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Preface

Science in the Arena has emerged from a lifelong love of sport and fascination with
all things connected to nature. Nearly two decades ago, I was given the opportunity
to develop a new classroom course, devoted to the study of science and sport.
Experiences gained through teaching this course ultimately led to several students
and friends encouraging me to pursue this writing project. Much of the content for
Science in the Arena originated from students asking insightful questions and
presenting new material in class.

viii



Acknowledgements

I would like to thank my colleagues in the Physics Department at William Jewell
College for valuable conversations and encouragement. In addition, I am grateful to
all my students, who have motivated me with their perceptive questions and
stimulating classroom discussions. Finally, I would like to extend my deepest
appreciation to my family and friends for their love and support.

ix



Author biography

Blane Baker is Professor of Physics at his alma mater William Jewell College where he
returned to teach in 1999. Over his tenure, he has taught general physics, electronics, and
quantum mechanics, along with a popular sport science course for non-science majors.
Much of the material for Science in the Arena was developed for this course, entitled
Sport Science and Ethical Issues. Baker is an active contributor to the American
Association of Physics Teachers (AAPT) and serves on the National Council of Society
of Physics Students (SPS). His areas of interest include electronics, sustainable energy,
and materials science. He is also a member of the American Physical Society (APS), and
Sigma Pi Sigma. He also holds the Wallace A. Hilton Chair at William Jewell College.
Baker is an avid runner and baseball fan and enjoys traveling with family and friends.

x



IOP Concise Physics

Science in the Arena
Explanations and analyses of performances and phenomena in sport

Blane Baker

Chapter 1

Introduction and 1-D and 2-D motion

What is science?
Much public debate continues as to the role and scope of science in modern society.
Given this backdrop, the objective of our study here is to use principles of science to
analyze and explain phenomena in the world of sport. We will begin with discussions
of some of the fundamentals of science and how scientists solve problems.

The word for science originates from the Latin root scientia meaning knowledge.
Thus, the goal of science is to gain understanding of our natural world through
systematic study and development of coherent theories and universal laws. In the
realm of science, theories and laws are always subject to change as experimental
results prescribe, and so they evolve over time. Scientists, as practitioners, often focus
on particular fields of study. Astronomers delve into the mysteries of systems such as
galaxies, black holes, and quasars. In the arena of sport, sport scientists study how
athletes in particular events undergo various motions or how implements (such as
rackets, bats and clubs) and their use contribute to outstanding performances.

For purposes here, we will draw on the disciplines of physics, chemistry, and
biology. Physics seeks to understand underlying principles of light and matter in the
Universe. Chemistry focuses on elucidating mechanisms and reactions in nature that
produce the myriad of compounds in the Universe. Biology seeks to enlighten us on
processes that are common to all life forms and to understand how living organisms
work.

As a human pursuit, the aim of science is to produce the most accurate theories
possible with the available data. While no one scientific method works for every
problem, a general approach may begin with a question or observation. From there,
a working set of hypotheses is developed to explain tentatively what is happening.
Then experiments are designed and run. After data are collected, analyzed, and
interpreted, modifications to the present hypotheses may be required. Once refined,
they are used to make predictions of subsequent experiments. If predictions are
confirmed, the latest hypotheses are retained. Otherwise they are modified or
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discarded completely. In reality, investigations can begin at any point in the process
and are ongoing.

In addition to how scientists approach their work, some discussion of what
questions are appropriate for scientific investigations is useful for the sport scientist.
Generally speaking, science is only equipped to address questions that are accessible
by experimental methods. For example, if we want to know how a swimmer
generates a certain motion, various experiments could be designed to answer this
kind of question. On the other hand, if we want to know how an athlete should
behave in a given situation, scientific experiments are not particularly helpful. In the
latter case, other disciplines such as philosophy are needed to make ethical decisions.

When considering questions and topics for scientific studies, a couple of over-
arching questions help us to determine applicability: can measurement of a scientific
quantity answer the question? Can an experiment lead us to an answer? If the answer
is ‘yes’ to either or both questions, then science will play a role in determining
answers. If not, other disciplines must be utilized to acquire that knowledge.
Examples of questions that require scientific investigations might be: how high
can a world-class pole-vaulter jump? How far can a javelin be thrown? What
maximum forces are produced during a tackle in football? These and other similar
questions are at the heart of our investigations here, so let us begin.

1-D motion
Performance in sport often is associated with optimizing or perfecting a particular
motion, as in the case of a sprinter in a 100 m dash or a gymnast in a floor exercise
routine. Systems throughout the Universe exhibit a number of different kinds of
motion, the simplest of which is described as a mass traveling from one point in
space to another. This change in location or position, known as displacement, occurs
over some interval of time. From these basic quantities of displacement and time,
quantitative analyses of motion follow. (See below.)

The simplest of point-to-point motions occur along straight-line or linear paths. A
drag racer sprinting along a straightaway, a base runner churning from third to
home, and a hockey player skating directly across the rink are all examples of linear,
or one-dimensional (1-D) motion, as illustrated with the runner in figure 1.1. To
determine displacement along a 1-D path, the difference between the final and initial
locations of a system is calculated. Displacement of a runner dashing along a 100 m
straightaway is simply: 100 m − 0 m = 100 m.

Once displacement is known, its value can be divided by the interval of time to
obtain the average velocity, or rate at which displacement occurs. Running the
100 m dash in 10 s produces an average velocity of 10 m s−1, whereas covering
40 yards (36.6 m) in 4.23 s during a National Football League NFL tryout generates
a value of 8.65 m s−1. Knowing velocity allows for comparison of how rapidly
objects are moving in a variety of settings.

Both displacement and average velocity involve numerical values and directions
in which the motions occur. For example, average velocities often are expressed
as +5.0 m s−1 or −5.0 m s−1, where the + sign refers to motion to the right and
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the − sign refers to motion to the left. If one object is traveling at +10.0 m s−1 and
another at +7.0 m s−1, they are both moving in the same direction but the former is
covering 3.0 additional meters each second, as compared with the latter.

As objects undergo variations in velocities, they experience what is known as
acceleration. Acceleration is defined as the ratio of the change in velocity to the time
interval over which that change occurs. Soccer balls have accelerations of order
250 m s−2 in scenarios in which they are launched from rest at velocities of 25 m s−1,
following collision times with the foot of 0.1 s. Elite sprinters can attain velocities of
approximately 10 m s−1 during the first 2 s of a race, thus producing accelerations of
5.0 m s−2. Acceleration experienced by objects falling in the Earth’s gravitational
field is constant at 9.8 m s−2 when effects such as air resistance are neglected.

Average speed and types of motion
In contrast to average velocity, average speed does not consider direction and is
found simply by taking the ratio of the total distance covered to the total time
elapsed. A baseball released from the hand of a Major League Baseball MLB pitcher
takes approximately 0.38 s to travel a distance of 16.4 m, producing an average
speed of 43 m s−1 (just a few miles per hour mph shy of 100 mph). Typical speeds in
sport range from less than 1.0 m s−1 to over 140 m s−1. Table 1.1 shows some
common speeds associated with various sporting activities, along with other values
from the natural world. As seen here, a fastball in baseball is about 40% faster than a
cheetah running at top speed. The speed of light is approximately a million times
greater than the speed of sound. Given this vast difference, fans in baseball stadiums
see the ball make contact with the bat well before they hear the sound of impact.

Motion along a straight line or curved path is characterized as translation. A
sprinter dashing along a straightaway and a soccer ball traveling along a field of play
are both examples of translation. Two other kinds of motion—rotation and
oscillation (vibration)—also occur in the natural world. Rotation involves an
angular displacement of a system, characterized by motion about an axis of rotation.

Center of mass (CM)

Figure 1.1. Depiction of a sprinter undergoing motion along a straightaway. Translation of the center of mass
(CM) of the runner approximates one-dimensional motion.
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Depending upon the scenario, this axis can be fixed in space or moving itself. For
example, a spinning soccer ball on its trajectory to the net exhibits motion about an
axis, running through the center of the ball and undergoing translational motion
itself. Oscillation, in contrast to the other motions, refers to repetitive back and forth
changes in position about a point of equilibrium. A number of systems in sport
including bats, rackets, and clubs exhibit oscillation when struck.

How many paths for the runner?
Given our treatment of point-to-point motions, one particularly fun problem to
consider involves finding the number of possible paths taken by a runner traveling
from point A to point B, along a series of short 1-D sprints. In the extreme case that
the runner can cut along any direction, relative to the original direction, the number
of possibilities is essentially endless. For more limited changes in direction, the
number of possible paths is large but tractable.

Take, for example, a scenario in which a running back (RB) in American football
is running downfield trying to avoid defenders. Suppose that the runner continues
his forward motion during each encounter with a defender, and, assume that only
45° cuts or straight-line motion are possible. From these assumptions, the runner has
three options: continuing along the original path, cutting to the left at 45°, or cutting
to the right at 45°.

If only one defender is encountered during the run, the number of possible paths is
simply 31 or 3: the runner can continue along a straight-line path or make either a
45° cut to the left or right. With each new defender in the runner’s path, the number
of possibilities increases by a factor of 3. If all 11 defenders are encountered once, the
number of possible paths is extraordinarily large 311. For more reasonable estimates
of 3–4 encounters during a typical run, an incredible 27–81 paths are possible. Such
a large number of paths, together with the ability of elite RBs to make these cuts
quickly, contribute to their elusive running styles.

2-D projectile motion and trajectories of baseballs
Motions along 1-D paths are fairly prevalent in sport especially considering the
number of systems that exhibit translation along straight-line-paths. Examples of

Table 1.1. Typical speeds observed in sport and nature.

Source or system Speed (m s−1)

Light 3.0 × 108

Sound 340
Tennis serve 58
Fastball 45
Cheetah (top speed) 31
Race horse 22
Elite sprinter 13
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translation in one-dimension include short sprints in track and field, any of the drag
racing events in motor sports, and ground balls struck in baseball. In reality,
however, the vast majority of motions in sport occur along 2- or even 3-D paths.
Players zigzagging around fields of play, implements such as javelins, shot puts, and
discuses flying through the air, and cyclists racing around oval tracks are all
examples of multi-dimensional motions.

One particular kind of 2-D motion in which an object travels through the air near
the surface of the Earth is ubiquitous in sport. Objects moving in this fashion are the
subject of much study and are referred to as projectiles. Ideal mathematical
treatments of these motions neglect effects due to air resistance and assume that
acceleration produced by gravity is constant. Under these conditions, motions of
projectiles follow smooth, parabolic paths; moreover, positions and velocities
associated with their motions can be predicted exactly using Newton’s laws.
Objects such as shot puts and javelins approach this ideal case so that their
trajectories are nearly parabolic and their paths are predicted to within a few
percent via theoretical calculations.

Motions of other projectiles like baseballs and softballs are affected more
dramatically by air drag, sometimes reducing the horizontal distance (range)
attained by as much as 50%, as depicted in figure 1.2. Range for an ideal projectile
is the maximum horizontal distance traveled when the object is launched near the
Earth and confined to a 2-D path. Range is computed using the following equation:
R = v0

2sin(2θ0)/g, where v0 is launch speed, θ0 is launch angle, and g is acceleration
due to gravity (9.8 m s−2).

On the Major League Baseball MLB level, well-struck balls leave the bat at
100–120 mph (45–54 m s−1) and at angles between 20° and 37°. Inserting a launch
speed of 49 m s−1 and a launch angle of 37° into the range equation predicts a value
of 240 m (770 feet), well beyond distances attained by Major League hitters. Given
this discrepancy, effects due to air resistance (drag force) on a batted ball must be
considered to make accurate predictions of range.

To account for air resistance in analyzing trajectories, computations require an
initial launch speed and an initial launch angle. Once launched, the ball’s position
and velocity are computed in a step-wise fashion using Newton’s laws and basic
kinematic relations. For each step along the path, the constant gravitational force
and variable drag force are inserted into equations of motion, and, subsequently,
velocities and positions are calculated. Step-wise computations are needed, because
the drag force constantly varies due to its dependence on the speed of the projectile.

After the entire path of the batted ball is determined, the computed range in the
presence of air resistance is compared with the ideal range assuming no air
resistance. This ratio of range in air to range in vacuum is plotted as a function
of launch angle for various launch speeds. These data are useful for determining how
far a baseball will travel for various launch conditions, without the need to perform
the sophisticated modeling described above. The required ratio is obtained simply by
reading the graph.

For the launch conditions above, the ratio of the range in air to the range in
vacuum is found to be 0.51. (As a result, the expected range is 51% of the ideal
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range.) From this ratio and an ideal range of 240 m, the predicted range in the
presence of air resistance is 120 m (390 feet), a much more reasonable value for an
MLB batter. For perspective, many centerfield walls in MLB are located approx-
imately 122 m (400 feet) from home plate, well within the capabilities of outstanding
batters.

If atmospheric conditions change over time, drag forces are affected and the range
attained by a struck ball will vary. For example, as air temperature increases, air
density decreases and drag force is reduced. For Major League hitters, the range of a
baseball is expected to increase by approximately 6–7 feet (1.8–2.1 m) for temper-
ature increases from 70 °F to 90 °F (21 °C to 32 °C).

Parabolic path

Real path
x

x

y

y

Figure 1.2. Ideal and real paths of projectiles, launched near the surface of the Earth.
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Chapter 2

Energy and conservation

At first glance, many scientific questions appear rather daunting to analyze and
therefore beyond our abilities to find answers. Examples of such questions might
include: how high can pole-vaulters jump? How much energy is required for
swimming? Why do elite sprinters attain certain levels of speed more quickly than
others? Indeed, from the standpoint of forces and Newton’s laws, these intriguing
questions usually require advanced study in physics to pursue. However, by learning
some basic energy concepts and by developing a firm grasp of conservation of
energy, these and many other questions are accessible to both fans and sport
scientists alike.

Work and kinetic and potential energy
Energy in a conversational sense usually suggests activity level or effort. In scientific
descriptions, however, more rigorous definitions are needed for accurate analyses
and computations. As an alternative, energy often is described as the capacity of a
system to do work. Work, as a physical quantity, requires both a force and a
displacement such that the displacement occurs due to application of that force.
Thus, a system is known to possess energy when it is capable of producing forces
that result in movement of a mass from one point to another. If forces are applied
and no displacement occurs, no work is done.

In practice, a soccer player moving her foot toward a ball at rest possesses energy
as a result of the foot’s motion. Once contact is made, the foot, possessing kinetic
energy, exerts a force on the ball, causing displacement of the ball and production of
a given amount of work. Many forms of energy such as mechanical, electrical,
chemical, radiant, and nuclear are present across the Universe. For the moment, we
will focus on two mechanical forms of energy—namely kinetic energy and gravita-
tional potential energy.

Mechanical energy, associated with the motion of a particle or a system, is
referred to as kinetic energy. (The word kinetic originates from the Greek word for
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motion.) Kinetic energy depends on both the speed v of an object and its mass m;
kinetic energy (KE) in units of Joules is expressed mathematically as 0.5mv2, where v
is in units of m s−1 and m is in units of kg. In the world of sport, kinetic energies
typically range from 10−2 to 107 J. A slow rolling grounder in baseball has a
relatively small KE of 0.08 J (0.5 × 0.15 kg) × (1.0 m s−1)2; whereas, a top fuel
dragster has a kinetic energy approaching 9.5 × 106 J at top speeds exceeding
300 mph (134 m s−1).

In addition to objects attaining KE by virtue of their motions, they can acquire
energy due to their positions relative to certain reference points within the Earth’s
gravitational field. When this energy involves interactions between an object and the
Earth, this form of mechanical energy is known as gravitational potential energy PE
and is given by the equation: PE = mgh, where m is the mass in kg, g is acceleration
due to the Earth’s gravitational field (9.8 m s−2), and h (in m) is the height of the
object relative to the surface of the Earth. As an everyday example, a book located
on the top shelf of a bookcase has a greater potential energy than an identical book
located on a lower shelf. For a book of mass 0.50 kg located at 2.3 m its potential
energy (relative to ground level) is 11 J. A diver of mass 73 kg on a 3.0 m diving
board has a potential energy of 2100 J. On a grander scale, our Sun produces about
384.6 yotta Joules (3.846 × 1026 J) of energy during each second of its life.

Conservation of energy
In many instances, potential energy can be converted into kinetic energy and vice
versa. This interplay between the two forms of mechanical energy is a consequence
of conservation of mechanical energy. Conservation of mechanical energy is a rule
of nature that says that the mechanical energy of an isolated system is constant. That
is, either form of mechanical energy may increase or decrease but a compensating
decrease or increase in the other form of energy must occur to maintain this equality.
Using a monetary analogy, a one dollar bill can be converted into four quarters and
vice versa, but the overall amount of currency is fixed at one dollar.

In equation form, this energy equality is expressed as KEi + PEi = KEf + PEf,
where i represents initial values and f represents final values. If three of the four
energy quantities are known, the fourth can be found. Once that energy is known,
other quantities such as height h or speed v can be determined from the calculated
energy.

Energy conservation in pole vaulting
One of the most dramatic examples of conversion of kinetic energy into potential
energy is the pole vault event in track and field. In this competition, the athlete
begins from rest and develops kinetic energy by accelerating along a runway.
Provided the jumper does not experience significant interactions except with the
Earth’s gravitational field, the jumper and Earth constitute an isolated system and
conservation of mechanical energy applies.

Once the jumper reaches the end of the runway, she projects herself into the air
using a vaulting pole that she carries during the run-up phase of the jump. As her
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height increases during the vault, she converts more and more of her initial KE
energy into PE until she reaches a maximum height. At this point in the jump, her
speed is nearly zero, because her initial KE has been converted nearly entirely into
PE. During this conversion, the height attained by the jumper is determined by
equating the initial KE to the final PE. Here the initial PE is zero because she begins
at ground level, and the final KE is zero because her speed is nearly zero at the
maximum height of the vault. Setting KEi = PEf and solving for height h attained
yields: h = v2/2g, where v is speed of the jumper at the end of the runway just as she
plants her pole.

To predict the total height attained by the jumper, conversion of kinetic into
potential energy, along with re-orientation of the jumper as she clears the crossbar,
must be considered. In nearly all cases, the jumper approaches the crossbar and
jumping pit in a nearly upright (running) position; however, she clears the bar in a
nearly horizontal position. This change in orientation is necessary in order to gain an
additional vertical height equal to approximately the distance between the bottom of
the jumper’s feet and the center of mass of the body. The center of mass (CM) for the
human body is located at approximately 55% along the length of the body from the
bottom of the feet, as shown in figure 2.1. In reality, the jumper’s CM may pass
slightly below the crossbar as clearance occurs due to the bent orientation of the
body. However, we will neglect these effects given that the exact body shape during
clearance is dependent upon the individual jumper.

Using the model described, the total predicted height of a jump is determined from
(v2/2g) + 0.55 (height of the athlete). While values of speed attained along the runway
vary from jump to jump and athlete to athlete, typical approach speeds for world-
class women jumpers are in the range of 8.5–9.0 m s−1. Using a speed of 8.7 m s−1 and
a standing height of 1.74 m, gives a predicted jump height of 4.82 m, a value within
5% of the current world record WR of 5.06 m set in 2009 by the great jumper, Yelena
Isinbayeva.

As seen here, world-class jumpers are able to convert a large fraction of their KE
along the runway into PE at the maximum height attained. In reality, some of the

Center of mass (CM)

Figure 2.1. Approximate location of the CM of a human body.
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initial KE is converted into thermal energy within the pole and some is transferred to
the sea of air surrounding the jumper as she moves through the atmosphere. In spite
of these energy transfers, many jumpers can vault to heights slightly greater than
those predicted above. In effect, the jumper generates extra height by pushing on the
pole when it is in its vertical position. Thus, work is done on the jumper’s body,
causing it to be raised even beyond what is predicted by conservation of energy. For
most jumpers, this added height is in the range of 0.2–0.5 m.

Stored energy, energy for activities, and calories
Energy needed to support all life processes as well as to perform athletic and other
activities is derived from the foods we eat. Foods typically contain fats, proteins, and
carbohydrates, all of which contain energy stored within their chemical bonds. In
certain cases, this energy can be released directly via chemical reactions for on-
demand use or, alternatively, stored in various compounds within the body for later
use. In a wide range of scenarios, the amount of energy needed for a specified
activity can be determined from basic bodily requirements and then converted into
equivalencies, based on calorie units.

In order to support the necessary functions of the body, a minimum quantity of
energy is required during each second of our lives. This basic energy demand is known
as the basal metabolic rate BMR and is equivalent to approximately 120 W (J s−1) for
an adult. The rate of energy consumption here corresponds to approximately 1.04 ×
107 J during the course of a day given that there are 3600 s in 1 h and 24 h in a day:
(120 J s−1)(3600 s h−1)(24 h day−1) = 1.04 × 107 J. Such a quantity of energy is
equivalent to approximately the kinetic energy of 69 000 baseballs, each traveling at
100 mph (44.7 m s−1). For purposes of food intake and diet, 1.04 × 107 J translates to
2480 cal from the conversion of 4186 J = 1 food calorie. (For reference, this daily
caloric requirement is typical for males between the ages of 20–25 with modest
activity levels.)

Using the arguments above, other activities can be evaluated in view of caloric
requirements. Metabolic studies of different kinds of athletes have been conducted
to determine rates of energy consumption. Swimming, for example, has a typical
power requirement of 600 W so that a swimmer exercising for 2 h per day requires
4.32 × 106 J or 1032 cal. This caloric requirement, together with the one to maintain
basic processes (BMR), gives a total of 3512 cal. With these data in mind, a 2 h
swimming workout can increase daily caloric requirements by nearly 42%. Results
such as these are important for athletes when considering caloric intake and dietary
needs, but also for more sedentary persons who are interested in reducing body
weight through exercise.

Besides energy requirements addressed thus far, more recent studies strongly
suggest that vigorous exercise can lead to increased energy demands even beyond the
workout period. Such increases in energy consumption are referred to as afterburn
effects, which typically occur for about 14 h after a person exercises at 70% or more
of maximum oxygen uptake. (This rate of oxygen uptake is characterized by the
inability to carry on a normal conversation.)
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From quantitative measurements, the added power required during the afterburn
period is approximately 16 W for up to 14 h after the exercise is complete.
Converting this additional power to energy consumed over the 14 h is equivalent
to approximately 190–200 cal. Details of this computation are as follows: (16 J s−1)
(3600 s h−1)(14 h) = 8.06 × 105 J or 190 cal. Given these extra energy demands, those
who exercise at such levels should not feel guilty about eating an extra cookie or two
(equivalent to about 200 cal). In addition, consideration of these effects is necessary
for athletes when planning their diets and caloric intakes.

Energy rates and power
In many events in sport a certain amount of energy must be produced in the least
amount of time possible. Given their specifications in particular events, racecars
typically have comparable maximum speeds and kinetic energies. However, top
racers can attain energy of motion (kinetic energy) more rapidly than those racers
who do not finish near the top. In the language of physics, top racers are said to
develop more power.

Power refers to the ratio of the work produced (or energy transferred) to the time
interval over which that work is done. Average power is expressed as Pavg = work/
time, where work W is given in units of Joules and time is given in units of seconds.
Two athletes who can perform the same task such as lifting a mass over a given
displacement will produce the same amount of work. However, the one who
performs the given task in a shorter interval of time produces more power. Events
in sport that require substantial amounts of power in order to achieve success
include weightlifting, sprinting, and car racing.

One of the consequences of doing work is to generate energy changes within
systems; therefore, the quantity known as power can be extended to include energy
expended (or produced) per interval of time. Elite sprinters are able to achieve about
90% of top speed during the first two seconds of a 100 m sprint. For an athlete of
mass 90 kg, the amount of kinetic energy produced during this time interval is 6200 J.
(A top speed of 13 m s−1 is assumed so that 90% of this value is 11.7 m s−1.) Here, the
change in kinetic energy is equivalent to the work done by the athlete; the power
generated is 6200 J/2 s, or 3100 W. For perspective, this power level is approximately
477 times that of a common 6.5 W LED bulb. The human body can only maintain
these levels of power production for a few seconds. More typically, humans are
capable of producing power levels in the range of 400–700 W for time intervals of an
hour or so.

One of the most extreme examples of power production is found when racing a
top fuel dragster along a straightaway. These particular racecars have mass of
approximately 1050 kg and reach speeds over 100 mph (44.7 m s−1) in less than 0.7 s.
During these acceleration intervals, average power levels exceed 1.5 × 106 W,
equivalent to the power developed by 484 elite sprinters in the first few seconds of a
100 m sprint.
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Kinetic energy, collisions, and protective gear
In other contexts analyzing KE is crucial for protecting players during certain kinds
of collisions. In baseball, for instance, catchers are particularly vulnerable to errant
pitches or foul tips striking their bodies. Catchers typically wear facemasks and
headgear along with chest protectors and shin guards to minimize forces transmitted
to the body. Impact forces exceeding certain critical values can lead to concussions,
broken bones, and damage to soft tissue.

From an energy standpoint, the most effective body protection should convert as
much KE as possible into other forms of energy, which are dissipated within the
protective material. To illustrate, assume an extreme case in which a catcher’s upper
body is protected by an ultra-thick pillow filled with layers and layers of foam beads.
When struck by a fast-moving ball, numerous internal collisions occur amongst the
beads. Collisions between soft bodies such as the foam beads are typically highly
inelastic—that is, they do not conserve KE. As a result, a certain fraction of the
ball’s initial KE is converted easily to other forms of energy that are not transmitted
to the player. Conversions occurring within the protective gear include generation of
mechanical waves such as sound, increased thermal energy of the beads, and work
done on the particles (beads) as they are displaced. If complete conversion of KE
occurs, the ball becomes embedded in the protective gear with no transfer of KE to
the player.

Unfortunately, extremely thick layers of protective gear are needed in order for
particles in contact with the player’s body to transfer zero KE. For illustration,
imagine a sand pile with your hand embedded well below the surface. If a ball
collides with the top of the pile and becomes embedded well above your hand, your
hand feels no effects due to the fact that sand particles near your hand have no work
done on them. As mentioned above, this extraordinary level of protection is not
feasible due to the excessive amounts of protective gear required.

In the other extreme, if the protective gear is very thin, essentially all of the initial
kinetic energy of the ball is transferred to the player’s body. As the ball makes
contact with the thin padding, nearly all particles in the path of the ball experience
impact forces due to the ball. In turn, work is done on the particles so that they
transfer energy to whatever is in contact with them. Unfortunately for the player,
these transfers of energy are palpable.

In a more realistic case, some of the initial KE of the ball is transferred to the
protective gear and some is transferred to the player’s body. Researchers who study
collisions in sport, along with equipment manufacturers, must consider carefully
maximum transfers of energy to the body in order to minimize injury. At the same
time, players demand a certain amount of freedom of motion so as to perform at
their highest levels. Extensive research continues in order to provide sufficient
protection for players, together with maximum maneuverability.
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Chapter 3

What did Newton say about force?

For millennia humans have been intrigued by countless questions related to motion:
how do objects move? What makes one faster than another? What causes them to
come to rest? Virtually all motions in the Universe, and, particularly ones in sport,
can be analyzed using basic concepts outlined within Newton’s three laws of motion.
Newton’s laws describe the concept of force, explain how objects behave in the
absence of net forces, and give insights into interactions between systems.

Force and Newton(s)
All motions in the Universe originate from actions on a body. Actions in the
physical world generally refer to forces. Forces can be classified according to
whether they act directly upon a body or through space. Those that act directly are
called contact forces and thus require physical touch in order to manifest themselves.
Contact forces allow us to move objects such as a carton of milk or to walk across
the room. (Walking results from our feet exerting forces on the ground, and the
ground, in turn, producing equal and opposite forces on our feet.) In the realm of
sport, contact forces arise from a bat striking a baseball, a basketball player taking a
charge, a hockey player checking an opposing player, and a soccer player heading
the ball.

In addition to forces that act by direct contact, others act through space and, as a
result, are called ‘action-at-a-distance,’ or field forces. Field forces include gravita-
tional forces such as those between the Earth and a javelin thrown into the air and
electrical forces such as those between a charged van de Graaf generator and human
hair. One of the basic properties of gravitational fields, espoused by Einstein and
others, is that they cause curvature of space and time. Thus, the javelin’s parabolic
path results from the implement responding to the curvature of space near the
surface of the Earth. Experimental results have confirmed the curvature of space and
time due to field sources so that Einstein’s general theory of relativity is our best
description of gravitational field forces in the Universe. For purposes here, however,
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we will simply say that the Earth exerts a downward gravitational force on the
javelin.

With the concept of force now established, we are ready to discuss how forces
impact motions in the natural world within the context of Newton’s laws. Because a
change in the state of motion is ultimately caused by an action known as a force,
Newton’s first law says that all objects in the Universe maintain their present state of
motion unless acted upon by a net force.

The idea of a net force implies that, in many instances, several forces act upon a
single body. If those forces balance one another, no change in motion occurs. (An
example would be a runner moving at constant speed, so that forces propelling the
runner are balanced by ones resisting the runner’s forward motion.) In addition, the
present state of motion of a body may be one of rest so that if forces remain balanced
that state continues. With these descriptions in mind, Newton’s first law (the law of
inertia) often is summarized as ‘a body at rest tends to stay at rest, and an object in
motion tends to stay in motion unless acted upon by a net, external force.’

In order to address what happens when a net, external force is applied, Newton
formulated a second law of motion stating that the force (in units of Newtons, N) is
equivalent to the product of an object’s mass in kg and its acceleration in m s−2.
From basic definitions, acceleration produces a change in velocity, and velocity
produces a change in position (displacement). When an object undergoes displace-
ment, motion occurs along a particular path. Thus, as implied above, a net force is
the ultimate cause of a change in the state of motion of a system.

One classic example of how motion arises due to a net force is an Olympic sprinter
leaving the blocks in a 100 m dash. As the gun sounds, the runner reacts by
generating forces on the starting blocks; the blocks, in turn, generate reaction forces
on the sprinter. Such reactions forces exceed any resistive-type forces (such as air
drag, friction, or other dissipative forces) so that the net force on the athlete is
forward and equivalent to around 500 N for a male sprinter. Given a typical mass of
90.0 kg, a 500 N net force produces an acceleration of 5.6 m s−2. This value is
approximately 60% of the acceleration produced by the Earth’s gravitational field.

Another characteristic of forces is that they always occur in action–reaction pairs.
That is, object A exerts a force on object B, and, in turn, object B exerts an equal and
opposite force on object A. One of the subtleties of action–reaction is that each force
acts on a different object in the pair of interacting bodies. Thus, action–reaction
forces never cancel one another as is sometimes stated erroneously. The principle of
action–reaction extends to all forces in nature—including field and contact forces—
and is referred to as Newton’s third law.

During direct body-on-body collisions, action–reaction forces are always contact
forces. A linebacker (LB) in football exerting a force on a running back (RB)
experiences an equal and opposite force, produced by the RB. Such forces are often
apparent when two players collide and their subsequent velocities after collision are
very nearly zero. As described by Newton’s third law, the LB produces a force on the
RB to reduce his velocity to zero and the same can be said for the reaction force
produced by the RB. A basketball colliding with a wooden floor also illustrates
action and reaction. The basketball striking the floor causes the floor to flex as a
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result of the force exerted by the ball. In turn, the floor exerts a reaction force on the
ball that causes it to bounce.

Other contact forces in sport include those generated by actions of human muscle.
When considering feats of strength we often ask: what determines how strong
someone is? The ability of muscle fibers to generate forces for lifting certain loads is
directly dependent upon their capacity to support those loads. To determine how
much force a muscle can support, consider the analogous problem of a cylindrical
rod experiencing a force along its length. Provided each bond within the rod
provides a specified force, the total force keeping the rod from breaking depends on
the number of bonds formed over the cross section of the rod. Thus, the ability of
muscle fiber to generate force is directly proportional to its cross-sectional area. As
an athlete builds muscle, both the mass of that muscle and its cross-sectional area
increase. As a result, athletes gain strength due to the ability of muscle fibers to
generate greater forces.

All that friction
The question of whether or not an athlete will maintain traction on a field of play is
determined by analyzing frictional forces. These kinds of forces act whenever two
surfaces in contact move relative to one another, or whenever the two exhibit
impending motion. Impending motion refers to the condition in which forces are
applied to one or both systems; however, these forces are not large enough to
produce motion along the surface. To analyze slippage, we will consider the case of
impending motion, often referred to as the static regime.

As an example of impending motion, push the palms of your hands together in
front of you and then begin pushing one hand forward with increasing force. At first
no motion occurs, but, eventually, as the applied force is increased, the hand
exerting the forward force breaks free and moves along the surface of the other
hand. This experience of the hands is a direct analogue to how slippage occurs on a
field of play.

In the experiments with your hands you may have noticed that the harder you
push your hands together, the more force you need to produce motion. Indeed, the
frictional force depends on how much force a system experiences due to the other
surface. (By action–reaction the two exert equal and opposite forces on each other.)
Frictional force also depends on the materials in contact with one another. In
mathematical language, static frictional force Ff = μN, where μ is the coefficient of
static friction, determined by the materials properties of the two surfaces in contact
with one another, and N is the normal force. Normal force refers to the
perpendicular force experienced by a system due to the surface on which it maintains
contact.

From these dependences, the ability to maintain traction on a playing field can be
determined. For the moment, consider an artificial turf field and an athlete making a
series of cuts on that field. As the athlete attempts to change direction, the feet must
exert forces on the turf (and, in turn, the turf exerts forces on the feet). To achieve the
intended motion, the athlete must produce forces that have both vertical and
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horizontal parts, often referred to as the components of the force. Horizontal forces
obviously produce changes of direction in the plane of the field, allowing the athlete
to make dramatic cuts.

The vertical forces produced by the feet cause vertical reaction forces acting on
the feet due to interactions with the field. These reaction forces contribute to
frictional forces to keep the athlete from slipping. Provided the reaction forces are
fairly constant for a particular athlete, values of frictional force then depend
primarily on what the coefficient of friction is under the present playing conditions.
Dry fields have static coefficients of friction of 0.6–0.8; whereas, wet fields usually
have coefficients of 0.1 or less. Consequently, frictional forces can be reduced by as
much as a factor of 6–8 when fields become soaked, thus prompting commentators
to say, ‘field conditions have deteriorated due to the wet conditions.’

Centripetal force
Acceleration of a body requires the presence of a net force as seen from Newton’s
second law. In many instances, forces are applied in order to either increase or
decrease the magnitude of a system’s velocity. A soccer ball at rest experiences
acceleration when a net force is exerted on it, and, in response, the ball attains a
velocity in the direction of the force. By contrast, a base runner sliding into second
base reduces his velocity to zero just as he touches the bag. (Figure 3.1 depicts forces
acting on two systems, a block and a base runner, both undergoing motion along a
surface.) In the case of the runner, the frictional force due to the ground opposes the
original motion, thereby reducing the velocity to zero during the slide. For both the

Friction on sliding baseball player

Friction on sliding block

Normal force

Normal force

Applied force

Frictional force

Frictional force

Weight

Weight

Direction of motion

Figure 3.1. Forces acting on a block sliding along a surface and a baserunner sliding along the ground into a
base.
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soccer ball and base runner, acceleration is produced as a result of the magnitude
(value) of the velocity changing with time.

Acceleration also occurs when an object experiences a change in its direction of
motion (even when no change in magnitude occurs). To understand the significance
here, recall that a vector quantity has both amagnitude and a direction associatedwith
it. For acceleration to occur, there are three possibilities: themagnitude of the velocity
vector can change, the direction of the velocity vector can change, or both the
magnitude and direction can change simultaneously. We will consider the second case.

Imagine an object whose direction of motion changes continuously over time, but
whose velocity magnitude is constant. Such motion is present when a particle is
moving in a circular path with constant speed. A classic example is that of an ice
skater cruising at a constant rate around a circular path. To maintain this state of
motion, the skater must experience a force, directed toward the center of the circular
path. This centripetal or ‘center-seeking’ force on the skater is supplied primarily by
the ice surface.

When an object undergoes circular motion, the direction along which the particle
travels is changing constantly. (For illustration, walk along a circular path at a
constant pace and note your direction of travel. You should see that your direction
of travel changes from moment to moment.) To produce this change in direction, a
constant tug toward the center of the circular path must be exerted. This force
constantly re-directs the particle’s path so that it remains circular. To observe what
happens when such a force is absent, swing a ball on the end of a string along a
circular path. Once the ball is moving with constant speed, release the string. Once
released, the centripetal force is no longer present so that the ball now moves along a
path tangent to the original circular path.

In sport numerous systems undergo centripetal acceleration with accompanying
centripetal forces. In track and field, hammers and discuses are set into circular
motions by throwers who subsequently release the implements into the air. Base
runners also experience centripetal forces along the base paths as they transition
from linear to curved paths. Other events in sport that involve motion along curved
paths are running, cycling, gymnastics, and car racing.

Given the ubiquity of centripetal forces in sport, several questions immediately
come to mind. What factors determine centripetal force? How large are these forces?
How might these forces change? Centripetal force (like any other force) is the
product of mass and acceleration; thus, the magnitude of the centripetal force is
dependent upon mass m. As mass increases, a larger centripetal force is necessary in
order to maintain the present state of motion along a specified path. The basic
argument here is that a larger mass requires a larger force to produce a given
acceleration (Newton’s second law). As a result, extremely large centripetal forces
are required to keep a hammer moving in its circular path before release.

Another factor that determines centripetal force is the radius r of the circular
path. As radius increases, the object in uniform circular motion requires less re-
orientation during a given time interval to maintain its present state of motion.
Because less re-orientation is necessary, the required centripetal force is reduced.
From this dependence, centripetal force varies as the inverse of the radius.
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The final factor that determines centripetal force is speed v. As speed increases,
the object in motion travels farther along its circular path from one moment in time
to the next so that more re-orientation is required. This increased re-orientation
means that more force is required to maintain the present state of uniform circular
motion. From these arguments and a little more mathematics, the magnitude of the
centripetal force Fc is found to be proportional to the square of the speed and can be
expressed as: Fc = mv2/r.

Centripetal forces in sport
Analyses of various athletic events allow us to determine magnitudes of centripetal
force. In the discus throw, athletes typically rotate their bodies several times within a
well-defined ring before releasing the discus into the air. During this throwing action,
the discus attains motion along a circular path whose radius is approximately equal
to the length of the thrower’s arm. To achieve this motion, the athlete must supply a
centripetal force on the discus until release occurs. World-class throwers typically
release the discus with speeds of around 25 m s−1, corresponding to centripetal forces
in the range of 1600 N (given a radius of 0.8 m and mass of 2.0 kg). Even larger
forces of order 3500 N are needed to maintain circular motions in the hammer throw
event where the implement has a mass of 7.3 kg.

In running events such as the 200 m dash, centripetal forces of up to 350 N are
required for elite sprinters running in the inner track lane whose radius is
approximately 36.5 m. For sprinters running in lane eight, centripetal forces are
reduced by approximately 23% due to the larger radius (45 m) of the curved path.
Presumably, if two runners exert the same forces during a race, the runner in lane
eight would achieve greater speed due to the fact that less of the applied force is
required to maintain motion along a curved path. Simple models suggest that the
runner in lane eight would reduce elapsed time during the first 100 m of a race by
about one second. In practice, elite runners are placed in the middle lanes during
competitions, so there is little evidence available to verify if record times could be
accomplished by careful choice of running lanes.

As seen from our discussions, centripetal forces are necessary to maintain uniform
motions along circular paths. Various contact, and even field forces, can serve as the
sources of these actions. For Olympic throwers centripetal forces are generated
through muscular actions of the arms and shoulders. For stock car racers, friction
between the tires and racetrack contribute to centripetal forces. In addition,
racetracks are banked so that reaction forces on the tires due to the track provide
additional forces directed toward the center of the circular path. Planets in circular
orbits also experience centripetal forces due to the gravitational action of the central
star. An interesting exercise is to identify the sources of centripetal forces in various
sporting events.

What a drag
As seen in the example of a batted baseball, interactions between moving objects and
fluids surrounding them often have dramatic effects. A baseball, for example,

Science in the Arena

3-6



experiences a reduction of roughly 50% in horizontal distance (range) traveled as a
result of such effects. Aerodynamic drag also limits swimmers to top speeds of a few
m s−1, as compared with Olympic sprinters in track and field who attain top speeds
in excess of 11 m s−1. For reference, figure 3.2 depicts a swimmer with horizontal and
vertical forces indicated.

As the name implies, drag force originates due to collisions between a moving
object and the collection of molecules in which that object is immersed. As the object
moves, it encounters fluid particles, thus generating collisions between the two. As a
result, fluid particles experience forces due to interactions with the object. In turn,
the molecules exert forces on the object that are opposite in direction to those
experienced by the molecules. The multitude of collisions occurring during each
small interval of time results in an aerodynamic drag force, which always opposes
the motion of the object.

Drag force depends upon a number of factors, the most important of which is the
object’s speed v through the medium. As the object’s speed increases, it encounters a
greater number of fluid particles per unit time and thus experiences an increased
number of collisions. As the number of collisions in a given amount of time
increases, drag force increases as a consequence. This result is in close analogy with a
person moving through a crowded room of people. As the person moves more
rapidly, she encounters an increased number of bodies per unit time. This increased
number of interactions leads to an increased force opposing the person’s motion.

Given that drag force increases with the number of collisions occurring during an
interval of time, it should scale with the density ρ of the fluid and the cross-sectional
area A of the object, as confirmed by experiment. Each of these factors affects drag
in a linear fashion and for similar reasons. When the density of the fluid surrounding
the ball increases, the ball encounters a greater number of molecules during an
increment of time, which, consequently, increases the number of collisions and the
overall force. Similar arguments hold as the cross-sectional area of the ball increases.
A final factor that determines drag force is the so-called drag coefficient CD, which
depends upon a number of quantities, including the shape and smoothness of the
object. From these arguments aerodynamic drag force is expressed as:

Center of mass (CM)

Weight

Buoyant force

Propulsive forceDrag force

Figure 3.2. Force diagram for a swimmer, indicating propulsive, drag, gravitational, and buoyant forces.
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FD = 0.5CDρAv
2. For a baseball traveling at 100 mph (44.7 m s−1), FD is

approximately 2.0 N, a value comparable to the weight of the ball itself. As seen
earlier, such effects reduce the range of baseballs by approximately 50% of their
ideal range.

As a result of atmospheric effects, drag forces can vary even for specified objects
moving with constant speed. Such variations usually occur due to changes in air
density with altitude or temperature. As air temperature increases, gas particles
attain greater kinetic energies and, as a result, they move with greater speeds and
occupy greater average volumes. Air density then decreases and the drag force
decreases proportionally. Studies reveal that air density and drag force decrease by
about 2% as temperatures increase from 20 °C to 25 °C. While these changes seem
inconsequential, effects due to drag forces are cumulative. For example, reduced
drag of 2% in a 4 km pursuit race in cycling decreases race times by 1–2 s, a
significant difference given that a few hundredths of a second often separate racers at
the finish line.
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Chapter 4

Momentum, collisions, and sweet spot

Whenever two objects interact in time and space, they undergo what is known as a
collision. In scientific studies, numerous theoretical treatments have been developed
to analyze collisions of objects ranging from atomic nuclei to human bodies to
galaxies. Collisions are prevalent in nearly every sport—even in ones classified as
‘non-contact’ such as golf and running in which, respectively, ball–club and foot–
ground collisions occur rather frequently. In fact, it is difficult to imagine any sport
or athletic contest in which no collisions occur. Given the ubiquity of collisions in
sport, the treatments here will consider where along a bat a collision should occur for
maximum effect and how to predict speeds of objects after collisions occur.

Sweet spot
Striking a ball with a bat produces a variety of effects, depending upon where the
impact occurs. In the most painful cases, the batter’s hands experience stinging
sensations, often lasting for several seconds. During more optimal strikes, the
collision produces no ill effects on the hands and the ball rebounds with maximum
velocity. So what is different about the two strikes?

As an extended body, a bat or racket has a special point, known as a center of
percussion (COP), associated with it. In physics language, a force acting through
that location causes the rotational and translational motions of the bat to cancel at
the pivot point, located near the hands. Given this lack of motion at the pivot, no
reaction force is produced there, and the batter feels essentially no effects due to
impact. If the (collision) force is applied between the hands and the center of
percussion, the batter feels a force that tends to push the hands backwards (away
from the pitched ball). If the force is applied between the center of percussion and
the far end of the bat, the batter feels a force that tends to push the hands forwards
(toward the pitched ball). See figure 4.1 for the approximate location of the center of
percussion COP of a baseball bat.
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Collisions at the COP then are desirable from the standpoint of the batter’s
comfort, but also from the point of view of producing longer hits. Impacts at the
COP produce no overall motion of the pivot point, thus no work is done at that
location. In turn, more of the initial kinetic energy of the ball is returned after
collision. Greater return of kinetic energy (KE) causes the ball to travel farther given
that distance traveled for a projectile is dependent upon launch speed.

The COP is closely associated with another optimal point of impact along an
implement known as a node of vibration. When objects such as bats, rackets, and
clubs are struck, they tend to vibrate along directions perpendicular to their lengths.
These oscillations cause transverse waves, and, when combined with the fact that
these waves travel in both directions along the implement, produce what are known
as standing waves.

Standing waves result from the combination of waves traveling in opposite
directions and are characterized by regions of maximum oscillation called antinodes
and regions of minimum oscillation called nodes. To best observe these regions, tie a
rope to a fixed location and shake the other end at higher and higher frequencies
until a series of antinodes and nodes is observed. This kind of pattern is what is
created along an extended body such as a bat. (Standing waves also occur within a
pipe organ or along a guitar string when a particular note is played.) A bat held at
one end generally oscillates in one of two natural modes—one with a single node
near the handle end of the bat and another with one node near the handle and
second one about 80% along the length of the bat. The second node is where the
batter should strike a pitched ball to avoid unwanted vibrations.

Collisions at nodes and antinodes determine hit distance following impacts
between a ball and a bat. When a bat is struck at one of its natural antinodes
some of the initial kinetic energy KE associated with the object colliding with the bat
is converted into vibrational energy of the bat. By contrast, when a bat is struck at
one of its natural nodes, little or no KE is converted into vibrational energy of the

Sweet spot
80%

Figure 4.1. Depiction of baseball bat and the approximate location of its center of percussion COP or sweet
spot.
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bat. As a result, nearly all the KE of the object (ball) colliding with the bat is
returned to that object. This greater return of KE causes the object to attain a
greater speed after collision. As a result, striking a ball at or near the COP or
a closely associated node of oscillation produces the most optimal conditions for a
batter—minimal reaction forces, reduced vibrations, and greater hit distances.

Conservation of linear momentum
In the absence of forces other than those acting between colliding bodies, a system of
bodies is said to be isolated. Under these conditions, application of Newton’s laws of
motion proves that the physical quantity known as linear momentum is the same
before and after collision. Linear momentum by definition is the product of mass
and velocity; conservation in the realm of science refers to the fact that the conserved
quantity maintains the same magnitude and direction.

A simple example of conservation of linear momentum involves the head-on
collision between two billiard balls—one that is initially at rest and another one
moving with initial velocity v. In this scenario, the first ball has zero initial linear
momentum, and the second one has linear momentum given by its mass times
velocity. Upon collision, the first ball usually comes to rest quickly while the second
one moves in the forward direction with essentially the same velocity as the first one
had initially. Thus, the linear momentum of the first ball is transferred to the second,
resulting in no change in either the magnitude or direction of the linear momentum
of the system—a clear demonstration of conservation. These arguments, of course,
assume that only interactions between the two billiard balls occur during collision.
In addition, only translational motions are considered for these analyses.

Conservation of momentum—it’s the law
The mathematics of conservation of linear momentum is based on the fact that the
conserved quantity must have the same magnitude and direction before and after a
collision occurs. Magnitude here refers to the numerical value associated with the
quantity; direction refers to the orientation of the quantity in space. For head-on
collisions, application of conservation of linear momentum is reduced to one
dimension and the mathematics describing a system of two colliding bodies becomes
m1v1i + m2v2i = m1v1f + m2v2f, where m1 is the mass of the first object, m2 is the mass
of the second object, v1i is the initial velocity of the first mass, v2i is the initial velocity
of the second mass, v1f is the final velocity of the first mass, and v2f is the final
velocity of the second mass. For reference, a direct collision between a baseball and
a bat with initial and final velocities shown is depicted in figure 4.2.

Numerous examples of head-on collisions occur in sport; all of them can be
analyzed using the expression above. One of themost dramatic is a quarterback sack in
football. Suppose that an NFL quarterback (QB) of mass 98.0 kg is set up in the
pocket, ready to deliver a pass downfield to an open receiver. In this scenario the QB
often is unaware of an oncoming rusher, so he is essentially motionless at the time of
collision. As a result, all the initial linear momentum is due to the pass rusher. If such
a rusher has a mass of 130 kg and a velocity of 5.0 m s−1, the initial momentum is
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650 kg m s−1. The goal of the pass rusher is to take the QB to the ground, so, upon
collision, the pass rusher grabs the QB and the twomove as one systemwith a common
velocity. Setting the initial momentum of the rusher equal to the mass of the combined
players times the final velocity of the combination, yields a final velocity of 2.9 m s−1.
Speeds of this magnitude, combined with falling to the ground during the tackle, can
lead to severe injuries to the shoulders, legs, neck, and back. Quarterbacks beware.

Basketball is another sport in which body-on-body collisions occur. In many
instances, a player drives to the basket and an opposing player moves into position
to prevent the drive. An ensuing collision occurs that can be analyzed using the
principle of conservation. To illustrate, assume the player driving to the basket has a
mass of 91 kg and a velocity of 5.0 m s−1, and, after collision, that same player has a
velocity of 2.5 m s−1. A second player has a mass of 88 kg and an initial velocity of
zero. Inserting these numerical values into the equation for conservation of linear
momentum yields a final velocity for the second player of −2.6 m s−1, indicating that
the second player is moving backwards at a rate of 2.6 m s−1. These motions are
expected given that players taking charges generally move backwards following
collisions with players driving to the hoop.

Figure 4.2. (a) Schematic of a baseball bat and ball moving toward each other before collision. (b) Schematic
of a baseball bat and ball after collision. The smaller filled circles depict how extended bodies can be treated as
point masses for computations in which rotation is neglected.
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Chapter 5

All that spin: angular motions and angular
momentum

Rotational motions in sport both intrigue us and motivate us to ask questions such as:
will the gymnast land on her feet during a dismount from the balance beam? How
much will the slider break on its way to home plate? How many rotations can the
skater perform on a particular jump? Discussions below begin with a few definitions
related to angular motions and then introduce one of the most robust laws in physics—
conservation of angular momentum. With this powerful tool in hand angular motions
of systems ranging from atoms to galaxies and everything in between can be analyzed
with surprisingly simple mathematics.

Angular speed
The concept of (average) speed is based on the rate at which an object moves from
point to point in space. Angular speed, by contrast, refers to the rate at which an
object rotates about an axis. Many systems in sport including divers tumbling in the
air, ice skaters twirling during a jump, and baseballs spinning during their movement
to home plate exhibit rotation. To determine how fast these rotations occur, the
quantity, average angular speed, is defined as Δθ/Δt, where Δθ refers to a change in
the angular position of the system and Δt refers to the interval of time to undergo the
given rotation.

In the commercial world, rates of rotation often are expressed in terms of number
of revolutions per minute. Fan motors, for example, have operating rates of rotation
of around 1000–1800 revolutions per minute (rpm). In the scientific world, angular
speeds are expressed in radians per second. (For reference, there are 2π radians in one
revolution.) Angular speeds in sport range from curveballs in baseball (188 rad s−1) to
penalty kicks in soccer (60 rad s−1) to slowly rotating gymnasts (6 rad s−1).
Quantifying angular speeds is crucial for analyzing maneuvers of ice skaters and
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gymnasts, determining curvature of soccer balls, and specifying forces necessary for
racecars to maintain their paths along circular paths.

Angular acceleration—all that change in angular velocity
As seen from motions in one and two dimensions, velocity arises due to intervals of
acceleration. Acceleration, in turn, depends on generation of forces such that
acceleration is proportional to the net force applied. For rotational motion to
occur, a system must experience a change in angular velocity, which is characterized
by angular acceleration. Angular acceleration is generated as a result of a net torque
applied to a system.

Torque has many nuances and complications but can be understood by thinking
about the operation of a wind turbine. Air passing over the blades of a turbine
produces forces at right angles to the blades and at nonzero distances from the axis,
causing the blades to turn. In a similar fashion, actions of the hands and fingers
generate forces at the outer edges of a basketball, thus producing rotation (backspin)
upon release of a jump shot. From these examples, systems undergo angular motion
when a net force is applied at a nonzero distance from the axis about which the
system rotates. In the language of physics, angular motion is generated by a net
torque, which requires the product of two physical quantities—an applied force and
a lever arm. A lever arm for a rotating body refers to the perpendicular distance
between the pivot point (axis) and the line of action of the force.

As a final everyday example of angular motion, consider operation of a hinged
door. By design the handle of the door is located at nearly the width of the door
away from the axis of rotation running through the set of hinges. When a force is
applied at the location of the handle, a torque is generated to cause the door to
rotate. If a force is applied halfway between the hinges and the handle, the force
must be doubled in order to produce the same torque. For a fixed value of force, the
torque depends directly on the value of the lever arm. Often we talk about increasing
leverage, which basically translates to increasing the lever arm.

Triple axel
Competitive singles’ ice-skating is a splendid event consisting of compulsory routines
as well as free programs, emphasizing thrilling jumps and spins. Olympic singles’ ice-
skating first appeared in the 1908 Games in London and has continued until the
current day. Extraordinary athletes who have become Olympic ice-skating cham-
pions include American men Dick Button, Hayes Alan Jenkins, David Jenkins,
Scott Hamilton, Brian Boitano, and Evan Lysacek and American women Tenley
Albright, Carol Heiss, Peggy Fleming, Dorothy Hamill, Kristi Yamaguchi, Tara
Lipinski, and Sarah Hughes. Historically, Americans have performed well on the
world stage; however, more recently, skaters from Russia and Japan have domi-
nated international and Olympic competitions.

One of the most exciting personal moments in the 2018 Winter Olympics in
Pyeongchang (South Korea) occurred when Mirai Nagusa became the first
American woman to land a triple axel in Olympic competition. The triple axel is
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a particularly difficult jump to execute given that the skater takes off in a forward
position and lands in a backward position. Prior to launch, skaters like Nagusa
approach the takeoff point at close to 20 mph (8.9 m s−1) so that exquisite timing is
crucial. Upon landing the body experiences forces up to five times the skater’s body
weight, distributed over a single skate whose blade width is only 4 mm. The entire
jumping maneuver requires 3.5 rotations in less than a second. Average angular
speeds developed during rotation in the air are approximately 22 rad s−1, or close to
40% of angular speeds attained by soccer balls during penalty kicks.

Rotation and conservation of angular momentum
An Olympic diver walking toward the end of a springboard takes a final hop-step
causing the end of the board to bend downward. As the board returns to its natural
position, the diver uses the action of the board to propel herself upward in
preparation for a dive. As she returns to the board, it flexes further this time so
that when she leans slightly forward, the board’s upward motion causes her to vault
into the air. During flight, her body’s motion is upward and forward, ultimately
causing her to reach a maximum height before continuing her descent along a curved
path toward the pool. This trajectory through the air takes only a few seconds but
dramatically determines the outcome of what is often a once-in-a-lifetime
competition.

As seen from slow motion replays, the path of a diver follows a familiar parabolic
shape, much like that of a basketball or shot put projected into the air. This
trajectory is predicted by Newton’s laws of motion for an object undergoing 2-D
motion with constant acceleration along one of those directions. This so-called
projectile motion is what causes the diver to go from the board to the water, along a
relatively smooth path.

During her trajectory through the air the diver experiences both translational and
rotational motions. The quantity characterizing how fast she is rotating, called
angular speed, remains relatively small, as she leaves the board in an extended body
position. So subtle is this motion in the extended position that it is sometimes
imperceptible to the eye.

However, as she tucks her body into a fetal position during the dive, her angular
speed increases, thus allowing her to negotiate several rotations in the air. Before
entering the water the diver often returns to an extended position, reducing her
angular speed prior to entry. Such a maneuver allows her to enter the water in a
nearly vertical position so as to prevent excessive splash that would lead to
deductions in scoring. Given this interplay between angular speed and body
position, an observer might ask: why do these changes in angular speed occur?

The basic physical principle, describing the changes observed during the dive, is
referred to as conservation of angular momentum. Angular momentum by definition
is the product of two quantities—the moment of inertia I of a body and its angular
speed ω. Angular speed, as described previously, refers to the rate of rotation of an
object in special units of radians per second. Moment of inertia is a physical quantity
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that describes quantitatively how the mass of a system is distributed about its axis of
rotation.

For a given mass, a larger moment of inertia indicates that a larger portion of that
mass is distributed farther away from the rotation axis. As an example, consider a
solid disk and a ring, each with the same mass m and radius r, free to rotate about
axes perpendicular to the planes in which they lie and through their geometric
centers. Under these conditions, the ring has a moment of inertia that is twice that of
the disk, leading to noticeable differences in their motions. When a disk and a ring,
both of equal mass and radius, are released from rest at the top of a ramp, the disk
reaches the bottom first.

(b)

(a)

Figure 5.1. (a) Diver undergoing rotational motion in an extended position. (b) Diver undergoing rotational
motion in a tucked position.
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The physical reasoning is that the disk has a lower moment of inertia and, as a
result, less resistance to a change in its rotational state of motion. Because this
resistance is reduced, the disk attains angular speed more quickly. Such effects are
akin to a smaller mass, experiencing an equivalent force to that of a larger mass,
attaining a greater speed in a given amount of time.

Returning now to conservation of angular momentum, motions of the diver will
become more apparent. Conservation laws in physics arise whenever conditions are
just right so that a particular quantity remains constant. Angular momentum is a
conserved quantity whenever a rotating body is isolated—that is, the body is not
interacting with its environment. Once airborne, the diver essentially becomes an
isolated body in terms of its rotational motion, provided small effects such as air
resistance are neglected. As an isolated body, the product of the diver’s moment of
inertia and angular velocity has a fixed value and direction. If the diver extends, the
moment of inertia increases and the angular velocity decreases so that the diver does
not rotate as rapidly. Conversely, if the diver tucks the moment of inertia decreases
and the angular velocity increases so that the diver rotates more rapidly. See figures
5.1(a) and (b) for both scenarios.

As a quantitative example, consider a diver who leaves the board in an extended
position such that her moment of inertia is 12.0 kgm2 while rotating at 1.2 revolutions/
second (7.5 rad s−1). Suppose that as she tucks, her moment of inertia is reduced to
4.2 kgm2 causing her angular speed to increase to 21.4 rad s−1. (This angular speed
translates to over 3 revolutions/second.) With this example in mind, it is interesting to
observe changes in angular speed during diving events in the Olympics and interna-
tional competitions. Other athletes who make use of conservation of angular
momentum to control their rates of rotation (angular speed) include ice skaters,
gymnasts, and acrobats.
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Chapter 6

Effects of fluids in sport

Many effects in sport are the result of a system—such as a soccer ball or the body of
an athlete—interacting with matter in the form of a fluid. Fluids such as air and
water often are described as systems whose constituent particles interact weakly with
one another. In response, bulk fluids usually take the shape of the containers in
which they are confined. While interactions among fluid particles are weak, the
collective action of billions and billions of fluid particles, moving randomly or along
streams of flow, produce forces whose effects are visible. Such effects provide the
buoyancy that cause swimmers and water polo players to float and generate forces
that produce deflections of soccer balls, baseballs, and volleyballs.

Buoyancy
One of the most fundamental interactions between an extended body and a fluid
involves the effect of buoyancy. By definition buoyancy refers to an upward force
generated on a body due to the fact that the body partially or fully displaces a fluid.
A toy boat floating on water is a familiar example of a system experiencing
buoyancy. The fact that the boat does not sink is due to a buoyant force produced
by the water on the boat. When the boat is placed on water, a portion of the boat
sinks below the surface level. That portion of the boat displaces a volume of water
equal to the volume of the boat below the water level, and an accompanying
buoyant force is exerted on the boat. This force is common to all objects that
displace water or other fluids.

The origin of the buoyant force is best understood by thinking about a fluid at rest
within a container. Consider a thin slice of water whose top edge aligns with the
surface level of water within a container. Provided the thin slice remains at rest, all
forces on it must balance. For any net downward force acting on the slice there must
be a compensating upward force.

Near the surface of the Earth the thin slice of fluid experiences a gravitational
force directed downward. For equilibrium to be maintained, an upward force must
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be exerted on the slice, and further that force must be exerted by the water itself. In
this scenario, a fluid can only exert an upward force that is equal to the weight of the
fluid displaced. If such a force were larger than the weight of the fluid displaced, the
slice of fluid at the surface would accelerate upward. If such a force were smaller, a
similar slice of fluid would sink. These arguments can be summarized as follows: a
fluid exerts an upward (buoyant) force on an object either partially or completely
submerged within it. That upward force is equal to the weight of the fluid displaced.

All objects on the surface of the Earth experience buoyant forces due to
immersion within the atmosphere. In most cases, buoyancy due to air is so small
compared to gravitational forces that no significant effects are observed. However,
when objects are immersed in water, substantial buoyant forces are present. Given
that the ratio of the density of a human body to that of water is approximately 98%,
Archimedes’ principle predicts that 98% of the human body will be below water
level, and 2% of the volume of the body will be above water level at equilibrium.
Buoyancy effects are observed most commonly in water sports such as water polo,
diving, and swimming.

The curveball and a bender in soccer
Watch any soccer match or baseball game and you will see countless examples of
balls experiencing sideways forces as they travel through air. Sideways forces
produce curvature, which adds to the drama and challenge of competitions. As
examples, a goalie in soccer must be able to react to a shot in which the ball
experiences up to a meter or more of deflection, and a baseball batter must be able to
make contact with a ball traveling over 90 mph (40 m s−1) while also exhibiting
curvature of 0.4 m or more. Given such dramatic effects, several questions emerge.
What is the origin of these forces? How large are they? Can they change under
certain circumstances?

Investigations of these questions require consideration of motions of air molecules
relative to a spinning ball. Upon release a curveball rotates very rapidly (typically
over 2000 revolutions/second) but also travels along a path through the air
surrounding it. For the discussion here, this forward motion can be treated as if
the ball remains at rest while the air moves in a direction opposite to the ball’s
motion. (This scenario is similar to wind tunnel studies in which objects are held at
rest while air at a specified speed is directed at those objects. It also provides a more
accessible way to address interactions between the ball and air.)

Fluid layers near the ball’s surface are known as airstreams. A single airstream is
essentially a string of particles, moving along a path that exhibits no rotational
motion. Smooth airflow consists of a multitude of moving airstreams, each one
parallel to its neighboring airstreams. In addition to the air’s motion past the ball,
figure 6.1 depicts a region on the side of the ball opposite to the origin of the
airstreams known as the wake. In this region, airstreams interacting with the ball
deviate from their smooth paths, thus leading to rotational motion and accompany-
ing turbulent flow in the wake.
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Sideways forces on balls in airstreams arise from deflections of the wake due to
action–reaction forces between the wake and the ball. For a smooth, non-spinning
ball the wake lies directly behind the ball and no accompanying sideways forces
occur. For a spinning ball, airstreams moving in the same direction as the surface of
the ball tend to stay in contact with the surface, causing the streams to bend around
the ball before separating. By contrast, airstreams moving in the opposite direction
as the surface of the spinning ball tend to bend around the ball less so before
separating. The wake then is deflected toward that region where less bending occurs,
and the ball is deflected in the opposite direction, in accordance with Newton’s third
law of motion.

In the scenario shown in figure 6.1, the upper part of the ball is traveling in the
opposite direction to the motion of the airstreams. Thus, the wake is deflected upward,
and the ball is deflected downward. Indeed, a ball rotating clockwise and moving to
the right in the plane of the page is expected to experience a downward force, leading
to bending or curvature of the ball’s path. The degree to which a ball curves on its
trajectory basically depends on how large the force is and over what time interval such
a force acts. For a baseball traveling from the pitcher’s hand to home plate, this time
interval corresponds to how long the ball is in the air during its flight.

The bending force on a spinning ball depends upon a number of factors: a
constant called the lift coefficient, density of the fluid, speed of the object, its
diameter, and its rotation rate. Standard calculations predict typical forces on a
Major League curveball in the range of 2–3 N. Forces of this magnitude acting over
time intervals equivalent to the time of the ball’s trajectory produce sideways
deflections of order 1 m. Such deflections are approximately equal to the distance
between the batter and the outer edge of home plate—so that a curveball directed at
the batter will cross over the opposite side upon arrival. (This scenario assumes that
the pitcher and batter have the same handedness.)

The knuckleball
Under certain conditions, objects such as baseballs, softballs, and volleyballs can
exhibit sideways (or downward) motions even when no substantial rotation occurs.

Direction of spin

Direction of air flow

Direction of translation

Wake

Figure 6.1. A baseball traveling to the right on the page and spinning in a clockwise fashion. In this scenario,
the wake is deflected upward, resulting in downward deflection of the ball.
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In the parlance of sport, such motions are said to result from knuckling action of the
ball. Pitchers in baseball sometimes throw non-spinning pitches to generate
unpredictable deflections so as to deceive the batter. In other cases, knuckling
effects result from certain playing conditions and are totally unintentional.

In order to understand how these motions arise, consider a non-spinning sphere
interacting with a system of airstreams. As before, the ball’s translational motion
through air is equivalent to the ball remaining at rest and airstreams moving around
the ball in a direction opposite to the ball’s motion. As in the case of the curveball, a
region called the wake develops behind the ball such that interactions between the
ball and the wake produce knuckling effects.

For a non-spinning object in an airstream, deflections of the wake occur as a
result of small asymmetries on the object. Asymmetries usually refer to regions that
have different smoothness or surface features. For instance, a small scratch on one
side of an otherwise perfectly smooth sphere provides an asymmetry. For a baseball
or softball, the seams can create asymmetries from the perspective of airstreams
passing over the ball. To visualize these effects, hold a baseball in front of you so
that airstreams passing over the right side of the ball encounter two closely spaced
seams at right angles to the airstream. On the other side of the ball, directly across
from the seams, airstreams encounter the smoother covering of the ball. These
differences in smoothness provide asymmetries necessary to cause deflection.

To illustrate these effects, consider a non-spinning ball with asymmetries,
resulting from smooth and rough regions on opposite sides of the ball. As shown
from wind tunnel experiments, airstreams interacting with the rough region of the
ball tend to bend around the ball more so before separating. By contrast, airstreams
interacting with the smoother region of the ball tend to bend around the ball less so
before separating. Given that the rough side of the ball tends to maintain the
airstream, the wake is deflected away from the rough side, and the ball, in turn, is
deflected toward the rough side. In the description here, the deflection is sideways,
but different orientations of the ball on its path to the plate can result in downward
deflections. Claims of upward deflections have been made but would require
extraordinary conditions not usually present in baseball stadiums. More likely,
these observations can be explained by the fact that upward lift forces produce less
overall drop in the ball than expected due to gravity alone. When the eye detects less
overall drop, the brain perceives upward motion.

In addition, deflections can vary from moment to moment as the ball travels from
the pitcher’s hand to home plate. As a quick example, imagine that a ball is thrown
with very little rotational motion, but with just enough to undergo a ¼ to ½ rotation
during its trajectory. Returning to the situation where the right side of the ball has
enhanced roughness, the ball initially undergoes deflection toward that side. Suppose
now that the ball undergoes a ¼ rotation before reaching the batter.

During re-orientation, the asymmetry of the ball shifts from the right to the left
side so that the deflection is now in the opposite direction to the original one.
Analyses of outstanding knuckleball pitchers indeed show that multiple deflections
are possible as the ball travels to home plate. These motions are inherently
unpredictable due to the fact that trajectories are dependent upon details of ball
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orientation, rotation, and speed. Often batters experience confusion when trying to
hit the knuckleball, but catchers also experience difficulties in handling the knuckle-
ball. In fact, catchers often use over-sized gloves when catching knuckleball pitchers.
Typical forces associated with knuckleballs are slightly less than those associated
with curveballs so that deflections of 0.1–0.4 m are common.

Unexpectedly large knuckling action in sports can cause confusion among
competitors, and, ultimately, affect outcomes of games. Prior to the 2010 FIFA
World Cup the organizing body approved the new Jabulani football for competi-
tion. The officially sanctioned ball was designed with 8 instead of 32 panels, making
it susceptible to enhanced knuckling, presumably due to a precipitous drop in its
drag force at certain speeds. Decreases in drag force effectively enhance effects due
to side-to-side (lift) forces generated by interactions between the wake and
asymmetries on the ball. Before and during the World Cup, players and coaches
complained that the ball’s path was unpredictable, especially at intermediate speeds
under slow rotation. Wind tunnel experiments confirmed that the Jabulani ball
exhibits increased knuckling at intermediate speeds of 30–55 mph. This controversy
in the soccer world led to development of the Adidas Tango 12 series of balls.

Tom Brady and Deflategate
Love them or hate them the New England Patriots since 2001 have appeared in eight
Super Bowls winning five of them. One of the stalwarts of the team during this era of
domination is quarterback (QB) Tom Brady. While the Patriots have been extra-
ordinarily successful over these years, their winning ways are not without controversy.

Before a playoff game against the Colts in 2015, Brady was suspected of
instructing ball handlers to underinflate game balls below legal limits set by the
NFL. After finding that some of the footballs used in the 2015 playoff game were
underinflated by 2–3 psig, NFL officials launched an investigation. Brady ultimately
served a four game suspension, following an initial ruling and lengthy appeals
process. For their role in the scandal, the Patriots were fined 1 million dollars and
lost two draft picks.

Due to the protracted legal battle and public dispute stemming from the so-called
Deflategate controversy, the NFL changed its rules concerning inspection, handling,
and preparation of game balls. Now before each game two Game Officials, in the
presence of a League Security Representative, obtain 12 footballs from each team,
measure their air pressures, and, if needed, adjust pressures to allowable values
between 12.5 and 13.5 psig. Once this process is complete, game-ready balls are
numbered 1–12 for each team, and no further alterations are permitted.

Given the serious consequences to Brady and the Patriots and, at least, circum-
stantial evidence of cheating, does underinflation of a football provide substantial
advantages? Laboratory measurements of mass loss due to underinflation by 2–3
psig indicate reductions in mass of about 0.8 g. Changes of this magnitude are less
than the mass of a paper clip, and, in fact, may be smaller than inherent
manufacturing variations for NFL footballs. Players would not notice these slight
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mass changes, and from physical analyses, a ball underinflated by 2–3 psig would
travel through the air in essentially the same fashion as a fully inflated ball.

Underinflation, however, does allow for better grip so that a QB is able to
perform throwing actions more seamlessly and is less likely to fumble the ball when
under duress. Simple models predict that increases of at least 15% in grip forces are
produced when a ball is underinflated by 2–3 psig. Better grip also helps receivers
and running backs by reducing their chances of fumbling and aiding in catching the
ball. While Tom Brady and his teammates, most likely, benefitted from use of
underinflated footballs, the Patriots thoroughly defeated the Colts in the 2015
playoff game in question, dominating them in every aspect of the game. Several
Colts’ players later acknowledged that their loss had nothing to do with possible
cheating by the Patriots.

In another twist, Brady led his team to a Super Bowl victory and was voted Super
Bowl Most Valuable Player MVP during a season (2016–17) in which stricter rules
for game ball preparations were in place. Brady served a four game suspension
during the first four games of that season but performed brilliantly once he returned.
Many have questioned why a team would risk sanctions and penalties for
advantages that are seemingly unnecessary. By all accounts, Brady is a superior
QB and performed just as well, or even better, following implementation of stricter
rules for ball handling. Moreover, stricter rules did not lead to dramatically more
fumbles or dropped balls by Patriots’ running backs and receivers. The motivation
behind the cheating scandal remains a mystery, but may lie in Coach Bill Belichick’s
obsession with gaining every possible advantage—even if that means risking getting
caught and suffering significant penalties. You be the judge.
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Chapter 7

Wave action

Disturbances in nature—when produced at regular intervals of time—often generate
periodic oscillations that move outward from sources in the form of traveling waves.
Waves are the primary mechanism for transmitting energy across vast expanses of
our galaxy. Moreover, they are responsible for communication between players
shouting instructions on a field of play. When wave energy is delivered at sufficiently
high levels over space and time, high intensities result. Extreme levels of sound
intensity in raucous stadiums can alter game play and ultimately lead to hearing loss.
Within the electromagnetic spectrum of waves, certain properties of light also affect
the ability of athletes to see and react to objects during competition.

Wave action
Swaying of branches in the wind, vibrations of stringed instruments, and sunlight felt
on your face, all depend upon generation and propagation of waves. Prevalence of
waves in everyday life have motivated scientists such as Galileo, Newton, and
Einstein to study their origins, properties, and interactions with matter. In the arena
of sport, actions of waves produce the deafening roar within stadiums, oscillations
felt after a bat is struck by a baseball, and images formed by the eye as competitors
scan a playing field. Generally speaking, waves can be divided into two major
classifications: transverse and longitudinal. A transverse wave is generated by
particles (or fields in some cases) oscillating along directions perpendicular to the
direction in which the wave is traveling. These kinds of waves can be observed by
securing one end of a rope and shaking the other end in an up-and-down fashion.
Sections of the rope move up and down but the wave (disturbance) moves along the
length of the rope itself.

In contrast with a transverse wave, a longitudinal wave is generated by particles
oscillating parallel to the direction of travel. These waves can be demonstrated with
a light spring (Slinky): first hold the ends of the spring, compress a section of the
spring at one end, and then release that section. Particles within this section will
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begin to oscillate about their original positions before the spring was compressed.
Because sections of the spring are connected to each other, particles within nearby
sections subsequently move back and forth (oscillate) and the disturbance moves
along the length of the spring. (See figure 7.1 for schematics of transverse and
longitudinal waves.)

Sound is one of the most ubiquitous examples of a longitudinal wave and is
produced by air molecules oscillating back and forth along the direction of travel.
Regions where the average separation of molecules is less than usual exhibit
compressions, or regions of higher pressure. Regions where the average separation
of molecules is greater than usual exhibit rarefactions, or regions of lower pressure.

Hear the stadium roar
The cheers of roaring crowds motivate players to perform at their highest levels; they
also provide thrilling environments for spectators. For opposing players, however,
crowd noise often hampers performance, especially in sports such as American
football in which players often rely on voice signals for communication. In recent
years several football stadiums have registered sound intensity levels exceeding
130 dB. The current record of 142.2 dB was measured in Arrowhead Stadium
(Kansas City) on September 29, 2014. On this particular evening, Kansas City fans
were especially boisterous during the Chiefs’ resounding victory over the Patriots by

Longitudinal wave

Transverse wave

Figure 7.1. Transverse and longitudinal waves indicating oscillations perpendicular and parallel, respectively,
to the direction of travel.
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a score of 41–14. In the Patriots’ loss, quarterback Tom Brady threw two
interceptions, one of which was returned for a touchdown.

Other teams also have endured poor performances in Arrowhead, partly due to
overwhelming crowd noise. On a previous record-setting day during which intensity
levels reached 137.6 dB, the visiting Oakland Raiders were penalized 11 times.
Several of those penalties were due to the visiting players’ inability to communicate.
Even Kansas City Chiefs’ safety, Eric Berry, resorted to yelling in teammates’ ears to
relay defensive play calls. With all the fuss about the loudest sports venues and
various claims to records, what exactly is the dB scale and how loud is 142.2 dB?

The dB scale is based on the principle that sound waves deliver energy as a result
of particles within the medium (air molecules) moving back and forth. Oscillating
particles possess kinetic energy and thus produce a certain amount of power. (You
may recall that power in physics is work done or energy delivered over a unit of time,
generally one second.) Because this energy per time is incident on a specified region
of space, sound has an intensity associated with it. Intensity is defined as the power
delivered divided by the area over which it is distributed; intensity is measured
in units of Watts per m2. Transport of energy is common to virtually all waves in
nature, including those associated with sound, light, and mechanical oscillations. In
fact, exposure to extreme sound intensities is responsible for ringing of ears and
other physiological effects experienced by the body.

The dB scale compares measured intensities to standard intensities and is
calculated on a logarithmic (base 10) scale. The formal mathematical expression
is given by β (dB) = 10log(I/I0), where β is the intensity level in dB, I is the intensity
of the sound source under consideration, and I0 is the intensity of a reference sound
source. Applying this expression simply requires inserting known values for the
intensities and performing the computations. While this work is straightforward,
knowing how dB levels relate to familiar sounds provides a sense of the range of
human hearing.

On the standard dB scale, all sound levels are related to what is known as the
threshold of hearing, which corresponds to an intensity of 10−12 W m−2. A sound
level exactly equal to the threshold produces an intensity level of 0 dB. For each
factor-of-10 increase in intensity, the dB level increases by +10 dB. Thus, an intensity
of 20 dB is 10 times more intense than an intensity of 10 dB, and an intensity of 10 dB
is 10 times more intense than one of 0 dB. For perspective, table 7.1 shows various
sound sources and their respective intensity levels in dB. Sound levels produced in
Arrowhead Stadium are comparable to those of jet airplanes about 100 feet (30 m)
away. Quantitatively, crowd noise there is 1.66 × 1014 (approximately 100 000
billion) times greater than the threshold of hearing. To avoid hearing loss, the
Environmental Protection Agency EPA recommends that humans should limit
sustained exposure to <70 dB.

Red, green, yellow, or blue?
Energy in our cosmos is transported by a variety ofwaves including ones fallingwithin
the electromagnetic spectrum. Electromagnetic waves, composed of oscillating
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electric andmagnetic fields, travel at the speed of light—theUniverse’s ultimate speed
limit. EM waves range from very short wavelength (10−10 –10−14 m) gamma rays to
very long wavelength (1 m or greater) radio waves. Within this broad spectrum, lies a
narrow region of waves corresponding to what the human eye can detect. Known as
the visible light spectrum, wavelengths range from 400 nm, corresponding to violet-
colored light, to 700 nm, corresponding to red-colored light. (One nanometer,
1 nm = 10−9 m.)

A normal human eye can detect all wavelengths within the range 400–700 nm but
is most sensitive to wavelengths corresponding to the green–yellow part of the
spectrum. Our enhanced sensitivity in this region of the visible spectrum is at least
partially due to evolution of the eye to match the maximum output of the Sun. The
Sun—a G-2 star with surface temperatures of approximately 5800 K—produces
maximum blackbody intensities at wavelengths in the yellow–green part of the
spectrum.

Despite our innate ability to detect certain wavelengths of light with greater
sensitivity, color specifications in sport are based more on tradition than scientific
results. In American football, for example, leather panels used in ball construction
are tanned to a natural brown. Other sports also specify construction materials so
that by tradition baseballs are white, American footballs are brown, and hockey
pucks are black. In a few sports such as tennis and softball, officially sanctioned balls
are yellow in color, which allow athletes to detect and track them more easily. Some
officials have proposed to change the color of implements to match the maximum
sensitivity of the eye, but, so far, few leagues have considered such ideas. In many
towns and cities today, however, fire trucks are now yellow instead of red,
presumably to help motorists detect them more readily.

Table 7.1. Sound sources and their intensity levels in dB.

Source dB

Jet airplane (nearby) 140
Jackhammer 130
Rock concert 120
Power mower 100
Busy traffic 80
Normal conversation 50
Mosquito buzzing 40
Whisper 30
Rustling leaves 10
Threshold of hearing 0
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Chapter 8

Doping in sport

Doping in sport refers to the use of drugs or other foreign substances in order to
enhance athletic performance. Throughout history athletes have sought to boost
their performances with substances ranging from dried figs in the ancient Olympics
to performance enhancing drugs PEDs in modern times. In recent days, some
athletes have resorted to using muscle-building agents in an effort to increase their
competitiveness.

A number of compounds are known to enhance muscle mass within the human
body and, as a result, increase forces generated by muscular contractions. One class
of substances that produces increased lean muscle mass is testosterone and its
derivatives. These so-called anabolic substances promote the synthesis of proteins
which, in turn, aid in production of muscle mass. Increases in muscle mass lead to
greater applied forces, and, ultimately, more outstanding performances due to
enhanced strength and speed.

Performance enhancement in baseball
Use of performance enhancers in sports such as baseball benefits athletes by
increasing lean muscle mass and thereby increasing strength. One of the most
visible aspects of baseball, requiring substantial strength, is homerun hitting. The
arguments below will assume that a capable MLB hitter is able to increase strength
due to the aid of performance enhancers. For an estimated or known increase in
muscle mass, the amount by which the range of a batted ball is expected to increase
can be determined from physical arguments.

As body mass is enhanced due to use of PEDs, cross-sectional areas of major
muscles within the body also increase. When this occurs, muscles are able to produce
increased force in proportion to their cross sectional areas. Greater generation of
forces applied by muscle groups leads to increased accelerations and ultimately
greater speeds. For batters in baseball, effects due to muscle enhancement typically
result in greater bat speeds. If other conditions remain constant, increased bat speeds
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generate greater launch speeds for baseballs colliding with those bats, and,
ultimately, greater range of batted balls. An obvious consequence of increased
range is increased homerun production.

From previous discussions of how far a baseball can be hit, the range of a baseball
is known to depend upon the square of its launch speed. To see how much farther a
ball is expected to travel with use of PEDs, an estimated increase in muscle mass is
needed. Without divulging names, several players are known to have increased their
body weights from around 180 pounds to well over 200 pounds during the ‘steroid
era’ in baseball. (Here, we will assume that this increase in weight is due to an
increase in muscle mass only.) For a starting weight of 180 pounds, a 20 pound
weight gain amounts to an 11% increase. Thus, increases in muscle mass of at least
10% due to PED use are quite plausible.

From this estimate of mass gain, the following physical arguments follow.
Increases of 10% in muscle mass give rise to 10% increases in applied force and
work done by such a force. As work done on a system increases, the kinetic energy
(KE) of that system also increases. (For a batter, these changes result in increases in
KE and speed of the bat.) Kinetic energy depends on the square of the speed so that
a 10% increase in KE corresponds to a 5% increase in speed. From extended
collision analyses, a 5% increase in bat speed produces a 4% increase in launch speed
of the ball off the bat. As observed earlier, the range of a projectile depends on the
square of the launch speed, so here the range is expected to increase by 8%.

Suppose that a batted ball originally travels 350 feet (110 m) when hit from the bat
of a player who is not using PEDs. If that same player, now with increased muscle
mass of 10%, hits a ball under otherwise the same conditions it is expected to travel
(350 + 0.08(350)) or 378 feet. Such an increase of 20–30 feet in the range of a batted
ball in many ballparks is the difference between a ‘warning-track out’ and a homerun.

From casual observations, homerun hitters in baseball often hit one ‘warning-
track flyball’ for every one or two homeruns produced. If each ‘warning-track
flyball’ now becomes a homerun due to use of PEDs, homerun production would
increase by 50–100%. Thus, a hitter who previously clobbered 40 homeruns during a
season would increase that production to 60–80 homeruns. These estimates are
certainly within the realm of possibility given that two players hit 70 or more
homeruns in a single season during the ‘steroid era’ in baseball.

Not your grandparents’ football
In sports such as American football in which both size and speed dramatically affect
players’ abilities, performance enhancement due to use of PEDs has the potential to
lead to dangerous playing conditions. As discussed previously, the main outcome of
PED use in conjunction with vigorous workouts is to increase lean muscle mass.
Such increases in muscle mass lead to generation of increased forces and accel-
erations. In sports like football, increased accelerations often contribute to increases
in running speeds. When players possessing greater running speeds undergo
collisions, larger impact forces are delivered. To evaluate more quantitatively the
effects of PED use in contact sports, two scenarios are considered.
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Suppose a player, who is using PEDs and working out, experiences a 10%
increase in lean muscle mass without a change in overall body mass. (This could
occur if an increase in muscle mass is compensated by a decrease in body fat.) From
arguments above, a 10% increase in lean muscle mass generates enhancements of
10% in applied force, acceleration, and, ultimately, maximum running velocity. As a
result, 10% more linear momentum (mass times velocity) is present as this player
collides with another player on a field of play. Assuming that the time interval for
collision is comparable to ones before muscle enhancement, the impact force during
collision will increase by 10%. If both players undergoing collision have enhanced
muscle mass due to doping, forces increase even more.

In a more practical scenario, assume that lean muscle mass increases by 10%,
whereas the player’s total mass increases by 5%. Overall, the physical arguments
produce the same result as above. The speed will increase by 5% and with the stated
mass increase of 5%, the linear momentum (the product of the two) and force
increase by 10%. Increased muscle mass leads to increased forces, particularly during
player-on-player collisions. Enhanced forces often exceed limits of what athletes can
tolerate without injury. In response, many leagues have strictly banned the use of
PEDs and have begun making rule changes to improve player safety.
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Chronic traumatic encephalopathy, concussions,
and knee injuries

Injuries in sport generally occur due to parts of the body experiencing forces beyond
what they can withstand. Severe blows to the head, for example, initiate chemical and
ion imbalances, leading to concussion and accompanying symptoms such as nausea,
dizziness, confusion, and headache. Repeated injuries to the head now are linked to
the condition known as chronic traumatic encephalopathy (CTE), which is charac-
terized by accumulation of tau protein in various parts of the brain. Other injuries in
sport, particularly ones to the joints, usually occur due to failure of ligaments,
tendons, or other soft tissue. Fortunately, through modern surgery and extensive
rehabilitation, athletes suffering these kinds of injuries often experience full recovery.

CTE
Many sports injuries such as broken bones are evident almost immediately; however,
others such as CTE may take years to manifest themselves. While CTE is now a
major health concern, even as recently as a decade ago, many experts did not believe
that any long-term brain injuries such as CTE existed. Following extensive research,
however, CTE now is recognized as a neurodegenerative disease, associated with
repeated blows to the head and characterized by aggregation of tau proteins in
various parts of the human brain. Aggregates form when hyperphosphorylation of
the tau protein occurs, causing the protein to become insoluble. Once this happens
the insoluble tau forms what are known as tangles or paired helical filaments. To
date, not much is known about the role of tangles in manifestations of CTE.

As CTE advances, the brain is reduced in weight due to atrophy of several important
brain centers including: the frontal cortex, temporal cortex, medial temporal lobe, and
even brainstem. In addition, neuronal loss, TAR DNA-binding Protein 43 deposition,
and white matter changes occur. Symptoms of CTE begin with confusion and
disorientation and may lead ultimately to explosive behavior and dementia. Scientists
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originally believed that CTE occurred in athletes who were traumatized by repeated
head injuries, usually over the course of several years. More recent evidence suggests
that even moderate but repetitive impacts, experienced over only a few seasons, can
produce tau deposition within the brain. Such evidence comes from limited studies of
deceased teenagers, who had played football and other contact sports. While correla-
tions between head injuries in sport and CTE have been established, more extensive
research is needed to determine precisely what conditions lead to CTE.

Iron Mike
Known as IronMike, Mike Webster was the epitome of the Pittsburgh Steelers of the
1970’s—a hard-nosed NFL football player who loved battling defensive lineman in
‘the trenches.’ Webster especially enjoyed playing on bitter cold days in Three Rivers
Stadium in Pittsburgh where the Steelers were nearly unstoppable during their Super
Bowl winning years of 1974, 1975, 1978, and 1979. Beyond contributing to team
success, Webster was chosen as first team All Pro seven times during his playing days
and was voted to the NFL 75th Anniversary All-Time Team to honor the greatest
players of the first 75 years of the League. Many experts consider Mike Webster to be
the best offensive center who has ever played the game. Following his playing career,
Webster was elected to the Pro Football Hall of Fame and enshrined in 1997.

As Webster’s career came to an end, he appeared to have everything he needed for
a successful retirement—a supportive family, the adulation of a multitude of fans
across Steeler Nation, and many contacts developed through years of playing in the
NFL. In retirement, however, Iron Mike became increasingly confused and some-
times even violent. His family and others tried repeatedly to help him, but Webster
grew even more disoriented and despondent. Eventually, he resorted to living in his
truck where he was found dead from a heart attack at the age of 50.

Following Webster’s death Pittsburgh medical examiner, Bennet Omalu, ordered
a full autopsy of the body, including examination of dissections of the brain. On a
global scale, the brain appeared normal, but, upon closer examination, dissections
revealed substantial tau deposits—classic signs of CTE. Webster also suffered from
multiple herniated discs, varicose veins, and a torn rotator cuff.

Omalu’s findings and his conclusions that head injuries, suffered from playing
professional football, contributed to development of CTE caused a major stir in the
football community. Omalu endured retaliation for his bold claims, but later was
vindicated through overwhelming scientific evidence. Many subsequent studies of
deceased players’ brains have confirmed that CTE is prevalent among former
professional football players.

Torn ligaments
Humanmotions rely on the ability of the body to undergo bending at certain joints in
order to generate forces along particular directions and to produce leverage. Leg and
arm joints in the body are held together by one or more fibrous structures, known as
ligaments. Ligaments not only hold bones together across the joint but also allow
motions in particular directions. The human knee is a classic example of a hinged
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joint held together by four main ligaments—one on each side of the knee joint and
two others in the back of the joint as shown in figure 9.1. Ligaments on the sides of the
knee are known as the lateral collateral and medial collateral ligaments; they provide
side-to-side stability of the joint. The other ligaments connecting the femur and the
tibia are known as the anterior and posterior cruciate ligaments.

Torn ligaments often occur when an athlete makes a dramatic cut on a field of
play or when the knee joint is struck during collision. In either case, the applied
forces exceed what the ligaments can withstand without tearing. Ligaments tear due
to forces tending to stretch them along their lengths. Such applied forces produce
tensile stress and the resulting displacements produce tensile strain. To understand
tensile stress and strain, consider a long bar with one end clamped in place while the
other end is displaced by an amount ΔL due to an applied force F exerted on it. The
tensile stress on this system is the ratio of the force F to the cross-sectional area A of
the bar: F/A; the tensile strain is the ratio of the displacement (deformation) ΔL of
the bar to its original length L0:ΔL/L0.

When analyzing systems, scientists often examine the ratio of the tensile stress to
tensile strain as a way to determine relative deformation, occurring for a given force per
unit cross-sectional area. The ratio of tensile stress to tensile strain is known asYoung’s
modulus: the greater the modulus the less the material deforms as a result of an applied
tensile force. Liquids, such as water and alcohol, do not support tensile forces, thus
their moduli are zero.Most solid materials have moduli in the range of 5 × 1010 to 35 ×
1010 Pa. By contrast, ligaments have moduli about 20 times less than materials such as
aluminum. As a result, ligaments are somewhat less resistant to tensile stress than solid
materials but allow substantial range of motions so as to keep us mobile.

Figure 9.1. Human knee with the four main ligaments shown. The inset shows a section of a fiber in which a
force is applied to a ligament of length L0 and cross-sectional area A.
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Chapter 10

Special topics

Novel questions arise every day in sport, often as a result of technological advances
and emergence of new generations of extraordinary athletes. Many of the questions
that stimulate our curiosity require scientific approaches to find suitable answers.
Using the principles and habits of mind developed thus far give us the framework for
answering contemporary scientific questions in the wide world of sport.

Need for speed
Our fascination with fast motions probably dates to prehistoric eras when sprinting
and launching various weapons with great speed and accuracy were necessary for
survival. Moreover, since ancient times, we have celebrated the ability of athletes to
run quickly by declaring winners of particular races as ‘the fastest runners in the
world.’

Given our natural curiosity and awe of great sprinters, we, as observers, might
ask: what makes them unique? In order to pursue this question, a quick glance back
at the concept of speed is useful. Average speed is defined as the ratio of the distance
covered to the time interval, required to travel that distance. In a particular
competition, a sprinter who runs a given distance in the least amount of time
wins the race—and generates the greatest average speed. With a view toward
generating maximum speed, we will address what physical attributes make certain
athletes extraordinarily fast.

One of the first studies to examine how human speed depends on the anatomy of
an athlete was conducted in the 1970s by Hoffmann and co-workers [1]. Their work
examined the stride lengths of 56 male athletes and 23 female athletes and revealed a
linear correlation between average stride length L and a sprinter’s height H. Linear
relations take the form y = mx, so that L = cH, where c represents a constant of
proportionality. In addition to showing this linear correlation, Hoffmann’s studies
found constants of proportionality of 1.14 for female sprinters and 1.13 for male
sprinters. Recent analyses of modern, elite sprinters by the present author also have
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found linear correlations between L andH—but with slightly higher proportionality
constants [2].

To extend the results of Hoffmann and to show the unique abilities of elite
sprinters, two basic quantities are required—average stride length and average stride
frequency. Average stride length refers to the average length of a stride during a race
and is found by dividing the race distance by the number of strides taken during the
race. Average stride frequency refers to the average number of strides taken per time
interval and is found by dividing the number of strides taken during a race by the
race time. Clearly, both quantities depend upon the number of strides taken, so the
two are not independent of one another; nevertheless, their product is equivalent to
the average speed. In order to develop significant speed, an elite sprinter must have
both a sufficiently long stride, together with sufficiently rapid ‘turnover’ of the legs.

To examine numerical values of these quantities, a complete analysis of Usain
Bolt’s stride characteristics is undertaken, using data from his world record
performance during the 2008 Olympics in Beijing. In these games, Bolt, whose
standing height is 1.96 m, sprinted to victory in the 100 m dash in a time of 9.69 s
while taking 41 strides to complete the race. With these numbers in hand, average
stride length, average stride frequency, and the proportionality constant relating
average stride length and standing height can be calculated quite readily.

Average stride length L is determined by dividing distance covered by the total
number of strides, so in Bolt’s case average stride length is 2.44 m (100 m/41 strides).
Average stride frequency is found by dividing the number of strides by the race time;
average stride frequency for Bolt is 4.23 strides per second (41 strides/9.69 s).
Amazingly, Bolt’s strides are slightly greater than 2.4 m (7.9 feet) each and occur at
rates over 4 (strides) per second.

For completeness, the constant of proportionality relating average stride length
and standing height H is found using the relation L = cH; c for Bolt is L/H = 1.24.
For comparison, constants for other elite, modern-day sprinters have been deter-
mined to be in the range of 1.24–1.27. Knowing these constants and how they vary
over time and from sprinter to sprinter are important for developing training
regimens and modeling sprinters’ improvement. The relation between L and H,
determined for Bolt and other modern-day sprinters, agrees with previous work and
confirms what might be expected: a taller sprinter takes longer strides when sprinting
along a track.

So what makes an elite sprinter unique? The answer depends on the individual
sprinter’s physical characteristics and abilities. In Bolt’s case, his stride length
surpasses those of other elite sprinters by about 10% due to his tall stature (1.96 m or
6 feet, 5 inches). His average stride frequency, however, is somewhat less than other
outstanding sprinters but still in the range of elite sprinters. Other sprinters like
Maurice Greene who are of shorter stature rely more on stride frequency to generate
substantial speeds. Extraordinary sprinters need both sufficiently long stride lengths
and sufficiently rapid stride frequencies in order to compete on the world stage—yet
no two sprinters are exactly alike.

The irony of Bolt’s extraordinary sprinting performances is that his sprinting
times could have been reduced even further—not by running any faster but by
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coming out of the blocks more quickly. In his 2008 Olympic race, for example, his
reaction time was 0.165 s, as compared to 0.13 s for the next-worst sprinter.
(Reaction time refers to the delay between the sound of the gun and the first motion
of the sprinter.) By reducing his reaction time to 0.13 s, he could have decreased his
100 m race time to 9.655 s.

Beyond starting more quickly, Bolt could have reduced his race time by an
additional 0.1 s in the 2008 Olympics by continuing to sprint through the finish line
rather than reducing his speed while showboating. Finally, in a scenario in which he
could take full advantage of maximum tail winds of 2.0 m s−1 in a particular race,
he would reduce his time by an additional 0.1 s. Under such ideal conditions, his
ultimate 100 m time would be lowered to 9.455 s—an achievement thought
impossible only 20 years ago. While fascinating to consider, our speculation here
is now hindsight in light of Bolt’s retirement after the 2016 Olympics in Rio de
Janeiro.

Extreme, extreme sports
On June 3, 2017, Alex Honnold reached the apex of pure rock climbing by scaling El
Capitan, a nearly 3000 foot granite wall in Yosemite National Park, without the aid
of ropes or other safety gear. He completed this historic free solo climb in less than
four hours with no spectators present, except for a small team of filmmakers who
documented his feat for National Geographic. Honnold had trained for this
breathtaking climb for more than a year in venues across the United States,
China, Europe, and Morocco. He had attempted the free solo climb the previous
November but stopped after less than an hour when conditions were deemed
unfavorable. The climbing world responded to Honnold’s extraordinary achieve-
ment by comparing the free soloing of El Capitan to landing on the Moon. To
appreciate his feat, it is worth noting that other climbers who have ascended El
Capitan along the same Freerider route as Honnold have received significant
acclaim and media coverage. The difference of course is that those climbers used
ropes for safety and generally climbed with partners.

Free soloing of a rock face is remarkable both for the physical and mental
challenges it presents. From a physical perspective, the ascent requires essentially
lifting the body from the base of the rock face to the summit in a series of climbing
maneuvers. During these maneuvers the climber performs work, leading to an
increase in potential energy PE. For Honnold the potential energy mgh attained is
6.5 × 105 J, where m = 73 kg, g = 9.8 m s−2, and h = 914 m; this PE change is
equivalent to 4300 baseballs traveling at 100 mph (44.7 m s−1). Beyond the large
energy demand, the climb also requires some extremely difficult feats including
balancing on a matchbox-wide ledge and dangling in the air with only a fingertip
hold. In preparation for such extreme climbs, Honnold follows a rigorous training
regimen, which includes hanging for an hour each day using only a fingertip hold.

As evidence of Honnold’s thirst for new challenges, he and climbing partner,
Tommy Caldwell, set a new record for speed climbing El Capitan on June 7, 2018.
Using ropes the pair scaled the rock face along the Nose in 1 h, 58 min, and 7 s. Even
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before their latest record-setting climb, the pair had broken the previous record of 2
h and 19 min twice in the preceding two weeks. One of the former record-holders,
Brad Gobright, was quoted in Outside Magazine, ‘It’s the proudest speed climbing
ascent to have happened in the history of U.S. rock climbing.’ The pair has not said
whether or not they will attempt to break their own record, but Honnold has
indicated that he thinks the limit of human potential for this climb is in the range of
an hour and a half.
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