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Preface

This is a book written for the motivated individual who wishes to see what kinds of
computational experiments they can explore with the Raspberry Pi single-board
computer. The reader will learn about two languages that are accessible on the
Raspberry Pi—Python and Mathematica®. Both have their own extensive forum of
users and are widely used by the scientific and technical communities to solve
problems in science every day. This book is not an exhaustive resource for either
language nor is the Raspberry Pi the only hardware platform where the examples
can be explored. However it represents a unique entry into scientific computing
accessible to everyone. Through simple, introductory exercises in physics, astron-
omy, chaos theory, and machine learning, this text aims to be a launching point for
the beginner into a wide range of exciting computing paradigms.
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Chapter 1

Raspberry Pi

1.1 Single-board computing
Single-board computing gives researchers, hobbyists, and educators a programming
platform that is agile for rapid development and prototyping. Students can develop
code in a variety of environments and languages. Scientific software and computing
now relies on using sound software engineering principles to further the field and
process data from experiments and simulations. While single-board computers are
not geared toward big data processing, they certainly can be utilized as versatile test-
bed environments. Such systems have the ability to introduce users to new develop-
ment environments while being cost effective at the same time. Their utility to cost
ratio is very high.

The variety of applications for single-board computers stretches from hardware
and camera control to building proof-of-concept clusters. Science, technology,
engineering, and mathematics (STEM) education initiatives in particular can benefit
from the low barrier to entry in obtaining and setting up a single-board computer.

Single-board computers can be used as a standalone hardware solution or
integrated into larger systems. Applications for single-board computers include
media center solutions, embedded as central controllers for unmanned aerial
systems, and in many areas of robotics—anywhere a small form factor computer
is needed. As a computing platform they can be used as an outstanding introduction
to programming and software engineering for education.

While there are many books, videos, and tutorials on using single-board
computers for a variety of hardware and peripheral projects, the focus of this
Concise Physics series book is to introduce readers to using the Raspberry Pi as a
simple development platform for scientific computing. The book will focus on
understanding the capabilities of the Raspberry Pi using both Python and
Mathematica® environments in the native Raspbian Linux operating system.

doi:10.1088/978-1-6817-4996-9ch1 1-1 ª Morgan & Claypool Publishers 2018

https://doi.org/10.1088/978-1-6817-4996-9ch1


1.2 Why Raspberry Pi?
The Raspberry Pi (or RPi) single-board computer was conceived as a low-cost
hardware solution to teach basic computing and software programming. The RPi
started with the Model A in 2013 with a 700 MHz single-core processor. The suite
of RPis has grown to include the B and B+ models with 1.2 GHz and 1.4 GHz
64-bit quad-core processors respectively as well as the entry level RPi Zero, both of
which include wireless network interfaces. The third-generation Model B is shown
in figure 1.1.

The architecture of the RPi 3 Model B and B+ is shown in the figure 1.2
schematic. The full featured layout has four USB ports for peripherals, HDMI
display output and audio, as well as support for cameras and other hardware
interfaces. While the RPi can be purchased as a standalone board, most kits include
a microSD card with NOOBS and Raspbian, a protective case, an HDMI cable, and
a power cord. The other three items the reader will need to acquire are a keyboard,
mouse, and display with an HDMI port.

As with many single-board computer solutions, the RPi has been successfully
implemented in hardware projects ranging from controlling robots to weather
monitoring stations to automating processes of your home environment in the
‘internet of things’ age. Innovators are even building small RPi compute clusters [1].
The original purpose was to provide a low cost system so that students could learn
programming. Its rapid adoption and broad community make it an excellent
platform for students to understand the basics of scientific programming and have
fun learning by example. What does the future hold for STEM education and
computing as we can fit more capabilities onto an RPi?

Figure 1.1. Image of the Raspberry Pi 3 Model B single-board computer. This small board has the capability
of being the reader’s entry into scientific computing. All exercises presented in this book are capable of being
run on this seemingly small bit of computer hardware.
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Reference
[1] Mappuji A, Effendy N, Mustaghfirin M, Sondok F, Yuniar R P and Pangesti S P 2016 Study

of raspberry pi 2 quad-core cortex-a7 cpu cluster as a mini supercomputer In 2016 8th
International Conference on Information Technology and Electrical Engineering (ICITEE),
pp 1–4

Figure 1.2. Diagram of the Raspberry Pi 3 Model B and B+ single-board computer. The hardware layout
schematic here shows all the features that will be needed. While we will not be using the camera connection or
GPIO Header, these are labeled here as they allow a Raspberry Pi user to attach additional peripheral elements
to the board.
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Chapter 2

Setting up your system

2.1 Hardware configuration, requirements, and limitations
The Raspberry Pi 3 module requires keyboard and mouse peripherals for user input.
A microSD card with NOOBS (New Out Of Box Software) and the Raspbian
operating system are a user’s most efficient pathway to getting started. In addition,
an HDMI connection and display monitor or panel are needed. All exercises in this
book are well within the computational and memory usage specifications of the
Raspberry Pi.

Upon inserting the NOOBS microSD card and providing power to the RPi for the
first time, you will be prompted to install the operating system. The Raspbian desktop
will look similar to figure 2.1. It can easily drive a 1080p high-definition screen.

It is recommended for your system’s security to change the default system
‘raspberry’ password for the ‘pi’ user account, or better yet, to create a separate
user account with a secure password. This can be done with the command passwd in
a terminal window. It is also important to update any installed packages via1

sudo apt-get update
sudo apt-get dist-upgrade

2.2 Understanding Linux
The Raspbian operating system2 is based on Debian3 built on the Linux kernel. The
Linux kernel is the basis for more computer desktop, laptop, server, and mobile
systems than any other software technology in the world4. By clicking on the

1 https://www.raspberrypi.org/documentation/raspbian/updating.md
2 https://www.raspberrypi.org/downloads/raspbian/
3 https://www.debian.org/
4 http://statcounter.com/; https://www.linuxcounter.net/
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terminal icon in the upper left, one can open a Linux terminal window. Most
interactions will occur through the command line interface (cli). The following basic
Linux commands will serve the user well in their new Raspberry Pi explorations.

2.3 Python
Python is a high-level language released in 1991 that provides users with many
paradigms of programming and easily readable code5. Code is easily obtained and

Figure 2.1. The Raspbian desktop and Linux terminal window. Standard icons in the upper left are
customizable, but include selections for turning the device on and off, opening a terminal, updating the
Raspbian OS, and starting Mathematica.

ls -list the contents of a directory
cd -change to a named directory [cd <directory name>]
pwd -return the present working directory
man -manual pages for any Linux commands
mkdir -make a directory
rmdir -remove an empty directory
rm -remove a file
mv -move or rename a file
clear -clear the terminal window, return prompt to top
find/locate -search commands
history -review the terminal history of commands one has executed.

5 http://www.python.org/
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downloaded with the Python Package Index6. The wide variety of well-maintained
and robust technical modules make the Python style of programming advantageous
to many areas of scientific computing. The language lends itself well to structured
object-oriented programming for maintainable code as well as simple scripts for data
reduction.

A number of Python modules are very useful for data analysis, scientific graphics
and plotting, and as development environments. While not all of these will be used in
this book, it is worthwhile for the reader to explore these options depending on their
computing and analysis needs.

Python modules can be added via the Debian package installer7:

sudo apt-get install python-numpy python-scipy python-matplotlib
ipython ipython-notebook python-pandas python-sympy python-nose

A basic Python prompt can be started by typing python in a terminal. However,
the IPython prompt (started with ‘ipython’) gives the user much more utility with
features at the command prompt including tab completion and syntax highlighting.

With creating a new *.py script or interactively inputting commands on the
IPython prompt, modules can be imported with the command ‘import’ in the file

IPython -interactive command line package with support for notebooks
https://ipython.org/

Matplotlib -a graphics and plotting library
https://matplotlib.org/

pandas -especially useful for time series manipulation
https://pandas.pydata.org/

Scikit-learn -machine learning library
https://scikit-learn.org

SciPy -scientific Python and computing, line fitting, ODE solvers, etc
https://www.scipy.org/

PyCharm -integrated development environment for Python
https://www.jetbrains.com/pycharm/

Blender -3D graphics, visualization, and animation [1]
https://www.blender.org/

AstroPy -astronomy data manipulation library
http://www.astropy.org/

Anaconda -an all-in-one Python distribution
https://anaconda.org/

6 https://pypi.python.org/pypi
7 https://www.scipy.org/install.html
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prelude. The structure of a program written in Python can begin with these
commands

import os
import math
import sys
import glob
import pdb

If one wishes to import a specific class or method from a module

from math import log

Or use an alias for brevity

import matplotlib.pyplot as plt

The Python debugger (pdb) is a useful module for stepping through and trouble-
shooting possible code issues. The following debugger command will set a break point
in your code at which point one can examine defined variables that are in scope.

import pdb
pdb.set_trace()

These Python items and others will be used in the scientific computing exercises
demonstrated in later chapters.

Python modules adhere to the paradigm of object oriented programming (OOP).
In fact, everything in Python is an object, and each module contains classes. A class
is like a blueprint or template for a programming object. An object is an instance of
the class type that contains the methods and variables associate with that class [3].

After importing a Python module, we can look at the methods with <module>._
_dict_ _

import sys
sys.__dict__.keys()
['setrecursionlimit',
'dont_write_bytecode',
'getrefcount',
'long_info',
'path_importer_cache',
'stdout',
...
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This gives us a place to start when examining a module for the first time. The
aforementioned tab completion will also show available methods within a
module.

The code presented in each chapter is meant to be copied and pasted into an
IPython session so that the new user can study and think about what each piece is
doing. When executing a Python script, one need only input the command at the
IPython prompt

execfile('script.py')

Alternatively, multiple lines of code can be input at the IPython prompt with the
command cpaste, followed by two dashes (- -). The following code shows the
components of a simple Python script and damped harmonic oscillator, plot, and
labels.

import numpy as np
import matplotlib.pyplot as plt

# Create exponentially decaying harmonic oscillator
timearr = np.arange(0.0, 5.0, 0.02)
yarr = np.exp(-timearr) * np.cos(2 * np.pi * timearr)

fig = plt.figure(figsize=(6, 5), facecolor='white')
ax = fig.add_subplot(111)
ax.plot(timearr, yarr, 'r-', markerfacecolor='red', linewidth=3)
plt.xlim(0, 5)
plt.ylim(-1, 1)
ax.grid(True)
ax.set_ylabel('Amplitude')
ax.set_xlabel('Time')
t = plt.title('Damped Harmonic Oscillator')

plt.show()

Figure 2.2 shows the result of this Python script. Other examples can be found on
the Matplotlib gallery page8.

2.4 Mathematica and Wolfram Alpha
Mathematica® is an extensive symbolic and natural language software package for
computation9 [4]. It is proprietary software and is included with the Raspberry Pi.
Wolfram Alpha serves as a repository that can be queried with natural language and
other mathematical expressions across a wide variety of scientific data. The Wolfram
Alpha website allows users to the semantic natural language interface with data

8 https://matplotlib.org/gallery.html
9 http://reference.wolfram.com/language/
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products via a web interface or through Mathematica, the latter of which can be
utilized in this work. The scope ofMathematica software and the Wolfram language
reaches far beyond this text, so we will cover the elements as needed to explore the
exercises outlined in our contained chapters.

Mathematica code is stored in notebooks (*.nb), which are syntax highlighted,
annotated, and context sensitive. Command execution are carried out via Functions.
Functions use the notation Function[] with square brackets and a Capital letter. Lists
of dimension N are defined with curly brackets, and are indexed starting with integer 1
via double square brackets. Input/Output is displayed in adjacent sequential lines
unless suppressed with a semicolon. Table 2.1 describes some of this functionality.

Each command is executed with Shift-Enter. If output needs to be suppressed, a
semicolon (;) should be added to the end of the line. A context sensitive menu of
choices will typically appear with the output, guiding the user to options that will
allow them to enhance or perform further computations with the output. These
menus are incredibly useful for first time users as they act as guidance to previously
unexplored functions and Mathematica features.

Mathematica is sparse with looping mechanisms, and prefers to use mapping and
functions to achieve its computations. This often greatly simplifies the code. The Rule
syntax, indicated by an arrow (→) transforms a given rule into each part of a given
expression. It is often used with the ReplaceAll syntax (/.) to evaluate expressions and
tabulate results. Appendix A has a basic list of commonly used shortcuts. More can be
found on the Wolfram Mathematica Documentation website10.

Figure 2.2. Example of a simple Matplotlib graph.

10 http://reference.wolfram.com/language/
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A comprehensive example of function and rule usage is given next. We will create
a 3D model of a parameterized Möbius strip. The parameterization is given as

= +x u v u
v

v( , ) 1 cos
2

cos (2.1)⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟

= +y u v u
v

v( , ) 1 cos
2

sin (2.2)⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟

=z u v u
v

( , ) sin
2

. (2.3)⎜ ⎟⎛
⎝

⎞
⎠

With −0.5 < u < 0.5 and 0 < v < 2π, we set parameters with Rules of Mesh,
PlotPoints, Boxed, Axes, Background, PlotRange, PlotStyle, and Lighting.

mob = ParametricPlot3D[{(1 + u Cos[0.5 v]) Cos[v],
(1 + u Cos[0.5 v]) Sin[v],

u Sin[0.5 v]},
{u, -0.5, 0.5}, {v, 0, 2 Pi},

Mesh -> False, PlotPoints -> 20, Boxed ->False,
Axes -> False, Background -> Black,
PlotRange -> {{-3, 3}, {-3, 3}, {-3, 3}},
PlotStyle -> {Specularity[White, 10]},
Lighting -> {{"Directional",

RGBColor[0.5', 0.5', 1],
ImageScaled[{0, 1, 0}]},

{"Directional",
RGBColor[1, 0.5', 0.5'],
ImageScaled[{1, -1, 0}]},

Table 2.1. Commonly used Mathematica functions.

Mathematica Functions

Function Syntax Example Description

Wolfram Alpha = Semantic natural language processing
Plot Plot[Cos[x],{x,0,2 Pi}] Two-dimensional plotting
Quantity Quantity[20, ”Meters”] Datatype units associated with a numeric value.
UnitConvert UnitConvert[[20, ”Meters”],

”Feet”]
Convert between physical units—usually used
in concert with Quantity[]

NDSolve NDSolve[] Numerically solve ordinary differential
equations

List {1,2,3} Create a basic array type structure displayed as
{1,2,3}

Table Table[Sin[x],{x,0,2 Pi,Pi/4}] List generator function

Science and Computing with Raspberry Pi
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{"Directional",
RGBColor[0.5', 1, 0.5'],
ImageScaled[{-1, -1, 0}]}}

]

We can now use the ReplaceAll and ListAnimate syntax to control the viewing
geometry on the resulting List.

s = table[
Show[mob, ViewAngle -> 20, Background -> Black] /.

gg : GraphicsComplex[___] :>
Rotate[gg, theta, {1, 0.5, 0}], {theta, 0., 2.*Pi, 0.1}];

ListAnimate[s]

Figure 2.3 shows the result. This can be manipulated in the downloadable
notebook mentioned at the end of the chapter.

Figure 2.3. 3D model of a Möbius strip used to demonstrate how functions, parameters, rules, and
replacements are used in Mathematica.
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Mathematica also interfaces with Wolfram Alpha, a computational knowledge
engine that can be accessed via the equals sign (=). This semantic computing allows
for natural language querying of data and computations. Popup menus will be
displayed after a line of notebook output, allowing the user to further explore the
result, through visualization, tabulation, or reformatting of the result.

2.5 Sources of astronomical science data
Certain exercises in this book will, directly or indirectly through another data
provider, use curated data from scientific archives for astronomy and astrophysics.
This non-exhaustive list of resources is provided so the reader may experiment with
different types of scientific data.

2.6 Using revision control
Revision control is used in software development to track and manage changes
during code development. While the code exhibited in this work does not have the
characteristics of a large project, it does allow the working scientist to keep track of
the evolution of their computing experiments. In essence, revision control can be a
logbook of your activities as an experiment evolves—it is the modern scientist’s
equivalent of a laboratory notebook.

We recommend using git as a revision control system11. It is extremely versatile
and powerful as a means of code management. From an existing directory of data,
we can issue the following commands

mkdir project
cd project
touch code.py
git init
git add code.py

Skyview telescope Multi-wavelength astronomical data [2]
https://skyview.gsfc.nasa.gov

Juno Mission Archive Ephemeris data and planetary imaging
https://www.missionjuno.swri.edu/junocam/processing

NRAO archive Radio astronomy data and imaging
http://archive.nrao.edu/

Hubble Legacy Archive Raw and processed images from HST instruments
http://archive.mast.edu

11 https://git-scm.com/

Science and Computing with Raspberry Pi

2-9

https://skyview.gsfc.nasa.gov
https://www.missionjuno.swri.edu/junocam/processing
http://archive.nrao.edu/
http://archive.mast.edu
https://git-scm.com/


If we edit the file code.py, and then wish to commit and add those changes to our
repository,

git commit -m "File update"
git push -u origin master

An example Bitbucket Git repository is shown in figure 2.4. One important
feature of using revision control is the ability to see a history of changes to the code.
The diff view in a development environment or website like Bitbucket will show
where and when changes were made (figure 2.5).

2.7 Jupyter notebooks
Jupyter notebooks in Python give similar functionality as Mathematica notebooks
with interactive content in a web browser12. Inline plots can be activated with

%matplotlib inline

The advantage of using a Jupyter notebook is that code can be shared with rich
text and headings in a web page format, and edited and interacted with by a user.
Figure 2.6 shows what the interface looks like. The user can also use Jupyter
notebooks in the Google Colab interface13.

Figure 2.4. Bitbucket is one of many hosting repositories for source code management using git. The GUI
interface here gives all the revision history of all code that has been committed to this particular repository.

12 https://jupyter.org/
13 https://colab.research.google.com. This allows sharing of Python scripts, using GPUs, and easily importing
many of the Python libraries used in this text.
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2.8 Coding pedagogy
Each chapter in this book is broken down into sections that will cover a particular
exercise. We will introduce the scientific or technical nature of the exercise, what
software and libraries will be used, how the exercise is carried out, and how results
are obtained and displayed. Some sections will use Python and some Mathematica.
We will illustrate the strengths of each programming system and language via the
presented exercises. Each section will contain a list of requirements and objectives
for the exercise, as well as a brief written algorithm to outline what we wish to
accomplish. As part of good coding practice and scientific inquiry, such a procedure
should become standard practice in all software exercises.

Online content and examples for this book can be accessed at

https://bitbucket.org/brkent/raspberrypi

The git repository and code can be cloned at the Linux command prompt with

git clone https://bitbucket.org/brkent/raspberrypi.git

Python exercises
1. Use the Python datetime module to format today’s day, date, and time.
2. Create a Python function to convert temperature from degrees Fahrenheit to

Celsius.

Figure 2.5. Bitbucket is one of many hosting repositories for source code management using git. The GUI
interface here gives all the revision history of all code that has been committed to this particular repository.
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3. Create a Python function to search a list of integers and the number of
occurrences of each integer.

4. Determine a list of installed Python modules with your current installation.
5. Create a repository with Bitbucket or GitHub and commit the code you just

created.

Mathematica exercises
1. Create a new Mathematica notebook, and obtain basic data with the

Wolfram Alpha interface.
2. Generate a two-dimensional matrix (list) using the Table function.
3. Use ListAnimate or Manipulate to change the values of the matrix.

Figure 2.6. Example of a Jupyter notebook.
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Chapter 3

Chaos and non-linear dynamics

3.1 One and two dimensional pseudo random walks
As a useful exercise to start understanding how to write some basic Python code with
an interesting result, we will begin by generating one and two-dimensional pseudo
random walks. This exercise will serve a number of purposes—(i) Show basic Python
module usage, (ii) create an important example in generating random samples for
experiments, and (iii) graphing the results with Matplotlib.

Goals
• Write a first Python program.
• Understand the usage of Python modules and graphics packages.
• Generate and analyze a pseudo random walk.
• Start at the origin (x,y) = (0,0).
• Roll the dice and move in one of four directions randomly for each step—up,
down, left, or right.

• Repeat for a specified number of N steps.
• Values will be returned as a list of x and y positions for each step.

Code description and algorithm

The libraries we will need consist of

import numpy as np
import matplotlib.pyplot as plt
import random
import math

We assume that the walk begins at the origin in Cartesian coordinates. Our
movement is limited to one integer step forward or backward, essentially flipping a
fair coin each time with two possible outcomes.
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def randomWalk1D(length):
move = [1,-1]
movements = np.array([move[i]

for i in
np.random.randint(0,high=2, size=length)])

return list(np.cumsum(movements))

We will create a walk of 100 000 steps, plot the results, and save the figure.

# Create the walk
N = 100000
walk = randomWalk1D(N)

# Plot the results with matplotlib
fig = plt.figure(figsize=(10,10), facecolor='white')
ax = fig.add_subplot(111)
ax.plot(walk)

ax.set_xlim(0,N)
ax.axvline(x=0, color='grey')

ax.set_xlabel('Step')
ax.set_ylabel('Position from origin')
ax.set_title('1D Pseudorandom Walk')

plt.savefig('rwalk1D.png')

plt.show()

We note that the savefig method chooses the output based on the file suffix. A
publication quality EPS or PDF file can also be obtained. Figure 3.1 shows the result
of this code.

A two-dimensional pseudo random walk function can be written in a more
concise manner, but for now we will write it out explicitly such that it is clear to the
reader. It expands upon the 1D example but uses color coding to visualize the steps.

import numpy as np
import matplotlib.pyplot as plt
import random
import math

def randomWalk2D(length):
x,y = 0,0
walkx,walky = [x],[y]
for i in range(length):
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new = random.randint(1, 4)
if new == 1:

x += 1
elif new == 2:

y += 1
elif new == 3:

x += -1
else:

y += -1
walkx.append(x)
walky.append(y)

return [walkx,walky]

Figure 3.1. A one-dimensional pseudo random walk. The graph shows the displacement from the origin along
the number line for 100 000 steps. Each step allows a movement of an integer value of 1 or −1 along the y-axis.
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The main code block iterating over 10 000 steps with graphic elements is shown
below. At each step, the cursor can move an integer value of one up, down, left, or
right.

N = 10000
walka = randomWalk2D(N)

fig = plt.figure(figsize=(10,8), facecolor='white')
ax = fig.add_subplot(111)

im = ax.scatter(walka[0],walka[1],marker='s',
linewidth=0,s=15,c=range(N+1))

ax.axhline(linewidth=1, color='blue', linestyle='–')
ax.axvline(linewidth=1, color='blue', linestyle='–')
ax.axhline(y=walka[1][-1], linewidth=1, color='red', linestyle='–')
ax.axvline(x=walka[0][-1], linewidth=1, color='red', linestyle='–')
ax.axis('equal')

# Colorbar
cb = fig.colorbar(im, ax=ax)
cb.set_label('Steps')

# Set Labels
ax.set_xlabel('X position')
ax.set_ylabel('Y position')
ax.set_title('2D Random Walk')

plt.savefig('randomwalk2D.png')

plt.show()

Figure 3.2 depicts blue dashed lines showing the start of the random walk, with dark
red dashed lines indicating the finish.

Where does a random walk end up?
We can create many instances of our random walk over and over again, and

examine the distribution of where the random walk ends up finishing after N steps
[3]. Using the same randomWalk2D function

N = 1000
finalx=[]
finaly=[]
Ntrials = 10000
for i in range(Ntrials):

walk=randomWalk2D(N)
finalx.append(walk[0][-1])
finaly.append(walk[1][-1])
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dist = []
for i in range(0,len(finalx)):

dist.append(math.sqrt(finalx[i]**2 + finaly[i]**2))

fig = plt.figure(figsize=(8,8), facecolor='white')
ax = fig.add_subplot(111)
im = ax.hist2d(finalx, finaly, bins=20)
plt.savefig('randomwalk2Danalysis.png')
plt.show()

We have completed 10 000 trials of 1000 steps and binned the results into a two-
dimensional histogram, shown in figure 3.3.

Exercises.
1. Make a histogram of the 1D pseudo random walk and show the distribution

of where multiple trails end up after N steps.

Figure 3.2. A two-dimensional pseudo random walk. In this graph, the evolution of steps is color coded from
dark blue to yellow for 10 000 steps. Dashed blue and red lines show the start and ending points of the
sequence respectively.
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2. Determine the root mean square distance N of the 2D pseudo random walk
and plot versus N steps during the progression of the walk.

3. Keeping the number N steps small (N = 100), write a new function to make a
3D pseudo random walk.

3.2 Logistic maps, bifurcation, and chaos
Goals

• Understand how to create a logistic mapping function and what it represents.
• Create a non-linear recurrence relation.
• Created a cobweb plot in Python.
• Show convergence (or lack thereof) for the different parameter values and
using the same calculation, compute a bifurcation plot.

• Identify chaos in the non-linear relation.

Figure 3.3. 10 000 trials of a 2D pseudo random walk, each with 1000 steps. The resulting ending points of
each trial have been binned in 10 × 10 grid elements to make a 2D histogram.
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• Compute values for several hundred iterations with different parameter
values.

• Determine the derivative and compute the Lyapunov exponent.

Code description and algorithm
Non-linear dynamics and chaotic phenomena appear in many places in nature.

Many chaotic systems exhibit elegant mathematics that create incredible patterns of
stunning complexity. The initial conditions of a dynamic system can greatly impact
the temporal evolution of state. Physical phenomena can be modeled with a discrete
difference equation such that

α=+x f x( , ). (3.1)n n1

Based on input parameters α and xn, the result is a mapping of the function. Often
these recurrence relations provide useful numerical solutions to non-linear equations.
The logistic map represents a classic example with a one-dimensional equation [5]

α α= = −+f x x x x( , ) (1 ). (3.2)n n n n1

It is easiest to compute the values to see how xn propagates to xn+1 for a given
value of parameter α. Computed values for this mapping are shown in table 3.1.

We visualize the computed values in table 3.1 with a curve of the quadratic
function and intersecting the π/4 radians one-to-one relation line. For a value of
α = 2.7, the relation converges to a single value of 0.630. For other values of α,
(i) convergence takes a larger number of iterations, (ii) a periodic relation is
developed oscillating between two values (α = 3.1), or (iii) a sensitive dependence
on initial conditions results in chaotic behavior that never converges to a single value
or two (α = 3.6). Moving from x1 to xn is nicely shown in a cobweb plot for several
values of α (figure 3.4).

Table 3.1. Logistic map values for α = 2.7 showing convergence and α = 3.1 showing oscillation between two
values.

Logistic Map Values

n α = 2.7 α = 3.1

0 0.100 0.100
1 0.243 0.279
2 0.497 0.623
3 0.675 0.728
4 0.592 0.614
5 0.652 0.734
… … …

97 0.630 0.765
98 0.630 0.558
99 0.630 0.765
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import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(4.5,4), facecolor='white')
ax1 = fig.add_subplot(111)

iterations = 100

x = np.linspace(0, 1, 101)
alpha = 2.7
y = alpha * x * (1 - x)

Figure 3.4. Diagrams known as cobweb plots are generated for the Logistic Map equation. The top panels
show α values show fast convergence (α = 2.0) and slower convergence (α = 2.7) to a single value. The bottom
panels show α values with an oscillating return between two values (α = 3.1) and chaotic behavior that never
converges (α = 3.6). The blue line shows a one-to-one correspondence, and the black parabola indicates
possible values of the recurrence relation.
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ax1.plot(x,y, color='black')
ax1.plot(x,x, color='blue')

plt.xlim(0.0,1.0)
plt.ylim(0.0,1.0)

# Plot vector of path from Xn to Xn+1
Xn = 0.1
yval = 0.0
Xnvals = [Xn]
for i in range(iterations):

Xnp1 = alpha * Xn * (1 - Xn)
ax1.plot([Xn,Xn],[yval,Xnp1], color='red')
ax1.plot([Xn,Xnp1], [Xnp1,Xnp1], color='red')

yval = Xnp1
print(i, Xn)
Xn = Xnp1

Xnvals.append(Xnp1)

ax1.set_xlabel('Xn')
ax1.set_ylabel('Xn+1')
ax1.set_title('Logistic equation alpha={!s}'.format(str(alpha)))

plt.savefig('logisticAlpha{!s}.png'.format(alpha))

plt.show()

If we define an arbitrary maximum number of iterations N = 1000 for each value
of α, convergence is reached by N/2 iterations. Plotting xn versus α for all points
where the quadratic function is intersected, we obtain a fascinating bifurcation
diagram (figure 3.5). This clearly shows where stability in the non-linear relation is
obtained.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(7,5), facecolor='white')

iterations = 1000

# Bifurcation Curve
ax2 = fig.add_subplot(111)

lambdas = []
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alphas = list(np.linspace(2.8,4.0,iterations))
for alpha in alphas:

Xn = 0.1
Xnvals = [Xn]
for i in range(iterations):

Xnp1 = alpha * Xn * (1 - Xn)
Xn = Xnp1
Xnvals.append(Xnp1)

Xnvalsplot = Xnvals[len(Xnvals)/2:-1]
ax2.scatter(np.repeat(alpha,len(Xnvalsplot)),

Xnvalsplot, s=0.005, color='red')

ax2.axvline(x=3.1, linewidth=1, color='black', linestyle='–')
ax2.axvline(x=3.6, linewidth=1, color='black', linestyle='–')

plt.xlim(2.8,4.0)
plt.ylim(0.0,1.0)

ax2.set_xlabel('Alpha')
ax2.set_ylabel('Xn+1')
ax2.set_title('Bifurcation Diagram')

plt.savefig('bifurcation.png')

plt.show()

Figure 3.5. A bifurcation diagram of the logistic map equation. This graph is generated by plotting values after
100 iterations. For values of α < 3.0, the recurrence relation converges to a single value. For 3.0 < α ≲ 3.45, the
relation oscillates between two values. For 3.45 ≲ α ≲ 3.55, the oscillations occurs between four values. After
that, the behavior becomes chaotic, albeit with islands of stability.
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We can identify chaotic behavior in our experiment via the Lyapunov character-
istic exponent [4]. The value quantifies the average exponential growth per unit time
between two states. If we define the difference between successive iterations as

ϵΔ = λX e . (3.3)n
n

We can easily evaluate this in our code—simply differentiate our logistic map
function and average over N iterations. In the limit that n goes to infinity, we define
the Lyapunov exponent with

∑λ =
→∞ =

−

n
df x

dx
lim

1
ln

( )
. (3.4)

n
i

n

0

1
i

Figure 3.6 shows the Lyapunov exponent λ versus α. For α > 3.57, chaotic
behavior (λ > 0) is exhibited, as are windows of periodicity or convergence (λ < 0).

import numpy as np
import matplotlib.pyplot as plt
from math import log

fig = plt.figure(figsize=(7,5), facecolor='white')

iterations = 1000

Figure 3.6. Computing the Lyapunov exponent gives a quantitative measure of chaos. For values of λ > 0, the
recurrence relation does not converge and is chaotic. The steep depressions show regions of stability, and areas
where there is a turnover at the zero line show a region where the oscillations split.
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# Lyapunov Exponent Calculation
lambdas = []
alphas = list(np.linspace(2.8,4.0,iterations))
for alpha in alphas:

Xn = 0.1
Xnvals = [Xn]
lyapunovvals = []
for i in range(iterations):

Xnp1 = alpha * Xn * (1 - Xn)
lyapunovvals.append(log(abs(alpha - 2 * alpha * Xn)))
Xn = Xnp1
Xnvals.append(Xnp1)

lambdas.append(np.mean(lyapunovvals))

outputstring = 'Alpha: {0:.3f} Lambda: {1:.3f}'
print(outputstring.format(alpha, np.mean(lyapunovvals)))

Xnvalsplot = Xnvals[len(Xnvals)/2:-1]

# Plot Lyapunov Exponent versus Alpha
ax3 = fig.add_subplot(111)

ax3.plot(alphas, lambdas, color='blue')
ax3.axhline(y=0.0, linewidth=1, color='grey', linestyle='–')
plt.xlim(2.8,4.0)
plt.ylim(-3.5,1.5)
ax3.set_xlabel('Alpha')
ax3.set_ylabel('Lambda')
ax3.set_title('Lyapunov Exponent')

plt.savefig('lya.png')

plt.show()

Exercises
1. Determine and plot the bifurcation diagram for negative values of α. Is the

appearance of chaotic behavior symmetric with the positive side of the
x-axis?

2. Compute and plot the Lyapunov exponent lambda for negative values of α.

3.3 Cellular automata
Goals

• Create your first Mathematica notebook.
• Understand the usage of Mathematica syntax, functions, and data structures.
• Create cellular automata diagrams.
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• Cells in a simple one-dimensional cellular automaton have a binary state, on
or off .

• The neighborhood of a cell—the cell itself, and the cells immediately adjacent
to the left and right are grouped together to determine the next step in the
automaton evolution.

• The determination of this outcome is called a rule, often identified as the
Wolfram number.

Algorithm and code description
A cellular automaton is a discrete numerical system typically represented by the

following criteria.
• A lattice grid of arbitrary dimension showing a visual representation of the
state of the automaton.

• A specified set of rules dictating the propagation of a state n + 1 based on the
state n.

The lattice grid will evolve based on the set of numerical rules of state, with
outcomes that include symmetric, homogeneous, chaotic, pseudo-random, non-
linear, or oscillating behavior. The computing language Mathematica is included
with Raspberry Pi and provides an innovative platform for doing cellular automata
computations. Some automatons are mathematical curiosities, while others clearly
shown patterns that manifest themselves in nature [2].

One dimensional elementary cellular automata consist of an orthogonal
Cartesian grid where a single grid element state is determined by the previous
adjacent grid and the two left/right neighbors (figure 3.7). This triplet pattern has
22

3

= 256 possible rule determinations, which are nominally identified by their
Wolfram number. Many reach a steady homogeneous state quickly, but others
exhibit fascinating complex behavior. These automata can be the basis for a number
of numerical and physical phenomena. Simply click on the Mathematica logo in the
upper left corner of your Raspbian desktop to start the program with a new
notebook. Code for displaying a cellular automata rule is given by

result = CellularAutomaton[3];
RulePlot[result]

With a new input line in the same Mathematica notebook, we can use the
CellularAutomaton function to create a 1D automaton. This function takes three
inputs—a rule, an initial condition (typically a list denoted with curly brackets), and
a number of iterations. We can recreate Sierpinski’s Triangle with [7]

Figure 3.7. Using the Mathematica function RulePlot for Rule 3 we can see all possible outcomes of a
particular rule set where each block has a binary state (0 or 1, black or white).

Science and Computing with Raspberry Pi

3-13



result90 = CellularAutomaton[90, {{1}, 0}, 50];
ArrayPlot[result90]

Note that the resulting nested list is stored in the variable result, and the screen
output is suppressed by the semicolon. The Mathematica notebook interface is
sophisticated enough that it will then ask if we wish to plot the results (figure 3.8). By
clicking on plot we can see a graphical representation of the result (figure 3.9).

Figure 3.8. After creating a sequence of ten steps with the function CellularAutomaton, the Mathematica
interface will ask the user if they wish to create a plot.

Figure 3.9. Cellular automata of Rule 90. This shows the formation of Serpinski’s Triangle.
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Totalistic cellular automata and two-dimensional automata systems like
Conway’s Game of Life show how a complicated dynamical system can evolve
[1, 6] (figure 3.10). One dimensional totalistic cellular automata are typically colored
to distinguished the averaged state from one generation to the next (figure 3.11).

ArrayPlot[CellularAutomaton[{1084, {3, 1}, 1}, SeedRandom[42];
RandomInteger[2, 401], {400, {-150, 150}}],

Frame -> True,
ColorFunction -> "Pastel"]

Exercises
1. The initial condition for Serpinski’s Triangle (Rule 90) create a symmetric

geometry as the automaton propagates. Do the same exercise with pseudo
random initial conditions. Try the same exercise with a different rule (Rule
110, Rule 60, etc).

2. Mathematica supports totalistic multi-state cellular automata calculations.
Rather than a square being a simple binary result of 0 or 1 (k = 2), one can
assign a state to be 0, 1, or 2 (k = 3) and color accordingly. How many how
many outcomes can there be for a given rule? How many possible rule sets?
Using the same CellularAutomaton function, create a plot of one of these
rules (there are many choices!).

3. Experiment with Conway’s Game of Life with the short Wolfram imple-
mentation1. This online demo shows that a complex example can be
implemented with very little code.

Figure 3.10. Conway’s Game of Life totalistic two-dimensional cellular automata.

1 https://www.wolfram.com/language/gallery/implement-conways-game-of-life/
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Figure 3.11. Color totalistic cellular automata for 400 steps, random initial conditions and a horizontal spread
of 300 pixels.
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Chapter 4

Physics and astronomy

4.1 A simple pendulum
We can examine the physics of a simple plane pendulum with Mathematica.

Goals
• Import packages into Mathematica.
• Understand the differential equation for a simple pendulum.
• Understand how to solve differential equations in Mathematica.
• Make assumptions about the motion for small angles.
• Solve the time dependent differential equation numerically.
• Understand the relationships between the physical parameters of the system.
• Plot the angle and angular velocity as functions of time.

Algorithm and code description
The differential equation for this dynamic system with a mass m constrained to
move along a circle of radius l is given by

θ θ¨ = − g
l

sin (4.1)

where the angle θ is a function of time. Like many introductory exercises, we assume
that the pendulum will move in small angles such that we can use a linear
approximation for the trigonometric sine function

θ θ≅sin (for small angles). (4.2)

This allows us to treat the system as a simple harmonic oscillator, with a solution
θ(t), angular frequency ω0, period τ, and energy budget of kinetic T and potential V,
given as

θ θ ω ω= ≡t t
g
l

( ) cos( ) where (4.3)0 0 0
2
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τ π≃ l
g

2 (4.4)

ω θ= = ˙T I m l
1
2

1
2

(4.5)2 2 2

θ= −V mgl (1 cos ). (4.6)

This small angle scenario with no dissipation of energy is conservative such that
the sum of kinetic and potential energy remain constant. For small angles, the period
does not depend on θ0. TheMathematica code is very straight forward and intuitive.
All physical units are assumed to be SI.

theta''[t] == (-g/l)*Sin[theta[t]];

g = 9.8;

l = 2.0;

theta = First[
theta /. NDSolve[{theta"[t] == -(g/l)*Sin[theta[t]],

theta[0] == Pi/2, theta'[0] == 0}, theta, {t, 0, 10}]];

p1 = Plot[theta[t], {t, 0, 10}, Filling -> Axis, PlotStyle -> Red,
FrameLabel -> {"t (seconds)", "theta (radians)"}, Frame -> True];

p2 = Plot[theta'[t], {t, 0, 10}, Filling ->Axis, PlotStyle ->Blue,
FrameLabel ->{"t (seconds)", "theta'(radians/sec)"},
Frame -> True];

GraphicsColumn[{p1, p2}]

Figure 4.1 shows the angle θ and angular velocity of this simple pendulum
exercise.

4.2 The double pendulum
Goals

• Understand the Lagrangian of the double pendulum system and solve
numerically.

• Use Wolfram Demonstrations to create and study an animation of the time
evolution of the double pendulum.

Algorithm and code description
The double pendulum is an interesting dynamical system that can exhibit chaotic
behavior with sensitive dependence on initial conditions. Here we consider two
masses each of mass m, connected by massless rigid rods both of length l (figure 4.2).
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The equations of motion for this system are best solved using a Lagrangian
formulation L with the difference of kinetic and potential energies

= −L T V . (4.7)

We consider generalized coordinates θ1 and θ2, massless rod lengths l1 and l2, and
masses m1 and m2 to get [2]

Figure 4.1. Solving the simple pendulum motion for small angles and no dissipation of energy. The maximum
angular velocity is reached as the pendulum swings through its lowest point at θ = 0 radians.
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θ
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θ θ
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+ ′

+ ′ ′ −
+ + +

L m m l t

m l t
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(4.8)
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Based on this Lagrangian Mathematica can create the Euler–Lagrange differ-
ential equations1 and numerically solve the system for θ1 and θ2. We can then
translate the positions of each mass into a Cartesian plot and trace the trajectories.
In brief, the Mathematica code looks like

<< VariationalMethods'

eqns = Eulerequations[L, {theta1[t], theta2[t]}, {t}];
eqnssolve = eqns /. {g -> 9.8, m1 -> 1, m2 -> 1, l1 -> 1, l2 -> 1}

tstart = 0; (*Start time frame*)
tend = 20; (*Ending time frame for \
Manipulate*)
tstep = 0.025; (*Time step *)

The VariationalMethod import allows us to obtain the equations of motions by
passing the Lagrangian to the function, and then solving for θ1 and θ2 as a function
of time t.

We then use NDSolve to solve for θ1 and θ2.

Figure 4.2. The setup of the simple and double pendulum. Each is fixed on a frictionless pivot and massless
rods. The introductory computation for the simple pendulum is made for small angles of θ whereas the double
pendulum can swing a full 2π radians.

1 http://reference.wolfram.com/language/VariationalMethods/ref/Eulerequations.html

Science and Computing with Raspberry Pi

4-4

http://reference.wolfram.com/language/VariationalMethods/ref/Eulerequations.html


sol = NDSolve[{eqnssolve[[1]], eqnssolve[[2]],
theta1[0] == Pi, theta2[0] == Pi - 0.6,
theta1'[0] == 0, theta2'[0] == 0

},
{theta1, theta2, {t, tstart, tend}
];

Figure 4.3 shows a plot tracing the path of the double pendulum solved via
NDSolve. The reader should download the Wolfram Demonstration from the book
website with the code to see the animation of the result.

Exercises
1. Make plots varying the length of the pendulum. Look up the gravitational

constants on other planetary bodies and vary that parameter as well, keeping
SI units.

2. The original simple pendulum exercise assumes no damping factor. Add in a
parameter to the differential equation that is proportional to the angular
velocity and plot the solution you find with the function NDSolve.

–2 –1

–1

–2

1 2

1

2

Figure 4.3. Motion of the double pendulum with two equal masses and massless rods of the same length.
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4.3 Hydrostatics
Goals

• Use a simple example to understand how to illustrate Wolfram Alpha in
Mathematica.

• Understand physical unit systems and Quantity function in Mathematica.
• Learn about pressure and density as it related to basic hydrostatics.
• Use free form language to obtain the appropriate physical quantities for the
computation.

• Understand pressure differences within a water column.
• Determine the pressure at depth.

Algorithm and code description
Atmospheric pressure at sea level is taken to be 14.696 psi or 101 325 Pascals at a
temperature of 20 degrees Celsius [6]. This value, which we will call Patm is the
starting measurement from which we can compute the hydrostatic pressure
surrounding a scuba diver underwater.

If we consider a cylindrical column of water with cross sectional area A and
depth h, then the difference in forces at different pressures of the column must be
equal to the weight of the water column. Thus the upward force below must be

Figure 4.4. A water column of depth h experiences a difference in force that is balanced by the weight of the
water in a column of cross sectional area A.
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greater than the force from atmospheric pressure above (figure 4.4). The force
difference is given by

Δ =F F (4.9)cyl

ρ× − × = ×P Area P Area gh Area (4.10)depth atm

ρ= +P P gh. (4.11)depth atm

We can take this opportunity to obtain physical data with Wolfram Alpha. This
online service allows a user to do computations by entering natural language input
and free-form linguistics. This can be employed in any Mathematica notebook by
using the equals (=) prefix. If we want the density of water in SI units, simply input
the following into a notebook

= density of water in kg per cubic meter. <Shift-Enter>

Furthermore, we can use the Quantity function in Mathematica to give physical
units to our calculations.

Quantity[1000.0, "Kilograms"/"Meters"^3] *
Quantity[9.8, "Meters"/"Seconds"^2] *
UnitConvert[Quantity[34, "Feet"], "Meters"]

= 101559.kg m^{-2}

The density of fresh water is 1.00 × 103 kg m−3 at standard atmospheric pressure
and temperature. The average density of salt water in Earth’s oceans is slightly
higher at 1.025 × 103 kg m−3.

We can further convert this to convenient units of atmospheres (atm) to further
demonstrate the power of the Mathematica notebook.

UnitConvert[
Quantity[101559.,
"Kilograms"/("Meters" "Seconds"^2)], "Atmospheres"]

= 1.00231 atm

Thus for every 34 feet a diver descends, the pressure increases by approximately 1
atmosphere. A comparison of the small, but important pressure difference at depth
can be made via the following code (figure 4.5).

g = Quantity[9.8, "Meters"/"Seconds"^2];
rhofresh = Quantity[1000.0, "Kilograms"/"Meters"^3] ;
rhosalt = Quantity[1025.0, "Kilograms"/"Meters"^3] ;
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Plot[{Quantity[1.0, "Atmospheres"] + UnitConvert[(rhofresh * g
* UnitConvert[Quantity[h, "Feet"], "Meters"]), "Atmospheres"],

Quantity[1.0, "Atmospheres"] + UnitConvert[(rhosalt * g
* UnitConvert[Quantity[h, "Feet"], "Meters"]), "Atmospheres"]

},
{h, 0, 100},
AxesLabel -> {"Depth (feet)", "Pressure(atm)"}]

Exercises
1. Explore Wolfram Alpha to determine the density changes of water at

different temperature for a constant pressure in the liquid phase.
Remember to start with equals sign and keep the units consistent with
Quantity.

2. The Mariana Trench has a depth of approximately 36 000 feet (∼11 000
meters). What is the water pressure (salt water) in the column at this depth in
psi? Assume the density of water is increased by approximately 5%.

4.4 Astronomical catalogs
Goals

• Select a subset of the brightest stars in the sky.
• Use the Python csv module to import and filter an astronomical catalog.
• Create a polar grid of the northern celestial hemisphere.
• Use Matplotlib to scale the stellar magnitudes and plot the data.
• Indicate the 0◦ Galactic plane of the Milky Way Galaxy.

Figure 4.5. Increasing pressure in atmospheres as a function of depth in feet for both fresh and salt water.
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Algorithm and code description
Astronomical catalogs have continued to increase in size as telescopes acquire more
data at a higher rate, with more sensitive detectors, larger pixels and faster
computing hardware. All-sky surveys like those conducted with the Very Large
Array (VLA, [8]), Arecibo Radio Telescope [4], and the future Large Synoptic
Survey Telescope (LSST, [7]) help us study stars, galaxies, time-domain events, and
the large scale structure of the Universe. Catalogs are an excellent resource to utilize
our Python skills on Raspberry Pi. For this example we will build a Python script to
plot a catalog of the brightest stars in the night sky.

First, we define our prelude with module imports.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure, show, rc, grid
import csv

Next, we use the Python csv.DictReader module to import the formatted text
data, skipping the first header line and only choosing stars in the northern celestial
hemisphere and with apparent V-band magnitudes of V ⩽ 5.0. The data are listed in
the General Catalogue of Photometric data2 [3]. We specify as a Python list the
names of all fields in the data file.

# get data
filename = 'bright.dat'
fields = ['_RAJ2000','_DEJ2000','HR','Name',

'HD','ADS','VarID','RAJ2000',
'DEJ2000','Vmag','B-V','SpType','NoteFlag']

reader = csv.DictReader(open(filename), fields, delimiter='|')
# Skip first header line
next(reader)

# Define columns of interest
ra = []
dec = []
vmag = []

# Add in vertex elements with XY coordinates at each row
for row in reader:

try:
if ((float(row['_DEJ2000']) > 0.00) and

(float(row['Vmag']) <= 5.0)):
ra.append(float(row['_RAJ2000']))
dec.append(float(row['_DEJ2000']))
vmag.append(float(row['Vmag']))

except:
pass

2 http://cdsarc.u-strasbg.fr/viz-bin/Cat?II/128
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Next we lay out a polar projection grid for declinations of 0° < δ < +90° and scale
the points by V-band magnitude.

# Grid radar green, dotted lines
rc('grid', color='#006363', linewidth=1, linestyle=':')
rc('xtick', labelsize=15, color='black')
rc('ytick', labelsize=15, color='black')
rc('axes',edgecolor='white')

# make a square figure
size = 10
fig = figure(figsize=(size, size), facecolor='white')
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True, axisbg='black')

magscale = {'5':5,'4':10,'3':30,'2':40,'1':50,'0':100,'-1':100}

for i in range(len(ra)):
ax.scatter(np.array(ra[i])*np.pi/180.0, 90.0-np.array(dec[i]),

s=magscale[str(int(round(vmag[i])))],
color='blue', edgecolor='white')

Finally we can use SkyCoord from the AstroPy module and draw the Galactic
plane as a dashed line, and label the plot:

# Galactic Plane
import astropy.units as u
from astropy.coordinates import SkyCoord

gl = list(np.linspace(0,360,100))
gb = list(np.zeros(100))
gc = SkyCoord(l=gl*u.degree, b=gb*u.degree, frame='galactic')

raline=gc.fk5.ra.value
decline=gc.fk5.dec.value
raplot=[]
decplot=[]
for i in range(len(raline)):

if decline[i] > 0.0:
raplot.append(raline[i])
decplot.append(decline[i])

ax.plot(np.array(raplot)*np.pi/180.0,
90.0-np.array(decplot),
lw=2,linestyle='–', color='#ff7400')

ax.set_rmax(90.0)
grid(True, color='grey')

ax.set_theta_direction(-1)
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ax.set_theta_offset(np.pi/2)
ax.set_rgrids([1, 10, 20, 30, 40, 50, 60, 70, 80, 90],

['90','80','70','60','50','40','30','20','10','0'],
20, fontsize=12, color='white')

ax.xaxis.label.set_color('white')
ax.yaxis.label.set_color('white')

ax.text(np.pi/2,10,'NCP',fontsize=14,fontweight='bold', color='white')
ax.text(225.0*np.pi/180.0,140,

'Northern Celestial Hemisphere \nBrightest Stars',
fontsize=14,fontweight='bold', color='black')

plt.savefig('polarstars.png')

plt.show()

The result, where you can see many patterns of stars known as asterisms within
the constellations, is shown in figure 4.6.

135
v

Figure 4.6. Plot showing the brightest stars in the northern celestial hemisphere. The size of the points
are scaled with apparent magnitude of the star. The dashed orange line indicates the Galactic plane of the
Milky Way.
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Exercises
1. Download the NRAO VLA Sky Survey 1400 MHz radio survey [1] and use

the same technique outlined in this section to plot the brightest radio sources
in the northern sky. An example and data are provided on the book website.

4.5 The Lane–Emden equation
Goals

• Understand a basic polytropic model of a star.
• Input the differential equation using the Math Assist interface.
• Numerically solve the Lane–Emden equation and tabulate the results for each
polytropic index.

• Plot the results.

Algorithm and code description
For stars that are in hydrostatic equilibrium, we assume a relation between pressure
P, gravitational potential Φ, and density ρ of

ρ= − ΦdP
dr

d
dr

. (4.12)

If a simple relation exists where the density does not depend on the temperature,
then we can write a polytropic relation. Kippenhahn et al [5] gives a thorough
overview of the background physics and derivation. We will examine the numerical
solutions of the Lane–Emden equation, given by

θ ξ ξ θ ξ θ ξ″ + ′ + =−( ) 2 ( ) ( ) 0 (4.13)n1

where dimensionless variables θ and ξ relate to the density ρ and radius r. The
equation is used in the study of polytropic gaseous spheres and the modeling of stars.
Solutions of this second-order differential equation use polytropes to relate the
pressure P and density ρ as a function of r, the radial coordinate measure from the
center of the polytropic sphere (the star); P and ρ have the polytropic relation of

ρ= +P K (4.14)n1 1

where K is the polytropic constant and n is the polytropic index that we will
manipulate in the Mathematica notebook.

The equation is solved with the polytropic index value n = 0,…, 5 for the
dimensionless function θ(ξ). We want to display the first root of each solution,
derivatives of that root value, and the critical and mean density ratio. This will
involve solving the differential equation in Mathematica. We group terms and
rewrite the Lane–Emden equation as

ξ ξ
ξ θ

ξ
θ+ =d

d
d
d

1
0. (4.15)n

2
2

⎛
⎝⎜

⎞
⎠⎟
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This equation is shown typed directly into a Mathematica notebook in figure 4.7.
Using the Math Assist typesetting commands we can input the symbols directly
without any cumbersome syntax.

We numerically solve the equation with NDSolve for integer values of n and initial
θ and θ′ values of 1 and 0 respectively. Variable ξ goes from 0.01 to 10. The lower limit
of ξ is such that a positive value to get convergence in the solver (figure 4.8).

A plot of the solution can be created with

nvalue = 3;

Plot[Theta[Xi] /. sols[[nvalue + 1]], {Xi, 0.01, 10}]

Exercises
1. Compute the roots of the solutions for n = 1, 2, 3, 4 and 5. Use the Wolfram

Demonstrations CDF file to aid in your determination located at http://
demonstrations.wolfram.com/LaneEmdenequationInStellarStructure/.

Figure 4.7. Lane–Emden equation syntax and method of solving the equation inMathematica. The differential
equation is solved with all exponents replaced with 0 through 5, evaluated with initial conditions (effectively at
ξ = 0) for θ and θ′.

Figure 4.8. Example Lane–Emden solution with the root highlighted for n= 3.
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4.6 Radiative transfer
Goals

• Understand the equation and parameters of radiative transfer.
• List all parameters associated with the general differential equation.
• Understand the different regimes of optical depth.

Algorithm and code description
The equation of radiative transfer describes the propagation of radiation and the
effects of emission, absorption, and scattering through a medium. Mathematica can
solve for the intensity Iν as a function of optical depth. This section shows the simple
case of an initial intensity through a volume of gas with no scattering, constant
opacity, gas density, and source function intensity.

The equation of radiative transfer is given by

ρ
κ= − +ν

ν ν ν
dI
ds

I j
1

(4.16)

where Iν is the specific intensity, ρ is the gas density, κν is the opacity or absorption
coefficient, and jν is the emission coefficient. The equation describes how incident
radiation is affected along a path length s. We define the source function Sν as well as
the optical depth τν

κ
==ν

ν

ν
S

j
(4.17)

∫τ κ ρ=ν ν ds (4.18)
s

0

and can rewrite the equation of radiative transfer in terms of τ

τ
= − +ν

ν ν
dI
d

I S . (4.19)

The formal solution for the specific intensity at a given frequency ν for a zero
angle of incidence (plane-parallel) is

∫τ = +ν
τ

τ

ν
− −I I e S t e dt( ) ( ) . (4.20)t

0
0

Figure 4.9 shows a schematic diagram of this phenomenon. The intensity
approaches the source function intensity for optically thick cases (τ ≫ 1) and the
initial intensity of the background source I0 for optically thin cases (τ ≪ 1).
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The following Mathematica code allows us to directly input the differential
equation and solve it.

eq1 = D[inu[tau], tau] == -inu[tau] + S0;
sol = DSolve[{eq1, inu[0] == i0}, inu[tau], tau];

As an example we can plot Iν versus τ for arbitrary values of I0 and S0 (figure 4.10).
Figure 4.11 shows a GUI that the reader can download to study the code and

vary the parameters discussed in this section.

Exercises
1. Write code for and plot the specific intensity for optically thin cases (τ ≪ 1).
2. Use the Wolfram Demonstrations CDF file to vary the density ρ, opacity κ,

and path length s to study the effects on the specific intensity I at http://
demonstrations.wolfram.com/ComputationOfRadiativeTransfer/.

Figure 4.9. Radiative transfer diagram. The initial intensity is exponentially attenuated by the intervening
‘cloud’ and source function along the line of sight to the telescope. The source function also contributes to the
emission and is integrated along the path s. The final intensity Iν is what is observed as the sum of these
components.

Figure 4.10. Solution of the radiative intensity Iν versus optical depth τ.
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Chapter 5

Machine learning

5.1 Spanning trees
Goals

• Install a new Python module.
• Understand how a minimum spanning tree is constructed.
• Plot the results and use the trees to identify clusters.

Algorithm and code description
Spanning trees represent a graph of connected points with edges that can be assigned
weights. A Minimum Spanning Tree (MST) can be generated that minimizes the
computed sum of weights and therefore a network of connecting edges, with no
closed loops in the graph [2, 3]. Figure 5.1 shows the construction of the MST with
purple lines. The generation of these graphs for a collection of points represents an
unsupervised machine learning technique [5].

Using the mst_clustering Python module with scikit-learn, we can create and
examine MSTs [9]. The required modules are installed with the commands

conda install numpy scipy scikit-learn
conda install pip
pip install mst_clustering

If downloading the module stand alone

python setup.py install

Now, entering an IPython prompt, we can create a pseudo random set of x and y
values and create an MST.

doi:10.1088/978-1-6817-4996-9ch5 5-1 ª Morgan & Claypool Publishers 2018
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import math
import numpy as np
from random import random
from mst_clustering import MSTClustering

# Random points
minimum = 0
maximum = 10

cluster = []
for i in range(100):

x = minimum + (maximum - minimum) * random()
y = minimum + (maximum - minimum) * random()
cluster.append([x,y])

model = MSTClustering(cutoff_scale=2, approximate=False)
labels = model.fit_predict(cluster)

The model Python object and associated class methods will group points together
and create the MST. We can then plot the points and their associated connections
(figure 5.2).

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(10,10), facecolor='white')
ax = fig.add_subplot(111)

Figure 5.1. Minimum Spanning Tree (MST) where the tree is shown by the purple lines. The thin black lines
show all possible connections.
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X = model.X_fit_
segments = model.get_graph_segments(full_graph=True)

ax.plot(segments[0],segments[1], '-k', zorder=1, lw=1)
ax.scatter(X[:, 0], X[:, 1])
plt.show()

We can now expand into a slightly more complex data input and MST exercise
using the positions of galaxies in clusters. Galaxy group classification has been
carried out in a number of ways. We use the group classification published as the
Abell catalog of rich clusters [1]. Building on the examples and data from Dressler

Figure 5.2. Minimum Spanning Tree example and resulting connections drawn between a pseudo randomly
generated sample of points.
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and Rhee et al [4, 7], we can import formatted text data into a list of Python
dictionaries. We use the same csv reader class to import an astronomical catalog into
a list of Python dictionaries.

import collections
import csv
import numpy as np
import matplotlib.pyplot as plt
from mst_clustering import MSTClustering

filename = 'dressler2.tsv'

fields=['RAJ2000','DEJ2000','Cluster','Gal','Xpos','RA1950',
'DE1950','MType','mvis','mbulge','ell','cz','n_cz',
'_RA.icrs','_DE.icrs']

reader = csv.DictReader(open(filename), fields, delimiter='|')

dicts = []

#Skip three header lines
next(reader)
next(reader)
next(reader)
for row in reader:

dicts.append(row)

The next section of code sorts the list of dictionaries into a Python collection.

# Sort galaxies into cluster groups
clusternames=[]
for row in dicts:

clusternames.append(row['Cluster'])

clusterset = set(clusternames)
clusternames = list(clusterset)

catalog = collections.defaultdict(list)

for cluster in clusternames:
for row in dicts:

if cluster in row['Cluster']: catalog[cluster].append(row)

Finally, we will compute the mean Right Ascension and Declination (x and y in
this example) to determine the relative positions of each cluster member. The MST is
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computed, and graphed in a grid of 4 x 3 plots with Matplotlib. We also modify the
plot axis labels to be more of a publication quality type text (figure 5.3).

fig = plt.figure(figsize=(12,16), facecolor='white')

count=0

for clusterselect in catalog.keys():

print(clusterselect)

xcoords = []

ycoords = []

for row in catalog[clusterselect]:

xcoords.append(float(row['RAJ2000']))

ycoords.append(float(row['DEJ2000']))

xcentroid = np.mean(xcoords)

ycentroid = np.mean(ycoords)

Y=[]

for row in catalog[clusterselect]:

Y.append([float(row['RAJ2000'])-float(xcentroid),

float(row['DEJ2000'])-float(ycentroid)])

model = MSTClustering(cutoff_scale=2, approximate=False)

labels = model.fit_predict(Y)

X = model.X_fit_

segments = model.get_graph_segments(full_graph=True)

ax = plt.subplot(4,3, count+1)

ax.plot(segments[0],segments[1], '-k', zorder=1, lw=1)

ax.scatter(X[:, 0], X[:, 1])

ax.set_xlim(-1.5,1.5)

ax.set_ylim(-1.5,1.5)

ax.text(-1, 1, clusterselect)

count = count + 1

plt.rc('text', usetex=True)

plt.rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})

plt.draw()

plt.savefig('abell.png')

plt.show()
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Exercises
1. The example given in the mst_clustering documentation shows how clusters

can be identified with a ‘trimmed’ minimum spanning tree. Compare the
results of an MST with those of the sklearn.cluster module.

Figure 5.3. Minimum Spanning Trees of 12 Abell Clusters. The x- and y-axis show the relative Right
Ascension and Declination positions of galaxies within each cluster.
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2. Compare the results of the mst_cluster Python module to the Mathematica
function FindSpanningTree1.

5.2 Neural networks and classification
Goals

• Understand the basics of an artificial neural network system.
• Understand how to obtain and define a training set.
• Import a small training dataset.
• Use the function Classify[] to study the training data.
• Compare two different Mathematica classification functions and their prob-
ability calculations.

• Use ClassifyCluster similar to previous machine learning exercises.

Algorithm and code description
Artificial neural networks mimic the same pathways and connections observed in
neurological systems [8]. Each artificial neuron in the system acts as a node just like
in the brain. Each node has inputs that are weighted, summed and then given a
binary status (ON/OFF—a Heaviside step function) in the simplest form of an
activation function (figure 5.4).

The array of outputs is subject directly to the inputs and pre-programmed
function. Mathematically,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ϕ ϕ· = ·

=

x wx w( ) ( ) (5.1)
i

n

1

i i

where x is the input vector and w represents the weighting function. There can be
multiple layers of inputs nodes that filter into a single output element. A simple yet
effective function inMathematica is Classify[]. We can pass it a training data set and
use the resulting object to categorize an image.

Figure 5.4. Neural network where input nodes are weighted, summed, and then passed through an activation
function to an output node.

1 https://reference.wolfram.com/language/ref/FindSpanningTree.html
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The CIFAR-10 dataset2 is used in many Mathematica documentation examples,
and we will do a similar exercise here [6]. There are 60 000 images in the data—for
illustrating this example on a Raspberry Pi, we will choose a random sample of 500
images for our training set as it takes less time to execute, but still gives appreciable
results. The commands are relatively straight forward:

obj = ResourceObject["CIFAR-10"];
trainingList = ResourceData[obj, "TrainingData"];
trainingDataSubset = RandomSample[trainingList, 500];
classifierObject = Classify[trainingDataSubset];

We can now pass any image to this classifierObject.Mathematica’s interface gives
a user the ability to directly copy and paste an image directly into a function’s
arguments via the notebook (figure 5.5).

We can also determine a probability distribution to understand the quantify the
confidence in our calculation (figure 5.6).

We can complete a similar exercise to our minimum spanning tree in section 5.1
and use ClusterClassify. We specify a priori information into how many groups we
wish to break down the clusters.

Figure 5.6. With keyword ‘Probabilities’ passed as a keyword argument, we can see that the input image is
classified as an airplane with a certainty of 94%.

Figure 5.5. Classify is used on the CIFAR-10 training data. Mathematica allows the user to directly paste an
image into the resulting classifier Object and give a result.

2 https://www.cs.toronto.edu/kriz/cifar.html
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First, define cluster of pseudo random data3:

distribution = MixtureDistribution[{1, 1, 0.5}, {
MultinormalDistribution[{10, -2}, {{2, 0}, {0, 2}}],
MultinormalDistribution[{-7, 1}, {{2, 0}, {0, 2}}],
MultinormalDistribution[{0, 8}, {{2, 0}, {0, 2}}]}];

data = RandomVariate[distribution, 200];
ListPlot[data, PlotRange -> All]

Next, classify the data into clusters, letting the function decide how many cluster
it will break things down into (obviously three)

cl = ClusterClassify[data]

We can use the Boolean selection Function Pick to select elements of a particular
cluster identification and color code accordingly.

ListPlot[Pick[data, cl[data], #] & /@ {1, 2, 3}, Frame->True]

Figure 5.7 shows the color-coded result of this classification scheme.

Exercises
1. Study the CIFAR-10 training data set and determine the classification

probabilities with some of your own images. How well does the function
determine different subclasses of objects?

2. Use ClusterClassify to separate out a sparse dataset where the distributions
are not distributed so far apart.

–10 –5 0 5 10

–5

0

5

10

Figure 5.7. ClusterClassify can be used to group various distribution sets.

3 http://reference.wolfram.com/language/ref/ClusterClassify.html
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Chapter 6

Image combination and analysis

6.1 Image manipulation
Goals

• Understand online sources of planetary imaging.
• Install the Python Imaging Library (PIL).
• Learn about different image display options in Python.
• Create an RGB image from astronomical filter bands.
• Create a movie of an astronomical data cube.

Algorithm and code description
Installation of the Python Imaging Library1 via the Pillow fork is completed

via pip

pip install Pillow

The basic command of opening and showing an image are

from PIL import Image
im = Image.open("galaxy.png")
im.show()

We will use some of the latest scientific imaging from Juno. The NASA Juno
spacecraftmission, launched in 2011, is currently orbiting Jupiter in a polar orbit [2, 4].
The instrumentation will study the magnetosphere and composition of Jupiter.

We can download a set of Jupiter images2 and use the PIL to generate a red–
green–blue (RGB) image. This example creates a function such that a Python list of

1 https://pillow.readthedocs.io/
2 https://www.missionjuno.swri.edu/junocam/processing?id=4116
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the red, green, and blue file names is passed as a function keyword argument, and the
image is combined and displayed.

from PIL import Image
import numpy as np

def combineImages(rgbfiles):

RGB = []

for i, filename in enumerate(rgbfiles):
im = Image.open(filename)
implane = np.array(list(im.getdata()), dtype="uint8")
reshape = implane.reshape(im.size[0], im.size[1])
RGB.append(Image.fromarray(reshape,mode=None))

combine = Image.merge("RGB", (RGB[0],RGB[1],RGB[2]))
combine.show()

# Images must be in the order of red, green, blue
combineImages(['red.png','green.png','blue.png'])

Figure 6.1 shows the resulting combined image.

Figure 6.1. Juno mission multi-color image of the planet Jupiter.
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Exercises
1. Look at the JunoCam website3 and examine images from different perijove

(closest approach) segments of the mission. Combine those images using the
function written in this section.

6.2 Creating a multi-wavelength astronomical image
Goals

• Understand online sources of astronomical images and surveys.
• Create an RGB image from FITS files in different astronomical filter bands.

Algorithm and code description
Studies of astronomical objects cover the entire range of the electromagnetic

spectrum. In this example we will use images from three different parts of the EM
spectrum to show that our Galaxy has different components only seen at certain
wavelengths.

Astronomical images are typically made available in a scientific format called the
Flexible Image Transport System (FITS, [7]).

The first example will use all sky surveys with data in the optical B blue band [9],
red for Hα [5], and green for low frequency 408 MHz radio [8] (figure 6.2).

We will use AstroPy to load the FITS files [1, 6].

from PIL import Image
import numpy as np
from astropy.io import fits

def combineImages(rgbfiles, output):

RGB = []

for i, filename in enumerate(rgbfiles):
hdul = fits.open(filename)
hdu = hdul[0]
implane = np.array(list(hdu.data), dtype="uint8")
reshape = implane.reshape(hdu.shape[0], hdu.shape[1])
RGB.append(Image.fromarray(reshape,mode=None))
hdul.close

combine = Image.merge("RGB", (RGB[0],RGB[1],RGB[2]))
combine.show()
combine.save(output)

combineImages(['halpha.fits','408.fits','mellingerblue.fits'],
'milkyway.png')

3 https://www.missionjuno.swri.edu/junocam/processing
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The second example uses data from the National Radio Astronomy Observatory
(NRAO4) archive at C-band (4.7 GHz), the x-ray Telescope on the Swift spacecraft5,
and the Wide-field Infrared Survey Explorer (WISE)6 at 12 microns. The

Figure 6.2. All-sky Hammer–Aitoff projections of the Milky Way Galaxy. The top red panel shows the sky
through an Hα filter. The green panel shows the radio sky at a frequency of 408 MHz. The blue panel shows
the optical sky, and the final bottom panel shows the images combined with the Python Imaging Library.

4 https://www.nrao.edu/
5 https://swift.gsfc.nasa.gov/
6 https://www.nasa.gov/missionpages/WISE/main
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astronomical object to be imaged is a supernova remnant called Cassiopeia A [3].
The function for the Milky Way example can be reused.

combineImages(['wise12.fits','xray.fits','radio.fits'], 'cassA.png')

Figure 6.3 shows the result of combining the three images, revealing different
high energy and physical processes that astronomers detect from a supernova
remnant.

Exercises
1. Use the SkyView service to download images of spiral Galaxy NGC 6946 in

the near-ultraviolet, Digital Sky Survey 2 blue optical, and WISE 12-micron
infrared. Use our combineImages() function to create an RGB image with
the AstroPy Python module.

Figure 6.3. Supernova remnant Cassiopeia A, a combined color image of C-band radio from the Very Large
Array, x-ray from the Swift spacecraft, and WISE infrared telescope at 12 microns.
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6.3 Manipulating astronomical data cubes
Goals

• Create a movie of an astronomical data cube using Matplotlib.

Algorithm and code description
Matplotlib, numpy, pylab/Scipy, astropy, and APLpy are needed for this

example. The example used below is a naturally weighted, VLA HI data cube of
Galaxy NGC 2841 (figure 6.4), and can be obtained from this listing of HI data
cubes7 [11].

Figure 6.4. Spiral Galaxy NGC 2841—red is WISE 3.4 micron, green is Digital Sky Survey 2 blue plates, and
blue is GALEX far ultraviolet.

7 http://www.mpia.de/THINGS/Overview.html
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The module imports needed are

import os, sys, string, aplpy
import matplotlib.pyplot as plt
import numpy as np
import pylab as py
from astropy.io import fits
from matplotlib import colors, cm

We can define a custom colormap in matplotlib with

cmap = ((0.0, 0.0, 0.0), (0.25,0.0,0.0),
(0.5, 1.0, 1.0), (0.75,1.0,1.0),
(1.0, 1.0, 1.0))

cdict_customcmap ={
'red' : cmap,
'green': cmap,
'blue' : cmap

}

customcmap = colors.LinearSegmentedColormap('customcmap',
cdict_customcmap, 1024)

These parameters can be hardwired into a script, used as function keyword
arguments, or prompted for at the terminal depending on how one wishes to interact
with the data.

filename='NGC_2841_NA_CUBE_THINGS.FITS'
nchan=128
img=fits.getdata(filename)
hdulist = fits.open(filename) # open a FITS file
prihdr = hdulist[0].header # the primary HDU header

# FITS coordinate pixels
size = 1
ramin = 462 - size
ramax = 462 + size
decmin = 575 - size
decmax = 575 + size

# Select a spectrum out of the data cube
# Units of mJy/beam and km/s
# Creating the abscissa array will vary depending on the datacube
spectrum = [np.mean(img[i,decmin:decmax,

ramin:ramax])*1000.0 for i in range(0,nchan)]
velocity = [(prihdr['CRVAL3'] +

prihdr['CDELT3']*(i+prihdr['CRPIX3']))/1000.0
for i in range(0,nchan)]
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We now utilize APLpy8 and Matplotlib to slice through a data cube channel
along the frequency/velocity axis [10]. Note that a ‘recenter’ class method can be
used to crop the field as desired. We use an os.system command to create a ‘pngs’
subdirectory if it does not already exist.

The data in the FITS cube are in a flux density unit of milliJanskys per beam,
where 1 Jansky = 10−26 W m−2 Hz−1.

Figure 6.5 shows an example data cube image and spectrum.

fig = plt.figure(facecolor='w', edgecolor='w',
frameon=True, figsize=(6,7))

if not os.path.exists('pngs'):
os.makedirs('pngs')

print('WARNING: Removing old *.png files from pngs directory...')
os.system('rm -rf pngs/*.png')

for i in range(0,nchan):
plt.clf()

ax1 = aplpy.FITSfigure(filename, dimensions=[0,1],
slices=[i,0],
figure=fig, subplot=[0.25,0.5,0.60,0.45])

# degrees
ax1.recenter(140.50924, 50.975394, width=0.125, height=0.125)
ax1.show_colorscale(cmap=customcmap,

vmin=-.0001, vmax=0.00387265)
ax1.add_grid()
ax1.axis_labels.set_xtext('Right Ascension (J2000)')
ax1.axis_labels.set_ytext('Declination (J2000)')
ax1.set_tick_labels_format(xformat='hh:mm:ss', yformat='dd:mm')
ax1.set_tick_color('white')
ax1.set_tick_labels_style('latex')
ax1.set_labels_latex(True)
ax1.show_rectangles(140.54131,51.002304,0.009504,0.009504,

edgecolor='green', facecolor='none', lw=1)
ax1.show_colorbar()
ax1.colorbar.set_axis_label_text('{Jy/beam')

ax2 = fig.add_axes([0.2,0.1,0.74,0.3])
ax2.plot(velocity, spectrum)
ax2.axvline(x=velocity[i],linewidth=2, color='green')
ax2.axhline(y=0,color='grey')
ax2.set_xlabel('Velocity (km/s)')

8 https://aplpy.github.io/
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ax2.set_ylabel('Flux Density (mJy/beam)')
ax2.axis([max(velocity),min(velocity),-0.5,3.5])

fig.canvas.draw()
plt.savefig('pngs/'+str(i).zfill(3)+'.png', pad_inches=0)

Figure 6.5. Data cube cross section and neutral hydrogen (HI) spectrum of Galaxy NGC 2841. Data are from
the NRAO Very Large Array. The box in the top panel highlights where the HI spectrum is averaged. The
Python code shows the reader how to create an animation moving through the frequency or Doppler shifted
velocity dimension of the data cube.
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Exercises
1. One may not only just animate a data cube through frequency space.

Perform the same exercise but move through the Right Ascension or
Declination axis of the data cube to see the dynamical structure of the
Galaxy.
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Appendix A

Mathematica shortcuts and help

The listing below gives important keyboard and command shortcuts that will be
useful in using Mathematica.

% Previous result
Shift-Enter Execute input cell
ctrl ’ Toggle cell group
-> Rule transform
/. ReplaceAll Function
?name Information on a variable or Function
??name* Extended information and wild card search
; Suppress output to screen
= Wolfram Alpha input
alt . Abort execution
ClearAll[“Global‘*”] Clear the Notebook session and start fresh
CTRL-L Copy input cell
(*code comment*) Inline code comments
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Appendix B

Important Python modules and resources

The listing below gives important resources in learning Python with a Raspberry Pi.

Starting Python http://www.pythonforbeginners.com/
Dive Into Python 3 http://www.diveintopython3.net/
AstroML http://www.astroml.org/
PyCon https://us.pycon.org
Jupyter Notebooks http://jupyter.org/
Google Python https://developers.google.com/edu/python/
Scipy Lectures https://www.scipy-lectures.org/
Learn Python https://www.learnpython.org/
Complex Networks http://networkx.github.io/
APLpy https://aplpy.github.io/
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