

Jump Start Web Performance
Copyright © 2020 SitePoint Pty. Ltd.

Product Manager: Simon Mackie
Technical Editor: James Hibbard
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embodied in
critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the
information herein. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors and SitePoint
Pty. Ltd., nor its dealers or distributors will be held liable for any damages to be
caused either directly or indirectly by the instructions contained in this book, or
by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this
book uses the names only in an editorial fashion and to the benefit of the
trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

i

Level 1, 110 Johnston St, Fitzroy
VIC Australia 3065

Web: www.sitepoint.com
Email: books@sitepoint.com

ISBN 978-1-925836-33-2 (ebook)
Printed and bound in the United States of America

About Craig Buckler
Craig is a freelance developer, author, and speaker who never shuts up about the
web.

He started coding in the 1980s when applications had to squeeze into a few
kilobytes of RAM. His passion for the Web was ignited in the mid 1990s when
28K modems were typical and 100KB pages were considered extravagant.

Over the past decade, Craig has written 1,200 tutorials for SitePoint as web
standards evolved. Despite living in a technically wondrous future, he has never
forgotten what could be achieved with modest resources.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content
for web professionals. Visit https://www.sitepoint.com/ to access our blogs,
books, newsletters, articles, and community forums. You’ll find a stack of
information on JavaScript, PHP, Ruby, mobile development, design, and more.

ii Jump Start Web Performance

https://craigbuckler.com/
https://www.sitepoint.com/

Table of Contents

Preface ... viii

Who Should Read This Book? ..viii

Conventions Used ..viii

Supplementary Materials... x

Chapter 1: Web Performance Matters11

The Cost of Poor Performance ..12

The Reason for the Woeful Web ..14

Where do I Start? ...18

Chapter 2: Testing Tools .. 19

Create a Test Plan ... 20

Identify Performance Bottlenecks...21

Performance Tool Concepts ...21

Google Lighthouse/Chrome Audits ...23

DevTools’ Network Panel .. 26

Chrome’s Performance Monitor... 28

Table of Contents iii

Developer Tools’ Performance Panel...31

DevTools’ Console Logs... 34

WebPageTest.org .. 36

More Performance Assessment Tools ..40

Chapter 3: Quick Snacks ... 41

Consider Your Hosting Plan ... 42

Use a Content Delivery Network ... 46

Use Image and Video CDNs .. 49

Activate Server Compression...51

Activate HTTP/2 ...51

Leverage Browser Caching .. 52

Enable CMS Page Caching ... 53

Check Your Primary Images .. 54

Concatenate and Minify CSS ... 57

Concatenate and Minify JavaScript.. 58

Minify HTML... 59

Load JavaScript at the End of the Page 59

Preload Assets ...60

Remove Unused Assets... 62

iv Jump Start Web Performance

Assess Analytics Performance ... 63

Something More Substantial?... 65

Chapter 4: Simple Recipes..66

Optimize Your Database .. 67

Remove or Optimize Social Media Buttons71

Be Wary of Third-party Scripts..75

Use Responsive Images ...75

Define Responsive Image Aspect Ratios 78

Implement Art Direction ..80

Lazy Load Images and Iframes .. 85

Play Audio and Video on Demand.. 87

Replace Images with CSS3 Effects... 87

Use SVGs Effectively ...88

Consider Image Sprites...91

Consider OS Fonts .. 93

Embed Web Fonts with <link> .. 94

Limit Font Styles and Text... 95

Use a Good Font-loading Strategy... 95

Consider Variable Fonts...98

Table of Contents v

Use Modern CSS3 Layouts ... 101

Remove Unused CSS ..102

Be Wary of Expensive CSS Properties105

Embrace CSS3 Animations...105

Avoid Animating Expensive Properties106

Indicate Which Elements Will Animate106

Use CSS Containment ..107

Check the Save-Data Header ...108

Adopt Progressive Web App Technologies109

Power Down Inactive Tabs ..113

Consider Inlining Critical CSS...114

Provide Accelerated Mobile Pages (AMP)115

Feeling Full Yet? .. 116

Chapter 5: Life-Changing Diets 117

Evaluate CMS Templates and Plugins 118

Reduce Client-side Code .. 118

Optimize JavaScript Code... 119

Modify the DOM Effectively ... 124

Consider Progressive Rendering ... 127

vi Jump Start Web Performance

Use Server-side Rendering .. 128

Do You Need a JavaScript or CSS Framework?.................... 129

Use a Static Site Generator ..130

Use a Build System ...131

Use Progressive Enhancement .. 132

Adopt a Performance Budget... 135

Create a Style Guide..136

Simplify and Streamline ..136

Learn to Love the Web... 137

Chapter 6: Check, Please!..139

Table of Contents vii

Preface
Despite working on the web every day, few developers have a good word to say
about the monster they’ve created. Achingly slow sites with annoying overlays,
cookie agreements, instant notifications, and obtrusive ads litter the web
landscape.

While there may be some excuses for complex web applications, there’s little
justification for sluggish content-based and ecommerce sites. People are
notoriously impatient, and an unresponsive site receives fewer visitors and
conversions.

This book provides advice, tips, and best practice for improving website
performance.

Who Should Read This Book?
The performance options described in the following chapters range from quick,
five-minute configuration changes to major website overhauls. We primarily
concentrate on front-end activities and server configurations to optimize the
code delivered to a browser.

Some back-end tips are provided, but this is often specific to your application,
framework, database, and usage patterns. Server-side performance can often be
improved with additional or more powerful computing resources.

Ideally, everyone involved in a project would consider performance from the start.
Somewhat understandably, that rarely occurs, because no one can appreciate the
speed of a website or application before it’s been created. Many of the tips can
therefore be applied after your project has been delivered.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout

viii Jump Start Web Performance

this book to signify different types of information. Look out for the following
items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.</p>

Where existing code is required for context, rather than repeat all of it, ⋮ will be

displayed:

function animate() {

⋮
new_variable = "Hello";

}

Some lines of code should be entered on one line, but we’ve had to wrap them

because of page constraints. An ➥ indicates a line break that exists for
formatting purposes only, and should be ignored:

URL.open("https://www.sitepoint.com/responsive-web-

➥design-real-user-testing/?responsive1");

Preface ix

Tips, Notes, and Warnings

Supplementary Materials
https://www.sitepoint.com/community/ are SitePoint’s forums, for help on any
tricky problems.
books@sitepoint.com is our email address, should you need to contact us to
report a problem, or for any other reason.

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic
at hand. Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the
way.

x Jump Start Web Performance

https://www.sitepoint.com/community/

Web
Performance

Matters

Chapter

1

Web Performance Matters 11

The Cost of Poor Performance
Web obesity, slow downloads, and poor performance hit everyone—site users,
online business owners, and even those who’ve never accessed the Web.

User Costs

At the start of 2020, the average web page comprises:

27KB of HTML content
64KB of CSS split over seven style sheets
four fonts, totaling 122KB
410KB of JavaScript in 20 source files
31 images, requiring 980KB of bandwidth (a third of these are off screen and
may never be viewed!)

12 Jump Start Web Performance

1-1. Average page weight in 2020

The total: 1,940KB of data made over 74 HTTP requests, which takes seven
seconds to fully appear on the average user’s desktop worldwide. This increases
to a frustrating 20 seconds on mobile devices. (Source: HTTP Archive, which
analyzes five million popular content websites.)

Downloading this web page on a typical mobile phone costs US users $0.20.
Those browsing in Vanuatu, Mauritania, and Madagascar pay more than 1% of
their daily income for the privilege of viewing a single page—despite it containing
a mere 27KB of potentially readable content. (Source: whatdoesmysitecost.com.)

Web Performance Matters 13

https://httparchive.org/reports/loading-speed#ol
https://whatdoesmysitecost.com/

1

2

3

4

5

Business Costs

Slow, bloated pages are bad for business:

The larger the page download, the slower the user experience, and the less
likely that person will consider making a purchase or returning.

55% of visitors use a mobile device. These have more limited capabilities
and may be connected to a slower network, which exacerbates the

problem. (Source: statcounter.com.)

Google’s page speed algorithms downgrade slower sites, which harms
search engine optimization efforts.

More data results in higher hosting, storage, and bandwidth costs.

The larger your codebase, the longer it takes to update and maintain.

Environmental Costs

The Internet consumes 420TWh—or up to 10%—of the world’s electricity
consumption. This accounts for 4% of global greenhouse gas emissions, which is
comparable to the aviation industry. Taking the web infrastructure and traffic into
account, a single page load is estimated to emit 1.3g of CO². (Source:
websitecarbon.com.)

While the Web has reduced energy use by providing a virtual alternative to travel
and postage, those 1MB hero images still have an environmental impact.

The Reason for the Woeful Web
How have badly performing sites become ubiquitous when they cost more
money to run, receive fewer visitors, and decrease conversions?

The main reason: performance is a lower priority compared to other features.

It’s easy to add more stuff. Optimizing or removing unnecessary junk is more
difficult. We fear breaking the site or visitor usage patterns, so it becomes easier

14 Jump Start Web Performance

https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://www.websitecarbon.com/

to make excuses for not addressing performance.

Excuse #1: “We Don’t Have a Performance Problem!”

Are you using the latest PC or smartphone on a fast network? Try a mid-range,
two-year-old device. Try limiting bandwidth to your country’s average speed. Try
using your site on a VPN or hotel Wi-Fi.

Excuse #2: “Our Users Never Complain?”

Possibly because they abandon your site and never return. Few people bother to
make a complaint when competing content and services are a few clicks away.

Excuse #3: “Our Users Have High-end Devices”

This presumption becomes a self-fulfilling prophecy when a site can only be
viewed by those with a recent device on a fast connection.

Would your revenues increase if more people could access your service? Are you
considering explosive web growth in markets such as Asia, Africa, and South
America, where smartphone and network capacity may be more limited?

Excuse #4: “Our Customers Use Modern Browsers”

There’s a common myth that 1% of users disable JavaScript or block other
browser features such as images or CSS—for example, those using screen
readers. This could be a considerable number, yet it’s used as an excuse to
discriminate against certain groups in order to make development easier and
avoid addressing performance on less capable devices.

In reality, it’s not 1% of users blocking assets, but 1% of visits. Every user will
eventually encounter a situation where something breaks, such as when:

one or more files fail to download
firewalls or ISPs block certain assets
a screen reader or older device is used

Web Performance Matters 15

the browser doesn’t support specific features
a browser extension blocks, breaks, or modifies code
the browser disables JavaScript on slow connections

It is possible to build robust, high-performance applications that can cope with
these situations. Does yours?

Excuse #5: “We’ll Address Performance Later”

Premature optimization is the root of all evil.

This quote is attributed to Donald Knuth, from his paper “Structured
Programming with go to Statements”. It relates to programmers wasting time

on efficiencies that aren’t an immediate problem—such as a small start-up trying
to ensure their application scales to millions of users.

The full quote in context:

We should forget about small efficiencies, say about 97% of the

time: premature optimization is the root of all evil. Yet we

should not pass up our opportunities in that critical 3%.

Before you reach millions of users, you need to ensure the first few dozen people
want to use your product. Back-end server or database inefficiencies are unlikely
to be a major issue in the early days.

However, front-end performance can make or break an application. It could be
part of your “critical 3%”, and it’s easier to address optimization from the start.

16 Jump Start Web Performance

Excuse #6: “Some Systems Require More Bandwidth and
Processing”

Complex web apps such as Gmail, maps, social networks, games, and image
galleries will require more bandwidth and processing capacity than content
websites. Performance remains a critical issue, but a higher page weight and
slower load time can be expected.

However, the HTTP Archive crawls articles and online shops. It’s not looking at
web applications. The average 2MB website page weight is the equivalent of half
of all Shakespeare’s plays, or the 1993 disk-based distribution of DOOM—on a
single page often containing only a few paragraphs of content. There’s little
excuse for not addressing performance.

Excuse #7: “Expanding Page Weight is the Price of Progress”

This may be true for some edge cases. However, developers strived to keep
pages under 100KB during the dial-up days of the late 1990s. Has web content
become 20x better or faster since that time?

Excuse #8: “Slimming Pages Means Dumbing Down, with
Fewer Features and Effects”

Performance can often be improved with minimal effort and no loss of
functionality.

You can do more with less as web browsers evolve. Consider the CSS3
border-radius property: adding rounded corners now requires a few bytes of

code compared to the multiple image shenanigans of a decade ago.

Excuse #9: “Improving Performance Increases Complications
and Maintenance”

Removing unused or unnecessary images, videos, fonts, CSS, and JavaScript will
simplify your site. It should result in fewer complications and less maintenance.

Web Performance Matters 17

https://httparchive.org/
https://en.wikipedia.org/wiki/Doom_(1993_video_game)

Excuse #10: “Our Client is Happy!”

Clients employ you for your expertise, and pitching optimization as a selling point
will differentiate your business from others.

Web performance is an essential part of a web developer’s job. A little effort can
reap considerable rewards for everyone:

less code is required
users receive a slicker experience
search engine rankings improve
conversions increase
hosting costs decrease

No one will criticize you for building a super-fast, responsive site!

Where do I Start?
The next chapter introduces tools to help you identify issues. This is followed by a
delicious buffet of food-inspired chapters:

Chapter 3: Quick Snacks A selection of simple, practical, cost-effective
performance solutions that can be implemented on any site in minutes.

Chapter 4: Simple Recipes Some more complex development options that may
take a few hours or days to implement but could have a larger positive impact.

Chapter 5: Life-changing Diets More radical development considerations and
techniques that are best adopted from the start of your project.

Page weight reduction and optimization tips are generally grouped into similar
concepts, with the easiest or most beneficial covered first.

Those attempting to improve an existing site should read each chapter in order.
Those starting a new project may benefit from reading the chapters in reverse
order, since more radical approaches then become viable.

18 Jump Start Web Performance

Testing Tools
Chapter

2

Testing Tools 19

1

2

3

1

2

3

Admitting your site has a performance problem is the first step on the road to
recovery! This chapter provides a list of testing tools to help you understand
issues using real data, showing how:

the largest assets can be discovered

the slowest network responses can be identified

the reasons for poor browser performance can be diagnosed

It may be necessary to run tests a few times to establish a measurable
performance baseline. The same tests can then be rerun to evaluate
performance improvements—or deteriorations—after code has been updated.

Create a Test Plan
You should test your websites and applications for defects, ease of use,
accessibility, quality assurance, and other factors. Evaluating performance is no
different, and it’s best to follow a plan that lays out:

who’s responsible for running tests

what tools and settings will be used for each test

how results will be recorded and fed back into the development process

Use performance analysis tools manually at first to understand the reports and
determine optimization priorities.

As your processes evolve, it may become possible to automate these tests so
developers are warned about potential problems and perhaps blocked from
committing poorly optimized code. Chapter 5 describes several options for
improving your workflow with build processes and performance budgets.

20 Jump Start Web Performance

Identify Performance Bottlenecks
Knowing you have a performance problem is one thing. Finding and fixing the
causes is another matter.

The first step is to identify whether the fault occurs server-side or client-side. A
slow network response, either on the initial page load or during an Ajax request,
will normally indicate a server issue. Database queries are often the culprit, but
you’ll need to prove that! Existing tools and logs can help, but it may be necessary
to output diagnostic information to a file in a similar way to other debugging
activities.

Client-side issues can be diagnosed using browser developer tools, as described
below. Performance is affected when the browser has considerable work to
do—such as a long-running JavaScript function, a DOM update that causes the
page to re-layout, or CSS changes that affect many elements. The tips in
Chapters 3, 4, and 5 provide solutions to typical problems.

Performance Tool Concepts
Most of the tools described in this chapter diagnose a particular “page” in your
site within the context of a web browser. They primarily analyze front-end
performance, although a back-end server or database could be to blame for a
large or slow response. (Chapter 4 provides further information about potential
back-end issues and database tools.)

Automated vs Manual Testing

Automated tests are never a substitute for manual user testing! Tests
are good at repeating operations to report faults, but they’re unlikely to
discover issues you weren’t expecting.

It’s possible to build a wholly unusable site that fully passes automated
testing. For example, a button could trigger a fast change to the page
that shows skeleton content, while the real results take an hour to
appear!

Testing Tools 21

https://www.matuzo.at/blog/building-the-most-inaccessible-site-possible-with-a-perfect-lighthouse-score/
https://www.matuzo.at/blog/building-the-most-inaccessible-site-possible-with-a-perfect-lighthouse-score/

1

2

3

4

5

6

7

The Browser Rendering Process

When a site or app is first accessed by a user, the following steps occur:

The browser makes an HTTP request for a specific URL. Under the hood,
several network processes are taking place to resolve the domain name to

an IP address and route the request to a server.

The server receives and parses the request. It will reference a specific URL
and may have data appended as a query string, in the HTTP header, or

message body. It returns a response which, in this case, we’ll presume is HTML
content.

The browser starts to receive HTML data, which it parses. The document
may reference further assets, such as images, fonts, style sheets, and

JavaScript, which trigger additional HTTP requests to the same or another server.

Eventually, the browser has enough information to start the rendering
process. Behind the scenes, it has started to build the HTML DOM

(document object model) which defines the page in a hierarchical tree structure.
Style calculations also determine which CSS rules apply to each DOM node, and a
CSSOM (CSS object model) is created for JavaScript interaction.

The browser initiates the layout (or reflow) phase. This calculates the
dimensions of each element and how it affects the size or positioning of

elements around it.

The layout is followed by a paint phase. This draws the visual parts of each
element onto separate layers—that is, text, colors, images, borders,

shadows, and so on.

Finally, a composite phase draws each layer to the screen in the correct
order.

The page is now in an initial viewable state. During or after the render, JavaScript
can run to make further HTTP requests (Ajax or WebSocket calls), perform
calculations, update the DOM, or apply CSS rules. This could trigger further
layout, paint, and/or composite phases.

22 Jump Start Web Performance

1

2

3

Most tools make reference to these phases, while also introducing their own
metrics that often combine two or more stages. In essence, the fewer steps you
require, the better the performance. Taking steps to minimize HTTP requests and
reduce browser processing will result in a snappier user experience.

Google Lighthouse/Chrome Audits
Lighthouse is an open-source tool that helps evaluate the performance and
quality of your page or app. You can access it in the following ways:

from within Chrome’s DevTools

as the online web.dev or PageSpeed Insights tools

as a Node.js module, through which command-line and automated tests
can be executed

It’s easiest to start with Chrome’s DevTools. Navigate to any page in Chrome,
press Ctrl|Cmd + Shift + I or F12 to open the DevTools panel, and click the

Audits tab:

Testing Tools 23

https://developers.google.com/web/tools/lighthouse
https://web.dev/measure/
https://developers.google.com/speed/pagespeed/insights/
https://www.npmjs.com/package/lighthouse

2-1. The Lighthouse Audits tab

Select the device, audit types, network speed, and check Clear storage to ensure
there’s no influence from browser caching. The results screen appears shortly
after clicking Run audits:

24 Jump Start Web Performance

2-2. Lighthouse audit results

The Performance, Accessibility, Best Practices, and SEO scores provide a quick-
view percentage result, which can be clicked for more information.

Performance information includes:

Browser Extensions

Browser extensions can affect results, but Chrome will warn you about
potential issues. It may be necessary to run tests in an Incognito
window since it disables extensions by default.

Testing Tools 25

Performance Metric Description

First Contentful Paint the time when the first text or image is painted

First Meaningful Paint when the primary content is visible

Speed Index how quickly the contents of a page are visibly
populated

First CPU Idle the time when the main thread is able to handle
input

Time to Interactive the time taken for the page to become fully
interactive

Max Potential First Input
Delay

the time when the browser is able to respond to
interaction

The lower the figures, the better the page performance. This is followed by an
Opportunity section, which suggests potential improvements and estimated
savings.

DevTools’ Network Panel
The developer tools in most browsers provide a Network panel that shows a log
of all network activity during page load and any subsequent file, Ajax, or
WebSocket data flows.

Progressive Web Apps

The PWA section in Chapter 4 describes the benefits of progressive
web app technologies, which allow a web application to be installed
and cached, and to work offline.

26 Jump Start Web Performance

2-3. DevTools’ Network panel

The status bar at the bottom summarizes the number of requests, total data
transfer (possibly compressed), the total size of all uncompressed resources, the
total download time, and the time when the document DOMContentLoaded and
window load events were triggered.

Further options are provided at the top:

Preserve log: don’t clear the log between page loads

Testing Tools 27

https://developer.mozilla.org/docs/Web/API/Document/DOMContentLoaded_event
https://developer.mozilla.org/docs/Web/API/Window/load_event

Disable cache: load all files from the network to make a better assessment of
first-time page access
Throttle network speed: select or define download speed profiles

Assets can be displayed, hidden, or reordered by clicking a table heading.
Ordering by size or download time will help find the largest or most costly
resources.

The Filter box allows you to search for specific assets or enter criteria such as:

is:running : show any incomplete or unresponsive requests

larger-than:S : limit to files larger than S , which can be expressed as bytes

(10000) Kilobytes (1000k), or megabytes (1M)

-larger-than:S : limit to files smaller than S

-domain:*.yourdomain.com : show third-party requests that aren’t from your

primary domain

Chrome’s Performance Monitor
Chrome’s new Performance Monitor can be accessed from the DevTools’ More
tools sub-menu (although this may vary across Chrome versions).

Assets from Other Domains

Most sites request assets from other domains, such as CDNs (content
delivery networks), fonts repositories, analytics trackers, advertising
networks, social media share buttons, and so on. While useful, those
resources can have a negative impact on performance, privacy, and
security. Refer to Chapter 4 for further information.

28 Jump Start Web Performance

2-4. Starting the Performance Monitor

It appears in the lower Console drawer panel, and charts are updated in real time
as you use a page.

Testing Tools 29

2-5. The Chrome DevTools’ Performance Monitor

Monitors can be displayed and hidden by clicking the heading in the left:

Performance
Monitor

Description

CPU usage processor utilization from 0% to 100%

JS heap size memory required for JavaScript objects

DOM Nodes the number of elements in the HTML document

JS event listeners the number of registered JavaScript event listeners

Documents the number of document resources including the page,
CSS, JS, etc.

Document
Frames

the number of frames, iframes, and worker scripts

Layouts / sec the rate at which the browser has to re-layout the DOM

Style recalcs / sec the rate at which the browser has to recalculate styles

30 Jump Start Web Performance

The Performance Monitor could be used to discover unusual spikes in
activity—such as rising memory use or layout recalculations when an element has
been added to the page. Further investigation can then be carried out in the
Performance Panel.

Developer Tools’ Performance Panel
The developer tools provided in Chrome, Firefox, Safari, and Edge provide a
Performance tab that allows you to record a snapshot of browser activity when
particular actions are made. Unlike the Performance Monitor, you must record a
profile before it can be analyzed.

To use Chrome’s version, open DevTools and navigate to the Performance pane.
The Settings cog allows you to select network and CPU throttling options before
clicking the Record icon.

2-6. DevTools’ record performance button

Load or use your site as required, then hit Stop to generate the performance
report.

Testing Tools 31

2-7. A DevTools Performance report

The report can be daunting, but it can be saved and reloaded later for further
analysis.

The top timeline chart shows frames per second, CPU usage, network usage,
screenshots, and the heap memory size. An area can be selected with the mouse
to focus on a specific point.

Result panes can be expanded and collapsed. Versions of Chrome differ, but

32 Jump Start Web Performance

panes may include:

Network: loading times for individual files
Frames: screenshots at points on the timeline
Interactions: input and animation timings
Timings: events such as DOMContentLoaded and the First Meaningful Paint
Main: thread activities such as function calls and event handlers

These are followed by a chart showing the JavaScript memory heap, number of
documents, number of nodes, event listeners, and GPU memory usage.

The final Summary panel changes as you click items in the upper panes. The
breakdown may include function call and event details as well as timings where
appropriate:

Loading: time to load assets from the network
Scripting: JavaScript execution resulting in visual changes (which can also
include CSS animations and transitions)
Rendering: the browser process of calculating which CSS rules apply and how
layout is affected
Painting: the browser process of filling in pixels and drawing layers in the
correct order
System: other browser activities
Idle: no activity

The panel can typically be used to discover inefficient activities, including:

expensive event handlers, such as those attached to scroll or mouseover
actions
long-running JavaScript functions
slow or badly throttled network requests
a continually rising JavaScript Heap, which could result from memory leaks or
poor garbage collection
style changes that affect many DOM elements
animations that incur frequent layout changes

Testing Tools 33

Chapters 4 and 5 provide common solutions to these issues.

DevTools’ Console Logs
Performance monitoring can help discover problems when specific actions are
performed in a site or app. However, it may become necessary to profile
JavaScript execution by logging messages to the console when events occur.
Modern browsers support various Performance Timing APIs that can help to
analyze code.

performance.now()

performance.now() returns the elapsed time in milliseconds since the page was

loaded. Unlike Date.now() , it returns a floating-point number representing

fractions of a millisecond:

let t0 = performance.now();

doSomething();

let t1 = performance.now();

console.log(`doSomething() executed in ${ t1 - t0 }ms`);

Performance Marks and Measures

performance.now() can become arduous to manage as an application grows. The

API also allows you to mark when an event occurs and measure the time elapsed
between two marks. A mark is defined by passing a name string to
performance.mark() :

performance.mark('script:start');

performance.mark('doSomething1:start');

doSomething1();

performance.mark('doSomething1:end');

performance.mark('doSomething2:start');

doSomething2();

34 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/API/Performance
https://developer.mozilla.org/docs/Web/API/Performance/now
https://developer.mozilla.org/docs/Web/API/Performance/mark

1

2

performance.mark('doSomething2:end');

performance.mark('script:end');

Each mark() call adds a PerformanceMark object to an array, which defines the

name and startTime .

A mark can be cleared with performance.clearMarks(markName) . All marks are

cleared when no name is passed.

The elapsed time between two marks can be calculated by creating a
performance.measure() by passing the measure name, start mark, and end mark:

performance.measure('doSomething1', 'doSomething1:start', 'doSomething1:end');

performance.measure('script', 'script:start', 'doSomething1:end');

Omitting the start mark measures from the moment the page loaded. Omitting
the end mark measures to the current time. Each measure() call adds a

PerformanceEntry object to the same array, which defines the name , startTime ,

and duration .

A measure can be cleared with performance.clearMeasures(measureName) . All

measures are cleared when no name is passed.

Marks and measures can be accessed with:

performance.getEntriesByType(type) , where type is either "mark" or

"measure"

performance.getEntriesByName(name) , where name is a mark or measure

Navigation and Resource Entries

The array is likely to contain other automatically generated browser
entries for navigation and resource timings.

Testing Tools 35

https://developer.mozilla.org/docs/Web/API/PerformanceMark
https://developer.mozilla.org/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/docs/Web/API/Resource_Timing_API
https://developer.mozilla.org/docs/Web/API/Performance/clearMarks
https://developer.mozilla.org/docs/Web/API/Performance/measure
https://developer.mozilla.org/docs/Web/API/PerformanceEntry
https://developer.mozilla.org/docs/Web/API/Performance/clearMeasures
https://developer.mozilla.org/docs/Web/API/Performance/getEntriesByType
https://developer.mozilla.org/docs/Web/API/Performance/getEntriesByName

3

name

performance.getEntries() , to access all items in the array.

The name and duration of every measure can therefore be output:

performance.getEntriesByType('measure')

.forEach(m => console.log(`${m.name}: ${m.duration}ms`));

WebPageTest.org
Despite its retro look, WebPageTest.org reports performance information from
global locations using emulated devices with a range of settings.

2-8. WebPageTest.org

DevTool-like reports take a few minutes to generate.

36 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/API/Performance/getEntries
https://webpagetest.org/

2-9. WebPageTest.org report

An A (good) to F (bad) report is shown at the top:

First byte time: the time taken for the first byte to be received
Keep-alive enabled: are persistent HTTP connections used?
Compress transfer: are assets gzip compressed?
Compress images: can images be compressed further?
Cache static content: does the site leverage browser caching?
Effective use of a CDN: are content delivery networks used?

Content Delivery Networks

The benefits of using a CDN are described in Chapter 3.

Testing Tools 37

The Summary and Details panels provide a table and waterfall chart showing
network metrics, where lower figures indicate better performance:

Performance
Metric

Description

Load Time the time taken from the initial request to the browser load
event

First Byte the time taken for the first byte to be received

Start Render the time taken for the browser to start rendering content on
the page

Speed Index the average time at which visible parts of the page are
displayed (more information)

DOM
Elements

the number of DOM elements

Document
Complete

a set of metrics relating to the DOMContentLoaded event,
when the HTML has fully loaded but other assets such as
images and fonts may still be in progress

Fully Loaded a set of metrics relating to the window load event when all
page assets have been downloaded and rendered

The Performance Review panel shows information about effective use of file
compression, browser caching, and CDN usage.

The Content Breakdown panel provides a list of assets by type (HTML, CSS,
JavaScript, images, and others) with requests, size, network response times, and
rendering events.

The Domains panel shows the number and size of requests made to the page and
third-party domains such as CDNs, font repositories, analytics, advertisers, social
media widgets, and so on.

The Processing Breakdown panel shows the time taken for browser processes

38 Jump Start Web Performance

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://developer.mozilla.org/docs/Web/API/Document/DOMContentLoaded_event
https://developer.mozilla.org/docs/Web/API/Window/load_event

including loading, scripting, layout, and painting.

The Screenshot panel shows frames and/or a video at specific points, such as
the time the first content appeared, when a hero image was shown, and the fully
loaded view.

Other panels provide links to additional services such as image optimizers and
domain request maps.

For more information, refer to:

WebPageTest documentation
Lean Websites, Chapter 3

WebPageTest API

WebPageTest offers a REST API to programmatically automate tests or obtain
results during a build process.

Tests are limited to 200 page loads per day. Repeated views to evaluate cached
loading factors also count as a page load. Developers must apply for an API key
to get started.

Tests are initiated by requesting a URL. In this example, mysite.com tests are run

twice:

http://www.webpagetest.org/runtest.php?k=my-api-key&url=mysite.com&runs=2&f=json

A successful request returns a JSON response with a test ID and a set of result
URLs:

{

"data": {

"testId": "1234567890",

"ownerKey": "ceb6128dbf05e09a1969ad",

Testing Tools 39

https://sites.google.com/a/webpagetest.org/docs/
https://www.sitepoint.com/premium/books/lean-websites
https://sites.google.com/a/webpagetest.org/docs/advanced-features/webpagetest-restful-apis
http://www.webpagetest.org/getkey.php

"jsonUrl": "https://www.webpagetest.org/jsonResult.php?test=1234567890",

"xmlUrl": "https://www.webpagetest.org/xmlResult/1234567890/",

"userUrl": "https://www.webpagetest.org/result/1234567890/",

"summaryCSV": "https://www.webpagetest.org/result/1234567890/page_data.csv",

"detailCSV": "https://www.webpagetest.org/result/1234567890/requests.csv"

}

}

The status of a test can be checked by passing the testId to the

testStatus.php URL. An HTTP 200 is returned when the result URLs are ready:

http://www.webpagetest.org/testStatus.php?k=my-api-key&f=json&test=1234567890

The completed results are stored for up to 30 days and can be accessed from the
URLs shown in the initial runtest.php request.

A Node.js webpagetest module is available to help with API processing.

More Performance Assessment Tools
A variety of other free tools, browser extensions, and commercial services (often
with free tiers or trials) are available, which can provide performance monitoring,
usage tracking, and improvement advice:

sitespeed.io
webhint
Pingdom Website Speed Test
GMetrix
Uptrends
Sentry.io

Finally, don’t forget to test your system using a combination of real devices,
operating systems, input types, and browsers on a range of network speeds.
Consult your analytics reports to help determine what systems and connections
your visitors typically use.

40 Jump Start Web Performance

https://www.npmjs.com/package/webpagetest
https://www.sitespeed.io/
https://webhint.io/
https://tools.pingdom.com/
https://gtmetrix.com/
https://www.uptrends.com/
https://sentry.io/

Quick Snacks
Chapter

3

Quick Snacks 41

This chapter lists a selection of tasty yet simple, practical, and cost-effective
performance solutions that can be implemented on any site within a few minutes.
It’s best to read the following sections in order, since they start with simpler
hosting and server settings before moving on to quick image, CSS, and
JavaScript improvements.

Consider Your Hosting Plan
Hosting will affect the performance of your website or application. The range of
choices and prices may be bewildering, but hosting services are segregated into
four primary types.

Shared Hosting

Your website is hosted on a physical server alongside hundreds, if not thousands,
of other sites. Each customer shares resources, so disk space, RAM, CPU time,
and other facilities may be limited to ensure the server remains responsive.

Pros:

They’re inexpensive, with services starting from a few dollars per month.
They offer fully managed backups, security, maintenance, and upgrades.
They may provide simple, one-click installations for CMS, forum, wiki and
other applications.
They sometimes offer specialist expertise, such as WordPress management.
Technical support is often included in the price.

Cons:

Servers may be over-sold, in which case performance and page load times can
suffer.
A problem with another site can affect yours—such as high traffic, denial of
service attacks, and so on.
Hardware failures can take your site offline for a considerable period.
It can be difficult to scale anything other than disk space or bandwidth.
Support expertise and response times will vary from host to host.

42 Jump Start Web Performance

Dedicated Server Hosting

Your website is hosted on a physical server (or servers) which you own. The
hardware is exclusively used by you, so it can be configured to your exact
requirements.

Pros:

You get fast performance, with little possibility of other sites affecting speed.
You have access to further resources such as RAM, disks, CPUs, and other
servers can be added.

Cons:

Unless the server is fully managed, skilled technical staff will be required to
maintain server updates, backups, security, and so on.
Hardware failures can still occur.
They’re expensive—typically a few hundred dollars per month.

Virtual Private Server (VPS) Hosting

A VPS is your own remote virtual machine. It feels like a dedicated server, but is
effectively a software emulation running on one or more real servers.

Pros:

A VPS is quicker to set up and more affordable than a dedicated server.
It’s fast, flexible, and easier to scale.
It’s more robust: your server is just data that can be moved to or run from
other hardware.

Cons:

Resources are still shared and the host’s network can be swamped.
A VPS still requires skilled technical staff to maintain server updates, backups,
security, and so on (unless you pay extra for a “managed” VPS).

Quick Snacks 43

Cloud Hosting

Cloud hosting comes in many different guises, but it normally abstracts the
hardware infrastructure into a set of services that can be accessed on demand.
For example, your web application may require server-side processing, a
database, and file store services, which are provisioned separately. You could opt
to use serverless functions, which implement an application as a series of small
micro-services rather than as a single monolithic program.

Pros:

It’s robust and reliable.
It offers scalability and flexibility, as resources can be instantly scaled up when
demand increases.
It’s cost efficient, as you only pay for what you use.

Cons:

Cloud hosting has a steep learning curve, with each host offering a different
service, concepts, and terminology.
Costs can be extremely difficult to determine up front.
There’s vendor lock-in, as it can be more difficult to move away from bespoke
services.
Support can be a costly extra service.

Switch to a More Appropriate Hosting Option

Performance will be affected as your site increases in popularity. Shared hosting
plans are especially susceptible to surges in demand, such as links from Reddit,
Hacker News, and so on. Your site could be blocked as soon as it reaches
processing, storage, or bandwidth thresholds.

Contact your host first, as they may be able to suggest options for switching your
site to another service or platform. For example, SiteGround provides standard
web hosting accounts where you can manually install a WordPress CMS.
However, they also offer fully managed WordPress hosting in the US, UK, Europe,

44 Jump Start Web Performance

https://www.siteground.com/

and Australia. Your site can be transferred for free to take advantage of
application-specific performance optimizations such as caching, compression,
minification, image optimization, and lazy loading.

However, be aware that you’ll always be limited by your host’s infrastructure and
location. For example, a European company should consider a US-based host if
the majority of their clients are based in North America.

Scale Resources

Most hosting services provide scaling options to increase processor, memory,
disk space, or bandwidth capacity. This is usually simpler with cloud and VPS
hosting, which have less reliance on physical hardware. It may even be possible to
move resources to alternative geographical locations.

An additional monthly fee for extra resources will normally apply, although
dedicated server providers can make a one-off charge. Some cloud services
scale and charge according to demand, although there are often fixed-price
elements such as disk space.

Switch Hosts

Switching hosts can have a positive impact on performance if your new host has
a faster infrastructure based in a location closer to users. Improved hosting is
unlikely to solve all your performance problems, but it can be a cost-effective
solution for back-end speed issues.

CDNs to the Rescue

The next section describes content delivery networks, which can
offset the effects of physical server locations.

Quick Snacks 45

Use a Content Delivery Network
A content delivery network can provide a performance boost to any website by
distributing the load and serving assets from locations geographically closer to
users. If your site is hosted on servers in California, for example, and you don’t
have a CDN, all users must connect to the server in California directly:

What to Look for in a New Host

These are some performance-related features to look for in a new
host:

a global infrastructure, or data centers geographically close to your main
users
specialist support for applications you’re using, such as WordPress
HTTP/2 and simple SSL certificate installation
domain nameserver and DNS configuration
gzip and Brotli compression enabled
options for automatic minification, caching, and image optimization
attack detection and prevention
usage and speed reports
automated issue alerts
good, independent reviews
a knowledgeable and fast support service

Don’t be swayed by worthless 99.9% up-time claims. Reputable hosts
are reliable and those that aren’t won’t provide proof or guarantees.
Besides, it still equates to nine hours of downtime per year, which will
inevitably coincide with your product launch!

46 Jump Start Web Performance

3-1. No CDN

Using a CDN service allows a user from Australia to access assets from closer
servers hosted in Melbourne:

3-2. Active CDN

Quick Snacks 47

The response is faster, users are happier, and your hosting requirements may be
reduced.

You may already be using a CDN for static assets such as CSS or JavaScript
frameworks. For example, jQuery can be referenced at https://code.jquery.com/

jquery-3.4.1.slim.min.js in a script tag. This type of CDN offers several

benefits:

Files are available on fast servers replicated across the globe.
Files are hosted on a domain other than your website’s, which increases the
number of concurrent assets the browser can download.
Files may already be cached in the user’s browser, since many sites may
reference that URL.

Unfortunately, simple static-file CDNs can be frustrating to manage, and third-
party scripts have performance, privacy, and security risks (see Chapter 4).

More recently, CDN services have appeared that automatically proxy requests to
your site. This usually requires your domain to point at the CDN’s name servers or
set specific DNS records. The benefits of this include:

a faster, high-capacity infrastructure with more efficient delivery from many
locations around the globe
high availability: a CDN can continue to deliver cached files even when a host’s
server fails
improved SEO: Google rewards sites with faster response times
cheaper costs: adopting a CDN is likely to cost less than scaling server
resources

CDNs may provide additional services regardless of your host’s server facilities
and limitations, such as:

SSL certificates for HTTPS encryption
load balancing, data compression, and the HTTP/2 protocol for faster
transmission
automatic file minification, image optimization, video transcoding, and email

48 Jump Start Web Performance

obfuscation
attack detection and distributed denial of service (DDoS) prevention
access blocking to specific IP addresses, countries, etc.
server-based visitor analytics that don’t rely on client-side JavaScript
custom error pages, redirects, authentication, AMP site generation, serverless
APIs, and more

Many services offer free plans or time-limited trials so you can assess
performance with the tools mentioned in Chapter 2 before making a
commitment. Popular options include:

Akamai
Alibaba Cloud CDN
Azure (Microsoft)
BelugaCDN
BunnyCDN
CacheFly
CDN.net
CDN77
CDNetworks
Cloud CDN (Google)
Cloudflare
CloudFront (Amazon)
Edgecast (Verizon)
Fastly
G-Core Labs CDN
Hostry
Imperva
KeyCDN
Limelight
Medianova
StackPath

Use Image and Video CDNs
Specialist image and video CDNs can be used in addition to or instead of a

Quick Snacks 49

https://www.akamai.com/
https://www.alibabacloud.com/product/cdn
https://azure.microsoft.com/en-us/services/cdn/
https://www.belugacdn.com/
https://bunnycdn.com/
https://www.cachefly.com/
https://cdn.net/
https://www.cdn77.com/
https://www.cdnetworks.com/
https://cloud.google.com/cdn/
https://www.cloudflare.com/
https://aws.amazon.com/cloudfront/
https://www.verizondigitalmedia.com/platform/edgecast-cdn/
https://www.fastly.com/products/cdn
https://gcorelabs.com/cdn/
https://hostry.com/products/cdn/
https://www.imperva.com/products/cdn-content-delivery-network/
https://www.keycdn.com/
https://www.limelight.com/
https://www.medianova.com/content-delivery-and-optimization/
https://www.stackpath.com/products/cdn/

standard CDN. Popular options include:

Cloudimage
Cloudinary
ImageEngine
imgix
piio
imagekit.io
pixboost
Uploadcare

The main benefits are described in the following sections.

Asset Management

Image CDNs allow you to upload original images—perhaps directly from
users—where they can be stored, optimized, and managed via a user interface or
API.

Optimal Formatting and Compression

Regardless of the media uploaded, an image CDN can serve the file in the most
optimal format. For example, you could upload a JPG image but have it served to
Chrome and Firefox users in the more efficient WebP format. Browsers without
WebP support would receive the next most appropriate image format.

Video can also be transcoded using a range of alternative codecs so all popular
browsers are supported.

Art Direction, Sizing, and Effects

Some image CDNs offer an API that allows you to crop, resize, transform, or apply
filters without affecting the original image. For example, Cloudinary’s URL-based
API allows an image of a person to be cropped to 400px around any detected
face, resized to 200px, and served in the most appropriate format:

50 Jump Start Web Performance

https://www.cloudimage.io/
https://cloudinary.com/
https://imageengine.io/
https://www.imgix.com/
https://piio.co/
https://imagekit.io/
https://pixboost.com/
https://uploadcare.com/
https://cloudinary.com/documentation/image_transformations
https://cloudinary.com/documentation/image_transformations

https://res.cloudinary.com/demo/image/upload/w_400,h_400,g_face,r_max/w_200/

➥f_auto/portrait

Activate Server Compression
Assets can be compressed on a web server prior to transmission, then
uncompressed on the browser. For text-based files such as HTML, SVG, CSS, and
JavaScript, this can often reduce bandwidth by 60% or more. According to
W3Techs 2019 reports, compression was not activated on one in five websites.

Most good web hosts enable compression by default, or do the work for you. Gzip
compression can be activated on all popular web servers including Apache,
NGINX, IIS, and Express.js compression middleware.

Brotli is a more modern compression algorithm that reduces file sizes further. It
can be enabled on all popular web servers alongside gzip, which must be provided
for IE and older browsers that don’t support newer standards.

Activate HTTP/2
HTTP/2 improves upon the HTTP transmission protocol originally devised by Sir
Tim Berners-Lee when he invented the Web in 1989. HTTP/2 reduces latency by:

Compression Won’t Fix Bloated Code

Compression reduces network transfer times, but the file must still be
uncompressed and parsed when it reaches the browser. Bloated code
may arrive sooner, but it won’t magically become more efficient!

CDNs and Asset Compression

A CDN can implement asset compression even if it’s not enabled on
your primary server.

Quick Snacks 51

https://w3techs.com/technologies/details/ce-gzipcompression/all/all
https://httpd.apache.org/docs/current/mod/mod_deflate.html
https://docs.nginx.com/nginx/admin-guide/web-server/compression/
https://docs.microsoft.com/en-us/iis/extensions/iis-compression/using-iis-compression
https://github.com/expressjs/compression
https://github.com/google/brotli
https://caniuse.com/#feat=brotli
https://en.wikipedia.org/wiki/HTTP/2

sending data in a binary rather than text format
compressing HTTP headers
sending more than one file on the same TCP connection
implementing Server Push, which can send a file before it has been requested

All popular servers and CDNs support HTTP/2 but fall back to HTTP/1.1 for older
browsers. More recently, HTTP/3 has been announced, which will further
optimize performance. Browser and server support will increase over the coming
years.

Leverage Browser Caching
When a browser downloads an asset from a URL, it stores that file locally so it
can be referenced and used again. Infrequently-changing files such as images,
CSS, and JavaScript are therefore downloaded once and used across multiple
pages on a site. Without caching, the Web would be considerably slower and
more unreliable.

The server should set appropriate Expires headers, Last-Modified dates, and/or
adopt ETag hashes in the HTTP header. Most servers should have reasonable
defaults, but you can set custom options. For example, in an Apache .htaccess

file you can do this:

<IfModule mod_expires.c>

ExpiresActive On

Expire images after one year

<FilesMatch "\.(jpg|jpeg|png|gif|svg|ico)$">

ExpiresDefault "access plus 1 year"

</FilesMatch>

Expire CSS and JavaScript after one month

ExpiresByType text/css "access plus 1 month"

ExpiresByType text/javascript "access plus 1 month"

default expiry to one week

ExpiresDefault "access plus 1 week"

52 Jump Start Web Performance

https://caniuse.com/#feat=http2
https://caniuse.com/#feat=http2
https://en.wikipedia.org/wiki/HTTP/3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29
http://en.wikipedia.org/wiki/HTTP_ETag

1

2

3

</IfModule>

Enable CMS Page Caching
By default, content management systems such as WordPress construct and
return a page on every user visit:

The URL is examined.

The appropriate content is extracted from the database.

The content is inserted into template code and returned to the user.

This process is repeated every time—even when the same page content is seen
by all site visitors.

Fortunately, caching plugins are available, which store the generated HTML after
the first visit so all subsequent visitor requests receive the same page. The
cached page is then invalidated when content is changed or after a specific time
has elapsed. CMS caching can have a dramatic effect on performance and site
reliability.

Popular caching plugins for WordPress include:

LiteSpeed Cache
W3 Total Cache
WP Fastest Cache
WP-Optimize
WP Super Cache

Quick Snacks 53

https://wordpress.org/plugins/tags/caching/
https://wordpress.org/plugins/litespeed-cache/
https://wordpress.org/plugins/w3-total-cache/
https://wordpress.org/plugins/wp-fastest-cache/
https://wordpress.org/plugins/wp-optimize/
https://wordpress.org/plugins/wp-super-cache/

1

2

3

4

Are Videos Necessary?

Videos can offer an engaging experience. Few do, yet they have a higher
bandwidth and performance cost than any other web asset. Here are some
recommendations:

Do you really need to show that tedious CEO presentation to every visitor?
Remove all media assets where possible.

Ensure the video is as short as possible, removing scenes where practical.

Transcode the video into multiple formats using the minimum dimensions
with optimal compression. Many video CDNs and services will handle this

for you.

Only play the video on demand—not as the user accesses the page (see
Chapter 4).

Check Your Primary Images
While images don’t have the same processing and rendering overheads as HTML,
CSS and JavaScript, they usually account for a large proportion of page weight
and perceived performance.

Examine your regularly used images, such as those appearing in headers, footers,
home page hero blocks. The following tips can dramatically reduce file sizes,
although using an image CDN can do some of the hard work for you.

Resize Large Bitmaps

An entry-level smartphone or digital camera takes multi-megapixel images that

CDN vs Plugin Caching

A CDN can also cache the HTML page, but most CMS plugins perform
other optimizations such as cleaning databases, minifying code,
adding HTTP expiry headers, and so on.

54 Jump Start Web Performance

1

2

1

2

3

can’t be displayed in full on the largest screens. Few sites require images of more
than 1,600 pixels in width or height.

Resizing has a dramatic effect on image files, since halving the dimensions
reduces the size by 75%. You may also be able to crop areas that aren’t normally
shown or contain large blocks of single colors.

Choose an Appropriate Image Format

Choosing the correct format will radically reduce image file sizes. In general:

The JPG/JPEG format is best for photographs with intricate details.

The PNG format is best for logos, diagrams, and charts with solid blocks of
color. The 8-bit 256-color format will normally result in smaller files if you

don’t require 24-bit true-color or alpha transparency.

You should also consider:

SVG: Scalable Vector Graphics define lines, paths, and shapes in XML
rather than individual pixels. They’re best suited to logos and diagrams,

since they can be scaled to any size without loss of quality.

GIF: these can be animated and sometimes result in smaller files than
similar 8-bit PNGs.

WebP: this format can compress any type of image, but is not currently
supported in IE, Safari, and older browsers.

New image formats such as HEIC and AVIF may become viable in future.

Avoid Base64 Encoding

Images can be encoded into a base64 string within a data URI defined in an
HTML tag or CSS background property:

Quick Snacks 55

https://caniuse.com/#feat=webp
https://caniuse.com/#feat=webp

1

2

3

.myimg {

background-image: url('');

}

This reduces the number of HTTP requests, but it rarely boosts performance:

Base64 encoding is typically 30% larger than the binary equivalent.

The browser must parse the string before an image can be used.

Altering an image invalidates the whole (cached) HTML or CSS file.

Only consider base64 encoding if:

it’s a practical option for your application—such as when images are
generated
the encoded string is very small—perhaps not much longer than a URL

There may also be a case for reusable SVG icons defined as CSS
background-image properties. For example:

.mysvgbackground {

background-image: url('data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/

➥svg" viewBox="0 0 800 600"><circle cx="400" cy="300" r="50" stroke-width="5"
➥stroke="#f00" fill="#ff0" /></svg>');

}

Compress Images Effectively

Image tools can reduce file sizes by stripping metadata, simplifying details, and
increasing compression factors. Ideally, image compression will be handled
automatically in a build process using options such as imagemin and svgo (see
Chapter 5), but several online tools are available for one-off tasks:

Compressor.io: online, all image types
jpeg.io: online, any format to JPG
RIOT: Windows application, bitmaps

56 Jump Start Web Performance

https://www.npmjs.com/package/imagemin
https://www.npmjs.com/package/svgo
https://compressor.io/compress
https://www.jpeg.io/
https://riot-optimizer.com/

1

2

ShrinkMe: online, all
Squoosh: online, all
SVGOMG: online, SVGs
TinyPNG / TinyJPG: online, bitmaps

Concatenate and Minify CSS
Multiple style sheets can be loading using HTML <link> elements and CSS

@import at-rules.

Loading separate files is usually inefficient, because each @import blocks the

browser’s rendering process; the imported file could have further nested
@import rules. Performance can therefore be improved using:

Concatenation: all partials are combined into a single large file in the
necessary source order.

Minification: unnecessary comments, whitespace, and characters are
removed to minimize the file size.

A build process (see Chapter 5) or pre-processor can automate CSS
concatenation and minification, but online tools are also available:

CSS Minifier
minifier.org
CSS Compressor
CSS Minify
Online Compressor

Quick Snacks 57

https://shrinkme.app/
https://squoosh.app/
https://jakearchibald.github.io/svgomg/
https://tinypng.com/
https://developer.mozilla.org/docs/Web/HTML/Element/link
https://developer.mozilla.org/docs/Web/CSS/@import
https://cssminifier.com/
https://www.minifier.org/
https://csscompressor.com/
https://www.cleancss.com/css-minify/
https://refresh-sf.com/

1

2

3

Concatenate and Minify JavaScript
Application code is normally split into multiple files with related or self-contained
functionality. This makes development more practical: files are easier to
understand, each can be tested individually, and reuse in other projects is easier.
However, dependencies must be declared in some way to ensure script A is
loaded before it’s referenced in script B.

Multiple JavaScript files can be loaded in a single web page using:

more than one HTML <script> element defined in dependency order

ES6 modules, which import dependencies when they’re required within a

script

older run-time module loaders such as RequireJS, which provide
dependency management in ES5 and below

Like CSS, JavaScript benefits from concatenation and minification: dependencies
can be determined at build time, a single HTTP request is required, and the
download file is smaller. Some minification tools can also optimize code for
improved performance.

HTTP/2 and Multiple Files

HTTP/2 lessens the need for file concatenation because it reduces the
overhead of transmitting multiple files:

pipelining allows the server to send responses in any order
multiplexing permits any number of request and response messages on
the same TCP connection at the same time
the server can use Server Push to send assets before they’re requested

In theory, separate files may be a benefit on large, regularly updated
applications, because just the modified assets can be sent. However,
testing is recommended. There are unlikely to be many downsides of
concatenation and minification.

58 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/HTML/Element/script
https://www.sitepoint.com/understanding-es6-modules/
https://requirejs.org/

A build process using modules such as Babel, rollup.js, or preprocess can manage
dependencies and create a single JavaScript file that’s minified with terser (see
Chapter 5). Alternatively, the process can be handled manually to improve
performance on an existing site:

JSCompress
minifier.org
Minify your JavaScript
Online Compressor
Packer

Minify HTML
HTML can also be minified to remove comments, white space, and even
unnecessary quotes around attributes. HTML code is often smaller than CSS and
JavaScript, so performance gains will be less noticeable, but minification can be
simple with a CMS plugin, framework module, or build system (refer to Chapter
5).

Load JavaScript at the End of the Page
When the browser encounters a <script> tag in the HTML, it halts all other

operations while it downloads and parses the code. This is known as a render-
blocking process.

It’s normally more effective to place <script> tags at the bottom of the page

before the closing <\body> tag. This improves page performance, since the

content is viewable before an attempt is made to process JavaScript.

Pre-minified Third-party Code

Third-party JavaScript frameworks and libraries often provide pre-
minified versions of the source code. Consult the documentation or
look for file names containing min , such as jquery-3.4.1.min.js .

Quick Snacks 59

https://babeljs.io/
https://rollupjs.org/
https://github.com/jsoverson/preprocess
https://terser.org/
https://jscompress.com/
https://www.minifier.org/
https://javascript-minifier.com/
https://refresh-sf.com/
http://dean.edwards.name/packer/

1

2

Two attributes can be added to a <script> tag to ensure JavaScript is loaded in

the background without blocking the render process:

defer : the script is executed when the DOM is ready and shortly before

the DOMContentLoaded event. All deferred scripts are run in the order
they’re referenced on the page.

async : the script is executed once it has downloaded. This could occur at

any point during or after the page has loaded, so it can’t have other script
dependencies.

Both attributes are well supported across modern browsers, but they’re not
suited to all scripts. For example, deferred scripts run when the DOM is ready, but
this can occur before the CSS Object Model has been parsed. A script that
analyses applied CSS colors can therefore fail randomly. Scripts placed at the
bottom of the page are never affected by this issue, and preloading may help
(discussed next).

Preload Assets
The HTML <link> tag has a preload attribute. This specifies resources the

page requires so downloading can start immediately rather than waiting for its
reference in the HTML.

For example, a page with a <script> tag just before the closing </body> can be

preloaded in the HTML <head> :

Loading CSS

CSS is also render-blocking. However, if it were loaded at the end of
the page, the browser would show unstyled HTML as the page loaded,
then re-layout the content after the CSS had been parsed. This looks
somewhat ugly and has a negative effect on performance. An
alternative option is “critical CSS”, as described in Chapter 4.

60 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/API/Window/DOMContentLoaded_event
https://developer.mozilla.org/docs/Web/HTML/Preloading_content

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>My page</title>

<!-- preload script -->

<link rel="preload" href="script.js" as="script" />

<link rel="stylesheet" href="styles.css" />

</head>

<body>

<h1>My page</h1>

<p>Lots of content...</p>

<!-- load script (may be ready) -->

<script src="script.js"></script>

</body>

</html>

The larger the HTML page, the greater the preloading benefit.

The optional as attribute allows the browser to prioritize and cache assets more

effectively. That is, a script is downloaded before a video because it’s more
critical to the page’s operation. Permitted values are:

audio : an audio file used in an <audio> element

document : an HTML document embedded in a <frame> or <iframe>

embed : a resource embedded inside an <embed> element

fetch : a URL required by an Ajax fetch or XHR request

font : a font file

image : an image file

object : a resource embedded in an <object> element

script : a JavaScript file

style : a CSS style sheet

track : a video subtitle WebVTT file

video : a video file used in a <video> element

Quick Snacks 61

worker : a JavaScript web worker or shared worker

A further optional type attribute defines the resource’s MIME type, so the

browser can make further optimizations or avoid downloading unsupported
assets. For example:

<link rel="preload" href="video.mp4" as="video" type="video/mp4" />

Remove Unused Assets
Features will be added and dropped as your website or application evolves.
Unfortunately, it’s easy to leave stray, unused resources lingering in the
codebase, which negatively affects performance. Easier assets to remove
include:

CMS plugins. Disable or delete CMS (WordPress) plugins you’re no longer
using.

Other Attributes and an API

The prefetch attribute is similar to preload , except that it’s intended

to fetch resources that will be in the next navigation/page load.
Browsers give prefetch a lower priority.

Similarly, prerender can be used to render a specified web page in the

background. Since this potentially wastes bandwidth, browsers often
limit processing and memory use.

The dns-prefetch attribute can be used to resolve a domain name to

an IP address before resources are requested, while preconnect

establishes a connection to a server.

Finally, look out for Portals, which renders a page in the background
and allows the user to instantly navigate to it. The technology is new
and yet to be fully implemented in any browser.

62 Jump Start Web Performance

https://developer.mozilla.org/docs/Glossary/Prefetch
https://developer.mozilla.org/docs/Glossary/prerender
https://developer.mozilla.org/docs/Learn/Performance/dns-prefetch
https://web.dev/hands-on-portals/

Unused fonts, weights, and styles. Try removing suspicious fonts and retest
the site. This can improve page weight by several hundred kilobytes, and
critical fonts will normally fall back to reasonable alternatives.
Unused CSS and JavaScript. Check that any removed HTML components
have their associated styles and functionality deleted.
Duplicate dependencies. Make sure you aren’t including similar assets more
than once. This can be an issue in a CMS where different plugins use slightly
different versions of Bootstrap or jQuery.

Assess Analytics Performance
Site owners should be given an easy way to measure page views, journey flows,
and feature usage. Tracking via server access logs is possible, but richer statistics
are normally available using client-side systems such as Google Analytics. These
systems may be free to use, but can have a negative impact on page
performance. Try temporarily removing all analytics code from your site to assess

1

2

3

Code for Specific Pages

Consider removing code from pages that don’t use a particular feature.
For example, if a page doesn’t require a carousel, its styles and
functionality could be omitted.

This is less beneficial when concatenated CSS and JavaScript files
have been downloaded and cached in the browser. These would
contain unnecessary code for that page, but providing a smaller
alternative would incur a further download. Analyze your code to
determine what could offer the best performance:

A single, concatenated file served to every page that can be cached on
first use.

Multiple source files served over HTTP/2.

A compromise solution, such as core styles loaded on every page, plus
article styles used on news pages, pagination styles used on search

results, and so on.

Quick Snacks 63

https://analytics.google.com/

1

2

3

4

the speed gains.

Fortunately, it is possible to retain your statistics and improve performance:

Use a single analytics provider. Using more than one will adversely affect
speed and give mismatching reports. Traffic analysis is based on a stack of

assumptions; it’s often impossible to compare results.

Test analytics systems to determine which offers the best performance for
the information provided. Google alternatives include Matomo, Clicky,

Heap, FoxMetrics, and Woopra. Some can be hosted locally to improve
performance further.

Consider alternative code. For example, minimalanalytics.com removes
lesser-used features to provide a 1.5KB, Analytics-compatible script

compared to Google’s 73KB original (although it will be more stable).

Load analytics scripts after all other JavaScript functionality has
completed. Rather than placing code in the <head> , the analytics scripts

could be the last in the page or loaded after a timeout:

<script>

// load Google analytics after one second

setTimeout(() => {

let

uaId = 'UA-12345678-9', 'UA-12345678-9'// Analytics ID

script = document.createElement('script');

script.src = 'https://www.googletagmanager.com/gtag/js?id=' + uaId;

script.async = 1;

script.onload = function() {

// initialize AnalyticsaLayer = window.dataLayer || [];

window.gtag = function() { dataLayer.push(arguments); }

gtag('js', new Date());

gtag('config', uaId);

};

64 Jump Start Web Performance

https://matomo.org/
https://clicky.com/
https://heap.io/
https://www.foxmetrics.com/
https://www.woopra.com/
https://minimalanalytics.com/

document.head.appendChild(script);

}, 1000);

'js'</script>

Something More Substantial?
Tasty snacks may satisfy hunger for a while, but you’ll soon be ravenous again!
The next chapter provides more substantial, performance-improving recipes.

Quick Snacks 65

Simple
Recipes

Chapter

4

66 Jump Start Web Performance

The tips provided in this chapter will require a little more effort, but the
performance results on new and existing sites may be more dramatic. Some of
the simplest but most effective database optimizations are tackled first before
delving into images, media, fonts, CSS animations, and some controversial topics.

Optimize Your Database
Database access is often the biggest processing bottleneck on the server.
Optimizing front-end performance may be futile if your database is struggling to
cope with user demand.

There are a vast array of database types, but common performance solutions are
described in the following sections.

Use a Query Analyzer

Most databases provide tools that describe how a query has been processed.
These can identify missing indexes or other performance issues. Many SQL and
NoSQL databases offer an EXPLAIN clause or option:

MySQL EXPLAIN
PostgreSQL EXPLAIN
SQLite EXPLAIN
SQL Server EXPLAIN
Oracle EXPLAIN PLAN
MongoDB .explain()
Couchbase EXPLAIN

The output can be complex, verbose, and beyond the scope of this book. Consult
the documentation and look for tools that can help understand the issues.

The database logs can usually be tuned to record long-running queries, and you
may find open-source or commercial products to help optimize data.

Simple Recipes 67

https://dev.mysql.com/doc/refman/en/using-explain.html
https://www.postgresql.org/docs/current/sql-explain.html
https://www.sqlite.org/lang_explain.html
https://docs.microsoft.com/en-us/sql/t-sql/queries/explain-transact-sql
https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm
https://docs.mongodb.com/manual/tutorial/analyze-query-plan/
https://docs.couchbase.com/server/current/n1ql/n1ql-language-reference/explain.html

Create Indexes

Many database performance issues will be solved with an index. An index works
identically to those in a book: it allows a database to quickly jump to a record
given a list of items defined in a specific order.

Consider a user table containing an ID (number), name, email, and hashed

password. The ID is likely to be the primary key and the table is ordered by that
value. A query for a specific ID is fast, because the database can use an efficient
searching algorithm. For example, it can start at the middle record and, if its ID is
higher, it knows the record must be in the first half of the table.

However, a login form requesting a user’s email address and password must
query by that email. Those will be randomly ordered in the user table, so the

database has to check every record until it locates a match. The larger the table,
the slower the query. An index can define a list of emails in alphabetical order (or
any order that’s practical). The searching algorithm can then use that index to
locate a record by email, just as fast as searching by ID.

Indexes should therefore be considered on any field commonly used in search
queries (typically WHERE or JOIN clauses in an SQL SELECT). It’s tempting to add

indexes for every field, but the more you create, the more space is required, and
the slower write operations become, as all indexes must be updated.

Simplify Queries

The less work the database has to do, the faster a result will be returned. Examine
your codebase for complex or multiple dependent queries, especially those that
are generated or contain sub-queries. It will usually be possible to make the
search more efficient.

For example, consider a query that retrieves the top five selling books. In MySQL-
compatible SQL:

SELECT title, author_id FROM book ORDER BY sales DESC LIMIT 5;

68 Jump Start Web Performance

The results contain an author_id reference, so five further queries are made to

fetch author names. For example:

SELECT firstname, lastname FROM author WHERE author_id = 14;

SELECT firstname, lastname FROM author WHERE author_id = 52;

SELECT firstname, lastname FROM author WHERE author_id = 50;

SELECT firstname, lastname FROM author WHERE author_id = 22;

SELECT firstname, lastname FROM author WHERE author_id = 20;

This is known as the N+1 problem: a large set of queries must be made for the
parent records and each result.

A more efficient option would be to fetch all the authors in a single query:

SELECT firstname, lastname FROM author WHERE author_id IN (14,52,50,22,20);

Performance can be improved further with a single query that can be optimized
by the database:

SELECT book.title, author.firstname, author.lastname

FROM book

LEFT JOIN author ON book.author_id = author.id

ORDER BY sales DESC LIMIT 5;

Create Additional Database Connections

Many web applications create a single database connection object that’s used for
all queries and updates. Unfortunately, some databases queue all incoming
requests from a single connection and process them in order. If one user runs a
complex operation that takes 20 seconds to complete, every other user will have
to wait at least 20 seconds for their operation to be processed.

Connection queuing issues will be more evident on continually running
applications such those implemented in Node.js. PHP applications are usually
served by a web server, which creates separate threads with new connection
objects on every request, although pooling solutions may be in place.

Simple Recipes 69

1

2

1

2

3

1

2

3

To prevent database request queuing problems, consider these options:

creating single-use connection objects for queries that could take time

creating multiple connection objects for specific uses or which can be used
in request order

However, be wary of creating too many in-memory connection objects, which
could lead to stability issues.

Consider a Server or Memory Upgrade

Databases work more effectively when they have plenty of RAM. RAM allows the
system to optimize frequently used queries and cache results in memory for fast
access.

Alternatively, you could consider using either:

a separate database server

multiple servers that either share processing or shard data into smaller
silos

a third-party database provider that handles the hard work for you

Cache Results

It may not be necessary to perform queries every time a user requests a
resource. Consider a statistical dashboard displaying various charts that are
computationally expensive to create. The data could be fetched once from the
database, cached in memory or a file, then returned on every subsequent
request. The charts would be updated either when:

data has changed

a specific time has elapsed (such as ten minutes)

a combination of factors is satisfied (such as when data has changed and

70 Jump Start Web Performance

it’s at least five minutes since the last calculation)

Solutions such as Redis and memcached are often used for caching purposes.

Use Background Processing

Consider a web application where a user can upload multiple images. These have
metadata extracted, are resized, and have filters applied before data is stored in
various tables.

Rather than doing all this work in the web application at the point the request is
made, the server could return a result immediately and offload processing to one
or more background tasks. The application will feel more responsive, even
though the final results may take a short while to appear.

Use Alternative Data Systems

Examine alternative systems such as Elasticsearch, which provides faster, richer,
and more appropriate search results than standard, full-text database queries.
Background processes could populate Elasticsearch indexes, which are then
used for search queries. While this now means you have two database systems
to manage and optimize, it could reduce bottlenecks and improve functionality.

Remove or Optimize Social Media Buttons
Social media sharing buttons are regularly added to websites to improve
engagement and publicize content on other platforms:

4-1. Facebook like and share buttons

Those innocent buttons have a high cost: Facebook’s share button downloads
786KB of code (216KB gzipped). Twitter adds a further 151KB (52KB) and
LinkedIn 182KB (55KB). Adding a few buttons considerably increases page
weight, and processing a megabyte or two of JavaScript has a detrimental effect
on performance—especially on mobile devices. That could be the start of your

Simple Recipes 71

https://redis.io/
https://memcached.org/
https://www.elastic.co/

problems, for various reasons listed below.

The code is not sitting idle. Regardless of whether or not someone clicks a
button, your visitors are being monitored across your site and others.
You may be liable for the use—or misuse—of personal data. The European
Court of Justice ruled in 2019 that sites voluntarily sharing visitor information
with a social network are considered joint data controllers.
Third-party JavaScript is a security risk (see the next section).
Supporting every social media platform is impossible. You’re likely to miss
options, and some services don’t provide sharing facilities.
Site engagement can be reduced if your visitors are tempted to stay on the
social network.

The risks are high, given just 0.2% of visitors use the buttons. (Sources: GOV.UK
and Moovweb.)

If your site owners understand the hazards but still want to keep the buttons,
there’s a couple of options for retaining sharing without adversely affecting
performance, privacy, and security.

Use URL-based Share Links

Any page can be shared on Facebook with a link like this:

https://www.facebook.com/sharer/sharer.php?u=${url}

Likewise for Twitter:

https://twitter.com/intent/tweet?url=${url}&text=${title}

And LinkedIn:

https://www.linkedin.com/shareArticle?mini=true&url=${url}&title=${title}

In these examples, ${url} is the page URL and ${title} is the title (perhaps

72 Jump Start Web Performance

https://developers.facebook.com/docs/plugins/faqs#faq_574746276036649
https://curia.europa.eu/jcms/upload/docs/application/pdf/2019-07/cp190099en.pdf
https://curia.europa.eu/jcms/upload/docs/application/pdf/2019-07/cp190099en.pdf
https://insidegovuk.blog.gov.uk/2014/02/20/gov-uk-social-sharing-buttons-the-first-10-weeks/
https://www.moovweb.com/anyone-use-social-sharing-buttons-mobile/

the text contained in the page’s <title> tag).

Most social networks offer similar URL-based APIs. They’re lightweight and only
activate when a user chooses to engage with the platform. You can implement
these in standard <a> tags and, if necessary, intercept the click with JavaScript

to open the link in a new window.

Use the Web Share API

Visitors can use their browser’s Share facility to post URLs to social media apps
as well as email, messaging, Pocket, WhatsApp, and more.

4-2. Browser share options

The option is normally provided on mobile browsers, but it may not be obvious to
users. Progressive Web Apps (see Chapter 5) can also hide the browser interface.

Simple Recipes 73

Fortunately, the Web Share API was introduced in Chrome 76 on Android, Safari
12.3 on iOS, and Safari 12.1 on macOS. The API hands information to the host
operating system, which knows which apps support sharing.

The sharing UI can be shown in response to a user click. The following JavaScript
checks whether the Web Share API is supported, then adds a button click handler
that passes a ShareData object to navigator.share() :

// is the Web Share API supported?

if (navigator.share) {

// share button click handler

document.getElementById('share').addEventListener('click', () => {

'share'// share page information

navigator.share({

url: 'https://example.com/',

title: 'My example page',

text: 'An example page implementing the Web Share API.'

});

});

}

The ShareData object contains:

url : the URL being shared (an empty string denotes the current page)

title : the document title (perhaps the page’s HTML <title> string)

text : arbitrary body text (perhaps the page’s description meta tag)

Unlike with share buttons, it’s possible to share a page #target such as an

individual section or comment rather than the primary URL.

navigator.share() returns a Promise so .then() and .catch() blocks can be

used if you need to perform other actions or react to failures.

74 Jump Start Web Performance

https://w3c.github.io/web-share/
https://caniuse.com/#feat=web-share
https://caniuse.com/#feat=web-share

Be Wary of Third-party Scripts
Analytics systems, advertising platforms, social media buttons, and custom
widgets often require you to add a third-party <script> (from another domain).

Those scripts may be huge or grow without you realizing.

Third-party scripts also run with the same site-wide rights and permissions as
your own code. As well as hindering performance, they can track users, upload
data elsewhere, change your content, redirect to other pages, trigger
ecommerce transactions, auto-click advertisements, or perform any other
malicious actions.

Your performance, privacy, and security is only as good as the weakest provider.
Ensure third-party scripts:

are delivered over HTTPS to eliminate man-in-the-middle attacks
use <script crossorigin="anonymous"> to ensure there’s no exchange of user

credentials via cookies or other technologies
set a <script> integrity attribute with a file hash to reject any script that’s

been changed by the provider (refer to Subresource Integrity on MDN)

Ideally, move the script to your domain or remove it entirely.

Use Responsive Images
The tag offers optional srcset and size attributes which are well-

supported in most browsers (except IE). These allow specific images to be

Third-party Script Used to Target Site

British Airways was fined US$232 million in 2018 when 500,000
customers had their names, email addresses, and full credit card
information stolen during website transactions. The attack originated
from a third-party script that was modified to target BA, possibly
without the knowledge or consent of its supplier.

Simple Recipes 75

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
https://www.bbc.co.uk/news/business-48905907
https://caniuse.com/#feat=srcset
https://caniuse.com/#feat=srcset

requested according to the size of the element and pixel density.

Given a 100x100px space, it’s usually optimal to load a 100x100px image.
However, the image quality can look comparatively poor on a 4x display density,
so a 400x400px image could be preferable. The srcset attribute can define

appropriate images in a standard tag:

<img width="100" height="100"

alt="responsive image"

src="img-100.jpg"

srcset="img-100.jpg 1x,

img-200.jpg 2x,

img-300.jpg 3x,

img-400.jpg 4x" />

The browser will select and download the most appropriate image for the display
density. This ensures the best image quality without end users having to
download unnecessarily large images on all devices.

The image referenced in the src attribute is used when the browser doesn’t

support srcset .

CSS Resolution

Modern smartphones offer screens with very high native resolutions,
known as HiDPI or Retina displays. Each pixel is almost invisible to the
naked eye, so the browser implements a CSS resolution such as
360x760px, where the native resolution could be 1440x3040px. The
display density is therefore 4x, and a single CSS pixel will be using 4x4
(16) physical pixels.

76 Jump Start Web Performance

Alternatively, you can target images based on the rendered width of the

element:

<img alt="responsive image"

src="small.jpg"

srcset="small.jpg 400w

large.jpg 800w" />

The w unit defines the image file’s actual width in pixels. Don’t use px as you

would normally expect.

small.jpg is used when the viewport is below 400px, but large.jpg is used on

screens where the CSS or physical pixels exceed 400px.

This example is only practical when the image is the full width of the viewport.
The sizes attribute defines the size of the image in relation to the viewport so

the width can be calculated:

<img alt="responsive image"

src="small.jpg"

srcset="small.jpg 200w

large.jpg 400w"

sizes="50vw" />

The image width is 50vw —half the viewport. small.jpg is used when the image

width is 200px or less (the viewport is therefore less than 400px), but

large.jpg is used when the image width is greater.

image-set() and Media Queries

The CSS image-set() function offers similar options for background

images, but support is currently limited.

An alternative that works in most browsers is the CSS resolution

media query, although the code is more verbose.

Simple Recipes 77

https://developer.mozilla.org/docs/Web/CSS/image-set
https://caniuse.com/#feat=css-image-set
https://developer.mozilla.org/docs/Web/CSS/@media/resolution
https://developer.mozilla.org/docs/Web/CSS/@media/resolution

The sizes attribute can contain complex media queries and a final fallback size

to determine the image width in multiple viewport dimensions. For example:

<img alt="responsive image"

sizes="(max-width: 299px) 100vw,

(min-width: 300px) and (max-width: 799px) calc(100vw - 60px),

50vw" />

Define Responsive Image Aspect Ratios
Since the advent of responsive web design, developers have been advised not to
set width and height attributes on tags. The CSS then sets width:

100% or max-width: 100% to ensure the image is sized to the width of its

container or the maximum dimensions of the image accordingly.

The technique has an unfortunate side-effect: when images start to load, the
page must reflow to allocate space. You’ll often experience this on mobile
devices, where the text you’re reading suddenly moves off-screen because an
image suddenly appears further up the page.

An aspect ratio defines the relationship between the height and width, so it
becomes possible to calculate the size when only one dimension is known. From

The Bandwidth Cost of Larger Images

A 400x400px image could have a file size 16x greater than its
100x100px equivalent. It requires considerably more bandwidth, which
could lead to a poor experience on a mobile network.

Presume smaller images are 20KB and the larger version is 200KB.
Each page contains five images and 1,000 page views are made per
day. The daily bandwidth saved by using smaller images is 900MB—or
330GB per year.

A compromise—perhaps 200x200px—could look reasonable without
adversely affecting performance.

78 Jump Start Web Performance

Firefox 71 and Chrome 79, the browser parses width and height

attributes to calculate the aspect ratio. The appropriate space can then be
reserved so reflows aren’t required:

<!-- image has a 4:3 aspect ratio -->

The following CSS ensures the image uses the full width of its container and sets
a height according to the aspect ratio:

img {

width: 100%;

height: auto; /* this is essential */

}

The browser will reserve appropriate space on the page so re-flows become
unnecessary. Browsers that don’t calculate the aspect ratio won’t reserve any
space, but there are no downsides. The image will remain responsive.

Choosing Height and Width

Any appropriate width or height can be used to set the aspect ratio,
since it will be resized using CSS. For example, width="4" height="3" .

That said, it’s best to set a reasonable size to ensure the image is
visible in very old browsers, or when CSS fails to load or is disabled.

HTML and CSS Proposals for Defining Aspect Ratios

There are also proposals to define aspect ratios using an HTML
intrinsicsize="400x300" attribute or a CSS aspect-ratio: 4/3

property. These would provide alternative options for avoiding reflows,
so keep an eye on new browser releases!

Simple Recipes 79

https://github.com/WICG/intrinsicsize-attribute
https://drafts.csswg.org/css-sizing-4/#ratios
https://drafts.csswg.org/css-sizing-4/#ratios

Implement Art Direction
The HTML <picture> element is similar to <audio> and <video> in that it will

request one of its child elements according to browser support and conditions.
For example, it can be used to load a smaller WebP image or fall back to a
standard JPG:

<picture>

<source type="image/webp" srcset="image.webp" />

</picture>

The <picture> element can also be used for art direction. Different images are

requested according to the dimensions and orientation of a device. Consider the
following hero photograph:

CDN and Server-side Solutions

Some image CDNs and server-side solutions can deliver the most
optimum image based on the HTTP request, so just an tag

would be required.

80 Jump Start Web Performance

4-3. A landscape image

The landscape image looks reasonable on a typical desktop monitor, but detail is
lost on smaller devices held in portrait orientation. It would also become difficult
to overlay text in the smaller space.

Simple Recipes 81

4-4. A smartphone landscape image

Using art direction, we can serve a more appropriate image showing the main
subject with less background detail:

82 Jump Start Web Performance

4-5. A portrait image

This looks better on a smartphone held in portrait orientation and, in this case,
the file size is 65% smaller (59KB compared to 168KB):

Simple Recipes 83

4-6. A smartphone portrait image

The <source> items in a <picture> element can set media queries to determine

which image is requested. For example, use landscape.jpg when the viewport

width is greater than the height, or fall back to portrait.jpg otherwise:

<picture>

<source srcset="landscape.jpg"

media="(min-aspect-ratio:1/1)" />

</picture>

Any number of <source> images can be defined with differing media queries.

Each is processed in the specified order until a match is found. A default

84 Jump Start Web Performance

should always be set as a fallback when no match is available, or for older
browsers that don’t support <picture> .

Lazy Load Images and Iframes
The average web page requests almost 1MB of images. Half of all websites load
significantly more! These images (and embedded <iframe> elements) download

regardless of whether they’re viewed or not. A large off-screen image requires
bandwidth and processing even when the user clicks a link at the top of the page
and never scrolls down.

Load times, bandwidth, and device requirements can be reduced by lazy loading
images and iframes when they’re scrolled into the viewport. Chrome 76 and
above support native lazy loading with the new loading attribute:

<iframe src="https://site.com/" loading="lazy"></iframe>

The following values can be set:

auto : the browser’s default behavior (identical to not using the attribute)

lazy : defer loading until the resource reaches a distance from the viewport

eager : load the resource immediately

The distance from the viewport can vary according to the type of resource, the
network connection, and whether Lite mode/Save-Data is enabled. (Lite mode/
Save-Data is covered later in this chapter.)

Native lazy loading is new, so non-Chrome and older browsers require JavaScript-
based solutions such as progressive-image.js. These analyze scroll and resize
events or use the Intersection Observer API to determine when an element is in
view. As well as supporting more browsers, they can also implement attractive
loading effects.

Simple Recipes 85

https://github.com/craigbuckler/progressive-image.js
https://developer.mozilla.org/docs/Web/API/Intersection_Observer_API

4-7. The initial, low-resolution image loaded in the browser

4-8. The full image in view

86 Jump Start Web Performance

Play Audio and Video on Demand
Auto-playing media saps bandwidth, degrades performance, and is unlikely to be
appreciated by users. Modern browsers will also block or silence auto-playing by
default.

In most cases, it’s preferable to show a thumbnail image—perhaps with a play
icon overlay—which the user can click to start the media. Both the <video> and

<audio> elements support this feature with the following attributes:

autoplay="false" to stop auto-playing

preload="none" to prevent media preloading or preload="metadata" to fetch

meta data such as the video duration
poster="image.jpg" to show a thumbnail image

controls="true" to enable native playback controls

Here’s an example:

<video controls="true"

autoplay="false"

preload="metadata"

poster="videothumb.jpg">

<source src="video.mp4" type="video/mp4">

<source src="video.webm" type="video/webm">

</video>

Alternatively, a JavaScript solution could be implemented that replaces a (lazy
loaded) with appropriate <video> or <audio> elements when clicked.

The solution could also work for third-party video providers such as YouTube and
Vimeo, which provide custom video players.

Replace Images with CSS3 Effects
The days of slicing and dicing images in a graphic package to create custom
fonts, rounded corners, shadows, linear gradients, and transparency effects have
long gone. CSS3 options such as web fonts, border-radius, text-shadow, box-

Simple Recipes 87

https://developer.mozilla.org/docs/Learn/CSS/Styling_text/Web_fonts
https://developer.mozilla.org/docs/Web/CSS/border-radius
https://developer.mozilla.org/docs/Web/CSS/text-shadow
https://developer.mozilla.org/docs/Web/CSS/box-shadow

shadow, color gradients, and opacity are quicker to implement, easier to change,
and require far fewer bytes than images.

An element, image, or background image can be manipulated using CSS3 effects
rather than having to create multiple variations. For example:

The clip-path and mask properties can partially or fully hide parts of an image
or element to create non-rectangular shapes.
The shape-outside, shape-margin, and shape-image-threshold properties can
be used to define non-rectangular text flows around or within an element.
The transform property can rotate, scale, and skew an element.
The filter property offers possibilities such as blurring, brightness, contrast,
hue rotation, inversion, saturation, grayscale, sepia, opacity, and shadows.
Both background-blend-mode and mix-blend-mode control how backgrounds
and images blend with each other in a similar way to Photoshop layers.
Options include normal, multiply, screen, overlay, darken, lighten, color-dodge,
color-burn, hard-light, soft-light, difference, exclusion, hue, saturation, color,
and luminosity.

Use SVGs Effectively
Scalable Vector Graphics define points, lines, and shapes as vectors in XML.
Unlike bitmaps, SVG images can be scaled to any dimensions without increasing
the file size or losing quality. This makes them ideal for logos, charts, and
diagrams.

It’s possible to create and manipulate SVGs manually, on the server, or in client-
side JavaScript. However, more complex images will require a graphics package
such as Adobe Illustrator, Affinity Designer, Inkscape, or SVG edit, followed by an

CSS3 Effects Can Be Costly

CSS shadows, gradients, and filters may be costly during browser
repaints. Use the effects sparingly and test their impact on scrolling
and animation performance.

88 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/CSS/box-shadow
https://developer.mozilla.org/docs/Web/CSS/CSS_Images/Using_CSS_gradients
https://developer.mozilla.org/docs/Web/CSS/opacity
https://developer.mozilla.org/docs/Web/CSS/clip-path
https://developer.mozilla.org/docs/Web/CSS/mask
https://developer.mozilla.org/docs/Web/CSS/shape-outside
https://developer.mozilla.org/docs/Web/CSS/shape-margin
https://developer.mozilla.org/docs/Web/CSS/shape-image-threshold
https://developer.mozilla.org/docs/Web/CSS/transform
https://developer.mozilla.org/docs/Web/CSS/filter
https://developer.mozilla.org/docs/Web/CSS/background-blend-mode
https://developer.mozilla.org/docs/Web/CSS/mix-blend-mode
https://www.adobe.com/products/illustrator.html
https://affinity.serif.com/en-us/designer/
http://www.inkscape.org/
https://svg-edit.github.io/svgedit/releases/latest/editor/svg-editor.html

optimization clean-up in svgo or SVGOMG.

There are three primary ways to add an SVG to a web page. Choose the most
appropriate option for each graphic you’re using.

1. Add SVGs Using an Tag

The SVG acts like any normal image: it can be cached and reused on other pages.

For security reasons, browsers will disable embedded scripts, links, and other
types of interactivity. Some browsers won’t apply style sheet rules defined in a
separate CSS file.

The lesser-used <object> , <embed> , and <iframe> elements can circumvent

these restrictions, but the browser treats the image as another document, so
performance could be affected.

2. Add SVGs as CSS Background Images

An SVG can be referenced as a URL in a background image:

.mysvgbackground {

background-image: url('image.svg');

}

It can also be embedded inline:

.mysvgbackground {

background-image: url('data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/

➥svg" viewBox="0 0 800 600"><circle cx="400" cy="300" r="50" stroke-width="5"
➥stroke="#f00" fill="#ff0" /></svg>');

}

Like , the browser will block embedded scripts, links, and other SVG

interactions, but backgrounds can be useful for regularly used icons.

Simple Recipes 89

https://www.npmjs.com/package/svgo
https://jakearchibald.github.io/svgomg/

3. Embed SVGs into the Page

An SVG can be embedded directly into the HTML:

<body>

<svg class="mysvg" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 600">

<circle cx="400" cy="300" r="50" />

<svg>

</body>

The SVG nodes become part of the DOM and can be styled or animated directly
using CSS:

circle {

stroke-width: 1em;

}

.mysvg {

stroke-width: 5px;

stroke: #f00;

fill: #ff0;

}

This reduces SVG code weight by reusing CSS styles, and it offers additional
flexibility such as alternative colors, hover effects, animation of specific
elements, and so on.

Unfortunately, the SVG must be embedded into every page where it’s required.
This will increase HTML weight, so embedding is generally best for small or
infrequently used SVGs.

Inline Data for Larger Images

Inline data should be avoided for larger images, especially when
regular changes will invalidate the whole style sheet cached in the
browser.

90 Jump Start Web Performance

1

2

3

Consider Image Sprites
Often-used images can be packaged into a single sprite file so individual items
can be accessed in CSS. This is an old optimization technique, but it continues to
offer advantages:

A single HTTP request is required for many images (although this is less
beneficial with HTTP/2).

A single image will normally result in a smaller overall file size than the total
weight of the individual images.

All referenced images appear instantly after the sprite has loaded.

The following image defines five 64x64px icons in a single 320x64px 24-bit
PNG:

4-9. A browser icon sprite

Background position offsets are then defined in CSS:

.sprite {

width: 64px;

padding: 64px 0 10px 0;

text-align: center;

background: url("browser-sprite.png") 0 0 no-repeat;

}

.sprite.edge { background-position: -64px 0; }

.sprite.firefox { background-position: -128px 0; }

.sprite.opera { background-position: -192px 0; }

.sprite.safari { background-position: -256px 0; }

Individual images can then be referenced in HTML using class names:

Simple Recipes 91

<div class="sprite chrome">Chrome</div>

<div class="sprite edge">Edge</div>

<div class="sprite firefox">Firefox</div>

<div class="sprite opera">Opera</div>

<div class="sprite safari">Safari</div>

The result:

4-10. The rendered sprite icons

Image sprites can be generated in a graphics package, using tools such as
SpriteCow or Instant Sprite, or in your build process.

92 Jump Start Web Performance

http://www.spritecow.com/
https://instantsprite.com/

1

2

3

Consider OS Fonts
It’s possible to add dozens of fonts to a page … but that doesn’t mean you should!

Designers recommend using fonts sparingly, with one or two typefaces per
document.

A custom font typically requires a few hundred kilobytes of data. The more
you add, the larger the page weight, and the worse the performance.

The days of every site using standard OS fonts are over.Perhaps Helvetica,
Times New Roman, or Comic Sans would look good on your site?!

Using an OS font provides a noticeable performance boost; there’s no download
delay or flash of unstyled or invisible text.

Each platform supplies different default fonts, but fallbacks can be specified as
well as the generic font family names of serif , sans-serif , monospace ,

cursive , fantasy , and system-ui . For example:

body {

font-family: Arial, Helvetica, sans-serif;

}

Web apps may also feel more native if they use a standard system font. The
following stack implemented on GitHub.com targets system fonts available
across all popular platforms:

body {

font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica,

Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";

}

Similar variations are used by Medium.com and the WordPress administration
panels:

Simple Recipes 93

https://webplatform.github.io/docs/concepts/web_typography/
https://www.granneman.com/webdev/coding/css/fonts-and-formatting/default-fonts

body {

font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, U

buntu, Cantarell, "Helvetica Neue", sans-serif;

}

Alternatively, the CSS @font-face local() function can be used to locate a font

on the user’s system first, but load from a URL when it can’t be found:

@font-face {

font-family: MyHelvetica;

src: local("Helvetica Neue"),

local("HelveticaNeue"),

url("/fonts/Helvetica-webfont.woff2") format("woff2"),

url("/fonts/Helvetica-webfont.woff") format("woff");

}

An OS font should be your first choice if it closely matches branding
requirements.

Embed Web Fonts with <link>
Many designers will be horrified by the suggestion of using OS fonts, so web font
use is inevitable. The most popular option is to use a repository that serves fonts
from a CDN. Popular options include:

Google Fonts: fonts.google.com
Font Library: fontlibrary.org
Adobe Edge: edgewebfonts.adobe.com

Where possible, load fonts using a <link> in your HTML <head> . For example:

<link href="https://fonts.googleapis.com/css?family=Open+Sans" rel="stylesheet">

This downloads the font in parallel with other fonts and style sheets.

A CSS @import method may be offered by the repository, but this blocks

processing of the style sheet until the font has been downloaded and parsed.

94 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/CSS/@font-face
https://fonts.google.com/
https://fontlibrary.org/
https://edgewebfonts.adobe.com/

1

2

Limit Font Styles and Text
Only request the fonts, weights, and styles you require—and definitely remove
any fonts you aren’t using!

Here’s an example of two Google Font URLs:

https://fonts.googleapis.com/css?family=Inconsolata:500,700
https://fonts.googleapis.com/css?family=Roboto:bolditalic

Both fonts can be contained in a single URL:

https://fonts.googleapis.com/
css?family=Inconsolata:500,700|Roboto:bolditalic

In some cases, you may only need specific characters—perhaps for a regularly
used title or logo. The text “Hello” requires just four characters from a specific
font:

https://fonts.googleapis.com/css?family=Inconsolata&text=Helo

Finally, you could benefit from hosting the fonts locally or using more popular
fonts that have a higher chance of being pre-cached in the user’s browser.

Use a Good Font-loading Strategy
A web font can take several seconds to download. The browser will choose one
of two options:

Show a flash of unstyled text (FOUT). The first available font fallback is
used immediately. It’s replaced by the web font once it’s loaded. This

process is used by IE, Edge 18 and below, and older editions of Firefox and Opera.

Show a flash of invisible text (FOIT). No text is displayed until the web font
has loaded. This process is used in all modern browsers, which typically

wait three seconds before reverting to a fallback.

Simple Recipes 95

https://fonts.googleapis.com/css?family=Inconsolata:500,700
https://fonts.googleapis.com/css?family=Roboto:bolditalic
https://fonts.googleapis.com/css?family=Inconsolata:500,700|Roboto:bolditalic
https://fonts.googleapis.com/css?family=Inconsolata:500,700|Roboto:bolditalic
https://fonts.googleapis.com/css?family=Inconsolata&text=Helo
https://fonts.google.com/analytics
https://fonts.google.com/analytics

Either option can be jarring and affect perceived performance.

The CSS font-display property allows you to define the font-handling process.
The options are:

auto : the browser’s default behavior (usually FOIT).

block : effectively FOIT. The text may be invisible for up to three seconds.

There’s no font swap, but text can’t be read immediately.
swap : effectively FOUT. The first fallback is used until the web font is

available. Text can be read immediately, but the font swap effect may be
jarring if not managed effectively.
fallback : a compromise between FOIT and FOUT. Text is invisible for a short

period (typically 100ms) then the first fallback is used until the web font is
available. Text is readable as the page loads, but the font swap can still be
problematic.
optional : the same as fallback , except no font swapping occurs. The web

font will only be used if it’s available within the initial period. The first page
view is likely to show a fallback font while the web font is downloaded and
cached. Subsequent page views will use the web font.

Example CSS:

@font-face {

font-family: 'mytypeface';

src: url('mytypeface-webfont.woff2') format('woff2'),

url('mytypeface-webfont.woff') format('woff');

font-weight: 500;

font-style: normal;

font-display: swap;

Similar Web and OS Fonts

optional could be a reasonable choice if the web and OS fallback

fonts are similar, but if that’s the case, using an OS font throughout
would offer better performance!

96 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display

}

Google Fonts also provides a display URL query string parameter. For example:

https://fonts.googleapis.com/css?family=Inconsolata:500,700&display=swap

A pragmatic compromise could be considered, which uses a fallback font with
similar weights, line heights, and spacing to the web font. font-display: swap

(FOUT) can then be used, but the replacement effect is less noticeable.

A tool such as Font Style Matcher can be used to find suitable fallback
parameters.

Settings for Specific Text Types

Different text blocks could use different font-display settings. For

example, body text could use swap (FOUT) so it can be read

immediately, while menus and heading text use block (FOIT).

Simple Recipes 97

https://fonts.googleapis.com/css?family=Inconsolata:500,700&display=swap
https://meowni.ca/font-style-matcher/

4-11. Font Style Matcher

Consider Variable Fonts
OpenType 1.8 introduced variable fonts, and they’re supported in most browsers
(except IE). Rather than creating multiple files for each variation of the same
typeface, a font is defined with minimum and maximum vector limits along an
axis.

98 Jump Start Web Performance

https://caniuse.com/#feat=variable-fonts

4-12. Variable font axis definitions

Any weight between the two extremes can be interpolated. A single variable font
can therefore be used instead of several variations in order to reduce page
weight and improve performance.

Open-source and commercial variable fonts can be found at sites including:

Variable Fonts
Axis Praxis
Font Playground
Recursive—a revolutionary font that includes monospace and casual settings

These can then be loaded using @font-face with a woff2-variations format and

the allowable ranges. For example:

@font-face {

font-family: 'VariableFont';

src: 'variablefont.woff2' format('woff2-variations');

font-weight: 200 800;

Simple Recipes 99

https://v-fonts.com/
https://www.axis-praxis.org/specimens/
https://play.typedetail.com/
https://www.recursive.design/

font-stretch: 75% 125%;

font-style: oblique 0deg 20deg;

}

Browser support for variable fonts can be tested using @supports with

font-variation-settings :

body {

font-family: sans-serif;

}

@supports (font-variation-settings: 'wght' 500) {

body {

font-family: 'VariableFont';

}

}

Aspects of the typeface can then be adjusted in CSS, including the weight
(typically 0 to 1000):

font-weight: 500;

/* or */

font-variation-settings: 'wght' 500;

Also width—or stretch—can be adjusted to produce condensed and extended
variations (100% is normally the default, with lower values creating narrower
fonts and higher values creating wider fonts):

font-stretch: 80%;

/* or */

font-variation-settings: 'wdth' 80;

Whether or not italics are required can also be set (either on or off, since italics
are often defined as a different character set):

100 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/CSS/@supports

font-style: italic;

/* or */

font-variation-settings: 'ital' 1;

Also slant—or oblique—can be adjusted, which modifies the axis in a different
way from italic (typically between 0 and 20 degrees):

font-style: oblique 10deg;

/* or */

font-variation-settings: 'slnt' 10;

The shorthand font-variation-settings property allows multiple font aspects to be
set:

font-variation-settings: 'wght' 300, 'wdth' 100, 'slnt' 0;

Use Modern CSS3 Layouts
For many years, it’s been necessary to use CSS floats to lay out pages. The
technique was always a hack and required considerable code, along with endless
margin/padding tweaking to make the layout work. Even then, floats break at
smaller screen sizes unless media queries are used.

Floats are no longer necessary:

Flexbox should be used for one-dimensional layouts, which (can) wrap to the
next row according to the widths of each block. It’s ideal for menus, image
galleries, cards, etc. Flexbox is supported by most browsers including IE10+.

OS Fonts as Variable Font Fallback

It’s possible to download a single variable font but retain multiple fonts
for older browsers. Unfortunately, modern browsers will download
every font specified, which negates any performance benefit. It’s
therefore preferable to use an OS font as the fallback.

Simple Recipes 101

https://developer.mozilla.org/docs/Web/CSS/font-variation-settings
https://developer.mozilla.org/docs/Web/CSS/float
https://www.sitepoint.com/flexbox-css-flexible-box-layout/
https://caniuse.com/#feat=flexbox

1

2

3

Grid is for two-dimensional layouts with explicit rows and columns. It’s ideal
for page layouts. Grid is supported by most browsers, although IE10/11 use an
older version of the standard.

Both options are simpler to develop, use far less code, can adapt to any screen
size, can remove the need for media queries, and render faster than floats
because the browser can natively determine an optimum layout.

Remove Unused CSS
The smaller your style sheet, the quicker it will download, the sooner it will parse,
and the faster your page will become.

We all start with good intentions, but CSS can bloat over time as the number of
features increases. It’s easier to retain old, unnecessary code than remove it and
risk breaking something. Those using a CSS framework such as Bootstrap may
find they’re only using a fraction of the facilities.

CSS removal recommendations:

Organize CSS into smaller files (partials) with clear responsibilities (which
can be concatenated into a single file at build time). It’s easier to remove a

carousel widget if the CSS is clearly defined in widgets/_carousel.css .

Consider naming methodologies such as BEM to aid the development of
discrete components.

Avoid deeply nested Sass/pre-processor declarations. The expanded code
can become unexpectedly large.

Fallbacks for Older Browsers

It’s possible to use float-based fallbacks for older browsers. However,
it’s often better to use a simpler, single-column layout rather than
trying to emulate what you achieved using Flexbox or Grid. Pixel
perfection is futile!

102 Jump Start Web Performance

https://www.sitepoint.com/introduction-css-grid-layout-module/
https://caniuse.com/#feat=css-grid
https://bem.info/

4

5

Avoid using !important to override the cascade.

Avoid inline styles in HTML.

Chrome’s Coverage panel helps locate unused CSS and JavaScript code. Select
Coverage from the DevTools More tools sub-menu, then hit the record button
and browse your application. Click any file to open its source. Unused code is
highlighted in red in the line number gutter.

4-13. Chrome code coverage

Simple Recipes 103

The following tools provide options to analyze HTML and CSS usage either at
build time or by crawling URLs so that redundant code can be identified. Note
that some configuration will be required to ensure styles triggered by JavaScript
and user interactions are whitelisted.

PurifyCSS (there’s also an online version)
PurgeCSS
UnCSS
UnusedCSS

Alternatively, a visual regression system such as Percy could be used to compare
old and new screenshots.

Those preferring a manual—and considerably more hardcore—process could add
an invisible background image to suspicious selectors. For example:

/* check usage */

.amiused1 {

color: #abc;

background-image: url(/used.png?.amiused1/);

}

#another .suspect {

color: #123;

background-image: url(/used.png?#another-.suspect/);

}

Either selector can be removed if no reference to their background image
appears in server logs over a reasonable usage period.

Coverage for Single Pages Only

Chrome doesn’t remember used/unused code as you navigate to new
pages! The Coverage panel is only practical for single-page
applications.

104 Jump Start Web Performance

https://github.com/purifycss/purifycss
https://purifycss.online/
https://www.purgecss.com/
https://github.com/uncss/uncss
https://unused-css.com/
https://percy.io/

Be Wary of Expensive CSS Properties
Not all CSS properties are created equally. Those that take longer to paint than
others include:

border-radius
box-shadow
opacity
transform
filter
position: fixed

This does’t mean you shouldn’t use them, but be wary of applying expensive
effects to hundreds of elements, as it will affect rendering and scrolling
performance.

Embrace CSS3 Animations
Native CSS3 transitions and animations will always be faster and require less
code than JavaScript-powered equivalents. It shouldn’t be necessary to add a
library or framework for typical fade, show, hide, and move effects. Very old
browsers may not support the properties, but CSS degrades gracefully, and users
will rarely know they’re missing anything.

JavaScript animations should only be considered when fine-grained control is
required—such as for HTML5 games, interactive charts, <canvas> manipulation,

and so on.

Keeping Selectors Simple

Try to simplify CSS selectors where possible. CSS performance
improvements may be negligible, but simpler selectors are easier to
maintain, reduce page weight, and have a better chance of working in
older browsers.

Simple Recipes 105

https://developer.mozilla.org/docs/Web/CSS/border-radius
https://developer.mozilla.org/docs/Web/CSS/box-shadow
https://developer.mozilla.org/docs/Web/CSS/opacity
https://developer.mozilla.org/docs/Web/CSS/transform
https://developer.mozilla.org/docs/Web/CSS/filter
https://developer.mozilla.org/docs/Web/CSS/position
https://developer.mozilla.org/docs/Web/CSS/transition
https://developer.mozilla.org/docs/Web/CSS/animation
https://developer.mozilla.org/docs/Web/HTML/Element/canvas

1

2

3

1

2

Avoid Animating Expensive Properties
Once the browser has parsed the HTML document and styles, it renders
elements in three stages:

Layout: the calculation of how much space an element requires and how it
affects elements around it

Paint: the filling of pixels with color

Composite: the drawing of layers in the correct order when they overlap

Animating the dimensions or position of an element can cause the whole page to
re-layout on every frame. Performance can therefore be improved if an animation
only affects the compositing stage. The most efficient animations only use:

opacity and/or

transform to translate (move), scale, skew, or rotate an element (the original
space the element used is not altered so the layout is not affected)

Browsers often use the hardware-accelerated GPU to render these effects in
their own layer. If neither property is ideal for your animation, consider taking the
element out of the page flow with position: absolute; or similar to avoid

complex layout changes.

Indicate Which Elements Will Animate
The will-change property allows CSS authors to indicate how an element will be
animated so the browser can make performance optimizations in advance—for
example, to declare that an element will have a transform applied:

.myelement {

will-change: transform;

}

Any number of comma-separated properties can be defined. However:

106 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/CSS/opacity
https://developer.mozilla.org/docs/Web/CSS/transform
https://developer.mozilla.org/docs/Web/CSS/will-change

Only use will-change as a last resort to fix animation issues. It should not be

used to anticipate performance problems.
Don’t apply it to too many elements.
Give it sufficient time to work. Don’t begin animations immediately.

Use CSS Containment
CSS Containment is a new (experimental) feature that indicates when an
element’s subtree is independent from the rest of the page. This can improve
rendering performance during animations or when elements are added, modified,
or removed from the DOM. The new CSS contain property accepts one or more

of the following values in a space-separated list:

none : containment is not applied.

layout : the internal layout of the element is isolated from the rest of the

page. Its content cannot have any effect on ancestor elements.
paint : children of the element will not be displayed outside its boundary. Any

overflows will not be visible (similar to overflow: hidden;).

size : the size of the element can be determined without checking its

children. The dimensions are independent of the content.
style : counters and quotes cannot appear outside the element. (This value

may be dropped from the specification.)

Two special values are also available:

strict : all containment rules except style are applied. This is equivalent to

contain: layout paint size; .

content : all containment rules except size and style are applied. This is

equivalent to contain: layout paint; .

Imagine you have a page with an unordered list containing one thousand

child list elements. If you change the contents of a single item that has

contain: strict; applied, the browser won’t attempt to recalculate the size or

position of that item, others in the list, or any other elements on the page.

Simple Recipes 107

https://developer.mozilla.org/docs/Web/CSS/contain

Check the Save-Data Header
The Save-Data field is an HTTP request header indicating that reduced data

usage is preferred. It’s named Lite mode in Chrome and can be enabled or
disabled by the user.

When enabled, the Save-Data header is sent with every browser request. For

example:

GET /image.jpg HTTP/1.0

Host: example.com

Save-Data: on

A server can respond accordingly when Save-Data is detected. For example, it

can respond by:

reducing the volume of HTML content—such as returning 100 rows of table
data rather than 500
providing low-resolution versions of an image even when high-resolution
options are requested
removing non-essential JavaScript such as trackers or advertising scripts

To ensure the minimal content is not cached and reused after the user disables
Save-Data , the server should set the following header in the HTTP response:

Vary: Accept-Encoding, Save-Data

The Save-Data header can also be detected using client-side JavaScript:

if ('connection' in navigator && navigator.connection.saveData) {

// Save-Data enabled

}

An optimum solution could presume data-saving by default, but add a full-data

class to the HTML element when the header is not enabled:

108 Jump Start Web Performance

1

2

3

if ('connection' in navigator && !navigator.connection.saveData) {

document.documentElement.classList.add('full-data');

}

CSS and JavaScript components could then react accordingly. For example:

header {

background-image: url("low-res-hero.jpg");

}

.full-data header {

background-image: url("high-res-hero.jpg");

}

Adopt Progressive Web App Technologies
Progressive web apps (PWAs) can enhance performance by caching essential
files locally. They’re usually more responsive than standard web apps and can
even be faster than native apps.

PWAs comprise a mixture of technologies that make web apps function like
native mobile apps and overcome the constraints imposed by web-only and
native-only solutions:

The app requires a single codebase developed with open, standard W3C
web technologies.

Users can discover and install a PWA from the Web. There’s no need to
abide with app store rules or fees.

PWAs can work offline and update automatically.

Most tutorials describe how to build a native-looking, single-page, mobile-like
app. However, any site can benefit from PWA technologies and be working within
a few hours. There are three essential requirements …

Simple Recipes 109

1. Enable HTTPS

PWAs require an HTTPS connection, although Chrome, for example, permits an
HTTP localhost or 127.x.x.x address during testing.

2. Create a Web App Manifest

The web app manifest provides information about your application, such as the
name, description, and images. These are used by the OS to configure home
screen icons, splash pages, and viewport settings.

The manifest is a JSON text file in the root of your app. It must be served with a
Content-Type: application/manifest+json or Content-Type: application/json

HTTP header:

{

"lang" : "en-US",

"dir" : "ltr",

"name" : "Standard Name",

"short_name" : "Short Name",

"description" : "A description of the site/app",

"scope" : "/",

"start_url" : "/",

"display" : "minimal-ui",

"theme_color" : "#fff",

"background_color" : "#fff",

"icons": [

{

"src" : "https://site.com/icon-076.png",

"sizes" : "76x76",

"type" : "image/png"

},

{

"src" : "https://site.com/icon-192.png",

"sizes" : "192x192",

"type" : "image/png"

},

{

"src" : "https://site.com/icon-512.png",

"sizes" : "512x512",

110 Jump Start Web Performance

"type" : "image/png"

}

]

}

A list of manifest properties can be found on MDN, or you can use the Generate
Web Manifest tool.

A link to the manifest file is required in the <head> of all your pages:

<link rel="manifest" href="/app.webmanifest">

3. Create a Service Worker

Service workers are programmable proxies that can intercept and respond to
network requests. They’re a single JavaScript file that resides in the application
root.

Your page JavaScript must check for service worker support and register the file:

if ('serviceWorker' in navigator) {

// register service worker

navigator.serviceWorker.register('/service-worker.js');

}

service-worker.js then triggers and reacts to events, including:

install when the app is first run. This can be used to cache regularly used

files.
fetch when a network request is made. This can return a cached file or make

further network requests.

const

Simple Recipes 111

https://developer.mozilla.org/docs/Web/Manifest
https://pwafire.org/developer/tools/get-manifest/
https://pwafire.org/developer/tools/get-manifest/

staticCacheName = 'cache-v1';

filesToCache = [

'/',

'style/main.css',

'js/main.js',

'images/hero.jpg'

];

// install event: cache regularly used files

self.addEventListener('install', event => {

event.waitUntil(

caches.open(staticCacheName)

.then(cache => {

return cache.addAll(filesToCache);

})

);

});

'install'// fetch event: serve files from cache or network

self.addEventListener('fetch', event => {

event.respondWith(

caches.match(event.request)

.then(response => {

if (response) {

return response; // from cache

}

return fetch(event.request); // from network

})

.catch(error => {})

);

});

This example doesn’t update cached files or attempt to cache further requests,
but it illustrates the basics of progressive web apps. Further PWA tutorials can be
found at:

Web Fundamentals: Progressive Web Apps
MDN Progressive Web Apps

112 Jump Start Web Performance

https://developers.google.com/web/progressive-web-apps
https://developer.mozilla.org/docs/Web/Progressive_web_apps

Retrofit Your Website as a Progressive Web App

Power Down Inactive Tabs
Although we’re mostly concerned with page performance when a user interacts
with our site, we should also be responsible when the tab is inactive.

Browsers normally throttle events such as requestAnimationFrame, intervals,
and timeouts on inactive tabs, but we can take this further to auto-pause and
resume games, animations, video playback, Ajax polling, WebSocket handling,
background loading, notifications, and so on. The less work an inactive tab does,
the longer the smartphone battery will last, and the more likely the user can
return to your site!

The Page Visibility API can be used to detect whether or not a tab is active and
trigger an event when visibility changes. The following code adds a tab-active

class to the <html> element when the tab is being viewed:

console.log('tab is', isTabActive() ? 'active' : 'not active');

document.addEventListener('visibilitychange', isTabActive);

function isTabActive() {

if (document.visibilityState === 'visible') {

// tab is active

document.documentElement.classList.add('tab-active');

return true;

}

else {

// tab is inactive

document.documentElement.classList.remove('tab-active');

return false;

}

});

CSS could then be used to start or stop animations. For example:

Simple Recipes 113

https://www.sitepoint.com/retrofit-your-website-as-a-progressive-web-app/
https://developer.mozilla.org/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/setInterval
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/docs/Web/API/Page_Visibility_API

1

2

3

.myelement {

animation: something 3s linear 1s infinite alternate;

animation-play-state: paused;

}

.tab-active .myelement {

animation-play-state: running;

}

Consider Inlining Critical CSS
Google page analysis tools often make a suggestion to “inline critical CSS” or
“reduce render-blocking style sheets”. Loading a CSS file blocks rendering, so
performance can be improved by:

Extracting the styles used to render elements above the fold. Tools such as
critical and criticalCSS can help.

Inlining those styles in a <style> element in the HTML <head> .

Loading the main CSS file asynchronously using JavaScript at the bottom
of the page, or perhaps once the DOM is ready.

Other Throttling Techniques

Similar throttling techniques could be used with these tools:

The NetworkInformation API, to determine when connection speeds
could affect performance. The API is experimental, has limited support,
and may not be accurate.
The Battery Status API, to detect when device power falls below a specific
threshold. While this may be implemented in some browsers, the API was
dropped as a web standard owing to privacy concerns. An individual could
be identified and tracked by their fairly unique battery status.
The Ambient Light API, to determine whether a device is being used in
strong or dim lighting and modify the theme accordingly—such as
increased contrast in strong sunlight and dimmer colors in darker
situations. The API is experimental and has limited support.

114 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/API/NetworkInformation
https://developer.mozilla.org/docs/Web/API/Battery_Status_API
https://developer.mozilla.org/docs/Web/API/Ambient_Light_Events
https://github.com/addyosmani/critical
https://github.com/filamentgroup/criticalCSS

The technique noticeably improves performance—even on a fast
connection—and will boost audit scores. It could benefit progressive web or
single-page apps with consistent interfaces, but may be more difficult to manage
on other sites:

The “fold” is different on every device.
Many sites have a variety of page layouts. Each could require different critical
CSS, so a build tool becomes essential.
Critical CSS tools can struggle with specific frameworks, HTML generated by
client-side code, or dynamic, event-driven changes.
The technique mostly benefits the user’s first page load. CSS is cached for
subsequent pages so additional inlined styles will increase page weight.

Provide Accelerated Mobile Pages (AMP)
The AMP project was announced in October 2015. A collaboration between
Google and more than 30 news publishers aimed to improve mobile web
performance. AMP is an open-source web component framework which claims
that “you can easily create user-first websites, stories, emails, and ads.”

AMP requires you to publish existing or original content as an AMP HTML page.
AMP HTML is a subset of HTML5, providing a limited set of web components,
styles, images, videos, and advertisements. Features and styling are purposely
restricted, and you can’t add custom JavaScript. Most AMP pages are served
from Google’s AMP cache—a proxy-based CDN that assigns a Google-specific
URL to the page. This ensures optimal delivery using Google’s global network.

AMP is fast, so it’s mentioned in this book. However, while the project may have
started with noble aims, AMP has been criticized for serving Google more than
publishers and users, for reasons such as this:

AMP is not necessarily faster or more efficient than your own optimized
website.
Unless you go AMP-only, you must duplicate existing content pages.
Alternative URLs may be confusing to users.
Google gains control of your content, visitors, and data.

Simple Recipes 115

AMP could be considered a closed alternative to the open web.

Google wants the Web to be faster, yet AMP pages receive preferential
treatment in mobile search results even when the original site is more efficient.

Ultimately, the decision is yours. There are WordPress plugins and CDNs such as
Cloudflare that can automatically create AMP pages from your content but, for
many sites, AMP will require further development effort. Those pages may
receive additional publicity, but whether it’s you or Google who benefits is
another matter.

AMP development guides:

amp.dev
Convert HTML to AMP
AMP development tools
Official AMP Plugin for WordPress

AMP criticisms:

Google’s AMP HTML
AMPersand
The meaning of AMP
The Two Faces of AMP
Google AMP Can Go To Hell
Kill Google AMP before it kills the web

Feeling Full Yet?
We may have lost weight, but the only way to guarantee long-term benefits is to
change our development attitude! The next chapter provides life-changing diets.

116 Jump Start Web Performance

https://wordpress.org/plugins/tags/amp/
https://www.cloudflare.com/
https://www.cloudflare.com/
https://amp.dev/
https://amp.dev/documentation/guides-and-tutorials/start/converting/
https://amp.dev/documentation/tools/
https://wordpress.org/plugins/amp/
https://adrianroselli.com/2015/10/googles-amp-html.html
https://ethanmarcotte.com/wrote/ampersand/
https://adactio.com/journal/13035
https://timkadlec.com/remembers/2018-02-14-the-two-faces-of-amp/
https://www.polemicdigital.com/google-amp-go-to-hell/
https://www.theregister.co.uk/2017/05/19/open_source_insider_google_amp_bad_bad_bad/

Life-
Changing

Diets

Chapter

5

Life-Changing Diets 117

The performance techniques described in this chapter are more radical and could
be difficult to apply to an existing project. Fortunately, there are no such
limitations when embarking on a new site or app, so we look deeper into CMS
issues, JavaScript optimization, DOM handling, server-side rendering, static site
generators (SSGs), and development processes.

Evaluate CMS Templates and Plugins
Content management systems such as WordPress don’t generate bloated, badly
performing pages … until you start adding stuff!

Free or commercial templates make financial sense. Why employ a developer
when an off-the-shelf solution does everything you need for a few dollars?
Unfortunately, there’s a hidden cost. Generic templates must sell hundreds of
copies—if not thousands—to recoup the development effort. To attract buyers,
the developers bundle every conceivable feature. Your site may only use a
fraction of those facilities, but they can still be present in the code, so the
download weight and processing are affected.

Similarly, be wary about plugins, since their quality and effectiveness vary. The
best plugins can improve performance by optimizing database tables, caching
data, and removing redundant code. The worst will duplicate assets, make
convoluted configuration changes (such as .htaccess files), add unnecessary

bloat, and affect responsiveness even though they’re inactive on a particular
page.

Always evaluate page cost and performance when considering new templates
and plugins. Where possible, choose more lightweight options, even if the
purchase price is higher.

Reduce Client-side Code
Blindingly obvious statement alert: smaller files results in faster pages.

Not all assets are created equal, though. 500KB of image data has a relatively low
performance hit, since it’s downloaded once, cached in the browser, and

118 Jump Start Web Performance

positioned on the page. The same quantity of HTML, CSS, or JavaScript has a far
bigger impact, because it must be downloaded, parsed, and processed.

Ideally, the number of HTML DOM nodes should be reduced to a minimum. A
shallower tree depth means rendering and reflows are performed more
effectively. Modern layout tools such as Flexbox and Grid allow you to remove
wrapper elements that may have been necessary in float-based designs. Keep
the document small and look out for signs of DIVitis!

Similarly, the fewer CSS rules you require, the quicker a document can be
rendered. Look our for complex selectors, especially when using preprocessors
such as Sass, which expand deeply nested rule sets. Check your compiled style
sheet output to ensure it’s as efficient as is practical.

Try to embrace the CSS cascade rather than working against it! A little
understanding can reduce code and improve performance. For example, you can
set default fonts, colors, sizes, tables, grids, and form fields that are universally
applied but can be tweaked for individual components.

Also be wary of using CSS resets, which means having to re-apply default styling
to every element. CSS normalization, such as Normalize.css, could be a better
alternative, since it makes browsers render more consistently. That said, default
styling between browsers is closer than ever.

Optimize JavaScript Code
HTML is a robust technology; even the oldest browsers without HTML5 support
will show content. Similarly, CSS can fail to download or have coding errors, but
the page remains viewable. By contrast, JavaScript is fragile and computationally
expensive. A single error, unsupported command, or long-running task can
prevent further code from running.

It’s difficult to recommend JavaScript optimizations, since all applications will be
different, but there are a few general tips that could improve performance. That
said, be wary of micro-optimizations, which may shave a few milliseconds but
aren’t called frequently enough to make a difference. Use your browser’s

Life-Changing Diets 119

https://www.sitepoint.com/flexbox-css-flexible-box-layout/
https://www.sitepoint.com/introduction-css-grid-layout-module/
https://en.wiktionary.org/wiki/divitis
https://sass-lang.com/
https://developer.mozilla.org/docs/Web/CSS/Cascade
https://necolas.github.io/normalize.css/

1

2

3

4

5

developer tools to check whether any gains have been achieved.

Use JavaScript Sparingly

If a browser can do something in HTML and/or CSS alone, that should be your
preferred option. You can still apply progressive enhancements where necessary
(discussed below).

Modern browsers have implemented many regularly used features that
previously required scripting, such as form validation, field auto-complete,
animations, video, expanding text, modal dialogs, and more. There will be
challenges—ask anyone who’s ever tried styling a <select> drop-down—but

using a native feature will always be faster and use less code.

Consider the choice of using an HTML <button> verses a <div> as a form

submit. The HTML code starts in a similar way:

<button>submit</button>

Styling a DIV in CSS may be easier:

<div class="button">submit</div>

However, the HTML <button> :

offers default styling to look like an OS button

works on all browsers even when CSS or JavaScript fails

works immediately, as the page loads and before JavaScript has started
executing

will automatically submit its parent <form> (if validity checks pass)

can be operated with a mouse, touch screen, keyboard, or any other input
device

120 Jump Start Web Performance

https://developer.mozilla.org/docs/Learn/HTML/Forms/Form_validation
https://developer.mozilla.org/docs/Web/HTML/Element/datalist
https://developer.mozilla.org/docs/Web/CSS/animation
https://developer.mozilla.org/docs/Web/HTML/Element/video
https://developer.mozilla.org/docs/Web/HTML/Element/details
https://developer.mozilla.org/docs/Web/HTML/Element/dialog

6

7

can receive focus, and accepts keypress shortcuts

requires no ARIA roles or other accessibility assistance

A button that’s simulated in CSS and JavaScript requires significant effort, and it
will never function as effectively as the native HTML alternative.

Avoid Long-running Tasks

Long-running tasks often trigger unresponsive browser messages, which prompt
the user to halt JavaScript execution. Complex processing is best handled by a
Web Worker, which allows a script to run in a background thread.

Web Worker scripts are limited. They can’t interact with the page DOM, and must
communicate with the main script using a message API, but they’re able to
perform Ajax requests and launch their own child workers.

Bind Events Sparingly

Applications can have dozens of event handlers. A handler function is registered
to an event when it’s triggered on a specific DOM element—such as running the
doSomething() function when a click is detected on the myElement node:

myElement.addEventListener('click', doSomething);

Each bound event has a performance hit. Ideally, you should only add events you
require, return from handler functions quickly, and unbind using
removeEventListener when an event is no longer necessary.

Also be wary of quick-firing events such as mousemove and scroll , which can

trigger rapid and wasteful rerunning of handler functions. One way around this is
to use throttling to ensure an event is called no more than once every N

milliseconds. For example:

// thottle event to delay ms

Life-Changing Diets 121

https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/docs/Web/API/EventTarget/removeEventListener

function eventThrottle(element, event, callback, delay = 300) {

let throttle;

element.addEventListener(event, (e) => {

throttle = throttle || setTimeout(() => {

throttle = null;

callback(e);

}, delay);

}, false);

}

// call windowScrollHandler no more than once every 300ms

eventThrottle(window, 'scroll', windowScrollHandler);

Alternatively, debouncing can be used to ensure a handler is only called after the
event has stopped being triggered for N milliseconds:

// debounce event until it no longer occurs for delay ms

function eventDebounce(element, event, callback, delay = 300) {

let debounce;

element.addEventListener(event, (e) => {

clearTimeout(debounce);

debounce = setTimeout(() => callback(e), delay);

}, false);

}

// call windowScrollHandler when at least 300ms has elapsed since the last event

eventThrottle(window, 'scroll', windowScrollHandler);

Finally, remember to make effective use of event delegation. For example,
presume you have an HTML <table> with thousands of cells and want to react

to a <td> being clicked. Attaching an event to each cell requires significant

processing and would need to be reapplied if the table changed. Instead, you can
attach a single event handler to the <table> element and examine the target.

For example:

122 Jump Start Web Performance

// handle a click on any <td> element

document.getElementById('mytable').addEventListener('click', (e) => {

let t = e.target.closest('td');

if (!t) return;

console.log('clicked cell', t);

});

Analyze Modified Code

It’s rare to encounter code that hasn’t been modified before it reaches the
browser!

Minifiers attempt optimizations such as rearranging lines or expanding loops.
Transpilers such as Babel convert ES6 to ES5 so the code runs in older
browsers.
Compilers such as TypeScript, CoffeeScript, and Flow convert alternative or
superset syntaxes to JavaScript.
Projects such as Blazor convert C# to WebAssembly—a low-level, assembly-
like language that offers near-native OS performance in JavaScript engines.

All offer stability and performance benefits, but check that the conversion is
optimal and that it’s not unnecessarily importing several kilobytes of transpiler
library code. For example, consider the following 32-byte ES6 for...of loop:

for (let p of n) console.log(p);

This results in 598 bytes of Babel-transpiled code. Each additional loop adds a
similar quantity of code, and none will execute in IE11—which partly defeats the
point of transpiling! Options to consider:

Use ES5 or more transpiler-efficient ES6 code to achieve the same result.
Use differential loading to serve ES6 module-based code to modern browsers
and larger transpiled scripts to older applications.

Life-Changing Diets 123

https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://webassembly.org/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/for...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

Drop support for browsers without ES6 support (primarily IE). Your site or
application can remain usable if you adopt server-side rendering and
progressive enhancement techniques.

Modify the DOM Effectively
Some modern JavaScript frameworks implement a virtual DOM. As you change
page elements, the virtual DOM works out what’s been altered and determines
how and when to make modifications. Ultimately, it must still change the real
DOM, and you can make similar optimizations to improve performance without
the additional overhead of virtual DOM calculations.

Cache Regularly Used Nodes

Regularly used DOM nodes should be stored as JavaScript variables so they don’t
need to be re-fetched. The DOM references are retained even when other tree
nodes are modified:

const

main = document.getElementsByTagName('main')[0],

heading = main.querySelector('h1'),

tables = main.getElementsByTagName('table');

querySelector() and querySelectorAll() can find elements using jQuery-like

CSS selectors. They’re usually slower than getElementById() ,

getElementsByTagName() and getElementsByClassName() , although the speed

difference is unlikely to affect most applications.

Search from Any Node

Rather than searching the whole tree from document , many DOM

methods allow you to start from any node. The example above
searches for the first heading and tables within the <main> element.

124 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/API/Element/querySelector
https://developer.mozilla.org/docs/Web/API/Element/querySelector
https://developer.mozilla.org/docs/Web/API/Document/getElementById
https://developer.mozilla.org/docs/Web/API/Element/getElementsByTagName
https://developer.mozilla.org/docs/Web/API/Element/getElementsByClassName

getElementsByTagName() and getElementsByClassName() also return live

HTMLCollections, which update automatically as the DOM is modified—so that
it’s not necessary to rerun the query.

Minimize Reflows

When an element is added, modified, or removed from a page, it can trigger a
cascade of layout changes to surrounding elements. For example, increasing a
width by 1px could result in a neighboring element wrapping to the next line,
which pushes all subsequent content down the page. It’s therefore more efficient
to make changes that can’t impact the layout. For example:

use opacity and/or transform to translate (move), scale, or rotate an element
limit the scope of the reflow by changing elements low in the DOM tree (those
without deeply nested children)
update elements in their own position: absolute; or position: fixed;

layer
modify hidden elements (display: none;), then show them after the change

has been applied

Batch-update Styles

The following example could cause three reflows:

let myelement = document.getElementById('myelement');

myelement.width = '100px';

myelement.height = '200px';

myelement.style.margin = '10px';

Running Benchmarks

Tools such as jsPerf.com provide a way to create code snippets and
run benchmarks on any browser to prove the efficiency—or
inefficiency—of alternative functions.

Life-Changing Diets 125

https://jsperf.com/
https://developer.mozilla.org/docs/Web/API/Element/getElementsByTagName
https://developer.mozilla.org/docs/Web/API/Element/getElementsByClassName
https://developer.mozilla.org/docs/Web/CSS/opacity
https://developer.mozilla.org/docs/Web/CSS/transform

Performance can be improved by appending a class:

let myelement = document.getElementById('myelement');

myelement.classList.add('newstyles');

This applies CSS properties in one reflow operation:

.newstyles {

width: 100px;

height: 200px;

margin: 10px;

}

Batch-update Elements

Try to minimize the number of times you interact with the DOM. An empty
DocumentFragment can be used to build elements in memory before applying
those changes to the page. For example, you can create an unordered list with
three items like so:

// create list

let

frag = document.createDocumentFragment(),

ul = frag.appendChild(document.createElement('ul'));

for (let i = 1; i <= 3; i++) {

let li = ul.appendChild(document.createElement('li'));

li.textContent = 'item ' + i;

}

// append list to the DOM

document.body.appendChild(frag);

The DOM is only modified on the last line.

Use requestAnimationFrame

The window.requestAnimationFrame() method calls a function just before the

126 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/API/DocumentFragment
https://developer.mozilla.org/docs/Web/API/window/requestAnimationFrame

browser performs the next repaint—normally once every sixtieth of a second
(approximately every 17ms, presuming no other render-blocking processes are
occurring). It’s normally used for animating frames in HTML5 games, although
running it before any DOM update will be beneficial. For example:

function updateDOM() {

let p = document.createElement('p');

p.textContent = 'new element';

document.body.appendChild(p);

}

requestAnimationFrame(updateDOM);

Consider Progressive Rendering
Rather than using a single site-wide CSS file, progressive rendering is a
technique that defines individual style sheets for separate components. Each is
loaded immediately before the component is referenced in the HTML:

<head>

<!-- core styles used across components -->

<link rel='stylesheet' href='base.css' />

</head>

<body>

<!-- header component -->

<link rel='stylesheet' href='header.css' />

<header>...</header>

<!-- primary content -->

<link rel='stylesheet' href='content.css' />

<main>

<!-- form styling -->

<link rel='stylesheet' href='form.css' />

<form>...</form>

Life-Changing Diets 127

1

2

3

4

</main>

<!-- header component -->

<link rel='stylesheet' href='footer.css' />

<footer>...</footer>

</body>

Each <link> still blocks rendering, but for a shorter time, because the file is

smaller. The page is usable sooner, since each component renders in sequence;
the top of the page can be viewed while remaining content loads. A similar
approach is often adopted by Web Components, which encapsulate CSS within
the code.

The technique can be less practical in templates where the content dictates the
layout (Flexbox and tables), since reflows are triggered more frequently as the
page loads. Grid-based page layouts are generally more suitable.

There’s some variation in how browsers treat progressive rendering, but the
worst-case scenario is that the browser blocks rendering until all discovered CSS
files have loaded. That’s no worse than loading each in the <head> .

Progressive rendering could benefit large sites where individual pages are
constructed from a varied selection of different components.

Use Server-side Rendering
Which process is quicker?

Process 1 (typically used by JavaScript frameworks):

Request a URL.

Respond with a (mostly) empty HTML file.

Download and execute JavaScript.

Use Ajax or similar techniques to fetch content according to the URL.

128 Jump Start Web Performance

https://developer.mozilla.org/docs/Web/Web_Components
https://jakearchibald.com/2016/link-in-body/#changes-to-chrome

5

1

2

1

2

3

4

Load the content into the page body.

Process 2 (old-school method):

Request a URL.

Respond with the full HTML.

Server-side rendering is always quicker for the initial page load.

Loading a second page can be faster in Process 1, since it’s able to start at step 4.
Assets such as style sheets, JavaScript, and images may already be available and
parsed. Unfortunately, a large proportion of visitors may only view a single page,
and the payload is higher because a larger quantity of JavaScript is necessary.

This is a better-performing process:

Request a URL.

Load HTML directly from the server into the browser.

Download and execute JavaScript. Some rehydration may be necessary to
initiate components with HTML data.

Use Ajax or similar techniques to fetch and populate content according to
URL navigation changes.

This can be more difficult to manage, since not all JavaScript frameworks provide
server-based rendering capabilities using Node.js, PHP, Ruby, Python, and so on.

Do You Need a JavaScript or CSS Framework?
A CSS and/or JavaScript framework can provide a good development structure
for teams working on larger sites or applications. However, most are general-
purpose tools: they provide a range of features you may not need or may have to
adapt. Optimizing performance is often difficult because the core code isn’t
under your control.

Life-Changing Diets 129

While a framework is certainly useful for prototyping, always question whether
it’s necessary for the final site or application. How much weight does it add? Will
it improve performance? Can it be updated easily? What happens when it’s
eventually abandoned?

Invest time in researching the choices. Without investigation, every application
looks like a nail to developers who understand a specific hammer. You should
certainly avoid using more than one framework—with the possible exception of
server-side options, or compilers such as Svelte, which remove themselves from
production code.

Even once you settle on a chosen framework, there may be modular or
lightweight alternatives such as Preact instead of React, or bling.js instead of
jQuery.

Ultimately, the most efficient and adaptable framework will be one written
specifically for your application.

Use a Static Site Generator
Most people start web development by creating (static) HTML, CSS, and possibly
JavaScript files. The resulting assets can be hosted anywhere and are fast
because they don’t use server- or client-side processing.

The main downside is content management: adding a new page could involve
changing hard-coded navigation menus on every page in the site. At this point,
developers often turn to server-side languages or a database-driven CMS, both
of which have their own set of challenges.

What if you could create a fast, static site but make cross-site changes
programmatically when something is added or removed? That’s exactly what a
static site generator (SSG) does. It takes content—typically defined in markdown
files—and builds a set of static web pages. The build-time process can construct
menus, import images, generate styles, and so on, and can be rerun when
anything changes. The resulting site is decoupled from a server and is often
referred to as using a JAMstack: JavaScript, APIs, and markup.

130 Jump Start Web Performance

https://svelte.dev/
https://preactjs.com/
https://reactjs.org/
https://gist.github.com/paulirish/12fb951a8b893a454b32
https://jquery.com/

Most SSGs build a set of folder-based HTML files with associated assets that can
be uploaded to any web server capable of serving static content. The Ruby-
based Jekyll was one of the first SSGs, but StaticGen.com lists dozens of
alternatives for a range of languages. Options such as Gatsby also create React-
based JavaScript applications rather than HTML files. (Whether or not that’s a
benefit is another matter!)

A static site can offer the best site performance, since it’s rendered once, then
delivered to all users as is. There are no server-side dependencies, reliability is
improved, version control is easy, and security issues can be eradicated.

There are some downsides:

configuration and setup takes time and is more difficult than a CMS
SSGs are rarely suitable for non-technical editors
there’s no concept of user roles or permission rights
site consistency can be more difficult to enforce, as editors can add any
client-side code
the rebuild process can be slow, especially on larger sites

SSGs are ideal for sites that change relatively infrequently, but many of the issues
can be overcome by importing data from a headless CMS or automating the build
process.

Use a Build System
Even the most conscientious developer can forget to minimize a CSS file,
optimize an image, or remove debugging console statements. Whatever

technology you use to create a site or app, a build process can automate
mundane tasks to ensure there are no oversights. Additionally, they can run tests,
verify code, and deploy to staging or live servers.

Creating a build process can take a day or two, but it should save time over the
long term. Popular generic build tools include Gulp.js, Grunt.js, Broccoli.js, and
Brunch, which allow you to define and run tasks manually or when files are
changed.

Life-Changing Diets 131

https://jekyllrb.com/
https://www.staticgen.com/
https://www.gatsbyjs.org/
https://gulpjs.com/
https://gruntjs.com/
https://broccoli.build/
https://brunch.io/

Alternatively, you could opt for web-specific module bundlers such as webpack
or Parcel, which understand HTML, CSS, and JavaScript so they can parse and
build optimized code, through operations like these:

dead asset elimination
code splitting and dependency handling
ES6 to ES5 transpiling
minification
source map generation
cache-busting
live reloading
enforcing performance budgets (discussed below)

Module bundlers often promise zero configuration … although the reality may be
somewhat different!

A few tips to get started:

Choose a build system and stick with it for a while.
Automate the most frustrating tasks first.
Try not to overcomplicate your build process. Spend an hour or two creating
an initial setup, then evolve it over time.
Do as much during the build process as possible. For example, an HTML
template could be partially constructed from known data and partials rather
than parsing everything at render time.

Further reading:

A Guide to Using npm as a Build Tool
An Introduction to Gulp.js
A Beginner’s Guide to Webpack
A Beginner’s Guide to Parcel

Use Progressive Enhancement
Progressive enhancement is a development approach rather than a technology.

132 Jump Start Web Performance

https://webpack.js.org/
https://parceljs.org/
https://www.sitepoint.com/guide-to-npm-as-a-build-tool/
https://www.sitepoint.com/premium/books/an-introduction-to-gulp-js/read/1
https://www.sitepoint.com/premium/books/a-beginner-s-guide-to-webpack/read/1
https://www.sitepoint.com/premium/books/a-beginner-s-guide-to-parcel/read/1

1

2

3

4

5

6

7

Each site or app feature starts with a baseline minimum viable
implementation—perhaps an HTML-only solution. Enhancements are then added
progressively when they’re supported by the user’s device. Consider a simple
search box:

The base solution is an HTML <input type="search" /> field which, when

a string is entered, triggers a new page load showing search results.

HTML5 constraint validation can be applied to ensure searching only
occurs when a minimum of three characters has been entered.

CSS styles are applied, showing basic formatting such as fonts, colors,
borders, etc.

When the field has focus, CSS animations could enlarge the field, show a
submit button, etc.

JavaScript could show suggestions as the user types characters.

JavaScript could show a simple list of search results without the user
having to leave the current page.

PWA service workers could be used to cache suggestions and search
results for later use.

Where necessary, the code tests that a feature is supported before attempting
the enhancement. For example, suggestions could be implemented when
JavaScript is running, events are supported, and the HTML5 <datalist> element

is available.

Life-Changing Diets 133

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5/Constraint_validation
https://developer.mozilla.org/docs/Web/HTML/Element/datalist

1

2

In the search box example above, progressive enhancement offers the following
benefits:

The search box is device agnostic and works in all browsers—old, current, and
those released tomorrow.
Assuming the HTML loads, the search box is always operational. This includes
the period before CSS and/or JavaScript is downloaded and parsed. In
performance terms, the feature is responsive immediately.
The user gets the best possible experience their device can handle.
Performance isn’t affected when an enhancement can’t be added.
The search box is fault-tolerant: any enhancement can work or fail without
breaking the system. It doesn’t matter whether CSS and/or JavaScript are
blocked, are slow to arrive, or fail to download.
It’s the responsible option, and doesn’t require more development effort in
most situations.

The approach has no downsides. Progressive enhancement only breaks when:

It isn’t considered from the start. It may be difficult to retrospectively
enhance a feature that already requires a high base-level of CSS and

JavaScript.

You try to support all browsers equally. It’s futile to expect a decade-old
version of IE to behave the same as a modern application. Progressive

Adding Missing Features with Polyfills

It’s often possible to use a polyfill to add a missing feature to browsers
without native support. This can range from additional prototypes,
such as the String.padStart() method, through to full APIs, such as one
to provide geolocation support using IP lookups.

Polyfill.io provides a custom set of polyfills. However, be wary about
the performance cost of attempting to polyfill everything. It may be
preferable to offer IE users a fast, rudimentary feature than a slow, fully
polyfilled experience.

134 Jump Start Web Performance

https://github.com/Financial-Times/polyfill-library/tree/master/polyfills/String/prototype/padStart
https://github.com/Financial-Times/polyfill-library/tree/master/polyfills/navigator/geolocation
https://polyfill.io/

1

2

3

4

enhancement means you never need to worry about old browsers. Their users
may not receive the best experience, but the feature remains usable.

Adopt a Performance Budget
A performance budget imposes a limit on related metrics. Typical options include:

quantity-based limits, such as the maximum number of fonts, images, scripts,
etc.
time-based limits, such as the first meaningful paint or interactive times
rule-based limits, such as a minimum performance and accessibility score in
Lighthouse audits

You should experiment and discuss options with stakeholders to establish
baseline criteria, such as:

the total size of a page must not exceed 500KB
a single image must be no more than 150KB
the home page must deliver less than 100KB of JavaScript
all pages must be readable within five seconds on a mid-range mobile device
operating on an average 3G connection

Ideally, these criteria can be added to your build process. Tools such as the
Lighthouse module and file size plugins can report—and potentially block—any
deviation from the budget. Exceeding the budget means you must either:

optimize an existing feature/asset

lazy load an existing feature/asset on demand

remove an existing feature/asset

reject the new feature/asset

The limitations can help teams prioritize features. Increasing the budget should
always be tougher than implementing another solution! For example, a budget
increase must be discussed, justified, and agreed to by a two-thirds majority at a

Life-Changing Diets 135

https://www.npmjs.com/package/lighthouse

monthly progress meeting!

Performance budget tools:

performancebudget.io: estimate file sizes according to download timings
bundlesize: calculate file sizes during the build process
SpeedCurve: track real-world performance (commercial)

Create a Style Guide
A style guide is a set of agreed brand, content, design, and coding standards for
teams generally working on large codebases developed over a long period. A
good style guide promotes consistency and illustrates how developers should
approach solutions. Front-end components can be demonstrated with example
code that shows styling, animation, functionality, and restrictions. The benefits
include:

new team members can become productive quickly
components are reused: developers are less likely to introduce their own
HTML, CSS, and JavaScript
it becomes easier to update, maintain, and improve component performance
when the same code is used throughout
code can be tested and quality assurance becomes simpler
users receive a consistent UI experience

A style guide can be as rigid or as flexible as you require. It’s often best to develop
it as a set of HTML pages that can demonstrate code and be updated quickly.
Example documents are available from styleguides.io.

Simplify and Streamline
Performance problems often start because stakeholders equate more features
with more customers. This is rarely the case; most people prefer simplicity.
They’re not using your site/app on a daily basis and just want to get a task done
quickly and easily.

136 Jump Start Web Performance

https://performancebudget.io/
https://github.com/siddharthkp/bundlesize
https://speedcurve.com/
http://styleguides.io/

1

2

3

Average page weight reached 2MB because developers let it happen. We’re
under pressure to deliver more in a shorter time, but are we doing the job
effectively when it results in a slow, clunky application no one wants to use? Few
clients will understand the intricacies of web performance, so it’s our
responsibility to use efficient coding practices and to highlight potential pitfalls in
layman’s terms.

Be wary of the performance cost of any added features.

Use analytics to monitor and identify little-used features.

Fully remove unnecessary features or replace them with sleeker,
lightweight alternatives.

Look after the bytes and the megabytes will take care of themselves!

Learn to Love the Web
The Web evolved from a document publishing platform to an application delivery
system that revolutionized the way we distribute and use software.
Unfortunately, this has resulted in an alarming tendency to over-engineer
solutions when simpler options could be more effective. Rather than choose a
native HTML control, we import the latest JavaScript module. Instead of adding a
few styles, we copy vast quantities of CSS from Stack Overflow and Bootstrap.

If there’s one piece of advice to take away from this book, it’s learn the basics.
Somewhat contradictorily, HTML and CSS are either disregarded as too simplistic
to warrant respect or considered impenetrable technologies that must be fixed
using JavaScript. Yet they’re the fundamental building blocks of the Web:

HTML5 has around 120 elements. Half of those will rarely be used, but there’s
usually a better alternative to <div> and .

There are almost 400 CSS3 properties and more are being added. No one
could name them all, but they’re modularized. The foundations can be learned
quickly, but experimentation and experience is required to understand the
concepts.

Life-Changing Diets 137

Learning HTML and CSS will make you a better web developer and advance your
JavaScript skills. A little knowledge will considerably improve your application’s
performance.

138 Jump Start Web Performance

Check,
Please!

Chapter

6

Check, Please! 139

1

2

3

I hope you’re feeling full after your extensive buffet of performance delicacies.
Not all dishes will have been to your taste, but you should have found a few
recipes to try.

The main reason we don’t have a fast and responsive web is because we let it
become slow and bloated. Performance is rarely given equal priority with other
features. In most cases, it’s never even acknowledged until someone complains
about speed. Like SEO or usability, it’s possible to improve performance toward
the end of a project—but it’s far more effective to implement it from the start.

Software development is a complex process, and it will always be possible to
make optimizations. However, if you target the big, easy wins first, the tougher
refactoring or rewrites will become less necessary. Ideally, you should consider
performance every time you add a feature or asset to your site or application. It
will make you a more conscientious developer and will win the respect of your
peers and users.

Let’s strive to build a better web!

Further reading:

MDN web performance

The Cost of JavaScript

The Ethics of Web Performance

140 Jump Start Web Performance

https://developer.mozilla.org/en-US/docs/Learn/Performance
https://v8.dev/blog/cost-of-javascript-2019
https://timkadlec.com/remembers/2019-01-09-the-ethics-of-performance/

	Jump Start Web Performance
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About Craig Buckler
	About SitePoint
	Table of Contents
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Supplementary Materials

	Web Performance Matters
	
	The Cost of Poor Performance
	User Costs
	Business Costs
	Environmental Costs

	The Reason for the Woeful Web
	Excuse #1: “We Don’t Have a Performance Problem!”
	Excuse #2: “Our Users Never Complain?”
	Excuse #3: “Our Users Have High-end Devices”
	Excuse #4: “Our Customers Use Modern Browsers”
	Excuse #5: “We’ll Address Performance Later”
	Excuse #6: “Some Systems Require More Bandwidth and Processing”
	Excuse #7: “Expanding Page Weight is the Price of Progress”
	Excuse #8: “Slimming Pages Means Dumbing Down, with Fewer Features and Effects”
	Excuse #9: “Improving Performance Increases Complications and Maintenance”
	Excuse #10: “Our Client is Happy!”

	Where do I Start?

	Testing Tools
	
	Create a Test Plan
	Automated vs Manual Testing

	Identify Performance Bottlenecks
	Performance Tool Concepts
	The Browser Rendering Process

	Google Lighthouse/Chrome Audits
	Browser Extensions
	Progressive Web Apps

	DevTools’ Network Panel
	Assets from Other Domains

	Chrome’s Performance Monitor
	Developer Tools’ Performance Panel
	DevTools’ Console Logs
	performance.now()
	Performance Marks and Measures
	Navigation and Resource Entries

	WebPageTest.org
	Content Delivery Networks
	WebPageTest API

	More Performance Assessment Tools

	Quick Snacks
	
	Consider Your Hosting Plan
	Shared Hosting
	Dedicated Server Hosting
	Virtual Private Server (VPS) Hosting
	Cloud Hosting
	Switch to a More Appropriate Hosting Option
	CDNs to the Rescue

	Scale Resources
	Switch Hosts
	What to Look for in a New Host

	Use a Content Delivery Network
	Use Image and Video CDNs
	Asset Management
	Optimal Formatting and Compression
	Art Direction, Sizing, and Effects

	Activate Server Compression
	Compression Won’t Fix Bloated Code
	CDNs and Asset Compression

	Activate HTTP/2
	Leverage Browser Caching
	Enable CMS Page Caching
	CDN vs Plugin Caching
	Are Videos Necessary?

	Check Your Primary Images
	Resize Large Bitmaps
	Choose an Appropriate Image Format
	Avoid Base64 Encoding
	Compress Images Effectively

	Concatenate and Minify CSS
	HTTP/2 and Multiple Files

	Concatenate and Minify JavaScript
	Pre-minified Third-party Code

	Minify HTML
	Load JavaScript at the End of the Page
	Loading CSS

	Preload Assets
	Other Attributes and an API

	Remove Unused Assets
	Code for Specific Pages

	Assess Analytics Performance
	Something More Substantial?

	Simple Recipes
	
	Optimize Your Database
	Use a Query Analyzer
	Create Indexes
	Simplify Queries
	Create Additional Database Connections
	Consider a Server or Memory Upgrade
	Cache Results
	Use Background Processing
	Use Alternative Data Systems

	Remove or Optimize Social Media Buttons
	Use URL-based Share Links
	Use the Web Share API

	Be Wary of Third-party Scripts
	Third-party Script Used to Target Site

	Use Responsive Images
	CSS Resolution
	image-set() and Media Queries
	The Bandwidth Cost of Larger Images

	Define Responsive Image Aspect Ratios
	Choosing Height and Width
	HTML and CSS Proposals for Defining Aspect Ratios

	Implement Art Direction
	CDN and Server-side Solutions

	Lazy Load Images and Iframes
	Play Audio and Video on Demand
	Replace Images with CSS3 Effects
	CSS3 Effects Can Be Costly

	Use SVGs Effectively
	1. Add SVGs Using an Tag
	2. Add SVGs as CSS Background Images
	Inline Data for Larger Images

	3. Embed SVGs into the Page

	Consider Image Sprites
	Consider OS Fonts
	Embed Web Fonts with <link>
	Limit Font Styles and Text
	Use a Good Font-loading Strategy
	Similar Web and OS Fonts
	Settings for Specific Text Types

	Consider Variable Fonts
	OS Fonts as Variable Font Fallback

	Use Modern CSS3 Layouts
	Fallbacks for Older Browsers

	Remove Unused CSS
	Coverage for Single Pages Only

	Be Wary of Expensive CSS Properties
	Keeping Selectors Simple

	Embrace CSS3 Animations
	Avoid Animating Expensive Properties
	Indicate Which Elements Will Animate
	Use CSS Containment
	Check the Save-Data Header
	Adopt Progressive Web App Technologies
	1. Enable HTTPS
	2. Create a Web App Manifest
	3. Create a Service Worker

	Power Down Inactive Tabs
	Other Throttling Techniques

	Consider Inlining Critical CSS
	Provide Accelerated Mobile Pages (AMP)
	Feeling Full Yet?

	Life-Changing Diets
	
	Evaluate CMS Templates and Plugins
	Reduce Client-side Code
	Optimize JavaScript Code
	Use JavaScript Sparingly
	Avoid Long-running Tasks
	Bind Events Sparingly
	Analyze Modified Code

	Modify the DOM Effectively
	Cache Regularly Used Nodes
	Search from Any Node
	Running Benchmarks

	Minimize Reflows
	Batch-update Styles
	Batch-update Elements
	Use requestAnimationFrame

	Consider Progressive Rendering
	Use Server-side Rendering
	Do You Need a JavaScript or CSS Framework?
	Use a Static Site Generator
	Use a Build System
	Use Progressive Enhancement
	Adding Missing Features with Polyfills

	Adopt a Performance Budget
	Create a Style Guide
	Simplify and Streamline
	Learn to Love the Web

	Check, Please!
	

	Blank Page

