

Build a Rock Paper Scissors Game from Scratch with React
Copyright © 2021 SitePoint Pty. Ltd.

Author: Madars Biss
Cover Design: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information
herein. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held
liable for any damages to be caused either directly or indirectly by the instructions contained in
this book, or by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the
names only in an editorial fashion and to the benefit of the trademark owner with no intention of
infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066

Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit sitepoint.com to access our blogs, books, newsletters, articles, and
community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile
development, design, and more.

https://www.sitepoint.com/

Build a Rock Paper Scissors Game
from Scratch with React
In this tutorial, we’ll build a Rock Paper Scissors game that allows users to play against the
computer. We’ll use React to build the app. React is a feature-rich JavaScript library for building
interactive user interfaces for websites, web applications and games.

We’ll learn how to create the wireframe, style it, set up the project, keep track of states, create
the components, and implement the game logic.

For reference, you can check the source code and the deployed demo.

Planning the Features
Traditionally, Rock Paper Scissors is a hand game where each player simultaneously chooses one
of three possible shapes for their hand: rock, paper or scissors. Rock beats scissors, paper beats
rock, and scissors beats paper. Of course, in our game we’ll be playing against the computer, so
we’ll use icons instead of our hand.

The user will be able to choose between three options by clicking on them. To improve the UX,
we’ll use the icons that represent each choice.

https://reactjs.org/
https://github.com/madzadev/rock-paper-scissors
https://rockpaperscissors-madza.netlify.app/

The opponent to beat will be the computer, whose choice will be calculated randomly. We’ll
create a function for that in the later phases of the tutorial.

The choices of each individual round will be compared. The first player to reach a specific
number of wins (ten by default) will be victorious in the whole game, and the user will have an
option to start another game.

Creating the Wireframe
To better understand the layout we’ll need to create, we’ll first make a wireframe with all the
necessary components. Our main focus will be on the position of the elements in the game
wrapper.

We’ll use the top section of the game to display the game name and show the number of rounds
that have been played.

The main play area will be divided into two main blocks. The first one will be for the user, and the
second one for the computer. In these blocks, we’ll include information such as the player name,
choice options, and score.

Between the two main blocks, we’ll include the message component, which will display the result
of each round and display the end result of the game.

Under the main play area, we’ll dedicate a space for the reset button, so users will be able to reset
and start fresh at any point of the game.

If we put everything on the wireframe, we get the schema pictured below.

Styling the Game
We’ll use a dark blue gradient as a background. We’ll also set the dark blue fallback background
value for the browsers that don’t support the CSS properties for gradients.

Both player cards will have a white background so they’re highlighted on the dark blue
background. Inside the player cards, the information like player name and selection message will
have black text, which will give a great contrast to the white background of the card.

The score and the round count will be highlighted, since that’s the most important information of
the game’s progress. Both will be displayed on a dark blue background directly. The use of white
text will make sure they’re easy to read.

Other information like the game name and round messages will be secondary, so they’ll use the
black font color that will be displayed on the dark blue.

Our color palette is shown below.

Setting up the Project
In order to set up the boilerplate for the project, we’ll use Create React App, which will initialize a
fully configured React project in a minute or less.

To do that, open your terminal and run npx create-react-app rock-paper-scissors .

After the setup is complete, switch to the newly created folder by running cd rock-paper-

scissors and then run npm start , which will start the development server.

This should open your browser automatically, and you should be presented with the default
React app. If not, enter http://localhost:3000/ manually in the browser’s URL bar and execute
it.

We’ll need to do some cleaning. Open the src folder and remove everything except the files
index.js and App.js . Make sure to remove the content from these files, as we’ll write

everything from scratch. Also create a new file styles.css in the same directory.

Getting the Icons
To improve the UX, we’ll use icons for user choices and the result of the game.

You can pick whatever icons you want from sites like FlatIcon or Icons8, but for simplicity here,
I’ve already collected all the necessary icons for you to use.

You can download them from here.

Unzip the downloaded file and extract the assets folder into the src folder.

Con%guring the Settings
First, we’ll define the initial values for the settings of the game.

Open the src folder and create a new folder called configs inside it. Then create a new file
called game.js inside it and add the following code:

export const settings = {
gameName: "Rock, paper, scissors!",
userName: "Player 1",
pcName: "Computer",
winMessage: "You won!",
tieMessage: "It's a tie!",
lostMessage: "You lost!",
waitingMessage: "Waiting for your selection!",
winTarget: 10,

};

We’ve created the settings object with all the settings, so all of them are in one place and you
have easy access and full control to change them later if you want.

Creating the Base
Next, we need to implement some core functionality to build our game upon.

We’ll configure the render file, so the app we’ll be developing gets rendered properly into the
DOM. Open the index.js file in the src folder and include the following code:

https://www.flaticon.com/
https://icons8.com/
https://downgit.github.io/#/home?url=https://github.com/madzadev/rock-paper-scissors/tree/master/src/assets

import ReactDOM from "react-dom";

import App from "./App";

const rootElement = document.getElementById("root");
ReactDOM.render(<App />, rootElement);

Also, we’ll create a base template for the App.js file, which will hold the main logic of our app.
Open it and add the following code:

import { settings } from "./configs/game";

import rock from "./assets/rock.png";
import paper from "./assets/paper.png";
import scissors from "./assets/scissors.png";
import trophy from "./assets/trophy.png";

import "./styles.css";

export default function App() {
return (
<div className="App">
<p>Rock Paper Scissors Game</p>

</div>
);

}

We’ve imported the settings and the assets that we set up in the previous steps. We can now use
syntax like settings.gameName or to access the settings values
and images, respectively.

Then we’ve set up an App function that will be the main wrapper of our app. For now, we’ve also
included a basic placeholder, which we’ll remove later.

Finally, let’s add some global styling rules that we’ll use throughout the whole game. For that,
open the styles.css file and include the following style rules:

@import url("https://fonts.googleapis.com/css2?family=Montserrat:ital@1&display=swap");

* {
margin: 0;
padding: 0;
box-sizing: border-box;

}

body {
width: 100vw;
min-height: 100vh;
display: grid;
place-items: center;
background-color: #2a2a72;
background-image: linear-gradient(315deg, #2a2a72 0%, #009ffd 74%);
font-family: "Montserrat", sans-serif;

}

.App {
width: 1000px;
min-height: 600px;
padding: 20px;
text-align: center;

}

img {
width: 80px;
margin: 10px 0;

}

We’ve first imported the Montserrat font from Google Fonts, and applied it in the body so it’s
used in all the child elements.

Then we’ve set up some reset rules for the styling, like removing default margin and padding, so
we don’t have layout inconsistencies across browsers. It’s recommended to do that for every app
you ever create.

We’ve set body to always stretch across the entire viewport, used grid layout, and centered the
main container (which will be the App wrapper we created earlier). We’ve also set the
background to be a dark blue gradient.

We’ve set the App wrapper to be a specific width and minimal height for responsive screens.
We’ve also added inside padding and centered all the text inside it.

Finally, we’ve set all the icons used in our app to use specific width and added a small margin on
the top and bottom.

Setting the States
The game will include the user interaction and progress, so there will be multiple state variables
to keep track of. We’ll use the React useState hook, which is a standard way of handing states in
React applications.

https://fonts.google.com/specimen/Montserrat
https://fonts.google.com/

Open the App.js file and add the following code:

import React, { useState } from "react";

// other imports from the previous step

export default function App() {
let [game, setGame] = useState({
userSelection: "",
pcSelection: "",
round: 0,
userScore: 0,
pcScore: 0,
message: "",

});

return (
<div className="App">
<p>Rock Paper Scissors Game</p>

</div>
);

}

First, we’ve imported useState at the very top of the file.

After that, we’ve created a single state object game with all the states, so we can easily update
and access any of them later.

Let’s now look at what each state is for:

userSelection will be updated every time user clicks on the selection (rock, paper, or
scissors) by setting the name of the respective choice as a string.

pcSelection will be updated every time the computer has randomly calculated the selection
(rock, paper, or scissors) by setting the name of the choice as a string.

round will be incremented by 1 every time both choices have been compared and the winner/
tie of the round has been calculated.

userScore will be incremented by 1 each time the user’s choice in the individual rounds has
been superior to the computer’s choice.

pcScore will be incremented by 1 each time the computer’s choice in the individual rounds
has been superior to the user’s choice.

message will hold the information that is being displayed on the screen about the status of
each individual round (the user won, the user lost, or it was a tie).

Creating the Components
In this phase, we’ll create the individual blocks that we designed earlier in the wireframe.

To keep everything neat and organized, create a new components folder in the src folder and
create separate JS and CSS files for each component we designed in the wireframing
phase—except Profile , as it will be a pure wrapper component.

You can do that manually, or you can use this time-saving terminal command:

mkdir components && cd components && touch Choice.js Choice.css Computer.js Computer.css Message.js Message.css Playground.js Playground.css Profile.js Reset.js Reset.css Round.js Round.css Score.js Score.css Title.js Title.css User.js User.css

Next, we’ll include the code for each component and set the necessary style rules so the
components look great. We’ll set the props for each component once imported in App.js .

Open Choice.js and include the following code:

import "./Choice.css";

export const Choice = ({ value, choiceIcon, onClick }) => {
return (
<div value={value} onClick={onClick}>

</div>
);

};

The Choice component will include the img that represents the choice as an icon, its value as
a string, and have an onClick prop that will trigger the function when any of the icons are
pressed (user has made a selection).

Then open the Choice.css file and include the following style rules:

.choice-icon {
border-radius: 50%;
transition: transform 0.1s;

}

.choice-icon:hover {

cursor: pointer;
background-color: rgb(224, 224, 224);
transform: scale(1.1);

}

This will make sure that there’s a rounded border around the icon. Also on hover, the icon will
have a grey background, the icon will zoom in a little, and the cursor will change to the pointer.

Open Computer.js and include the following code:

import { settings } from "../configs/game";
import "./Computer.css";

export const Computer = ({
pcScore,
userSelection,
pcSelection,
rockIcon,
paperIcon,
scissorsIcon,
trophyIcon,

}) => {
return (
<div className="computer-card">
<h1>Computer</h1>
{pcScore < settings.winTarget ? (
userSelection === "" ? (
<h3 className="waiting-message">{settings.waitingMessage}</h3>

) : (
<>
<img
src={
pcSelection === "Rock"
? rockIcon
: pcSelection === "Paper"
? paperIcon
: scissorsIcon

}
alt="icon"

/>
<h3>PC selected: {pcSelection}</h3>

</>
)

) : (
<>

<h3>Victory!</h3>

</>
)}

</div>
);

};

We’ve first imported the settings object we created earlier, so we can access its values.

The component logic is based on the two conditions. If the user hasn’t made a choice, the waiting
message will be displayed; otherwise the calculated computer choice will be presented as an
icon. If the computer has reached the winning threshold, the victory icon will be displayed.

Now open the Computer.css file and include the following style rules:

.computer-card {
height: 220px;
padding: 25px 0;
background-color: white;
margin-bottom: 20px;
border-radius: 20px;

}

.waiting-message {
margin-top: 20px;

}

For the computer-card, we’ve made sure that it has a specific height, added padding to the top
and bottom, set the white background, added some margin to the bottom, and set a rounded
border, so it fits well for the overall styling of the game.

For the waiting message, we’ve added some margin to the top so that it’s separated from the
player name (computer) at the top of the card.

Open Message.js and include the following code:

import "./Message.css";

export const Message = ({ userSelection, message }) => {
return (
<div className="message-box">
<h2>{userSelection === "" ? "VS" : message}</h2>

</div>
);

};

The Message component will display the “VS” message on the initial launch of the game, to
indicate that the game has not been started yet.

Once the game has been started, it will show the results of each individual round and the final
status of the game once one of the players has reached the winning threshold.

Then open the Message.css file and include the following style rules:

.message-box {
display: grid;
place-items: center;
padding: 20px;
height: 220px;

}

For the message box, we’ve set a grid layout, centering the message in it both horizontally and
vertically. We’ve also added some padding to it and set a specific height.

Open Playground.js and include the following code:

import "./Playground.css";

export const Playground = ({ children }) => {
return <div className="play-ground">{children}</div>;

};

The Playground component will be the wrapper component, which will hold both Profile

components for the user and computer and the Message component between them.

Now open the Playground.css file and include the following style rules:

.play-ground {
display: grid;
grid-template-columns: 2fr 1fr 2fr;
margin-bottom: 30px;

}

For the Playground , we’ve used grid and set a three-column layout, where the first and third
columns (user and computer) are twice as wide as the middle column (message). We’ve also
added some margin to the bottom so there’s a space between the reset area directly below it.

Open Profile.js and include the following code:

export const Profile = ({ children }) => {
return <div>{children}</div>;

};

The Profile will be the wrapper component, which will include the User and Computer

components and a separate Score component for both of them.

Open Reset.js and include the following code:

import { settings } from "../configs/game";
import "./Reset.css";

export const Reset = ({ onClick, userSelection, userScore, pcScore }) => {
return (
userSelection !== "" && (
<div onClick={onClick} className="reset-btn">
<h3>
{userScore === settings.winTarget || pcScore === settings.winTarget
? "Play again"
: "Reset"}

</h3>
</div>

)
);

};

The Reset component will make sure the user can restart the game. It will be displayed only in
two states: when the game is in progress, or when the game is finished. If the game is finished,
the text of the button will change from Reset to Play Again.

Now open the Reset.css file and include the following style rules:

.reset-btn {
display: grid;
place-items: center;
width: 200px;
height: 40px;
margin: 0px auto 20px auto;
background-color: white;
border-radius: 20px;
transition: transform 0.1s;

}

.reset-btn:hover {
cursor: pointer;

transform: scale(1.1);
}

To add some styling to the Reset , we’ve set it to use the grid layout, centered the included text,
set the specific width and height, and added a margin to the bottom. To improve the UX, the
button will zoom in on hover as well as change the cursor to a pointer.

Open Round.js and include the following code:

import "./Round.css";

export const Round = ({ userSelection, round }) => {
return (
<h1 className="round">
{userSelection === "" ? "No rounds yet!" : `Round: ${round}`}

</h1>
);

};

The Round component will display the “No rounds yet” message if the game hasn’t been started
or the round count if the game is in progress or finished.

Now open the Round.css file and include the following style rules:

.round {
color: white;
margin-bottom: 50px;

}

We’ve set the round text color to be white and added some border to the bottom so there’s some
space between it and the Playground component directly below it.

Open Score.js and include the following code:

import "./Score.css";

export const Score = ({ score }) => {
return <h1 className="score">{score}</h1>;

};

The Score component will show the number of wins for the user and the computer during the
active game in the progress.

Now open the Score.css file and include the following style rules:

.score {
color: white;

}

We’ve set the text color of the score to be white.

Open Title.js and include the following code:

import { settings } from "../configs/game";
import "./Title.css";

export const Title = () => {
return <h1 className="title">{settings.gameName}</h1>;

};

The Title component will display the name of the game, which we’ve imported from the
settings object from the game.js file in the configs folder.

Now open the Title.css file and include the following style rules:

.title {
margin-bottom: 20px;

}

We’ve added some margin to the bottom so that there’s some space between the Title and the
Round component below it.

Open User.js and include the following code:

import { settings } from "../configs/game";
import "./User.css";

export const User = ({ userScore, userSelection, trophyIcon, children }) => {
return (
<div className="user-card">
<h1>{settings.userName}</h1>
{userScore < settings.winTarget ? (
<>
<div className="choice-grid">{children}</div>
<h3>
{userSelection === ""

? "Pick one!"
: `Your choice: ${userSelection}`}

</h3>
</>

) : (
<>

<h3>Victory!</h3>

</>
)}

</div>
);

};

We’ve first imported the settings object, so we can access its values.

The User component logic is based on two conditions. If the user hasn’t made a selection, the
“Pick one!” message will be displayed, asking for the user to make a choice. If the game is active
and the user has made a selection, the selected choice will be displayed as an icon.

Finally, if the user has reached the winning threshold, the victory trophy will be displayed.

Now open the User.css file and include the following style rules:

.user-card {
height: 220px;
padding: 25px 0;
background-color: white;
margin-bottom: 20px;
border-radius: 20px;

}

.choice-grid {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
place-items: center;

}

We’ve first set the specific height for the card and added some padding to the top and the
bottom. We’ve also set the background to white, and added a border radius and a margin to the
bottom.

For the choice icon wrapper, we’ve set the grid layout and three-column layout so each of the
choices is displayed side by side. Finally, we’ve centered the included icons.

Implementing the Structure
To create the structure of the game, we’ll first need to import all the components we created in
the previous phase of this tutorial and lay them down in the same order as we designed in the
wireframe.

Open the App.js file and add the following code:

import React, { useState } from "react";

import { Title } from "./components/Title";
import { Round } from "./components/Round";
import { Playground } from "./components/Playground";
import { Profile } from "./components/Profile";
import { User } from "./components/User";
import { Choice } from "./components/Choice";
import { Computer } from "./components/Computer";
import { Score } from "./components/Score";
import { Message } from "./components/Message";
import { Reset } from "./components/Reset";

//import settings, assets, styles...

export default function App() {
//state object

return (
<div className="App">
<Title />
<Round {...game} />
<Playground>
<Profile>
<User {...game} trophyIcon={trophy}>
<Choice {...game} value="Rock" onClick={play} choiceIcon={rock} />
<Choice {...game} value="Paper" onClick={play} choiceIcon={paper} />
<Choice
{...game}
value="Scissors"
onClick={play}
choiceIcon={scissors}

/>
</User>
<Score score={userScore} />

</Profile>
<Message {...game} />
<Profile>
<Computer

{...game}
rockIcon={rock}
paperIcon={paper}
scissorsIcon={scissors}
trophyIcon={trophy}

/>
<Score score={pcScore} />

</Profile>
</Playground>
<Reset {...game} onClick={reset} />

</div>
);

}

We’ve imported all the components at the top and provided all the necessary props we included
in the individual components.

Where possible, we’ve used the object spread syntax ({...game}). This means that, if the
individual component has some props of the same name as in the game object, they’ll be picked
from the game the same way as we would use componentpropname={game.componentpropname} .
It’s especially handy if there are multiple props with the same name.

As you will have noticed, for now, we’ve also used the non-existent function names (play and
reset) for the onClick props. We’ll create them in the next phase of the tutorial.

Adding the Functionality
To add the functionality for our game, we need to detect the results of the rounds and update the
game object accordingly for each case. We’ll create separate functions that get executed when

the user makes a choice selection or clicks on a reset button.

Add the following code to the App.js :

import React, { useState } from "react";

//import components, settings, assets, styles

export default function App() {
//state object

const reset = () => {
setGame({
...game,
userSelection: "",

pcSelection: "",
round: 0,
userScore: 0,
pcScore: 0,
message: "",

});
};

const { winMessage, tieMessage, lostMessage, winTarget } = settings;
const { pcScore, userScore } = game;

const play = (e) => {
if (pcScore < winTarget) {
const userSelection = e.target.parentNode.getAttribute("value");
const pcSelection = ["Rock", "Paper", "Scissors"][
Math.floor(Math.random() * 3)

];

userSelection === pcSelection
? setGame({

...(game.message = tieMessage),
})

: (userSelection === "Rock" && pcSelection === "Scissors") ||
(userSelection === "Paper" && pcSelection === "Rock") ||
(userSelection === "Scissors" && pcSelection === "Paper")

? setGame({
...(game.userScore += 1),
...(game.message = winMessage),

})
: setGame({

...(game.pcScore += 1),

...(game.message = lostMessage),
});

setGame({
...game,
round: (game.round += 1),
userSelection,
pcSelection,

});
}

};

return <div className="App">//components...</div>;
}

We’ve first created the reset function, which sets all the state variables of the game object to
their default values as they were on the initial launch.

Next, we’ve used some object destructuring to get the necessary values from the settings and
game objects. For example, in the object const person = {name: "John"} , you can access the
name using const {name} = person .

Finally, we’ve created the play function, which is executed where the user has selected their
choice and but the computer hasn’t reached the winning threshold.

The userSelection is defined from the value of the Choice component. The computer
selection is being calculated using JavaScript’s built-in Math.random() function. First, a random
value from 0 to less than 3 is being generated, then floored to the largest integer less than or
equal to a given number (for example, 2.66 to 2) and then it gets used as the position index to
pick a selection from the given array of the possible choices.

Next, we compare both selections and create a logic based on that.

If the user and computer select the same choice, the individual round is tied and the message is
changed to display the appropriate text in the Message component.

If the user is victorious, the userScore is incremented and the message is set to display that to
the user.

If the user loses the round (the opposite combinations mentioned earlier), the pcScore is
incremented and the message is set to inform the user about that.

Finally, there are some game state updates that get executed every time the user makes a
choice (whatever the result of the round). Each time the play function is run, the round number
is incremented and userSelection and pcSelection are set to their respective values, based on
both choices in the individual round.

Adding Responsiveness
At this stage, our game looks great and is fully functional, but it lacks responsiveness.

We’ll add a couple of media queries to the elements so they adapt to the screens that they’re
viewed on. Keep in mind that the media rules are normally added at the bottom of each file.

First, open the global styles.css file and add the following media rule:

@media only screen and (max-width: 1000px) {

.App {
max-width: 100vw;

}
}

This will make sure the App wrapper uses all the available viewport width for screens up to the
1000px width.

Next, switch to the components folder, open the Playground.css file, and add the following
media rule:

@media only screen and (max-width: 700px) {
.play-area {
grid-template-columns: 1fr;

}
}

This will make sure the Playground component will use the one-column layout for the screens
up to 700px , meaning that all the included children components, both Profile components for
user and computer, and the Message component will be shown directly below other.

Finally, open the Message.css file and add the following media rule:

@media only screen and (max-width: 700px) {
.message-box {
height: auto;

}
}

This will make sure the height of the Message component will auto-adjust the content for the
screens up to 700px .

That’s all there is to it! If you’ve followed along, your game should now look great on various
screen sizes. The last thing left to do is to test it.

Make sure the development server is still running (if not, run npm start in your terminal), open
the browser, enter http://localhost:3000/ in the address bar and launch the developer console
by pressing the F12 key on your keyboard.

Now drag the sidebar to see how the game adjusts the different widths of the screen.

Conclusion
Congratulations! You’ve now created a fully functional and responsive game! Feel free to play on
the desktop or while you’re on the go! Share it with your friends and family!

During the building process, we learned the building principles of the game, like how to import
the graphics, separate the configuration settings from the main codebase, update the states, and

use conditional rendering accordingly.

There are various ways you could improve the game by adding your own custom features to it.
For example, you could create a dialog window where the user can enter the username and
configure the settings of the game before playing.

Also, if you don’t want to play against the computer, you could make use of WebSockets or
socket.io to allow multiple people to connect and play against real people online.

I hope you’ve learned some practical knowledge that you’ll be able to use in your future projects!
Thanks for reading, and make sure to give a star on the GitHub repo if you found this useful.

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://socket.io/
https://github.com/madzadev/rock-paper-scissors

	Build a Rock Paper Scissors Game from Scratch with React
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	Build a Rock Paper Scissors Game from Scratch with React
	
	Planning the Features
	Creating the Wireframe
	Styling the Game
	Setting up the Project
	Getting the Icons
	Configuring the Settings
	Creating the Base
	Setting the States
	Creating the Components
	Implementing the Structure
	Adding the Functionality
	Adding Responsiveness
	Conclusion

