

Build an App with TypeScript and the Pexels API
Copyright © 2021 SitePoint Pty. Ltd.

Product Manager: Simon Mackie
Technical Editor: James Hibbard
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information
herein. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held
liable for any damages to be caused either directly or indirectly by the instructions contained in
this book, or by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the
names only in an editorial fashion and to the benefit of the trademark owner with no intention of
infringement of the trademark.

Published by SitePoint Pty. Ltd.

10-12 Gwynne St,

Richmond, VIC, 3121

Australia

Web: www.sitepoint.com

Email: books@sitepoint.com

About Jack Franklin
Jack is a JavaScript and Ruby Developer working in London, focusing on tooling, ES2015 and
ReactJS.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit https://www.sitepoint.com/ to access our blogs, books, newsletters, articles,
and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile
development, design, and more.

https://www.sitepoint.com/

Table of Contents

Chapter 1: A Step-by-Step TypeScript Tutorial for

Beginners ...viii

Some Erroneous JavaScript Code ..ix

Running TypeScript from the Editor ...x

Installing and Running TypeScript Locally ...xi

Fixing the Errors in Our JavaScript Code ... xii

Property qerySelector does not exist on type Document...................... xii

Property src does not exist on type HTMLElement xiii

How to Con!gure TypeScript ...xiv

Working in strict mode.. xv

Union Types ..xvi

Implicit any ...xvii

Describe the Function Signature with JSDoc..xvii

Declaring Data Types Using an Interface...xviii

Test if everything is working.. xix

Conclusion ... xx

Chapter 2: Build an Application with TypeScript

from Scratch .. 21

Pexels API Key ..22

Setting up Vite as the Build Tool ...23

Installing Dependencies..24

Con!guring TypeScript with Vite...25

Building the Project with Vite ...25

Making API Requests with TypeScript ..26

Inferring types...27

Interfaces in TypeScript ...28

Declaring Function Return Types..32

Generic Types...33

Using Third-party Libraries with TypeScript ..35

Using lit-html to Render Image Results ..36

Linting with ESLint-TypeScript. ... 40

Conclusion ...42

Chapter 3: Adding More Functionality.................................43

Refactoring the App to Create a render Method..44

Rendering a Search Form ...45

Searching for Photos...46

Using FormData to Read Form Values ..48

Using the formData Object ..49

Writing an API for Local Storage ...52

Favoriting Photos...54

Creating pexels.ts to Contain Our API Code...55

Liking a Photo ...57

De!ning the Types of Callback Functions ..58

Improving Our Code with readonly...62

Adding Video Results .. 66

Rendering Videos .. 68

Type Predicates .. 69

Rendering Videos .. 68

Liking Videos...72

De!ning a Resource Type ...75

De!ning renderResource ...77

Liked Data and Enums..78

Features to Add Next ..83

Conclusion ...83

Who Should Read This Book?
This books is for developers who wish to learn TypeScript. We assume a basic knowledge of
JavaScript and its tooling, but zero prior knowledge of TypeScript is required to follow along.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this book to
signify different types of information. Look out for the following items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back at school.</p>

Tips, Notes, and Warnings

Supplementary Materials
A repository containing all of the code for the final app can be found on GitHub.
https://www.sitepoint.com/community/ are SitePoint’s forums, for help on any tricky
problems.
books@sitepoint.com is our email address, should you need to contact us to report a
problem, or for any other reason.

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand. Think of
them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

https://github.com/spbooks/typescript-series
https://www.sitepoint.com/community/

Jack Franklin

A Step-by-Step
TypeScript
Tutorial for
Beginners

Chapter

1

You've probably heard of TypeScript — the language created and maintained by Microsoft that's
had a huge impact on the Web, with many prominent projects embracing and migrating their
code to TypeScript. TypeScript is a typed superset of JavaScript. In other words, it adds types to
JavaScript — and hence the name. But why would you want these types? What benefits do they
bring? And do you need to rewrite your entire codebase to take advantage of them? Those
questions, and more, will be answered in this TypeScript tutorial for beginners. You’ll learn
TypeScript basics, including installation, configuration, and declaring data types as an interface,
before moving on to build a fully-blown app in TypeScript using the Pexels API.

We assume a basic knowledge of JavaScript and its tooling, but zero prior knowledge of
TypeScript is required to follow along.

Some Erroneous JavaScript Code
To start with, let's look at some fairly standard plain JavaScript code that you might come across
in any given codebase. It fetches some images from the Pexels API and inserts them to the DOM.

However, this code has a few typos in it that are going to cause problems. See if you can spot
them:

const PEXELS_API_KEY = '...';
async function fetchImages(searchTerm, perPage) {
const result = await fetch(`https://api.pexels.com/v1/search?query=${searchTerm}&per_page=${perPage}`, {
headers: {
Authorization: PEXELS_API_KEY,

}
});
const data = await result.json();
const imagesContainer = document.qerySelector('#images-container');
for (const photo of data.photos) {
const img = document.createElement('image');
img.src = photo.src.medium;
imagesContainer.append(img);

}
}
fetchImages('dogs', 5);
fetchImages(5, 'cats');
fetchImages('puppies');

Can you spot the issues in the above example? Of course, if you ran this code in a browser you'd
immediately get errors, but by taking advantage of TypeScript we can get the errors quicker by
having TypeScript spot those issues in our editor.

Shortening this feedback loop is valuable — and it gets more valuable as the size of your project

https://www.pexels.com/api/

grows. It's easy to spot errors in these 30 lines of code, but what if you're working in a codebase
with thousands of lines? Would you spot any potential issues easily then?

Note: there's no need to obtain an API key from Pexels to follow along with this TypeScript
tutorial. However, if you'd like to run the code, an API key is entirely free: you just need to sign up
for an account and then generate one.

Running TypeScript from the Editor
Once upon a time, TypeScript required that all files be written as .ts files. But these days, the
onboarding ramp is smoother. You don't need a TypeScript file to write TypeScript code: instead,
we can run TypeScript on any JavaScript file we fancy!

If you're a VS Code user (don't panic if you aren't — we'll get to you!), this will work out the box
with no extra requirements. We can enable TypeScript's checking by adding this to the very top
of our JavaScript file (it's important that it's the first line):

// @ts-check

You should then get some squiggly red errors in your editor that highlight our mistakes, as
pictured below.

1-1. TypeScript showing errors in VS Code

You should also see a cross in the bottom left-hand corner with a two by it. Clicking on this will

https://www.pexels.com/onboarding/
https://www.pexels.com/onboarding/

reveal the problems that have been spotted.

1-2. Errors displayed in the VS Code console

And just because you're not on VS Code doesn't mean you can't get the same experience with
TypeScript highlighting errors. Most editors these days support the Language Server Protocol
(commonly referred to as LSP), which is what VS Code uses to power its TypeScript integration.

It's well worth searching online to find your editor and the recommended plugins to have it set
up.

Installing and Running TypeScript Locally
If you're not on VS Code, or you'd like a general solution, you can also run TypeScript on the
command line. In this section, I'll show you how.

First, let's generate a new project. This step assumes you have Node and npm installed upon your
machine:

mkdir typescript-demo
cd typescript demo
npm init -y

Next, add TypeScript to your project:

npm install --save-dev typescript

Note: you could install TypeScript globally on your machine, but I like to install it per-project. That
way, I ensure I have control over exactly which version of TypeScript each project uses. This is
useful if you have a project you've not touched for a while; you can keep using an older TS version
on that project, whilst having a newer project using a newer version.

Once it's installed, you can run the TypeScript compiler (tsc) to get the same errors (don't worry
about these extra flags, as we'll talk more about them shortly):

https://www.sitepoint.com/quick-tip-multiple-versions-node-nvm/
https://www.sitepoint.com/quick-tip-multiple-versions-node-nvm/

npx tsc index.js --allowJs --noEmit --target es2015
index.js:13:36 - error TS2551: Property 'qerySelector' does not exist on type 'Document'. Did you mean 'querySelector'?
13 const imagesContainer = document.qerySelector('#images-container');

~~~~~~~~~~~~
node_modules/typescript/lib/lib.dom.d.ts:11261:5
11261     querySelector<K extends keyof HTMLElementTagNameMap>(selectors: K): HTMLElementTagNameMap[K] | null;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'querySelector' is declared here.

index.js:16:9 - error TS2339: Property 'src' does not exist on type 'HTMLElement'.
16 img.src = photo.src.medium;

~~~
Found 2 errors.

You can see that TypeScript on the command line highlights the same JavaScript code errors
that VS Code highlighted in the screenshot above.

Fixing the Errors in Our JavaScript Code
Now that we have TypeScript up and running, let's look at how we can understand and then
rectify the errors that TypeScript is flagging.

Let's take a look at our first error.

Property qerySelector does not exist on type Document

index.js:13:36 - error TS2551: Property 'qerySelector' does not exist on type 'Document'. Did you mean 'querySelector'?
13   const imagesContainer = document.qerySelector('#images-container');
node_modules/typescript/lib/lib.dom.d.ts:11261:5
11261     querySelector<K extends keyof HTMLElementTagNameMap>(selectors: K): HTMLElementTagNameMap[K] | null;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'querySelector' is declared here.

This can look quite overwhelming if you're not used to reading TypeScript errors, so don't panic if
it looks a bit odd! TypeScript has spotted that, on line 13 , we've called a method
document.qerySelector . We meant document.querySelector but made a mistake when typing.

We would have found this out when we tried to run our code in the browser, but TypeScript is
able to make us aware of it sooner.

The next part where it highlights lib.dom.d.ts and the querySelector<K...> function is diving
into more advanced TypeScript code, so don't worry about that yet, but at a high level it's
TypeScript showing us that it understands that there's a method called querySelector , and it
suspects we might have wanted that.

Let's now zoom in on the last part of the error message above:

index.js:13:36 - error TS2551: Property 'qerySelector' does not exist on type 'Document'. Did you mean 'querySelector'?

Specifically, I want to look at the text did not exist on type 'Document' . In TypeScript (and
broadly in every typed language), items have what's called a type .

In TypeScript, numbers like 1 or 2.5 have the type number , strings like "hello world" have
the type string , and an instance of an HTML Element has the type HTMLElement . This is what
enables TypeScript's compiler to check that our code is sound. Once it knows the type of
something, it knows what functions you can call that take that something, or what methods exist
on it.

Note: if you'd like to learn more about data types, please consult “Introduction to Data Types:
Static, Dynamic, Strong & Weak”.

In our code, TypeScript has seen that we've referred to document . This is a global variable in the
browser, and TypeScript knows that and knows that it has the type of Document . This type
documents (if you pardon the pun!) all of the methods we can call. This is why TypeScript knows
that querySelector is a method, and that the misspelled qerySelector is not.

We'll see more of these types as we go through the later chapters, but this is where all of
TypeScript's power comes from. Soon we'll define our own types, meaning really we can extend
the type system to have knowledge about all of our code and what we can and can't do with any
particular object in our codebase.

Now let's turn our attention to our next error, which is slightly less clear.

Property src does not exist on type HTMLElement

index.js:16:9 - error TS2339: Property 'src' does not exist on type 'HTMLElement'.
16 img.src = photo.src.medium;

This is one of those errors where sometimes you have to look slightly above the error to find the
problem. We know that an HTML image element does have a src attribute, so why doesn't
TypeScript?

const img = document.createElement('image');
img.src = photo.src.medium;

https://www.sitepoint.com/typing-versus-dynamic-typing/
https://www.sitepoint.com/typing-versus-dynamic-typing/

1

2

The mistake here is on the first line: when you create a new image element, you have to call
document.createElement('img') (because the HTML tag is , not <image>). Once we do

that, the error goes away, because TypeScript knows that, when you call
document.createElement('img') , you get back an element that has a src property. And this is all

down to the types.

When you call document.createElement('div') , the object returned is of the type
HTMLDivElement . When you call document.createElement('img') , the object returned is of type
HTMLImageElement . HTMLImageElement has a src property declared on it, so TypeScript knows

you can call img.src . But HTMLDivElement doesn't, so TypeScript will error.

In the case of document.createElement('image') , because TypeScript doesn't know about any
HTML element with the tag image , it will return an object of type HTMLElement (a generic HTML
element, not specific to one tag), which also lacks the src property.

Once we fix those two mistakes and re-run TypeScript, you'll see we get back nothing, which
shows that there were no errors. If you've configured your editor to show errors, hopefully there
are now none showing.

How to Con0gure TypeScript
It's a bit of a pain to have to add // @ts-check to each file, and when we run the command in the
terminal having to add those extra flags. TypeScript lets you instead enable it on a JavaScript
project by creating a jsconfig.json file.

Create jsconfig.json in the root directory of our project and place this inside it:

{
"compilerOptions": {
"checkJs": true,
"noEmit": true,
"target": "es2015"

},
"include": ["*.js"]

}

This configures the TypeScript compiler (and your editor's TS integration) to:

Check JavaScript files (the checkJs option).

Assume we're building in an ES2015 environment (the target option). Defaulting to

3

4

ES2015 means we can use things like promises without TypeScript giving us errors.

Not output any compiled files (the noEmit option). When you're writing TypeScript code in

TypeScript source files, you need the compiler to generate JavaScript code for you to run in the

browser. As we're writing JavaScript code that's running in the browser, we don't need the

compiler to generate any files for us.

Finally, include: ["*.js"] instructs TypeScript to look at any JavaScript file in the root

directory.

Now that we have this file, you can update your command-line instruction to this:

npx tsc -p jsconfig.json

This will run the compiler with our configuration file (the -p here is short for "project"), so you no
longer need to pass all those flags through when running TypeScript.

Working in strict mode

Now we're here, let's see how we can make TypeScript even more thorough when checking our
code. TypeScript supports something called "strict mode", which instructs TypeScript to check
our code more thoroughly and ensure that we deal with any potential times where, for example,
an object might be undefined . To make this clearer, let's turn it on and see what errors we get.
Add "strict": true to the "compilerOptions" part of jsconfig.json , and then re-run
TypeScript on the command line.

When you make a change to the jsconfig.json file, you may find you need to restart your editor
for it to pick up those changes. So if you're not seeing the same errors as me, give that a go.

npx tsc -p jsconfig.json
index.js:3:28 - error TS7006: Parameter 'searchTerm' implicitly has an 'any' type.
3 async function fetchImages(searchTerm, perPage) {

~~~~~~~~~~
index.js:3:40 - error TS7006: Parameter 'perPage' implicitly has an 'any' type.
3 async function fetchImages(searchTerm, perPage) {

~~~~~~~
index.js:15:5 - error TS2531: Object is possibly 'null'.
15 imagesContainer.append(img);

~~~~~~~~~~~~~~~
Found 3 errors.



Let's start with the last error first and come back to the others:

index.js:15:5 - error TS2531: Object is possibly 'null'.
15     imagesContainer.append(img);

~~~~~~~~~~~~~~~

And let's look at how imagesContainer is defined:

const imagesContainer = document.querySelector('#images-container');

Turning on strict mode has made TypeScript stricter at ensuring that values we expect to exist
do exist. In this case, it's not guaranteed that document.querySelector('#images-container') will
actually return an element; what if it's not found? document.querySelector will return null if an
element is not found, and now we've enabled strict mode, TypeScript is telling us that
imagesContainer might actually be null .

Union Types

Prior to turning on strict mode, the type of imagesContainer was Element , but now we've turned
on strict mode the type of imagesContainer is Element | null . The | (pipe) operator creates
union types — which you can read as "or" — so here imagesContainer is of type Element or
null . When TypeScript says to us Object is possibly 'null' , that's exactly what it's telling us,

and it wants us to ensure that the object does exist before we use it. Let's fix this by throwing an
error should we not find the images container element:

const imagesContainer = document.querySelector('#images-container');
if (imagesContainer === null) {
throw new Error('Could not find images-container element.')

}
for (const photo of data.photos) {
const img = document.createElement('img');
img.src = photo.src.medium;
imagesContainer.append(img);

}

TypeScript is now happy; we've dealt with the null case by throwing an error. TypeScript is
smart enough to understand now that, should our code not throw an error on the third line in the
above snippet, imagesContainer is not null , and therefore must exist and must be of type
Element . Its type was Element | null , but if it was null we would have thrown an error, so

now it must be Element . This functionality is known as type narrowing and is a very useful
concept to be aware of.

https://www.typescriptlang.org/docs/handbook/2/narrowing.html

Implicit any

Now let's turn our attention to the remaining two errors we have:

index.js:3:28 - error TS7006: Parameter 'searchTerm' implicitly has an 'any' type.
3 async function fetchImages(searchTerm, perPage) {

~~~~~~~~~~
index.js:3:40 - error TS7006: Parameter 'perPage' implicitly has an 'any' type.
3 async function fetchImages(searchTerm, perPage) {

One of the implications of turning on strict mode is that it turns on a rule called noImplicitAny .
By default, when TypeScript doesn't know the type of something, it will default to giving it a
special TypeScript type called any . any is not a great type to have in your code, because there
are no rules associated with it in terms of what the compiler will check. It will allow anything to
happen. I like to picture it as the compiler throwing its hands up in the air and saying "I can't help
you here!" Using any disables any useful type checking for that particular variable, so I highly
recommend avoiding it.

Describe the Function Signature with JSDoc
The two errors above are TypeScript telling us that we've not told it what types the two variables
our function takes are, and that it's defaulting them back to any . The good news is that giving
TypeScript this information used to mean rewriting your file into TypeScript code, but TypeScript
now supports a hefty subset of JSDoc syntax, which lets you provide type information to
TypeScript via JavaScript comments. For example, here's how we can provide type information to
our fetchImages function:

/**
* @param {string} searchTerm
* @param {number} perPage
*
* @return void
*/
async function fetchImages(searchTerm, perPage) {
// function body here

}

All JSDoc comments must start with /** (note the extra * at the beginning) and within them
we use special tags, starting with @ , to denote type properties. Here we declare two parameters
( @param ), and then we put their type in curly braces ( just like regular JavaScript objects). Here we
make it clear that searchTerm is a string and perPage is a number. While we're at it, we also
use @return to declare what this function returns. In our case it returns nothing, and the type we

https://www.typescriptlang.org/tsconfig#noImplicitAny
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html


use in TypeScript to declare that is void . Let's now re-run the compiler and see what it says:

npx tsc -p jsconfig.json
index.js:30:13 - error TS2345: Argument of type 'number' is not assignable to parameter of type 'string'.
30 fetchImages(5, 'cats')

~
index.js:31:1 - error TS2554: Expected 2 arguments, but got 1.
31 fetchImages('puppies')

~~~~~~~~~~~~~~~~~~~~~~
index.js:9:40
9 async function fetchImages(searchTerm, perPage) {

~~~~~~~
An argument for 'perPage' was not provided.

Found 2 errors.

This is the beauty of TypeScript. Giving the compiler extra information, it can now spot errors in
how we're calling the code that it couldn't before. In this case, it's found two calls to fetchImages

where we've got the arguments in the wrong order, and the second where we've forgotten the
perPage argument (neither searchTerm , perPage are optional parameters). Let's just delete

these calls, but I hope it helps demonstrate the power of the compiler and the benefits of giving
the compiler extra type information.

Declaring Data Types Using an Interface
Although not flagged by the compiler, one issue our code still has is in this line:

const data = await result.json();

The problem here is that the return type of await result.json() is any . This is because, when
you take an API response and convert it into JSON, TypeScript has no idea what data is in there,
so it defaults to any . But because we know what the Pexels API returns, we can give it some
type information by using TypeScript interfaces. These let us tell TypeScript about the shape of
an object: what properties it has, and what values those properties have. Let's declare an
interface — again, using JSDoc syntax, that represents the data returned from the Pexels API. I
used the Pexels API reference to figure out what data is returned. In this case, we'll actually
define two interfaces: one will declare the shape of a single photo that the Pexels API returns,
and the other will declare the overall shape of the response from the API. To define these
interfaces using JSDoc, we use @typedef , which lets us declare more complex types. We then
use @property to declare single properties on that interface. For example, here's the type I
create for an individual Photo . Types should always start with a capital letter. If you'd like to see a
full reference to all supported JSDoc functionality, the TypeScript site has a thorough list
complete with examples.

https://www.typescriptlang.org/docs/handbook/2/objects.html
https://www.pexels.com/api/documentation/#photos-search
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html


/**
* @typedef {Object} Photo
* @property {{medium: string, large: string, thumbnail: string}} src
*/

This type says that any object typed as a Photo will have one property, src , which itself is an
object with three string properties: medium , large and thumbnail . You'll notice that the Pexels
API returns more; you don't have to declare every property an object has if you don't want to, but
just the subset you need. Here, our app currently only uses the medium image, but I've declared a
couple of extra sizes we might want in the future. Now that we have that type, we can declare the
type PexelsSearchResponse , which will represent what we get back from the API:

/**
* @typedef {Object} PexelsSearchResponse
* @property {Array<Photo>} photos
*/

This is where you can see the value of declaring your own types; we declare that this object has
one property, photos , and then declare that its value is an array, where each item is of type
Photo . That's what the Array<X> syntax denotes: it's an array where each item in the array is of

type X . [1, 2, 3] would be an Array<number> , for example. Once we've done that, we can
then use the @type JSDoc comment to tell TypeScript that the data we get back from
result.json() is of the type PexelsSearchResponse :

/** @type {PexelsSearchResponse} */
const data = await result.json();

@type isn't something you should reach for all the time. Normally, you want the compiler to
intelligently figure out the type of things, rather than have to bluntly tell it. But because
result.json() returns any , we're good here to override that with our type.

Test if everything is working

To prove that this is working, I've deliberately misspelled medium when referencing the photo's
URL:

for (const photo of data.photos) {
const img = document.createElement('img');
img.src = photo.src.mediun; // typo!
imagesContainer.append(img);

}



If we run TypeScript again, we'll see the issue that TypeScript wouldn't have spotted if we hadn't
done the work we just did to declare the interface:

index.js:35:25 - error TS2551: Property 'mediun' does not exist on type '{ medium: string; large: string; thumbnail: string; }'. Did you mean 'medium'?
35     img.src = photo.src.mediun;

~~~~~~
index.js:18:18
18 * @property {{medium: string, large: string, thumbnail: string}} src

~~~~~~
'medium' is declared here.

Found 1 error.

Conclusion
TypeScript has a lot to offer developers working on complicated codebases. Its ability to shorten
the feedback loop and show you errors before you have to recompile and load up the browser is
really valuable. We've seen how it can be used on any existing JavaScript project (avoiding the
need to rewrite your code into .ts files) and how easy it is to get started. I hope you've enjoyed
this TypeScript tutorial for beginners. In the next chapters, we'll start putting this knowledge into
action and build out a fully blown app using TypeScript.



Jack Franklin

Build an
Application with
TypeScript from

Scratch

Chapter

2



1

2

In the previous chapter, we explored and demonstrated the power of TypeScript by adding it to
some existing JavaScript code, and we looked at the types of issues it could spot and prevent. In
this tutorial, we’ll take the next step and look at building our application from scratch using
TypeScript files and taking full advantage of the TypeScript ecosystem.

Pexels API Key
As in the previous tutorial, we’ll be making use of the Pexels API to fetch photos to build our little
photo viewing tool. To do this, you’ll need to get yourself an API key (which is entirely free, with
no payment details required) from Pexels. To get an API key you should:

Sign up to Pexels to create your account.

Use the new API key page to request a new API key. This should happen instantly; you

won’t have to wait any time before getting the key back.

Once that’s done, you should be taken to a page that looks like the image below.

2-1. The Pexels API key website

(I’ve removed my API key from the above screenshot, but where the red bar is you’ll see your API
key.)

Once you’ve got that, you’re all set! We’ll look at how to use the API key when making requests

https://www.pexels.com/api/
https://www.pexels.com/join-consumer/
https://www.pexels.com/api/new/


later on in the tutorial.

Setting up Vite as the Build Tool
For this tutorial, we’re going to use Vite as our basic build tool. (You can find a thorough
introduction to Vite here in “What is Vitejs? An Overview of the New Front-end Build Tool”.) Vite
is performant and easy to set up. It does a great job of getting out the way and letting you focus
on building your application. It also has a TypeScript configuration option so there’s even less
work for us to do; it will generate a project configured with TypeScript right out of the box.

To generate a new application, run the following:

npm init vite@latest

If you use Yarn, pnpm, or other npm alternatives, check the Vite guide for more information on
using Vite with those tools.

Vite will then prompt you with questions to answer. The first will be what framework to use. Make
sure you pick “vanilla” here, as we’re not going to use a particular framework in this tutorial. That
isn’t to say you can’t use a framework like React with TypeScript. You definitely can, and I’d
encourage you to explore TypeScript along with your framework of choice in a project once
you’re done with this series of tutorials.

After you pick “vanilla”, you’ll be asked to pick a variant. This is where you want to pick the
“vanilla-ts” option to configure a TypeScript project. If you don’t pick this, Vite will assume you
want JavaScript.

https://vitejs.dev/
https://www.sitepoint.com/vitejs-front-end-build-tool-introduction/
https://vitejs.dev/guide/#scaffolding-your-first-vite-project


2-2. Vite prompting us to pick a framework

2-3. Vite prompting us to pick vanilla or vanilla-ts to use TypeScript.

Installing Dependencies
Now Vite has generated the new project, we need to do an npm install (or the equivalent in
your tool of choice if you’re not using npm). To do this, navigate to the directory Vite created and
run npm install . This will configure the project and install TypeScript and all the related
dependencies we need.



Con0guring TypeScript with Vite
Vite generates a project that has TypeScript configured. It configures TypeScript via a
tsconfig.json file in the root directory of the project. This is the standard location and filename

for a TypeScript project; it’s very rare for any TypeScript codebase not to have this file defined
here.

Vite’s default TypeScript configuration will serve us pretty well, so we’ll leave it alone for now. The
TypeScript tsconfig reference is a great place to look should you want to understand what a
particular setting does. The main thing that Vite does turn on is strict mode, which, as we
discovered in the previous tutorial, is great for ensuring TypeScript is as thorough and strict as
possible when it comes to checking our code for potential issues.

Vite also turns on other settings that make TypeScript more strict about the type of code it
allows:

noUnusedLocals , which will report an error if we create a variable that is then not used.
noUnusedParameters , which will error if we create a function that takes a parameter that is not

used.
noImplicitReturns , which ensures that, if we declare that a function must return an item of a

specific type, all code paths through that function return the right type. This is useful if you’ve
said your function returns a string , but inside that function you have an if {} else {}

statement. TypeScript will check that both the if and the else branch return a string .

The final configuration of node is "include": ["./src"] . The include key is used to tell
TypeScript which folder(s) it should check for TypeScript files. It’s common (and recommended)
to put all your TypeScript code into one folder (which can have nested folders within) to keep
your project tidy and to ensure the TypeScript compiler isn’t accidentally checking files and
folders that don’t contain any actual TypeScript. For our application, we’ll stick with Vite’s out-
the-box defaults; all our code will go into the src directory.

Building the Project with Vite
npm run dev is your main command when working on a site backed by Vite. It will build your

application (including running TypeScript) and run it on a local server. Vite also rebuilds
automatically when files change and will refresh the browser. It’s a great developer workflow.

Although we’ve generated our application with Vite, you can still run the TypeScript compiler just
like we did in the last tutorial:

https://www.typescriptlang.org/tsconfig/


npx tsc -p tsconfig.json

One extra tip: you can omit the -p tsconfig.json if your configuration file is called
tsconfig.json and is in the root directory. npx tsc will run the compiler and will find your

configuration file.

Making API Requests with TypeScript
In the previous tutorial, we wrote the fetchImages function that could make a request to the
Pexels API and then insert those images into the DOM. We’re now going to rewrite that code,
starting with just the fetch part that will talk to the Pexels API and return a promise with some
images.

In src , open main.ts and delete everything that’s in there. Vite will have created some starter
code for you that includes main.ts and style.css . For now, we’ll be focusing purely on the
TypeScript as we get this app up and running and won’t worry about styling. Feel free to remove
that file or leave it and do some of your own styling if you’d like. We’ll write all our code in src/

main.ts .

In main.ts , define fetchImagesFromAPI :

async function fetchImagesFromAPI(searchTerm: string, perPage: number) {

}

We’ll make the function async so we can use await within the function. (This article on flow
control in JavaScript is a great reference for all the ways we can write asynchronous code in
JavaScript.) Using async and await makes it easier to write our async code to deal with
fetching images from the API.

In the previous tutorial, we were writing JavaScript and therefore had to use the JSDoc
comments syntax to add type information to our code. Now we’re writing in a TypeScript file, we
can use TypeScript syntax to add type information. When defining function parameters, we can
add type information to those parameters by adding a colon and then the type. We’ll meet more
TypeScript syntax as we go through the rest of this tutorial.

Now, within this function we can write the code to make the API request. To authenticate, we
pass an Authorization header that contains the API key that we got earlier, as described in the
Pexels API docs. I’ve defined a constant PEXELS_API_KEY which is set to my API key. Make sure
you do the same with your API key:

https://www.sitepoint.com/flow-control-callbacks-promises-async-await/
https://www.sitepoint.com/flow-control-callbacks-promises-async-await/
https://www.pexels.com/api/documentation/#authorization
https://www.pexels.com/api/documentation/#authorization


const PEXELS_API_KEY = '...api key here...';

async function fetchImagesFromAPI(searchTerm: string, perPage: number) {
const result = await fetch(
`https://api.pexels.com/v1/search?query=${searchTerm}&per_page=${perPage}`,
{
headers: {
Authorization: PEXELS_API_KEY,

},
}

);

const json = await result.json();
return json;

}

This function is enough to get started. We can call this and it will fetch us data from the Pexels
API, but there’s much more we can do from a TypeScript point of view to improve its type safety.
You can see this in action in this CodeSandbox — but you’ll first need to update the code with
your API key to make the Pexels API authorize the requests. If you don’t update the code with
your API key, you’ll see CodeSandbox show a “Type Error - failed to fetch”.

Inferring types

When we define a variable in TypeScript, we can explicitly tell the compiler the type of the
variable we’re creating:

const x: number = 5;
const y: string = "hello world";

Much like how we declared the type of function parameters, when creating variables we use the
: type syntax after the variable name to tell TypeScript what type the value is. However, often

we don’t need to do that, because TypeScript has type inference. This means that the TypeScript
compiler will try to infer the type of a variable given the rest of the code it has available to it. It will
also take into account the type of the variable: whether it’s a constant, and therefore cannot
change, or a let , that could change.

Take a look at this CodeSandbox and, using your mouse, hover over the variable declarations for
x and y .

When you hover over x , you’ll see that TypeScript shows you const x: 5 . This means that the
type of x that TypeScript has inferred is the literal number value 5 . It knows that because x is
a const , its value cannot change, so rather than give it a generic type like number , it can be even

https://codesandbox.io/s/condescending-frog-325po?file=/src/index.ts
https://codesandbox.io/embed/loving-wildflower-3vk09?fontsize=14&hidenavigation=1&theme=dark&view=editor


more specific and pin the value down to the number 5 . If you hover over y , you’ll see let y:

number . Here, TypeScript has recognized that initially y was set to 2 , but because it’s declared
using let its value can change over time, so it’s gone with the type number . This is why often
you’ll see TypeScript developers omit the explicit type annotation:

// Often people will omit the type
let y: number = 2;
// Because TS can be trusted to infer the type accurately.
let y = 2;

I typically will let TypeScript infer types for primitive values — for example, strings, numbers or
Booleans — but I like to explicitly declare types for values that are objects or arrays.

You can declare something to be an array in one of two ways:

const names: Array<string> = ["alice", "bob"];
const names: string[] = ["alice", "bob"];

These are both equivalent, and the choice comes down to personal preference. Again, if the array
is of a primitive type, I’ll tend to prefer the string[] approach, but I don’t personally have hard
rules for this. You might always want to use string[] , and that’s perfectly OK. You’ll get a feel for
your preferred approach as you write and work with TypeScript more.

Interfaces in TypeScript
Let’s start to work on improving our function. TypeScript will also infer the return type of
functions, so let’s see what it’s inferred for fetchImagesFromAPI . In most editors, you can hover
over the function definition in your editor to see what TypeScript thinks the function will return. If
you can’t hover, most editors that integrate with TypeScript will provide this functionally in their
UI somehow; it’s worth checking the documentation for your editor. This is definitely something
you’re going to want to do often, so spending a few minutes now learning how to do it in your
editor will be beneficial.

In VS Code, I’m able to hover and this is what’s pictured below.

2-4. TypeScript inferring the function return type as Promise

TypeScript has decided that our function returns Promise<any> . You can read this syntax as “a



promise that will resolve with data of type any ” — much like how Array<string> can be read as
“an array that contains string values”. We’ll look more at this Foo<bar> syntax shortly.

We touched upon it in the previous tutorial, but any is not a good type to have floating around
your type system. any denotes a complete lack of type safety, and the compiler here is telling us
that it effectively has no information on the type of data that our promise will resolve to. But why
is this?

Let’s take a look at the return type of await result.json() .

2-5. TypeScript showing that result.json() returns any

The issue here stems from TypeScript (understandably) not being able to have any confidence in
what result.json() will return. This makes sense, as it doesn’t know our API, or what data is
coming back. Remember that TypeScript runs at compile time, so it has to figure out everything
without running any code. That makes it impossible for it to know what data is coming back from
the API request. But we know, and so we could tell it what types we expect. But first, we need to
define those types.

The Pexels API documents what data a Photo has associated with it, so what we’ll do is create
an interface that represents that photo. Place this code towards the top of src/main.ts . The
exact location doesn’t matter, but I tend to prefer to put interfaces towards the top of the file.
Feel free to place it where you’d like, as long as it’s in src/main.ts :

interface Photo {
id: number;
width: number;
height: number;
url: string;
photographer: string;

https://www.pexels.com/api/documentation/#photos-overview


photographer_url: string;
photographer_id: string;
avg_color: string;
src: {
original: string;
large2x: string;
large: string;
medium: string;
small: string;
portrait: string;
landscape: string;
tiny: string;

};
}

In TypeScript, an interface is the primary way to describe a JavaScript object and what properties
and/or methods it has available to it. When you define an object and declare the interface that it
follows, TypeScript will ensure that the object is valid and implements that interface. For
example, this code would error:

interface Person {
name: string;

}

const jack: Person = {
myName: 'Jack',

}

This is because the object has myName , and doesn’t have the name property. This code is valid:

interface Person {
name: string;

}

const jack: Person = {
name: 'Jack',

}

Interfaces in TypeScript have to start with a capital letter, and you should name them based on
what they represent. In our case this interface is fairly straightforward; most of the keys are
either string or number types. Note that the value of the src key is an object. We could have
made this object into its own interface if we wanted to. It’s up to you when you use objects in
interfaces like we did here, or if you want to create separate interfaces and have one interface
reference another. In this case because the object under the src key doesn’t really make sense
outside of the Photo interface, I’ve left it as part of the Photo interface.



Now that we have this type, we can tell TypeScript that result.json() is going to give us back
an array of these interfaces. However, the Pexels API actually returns some other information
along with the request, as we can see by the documentation for the photo search API, so let’s
define an interface for that. Define this one just below where you placed the definition for the
Photo interface in src/main.ts :

interface PhotoSearchAPIResult {
total_results: number;
page: number;
per_page: number;
photos: Photo[];
next_page: string;

}

Here, you can see how one interface can reference another. The photos key is an array of
objects where each object is of type Photo . There’s two ways in TypeScript to denote this:

Photo[]

Array<Photo>

Both are functionally equivalent, so it’s up to you which one you’d prefer. Most teams will have a
preference and stick with it. Later on in this tutorial, we’ll see how we can use ESLint to enforce a
particular style when we set up typescript-eslint.

Now we need to tell TypeScript that await result.json() returns our PhotoSearchAPIResult

type. We can do this using type assertions, which exist as a way of telling the compiler that we
know what the given type of something is.

We do this like so:

const json = (await result.json()) as PhotoSearchAPIResult;

Note: the extra brackets around await result.json() are important here. Without them, it’s not
clear if we’re asserting the result of await result.json() or the result of result.json() (which
would be a Promise ) — so the extra brackets make it clear that we’re asserting the result of
await result.json() .

You should be very careful with using as . Ultimately as is telling the compiler that we know
better than it. There are no checks when you run this code in the browser that the type you
nominated is actually correct. To try to prevent against conversions that are impossible,
TypeScript won’t let you do conversions that don’t make any sense:

https://www.pexels.com/api/documentation/#photos-search
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#type-assertions


const x = "hello" as number; // Causes an error.

In our case, await result.json() returns the type any , which is really the compiler saying it has
no idea, so it’s happy for us to assert a more specific type. But try to limit how often you use this.
You’ll see others use it liberally in codebases, but if you use it and assert the wrong type, the
compiler will be happy and you’ll end up with errors when your code actually runs in the browser.
You should view as X as an escape hatch that you can use if you really have to, but try to not
routinely rely on it.

Declaring Function Return Types
Now that we’ve got the data back from the API, and we have it typed as PhotoSearchAPIResult ,
we can now declare the return type of our function. To declare a return type, you add a colon
after the function arguments, and then the type:

// Returns an object of type Bar
function foo1(): Bar {
};

// Returns a number
function foo2(): number {
};

// Returns an object with a key `x` of type `number`
function foo3(): {x: number} {
};

Given that, you might be tempted to update the fetchImagesFromAPI function like so (I’ve split
the function definition over multiple lines because it’s a lot to fit onto one line once you have the
types in here):

async function fetchImagesFromAPI(
searchTerm: string,
perPage: number

): PhotoSearchAPIResult {
// ...

}

However, TypeScript isn’t happy, as VS Code will show you.



2-6. VS Code erroring with the custom return type

You can also see this error by running npx tsc :

src/main.ts:36:4 - error TS1064:
The return type of an async function or method must be the global Promise<T> type.
Did you mean to write 'Promise<PhotoSearchAPIResult>'?

36 ): PhotoSearchAPIResult {
~~~~~~~~~~~~~~~~~~~~

And if you’d like to play with the code itself, you can see the same error in this CodeSandbox.
Don’t forget to update your API key if you want the requests to work.

To fully understand this, we need to talk about what TypeScript means and what is represented
by the Promise<T> syntax. At that means talking about generics.

Generic Types
Some types need to be reusable and apply to multiple situations. Therefore, we need to be
allowed to define types that have some flexibility in what they represent. Take JavaScript arrays
as an example. We might have arrays of numbers, which we’d represent with Array<number> . (Or
alternatively, number[] , but we’ll use Array<> syntax for this example to be consistent. The
Array<T> syntax also matches the Promise<T> syntax.) If we had an array of strings, we would

represent that with the type Array<string> .

For every possible type we have in the world, we can have an array of that type. So TypeScript
can’t possibly define a separate array type for every type. If TypeScript provided NumberArray

and StringArray , that would work for primitives, but what if we’d like an array for our Photo

type? We need a general type that can be reused to represent arrays of some type, and that’s
why generics exist.

So when we create Array<string> , or Array<number> , or Array<Photo> , what we are doing
more generally is creating arrays of type Array<T> , where T is a placeholder for any type we

https://codesandbox.io/s/boring-bash-zg88k?file=/src/index.ts

want, to create an array where each item in that array is of type T . So when we create
Array<string> , we’re replacing the type T with string .

We can see this in action in this TypeScript Playground example. Each time I create a new array,
TypeScript is looking at the contents of that array and using it to replace the generic type
argument T with the type that I’ve passed it. We can also see in this example how
Array<string> and string[] are equivalent.

Go back now and look at the error TypeScript gave us:

The return type of an async function or method must be the global Promise<T> type.
Did you mean to write 'Promise<PhotoSearchAPIResult>'?

We can see the Promise<T> syntax, which is identical to the Array<T> syntax. Promise<T> is
how TypeScript represents promises. Here, the type T is used to represent the type that a
promise resolves to:

somePromise().then(data => {
// the type of data is represented by the T in Promise<T>

})

This TypeScript error boils down to the fact that we’ve created our function as an async

function:

async function fetchImagesFromAPI(...) {}

When you define a function with the async keyword, it will always return a promise. Even if you
don’t explicitly return a promise, JavaScript will wrap what you return in a promise. Again, this
article on flow control in JavaScript is a good reference if you need a refresher on async and
await .

Once we fix our return type to wrap our PhotoSearchAPIResult in a Promise , TypeScript no
longer errors, and if we call the code and log the result, you can see that TypeScript has correctly
figured out the type of our data argument.

2-7. TypeScript understanding the promise type correctly

https://www.typescriptlang.org/play?#code/MYewdgzgLgBNBOBLMBzAgveBDAngeTAFMAuGDbHAHgWRQD4YBeGAbQCI0AbRYQtgGhhsAQiABGbALoBuAFChIsGqnK4AKgHcQpZShaSmrDt14ChoiTNnzw0GGACuAWzGF4q-EVIfKjl24ZmFgBGQQAmQQBmKwU7P1d3THUtUni3fUMQ8KirG0UYJ0QAD0IAEw8CEjIkqjT4AB9dQNZQoSwTPhjbWEKS8prNbRgACjrGqCRUAEoMoNa2dp5O6SA
https://www.sitepoint.com/flow-control-callbacks-promises-async-await/
https://www.sitepoint.com/flow-control-callbacks-promises-async-await/

And our code now looks like this:

async function fetchImagesFromAPI(
searchTerm: string,
perPage: number

): Promise<PhotoSearchAPIResult> {
// ...

}

You don’t have to always explicitly declare the return type of a function. As mentioned previously,
TypeScript can often infer types from your code. So in our case, TypeScript would be able to read
through our code and determine the return type of fetchImagesFromAPI correctly. I find that,
nearly all the time, it’s worth explicitly declaring the return types of your functions, for two
reasons:

It helps keep your code readable and explicit.
It prevents you returning something other than what you expect. If you don’t declare a return
type and what TypeScript infers isn’t what you intended to use, you might have a bug. If you
explicitly declare a return type and then return the wrong type from the function, TypeScript
will error.

In the last part of this tutorial, we’ll see how we can ensure that functions always have return
types declared explicitly by configuring TypeScript-ESLint.

Using Third-party Libraries with TypeScript
We’ve spent a lot of time fetching data from our API, but as of yet we’ve not got anything
rendered on the screen! Let’s fix that. To help us render to the page, we’re going to use a small
library called lit-html.

TypeScript can and does work with any frameworks: Angular, React, Vue, Svelte, and so on all,
have good integrations with TypeScript. I don’t want us to get bogged down with specific
frameworks in this tutorial, so we’re going to use lit-html, as it’s a very small library that helps with
rendering HTML easily onto the page. Please feel free to swap this out for any framework of your
choice.

If we look up the lit-html package on npm, you’ll notice the blue TypeScript icon by the package
name on the npm website.

https://lit.dev/docs/libraries/standalone-templates/
https://www.npmjs.com/package/lit-html

2-8. npm package site showing a TypeScript icon for the lit-html package

Note: at the time of writing, lit-html v2 is in release candidate status and therefore not
considered fully released. Despite that, we’re going to use the v2 beta, as it contains a number of
changes from v1, and doing so will ensure this tutorial isn’t outdated almost as soon as it’s
released.

The blue TS icon means that the package ships with built-in type definitions out of the box. This
means that either the library is written in TypeScript, or the authors provide a types file
containing all the type information for lit-html. This is important, because it means that, when you
use this library, TypeScript is able to understand it and will know the types of functions as you use
them.

If you come across a library that you want to use that doesn’t have TypeScript support, that
doesn’t mean you can’t use it, but does mean you might need to do a bit of extra work to
integrate it into your codebase. In the next tutorial, we’ll explore just how to do that.

Let’s install Lit. I’m installing lit-html@next to ensure we get the latest beta version
(2.0.0-rc.5 at the time of writing):

npm install --save lit-html@next

Note: if you’re reading this at a time when lit-html 2 has been fully released, you can run npm

install lit-html to get the latest version.

Using lit-html to Render Image Results
To use lit-html, we’ll need to import two functions it provides: render and html . Place this

import statement at the top of src/main.ts :

import {render, html} from 'lit-html';

This is where it becomes clear why it matters that lit-html is TypeScript compatible: TypeScript
will know the types of these functions that we’ve imported, so it will be able to check as you’re
using the library that you’re doing so correctly.

To create HTML for lit-html to render, we call the HTML function and pass it a template string:

html`<p>this is my HTML</p>`

This will look familiar if you’ve used any front-end framework before.

We then pass that into render , which takes a second argument of the element to render into:

const div = document.getElementById('some-id');
render(
html`<p>hello world</p>`,
div

);

In our case, we’ll loop over each image that we got back from the API, generate some HTML, and
then insert it into a containing element. The index.html file that Vite generated when we
created our project includes a <div> with an ID of app that we’ll use.

Let’s start by looping over each photo from the API and generating some HTML for it:

fetchImagesFromAPI('dogs', 5).then((data) => {
const htmlToRender = html`
<h1>Results for "dogs"</h1>

${data.photos.map((photo) => {
return html``;

})}

`;
});

Notice that, within the first html call, we can then use JavaScript interpolation to map over the
photos and generate the and for each one. This is a nice feature of lit-html: it’s easy
to programmatically generate big chunks of HTML.

Now we need to query the DOM for the <div> that we want to render into, and then pass it,
along with htmlToRender , into the render function:

const div = document.getElementById('app');
render(htmlToRender, div);

However, if we run npx tsc now, we’ll see a compiler error:

src/main.ts:62:24 - error TS2345: Argument of type 'HTMLElement | null' is not assignable to parameter of type 'HTMLElement | DocumentFragment'.
Type 'null' is not assignable to type 'HTMLElement | DocumentFragment'.

62 render(htmlToRender, div);

As we recall from the last tutorial, TypeScript in strict mode needs us to ensure that an element
we queried the DOM for definitely exists. So let’s ensure it does by throwing an error if it doesn’t:

fetchImagesFromAPI('dogs', 5).then((data) => {
const htmlToRender = html`
<h1>Results for "dogs"</h1>

${data.photos.map((photo) => {
return html``;

})}

`;
const div = document.getElementById('app');
if (!div) {
throw new Error('could not find app div');

}

render(htmlToRender, div);
});

And now, once you rebuild the project (npm run dev if you’re not running it already), you’ll see
some dogs on the page!

2-9. Our project running and showing five pictures of dogs

And here’s the code running on CodeSandbox. Again, you’ll need to update the code with your
Pexels API key to get it up and running.

Linting with ESLint-TypeScript.
To round off this tutorial, let’s get linting set up with ESLint. In the past, you had to use the
separate tool TSLint in order to lint your code. But thankfully, ESLint now has TypeScript support
via typescript-eslint. This is what we’ll set up to have linting enabled on our TypeScript code. The
good news is that, because it’s ESLint, if you’ve set that up before on a JavaScript project, a lot of
these steps will be very familiar to you!

We’re going to need to install a few different packages:

eslint : although typescript-eslint provides the rules, we’ll still run our linting via the main
ESLint tool. This is great if you’re working in a codebase with JS and TS files, as you can lint
them both with one tool.
@typescript-eslint/parser : this provides the ESLint parser, which is what ESLint will use to

parse and understand when it hits a file with a .ts extension.
@typescript-eslint/eslint-plugin : this is the ESLint plugin that provides the rules that we’ll

enable to lint our code with.

You should install all of these, and remember to use --save-dev to have them added to our
package.json :

npm install --save-dev eslint @typescript-eslint/parser @typescript-eslint/eslint-plugin

Once those are installed, create a .eslintrc.js configuration file in the root of your project with
the following in it:

module.exports = {
parser: '@typescript-eslint/parser',
plugins: ['@typescript-eslint'],
extends: ['eslint:recommended', 'plugin:@typescript-eslint/recommended'],

};

This configuration tells ESLint to use the @typescript-eslint/parser library for parsing code.
Without this, ESLint would error when trying to parse a TypeScript file. It then enables the
typescript-eslint plugin and turns out the recommended set of rules that eslint ships with,

and the ones that the typescript-eslint plugin ships with.

ttps://codesandbox.io/embed/kind-hoover-fg4x2?fontsize=14&hidenavigation=1&theme=dark
https://github.com/typescript-eslint/typescript-eslint

The main catch is that, by default, ESLint will only look for .js files. So when we run ESLint, we
need to tell it to look for .ts files:

npx eslint src/ --ext .ts

Make sure you run this command from the root directory of the project (the directory with the
tsconfig.json and package.json files in it).

Since we’ll be using this a lot, I like to add it as a lint script, so we can run npm run lint and
have it run for us. Let’s update our scripts entry in package.json :

"scripts": {
"dev": "vite",
"build": "tsc && vite build",
"serve": "vite preview",
"lint": "eslint src/ --ext .ts"

}

Running npm run lint will return nothing, because we’re not breaking any rules. But head into
main.ts and, anywhere outside of a function, and add this:

interface Foo {}

Now you’ll see an error when running npm run lint :

> 2@0.0.0 lint
> eslint src/ --ext .ts

/home/jack/git/typescript-course-article-2-code/src/main.ts
35:11 error An empty interface is equivalent to `{}` @typescript-eslint/no-empty-interface
35:11 warning 'Foo' is defined but never used @typescript-eslint/no-unused-vars

✖ 2 problems (1 error, 1 warning)

There are two issues that typescript-eslint has found:

An empty interface isn’t allowed; it’s telling us that we could just use the TypeScript type {}

(which denotes an empty object).
The interface Foo isn’t used, so it’s telling us that we could probably delete it.

There are many more rules that the typescript-eslint plugin provides, so I’d encourage you to give
the full list a read and configure any extra rules you might like to enable.

https://github.com/typescript-eslint/typescript-eslint/tree/master/packages/eslint-plugin
https://github.com/typescript-eslint/typescript-eslint/tree/master/packages/eslint-plugin

Conclusion
That draws this tutorial to an end. We’ve done a lot here, and we now have a solid TypeScript
foundation on which to build in the next chapter, where we’ll add more to our application and
explore how to use libraries from npm that don’t provide types out of the box, along with some
more advanced features that TypeScript provides.

Jack Franklin

Adding More
Functionality

Chapter

3

In the previous chapter, we started to put together our application by leveraging TypeScript to
write type-safe code to fetch data from our API and render it using lit-html. In this final
installment, we'll finish this series of tutorials by adding more functionality to our site. Users will
be able to search for photos or videos and star them as a favorite. We'll store these favorites in
local storage and see how we can interact with browser APIs whilst benefiting from TypeScript's
type safety.

We'll pick up exactly where we left off on tutorial two and start by letting users have the ability to
enter a search query. We'll then fire that off to the API and render the resulting photos in the app.

Refactoring the App to Create a render Method
In the previous tutorial, we had hard-coded the app to render after we queried the API for dogs ,
but now that we're going to start building the app properly, we want to let the user determine
what to search for.

The way that lit-html works is that once we've rendered our application for the first time into
some element, we can then call the Lit render method again, passing in different HTML and the
same element. It will then efficiently re-render the HTML, doing the minimum amount of work
required to update the DOM.

To take advantage of this, we'll create a function called renderApp that we can call many times to
re-render our app as required. Any data that we need to render will be passed into this function,
so to firstly we'll make it take one argument, results , which is the result of calling the Pexels
API to fetch data. We can reuse the PhotoSearchAPIResult type that we defined in the previous
tutorial. However, sometimes when we render we won't have any photos available, so we'll
declare that results can be PhotoSearchAPIResult | null :

function renderApp(results: PhotoSearchAPIResult | null): void {
const div = document.getElementById('app');
if (!div) {
throw new Error('could not find app div');

}

const htmlToRender = html`we will fill this out in a minute...`;
render(htmlToRender, div);

}

If you're working from the code in the second tutorial, you need to replace the block of code that
starts with fetchImagesFromAPI('dogs', 5).then((data) => { with this code above.

This means if we want to call renderApp and we don't have any results, we have to explicitly pass

in null :

renderApp(null);

Often people won't use this and instead will let us call renderApp() with no arguments, but I like
the explicitness of passing in null . It makes it harder to forget to pass in the argument.

Notice that we provide a return type of void to signify that our function doesn't return anything
at all.

Rendering a Search Form
The HTML that we render will look the same as before when it comes to rendering the results,
but we'll also render a small <form> that can be submitted to query our API. We'll use Lit's
@submit syntax to bind a function to the submit event. We'll define that function shortly, so

don't worry about what that function does right now:

const htmlToRender = html`
<h1>Amazing Photo App</h1>

<form id="search" @submit=${onFormSubmit}>
<input type="text" name="search-query" placeholder="dogs" />
<input type="submit" value="Search" />

</form>

${results
? results.photos.map((photo) => {

return html``;
})

: nothing}

`;

Notice that now, within our , we dynamically render different content based on whether
results is null or not. If it isn't, we render all our results (this hasn't changed from the previous

tutorial), and if it's null , we return nothing . This is a special value from lit-html which needs
to be imported:

import { render, html, nothing } from 'lit-html';

nothing signifies to Lit that it shouldn't render anything into the page, and is useful when you
only want to render some HTML should a particular value exist, or be not null .

We're nearly ready to render the application, but we need to define the onFormSubmit function
that we referenced in the HTML above. Above the definition of renderApp , add this:

async function onFormSubmit() {};

That's all we need right now to get the app running. We'll fill this function out shortly.

Now we can render the app by calling renderApp(null) , and you should see a form appear on the
page (we'll add some CSS later on). If you'd like to explore the code a little more, you can see
these changes running on CodeSandbox.

3-1. Our application running showing our form input

Searching for Photos
To search for photos, we need to implement the onFormSubmit method. The first part of this
method will call event.preventDefault() to prevent the default form action happening. We'll also
check for event.target being present. event.target represents the element that the event
occurred on, and we want to make sure it isn't null. If it is null , we can just return from the
function early and do nothing.

https://codesandbox.io/s/sharp-brattain-7f5yn?file=/src/index.ts
https://codesandbox.io/s/sharp-brattain-7f5yn?file=/src/index.ts

We'll also define the function as an async function, as we'll want to use await in here when
calling out to the API:

async function onFormSubmit(event: SubmitEvent) {
event.preventDefault();
if (!event.target) {
return;

}
}

Notice that I gave the event parameter a type of SubmitEvent . This is the type of event that
gets emitted when an HTML form is submitted (read more on the MDN docs here). For any global
event types like this, TypeScript will have a type that you can use to represent it.

These types don't magically exist, but are defined within TypeScript in a .d.ts file. These files
are special TypeScript files that define types, but not the actual implementation code. When
TypeScript ships, it includes a lib.dom.d.ts file that contains a number of types that represent
all the DOM APIs and events that are implemented in the browser.

Once you've typed SubmitEvent , you can use your editor's “Go to Definition” functionality (in VS
Code it's F12) to see the definition of SubmitEvent . In the image below, VS Code shows the
SubmitEvent definition.

3-2. VS Code showing the SubmitEvent definition

.

https://developer.mozilla.org/en-US/docs/Web/API/SubmitEvent

Using FormData to Read Form Values
Now, in the submit function we can gather the value of our text input. There's loads of ways we
could do this, but we're going to make use of the FormData API.

A FormData object works by taking an HTML form element and constructing an object of key/
value pairs that represent all the inputs in the form and the values of those inputs. We already
have our form - it's event.target , because we're working with the submit event, so we can
construct a FormData object by passing it that:

async function onFormSubmit(event: SubmitEvent) {
event.preventDefault();
if (!event.target) {
return;

}

const formData = new FormData(event.target);
}

However, if you do that and now run the TypeScript compiler (npx tsc on the command line, or
look for red squiggles in your editor!) you will get an error:

src/main.ts:58:33 - error TS2345: Argument of type 'EventTarget' is not assignable to parameter of type 'HTMLFormElement'.
Type 'EventTarget' is missing the following properties from type 'HTMLFormElement': acceptCharset, action, autocomplete, elements, and 286 more.

58 const formData = new FormData(event.target);
~~~~~~~~~~~~

Found 1 error.

Note: you may also get an error that " formData is declared, but its value is never used". That's
the compiler letting you know that we've created this variable and never used it. But we'll be
using it shortly so this one is safe to ignore.

This error happens because TypeScript knows that the element passed to new FormData() has
to be of type HTMLFormElement : a FormData object can only be created by passing in a form
element. However, TypeScript doesn't know for sure that our event.target is an
HTMLFormElement . It only knows that it's an EventTarget — a general type for any HTML element

that can listen to and emit events.

This is a good example of a situation that can occur when TypeScript knows less about the world
than you.Here, we know reasonably that event.target will be a form, because we're in a form's
submit event handler, which we've bound with lit-html via the @submit syntax. But TypeScript

https://developer.mozilla.org/en-US/docs/Web/API/FormData


doesn't know that. It has no special understanding of Lit's syntax. Therefore, this is a case where
I feel confident using the as syntax to tell TypeScript that, in this instance, we know best:

const formData = new FormData(event.target as HTMLFormElement);

I don't like using as , because it overrides what the compiler thinks, and is an easy way to cause
errors that TypeScript would have otherwise spotted, but in this case it's warranted. Sometimes
you have to be pragmatic when working with TypeScript and recognize that, due to the nature of
the Web, occasionally TypeScript needs a little bit of help.

Using the formData Object
Once we have the formData object, we can use .get() to query the object. We can pass in the
name of the input we want to query, and get back the value of that input:

const query = formData.get('search-query');
if (query) {
...

}

.get() returns FormDataEntryValue | null , so we check that it has a value before continuing.
At this point, you might be wondering what the type of FormDataEntryValue actually is. I was too!
There are two ways to find this out. The first is to check the MDN docs for .get() , which will link
you to the MDN docs for FormDataEntryValue , where you'll find this:

A string or File that represents a single value from a set of FormData key-
value pairs.

Another way to find this out would be to use TypeScript. I use “Go to Definition” on the
formData.get() method in our code, which takes me into the TypeScript definitions. At this

point, you can see the definition of the get method:

get(name: string): FormDataEntryValue | null;

And then I can use “Go to Definition” again on the FormDataEntryValue type.

https://developer.mozilla.org/en-US/docs/Web/API/FormData/get
https://developer.mozilla.org/en-US/docs/Web/API/FormDataEntryValue


3-3. Using go to definition on the formData.get() method

This reveals the type:

type FormDataEntryValue = File | string;

So we know that the type of the value returned from the get() method, should it not be null ,
is either a File or a string . This means that, when we deal with this value, we need to deal with
TypeScript thinking that it might be a file — even though we know, because of the form we've
built, that it's impossible to be a file. We could cast it using as , but in this instance we can take
advantage of TypeScript's type narrowing.

We could write this code:

if (query) {
const results = await fetchImagesFromAPI(query, 10);
renderApp(results);

}

If we do, we'll get an error, because fetchImagesFromAPI expects to be given a string , but at
this point our query is File | string . What we can do here is use the typeof operator to
check that the value is actually a string at runtime:

if (query && typeof query === 'string') {
const results = await fetchImagesFromAPI(query, 10);
renderApp(results);

https://www.typescriptlang.org/docs/handbook/2/narrowing.html


}

Not only does this ensure — when this code actually runs — that query is indeed a string value,
but TypeScript can read this code and understand that we've added a conditional check to
ensure the value is a string. This is called type narrowing. In our case, we started out with a type
of FormDataEntryValue | null — which actually was File | string | null if we expand
FormDataEntryValue .

Then, in our conditional, we first check for the presence of query . Strictly, this check is now not
necessary, because the typeof check ensures it's not null , but I like to leave it because I think
it makes it clearer in the code that query might not exist. Once we check for the presence of
query , TypeScript has narrowed the type to File | string , because we now know it can’t be

null. Following the typeof check, TypeScript can narrow our type again to just string , meaning
we can pass it into fetchImagesFromAPI safely.

Once we have our query, we call fetchImagesFromAPI (this is the same function, as we left it in
the previous tutorial, with no changes) and can pass them into renderApp to cause Lit to re-
render our app with some pictures!

You can try this out on CodeSandbox — but remember that you'll need to update the code to put
your Pexels API key into the app.

Use npm run dev to trigger Vite to rebuild and serve the application locally on port 3000 .

https://codesandbox.io/embed/modest-dew-k7rx8?fontsize=14&hidenavigation=1&theme=dark


3-4. Our app working once I've searched for Kangaroos

Writing an API for Local Storage
Now let's start working towards enabling people to like photos (and, in a bit, videos) by creating a
little wrapper around the localStorage API, which is where we'll save our videos. This is an area
where TypeScript shines, because we can take an API built into the platform and wrap it in a layer
of type-safety that can also provide information to other developers on what data we're storing.



We'll write this code in a new file, src/storage.ts . The first thing we'll do is define the interface
for what our stored data will look like:

interface StoredUserLikes {
photos: number[];
videos: number[];

}

When working with TypeScript, it's nearly always a good idea to start with the types — or at least,
the main type around which you want to write code. That's not to say you can't change it later on,
but I think it really helps get my head clear about what we're working towards.

Knowing that we'll be storing liked videos as well as photos means that I can structure my saved
data accordingly, and store two arrays of numeric IDs — one for photos , and one for videos .

Next let's export the function saveLikes :

const LOCAL_STORAGE_KEY = '__PEXELS_LIKES__';

export function saveLikes(likes: StoredUserLikes): void {
window.localStorage.setItem(LOCAL_STORAGE_KEY, JSON.stringify(likes));

}

Because the local storage API can only store strings, we first have to take our data and use
JSON.stringify to convert it into a string.

Note that I define a constant LOCAL_STORAGE_KEY for the key that we use when saving the data,
and I don't expose it. This is to make sure nothing in our app directly uses the local storage API. I
want it to always go through our src/storage.ts module.

loadLikes is the opposite of saveLikes , but it does potentially return null in the case that
there is no stored data:

export function loadLikes(): StoredUserLikes | null {
const data = window.localStorage.getItem(LOCAL_STORAGE_KEY);
if (!data) {
return null;

}
return JSON.parse(data);

}

I highly recommend taking advantage of TypeScript and wrapping these built-in APIs in a small



layer that can provide you with some type-safety and an API catered to your particular use case.

Now that we've got these functions defined, let's start to let people like photos.

Favoriting Photos
Before we add functionality to like photos, we should first think about breaking our application
down a bit. The current render method renders the entire app, and as we add functionality it's
going to become quite unwieldy to work with if we have one huge function.

Let's create src/photo-renderer.ts , which will be where we move the logic for rendering an
individual photo.

Note: if you were using React/Angular/Vue/Svelte and so on here, you'd probably create a new
component. For the sake of focusing on TypeScript, we'll just keep defining functions that return
HTML via lit-html.

Let's define the shell of src/photo-renderer.ts :

import { Photo } from './main';
import { html } from 'lit-html';

export function renderPhoto(photo: Photo) {
return html`<li><img src=${photo.src.small} /></li>`;

}

Immediately, though, we hit a problem. main.ts doesn't expose the Photo interface. We could
fix this, by making it export interface Photo {...} , but then we'd hit on a different problem:
main.ts would need to import renderPhoto from photo-renderer.ts , but at the same time
photo-renderer.ts would need to import Photo from main.ts . This means we've introduced a

circular dependency between main.ts and photo-renderer.ts , because both files depend on
the other.

We could actually continue down that path; the circular dependency can be handled and the code
will work, but it's highlighting a general issue with our application's structure that I think is worth
resolving. In any TypeScript application, you're going to have some types that are core to your
entire system, and those types are going to need to be imported by lots of code in lots of files
across your codebase. Having ours in main.ts was fine when we were getting started, but now
we need something a little more structured.



Creating pexels.ts to Contain Our API Code
To fix this, let's create src/pexels.ts , which can be the module that contains all the code for
making requests to the API, and defining the types that can be returned from that API:

const PEXELS_API_KEY = 'your-pexels-api-key-goes-here';

export interface Photo {
id: number;
width: number;
height: number;
url: string;
photographer: string;
photographer_url: string;
photographer_id: string;
avg_color: string;
src: {
original: string;
large2x: string;
large: string;
medium: string;
small: string;
portrait: string;
landscape: string;
tiny: string;

};
}

export interface PhotoSearchAPIResult {
total_results: number;
page: number;
per_page: number;
photos: Photo[];
next_page: string;

}

export async function fetchImagesFromAPI(
searchTerm: string,
perPage: number

): Promise<PhotoSearchAPIResult> {
const result = await fetch(
`https://api.pexels.com/v1/search?query=${searchTerm}&per_page=${perPage}`,
{
headers: {
Authorization: PEXELS_API_KEY,

},
}

);



const json = (await result.json()) as PhotoSearchAPIResult;
return json;

}

Don't forget to ensure that all the types and functions have an export at the start, so they can
be used elsewhere. Then in src/main.ts , we can delete all the code that's been moved into src/

pexels.ts , and update our imports:

import { render, html, nothing } from 'lit-html';
import { renderPhoto } from './photo-renderer';
import { fetchImagesFromAPI, PhotoSearchAPIResult } from './pexels';

And now in src/photo-renderer.ts we can update our imports too:

import { Photo } from './pexels';
import { html } from 'lit-html';

export function renderPhoto(photo: Photo) {
return html`<li><img src=${photo.src.small} /></li>`;

}

Finally, in src/main.ts , we can update our main render code to use the renderPhoto function:

<ul>
${results
? results.photos.map((photo) => {

return renderPhoto(photo);
})

: nothing}
</ul>

After that little tidy up, we're now ready to crack on with allowing the user to favorite photos. I've
found during my time with TypeScript that I'm much more willing to make these small refactors
as I work, because the compiler will error loudly if something goes wrong. If at any point during
the refactoring I've made a mistake — such as forgetting to import a function, or forgetting to
add an export keyword before a type that I wanted to expose — the compiler will error and I'll be
made aware of the problem early on. That's one of the best things about TypeScript — the
shorter feedback loop when you've made a mistake. You can explore the full changes on
CodeSandbox if you'd like to compare your app's code to ensure you've not missed anything.

Make sure at this point you check the app is working: npm run dev will get it running again if you
don't have it. You can also run npx tsc to ensure that TypeScript is giving you no errors.

https://codesandbox.io/s/wizardly-brook-i85ut?file=/src/pexels.ts
https://codesandbox.io/s/wizardly-brook-i85ut?file=/src/pexels.ts


Liking a Photo
Let's now update photo-renderer.ts with a button that the user can click to like the photo:

export function renderPhoto(photo: Photo) {
return html`<li class="photo">
<img src=${photo.src.small} />
<button class="like">Like</button>

</li>`;
}

At this point, we'll also throw some CSS in to make the app look a tiny bit less ugly. So, in src/

main.ts , add back in the import for style.css :

import './style.css';

And then update style.css like so:

#app {
font-family: Avenir, Helvetica, Arial, sans-serif;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
text-align: center;
color: #2c3e50;
margin-top: 60px;

}

ul {
margin: 10px;
padding: 0;
display: flex;
flex-wrap: wrap;

}

.photo {
display: flex;
margin: 20px 10px;
flex-direction: column;
align-items: center;
justify-content: center;
border: 2px solid #ccc;
padding: 5px;

}

.photo img {
display: block;



}

.photo button {
width: 100%;
font-size: 18px;
padding: 10px;
cursor: pointer;

}

Feel free to change this as much as you like if you prefer a different look, but after rebuilding the
app with those styles applied, it should appear like the picture below.

3-5. Our photo application with styles applied

De0ning the Types of Callback Functions
To enable the photos to be liked (or then disliked), we're going to have to do some work to
organize our application and how the renderPhoto function will let the application know that the
user has clicked the button. This will mean that we'll pass renderPhoto a callback function that it
can call when its like button is pressed. Then our main application can listen for that callback and
deal with liking the photo and updating the data.

First, update photo-renderer.ts like so:

import { Photo } from './pexels';
import { html } from 'lit-html';



export function renderPhoto(
photo: Photo,
onLikeClick: (photoId: number) => void

) {
return html`<li class="photo">
<img src=${photo.src.small} />
<button class="like" @click=${() => onLikeClick(photo.id)}>Like</button>

</li>`;
}

Notice how we pass in the type for the onLikeClick function:

export function renderPhoto(
photo: Photo,
onLikeClick: (photoId: number) => void

) {...}

Here we see how to define callback functions in TypeScript. You can think of it like defining an
arrow function, except you don't fill out the body. All you put after the => is the return type — in
our case, void , as we don't expect anything to be returned.

We can then use the lit-html syntax of @click to bind to the button's click event and call the
callback with the ID of our photo. This is so our main application knows whether to update the
photo to be liked, or disliked if the user had previously liked it:

<button class="like" @click=${() => onLikeClick(photo.id)}>Like</button>

Now we can return to src/main.ts , where, if you have it set up, your editor should be
highlighting the call to renderPhoto as an error, because you're not passing in the second
argument. This is without a doubt the best benefit of TypeScript: when you're in the middle of
some work, it'll often remind you exactly what the next steps are.

Let's fix the error by defining a placeholder method:

function renderApp(results: PhotoSearchAPIResult | null): void {
const div = document.getElementById('app');
if (!div) {
throw new Error('could not find app div');

}

function onUserLikeClick(photoId: number): void {}

const htmlToRender = html`



<h1>Amazing Photo App</h1>

<form id="search" @submit=${onFormSubmit}>
<input type="text" name="search-query" placeholder="dogs" />
<input type="submit" value="Search" />

</form>
<ul>
${results
? results.photos.map((photo) => {

return renderPhoto(photo, onUserLikeClick);
})

: nothing}
</ul>

`;
render(htmlToRender, div);

}

And now we can fill in the function:

function onUserLikeClick(photoId: number): void {
const likedData = loadLikes() || {
photos: [],
videos: [],

};
const photoIsLiked = likedData.photos.includes(photoId);
if (photoIsLiked) {
likedData.photos = likedData.photos.filter((id) => id !== photoId);

} else {
likedData.photos.push(photoId);

}
saveLikes(likedData);

}

Don't forget to also import the functions we need:

import { loadLikes, saveLikes } from './storage';

We first use loadLikes() to fetch the data from local storage. We know that this can return
null , so if it does, we fall back to a new blank object that we can use as our stored data. We then

check if the photo is liked or not. If it is, we filter the list to remove it, and if it isn't, we push the
new ID onto the list to make it liked. Finally, we write that data to local storage.

We can use the developer tools to confirm the data has been written: under the Application tab
(this is the Chrome Developer Tools, so it may be located differently in your browser), you can see
local storage and confirm that our data has been stored.



3-6. Local storage updated with our liked photo

Once we have our photo liked (or disliked), we need to re-render the application so we can update
the UI. We'll also pass in a true or false value to renderPhoto , telling it if the photo is liked or
not.

First, let's move the const likedData = ... line out of our onUserLikeClick callback and up to
the top level of the renderApp() function. This means that, every time we render, we'll get the
updated set of liked photos and videos:

function renderApp(results: PhotoSearchAPIResult | null): void {
const div = document.getElementById('app');
const likedData = loadLikes() || {
photos: [],
videos: [],

};
...

}

Then in onUserLikeClick we need to call our renderApp method again:

function onUserLikeClick(photoId: number): void {
const photoIsLiked = likedData.photos.includes(photoId);
if (photoIsLiked) {
likedData.photos = likedData.photos.filter((id) => id !== photoId);

} else {
likedData.photos.push(photoId);

}
saveLikes(likedData);



renderApp(results);
}

And then, when we call renderPhoto , let's pass in a Boolean to determine if the photo is liked or
not:

results.photos.map((photo) => {
const photoIsLiked = likedData.photos.includes(photo.id);
return renderPhoto(photo, onUserLikeClick, photoIsLiked);

})

And finally, update photo-renderer.ts to show Dislike or Like depending on whether the photo
is liked or not:

export function renderPhoto(
photo: Photo,
onLikeClick: (photoId: number) => void,
photoIsLiked: boolean

) {
return html`<li class="photo">
<img src=${photo.src.small} />
<button class="like" @click=${() => onLikeClick(photo.id)}>
${photoIsLiked ? 'Dislike' : 'Like'}

</button>
</li>`;

}

And with that, we have our basic like functionality working! Make sure yours is working by
running the application. You should see a button with the text “Like” appear below each photo.
You can click it to change the text to “Dislike”, which should also update local storage. You can
test this by liking a photo, refreshing the page, and searching for the same query again. The
photo you liked previously should appear, and the text underneath will say “Dislike”.

This CodeSandbox has all the changes we've just made — but don't forget to update the API key
in pexels.ts before it will start working.

Let's now move on to some small TypeScript improvements we can make, before diving into
adding support for showing videos from search results too.

Improving Our Code with readonly
Often, when working in client-side applications, you'll want to create objects or arrays that
represent data, and ideally you don't want your code to mutate them. For example, our results

https://codesandbox.io/embed/thirsty-proskuriakova-rcex3?fontsize=14&hidenavigation=1&theme=dark


from the API include an array of photos. At no point in the codebase does it make sense to
update this array to push data onto it. Because that data represents data from the API, we don't
want our code to modify it. It effectively is a readonly object.

TypeScript lets us do this for both objects and arrays. Readonly lets us make objects whose
properties are readonly, and ReadonlyArray lets us define arrays that can't be mutated.

Let's update some of our API results code to make use of this. In pexels.ts , let's update the
src object to be readonly:

export interface Photo {
id: number;
width: number;
height: number;
url: string;
photographer: string;
photographer_url: string;
photographer_id: string;
avg_color: string;
src: Readonly<{
original: string;
large2x: string;
large: string;
medium: string;
small: string;
portrait: string;
landscape: string;
tiny: string;

}>;
}

We can also update PhotoSearchAPIResult :

export interface PhotoSearchAPIResult {
total_results: number;
page: number;
per_page: number;
// Note: these are both equivalent; use whichever you prefer
photos: readonly Photo[];
// photos: ReadonlyArray<Photo>;
next_page: string;

}

When defining arrays, you can use readonly Photo[] or ReadonlyArray<Photo> . Both mean the
same thing. I tend to prefer the readonly keyword as I find it slightly easier to read, but it's

https://www.typescriptlang.org/docs/handbook/utility-types.html#readonlytype
https://www.typescriptlang.org/docs/handbook/2/objects.html#the-readonlyarray-type


entirely up to you which one you prefer.

We can go one step further by making each property on the interfaces we have readonly too.
This means that TypeScript will not allow any code to modify them. To do this, you can preface
each key in the object with the readonly keyword:

export interface Photo {
readonly id: number;
readonly width: number;
readonly height: number;
readonly url: string;
readonly photographer: string;
readonly photographer_url: string;
readonly photographer_id: string;
readonly avg_color: string;
readonly src: Readonly<{
original: string;
large2x: string;
large: string;
medium: string;
small: string;
portrait: string;
landscape: string;
tiny: string;

}>;
}

export interface PhotoSearchAPIResult {
readonly total_results: number;
readonly page: number;
readonly per_page: number;
readonly photos: readonly Photo[];
readonly next_page: string;

}

Whilst this is undoubtedly quite verbose, it does mean that it's now practically impossible to
accidentally mutate data because the compiler will error.

You might notice in the code above that for the src key on Photo there's a bit of inconsistency
in where we have the readonly keyword:

readonly src: Readonly<{
original: string;
large2x: string;
large: string;
medium: string;



small: string;
portrait: string;
landscape: string;
tiny: string;

}>;

You might be wondering why we have it on the src property, but then not on any of the
properties within there. That's because, when you take an object and pass it as the generic
argument to Readonly<T> (in the above code, the generic T is our object with original ,
large2x , and so on), each property within the object that you pass in will automatically be made
readonly . The utility Readonly<T> type does exactly that: it creates a new version of the type T

where each item has been made readonly . So another way to write that code would be:

readonly src: {
readonly original: string;
readonly large2x: string;
readonly large: string;
readonly medium: string;
readonly small: string;
readonly portrait: string;
readonly landscape: string;
readonly tiny: string;

};

You can feel free to do this, if you'd like to be more explicit, but I like saving the typing of
readonly by using the utility type.

The reason we need the readonly before src is to ensure that the src property itself is
readonly, rather than just the object it contains. Imagine if we only had this:

src: Readonly<{...}>;

Then I could still write code that looked like this:

photo.src = { ... };

This is because we didn't set src to be readonly , but only the object that it contained. By
prepending src with the readonly keyword, we've made it so the above code would error, and
ensured that our API results can't be messed with.



Adding Video Results
So that we can explore some more of what TypeScript has to offer, we're going to mix up our
application a little and when we search, also search for videos, which the Pexels API also
provides. When a user enters a query, we'll search for both photos and videos and combine them
into one list that the user can then scroll through and like/dislike.

The first thing to do in pexels.ts is define the interfaces that we'll use. I'll spare you all the
details, but the process here is to look at the API documentation and translate that into a set of
interfaces that, unsurprisingly, look a lot like the Photo interfaces we've previously defined:

export interface VideoFile {
id: number;
quality: 'hd' | 'sd';
file_type: string;
width: number;
height: number;
link: string;

}

export interface Video {
readonly id: number;
readonly url: string;
readonly image: string;
readonly duration: number;
readonly video_files: readonly VideoFile[];

}

export interface VideoSearchAPIResult {
readonly page: number;
readonly per_page: number;
readonly next_page: number;
readonly total_results: number;
readonly videos: readonly Video[];

}

Note that I haven't included all the fields Pexels provides here, but just a subset that we care
about.

We can then define fetchVideosFromAPI , which is nearly identical to fetchImagesFromAPI , but
uses a different URL:

export async function fetchVideosFromAPI(
searchTerm: string,

https://www.pexels.com/api/documentation/#videos-overview
https://www.pexels.com/api/documentation/#videos-overview


perPage: number
): Promise<VideoSearchAPIResult> {
const result = await fetch(
`https://api.pexels.com/v1/videos/search?query=${searchTerm}&per_page=${perPage}`,
{
headers: {
Authorization: PEXELS_API_KEY,

},
}

);

const json = (await result.json()) as VideoSearchAPIResult;
return json;

}

Now that we can fetch videos from the API too, let's update our renderApp method so it takes in
an array of photos and videos and renders them in a random order — so that when you search,
you get a mixture of photos and videos for your search topic. We'll take the
PhotoSearchAPIResult and the VideoSearchAPIResult and combine the arrays of photos and

videos into one array:

async function onFormSubmit(event: SubmitEvent) {
// code omitted to save space

if (query && typeof query === 'string') {
const results = await fetchImagesFromAPI(query, 10);
const videos = await fetchVideosFromAPI(query, 10);

const photosAndVideos = [];
for (let i = 0; i < results.photos.length; i++) {
photosAndVideos.push(results.photos[i]);
photosAndVideos.push(videos.videos[i]);

}
}

renderApp(photosAndVideos);
}

It's a rudimentary approach, but we can loop over the resulting data and push a photo, then a
video, into our array, to ensure we end up with an array of mixed photos and videos.

We have a problem, though. If you hover over photosAndVideos in your editor (or do the
appropriate action to have your editor show you the type of this array), you'll see any[] .



3-7. TypeScript showing that the type of photos and videos is any

We can fix this with an explicit type declaration:

const photosAndVideos: Array<Photo | Video> = [];

We also need to make sure we update the import from ./pexels to include Photo and Video :

import {
fetchImagesFromAPI,
fetchVideosFromAPI,
Photo,
PhotoSearchAPIResult,
Video,

} from './pexels';

The line that calls renderApp and passes in photosAndVideos will cause an error, because
photosAndVideos is not the expected type to pass into the renderApp function. Let's resolve

that now.

Rendering Videos
Now that we have our list of resources to render, let's update our renderApp method to take this
list, rather than the PhotoSearchAPIResult it was taking:

function renderApp(results: Array<Photo | Video> | null): void {}

We'll still allow the results to be null , but now alternatively they can be our mixed array of
photos and videos.

After changing that type, you'll get an error when it comes to rendering the data:



results.photos.map((photo) => {
const photoIsLiked = likedData.photos.includes(photo.id);
return renderPhoto(photo, onUserLikeClick, photoIsLiked);

})

The error will appear on results.photos.map . Whereas previously results was an object that
had an array of photos inside, it's now an array itself, so TypeScript is giving us an error that the
key photos doesn't exist on an array.

Firstly, we can update the code to map directly over results , which is now an array, but rather
than the object passed to the callback being a Photo , it can now also be a Video . And how do
we determine what object we're working with? That leads us on nicely to type predicates.

Type Predicates
A type predicate enables us to write a function that determines if a particular object is of a given
type. We can then communicate that to the compiler, which can then understand our code and
narrow the types accordingly.

In our case, we can write an isPhoto(object) function, which will take in an object that's either a
Photo or a Video , and return true or false depending on whether or not it's a Photo . Using a

special syntax, we can then communicate that to TypeScript, so that when we call
if(isPhoto(x)) the compiler will know that x is a Photo inside that conditional.

To determine if something is a Photo , we need to find something unique to a Photo object that
a Video object doesn't have. Looking at the interfaces we've declared, we can notice that a
Video has a duration field, which a Photo doesn't.

Note: I could just as easily define isVideo , not isPhoto here — so feel free to do that if you
prefer. There's no real reason why I've gone for isPhoto .

We'll define this function in pexels.ts . Here's how we could define the isPhoto function
normally:

export function isPhoto(object: Photo | Video): boolean {
const hasDuration = 'duration' in object;
return !hasDuration;

}

This would work, but for this function to become a type predicate, you tell the compiler what this
function asserts about the type, rather than the return type of boolean . All type predicates have

https://www.typescriptlang.org/docs/handbook/2/narrowing.html#using-type-predicates


to return boolean , so for the return type, we use the x is Y syntax to state what this predicate
tells us:

export function isPhoto(object: Photo | Video): object is Photo {
const hasDuration = 'duration' in object;
return !hasDuration;

}

The TypeScript compiler can now understand that if we call this function and it returns true ,
that object is indeed a Photo . But, because we told it the input is Photo | Video , it can also
understand that if the function returns false , that object must be a Video .

Type predicates are an extremely useful tool to have up your sleeve. Whenever you're working
with mixed data and need to be able to assert that a particular object is a given type, these should
be your go-to option. One word of warning: be very careful that your assertion code is accurate,
and that at runtime, when you call isPhoto , it does correctly return true / false for an object.
TypeScript completely trusts that your implementation of the predicate function is correct.

Rendering Videos
Now that we can distinguish between a photo and a video, we can get back to rendering videos
on the page. In renderApp we can now make use of our type predicate:

results.map((resource) => {
if (isPhoto(resource)) {
const photoIsLiked = likedData.photos.includes(resource.id);
return renderPhoto(resource, onUserLikeClick, photoIsLiked);

} else {
// TODO: render video
return nothing;

}
})

Don't forget to also import isPhoto from pexels.ts :

import {
fetchImagesFromAPI,
fetchVideosFromAPI,
isPhoto,
Photo,
Video,

} from './pexels';



Now in photo-renderer.ts (which we probably want to consider renaming!), we can define
renderVideo , which will look suspiciously similar to renderPhoto . The only difference is the URL

we use for the image, which for the video is simply video.image :

export function renderVideo(
video: Video,
onLikeClick: (videoId: number) => void,
videoIsLiked: boolean

) {
return html`<li class="photo">
<img src=${video.image} />
<button class="like" @click=${() => onLikeClick(video.id)}>
${videoIsLiked ? 'Dislike' : 'Like'}

</button>
</li>`;

}

Make sure you update the imports to include the Video type:

import { Photo, Video } from './pexels';

While we're talking rendering, we'll also update the CSS. The images that represent videos are
much larger, so let's ensure we limit the width of each <li> that we render. Add max-width: 50%

to the .photo class, and max-width: 100% to the .photo img styles:

.photo {
display: flex;
max-width: 50%; /* ADD THIS */
margin: 20px 10px;
flex-direction: column;
align-items: center;
justify-content: center;
border: 2px solid #ccc;
padding: 5px;

}

.photo img {
display: block;
max-width: 100%; /* ADD THIS */

}

Now in renderApp we can render a video if isPhoto(resource) returns false :

if (isPhoto(resource)) {



const photoIsLiked = likedData.photos.includes(resource.id);
return renderPhoto(resource, onUserLikeClick, photoIsLiked);

} else {
const videoIsLiked = likedData.videos.includes(resource.id);
return renderVideo(resource, onUserLikeClick, videoIsLiked);

}

You'll also need to make sure renderVideo is imported:

import { renderPhoto, renderVideo } from './photo-renderer';

And with that change, we now have both photos and videos being rendered.

3-8. Our application rendering both photos and videos

You can also try it out on CodeSandbox(with the usual caveat of adding your Pexels API key!).

For the sake of this tutorial, we're only going to show an image that represents each video, and
not integrate a video player into our application. If we were continuing to build this app, we'd
probably want to allow the user to click on the image and get a video player to appear.

Liking Videos
While we can render videos, liking them still assumes that the given ID represents a photo:

function onUserLikeClick(photoId: number): void {

https://codesandbox.io/embed/distracted-hopper-7swgf?fontsize=14&hidenavigation=1&theme=dark


const photoIsLiked = likedData.photos.includes(photoId);
if (photoIsLiked) {
likedData.photos = likedData.photos.filter((id) => id !== photoId);

} else {
likedData.photos.push(photoId);

}
saveLikes(likedData);
renderApp(results);

}

We could define a separate callback function for when a user clicks to like a video, but instead we
can update this function to deal with either a photo or a video. Rather than take an ID, let's take
the entire resource as the argument, because then we can use our isPhoto type predicate
again.

This is a good tip to note generally: when you end up passing small parts of your objects around
— in this case, an ID for a photo/video — you lose the ability to then check the exact type the ID
takes. Sometimes this is not a problem: if you have a function that only deals with photos, and
only needs the ID, then just pass it the ID.

Now that our function gets the entire resource, we need to check what type it is and look at
either likedData.photos or likedData.videos . We can then update the relevant array, before
updating our saved data again at the end of the function:

function onUserLikeClick(resource: Photo | Video): void {
let arrayOfLikes: number[] = [];
if (isPhoto(resource)) {
arrayOfLikes = likedData.photos;

} else {
arrayOfLikes = likedData.videos;

}
const resourceIsLiked = arrayOfLikes.includes(resource.id);
if (resourceIsLiked) {
arrayOfLikes = arrayOfLikes.filter((id) => id !== resource.id);

} else {
arrayOfLikes.push(resource.id);

}
if (isPhoto(resource)) {
likedData.photos = arrayOfLikes;

} else {
likedData.videos = arrayOfLikes;

}
saveLikes(likedData);
renderApp(results);

}



Now we can update renderPhoto to make the type definition for the callback correct, and also
pass the entire photo into the callback:

export function renderPhoto(
photo: Photo,
onLikeClick: (resource: Photo) => void,
photoIsLiked: boolean

) {
return html`<li class="photo">
<img src=${photo.src.small} />
<button class="like" @click=${() => onLikeClick(photo)}>
${photoIsLiked ? 'Dislike' : 'Like'}

</button>
</li>`;

}

Notice how despite the fact that the callback takes a Photo | Video , in the type definition for
renderPhoto we only say that it takes a Photo . This is useful for anyone in the future reading

this code to help clarify that this function will only ever pass a Photo through to the callback.
TypeScript is happy with this, because anything that matches the type of Photo will also match
the type of Photo | Video .

We then make a similar change to renderVideo :

export function renderVideo(
video: Video,
onLikeClick: (resource: Video) => void,
videoIsLiked: boolean

) {
return html`<li class="photo">
<img src=${video.image} />
<button class="like" @click=${() => onLikeClick(video)}>
${videoIsLiked ? 'Dislike' : 'Like'}

</button>
</li>`;

}

And now we can render our application, search for something, and like either photos or videos!



3-9. Chrome Developer Tools showing localStorage updated with liked photos and videos

De0ning a Resource Type
Our application is now working and done, but there's some nice tidying up we can do. You might
have noticed in the last few sections that the type Photo | Video has appeared a lot. When you
get the same union type appearing multiple times, that can be a sign that you should consider
defining that as its own type. In this case, we can define a union type that is defined as Photo |

Video .

Let's define this in pexels.ts :

export type Resource = Photo | Video;

And now anywhere in our application where we've typed Photo | Video can be updated to use
this Resource type, such as isPhoto :

export function isPhoto(object: Resource): object is Photo {
const hasDuration = 'duration' in object;

https://www.typescriptlang.org/docs/handbook/unions-and-intersections.html


return !hasDuration;
}

And onUserLikeClick :

function onUserLikeClick(resource: Resource): void {...}

And renderApp :

function renderApp(results: Array<Resource> | null): void {

To use the Resource type in main.ts , you'll need to import it:

import {
fetchImagesFromAPI,
fetchVideosFromAPI,
isPhoto,
Resource,

} from './pexels';

Remember, you could also write that type as results: Resource[] | null if you wanted. One
further improvement we can make while we're here is to also make it readonly , as discussed
earlier in this tutorial:

function renderApp(results: readonly Resource[] | null): void {}

We can also update the photosAndVideos array that's defined in onSubmit :

const photosAndVideos: Resource[] = [];

And with that, we've now got our Resource type being used everywhere. One of the main
reasons to do this becomes clear if, in the future, we have to consider another type of resource.
Let's imagine that our app expands into animated GIFs. We can now update our Resource type
to:

type Resource = Photo | Video | Gif;

And now, everywhere in our application where we don't deal with that third type will cause
compiler errors. It's a nice way to have the compiler almost generate a to-do list for you!



De0ning renderResource
It won't have escaped your attention that renderPhoto and renderVideo are almost identical, so
as one small refactoring step, let's define renderResource , which can deal with rendering either.
The only difference is the URL to use for the image. All the other code is the same, regardless of
which resource we're dealing with. We'll define this in photo-renderer.ts :

export function renderResource(
resource: Resource,
onLikeClick: (resource: Resource) => void,
resourceIsLiked: boolean

) {
const imageURl = isPhoto(resource) ? resource.src.small : resource.image;

return html`<li class="photo">
<img src=${imageURl} />
<button class="like" @click=${() => onLikeClick(resource)}>
${resourceIsLiked ? 'Dislike' : 'Like'}

</button>
</li>`;

}

Yet again we make use of isPhoto to dynamically decide how to get the URL for the image, and
other than that, this function is identical to renderPhoto , except that I've updated any variables
that started with photo to now start with resource .

We can now delete renderPhoto and renderVideo and update the entire of photo-renderer.ts

to be as follows:

import { isPhoto, Resource } from './pexels';
import { html } from 'lit-html';

export function renderResource(
resource: Resource,
onLikeClick: (resource: Resource) => void,
resourceIsLiked: boolean

) {
const imageURl = isPhoto(resource) ? resource.src.small : resource.image;

return html`<li class="photo">
<img src=${imageURl} />
<button class="like" @click=${() => onLikeClick(resource)}>
${resourceIsLiked ? 'Dislike' : 'Like'}

</button>
</li>`;



}

In main.ts , we can update our rendering code:

const htmlToRender = html`
<h1>Amazing Photo App</h1>

<form id="search" @submit=${onFormSubmit}>
<input type="text" name="search-query" placeholder="dogs" />
<input type="submit" value="Search" />

</form>
<ul>
${results
? results.map((resource) => {

const resourceIsLiked = isPhoto(resource)
? likedData.photos.includes(resource.id)
: likedData.videos.includes(resource.id);

return renderResource(resource, onUserLikeClick, resourceIsLiked);
})

: nothing}
</ul>

`;

And update our imports:

import { renderResource } from './photo-renderer';

This code is now much cleaner and less duplicated — a very solid refactoring! Feel free to explore
these changes on CodeSandbox. There's one more part I'd like to tidy up in how we store liked
data. Having two separate arrays for photos and videos feels a bit messy, when we know that the
IDs will be unique across all resources. To tidy this up, though, we need to look at enums.

Liked Data and Enums
TypeScript enums are a way to define a set of named constants which can make your code more
documenting. In our case, what we'd like to do now is store our liked IDs as one list of IDs - but
with a way to denote if that ID is a photo or a video ( just in case it's ever possible for a video and
photo to have the same ID — not that it should be):

const likedData = [{id: 123, type: 'photo'}, {id: 456, type: 'video'}];

But rather than use the strings 'photo' and 'video' or any similar combination, we can use an
enum (we'll define this in storage.ts , as it relates to local storage):

https://codesandbox.io/s/festive-davinci-o16ed?file=/src/index.ts
https://codesandbox.io/s/festive-davinci-o16ed?file=/src/index.ts
https://www.typescriptlang.org/docs/handbook/enums.html


enum LikedResource {
Photo,
Video

};

By defining this enum, we can then refer to LikedResource.Photo or LikedResource.Video in our
code. Under the hood, TypeScript will convert these values to integers for us. This is so that, in
our compiled code, referring to LikedResource.Photo will actually refer to 0 , and
LikedResource.Video will refer to 1 . But that's hidden for us, and allows our code to become

more documenting by using named enum members rather than any other values.

TypeScript uses numbers starting from 0 for enums by default, but we can also define the
values it will use:

enum LikedResource {
Photo = 'PHOTO',
Video = 'VIDEO'

}

Now in the compiled code, any reference to LikedResource.Photo will be replaced with the string
'PHOTO' . This is my preferred solution, because should you ever need to debug the code, it will

be clearer.

Diving into storage.ts , let's update our types to use this enum:

export enum LikedResource {
Photo = 'PHOTO',
Video = 'VIDEO',

}

interface StoredLike {
id: number;
resourceType: LikedResource;

}

type StoredLikes = StoredLike[];

Note: because we're changing the structure of how we store likes, make sure you delete any local
storage that already exists from our application, as we'll otherwise get errors in our code as the
structure we load won't be what we are expecting. In a real life application, we'd have to deal with
this in our code and support both types, but we'll ignore that for this tutorial.

Now we just update the type passed into saveLikes and loadLikes to use our StoredLikes



type, and now storage.ts should look like this:

export enum LikedResource {
Photo = 'PHOTO',
Video = 'VIDEO',

}

export interface StoredLike {
id: number;
resourceType: LikedResource;

}

export type StoredLikes = StoredLike[];

const LOCAL_STORAGE_KEY = '__PEXELS_LIKES__';

export function saveLikes(likes: StoredLikes): void {
window.localStorage.setItem(LOCAL_STORAGE_KEY, JSON.stringify(likes));

}
export function loadLikes(): StoredLikes | null {
const data = window.localStorage.getItem(LOCAL_STORAGE_KEY);
if (!data) {
return null;

}
return JSON.parse(data);

}

We now have a lot of TypeScript compiler errors in main.ts , as we need to update all the code
that works with our local storage data.

Firstly, we need to update the likedData constant to now fall back to an empty array if local
storage is empty:

function renderApp(results: readonly Resource[] | null): void {
const div = document.getElementById('app');
const likedData = loadLikes() || []
// ...

}

And then onUserLikeClick needs to change. Let's first remove the entire body of the function so
it's completely empty. Firstly, we'll fetch the correct value from the enum based on whether or
not the resource is a photo:

const enumResourceType = isPhoto(resource)
? LikedResource.Photo



: LikedResource.Video;

We can then determine if it's liked by looking through our stored data for an entry with a
matching ID and resource type:

const likedResourceEntry = likedData.find((entry) => {
return (
entry.id === resource.id && entry.resourceType === enumResourceType

);
});
const resourceIsLiked = likedResourceEntry !== undefined;

We can then check if the resource is already liked, and if so, filter our array to find all the entries
that are not the likedResourceEntry we queried for. If the resource isn't liked, we can just push it
onto the array of liked resources, before then saving our new likes and triggering a re-render:

let newLikedResources = likedData;

if (resourceIsLiked) {
newLikedResources = newLikedResources.filter(
(entry) => entry !== likedResourceEntry

);
} else {
newLikedResources.push({
id: resource.id,
resourceType: enumResourceType,

});
}

saveLikes(newLikedResources);
renderApp(results);

With that, the entire function looks like so:

function onUserLikeClick(resource: Resource): void {
const enumResourceType = isPhoto(resource)
? LikedResource.Photo
: LikedResource.Video;

const likedResourceEntry = likedData.find((entry) => {
return (
entry.id === resource.id && entry.resourceType === enumResourceType

);
});
const resourceIsLiked = likedResourceEntry !== undefined;



let newLikedResources = likedData;

if (resourceIsLiked) {
newLikedResources = newLikedResources.filter(
(entry) => entry !== likedResourceEntry

);
} else {
newLikedResources.push({
id: resource.id,
resourceType: enumResourceType,

});
}

saveLikes(newLikedResources);
renderApp(results);

}

Finally, we have to update our htmlToRender , which has to search to find if an item is liked. We
can check if the item is liked by looking through the list of liked resources and using the ID and
the right type from the LikedResource enum:

results.map((resource) => {
const resourceIsLiked = likedData.some((entry) => {
const enumResourceType = isPhoto(resource)
? LikedResource.Photo
: LikedResource.Video;

return (
entry.id === resource.id &&
entry.resourceType === enumResourceType

);
});
return renderResource(resource, onUserLikeClick, resourceIsLiked);

})

And with all those updates, we can now like and dislike photos, and see that local storage is
correctly updating.



3-10. localStorage updating with our new storage structure

I highly recommend using enums any time you need to track what the type of an object is, or
need to represent a category of items. They're a really great way to keep code tidy, but also self-
documenting, and they're one of the TypeScript features I reach for most frequently.

Feel free to play with the finished application on CodeSandbox.

Features to Add Next
If we were to keep working on this application, the next features that I'd prioritize would be a no
results page, in case the user's search comes up blank, and then pagination to enable the user to
scroll through more than the first ten results that come back. I'd then look at a way to show the
user all their liked content in one page, rather than having to search again for a previous query to
see content they had liked before.

Conclusion
I hope that this series of tutorials has helped you understand and see the benefits that writing
your code in TypeScript can bring you. From the basic type information that can make refactoring

https://codesandbox.io/s/vibrant-euler-25k4o?file=/src/index.ts


code much safer and easier, through to features like enums and type predicates that enable your
code to be more thorough and self documenting, TypeScript has a lot to offer.


	Build an App with TypeScript and the Pexels API
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About Jack Franklin
	About SitePoint
	Table of Contents
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!


	Supplementary Materials

	A Step-by-Step TypeScript Tutorial for Beginners
	Jack Franklin
	Some Erroneous JavaScript Code
	Running TypeScript from the Editor
	Installing and Running TypeScript Locally
	Fixing the Errors in Our JavaScript Code
	Property qerySelector does not exist on type Document
	Property src does not exist on type HTMLElement

	How to Configure TypeScript
	Working in strict mode
	Union Types
	Implicit any

	Describe the Function Signature with JSDoc
	Declaring Data Types Using an Interface
	Test if everything is working

	Conclusion

	Build an Application with TypeScript from Scratch
	Jack Franklin
	Pexels API Key
	Setting up Vite as the Build Tool
	Installing Dependencies
	Configuring TypeScript with Vite
	Building the Project with Vite
	Making API Requests with TypeScript
	Inferring types

	Interfaces in TypeScript
	Declaring Function Return Types
	Generic Types
	Using Third-party Libraries with TypeScript
	Using lit-html to Render Image Results
	Linting with ESLint-TypeScript.
	Conclusion

	Adding More Functionality
	Jack Franklin
	Refactoring the App to Create a render Method
	Rendering a Search Form
	Searching for Photos
	Using FormData to Read Form Values
	Using the formData Object
	Writing an API for Local Storage
	Favoriting Photos
	Creating pexels.ts to Contain Our API Code
	Liking a Photo
	Defining the Types of Callback Functions
	Improving Our Code with readonly
	Adding Video Results
	Rendering Videos
	Type Predicates
	Rendering Videos
	Liking Videos
	Defining a Resource Type
	Defining renderResource
	Liked Data and Enums
	Features to Add Next
	Conclusion


