

Jump Start Git, Second Edition

Notice of Rights

Notice of Liability

Trademark Notice

About Shaumik Daityari

About SitePoint

https://www.sitepoint.com/

Chapter 1:

Chapter 2:

.gitignore

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

log

reflog

add

Chapter 8:

Chapter 9:

Chapter 10:

―

Who Should Read This Book?

Conventions Used

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back at school.</p>

⋮

function animate() {
⋮

new_variable = "Hello";
}

➥

URL.open("https://www.sitepoint.com/responsive-web-

➥design-real-user-testing/?responsive1");

Supplementary Materials

Tips provide helpful little pointers.

Notes are useful asides that are related—but not critical—to the topic
at hand. Think of them as extra tidbits of information.

... pay attention to these important points.

Warnings highlight any gotchas that are likely to trip you up along the
way.

https://www.sitepoint.com/community/

Chapter

1

exam.php exam1.php examfile.php

even I

Version Control

Examples of Version Control in Daily Life

The word “backup” above, as noted, refers to the process of creating
multiple copies of the same 2le. Git removes the need for that.
However, this is different from regularly backing up your 2les to an
external source—such as a portable drive or cloud storage—to ensure
you don’t lose anything following a disk failure.

https://en.wikipedia.org/wiki/Main_Page

Version Control Systems: the Options

Enter Git

Don’t confuse the abbreviations VCS (version control system) and CVS
(concurrent versions system). CVS is just one of the many kinds of
VCS.

http://git-scm.com/
https://mercurial.selenic.com/
http://bazaar.canonical.com/en/

Torvalds once explained in a Google Tech Talk his reasons for
creating Git. He has very strong views on the subject of version control,
and I suggest you go through the talk once to understand the
philosophy of Git. In this talk, Torvalds explains that he came up with
the name Git because he believes the silliest names are our best
creations. However, I recommend that you only watch the talk after
you’re comfortable with the basic Git operations, as it’s not a tutorial:
it’s aimed at users who have some knowledge of Git or other version
control systems.

https://www.youtube.com/watch?v=4XpnKHJAok8

Git and GitHub

https://github.com/

related to

Conclusion

https://bitbucket.org/
https://about.gitlab.com/

Chapter

2

Installation

apt-get

apt-get install git

brew install git

For Windows and macOS, you can also install Git as a part of a GUI tool
such as GitHub for Desktop and Sourcetree . We’ll cover GUI tools in
detail in Chapter 9. However, for most parts of this book, we’ll stick to
the command-line interface to really understand how Git works.

http://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://brew.sh/
http://git-scm.com/download/win
https://desktop.github.com/
https://www.sourcetreeapp.com/download/

README

The Git WorkAow

http://www.minix3.org/
http://www.helenos.org/
https://github.com/git/git/releases

Baby Steps with Git: First Commands

git config --global user.name "Shaumik"
git config --global user.email "sdaityari@gmail.com"
git config --global color.ui "auto"

color.ui "auto"

--global

username@hostname

git config --list

~.gitconfig ~

C:\Users\<username>\.gitconfig

mkdir my_git_project
cd my_git_project

my_git_project

git init

Just like git init , all Git commands start with the keyword git ,

followed by the command.

.git

.git

$ my_git_project shaumik$ git init
Initialized empty Git repository in /Users/shaumik/test/my_git_project/.git/

When working in the terminal, developers often use the Tab key for

autocompletion. However, this doesn’t work on Git commands by
default. You can install an autocomplete script for Git using the
following commands. Note that this only works on Linux and macOS.

Download the autocomplete script and place it in your home
directory:

curl https://raw.githubusercontent.com/git/git/master/
contrib/completion/git-completion.bash -o
~/.git-completion.bash

Add the following lines to the 2le ~/.bash_profile :

if [-f ~/.git-completion.bash]; then
. ~/.git-completion.bash
fi

If you’re using Git Bash on Windows, autocompletion is precon2gured.
If you’re using Windows command prompt (cmd.exe), you’ll need to

install Clink .

http://mridgers.github.io/clink/

$ my_git_project shaumik$ ls -al
total 0
drwxr-xr-x 3 shaumik staff 96 Mar 21 23:05 .
drwxr-xr-x 3 shaumik staff 96 Mar 21 23:05 ..
drwxr-xr-x 9 shaumik staff 288 Mar 21 23:05 .git

my_git_project

my_file myfile2 myfile3

git status

$ git status
On branch master

No commits yet

.git

Never edit any 2les in the .git directory. It can corrupt the whole

repository. This book doesn’t discuss the internals of Git, and thus
doesn’t include working on this hidden .git directory.

The 2le names my_file , myfile2 and myfile3 are used for

demonstration purposes. They signify three different 2les and not
different versions of the same 2le.

Untracked files:
(use "git add <file>..." to include in what will be committed)
my_file
myfile2
myfile3

nothing added to commit but untracked files present (use "git add" to track)

git add my_file myfile2 myfile3

git status is perhaps the most-used Git command—as you’ll see

over the course of this book. In simple terms, this command shows the
status of your repository. It provides a lot of information, such as which
2les are untracked, which are tracked and what their changes are,
which is the current “branch”, and what the status of the current
branch is with respect to a “remote” (we’ll discuss branches and
remotes later). You should frequently check the status of your
repository.

git add .

. git add .

$ git add my_file myfile2 myfile3
$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: my_file
new file: myfile2
new file: myfile3

$ git commit -m "First Commit"
[master (root-commit) ed90340] First Commit
3 files changed, 0 insertions(+), 0 deletions(-)

Don’t make a habit of using git add . , as you may end up adding

unnecessary 2les to the repository. You should add only those 2les that
are a part of your package. Adding 2les like compiled 2les and
con2guration 2les just increases the size of your repository.
Con2guration 2les may also contain database passwords, which could
lead to a security risk if committed to a repository that’s open to the
public.

create mode 100644 my_file
create mode 100644 myfile2
create mode 100644 myfile3

-m

-m

git commit

ed90340

Further Commits with Git

git diff

my_file

myfile2

A meaningful commit message is an essential part of your commit. You
can give a meaningless commit message like “Commit X”, but in the
future, it might be dif2cult for someone else (or even you) to
understand why you created that commit.

https://blog.thoughtram.io/git/2014/11/18/the-anatomy-of-a-git-commit.html

$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: my_file
modified: myfile2

$ git diff
diff --git a/my_file b/my_file
index e69de29..e32ce9e 100644
--- a/my_file
+++ b/my_file
@@ -0,0 +1 @@
+Sample line
diff --git a/myfile2 b/myfile2
index e69de29..d00491f 100644
--- a/myfile2
+++ b/myfile2
@@ -0,0 +1 @@
-Some more info
+Some more info! Changing this file too.

diff

+

-

-

+

diff

git diff my_file

git add my_file myfile2

git add -u

git commit -m "Made changes to two files"

Diff

As mentioned earlier, Git tracks only the 2les that you ask it to. The
git diff command shows the changes only in tracked 2les.

You can skip the adding (staging) of a modi2ed 2le by post2xing -a to

the git commit , which performs the add operation. However, you

should avoid doing this, because it can lead to mistakes. Firstly,
post2xing -a only adds tracked 2les—so you’d miss any untracked

2les that you may have wanted in the commit. Secondly, it may be that
you’ve modi2ed two 2les but want them to appear in separate
commits. A git commit -a would add both 2les to the same commit.

git add

git add

git commit git push

I mentioned earlier that git status is perhaps the most-used

command. However, the most important command is probably git

diff . Never stage 2les for commit before reviewing the changes

you’ve made in them. Also, stage 2les for commit individually after
carefully reviewing the changes that were made to them.

Commit History

git log

$ git log
commit 870e4d76e6dc6539315992f16a20f47a49e2ea79 (HEAD -$ master)
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sat Mar 21 23:31:16 2020 +0530

Made changes to two files

commit ed90340105b9511381d76706f8e5d4e7df3f6458
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sat Mar 21 23:16:28 2020 +0530

First Commit

git show ed90340

git show

git show ed90340
git show ed9034
git show ed903
git show ed90
git show ed9

ambiguous argument 'ed9': unknown revision or path not in the working tree.

The .gitignore File

.gitignore

.gitignore

git status

.gitignore

.gitignore

.exe .pyc

.DS_Store Thumbs.db

.gitignore

.gitignore

Although a 2le listed in .gitignore is not meant to be tracked, it’s

possible that you could accidentally tell Git to track a 2le that’s listed in
there. In earlier versions of Git (before Git 1.5.3.6), you won’t get any
error message. This is another reason you should avoid running git

add . , as it may cause 2les to be tracked by Git unintentionally.

https://github.com/git/git/blob/master/Documentation/RelNotes/1.5.3.6.txt#L39

configuration/
some_file.m
*.exe

configuration some_file.m

.exe

.gitignore

*.exe

somefile.exe

git status

$ echo "some line" > somefile.exe
$ git status
On branch master

nothing to commit, working tree clean

.gitignore

.gitignore .gitignore

.gitignore

Although it’s advisable to add the .gitignore 2le to your repository,

you can even hide the .gitignore 2le from Git. Just add a line

.gitignore to the 2le and Git will ignore the .gitignore 2le.

However, in such a situation, the 2le will only reside in the local copy of
the repository.

https://github.com/github/gitignore/blob/master/Rails.gitignore
https://github.com/github/gitignore/

Remote Repositories

.gitignore

Beginners often have a tendency to add a .gitignore 2le at the late

stages of a project. However, if a 2le is already committed and you add
it to the .gitignore 2le, it will continue to be committed in your

repository and tracked by Git. The only way out in this case is to
explicitly untrack the 2le in Git—after which Git will ignore the 2le. We’ll
discuss how to untrack a tracked 2le in Git in a later chapter.

GitHub isn’t the only option for setting up a remote. A remote may also
be on your own server. However, using cloud services like GitHub
offers bene2ts like eliminating the need to run a separate server. You
could also create remotes on GitLab or Bitbucket.

+

git remote add origin https://github.com/sdaityari/my_git_project.git
git push -u origin master

origin

push

-u

master

origin

Conclusion

.gitignore

Chapter

3

What Are Branches?

master

master

master

Although you’re free to use a different branch as your base branch in
Git, people usually expect to 2nd the latest, up-to-date code of a
particular project in the master branch.

https://en.wikipedia.org/wiki/Concurrent_Versions_System

master

feature 1

feature 2

git branch

-a

$ git branch
* master
$ git branch -a
* master
remotes/origin/HEAD -> origin/master
remotes/origin/another_feature
remotes/origin/master
remotes/origin/new_feature

origin

Create a Branch

git branch test_branch

test_branch git

branch master

checkout

$ git checkout test_branch
$ git branch
git branch
master

* test_branch

-b

checkout

$ git checkout -b new_test_branch
Switched to a new branch 'new_test_branch'

checkout

checkout is used for multiple purposes in Git. You’ll come across many

such examples over the course of this book. In this example, checkout

enables you to change the current branch of the repository, essentially
“checking out” to a new branch.

$ git branch
master

* new_test_branch
test_branch

master

old_commit_branch cafb55d

$ git checkout -b old_commit_branch cafb55d
Switched to a new branch 'old_commit_branch'
$ git log --oneline
cafb55d (HEAD -> old_commit_branch) Merge commit '5ef655a4caf8'
cc48fb3 Added lines 1 and 3 using add -p
5ef655a Fixed conflict from another_feature branch
96f7c5e Another change in the master branch
7534bc2 Some change in the master branch
49ed357 Added another feature
7e0eea2 (origin/new_feature) Removed line
f87d1a5 Dummy change
f934591 - Changed two files - This looks like a cooler interface to write commit
messages
8dd76fc My first commit

--oneline

renamed_branch

git branch -m renamed_branch

Delete a Branch

git branch -D new_test_branch

-D

-D

-d

-D -d

-d

$ git branch -d new_test_branch
The branch 'new_test_branch' is not fully merged. If you are sure you want to delete
it, run 'git branch -D test_branch'.

HEAD

HEAD

HEAD

As there’s not really any downside to keeping branches, as a
precaution I’d suggest not deleting them unless the number of
branches in the repository becomes too large to be manageable.

HEAD HEAD

BRANCH_ONE HEAD

BRANCH_ONE

→ → BRANCH_TWO

→ → → HEAD BRANCH_ONE

BRANCH_ONE → → →
BRANCH_TWO HEAD

Advanced Branching: Merging Branches

new_feature another_feature

another_feature

$ git checkout another_feature
Switched to a new branch 'another_feature'
$ git log --oneline
49ed357 Added another feature
7e0eea2 Removed line
f87d1a5 Dummy change
f934591 - Changed two files - This looks like a cooler interface to write commit
messages
8dd76fc My first commit
$ git checkout new_feature
Switched to a new branch 'new_feature'
$ git log --oneline

7e0eea2 Removed line
f87d1a5 Dummy change
f934591 - Changed two files - This looks like a cooler interface to write commit
messages
8dd76fc My first commit

HEAD

new_feature master

master

git checkout master
git merge new_feature

another_feature new_feature

new_feature

git checkout new_feature
git merge another_feature

new_feature

another_feature

The diagram above shows that this merge has created a loop in your
project history across the two commits, where the work3ows diverged
and converged, respectively. While working individually or in small
teams, such loops might not be an issue. However, in a larger
team—where there might have been a lot of commits since the time
you diverged from the main branch—such large loops make it dif2cult
to navigate the history and understand the changes. We’ll explore a
way of merging branches without creating loops using the rebase

command in Chapter 7, “Unlocking Git’s Full Potential”.

HEAD

--no-ff merge

git checkout master
git merge --no-ff new_feature

new_feature master

Conclusion

Chapter

4

origin

If you clone a repository, the source you clone it from is designated as
the origin remote by default.

git clone https://github.com/sdaityari/my_git_project.git

my_git_project

my_project

git clone https://github.com/sdaityari/my_git_project.git my_project

origin

$ git remote -v
origin https://github.com/sdaityari/my_git_project.git (fetch)
origin https://github.com/sdaityari/my_git_project.git (push)

-v --verbose

https

git clone /Users/donny/my_git_project

git https

git://github.com/sdaityari/my_git_project.git

git

https

https

https ssh https

https

credential.helper

git config --global credential.helper cache

git config --global credential.helper "cache --timeout=3600"

ssh

ssh

ssh

An alternative but less secure way of saving the username and
password inde2nitely would be to store them within the remote path
itself. In such a case, your remote would look like this:
https://sdaityari:password@github.com/sdaityari/

my_git_project.git .

ssh-keygen -t rsa -C "sdaityari@gmail.com"

~/.ssh/id_rsa.pub

cat

cat ~/.ssh/id_rsa.pub

cat ~

donny ~ /Users/donny/ /home/donny

ssh

If you use a Git GUI desktop client, the process of generating a key pair
and linking it with your GitHub account is done automatically by the
client. We’ll review clients in Chapter 9.

https://help.github.com/articles/generating-ssh-keys/#platform-windows
https://help.github.com/articles/generating-ssh-keys/#platform-windows
https://github.com/settings/ssh

Contributing to the Remote: Git Push Revisited

git push

git push

push

git push origin

origin

git push remote_name

remote_name

remote_name

git push remote_name branch_name

branch_name

branch_name

branch_name

git push remote_name local_branch:remote_branch

local_branch

remote_branch

master origin/

master push

Keeping Yourself Updated with the Remote: Git

Pull

git fetch remote_name

remote_name

git fetch

origin

fetch

git push

You can modify the syntax listed above to delete a branch on the
remote:

git push remote_name :remote_branch

In this command, you’re essentially sending an empty branch to the
remote_branch branch of remote_name , which empties the

remote_branch , or in other words deletes it on the remote. You should

therefore be careful while attempting this operation.

fetch

git merge origin/master

origin/master

fetch origin/master

pull git pull

git fetch git merge

pull

git pull origin master

git push

git pull

git pull

git pull master origin

git pull remote_name

master

remote_name

git pull remote_name branch_name

branch_name

remote_name

git pull remote_name local_branch:remote_branch

remote_branch

remote_name local_branch

git pull

Just as with merging, you can specify whether or not a pull should be a
fast-forward. It is by default, but this can be overridden with the
--no-ff post2x.

Dealing with a Rejected Git Push

master origin

origin/master B

D E

C origin/master

A fetch - merge or pull may result in a con3ict. Git raises a con3ict

when a change is made to similar lines in the same 2le in both
branches that you’re trying to merge. In such a case, you’ll need to
resolve the con3icts before completing the merge or pull . We’ll

discuss con3icts later in this chapter.

origin/master master

C master

ConAicts

base_branch

sample.py

CONSTANT = 5

In this example, we demonstrate a pull --rebase in Figure 4-6 rather

than just a pull. For now, just ignore this, as I’ll explain rebase in

Chapter 7, “Unlocking Git’s Full Potential”.

def add_constant(number):
return CONSTANT + number

conflict_branch

CONSTANT

friend_branch

CONSTANT

friend_branch

conflict_branch

$ git merge friend_branch
Auto-merging sample.py
CONFLICT (content): Merge conflict in sample.py
Automatic merge failed; fix conflicts and then commit the result.

sample.py

git status

$ git status

On branch conflict_branch

You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)
both modified: sample.py

no changes added to commit (use "git add" and/or "git commit -a")

<<<<<<< HEAD
CONSTANT = 7
=======
CONSTANT = 9
>>>>>>> friend_branch

def add_constant(number):
return CONSTANT + number

<<<<<<< HEAD =======

======= >>>>>>> friend_branch

friend_branch

friend_branch

CONSTANT = 9

def add_constant(number):
return CONSTANT + number

git add sample.py

git commit -m "Concluded merge with friend_branch"

In our simple example, there was just one con3ict in a single 2le. If
there are con3icts in multiple 2les, they’ll appear when you run git

status . You need to edit them individually to check which version to

keep. If there are multiple con3icts in the same 2le, you should search
for the word HEAD or <<<<< (multiple “less than” signs together are

rarely used in your source code) to 2nd out the instances within a 2le
where con3icts have arisen, and then work on them individually.

Conclusion

After initiating a merge that’s resulted in con3icts, if you’re
overwhelmed and want to go back to the pre-merge state, you can do
so by aborting the merge:

$ git merge --abort
$ git status
On branch master

nothing to commit, working tree clean

Chapter

5

The Centralized WorkAow

master

trunk

master

master

master

master

The Feature-branch WorkAow

master merge

rebase master

rebase

master

rebase

master

master

master

master

master

master

master

GitAow WorkAow

https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/

master develop

develop

master

feature

develop

develop

master develop

release

release release

develop

master

release

hotfix

hotfix

master hotfix

master develop

develop

Forking WorkAow

origin

upstream

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests

Conclusion

https://github.com/enterprise
https://confluence.atlassian.com/bitbucketserver/using-bitbucket-server-in-the-enterprise-776640933.html

blame bisect

Chapter

6

Amending Errors in the Git WorkAow

git add

mistake_file

git rm --cached mistake_file

rm rm

--cached

$ echo "something" >mistake_file
$ git add mistake_file
$ git status
On branch master

Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: mistake_file

$ git rm --cached mistake_file
rm 'mistake_file'
$ git status
On branch master

Untracked files:
(use "git add <file>..." to include in what will be committed)
mistake_file

nothing added to commit but untracked files present (use "git add" to track)

git rm --cached

If we simply delete the 2le, Git will show that a tracked 2le has been
deleted—a change that needs to be staged and committed to appear
in the history.

myfile2 git add

$ git status
On branch master

Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: myfile2

$ git reset HEAD myfile2
Unstaged changes after reset:
M myfile2
$ git status
On branch master

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: myfile2

no changes added to commit (use "git add" and/or "git commit -a")

HEAD

If you run just git rm without the --cached option, it will lead to an

error. The other option that can be post2xed with git rm is -f for

forced removal. The -f option untracks the 2le and then removes it

from your local system altogether. Therefore, you should be careful
when you’re removing tracked 2les if you use this option. All the same,
there is way to backtrack from rm -f too. Even if you commit after

using rm -f on a 2le, you can still get the 2le back by reverting to an

old commit. We’ll discuss the process of reset and reverting to an old
commit shortly.

$ git checkout myfile2
Updated 1 path from the index
$ git status
On branch master
(use "git push" to publish your local commits)

nothing to commit, working tree clean

checkout

$ git reset --soft HEAD~1
$ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: tests.py

checkout

Basically, checkout updates the 2le(s) in the current status of the

repository to an earlier version.

When we were changing branches, checkout changed the status of

2les to a different branch. In this case, checkout restores the 2le to its

version at the time of the last commit in the branch.

--soft

HEAD~1

HEAD

--hard

--hard

reset --mixed

--soft

--mixed

HEAD~1

We encountered HEAD earlier, and we know that it points to the last

commit in the current branch. I’ve added ~ to HEAD in the example

above. This refers to the parent of the last commit in the current
branch. You can also use ^ . Using either ~ or ^ refers to the parent

of the last commit in the current branch, while ~~ and ^^ both refer

to the grandparent of the last commit in the current branch. You can
also add numbers to move back a speci2c number of commits in the
hierarchy. However, adding numbers after either ~ or ^ can mean

different things:

~2

^2

You can also combine these post2xes. For instance, HEAD~3^2 refers

to the second parent of the great-grandparent commit, which you
reached through the 2rst parent and grandparent.

--hard

revert reset

revert

revert

$ git revert HEAD~1
[master 623a519] Revert "Update data.csv"
1 file changed, 6 insertions(+), 6 deletions(-)
$ git log --oneline
623a519 Revert "Update data.csv"
25313e5 Added new CSV file
c76ee85 Update data.csv
0d0d493 Added csv data

$ git commit --amend -m "New Message"
[master 8a15b20] New Message
Date: Sun Mar 22 00:48:43 2020 +0530
1 file changed, 6 insertions(+), 6 deletions(-)
$ git log --oneline
8a15b20 New Message
25313e5 Added new CSV file
c76ee85 Update data.csv
0d0d493 Added csv data
083e7ee Added yet another test

--amend -m

revert

git revert HEAD~1
git push origin master

reset

git

push HEAD

-f origin

git reset --hard HEAD~2
git push -f origin master

Debugging Tools

git blame

git bisect

git blame

git blame

-f

Post2xing -f is a dangerous move, as it rewrites the remote without

con2rming it. Make sure you double-check your local changes before
going for an -f push.

git blame

$ git blame my_file
^8dd76fc (Shaumik 2019-05-06 15:28:03 +0530 1) This is some information!
f934591c (Shaumik 2019-05-06 15:31:00 +0530 2)
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 3) Adding Line 1.
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 4)
f934591c (Shaumik 2019-05-06 15:31:00 +0530 5) Changing the content of this file.
7534bc23 (Shaumik 2019-05-15 03:16:48 +0530 6)
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 7) Adding Line 2.
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 8)
7534bc23 (Shaumik 2019-05-15 03:16:48 +0530 9) This change is in the master branch!
96f7c5e6 (Shaumik 2019-05-15 03:17:18 +0530 10) Another line in the master branch.
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 11)
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 12) Adding Line 3.
b1175163 (Shaumik 2019-05-10 00:44:48 +0530 13)
b1175163 (Shaumik 2019-05-10 00:44:48 +0530 14) Adding yet another line after sum.py

git blame

f934591c

$ git show f934591c
commit f934591cd1c04e4009dfa76a9684dda73cb30260
Author: Shaumik <sdaityari@gmail.com>
Date: Tue May 6 15:31:00 2019 +0530

- Changed two files
- This looks like a cooler interface to write commit messages

diff --git a/my_file b/my_file
index 362eab3..0a0bd57 100644
— a/my_file
+++ b/my_file
@@ -1 +1,3 @@
This is some information!
+
+I am changing the content of this file.
diff --git a/myfile2 b/myfile2
index d4a2d15..ec4dcc2 100644
— a/myfile2
+++ b/myfile2
@@ -1 +1 @@
-This is another file!
+This is another file! Changing this file too.

git show

bisect

bisect

do

bisect

bisect

git bisect

sum.py

#sum.py
def add_two_numbers(a, b):

'''
Function to add two numbers

'''
addition = a + b
return addition

if __name__ == '__main__':
a = 5
b = 7
print(add_two_numbers(a, b))

python sum.py

sum.py

#sum.py
def add_two_numbers(a, b):

'''
Function to add two numbers

'''
addition = 0 + b
return addition

if __name__ == '__main__':
a = 5
b = 7
print(add_two_numbers(a, b))

12 7

git bisect

$ git log --oneline
083e7ee Added yet another test
49a6bec Added more tests
5199b4e ERROR COMMIT: Introduced error in sum.py
b00caea Added tests.py
b117516 Dummy Commit after adding sum.py
7d1b1ec Added sum.py

083e7ee

7d1b1ec

git bisect start

7d1b1ec

git bisect good 7d1b1ec

$ git bisect bad 083e7ee
Bisecting: 2 revisions left to test after this (roughly 1 step)
[b00caea53381979ec1732d919d6f76e3baaf80fc] Added tests.py

start good bad

git bisect start 083e7ee 7d1b1ec

git bisect

git bisect

Notice that, in the code above, the bisect wizard tells you that there are
two revisions left for us to perform in this process until it ends.
Because bisect essentially performs a binary search, at each step it

tries to cut the number of revisions to check by half. In our case, there
are six commits to check, which will take about two steps. But 100
commits would require roughly seven steps, and 1000 commits would
require about ten steps.

If you want to know more about a commit during the time the bisect
wizard is running, you can run git show for the commit.

sum.py

b00caea 12

git bisect good

49a6bec

sum.py

git bisect bad

5199b4e

$ git bisect bad
Bisecting: 0 revisions left to test after this (roughly 0 steps)
[5199b4e10ba04b63ed1e76118259913123fbf72d] ERROR COMMIT: Introduced error in sum.py

git bisect reset

git bisect

bisect

test_sum.py

sum.py bisect

unittest

#test_sum.py
import unittest
from sum import add_two_numbers

class TestsForAddFunction(unittest.TestCase):

def test_zeros(self):
result = add_two_numbers(0, 0)
self.assertEqual(0, result)

def test_both_positive(self):
result = add_two_numbers(5, 7)
self.assertEqual(12, result)

def test_both_negative(self):
result = add_two_numbers(-5, -7)
self.assertEqual(-12, result)

def test_one_negative(self):
result = add_two_numbers(5, -7)
self.assertEqual(-2, result)

If you create a custom shell script to perform your tests, make sure it
has custom exit codes, in addition to printing messages on the
terminal about the status of the tests. In general, the 0 exit code is

considered a success, whereas everything else is a failure.

https://docs.python.org/3/library/unittest.html

if __name__ == '__main__':
unittest.main()

test_sum.py

python test_sum.py

git bisect start 083e7ee 7d1b1ec

git bisect run python test_sum.py

python test_sum.py

git bisect reset

Conclusion

git add

git commit

git push

If you’re using a testing script for the process of running bisect, be
aware that when Git is testing an old commit, it’s also checking against
the old version of the testing script.

You can instead provide your new test to the command by copying it
outside the repository and modifying the test command. Even when
old commits are being tested, your latest test 2les will be used for the
testing process.

Chapter

7

Advanced Use of log
log

log

log

log

log

commit 8a15b207acabf8abdd1750be48f1d748d51fb857
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Mar 22 00:48:43 2020 +0530

New Message

http://git-scm.com/docs/git-log
https://github.com/sdaityari/my_git_project
https://github.com/atutor/atutor/

--oneline

git log --oneline

8a15b20 New Message
cc251c6 Updates analytics account
31fb3d7 Addes 301 header to redirects
af519cf Created a more general function to check referrer

log

--all

$ git log --all
commit 8a15b207acabf8abdd1750be48f1d748d51fb857 (HEAD -> master)
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Mar 22 00:48:43 2020 +0530

New Message

commit d04ec3fa6e136d37ae16459ff8bde3ba8f0924a7 (origin/another_feature)
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Feb 9 01:24:48 2020 +0530

Commit Message

commit 25313e5016bea8b3ae470230b343c9ae1ebccc87 (origin/master, origin/HEAD)
Author: Shaumik Daityari <sdaityari@users.noreply.github.com>
Date: Tue Oct 8 21:09:00 2019 +0530

Added new CSV file

commit c76ee85387b5dcaf82ac676d15ccc952c927528b
Author: Shaumik Daityari <sdaityari@users.noreply.github.com>
Date: Sun Sep 2 02:51:40 2018 +0530

Update data.csv

--decorate

--oneline

$ git log --all --decorate --oneline
8a15b20 New Message
d04ec3f (origin/another_feature) Commit Message
25313e5 (origin/master, origin/HEAD) Added new CSV file
c76ee85 Update data.csv
0d0d493 Added csv data
083e7ee Added yet another test
49a6bec Added more tests
5199b4e ERROR COMMIT: Introduced error in sum.py

--graph

--all

$ git log --all --decorate --oneline --graph
* 8a15b20 New Message
* 25313e5 (origin/master, origin/HEAD) Added new CSV file
* c76ee85 Update data.csv
* 0d0d493 Added csv data
* 083e7ee Added yet another test
* 49a6bec Added more tests
* 5199b4e ERROR COMMIT: Introduced error in sum.py
* b00caea Added tests.py
* b117516 Dummy Commit after adding sum.py
* 7d1b1ec Added sum.py
* b198692 Cleaned junk
* 7ac171f Made some change to myfile2

* cafb55d Merge commit '5ef655a4caf8'
|\
| * 5ef655a Fixed conflict from another_feature branch
* | cc48fb3 Added lines 1 and 3 using add -p
* | 96f7c5e Another change in the master branch
* | 7534bc2 Some change in the master branch
| | * d04ec3f (origin/another_feature) Commit Message
| |/
| * 49ed357 Added another feature
|/
* 7e0eea2 (origin/new_feature) Removed line
* f87d1a5 Dummy change
* f934591 - Changed two files - This looks like a cooler interface to write commit
messages
* 8dd76fc My first commit

8dd76fc

49ed357 another_feature

another_feature 5ef655a

cafb55d

-n

git log -n 2

$ git log -2
commit 8a15b207acabf8abdd1750be48f1d748d51fb857 (HEAD -> master)
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Mar 22 00:48:43 2020 +0530

New Message

commit 25313e5016bea8b3ae470230b343c9ae1ebccc87 (origin/master, origin/HEAD)
Author: Shaumik Daityari <sdaityari@users.noreply.github.com>
Date: Tue Oct 8 21:09:00 2019 +0530

Added new CSV file

--after --before log

$ git log --after='2019-3-1' --before='2020-3-1'
commit 25313e5016bea8b3ae470230b343c9ae1ebccc87 (origin/master, origin/HEAD)
Author: Shaumik Daityari <sdaityari@users.noreply.github.com>
Date: Tue Oct 8 21:09:00 2019 +0530

Added new CSV file

--after --before --since --until

git log --after='2019-3-1'
git log --since='2019-3-1'

git log --before='2020-3-1'
git log --until='2020-3-1'

git log --after='2019-3-1' --before='2020-6-1'
git log --since='2019-3-1' --until='2020-6-1'

The speci2ed dates have to signify a date range, as it doesn’t make
sense for Git to search for a commit at a point in time. If you want to
2nd the commits on a particular day, you need to specify the whole day
in the range.

--follow

$ git log --oneline --follow tests.py
083e7ee Added yet another test
49a6bec Added more tests
b00caea Added tests.py

shortlog

git blame

We used the blame command earlier to get more information about

each line in a 2le, and which commit it’s associated with. blame

enables you to check only the current contents of a 2le. The log

--follow command, on the other hand, lists the changes the 2le has

gone through since Git started tracking the 2le.

Therefore, any part of the 2le that was removed in an earlier commit
will show up on the output of log --follow , but not on blame .

http://alexpeattie.com/blog/working-with-dates-in-git/

-n

$ git shortlog
git shortlog
Shaumik (18):

My first commit
- Changed two files - This looks like a cooler interface to write commit
messages
Dummy change
Removed line
Added another feature
Some change in the master branch
Another change in the master branch
Fixed conflict from another_feature branch
Added lines 1 and 3 using add -p

Shaumik Daityari (4):
Added csv data
Update data.csv
Added new CSV file
New Message

--author

git log --author='Shaumik'

--grep

$ git log --oneline --grep='test'
083e7ee Added yet another test
49a6bec Added more tests
b00caea Added tests.py

grep

When I introduced commits in this book, I mentioned the importance
of writing meaningful commit messages, even though it’s not
mandatory. Imagine how dif2cult it would be to search through
commits if your commit messages weren’t meaningful!

https://www.geeksforgeeks.org/regular-expression-grep/

Tagging in Git

grep

You can also use the terminal command grep (not to be confused

with Git’s grep option!) to search commit messages. The command

for that is:

git log --oneline | grep 'redirect'

The pipe (|) passes on the output of the command git log

--oneline to the second part, which searches for the word “redirect”

in it.

The terminal grep command works on Linux and macOS, but has no

native command substitute in Windows, although there’s a Findstr
command that performs a similar task. You can, however, install third-
party utilities like Cygwin and UnxUtils , which enable the use of the
grep command on Windows.

https://technet.microsoft.com/en-us/library/bb490907.aspx?f=255&MSPPError=-2147217396
http://www.cygwin.com/
http://unxutils.sourceforge.net/

git tag

$ git tag
Atutor_1.4.1
atutor_1_3_1
atutor_1_3_1_rc1
atutor_1_3_2
atutor_1_3_2_rc1
atutor_1_3_2_rc3
atutor_1_4_1
atutor_1_4_2
atutor_1_4_3
atutor_1_4_rc2
atutor_1_5

Atutor_1.4.1

git show Atutor_1.4.1

latest_commit

git tag latest_commit

-a -m

$ git tag -a latest_commit -m "this is the latest commit"
$ git show latest_commit
Tagger: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Mar 15 23:50:25 2020 +0530

this is the latest commit

commit 155526c8a4c35bc15716157837d02c9566b0941e (HEAD -> master, tag: latest_commit,
origin/master, origin/HEAD)
Merge: da5f598c6 3335389bf
Author: Greg Gay <gregrgay@gmail.com>
Date: Mon Sep 9 14:06:40 2019 -0400

Merge pull request #170 from MostafaSoliman/patch-1

Update header.php, thanks for the fix.

Atutor_1.4.1

version_1_4_1

git checkout -b version_1_4_1 Atutor_1.4.1

origin

git push origin --tags

git push origin Atutor_1.4.1

Refs and reflog
log

reflog

HEAD

HEAD ORIG_HEAD

MERGE_HEAD FETCH_HEAD

reflog

reflog

reflog

$ git reflog
8a15b20 (HEAD -> master) HEAD@{0}: checkout: moving from 5199b4e10b to master
5199b4e HEAD@{1}: checkout: moving from 49a6bec7c6 to 5199b4e
49a6bec HEAD@{2}: checkout: moving from b00caea to 49a6bec
b00caea HEAD@{3}: checkout: moving from master to b00caea
8a15b20 (HEAD -> master) HEAD@{4}: commit (amend): New Message
623a519 HEAD@{5}: revert: Revert "Update data.csv"
25313e5 (origin/master, origin/HEAD) HEAD@{6}: clone: from
https://github.com/sdaityari/my_git_project

reflog

reflog

Checking for Lost Commits
reflog

lost log

fsck

reflog

If you make a hard reset and lose a commit or two, you can safely go
back to any commit you made earlier. For instance, you can run the
reflog command, which would have a record corresponding to the

time when the commit was created, mentioning the commit hash.
When you know the hash, you can start a new branch based on that
commit to go back to the state of that commit.

The reflog command is like an insurance policy in Git.

reflog

The reflog command only tracks changes back for a certain amount

of time. Git is responsible for cleaning up the re3og data periodically,
which by default is 90 days. You can modify this value by specifying
the expire option of the command. If you want reflog never to

forget any action, run the following command:

git reflog expire --expire=never

>git fsck --lost-found
Checking object directories: 100% (256/256), done.
dangling commit 623a5196c885b7e8fc26d1519f3bf3d38cc97cf1

c9067

git merge c9067

Rebase

rebase

fsck is also a Unix command to check for and repair inconsistencies

in your 2le system. Don’t confuse it with the git fsck command,

which checks for inconsistencies in your commits.

fsck reflog

fsck has an advantage over reflog . Imagine you cloned a remote

branch and deleted it. The commits present there would never show
up on reflog , because they were never done on your local system.

However, fsck will list all the lost commits from that branch.

rebase git pull

master new_feature master

new_feature master

new_feature

git rebase master

git merge --rebase master

If you’re working in a team, you should 2rst checkout to master , pull

from the upstream branch to update your master with the latest

commits, and then switch back to new_feature before running the

above command.

rebase

git pull --rebase origin master

rebase

git rebase -i HEAD~2

HEAD~2 -i

--interactive

pick

squash

The last command assumes that you added commits to your master

branch and then updated it from the central repository. This is just for
the sake of argument, and not the best way to work in Git. Ideally, when
you work in your own branch and keep it updated using pull operations,
no con3icts would arise in the master branch.

Stash Changes

stash

git stash

$ git stash list
stash@{0}: WIP on master: 8a15b20 New Message
stash@{1}: WIP on master: 8a15b20 New Message

If a squash operation gets overwhelming, you can safely run git

rebase --abort to get back to the pre-squash state.

A squash operation changes the history of your branch. If you need to
push your changes after a squash operation, you need to use the -f

option, or your push will be rejected.

git stash apply

git stash apply stash@{1}

Advanced Use of add

add

stash

The stash command stashes the changes that have been made to

tracked 2les only. If you want to add an untracked 2le to the stash as
well, just start tracking it with git add before running the stash

command.

In newer versions of Git (1.7.7+), you can add the -u option to stash

untracked 2les without tracking them.

git diff

git add -p add

>git add -p
diff --git a/tests.py b/tests.py
index 3a722f0..57e1cfc 100644
— a/tests.py
+++ b/tests.py

@@ -3,15 +3,15 @@ import unittest
from sum import add_two_numbers

class TestsForAddFunction(unittest.TestCase):
-
+ # First comment

def test_zeros(self):
result = add_two_numbers(0, 0)
self.assertEqual(0, result)

-
+ # Second comment

def test_both_positive(self):
result = add_two_numbers(5, 7)
self.assertEqual(12, result)

-
+ # Third comment

def test_both_negative(self):
result = add_two_numbers(-5, -7)
self.assertEqual(-12, result)

$ Stage this hunk [y,n,q,a,d,s,e,?]? s

$ Stage this hunk [y,n,q,a,d,s,e,?]? s
Split into 3 hunks.
@@ -3,7 +3,7 @@
from sum import add_two_numbers

class TestsForAddFunction(unittest.TestCase):

-
+ # First Comment

def test_zeros(self):
result = add_two_numbers(0, 0)
self.assertEqual(0, result)

n

$ Stage this hunk [y,n,q,a,d,j,J,g,/,e,?]? n
@@ -7,7 +7,7 @@

def test_zeros(self):
result = add_two_numbers(0, 0)
self.assertEqual(0, result)

-
+ # Second Comment

def test_both_positive(self):
result = add_two_numbers(5, 7)
self.assertEqual(12, result)

$ Stage this hunk [y,n,q,a,d,j,J,g,/,e,?]? y

y n git status

$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: tests.py

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: tests.py

Cherry Pick

merge rebase

cherry-pick

cherry-pick

-a

After staging a part of a modi2ed 2le, you shouldn’t commit the
changes by post2xing -a . This would add the rest of the modi2ed 2le

too!

cherry-pick merge rebase

In merge or rebase , you join your current branch with a different

branch. All the commits of the other branch—that have happened
since it diverged from your branch—appear in your branch after the
merge . However, as the name suggests, you can pick a single commit

from a different branch and make it appear in your branch using
cherry-pick .

30dc1fa2d

git cherry-pick 30dc1fa2d

GitHub CLI

gh

brew install github/gh/gh

gh

Notice: authentication required
Press Enter to open github.com in your browser...

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://help.github.com/en/enterprise/2.15/user/articles/about-issues
https://help.github.com/en/enterprise/2.15/user/articles/about-issues
https://cli.github.com/
https://cli.github.com/
https://github.com/cli/cli/releases/tag/v0.5.7
https://github.com/cli/cli/releases/latest
https://github.com/cli/cli#installation-and-upgrading

Authentication complete. Press Enter to continue...

pr issue

gh pr list

>$ gh pr status

Relevant pull requests in sdaityari/my_git_project

Current branch
There is no pull request associated with [sdaityari:2e-consolidated-first-draft]

Created by you
#3 Added first draft of git dev cycle [sdaityari:git-dev-cycle]
#2 Rewrite code [sdaityari:code-rewritten]
#1 Added Git Workflow [sdaityari:new-git-workflows]

Requesting a code review from you
You have no pull requests to review

gh pr create

master

master

issue

gh issue status

Conclusion

log

shortlog

reflog

fsck

rebase

stash

add

cherry-pick

https://cli.github.com/manual/

Chapter

8

Git and DevOps

Using Git Hooks

.git/hooks

.sample

.sample

#!/bin/sh

#!/usr/bin/env bash

echo "Running pre-commit Git hook to run unit tests"
python ../../tests.py

$? stores exit value of the last command
if [$? -ne 0]; then
echo "Tests did not pass! Aborting commit."
exit 1
fi

Integrating Travis CI with GitHub

https://travis-ci.com/
https://medium.com/@blcsntb/travis-ci-for-bitbucket-32e776362baf
https://travis-ci.org/account/repositories

.travis.yml

language: python
python:

- "3.7"
- "3.8"

command to install dependencies
install: "pip install -r requirements.txt"

command to run tests
script: python tests.py

https://travis-ci.org/dashboard

git bisect

depth

git:
depth: 3

echo

before_install:
- echo "running before_install commands"
- python -c '# some_python_command'
- echo "pre-installation config complete"

after_script:
- echo "running after_script commands"
- python -c "#some_python_command"

https://docs.travis-ci.com/user/customizing-the-build/
https://docs.travis-ci.com/user/customizing-the-build/

- echo "after_script commands executed"

quiet git true

git:
quiet: true

blocklist
branches:
except:
- some_experimental_feature

safelist
branches:
only:
- master
- dev

cron

cron

services

before_install

services:
- docker

before_install:
Custom docker commands

Conclusion

Chapter

9

https://desktop.github.com/
https://www.sourcetreeapp.com/
http://www.git-tower.com/
http://www.gitboxapp.com/
http://www.syntevo.com/smartgit/index.html
https://git-fork.com/
https://www.gitkraken.com/
https://atom.io/
https://github.atom.io/
https://www.sublimetext.com/docs/3/git_integration.html
https://www.sublimetext.com/docs/3/git_integration.html
https://code.visualstudio.com/docs/editor/versioncontrol

GitHub Desktop

You can manage other local Git repositories with GitHub Desktop too,
but it’s tailor made for GitHub repositories. Although a bit confusing,
you can even manage Bitbucket repositories through the GitHub GUI
tool!

http://www.binarymoon.co.uk/2013/10/use-bitbucket-github-mac/

origin

origin

origin master

Sourcetree

https://www.sourcetreeapp.com/

origin/master

-D

branch_A branch_B branch_B

master gh-pages origin

master

HEAD

google_app

Sourcetree versus GitHub Desktop

Conclusion

Chapter

10

Git’s Meteoric Rise

http://www.eclipse.org/org/press-release/Eclipse_Survey_2009_final.pdf
http://www.google.com/trends/explore#q=git,svn

Will Git Continue to be Popular in the Future?

git status

https://blogs.microsoft.com/blog/2018/10/26/microsoft-completes-github-acquisition/
http://git-scm.com/#companies-projects
https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/
https://www.mercurial-scm.org/
http://facebook.github.io/react/

10 --depth

git clone --depth 10 https://github.com/sdaityari/my_git_project

--single-branch

git clone https://github.com/sdaityari/my_git_project --branch
↵ master --single-branch

Beyond Source Code Management

http://rocksdb.org/
http://blog.prasoonshukla.com/mercurial-vs-git-scaling
http://blog.prasoonshukla.com/mercurial-vs-git-scaling

.git

The End

http://versionpress.net/

	Jump Start Git, Second Edition
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About Shaumik Daityari
	About SitePoint
	Table of Contents
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Supplementary Materials

	Introduction
	
	Version Control
	Version Control Doesn’t Replace the Need for a Regular Backup Solution

	Examples of Version Control in Daily Life
	Version Control Systems: the Options
	VCS Is Not CVS

	Enter Git
	Git’s Philosophy
	Advantages of Distributed Version Control Systems

	Git and GitHub
	Conclusion
	What Have You Learned?
	What’s Next?

	Getting Started with Git
	
	Installation
	GUI Tools

	The Git Workflow
	Baby Steps with Git: First Commands
	Set Configuration Settings
	Create a Git Project
	Issuing Git Commands
	Git Autocomplete

	Create Our First Commit
	Don’t Edit .git
	Demonstration Only
	Checking the Status
	Beware of Adding Unwanted Files
	Make Your Commit Messages Meaningful!

	Further Commits with Git
	Diff Only Shows Changes in Tracked Files
	Beware of Shortcuts
	Always Review Your Changes
	Why git add Again?

	Commit History
	The .gitignore File
	Unintentionally Tracking a File Listed in .gitignore
	Hiding .gitignore from Git
	Set up Your .gitignore Early

	Remote Repositories
	GitHub Isn’t the Only Option

	Conclusion
	What Have You Learned?
	What’s Next?

	Branching in Git
	
	What Are Branches?
	Branch Conventions

	Create a Branch
	What Does checkout Do?

	Delete a Branch
	Don’t Delete Branches Unless You Have To
	Branches and HEAD

	Advanced Branching: Merging Branches
	Watch Out for Loops

	Conclusion
	What Have You Learned?
	What’s Next?

	Using Git in a Team
	
	The Source Is the origin

	Optional: Different Protocols While Cloning
	Alternative Credential Storage
	Git GUI Tools Can Generate Keys for You

	Contributing to the Remote: Git Push Revisited
	You Can Delete Branches Using git push

	Keeping Yourself Updated with the Remote: Git Pull
	Pulls Are Fast-forward by Default
	Here Be Conflicts!

	Dealing with a Rejected Git Push
	Rebase?

	Conflicts
	Multiple Conflicts
	Aborting a Merge with Conflicts

	Conclusion
	What Have You Learned?
	What’s Next?

	Git Workflows
	
	The Centralized Workflow
	Features
	New Team Member Orientation
	Pros and Cons
	Who Should Use the Centralized Workflow

	The Feature-branch Workflow
	Features
	New Team Member Orientation
	Pros and Cons
	Who Should Use the Feature-branch Workflow

	Gitflow Workflow
	Features
	New Team Member Orientation
	Pros and Cons
	Who Should Use the Gitflow Workflow

	Forking Workflow
	Features
	New Team Member Orientation
	Pros and Cons
	Who Should Use the Forking Workflow

	Conclusion
	What Have You Learned?
	What’s Next?

	Correcting Errors While Working with Git
	
	Amending Errors in the Git Workflow
	Undo Git Add
	Why Can’t I Just Delete the File?
	Forced Removal
	What Does checkout Really Do?

	Undo Git Commit
	What’s with HEAD~1?

	Undo Git Push
	Use -f with Caution

	Debugging Tools
	Git Blame
	Git Bisect
	Why is git bisect So Fast?
	Learn More About Each Commit

	Automated Bisect with Unit Tests
	Exit Codes in Custom Shell Scripts
	Beware of Using Old Test Files

	Conclusion
	What Have You Learned?
	What’s Next?

	Unlocking Git’s Full Potential
	
	Advanced Use of log
	Short Version
	Branches and History
	Filter Commits
	You Must Specify a Range

	Trace Changes in a Single File
	How Is Tracing Different from git blame?

	Track Your Peers
	Search in Commit Messages
	The Importance of Meaningful Commit Messages
	Using the grep Terminal Command

	Tagging in Git
	Refs and reflog
	reflog Can Act as Insurance
	reflog Only Tracks Commits for a Certain Period of Time

	Checking for Lost Commits
	Not to be Confused with the Unix Command
	fsck versus reflog

	Rebase
	Working in a Team
	Just for Illustration
	Squash Commits Together
	Aborting a Squash
	Squash Modifies the Branch History

	Stash Changes
	stash Untracked Files

	Advanced Use of add
	Don’t Commit with the -a Option

	Cherry Pick
	How Does cherry-pick Differ from merge or rebase?

	GitHub CLI
	Conclusion
	What Have You Learned?
	What’s Next?

	Integrate Git in Your Development Cycle
	
	Git and DevOps
	Using Git Hooks
	Integrating Travis CI with GitHub
	Getting Started with Travis CI
	Travis CI Build Results
	Advanced Configuration Settings

	Conclusion
	What Have You Learned?
	What’s Next?

	Git GUI Tools
	
	GitHub Desktop
	Not Just for GitHub

	Sourcetree
	Sourcetree versus GitHub Desktop
	Conclusion

	Conclusion
	
	Git’s Meteoric Rise
	Will Git Continue to be Popular in the Future?
	Beyond Source Code Management
	The End

