very long exposures (not a significant issue for most photograms).
And it can turn into something like a glue as it dries, and so the acetate (see below)
must be carefully peeled off under running water.

Sodium sulfite has none of these problems, but it has the disadvantage that its use
is much less benign. It will fog some types of papers, and the citric acid in the recipe
below is to counteract that tendency. But like ascorbic acid, citric acid may stain
some papers brown. So far, I have not found a paper that both needs citric acid to
prevent fogging, but also is stained by it. My working sodium sulfite formula is as
follows:

1. Mix together dry:
(a) 1 tsp sodium sulfite powder, Na2SO3. Note that this is not sodium

sulfate (Na2SO4).
(b) 1/8 tsp xanthan gum powder.
(c) Optional: 1/4 tsp citric acid (dry crystals).

2. Mix the dry ingredients with 1/2 cup water and shake gently. This mixes
more easily, with fewer lumps, than the ascorbic acid formula. The large
amount of sodium sulfite keeps the xanthan gum particles separated from
each other when the water is added.

One should consider these recipes as starting points for experimentation. Some
papers require more (or less) of the ascorbic acid or sodium sulfite, and the amount
of xanthan gum can be adjusted to make the solution either thicker or more watery.
In my experience, the ascorbic acid recipe brushes onto the paper more smoothly
than does the sodium sulfite version.

A.2.2 Choosing the paper

There are many varieties and sizes of black and white enlarging paper that can be
purchased online, or possibly at a nearby camera store. The cost is usually about $1
per 8 × 10 sheet—less if bought in larger quantities, more if bought in larger sizes.
There are two basic categories:

1. Resin coated (RC) papers: The light-sensitive silver gelatin emulsion is
coated onto paper that is waterproof, as it is sealed with a plastic resin.
This is usually the least expensive type of paper, and it is the easiest to use.
But for this purpose it may be less satisfying, as the paper surface has a
plastic-like perfection. Furthermore, of the RC papers I have tested, they all
are more sensitive while dry than the fiber based papers I describe below. But
they are, in general, no more sensitive when the accelerator is applied. And
so they tend to show less contrast between the unaccelerated and accelerated
parts of the paper. RC papers also tend to have a very high unaccelerated
sensitivity when the humidity is high, and this means one must be very
careful when scanning the still-light-sensitive photogram whenever the
humidity is high.

2. Fiber based papers (FB): FB papers are the go-to choice for the art
photographer. The silver gelatin emulsion is applied directly to good quality
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paper, with all of its subtle micro-texture. It is usually more expensive and
difficult to handle than RC paper. For EP photography, I have found FB
papers, in general, to be more interesting and useful than RC papers. But the
results vary widely from one type of paper to another.

For EP photography, it is not necessary to use newly-purchased enlarging paper.
My favorite papers, in fact, have been unavailable for decades outside of the used
market. Papers that are long expired and nearly useless for their original purpose
may give outstanding results for EP photography. Almost any black and white
enlarging paper will produce results that are at least interesting in some way.
Experiment!

A.2.3 Preparing the photogram

The paper should be handled for as little time as possible, and in light that is just
barely bright enough to work under. Incandescent lighting will produce less
exposure than daylight, fluorescent or white LED lighting of the same brightness.
A red LED headlamp, on the other hand, can be used with no fear of exposure at all.

Brush the sensitizer onto the emulsion side of the paper; any type of paintbrush
can be used. Gently lay on a thin sheet of acetate, and smooth out the bubbles. In
order to determine how the final image will be affected by air bubbles and
unevenness in the application of the sensitizer, you will have to experiment. The
answer depends on too many details to describe here, but that is much of the fun.

It is important to keep in mind that once the accelerator is applied, the paper will
be far more sensitive to light. And so one can be much more casual (sometimes very
casual) about unwanted exposure before the accelerator has been applied. After that,
however, one should work both quickly and under light that is as dim as possible.

If you are using FB paper, you may want to tape down the corners of the paper
onto a hard, flat surface; FB paper will begin to curl once it is dampened. Lay your
objects onto the paper, and if you want them to be held flat, then lay a sheet of glass
on top.

A.2.4 Exposing, washing and drying

Unlike cyanotype, enlarging paper is sensitive to blue and violet visible light in
addition to ultraviolet. and so EP photograms can be exposed by diffuse daylight,
direct sunlight, or artificial lighting. But recall the discussion in chapter 7 on the
relation between the light source and the geometry of the photogram. Depending on
the choice of paper and accelerator, you may find that different colors of photogram
objects, and different sources of light, produce somewhat different colors in the
printed-out image. This intriguing complication is explored in more detail in volume
2 of The Physics and Art of Photography.

If you are to expose your photogram in sunlight, then cover everything with
something opaque, and carry it outside for the exposure. If you are using artificial
lighting, then it is convenient to have some way to position the light source directly
over the photogram in the same dim room you use to prepare it before exposure.
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Although cyanotype must be exposed to ultraviolet light, almost any bright light
source can be used to expose your EP photogram, so long as it contains some light in
the blue-violet part of the spectrum. An ordinary old-style incandescent light bulb is
probably the worst choice. Bright photo flood lights work well, both the hot quartz
type and the newer and much-easier-to-use cool LED versions. An inexpensive LED
‘blacklight’ bulb may also work well, even if it does not look very bright to the eye.
They emit light mostly at 400 nm, the very wavelength to which the enlarging paper
is most sensitive. Bright compact fluorescent lights will also work. The shortest
exposures will almost certainly be with direct sunlight, whenever it is available.

With a bright source of artificial light, you will likely find that an exposure time of
only a minute or two (or even less than a minute) is required. For some
combinations of paper and accelerator, only a few seconds may be required when
exposed to the direct light of the Sun when it is high overhead on a clear day. Since,
like cyanotype, this is a printing out process, you can monitor the exposure as it
happens.

Once the exposure is complete, carefully separate, under running water, the
acetate from the paper (this is most important with the combination of FB paper and
ascorbic acid accelerator). A smooth, clean surface and a shower-stall squeegee can
be very helpful for removing most of the water from the paper. RC paper can be
simply hung to dry from a corner, with a spring clothespin. FB paper should be left
to dry upside down on a clean porous surface (a plastic window screen works well).

Figure A.1. The EP photogram process. Except for the actual exposure, the entire process was carried out in a
room with dim, indirect lighting from a single light bulb. Clockwise from upper left: (1) materials needed. (2)
The accelerator is brushed onto the paper, and it is covered with a thin sheet of acetate. (3) Objects are placed
on the paper and held down by glass (some objects were placed on top of the glass in this example). (4) The
photogram was exposed to an LED photo-floodlight for 90 seconds. (5) The objects are removed. (6) The
acetate is carefully removed and the photogram is washed under running water, squeegeed, and dried.
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Washing should be carried out in dim light, and the paper should be left to dry in
total darkness. See figure A.1 for a step-by-step illustration of the process.

A.2.5 Scanning, and the option of fixing

Once your EP photogram is dry, it will be much less sensitive to light than when the
accelerator was applied. But it will still gradually turn dark if exposed to ordinary
room light. At what rate this happens depends mostly on the particular type of
paper, the brightness and spectrum of the light it is exposed to, and the humidity
of the air. But even under the worst of circumstances, a high-quality digital version
of the image can be captured with any good-quality scanner.

The original EP image will almost certainly be darkened—damaged if you will—
by the light of the scanner. A higher-resolution scan usually means a greater
exposure by the scanning light, as does repeated scanning. And so it is prudent to
practice first before scanning that one-of-a-kind perfect EP photogram you just
made.

One consequence of using a scanner to make a digital image from your photo-
graph is that you then have two other options available. You can ‘improve’ it by
digital manipulation and you can invert it from a negative to a positive. We will
consider the aesthetic implications of these choices in volume 3 of The Physics and
Art of Photography, but see figure A.2 for an example.

It is possible to make your original EP photogram permanent by applying the
same chemical fixing process that is used in the darkroom. Instructions for fixing
black and white silver gelatin prints are widely available, both online and in print, so
I will not go into those details here. For a black and white print in the darkroom,
exposed and chemically developed in the way intended by the manufacturer, the
fixing process barely alters the image. Not so for EP photography. Results vary
widely, but in general, the act of fixing your EP photogram is likely to greatly lighten
the image, and the overall color will likely shift to brown. Subtle differences in hue
and value that are easily visible in the original, may be lost when it is fixed.

Figure A.2. Left: a digital scan of the finished photogram from figure A.1. Right: the same scan with the values
digitally inverted from a negative to a positive and the levels and white balance adjusted.
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A fixed photogram made with this same type of enlarging paper, but without an
accelerator (and thus with much more light) is usually called lumen process. And so
what I call ‘ephemeral process’ could also be called ‘unfixed, accelerated lumen
process.’ These and other so-called alternative photographic process are discussed in
more detail in volume 3 of The Physics and Art of Photography.
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Appendix B

Notes on the golden rectangle

The lengths of the sides of the golden rectangle are in the proportion of
approximately 1:1.618034, a proportion known as the golden ratio. It has been
claimed that this ratio of lengths is inherently pleasing to the eye, and that a
rectangle proportioned so is the most aesthetically pleasing. Part of the fascination
with the golden ratio and the golden rectangle arises due to its intriguing
mathematical properties.

We can easily work out, with simple algebra, what must be the proportions of
such a rectangle. Let us label the rectangle as in figure 11.8, with the short side of the
original rectangle a and the long side a + b. The ratio of the long to the short side of
the original rectangle is +a b

a
, while the same ratio for the sectioned-off rectangle is a

b
.

Thus, for the two rectangles to have the same proportions, we must have:

= +a
b

a b
a

(B.1)

Doing a bit of algebra on this, we have:
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If we define a new variable, ϕ (the Greek letter phi), to be a
b
, the ratio of the sides of

the golden rectangle, then the last equation becomes:

ϕ ϕ− − =1 0 (B.6)2

This is called a quadratic equation, and as such, it has two solutions:

ϕ = ± +1 1 4
2

(B.7)

This gives, to five decimal places, ϕ = 1.618 034 or ϕ = − 0.618 034. The positive
root says that the length of the long side of the Golden Rectangle is 1.618 034 times
the length of the short side. If you want to look at this the other way, the length of
the short side is = 0.618 0341

1.618 034
times the length of the long side (this is the

meaning of the negative root).
It is an odd thing that ϕ is a number for which its inverse is equal to itself minus

one. That is, ϕ= −
ϕ

1;1 it (and its negative sibling) is the only number that has that

peculiar property. In any event 1.618 034, or it’s inverse, 0.618 034, is known as the
Golden Ratio or the Golden section.

There are many other peculiar and fascinating mathematical properties of the
golden rectangle, but perhaps even more interesting for 2D art are its geometrical
properties. If one starts with a golden rectangle, it can be subdivided with a square,
and this leaves another golden rectangle. This smaller rectangle can also be
subdivided with a square, and it too will leave a golden rectangle, etc.

If one connects the corners of these squares, it makes a special type of spiral,
known as the Golden Spiral. This spiral sometimes appears in nature, most directly
and famously in the shell of the chambered nautilus; the nautilus and the golden
spiral can be seen together in figure B.1.

Figure B.1. Left: the golden spiral can be constructed from a series of golden rectangles subdivided into
squares and golden rectangles. Right: the shell of the chambered nautilus shows an example of such a form in
nature. (graphic: Chris 73, CC BY 3.0).
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Appendix C

Optimal pinhole size for a pinhole camera

A pinhole camera uses simple geometry to restrict rays of light coming from the
object to their proper position at the image. This is accomplished with simply a tiny
hole on one side of a dark box. The idea is that since it is only a tiny hole, only one
ray from each part of the object can get through the hole to the image. There are two
problems with this:

1. This could work perfectly only if the hole were infinitesimally small, in which
case, only an infinitesimally small amount of light would enter the camera.

2. If the hole is small enough that its size is comparable to the wavelength of the
light, then the laws of diffraction dictate that the light will spread out as it
goes through the hole. And furthermore, the laws of diffraction say that a
smaller hole will make the light spread out more.

And so we are faced with the fact that the laws of geometry alone would indicate
that a smaller hole would give a sharper image. But the laws of diffraction say the
opposite. This means that there is a trade-off between these two factors. And so there
is a particular size hole—neither too large nor to small—that yields the sharpest
image.

Let us see what this best pinhole size would be. Imagine that a point source of
light, located very far away, is imaged in our pinhole camera. The perfect image
would be a point, since the source of light is a point. But how large would that image
be in practice?

A full analysis is beyond the scope of this book, but the simpler analysis I present
here gives nearly identical results. It turns out that there is more than one way to
define the problem in the first place; when one looks in fine detail, it is not obvious
what one means by ‘the best.’ It is not such a bad thing to have a slightly-vague
answer when the question itself is imprecisely defined.
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One simple way to approach the problem is to add the effects of both geometry
and diffraction. For a point source of light very far away, geometry would indicate
that the size of the image would be the same size and shape as the pinhole. And so, if
our pinhole has a diameter, D, then the image in our pinhole camera would also be a
circular spot of that same diameter.

But diffraction plays the opposite role. From chapter 3, section 3.7 we have seen
that a smaller hole produces a larger diffracted image. The exact relation, for the
angular diameter, θ, of the brightest part of the diffracted image, is given by equation
(C.1):

θ λ=
D

2.44 (C.1)

where λ is the wavelength of the light. But this is the angular diameter, not the
physical diameter, x, (in units of length) on the detector of our pinhole camera. To
calculate that, we must use the small-angle formula:

θ λ= =x F
F

D
2.44 (C.2)

where F is the focal length, the distance between the pinhole and the light detector.
And so, combining all of this and adding the effects of both geometry and
diffraction, the size, x, of the image on the light detector would be:

λ= +x D
F
D

2.44 (C.3)

The question is, for a given value of D, how big is x? And what is the particular
value of D that gives the smallest value of x? We can approach this in a couple of
ways. The most direct and accurate way is to use calculus: finding the value of a
variable that gives the minimum (or maximum) value of some quantity is one of the
fundamental uses of calculus.

But we can also make a graph of x for different values of D and look for the
minimum value. This approach is especially illustrative if we also graph the two
parts—geometry and diffraction—separately, to see how they individually affect the
sum. One complication is the focal length, F, of our pinhole camera. How might that
affect the answer? We will need calculus to answer that question, but we can still use
a simple graph to see why there is a best value of D for a particular choice of F.

Figure C.1 shows the size, x, of our pinhole-camera image, for different values of
pinhole diameter, D. The three curves show, respectively, the result for geometry
alone, diffraction alone and the sum of the two. It is clear from the graph that
both effects combined result in a particular value of D that yields the smallest value
of x—and thus the sharpest image. For figure C.1 I have chosen a pinhole-camera
focal length of 1 m, and for this example, it appears that the best-possible pinhole
size (the lowest point in the graph) is a diameter of about 1 mm.

It would be much more useful, however, if we had a formula that would allow us
to calculate the best pinhole diameter for any given focal length. To find the value of
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D that gives the minimum value of x, we take the derivative of D with respect to x,
dD/dx. We then determine for what value of D is this derivative equal to zero.
Taking the derivative of equation (C.3), we find:

λ= −dD
dx

F
D

1
2.44

(C.4)
2

If we set this derivative equal to zero, and solve for D, we get:

λ− =F
D

1
2.44

0 (C.5)
2

λ=D F2.44 (C.6)

If we pick a wavelength of 550 nm = × −5.5 10 7 m, in the middle of the visible part
of the spectrum, and put in a conversion factor to convert from meters to
millimeters, then we get for the best value of D:

⎛
⎝⎜

⎞
⎠⎟= × × × −D F(mm) 2.44 5.5 10 m

1000 mm
1 m

(C.7)7

Figure C.1. The two factors, geometry and diffraction, that contribute to the size of the image of a point in a
pinhole camera. Geometry alone indicates that a larger pinhole results in a larger (and thus blurrier) image of a
point source. Diffraction indicates the opposite; a smaller hole yields a larger and blurrier point image. The
two effects combined yield a particular pinhole size that gives the smallest (and thus sharpest) image. For a
camera focal length of one meter (assumed for this graph), it is clear from the minimum in the graph that the
best pinhole diameter is about 0.001m, or 1 mm. To determine a formula for the best pinhole diameter for
other focal lengths, one must analyze the problem with calculus.
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≈D
F

(mm)
(mm)

27
(C.8)

We can compare the result of this formula to our graph. Putting in F = 1000 mm
gives D = 1.16 mm

In practice, when making a pinhole it is prudent to err on the side of a larger-than-
best-sized hole, rather than a smaller one. A hole that is slightly too large at least has
the advantage that it admits more light into the camera, and so the exposure time is
correspondingly shorter. This is not the only possible way to analyze this problem,
and other approaches yield slightly different formulae. The most sophisticated
approach uses a more accurate model of diffraction, and a slightly larger best size
results. In practice however, the process of making a pinhole is trial-and-error. And
so my advice is to make a pinhole that has a size that is no smaller than that given by
equation (C.8); your best attempt will likely be slightly larger, and close to the best,
best value.
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Appendix D

Units, dimensions and scientific notation

D.1 Units and dimensions
When we refer to a physical quantity, it must always have associated with it a set of
dimensions, and also in many circumstances, a set of units.

In this context the word ‘dimension’ refers not to spatial dimensions, but rather to
the type of physical quantity. For example, length is a fundamentally different type
of quantity than time. One cannot add a length to a time, nor can one subtract one
from the other, because that would equal nonsense. Note that this is not the same
thing as apples and oranges. Unlike length and time, one can add apples and oranges
(it equals fruit salad).

But on the other hand, it is just fine to multiply or divide a length by a time. This
produces something with different dimensions, that are a combination of the two.
For example, if one divides a length by a time, the result is something that has
dimensions of length/time (‘length per time’). Often these combined dimensions have
special names. This example of length/time has the special name of velocity or speed.
And so whenever one divides a length by a time, something with dimensions of
length/time results.

But what about the actual numbers one plugs into the calculator in a specific case?
What if one has a specific length, and a specific time, and wants to calculate a specific
speed? Whenever actual numbers are involved, there must also be units.

A length of 12.0345 is ambiguous. Is it 12.0345 meters or 12.0345 furlongs? The
meter and the furlong are examples of units, which are agreed-upon standards for
attaching a numerical value to a particular physical quantity. And so the meter is a
unit of the dimension of length, and so is a furlong. One can convert between units of
the same dimension, by establishing an equivalence between them. And so 1 m =
3.280 feet = 39.37 inches = 0.00497 furlongs, etc.
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In the physical sciences we mostly use a particular international system of units,
called SI, which stands for ‘International System’ (in French). The SI unit of length
is the meter, while the SI unit of time is the second. Every SI unit has an official
abbreviation. The abbreviation for the meter is m, and for the second it is s (it
matters that they are lower-case). Table D.1 lists some common SI units, with their
dimensions and official abbreviations.

Just as we can derive new dimensions by multiplying or dividing dimensions by
each other (length/time, for example), we can do the same for units. And so we can
divide meters by seconds to get a new derived unit, which we write m s−1 (called
‘meters per second’). What if we want to divide m s−1 by seconds? We can do that
just fine, and we get =m/s/s m/s2 (called ‘meters per second squared’). Many of the
units in table D.1 are actually derived combinations of other units. For example, the
newton is actually a combination of kilograms, meters and seconds:

=1 N 1 kg
m
s

(D.1)2

These base units can be modified by any one of a number of official prefixes,
which then multiplies the unit by some power of 10. These prefixes and their
abbreviations are listed in table D.2, although some are more commonly used than
others. For example, ‘milli’ means ‘×1/1000’. And so a millimeter (abbreviated mm)
is one thousandth of a meter.

D.2 Scientific notation
We have used scientific notation for the values in table D.2. Physical quantities in
nature can vary by many powers of 10. And so for example the light given off by the
Sun, it’s power, P, is many times greater than the light given off by a 60 W light
bulb:

=P P667 000 000 000 000 000 000 000 000 (D.2)sun lightbulb

After the 667, there are 24 zeros there. What if I had mistyped (or you
miscounted) and you found 23 zeros instead? Well that number would be ten times

Table D.1. Common SI units.

Dimension Unit Abbreviation

Length Meter m
Time Second s
Mass Kilogram kg
Temperature Kelvin K
Force Newton N
Energy Joule J
Power Watt W
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too small. And so clearly, when dealing with numbers like this, we need a better way.
And so we use what is called scientific notation. Written this way, the above
equation becomes:

= ×P P6.67 10 (D.3)sun
26

lightbulb

The ×1026 part means, ×100 000 000 000 000 000 000 000 000. But in practical
terms this also means, ‘take the decimal point in 6.67, and move it 26 places to the
right, filling in with zeros as needed.’

Raising something to a negative power means the same thing as dividing 1 by that
same thing, but raised to the same positive power. For example:

=−27
1

27
(D.4)3

3

And so we can also use negative numbers in scientific notation; it means simply
divide by the power of 10 instead of multiplying by it. And as with positive powers,
we can also express this as a decimal equivalent:

× = × = =−3.27 10 3.27
1

10
3.27
10

0.000 032 7 (D.5)5
5 5

Here we can see that × −3.27 10 5 means, ‘take the decimal place in 3.27 and move it
five places to the left, filling in with zeros as needed’.

This has a couple of advantages. For one thing, we can see at a glance the most
important part numerically: how many powers of ten. Secondly, when we write it
this way, we don’t need the zeros for place holders. And so if I put them there, it
means I believe that they are significant.

And so, ×6.67 1026 and ×6.670 1026 are not really the same number, although
they will both appear the same on a calculator. ×6.67 1026 could possibly be

Table D.2. Prefixes for SI units.

Prefix Abbreviation Meaning

Femto f × −10 15

Pico p × −10 12

Nano n × −10 9

Micro μ × −10 6

Milli m × −10 3

Centi c × −10 2

Deci d × −10 1

Hecto h ×102

Kilo k ×103

Mega M ×106

Giga G ×109

Tera T ×1012

The Physics and Art of Photography, Volume 1

D-3



×6.673 1026 or even ×6.668 1026. If I do not include any more decimal places, then
I am making a statement that, based on my uncertainty in the measurement of that
quantity, I have no idea what the value of the next decimal place would be. If on the
other hand I write ×6.670 1026 then I am saying that I believe (even if with some
uncertainty) that it really is ×6.670 1026 and not, say, ×6.673 1026.

Note that one could use scientific notation to write the same number in several
different ways. You should verify for yourself that the following is true:

× = × = × = × −9.75 10 975 10 0.009 75 10 97 500 000 000 10 (D.6)7 5 10 3

Clearly, the last two possibilities look a bit silly, but we try to avoid even the second
version. When using scientific notation, it is customary to pick whatever power of 10
is needed in order to have one and only one digit to the left of the decimal place.
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