

Tailwind CSS: Craft Beautiful, Flexible, and Responsive

Designs
Copyright © 2022 SitePoint Pty. Ltd.

Author: Ivaylo Gerchev
Series Editor: Oliver Lindberg
Product Manager: Simon Mackie
Technical Editor: Shahed Nasser
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied. Neither
the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any damages to be
caused either directly or indirectly by the instructions contained in this book, or by the software or hardware
products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only in
an editorial fashion and to the benefit of the trademark owner with no intention of infringement of the
trademark.

Published by SitePoint Pty. Ltd.
10-12 Gwynne St,

Richmond, VIC, 3121
Australia

Web: www.sitepoint.com
Email: books@sitepoint.com

About the Author
Ivaylo Gerchev isa web developer/designer from Bulgaria. In his free time he likes to write
articles and tutorials sharing his knowledge and understanding on various web development
topics. His favorite topics include UI, UX, SVG, HTML, CSS, Tailwind, JavaScript, Node, Nest,
Adonis, Vue, React, Angular, PHP, Laravel, and Statamic. The best tools he uses are Figma and VS
Code. When he's not programming the Web, he loves to program his own reality.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit https://www.sitepoint.com/ to access our blogs, books, newsletters, articles,
and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile
development, design, and more.

https://www.sitepoint.com/

Table of Contents

Chapter 1: Getting Started with Tailwind CSS..............viii

What Is Tailwind? ...x

What Is a Utility Class?...x

What a Design System Is, and How It Can Help Us.. xii

Up and Running with Tailwind .. xii

Exploring Tailwind Basics... xiii

Layout ..xiv

Typography .. xv

Colors .. xv

Imagery: Icons and Images... xv

Building a Blog Starter Template.. xv

Creating the Header..xvi

Creating the Main Content Area.. xix

Creating the Side Content Area...xxiii

Creating the Newsletter Form Section ...xxv

Creating the Footer... xxvi

Conclusion ...xxx

Chapter 2: Going Beyond the Basics....................................... 31

Getting Started with Tailwind..32

Creating Tailwind Components..35

Extracting Classes into Reusable Components......................................36

Building Tailwind Components with Vue ...38

Creating a Responsive Layout ..43

A Simple Example of Con!guring Tailwind’s Styles...47

Conclusion ...49

Chapter 3: Building Complex Designs with

Tailwind ...50

Building Complex and Flexible Layouts with Tailwind’s Grid Utilities..... 51

Exploring Tailwind’s Grid Utilities... 51

Creating Grid Layouts..53

Creating a Complete Article Design ..65

Creating the Base Layout ..67

Typography ... 69

Colors and Gradients ... 71

Adding Image E"ects..73

Adding E"ects .. 74

Conclusion ...75

Chapter 4: Customizing Tailwind and Optimizing

Your Work!ow ...77

Customizing Tailwind ..78

Customizing the Default Tailwind Theme...81

Customizing Tailwind Theme’s Responsive Breakpoint Modi!er...81

Customizing Tailwind’s Theme Colors ..83

Customizing Tailwind’s Spacing Utilities..85

Customizing Tailwind’s Core Plugins .. 86

A Practical Customization Example.. 88

Adding Base Classes... 91

Creating Con!guration Presets ..93

Conclusion ...95

Chapter 5: Working with Tailwind Plugins....................... 96

Getting Started...97

Using O#cial Tailwind Plugins ..97

Building Custom Tailwind Plugins ... 108

Creating the Counters Plugin ... 108

Creating the Arrows Plugin...116

Finding Community Plugins...119

Conclusion .. 120

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back at school.</p>

Where existing code is required for context, rather than repeat all of it, ⋮ will be displayed:

function animate() {
⋮

new_variable = "Hello";
}

Some lines of code should be entered on one line, but we’ve had to wrap them because of page
constraints. An ➥ indicates a line break that exists for formatting purposes only, and should be
ignored:

URL.open("https://www.sitepoint.com/responsive-web-
➥design-real-user-testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand. Think of
them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Getting Started
with Tailwind

CSS

Chapter

1

There are two main types of CSS framework. One is based around components—a group that
includes frameworks such as Bootstrap, Foundation, and Bulma. The other type of CSS
framework is based around utilities—a group that includes the likes of Tachyons, Tailwind CSS,
and Windi CSS.

For many years, component-based frameworks were the de facto standard for building websites
quickly and easily. But all this magic comes with a price. Without serious customization, sites built
with such frameworks look similar to each other. And customization is a real pain in the neck for
anyone who wants to build something more complex and/or creative. Component-based styles
are easy to implement, but inflexible and confined to certain boundaries. Solving specificity
issues while trying to override the default styles of a particular framework isn’t a fun and
productive job.

“Utility-first” frameworks were created to solve this problem. A utility-first framework is built
with low-level functionality in mind. Utility classes offer much more power and flexibility than
component classes.

Utility-first frameworks provide the following advantages:

Utility classes operate at a low level. This means we have more control and flexibility over how
we apply them—a concept that’s similar to the power and flexibility offered by a low-level
language like C or C++, in contrast to high-level languages such as JavaScript or PHP.
Utility classes are easy to customize, so we can build any design.
A utility-first approach scales well. It’s great for managing and maintaining large projects,
because we only have to maintain HTML files, instead of a large CSS codebase. It’s already
used with success by big sites like GitHub, Heroku, Kickstarter, Twitch, and Segment.
Utility classes can be adopted to any design.
Utility classes are completely customizable and extensible. It’s easier to build unique, custom
website designs without fighting with unwanted styles.
Utility classes allow for much easier implementation of responsive design patterns.
Utility classes have consistent styles, which gives us a ready-to-use design system. We can
also create our own design system if we need to.
With utility classes, we can still extract common, repetitive patterns into custom, reusable
components. But in contrast to predefined components, custom components will be exactly
what we need.

Component vs Utility Classes

If you’re not clear on the difference between component and utility classes, jump to
the “What Is a Utility Class?” section below, and then continue reading from here.

https://getbootstrap.com/
https://get.foundation/
https://bulma.io/
https://tachyons.io/
https://tailwindcss.com/
https://windicss.org/

In summary, we can say that a utility-first framework gives us balance between the concrete and
the abstract.

Now that we’ve seen how useful utility-first frameworks can be, it’s time to pick one and see
what it can do for us in action. In this tutorial series, we’ll explore Tailwind CSS, which is the most
popular of the utility-first frameworks.

What Is Tailwind?
Tailwind is a set of low-level, reusable utility classes that can be used like building blocks to
create virtually any design we can imagine. This utility-first framework covers the most
important CSS properties, but it can be easily extended in a variety of ways. It can be used either
for rapid prototyping or for creating full-blown designs.

Tailwind has great documentation, covering every class utility in detail and showing the ways it
can be customized. There’s also a playground where you can try out your ideas. You can also
check out Tailwind’s screencasts if you prefer to learn by watching.

Tailwind CSS 3.0 (the version we’ll use throughout the series) supports the latest stable versions
of Chrome, Firefox, Edge, and Safari. There’s no support for any version of IE, including IE11.

What Is a Utility Class?

As we already know, Tailwind’s main characteristic is the use of utility classes. But what is a utility
class?

While a component class is a collection of predefined CSS settings applied in an opinionated
fashion, a utility class is mostly a single CSS property or behavior that we can use freely in a
predictable way. This gives us the freedom to combine, mix and match different settings
depending on our requirements. We have greater control over each element’s appearance. We
can change and fine-tune an element’s appearance much more effortlessly with utility classes.

In Bootstrap, we create a button by using predefined component classes, as in the following
example:

<button class="btn btn-success">Success</button>

Here, the btn and btn-success are the so-called component classes. Each one of them
represents a collection of predefined CSS settings.

https://tailwindcss.com/
https://tailwindcss.com/docs
https://play.tailwindcss.com/
https://www.youtube.com/tailwindlabs
https://getbootstrap.com/docs/5.1/components/buttons/

In Tailwind, we create a button by using utility classes:

<button class="py-2 px-4 bg-green-500 text-white font-semibold rounded-lg shadow-md
hover:bg-green-700 focus:outline-none focus:ring-2 focus:ring-green-400 focus:ring-opacity-75">
Success

</button>

Here, py-2 , px-4 , bg-green-500 , and so on, are the so-called utility classes, and each one of
them represents just a single CSS setting. To create the button, we use multiple utilities—which
we put together like the pieces of a puzzle in order to get the whole picture.

This CodePen demo shows these two buttons on the same page.

The buttons looks quite similar, but they’re created in different ways.

We’ve covered the basic difference between component and utility classes, but let’s now take an
even closer look at utility classes.

In Tailwind, the CSS font-style: italic is represented by the italic utility class.

Here are some more examples:

text-align: right becomes text-right

font-weight: 700 becomes font-bold

border-radius: 0.25rem becomes rounded

width: 0.5rem becomes w-2

padding: 1.5rem becomes p-6

And here’s how classes are applied in practice. Let’s say we want to make a paragraph bold and
italic. We do it this way in CSS:

p {
font-weight: 700;
font-style: italic;

}

To do the same in Tailwind, we add the font-bold and italic classes directly to the HTML
element:

<p class="font-bold italic">Lorem ipsum...</p>

https://codepen.io/SitePoint/pen/OJzxOQK?editors=1000

In Tailwind, we can also apply classes based on an element’s states, such as hover, focus, and so
on. For example, if we want the above paragraph to be italic only on mouse hover, we can write
the class like this: hover:italic .

As you can see, Tailwind utility classes are mostly self-explanatory. We can often imagine how
the styled element looks by just reading the classes. Some class names are heavily abbreviated,
admittedly, but once we’ve grasped the pattern and had a bit of practice with them, they’re easy
to remember and recall.

What a Design System Is, and How It Can Help Us
As Tailwind offers a sort of design system, it will be useful to say few words about what a design
system is and how it can facilitate the design process.

In simple terms, a design system is a set of rules and conventions for how a design should be
built. It includes predefined rules about sizes, colors, text, and so on. Traditionally, when we build
a design we need to make multiple choices about things like:

the size of the design elements (text, images, etc.)
the colors and color variations
the fonts and other typographic features

… and so on.

Making a decision for every small part of a design can lead to choice paralysis and inconsistency.
It’s tedious and error-prone. It would be much easier if we first established a design system with
already predefined options that are tested and proven to work. We can then just select from the
existing, limited set of options and combine them to produce the desired outcome.

This is actually what Tailwind gives us—a well-crafted design system that we can use to speed
up, smooth, and facilitate our design-building process.

Up and Running with Tailwind

Know Your HTML and CSS

To follow along with the rest of this tutorial, you should have a good understanding of
HTML and CSS and their concepts. If you’re not up to speed with those yet, check out
SitePoint’s HTML and CSS learning path.

https://uxdesign.cc/everything-you-need-to-know-about-design-systems-54b109851969
https://www.scienceofpeople.com/choice-paralysis/
https://www.sitepoint.com/premium/paths/learn-html

The official documentation describes a bunch of different ways to install Tailwind. In this tutorial,
we’ll use the simplest one—which involves including Tailwind in our projects via the Play CDN
option. So just create an HTML file and put the following content in it:

<!doctype html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css"
rel="stylesheet">
<script src="https://cdn.tailwindcss.com"></script>

</head>
<body>
<!-- ... -->

</body>
</html>

This is the starting template we’ll build upon throughout the rest of the tutorial. We’ll also include
a Font Awesome link that we’ll use for the icons in our design.

Exploring Tailwind Basics
There are four main factors involved in every web design project:

Layout. It all starts with a blueprint. This defines how the whitespace and elements of our
design are organized and ordered.
Typography. This includes all text content, including messages.
Colors. This brings life to a design and defines a design’s mood and brand.
Imagery. This includes the visuals of a design, such as icons, images, illustrations, and so on.

In the next four sections, we’ll learn more about each one of these factors and see how Tailwind
can help us to implement them in the development phase. The aim here is to give you a bird’s-eye
view of what classes to look for when you’re working on a particular component. Don’t worry: I’ll
go into much more detail for each class when we start exploring a practical example later on in
the tutorial.

https://tailwindcss.com/docs/installation
https://tailwindcss.com/docs/installation/play-cdn
https://fontawesome.com/

Layout

In this section, we’ll explore briefly the most commonly used classes for layout composition. We
can group classes by their function, as follows:

Size. This includes width and height utilities for setting an element’s dimensions.
Space. This includes margin and padding utilities for adding space in our design.
Position. This includes an element’s positioning and coordinates.
Borders. This includes various utilities for setting an element’s borders, such as style, width,
and radius.
Display. This includes the way elements are rendered.

In modern CSS, we have also Flexbox and Grid classes for building a layout. We’ll cover only the
Flexbox utilities in this tutorial, as they’re much simpler and easier to use for beginners.

When we use Flexbox, we start by creating a flex container by adding a flex class to a parent
element. Then we add additional flex classes to configure how the flex items inside the container
(direct children) will be displayed. For example, to render flex items vertically as a column, we add
a flex-col class along with the flex class:

<div class="flex flex-col">
<div>1</div>
<div>2</div>
<div>3</div>

</div>

This is the base for applying flex classes. There are plenty of them in Tailwind, and it would be
tedious to explain each one individually. Instead, when we explore a practical example later on, I’ll
cover the flex classes we use in that example.

Responsive Web Design

Our coverage of layout, typography, color and imagery here won’t be able to include
principles and techniques relating to responsive web design, as that topic is beyond
the scope of this Tailwind series. But it’s an important topic that’s central to modern
web design. For more information, see this general overview of responsive web design,
and also Tailwind’s documentation for speci6c instructions.

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design
https://tailwindcss.com/docs/responsive-design
https://tailwindcss.com/docs/width
https://tailwindcss.com/docs/height
https://tailwindcss.com/docs/margin
https://tailwindcss.com/docs/padding
https://tailwindcss.com/docs/position
https://tailwindcss.com/docs/top-right-bottom-left
https://tailwindcss.com/docs/border-style
https://tailwindcss.com/docs/border-width
https://tailwindcss.com/docs/border-radius
https://tailwindcss.com/docs/display

Typography

Now that we have a layout, the next step is to add the content we want to display. This is mostly
done by using text. Here are the most commonly used text utilities grouped by function:

Font. This includes font family, size, style and weight utilities, as well as tracking and leading
settings.
Text. This includes text aligning, color and opacity, decoration and transformation.
List. This includes list type and position styling.

Colors

We have a layout, and we have text. Now we need to bring life to them by using some colors.
Tailwind offers a large, pre-made color palette. Applying a color is super easy. Here are the two
most common uses of color:

Text. To apply a color to text we use the pattern text-[color]-[number] . The number variable
defines tints and shades. For example, to make text dark red, we can use a text-red-900

class. To make it light red, we can use text-red-100 .
Background. To use a color as a background, we use the pattern bg-[color]-[number] .

Imagery: Icons and Images

The final spice in our design recipe is the visual imagery. Visuals are like salt and spices: a meal
isn’t tasty without them. The most commonly used visuals are:

Icons. These can be based on SVGs or icon fonts. As we saw earlier, we included Font
Awesome in our template. To use an icon from, it we use the pattern fas fa-[icon-name] . For
example, to use a search icon for a search input, we can use the fas fa-search classes.
Notice that fas placed before the icon name means that we use Font Awesome’s solid icons
collection, which is free. Font Awesome offers some base styling for its icons, but we can style
them with Tailwind’s utilities (for color, size, etc.) as well.
Images. To style images, we can use a bunch of Tailwind classes, such as width and height,
opacity, shadows, borders, filters, and so on.

Building a Blog Starter Template
In this last section, we’ll explore how to build a simple blog starter template from scratch. I won’t
go too deeply into the detail of each individual utility class, but I’ll provide enough explanation
where it’s needed.

https://tailwindcss.com/docs/font-family
https://tailwindcss.com/docs/font-size
https://tailwindcss.com/docs/font-style
https://tailwindcss.com/docs/font-weight
https://tailwindcss.com/docs/letter-spacing
https://tailwindcss.com/docs/line-height
https://tailwindcss.com/docs/text-align
https://tailwindcss.com/docs/text-color
https://tailwindcss.com/docs/text-opacity
https://tailwindcss.com/docs/text-decoration
https://tailwindcss.com/docs/text-transform
https://tailwindcss.com/docs/list-style-type
https://tailwindcss.com/docs/list-style-position
https://tailwindcss.com/docs/customizing-colors
https://tailwindcss.com/docs/text-color
https://tailwindcss.com/docs/background-color
https://tailwindcss.com/docs/opacity
https://tailwindcss.com/docs/box-shadow
https://tailwindcss.com/docs/filter

Here’s the final version of the blog template. You can also test it in action in this CodePen demo.

Creating the Header

We’ll build the template from top to bottom, starting with a header. The following image shows
what we’re trying to create.

1-1. The blog template header

To create the header, put the following code inside the <body> element in the starting template:

<div class="container mx-auto">
<header class="flex justify-between items-center sticky top-0 z-10 py-4 bg-blue-900">
<div class="flex-shrink-0 ml-6 cursor-pointer">
<i class="fas fa-wind fa-2x text-yellow-500"></i>
Tailwind School

</div>
<ul class="flex mr-10 font-semibold">
<li class="mr-6 p-1 border-b-2 border-yellow-500">
Home

<li class="mr-6 p-1">
News

<li class="mr-6 p-1">
Tutorials

<li class="mr-6 p-1">
Videos

Utility Class Help

For information about any particular utility class, you can use Jay Elaraj’s handy Tailwind
cheatsheet, or you can search for a speci6c class in the Tailwind documentation.

Base Styles

As we dive into building our starter template with Tailwind, it’s important to note that
Tailwind applies an opinionated set of base styles for every project by default.

https://github.com/spbooks/tailwind/blob/master/part-1/blog-starter-template.html
https://codepen.io/codeknack/pen/yLXmKyQ
https://nerdcave.com/tailwind-cheat-sheet
https://nerdcave.com/tailwind-cheat-sheet
https://tailwindcss.com/docs
https://tailwindcss.com/docs/preflight

</header>
</div>

Let’s break the header’s code into smaller blocks. First, we’ve wrapped all the content in a
container by adding the container class in the wrapping <div> element:

<div class="container mx-auto">

</div>

This forces the design to accommodate certain dimensions depending on the current
breakpoint. We’ve also centered the design with the mx-auto utility. This sets the left and right
margins to auto .

In Tailwind, when x is used after a CSS setting abbreviation (m for margin here), it means that
the setting will be applied both on left and right. If y is used instead, it means the setting will be
applied both top and bottom.

The reason we create such a container is that, on large screens, the design will be centered and
presented in a more compact size, which in my opinion looks much better than a fully-fluid
viewport.

The next thing we’ve done is create the header with a <header> element:

<header class="flex justify-between items-center sticky top-0 z-10 py-4 bg-blue-900">

</header>

We’ve created a flex container and used justify-between and items-center classes to add an
equal amount of space between flex items and align them along the center of the container’s
cross axis.

We’ve also used the sticky and top-0 classes to make the header fixed to the top when users
scroll down, and we’ve set a z-10 class to ensure the header will be always on top.

We’ve added a shade of blue color as a background and some padding for both top and bottom
sides of the header.

The first item in the header’s container is the blog’s logo:

https://tailwindcss.com/docs/container

<div class="flex-shrink-0 ml-6 cursor-pointer">
<i class="fas fa-wind fa-2x text-yellow-500"></i>
Tailwind School

</div>

It’s combination of a yellow colored wind icon (fas fa-wind) and light blue colored “Tailwind
School” text. We’ve made the icon bigger by using Font Awesome’s fa-2x class. The text is
made bigger and semibold by using Tailwind’s text-3xl and font-semibold classes
respectively.

For the logo’s container, we’ve added a bit of left margin and used the flex-shrink-0 class to
prevent the logo from shrinking when the design is resized to smaller viewports.

The second item in the header’s container is the main navigation:

<ul class="flex overflow-x-hidden mr-10 font-semibold">

We’ve created it by using a ul element turned into a flex container so we can style its items as
horizontal links. We’ve used the overflow-x-hidden class to clip the content within navigation
that overflows its left and right bounds. We’ve also added some right margin.

The mr-10 class and the ml-6 (logo) classes use the r for right and l for left abbreviations to
set right and left margin respectively. In a similar way, t and b can be used for setting top and
bottom sides of an element.

For the navigation’s links, we’ve added some right margin and a small padding to all sides:

<li class="mr-6 p-1 border-b-2 border-yellow-500">
Home

<li class="mr-6 p-1">
News

<li class="mr-6 p-1">
Tutorials

<li class="mr-6 p-1">
Videos

When we use a setting like padding without side abbreviation (p-1 here), it’s applied to all sides.

We’ve set the color of links to white, which changes to light blue on hovering. We’ve also used the
hover: prefix to achieve that effect.

We’ve styled the active “Home” link by adding a thin yellow border below the text. The border is
created with the border-b-2 class, where b is for bottom and 2 is the amount of border
thickness.

Creating the Main Content Area

We’re ready to move to the main content, which is placed in two columns. The first is for the list
of posts, and the second is for a sidebar containing a search box, a newsletter subscription box,
and a menu with post categories. The image below shows what we’re going to build.

The Design Process

In a text-based tutorial, it’s hard to demonstrate how a design is built step by step, and
how each step is built upon the previous one. For that reason, I suggest you watch this
short video, which shows an example of the steps and reasoning involved in the design
process. It should give you some extra insight into the process we’re following here.

https://www.youtube.com/watch?v=1OUbP0rGFNs
https://www.youtube.com/watch?v=1OUbP0rGFNs

1-2. The blog template’s main content

To create the content area, put the following code after the closing </header> tag:

<div class="flex pb-4 bg-blue-100">
<main class="flex flex-col w-2/3 pl-6 pr-4 pt-4 ">
<article class="my-4 shadow">

<div class="flex flex-col p-6 pt-2 bg-white">
<a href="#" class="my-2 text-sm font-bold uppercase border-b-2 border-yellow-500
➥text-blue-600">Layout
Lorem Ipsum
➥Dolor Sit Amet Dolor Sit Amet
<p class="pb-3 text-sm">By David
➥Jacobs, May 25, 2021</p>

<p class="pb-6">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus quis porta
➥dui. Ut eu iaculis massa. Sed ornare ligula lacus, quis iaculis dui porta volutpat. In sit
➥amet posuere magna..</p>
Continue Reading
➥<i class="fas fa-arrow-right"></i>

</div>
</article>

<article class="my-4 shadow">

<div class="flex flex-col p-6 pt-2 bg-white">
<a href="#" class="my-2 text-sm font-bold uppercase border-b-2 border-yellow-500
➥text-blue-600">Imagery
Lorem Ipsum
➥Dolor Sit Amet Dolor Sit Amet
<p class="pb-3 text-sm">By Monica
➥Sanchez, May 10, 2021</p>
<p class="pb-6">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus quis porta
➥dui. Ut eu iaculis massa. Sed ornare ligula lacus, quis iaculis dui porta volutpat. In sit
➥amet posuere magna..</p>
Continue Reading
➥<i class="fas fa-arrow-right"></i>

</div>
</article>

<article class="my-4 shadow">

<div class="flex flex-col p-6 pt-2 bg-white">
<a href="#" class="my-2 text-sm font-bold uppercase border-b-2 border-yellow-500
➥text-blue-600">Typography
Lorem Ipsum
➥Dolor Sit Amet Dolor Sit Amet
<p class="pb-3 text-sm">By David
➥Jacobs, April 20, 2021</p>
<p class="pb-6">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus quis porta
➥dui. Ut eu iaculis massa. Sed ornare ligula lacus, quis iaculis dui porta volutpat. In sit
➥amet posuere magna..</p>
Continue Reading
➥<i class="fas fa-arrow-right"></i>

</div>
</article>

</main>
</div>

This is the code for the posts. Once again, let’s break it into blocks.

First, we’ve created a flex container that will hold the two columns:

<div class="flex pb-4 bg-blue-100">
<main class="flex flex-col w-2/3 pl-6 pr-4 pt-4 ">

</main>
</div>

Then we’ve used a <main> element with flex flex-col classes to list posts as a first column
and a w-2/3 class to size the column to be two thirds of the whole main content width.

We’ve then wrapped each post in an <article> element with a drop shadow effect achieved by
using the shadow class:

<article class="my-4 shadow">

</article>

Then, we’ve added a post image:

We’re using images from Unsplash and applying a hover:opacity-75 class to them, which will
lower the image opacity to 75 percent on image hovering.

Next, we’ve created the content area that contains a category heading, a post heading, a byline, a
post excerpt, and a link to the full post:

<div class="flex flex-col p-6 pt-2 bg-white">

➥Layout
Lorem Ipsum Dolor Sit
➥Amet Dolor Sit Amet
<p class="pb-3 text-sm">By David Jacobs,
➥ May 25, 2021</p>
<p class="pb-6">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus quis porta dui.
➥Ut eu iaculis massa. Sed ornare ligula lacus, quis iaculis dui porta volutpat. In sit amet
➥posuere magna..</p>
Continue Reading <i
➥class="fas fa-arrow-right"></i>

</div>

https://unsplash.com/developers

We’ve styled the content area as a flex column.

In the category headings, we’ve made the text small, bold and all caps by applying text-sm font-

bold uppercase classes. We’ve also added a bottom border to divide category headings from the
post headings.

We’ve made the text of the headings large and bold and applied a serif font.

We’ve also made the link to the full post with all caps and extra small text, and we’ve included a
right-arrow icon at the end.

Creating the Side Content Area

To add the second sidebar column, put the following code after the closing <main> tag:

<aside class="w-1/3 pl-4 pr-6 pt-8">
<section>
<form class="flex">
<input type="text" class="w-full px-3 py-2 rounded-l-lg focus:outline-none text-gray-800"
➥ placeholder="Search...">
<button class="px-2 rounded-r-lg focus:outline-none text-center text-xl text-gray-400
➥hover:text-gray-900 bg-white"><i class="fas fa-search"></i></button>

</form>
</section>

<section class="mt-8 text-white">
<div class="p-4 rounded-lg shadow-xl text-center bg-gradient-to-b from-red-400 to-red-200">
<h3 class="font-semibold text-lg">Get the latest news & tutorials right to your inbox</h3>
<form>
<input type="email" placeholder="youremail@example.com" class="w-full mt-3 p-3 rounded
➥shadow border border-gray-400 focus:outline-none text-gray-800">
<button type="submit" class="w-full mt-4 p-4 rounded shadow font-semibold uppercase
➥tracking-wider bg-green-600 hover:bg-green-500">Subscribe</button>

</form>
</div>

</section>

<section class="mt-8">
<h3 class="mb-4 pb-2 text-2xl font-semibold border-b-2 border-yellow-500 text-blue-600 ">
➥Categories</h3>

<li class="mb-1">
Layout (23)

<li class="mb-1">
Typography (44)

<li class="mb-1">
Colors (16)

<li class="mb-1">
Imagery (19)

</section>
</aside>

Let’s break it into blocks.

In the code below, we’ve wrapped the sections in an <aside> element taking up one third of the
whole main content width:

<aside class="w-1/3 pl-4 pr-6 pt-8">

</aside>

In the first section, we’ve created a search box:

<section>
<form class="flex">
<input type="text" class="w-full px-3 py-2 rounded-l-lg focus:outline-none text-gray-800"
➥placeholder="Search...">
<button class="px-2 rounded-r-lg focus:outline-none text-center text-xl text-gray-400
➥hover:text-gray-900 bg-white"><i class="fas fa-search"></i></button>

</form>
</section>

We’ve used rounded-l-lg (to make the left side of the element with large, rounded borders) and
rounded-r-lg (to make the right side of the element with large, rounded borders) to round the
<input> and the <button> elements and connect their non-rounded sides smoothly, as they’re

one element.

We’ve also used the w-full class for the <input> element to make it resize correctly. To
remove the element’s outline for both input and the icon button when they’re focused, we’ve
added focus:outline-none class.

In the second section, we’ve created a newsletter subscription box:

<section class="mt-8 text-white">

<div class="p-4 rounded-lg shadow-xl text-center bg-gradient-to-b from-red-400 to-red-200">
<h3 class="font-semibold text-lg">Get the latest news & tutorials right to your inbox</h3>
<form>
<input type="email" placeholder="youremail@example.com" class="w-full mt-3 p-3 rounded-lg
➥shadow border border-gray-400 focus:outline-none text-gray-800">
<button type="submit" class="w-full mt-4 p-4 rounded-lg focus:outline-none shadow
➥font-semibold uppercase tracking-wider bg-green-600 hover:bg-green-500">Subscribe</button>

</form>
</div>

</section>

We’ve added a <div> element with a gradient background by using bg-gradient-to-b from-

red-400 to-red-200 classes. They create a gradient from top to bottom with two red-colored
stops.

We’ve added a heading and then created a subscription form for the newsletter. We’ve added a
tracking-wider class to the “Subscribe” button to add more space between the letters.

In the third section, we’ve created a menu with post categories by using an unordered list. I’m
sure you already can figure out by yourself what each of the applied classes does here:

<section class="mt-8">
<h3 class="mb-4 pb-2 text-2xl font-semibold border-b-2 border-yellow-500 text-blue-600 "
➥>Categories</h3>

<li class="mb-1">
Layout (23)

<li class="mb-1">
Typography (44)

<li class="mb-1">
Colors (16)

<li class="mb-1">
Imagery (19)

</section>

Creating the Newsletter Form Section

The next thing in our design is another newsletter form that will remind users to subscribe. The
image below shows what it will look like.

https://tailwindcss.com/docs/gradient-color-stops

1-3. The blog template’s newsletter subscription form

To create it, put the following code after the closing </div> tag after the closing </aside> tag:

<section class="flex flex-col items-center p-4 bg-red-400">
<div class="text-center text-white">
<h2 class="font-bold text-3xl">Want to stay up-to-date?</h2>
<h3 class="text-xl">Join our mail list for hot news & new tutorials</h3>

</div>
<div>
<form class="my-4 flex">
<input class="p-4 rounded-l-lg focus:outline-none text-gray-800" placeholder="your@mail.com"/>
<button class="p-4 rounded-r-lg font-bold uppercase tracking-wider text-white bg-green-600
➥hover:bg-green-500">Subscribe</button>

</form>
</div>

</section>

Here, we’ve again used flex classes to order the elements of the section vertically and center
them. In the first <div> element, we’ve added two headings and centered them by using the
text-center class.

To connect the input and the button, we’ve used a similar technique to the one in the newsletter
form from the main content area: we’ve created a flex container and used rounded-l-lg and
rounded-r-lg classes for the <input> and <button> elements respectively.

Creating the Footer

The final piece of our design is the footer. The result we’re aiming for is pictured below.

1-4. The blog template’s footer

To create it, put the following code after the last closing </section> tag:

<footer class="bg-blue-900">
<div class="flex flex-wrap text-white">

<div class="w-1/3 p-5 border-r border-blue-800">
<div class="my-6 text-xl font-semibold">ABOUT US</div>
<p class="text-gray-400">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean ac est
➥massa. Donec eget elementum sapien, tincidunt tempor nunc. Cras sodales id ipsum at
➥convallis.</p>

</div>

<div class="w-1/3 p-5 text-center border-r border-blue-800">
<div class="my-6 text-xl font-semibold">CONTACT US</div>
<p class="text-gray-400">
A108 Adam Street

New York, NY 535022

United States

Phone: +1 5589 55488 55

Email: info@webcraft.com

</p>
<div class="flex justify-center space-x-4 mt-6">
<button class="w-10 h-10 p-1 rounded bg-blue-500">
<i class="fab fa-facebook fa-2x"></i>

</button>
<button class="w-10 h-10 p-1 rounded bg-blue-400">
<i class="fab fa-twitter fa-2x"></i>

</button>
<button class="w-10 h-10 p-1 rounded bg-gray-700">
<i class="fab fa-github fa-2x"></i>

</button>
</div>

</div>

<div class="w-1/3 p-5">
<div class="my-6 text-xl font-semibold">SAY HELLO!</div>
<form>
<input class="w-full h-10 mb-4 p-2 border-b-2 border-blue-800 bg-blue-900" type="email"
➥placeholder="Your email">
<textarea class="w-full h-24 mb-6 px-2 pt-2 border-b-2 border-blue-800 bg-blue-900"
➥placeholder="Your message"></textarea>
<button class="w-full px-4 py-2 rounded font-semibold tracking-wider bg-yellow-600
➥hover:bg-yellow-500" type="button">SEND</button>

</form>
</div>

</div>
</footer>

Here, we have three equal-width columns, which we’ve created by using flex flex-wrap classes
on the container and a w-1/3 class for each column (<div> element). We’ve used flex-wrap in
the container because we want columns to wrap when resized.

We’ve used border-r classes (they add a right border) in the first two columns to add dividers
between columns. Also, the white text applied on the container is inherited by all child elements,
so we change the text color only where we need it.

Let’s explain the columns one by one. The first column is just an about us paragraph:

<div class="w-1/3 p-5 border-r border-blue-800">
<div class="my-6 text-xl font-semibold">ABOUT US</div>
<p class="text-gray-400">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean ac est
massa. Donec eget elementum sapien, tincidunt tempor nunc. Cras sodales id ipsum
➥at convallis.</p>

</div>

The second column offers contact details and social icons, which we’ve created by using
<button> elements and Font Awesome icon classes wrapped in an <i> element:

<div class="w-1/3 p-5 text-center border-r border-blue-800">
<div class="my-6 text-xl font-semibold">CONTACT US</div>
<p class="text-gray-400">
A108 Adam Street

New York, NY 535022

United States

Phone: +1 5589 55488 55

Email: info@webcraft.com
</p>
<div class="flex justify-center space-x-4 mt-6">
<button class="w-10 h-10 p-1 rounded bg-blue-500">
<i class="fab fa-facebook fa-2x"></i>

</button>
<button class="w-10 h-10 p-1 rounded bg-blue-400">
<i class="fab fa-twitter fa-2x"></i>

</button>
<button class="w-10 h-10 p-1 rounded bg-gray-700">
<i class="fab fa-github fa-2x"></i>

</button>
</div>

</div>

To order them correctly, we’ve used a justify-center class to justify icons along the center of
the container’s main axis and a space-x-4 class to add space between items. In fact, the space is
just margin added to the child elements behind the scenes. To make the icons squares, we’ve
used w-10 (width) and h-10 (height) classes for each one.

You may have noticed that, instead of fas , we’ve used fab here. This represents Font
Awesome’s brand icons collection, which is also free.

The third column is a contact form build by using simple <input> , <textarea> , and <button>

elements and classes already explained before:

<div class="w-1/3 p-5">
<div class="my-6 text-xl font-semibold">SAY HELLO!</div>
<form>
<input class="w-full h-10 mb-4 p-2 focus:outline-none border-b-2 border-blue-800 bg-blue-900"
➥type="email" placeholder="Your email">
<textarea class="w-full h-24 mb-6 px-2 pt-2 focus:outline-none border-b-2 border-blue-800
➥bg-blue-900" placeholder="Your message"></textarea>
<button class="w-full px-4 py-2 rounded-lg focus:outline-none font-semibold tracking-wider
➥bg-yellow-600 hover:bg-yellow-500" type="button">SEND</button>

</form>
</div>

Tailwind Plugins

Tailwind offers some of6cial plugins that can facilitate the use of things like forms and
typography. The use of plugins is an advanced topic that can’t be covered here. But if
you’re curious, you can explore the plugins by yourself.

https://tailwindcss.com/docs/space
https://github.com/tailwindlabs/tailwindcss-forms
https://github.com/tailwindlabs/tailwindcss-typography

And now we’re done with our blog starter template!

Conclusion
In this introductory tutorial, we learned what Tailwind is and why it’s a great framework to use.
We also learned how to use Tailwind utility classes in a project and how to build the main
elements of a web design—layout, typography, colors, and imagery.

We now have all the basic skills needed to start building our projects with confidence. Of course,
Tailwind has plenty of advanced features that we haven’t covered here. They’ll all be explored in
the following tutorials of this series.

Going Beyond
the Basics

Chapter

2

As we learned from the first tutorial in this series, Tailwind CSS is the best known of the utility-
first frameworks. It offers a rich collection of CSS class utilities that can be combined like Lego
blocks to build any kind of design. Learning the basics of how to use these utilities is also very
straightforward.

But this knowledge alone isn’t enough for building complex and flexible designs. After grasping
the basics, instead of diving deeper into what can be done with Tailwind, many users decide to
use ready-made templates or a copy-paste approach to building their designs. The aim of this
tutorial is to avoid such a scenario by providing some insights into Tailwind’s more advanced
capabilities. We’ll dive a little deeper into what we can do with Tailwind, learning how to create
reusable, utility-based components and templates, and how to make our designs responsive.
We’ll also start to explore how Tailwind can be configured and customized—a topic we’ll continue
to explore and build on in the following tutorials in this series.

All these skills will help us create a more flexible and manageable codebase. They’ll let us go
beyond the Tailwind basics so we can build our own components and templates with confidence.

Getting Started with Tailwind
In this section, we’ll learn how to set up a new project with Tailwind.

The project creation process described below will also be used as a starting point in the following
parts of the series. In each of the next parts, you’ll be redirected to this section to prepare a new
project.

Project Code

You can 6nd the 6nished project for this tutorial in the code repo for this Tailwind
series.

Getting Ready

To follow along from here onwards, you’ll 6rstly need to have Node installed on your
machine.

Also, make sure you have a basic knowledge of Tailwind’s utilities—including how they
work and how they’re applied to HTML—as we won’t be explaining them in detail here.
The basics of Tailwind utilities were covered in the 6rst tutorial of this series.

https://tailwindcss.com/
https://github.com/spbooks/tailwind/tree/master/part-2
https://nodejs.org/en/download/

The first step is to create a new Node app. In an empty directory of your choice, run this
command:

npm init -y

This will create a package.json file in your directory, with default options.

In the first part of this series, we played with Tailwind by using a Play CDN link. That’s a great way
to get started when we’re doing a quick test or proof of concept experiment. But in this tutorial,
we’ll use the Tailwind CLI, which will give us a production-ready setup.

The first step is to install Tailwind by running this command:

npm install -D tailwindcss

Next, run the following command:

npx tailwindcss init

This will create a minimal tailwind.config.js file, where we can put our customization options
during development. The generated file contains the following:

Utility Class References

For information about particular utility classes, you can use Jay Elaraj’s handy Tailwind
cheatsheet, or you can search for a speci6c class in the Tailwind documentation.

Base Styles

Remember to bear in mind that Tailwind applies an opinionated set of base styles for
every project by default.

npx

npx is a tool that’s automatically installed alongside npm and allows you to run a
command from a local or remote npm package.

https://nerdcave.com/tailwind-cheat-sheet
https://nerdcave.com/tailwind-cheat-sheet
https://tailwindcss.com/docs
https://tailwindcss.com/docs/preflight
https://tailwindcss.com/docs/installation/play-cdn
https://tailwindcss.com/docs/installation

// /tailwind.config.js
module.exports = {
content: [],
theme: {
extend: {},

},
plugins: [],

}

The next thing to do is to add our template paths in the content section, so Tailwind can compile
the utilities used in our templates. In our case, we’ll add just an index.html file, which we’ll
create a bit later:

// /tailwind.config.js
module.exports = {
content: ["index.html"],
...

}

The next step is to create a styles.css file, in the root directory, where we’ll include the
framework’s styles using the @tailwind directive:

/* /styles.css */
@tailwind base;
@tailwind components;
@tailwind utilities;

As the names suggest, Tailwind styles are divided into three groups. The first group represents
all the base styles—such as CSS resets. The second represents the styles for
components—where any custom components are also injected. The third group contains all of
Tailwind’s default utilities, as well as any custom-made utilities.

The next step is to build the Tailwind styles. To do this, run the following command:

npx tailwindcss -i styles.css -o tailwind.css

This gets the styles from the styles.css file as an input and generates a tailwind.css file as
an output.

If we don’t want to run this command every time we make some changes, we can append the -w

or --watch flag at the end, which will rebuild our styles every time we make a change:

https://tailwindcss.com/docs/content-configuration
https://tailwindcss.com/docs/functions-and-directives#tailwind

npx tailwindcss -i styles.css -o tailwind.css -w

To facilitate the use of both commands, let’s define them as scripts in package.json file:

// /package.json
...
"scripts": {
"dev": "npx tailwindcss -i styles.css -o tailwind.css",
"dev:watch": "npx tailwindcss -i styles.css -o tailwind.css -w"

},
...

Now we’re ready to start playing with Tailwind.

Creating Tailwind Components
As you may have expected, no matter how useful Tailwind classes are, we’ll soon realize that we
have repeating groups of utilities in our code. Of course, this makes the code error-prone and
hard to maintain. This is where components come into play.

Components are predefined sets of utilities that can be reused and adapted for various
scenarios. A component effectively allows us to reuse Tailwind’s classes, which reduces the code
repetition and improves maintainability.

Tailwind allows us to extract classes into reusable components in two major ways. The first way
is to just extract them as groups of classes. The second way is to create a reusable component
with a frontend framework like Vue or React, or a template partial with a template engine like
Twig or Blade. We’ll explore both scenarios in the following sections.

But before we dive into the examples, let’s create an index.html file in the root directory and
add links to the generated tailwind.css file and to the Font Awesome icons. Here’s what the
starter template should look like:

<!-- /index.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" type="text/css" href="tailwind.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/
➥all.min.css">

https://fontawesome.com/

</head>
<body>
<!-- ... -->

</body>
</html>

Extracting Classes into Reusable Components

Extracting classes into components is as easy as grouping a series of classes by using the
@apply directive. To demonstrate how this can be done, we’ll create an alert component. First,
let’s see how our alert component looks when it’s built only with utility classes:

<div class="flex flex-col p-4 pt-2 w-full border-l-8 border-blue-500 bg-blue-100">
<div class="font-semibold italic text-lg text-blue-500">Info</div>
<div class="leading-tight text-sm text-blue-800">Lorem ipsum dolor sit amet consectetur
➥adipisicing elit.</div>

</div>

Here’s a live CodePen demo of the code above.

As you can see, this code sample creates a simple “Info” alert component. But the problem is
that, if we want to create different alerts—such as “Warning”, “Success”, and so on—we’ll need to
repeat a big part of the code for each alert. This leads to poor maintainability, because if we
wanted to change the overall styles of these alerts, we’d need to update each one separately. To
avoid such a scenario, we’ll extract the repeating patterns into individual component classes.

Open the styles.css file and add the following code:

/* /styles.css */
...

@layer components {
.alert {
@apply flex flex-col p-4 pt-2 w-full border-l-8;

}

.alert-title {
@apply font-semibold italic text-lg;

}

.alert-content {
@apply leading-tight text-sm;

}

https://tailwindcss.com/docs/extracting-components#extracting-component-classes-with-apply
https://codepen.io/SitePoint/pen/LYeepBO?editors=1000

.alert-info {
@apply bg-blue-100 border-blue-500

}

.alert-info-title {
@apply text-blue-500;

}

.alert-info-content {
@apply text-blue-800;

}

.alert-warning {
@apply bg-red-100 border-red-500

}

.alert-warning-title {
@apply text-red-500;

}

.alert-warning-content {
@apply text-red-800;

}
}

Here, we’ve used the @layer components { ... } directive to wrap our custom component
classes. This is to tell Tailwind which layer those styles belong to and to avoid specificity issues.
The options are base , components , and utilities .

First, we extract the base code for each alert component part into an individual class (.alert ,
.alert-title , and .alert-content). Then, we extract the code that differs for each individual

alert (the specific color classes). For example, for the “Info” alert, the classes would be .alert-

info , .alert-info-title , and .alert-info-content . Generally, we extract or group the utilities
into smaller and more manageable component classes.

As you might have noticed, the classes we’ve just created are pretty similar to those in
component-based frameworks such as Bootstrap or Bulma. The advantage of Tailwind’s classes
is that they’re more transparent and easier to tweak. We can see exactly which utilities are
applied and we can easily edit them whenever we need to.

Once we’ve created the required classes, we need to build Tailwind styles again (by running npm

run dev or npm run dev:watch) for the changes to take effect. Once that’s done, we can try out
the new components in action. Open the index.html file and add the following code:

<!-- /index.html -->
<div class="alert alert-info m-6 w-1/3">
<div class="alert-title alert-info-title">Info</div>
<div class="alert-content alert-info-content">Lorem ipsum dolor sit amet consectetur
➥adipisicing elit.</div>

</div>
<div class="alert alert-warning m-6 w-1/3">
<div class="alert-title alert-warning-title">Warning</div>
<div class="alert-content alert-warning-content">Lorem ipsum dolor sit amet consectetur
➥adipisicing elit.</div>

</div>

This code creates “Info” and “Warning” alerts.

2-1. Our Info and Warning alert boxes

As you can see, with our custom component classes we can create much more manageable and
maintainable code. We now have fewer classes to use and fewer places to make changes.

Building Tailwind Components with Vue

Extracting component classes, as demonstrated above, works well for fairly small, simple
components. If we want to create a complex component with multiple elements, we’ll need to
use a more flexible approach. By “flexible” I mean more reusable and easier to manage. As we’ve

seen already, even for our simple alert component, we needed to create many component
classes for the different states or parts of the component. Imagine if we wanted to create a fairly
complex component such as a card. Doing this by using the @apply directive would be quite
impractical. After all, we want to simplify our code, not to make it a mess, right?

Another way we can utilize the full potential of Tailwind is by using it in frontend frameworks (like
Vue, React, Svelte) that allow us to create reusable components. This will give us much more
flexibility when we want to build complex components. We’ll demonstrate this by creating a
general recipe card component with Vue.

https://vuejs.org/

2-2. Our recipe card component

For this example, we’ll need to add a link to the Vue framework:

Learning Vue

If you’re not familiar with Vue, you can consult the Vue documentation, or take a look at
Jump Start Vue.js, which offers a more in-depth exploration of Vue’s features and
abilities.

https://vuejs.org/guide/introduction.html
https://www.sitepoint.com/premium/books/jump-start-vue-js-2nd-edition/

<!-- /index.html -->
<script src="https://unpkg.com/vue@3"></script>

Let’s first see what the recipe card component’s code would look like without Vue:

<div class="m-5 shadow-md w-80 rounded overflow-hidden">

<div class="p-2">
<div class="font-bold text-lg text-gray-700 leading-snug">
Pizza Margherita

</div>
<p class="text-xs leading-tight tracking-wide my-2">Invented in Naples in honor of the first
➥queen of Italy, the Margherita pizza is the triumph of Italian cuisine in the world.</p>
<div class="flex pt-2 border-t border-gray-300 text-sm text-gray-700 divide-x-2">
<div class="flex-1 text-center">
<i class="far fa-clock"></i>
<p>1h 15m</p>

</div>
<div class="flex-1 text-center">
<i class="fas fa-utensils"></i>
<p>4 Servings</p>

</div>
<div class="flex-1 text-center">
<i class="fas fa-signal"></i>
<p>Easy</p>

</div>
</div>

</div>
</div>

Here’s a CodePen demo of the code above.

The problem here is that, if we want to use this template for multiple recipes, we’ll end up with
lots of code repetition. Later on, if we decide to change the card’s design, we’ll need to edit the
template in multiple places. This is error-prone and wasteful of our time. The solution is to find a
way to extract the repeating code into a reusable template. We can easily do this by creating a
reusable Vue component.

Open index.html and аdd the following code before the closing </body> tag:

<script>
const app = Vue.createApp({})

app.component('recipe-card', {
props: ['imageurl', 'imgalt', 'titleurl', 'title', 'description', 'time', 'servings', 'level'],

https://codepen.io/SitePoint/pen/oNppbVR?editors=1000
https://vuejs.org/guide/essentials/component-basics.html
https://vuejs.org/guide/essentials/component-basics.html

template: `
<div class="m-5 shadow-md w-80 rounded overflow-hidden">

<div class="p-2">
<div class="font-bold text-lg text-gray-700 leading-snug">
<a :href="titleurl" class="hover:underline">{{ title }}

</div>
<p class="text-xs leading-tight tracking-wide my-2">{{ description }}</p>
<div class="flex pt-2 border-t border-gray-300 text-sm text-gray-700 divide-x-2">
<div class="flex-1 text-center">
<i class="far fa-clock"></i>
<p>{{ time }}</p>

</div>
<div class="flex-1 text-center">
<i class="fas fa-utensils"></i>
<p>{{ servings }}</p>

</div>
<div class="flex-1 text-center">
<i class="fas fa-signal"></i>
<p>{{ level }}</p>

</div>
</div>

</div>
</div>`

})

app.mount('#app')
</script>

Here, we’ve put all repeating code in a template and defined props for the recipe’s details. This
way, we can provide different details for each recipe while the template remains the same. If we
decide in the future to change the card’s appearance, we’ll need to edit its template in only one
place.

Now, to use the recipe card component, add the following code inside the <body> tag:

<!-- /index.html -->
<div id="app">
<recipe-card
imageurl="https://source.unsplash.com/x00CzBt4Dfk/1600x900"

Rebuilding Styles

Build Tailwind styles again (if you don’t use the dev:watch script) for the changes to
take effect.

https://v3.vuejs.org/guide/component-basics.html#passing-data-to-child-components-with-props

imgalt="Pizza Margherita image"
titleurl="#"
title="Pizza Margherita"
description="Invented in Naples in honor of the first queen of Italy, the Margherita pizza is
➥the triumph of Italian cuisine in the world."
time="1h 15m"
servings="4 Servings"
level="Easy">

</recipe-card>
</div>

Here’s a CodePen demo of the code above.

As you can see, all we need to do is provide the recipe’s details as props and let Vue do its magic.

Creating a Responsive Layout
Responsive design is a cornerstone of modern web development. Fortunately, Tailwind offers
flexible utilities for applying media queries with ease.

There are five default responsive utility variants (breakpoints), which are named as follows: sm

(640px), md (768px), lg (1024px), xl (1280px), and 2xl (1536px). The unit values in
parentheses represent the minimal width option of their applied media query. Each breakpoint
variant can be conditionally added to a utility class (by using the [breakpoint]:[utility]

pattern) so that class will take effect only at the specified breakpoint and above. For example, the
class md:italic will make text italic only on screens 768 pixels wide and above.

You should bear in mind that Tailwind uses the mobile-first approach. Unprefixed utilities take
effect on all screen sizes, while prefixed utilities only take effect at the specified breakpoint and
above.

In this section, we’ll explore how we can create a responsive component or layout. The
component we’re going to create is a responsive header. It will have a logo on the left and a menu
with links on the right. When the header is resized downwards, the menu will disappear and a
“hamburger” menu button will appear instead. To reveal the menu, users will need to click the
hamburger icon.

https://codepen.io/SitePoint/pen/LYeeNWY?editors=1010
https://tailwindcss.com/docs/responsive-design
https://tailwindcss.com/docs/responsive-design#mobile-first

2-3. The header adapts as the viewport changes in width

In the index.html file, add the following markup right after the <body> tag:

<!-- /index.html -->
<header class="flex items-center justify-between flex-wrap bg-gray-800 py-4 w-full">
<div class="flex-shrink-0 ml-6">

<i class="fas fa-drafting-compass fa-2x text-yellow-500"></i>
WebCraft

</div>

<button id="nav-toggle" class="md:hidden p-2 mr-4 ml-6 my-2 border rounded border-gray-600
➥text-blue-200 hover:border-blue-200">
<i class="fas fa-bars fa-2x"></i>

</button>

<div class="pl-6 w-full md:w-auto hidden md:block" id="nav-content">
<ul class="md:flex">
<li class="mr-6 p-1 md:border-b-2 border-yellow-500">
Home

<li class="mr-6 p-1">
Services

<li class="mr-6 p-1">
Projects

<li class="mr-6 p-1">
Team

<li class="mr-6 p-1">
About

<li class="mr-6 p-1">
Contacts

</div>
</header>

Now, add the following JavaScript snippet after the Vue code in the script tag:

// /index.html
document.getElementById('nav-toggle').onclick = function() {
document.getElementById("nav-content").classList.toggle("hidden");

}

Here’s a CodePen demo of the code above.

Let’s break down the header’s code into blocks and explain what’s going on.

First, we’ve create a <header> wrapper:

<header class="flex items-center justify-between flex-wrap bg-gray-800 py-4 w-full">
...
</header>

Here, we’re forcing the header to take the full width of its container (w-full) and adding some
top and bottom padding (py-4). We’ve also create a flex container (flex) in which we’ve aligned
items along the center of the container’s cross axis (items-center) and added an equal amount
of space between each item (justify-between). We’ve added flex-wrap so the header’s
elements will wrap nicely.

The next block is the for logo:

<div class="flex-shrink-0 ml-6">

Rebuilding Styles

As before, build Tailwind styles again (if you don’t use the dev:watch script) for the
changes to take effect.

https://codepen.io/SitePoint/pen/xxppVdv?editors=1010

<i class="fas fa-drafting-compass fa-2x text-yellow-500"></i>
WebCraft

</div>

Here, we have a logo wrapper with a bit of left margin (ml-6). We’re also preventing the logo (its
parts: icon and text) from shrinking (flex-shrink-0).

The next block is the menu button:

<button id="nav-toggle" class="md:hidden p-2 mr-4 ml-6 my-2 border rounded border-gray-600
➥text-blue-200 hover:border-blue-200">
<i class="fas fa-bars fa-2x"></i>

</button>

Here, we’ve started to use Tailwind’s responsive utilities. To apply a media query to a class, we’ve
prefixed the target class with a breakpoint utility (sm , md , lg , etc.) followed by the :

character. In our case (md:hidden), we’ve prefixed the hidden utility with the md breakpoint,
which in effect will keep the button hidden on medium screens and larger, so the button will only
appear on smaller screens.

The nav-toggle ID is used for toggling the links menu with JavaScript.

The last block is the links menu:

<div class="pl-6 w-full md:w-auto hidden md:block" id="nav-content">
<ul class="md:flex">
<li class="mr-6 p-1 md:border-b-2 border-yellow-500">
Home

<li class="mr-6 p-1">
Services

<li class="mr-6 p-1">
Projects

<li class="mr-6 p-1">
Team

<li class="mr-6 p-1">
About

<li class="mr-6 p-1">

Contacts

</div>

In the example above, we have pl-6 and w-full classes, which will add a little left padding to
the list wrapper and make it full width on small screens. Then, we’ve added a md:w-auto class,
which will override the w-full on medium screens and larger. The principle is the same for the
next two classes. The links will be hidden on small screens (hidden) and will show up on medium
and larger screens (md:block).

We’ve added an md:flex class to the list to make it appear as a sequence of links on medium
screens and larger. We’ve also added a bottom border (md:border-b-2), which again will only be
shown on medium and larger screens.

The nav-toggle ID is used for toggling the links menu with JavaScript.

Finally, here’s the JavaScript code for toggling the menu button by toggling the hidden class:

// /index.html
document.getElementById('nav-toggle').onclick = function() {
document.getElementById("nav-content").classList.toggle("hidden");

}

A Simple Example of Con-guring Tailwind’s Styles
The tailwind.config.js file offers multiple ways to configure Tailwind’s styles, such as
extending the default theme, creating new variants and plugins, and more. Most of them are too
advanced for this tutorial. But there’s a simple option that we can try right now—the darkMode
option.

There’s a growing trend in modern web development to offer a dark theme or mode. A dark
theme doesn’t just look cool; it also aids the reading experience, making it more comfortable for
the eyes.

By default, the darkMode option uses the prefers-color-scheme CSS media feature, which
automatically changes the theme based on a user’s OS preferences. But what if we want to allow
users to switch the theme manually? Let’s see how we can do that.

First, we need to add the dark mode in the tailwind.config.js file. Open the file and add the

https://tailwindcss.com/docs/dark-mode
https://tailwindcss.com/docs/dark-mode

darkMode option with a value of 'class' :

// /tailwind.config.js
module.exports = {
darkMode: 'class',
...

}

Now, add the following code in the index.html file:

<!-- /index.html -->
<div id="switch" class="dark m-6 w-1/3">
<div class="p-2 bg-white dark:bg-gray-800">
<h1 class="text-gray-900 dark:text-white">Dark mode in action! Click me to toggle between light
➥and dark modes...</h1>
<p class="text-gray-600 dark:text-gray-300">
Lorem ipsum...

</p>
</div>

</div>

Here, we’ve added dark variants for the color utilities by prefixing the utilities with the dark

keyword followed by the : character. We’ve also added a dark class in the wrapper. This way,
the dark variants will be used instead of regular ones. Let’s now add the ability to toggle the
dark class so we can switch between light and dark modes.

Add the following JavaScript snippet inside the <script> tag:

// /index.html
document.getElementById('switch').onclick = function(){
this.classList.toggle("dark");

}

Now, when you click on the wrapping <div> , the mode will toggle:

Rebuilding Styles

As before, build Tailwind styles again (if you don’t use the dev:watch script) for the
changes to take effect.

2-4. Dark and light mode

Conclusion
In this tutorial, we took a small leap beyond Tailwind’s basics and explored some of the more
advanced ways to use the framework. Of course, this was just the tip of the iceberg, and there
are plenty of other techniques, tips and tricks still to be explored. However, this tutorial will serve
as a solid base for further exploration of Tailwind and its capabilities.

In the next part of this series, we’ll explore even more advanced topics, such as building complex
layouts with Tailwind’s grid utilities, advanced typography effects, color gradients, image
manipulation, and using effects such as transforms and transitions.

Building
Complex

Designs with
Tailwind

Chapter

3

In the first tutorial of this series, we covered the basic concepts of the Tailwind framework and
how to use it to build simple designs. We then expanded this knowledge by learning how we can
build reusable components and responsive designs.

In this tutorial, we’ll extend what we’ve learned with more advanced layout-building and design-
enhancement techniques, including creating and using:

grid layouts
drop caps
gradients
image clipping
image filters
transforms and transitions

We’ll start with several grid layouts and then we’ll build a full article layout.

Building Complex and Flexible Layouts with Tailwind’s Grid

Utilities
In this section, we’ll build several grid layouts similar to magazine or news sites. To do that, we’ll
use Tailwind’s grid utilities.

Exploring Tailwind’s Grid Utilities

Here’s a quick overview of the grid utilities we’ll use in our layouts.

To define columns and rows, you use the following classes (n is the number of columns/rows):

CSS Grid

If you need to get up to speed with Grid layout in CSS, you can do it quickly by playing
this fun CSS Grid Garden game. For more in-depth exploration of CSS Grid and CSS in
general, I suggest checking out CSS Master.

Project Code

You can 6nd the 6nished project for this tutorial in the code repo for this Tailwind
series.

https://cssgridgarden.com/
https://www.sitepoint.com/premium/books/css-master-3rd-edition/
https://github.com/spbooks/tailwind/tree/master/part-3

grid-cols-{n} : define columns
grid-rows-{n} : define rows

To add a gap between columns and/or rows, you can use the following classes:

gap-{size} : define gap between columns and rows at the same time
gap-x-{size} : define gap between columns
gap-y-{size} : define gap between rows

To start creating complex layouts, you’ll need the following classes:

col-span-{n} : make an element span n columns
col-start-{n} : make an element start at grid line n

col-end-{n} : make an element end at grid line n

row-span-{n} : make an element span n rows
row-start-{n} : make an element start at grid line n

row-end-{n} : make an element end at grid line n

You can also use order-{order} to display grid items in a different order from their DOM order.

With the above utilities, we can create an endless number of layouts with different levels of
complexity. Let’s explore some examples now.

Creating Grid Layouts

We’ll borrow most of the following examples from this nice looking Newsportal theme.

You can see the completed grid layout examples in this CodePen demo.

Numbering Grid Lines

CSS grid lines start at 1, not 0. So in a four-column, three-row grid, columns would start
at column line 1 and end at column line 5, and rows would start at row line 1 and end at
row line 4—as illustrated below.

3-1. Line numbers on a grid

https://newsportal.electronthemes-ghost.com/
https://codepen.io/SitePoint/pen/LYeeqdE

To follow along, let’s create a new project, just as we learned how to do in the previous tutorial.

Next, you need to configure Tailwind to use all HTML files, by modifying the content section in
the tailwind.config.js file:

// /tailwind.config.js
module.exports = {
content: ['*.html'],
theme: {
extend: {},

},
plugins: [],

}

Lastly, build the styles by running this command:

npm run dev:watch

Now, let’s start with the first layout. The image below shows what we want to build.

3-2. The finished look of our first grid

To build the first layout, in the root directory, create a new grids.html file with the following
content:

<!-- /grids.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" type="text/css" href="tailwind.css">
<style>
.box {
color: white;
background-color: green;
min-height: 150px;
padding-top: 10%;
padding-left: 15%;
font-size: 1.5rem;
font-weight: 700;

}
</style>

</head>
<body>
<div class="mx-auto p-8 w-full lg:w-1/2">

<h1 class="text-3xl font-bold">Grid Layout Examples</h1>

<h2 class="my-6 text-2xl underline underline-offset-2">Example #1</h2>

<div class="grid grid-cols-3 grid-rows-2 gap-x-4 gap-y-2">
<div class="box row-span-2 col-span-2">1</div>
<div class="box">2</div>
<div class="box">3</div>

</div>

<!-- Add the next grid examples here -->

</div>
</body>

</html>

3-3. The starting point for our first grid

As you can see, we’ve effectively replicated the design in the earlier screenshot.

To achieve this, we’ve firstly created a grid container and specified that our grid will have three
columns and two rows. We’ve also added different gap spaces between columns and rows. Then
we’ve made the first element span two columns and two rows.

Let’s move on to the next layout. The final result is shown below.

Demo Styles

The box class is used here and later just for demonstration purposes, so we can see
the visual shape of our grids.

3-4. Our second grid layout

As you can see, this is quite similar to the first example, but under the hood we’ll do some
different things to achieve it. Here’s the code to add after the first example:

<!-- /grids.html -->
<h2 class="my-6 text-2xl underline underline-offset-2">Example #2</h2>

<div class="grid grid-cols-2 grid-rows-4 gap-x-4 gap-y-2">
<div class="box row-span-4">1</div>
<div class="box">2</div>
<div class="box">3</div>
<div class="box">4</div>
<div class="box">5</div>

</div>

3-5. The visual result of the code above

This time, we’ve used two columns and four rows, and the only thing we’ve needed to do is span
the first element over four rows. Easy, huh?

The next layout is quite a bit different. This is what it looks like fully finished.

3-6. The finished result of our third grid layout

Here’s the code to add after the second example:

<!-- /grids.html -->
<h2 class="my-6 text-2xl underline underline-offset-2">Example #3</h2>

<div class="grid grid-cols-4 grid-rows-2 gap-x-2 gap-y-4">
<div class="box col-span-2">1</div>
<div class="box col-span-2">2</div>
<div class="box">3</div>
<div class="box">4</div>
<div class="box">5</div>
<div class="box">6</div>

</div>

3-7. Our third grid layout

In this example, we’ve created four columns and two rows for the grid. Then we’ve just spanned
the first two elements over two columns. Once again, it was quite simple to achieve this result.

OK. Let’s try something more complex now.

3-8. The end result of our fourth layout

Here’s the code to add after the third example:

<!-- /grids.html -->
<h2 class="my-6 text-2xl underline underline-offset-2">Example #4</h2>

<div class="grid grid-cols-3 grid-rows-4 gap-x-4 gap-y-2">
<div class="box row-span-2">1</div>
<div class="box row-span-4">2</div>
<div class="box row-span-2">3</div>
<div class="box">4</div>
<div class="box">5</div>
<div class="box">6</div>
<div class="box">7</div>

</div>

<hr class="my-6">

<div class="grid grid-cols-3 grid-rows-4 gap-x-4 gap-y-2">
<div class="box row-span-2">1</div>
<div class="box row-start-3">2</div>
<div class="box row-start-4">3</div>
<div class="box row-span-4">4</div>
<div class="box row-span-2">5</div>
<div class="box">6</div>
<div class="box">7</div>

</div>

3-9. Options for displaying the code above

In this example, I’ve included two variations to show you that there’s more than one way to create

the same layout.

The first version is the easier to achieve. We’ve just spanned the first three elements across the
desired number of rows. This also creates a sort of row ordering, as you can see from the box
numbers. But what if we want the elements to display column by column?

The second version demonstrates how this can be achieved. The first element is easy. We’ve just
spanned it over two rows. For the second, we’ve used a row-start-{n} class to put it in the right
place—below the first element. We’ve used the same technique to put the third element below
the second one. The forth and fifth elements are also easy. We’ve spanned them four and two
rows respectively, to put them properly in the grid. The last two elements don’t need any classes
because they flow naturally into the right places.

As we can see, to create a fairly complex layout is quite easy with these grid utilities. Let’s create
an even more complex final example. Here’s the code to add after the fourth example:

<!-- /grids.html -->
<h2 class="my-6 text-2xl underline underline-offset-2">Example #5</h2>

<div class="grid grid-cols-3 grid-rows-3 gap-2">
<div class="box col-start-1 col-end-3">1</div>
<div class="box row-start-2 row-end-4">2</div>
<div class="box row-start-2">3</div>
<div class="box row-start-1 row-end-3">4</div>
<div class="box col-start-2 col-end-4">5</div>

</div>

3-10. Our final, more complex grid layout

This creates a very interesting layout. The image below is labeled so we can more easily
understand how the code works.

3-11. A demonstration of how our final grid works

For this example, we’ve used a grid of three columns and three rows. We’ve mixed the start and

end classes.

We’ve told the first element that it should start at the first vertical grid line and end at the third
one. We’ve moved the second element below the first one by making it start at the second
horizontal grid line and end at the fourth.

For the third element, we’ve only needed to define its start line. We’ve forced the fourth element
to start at the first horizontal line and end at the third. And finally, we’ve spanned the fifth
element over two columns by defining the second vertical grid line as a starting point and the
fourth one as the end.

And that’s it. It’s easy, but it needs careful planning and lots of experimenting.

By the way, we can use a different utility combination to achieve the exact same result. For
example, here’s a variation that uses mostly span utilities instead of start and end :

<div class="grid grid-cols-3 grid-rows-3 gap-2">
<div class="box col-span-2">1</div>
<div class="box row-start-2 row-span-2">2</div>
<div class="box row-start-2">3</div>
<div class="box row-span-2">4</div>
<div class="box col-span-2">5</div>

</div>

The end result is the same.

As we can see, CSS grids allow us to easily build complex layouts that are almost impossible to
build with CSS 2.x without using some sort of dirty hacks and/or complicated workarounds.

Creating a Complete Article Design
In this section, we’ll explore how to create a complete article/post design, employing Tailwind
utility classes for layout, typography, colors, images, and a bit of interactivity. The final result is
shown below.

3-12. The finished layout

Creating the Base Layout

OK. Let’s do some coding. In the root directory, create a new article.html file with the following
content:

<!-- /article.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" type="text/css" href="tailwind.css">

</head>
<body>
<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-sky-50">
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas varius vitae ...</p>
<quote class="px-4 py-2 block border-l-4">Lorem ipsum dolor sit amet, consectetur ...</quote>
<p>Aliquam id nulla dignissim felis bibendum aliquam. Cras vulputate blandit semper ...</p>

<p>Vestibulum congue felis at posuere commodo. Praesent sapien magna, aliquet ut </p>
<p>Aenean scelerisque urna id dictum tempor. Pellentesque ipsum orci, convallis eget ...:</p>
<ul class="ml-6 pl-6 space-y-3">
First item
Second item
Third item

<p>Pellentesque tincidunt non orci id congue. Donec blandit pulvinar leo et tincidunt...</p>
<hr>
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-[16px]"
➥src="https://source.unsplash.com/WNoLnJo7tS8" />
<div>
<p class="-mt-3">David Smith</p>
<p class="mt-2">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas
➥varius vitae ipsum et commodo.</p>

</div>
</div>

</div>
</body>

</html>

Here’s a live version of that code on CodePen.

https://codepen.io/SitePoint/pen/abEEMzO

We’ll start by creating an article container:

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-sky-50">

</div>

We’ve added some visual space (space-y-6) between all direct children elements. Then we’ve
added two width modifiers (md:w-1/2 xl:w-1/3) that will produce the following effect: the article
will start at full width at small screens (this is by default) up to the medium screens, where the
width will change to one and a half. This setting will prevail up to the extra large screens and
above, where the width will change to one third. Also starting from medium screens and above,
the article will be centered, thanks to the md:mx-auto property.

Next, we’ll add the article content:

<p>Lorem ipsum dolor..</p>
<quote class="px-4 py-2 block border-l-4">Lorem ipsum dolor..</quote>
<p>Aliquam id nulla..</p>

<p>Vestibulum congue felis..</p>
<p>Aenean scelerisque urna.. In non dolor nec purus semper tempus:</p>
<ul class="ml-6 pl-6 space-y-3">
First item
Second item
Third item

<p>Pellentesque tincidunt non..</p>

Here, we’ve added the following elements:

a paragraph
a quote with basic styling and border
another paragraph
an rounded and floated left image with half width
another two paragraphs
a list

Abbreviated Text

For brevity’s sake, I haven't used the full paragraph text here in the book. But you need
to use the full text to display the example correctly; you can grab it from the CodePen
linkd above.

and the last paragraph

Finally, we’ll add the author section:

<hr>
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-[16px]"
src="https://source.unsplash.com/WNoLnJo7tS8" />
<div>
<p class="-mt-3">David Smith</p>
<p class="mt-2">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas
➥varius vitae ipsum et commodo.</p>

</div>
</div>

Here, we’ve added an hr element to divide the author section from the article content. We’ve
then wrapped the author info in a flex container. We’ve styled the image with a polaroid-like
effect by using border classes. To achieve this, we’ve used an arbitrary value of 16px for the
bottom border. To style the link, we’ve used the underline underline-offset-1 classes, which
add a line with a small offset.

We now have a base layout that we can build upon. Let’s continue developing the article design
by adding some typographical features.

Typography

In this section, we’ll explore typographical features such as drop caps. Here’s what the code
should look like after the additions:

<!-- /article.html -->
<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-sky-50">
<p class="first-letter:-mt-2 first-letter:mr-3 first-letter:float-left first-letter:text-7xl
➥first-letter:font-bold first-line:uppercase first-line:tracking-widest">Lorem ipsum dolor..</p>
<quote class="px-4 py-2 block border-l-4 font-light italic">Lorem ipsum dolor..</quote>
<p class="indent-6">Aliquam id nulla..</p>
<img class="mr-3 w-1/2 float-left rounded"
src="https://source.unsplash.com/ZEfzyduAyJU">
<p class="indent-6">Vestibulum congue felis..</p>
<p class="indent-6">Aenean scelerisque urna.. In non dolor nec purus semper tempus:</p>
<ul class="ml-6 pl-6 space-y-3 list-disc">
First item
Second item
Third item

https://tailwindcss.com/docs/adding-custom-styles#using-arbitrary-values

<p class="indent-6">Pellentesque tincidunt non..</p>
<hr>
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-[16px]"
src="https://source.unsplash.com/WNoLnJo7tS8" />
<div>
<p class="-mt-3 font-semibold">David Smith</p>
<p class="mt-2 text-sm">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas
➥varius
➥vitae ipsum et commodo.</p>

</div>
</div>

</div>

This CodePen demo shows our typography settings in action.

To create a drop cap and style the first line of the paragraph, we’ve used the first-letter and
first-line pseudo elements (first-letter:-mt-2 first-letter:mr-3 first-letter:float-
left first-letter:text-7xl first-letter:font-bold first-line:uppercase first-

line:tracking-widest).

3-13. The first letter set as a drop cap

We’ve also added some indent (indent-6) to all paragraphs except the first one for easier
reading.

We’ve made the text for the quote thin and italic (font-light italic).

We’ve added a disc symbol (list-disc) for the list item bullets.

We’ve made the font for the author’s name semibold (font-semibold) and the text for author’s
info small (text-sm). Finally, we’ve decorated the link by changing its thickness and style
(decoration-1 decoration-wavy).

https://codepen.io/SitePoint/pen/ZEvvPgO

The article is starting to look a lot nicer, but it’s still is missing a bit of liveliness. Let’s fix that by
adding some colors and gradients.

Colors and Gradients

We know already the base use of colors, but now we’ll explore how to use gradients too. Here’s
the code with added colors:

<!-- /article.html -->
<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-sky-50">
<p class="first-letter:-mt-2 first-letter:mr-3 first-letter:float-left first-letter:text-7xl
➥first-letter:font-bold first-letter:text-cyan-400 first-line:uppercase first-line:tracking-widest
➥first-line:text-cyan-600">Lorem ipsum dolor..</p>
<quote class="px-4 py-2 block border-l-4 border-cyan-400 font-light italic bg-gradient-to-r
➥from-teal-100 to-cyan-300">Lorem ipsum dolor..</quote>
<p class="indent-6">Aliquam id nulla..</p>

<p class="indent-6">Vestibulum congue felis..</p>
<p class="indent-6">Aenean scelerisque urna.. In non dolor nec purus semper tempus:</p>
<ul class="ml-6 pl-6 space-y-3 list-disc marker:text-cyan-400 text-gray-600">
First item
Second item
Third item

<p class="indent-6">Pellentesque tincidunt non..</p>
<hr class="text-cyan-600">
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-[16px] border-red-600"
src="https://source.unsplash.com/WNoLnJo7tS8" />
<div>
<p class="-mt-3 font-semibold text-stone-900">David Smith</p>
<p class="mt-2 text-sm">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas
➥<a href="#" class="underline underline-offset-1 decoration-1 decoration-wavy
➥decoration-cyan-600 hover:text-cyan-600">varius vitae ipsum et commodo.</p>

</div>
</div>

</div>

You can see these color changes on this CodePen demo.

Firstly, we’ve added colors for the drop cap (first-letter:text-cyan-400) and the first line of the
paragraph (first-line:text-cyan-600). We’ve also added color for the quote element’s border
(border-cyan-400) and a gradient for the body (bg-gradient-to-r from-teal-100 to-cyan-300).

The pattern for making gradients is from-{color} via-{color} to-{color} . Let’s break it down:

https://codepen.io/SitePoint/pen/jOYYROE

from-{color} : set the starting color of a gradient
via-{color} : add a middle color (or colors) to a gradient (this is optional)
to-{color} : set the ending color of a gradient

The bg-gradient-to-r class defines the direction of the gradient—from left to right.

3-14. Background colors and gradients added

Next, we’ve added color to the list items (text-gray-600) and their bullets by using the marker

pseudo element (marker:text-cyan-400). We’ve also colored the hr element’s line (text-
cyan-600) to fit the article theme.

We’ve made the author image border red (border-red-600) and author name next to it dark
brown (text-stone-900). And the last color change is to the link. We’ve colored the underline and
changed the text color on hover (decoration-cyan-600 hover:text-cyan-600).

3-15. The styled author bio

And that’s it. Now our article design looks much more vivid and alive. To extend this further, let’s
now enhance the appearance of the images with some effects.

Adding Image E+ects
In this section, we’ll explore how you can make your images more visually appealing. We’ll add
sepia and drop-shadow effects by using the corresponding Tailwind filters. Besides that, we’ll use
arbitrary values to clip the image and make text flow around it. Here’s the code with image
effects added:

<!-- /article.html -->
<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-sky-50">
...
<img class="mr-3 w-1/2 float-left rounded hover:sepia hover:drop-shadow-lg [clip-path:circle
➥(80%_at_30%_20%)] [shape-outside:circle(80%_at_30%_20%)]"
➥src="https://source.unsplash.com/ZEfzyduAyJU">
<p class="indent-6">Vestibulum congue felis..</p>

...
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-[16px] border-red-600 shadow-md
➥shadow-red-900" src="https://source.unsplash.com/WNoLnJo7tS8" />
<div>
<p class="-mt-3 font-semibold text-stone-900">David Smith</p>
<p class="mt-2 text-sm">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas
➥<a href="#" class="underline underline-offset-1 decoration-1 decoration-wavy
➥decoration-cyan-600 hover:text-cyan-600">varius vitae ipsum et commodo.</p>

</div>
</div>

</div>

You can see the code live in this CodePen demo.

For the article image, we’ve firstly added two filters that will take effect on hover (hover:sepia

https://tailwindcss.com/docs/sepia
https://tailwindcss.com/docs/drop-shadow
https://codepen.io/SitePoint/pen/RwxxOaq

hover:drop-shadow-lg). Then we’ve used the power of arbitrary properties to clip the image
([clip-path:circle(80%_at_30%_20%)]) and force the text to flow around it ([shape-
outside:circle(80%_at_30%_20%)]).

3-16. Image sepia effect on hover

For the author image, we’ve used a regular shadow (shadow-md) with a dark red color (shadow-
red-900) for a more natural look.

Now the article looks even more attractive, but let’s take it to the limit by adding some
transforms and transitions.

Adding E+ects
In this final section, we’ll see how to add some bells and whistles to our article design. Here’s the
code with the effects added:

https://tailwindcss.com/docs/adding-custom-styles#arbitrary-properties

<!-- /article.html -->
<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-sky-50">
...
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-[16px] border-red-600 shadow-md
➥shadow-red-900 origin-bottom-left -rotate-6 hover:rotate-0 hover:scale-110
➥transition-transform duration-500"
➥src="https://source.unsplash.com/WNoLnJo7tS8" />
<div>
<p class="-mt-3 font-semibold text-stone-900">David Smith</p>
<p class="mt-2 text-sm">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas
➥<a href="#" class="underline underline-offset-1 decoration-1 decoration-wavy
➥decoration-cyan-600 hover:text-cyan-600">varius vitae ipsum et commodo.</p>

</div>
</div>

</div>

You can see these effects live in this CodePen demo.

Here are the classes we’ve added to the author image (origin-bottom-left -rotate-6
hover:rotate-0 hover:scale-110 transition duration-500). We’ve set the transform origin to be
in the bottom left of the image. We’ve then rotated the image slightly. When the image is hovered
over, the image will be rotated to its normal position and scaled up slightly. Finally, we’ve specified
that the transform property should transition when it’s changed (transition-transform), and
we’ve also set the transition duration (duration-500).

3-17. Hovering over the author image and text links

Great! Now our article design is complete and has a compelling look and feel.

Conclusion
So far, we’ve learned how to build complex layout designs with Tailwind’s grid utilities, and how
we can build a complete article design by combining many of Tailwind’s utilities for layout,

https://codepen.io/SitePoint/pen/wvppZzw

typography, colors, imagery, and interactivity.

To further explore and build on your Tailwind skills, I suggest you to try to make different variants
of the designs we’ve explored here and experiment with your own designs too.

In the next tutorial, we’ll explore various ways to customize Tailwind by overriding or extending
the base styles and default theme, and ways to create reusable configuration presets.

Customizing
Tailwind and

Optimizing Your
Work!ow

Chapter

4

So far in this Tailwind series, we’ve explored various ways to use the existing Tailwind utilities. In
this fourth tutorial, we’ll dive in even deeper and explore how we can customize Tailwind either by
adding new utilities or by tweaking existing ones.

Customizing Tailwind
Tailwind is already like a CSS Swiss Army knife, but nevertheless there will be times when we’ll
want to add extra features to it. In this section, we’ll explore the most common ways Tailwind can
be customized to suits our needs.

Firstly, we need to create a new Tailwind project (which we covered in the second tutorial).

Next, create an index.html file in the root directory and add the following content to it:

<!-- /index.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link href="tailwind.css" rel="stylesheet">
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css"
➥rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Carter+One&display=swap" rel="stylesheet">

</head>
<body>

</body>
</html>

We have a bunch of links here:

The first link includes the compiled Tailwind styles.
The second link includes the Font Awesome icons library. We’ll use its icons in the examples
later on.
The third link includes the Carter One font from the Google Fonts collection. We’ll incorporate
this font into the examples later on.

Project Code

You can 6nd the 6nished project for this tutorial in the code repo for this Tailwind
series.

https://github.com/spbooks/tailwind/tree/master/part-4
https://fontawesome.com/icons
https://fonts.google.com/specimen/Carter+One

The image below shows what this font looks like.

4-1. A sample of the Carter One font

To demonstrate Tailwind’s customization features, we’ll reuse the responsive header that we
created in the second part. We’ll copy the header section from CodePen and add it to the
index.html file:

<!-- /index.html -->
<!doctype html>
<html>
...

<body>
<header class="flex items-center justify-between flex-wrap bg-gray-800 py-4 w-full">

https://codepen.io/SitePoint/pen/xxppVdv?editors=1010

<div class="flex-shrink-0 ml-6">

<i class="fas fa-drafting-compass fa-2x text-yellow-500"></i>
WebCraft

</div>

<button id="nav-toggle" class="md:hidden p-2 mr-4 ml-6 my-2 border rounded border-gray-600
➥text-blue-200 hover:border-blue-200">
<i class="fas fa-bars fa-2x"></i>

</button>

<div class="pl-6 w-full md:w-auto hidden md:block" id="nav-content">
<ul class="md:flex">
<li class="mr-6 p-1 md:border-b-2 border-yellow-500">
Home

<li class="mr-6 p-1">
Services

<li class="mr-6 p-1">
Projects

<li class="mr-6 p-1">
Team

<li class="mr-6 p-1">
About

<li class="mr-6 p-1">
Contacts

</div>
</header>

<script>
document.getElementById('nav-toggle').onclick = function(){
document.getElementById("nav-content").classList.toggle("hidden");

}
</script>
</body>
</html>

We need to remember to add the script part too, as otherwise the menu won’t work.

Now we’re ready to dive into the actual customization.

Customizing the Default Tailwind Theme
As we saw in the second tutorial, to create a Tailwind configuration file we run this command:

npx tailwindcss init

Doing so creates the following file:

// tailwind.config.js
module.exports = {
content: [],
theme: {
extend: {},

},
plugins: [],

}

We’ve already explored the content key. Now we’ll focus on the theme key. The plugins key
will be explored in the next, final part of the series.

The default Tailwind theme can be either overridden or extended, or both. This gives us a great
amount of flexibility.

The theme key allows us to customize four base things: screens , colors , spacing , and core
plugins such as borderRadius , fontFamily , and so on. We’ll explore each one next, starting with
the screens.

Customizing Tailwind Theme’s Responsive Breakpoint Modi"er

The default responsive utility variants can be overridden by adding our own under the screens

key like this:

module.exports = {
theme: {
screens: {
'sm': '576px',
'md': '960px',
'lg': '1440px',

}
}

}

In this case, the default variants are discarded and won’t be available along with the newly added

ones.

If we want to keep the existing breakpoints and to extend them with one or more variants, we
have two options.

First, if we want to add larger variants, we just add them under the extend key:

module.exports = {
theme: {
extend: {
screens: {
'3xl': '1600px',

}
}

}
}

Here, the default variants are kept and the new one is added to them. This approach can be used
also to override a single breakpoint. In such a case, we use one of the default names and replace
its value with a new one. For example:

module.exports = {
theme: {
extend: {
screens: {
'md': '960px',

}
}

}
}

Here, the md variant’s value is replaced, while the rest of the variants keep their default values.

Second, if we want to add smaller breakpoints, things get a bit more complicated. In such a case,
we first need to add our smaller breakpoints, and then we must provide the default utilities after
them like so:

const defaultTheme = require('tailwindcss/defaultTheme')

module.exports = {
theme: {
screens: {
'xs': '475px',
...defaultTheme.screens,

}
}

}

Here, we first import the default theme and use its screens key to include the default
responsive utilities after the xs variant. You may notice that we don’t use the extend key here.
So in fact, we “extend” the breakpoints by redefining them. This is because, if we use the extend

key, smaller breakpoints will be added to the end of the list and the order from smallest to largest
will be incorrect. In such a case, the breakpoints won’t work as expected.

Customizing Tailwind’s Theme Colors

Tailwind offers a precisely selected color palette that will be enough in many scenarios. However,
in some cases, we might want to add some specific colors or shades to it—such as our brand
colors. In this case, we can extend the default colors like so:

module.exports = {
theme: {
extend: {
colors: {
maroon: {
50: '#e46464',
100: '#d05050',
200: '#bc3c3c',
300: '#a82828',
400: '#941414',
500: '#800000',
600: '#6c0000',
700: '#580000',
800: '#440000',
900: '#300000'

},
indigo: {
950: '#1d1a6d'

}
}

}
}

}

Here, we’ve added our new maroon color shades to the default colors, and also extended the
default indigo color with one more darker shade.

The image below shows what the maroon color palette looks like.

4-2. The maroon color palette

To generate the palette, I’ve used the Tailwind colors online tool, which automatically generates
the required code.

If we want to completely replace the default Tailwind color palette with our own custom colors,
we can do it this way:

module.exports = {
theme: {
colors: {
transparent: 'transparent',
current: 'currentColor',
'white': '#ffffff',
'black': '#000000',
'tahiti': {
100: '#cffafe',
200: '#a5f3fc',
300: '#67e8f9',
400: '#22d3ee',
500: '#06b6d4',
600: '#0891b2',
700: '#0e7490',

https://tailwind-colors.meidev.co/

800: '#155e75',
900: '#164e63',

}
}

}
}

Here, we’ve added simple white and black colors and tahiti color shades. We’ve also included
values like transparent and currentColor in case we want to use them in our project.

If we want to use some of Tailwind’s default colors, we can do so by importing them and using the
ones we need like so:

const colors = require('tailwindcss/colors')

module.exports = {
theme: {
colors: {
transparent: 'transparent',
current: 'currentColor',
black: colors.black,
white: colors.white,
gray: colors.gray,
emerald: colors.emerald,
indigo: colors.indigo,
yellow: colors.yellow,

},
},

}

Now you can use your colors as usual—for example, text-yellow-500 , bg-indigo-300 , and so
on.

Customizing Tailwind’s Spacing Utilities

Tailwind has a rich set of spacing utilities—which are detailed in the documentation on Tailwind’s
default spacing scale.

Naming Colors

We can use different names for our colors if we wish. For example, green:

colors.emerald . In this scenario, we would use it like this: text-green-400 , bg-

green-700 , and so on.

https://tailwindcss.com/docs/customizing-spacing#default-spacing-scale
https://tailwindcss.com/docs/customizing-spacing#default-spacing-scale

However, sometimes we might need a bit more precision. In such a situation, we can add the
needed utilities again in two ways.

We can just discard the Tailwind utilities and replace them with our own:

module.exports = {
theme: {
spacing: {
sm: '8px',
md: '12px',
lg: '16px',
xl: '24px',

}
}

}

Here, we’ve overridden Tailwind’s default spacing utilities and generated classes like w-lg and
h-md instead.

Alternatively, we can add the “missing” utilities while keeping all the defaults as well:

module.exports = {
theme: {
extend: {
spacing: {
'13': '3.25rem',
'15': '3.75rem',
'128': '32rem',
'144': '36rem',

}
}

}
}

We can use these new utilities in the same way as default ones. For example, to apply our custom
utilities for width and height, we write them like this: w-15 h-13 .

Customizing Tailwind’s Core Plugins

The last thing we can customize in the theme key is core plugins.

A core plugin is a utility with a series of different variations.

Here’s the default definition for the blur plugin/utility:

blur: {
0: '0',
none: '0',
sm: '4px',
DEFAULT: '8px',
md: '12px',
lg: '16px',
xl: '24px',
'2xl': '40px',
'3xl': '64px',

}

The blur plugin applies a blur filter to an element. Each variation applies a different amount of
blurring.

Let’s see now how we can customize it. As with all utilities, we can either extend a plugin or
override it.

In my view, the default blurring values are way too high. I prefer to have gentler blurring variations
with a smooth transition between them. So here’s an example of overriding a plugin’s values:

module.exports = {
theme: {
blur: {
'none': 'blur(0)',
'sm': 'blur(2px)',
DEFAULT: 'blur(4px)',
'md': 'blur(6px)',
'lg': 'blur(8px)',
'xl': 'blur(10px)'

}
}

}

We’ve added the plugin name as a key and provided our custom variations. The code above will
produce the following classes: blur-none , blur-sm , blur , blur-md , and blur-lg .

I’ve removed the 2xl and 3xl variations because they’re too exaggerated for me. The image
below shows the difference.

Default Key

It’s a common convention to use a key of DEFAULT for the class without a suf6x. This is
supported by all core plugins.

https://developer.mozilla.org/en-US/docs/Web/CSS/filter

4-3. A chart show different levels of blurring

The last two variations in the default version are barely visible. In my opinion, the customized
version looks much better.

You can find instructions for customization of each core plugin at the end of each plugin’s
documentation page—like this one for the blur plugin.

It’s also worth reading up on the default theme configuration for all core plugins.

A Practical Customization Example
In this section, we’ll apply all we’ve learned so far. We’ll replace the default responsive
breakpoints with our own, we’ll extend the theme with additional colors and spacing utilities, and
we’ll add the font we included in our HTML file earlier to the default font stack.

Open the tailwind.config.js file and replace its content with the following:

// /tailwind.config.js
const colors = require('tailwindcss/colors')

module.exports = {
content: ['./index.html'],
theme: {
screens: {
'phone': '640px',
'tablet': '768px',
'laptop': '1024px',

https://tailwindcss.com/docs/blur#using-custom-values
https://tailwindcss.com/docs/theme#configuration-reference

'desktop': '1280px',
},
extend: {
colors: {
primary: colors.yellow,
secondary: colors.blue,
neutral: colors.gray,

},
spacing: {
'4.5': '1.125rem',
'5.5': '1.375rem',
'6.5': '1.625rem',
'7.5': '1.875rem',
'8.5': '2.125rem',
'9.5': '2.375rem',

},
fontFamily: {
'display': ['"Carter One"'],

}
}

},
plugins: [],

}

Here, we’ve firstly added index.html to the content array.

Next, we’ve added four breakpoints with custom names that completely replace the default
variants. The breakpoints are now more verbose but also more descriptive and easy to grasp.

Next, under the extend key, we’ve created custom named colors and used the Tailwind colors to
define them. The reason here is similar. We want more descriptive names so they can be applied
more intuitively—for example, when we create buttons.

Next, we’ve extended the spacing utilities with custom ones that give us a bit more precision.
Sometimes our design needs to be pixel-perfect, so we might need a more precise scale.

Finally, we’ve extended the fontFamily core plugin to have a display font set. We’ve used only
the Carter One font here, but we can add as many as we like. Using a custom font instead of the
default fonts can make our design stand out. After all, we want our designs to be unique, right?

Now, to apply the changes, we should rebuild the styles manually—if we didn’t run the build script
with the watch flag. To do so, run npm run dev:watch .

We have the required styles, so now let’s use them. Replace the header section in the
index.html file with the following:

<!-- /index.html -->
<!doctype html>
<html>
...

<body>
<header class="flex items-center justify-between flex-wrap font-display bg-neutral-800 py-4 w-full">
<div class="flex-shrink-0 ml-6">

<i class="fas fa-drafting-compass fa-2x text-primary-500"></i>
WebCraft

</div>

<button id="nav-toggle" class="tablet:hidden p-2 mr-4 ml-6 my-2 border rounded border-neutral-600 text-secondary-200 hover:border-secondary-200">
<i class="fas fa-bars fa-2x"></i>

</button>

<div class="pl-6 w-full tablet:w-auto hidden tablet:block" id="nav-content">
<ul class="tablet:flex">
<li class="mr-5.5 p-1 tablet:border-b-2 border-primary-500">
Home

<li class="mr-5.5 p-1">
Services

<li class="mr-5.5 p-1">
Projects

<li class="mr-5.5 p-1">
Team

<li class="mr-5.5 p-1">
About

<li class="mr-5.5 p-1">
Contacts

</div>
</header>

</body>
</html>

What we’ve just done here is replace the following classes:

all md: occurrences with tablet:

yellow , blue , and gray classes with primary , secondary , and neutral respectively
mr-6 with mr-5.5

We’ve also added a font-display class in the header.

The image below shows the final result after the changes.

4-4. Our responsive header following the latest changes

Of course, visually the most notable difference is the new font. The other changes (apart from
the margin tweaks) are just class-name replacements that affect the visual appearance, although
the code is now a bit more descriptive.

Adding Base Classes
As we already know, Tailwind automatically adds Preflight base styles to each project by default.
These settings do things like remove the default browser styles for the headings, paragraphs,
lists, and so on, which may be unwanted.

So if we don’t want Preflight styles, we can disable them by setting the preflight value to false:

module.exports = {
corePlugins: {
preflight: false,

}
}

Usually this isn’t necessary, but it’s still worth knowing it’s an option.

In either case, with Preflight classes or without them, we can add our own base classes that can
override or extend Preflight, depending on whether a class already exists or not.

In the next example, we’ll override the classes for <h1> , <h2> , and <p> elements.

Open styles.css and add the following:

/* /styles.css */
@tailwind base;
@tailwind components;
@tailwind utilities;

@layer base {

https://tailwindcss.com/docs/preflight

h1 {
@apply text-2xl;

}
h2 {
@apply text-xl;

}
h1, h2, p {
@apply my-6 mx-4;

}
}

Here, we’ve changed the size for some headings and added margins for the same headings and
all paragraphs.

To see this in action, open index.html and add this content below the header:

<!-- /index.html -->
<!doctype html>
<html>
<body>
<h1>Main Heading Is Here</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce quis urna vitae sapien ...</p>

<h2>Second Heading Is Here</h2>

<p>Donec tempor odio sed sem porttitor, ac sodales dolor ultrices. Phasellus nec enim et ...</p>

<p>Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; ...</p>
</body>
</html>

Now, when you open it, you should see the headings and paragraphs displayed with a space
between them.

Rebuilding Styles

You should rebuild the styles to apply the changes. To do so, run the npm run

dev:watch command.

4-5. Our styled headings and paragraphs

Creating Con-guration Presets
If we want to reuse our configuration across different projects, Tailwind offers us a way to do so
by creating reusable configuration presets. A configuration preset is a number of settings
defined in the exact same way as those from the tailwind.config.js file. The only difference is
that they’re put in a different, separate file.

Using presets is very useful for creating branding and/or design systems.

Let’s suppose we have brand colors that we want to use in a project or perhaps in multiple
projects. In this scenario, we can create a preset with the brand colors. Let’s create a brand-

colors-preset.js file and put the following content inside:

// /brand-colors-preset.js
const colors = require('tailwindcss/colors')

module.exports = {
theme: {
extend: {
colors: {
primary: colors.yellow,
secondary: colors.blue,
neutral: colors.gray,

}
}

}
}

Here, we’ve moved the colors from the main configuration file into the preset. To include the
preset into your main configuration, add it under the presets key, as in the example below:

// /tailwind.config.js
module.exports = {
content: ['./index.html'],
presets: [
require('./brand-colors-preset.js')

],
theme: {
screens: {
'phone': '640px',
'tablet': '768px',
'laptop': '1024px',
'desktop': '1280px',

},
extend: {
spacing: {
'4.5': '1.125rem',
'5.5': '1.375rem',
'6.5': '1.625rem',
'7.5': '1.875rem',
'8.5': '2.125rem',
'9.5': '2.375rem',

},
fontFamily: {
'display': ['"Carter One"'],

}
}

},
plugins: [],

}

Here, we’ve removed the colors from the colors key and instead added them as a preset
defining our brand colors. This gives us more flexibility to easily change the brand colors in future

or use completely different colors if we wish.

We can also use multiple presets:

module.exports = {
presets: [
require('responsive-breakpoints-preset.js'),
require('brand-colors-preset.js'),
require('brand-fonts-preset.js'),

]
}

If there are overlapping classes in two or more presets, the classes specified in the last preset
will take precedence.

Conclusion
In this tutorial, we explored various ways to configure Tailwind, such as tweaking the default
theme by overriding and/or extending it, creating reusable presets, and tweaking the base
Tailwind styles.

In the next tutorial, we’ll end this series by exploring how we can use Tailwind's official plugins
and how we can make our own custom plugins.

Rebuilding Styles

You should rebuild the styles to apply the changes. To do so, run the npm run

dev:watch command.

Merging

Just as the tailwind.config.js settings are merged with the default con6guration,
the preset settings are merged with the tailwind.config.js . You can learn more
about merging in the Tailwind documentation.

https://tailwindcss.com/docs/presets#merging-logic-in-depth

Working with
Tailwind Plugins

Chapter

5

In the fourth tutorial of this series, we learned the most important ways to customize and extend
a default Tailwind theme.

Now, in this last tutorial, we’ll end our journey by exploring the one of Tailwind’s most powerful
features: plugins. We’ll firstly look at how to use the official Tailwind plugins. Then we’ll learn how
to create our own custom Tailwind plugins.

Getting Started
Let’s prepare for this tutorial by creating a new project (a process we covered in the second
tutorial).

Once we have our new project ready, the next step is to modify the content key, inside
tailwind.config.js , like so:

// /tailwind.config.js
module.exports = {
content: ['./examples/*.html'],
theme: {
extend: {},

},
plugins: [],

}

We’ll create several HTML example files before the end of this tutorial, so this tells Tailwind
where to look for them to build the required styles.

Using O,cial Tailwind Plugins
In this section, we’ll examine the Typography plugin—which is one of four plugins officially
maintained by the the Tailwind team.

The other three are:

Forms, which adds minimal default styles to all basic form elements
Aspect Ratio, which adds utilities for declaring a fixed aspect ratio to elements

Project Code

You can 6nd the 6nished project for this tutorial in the code repo for this Tailwind
series.

https://github.com/spbooks/tailwind/tree/master/part-5
https://tailwindcss.com/docs/typography-plugin
https://github.com/tailwindlabs/tailwindcss-forms
https://github.com/tailwindlabs/tailwindcss-aspect-ratio

Line Clamp, which adds utilities for text truncating after a fixed number of lines

The Typography plugin adds some default typographic styles that are difficult or impossible to
add manually. For example, a post content in a post template can be included in Markdown
format, which will be converted and rendered as HTML, but we don’t have access to that HTML in
the template:

<!-- A post template -->
<article>
{{ markdown }}

</article>

In a situation like this, the Typography plugin is used to inject the required classes dynamically in
the rendered HTML.

To use the plugin, we need to install it first:

npm install -D @tailwindcss/typography

Then, add the plugin inside the tailwind.config.js file, in the plugins array:

// /tailwind.config.js
module.exports = {
// ...
plugins: [
require('@tailwindcss/typography')

]
}

Now, create new a examples directory and add a typography.html file in it with the following
content:

<!-- /examples/typography.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Tailwind Typography Plugin Example</title>
<link href="../tailwind.css" rel="stylesheet">

</head>
<body>
<div class="bg-sky-50">

https://github.com/tailwindlabs/tailwindcss-line-clamp

<article>
<h1>Some Nice Title Here</h1>
<p class="lead">Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas</p>
<h2>1. A Heading 2 Here</h2>
<blockquote><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas</p>
</blockquote>
<p>Aliquam id nulla dignissim felis bibendum aliquam. Cras vulputate blandit semper.</p>
<figure>

<figcaption>Donec blandit pulvinar leo et tincidunt.</figcaption>

</figure>
<h2>2. Another Heading 2 Here</h2>
<p>Vestibulum congue felis at posuere commodo. Praesent sapien magna, aliquet ut</p>

List item
List item
List item

<p>Aenean scelerisque urna id dictum tempor. Pellentesque ipsum orci, convallis eget</p>

First item
Second item
Third item

<p>Pellentesque tincidunt non orci id congue. Donec blandit pulvinar leo et tincidunt ...</p>

</article>
</div>

</body>
</html>

Here, we have a bare-bones article structure with most of the elements the plugin can style
typographically. I only added a light blue background to the <div> container to make the
screenshots more distinguishable. The lead class, in the first paragraph, will be used by the
Typography plugin later on.

Run npm run dev:watch and open the file in the browser. The image below shows what we
should see.

5-1. Our layout so far, with minimal styling

At this stage, the article is mostly unstyled. Now it’s time to see the magic of the Typography
plugin. To use it in HTML, we need to include its classes and to utter the magic word: prose.

prose is the base class used by the Typography plugin. All other classes also start with this
class, as we’ll see shortly.

Add the prose class to the article tag like so: <article class="prose"> . Now reload the page
and behold the magic, as pictured below.

5-2. Our layout now has styling

The article looks much better with the plugin’s styles applied. It’s not perfect, but it’s a great
foundation for further customization.

Now let’s try the Typography plugin’s dark mode. First, replace the bg-sky-50 class of the
container <div> with bg-sky-900 to create a dark background. Then add the dark:prose-

invert class to the article like so: <article class="prose dark:prose-invert"> .

Reload the page, and boom. The image below shows what we get now.

5-3. Applying a dark theme to the layout

This little switch was just for showing you that the dark side exists, in case you need it! Let’s now
go back to the default version and continue our journey with the light theme. Remove the
dark:prose-invert class and set the container background back to bg-sky-50 .

The real power of the Typography plugin is that it provides modifiers for the typographic
elements so you can customize them individually.

Let’s try some of them now. Add the following classes to the <article> tag:

<!-- /examples/typography.html -->
<!-- ... -->
<body>
<div class="bg-sky-50 p-6">
<article class="prose
prose-h1:underline prose-h1:underline-offset-8
prose-h2:first-letter:text-cyan-600
prose-headings:text-cyan-900
prose-lead:text-cyan-600
prose-p:first-line:italic
prose-blockquote:text-cyan-600 prose-blockquote:border-cyan-600 prose-blockquote:mx-6
prose-figure:mx-6
prose-figcaption:text-center
prose-img:rounded-lg prose-img:drop-shadow-lg
prose-li:marker:text-cyan-600
">
<h1>Some Nice Title Here</h1>
<!-- ... -->

Here, I’ve added some space around the article (for a nicer look and feel) by adding some padding
(p-6) to the container <div> .

I’ve grouped the prose classes by element (for better readability and maintainability), so each
line contains classes for one specific element.

To set a utility for a particular element, we start with the prose class, followed by a colon and
then the utility: prose-h1:underline .

Don’t Forget prose

The base prose class must always be present before using the other classes.

https://tailwindcss.com/docs/typography-plugin#element-modifiers
https://tailwindcss.com/docs/typography-plugin#element-modifiers

Only one utility can be added for a prose class instance. We can’t add a sequence of utilities like
this: prose-h1:underline underline-offset-8 .

Instead, we must define them individually: prose-h1:underline prose-h1:underline-offset-8 .

When we stack prose classes with other modifiers, we start with the prose class, followed by
the modifier(s), and lastly the utility, like so: prose-h2:first-letter:text-cyan-600 .

prose-lead targets an element with class lead as the first paragraph of the article.

Basically, these are the rules for using the prose classes.

Let’s go back to the browser now to see what we’ve achieved so far. Reload the page and enjoy a
fully styled article, as shown below.

5-4. The fully styled article

Building Custom Tailwind Plugins
In this section, we’ll look at how to create custom Tailwind plugins.

We’ll create two small plugins:

a counters plugin, which will add the ability to automatically add numbers to the document
headings or whatever other elements we want
an arrows plugin, which will add the ability to incorporate CSS arrow shapes/icons into our
designs

Creating the Counters Plugin

This plugin will take advantage of the CSS counters feature. It will add automatic numbers for
document headings by default. Also, it will allow for automatic numbering of any other elements
to be added by using the necessary classes provided by the plugin.

To start, create a new plugins directory and add a new counters.js file in it with the following
content:

// /plugins/counters.js
const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, addComponents, theme }) {
// put plugin logic here

})

module.exports = counters

Running dev:watch

From now on, we don’t need to stop and run the dev:watch command again, because
the custom plugins don’t need to be installed. But it’s good to make sure the command
is still running before we test the HTML example 6les. Sometimes, while we’re making
changes, a syntactic error can stop the execution of the script. In this case, we’ll see an
appropriate error message in the terminal, such as SyntaxError: Unexpected

identifier . To apply the changes we’ve made and see a proper HTML result, we need
to start the script again with npm run dev:watch .

https://tailwindcss.com/docs/plugins
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Counter_Styles/Using_CSS_counters

A plugin is created by the plugin() function (required in the beginning), which takes an
anonymous function as its first argument. The anonymous function takes a single object as
argument, which we can destructure for convenience. The destructured properties are Tailwind
functions for customizing various layers of Tailwind’s default styles. Here’s a list of each available
function:

addBase() adds base styles
addComponents() adds static component styles
matchComponents() adds dynamic component styles
addUtilities() adds static utility styles
matchUtilities() adds dynamic utility styles
addVariant() adds custom variants
theme() provides access to values in the user’s theme configuration
config() provides access to values in the user’s Tailwind configuration
corePlugins() checks if a core plugin is enabled
e() manually escapes strings meant to be used in class names

Now, add the following addBase() function:

// /plugins/counters.js
const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, theme }) {
addBase({
'h1': {
counterReset: 'level-1'

},
'h2': {
counterReset: 'level-2'

},
'h3': {
counterReset: 'level-3'

},
'h2::before, h3::before, h4::before': {
color: theme('colors.slate.600')

},
'h2::before': {
counterIncrement: 'level-1',
content: 'counter(level-1) ". "'

},
'h3::before': {
counterIncrement: 'level-2',
content: 'counter(level-1) "." counter(level-2) " "'

},

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://tailwindcss.com/docs/plugins
https://tailwindcss.com/docs/plugins

'h4::before': {
counterIncrement: 'level-3',
content: 'counter(level-1) "." counter(level-2) "." counter(level-3) " "'

},
})

})

module.exports = counters

Here, we’ve created three counters by using the counterReset property.

Then we’ve set the counters to be used for h2 , h3 , and h4 heading elements by using the
counterIncrement property. We’ve set the actual numbers by using the content property, where

we’ve used the counter() function—which returns the current value of the named counter.
We’ve also concatenated each nested heading with the previous one(s).

Finally, we’ve added a color for the numbers in the headings by using the theme() function,
which allows us to reuse the default Tailwind colors. Note that the dash we usually see between
color name and number (such as slate-600) is replaced by a dot here: slate.600 . This is
because the colors for the Tailwind theme are represented by JavaScript objects, so we need to
use dot notation to access their properties and methods.

Let’s test what we’ve achieved so far. To do so, in the examples directory, create a new
counters.html file with the following content:

<!-- /examples/counters.html -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>CSS Counters Example</title>
<link href="../tailwind.css" rel="stylesheet">

</head>
<body class="prose">
<div class="m-3">
<p class="text-3xl text-red-700">Counters Based on Heading Elements:</p>
<h1>Web Development Languages</h1>
<h2>HTML</h2>
<h2>CSS</h2>
<h3>Tailwind</h3>
<h3>Bootstrap</h3>

<h2>JavaScript</h2>

<h3>Node</h3>
<h4>Express</h4>

<h3>Vue</h3>
<h4>Vuetify</h4>
<h4>Nuxt</h4>

</div>
</body>
</html>

Here, to make things more readable, we’ve used the prose class from the Typography plugin.

Now, add the plugin to the Tailwind configuration:

// /tailwind.config.js
module.exports = {
// ...
plugins: [
require('@tailwindcss/typography'),
require('./plugins/counters')

]
}

Finally, open the counters.html in your browser. The image below shows what you should see.

The .js Extension

There’s no need to add the .js extension. Tailwind automatically recognizes the 6le.

5-5. Our numbered headings

As you can see, with no classes added to the HTML, we get nice and proper numbering for the
heading elements.

Great! But what if we want to add numbering for different elements? We can do this too. Let’s

see how now.

Go to the counters.js file and replace its content with the following:

// /plugins/counters.js
const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, addUtilities, theme }) {
addBase({
'h1': {
counterReset: 'level-1'

},
'h2': {
counterReset: 'level-2'

},
'h3': {
counterReset: 'level-3'

},
'h2::before, h3::before, h4::before': {
color: theme('colors.slate.600')

},
'h2::before': {
counterIncrement: 'level-1',
content: 'counter(level-1) ". "'

},
'h3::before': {
counterIncrement: 'level-2',
content: 'counter(level-1) "." counter(level-2) " "'

},
'h4::before': {
counterIncrement: 'level-3',
content: 'counter(level-1) "." counter(level-2) "." counter(level-3) " "'

},
})
addUtilities({
'.collection': {
counterReset: 'collection'

},
'.item::before': {
counterIncrement: 'collection',
content: 'counters(collection,".") " "'

}
})

})

module.exports = counters

Here, we’ve added the addUtilities() function (which we first define in the destructured

object) to create two classes. The first—the collection class—creates a new counter. The
second—the item class—adds a number before the element on which it’s used. Here, we’ve
used the counters() function (ending with s), which returns a concatenated string
representing the current values of the named counters.

To test this feature, replace the content of counters.html with the following:

<!-- /examples/counters.html -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>CSS Counters Example</title>
<link href="../tailwind.css" rel="stylesheet">

</head>
<body class="prose">
<div class="m-3">
<p class="text-3xl text-red-700">Counters Based on Heading Elements:</p>
<h1>Web Development Languages</h1>
<h2>HTML</h2>
<h2>CSS</h2>
<h3>Tailwind</h3>
<h3>Bootstrap</h3>

<h2>JavaScript</h2>
<h3>Node</h3>
<h4>Express</h4>

<h3>Vue</h3>
<h4>Vuetify</h4>
<h4>Nuxt</h4>

<p class="text-3xl text-red-700 mt-12">Counters Based on Class Utilities:</p>
<div class="collection">
<p class="item">HTML</p>
<p class="item">CSS</p>
<p class="item">JavaScript</p>
<div class="collection">
<p class="item">Node</p>
<p class="item">React</p>
<p class="item">Vue</p>
<div class="collection">
<p class="item">Nuxt</p>
<p class="item">Vuetify</p>

</div>
</div>

</div>

</div>
</body>
</html>

Here, we’ve added a section—below the first example—in which we’re using the plugin classes.
By nesting our collections with items, we get nested numbering for the paragraph elements.

Open or reload the counters.html file. The image below shows what you should see.

5-6. Numbered headings along with other numbered elements

Because of the utilities we’ve added, we can add numbering to any element we want.

Creating the Arrows Plugin

This arrows plugin will use a technique for creating different shapes with CSS—which shouldn’t
be confused with the CSS Shapes module). It will produce four arrows that we can use as icons in
our designs.

To start, create a new arrows.js file in the plugins directory with the following content:

// /plugins/arrows.js
const plugin = require('tailwindcss/plugin')

const arrows = plugin(function({ addComponents }) {
addComponents({
'.arrow': {
border: 'solid black',
borderWidth: '0 3px 3px 0',
display: 'inline-block',
padding: '3px',
marginLeft: '5px'

},
'.arrow-up': {
transform: 'rotate(-135deg)'

},
'.arrow-right': {
transform: 'rotate(-45deg)'

},
'.arrow-down': {
transform: 'rotate(45deg)'

},
'.arrow-left': {
transform: 'rotate(135deg)'

},
})

})

module.exports = arrows

Here, we’ve used the addComponents() function to define the necessary classes. The first arrow

class adds the base for all arrows. Then we’ve added the remaining four classes that define the
four possible directions of an arrow.

To test it, create a new arrows.html file in the examples directory with the following content:

<!-- /examples/arrows.html -->
<!DOCTYPE html>

https://css-tricks.com/the-shapes-of-css/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Shapes

<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>CSS Arrows Example</title>
<link href="../tailwind.css" rel="stylesheet">

</head>
<body class="prose p-6">
<h2>Tree-View Dynamic List with CSS Arrows:</h2>

JavaScript
<ul class="section hidden">
Node
React
Vue
<ul class="section hidden">
Nuxt
Vuetify
Quasar
<ul class="section hidden">
Components
Composables
Directives

<script>
let toggles = document.getElementsByClassName("toggle")
let sections = document.getElementsByClassName("section")

for (let i = 0; i < toggles.length; i++) {
toggles[i].addEventListener("click", function() {
let section = sections[i]
section.classList.contains('hidden') ? section.classList.remove('hidden') :
➥section.classList.add('hidden')
this.classList.toggle("after:arrow-down")

})
}

</script>
</body>
</html>

Here, we’ve created a dynamic tree-view list. Each list item (marked with a toggle class), which
contains a nested list or lists (marked with a section class), gets a right arrow icon by using the
arrow and arrow-right classes and after: pseudo-element. Each nested list is hidden by

default with the help of the hidden class.

In the <script> tag, we first get all toggles and sections. Then we iterate through toggles and
add a click event listener for each one. When the function is executed, it toggles the hidden and
after:arrow-down classes. This results in showing/hiding the corresponding nested list(s) and

changes the toggle icon accordingly.

Let’s add the plugin to the Tailwind configuration:

// /tailwind.config.js
module.exports = {
// ...
plugins: [
require('@tailwindcss/typography'),
require('./plugins/counters'),
require('./plugins/arrows')

]
}

Now, open arrows.html in the browser. In the screenshot below, you can see how the list should
look and behave.

Using prose for Readability

The prose class is used again in this example for better readability.

5-7. A dynamic list with CSS arrows

As you can see, the arrows help to make the tree-view list more intuitive and descriptive.

Congratulations! You’ve just created two useful custom plugins.

Finding Community Plugins
Building your own plugin is great indeed, but it’s always a good idea to firstly check if there’s
already an existing plugin offering the functionality you need. If such a plugin exists, it’s probably
a better option to use that than to reinvent the wheel.

The best place to check for existing plugins and other cool stuff is Awesome Tailwind CSS.

Another one is Tailwind Toolbox.

https://github.com/aniftyco/awesome-tailwindcss#plugins
https://github.com/aniftyco/awesome-tailwindcss
https://www.tailwindtoolbox.com/plugins

When you choose a plugin, check if it’s still maintained, and also which Tailwind version it’s
written for. If it’s popular and widely used, this can be huge bonus too.

I want to recommend one plugin in particular that can be very useful: daisyUI, by Pouya Saadeghi.

5-8. The daisyUI home page

daisyUI provides a rich set of highly customizable and themeable components that come in two
versions: styled and unstyled. This is pretty flexible and means we can adapt it to any project.

You may be wondering why we don’t just use Bootstrap components instead (or any other
component-based framework). Well, the difference is that daisyUI offers a much easier way to
customize the components to suit our needs. daisyUI is fully themeable and offers many pre-
made themes out of the box. It even has a theme generator for building our own themes. So, give
it a try.

There’s a full list of the components provided by daisyUI on the daisyUI site.

Conclusion
In this tutorial, we firstly looked at how to use the official Typography plugin to add beautiful
default styling to the most used typographic elements. We then got our hands dirty by creating
two useful custom plugins.

https://daisyui.com/
https://twitter.com/saadeghi
https://daisyui.com/docs/customize/
https://daisyui.com/docs/themes/
https://daisyui.com/docs/themes/
https://daisyui.com/theme-generator/
https://daisyui.com/components/

1

2

3

4

5

And this marks the end of this series. Phew, it’s been a pretty long ride. If you’ve made it through
the entire series, congratulations! Let’s summarize what’s been achieved:

In the first part, we learned how to create a simple website design by using the basic

Tailwind utilities.

In the second part, we ventured a bit deeper and learned how to create Tailwind

components.

In the third part, we learned even more advanced Tailwind capabilities such as building grid

layouts, creating typographic styles, and using filters, transforms and transitions.

In the forth part, we explored the core of Tailwind theme customization and extension.

In this fifth and final part, we learned about the last Tailwind customization weapon:

plugins. We learned both how to create custom plugins and how to use the existing ones.

Now you can consider yourself to be an advanced Tailwind user. You have the complete skills
package necessary to build any design you can imagine. The sky’s the limit.

Thanks for traveling with me through this series of tutorials. Best of luck in your future journey
with Tailwind!

	Tailwind CSS: Craft Beautiful, Flexible, and Responsive Designs
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About the Author
	About SitePoint
	Table of Contents
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Getting Started with Tailwind CSS
	
	Component vs Utility Classes

	What Is Tailwind?
	What Is a Utility Class?

	What a Design System Is, and How It Can Help Us
	Up and Running with Tailwind
	Know Your HTML and CSS

	Exploring Tailwind Basics
	Responsive Web Design
	Layout
	Typography
	Colors
	Imagery: Icons and Images

	Building a Blog Starter Template
	Utility Class Help
	Base Styles
	Creating the Header
	The Design Process

	Creating the Main Content Area
	Creating the Side Content Area
	Creating the Newsletter Form Section
	Creating the Footer
	Tailwind Plugins

	Conclusion

	Going Beyond the Basics
	
	Getting Started with Tailwind
	Project Code
	Getting Ready
	Utility Class References
	Base Styles
	npx

	Creating Tailwind Components
	Extracting Classes into Reusable Components
	Building Tailwind Components with Vue
	Learning Vue
	Rebuilding Styles

	Creating a Responsive Layout
	Rebuilding Styles

	A Simple Example of Configuring Tailwind’s Styles
	Rebuilding Styles

	Conclusion

	Building Complex Designs with Tailwind
	
	Building Complex and Flexible Layouts with Tailwind’s Grid Utilities
	CSS Grid
	Project Code
	Exploring Tailwind’s Grid Utilities
	Numbering Grid Lines

	Creating Grid Layouts
	Demo Styles

	Creating a Complete Article Design
	Creating the Base Layout
	Abbreviated Text

	Typography
	Colors and Gradients

	Adding Image Effects
	Adding Effects
	Conclusion

	Customizing Tailwind and Optimizing Your Workflow
	
	Customizing Tailwind
	Project Code

	Customizing the Default Tailwind Theme
	Customizing Tailwind Theme’s Responsive Breakpoint Modifier
	Customizing Tailwind’s Theme Colors
	Naming Colors

	Customizing Tailwind’s Spacing Utilities
	Customizing Tailwind’s Core Plugins
	Default Key

	A Practical Customization Example
	Adding Base Classes
	Rebuilding Styles

	Creating Configuration Presets
	Rebuilding Styles
	Merging

	Conclusion

	Working with Tailwind Plugins
	
	Getting Started
	Project Code

	Using Official Tailwind Plugins
	Don’t Forget prose

	Building Custom Tailwind Plugins
	Running dev:watch
	Creating the Counters Plugin
	The .js Extension

	Creating the Arrows Plugin
	Using prose for Readability

	Finding Community Plugins
	Conclusion

