

Build a Weather App from Scratch with Next.js
Copyright © 2021 SitePoint Pty. Ltd.

Author: Madars Biss
Cover Design: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information
herein. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held
liable for any damages to be caused either directly or indirectly by the instructions contained in
this book, or by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the
names only in an editorial fashion and to the benefit of the trademark owner with no intention of
infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066

Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit sitepoint.com to access our blogs, books, newsletters, articles, and
community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile
development, design, and more.

https://www.sitepoint.com/

Build a Weather App from Scratch
with Next.js
In this tutorial, we’ll be building a weather app. Users will be able to check the weather across the
world, and the data will be presented in a user-friendly UI.

You’ll learn how to create a wireframe, design an app, create components, work with states, use
service functions, add responsiveness and deploy the app.

We’ll use NextJS and OpenWeatherMap API as our stack. NextJS is a React framework created
by Vercel to build scalable static and dynamic websites and web applications. OpenWeatherMap
is an online data platform that provides historical, current and forecasted weather data via
efficient APIs.

Here’s the source code of the final project and the deployed demo. Make sure to use both of
these as helpful references while building the app.

Planning the Features
The most basic weather apps usually provide just the general information like location and
temperature, while others are more complex—including weather forecasts, detailed data graphs,
and options to filter the information.

We’ll make a blend between the two scopes by providing the current weather conditions for any
city in the world and also allowing user interaction to change the location and display the data in
their preferred unit system.

The full list of features we’ll implement include:

the ability to search cities
current local time and date
temperatures in both metric and imperial units
humidity, wind speed and direction
sunrise and sunset times
error handling and loading info

https://nextjs.org/
https://openweathermap.org/api
https://reactjs.org/
https://vercel.com/
https://github.com/madzadev/weather-app
https://weather-app-madza.netlify.app/

Wireframing the App
First, let’s create a wirefame, to help us plan out our user interface so that we can accommodate
our desired features.

On the top level, we’ll use a two-column layout.

Since the main weather conditions need to be highlighted, we’ll create a separate MainCard

component and dedicate a whole left column to it. It will hold information about the location,
weather status, description, and temperatures.

The right column will be the ContentBox component, which will include three direct children
components— Header , MetricsBox and UnitSwitch .

The Header component will further hold two children components— DateAndTime and
Search —while MetricsBox will hold all the MetricsCard components for measurements like

humidity, wind, visibility, as well as sunrise and sunset times.

If we put everything in the wireframe, we’ll see that the main app will consist of eight
components and the layout will be structured as shown below.

We’ll also use a loading screen, which will be displayed while the data is being loaded and an error
screen, which will be shown if the search query returns no results.

Both will be wrapper components with the error screen including the Search component below
the error message. Based on their simplicity, we’ll not design separate wireframes for them.

Designing the App
The next step is for us to define a color scheme for our app.

We’ll use neutral tones for the backgrounds of the panels. For the body background, we’ll pick a
slightly darker tone just to highlight the app itself.

Inside the app, we need to distinguish the MainCard section from the ContentBox , so we’ll use
different shades for both of those. We’ll set a light grey background and a light blue background
for both elements, respectively.

A couple of other things we need to highlight would be the Search and the MetricsCard

components. Since both of those will be on the light blue background inside ContentBox , we’ll
set a white background for both of them.

Finally, we need to style the UnitSwitch component. It will include a switch mechanism between
metric and imperial units, so we need to set the colors for active and inactive options. We’ll use a
green shade for active, and black for inactive.

If we assign the color tones to their respective elements, we come up with a color palette that
looks like the one shown below.

Also, I purposely chose a black tone for the text to give maximum contrast to the background.
This way, the app will be easy for the eyes and the information will be easy to read, which is one
of the cornerstones for a great UI/UX.

Setting Up the Project
To get started with a boilerplate, we’ll use Create Next App, which is an officially supported CLI
tool that lets you create a new NextJS project within a minute or less.

https://nextjs.org/docs/api-reference/create-next-app

Open your terminal and run the following command:

npx create-next-app weather-app

Next, switch to the newly created weather-app folder with cd weather-app .

Now check if you have Node and npm installed. Run node -v to see the version of Node and
npm -v to see the version of npm. Both are available for download here.

Finally, to start the development server, run npm run dev .

This will start a development server on the port 3000 . After the dev server has successfully
started, the terminal will display the message “Started server on http://localhost:3000”.

Hold the Ctrl key and click on the link to open it right from the terminal, or open your web

browser and enter the URL http://localhost:3000 manually.

You should be presented with NextJS default placeholder.

Switch back to the project and see the files folder tree. Navigate to the pages directory and find
the index.js file inside it. Remove all of its content for now.

Do the same for the globals.css and Home.module.css files. Both you will find in the styles

https://nodejs.org/en/
https://docs.npmjs.com/about-npm
https://nodejs.org/en/download/

folder in the project’s root.

Con*guring OpenWeatherMap API
The core of our app will depend on the data. We’ll use the OpenWeatherMap service to fetch the
data from their database via their API.

To set it up, visit OpenWeatherMap.org.

Create a new account (if you don’t already have one) and sign in.

Navigate to My API keys. The default API key should be already generated for you. Copy the
key value, as you’ll need it later.

Then switch back to the NextJS app we’re building.

Create a new .local.env file in the project’s root and set the copied value to the
OPENWEATHER_API_KEY key, as shown below:

OPENWEATHER_API_KEY=yourapikey

Now you can access the value across the app using process.env.OPENWEATHER_API_KEY .

Downloading Icons
We’ll use graphics to display the weather conditions.

I’ve compiled a pack of all the necessary icons. You can download them all at once from here
(direct link via DownGit).

Once the download is finished, unzip the file and copy the icons folder from it. Then switch back
to your weather-app project and paste it into the public folder.

You can later replace the items with your own or from sites like Icon8 or FlatIcon. Just make sure
the icons you replace correspond with the weather conditions displayed in the initial ones.

Creating the Base
To start building the actual app, we first need to create the base to build upon. We’ll create it by
adding some starter code to globals.css , index.js , and Home.module.css .

https://openweathermap.org/
https://downgit.github.io/#/home?url=https://github.com/madzadev/weather-app/tree/main/public/icons
https://icons8.com/
https://www.flaticon.com/

Let’s start with the globals.css file, which defines the styling in the global scope and is
accessible throughout the whole app. You’ll find it in the styles folder. Open the file and include
the following styles:

@import url("https://fonts.googleapis.com/css2?family=Varela+Round&display=swap");

* {
padding: 0;
margin: 0;
box-sizing: border-box;

}

body {
display: flex;
justify-content: center;
align-items: center;
width: 100vw;
min-height: 100vh;
background-image: radial-gradient(
circle 993px at 0.5% 50.5%,
rgba(137, 171, 245, 0.37) 0%,
rgba(245, 247, 252, 1) 100.2%

);
font-family: "Varela Round", sans-serif;

}

We’ve imported the Varela Round font and set it up in the body , meaning it will be used in all
elements. Then we’ve created some reset rules for padding, margin and box-sizing, so we
shouldn’t have to deal with browser defaults. It’s a good idea to do this for every app you make.

Then we’ve set up the flex layout and configured it to center the children element in the
viewport, which will be the main wrapper for our app. We’ve also set a background gradient
based on the tones we designed and set it to full width and height of the viewport, meaning it will
always fill the entire screen.

Next, we’ll create a base for index.js , which will contain the whole logic of the app.

Navigate back to the pages folder, open index.js , and include the following code:

import styles from "../styles/Home.module.css";

const App = () => {
return (
<div className={styles.wrapper}>

https://fonts.google.com/specimen/Varela+Round

<p>Weather App wrapper</p>
</div>

);
};

export default App;

We’ve created a very simple function that returns the main wrapper of the whole app and some
simple placeholder in it, which we’ll remove later.

We’ve also imported Home.module.css , which we’ll use to style index.js .

Let’s add some styling rules for the imported file. Navigate back to the styles folder, open the
Home.module.css file, and include the following styles:

.wrapper {
display: grid;
grid-template-columns: 1fr 2fr;
max-width: 1200px;
background: rgba(255, 255, 255, 0.95);
box-shadow: 0 8px 32px 0 rgba(83, 89, 179, 0.37);
backdrop-filter: blur(3px);
-webkit-backdrop-filter: blur(3px);
border-radius: 30px;
overflow: hidden;

}

We’ve set the wrapper to use a grid layout with two columns with a 1:2 ratio. We’ve then defined
the wrapper to not exceed specific width. Finally, we’ve set a background color, added box-
shadow properties, rounded the corners, and made sure that the corners of the included children
elements won’t be displayed outside the parent.

Now check your terminal and see if your app is still running. If it’s not, run npm run dev . Then
open up your web browser and you should see the current render of the project.

It doesn’t seem like much at this point, but we’ve created solid foundations for the further
development of the project.

Identifying the States
Our app will receive data based on user interactions. That means the data will be updated
dynamically. To render updates properly on the screen, they need to be stored in state variables.

We’ll need to keep track of the input that users have entered, execute the fetch call when the
user presses Enter, and store the selected unit system as well as the received data from

OpenWeatherMap.

We’ll use built-in React useState hook to handle the states, which is a standard way of doing this
in any React ecosystem. You can learn more about Hooks here.

Add the following code to index.js :

import { useState } from "react";
import styles from "../styles/Home.module.css";

const App = () => {
const [cityInput, setCityInput] = useState("Riga");
const [triggerFetch, setTriggerFetch] = useState(true);
const [weatherData, setWeatherData] = useState();
const [unitSystem, setUnitSystem] = useState("metric");

return (
//...

)
}

export default App;

First, we’ve imported the React useState hook at the very top of the file. Then we’ve created
four useState functions to hold the state variables for cityInput , triggerFetch , weatherData ,
and unitSystem .

Notice that we’ve also set the default values for cityInput , triggerFetch , and unitSystem . You
can change the default cityInput value (Riga in this case) to any other city you want to be
presented first each time on the initial launch of the app. The same goes for unitSystem : the
default is metric , but you can change it to imperial if you prefer imperial units on the initial
launch.

Fetching the Data
Now for the exciting part. We’ll create a fetch call for the data.

https://reactjs.org/docs/hooks-state.html
https://www.sitepoint.com/react-hooks/

We’ll use React useEffect hook to control when the request needs to be sent and the JS Fetch
API to send the actual request for the data.

Add the following code to index.js :

import { useState, useEffect } from "react";
import styles from "../styles/Home.module.css";

const App = () => {

//...

useEffect(() => {
const getData = async () => {

const res = await fetch("api/data", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ cityInput }),

});
const data = await res.json();
setWeatherData({ ...data });
setCityInput("");

};
getData();
}, [triggerFetch]);

console.log(weatherData);

return (
//...
)

}

export default App;

First, we’ve imported the React useEffect hook, which will let us control when we want to make
a request for the data. Then we’ve set it up inside the App component.

We’ve also passed in the triggerFetch variable in the brackets, meaning the useEffect will run
each time the triggerFetch state updates. We’ll create a function that updates triggerFetch

each time the Enter key is pressed once we import the components inside index.js .

Inside useEffect we’ve created a fetch call to the api/data route that will process our
request when received. We’ve then set the request method as post , added a content type as
json , and included our search query in the body —which, at this point, is the default value for

the cityInput state variable.

Next, we need to create an actual API endpoint (api/data) where the call from the front end
goes to.

Navigate to the api folder (inside the pages directory) and create a new file called data.js . If
there are other files created by Create Next App, feel free to remove them.

Include the following code in api/data.js :

export default async function handler(req, res) {
const { cityInput } = req.body;
const getWeatherData = await fetch(
`https://api.openweathermap.org/data/2.5/weather?q=${cityInput}&units=metric&appid=${process.env
➥.OPENWEATHER_API_KEY}`

);

const data = await getWeatherData.json();
res.status(200).json(data);

}

We’re receiving a request from index.js and then making a fetch call to OpenWeatherMap.
Notice that we’ve included the received search query in the fetch URL and set the
OPENWEATHER_API_KEY from .env.local we configured earlier.

Once the data has been received, the response back to the front end is being made with included
data in JSON format, which is then set in the previously created weatherData state variable.

If you check the previous code block, you’ll also notice that I included a
console.log(weatherData) for testing purposes. Now let’s test if the fetching of the data works

as expected.

Switch back to the browser and open the developer console. You can do that by pressing F12 on

the keyboard or manually from the browser settings. Refresh the app by pressing F5.

If you’ve followed along and done everything correctly, you should receive the response in the
developer console, as pictured below.

Creating Data Converters
Since we’ll be working with two different unit systems (metric and imperial), we’ll need to create
several converter functions before we can show the received data into our app.

Create a new folder in the project’s root and name it services , then create a new file
converters.js inside it and include the following code:

export const ctoF = (c) => (c * 9) / 5 + 32;

export const mpsToMph = (mps) => (mps * 2.236936).toFixed(2);

export const kmToMiles = (km) => (km / 1.609).toFixed(1);

export const timeTo12HourFormat = (time) => {
let [hours, minutes] = time.split(":");
return `${(hours %= 12) ? hours : 12}:${minutes}`;

};

export const degToCompass = (num) => {
var val = Math.round(num / 22.5);
var arr = [
"N",
"NNE",
"NE",
"ENE",
"E",
"ESE",
"SE",
"SSE",
"S",
"SSW",
"SW",
"WSW",
"W",
"WNW",

"NW",
"NNW",

];
return arr[val % 16];

};

export const unixToLocalTime = (unixSeconds, timezone) => {
let time = new Date((unixSeconds + timezone) * 1000)
.toISOString()
.match(/(\d{2}:\d{2})/)[0];

return time.startsWith("0") ? time.substring(1) : time;
};

cToF takes in temperature value in Celsius and returns the value in Fahrenheit .

mpsToMph takes in the wind speed value in meters per second and returns the value in miles

per hour .

kmToMiles takes in distance value in kilometers and returns the value in miles .

timeTo12HourFormat takes in the time value in 24-hour format and returns the value in 12-hour

format (for example: 22:32 to 10:32).

degToCompass takes in the angle in degrees and returns the corresponding direction . First, we
divide the angle by 22.5, because there are 16 directions (360/16), then round the value to the
nearest integer , which we then use to calculate modulus from and detect the position in the
given array of direction names.

unixToLocalTime takes in the UNIX time in seconds (UTC) and the difference in the seconds for
the local timezone. The new Date object is created, where both values are added and then
multiplied by 1000, since Date object requires milliseconds . Then we use regex to get the
first result that follows the hh:mm pattern. Finally, if the returned string starts with “0”, we
remove the first character (for example, 07:12 to 7:12).

Adding Helper Functions
Next, we’ll create some helper functions so that it’s easier to work with data inside the
components and we are allowed to reuse particular logic across the components.

While still in the services folder, create a new helpers.js file and include the following code:

import {
unixToLocalTime,
kmToMiles,
mpsToMph,
timeTo12HourFormat,

} from "./converters";

export const getWindSpeed = (unitSystem, windInMps) =>
unitSystem == "metric" ? windInMps : mpsToMph(windInMps);

export const getVisibility = (unitSystem, visibilityInMeters) =>
unitSystem == "metric"
? (visibilityInMeters / 1000).toFixed(1)
: kmToMiles(visibilityInMeters / 1000);

export const getTime = (unitSystem, currentTime, timezone) =>
unitSystem == "metric"
? unixToLocalTime(currentTime, timezone)
: timeTo12HourFormat(unixToLocalTime(currentTime, timezone));

export const getAMPM = (unitSystem, currentTime, timezone) =>
unitSystem === "imperial"
? unixToLocalTime(currentTime, timezone).split(":")[0] >= 12
? "PM"
: "AM"

: "";

export const getWeekDay = (weatherData) => {
const weekday = [
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",

];
return weekday[
new Date((weatherData.dt + weatherData.timezone) * 1000).getUTCDay()

];
};

getWindSpeed takes in the unit system and wind speed in meters in seconds . If the metric
system is used, it returns meters per second , otherwise miles per hour .

getVisibility takes in the unit system and visibility distance in kilometers . If the metric
system is used, it returns kilometers , otherwise miles .

getTime takes in the unit system , current time in UNIX, and the timezone difference of the
location. If the metric system is used, it returns time in 24-hour format (for example, 17:11),
otherwise 12-hour format (for example, 5:11).

getAMPM takes in the unit system , current time in UNIX, and the timezone difference of the
location. If the metric system is used, it returns an empty string (no value), otherwise AM or
PM , based on the given time.

getWeekDay takes in the weatherData object. Based on the current local time from the
weatherData , it calculates the day of the week using the built-in .getUTCDay() function and then

returns the name of the day from the titles array.

Notice we also imported necessary converting functions from converters.js at the top, since
most of the helper functions depend on them.

Creating Components
If we check the wireframe we made, we notice that we’ll use ten components— MainCard ,
ContentBox , Header , DateAndTime , Search , MetricsBox , MetricsCard , UnitSwitch ,
LoadingScreen and ErrorScreen .

We’ll create a separate file for each of them. Also, there will be a separate CSS module file for
each (except for LoadingScreen) so we can style each component in the local scope.

You can create files manually by adding a new components folder in the project’s root and start
adding new files for each component (such as MainCard.js and MainCard.module.css) or you
can use this terminal command, which will create all the necessary files automatically:

mkdir components && cd components && touch MainCard.js MainCard.module.css ContentBox.js ContentBox
➥.module.css Header.js Header.module.css DateAndTime.js DateAndTime.module.css Search.js
➥Search.module.css MetricsBox.js MetricsBox.module.css MetricsCard.js MetricsCard.module.css
➥UnitSwitch.js UnitSwitch.module.css LoadingScreen.js ErrorScreen.js ErrorScreen.module.css

Now let’s add some code and styling rules for the component files.

MainCard

The MainCard component will be the most important area, highlighting the information about
the location and weather conditions. It will fill an entire left block of our app.

Include the following code in the MainCard.js file:

import Image from "next/image";
import { ctoF } from "../services/converters";
import styles from "./MainCard.module.css";

export const MainCard = ({
city,
country,
description,
iconName,
unitSystem,
weatherData,

}) => {
return (
<div className={styles.wrapper}>
<h1 className={styles.location}>
{city}, {country}

</h1>
<p className={styles.description}>{description}</p>
<Image
width="300px"
height="300px"
src={`/icons/${iconName}.svg`}
alt="weatherIcon"

/>
<h1 className={styles.temperature}>
{unitSystem == "metric"
? Math.round(weatherData.main.temp)
: Math.round(ctoF(weatherData.main.temp))}

°{unitSystem == "metric" ? "C" : "F"}
</h1>
<p>
Feels like{" "}
{unitSystem == "metric"
? Math.round(weatherData.main.feels_like)
: Math.round(ctoF(weatherData.main.feels_like))}

°{unitSystem == "metric" ? "C" : "F"}
</p>

</div>
);

};

As seen in the code snippet above, the MainCard component will display the data such as city ,
country , description of the weather conditions, as well as the actual temperature . It will also

include a weather icon , and we’ll use the NextJS built-in image component for that.

We set each of the required data as props, which we’ll provide once we’ll include the MainCard

https://nextjs.org/docs/api-reference/next/image

component into index.js a bit later.

Then switch to MainCard.module.css and include the following styles:

.wrapper {
text-align: center;
padding: 30px;

}

.location {
font-size: 38px;
margin-bottom: 10px;

}

.description {
font-size: 24px;
margin-bottom: 20px;

}

.temperature {
font-size: 84px;

}

For the wrapper, we’ve set all the included text to be centered and have some padding.

For the location , description , and temperature , we’ve used a specific font size, with the first
two also having a margin at the bottom.

ContentBox

The ContentBox component will be a simple wrapper to hold all the children
components— Header , MetricsBox and UnitSwitch .

Include the following code in the ContentBox.js file:

import styles from "./ContentBox.module.css";

export const ContentBox = ({ children }) => {
return <div className={styles.wrapper}>{children}</div>;

};

Then switch to ContentBox.module.css and include the following styles:

.wrapper {
background-color: rgb(247, 247, 247);
padding: 30px;

}

We set the background color and some nice padding for the wrapper.

Header

The Header component will be a simple wrapper for DateAndTime and Search components.

Include the following code in the Header.js file:

import styles from "./Header.module.css";

export const Header = ({ children }) => {
return <div className={styles.wrapper}>{children}</div>;

};

Then switch to Header.module.css and include the following styles:

.wrapper {
display: grid;
grid-template-columns: 2fr 1fr;
gap: 20px;
margin-bottom: 20px;

}

We set the wrapper to use grid layout and split it into two columns using a 2:1 ratio. We’ve also
provided some gap space between the two columns and added some margin below the wrapper.

DateAndTime

The DateAndTime component will include the name of the weekday and the time displayed
based on the selected option (24-hour format or 12-hour format).

Include the following code in the DateAndTime.js file:

import { getWeekDay, getTime, getAMPM } from "../services/helpers";
import styles from "./DateAndTime.module.css";

export const DateAndTime = ({ weatherData, unitSystem }) => {

return (
<div className={styles.wrapper}>
<h2>
{`${getWeekDay(weatherData)}, ${getTime(
unitSystem,
weatherData.dt,
weatherData.timezone

)} ${getAMPM(unitSystem, weatherData.dt, weatherData.timezone)}`}
</h2>

</div>
);

};

We’ve made use of three helper functions we created earlier (getWeekDay() , getTime() and
getAMPM()) and provided the necessary arguments as props, which we’ll pass in later, once we

include the DateAndTime component in index.js .

Then switch to DateAndTime.module.css and include the following styles:

.wrapper {
display: flex;
align-items: center;

}

We set the wrapper to have a flex layout and center the included h1 children vertically.

Search

The Search component will allow user interaction with the app.

Include the following code in the Search.js file:

import styles from "./Search.module.css";

export const Search = ({
placeHolder,
value,
onFocus,
onChange,
onKeyDown,

}) => {
return (
<input
className={styles.search}

type="text"
placeholder={placeHolder}
value={value}
onFocus={onFocus}
onChange={onChange}
onKeyDown={onKeyDown}

/>
);

};

We set the input type to text and set props for placeHolder , value , onFocus , onChange ,
onKeyDown . We’ll pass those in later, once we include the Search component in the index.js

file.

Then switch to Search.module.css and include the following styles:

.search {
height: 40px;
font-size: 18px;
font-family: "Varela Round", sans-serif;
color: #303030;
text-align: right;
padding: 0 10px;
border: none;
border-radius: 10px;

}

We’ve defined the specific height to the search bar and set the size , family , color , and
alignment for the text. We’ve also added some padding to the top and the bottom as well as

removed the default border and set it to be rounded.

MetricsCard

The MetricsCard component will present detailed information about the weather conditions. It
will be used as a template to display conditions like Humidity , Wind and Visibility , as well as
Sunrise and Sunset times.

Include the following code in the MetricsCard.js file:

import Image from "next/image";
import styles from "./MetricsCard.module.css";

export const MetricsCard = ({ title, iconSrc, metric, unit }) => {

return (
<div className={styles.wrapper}>
<p>{title}</p>
<div className={styles.content}>
<Image width="100px" height="100px" src={iconSrc} alt="weatherIcon" />
<div>
<h1>{metric}</h1>
<p>{unit}</p>

</div>
</div>

</div>
);

};

Each card will contain information about title , metric value, and the unit used. Similar to
what we did for the MainCard component, we also included a weather icon , and we’ll use the
NextJS built-in image component for that.

Content will be passed into props once we include MetricsCard components in MetricsBox.js .

Then switch to MetricsCard.module.css and include the following styles:

.wrapper {
background: rgba(255, 255, 255, 0.95);
padding: 20px;
text-align: right;
border-radius: 20px;

}

.content {
display: grid;
grid-template-columns: 1fr 1fr;

}

The card wrapper will use a specific background color and some padding. Included text will be
aligned right. The wrapper will also have a rounded border.

Included content will be divided into two columns, each with the same width.

MetricsBox

The MetricsBox component will be a wrapper for the MetricCard component we created in the
previous step. We’ll include the cards directly in this component just to keep the index.js file
less cluttered.

Include the following code in the MetricsBox.js file:

import { degToCompass } from "../services/converters";
import {
getTime,
getAMPM,
getVisibility,
getWindSpeed,

} from "../services/helpers";
import { MetricsCard } from "./MetricsCard";
import styles from "./MetricsBox.module.css";

export const MetricsBox = ({ weatherData, unitSystem }) => {
return (
<div className={styles.wrapper}>
<MetricsCard
title={"Humidity"}
iconSrc={"/icons/humidity.png"}
metric={weatherData.main.humidity}
unit={"%"}

/>
<MetricsCard
title={"Wind speed"}
iconSrc={"/icons/wind.png"}
metric={getWindSpeed(unitSystem, weatherData.wind.speed)}
unit={unitSystem == "metric" ? "m/s" : "m/h"}

/>
<MetricsCard
title={"Wind direction"}
iconSrc={"/icons/compass.png"}
metric={degToCompass(weatherData.wind.deg)}

/>
<MetricsCard
title={"Visibility"}
iconSrc={"/icons/binocular.png"}
metric={getVisibility(unitSystem, weatherData.visibility)}
unit={unitSystem == "metric" ? "km" : "miles"}

/>
<MetricsCard
title={"Sunrise"}
iconSrc={"/icons/sunrise.png"}
metric={getTime(
unitSystem,
weatherData.sys.sunrise,
weatherData.timezone

)}
unit={getAMPM(
unitSystem,
weatherData.sys.sunrise,

weatherData.timezone
)}

/>
<MetricsCard
title={"Sunset"}
iconSrc={"/icons/sunset.png"}
metric={getTime(
unitSystem,
weatherData.sys.sunset,
weatherData.timezone

)}
unit={getAMPM(unitSystem, weatherData.sys.sunset, weatherData.timezone)}

/>
</div>

);
};

We’ve passed in all the required props for MetricsCard . Notice we’ve also used converter
function degToCompass() and helper functions, such as getWindSpeed() , getVisibility()

getTime() , getAMPM() to assist in the data processing.

Then switch to MetricsBox.module.css and include the following styles:

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
gap: 20px;
margin-bottom: 20px;

}

We’ve set the wrapper to use grid layout with three columns, each the same width. Then we’ve
added a gap between the columns and set a margin below the wrapper.

UnitSwitch

The UnitSwitch component will allow user interaction by letting them select their preferred unit
system (metric or imperial) to view the weather conditions.

Include the following code in the UnitSwitch.js file:

import styles from "./UnitSwitch.module.css";

export const UnitSwitch = ({ onClick, unitSystem }) => {
return (

<div className={styles.wrapper}>
<p
className={`${styles.switch} ${
unitSystem == "metric" ? styles.active : styles.inactive

}`}
onClick={onClick}

>
Metric System

</p>
<p
className={`${styles.switch} ${
unitSystem == "metric" ? styles.inactive : styles.active

}`}
onClick={onClick}

>
Imperial System

</p>
</div>

);
};

The UnitSwitch component will present unit system switch options and set either active or
inactive classes based on the user interaction.

Then switch to UnitSwitch.module.css and include the following styles:

.wrapper {
text-align: right;

}

.switch {
display: inline;
margin: 0 10px;
cursor: pointer;

}

.active {
color: green;

}

.inactive {
color: black;

}

We’ve set all the text in the component to be aligned right. For the switch options, we’ve set them
to be inline to display them in the same line and also add a margin to the top and bottom as well
as improve the UX by changing mouse cursor to pointer .

Based on the explained logic on the UnitSwitch.js file, we’ve set the text of the selected unit
system to be displayed in green, while the inactive will be black.

LoadingScreen

The LoadingScreen component will be a simple component, returning just a loading message of
our choice. We’ll use conditional rendering in index.js to detect when it will be shown.

Include the following code in the LoadingScreen.js file:

export const LoadingScreen = ({ loadingMessage }) => <h1>{loadingMessage}</h1>;

ErrorScreen

The ErrorScreen component will display the error message if the search request doesn’t return
any results. Similar to LoadingScreen , we’ll use conditional rendering in index.js to detect
when it will be shown.

Include the following code in the ErrorScreen.js file:

import styles from "./ErrorScreen.module.css";

export const ErrorScreen = ({ errorMessage, children }) => {
return (
<div className={styles.wrapper}>
<h1 className={styles.message}>{errorMessage}</h1>
{children}

</div>
);

};

As you’ll notice, we’ve also allowed children components for the ErrorScreen component.
We’ll include the Search component in there once we’ve imported ErrorScreen component in
the index.js file. This way, users will be able to perform the next search once the error message
is shown on the screen.

Then switch to ErrorScreen.module.css and include the following styles:

.wrapper {
max-width: 260px;

text-align: center;
}

.message {
margin-bottom: 30px;

}

We’ve set the wrapper of ErrorScreen to not exceed a specific width and align the text in it. For
the message presented, we’ve added a margin at the bottom so there’s a space between it and
the next children component.

Implementing the Logic
To display the components we just created, we first need to import them into index.js and set
the rendering logic as well as provide all the props necessary for the functionality.

Add the following code to the index.js file:

import { useState, useEffect } from "react";

import { MainCard } from "../components/MainCard";
import { ContentBox } from "../components/ContentBox";
import { Header } from "../components/Header";
import { DateAndTime } from "../components/DateAndTime";
import { Search } from "../components/Search";
import { MetricsBox } from "../components/MetricsBox";
import { UnitSwitch } from "../components/UnitSwitch";
import { LoadingScreen } from "../components/LoadingScreen";
import { ErrorScreen } from "../components/ErrorScreen";

import styles from "../styles/Home.module.css";

export const App = () => {
// states and data fetch...

const changeSystem = () =>
unitSystem == "metric"
? setUnitSystem("imperial")
: setUnitSystem("metric");

return weatherData && !weatherData.message ? (
<div className={styles.wrapper}>
<MainCard
city={weatherData.name}
country={weatherData.sys.country}
description={weatherData.weather[0].description}

iconName={weatherData.weather[0].icon}
unitSystem={unitSystem}
weatherData={weatherData}

/>
<ContentBox>
<Header>
<DateAndTime weatherData={weatherData} unitSystem={unitSystem} />
<Search
placeHolder="Search a city..."
value={cityInput}
onFocus={(e) => {
e.target.value = "";
e.target.placeholder = "";

}}
onChange={(e) => setCityInput(e.target.value)}
onKeyDown={(e) => {
e.keyCode === 13 && setTriggerFetch(!triggerFetch);
e.target.placeholder = "Search a city...";

}}
/>

</Header>
<MetricsBox weatherData={weatherData} unitSystem={unitSystem} />
<UnitSwitch onClick={changeSystem} unitSystem={unitSystem} />

</ContentBox>
</div>

) : weatherData && weatherData.message ? (
<ErrorScreen errorMessage="City not found, try again!">
<Search
onFocus={(e) => (e.target.value = "")}
onChange={(e) => setCityInput(e.target.value)}
onKeyDown={(e) => e.keyCode === 13 && setTriggerFetch(!triggerFetch)}

/>
</ErrorScreen>

) : (
<LoadingScreen loadingMessage="Loading data..." />

);
};

export default App;

First, we’ve imported all the components we created, except MetricsCard , which we’ve already
imported into MetricsBox to keep this file less cluttered.

Then we’ve created a handler function ChangeSystem() , which we’ve assigned to the onClick

prop of the UnitSwitch component. Once the inactive unit system is clicked, the unitSystem

state variable is changed, becoming the active system in use.

Next, we’ve created conditional rendering blocks for the app. The code block inside weatherData

&& !weatherData.message condition gets rendered if the response from the server is received and
there’s no error message.

The code block inside weatherData && weatherData.message condition gets rendered if the
response is received, but there’s an error message, signaling that the user search query didn’t
return any results. In this state, the ErrorScreen component is presented to the user.

The third condition renders its contained code if none of the above conditions is true, meaning
that the application is in a loading state when the request is sent, but the response is not yet
received. While in this state, the LoadingScreen component is presented to the user.

Notice that we’ve also created a separate function (e) => e.keyCode === 13 &&

setTriggerFetch(!triggerFetch) for the onKeyDown prop of the Search component. This will
change the triggerFetch state variable to the opposite value (the default was true) each time
the Enter key is hit on the keyboard (the Enter key code is 13 , which you can check it out here).

Now check your terminal and see if your dev server is still running. If it isn’t, run the command
npm run dev again. Then open your browser.

You should be presented with a fully rendered and functional app.

Adding Responsiveness
At this point, our app looks great, but it has one major drawback. It isn’t adapted for use on

https://keycode.info/

different devices, meaning it lacks responsiveness.

To fix that, we’ll use CSS media queries, which define the looks of the rendered elements for
different resolutions, making it look great on any screen.

We’ll revisit some CSS files and add some additional styling rules. Keep in mind that the media
queries are usually added at the bottom of each stylesheet.

Main App Wrapper

Add the following styling rules in the Home.module.css file:

@media only screen and (max-width: 950px) {
.wrapper {
grid-template-columns: 1fr;
max-width: 600px;
margin: 20px auto;

}
}

@media only screen and (max-width: 600px) {
.wrapper {
margin: 0;
border-radius: 0;

}
}

This will ensure that the main wrapper of the entire app switches to the one-column layout for all
the devices that are smaller than 950px , meaning that the directly included children— MainCard

and ContentBox —will be shown directly below each other.

If the screen width is smaller than 600px , it will remove the top and bottom margin, as well as the
border radius.

Header

Add the following styling rules in the Header.module.css file:

@media only screen and (max-width: 520px) {
.wrapper {
grid-template-columns: 1fr;
place-items: center;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries

}

For any screen width smaller than 520px , the header will use the one-column layout, meaning
that the included children— DateAndTime and Search —will be shown directly below each other.
We also set the rule that both children will be centered.

Search

Add the following styling rules to the Search.module.css file:

@media only screen and (max-width: 520px) {
.search {
width: 100%;
text-align: center;

}
}

For the device screens smaller than 520px , we’ve set the search bar to be extended to the
available width of the parent element Header . We’ve also set the rule so that the text is centered
inside the search bar.

MetricsCard

Add the following styling rules in the MetricsCard.module.css file:

@media only screen and (max-width: 475px) {
.content {
grid-template-columns: 1fr 2fr;

}
}

For the device screens smaller than 475px , we’ve adjusted the content so that the included
children elements are shown in a two-column layout with a 1:2 width ratio.

MetricsBox

Add the following styling rules in the MetricBox.module.css file:

@media only screen and (max-width: 600px) {
.wrapper {
grid-template-columns: 1fr 1fr;

}
}

@media only screen and (max-width: 475px) {
.wrapper {
grid-template-columns: 1fr;

}
}

For the device screens smaller than 600px , the MetricBox wrapper will use the two-column
layout, meaning it will hold two MetricCard components side by side.

If the device screen is smaller than 475px , the wrapper will then switch to the one-column
layout, meaning that all the MetricsCard elements will be shown directly below each other.

UnitSwitch

Add the following styling rules in the UnitSwitch.module.css file:

@media only screen and (max-width: 475px) {
.wrapper {
text-align: center;

}
}

@media only screen and (max-width: 335px) {
.wrapper {
display: grid;
grid-template-columns: 1fr;

}

.switch {
margin: 10px 0;

}
}

For device screens smaller than 475px , both of the unit switches will be centered horizontally
while still being side by side.

For tiny screens that are less than 335px wide, the wrapper will switch to a one-column layout,
meaning both switch options will be shown directly below each other. We’ve also set some
margin, so that there’s some space between both switch elements.

At this point, you have made a fully functional app. Let’s test it!

Open your browser and enter the developer tools (by pressing F12 or manually). Now drag the

developer tools sidebar and you should see the app readjusting to the width of the screen.

Deploying the App
The last step is to deploy the app so that it can be accessed online. Since we’re working with
NextJS, the recommended approach would be to use Vercel.

In order to deploy it, we firstly need to push our code to GitHub.

Log in to GitHub (or create a new account if you don’t already have one). Select Create a new
repository from the menu, choose a repository name (it could be “weather-app” or anything else
you want), and click Create repository.

To push the app to the newly created repository, switch back to your terminal/code editor and
run the following commands (replace <username> with your GitHub username and <reponame>

with the name of your repository):

git remote add origin https://github.com/<username>/<reponame>.git
git push -u origin main

Then switch back to GitHub and check if the files of your project have appeared in the repository
you created. If so, you’ve successfully committed your code.

https://github.com/

Next, head to Vercel, create a new account (if you don’t have one yet) and log in.

Then create a new project. You’ll need to install Vercel for GitHub (access rights), so that Vercel
can view your GitHub repositories.

Then find your project in the Import Git Repository panel, click Import, and you should be
presented with the configuration wizard.

Vercel will detect the project name, build commands and root automatically, so you don’t have to
worry about that.

One thing you must do manually is to configure environment variables so that your deployed
project on Vercel can access the OpenWeatherMap. Enter OPENWEATHER_API_KEY as a name and
paste a key value from your local project’s .env.local file (see in the image above).

Once that’s done, click Deploy. The build process shouldn’t take longer than a minute.

After successful deployment, you’ll be able to go to the dashboard of your project. Once there,
click the Visit button, which will open the live URL of your project.

Congratulations! You’ve developed a fully functional weather app!

From now on, every time you push an update to GitHub, it will be automatically re-deployed on
Vercel, meaning your live site will be in sync with the code on GitHub.

Conclusion
In this tutorial, we’ve gone through the whole app creation process from planning to deployment.
Hopefully you’ve learned a thing or two so you can further apply your skills in your future
projects.

We picked the features, created the layout by constructing a wireframe, designed our own color
scheme, and learned how to set up the project and configure the settings. We also made a fetch
call to the external database and learned how to process and store the received data.

While working with components, we learned how to import and export them, use props and add
local styling with CSS modules. We separated converters and helper functions from the main
logic of the app and learned how to integrate them from the external files.

We also made sure the app looks great on every screen and deployed it, so it’s accessible from
anywhere, and the next time you want to check the weather you can use your own app on your
desktop or mobile phone while you’re on the go.

I’ve always believed that it’s important to share knowledge around, so I encourage you to share
this tutorial with your friends and give it a star in the GitHub repo if you liked it. Thanks for
following along!

https://github.com/madzadev/weather-app

	Build a Weather App from Scratch with Next.js
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	Build a Weather App from Scratch with Next.js
	
	Planning the Features
	Wireframing the App
	Designing the App
	Setting Up the Project
	Configuring OpenWeatherMap API
	Downloading Icons
	Creating the Base
	Identifying the States
	Fetching the Data
	Creating Data Converters
	Adding Helper Functions
	Creating Components
	MainCard
	ContentBox
	Header
	DateAndTime
	Search
	MetricsCard
	MetricsBox
	UnitSwitch
	LoadingScreen
	ErrorScreen

	Implementing the Logic
	Adding Responsiveness
	Main App Wrapper
	Header
	Search
	MetricsCard
	MetricsBox
	UnitSwitch

	Deploying the App
	Conclusion

