

Svelte: A Beginner's Guide
Copyright © 2022 SitePoint Pty. Ltd.

Author: Simon Holthausen-Kircher
Series Editor: Oliver Lindberg
Product Manager: Simon Mackie
Ignatius Bagus: Tim Boronczyk
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information
herein. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held
liable for any damages to be caused either directly or indirectly by the instructions contained in
this book, or by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the
names only in an editorial fashion and to the benefit of the trademark owner with no intention of
infringement of the trademark.

Published by SitePoint Pty. Ltd.
10-12 Gwynne St,

Richmond, VIC, 3121
Australia

Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit https://www.sitepoint.com/ to access our blogs, books, newsletters, articles,
and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile
development, design, and more.

https://www.sitepoint.com/

Table of Contents

Chapter 1: Getting Started with Svelte................................. vii

The Svelte Backstory ... viii

Building a Simple Book List .. viii

Reacting to User Input...x

Finishing Touches ... xii

Architectural Considerations..xiv

Ready, Set … Svelte?..xiv

Chapter 2: Template Syntax..16

Control Flow Syntax... 18

Adding New To-dos Using Events and Bindings ... 21

Wrapping Up...24

Chapter 3: Reactive Statements..26

Reactive Declarations...27

Reactive Statements ...28

Order of Execution ...29

Reactive Statements Are Run Once...32

Wrapping Up...34

Chapter 4: Stores..35

A First Attempt ...38

Introducing Writable Stores...39

Readable Stores ..42

Derived Stores..43

Wrapping Up...44

Chapter 5: Component Interaction Concepts...............45

Using Other Components ...46

Passing Stu! to Components through Properties ..46

Reacting to Component Events ...47

Composing the UI with Slots...50

Using the Module Script to Manage Instances of the Same

Component ..52

Using Context to Provide State to Component Trees53

Wrapping Up...56

Chapter 6: Testing Applications...57

The Testing Pyramid..58

Test Setup...59

Writing Your First Test...61

Writing your First E2E Test..64

Wrapping Up.. 66

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back at school.</p>

Where existing code is required for context, rather than repeat all of it, ⋮ will be displayed:

function animate() {
⋮

new_variable = "Hello";
}

Some lines of code should be entered on one line, but we’ve had to wrap them because of page
constraints. An ➥ indicates a line break that exists for formatting purposes only, and should be
ignored:

URL.open("https://www.sitepoint.com/responsive-web-
➥design-real-user-testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand. Think of
them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Getting Started
with Svelte

Chapter

1

Svelte is a relatively new JavaScript frontend framework for developing websites and web apps.

The praise that Svelte has received over the last two years is testament to it not being “just
another frontend framework”. It won “breakthrough of the year” on the State of JS survey 2019,
followed by topping the satisfaction rating in 2020. It was also voted the most loved web
framework in the Stack Overflow 2021 survey.

Svelte appeals to developers with its combination of a small bundle size, very good performance,
and ease of use. At the same time, it comes packed with a lot of goodies. A simple state
management solution to build upon is already provided, as well as ready-to-use transitions and
animations. This introductory tutorial will shed light on how Svelte achieves this. The following
tutorials in the series will go into more detail on how to implement applications with Svelte using
the various possibilities Svelte provides.

The Svelte Backstory
But first, a little back story on Svelte. Though it only entered the mainstream in the early 2020s,
Svelte has been around for much longer.

The first commit to GitHub was in late 2016. Its creator is Rich Harris, an open-source wizard
whose most prominent other invention is Rollup, a modern bundler. Rich Harris worked at the
news magazine The Guardian as a graphics editor at the time. His daily routine was to create
interactive visualizations for the website, and he wanted to have a tool that easily let him write
these without compromising on bundle size or speed. At the same time, he wanted something
approachable so other less tech-savvy colleagues would be able to create visualizations fast.

Out of these needs, Svelte was born. Starting from the news room, Svelte quickly gathered a
small following in the open-source community. But it wasn’t until April 2019 where Svelte really
got known to the world. This date marked the release of version 3, which was a complete rewrite
with a focus on developer experience and approachability. Since then, Svelte’s popularity has
risen a lot, more maintainers have joined the team, and Rich Harris has even joined Vercel to work
on Svelte full-time.

Building a Simple Book List
Let’s dive into Svelte! We’ll build a small book list that allows us to add and remove books from
our reading list. The final result will look something like the image below.

1-1. Final App

We’ll start by scaffolding our project from a project template. We’ll use the official Svelte
template. Alternatives would be to use a Vite-powered template or to use SvelteKit, a framework
on top of Svelte for building full-fledged apps with built-in routing—but we’ll keep it as barebones
as possible for this tutorial.

After downloading the template, switch to its folder and run npm install , which downloads all
packages we need to get going. Then we’ll switch to App.svelte , where we’ll replace the
contents with an HTML-only version to lay out the visuals we want:

<h4>Add Book</h4>
<input type="text" />
<h4>My Books</h4>

A book

We can write the above code directly at the top level of the Svelte file; we don’t need to add any
wrapper elements. Svelte’s syntax is a superset of HTML, so anything that is valid inside an
HTML file is valid inside a Svelte file.

The question now is how to get the dynamic parts in there. We’ll start by adding a static list to the
script and render that through a loop:

<script>
let books = ['Learning Svelte', 'The Zen of Cooking Tea'];

https://github.com/sveltejs/template/
https://github.com/sveltejs/template/
https://github.com/vitejs/vite/tree/main/packages/create-vite/template-svelte
https://kit.svelte.dev/

</script>

<label>
<h4>Add Book</h4>
<input type="text" />

</label>
<h4>My Books</h4>

{#each books as book}
{book}

{/each}

We added a script tag in which we put our JavaScript logic related to the component. That
logic is executed each time the component mounts. We also enhance the HTML with special
Svelte syntax to create a loop and print the title of each book. As you can see, Svelte has distinct
syntax for control flow blocks, unlike Vue or Angular, which add such functionality in the form of
special attributes. This makes the code more readable, as you can more easily spot it. It also
makes it unnecessary to create wrapper elements if you want to contain more than one top-level
item within the control flow block.

The title of a book is outputted by surrounding the variable with curly braces. In general,
whenever you encounter a curly brace within the template, you know you are entering something
Svelte-related. We’ll look into the template syntax in more detail in Part 2 of this tutorial series.

Reacting to User Input
We can now render an arbitrary list of book titles, defined by our books variable. What about
adding a new book? To do this, we need to enhance our logic in the <script> tag and connect it
to the <input> element:

<script>
let books = ['Learning Svelte', 'The Zen of Cooking Tea'];
let newBook = '';

function addBook(evt) {
if (evt.key === 'Enter') {
books = [...books, newBook];
newBook = '';

}
}

</script>

<label>

<h4>Add Book</h4>
<input type="text" bind:value={newBook} on:keydown={addBook} />

</label>
<h4>My Books</h4>

{#each books as book}
{book}

{/each}

We added a new variable called newBook , which should mirror the input value. To do that, we bind
it to the <input> by writing bind:value={newBook} . This establishes a two-way binding, so every
time the user enters text into the <input> , newBook updates, and if newBook is updated in the
<script> tag, the display value of <input> changes. We could have done the same with simple

dynamic attributes, but this way saves us some code—a thought pattern you’ll come across often
in Svelte.

When the user presses enter, we want to add the new book title to the list. To do this, we add a

DOM event listener. To tell Svelte to hook into the event, we just add a colon between on and
the rest of the event name—so in this case it’s on:keydown . After that, we use the curly braces
and place the name of the function inside. The function is called each time the event fires off.
More on this template syntax can be found in Part 2 of this tutorial series.

The function to call in this case is addBook , in which we check the keyboard event, and if the user
indeed pressed enter, we update the books variable. Notice the lack of a this context like we

find in Angular or Vue 2, or the lack of special value objects like in Vue 3, or the lack of setState

in React. Svelte doesn’t need extra syntax in this case to know that the variable has updated. This
might feel like magic, but also like “just plain simple JavaScript” at the same time.

To understand how Svelte achieves this, we need to look under the hood. What does Svelte
actually do with a .svelte file, and when does it process it? The answer: Svelte is actually a
compiler! It does most of the work before your code is even loaded in the browser. Svelte parses
the code and transforms it into regular JavaScript. During parsing, it’s able to see that variables
like newBook are used in the template, so assignments to it will cause rerenders. The compilation
output will therefore wrap these assignments with calls to a $$invalidate function, which will
schedule a rerender of this exact component for the next browser paint. This is the secret to
Svelte’s great performance: it knows in advance which parts could trigger rerenders and then
only needs to do work in these exact places, surgically updating the DOM. It’s also the reason
why the bundle sizes of Svelte applications are so small: everything that’s not needed just won’t
be part of the output, so Svelte can leave out every part of its tiny runtime that isn’t needed. A
Svelte Hello World! app has a bundle size of just 2.5KB!

The only thing to watch out for is that Svelte does only look for assignments. That’s why we need
to do books = [...books, newBook]; or books.push(newBook); books = books; . Otherwise,
Svelte wouldn’t know that books has updated.

1-2. Compilation Output

Finishing Touches
We did it! We can now view and add books to our list! It doesn’t look that pretty, though, so let’s
put some finishing touches to our UI. First, we’ll add some CSS to style our elements:

<!-- script and html code... -->

<style>
input {
padding: 5px 10px;

}
li {
list-style: none;

}
ul {
padding: 5px 0;

}
</style>

As you can see, we just add a <style> tag to our .svelte file and continue to write regular CSS
in it. If you’re fearing that the code above will style all <input> , or tags in the entire
application, be assured that it won’t. Svelte scopes styles by default, so they only apply to the
component they’re defined in. If you want to define something globally, wrap the selector with
the :global function. If, for example, you’d like to style all <input> s in the application, the code
would be :global(input) { padding: 5px 10px; } .

The styling is better now. Let’s finish it off with a transition for better UX: we want new list
elements to fade in. To do that, we just need to reach for one of Svelte’s built-in transitions and
animations and apply them:

<script>
import { fade } from 'svelte/transition';
// ..

</script>

<!-- input ... -->
<h4>My Books</h4>

{#each books as book}
<li transition:fade>{book}

{/each}

<!-- styling ... -->

And that’s it! Just by importing one of the built-in transitions and applying it by adding
transition:fade to the element, we get that smooth fade-in transition. Our mini app is now

finished. This doesn’t contain the topbar and the background gradient yet, but it should be easy
now for you to add this as well. This is the end result:

<script>
import { fade } from 'svelte/transition';

let books = ['Learning Svelte', 'The Zen of Cooking Tea'];
let newBook = '';

function addBook(evt) {
if (evt.key === 'Enter') {
books = [...books, newBook];
newBook = '';

}
}

</script>

<label>
<h4>Add Book</h4>
<input type="text" bind:value={newBook} on:keydown={addBook} />

</label>
<h4>My Books</h4>

{#each books as book}
<li transition:fade>{book}

{/each}

<style>
input {
padding: 5px 10px;

}
li {
list-style: none;

}
ul {
padding: 5px 0;

}
</style>

Architectural Considerations
We’ve seen how to write a little app in Svelte with just 32 lines of code. We’ve only scratched the
surface, of course. A full-blown app needs some kind of state management, multiple
components, and ways to integrate these components with each other.

For example, it would make sense to split out the display of one to-do item into a separate
component, as we’ll add features like editing the name in-place or marking it as done. Having this
all in one component would become hard to maintain over time. Luckily, using other components
is as easy as importing it as a default import from another Svelte file and interacting with it in a
similar way to what we’ve already seen with regular DOM elements. We’ll look into component
interaction in more detail in Part 5 of this series.

Another example would be the management of to-dos. Right now, they’re handled inside the
component and there’s no connection to a backend. If we were to add API calls, we would mix UI
logic with backend interaction, which is generally better handled outside of components for
better separation of concerns. We can use Svelte stores for this, which we’ll look at in Part 4.

As you can see, Svelte has solutions to all of our requirements, and we’ll look at them over the
course of this series.

Ready, Set … Svelte?
So, is it safe to use Svelte for your next project? Your manager might ask if Svelte will be around
in the years to come or burn out like previous frontend framework stars. There isn’t one big
company backing Svelte’s entire development as there is for Angular and React, but Vue has
already shown that this isn’t a problem. Moreover, as stated at the beginning, Rich Harris, the

creator of Svelte, is now working on it full-time. With Svelte’s continuous rise in popularity, there’s
no sign of it going anywhere in the years to come.

Another aspect of choosing a framework is the ecosystem and its tooling. The ecosystem is still
small compared to React, but new libraries are coming out every day, and there are already a
handful of very good component libraries. At the same time, since Svelte is so close to vanilla
HTML and JavaScript, it’s very easy to integrate any existing regular HTML/JavaScript library into
your codebase, with no need for wrapper libraries.

Regarding tooling, Svelte is looking pretty good. There’s an official VS Code extension that’s
actively maintained, as well as an underlying language server that can be used by many other
IDEs to integrate Intellisense. IntelliJ also has a plugin for Svelte and recently hired the creator
behind it to work at JetBrains. There are also various tools for integrating Svelte with various
bundlers. And yes, you can also use TypeScript with Svelte.

If you’re looking to build a full-blown website or web app, you might also be interested in
checking out SvelteKit. It provides a stellar development experience and comes with a flexible
filesystem-based router. It also enables you to deploy to many different platforms like Vercel,
Netlify, your own Node server, or just a good old static file server, depending on the features and
needs of your application.

To summarize: Svelte is definitely ready to use for your next project! If you want to give it a try
and you want to learn more, this tutorial series has you covered. In Part 2, we’ll take a close look
at the template syntax. In Part 3, we’ll look at reactive statements and how they help us react to
variable changes or derive computed variables. In Part 4, we’ll look at stores, which will help us
with logic outside and across Svelte files, and which we can also use for state management. In
Part 5, we’ll look at various component interaction concepts. Finally, in Part 6, we’ll look into
testing Svelte apps.

We hope to have sparked your interest in Svelte!

Svelte Sumamry

In brief, here are the important points to remember about Svelte:

it has a full-time maintainer
it has good tooling
its features are stable
its ecosystem is growing
SvelteKit is available for building apps fast

https://kit.svelte.dev/

Template Syntax
Chapter

2

Welcome to the second part of our Svelte intro series! In the first part, we got introduced to the
history of Svelte and made our first little steps at writing a simple component. In this and the
following parts, we’ll have a closer look at specific aspects of writing Svelte code. In the end,
you’ll be able to create applications in Svelte that scale. We’ll start with taking a deep dive into
Svelte’s template syntax.

Similar to Angular or Vue, Svelte enhances the HTML syntax with several features for expressing
dynamic properties, loops, and more. We’ll take a look at each of them and see how they help you
write readable code. One of the nice things about Svelte is that you can start with “just HTML”
and gradually enhance your markup with dynamic features. You do so by using special
syntax—called HTMLx in Svelte—that acts as an enhancement of HTML. We’ll use this syntax to
gradually enhance the following code, which represents the initial draft of a to-do app:

<label>
New To-Do
<!-- To implement: make this update the list -->
<input type="text" />

</label>

<!-- To implement: only show this if we don't have a to-do yet -->
<p>What do you want to work on?</p>

<!-- To implement: make this a dynamic list -->
An item

The snippet above shows what we want to accomplish with our little app: to be able to enter new
to-do items and show them in a list. Other things like marking them as done is out of scope for
now, but you are of course free to add them yourself after having finished reading this tutorial.

The final app will look something like the image below.

2-1. To-do App

Control Flow Syntax
To start, we want to make the list dynamic and render an array of text entries as our to-do list. To
achieve that, we’ll need to add a <script> block to be able to put our list of to-dos in a variable.
We’ve seen in the first part of the series that we’re able to write regular JavaScript code into the
contents of a <script> tag, and its variables and functions are then available in the template. We
then reach for the #each block—one of currently four control flow blocks in Svelte—to loop over
the list of to-dos in the template:

<script>
let todos = ['Learn Svelte', 'Create great things'];

</script>

<!-- ... -->

<!-- syntax: {#each <arrayname> as <entry>} loop content {/each} -->
{#each todos as todo}

{todo}
{/each}

As you can see, Svelte chooses a different approach to its template syntax compared to Vue or
Angular. While the latter two add control flow syntax such as loops in the form of special
attributes, Svelte creates distinct syntax for it. This makes the code more readable, as you can
more easily spot it. It also makes it unnecessary to create wrapper elements if you want to
contain more than one top-level item within the control flow block.

The text of one to-do item is outputted by surrounding the variable with curly braces. In general,

whenever you encounter a curly brace within the template, you know you’re entering something
Svelte-related.

Let’s use another control flow block to solve the second task of showing a message if we have no
to-dos yet. We’ll use an #if block for that:

<script>
let todos = ['Learn Svelte', 'Create great things'];

</script>

<!-- ... -->

{#if todos.length === 0}
<p>What do you want to work on?</p>

{:else}

{#each todos as todo}
{todo}

{/each}

{/if}

The if block reads very much like a regular JavaScript if block. The block starts with {#if

..} , and can have multiple {:else if ..} branches as well as one final {:else} branch. Just as
with regular if blocks, the latter two are optional. The block is closed by writing {/if} . In general,
the control flow syntax is {#<name> ..} .. {:<possibly something>} .. {/<name>} . The hash
marks the start of a block, the colon marks optional other branches where the text behind the
colon depends on the control flow block, and the slash marks the end of a block.

#if and #each are probably what you’ll reach out for the most, but there are two more control
flow blocks that also come in handy from time to time.

The first one is the #await block, which lets you use promises inside the markup:

{#await somePromise}
Loading..

{:then result}

Look for Braces!

Any time you’re looking through the markup and see braces, you immediately know
that you’re getting into Svelte’s territory.

The result is {result}
{:catch error}
Oh no! An error occurred: {error}

{/await}

As shown above, it’s possible to handle all states of a promise, from loading the result to catching
errors. Just like we’ve seen with #if , the syntax and semantics closely match that of using
promises in regular JavaScript: you #await the promise, {:then ...} is very similar to the
.then(..) function of a promise object, and {:catch ...} is very similar to the corresponding
.catch(..) function of a promise object. The branches are all optional, and you can also skip

showing the loading branch by doing {#await somePromise then result}..{/await} .

2-2. Syntax similarities between Svelte and JavaScript control flow blocks

The last control flow block is #key , which was added more recently. It destroys and recreates
everything inside it if the value passed to it changes:

{#key someValue}
I get destroyed and recreated every time someValue changes

{/key}

This is useful mainly in two scenarios. The first scenario is when you have component where it’s
easier to recreate its state and contents from scratch rather than updating it—for example, when
you wrap a third-party library inside that doesn’t provide a good update mechanism. The second
scenario is when you want to replay a transition. A transition is a kind of animation that’s only
triggered when an element is created or destroyed.

Let’s get back to our example, which now looks like this:

<script>
let todos = ['Learn Svelte', 'Create great things'];

</script>

<label>
New To-Do
<!-- To implement: make this update the list -->
<input type="text" />

</label>

{#if todos.length === 0}
<p>What do you want to work on?</p>

{:else}

{#each todos as todo}
{todo}

{/each}

{/if}

We’re now able to differentiate between having an empty list and having to-dos, and we can
render each of them into a list. Awesome!

Adding New To-dos Using Events and Bindings
What’s left is to be able to add new to-do items to the list. When we type into the text box and
press enter, we want to add that text as a new item to the list. A first version looks like this:

<script>
let todos = ['Learn Svelte', 'Create great things'];
let newTodo = '';
function handleKeyup(evt) {

if (evt.key === 'Enter') {
todos = [...todos, newTodo];
newTodo = '';

}
newTodo = evt.target.value;

}
</script>

<label>
New To-Do
<input type="text" value={newTodo} on:keyup={handleKeyup} />

</label>

<!-- ... -->

There are a few things going on here, let’s go through them one by one.

First, we set the value attribute of the input by assigning it to the value of newTodo . Whenever
newTodo is updated, the input text will also be updated. If we had given the variable the same

name as the attribute, we could have written {value} , which is the shorthand of value={value} .
These shorthands can be used whenever the variable and attribute name are the same.

Next, we listen to the keyup event of the input. There are numerous DOM events, all starting
with on —in this case onkeyup . To tell Svelte to hook into the event, we just add a colon between
on and the rest of the event name—so in this case it’s on:keyup . After that, we use the curly

braces and place the name of the function inside. The function is called each time the event fires
off. You could also place an anonymous function in there, if you like.

Inside handleKeyup , we then listen to the keyup event and act accordingly. We update newTodo

whenever we enter a character, and when we press enter, we add the text to the list of to-dos

and then reset the input value. Notice how we didn’t need any extra function like setState to tell
Svelte to rerender in reaction to a variable change. Svelte knows when to rerender by looking for
assignment operators, so it knows which variable is dirty. When compiling a Svelte component, it
will wrap these assignments with a function call that tells the runtime to rerender on the next
browser paint. Be careful, though, as this means that only doing todos.push(newTodo) won’t
work: Svelte will only mark variables dirty that were updated through assignments. Writing
todos.push(newTodo); todos = todos; would therefore be okay.

The code above works, but we can do a little better. Instead of manually keeping newTodo in sync

with the input value by listening to the keyup event, we can also use a binding. The result looks
like this:

<script>
let todos = ['Learn Svelte', 'Create great things'];
let newTodo = '';
function handleKeyup(evt) {

if (evt.key === 'Enter') {
todos = [...todos, newTodo];
newTodo = '';

}
}

</script>

<label>
New To-Do
<input type="text" bind:value={newTodo} on:keyup={handleKeyup} />

</label>

<!-- ... -->

Notice the bind: that we prepended to the value attribute. This establishes a two-way-binding
between the value of the input and the variable newTodo . We can change it from the outside,
but it’s also automatically updated whenever the user types something into the input. Similar to
the shorthand for attribute inputs, there’s a shorthand if the name of the variable we bind and the
attribute we bind it to are the same. So in this case, if the variable name was value , we could just
write bind:value . Svelte allows a limited set of these bindings on DOM elements, mostly around
input elements. This makes interacting with forms really easy. It’s also possible to bind to
properties of components (you’ll learn more about component interaction in Part 5 of this series).
If you were to write <Component bind:property /> , this would mean that Component would
rerender every time you changed property from the outside, and it would also propagate back
changes to property it made on the inside. But beware: too many two-way bindings might get
confusing to reason about, so use them with caution.

You may have noticed by now that code inside control blocks or curly braces is regular
JavaScript—and indeed, you can use all the JavaScript features you like inside them. This relieves
you from learning any extra template syntax aside from what we’ve seen above.

It’s Just JavaScript!

Everything inside curly braces and control #ow blocks in markup is just JavaScript.

Wrapping Up
In this second Svelte tutorial, we learned the Svelte template syntax. We learned how to output
dynamic content by putting variables in {brackets} . We got to know the four control flow
blocks, of which #if and #each are probably what you’ll reach for most of the time. We learned
how to read and write attributes and how to listen to events. Finally, we learned that we can use
two-way bindings in some situations to make our lives easier.

The final code—after adding all the syntax elements we learned about above—looks like this:

<script>
let todos = ['Learn Svelte', 'Create great things'];
let newTodo = '';
function handleKeyup(evt) {

if (evt.key === 'Enter') {
todos = [...todos, newTodo];
newTodo = '';

}
}

</script>

<label>
New To-Do
<input type="text" bind:value={newTodo} on:keyup={handleKeyup} />

</label>

{#if todos.length === 0}
<p>What do you want to work on?</p>

{:else}

{#each todos as todo}
{todo}

{/each}

{/if}

Notice how close we are to vanilla JavaScript and simple HTML. Svelte doesn’t distort but
enhances existing code. The following colorization visualizes this. Everything that’s blue is regular
JavaScript, everything that’s green is regular HTML, and everything that’s orange is Svelte
syntax.

2-3. Syntax colorization

With these tools at your disposal, you’re now ready to enrich your HTML with dynamic content
and behavior! In the next part of the series, we’ll look into reactive statements and how they can
help us derive computed variables or react to variable changes, and how Svelte again uses its
unique advantage—being a compiler—to make the developer experience of writing these as
good as possible.

Reactive
Statements

Chapter

3

In the introductory tutorial of this series, we learned that Svelte is able to compile regular variable
assignments inside components into something that will automatically update the view.
Whenever you assign something to a variable, Svelte will notice that and schedule a rerender for
the next browser paint. In the second part, we had a closer look at the component syntax to see
how to add dynamic behavior to our HTML code. In this part, we’ll focus on the contents of the
<script> tag and take a look at how we can run other code in reaction to a variable change.

Have you ever needed to react to a variable change? Probably every day, in some form or the
other. Svelte already reacts nicely to changes of variables by rerendering the view. But what if we
need to explicitly react to a variable change inside our <script> tag? Doubling a count, fetching
a new object from the backend when an ID changes—there are many use cases. This is where
reactive statements come in. They look something like this:

<script>
// reactive declaration
$: foo = bar;
// reactive statement
$: {

something = somethingElse;
}

</script>

Syntactically, the reactive statement is expressed by using the dollar sign followed by a
colon— $: . This is actually valid JavaScript syntax. Originally, it expresses a labelled
statement— labelname : statement —to which you can tell JavaScript to jump when using
continue or break . But since no one uses that, Svelte has filled the void to syntactically express

its reactive statement. This means you can’t use labelled statements of the name $ inside
Svelte files, but as you’re most likely not using labelled statements of any kind anyway, this won’t
make a difference.

With the syntax out of the way, let’s look at the semantic meaning of reactive statements, which
come in two forms: reactive declarations and reactive statements.

Reactive Declarations
A reactive declaration defines a variable whose value is dependent on other variables. A simple
reactive declaration may look like this:

<script>
let count = 0;
$: doubled = count * 2;

</script>

<p>Count: {count}</p>
<p>Doubled: {doubled}</p>
<button on:click={() => count += 1}>Increase count</button>

This reactive declaration declares the variable doubled , which is expressed as being the double
of the variable count . Whenever count changes, Svelte knows to also compute the new value
of doubled . Think of reactive declarations like a formula of an Excel cell: you declaratively define
what the result is, and Svelte takes care of the rest—but note the caveats that we’ll get to later.
Reactive declarations can also depend on other reactive declarations, so you could write $:

quadrupled = doubled * 2 .

Reactive Statements
A reactive statement doesn’t define a computed variable. Instead, defines a block that should
be rerun whenever its dependencies change. Every variable that appears inside the block of a
reactive statement and is read (not written to)—in order to compute the outcome—is a
dependency. A reactive statement looks like this:

<script>
let count = 0;
let prevCount = 0;
let countWentUp = false;
// Simple statement
$: console.log('Count is' + count);
// Block statement
$: {

countWentUp = prevCount < count;
prevCount = count;

}
</script>

<p>Count: {count}</p>
<p>Count went {countWentUp ? 'up' : 'down'}</p>
<button on:click={() => count += 1}>Increase count</button>
<button on:click={() => count -= 1}>Decrease count</button>

As you can see, a reactive statement is essentially an arbitrary bit of code that should be rerun at
certain times. In the above example, the console.log statement is rerun every time the count

changes. Inside the block statement, we update two variables in reaction to a count change.
First, we compare the previous count with the current count to determine whether the count
went up or down, and then we store the current count as the new previous count for the next run.
You can use reactive statements to express side effects or run computations that don’t fit into a

simple declaration statement, or which touch more than one variable. Essentially, reactive
statements are a superset of reactive declarations: you could rewrite every reactive declaration
as a reactive statement. The following code is identical from a semantic point of view:

<script>
let something = 'something';
// This ...
$: declaration = something;
// Is the same as this
let statement;
$: {
statement = something;

}
</script>

Order of Execution
You might ask now in which order these reactive statements are run. Intuitively, it makes sense
that it’s somehow ordered in relation to the things they use, but how exactly? The answer is
simple: at compile time, Svelte looks at the direct code of the reactive statements and checks
each variable that’s read. These are the dependencies we already touched on briefly in the
previous section. From these dependencies, Svelte determines the order of the statements. That
means you could write $: quadrupled = doubled * 2 before writing $: doubled = count * 2

and Svelte would execute the doubled declaration first.

Mathematically speaking, this is called topological ordering with respect to the variables. If
Svelte isn’t able to determine an ordering that way—for example, because the statements have
no dependencies between them—they’re executed in the order you’ve written them down. In the
following code example, doubled and quadrupled can be reordered correctly, because Svelte
sees the dependency between them. The console.log statement at the end stays untouched
and runs last, because it has no dependency to doubled or quadrupled or something that needs
to run before they run:

<script>
let count = 0;
$: quadrupled = doubled * 2; // runs 2nd
$: doubled = count * 2; // runs 1st
$: console.log(quadrupled); // runs 3rd
$: console.log(count); // runs last

</script>

There may be situations where we want to hide a variable from the dependencies. In the

following somewhat arbitrary (but simple) example, we want multiplied to only update when
we increase count , but not when we change multiplyBy . We do this by hiding the variable
multiplyBy from the direct dependencies, by moving it into a function:

<script>
let count = 0;
let multiplyBy = 2;

$: multiplied = multiply(count);

function multiply(value) {
return value * multiplyBy;

}
</script>

Now multiplied will only change if count changes, but not when multiplyBy changes. This
works because Svelte only looks at the direct code of the reactive statement; it doesn’t follow
function calls.

The inverse might be true, too: we may want to retrigger a reactive statement even if a variable
changes that doesn’t directly contribute to the result. In this case, we can just add the variable in
question by making it appear within the reactive statement:

<script>
// ...
$: variableWhichShouldTriggerRecalculation, retriggerCalculation();
// ...

</script>

The above shows one possible way to do this by using the comma operator. Another way would
be to make it part of the function parameters but never use it in the function itself. How exactly
you make the variable appear is up to you. Anything that’s valid JavaScript is allowed.

Since reactive statements are regular JavaScript, you can also use if -blocks to have more
control over when a statement is rerun by only executing its body when a certain condition is
met:

<script>
// ...
$: if (someVariable < 100) {
// ...

}
// ...

</script>

The above code executes whenever someVariable or anything inside the reactive statement is
updated, but will only go into the body of the statement when the if condition is met. You can
use this as an alternative to hiding variables from the statement, and also use it to rerun the
statement when a variable not used in the body changes by placing it as a dummy condition in
the if statement.

Most of the time, you don’t need to care about the dependencies. This is a relief in comparison to
React, where you need to be very explicit about the dependencies in the context of hooks. In
Svelte, most of the time it “just works” like you expect it to, and if you need to fine-tune execution
behavior, you can easily adapt your code by using one of the techniques shown above.

Let’s summarize these findings by looking at one more example. The screenshot below shows in
which order the reactive statements are run. The arrows show the dependency on other reactive
statements. multiplied runs first because it depends on count . doubleMultiplied runs
second because it depends on multiplied . refreshDetails() runs third because it depends on
doubleMultiplied . console.log(count) runs last because it’s written after all other reactive

statements and none of the other statements needs it to run first. None of the statements rerun
when multiplyBy changes because none of them has a direct dependency on it.

3-1. Reactive Statements Ordering

Reactive Statements Are Run Once
One thing that didn’t become clear from the previous sections but which might become
important is the execution timing of reactive statements. If a regular variable is reassigned,
Svelte will schedule an update for the next browser paint. Between this scheduling and the paint
is the time where reactive statements are executed—but they’re only executed once. This means
that, if a reactive statement writes to a variable which a previously run reactive statement is
reading, that reactive statement will not be rerun. This prevents endless loops, performance
issues, and also makes certain reactive statements possible to write. Let’s have a look at the
reactive statement from above again:

<script>
let count = 0;
let prevCount = 0;
let countWentUp = false;

$: {
countWentUp = prevCount < count;
prevCount = count;

}
</script>

This reactive statement reads prevCount , but it also writes to prevCount . If the statement were
to run more than once, this would mean it would get invalidated immediately again, resulting in an
infinite loop, and would also always assign false to countWentUp in the end, which defeats its
purpose. Just like with the dependencies, most of the time this is nothing to care about, because
reactive statements feel very natural to write. But it’s good to keep in mind once you get into
more complex use cases.

3-2. No Rerun

Wrapping Up
This tutorial introduced reactive statements. We can use them to react to assignments of other
variables to execute side effects or create computed variables. Reactive statements are ordered
in Svelte by looking at direct dependencies, and then scheduled to run after a variable
assignment. If an order can’t be determined, they’re run in the order they’re declared. We can use
this to our advantage to hide variables from the dependencies by moving them into functions or
by adding additional variables to the statement to retrigger the execution of that statement.
Reactive statements won’t be rerun if a reactive statement executed later during the same run
updates a variable they depend on. With that in mind, you’re now prepared to react to all the
things!

This was the last tutorial of the series where we solely focus on the insides of one component. In
the first part, we learned that Svelte is a compiler offering some unique advantages, which we
also saw in the present tutorial. In the second part, we had a closer look at the component syntax
to see how to add dynamic behavior to our HTML code. The next parts will look at what we can
do to integrate components with each other. We’ll start by looking at Svelte stores, which provide
us with a simple yet powerful API for handling cross-component state in our application.

Stores
Chapter

4

Svelte’s reactivity inside Svelte components is intuitive and easy. Because Svelte is a compiler, it
can transform regular variable assignments into something the UI will rerender when it changes
(as we saw in Part 2 of the series). Reactive assignments make derived or computed variables
very easy (as we saw in Part 3 of the series).

Outside of Svelte components, we have a different mental model, there’s no inherently
connected UI layer to our code, and the Svelte compiler won’t touch code outside of Svelte files.
But what if we also want the goodies of reactivity outside of Svelte components? What if we
have global state that lives inside a JavaScript file that many components should react to when it
changes? This is where Svelte stores come in. In this fourth part of the series, we’ll have a close
look at the store API, how to use it to build neatly encapsulated modules, and how to easily use
them inside Svelte components.

As a practical example throughout this tutorial, let’s pick something that’s probably globally
available in almost all applications: user state. In this example, this state will consist of whether or
not the user is logged in, and, if they are logged in, their username. There’s an area of the page
that’s only visible to authenticated users, and if they’re logged in, their username is visible in the
top bar at all times.

4-1. User App

The app surely won’t win us any design awards, but it helps us showcase the problem we have
with global state in this application. The root of the application looks like this:

<script>
import Topbar from './Topbar.svelte';
import AuthOnly from './AuthOnly.svelte';

</script>

<Topbar />
<div>

<p>
This part of the page is always visible

</p>
</div>
<div>

<p>

This part is only visible to logged in users
</p>
<AuthOnly />

</div>

<style>
div {

border: 1px solid blue;
padding: 5px 10px

}
</style>

That component uses other components. To do so, we import them as a default import in the
<script> tag. We can then use them by the same name as the default import in the template.

(We’ll look into component interaction more deeply in Part 5 of this series.)

Topbar.svelte looks like this:

<div>
How to get the username in here?

</div>

<style>
div {

background: lightgrey;
padding: 5px 10px;
text-align: right;

}
</style>

And AuthOnly.svelte looks like this:

<script>
let authenticated = false;

</script>

{#if authenticated}
<p>

Super secret stuff!
</p>

{:else}
<button on:click={() => authenticated = true}>Log In</button>

{/if}

The components Topbar and AuthOnly both need access to the user state; passing it via
properties is not an option. In this simple example, we only need to pass the user state down one

component, but in reality this will almost never be the case. So we need some other place to
share the state. Additionally, AuthOnly needs to update the state to log in the user. Where do we
put the state now? It’s probably best to put it inside a JavaScript file that exports the state so
everyone can access it. Let’s try that!

A First Attempt
We create a user.js with the following content:

export let user = { loggedIn: false };
export function login() {
user = { loggedIn: true, name: "Dr. Svelte" };

}

We also import the user state in Topbar.svelte :

<script>
import { user } from './user';

</script>

<div>
{user.name || 'Not logged in'}

</div>

<!-- style... -->

We do the same in AuthOnly.svelte , where we also call the login function:

<script>
import { user, login } from './user';
let authenticated = user.loggedIn;

</script>

{#if authenticated}
<p>

Super secret stuff!
</p>

{:else}
<button on:click={() => login()}>Log In</button>

{/if}

This will correctly show a logged-out state in the beginning, but we somehow can’t get the login
to propagate back to the components. Why? After all, doesn’t this work the same inside Svelte
files? The reason is that the Svelte compiler only looks at Svelte files to do its transformation.

JavaScript files are left as they are. Furthermore, the semantics inside a JavaScript file are
different; there’s no direct connection to a view layer. Therefore, we somehow need to explicitly
express the state as an object that can change over time, which Svelte components can react to.
This is where Svelte stores come in.

Introducing Writable Stores
Svelte provides a very simple API for initializing and updating a store. A store is something that
stores (hence the name) a value (also called state) to which others can subscribe, and get notified
about updates to the value of that store.

At the heart of Svelte’s store API is the writable function, which provides this functionality. The
writable function is called with the initial state and returns and object with set , update and
subscribe methods. set is called with the new desired state. update is called with a function

that gets the current state and is expected to return the next state. subscribe is called with a
callback function that’s invoked every time the state changes, and returns a function that can be
called to unsubscribe:

import { writable } from "svelte/store";

const store = writable("initial value");

const unsubscribe = store.subscribe((value) =>
console.log("the current value is " + value)

);

store.set("new value");

store.update((value) => value + " 2");

unsubscribe();

store.set("another value");

In the code snippet above, the value is "initial value" first, then "new value" , then "new

value 2 . All these strings are logged, because the subscribe callback function is called each
time and logs them out. The subscribe function returns an unsubscribe function. After it’s
called, updates to the store—in this case, "another value" —are no longer logged. If you know
RxJS, this API may look familiar to you, and indeed, the API closely follows the principle of
observables.

Let’s apply the writable to our use case:

import { writable } from "svelte/store";
export let user = writable({ loggedIn: false });
export function login() {
user.set({ loggedIn: true, name: "Dr. Svelte" });

}

We change the code in our JavaScript file and wrap the state with the writable . This means we
need to adjust our Svelte components to subscribe to the state. Here’s a first attempt in
Topbar.svelte :

<script>
import { user } from './user';
import { onDestroy } from 'svelte';
let _user;
const unsubscribe = user.subscribe(u => _user = u);
onDestroy(unsubscribe);

</script>

<div>
{_user.name || 'Not logged in'}

</div>

<!-- style... -->

This works! If we press login inside AuthOnly.svelte , we’ll see the name “Dr. Svelte” appear in
the top bar. The solution is a little boilerplate-y, though: we have to subscribe to the store, assign
it to a local variable, and remember to unsubscribe when the component is destroyed. Can we do
better? This is where Svelte’s big advantage comes in again: the fact that it’s a compiler. Since
the compiler will transform Svelte files to JavaScript files anyway, it also can do transformations
to get rid of the subscription boilerplate. All we have to do is to put a dollar sign in front of the
store and Svelte will take care of the rest:

<script>
import { user } from './user';

</script>

<div>
{$user.name || 'Not logged in'}

</div>

<!-- style... -->

Just like with reactive statements (which we covered in Part 3), the dollar sign is used for some
reactive Svelte magic. Declaring (not using) variable names with a dollar sign in front is prohibited
in Svelte files. Instead, they’re a sign to the compiler to generate all the subscription boilerplate

for us that we previously wrote by hand. This even works for updating the store. If we were to
write $user.name = "Dr. Dollarsign or $user = { loggedIn: false } inside a Svelte
component, this would be transformed to a store update by the Svelte compiler. Neat! But note
that it’s not possible to use the $ syntax to subscribe to stores that aren’t created at the top
level (imports are top level, so that works). We also can’t subscribe to a store that’s nested inside
an object: we first need to extract it into a top-level variable. These limitations are worth keeping
in mind, but you’ll probably only rarely encounter them.

4-2. Store compilation output

Subscribing to a store through the dollar sign syntax doesn’t only work for Svelte stores. Every
object that satisfies the store contract (in other words, providing a subscribe method) can be
used that way. If you prefer to use RxJS, for example, you could use the exact same $user

syntax to subscribe to the observable. We can use this to our advantage to create our own
encapsulated user API. Right now, everyone is able to update the user state directly, because we
expose the whole writable . To ensure everyone using the user state has to go through the API
to update the state, we can create our own store like this:

import { writable } from "svelte/store";

let _user = writable({ loggedIn: false });

function login() {
_user.set({ loggedIn: true, name: "Dr. Svelte" });

}

export const user = {
subscribe: _user.subscribe,
login,

};

We then need to adjust our AuthOnly.svelte component like this:

<script>
import { user } from './user';
$: authenticated = $user.loggedIn;

</script>

{#if authenticated}
<p>

Super secret stuff!
</p>

{:else}
<button on:click={() => user.login()}>Log In</button>

{/if}

We can keep using the $user syntax, and update the state through a method on that object.
Doing something like $user.loggedIn = true or user.set({ loggedIn: true }) is no longer
possible, because the set method of the writable is no longer exposed. Also note how we can
use $user inside the script tag and within reactive statements. It’s just a variable that we can
use anywhere in the component.

The following screenshot visualizes the state flow of our example app.

4-3. Store Flow

Readable Stores
Sometimes we may want to create a store that’s not updatable from the outside at all. One use
case is to make sure that no one (not even within the same file) updates the store from the

outside, because it should be self contained—for example, a clock that updates every second and
that can’t be reset or adjusted from the outside. In this case, we can reach for readable :

import { readable } from "svelte/store";

const time = readable(null, (set) => {
set(new Date());

const interval = setInterval(() => {
set(new Date());

}, 1000);

return () => clearInterval(interval);
});

The code above creates a store that doesn’t have a set or update method, but only a
subscribe method. We can’t set the state from the outside. The initial state of the readable is

set through the first parameter; the second parameter is a function that’s called every time the
subscriber count goes from zero to one. It’s handed a set function that we can use to update
the state from the inside—in this case, the current time each second. We can return a function
that’s called when the subscriber count goes from one to zero. In this case, we clean up our
interval.

Derived Stores
Once we start using stores, we may also want to combine some of them or just derive a different
value from a store. In this case, we can reach for derived . Let’s suppose our username is split
into surname and lastname, but we want to show the combined name in various places of the
app. In order not to repeat ourselves, we use a derived store to put them together:

import { derived } from "svelte/store";
import { user } from "./user";

export const username = derived(
user,
(_user) => _user.surname + " " + _user.lastname

);

In its simplest form, derived accepts a store or an array of stores as the first argument and a
function that gets the current value of this or these stores as the second argument. For more
complex use cases, the function also provides a second parameter— set —which we can use to
update the derived state when appropriate. In this case, the return value can be a function
that’s called when the subscriber count goes from one to zero. We can also pass a third argument

to derived in this case, which marks the initial value.

Here’s an example:

import { derived } from "svelte/store";
// ...

export const itemDetails = derived(
itemId,
(_itemId, set) => {
getItemDetails(_itemId).then((details) => set(details));

},
"Loading..."

);
"Loading..."

The code above creates a derived store that retrieves details about an item from its ID every
time that ID changes, and shows "Loading..." initially.

Wrapping Up
That’s it! In this fourth tutorial of the series, we took a deep dive into Svelte stores. We learned
that we can use writable to make our state available for use across Svelte components, which
then can react to updates by just appending a dollar sign to the variable name.

We saw that it doesn’t have to be a Svelte store. Instead, every object that implements the
subscribe contract can be used like that in a Svelte component. This allows us to use other
libraries like RxJS or create custom objects. Svelte stores help us manage state, providing the
primitives for a robust state management solution.

We also took a look at readable stores, which help us to create state that’s not changeable from
the outside, and derived stores, which provide options for creating a derived state from
incoming stores. The core of the Svelte store API is dead simple to understand, but scales for
more complex use cases.

You’re now ready to create stores to handle state that’s shared across different components! In
Part 5 of this series, we’ll look at more component interactions apart from using stores to create
robust applications.

Component
Interaction

Concepts

Chapter

5

Components are at the core of frontend frameworks like Svelte. They are the primary unit for
organizing and implementing your view layer. Components encapsulate a specific UI and/or
behavior—such as the look of a button, a list containing arbitrary elements, or a specific section
of a page.

In the first three parts of this series, we focused on the ins and outs of one component. We
looked at template syntax in Part 2, and at reactive statements in Part 3. In Part 4, we looked at
Svelte stores, which provide a handy API for implementing state management and which do
cross-component updates. There are, of course, more ways to integrate components with each
other—and we’ll look into them in this tutorial. After reading through this tutorial, you’ll be able to
use the right component API for the right job.

Using Other Components
The key part to organizing your code is to put each part in the most appropriate location. This
means writing and reusing components. We can use another component by importing it as a
default import and then use it like a regular element tag inside the template:

<script>
import SomeOtherComponent from "../somewhere/else/SomeOtherComponent.svelte";

</script>

<SomeOtherComponent></SomeOtherComponent>
<!-- if the component has no children, you can also selfclose it: -->
<SomeOtherComponent />

Passing Stu+ to Components through Properties
Many components receive some kind of input that they need in order to function. Consider a list
that should show text entries below each other and which you want to use in various places. The
list then would be a component property, or in other words an input. In Svelte, these properties
are defined through export let <propertyName> , as seen here:

Naming Imports

Since you import the component through its default export, you can name the import
any way you want. It doesn’t have to the same as the "le name, but it’s best practice to
do so.

<script>
export let items;

</script>

{#each items as item}
{item}

{/each}

At first, this may take some getting used to, since export is normally used to make something
importable somewhere else, but it will soon feel like second nature.

Properties without an initializer are treated as mandatory. Optional properties have an initializer.
Let’s say we want to optionally add support for reloading the list through the click of a button, but
only if the component user explicitly turns it on. With an optional property, it would look like this:

<script>
export let items;
export let showReload = false;

</script>

{#if showReload}
<button>Reload list</button>

{/if}

{#each items as item}
{item}

{/each}

The usage would look like this:

<script>
import List from "./List.svelte";

</script>

<List items={['Learn Svelte', 'Create great things']} showReload={true} />

Reacting to Component Events
We now have a list with an optional reload button. The logic for reloading the list should be part of
the consuming component. We therefore need to somehow react to a click event of the button.

The first option would be to use callback props like you’d use in React—passing a function as
input:

<script>
export let items;
export let showReload = false;
export let reload = undefined;

</script>

{#if showReload}
<button on:click={reload}>Reload list</button>

{/if}

{#each items as item}
{item}

{/each}

The second option is to create an event dispatcher and dispatch a custom event from it. For this,
we import createEventDispatcher from svelte and call the resulting function where
appropriate:

<script>
import { createEventDispatcher } from "svelte";

export let items;
export let showReload = false;

const dispatch = createEventDispatcher();
</script>

{#if showReload}
<button on:click={() => dispatch("reload")}>Reload list</button>

{/if}

{#each items as item}
{item}

{/each}

The first argument to the dispatch function is the event name. The second (optional) argument
is the payload. Listening to this event is similar to listening to DOM events; we add on: in front
of the event name:

<script>

import List from "./List.svelte";
let list = ['Learn Svelte', 'Create great things'];
function reloadList() {

// ...
}

</script>

<List items={list} showReload={true} on:reload={reloadList} />

The last option—in this case—is to just bubble the click event of the button. An event is
bubbled if you write on:<eventName> without handling the event:

<script>
export let items;
export let showReload = false;
export let reload = undefined;

</script>

{#if showReload}
<button on:click>Reload list</button>

{/if}

{#each items as item}
{item}

{/each}

You then would listen to on:click on the List component in the parent. While this works, in
this case it’s better to use one of the first two options, as an event name like reload better
communicates what was clicked and what should happen in response to it. Whether you use
callback props or custom events comes down to personal preference.

5-1. Properties in, events out

Composing the UI with Slots
The list is now displayed and we can reload it, but the look of a list entry is fixed; we can’t change
it from the outside. To change that, we use slots. A slot is like a placeholder where its content is
determined by the parent. Let’s first define our slot in our list component:

<script>
// ...

</script>

{#if showReload}
<button on:click>Reload list</button>

{/if}

{#each items as item}

<slot {item}>
{item}

</slot>

{/each}

The <slot> tag marks the section as the destination for the parent’s content. The {item}

property means that the parent is able to use the item when providing the UI. Otherwise, we
would have no way to output the item’s text in the parent. The content inside the <slot> is its
fallback content, in case the parent component doesn’t provide its own UI. The fallback content
is optional; you don’t need to provide it.

Let’s use the component slot in the parent component:

<script>
import List from "./List.svelte";
// ...

</script>

<List items={list} showReload={true} on:reload={reloadList} let:item>
{item}

</List>

We chose to simply put the item’s text into a tag, making it bold. The UI for the slot is inside
the component’s tag. We can use the item property passed into the slot by writing let:item . If
we wanted to rename the property, we would write let:item={anotherVariableName} .

The slot above is the default slot. We can also use named slots to provide more than one of them,
which can appear in different areas. Giving the slot a name is as easy as writing <slot

name="desiredName" /> , and using it is just as easy by adding a slot="desiredName attribute to
the parent’s element, which should go into a specific slot. If there was an “empty list placeholder”
slot, it could look like this:

<!-- ... -->
<List items={list} showReload={true} on:reload={reloadList} let:item>
{item}
<!-- you can use let:xx on the named slot as well if the component passes slot properties -->
<p slot="empty">List is empty</p>

</List>

The following screenshot visualizes the slot feature.

5-2. Visualized slots example

Using the Module Script to Manage Instances of the Same

Component
The reload feature of the list is a big success—so big, indeed, that the boss now asks for a
“Reload all” button somewhere at the top of the page. For situations like this—where we need to
manage and/or coordinate multiple component instances of the same type, or just run code
outside of the component lifecycle but colocate it with the component—we can use the module

script tag. This is another script tag with an additional context="module" attribute on it. The code
inside this script tag runs only once and right away. Think of it as a separate JavaScript file, but
colocated with the Svelte component. Let’s use this to implement the “Reload all” behavior:

<script context="module">
let reloads = new Set();
export function reloadAll() {
reloads.forEach((reload) => reload());

}
</script>

<script>
import { createEventDispatcher, onMount } from "svelte";

export let items;
export let showReload = false;

const dispatch = createEventDispatcher();

onMount(() => {
const reload = () => dispatch("reload");
reloads.add(reload);
return () => reloads.delete(reload);

});
</script>

<!-- ... -->

We create a Set that contains all “reload” dispatch functions. Every time a list instance is
created, we encapsulate our dispatch function and add it to the Set . When the component
instance is destroyed, we remove it. What’s left to do now is to use the exported reloadAll

function where the “Reload all” button is implemented:

<script>
import { reloadAll } from "../somewhere/List.svelte";

</script>

<button on:click={reloadAll}>Reload all</button>

The default import of a Svelte component is the component constructor itself. Named imports
are those that are exported from the module script. That way, we can easily import reloadAll

and call it when appropriate.

5-3. Module script in relation to instance scripts

You’ll need module scripts only occasionally, but when you do, they’ll come in very handy to allow
imperative interaction with your component(s) or for managing and coordinating multiple
instances of the same type. Another example—from Svelte’s own tutorial—deals with having an
audio player component rendered multiple times, but only allowing one of them to play at the
same time. This is also easily done with module scripts.

Using Context to Provide State to Component Trees
One day after the “Reload all” feature goes live, the boss comes to realize that it’s probably not a
good idea to actually reload all lists, but rather just specific ones. The calculation whether or not a
certain area of the page with lists in it should support reloading is done near the root of these
page areas, but the lists themselves are deep children of these components. What now? Should
we add a new property to the list component to specify if it should be part of the reload party?
This would mean we need to pass down that property through many unrelated components that
only need to know about that property in order to pass it down to the next component. This is
called property drilling. For situations like this, providing context to child component comes in

handy. This is what it looks like:

<!-- somewhere in a parent component -->
<script>
import { setContext } from 'svelte';
setContext('partOfReloadAll', someFancyComputationThatReturnsABoolean());
// ...

</script>

<!-- in List.svelte -->
<script>
import { getContext, onMount } from 'svelte';
// ...
const isPartOfReloadAll = getContext('partOfReloadAll');
onMount(() => {
if (!isPartOfReloadAll) {
return;

}
const reload = () => dispatch("reload");
reloads.add(reload);
return () => reloads.delete(reload);

});

These two functions— setContext and getContext —allow us to provide specific things to all
children of the component where that thing is provided. This is similar to useContext in React,
provide / inject in Vue, or a service provided on a component in Angular. Note that you need to

call these functions during component initialization. You can’t call them later on in the life cycle or
asynchronously.

5-4. Context visualization

In the example above, we passed a string as the key, but you could also use a Symbol or
something else that’s guaranteed to be unique. The value can be anything you want. In this case,
it’s a simple Boolean, but it could also be a function or a store. The combination of context and
stores is a nice way of providing a value that can change over time and to which the children
should be able to react. Here’s an example:

<!-- somewhere in a parent component -->
<script>
import { setContext } from 'svelte';
import { writable } from 'svelte/store';
const count = writable(1);
setContext('count', count);
// ...
function updateCount() {
count.update(c => c + 1);

}
</script>

<!-- somewhere in a child component -->
<script>
import { getContext } from 'svelte';
const count = getContext('count');

</script>
<p>The count is {$count}</p>

If you have state that’s available globally, you can of course skip using context and instead just

import that state from a central location. This is what we did in the previous part of the
application using stores.

Wrapping Up
This was a long one! We’ve seen quite a few component interaction concepts in this tutorial. To
summarize:

Use component properties and events to implement basic component interaction.
Use slots when you need to provide a custom UI from the parent at a certain place in the child.
Use the <script context="module"> tag when you need to manage or coordinate multiple
instances of the same component or export imperative logic related to them.
Use setContext and getContext when you need to provide certain values for a certain sub
part of the app and you want to avoid property drilling.

With all these tools at your disposal, you’re now ready to structure and organize your
components in the best way possible.

This was the last part in the series to help you with writing components. You’re now ready to
write full-blown applications in Svelte. In the last part of this Svelte series, we’ll look into testing
these applications. We’ll look into the different levels at which we can test, as well as what it
means to make your apps testable.

Testing
Applications

Chapter

6

This is the final tutorial in our series introducing Svelte. We’ve come quite a long way. The
introductory tutorial provided some background on Svelte’s history, as well as the first steps of
writing an application with it. The tools for building such an application were then introduced in
more detail in the following tutorials. We took a deep dive into the template syntax of Svelte,
which is an extension of HTML. We saw how to use reactive statements to react to variable
changes—for example, in order to create computed variables. We then looked at Svelte stores,
which can be used to share state across multiple components, and we learned about various
ways to integrate components with each other.

All this empowers us to create Svelte applications that scale. But how do we test those
applications? This is what we’ll look at in this final part of the series.

The Testing Pyramid
Before we jump into the technical details, let’s first take a step back and think about the ways we
can test an application. As it turns out, there’s not one true way to do this. Rather, there are
different layers of testing. There’s actually a name for this, which you may have come across
already: “the testing pyramid”.

6-1. Testing Pyramid

The testing pyramid helps us classify our various ways of testing.

At the bottom, there are unit tests, which look only at a tiny part of our application at a
time—such as testing a specific function in isolation.

Above these are integration tests, which test a small to medium part of our application in
combination. While unit tests are great for testing things like whether or not a function returns
the right thing, they don’t tell you whether that function is actually used in the right way. All your
unit tests could pass, but the interaction of the parts with each other you tested might be wrong.
Integration tests help surface these bugs.

The top-most layer in the pyramid are end-to-end tests (abbreviated with E2E), which take the
integration tests one step further by not only running parts of the application, but also running
the whole application and testing through the eyes of the end user. The challenge is to get the
whole application running under test conditions. The advantage is that you need to mock less:
only the backend, or if you want, even that can run as part of an E2E test.

It’s named the “testing pyramid” and not just “testing levels” because the idea is that there
should be more tests at the lower level than the higher level. Some people say you should strive
for 60% unit tests, 30% integration tests and 10% E2E tests. There’s no single right way to do
this, however, and for testing the frontend especially there are people who even challenge the
pyramid completely, saying that E2E tests are the easiest and most robust way—especially with
respect to implementation changes—to test web apps, so you should focus on these the most.

In the end, how to organize your tests is up to you, and we’ll focus on giving an example for each
layer in the rest of this tutorial.

Test Setup
We’ll be using Jest for unit and integration tests. Jest is currently the most popular testing library
for frontend code. If you’re using SvelteKit, you can set up and install all the required
dependencies for testing with Jest via svelte-add-jest, by running the following in the root of your
SvelteKit project:

npx apply rossyman/svelte-add-jest
npm install @testing-library/svelte -D

The first command does all the installation of the minimum required dependencies for you, as
well as creating the required config. We only need to install one more package to use after that.

If you aren’t using SvelteKit, there are some more manual steps to take. First, install all the

https://jestjs.io/
https://github.com/rossyman/svelte-add-jest

required dependencies. If you’re using JavaScript, these are as follows:

npm install jest svelte-jester @babel/core @babel/preset-env babel-jest @testing-library/svelte -D

jest is the core testing framework and svelte-jester is the corresponding plugin in order to
support Svelte. Babel is needed in order to transform newer ES module code. The testing-

library package will help us write more robust tests, as we’ll see later on. Then create a
jest.config.js with the following contents in order to tell Jest to handle Svelte files correctly:

module.exports = {
testEnvironment: "jsdom",
transform: {
"^.+\\.svelte$": "svelte-jester",

},
moduleFileExtensions: ["js", "svelte"],

};

Then create a .babelrc and add the following code, which is needed for transpiling more recent
JavaScript syntax into something that Jest understands:

{
"presets": [["@babel/prese"@babel/preset-env""targets"": "": ""node": "current" } }]]

}

These are the steps for creating the test setup when using JavaScript. If you’re using TypeScript,
the setup looks a little different. First, you need to install the following packages:

npm install typescript svelte-preprocess jest ts-jest svelte-jester @testing-library/svelte -D`

You probably already have installed typescript and svelte-preprocess , as these are needed
for developing Svelte applications in TypeScript. The Babel dependencies are replaced with ts-

jest , which takes care of transpiling the code correctly. After that, add the following config files
to the root of your project:

In svelte.config.js , add this:

const sveltePreprocess = require("svelte-preprocess");

module.exports = {
preprocess: sveltePreprocess(),

};

In jest.config.js , add this:

module.exports = {
testEnvironment: "jsdom",
transform: {
"^.+\\.svelte$": [
"svelte-jester",
{
preprocess: true,

},
],
"^.+\\.ts$": "ts-jest",

},
moduleFileExtensions: ["js", "ts", "svelte"],

};

These files ensure that Jest knows how to preprocess TypeScript and Svelte files correctly
before running the tests. The svelte.config.js tells various tools how to preprocess Svelte files
before handing them off to the compiler, and the Jest config tells Jest how to transform Svelte
and TypeScript files. Again, if you’re already using TypeScript, you already might have a
svelte.config.js .

Writing Your First Test
With all that setup out of the way, let’s get into writing our first test! The application we’ll be
testing is our very simple book list you already know from the first part of the series. As a
reminder, the image below shows what it looks like.

6-2. Book List App

And this is the code behind it:

<script>
import { fade } from 'svelte/transition';

let books = ['Learning Svelte', 'The Zen of cooking Tea'];
let newBook = '';

function addBook(evt) {
if (evt.key === 'Enter') {
books = [...books, newBook];
newBook = '';

}
}

</script>

<h2>
My Little Book App

</h2>
<div>

<label>
<h4>Add Book</h4>
<input type="text" bind:value={newBook} on:keydown={addBook} />

</label>

<h4>My Books</h4>

{#each books as book}
<li transition:fade>{book}

{/each}

</div>

<style>
div {

display: inline-block;
margin-left: auto;
margin-right: auto;

}
h2 {

background: rgb(9,111,121);
padding: 5px 10px;
text-align: center;
color:white;
font-weight: bold;
margin:0;

}
input {
padding: 5px 10px;

}
li {
list-style: none;

}
ul {
padding: 5px 0;

}
:global(body){

background: rgb(9,111,121);
background: linear-gradient(180deg, rgba(9,111,121,1) 0%, rgba(255,241,242,1) 60%, rgba(255,241,242,1) 100%);
display:flex;
flex-direction: column;

}
</style>

We want to test that adding a book works correctly. This means ensuring that the typed text
appears as an item in the list, and that the input is cleared after adding the book.

How to approach this? The first idea might be to somehow access the compiled version of the
component and then update and invoke the needed variables and functions. This is very brittle,
however, since we’re closely tied to the implementation details of our component. It would be
better if we could test this one abstraction level higher, through the rendered HTML. This means
that we simulate interactions with the HTML and then check if it was updated correctly.

In our case, this means we want to simulate typing into the input, press enter, and then check

the updated HTML for a new book entry. @testing-library/svelte will help us with this. It’s a
wrapper around the Testing Library API, which provides an opinionated set of utilities for
interacting with the HTML. If you already have written tests with other wrappers around this
library—for example, using React or Vue—the following code snippet will look familiar to you:

import { render, fireEvent } from "@testing-library/svelte";
import App from "./App.svelte";

describe("Book App", () => {
test("can a"./App.svelte"c () => {
// Instantiate and render component
const app = render(App);
// Check that there are no list items at first
expect(() => app.getAllByRole("listitem")).toThrow();
"listitem"// Simulate user input input = await app.findByLabelText("Add Book");
await fireEvent.input(input, {
target: { value: "Writing Svelte Tests" },

});
await fireEvent.keyDown(input, { key: "Enter" });
// Check t"Add Book"// Check that there is one list item now

expect(app.getAllByRole("listitem").length).toBe(1);
expect(app.getByText("Writing Svelte Tests")).toBeDefined();

});
});

We first instantiate the component using the provided utility function named render . After
checking that the list is empty initially, we simulate user input, and then test that the new book
was added after pressing the enter key. These methods return promises that resolve as soon as

the Svelte compiler has rerendered, which happens asynchronously. As you can see, we don’t do
that by looking up specific HTML tags or classes (though we could fall back to that if needed).
Instead, we’ve chosen a more semantic approach and access the HTML by looking up (for
example) specific text or a specific role. This makes our tests more robust to changes in the
Svelte template.

The example above is a test for a rather simple component. Testing can get more complex when
the component in question is connected to context or global state or has many components
below it. If you only want to test that specific component, you need to mock away all unwanted
dependencies, which can be easy to hard depending on what needs to be mocked.

If it’s very hard to mock things away or to test in general, this hints at your code maybe being too
wired with all its dependencies. You may need to split up and modularize or reorganize some of
the code. For example, if you need to create a complex test setup because you want to test
specific business logic, it may be beneficial to split the computation out into a function in a
separate JavaScript file that’s independent of components, which makes testing that function
much easier.

Preparing your code for better testability will often lead to cleaner code overall, so a feel-good
vibe when testing will mostly go hand in hand with a well-structured app. If it doesn’t, it might be
that the code is just hard to test because it’s very high up the component tree or because the
logic you want to test inherently needs many dependencies. In this case, it’s often easier to use
E2E testing tools, which we’ll look at next.

Writing your First E2E Test
We’ll write our E2E tests using Cypress. Alternatives would be Selenium or Playwright, the most
recent addition by Microsoft.

Fortunately, the Cypress setup is rather easy. Just run npm install cypress -D and wait a few
minutes until everything is set up. This will create a new cypress folder at the root of your
project, which contains a configuration file we don’t need to look at for now, as well as an
example test suite. Next, run npx cypress open and wait for Cypress to start up. You’ll be

https://www.cypress.io/
https://www.selenium.dev/
https://playwright.dev/

greeted with the screen pictured below, and you can look around and run the example tests if you
like.

6-3. Cypress startup screen

If you want, you can delete the example tests; we’ll be creating our own test now. Cypress
expects the application to run at a specific location, so we’ll start up our dev server in a separate
terminal and then access the app—for example, at http://localhost:3000 . We now generate a
new .spec.js file within cypress/integration and proceed to write the same test we just wrote
using Jest, this time using Cypress:

/// <reference types="cypress" />

describe("Books App", () => {

beforeEach"Books App" // Open app
cy.visit("http://localhost:3000");

});

it("can add book", () => {
"http://localhost:3000"// Check that there are no list items at firstd("have.length", 0);
// Simulate user input

"have.length"// Simulate user input
cy.get("input").type("Writing Svelte Tests{enter}");
// Check that there is one list item now
cy.get("li")
.should("have.length", 1)
.last()
.should("contain.text", "Writing Svelte Tests");

});
});

As you can see, the test reads quite similarly to the Jest test we wrote earlier. We open the app
first, check if there are no items in the list, then add one through user input simulation, and then
check that there’s the expected item.

Writing the test is more focussed around the HTML tags right now, which you might find better
or worse in comparison to the Jest tests above, depending on your preference. If you want to use
the same style of retrieving the HTML elements, the Testing Library has you covered. Just install
@testing-library/cypress and you’ll be able to use the same queries you already know!

Regardless of how you decide to proceed, you can see that the abstraction level is much higher
when writing E2E tests. You don’t mock anything within your app. In fact, you run it like you
normally would during development. If you want, you can mock backend calls. Cypress has handy
utilities for making this possible—or you just set up your own simple mock server. Because this
frees you from many mocking headaches, some people prefer to write more tests this way. This
is especially helpful if you plan on rewriting parts of your app and want to ensure the behavior
stays the same.

Wrapping Up
That’s all for testing Svelte apps right now! We saw how to create a proper test setup using Jest
for unit and integration tests and Cypress for E2E tests, and we wrote simple tests using each of
them. We learned about the testing pyramid, which showcases the different levels of abstraction
when testing, and we saw the difference firsthand using the two testing tools. We also learned
that good tests and good code often influence each other, and that tests that are brittle and/or
hard to write may hint at your code needing some refactoring.

This tutorial was the final part in our series on getting started with Svelte! We’ve come quite a
long way since the introductory tutorial. We learned the ins and outs of template syntax and how
to add dynamic behavior to our HTML. We learned about reactive statements that help us
compute derived values or react to other variables changes, and how easy it is to write them. We
saw the same when using Svelte stores, how easy it is to subscribe to them, and how to create a
robust state management solution built upon them. We also learned about the different
component interaction concepts that help you organize and scale your app. Finally, in this
tutorial, we saw how to test Svelte apps.

With all this new information, you’re now ready to build Svelte apps that scale. Good luck, and
have fun!

	Svelte: A Beginner's Guide
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	Table of Contents
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Getting Started with Svelte
	
	The Svelte Backstory
	Building a Simple Book List
	Reacting to User Input
	Finishing Touches
	Architectural Considerations
	Ready, Set … Svelte?
	Svelte Sumamry

	Template Syntax
	
	Control Flow Syntax
	Look for Braces!

	Adding New To-dos Using Events and Bindings
	It’s Just JavaScript!

	Wrapping Up

	Reactive Statements
	
	Reactive Declarations
	Reactive Statements
	Order of Execution
	Reactive Statements Are Run Once
	Wrapping Up

	Stores
	
	A First Attempt
	Introducing Writable Stores
	Readable Stores
	Derived Stores
	Wrapping Up

	Component Interaction Concepts
	
	Using Other Components
	Naming Imports

	Passing Stuff to Components through Properties
	Reacting to Component Events
	Composing the UI with Slots
	Using the Module Script to Manage Instances of the Same Component
	Using Context to Provide State to Component Trees
	Wrapping Up

	Testing Applications
	
	The Testing Pyramid
	Test Setup
	Writing Your First Test
	Writing your First E2E Test
	Wrapping Up

