

Advanced Natural Language
Processing with TensorFlow 2

Build effective real-world NLP applications using NER,
RNNs, seq2seq models, Transformers, and more

Ashish Bansal

BIRMINGHAM - MUMBAI

Advanced Natural Language Processing with
TensorFlow 2
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Divya Mudaliar
Content Development Editor: Alex Patterson
Technical Editor: Gaurav Gavas
Project Editor: Mrunal Dave
Proofreader: Safis Editing
Indexer: Rekha Nair
Presentation Designer: Sandip Tadge

First published: February 2021

Production reference: 1290121

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-80020-093-7

www.packt.com

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://packt.com
http://www.Packt.com
http://customercare@packtpub.com
http://www.Packt.com

Contributors

About the author
Ashish Bansal is the Director of Recommendations at Twitch, where he works
on building scalable recommendation systems across a variety of product surfaces,
connecting content to people. He has worked on recommendations systems at
multiple organizations, most notably Twitter, where he led Trends and Events
recommendations, and at Capital One, where he worked on B2B and B2C products.
Ashish was also a co-founder of GALE Partners, a full-service digital agency in
Toronto, and spent over 9 years at SapientNitro, a leading digital agency.

In many years of work building hybrid recommendation systems balancing
collaborative filtering signals with content-based signals, he has spent a lot of time
building NLP systems for extracting content signals. In digital marketing, he built
systems to analyze coupons, offers, and subject lines. He has worked on messages,
tweets, and news articles among other types of textual data and applying cutting
edge NLP techniques.

He has over 20 years of experience, with over a decade building ML and Deep
Learning systems. Ashish is a guest lecturer at IIT BHU teaching Applied Deep
Learning. He has a bachelor's in technology from IIT BHU, and an MBA in marketing
from Kellogg School of Management.

My father, Prof. B. B. Bansal, said that the best way to test understanding
of a subject is to explain it to someone else. This book is dedicated to him,
and my Gurus – my mother, my sister, who instilled the love of reading,
and my wife, who taught me consider all perspectives. I would like to
mention Aditya sir, who instilled the value of hard work, which was
invaluable in writing this book while balancing a full-time job and family.
I would like to mention Ajeet, my manager at Twitter, and Omar, my
manager at Twitch, for their support during the writing of this book. Ashish
Agrawal and Subroto Chakravorty helped me tide over issues in code.

I would like to thank the technical reviewers for ensuring the quality of the
book and the editors for working tirelessly on the book. Tushar Gupta, my
acquisitions editor, was instrumental in managing the various challenges
along the way. Alex – your encouraging comments kept my morale high!

About the reviewers
Tony Mullen is an Associate Teaching Professor at The Khoury College of
Computer Science at Northeastern University in Seattle. He has been involved in
language technology for over 20 years and holds a master's degree in Linguistics
from Trinity College, Dublin, and a PhD in natural language processing from the
University of Groningen. He has published papers in the fields of sentiment analysis,
named entity recognition, computer-assisted language learning, and ontology
development, among others. Recently, in addition to teaching and supervising
graduate computer science, he has been involved in NLP research in the medical
domain and consulted for a startup in language technology.

Kumar Shridhar is an NLP researcher at ETH Zürich and founder of NeuralSpace.
He believes that an NLP system should comprehend texts as humans do. He is
working towards the design of flexible NLP systems making them more robust and
interpretable. He also believes that NLP systems should not be restricted to few
languages, and with NeuralSpace he is extending NLP capabilities to low-resource
languages.

[i]

Table of Contents
Preface vii
Chapter 1: Essentials of NLP 1

A typical text processing workflow 2
Data collection and labeling 2

Collecting labeled data 3
Development environment setup 4

Enabling GPUs on Google Colab 7
Text normalization 8

Modeling normalized data 11
Tokenization 13

Segmentation in Japanese 13
Modeling tokenized data 19

Stop word removal 20
Modeling data with stop words removed 24

Part-of-speech tagging 26
Modeling data with POS tagging 30

Stemming and lemmatization 31
Vectorizing text 33

Count-based vectorization 34
Modeling after count-based vectorization 35

Term Frequency-Inverse Document Frequency (TF-IDF) 37
Modeling using TF-IDF features 39

Word vectors 40
Pretrained models using Word2Vec embeddings 42

Summary 44

Table of Contents

[ii]

Chapter 2: Understanding Sentiment in Natural Language
with BiLSTMs 45

Natural language understanding 46
Bi-directional LSTMs – BiLSTMs 47

RNN building blocks 48
Long short-term memory (LSTM) networks 50
Gated recurrent units (GRUs) 51
Sentiment classification with LSTMs 51

Loading the data 52
Normalization and vectorization 55
LSTM model with embeddings 62
BiLSTM model 65

Summary 69
Chapter 3: Named Entity Recognition (NER) with BiLSTMs,
CRFs, and Viterbi Decoding 71

Named Entity Recognition 72
The GMB data set 74

Loading the data 75
Normalizing and vectorizing data 80
A BiLSTM model 83
Conditional random fields (CRFs) 87
NER with BiLSTM and CRFs 89

Implementing the custom CRF layer, loss, and model 91
A custom CRF model 93
A custom loss function for NER using a CRF 94

Implementing custom training 95
Viterbi decoding 99

The probability of the first word label 101
Summary 104

Chapter 4: Transfer Learning with BERT 105
Transfer learning overview 106

Types of transfer learning 107
Domain adaptation 107
Multi-task learning 108
Sequential learning 109

IMDb sentiment analysis with GloVe embeddings 110
GloVe embeddings 111
Loading IMDb training data 112
Loading pre-trained GloVe embeddings 114
Creating a pre-trained embedding matrix using GloVe 115
Feature extraction model 116
Fine-tuning model 121

Table of Contents

[iii]

BERT-based transfer learning 123
Encoder-decoder networks 123
Attention model 125
Transformer model 128
The bidirectional encoder representations from transformers
(BERT) model 131

Tokenization and normalization with BERT 133
Pre-built BERT classification model 139
Custom model with BERT 142

Summary 147
Chapter 5: Generating Text with RNNs and GPT-2 149

Generating text – one character at a time 150
Data loading and pre-processing 151
Data normalization and tokenization 152
Training the model 155
Implementing learning rate decay as custom callback 159
Generating text with greedy search 164

Generative Pre-Training (GPT-2) model 171
Generating text with GPT-2 177

Summary 183
Chapter 6: Text Summarization with Seq2seq
Attention and Transformer Networks 185

Overview of text summarization 186
Data loading and pre-processing 188
Data tokenization and vectorization 190
Seq2seq model with attention 193

Encoder model 194
Bahdanau attention layer 197
Decoder model 199

Training the model 202
Generating summaries 207

Greedy search 210
Beam search 214
Decoding penalties with beam search 218

Evaluating summaries 221
ROUGE metric evaluation 221
Summarization – state of the art 224
Summary 225

Table of Contents

[iv]

Chapter 7: Multi-Modal Networks and Image
Captioning with ResNets and Transformer Networks 227

Multi-modal deep learning 228
Vision and language tasks 229

Image captioning 232
MS-COCO dataset for image captioning 235
Image processing with CNNs and ResNet50 239

CNNs 239
Convolutions 240
Pooling 241
Regularization with dropout 242
Residual connections and ResNets 243

Image feature extraction with ResNet50 245
The Transformer model 249

Positional encoding and masks 251
Scaled dot-product and multi-head attention 253
VisualEncoder 257
Decoder 260
Transformer 263

Training the Transformer model with VisualEncoder 264
Loading training data 265
Instantiating the Transformer model 267
Custom learning rate schedule 268
Loss and metrics 270
Checkpoints and masks 270
Custom training 272

Generating captions 274
Improving performance and state-of-the-art models 281
Summary 282

Chapter 8: Weakly Supervised Learning for
Classification with Snorkel 285

Weak supervision 286
Inner workings of weak supervision with labeling functions 288

Using weakly supervised labels to improve IMDb sentiment analysis 290
Pre-processing the IMDb dataset 291
Learning a subword tokenizer 294
A BiLSTM baseline model 295

Tokenization and vectorizing data 296
Training using a BiLSTM model 297

Weakly supervised labeling with Snorkel 300
Iterating on labeling functions 304

Table of Contents

[v]

Naïve-Bayes model for finding keywords 306
Evaluating weakly supervised labels on the training set 314
Generating unsupervised labels for unlabeled data 319
Training BiLSTM on weakly supervised data from Snorkel 322

Summary 324
Chapter 9: Building Conversational AI Applications
with Deep Learning 327

Overview of conversational agents 328
Task-oriented or slot-filling systems 330

Question-answering and MRC conversational agents 340
General conversational agents 343
Summary 344
Epilogue 344

Chapter 10: Installation and Setup Instructions for Code 345
GitHub location 346
Chapter 1 installation instructions 347
Chapter 2 installation instructions 347
Chapter 3 installation instructions 347
Chapter 4 installation instructions 348
Chapter 5 installation instructions 348
Chapter 6 installation instructions 348
Chapter 7 installation instructions 348
Chapter 8 installation instructions 348
Chapter 9 installation instructions 349

Other Books You May Enjoy 351
Index 355

[vii]

Preface
2017 was a watershed moment for Natural Language Processing (NLP), with
Transformer-and attention-based networks coming to the fore. The past few years
have been as transformational for NLP as AlexNet was for computer vision in 2012.
Tremendous advances in NLP have been made, and we are now moving from
research labs into applications.

These advances span the domains of Natural Language Understanding (NLU),
Natural Language Generation (NLG), and Natural Language Interaction (NLI).
With so much research in all of these domains, it can be a daunting task to
understand the exciting developments in NLP.

This book is focused on cutting-edge applications in the fields of NLP, language
generation, and dialog systems. It covers the concepts of pre-processing text using
techniques such as tokenization, parts-of-speech (POS) tagging, and lemmatization
using popular libraries such as Stanford NLP and spaCy. Named Entity Recognition
(NER) models are built from scratch using Bi-directional Long Short-Term
Memory networks (BiLSTMs), Conditional Random Fields (CRFs), and Viterbi
decoding. Taking a very practical, application-focused perspective, the book covers
key emerging areas such as generating text for use in sentence completion and text
summarization, multi-modal networks that bridge images and text by generating
captions for images, and managing the dialog aspects of chatbots. It covers one of the
most important reasons behind recent advances of NLP – transfer learning and fine
tuning. Unlabeled textual data is easily available but labeling this data is costly. This
book covers practical techniques that can simplify the labeling of textual data.

By the end of the book, I hope you will have advanced knowledge of the tools,
techniques, and deep learning architectures used to solve complex NLP problems.
The book will cover encoder-decoder networks, Long Short-Term Memory
networks (LSTMs) and BiLSTMs, CRFs, BERT, GPT-2, GPT-3, Transformers, and
other key technologies using TensorFlow.

Preface

[viii]

Advanced TensorFlow techniques required for building advanced models are also
covered:

• Building custom models and layers
• Building custom loss functions
• Implementing learning rate annealing
• Using tf.data for loading data efficiently
• Checkpointing models to enable long training times (usually several days)

This book contains working code that can be adapted to your own use cases. I hope
that you will even be able to do novel state-of-the-art research using the skills you'll
gain as you progress through the book.

Who this book is for
This book assumes that the reader has some familiarity with the basics of deep
learning and the fundamental concepts of NLP. This book focuses on advanced
applications and building NLP systems that can solve complex tasks. All kinds of
readers will be able to follow the content of the book, but readers who can benefit
the most from this book include:

• Intermediate Machine Learning (ML) developers who are familiar with the
basics of supervised learning and deep learning techniques

• Professionals who already use TensorFlow/Python for purposes such as
data science, ML, research, analysis, etc., and can benefit from a more solid
understanding of advanced NLP techniques

What this book covers
Chapter 1, Essentials of NLP, provides an overview of various topics in NLP such as
tokenization, stemming, lemmatization, POS tagging, vectorization, etc. An overview
of common NLP libraries like spaCy, Stanford NLP, and NLTK, with their key
capabilities and use cases, will be provided. We will also build a simple classifier
for spam.

Chapter 2, Understanding Sentiment in Natural Language with BiLSTMs, covers the NLU
use case of sentiment analysis with an overview of Recurrent Neural Networks
(RNNs), LSTMs, and BiLSTMs, which are the basic building blocks of modern NLP
models. We will also use tf.data for efficient use of CPUs and GPUs to speed up
data pipelines and model training.

Preface

[ix]

Chapter 3, Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding,
focuses on the key NLU problem of NER, which is a basic building block of task-
oriented chatbots. We will build a custom layer for CRFs for improving the accuracy
of NER and the Viterbi decoding scheme, which is often applied to a deep model to
improve the quality of the output.

Chapter 4, Transfer Learning with BERT, covers a number of important concepts in
modern deep NLP such as types of transfer learning, pre-trained embeddings, an
overview of Transformers, and BERT and its application in improving the sentiment
analysis task introduced in Chapter 2, Understanding Sentiment in Natural Language
with BiLSTMs.

Chapter 5, Generating Text with RNNs and GPT-2, focuses on generating text with a
custom character-based RNN and improving it with Beam Search. We will also cover
the GPT-2 architecture and touch upon GPT-3.

Chapter 6, Text Summarization with Seq2seq Attention and Transformer Networks, takes
on the challenging task of abstractive text summarization. BERT and GPT are two
halves of the full encoder-decoder model. We put them together to build a seq2seq
model for summarizing news articles by generating headlines for them. How
ROUGE metrics are used for the evaluation of summarization is also covered.

Chapter 7, Multi-Modal Networks and Image Captioning with ResNets and Transformers,
combines computer vision and NLP together to see if a picture is indeed worth a
thousand words! We will build a custom Transformer model from scratch and train
it to generate captions for images.

Chapter 8, Weakly Supervised Learning for Classification with Snorkel, focuses on a key
problem – labeling data. While NLP has a lot of unlabeled data, labeling it is quite an
expensive task. This chapter introduces the snorkel library and shows how massive
amounts of data can be quickly labeled.

Chapter 9, Building Conversational AI Applications with Deep Learning, combines the
various techniques covered throughout the book to show how different types of
chatbots, such as question-answering or slot-filling bots, can be built.

Chapter 10, Installation and Setup Instructions for Code, walks through all the
instructions required to install and configure a system for running the code
supplied with the book.

Preface

[x]

To get the most out of this book
• It would be a good idea to get a background on the basics of deep learning

models and TensorFlow.
• The use of a GPU is highly recommended. Some of the models, especially in

the later chapters, are pretty big and complex. They may take hours or days
to fully train on CPUs. RNNs are very slow to train without the use of GPUs.
You can get access to free GPUs on Google Colab, and instructions for doing
so are provided in the first chapter.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/
PacktPublishing/Advanced-Natural-Language-Processing-with-TensorFlow-2. We
also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800200937_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example: "In the num_capitals() function, substitutions are performed
for the capital letters in English."

A block of code is set as follows:

en = snlp.Pipeline(lang='en')
def word_counts(x, pipeline=en):
 doc = pipeline(x)
 count = sum([len(sentence.tokens) for sentence in doc.sentences])
 return count

https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-TensorFlow-2
https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-TensorFlow-2
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800200937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800200937_ColorImages.pdf

Preface

[xi]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

en = snlp.Pipeline(lang='en')
def word_counts(x, pipeline=en):
 doc = pipeline(x)
 count = sum([len(sentence.tokens) for sentence in doc.sentences])
 return count

Any command-line input or output is written as follows:

!pip install gensim

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email Packt at customercare@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you could report this to us. Please visit www.packtpub.com/support/errata, select
your book, click on the Errata Submission Form link, and enter the details.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/support/errata

Preface

[xii]

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com
http://packtpub.com

[1]

1
Essentials of NLP

Language has been a part of human evolution. The development of language
allowed better communication between people and tribes. The evolution of written
language, initially as cave paintings and later as characters, allowed information to
be distilled, stored, and passed on from generation to generation. Some would even
say that the hockey stick curve of advancement is because of the ever-accumulating
cache of stored information. As this stored information trove becomes larger and
larger, the need for computational methods to process and distill the data becomes
more acute. In the past decade, a lot of advances were made in the areas of image
and speech recognition. Advances in Natural Language Processing (NLP) are more
recent, though computational methods for NLP have been an area of research for
decades. Processing textual data requires many different building blocks upon which
advanced models can be built. Some of these building blocks themselves can be quite
challenging and advanced. This chapter and the next focus on these building blocks
and the problems that can be solved with them through simple models.

In this chapter, we will focus on the basics of pre-processing text and build a simple
spam detector. Specifically, we will learn about the following:

• The typical text processing workflow
• Data collection and labeling
• Text normalization, including case normalization, text tokenization,

stemming, and lemmatization
• Modeling datasets that have been text normalized
• Vectorizing text
• Modeling datasets with vectorized text

Essentials of NLP

[2]

Let's start by getting to grips with the text processing workflow most NLP
models use.

A typical text processing workflow
To understand how to process text, it is important to understand the general
workflow for NLP. The following diagram illustrates the basic steps:

Figure 1.1: Typical stages of a text processing workflow

The first two steps of the process in the preceding diagram involve collecting labeled
data. A supervised model or even a semi-supervised model needs data to operate.
The next step is usually normalizing and featurizing the data. Models have a hard
time processing text data as is. There is a lot of hidden structure in a given text
that needs to be processed and exposed. These two steps focus on that. The last
step is building a model with the processed inputs. While NLP has some unique
models, this chapter will use only a simple deep neural network and focus more
on the normalization and vectorization/featurization. Often, the last three stages
operate in a cycle, even though the diagram may give the impression of linearity. In
industry, additional features require more effort to develop and more resources to
keep running. Hence, it is important that features add value. Taking this approach,
we will use a simple model to validate different normalization/vectorization/
featurization steps. Now, let's look at each of these stages in detail.

Data collection and labeling
The first step of any Machine Learning (ML) project is to obtain a dataset.
Fortunately, in the text domain, there is plenty of data to be found. A common
approach is to use libraries such as scrapy or Beautiful Soup to scrape data from the
web. However, data is usually unlabeled, and as such can't be used in supervised
models directly. This data is quite useful though. Through the use of transfer
learning, a language model can be trained using unsupervised or semi-supervised
methods and can be further used with a small training dataset specific to the task
at hand. We will cover transfer learning in more depth in Chapter 3, Named Entity
Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding, when we look at transfer
learning using BERT embeddings.

Chapter 1

[3]

In the labeling step, textual data sourced in the data collection step is labeled with
the right classes. Let's take some examples. If the task is to build a spam classifier for
emails, then the previous step would involve collecting lots of emails. This labeling
step would be to attach a spam or not spam label to each email. Another example
could be sentiment detection on tweets. The data collection step would involve
gathering a number of tweets. This step would label each tweet with a label that acts
as a ground truth. A more involved example would involve collecting news articles,
where the labels would be summaries of the articles. Yet another example of such
a case would be an email auto-reply functionality. Like the spam case, a number of
emails with their replies would need to be collected. The labels in this case would be
short pieces of text that would approximate replies. If you are working on a specific
domain without much public data, you may have to do these steps yourself.

Given that text data is generally available (outside of specific domains like health),
labeling is usually the biggest challenge. It can be quite time consuming or resource
intensive to label data. There has been a lot of recent focus on using semi-supervised
approaches to labeling data. We will cover some methods for labeling data at scale
using semi-supervised methods and the snorkel library in Chapter 7, Multi-modal
Networks and Image Captioning with ResNets and Transformer, when we look at weakly
supervised learning for classification using Snorkel.

There is a number of commonly used datasets that are available on the web for use in
training models. Using transfer learning, these generic datasets can be used to prime
ML models and then you can use a small amount of domain-specific data to fine-
tune the model. Using these publicly available datasets gives us a few advantages.
First, all the data collection has been already performed. Second, labeling has already
been done. Lastly, using such a dataset allows the comparison of results with the
state of the art; most papers use specific datasets in their area of research and publish
benchmarks. For example, the Stanford Question Answering Dataset (or SQuAD
for short) is often used as a benchmark for question-answering models. It is a good
source to train on as well.

Collecting labeled data
In this book, we will rely on publicly available datasets. The appropriate datasets will
be called out in their respective chapters along with instructions on downloading
them. To build a spam detection system on an email dataset, we will be using the
SMS Spam Collection dataset made available by University of California, Irvine.
This dataset can be downloaded using instructions available in the tip box below.
Each SMS is tagged as "SPAM" or "HAM," with the latter indicating it is not a spam
message.

Essentials of NLP

[4]

Before we start working with the data, the development environment needs to be set
up. Let's take a quick moment to set up the development environment.

Development environment setup
In this chapter, we will be using Google Colaboratory, or Colab for short, to write
code. You can use your Google account, or register a new account. Google Colab
is free to use, requires no configuration, and also provides access to GPUs. The
user interface is very similar to a Jupyter notebook, so it should seem familiar. To
get started, please navigate to colab.research.google.com using a supported web
browser. A web page similar to the screenshot below should appear:

Figure 1.2: Google Colab website

University of California, Irvine, is a great source of machine
learning datasets. You can see all the datasets they provide by
visiting http://archive.ics.uci.edu/ml/datasets.php.
Specifically for NLP, you can see some publicly available datasets
on https://github.com/niderhoff/nlp-datasets.

http://colab.research.google.com
http://archive.ics.uci.edu/ml/datasets.php
https://github.com/niderhoff/nlp-datasets

Chapter 1

[5]

The next step is to create a new notebook. There are a couple of options. The first
option is to create a new notebook in Colab and type in the code as you go along
in the chapter. The second option is to upload a notebook from the local drive into
Colab. It is also possible to pull in notebooks from GitHub into Colab, the process for
which is detailed on the Colab website. For the purposes of this chapter, a complete
notebook named SMS_Spam_Detection.ipynb is available in the GitHub repository
of the book in the chapter1-nlp-essentials folder. Please upload this notebook
into Google Colab by clicking File | Upload Notebook. Specific sections of this
notebook will be referred to at the appropriate points in the chapter in tip boxes.
The instructions for creating the notebook from scratch are in the main description.

Click on the File menu option at the top left and click on New Notebook. A new
notebook will open in a new browser tab. Click on the notebook name at the top left,
just above the File menu option, and edit it to read SMS_Spam_Detection. Now the
development environment is set up. It is time to begin loading in data.

First, let us edit the first line of the notebook and import TensorFlow 2. Enter the
following code in the first cell and execute it:

%tensorflow_version 2.x
import tensorflow as tf
import os
import io

tf.__version__

The output of running this cell should look like this:

TensorFlow 2.x is selected.
'2.4.0'

This confirms that version 2.4.0 of the TensorFlow library was loaded. The
highlighted line in the preceding code block is a magic command for Google Colab,
instructing it to use TensorFlow version 2+. The next step is to download the data file
and unzip to a location in the Colab notebook on the cloud.

The code for loading the data is in the Download Data section of
the notebook. Also note that as of writing, the release version of
TensorFlow was 2.4.

Essentials of NLP

[6]

This can be done with the following code:

Download the zip file
path_to_zip = tf.keras.utils.get_file("smsspamcollection.zip",
origin="https://archive.ics.uci.edu/ml/machine-learning-
databases/00228/smsspamcollection.zip",
 extract=True)

Unzip the file into a folder
!unzip $path_to_zip -d data

The following output confirms that the data was downloaded and extracted:

Archive: /root/.keras/datasets/smsspamcollection.zip
 inflating: data/SMSSpamCollection
 inflating: data/readme

Reading the data file is trivial:

Let's see if we read the data correctly
lines = io.open('data/SMSSpamCollection').read().strip().split('\n')
lines[0]

The last line of code shows a sample line of data:

'ham\tGo until jurong point, crazy.. Available only in bugis n great
world'

This example is labeled as not spam. The next step is to split each line into two
columns – one with the text of the message and the other as the label. While we are
separating these labels, we will also convert the labels to numeric values. Since we
are interested in predicting spam messages, we can assign a value of 1 to the spam
messages. A value of 0 will be assigned to legitimate messages.

Please note that the following code is verbose for clarity:

spam_dataset = []
for line in lines:
 label, text = line.split('\t')

The code for this part is in the Pre-Process Data section of the
notebook.

Chapter 1

[7]

 if label.strip() == 'spam':
 spam_dataset.append((1, text.strip()))
 else:
 spam_dataset.append(((0, text.strip())))
print(spam_dataset[0])

(0, 'Go until jurong point, crazy.. Available only in bugis n great
world la e buffet... Cine there got amore wat...')

Now the dataset is ready for further processing in the pipeline. However, let's take
a short detour to see how to configure GPU access in Google Colab.

Enabling GPUs on Google Colab
One of the advantages of using Google Colab is access to free GPUs for small tasks.
GPUs make a big difference in the training time of NLP models, especially ones that
use Recurrent Neural Networks (RNNs). The first step in enabling GPU access is to
start a runtime, which can be done by executing a command in the notebook. Then,
click on the Runtime menu option and select the Change Runtime option, as shown
in the following screenshot:

Figure 1.3: Colab runtime settings menu option

Essentials of NLP

[8]

Next, a dialog box will show up, as shown in the following screenshot. Expand the
Hardware Accelerator option and select GPU:

Figure 1.4: Enabling GPUs on Colab

Now you should have access to a GPU in your Colab notebook! In NLP models,
especially when using RNNs, GPUs can shave a lot of minutes or hours off the
training time.

For now, let's turn our attention back to the data that has been loaded and is ready
to be processed further for use in models.

Text normalization
Text normalization is a pre-processing step aimed at improving the quality
of the text and making it suitable for machines to process. Four main steps in
text normalization are case normalization, tokenization and stop word removal,
Parts-of-Speech (POS) tagging, and stemming.

Case normalization applies to languages that use uppercase and lowercase letters.
All languages based on the Latin alphabet or the Cyrillic alphabet (Russian,
Mongolian, and so on) use upper- and lowercase letters. Other languages
that sometimes use this are Greek, Armenian, Cherokee, and Coptic. In case
normalization, all letters are converted to the same case. It is quite helpful in
semantic use cases. However, in other cases, this may hinder performance. In the
spam example, spam messages may have more words in all-caps compared to
regular messages.

Chapter 1

[9]

Another common normalization step removes punctuation in the text. Again, this
may or may not be useful given the problem at hand. In most cases, this should give
good results. However, in some cases, such as spam or grammar models, it may
hinder performance. It is more likely for spam messages to use more exclamation
marks or other punctuation for emphasis.

Let's build a baseline model with three simple features:

• Number of characters in the message
• Number of capital letters in the message
• Number of punctuation symbols in the message

To do so, first, we will convert the data into a pandas DataFrame:

import pandas as pd
df = pd.DataFrame(spam_dataset, columns=['Spam', 'Message'])

Next, let's build some simple functions that can count the length of the message,
and the numbers of capital letters and punctuation symbols. Python's regular
expression package, re, will be used to implement these:

import re
def message_length(x):
 # returns total number of characters
 return len(x)

def num_capitals(x):
 _, count = re.subn(r'[A-Z]', '', x) # only works in english
 return count

def num_punctuation(x):
 _, count = re.subn(r'\W', '', x)
 return count

In the num_capitals() function, substitutions are performed for the capital letters in
English. The count of these substitutions provides the count of capital letters. The
same technique is used to count the number of punctuation symbols. Please note that
the method used to count capital letters is specific to English.

The code for this part is in the Data Normalization section of the
notebook.

Essentials of NLP

[10]

Additional feature columns will be added to the DataFrame, and then the set will
be split into test and train sets:

df['Capitals'] = df['Message'].apply(num_capitals)
df['Punctuation'] = df['Message'].apply(num_punctuation)
df['Length'] = df['Message'].apply(message_length)
df.describe()

This should generate the following output:

Figure 1.5: Base dataset for initial spam model

The following code can be used to split the dataset into training and test sets, with
80% of the records in the training set and the rest in the test set. Further more, labels
will be removed from both the training and test sets:

train=df.sample(frac=0.8,random_state=42)
test=df.drop(train.index)

x_train = train[['Length', 'Capitals', 'Punctuation']]
y_train = train[['Spam']]

x_test = test[['Length', 'Capitals', 'Punctuation']]
y_test = test[['Spam']]

Now we are ready to build a simple classifier to use this data.

Chapter 1

[11]

Modeling normalized data
Recall that modeling was the last part of the text processing pipeline described
earlier. In this chapter, we will use a very simple model, as the objective is to show
different basic NLP data processing techniques more than modeling. Here, we
want to see if three simple features can aid in the classification of spam. As more
features are added, passing them through the same model will help in seeing if the
featurization aids or hampers the accuracy of the classification.

A function is defined that allows the construction of models with different numbers
of inputs and hidden units:

Basic 1-layer neural network model for evaluation
def make_model(input_dims=3, num_units=12):
 model = tf.keras.Sequential()

 # Adds a densely-connected layer with 12 units to the model:
 model.add(tf.keras.layers.Dense(num_units,
 input_dim=input_dims,
 activation='relu'))

 # Add a sigmoid layer with a binary output unit:
 model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

 model.compile(loss='binary_crossentropy', optimizer='adam',
 metrics=['accuracy'])
 return model

This model uses binary cross-entropy for computing loss and the Adam optimizer
for training. The key metric, given that this is a binary classification problem, is
accuracy. The default parameters passed to the function are sufficient as only three
features are being passed in.

The Model Building section of the workbook has the code shown in
this section.

Essentials of NLP

[12]

We can train our simple baseline model with only three features like so:

model = make_model()
model.fit(x_train, y_train, epochs=10, batch_size=10)

Train on 4459 samples
Epoch 1/10
4459/4459 [==============================] - 1s 281us/sample - loss:
0.6062 - accuracy: 0.8141
Epoch 2/10
…
Epoch 10/10
4459/4459 [==============================] - 1s 145us/sample - loss:
0.1976 - accuracy: 0.9305

This is not bad as our three simple features help us get to 93% accuracy. A quick
check shows that there are 592 spam messages in the test set, out of a total of 4,459.
So, this model is doing better than a very simple model that guesses everything
as not spam. That model would have an accuracy of 87%. This number may be
surprising but is fairly common in classification problems where there is a severe
class imbalance in the data. Evaluating it on the training set gives an accuracy of
around 93.4%:

model.evaluate(x_test, y_test)

1115/1115 [==============================] - 0s 94us/sample - loss:
0.1949 - accuracy: 0.9336
[0.19485870356516988, 0.9336323]

Please note that the actual performance you see may be slightly different due to the
data splits and computational vagaries. A quick verification can be performed by
plotting the confusion matrix to see the performance:

y_train_pred = model.predict_classes(x_train)
confusion matrix
tf.math.confusion_matrix(tf.constant(y_train.Spam),
 y_train_pred)

<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[3771, 96],
 [186, 406]], dtype=int32)>

Chapter 1

[13]

Predicted Not Spam Predicted Spam
Actual Not Spam 3,771 96
Actual Spam 186 406

This shows that 3,771 out of 3,867 regular messages were classified correctly, while
406 out of 592 spam messages were classified correctly. Again, you may get a
slightly different result.

To test the value of the features, try re-running the model by removing one of the
features, such as punctuation or a number of capital letters, to get a sense of their
contribution to the model. This is left as an exercise for the reader.

Tokenization
This step takes a piece of text and converts it into a list of tokens. If the input
is a sentence, then separating the words would be an example of tokenization.
Depending on the model, different granularities can be chosen. At the lowest level,
each character could become a token. In some cases, entire sentences of paragraphs
can be considered as a token:

Figure 1.6: Tokenizing a sentence

The preceding diagram shows two ways a sentence can be tokenized. One way to
tokenize is to chop a sentence into words. Another way is to chop into individual
characters. However, this can be a complex proposition in some languages such as
Japanese and Mandarin.

Segmentation in Japanese
Many languages use a word separator, a space, to separate words. This makes the
task of tokenizing on words trivial. However, there are other languages that do not
use any markers or separators between words. Some examples of such languages are
Japanese and Chinese. In such languages, the task is referred to as segmentation.

Essentials of NLP

[14]

Specifically, in Japanese, there are mainly three different types of characters that
are used: Hiragana, Kanji, and Katakana. Kanji is adapted from Chinese characters,
and similar to Chinese, there are thousands of characters. Hiragana is used for
grammatical elements and native Japanese words. Katakana is mostly used for foreign
words and names. Depending on the preceding characters, a character may be part
of an existing word or the start of a new word. This makes Japanese one of the most
complicated writing systems in the world. Compound words are especially hard.
Consider the following compound word that reads Election Administration Committee:

選挙管理委員会

This can be tokenized in two different ways, outside of the entire phrase being
considered one word. Here are two examples of tokenizing (from the Sudachi
library):

選挙/管理/委員会 (Election / Administration / Committee)

選挙/管理/委員/会 (Election / Administration / Committee / Meeting)

Common libraries that are used specifically for Japanese segmentation or
tokenization are MeCab, Juman, Sudachi, and Kuromoji. MeCab is used in Hugging
Face, spaCy, and other libraries.

Fortunately, most languages are not as complex as Japanese and use spaces to
separate words. In Python, splitting by spaces is trivial. Let's take an example:

Sentence = 'Go until Jurong point, crazy.. Available only in bugis n
great world'
sentence.split()

The output of the preceding split operation results in the following:

['Go',
 'until',
 'jurong',
 'point,',
 'crazy..',
 'Available',
 'only',
 'in',

The code shown in this section is in the Tokenization and Stop Word
Removal section of the notebook.

Chapter 1

[15]

 'bugis',
 'n',
 'great',
 'world']

The two highlighted lines in the preceding output show that the naïve approach in
Python will result in punctuation being included in the words, among other issues.
Consequently, this step is done through a library like StanfordNLP. Using pip, let's
install this package in our Colab notebook:

!pip install stanfordnlp

The StanfordNLP package uses PyTorch under the hood as well as a number of other
packages. These and other dependencies will be installed. By default, the package
does not install language files. These have to be downloaded. This is shown in the
following code:

Import stanfordnlp as snlp
en = snlp.download('en')

The English file is approximately 235 MB. A prompt will be displayed to confirm the
download and the location to store it in:

Figure 1.7: Prompt for downloading English models

This package provides capabilities for tokenization, POS tagging, and lemmatization
out of the box. To start with tokenization, we instantiate a pipeline and tokenize a
sample text to see how this works:

en = snlp.Pipeline(lang='en', processors='tokenize')

Google Colab recycles the runtimes upon inactivity. This means
that if you perform commands in the book at different times,
you may have to re-execute every command again from the start,
including downloading and processing the dataset, downloading
the StanfordNLP English files, and so on. A local notebook
server would usually maintain the state of the runtime but may
have limited processing power. For simpler examples as in this
chapter, Google Colab is a decent solution. For the more advanced
examples later in the book, where training may run for hours or
days, a local runtime or one running on a cloud Virtual Machine
(VM) would be preferred.

Essentials of NLP

[16]

The lang parameter is used to indicate that an English pipeline is desired. The
second parameter, processors, indicates the type of processing that is desired in the
pipeline. This library can also perform the following processing steps in the pipeline:

• pos labels each token with a POS token. The next section provides more
details on POS tags.

• lemma, which can convert different forms of verbs, for example, to the base
form. This will be covered in detail in the Stemming and lemmatization section
later in this chapter.

• depparse performs dependency parsing between words in a sentence.
Consider the following example sentence, "Hari went to school." Hari is
interpreted as a noun by the POS tagger, and becomes the governor of the
word went. The word school is dependent on went as it describes the object
of the verb.

For now, only tokenization of text is desired, so only the tokenizer is used:

tokenized = en(sentence)
len(tokenized.sentences)

2

This shows that the tokenizer correctly divided the text into two sentences. To
investigate what words were removed, the following code can be used:

for snt in tokenized.sentences:
 for word in snt.tokens:
 print(word.text)
 print("<End of Sentence>")

Go
until
jurong
point
,
crazy
..
<End of Sentence>
Available
only
in
bugis
n

Chapter 1

[17]

great
world
<End of Sentence>

Note the highlighted words in the preceding output. Punctuation marks were
separated out into their own words. Text was split into multiple sentences. This is
an improvement over only using spaces to split. In some applications, removal of
punctuation may be required. This will be covered in the next section.

Consider the preceding example of Japanese. To see the performance of StanfordNLP
on Japanese tokenization, the following piece of code can be used:

jp = snlp.download('ja')

This is the first step, which involves downloading the Japanese language model,
similar to the English model that was downloaded and installed previously. Next, a
Japanese pipeline will be instantiated and the words will be processed:

jp = snlp.download('ja')
jp_line = jp("選挙管理委員会 ")

You may recall that the Japanese text reads Election Administration Committee.
Correct tokenization should produce three words, where first two should be two
characters each, and the last word is three characters:

for snt in jp_line.sentences:
 for word in snt.tokens:
 print(word.text)

選挙
管理
委員会

This matches the expected output. StanfordNLP supports 53 languages, so the same
code can be used for tokenizing any language that is supported.

Coming back to the spam detection example, a new feature can be implemented that
counts the number of words in the message using this tokenization functionality.

This word count feature is implemented in the Adding Word Count
Feature section of the notebook.

Essentials of NLP

[18]

It is possible that spam messages have different numbers of words than regular
messages. The first step is to define a method to compute the number of words:

en = snlp.Pipeline(lang='en')
def word_counts(x, pipeline=en):
 doc = pipeline(x)
 count = sum([len(sentence.tokens) for sentence in doc.sentences])
 return count

Next, using the train and test splits, add a column for the word count feature:

train['Words'] = train['Message'].apply(word_counts)
test['Words'] = test['Message'].apply(word_counts)

x_train = train[['Length', 'Punctuation', 'Capitals', 'Words']]
y_train = train[['Spam']]

x_test = test[['Length', 'Punctuation', 'Capitals' , 'Words']]
y_test = test[['Spam']]

model = make_model(input_dims=4)

The last line in the preceding code block creates a new model with four input
features.

PyTorch warning

When you execute functions in the StanfordNLP library, you may
see a warning like this:

/pytorch/aten/src/ATen/native/LegacyDefinitions.
cpp:19: UserWarning: masked_fill_ received a mask
with dtype torch.uint8, this behavior is now
deprecated,please use a mask with dtype torch.bool
instead.

Internally, StanfordNLP uses the PyTorch library. This warning
is due to StanfordNLP using an older version of a function that is
now deprecated. For all intents and purposes, this warning can be
ignored. It is expected that maintainers of StanfordNLP will update
their code.

Chapter 1

[19]

Modeling tokenized data
This model can be trained like so:

model.fit(x_train, y_train, epochs=10, batch_size=10)
Train on 4459 samples
Epoch 1/10
4459/4459 [==============================] - 1s 202us/sample - loss:
2.4261 - accuracy: 0.6961
...
Epoch 10/10
4459/4459 [==============================] - 1s 142us/sample - loss:
0.2061 - accuracy: 0.9312

There is only a marginal improvement in accuracy. One hypothesis is that the
number of words is not useful. It would be useful if the average number of words in
spam messages were smaller or larger than regular messages. Using pandas, this can
be quickly verified:

train.loc[train.Spam == 1].describe()

Figure 1.8: Statistics for spam message features

Let's compare the preceding results to the statistics for regular messages:

train.loc[train.Spam == 0].describe()

Essentials of NLP

[20]

Figure 1.9: Statistics for regular message features

Some interesting patterns can quickly be seen. Spam messages usually have much
less deviation from the mean. Focus on the Capitals feature column. It shows that
regular messages use far fewer capitals than spam messages. At the 75th percentile,
there are 3 capitals in a regular message versus 21 for spam messages. On average,
regular messages have 4 capital letters while spam messages have 15. This variation
is much less pronounced in the number of words category. Regular messages have
17 words on average, while spam has 29. At the 75th percentile, regular messages
have 22 words while spam messages have 35. This quick check yields an indication
as to why adding the word features wasn't that useful. However, there are a couple
of things to consider still. First, the tokenization model split out punctuation marks
as words. Ideally, these words should be removed from the word counts as the
punctuation feature is showing that spam messages use a lot more punctuation
characters. This will be covered in the Parts-of-speech tagging section. Secondly,
languages have some common words that are usually excluded. This is called stop
word removal and is the focus of the next section.

Stop word removal
Stop word removal involves removing common words such as articles (the, an)
and conjunctions (and, but), among others. In the context of information retrieval
or search, these words would not be helpful in identifying documents or web pages
that would match the query. As an example, consider the query "Where is Google
based?". In this query, is is a stop word. The query would produce similar results
irrespective of the inclusion of is. To determine the stop words, a simple approach is
to use grammar clues.

Chapter 1

[21]

In English, articles and conjunctions are examples of classes of words that can
usually be removed. A more robust way is to consider the frequency of occurrence
of words in a corpus, set of documents, or text. The most frequent terms can be
selected as candidates for the stop word list. It is recommended that this list be
reviewed manually. There can be cases where words may be frequent in a collection
of documents but are still meaningful. This can happen if all the documents in
the collection are from a specific domain or on a specific topic. Consider a set of
documents from the Federal Reserve. The word economy may appear quite frequently
in this case; however, it is unlikely to be a candidate for removal as a stop word.

In some cases, stop words may actually contain information. This may be applicable
to phrases. Consider the fragment "flights to Paris." In this case, to provides valuable
information, and its removal may change the meaning of the fragment.

Recall the stages of the text processing workflow. The step after text normalization
is vectorization. This step is discussed in detail later in the Vectorizing text section of
this chapter, but the key step in vectorization is to build a vocabulary or dictionary
of all the tokens. The size of this vocabulary can be reduced by removing stop words.
While training and evaluating models, removing stop words reduces the number of
computation steps that need to be performed. Hence, the removal of stop words can
yield benefits in terms of computation speed and storage space. Modern advances in
NLP see smaller and smaller stop words lists as more efficient encoding schemes and
computation methods evolve. Let's try and see the impact of stop words on the spam
problem to develop some intuition about its usefulness.

Many NLP packages provide lists of stop words. These can be removed from the
text after tokenization. Tokenization was done through the StanfordNLP library
previously. However, this library does not come with a list of stop words. NLTK
and spaCy supply stop words for a set of languages. For this example, we will use
an open source package called stopwordsiso.

This Python package takes the list of stop words from the stopwords-iso GitHub
project at https://github.com/stopwords-iso/stopwords-iso. This package provides
stop words in 57 languages. The first step is to install the Python package that
provides access to the stop words lists.

The Stop Word Removal section of the notebook contains the code
for this section.

https://github.com/stopwords-iso/stopwords-iso

Essentials of NLP

[22]

The following command will install the package through the notebook:

!pip install stopwordsiso

Supported languages can be checked with the following commands:

import stopwordsiso as stopwords

stopwords.langs()

English language stop words can be checked as well to get an idea of some of the
words:

sorted(stopwords.stopwords('en'))

["'ll",
 "'tis",
 "'twas",
 "'ve",
 '10',
 '39',
 'a',
 "a's",
 'able',
 'ableabout',
 'about',
 'above',
 'abroad',
 'abst',
 'accordance',
 'according',
 'accordingly',
 'across',
 'act',
 'actually',
 'ad',
 'added',
...

Given that tokenization was already implemented in the preceding word_counts()
method, the implementation of that method can be updated to include removing
stop words. However, all the stop words are in lowercase. Case normalization was
discussed earlier, and capital letters were a useful feature for spam detection. In this
case, tokens need to be converted to lowercase to effectively remove them:

Chapter 1

[23]

en_sw = stopwords.stopwords('en')

def word_counts(x, pipeline=en):
 doc = pipeline(x)
 count = 0
 for sentence in doc.sentences:
 for token in sentence.tokens:
 if token.text.lower() not in en_sw:
 count += 1
 return count

A consequence of using stop words is that a message such as "When are you going
to ride your bike?" counts as only 3 words. When we see if this has had any effect on
the statistics for word length, the following picture emerges:

Figure 1.10: Word counts for spam messages after removing stop words

Compared to the word counts prior to stop word removal, the average number of
words has been reduced from 29 to 18, almost a 30% decrease. The 25th percentile
changed from 26 to 14. The maximum has also reduced from 49 to 33.

Essentials of NLP

[24]

The impact on regular messages is even more dramatic:

Figure 1.11: Word counts for regular messages after removing stop words

Comparing these statistics to those from before stop word removal, the average
number of words has more than halved to almost 8. The maximum number of words
has also reduced from 209 to 147. The standard deviation of regular messages is
about the same as its mean, indicating that there is a lot of variation in the number
of words in regular messages. Now, let's see if this helps us train a model and
improve its accuracy.

Modeling data with stop words removed
Now that the feature without stop words is computed, it can be added to the model
to see its impact:

train['Words'] = train['Message'].apply(word_counts)
test['Words'] = test['Message'].apply(word_counts)

x_train = train[['Length', 'Punctuation', 'Capitals', 'Words']]
y_train = train[['Spam']]

x_test = test[['Length', 'Punctuation', 'Capitals', 'Words']]
y_test = test[['Spam']]

model = make_model(input_dims=4)

model.fit(x_train, y_train, epochs=10, batch_size=10)

Chapter 1

[25]

Epoch 1/10
4459/4459 [==============================] - 2s 361us/sample - loss:
0.5186 - accuracy: 0.8652
Epoch 2/10
...
Epoch 9/10
4459/4459 [==============================] - 2s 355us/sample - loss:
0.1790 - accuracy: 0.9417
Epoch 10/10
4459/4459 [==============================] - 2s 361us/sample - loss:
0.1802 - accuracy: 0.9421

This accuracy reflects a slight improvement over the previous model:

model.evaluate(x_test, y_test)

1115/1115 [==============================] - 0s 74us/sample - loss:
0.1954 - accuracy: 0.9372

 [0.19537461110027382, 0.93721974]

Note that StanfordNLP will separate words like can't into ca and n't. This represents
the expansion of the short form into its constituents, can and not. These contractions
may or may not appear in the stop word list. Implementing a more robust stop word
detector is left to the reader as an exercise.

StanfordNLP uses a supervised RNN with Bi-directional Long Short-Term Memory
(BiLSTM) units. This architecture uses a vocabulary to generate embeddings
through the vectorization of the vocabulary. The vectorization and generation
of embeddings is covered later in the chapter, in the Vectorizing text section. This
architecture of BiLSTMs with embeddings is often a common starting point in NLP
tasks. This will be covered and used in successive chapters in detail. This particular
architecture for tokenization is considered the state of the art as of the time of writing
this book. Prior to this, Hidden Markov Model (HMM)-based models were popular.

In NLP, stop word removal used to be standard practice. In more
modern applications, stop words may actually end up hindering
performance in some use cases, rather than helping. It is becoming
more common not to exclude stop words. Depending on the
problem you are solving, stop word removal may or may not help.

Essentials of NLP

[26]

Depending on the languages in question, regular expression-based tokenization is
also another approach. The NLTK library provides the Penn Treebank tokenizer
based on regular expressions in a sed script. In future chapters, other tokenization
or segmentation schemes such as Byte Pair Encoding (BPE) and WordPiece will be
explained.

The next task in text normalization is to understand the structure of a text through
POS tagging.

Part-of-speech tagging
Languages have a grammatical structure. In most languages, words can be
categorized primarily into verbs, adverbs, nouns, and adjectives. The objective of
this part of the processing step is to take a piece of text and tag each word token
with a POS identifier. Note that this makes sense only in the case of word-level
tokens. Commonly, the Penn Treebank POS tagger is used by libraries including
StanfordNLP to tag words. By convention, POS tags are added by using a code
after the word, separated by a slash. As an example, NNS is the tag for a plural noun.
If the words goats was encountered, it would be represented as goats/NNS. In the
StandfordNLP library, Universal POS (UPOS) tags are used. The following tags are
part of the UPOS tag set. More details on mapping of standard POS tags to UPOS
tags can be seen at https://universaldependencies.org/docs/tagset-conversion/
en-penn-uposf.html. The following is a table of the most common tags:

Tag Class Examples
ADJ Adjective: Usually describes a noun. Separate tags are used

for comparatives and superlatives.
Great, pretty

ADP Adposition: Used to modify an object such as a noun,
pronoun, or phrase; for example, "Walk up the stairs." Some
languages like English use prepositions while others such as
Hindi and Japanese use postpositions.

Up, inside

ADV Adverb: A word or phrase that modifies or qualifies an
adjective, verb, or another adverb.

Loudly, often

AUX Auxiliary verb: Used in forming mood, voice, or tenses of
other verbs.

Will, can, may

CCONJ Co-ordinating conjunction: Joins two phrases, clauses, or
sentences.

And, but, that

INTJ Interjection: An exclamation, interruption, or sudden remark. Oh, uh, lol
NOUN Noun: Identifies people, places, or things. Office, book
NUM Numeral: Represents a quantity. Six, nine
DET Determiner: Identifies a specific noun, usually as a singular. A, an, the

https://universaldependencies.org/docs/tagset-conversion/en-penn-uposf.html
https://universaldependencies.org/docs/tagset-conversion/en-penn-uposf.html

Chapter 1

[27]

PART Particle: Parts of speech outside of the main types. To, n't
PRON Pronoun: Substitutes for other nouns, especially proper

nouns.
She, her

PROPN Proper noun: A name for a specific person, place, or thing. Gandhi, US
PUNCT Different punctuation symbols. , ? /
SCONJ Subordinating conjunction: Connects independent clause to a

dependent clause.
Because, while

SYM Symbols including currency signs, emojis, and so on. $, #, % :)
VERB Verb: Denotes action or occurrence. Go, do
X Other: That which cannot be classified elsewhere. Etc, 4. (a

numbered list
bullet)

The best way to understand how POS tagging works is to try it out:

en = snlp.Pipeline(lang='en')

txt = "Yo you around? A friend of mine's lookin."
pos = en(txt)

The preceding code instantiates an English pipeline and processes a sample piece of
text. The next piece of code is a reusable function to print back the sentence tokens
with the POS tags:

def print_pos(doc):
 text = ""
 for sentence in doc.sentences:
 for token in sentence.tokens:
 text += token.words[0].text + "/" + \
 token.words[0].upos + " "
 text += "\n"
 return text

This method can be used to investigate the tagging for the preceding example
sentence:

print(print_pos(pos))

The code for this section is in the POS Based Features section of the
notebook.

Essentials of NLP

[28]

Yo/PRON you/PRON around/ADV ?/PUNCT
A/DET friend/NOUN of/ADP mine/PRON 's/PART lookin/NOUN ./PUNCT

Most of these tags would make sense, though there may be some inaccuracies. For
example, the word lookin is miscategorized as a noun. Neither StanfordNLP, nor
a model from another package, will be perfect. This is something that we have to
account for in building models using such features. There are a couple of different
features that can be built using these POS. First, we can update the word_counts()
method to exclude the punctuation from the count of words. The current method is
unaware of the punctuation when it counts the words. Additional features can be
created that look at the proportion of different types of grammatical elements in the
messages. Note that so far, all features are based on the structure of the text, and not
on the content itself. Working with content features will be covered in more detail as
this book continues.

As a next step, let's update the word_counts() method and add a feature to show
the percentages of symbols and punctuation in a message – with the hypothesis that
maybe spam messages use more punctuation and symbols. Other features around
types of different grammatical elements can also be built. These are left to you to
implement. Our word_counts() method is updated as follows:

en_sw = stopwords.stopwords('en')

def word_counts_v3(x, pipeline=en):
 doc = pipeline(x)
 totals = 0.
 count = 0.
 non_word = 0.
 for sentence in doc.sentences:
 totals += len(sentence.tokens) # (1)
 for token in sentence.tokens:
 if token.text.lower() not in en_sw:
 if token.words[0].upos not in ['PUNCT', 'SYM']:
 count += 1.
 else:
 non_word += 1.
 non_word = non_word / totals
 return pd.Series([count, non_word], index=['Words_NoPunct', 'Punct'])

Chapter 1

[29]

This function is a little different compared to the previous one. Since there are
multiple computations that need to be performed on the message in each row, these
operations are combined and a Series object with column labels is returned. This can
be merged with the main DataFrame like so:

train_tmp = train['Message'].apply(word_counts_v3)
train = pd.concat([train, train_tmp], axis=1)

A similar process can be performed on the test set:

test_tmp = test['Message'].apply(word_counts_v3)
test = pd.concat([test, test_tmp], axis=1)

A quick check of the statistics for spam and non-spam messages in the training set
shows the following, first for non-spam messages:

train.loc[train['Spam']==0].describe()

Figure 1.12: Statistics for regular messages after using POS tags

And then for spam messages:

train.loc[train['Spam']==1].describe()

Essentials of NLP

[30]

Figure 1.13: Statistics for spam messages after using POS tags

In general, word counts have been reduced even further after stop word removal.
Further more, the new Punct feature computes the ratio of punctuation tokens in a
message relative to the total tokens. Now we can build a model with this data.

Modeling data with POS tagging
Plugging these features into the model, the following results are obtained:

x_train = train[['Length', 'Punctuation', 'Capitals', 'Words_NoPunct',
'Punct']]
y_train = train[['Spam']]

x_test = test[['Length', 'Punctuation', 'Capitals' , 'Words_NoPunct',
'Punct']]
y_test = test[['Spam']]

model = make_model(input_dims=5)
model = make_model(input_dims=3)

model.fit(x_train, y_train, epochs=10, batch_size=10)

Train on 4459 samples
Epoch 1/10
4459/4459 [==============================] - 1s 236us/sample - loss:
3.1958 - accuracy: 0.6028
Epoch 2/10
...
Epoch 10/10

Chapter 1

[31]

4459/4459 [==============================] - 1s 139us/sample - loss:
0.1788 - accuracy: 0.9466

The accuracy shows a slight increase and is now up to 94.66%. Upon testing, it
seems to hold:

model.evaluate(x_test, y_test)

1115/1115 [==============================] - 0s 91us/sample - loss:
0.2076 - accuracy: 0.9426
[0.20764057086989485, 0.9426009]

The final part of text normalization is stemming and lemmatization. Though we will
not be building any features for the spam model using this, it can be quite useful in
other cases.

Stemming and lemmatization
In certain languages, the same word can take a slightly different form depending on
its usage. Consider the word depend itself. The following are all valid forms of the
word depend: depends, depending, depended, dependent. Often, these variations are due
to tenses. In some languages like Hindi, verbs may have different forms for different
genders. Another case is derivatives of the same word such as sympathy, sympathetic,
sympathize, and sympathizer. These variations can take different forms in other
languages. In Russian, proper nouns take different forms based on usage. Suppose
there is a document talking about London (Лондон). The phrase in London (в
Лондоне) spells London differently than from London (из Лондона). These variations
in the spelling of London can cause issues when matching some input to sections or
words in a document.

When processing and tokenizing text to construct a vocabulary of words appearing
in the corpora, the ability to identify the root word can reduce the size of the
vocabulary while expanding the accuracy of matches. In the preceding Russian
example, any form of the word London can be matched to any other form if all the
forms are normalized to a common representation post-tokenization. This process
of normalization is called stemming or lemmatization.

Stemming and lemmatization differ in their approach and sophistication but serve
the same objective. Stemming is a simpler, heuristic rule-based approach that chops
off the affixes of words. The most famous stemmer is called the Porter stemmer,
published by Martin Porter in 1980. The official website is https://tartarus.org/
martin/PorterStemmer/, where various versions of the algorithm implemented in
various languages are linked.

https://tartarus.org/martin/PorterStemmer/
https://tartarus.org/martin/PorterStemmer/

Essentials of NLP

[32]

This stemmer only works for English and has rules including removing s at the end
of the words for plurals, and removing endings such as -ed or -ing. Consider the
following sentence:

"Stemming is aimed at reducing vocabulary and aid understanding of morphological
processes. This helps people understand the morphology of words and reduce size
of corpus."

After stemming using Porter's algorithm, this sentence will be reduced to the
following:

"Stem is aim at reduce vocabulari and aid understand of morpholog process .
Thi help peopl understand the morpholog of word and reduc size of corpu ."

Note how different forms of morphology, understand, and reduce are all tokenized to
the same form.

Lemmatization approaches this task in a more sophisticated manner, using
vocabularies and morphological analysis of words. In the study of linguistics,
a morpheme is a unit smaller than or equal to a word. When a morpheme is a
word in itself, it is called a root or a free morpheme. Conversely, every word
can be decomposed into one or more morphemes. The study of morphemes is
called morphology. Using this morphological information, a word's root form
can be returned post-tokenization. This base or dictionary form of the word is
called a lemma, hence the process is called lemmatization. StanfordNLP includes
lemmatization as part of processing.

Here is a simple piece of code to take the preceding sentences and parse them:

text = "Stemming is aimed at reducing vocabulary and aid understanding
of morphological processes. This helps people understand the morphology
of words and reduce size of corpus."

lemma = en(text)

After processing, we can iterate through the tokens to get the lemma of each word.
This is shown in the following code fragment. The lemma of a word is exposed as
the .lemma property of each word inside a token. For the sake of brevity of code, a
simplifying assumption is made here that each token has only one word.

The Lemmatization section of the notebook has the code shown here.

Chapter 1

[33]

The POS for each word is also printed out to help us understand how the process
was performed. Some key words in the following output are highlighted:

lemmas = ""
for sentence in lemma.sentences:
 for token in sentence.tokens:
 lemmas += token.words[0].lemma +"/" + \
 token.words[0].upos + " "
 lemmas += "\n"

print(lemmas)

stem/NOUN be/AUX aim/VERB at/SCONJ reduce/VERB vocabulary/NOUN and/
CCONJ aid/NOUN understanding/NOUN of/ADP morphological/ADJ process/NOUN
./PUNCT
this/PRON help/VERB people/NOUN understand/VERB the/DET morphology/NOUN
of/ADP word/NOUN and/CCONJ reduce/VERB size/NOUN of/ADP corpus/ADJ ./
PUNCT

Compare this output to the output of the Porter stemmer earlier. One immediate
thing to notice is that lemmas are actual words as opposed to fragments, as was
the case with the Porter stemmer. In the case of reduce, the usage in both sentences
is in the form of a verb, so the choice of lemma is consistent. Focus on the words
understand and understanding in the preceding output. As the POS tag shows, it is
used in two different forms. Consequently, it is not reduced to the same lemma.
This is different from the Porter stemmer. The same behavior can be observed for
morphology and morphological. This is a quite sophisticated behavior.

Now that text normalization is completed, we can begin the vectorization of text.

Vectorizing text
While building models for the SMS message spam detection thus far, only aggregate
features based on counts or distributions of lexical or grammatical features have been
considered. The actual words in the messages have not been used thus far. There are
a couple of challenges in using the text content of messages. The first is that text can
be of arbitrary lengths. Comparing this to image data, we know that each image has
a fixed width and height. Even if the corpus of images has a mixture of sizes, images
can be resized to a common size with minimal loss of information by using a variety
of compression mechanisms. In NLP, this is a bigger problem compared to computer
vision. A common approach to handle this is to truncate the text. We will see various
ways to handle variable-length texts in various examples throughout the book.

Essentials of NLP

[34]

The second issue is that of the representation of words with a numerical quantity
or feature. In computer vision, the smallest unit is a pixel. Each pixel has a set of
numerical values indicating color or intensity. In a text, the smallest unit could be a
word. Aggregating the Unicode values of the characters does not convey or embody
the meaning of the word. In fact, these character codes embody no information at all
about the character, such as its prevalence, whether it is a consonant or a vowel, and
so on. However, averaging the pixels in a section of an image could be a reasonable
approximation of that region of the image. It may represent how that region would
look if seen from a large distance. A core problem then is to construct a numerical
representation of words. Vectorization is the process of converting a word to a vector
of numbers that embodies the information contained in the word. Depending on the
vectorization technique, this vector may have additional properties that may allow
comparison with other words, as will be shown in the Word vectors section later in
this chapter.

The simplest approach for vectorizing is to use counts of words. The second
approach is more sophisticated, with its origins in information retrieval, and is
called TF-IDF. The third approach is relatively new, having been published in 2013,
and uses RNNs to generate embeddings or word vectors. This method is called
Word2Vec. The newest method in this area as of the time of writing was BERT,
which came out in the last quarter of 2018. The first three methods will be discussed
in this chapter. BERT will be discussed in detail in Chapter 3, Named Entity Recognition
(NER) with BiLSTMs, CRFs, and Viterbi Decoding.

Count-based vectorization
The idea behind count-based vectorization is really simple. Each unique word
appearing in the corpus is assigned a column in the vocabulary. Each document,
which would correspond to individual messages in the spam example, is assigned
a row. The counts of the words appearing in that document are entered in
the relevant cell corresponding to the document and the word. With n unique
documents containing m unique words, this results in a matrix of n rows by m
columns. Consider a corpus like so:

corpus = [
 "I like fruits. Fruits like bananas",
 "I love bananas but eat an apple",
 "An apple a day keeps the doctor away"
]

There are three documents in this corpus of text. The scikit-learn (sklearn)
library provides methods for undertaking count-based vectorization.

Chapter 1

[35]

Modeling after count-based vectorization
In Google Colab, this library should already be installed. If it is not installed in your
Python environment, it can be installed via the notebook like so:

!pip install sklearn

The CountVectorizer class provides a built-in tokenizer that separates the tokens
of two or more characters in length. This class takes a variety of options including
a custom tokenizer, a stop word list, the option to convert characters to lowercase
prior to tokenization, and a binary mode that converts every positive count to 1.
The defaults provide a reasonable choice for an English language corpus:

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)

vectorizer.get_feature_names()

['an',
 'apple',
 'away',
 'bananas',
 'but',
 'day',
 'doctor',
 'eat',
 'fruits',
 'keeps',
 'like',
 'love',
 'the']

In the preceding code, a model is fit to the corpus. The last line prints out the tokens
that are used as columns. The full matrix can be seen as follows:

X.toarray()

array([[0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 0],
 [1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0],
 [1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1]])

Essentials of NLP

[36]

This process has now converted a sentence such as "I like fruits. Fruits like bananas"
into a vector (0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0). This is an example of context-
free vectorization. Context-free refers to the fact that the order of the words in the
document did not make any difference in the generation of the vector. This is merely
counting the instances of the words in a document. Consequently, words with
multiple meanings may be grouped into one, for example, bank. This may refer to a
place near the river or a place to keep money. However, it does provide a method
to compare documents and derive similarity. The cosine similarity or distance can
be computed between two documents, to see which documents are similar to which
other documents:

from sklearn.metrics.pairwise import cosine_similarity

cosine_similarity(X.toarray())

array([[1. , 0.13608276, 0.],
 [0.13608276, 1. , 0.3086067],
 [0. , 0.3086067 , 1.]])

This shows that the first sentence and the second sentence have a 0.136 similarity
score (on a scale of 0 to 1). The first and third sentence have nothing in common.
The second and third sentence have a similarity score of 0.308 – the highest in this
set. Another use case of this technique is to check the similarity of the documents
with given keywords. Let's say that the query is apple and bananas. This first step is
to compute the vector of this query, and then compute the cosine similarity scores
against the documents in the corpus:

query = vectorizer.transform(["apple and bananas"])

cosine_similarity(X, query)

array([[0.23570226],
 [0.57735027],
 [0.26726124]])

This shows that this query matches the second sentence in the corpus the best. The
third sentence would rank second, and the first sentence would rank lowest. In a few
lines, a basic search engine has been implemented, along with logic to serve queries!
At scale, this is a very difficult problem, as the number of words or columns in a web
crawler would top 3 billion. Every web page would be represented as a row, so that
would also require billions of rows. Computing a cosine similarity in milliseconds
to serve an online query and keeping the content of this matrix updated is a massive
undertaking.

Chapter 1

[37]

The next step from this rather simple vectorization scheme is to consider the
information content of each word in constructing this matrix.

Term Frequency-Inverse Document Frequency
(TF-IDF)
In creating a vector representation of the document, only the presence of words was
included – it does not factor in the importance of a word. If the corpus of documents
being processed is about a set of recipes with fruits, then one may expect words like
apples, raspberries, and washing to appear frequently. Term Frequency (TF) represents
how often a word or token occurs in a given document. This is exactly what we did
in the previous section. In a set of documents about fruits and cooking, a word like
apple may not be terribly specific to help identify a recipe. However, a word like tuile
may be uncommon in that context. Therefore, it may help to narrow the search for
recipes much faster than a word like raspberry. On a side note, feel free to search the
web for raspberry tuile recipes. If a word is rare, we want to give it a higher weight,
as it may contain more information than a common word. A term can be upweighted
by the inverse of the number of documents it appears in. Consequently, words that
occur in a lot of documents will get a smaller score compared to terms that appear in
fewer documents. This is called the Inverse Document Frequency (IDF).

Mathematically, the score of each term in a document can be computed as follows:𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡) = 𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡) × 𝐼𝐼𝐼𝐼𝑇𝑇(𝑡𝑡)

Here, t represents the word or term, and d represents a specific document.

It is common to normalize the TF of a term in a document by the total number of
tokens in that document.

The IDF is defined as follows:

𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) = log 𝑁𝑁1 + 𝑛𝑛𝑡𝑡
Here, N represents the total number of documents in the corpus, and nt represents
the number of documents where the term is present. The addition of 1 in the
denominator avoids the divide-by-zero error. Fortunately, sklearn provides
methods to compute TF-IDF.

Essentials of NLP

[38]

Let's convert the counts from the previous section into their TF-IDF equivalents:

import pandas as pd
from sklearn.feature_extraction.text import TfidfTransformer

transformer = TfidfTransformer(smooth_idf=False)
tfidf = transformer.fit_transform(X.toarray())

pd.DataFrame(tfidf.toarray(),
 columns=vectorizer.get_feature_names())

This produces the following output:

This should give some intuition on how TF-IDF is computed. Even with three toy
sentences and a very limited vocabulary, many of the columns in each row are 0.
This vectorization produces sparse representations.

Now, this can be applied to the problem of detecting spam messages. Thus far, the
features for each message have been computed based on some aggregate statistics
and added to the pandas DataFrame. Now, the content of the message will be
tokenized and converted into a set of columns. The TF-IDF score for each word or
token will be computed for each message in the array. This is surprisingly easy to do
with sklearn, as follows:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn. pre-processing import LabelEncoder

tfidf = TfidfVectorizer(binary=True)

X = tfidf.fit_transform(train['Message']).astype('float32')

X_test = tfidf.transform(test['Message']).astype('float32')

X.shape

The TF-IDF Vectorization section of the notebook contains the code
for this section.

Chapter 1

[39]

(4459, 7741)

The second parameter shows that 7,741 tokens were uniquely identified. These are
the columns of features that will be used in the model later. Note that the vectorizer
was created with the binary flag. This implies that even if a token appears multiple
times in a message, it is counted as one. The next line trains the TF-IDF model on the
training dataset. Then, it converts the words in the test set according to the TF-IDF
scores learned from the training set. Let's train a model on just these TF-IDF features.

Modeling using TF-IDF features
With these TF-IDF features, let's train a model and see how it does:

_, cols = X.shape
model2 = make_model(cols) # to match tf-idf dimensions

y_train = train[['Spam']]
y_test = test[['Spam']]

model2.fit(X.toarray(), y_train, epochs=10, batch_size=10)

Train on 4459 samples
Epoch 1/10
4459/4459 [==============================] - 2s 380us/sample - loss:
0.3505 - accuracy: 0.8903
...
Epoch 10/10
4459/4459 [==============================] - 1s 323us/sample - loss:
0.0027 - accuracy: 1.0000

Whoa – we are able to classify every one correctly! In all honesty, the model is
probably overfitting, so some regularization should be applied. The test set gives this
result:

model2.evaluate(X_test.toarray(), y_test)

1115/1115 [==============================] - 0s 134us/sample - loss:
0.0581 - accuracy: 0.9839
[0.05813191874545786, 0.9838565]

Essentials of NLP

[40]

An accuracy rate of 98.39% is by far the best we have gotten in any model so far.
Checking the confusion matrix, it is evident that this model is indeed doing very
well:

y_test_pred = model2.predict_classes(X_test.toarray())
tf.math.confusion_matrix(tf.constant(y_test.Spam),
 y_test_pred)

<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[958, 2],
 [16, 139]], dtype=int32)>

Only 2 regular messages were classified as spam, while only 16 spam messages
were classified as being not spam. This is indeed a very good model. Note that this
dataset has Indonesian (or Bahasa) words as well as English words in it. Bahasa uses
the Latin alphabet. This model, without using a lot of pretraining and knowledge of
language, vocabulary, and grammar, was able to do a very reasonable job with the
task at hand.

However, this model ignores the relationships between words completely. It treats
the words in a document as unordered items in a set. There are better models that
vectorize the tokens in a way that preserves some of the relationships between the
tokens. This is explored in the next section.

Word vectors
In the previous example, a row vector was used to represent a document. This
was used as a feature for the classification model to predict spam labels. However,
no information can be gleaned reliably from the relationships between words. In
NLP, a lot of research has been focused on learning the words or representations
in an unsupervised way. This is called representation learning. The output of this
approach is a representation of a word in some vector space, and the word can be
considered embedded in that space. Consequently, these word vectors are also
called embeddings.

The core hypothesis behind word vector algorithms is that words that occur near
each other are related to each other. To see the intuition behind this, consider two
words, bake and oven. Given a sentence fragment of five words, where one of these
words is present, what would be the probability of the other being present as well?
You would be right in guessing that the probability is likely quite high. Suppose
now that words are being mapped into some two-dimensional space. In that space,
these two words should be closer to each other, and probably further away from
words like astronomy and tractor.

Chapter 1

[41]

The task of learning these embeddings for the words can be then thought of as
adjusting words in a giant multidimensional space where similar words are closer to
each other and dissimilar words are further apart from each other.

A revolutionary approach to do this is called Word2Vec. This algorithm was
published by Tomas Mikolov and collaborators from Google in 2013. This approach
produces dense vectors of the order of 50-300 dimensions generally (though larger
are known), where most of the values are non-zero. In contrast, in our previous
trivial spam example, the TF-IDF model had 7,741 dimensions. The original paper
had two algorithms proposed in it: continuous bag-of-words and continuous skip-
gram. On semantic tasks and overall, the performance of skip-gram was state of the
art at the time of its publication. Consequently, the continuous skip-gram model with
negative sampling has become synonymous with Word2Vec. The intuition behind
this model is fairly straightforward.

Consider this sentence fragment from a recipe: "Bake until the cookie is golden
brown all over." Under the assumption that a word is related to the words that
appear near it, a word from this fragment can be picked and a classifier can be
trained to predict the words around it:

Figure 1.14: A window of 5 centered on cookie

Taking an example of a window of five words, the word in the center is used
to predict two words before and two words after it. In the preceding figure, the
fragment is until the cookie is golden, with the focus on the word cookie. Assuming
that there are 10,000 words in the vocabulary, a network can be trained to predict
binary decisions given a pair of words. The training objective is that the network
predicts true for pairs like (cookie, golden) while predicting false for (cookie, kangaroo).
This particular approach is called Skip-Gram Negative Sampling (SGNS) and it
considerably reduces the training time required for large vocabularies. Very similar
to the single-layer neural model in the previous section, a model can be trained
with a one-to-many as the output layer. The sigmoid activation would be changed
to a softmax function. If the hidden layer has 300 units, then its dimensions would
be 10,000 x 300, that is, for each of the words, there will be a set of weights. The
objective of the training is to learn these weights. In fact, these weights become the
embedding for that word once training is complete.

Essentials of NLP

[42]

The choice of units in the hidden layer is a hyperparameter that can be adapted for
specific applications. 300 is commonly found as it is available through pretrained
embeddings on the Google News dataset. Finally, the error is computed as the
sum of the categorical cross-entropy of all the word pairs in negative and positive
examples.

The beauty of this model is that it does not require any supervised training data.
Running sentences can be used to provide positive examples. For the model to learn
effectively, it is important to provide negative samples as well. Words are randomly
sampled using their probability of occurrence in the training corpus and fed as
negative examples.

To understand how the Word2Vec embeddings work, let's download a set of
pretrained embeddings.

Pretrained models using Word2Vec embeddings
Since we are only interested in experimenting with a pretrained model, we can
use the Gensim library and its pretrained embeddings. Gensim should already be
installed in Google Colab. It can be installed like so:

!pip install gensim

After the requisite imports, pretrained embeddings can be downloaded and loaded.
Note that these particular embeddings are approximately 1.6 GB in size, so may take
a very long time to load (you may encounter some memory issues as well):

from gensim.models.word2vec import Word2Vec
import gensim.downloader as api
model_w2v = api.load("word2vec-google-news-300")

Another issue that you may run into is the Colab session expiring if left alone for too
long while waiting for the download to finish. This may be a good time to switch to
a local notebook, which will also be helpful in future chapters. Now, we are ready to
inspect the similar words:

model_w2v.most_similar("cookies",topn=10)

The code shown in the following section can be found in the Word
Vectors section of the notebook.

Chapter 1

[43]

[('cookie', 0.745154082775116),
 ('oatmeal_raisin_cookies', 0.6887780427932739),
 ('oatmeal_cookies', 0.662139892578125),
 ('cookie_dough_ice_cream', 0.6520504951477051),
 ('brownies', 0.6479344964027405),
 ('homemade_cookies', 0.6476464867591858),
 ('gingerbread_cookies', 0.6461867690086365),
 ('Cookies', 0.6341644525527954),
 ('cookies_cupcakes', 0.6275068521499634),
 ('cupcakes', 0.6258294582366943)]

This is pretty good. Let's see how this model does at a word analogy task:

model_w2v.doesnt_match(["USA","Canada","India","Tokyo"])

'Tokyo'

The model is able to guess that compared to the other words, which are all countries,
Tokyo is the odd one out, as it is a city. Now, let's try a very famous example of
mathematics on these word vectors:

king = model_w2v['king']
man = model_w2v['man']
woman = model_w2v['woman']

queen = king - man + woman
model_w2v.similar_by_vector(queen)

[('king', 0.8449392318725586),
 ('queen', 0.7300517559051514),
 ('monarch', 0.6454660892486572),
 ('princess', 0.6156251430511475),
 ('crown_prince', 0.5818676948547363),
 ('prince', 0.5777117609977722),
 ('kings', 0.5613663792610168),
 ('sultan', 0.5376776456832886),
 ('Queen_Consort', 0.5344247817993164),
 ('queens', 0.5289887189865112)]

Given that King was provided as an input to the equation, it is simple to filter the
inputs from the outputs and Queen would be the top result. SMS spam classification
could be attempted using these embeddings. However, future chapters will cover the
use of GloVe embeddings and BERT embeddings for sentiment analysis.

Essentials of NLP

[44]

A pretrained model like the preceding can be used to vectorize a document. Using
these embeddings, models can be trained for specific purposes. In later chapters,
newer methods of generating contextual embeddings, such as BERT, will be
discussed in detail.

Summary
In this chapter, we worked through the basics of NLP, including collecting and
labeling training data, tokenization, stop word removal, case normalization, POS
tagging, stemming, and lemmatization. Some vagaries of these in languages such
as Japanese and Russian were also covered. Using a variety of features derived
from these approaches, we trained a model to classify spam messages, where the
messages had a combination of English and Bahasa Indonesian words. This got us
to a model with 94% accuracy.

However, the major challenge in using the content of the messages was in defining
a way to represent words as vectors such that computations could be performed
on them. We started with a simple count-based vectorization scheme and then
graduated to a more sophisticated TF-IDF approach, both of which produced sparse
vectors. This TF-IDF approach gave a model with 98%+ accuracy in the spam
detection task.

Finally, we saw a contemporary method of generating dense word embeddings,
called Word2Vec. This method, though a few years old, is still very relevant in many
production applications. Once the word embeddings are generated, they can be
cached for inference and that makes an ML model using these embeddings run with
relatively low latency.

We used a very basic deep learning model for solving the SMS spam classification
task. Like how Convolutional Neural Networks (CNNs) are the predominant
architecture in computer vision, Recurrent Neural Networks (RNNs), especially
those based on Long Short-Term Memory (LSTM) and Bi-directional LSTMs
(BiLSTMs), are most commonly used to build NLP models. In the next chapter, we
cover the structure of LSTMs and build a sentiment analysis model using BiLSTMs.
These models will be used extensively in creative ways to solve different NLP
problems in future chapters.

[45]

2
Understanding Sentiment

in Natural Language
with BiLSTMs

Natural Language Understanding (NLU) is a significant subfield of Natural
Language Processing (NLP). In the last decade, there has been a resurgence of
interest in this field with the dramatic success of chatbots such as Amazon's Alexa
and Apple's Siri. This chapter will introduce the broad area of NLU and its main
applications.

Specific model architectures called Recurrent Neural Networks (RNNs), with
special units called Long Short-Term Memory (LSTM) units, have been developed
to make the task of understanding natural language easier. LSTMs in NLP are
analogous to convolution blocks in computer vision. We will take two examples
to build models that can understand natural language. Our first example is
understanding the sentiment of movie reviews. This will be the focus of this chapter.
The other example is one of the fundamental building blocks of NLU, Named Entity
Recognition (NER). That will be the main focus of the next chapter.

Building models capable of understanding sentiments requires the use of Bi-
Directional LSTMs (BiLSTMs) in addition to the use of techniques from Chapter 1,
Essentials of NLP. Specifically, the following will be covered in this chapter:

• Overview of NLU and its applications
• Overview of RNNs and BiRNNS using LSTMs and BiLSTMS

Understanding Sentiment in Natural Language with BiLSTMs

[46]

• Analyzing the sentiment of movie reviews with LSTMs and BiLSTMs
• Using tf.data and the TensorFlow Datasets package to manage the loading

of data
• Optimizing the performance of data loading for effective utilization of the

CPU and GPU

We will start with a quick overview of NLU and then get right into BiLSTMs.

Natural language understanding
NLU enables the processing of unstructured text and extracts meaning and critical
pieces of information that are actionable. Enabling a computer to understand
sentences of text is a very hard challenge. One aspect of NLU is understanding
the meaning of sentences. Sentiment analysis of a sentence becomes possible after
understanding the sentence. Another useful application is the classification of
sentences to a topic. This topic classification can also help in the disambiguation
of entities. Consider the following sentence: "A CNN helps improve the accuracy
of object recognition." Without understanding that this sentence is about machine
learning, an incorrect inference may be made about the entity CNN. It may be
interpreted as the news organization as opposed to a deep learning architecture
used in computer vision. An example of a sentiment analysis model is built using a
specific RNN architecture called BiLSTMs later in this chapter.

Another aspect of NLU is to extract information or commands from free-form text.
This text can be sourced from converting speech, as spoken to Amazon's Echo device,
for example, into text. Rapid advances in speech recognition now allow considering
speech as equivalent to text. Extracting commands from the text, like an object and
an action to perform, allows control of devices through voice commands. Consider
the example sentence "Lower the volume." Here, the object is "volume" and the
action is "lower." After extraction from text, these actions can be matched to a list of
available actions and executed. This capability enables advanced human-computer
interaction (HCI), allowing control of home appliances through voice commands.
NER is used for detecting key tokens in sentences.

Chapter 2

[47]

This technique is incredibly useful in building form filling or slot filling chatbots.
NER also forms the basis of other NLU techniques that perform tasks such as relation
extraction. Consider the sentence "Sundar Pichai is the CEO of Google." In this
sentence, what is the relationship between the entities "Sundar Pichai" and "Google"?
The right answer is CEO. This is an example of relation extraction, and NER was
used to identify the entities in the sentence. The focus of the next chapter is on NER
using a specific architecture that has been quite effective in this space.

A common building block of both sentiment analysis and NER models is
Bi-directional RNN models. The next section describes BiLSTMs, which is Bi-
directional RNN using LSTM units, prior to building a sentiment analysis model
with it.

Bi-directional LSTMs – BiLSTMs
LSTMs are one of the styles of recurrent neural networks, or RNNs. RNNs are built
to handle sequences and learn the structure of them. An RNN does that by using the
output generated after processing the previous item in the sequence along with the
current item to generate the next output.

Mathematically, this can be expressed like so:𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡) = 𝑓𝑓(𝑓𝑓{𝑡𝑡𝑡𝑡}(𝑥𝑥𝑡𝑡𝑡𝑡, 𝑥𝑥𝑡𝑡; 𝜃𝜃))

This equation says that to compute the output at time t, the output at t-1 is used as
an input along with the input data xt at the same time step. Along with this, a set
of parameters or learned weights, represented by 𝜃𝜃 , are also used in computing the
output. The objective of training an RNN is to learn these weights 𝜃𝜃𝜃 This particular
formulation of an RNN is unique. In previous examples, we have not used the
output of a batch to determine the output of a future batch. While we focus on
applications of RNNs on language where a sentence is modeled as a sequence of
words appearing one after the other, RNNs can be applied to build general time-
series models.

Understanding Sentiment in Natural Language with BiLSTMs

[48]

RNN building blocks
The previous section outlined the basic mathematical intuition of a recursive function
that is a simplification of the RNN building block. Figure 2.1 represents a few time
steps and also adds details to show different weights used for computation for
a basic RNN building block or cell.

Figure 2.1: RNN unraveled

The basic cell is shown on the left. The input vector at a specific time or sequence
step t is multiplied by a weight vector, represented in the diagram as U, to generate
an activation in the middle part. The key part of this architecture is the loop in this
activation part. The output of a previous step is multiplied by a weight vector,
denoted by V in the figure, and added to the activation. This activation can be
multiplied by another weight vector, represented by W, to produce the output
of that step shown at the top. In terms of sequence or time steps, this network can
be unrolled. This unrolling is virtual. However, it is represented on the right side
of the figure. Mathematically, activation at time step t can be represented by:𝑎𝑎𝑡𝑡 = 𝑈𝑈𝑈 𝑈𝑈𝑡𝑡 + 𝑉𝑉𝑈 𝑎𝑎𝑡𝑡𝑡𝑡

Output at the same step can be computed like so:𝑜𝑜𝑡𝑡 = 𝑊𝑊𝑊 𝑊𝑊𝑡𝑡
The mathematics of RNNs has been simplified to provide intuition
about RNNs.

Chapter 2

[49]

Structurally, the network is very simple as it is a single unit. To exploit and learn
the structure of inputs passing through, weight vectors U, V, and W are shared
across time steps. The network does not have layers as seen in fully connected or
convolutional networks. However, as it is unrolled over time steps, it can be thought
of as having as many layers as steps in the input sequences. There are additional
criteria that would need to be satisfied to make a Deep RNN. More on that later
in this section. These networks are trained using backpropagation and stochastic
gradient descent techniques. The key thing to note here is that backpropagation
is happening through the sequence or time steps before backpropogating through
layers.

Having this structure enables processing sequences of arbitrary lengths. However,
as the length of sequences increases, there are a couple of challenges that emerge:

• Vanishing and exploding gradients: As the lengths of these sequences
increase, the gradients going back will become smaller and smaller. This
will cause the network to train slowly or not learn at all. This effect will be
more pronounced as sequence lengths increase. In the previous chapter, we
built a network of a handful of layers. Here, a sentence of 10 words would
equate to a network of 10 layers. A 1-minute audio sample of 10 ms would
generate 6,000 steps! Conversely, gradients can also explode if the output is
increasing. The simplest way to manage vanishing gradients is through the
use of ReLUs. For managing exploding gradients, a technique called gradient
clipping is used. This technique artificially clips gradients if their magnitude
exceeds a threshold. This prevents gradients from becoming too large or
exploding.

• Inability to manage long-term dependencies: Let's say that the third word
in an eleven-word sentence is highly informative. Here is a toy example: "I
think soccer is the most popular game across the world." As the processing
reaches the end of the sentence, the contribution of the words prior earlier in
the sequence will become smaller and smaller due to repeated multiplication
with the vector V as shown above.

• Two specific RNN cell designs mitigate these problems: Long-Short Term
Memory (LSTM) and Gated Recurrent Unit (GRU). These are described
next. However, note that TensorFlow provides implementations of both
types of cells out of the box. So, building RNNs with these cell types is almost
trivial.

Understanding Sentiment in Natural Language with BiLSTMs

[50]

Long short-term memory (LSTM) networks
LSTM networks were proposed in 1997 and improved upon and popularized by
many researchers. They are widely used today for a variety of tasks and produce
amazing results.

LSTM has four main parts:

• Cell value or memory of the network, also referred to as the cell, which
stores accumulated knowledge

• Input gate, which controls how much of the input is used in computing
the new cell value

• Output gate, which determines how much of the cell value is used in the
output

• Forget gate, which determines how much of the current cell value is used for
updating the cell value

These are shown in the figure below:

Figure 2.2: LSTM cell
(Source: Madsen, "Visualizing memorization in RNNs," Distill, 2019)

Training RNNs is a very complicated process fraught with many
frustrations. Modern tools such as TensorFlow do a great job of
managing the complexity and reducing the pain to a great extent.
However, training RNNs still is a challenging task, especially
without GPU support. But the rewards of getting it right are well
worth it, especially in the field of NLP.

Chapter 2

[51]

After a quick introduction to GRUs, we will pick up on LSTMs, talk about BiLSTMs,
and build a sentiment classification model.

Gated recurrent units (GRUs)
GRUs are another popular, and more recent, type of RNN unit. They were invented
in 2014. They are simpler than LSTMs:

Figure 2.3: Gated recurrent unit (GRU) architecture

Compared to the LSTM, it has fewer gates. Input and forget gates are combined
into a single update gate. Some of the internal cell state and hidden state is merged
together as well. This reduction in complexity makes it easier to train. It has shown
great results in the speech and sound domains. However, in neural machine
translation tasks, LSTMs have shown superior performance. In this chapter,
we will focus on using LSTMs. Before we discuss BiLSTMs, let's take a sentiment
classification problem and solve it with LSTMs. Then, we will try and improve
the model with BiLSTMs.

Sentiment classification with LSTMs
Sentiment classification is an oft-cited use case of NLP. Models that predict the
movement of stock prices by using sentiment analysis features from tweets have
shown promising results. Tweet sentiment is also used to determine customers'
perceptions of brands. Another use case is processing user reviews for movies, or
products on e-commerce or other websites. To see LSTMs in action, let's use a dataset
of movie reviews from IMDb. This dataset was published at the ACL 2011 conference
in a paper titled Learning Word Vectors for Sentiment Analysis. This dataset has 25,000
review samples in the training set and another 25,000 in the test set.

Understanding Sentiment in Natural Language with BiLSTMs

[52]

A local notebook will be used for the code for this example. Chapter 10, Installation
and Setup Instructions for Code, provides detailed instructions on how to set up the
development environment. In short, you will need Python 3.7.5 and the following
libraries to start:

• pandas 1.0.1
• NumPy 1.18.1
• TensorFlow 2.4 and the tensorflow_datasets 3.2.1 package
• Jupyter notebook

We will follow the overall process outlined in Chapter 1, Essentials of NLP. We start by
loading the data we need.

Loading the data
In the previous chapter, we downloaded the data and loaded it with the pandas
library. This approach loaded the entire dataset into memory. However, sometimes
data can be quite large, or spread into multiple files. In such cases, it may be too large
for loading and need lots of pre-processing. Making text data ready to be used in
a model requires normalization and vectorization at the very least. Often, this needs
to be done outside of the TensorFlow graph using Python functions. This may cause
issues in the reproducibility of code. Further, it creates issues for data pipelines in
production where there is a higher chance of breakage as different dependent stages
are being executed separately.

TensorFlow provides a solution for the loading, transformation, and batching
of data through the use of the tf.data package. In addition, a number of datasets
are provided for download through the tensorflow_datasets package. We will use
a combination of these to download the IMDb data, and perform the tokenization,
encoding, and vectorization steps before training an LSTM model.

The first step is to install the appropriate packages and download the datasets:

!pip install tensorflow_datasets
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

All the code for the sentiment review example can be found in the
GitHub repo under the chapter2-nlu-sentiment-analysis-
bilstm folder. The code is in an IPython notebook called IMDB
Sentiment analysis.ipynb.

Chapter 2

[53]

The tfds package comes with a number of datasets in different domains such as
images, audio, video, text, summarization, and so on. To see the datasets available:

", ".join(tfds.list_builders())

'abstract_reasoning, aeslc, aflw2k3d, amazon_us_reviews, arc,
bair_robot_pushing_small, beans, big_patent, bigearthnet, billsum,
binarized_mnist, binary_alpha_digits, c4, caltech101, caltech_
birds2010, caltech_birds2011, cars196, cassava, cats_vs_dogs, celeb_a,
celeb_a_hq, cfq, chexpert, cifar10, cifar100, cifar10_1, cifar10_
corrupted, citrus_leaves, cityscapes, civil_comments, clevr, cmaterdb,
cnn_dailymail, coco, coil100, colorectal_histology, colorectal_
histology_large, cos_e, curated_breast_imaging_ddsm, cycle_gan, deep_
weeds, definite_pronoun_resolution, diabetic_retinopathy_detection,
div2k, dmlab, downsampled_imagenet, dsprites, dtd, duke_ultrasound,
dummy_dataset_shared_generator, dummy_mnist, emnist, eraser_multi_
rc, esnli, eurosat, fashion_mnist, flic, flores, food101, gap,
gigaword, glue, groove, higgs, horses_or_humans, i_naturalist2017,
image_label_folder, imagenet2012, imagenet2012_corrupted, imagenet_
resized, imagenette, imagewang, imdb_reviews, iris, kitti, kmnist,
lfw, librispeech, librispeech_lm, libritts, lm1b, lost_and_found,
lsun, malaria, math_dataset, mnist, mnist_corrupted, movie_rationales,
moving_mnist, multi_news, multi_nli, multi_nli_mismatch, natural_
questions, newsroom, nsynth, omniglot, open_images_v4, opinosis,
oxford_flowers102, oxford_iiit_pet, para_crawl, patch_camelyon,
pet_finder, places365_small, plant_leaves, plant_village, plantae_k,
qa4mre, quickdraw_bitmap, reddit_tifu, resisc45, rock_paper_scissors,
rock_you, scan, scene_parse150, scicite, scientific_papers, shapes3d,
smallnorb, snli, so2sat, speech_commands, squad, stanford_dogs,
stanford_online_products, starcraft_video, sun397, super_glue, svhn_
cropped, ted_hrlr_translate, ted_multi_translate, tf_flowers, the300w_
lp, tiny_shakespeare, titanic, trivia_qa, uc_merced, ucf101, vgg_face2,
visual_domain_decathlon, voc, wider_face, wikihow, wikipedia, wmt14_
translate, wmt15_translate, wmt16_translate, wmt17_translate, wmt18_
translate, wmt19_translate, wmt_t2t_translate, wmt_translate, xnli,
xsum, yelp_polarity_reviews'

That is a list of 155 datasets. Details of the datasets can be obtained on the catalog
page at https://www.tensorflow.org/datasets/catalog/overview.

IMDb data is provided in three splits – training, test, and unsupervised. The training
and testing splits have 25,000 rows each, with two columns. The first column is the
text of the review, and the second is the label. "0" represents a review with negative
sentiment while "1" represents a review with positive sentiment. The following code
loads the training and testing data splits:

imdb_train, ds_info = tfds.load(name="imdb_reviews", split="train",

https://www.tensorflow.org/datasets/catalog/overview

Understanding Sentiment in Natural Language with BiLSTMs

[54]

 with_info=True, as_supervised=True)
imdb_test = tfds.load(name="imdb_reviews", split="test",
 as_supervised=True)

Note that this command may take a little bit of time to execute as data is
downloaded. ds_info contains information about the dataset. This is returned when
the with_info parameter is supplied. Let's see the information contained in ds_info:

print(ds_info)

tfds.core.DatasetInfo(
 name='imdb_reviews',
 version=1.0.0,
 description='Large Movie Review Dataset.
This is a dataset for binary sentiment classification containing
substantially more data than previous benchmark datasets. We provide a
set of 25,000 highly polar movie reviews for training, and 25,000 for
testing. There is additional unlabeled data for use as well.',
 homepage='http://ai.stanford.edu/~amaas/data/sentiment/',
 features=FeaturesDict({
 'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
 'text': Text(shape=(), dtype=tf.string),
 }),
 total_num_examples=100000,
 splits={
 'test': 25000,
 'train': 25000,
 'unsupervised': 50000,
 },
 supervised_keys=('text', 'label'),
 citation="""@InProceedings{maas-EtAl:2011:ACL-HLT2011,
 author = {Maas, Andrew L. and Daly, Raymond E. and
Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts,
Christopher},
 title = {Learning Word Vectors for Sentiment Analysis},
 booktitle = {Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language
Technologies},
 month = {June},
 year = {2011},
 address = {Portland, Oregon, USA},
 publisher = {Association for Computational Linguistics},
 pages = {142--150},

Chapter 2

[55]

 url = {http://www.aclweb.org/anthology/P11-1015}
 }""",
 redistribution_info=,
)

We can see that two keys, text and label, are available in the supervised mode.
Using the as_supervised parameter is key to loading the dataset as a tuple of values.
If this parameter is not specified, data is loaded and made available as dictionary
keys. In cases where the data has multiple inputs, that may be preferable. To get a
sense of the data that has been loaded:

for example, label in imdb_train.take(1):
 print(example, '\n', label)

tf.Tensor(b"This was an absolutely terrible movie. Don't be lured in by
Christopher Walken or Michael Ironside. Both are great actors, but this
must simply be their worst role in history. Even their great acting
could not redeem this movie's ridiculous storyline. This movie is an
early nineties US propaganda piece. The most pathetic scenes were those
when the Columbian rebels were making their cases for revolutions.
Maria Conchita Alonso appeared phony, and her pseudo-love affair with
Walken was nothing but a pathetic emotional plug in a movie that was
devoid of any real meaning. I am disappointed that there are movies
like this, ruining actor's like Christopher Walken's good name. I could
barely sit through it.", shape=(), dtype=string)
tf.Tensor(0, shape=(), dtype=int64)

The above review is an example of a negative review. The next step is tokenization
and vectorization of the reviews.

Normalization and vectorization
In Chapter 1, Essentials of NLP, we discussed a number of different normalization
methods. Here, we are only going to tokenize the text into words and construct a
vocabulary, and then encode the words using this vocabulary. This is a simplified
approach. There can be a number of different approaches that can be used for
building additional features. Using techniques discussed in the first chapter, such
as POS tagging, a number of features can be built, but that is left as an exercise for
the reader. In this example, our aim is to use the same set of features on an RNN
with LSTMs followed by using the same set of features on an improved model with
BiLSTMs.

A vocabulary of the tokens occurring in the data needs to be constructed prior to
vectorization. Tokenization breaks up the words in the text into individual tokens.
The set of all the tokens forms the vocabulary.

Understanding Sentiment in Natural Language with BiLSTMs

[56]

Normalization of the text, such as converting to lowercase, etc., is performed along
with this tokenization step. tfds comes with a set of feature builders for text in the
tfds.features.text package. First, a set of all the words in the training data needs
to be created:

tokenizer = tfds.features.text.Tokenizer()

vocabulary_set = set()
MAX_TOKENS = 0

for example, label in imdb_train:
 some_tokens = tokenizer.tokenize(example.numpy())
 if MAX_TOKENS < len(some_tokens):
 MAX_TOKENS = len(some_tokens)
 vocabulary_set.update(some_tokens)

By iterating through the training examples, each review is tokenized and the words
in the review are added to a set. These are added to a set to get unique words. Note
that tokens or words have not been converted to lowercase. This means that the size
of the vocabulary is going to be slightly larger. Using this vocabulary, an encoder
can be created. TokenTextEncoder is one of three out-of-the-box encoders that are
provided in tfds. Note how the list of tokens is converted into a set to ensure only
unique tokens are retained in the vocabulary. The tokenizer used for generating the
vocabulary is passed in, so that every successive call to encode a string can use the
same tokenization scheme. This encoder expects that the tokenizer object provides
a tokenize() and a join() method. If you want to use StanfordNLP or some other
tokenizer as discussed in the previous chapter, all you need to do is to wrap the
StanfordNLP interface in a custom object and implement methods to split the text
into tokens and join the tokens back into a string:

imdb_encoder = tfds.features.text.TokenTextEncoder(vocabulary_set,
 tokenizer=tokenizer)
vocab_size = imdb_encoder.vocab_size

print(vocab_size, MAX_TOKENS)

93931 2525

The vocabulary has 93,931 tokens. The longest review has 2,525 tokens. That is one
wordy review! Reviews are going to have different lengths. LSTMs expect sequences
of equal length. Padding and truncating operations make reviews of equal length.
Before we do that, let's test whether the encoder works correctly:

Chapter 2

[57]

for example, label in imdb_train.take(1):
 print(example)
 encoded = imdb_encoder.encode(example.numpy())
 print(imdb_encoder.decode(encoded))

tf.Tensor(b"This was an absolutely terrible movie. Don't be lured in by
Christopher Walken or Michael Ironside. Both are great actors, but this
must simply be their worst role in history. Even their great acting
could not redeem this movie's ridiculous storyline. This movie is an
early nineties US propaganda piece. The most pathetic scenes were those
when the Columbian rebels were making their cases for revolutions.
Maria Conchita Alonso appeared phony, and her pseudo-love affair with
Walken was nothing but a pathetic emotional plug in a movie that was
devoid of any real meaning. I am disappointed that there are movies
like this, ruining actor's like Christopher Walken's good name. I could
barely sit through it.", shape=(), dtype=string)
This was an absolutely terrible movie Don t be lured in by Christopher
Walken or Michael Ironside Both are great actors but this must simply
be their worst role in history Even their great acting could not redeem
this movie s ridiculous storyline This movie is an early nineties US
propaganda piece The most pathetic scenes were those when the Columbian
rebels were making their cases for revolutions Maria Conchita Alonso
appeared phony and her pseudo love affair with Walken was nothing but a
pathetic emotional plug in a movie that was devoid of any real meaning
I am disappointed that there are movies like this ruining actor s like
Christopher Walken s good name I could barely sit through it

Note that punctuation is removed from these reviews when they are reconstructed
from the encoded representations.

One convenience feature provided by the encoder is persisting the
vocabulary to disk. This enables a one-time computation of the
vocabulary and distribution for production use cases. Even during
development, computation of the vocabulary can be a resource
intensive task prior to each run or restart of the notebook. Saving
the vocabulary and the encoder to disk enables picking up coding
and model building from anywhere after the vocabulary building
step is complete. To save the encoder, use the following:

imdb_encoder.save_to_file("reviews_vocab")

Understanding Sentiment in Natural Language with BiLSTMs

[58]

Tokenization and encoding were done for a small set of rows at a time. TensorFlow
provides mechanisms to perform these actions in bulk over large datasets, which
can be shuffled and loaded in batches. This allows very large datasets to be loaded
without running out of memory during training. To enable this, a function needs
to be defined that performs a transformation on a row of data. Note that multiple
transformations can be chained one after the other. It is also possible to use a Python
function in defining these transformations. For processing the review above, the
following steps need to be performed:

• Tokenization: Reviews need to be tokenized into words.
• Encoding: These words need to be mapped to integers using the vocabulary.
• Padding: Reviews can have variable lengths, but LSTMs expect vectors of

the same length. So, a constant length is chosen. Reviews shorter than this
length are padded with a specific vocabulary index, usually 0 in TensorFlow.
Reviews longer than this length are truncated. Fortunately, TensorFlow
provides such a function out of the box.

The following functions perform this:

from tensorflow.keras.preprocessing import sequence

def encode_pad_transform(sample):
 encoded = imdb_encoder.encode(sample.numpy())
 pad = sequence.pad_sequences([encoded], padding='post',
 maxlen=150)
 return np.array(pad[0], dtype=np.int64)

def encode_tf_fn(sample, label):
 encoded = tf.py_function(encode_pad_transform,
 inp=[sample],
 Tout=(tf.int64))
 encoded.set_shape([None])

To load the encoder from the file and test it, the following
commands can be used:

enc = tfds.features.text.TokenTextEncoder.load_from_
file("reviews_vocab")
enc.decode(enc.encode("Good case. Excellent value."))

'Good case Excellent value'

Chapter 2

[59]

 label.set_shape([])
 return encoded, label

encode_tf_fn is called by the dataset API with one example at a time. This means
a tuple of the review and its label. This function in turn calls another function,
encode_pad_transform, which is wrapped in the tf.py_function call that performs
the actual transformation. In this function, tokenization is performed first, followed
by encoding, and finally padding and truncating. A maximum length of 150 tokens
or words is chosen for padding/truncating sequences. Any Python logic can be
used in this second function. For example, the StanfordNLP package could be used
to perform POS tagging of the words, or stopwords could be removed as shown in
the previous chapter. Here, we try to keep things simple for this example.

Transforming the data is quite trivial. Let's try the code on a small sample of the data:

subset = imdb_train.take(10)
tst = subset.map(encode_tf_fn)
for review, label in tst.take(1):
 print(review, label)
 print(imdb_encoder.decode(review))

tf.Tensor(
[40205 9679 51728 91747 21013 7623 6550 40338 18966 36012 64846
80722
 81643 29176 14002 73549 52960 40359 49248 62585 75017 67425 18181
2673
 44509 18966 87701 56336 29928 64846 41917 49779 87701 62585 58974
82970
 1902 2754 18181 7623 2615 7927 67321 40205 7623 43621 51728
91375
 41135 71762 29392 58948 76770 15030 74878 86231 49390 69836 18353
84093
 76562 47559 49390 48352 87701 62200 13462 80285 76037 75121 1766
59655
 6569 13077 40768 86201 28257 76220 87157 29176 9679 65053 67425

Padding is an important step as different layers in TensorFlow
cannot handle tensors of different widths. Tensors of different
widths are called ragged tensors. There is ongoing work to
incorporate support for ragged tensors and the support is
improving. However, the support for ragged tensors is not
universal in TensorFlow. Consequently, ragged tensors are
avoided in this text.

Understanding Sentiment in Natural Language with BiLSTMs

[60]

93397
 74878 67053 61304 64846 93397 7623 18560 9679 50741 44024 79648
7470
 28203 13192 47453 6386 18560 79892 49248 7158 91321 18181 88633
13929
 2615 91321 81643 29176 2615 65285 63778 13192 82970 28143 14618
44449
 39028 0 0 0 0 0 0 0 0 0 0
0
 0 0 0 0 0 0 0 0 0 0 0
0
 0 0 0 0 0 0], shape=(150,), dtype=int64)
tf.Tensor(0, shape=(), dtype=int64)
This was an absolutely terrible movie Don t be lured in by Christopher
Walken or Michael Ironside Both are great actors but this must simply
be their worst role in history Even their great acting could not redeem
this movie s ridiculous storyline This movie is an early nineties US
propaganda piece The most pathetic scenes were those when the Columbian
rebels were making their cases for revolutions Maria Conchita Alonso
appeared phony and her pseudo love affair with Walken was nothing but a
pathetic emotional plug in a movie that was devoid of any real meaning
I am disappointed that there are movies like this ruining actor s like
Christopher Walken s good name I could barely sit through it

Note the "0" at the end of the encoded tensor in the first part of the output. That is a
consequence of padding to 150 words.

Running this map over the entire dataset can be done like so:

encoded_train = imdb_train.map(encode_tf_fn)
encoded_test = imdb_test.map(encode_tf_fn)

This should execute really fast. When the training loop executes, the mapping will be
executed at that time. Other commands that are available and useful in the tf.data.
DataSet class, of which imdb_train and imdb_test are instances, are filter(),
shuffle(), and batch(). filter() can remove certain types of data from the dataset.
It can be used to filter out reviews above or below a certain length, or separate out
positive and negative examples to construct a more balanced dataset. The second
method shuffles the data between training epochs. The last one batches data for
training. Note that different datasets will result if these methods are applied in a
different sequence.

Chapter 2

[61]

Performance optimization with tf.data:

Figure 2.4: Illustrative example of the time taken by sequential execution of the map
function

(Source: Better Performance with the tf.data API at tensorflow.org/guide/data_
performance)

As can be seen in the figure above, a number of operations
contribute to the overall training time in an epoch. This example
chart above shows the case where files need to be opened, as
shown in the topmost row, data needs to be read in the row below,
a map transformation needs to be executed on the data being read,
and then training can happen. Since these steps are happening in
sequence, it can make the overall training time longer. Instead, the
mapping step can happen in parallel. This will result in shorter
execution times overall. CPU power is used to prefetch, batch, and
transform the data, while the GPU is used for training computation
and operations such as gradient calculation and updating weights.
This can be enabled by making a small change in the call to the map
function above:

encoded_train = imdb_train.map(encode_tf_fn,
 num_parallel_calls=tf.data.experimental.
AUTOTUNE)
encoded_test = imdb_test.map(encode_tf_fn,
 num_parallel_calls=tf.data.experimental.
AUTOTUNE)

Passing the additional parameter enables TensorFlow to use
multiple subprocesses to execute the transformation on.

Understanding Sentiment in Natural Language with BiLSTMs

[62]

While we have normalized and encoded the text of the reviews, we have not
converted it into word vectors or embeddings. This step is performed along with the
model training in the next step. So, we are ready to start building a basic RNN model
using LSTM now.

LSTM model with embeddings
TensorFlow and Keras make it trivial to instantiate an LSTM-based model. In fact,
adding a layer of LSTMs is one line of code. The simplest form is shown below:

tf.keras.layers.LSTM(rnn_units)

Here, the rnn_units parameter determines how many LSTMs are strung together in
one layer. There are a number of other parameters that can be configured, but the
defaults are fairly reasonable on them. The TensorFlow documentation details these
options and possible values with examples quite well. However, the review text
tokens cannot be fed as is into the LSTM layer. They need to be vectorized using an
embedding scheme. There are a couple of different approaches that can be used. The
first approach is to learn these embeddings as the model trains. This is the approach
we're going to use, as it is the simplest approach. In cases where the text data you
may have is unique to a domain, like medical transcriptions, this is also probably
the best approach. This approach, however, requires significant amounts of data
for training for the embeddings to learn the right relationships with the words. The
second approach is to use pre-trained embeddings, like Word2vec or GloVe, as
shown in the previous chapter, and use them to vectorize the text. This approach
has really worked well in general-purpose text models and can even be adapted to
work very well in specific domains. Working with transfer learning is the focus of
Chapter 4, Transfer Learning with BERT, though.

This can result in a speedup as shown below:

Figure 2.5: Illustrative example of a reduction in training time due to parallelization
of map (Source: Better Performance with the tf.data API at tensorflow.org/guide/

data_performance)

Chapter 2

[63]

Coming back to learning embeddings, TensorFlow provides an embedding layer
that can be added before the LSTM layer. Again, this layer has several options that
are well documented. To complete the binary classification model, all that remains
is a final dense layer with one unit for classification. A utility function that can build
models with some configurable parameters can be configured like so:

def build_model_lstm(vocab_size, embedding_dim, rnn_units, batch_size):
 model = tf.keras.Sequential([
 tf.keras.layers.Embedding(vocab_size, embedding_dim,
 mask_zero=True,
 batch_input_shape=[batch_size, None]),
 tf.keras.layers.LSTM(rnn_units),
 tf.keras.layers.Dense(1, activation='sigmoid')
])
 return model

This function exposes a number of configurable parameters to allow trying out
different architectures. In addition to these parameters, batch size is another
important parameter. These can be configured as follows:

vocab_size = imdb_encoder.vocab_size

The embedding dimension
embedding_dim = 64

Number of RNN units
rnn_units = 64

batch size
BATCH_SIZE=100

With the exception of the vocabulary size, all other parameters can be changed
around to see the impact on model performance. With these configurations set, the
model can be constructed:

model = build_model_lstm(
 vocab_size = vocab_size,
 embedding_dim=embedding_dim,
 rnn_units=rnn_units,
 batch_size=BATCH_SIZE)

model.summary()

Understanding Sentiment in Natural Language with BiLSTMs

[64]

Model: "sequential_3"

Layer (type) Output Shape Param #
===
embedding_3 (Embedding) (100, None, 64) 6011584

lstm_3 (LSTM) (100, 64) 33024

dense_5 (Dense) (100, 1) 65
===
Total params: 6,044,673
Trainable params: 6,044,673
Non-trainable params: 0

Such a small model has over 6 million trainable parameters. It is easy to check the
size of the embedding layer. The total number of tokens in the vocabulary was
93,931. Each token is represented by a 64-dimensional embedding, which provides
93,931 X 64 = 6,011,584 million parameters.

This model is now ready to be compiled with the specification of the loss function,
optimizer, and evaluation metrics. In this case, since there are only two labels, binary
cross-entropy is used as the loss. The Adam optimizer is a very good choice with
great defaults. Since we are doing binary classification, accuracy, precision, and
recall are the metrics we would like to track during training. Then, the dataset needs
to be batched and training can be started:

model.compile(loss='binary_crossentropy',
 optimizer='adam',
 metrics=['accuracy', 'Precision', 'Recall'])

encoded_train_batched = encoded_train.batch(BATCH_SIZE)
model.fit(encoded_train_batched, epochs=10)

Epoch 1/10
250/250 [==============================] - 23s 93ms/step - loss: 0.4311
- accuracy: 0.7920 - Precision: 0.7677 - Recall: 0.8376
Epoch 2/10
250/250 [==============================] - 21s 83ms/step - loss: 0.1768
- accuracy: 0.9353 - Precision: 0.9355 - Recall: 0.9351
…
Epoch 10/10
250/250 [==============================] - 21s 85ms/step - loss: 0.0066
- accuracy: 0.9986 - Precision: 0.9986 - Recall: 0.9985

Chapter 2

[65]

That is a very good result! Let's compare it to the test set:

model.evaluate(encoded_test.batch(BATCH_SIZE))

 250/Unknown - 20s 80ms/step - loss: 0.8682 - accuracy: 0.8063 -
Precision: 0.7488 - Recall: 0.9219

The difference between the performance on the training and test set implies there is
overfitting happening in the model. One way to manage overfitting is to introduce a
dropout layer after the LSTM layer. This is left as an exercise to you.

Now, let's see how BiLSTMs would perform on this task.

BiLSTM model
Building BiLSTMs is easy in TensorFlow. All that is required is a one-line change
in the model definition. In the build_model_lstm() function, the line that adds the
LSTM layer needs to be modified. The new function would look like this, with the
modified line highlighted:

def build_model_bilstm(vocab_size, embedding_dim, rnn_units, batch_
size):
 model = tf.keras.Sequential([
 tf.keras.layers.Embedding(vocab_size, embedding_dim,
 mask_zero=True,
 batch_input_shape=[batch_size, None]),
 tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(rnn_units)),
 tf.keras.layers.Dense(1, activation='sigmoid')
])
 return model

The model above was trained using an NVIDIA RTX 2070 GPU.
You may see longer times per epoch when training using a CPU
only.

Understanding Sentiment in Natural Language with BiLSTMs

[66]

But first, let's understand what a BiLSTM is:

Figure 2.6: LSTMs versus BiLSTMs

In a regular LSTM network, tokens or words are fed in one direction. As an example,
take the review "This movie was really good." Each token starting from the left is
fed into the LSTM unit, marked as a hidden unit, one at a time. The diagram above
shows a version unrolled in time. What this means is that each successive word
is considered as occurring at a time increment from the previous word. Each step
produces an output that may or may not be useful. That is dependent on the problem
at hand. In the IMDb sentiment prediction case, only the final output is important as
it is fed to the dense layer to make a decision on whether the review was positive or
negative.

Due to this time unrolling, it may appear as if there are multiple hidden units.
However, it is the same LSTM unit, as shown in Figure 2.2 earlier in the chapter. The
output of the unit is fed back into the same unit at the next time step. In the case of
BiLSTM, there is a pair of hidden units. One set operates on the tokens from left to
right, while the other set operates on the tokens from right to left. In other words, a
forward LSTM model can only learn from tokens from the past time steps. A BiLSTM
model can learn from tokens from the past and the future.

If you are working with right-to-left languages such as Arabic
and Hebrew, please feed the tokens right to left. It is important
to understand the direction the next word or token comes from.
If you are using a BiLSTM, then the direction may not matter
as much.

Chapter 2

[67]

This method allows the capturing of more dependencies between words and the
structure of the sentence and improves the accuracy of the model. Suppose the task
is to predict the next word in this sentence fragment:

I jumped into the …

There are many possible completions to this sentence. Further, suppose that you had
access to the words after the sentence. Think about these three possibilities:

1. I jumped into the …. with only a small blade
2. I jumped into the … and swam to the other shore
3. I jumped into the … from the 10m diving board

Battle or fight would be likely words in the first example, river for the second, and
swimming pool for the last one. In each case, the beginning of the sentence was exactly
the same but the words from the end helped disambiguate which word should fill
in the blank. This illustrates the difference between LSTMs and BiLSTMs. An LSTM
can only learn from the past tokens, while the BiLSTM can learn from both past and
future tokens.

This new BiLSTM model has a little over 12M parameters.

bilstm = build_model_bilstm(
 vocab_size = vocab_size,
 embedding_dim=embedding_dim,
 rnn_units=rnn_units,
 batch_size=BATCH_SIZE)

bilstm.summary()

Model: "sequential_1"

Layer (type) Output Shape Param #
===
embedding_1 (Embedding) (50, None, 128) 12023168

dropout (Dropout) (50, None, 128) 0

bidirectional (Bidirectional (50, None, 128) 98816

dropout_1 (Dropout) (50, None, 128) 0

bidirectional_1 (Bidirection (50, 128) 98816

Understanding Sentiment in Natural Language with BiLSTMs

[68]

dropout_2 (Dropout) (50, 128) 0

dense_1 (Dense) (50, 1) 129
===
Total params: 12,220,929
Trainable params: 12,220,929
Non-trainable params: 0

If you run the model shown above with no other changes, you will see a boost in the
accuracy and precision of the model:

bilstm.fit(encoded_train_batched, epochs=5)

Epoch 1/5
500/500 [==============================] - 80s 160ms/step - loss:
0.3731 - accuracy: 0.8270 - Precision: 0.8186 - Recall: 0.8401
…
Epoch 5/5
500/500 [==============================] - 70s 139ms/step - loss:
0.0316 - accuracy: 0.9888 - Precision: 0.9886 - Recall: 0.9889

bilstm.evaluate(encoded_test.batch(BATCH_SIZE))

500/Unknown - 20s 40ms/step - loss: 0.7280 - accuracy: 0.8389 -
Precision: 0.8650 - Recall: 0.8032

Note that the model is severely overfitting. It is important to add some form of
regularization to the model. Out of the box, with no feature engineering or use of
the unsupervised data for learning better embeddings, the accuracy of the model is
above 83.5%. The current state-of-the-art results on this data, published in August
2019, have an accuracy of 97.42%. Some ideas that can be tried to improve this model
include stacking layers of LSTMs or BiLSTMs, with some dropout for regularization,
using the unsupervised split of the dataset along with training and testing review
text data to learn better embeddings and using those in the final network, adding
more features such as word shapes, and POS tags, among others. We will pick
up this example again in Chapter 4, Transfer Learning with BERT, when we discuss
language models such as BERT. Maybe this example will be an inspiration for you to
try your own model and publish a paper with your state-of-the-art results!

Note that BiLSTMs, while powerful, may not be suitable for all applications. Using a
BiLSTM architecture assumes that the entire text or sequence is available at the same
time. This assumption may not be true in some cases.

Chapter 2

[69]

In the case of the speech recognition of commands in a chatbot, only the sounds
spoken so far by the users are available. It is not known what words a user is going
to utter in the future. In real-time time-series analytics, only data from the past is
available. In such applications, BiLSTMs cannot be used. Also, note that RNNs
really shine with very large amounts of data training over several epochs. The IMDb
dataset with 25,000 training examples is on the smaller side for RNNs to show their
power. You may find you achieve similar or better results using TF-IDF and logistic
regression with some feature engineering.

Summary
This is a foundational chapter in our journey through advanced NLP problems.
Many advanced models use building blocks such as BiRNNs. First, we used the
TensorFlow Datasets package to load data. Our work of building a vocabulary,
tokenizer, and encoder for vectorization was simplified through the use of this
library. After understanding LSTMs and BiLSTMs, we built models to do sentiment
analysis. Our work showed promise but was far away from the state-of-the-art
results, which will be addressed in future chapters. However, we are now armed
with the fundamental building blocks that will enable us to tackle more challenging
problems.

Armed with this knowledge of LSTMs, we are ready to build our first NER model
using BiLSTMs in the next chapter. Once this model is built, we will try to improve
it using CRFs and Viterbi decoding.

[71]

3
Named Entity Recognition

(NER) with BiLSTMs, CRFs,
and Viterbi Decoding

One of the fundamental building blocks of NLU is Named Entity Recognition
(NER). The names of people, companies, products, and quantities can be tagged
in a piece of text with NER, which is very useful in chatbot applications and many
other use cases in information retrieval and extraction. NER will be the main focus
of this chapter. Building and training a model capable of doing NER requires several
techniques, such as Conditional Random Fields (CRFs) and Bi-directional LSTMs
(BiLSTMs). Advanced TensorFlow techniques like custom layers, losses, and
training loops are also used. We will build on the knowledge of BiLSTMs gained
from the previous chapter. Specifically, the following will be covered:

• Overview of NER
• Building an NER tagging model with BiLSTM
• CRFs and Viterbi algorithms
• Building a custom Keras layer for CRFs
• Building a custom loss function in Keras and TensorFlow
• Training a model with a custom training loop

It all starts with understanding NER, which is the focus of the next section.

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[72]

Named Entity Recognition
Given a sentence or a piece of text, the objective of an NER model is to locate
and classify text tokens as named entities in categories such as people's names,
organizations and companies, physical locations, quantities, monetary quantities,
times, dates, and even protein or DNA sequences. NER should tag the following
sentence:

Ashish paid Uber $80 to go to the Twitter offices in San Francisco.

as follows:

[Ashish]PER paid [Uber]ORG [$80]MONEY to go the [Twitter]ORG offices in [San Francisco]LOC.

Here is an example from the Google Cloud Natural Language API, with several
additional classes:

Figure 3.1: An NER example from the Google Cloud Natural Language API

Chapter 3

[73]

The most common tags are listed in the table below:

Type Example Tag Example
Person PER Gregory went to the castle.
Organization ORG WHO just issued an epidemic advisory.
Location LOC She lives in Seattle.
Money MONEY You owe me twenty dollars.
Percentage PERCENT Stocks have risen 10% today.
Date DATE Let's meet on Wednesday.
Time TIME Is it 5 pm already?

There are different data sets and tagging schemes that can be used to train NER
models. Different data sets will have different subsets of the tags listed above. In
other domains, there may be additional tags specific to the domain. The Defence
Science Technology Laboratory in the UK created a data set called re3d (https://
github.com/dstl/re3d), which has entity types such as vehicle (Boeing 777), weapon
(rifle), and military platform (tank). The availability of adequately sized labeled data
sets in various languages is a significant challenge. Here is a link to a good collection
of NER data sets: https://github.com/juand-r/entity-recognition-datasets. In
many use cases, you will need to spend a lot of time collecting and annotating data.
For example, if you are building a chatbot for ordering pizza, the entities could be
bases, sauces, sizes, and toppings.

There are a few different ways to build an NER model. If the sentence is considered
a sequence, then this task can be modeled as a word-by-word labeling task. Hence,
models similar to the models used for Part of Speech (POS) tagging are applicable.
Features can be added to a model to improve labeling. The POS of a word and
its neighboring words are the most straightforward features to add. Word shape
features that model lowercase letters can add a lot of information, principally
because a lot of the entity types deal with proper nouns, such as those for people
and organizations. Organization names can be abbreviated. For example, the World
Health Organization can be represented as WHO. Note that this feature will only
work in languages that distinguish between lowercase and uppercase letters.

Another vital feature involves checking a word in a gazetteer. A gazetteer is like
a database of important geographical entities. See geonames.org for an example of
a data set licensed under Creative Commons. A set of people's names in the USA
can be sourced from the US Social Security Administration at https://www.ssa.
gov/oact/babynames/state/namesbystate.zip. The linked ZIP file has the names of
people born in the United States since 1910, grouped by state. Similarly, Dunn and
Bradstreet, popularly known as D&B, offers a data set of companies with over 200
million businesses across the world that can be licensed. The biggest challenge with
this approach is the complexity of maintaining these lists over time.

https://github.com/dstl/re3d
https://github.com/dstl/re3d
https://github.com/juand-r/entity-recognition-datasets
http://geonames.org
https://www.ssa.gov/oact/babynames/state/namesbystate.zip
https://www.ssa.gov/oact/babynames/state/namesbystate.zip

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[74]

In this chapter, we will focus on a model that does not rely on additional external
data on top of labelled data for training, like a gazetteer, and also has no dependence
on hand-crafted features. We will try to get to as high a level of accuracy as possible
using deep neural networks and some additional techniques. The model we will
use will be a combination of BiLSTM and a CRF on top. This model is based on the
paper titled Neural Architectures for Named Entity Recognition, written by Guillaume
Lample et al. and presented at the NAACL-HTL conference in 2016. This paper was
state of the art in 2016 with an F1 score of 90.94. Currently, the SOTA has an F1-score
of 93.5, where the model uses extra training data. These numbers are measured on
the CoNLL 2003 English data set. The GMB data set will be used in this chapter. The
next section describes this data set.

The GMB data set
With all the basics in the bag, we are ready to build a model that classifies NERs. For
this task, the Groningen Meaning Bank (GMB) data set will be used. This dataset is
not considered a gold standard. This means that this data set is built using automatic
tagging software, followed by human raters updating subsets of the data. However,
this is a very large and rich data set. This data has a lot of useful annotations that
make it quite suitable for training models. It is also constructed from public domain
text, making it easy to use for training. The following named entities are tagged in
this corpus:

• geo = Geographical entity
• org = Organization
• per = Person
• gpe = Geopolitical entity
• tim = Time indicator
• art = Artifact
• eve = Event
• nat = Natural phenomenon

In each of these categories, there can be subcategories. For example, tim may
be further sub-divided and represented as tim-dow representing a time entity
corresponding to a day of the week, or tim-dat, which represents a date. For this
exercise, these sub-entities are going to be aggregated into the eight top-level entities
listed above. The number of examples varies widely between the sub-entities.
Consequently, the accuracy varies widely due to the lack of enough training data for
some of these subcategories.

Chapter 3

[75]

The data set also provides the NER entity for each word. In many cases, an entity
may comprise multiple words. If Hyde Park is a geographical entity, both words will
be tagged as a geo entity. In terms of training models for NER, there is another way
to represent this data that can have a significant impact on the accuracy of the model.
This requires the usage of the BIO tagging scheme. In this scheme, the first word
of an entity, single word or multi-word, is tagged with B-{entity tag}. If the entity is
multi-word, each successive word would be tagged as I-{entity tag}. In the example
above, Hyde Park would be tagged as B-geo I-geo. All these are steps of pre-processing
that are required for a data set. All the code for this example can be found in the NER
with BiLSTM and CRF.ipynb notebook in the chapter3-ner-with-lstm-crf folder of
the GitHub repository.

Let's get started by loading and processing the data.

Loading the data
Data can be downloaded from the University of Groningen website as follows:

alternate: download the file from the browser and put
in the same directory as this notebook
!wget https://gmb.let.rug.nl/releases/gmb-2.2.0.zip
!unzip gmb-2.2.0.zip

Please note that the data is quite large – over 800MB. If wget is not available on your
system, you may use any other tool such as, curl or a browser to download the data
set. This step may take some time to complete. If you have a challenge accessing
the data set from the University server, you may download a copy from Kaggle:
https://www.kaggle.com/bradbolliger/gmb-v220. Also note that since we are going
to be working on large data sets, some of the following steps may take some time to
execute. In the world of Natural Language Processing (NLP), more training data and
training time is key to great results.

The data unzips into the gmb-2.2.0 folder. The data subfolder has a number of
subfolders with different files. README supplied with the data set provides details
about the various files and their contents. For this example, we will be using only
files named en.tags in various subdirectories. These files are tab-separated files with
each word of a sentence in a row.

All the code for this example can be found in the NER with
BiLSTM and CRF.ipynb notebook in the chapter3-ner-with-
lstm-crf folder of the GitHub repository.

https://www.kaggle.com/bradbolliger/gmb-v220

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[76]

There are ten columns of information:

• The token itself
• A POS tag as used in the Penn Treebank (ftp://ftp.cis.upenn.edu/pub/

treebank/doc/tagguide.ps.gz)
• A lemma
• A named-entity tag, or 0 if none
• A WordNet word sense number for the respective lemma-POS combinations,

or 0 if not applicable (http://wordnet.princeton.edu)
• For verbs and prepositions, a list of the VerbNet roles of the arguments

in order of combination in the Combinatory Categorial Grammar (CCG)
derivation, or [] if not applicable (http://verbs.colorado.edu/~mpalmer/
projects/verbnet.html)

• Semantic relation in noun-noun compounds, possessive apostrophes,
temporal modifiers, and so on. Indicated using a preposition, or 0 if not
applicable

• An animacy tag as proposed by Zaenen et al. (2004), or 0 if not applicable
(http://dl.acm.org/citation.cfm?id=1608954)

• A supertag (lexical category of CCG)
• The lambda-DRS representing the semantics of the token in Boxer's Prolog

format

Out of these fields, we are going to use only the token and the named entity tag.
However, we will work through loading the POS tag for a future exercise. The
following code gets all the paths for these tags files:

import os
data_root = './gmb-2.2.0/data/'

fnames = []
for root, dirs, files in os.walk(data_root):
 for filename in files:
 if filename.endswith(".tags"):
 fnames.append(os.path.join(root, filename))

fnames[:2]

['./gmb-2.2.0/data/p57/d0014/en.tags', './gmb-2.2.0/data/p57/d0382/
en.tags']

ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
http://wordnet.princeton.edu
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://dl.acm.org/citation.cfm?id=1608954

Chapter 3

[77]

A few processing steps need to happen. Each file has a number of sentences, with
each words in a row. The entire sentence as a sequence and the corresponding
sequence of NER tags need to be fed in as inputs while training the model. As
mentioned above, the NER tags also need to be simplified to the top-level entities
only. Secondly, the NER tags need to be converted to the IOB format. IOB stands
for In-Other-Begin. These letters are used as a prefix to the NER tag. The sentence
fragment in the table below shows how this scheme works:

Reverend Terry Jones arrived in New York
B-per I-per I-per O O B-geo I-geo

The table above shows this tagging scheme after processing. Note that New York
is one location. As soon as New is encountered, it marks the start of the geo NER
tag, hence it is assigned B-geo. The next word is York, which is a continuation of
the same geographical entity. For any network, classifying the word New as the
start of the geographical entity is going to be very challenging. However, a BiLSTM
network would be able to see the succeeding words, which helps quite a bit with
disambiguation. Furthermore, the advantage of IOB tags is that the accuracy of the
model improves considerably in terms of detection. This happens because once
the beginning of an NER tag is detected, the choices for the next tag become quite
limited.

Let's get to the code. First, create a directory to store all the processed files:

!mkdir ner

We want to process the tags so that we strip the subcategories of the NER tags out.
It would also be nice to collect some stats on the types of tags in the documents:

import csv
import collections

ner_tags = collections.Counter()
iob_tags = collections.Counter()

def strip_ner_subcat(tag):
 # NER tags are of form {cat}-{subcat}
 # eg tim-dow. We only want first part
 return tag.split("-")[0]

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[78]

The NER tag and IOB tag counters are set up above. A method for stripping the
subcategory out of the NER tags is defined. The next method takes a sequence of
tags and converts them into IOB format:

def iob_format(ners):
 # converts IO tags into IOB format
 # input is a sequence of IO NER tokens
 # convert this: O, PERSON, PERSON, O, O, LOCATION, O
 # into: O, B-PERSON, I-PERSON, O, O, B-LOCATION, O
 iob_tokens = []
 for idx, token in enumerate(ners):
 if token != 'O': # !other
 if idx == 0:
 token = "B-" + token #start of sentence
 elif ners[idx-1] == token:
 token = "I-" + token # continues
 else:
 token = "B-" + token
 iob_tokens.append(token)
 iob_tags[token] += 1
 return iob_tokens

Once these two convenience functions are ready, all the tags files need to be read
and processed:

total_sentences = 0
outfiles = []
for idx, file in enumerate(fnames):
 with open(file, 'rb') as content:
 data = content.read().decode('utf-8').strip()
 sentences = data.split("\n\n")
 print(idx, file, len(sentences))
 total_sentences += len(sentences)

 with open("./ner/"+str(idx)+"-"+os.path.basename(file),
 'w') as outfile:
 outfiles.append("./ner/"+str(idx)+"-"+
os.path.basename(file))
 writer = csv.writer(outfile)

 for sentence in sentences:
 toks = sentence.split('\n')
 words, pos, ner = [], [], []

Chapter 3

[79]

 for tok in toks:
 t = tok.split("\t")
 words.append(t[0])
 pos.append(t[1])
 ner_tags[t[3]] += 1
 ner.append(strip_ner_subcat(t[3]))
 writer.writerow([" ".join(words),
 " ".join(iob_format(ner)),
 " ".join(pos)])

First, a counter is set for the number of sentences. A list of files written with paths
are also initialized. As processed files are written out, their paths are added to the
outfiles variable. This list will be used later to load all the data and to train the
model. Files are read and split into two empty newline characters. That is the marker
for the end of a sentence in the file. Only the actual words, POS tokens, and NER
tokens are used from the file. Once these are collected, a new CSV file is written with
three columns: the sentence, a sequence of POS tags, and a sequence of NER tags.
This step may take a little while to execute:

print("total number of sentences: ", total_sentences)

total number of sentences: 62010

To confirm the distribution of the NER tags before and after processing, we can use
the following code:

print(ner_tags)
print(iob_tags)

Counter({'O': 1146068, 'geo-nam': 58388, 'org-nam': 48034, 'per-nam':
23790, 'gpe-nam': 20680, 'tim-dat': 12786, 'tim-dow': 11404, 'per-tit':
9800, 'per-fam': 8152, 'tim-yoc': 5290, 'tim-moy': 4262, 'per-giv':
2413, 'tim-clo': 891, 'art-nam': 866, 'eve-nam': 602, 'nat-nam': 300,
'tim-nam': 146, 'eve-ord': 107, 'org-leg': 60, 'per-ini': 60, 'per-
ord': 38, 'tim-dom': 10, 'art-add': 1, 'per-mid': 1})
Counter({'O': 1146068, 'B-geo': 48876, 'B-tim': 26296, 'B-org': 26195,
'I-per': 22270, 'B-per': 21984, 'I-org': 21899, 'B-gpe': 20436,
'I-geo': 9512, 'I-tim': 8493, 'B-art': 503, 'B-eve': 391, 'I-art': 364,
'I-eve': 318, 'I-gpe': 244, 'B-nat': 238, 'I-nat': 62})

As is evident, some tags were very infrequent, like tim-dom. It would be next to
impossible for a network to learn them. Aggregating up one level helps increase the
signal for these tags. To check if the entire process completed properly, check that
the ner folder has 10,000 files. Now, let us load the processed data to normalize,
tokenize, and vectorize it.

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[80]

Normalizing and vectorizing data
For this section, pandas and numpy methods will be used. The first step is to load the
contents of the processed files into one DataFrame:

import glob
import pandas as pd

could use `outfiles` param as well
files = glob.glob("./ner/*.tags")

data_pd = pd.concat([pd.read_csv(f, header=None,
 names=["text", "label", "pos"])
 for f in files], ignore_index = True)

This step may take a while given that it is processing 10,000 files. Once the content
is loaded, we can check the structure of the DataFrame:

data_pd.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62010 entries, 0 to 62009
Data columns (total 3 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 text 62010 non-null object
 1 label 62010 non-null object
 2 pos 62010 non-null object
dtypes: object(3)
memory usage: 1.4+ MB

Both the text and NER tags need to be tokenized and encoded into numbers for
use in training. We are going to be using core methods provided by the keras.
preprocessing package. First, the tokenizer will be used to tokenize the text. In this
example, the text only needs to be tokenized by white spaces, as it has been broken
up already:

Keras tokenizer
from tensorflow.keras.preprocessing.text import Tokenizer
text_tok = Tokenizer(filters='[\\]^\t\n', lower=False,
 split=' ', oov_token='<OOV>')

pos_tok = Tokenizer(filters='\t\n', lower=False,
 split=' ', oov_token='<OOV>')

Chapter 3

[81]

ner_tok = Tokenizer(filters='\t\n', lower=False,
 split=' ', oov_token='<OOV>')

The default values for the tokenizer are quite reasonable. However, in this particular
case, it is important to only tokenize on spaces and not clean the special characters
out. Otherwise the data will become mis-formatted:

text_tok.fit_on_texts(data_pd['text'])
pos_tok.fit_on_texts(data_pd['pos'])
ner_tok.fit_on_texts(data_pd['label'])

This tokenizer has some useful features. It provides a way to restrict the size of
the vocabulary by word counts, TF-IDF, and so on. If the num_words parameter is
passed with a numeric value, the tokenizer will limit the number of tokens by word
frequencies to that number. The fit_on_texts method takes in all the texts, tokenizes
them, and constructs dictionaries with tokens that will be used later to tokenize
and encode in one go. A convenience function, get_config(), can be called after the
tokenizer has been fit on texts to provide information about the tokens:

ner_config = ner_tok.get_config()
text_config = text_tok.get_config()
print(ner_config)

{'num_words': None, 'filters': '\t\n', 'lower': False, 'split': ' ',
'char_level': False, 'oov_token': '<OOV>', 'document_count': 62010,
'word_counts': '{"B-geo": 48876, "O": 1146068, "I-geo": 9512, "B-per":
21984, "I-per": 22270, "B-org": 26195, "I-org": 21899, "B-tim": 26296,
"I-tim": 8493, "B-gpe": 20436, "B-art": 503, "B-nat": 238, "B-eve":
391, "I-eve": 318, "I-art": 364, "I-gpe": 244, "I-nat": 62}', 'word_
docs': '{"I-geo": 7738, "O": 61999, "B-geo": 31660, "B-per": 17499,
"I-per": 13805, "B-org": 20478, "I-org": 11011, "B-tim": 22345,
"I-tim": 5526, "B-gpe": 16565, "B-art": 425, "B-nat": 211, "I-eve":
201, "B-eve": 361, "I-art": 207, "I-gpe": 224, "I-nat": 50}', 'index_
docs': '{"10": 7738, "2": 61999, "3": 31660, "7": 17499, "6": 13805,
"5": 20478, "8": 11011, "4": 22345, "11": 5526, "9": 16565, "12": 425,
"17": 211, "15": 201, "13": 361, "14": 207, "16": 224, "18": 50}',

Even though we do not use the POS tags, the processing for them is
included. Use of the POS tags can have an impact on the accuracy
of an NER model. Many NER entities are nouns, for example.
However, we will see how to process POS tags but not use them in
the model as features. This is left as an exercise to the reader.

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[82]

'index_word': '{"1": "<OOV>", "2": "O", "3": "B-geo", "4": "B-tim",
"5": "B-org", "6": "I-per", "7": "B-per", "8": "I-org", "9": "B-gpe",
"10": "I-geo", "11": "I-tim", "12": "B-art", "13": "B-eve", "14":
"I-art", "15": "I-eve", "16": "I-gpe", "17": "B-nat", "18": "I-nat"}',
'word_index': '{"<OOV>": 1, "O": 2, "B-geo": 3, "B-tim": 4, "B-org": 5,
"I-per": 6, "B-per": 7, "I-org": 8, "B-gpe": 9, "I-geo": 10, "I-tim":
11, "B-art": 12, "B-eve": 13, "I-art": 14, "I-eve": 15, "I-gpe": 16,
"B-nat": 17, "I-nat": 18}'}

The index_word dictionary property in the config provides a mapping between
IDs and tokens. There is a considerable amount of information in the config. The
vocabularies can be obtained from the config:

text_vocab = eval(text_config['index_word'])
ner_vocab = eval(ner_config['index_word'])

print("Unique words in vocab:", len(text_vocab))
print("Unique NER tags in vocab:", len(ner_vocab))

Unique words in vocab: 39422
Unique NER tags in vocab: 18

Tokenizing and encoding text and named entity labels is quite easy:

x_tok = text_tok.texts_to_sequences(data_pd['text'])
y_tok = ner_tok.texts_to_sequences(data_pd['label'])

Since sequences are of different sizes, they will all be padded or truncated to a size
of 50 tokens. A helper function is used for this task:

now, pad sequences to a maximum length
from tensorflow.keras.preprocessing import sequence

max_len = 50

x_pad = sequence.pad_sequences(x_tok, padding='post',
 maxlen=max_len)
y_pad = sequence.pad_sequences(y_tok, padding='post',
 maxlen=max_len)
print(x_pad.shape, y_pad.shape)

(62010, 50) (62010, 50)

Chapter 3

[83]

The last step above is to ensure that shapes are correct before moving to the next
step. Verifying shapes is a very important part of developing code in TensorFlow.

There is an additional step that needs to be performed on the labels. Since there are
multiple labels, each label token needs to be one-hot encoded like so:

num_classes = len(ner_vocab) + 1

Y = tf.keras.utils.to_categorical(y_pad, num_classes=num_classes)
Y.shape

(62010, 50, 19)

Now, we are ready to build and train a model.

A BiLSTM model
The first model we will try is a BiLSTM model. First, the basic constants need to be
set up:

Length of the vocabulary
vocab_size = len(text_vocab) + 1

The embedding dimension
embedding_dim = 64

Number of RNN units
rnn_units = 100

#batch size
BATCH_SIZE=90

num of NER classes
num_classes = len(ner_vocab)+1

Next, a convenience function for instantiating models is defined:

from tensorflow.keras.layers import Embedding, Bidirectional, LSTM,
TimeDistributed, Dense

dropout=0.2
def build_model_bilstm(vocab_size, embedding_dim, rnn_units, batch_
size, classes):

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[84]

 model = tf.keras.Sequential([
 Embedding(vocab_size, embedding_dim, mask_zero=True,
 batch_input_shape=[batch_size,
 None]),
 Bidirectional(LSTM(units=rnn_units,
 return_sequences=True,
 dropout=dropout,
 kernel_initializer=\
 tf.keras.initializers.he_normal())),
 TimeDistributed(Dense(rnn_units, activation='relu')),
 Dense(num_classes, activation="softmax")
])

We are going to train our own embeddings. The next chapter will talk about using
pre-trained embeddings and using them in models. After the embedding layer,
there is a BiLSTM layer, followed by a TimeDistributed dense layer. This last
layer is different from the sentiment analysis model, where there was only a single
unit for binary output. In this problem, for each word in the input sequence, an
NER token needs to be predicted. So, the output has as many tokens as the input
sequence. Consequently, output tokens correspond 1-to-1 with input tokens and
are classified as one of the NER classes. The TimeDistributed layer provides this
capability. The other thing to note in this model is the use of regularization. It is
important that the model does not overfit the training data. Since LSTMs have high
model capacity, using regularization is very important. Feel free to play with some
of these hyperparameters to get a feel for how the model will react.

Now the model can be compiled:

model = build_model_bilstm(
 vocab_size = vocab_size,
 embedding_dim=embedding_dim,
 rnn_units=rnn_units,
 batch_size=BATCH_SIZE,
 classes=num_classes)
model.summary()
model.compile(optimizer="adam", loss="categorical_crossentropy",
 metrics=["accuracy"])

Model: "sequential_1"
Layer (type) Output Shape Param #
===
embedding_9 (Embedding) (90, None, 64) 2523072

Chapter 3

[85]

bidirectional_9 (Bidirection (90, None, 200) 132000

time_distributed_6 (TimeDist (None, None, 100) 20100

dense_16 (Dense) (None, None, 19) 1919
===
Total params: 2,677,091
Trainable params: 2,677,091
Non-trainable params: 0

This simplistic model has over 2.6 million parameters!

This model is ready for training. The last thing that is needed is to split the data into
train and test sets:

to enable TensorFlow to process sentences properly
X = x_pad
create training and testing splits
total_sentences = 62010
test_size = round(total_sentences / BATCH_SIZE * 0.2)
X_train = X[BATCH_SIZE*test_size:]
Y_train = Y[BATCH_SIZE*test_size:]

X_test = X[0:BATCH_SIZE*test_size]
Y_test = Y[0:BATCH_SIZE*test_size]

Now, the model is ready for training:

model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=15)

Train on 49590 samples
Epoch 1/15

If you notice, the bulk of the parameters are coming from the size
of the vocabulary. The vocabulary has 39,422 words. This increases
the model training time and computational capacity required.
One way to reduce this is to make the vocabulary size smaller.
The easiest way to do this would be to only consider words that
have more than a certain frequency of occurrence or to remove
words smaller than a certain number of characters. The vocabulary
can also be reduced by converting all characters to lower case.
However, in NER, case is a very important feature.

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[86]

49590/49590 [==============================] - 20s 409us/sample - loss:
0.1736 - accuracy: 0.9113
...
Epoch 8/15
49590/49590 [==============================] - 15s 312us/sample - loss:
0.0153 - accuracy: 0.9884
...
Epoch 15/15
49590/49590 [==============================] - 15s 312us/sample - loss:
0.0065 - accuracy: 0.9950

Over 15 epochs of training, the model is doing quite well with over 99% accuracy.
Let's see how the model performs on the test set and whether the regularization
helped:

model.evaluate(X_test, Y_test, batch_size=BATCH_SIZE)

12420/12420 [==============================] - 3s 211us/sample - loss:
0.0926 - accuracy: 0.9624

The model performs well on the test data set, with over 96.5% accuracy. The
difference between the train and test accuracies is still there, implying that the model
could use some additional regularization. You can play with the dropout variable
or add additional dropout layers between the embedding and BiLSTM layers, and
between the TimeDistributed layer and the final Dense layer.

Here is an example of a sentence fragment tagged by this model:

Faure Gnassingbe said in a speech carried by state media Friday
Actual B-per I-per O O O O O O O O B-tim
Model B-per I-per O O O O O O O O B-tim

This model is not doing poorly at all. It was able to identify the person and time
entities in the sentence.

As good as this model is, it does not use an important characteristic of named entity
tags – a given tag is highly correlated with the tag coming after it. CRFs can take
advantage of this information and further improve the accuracy of NER tasks. Let's
understand how CRFs work and add them to the network above next.

Chapter 3

[87]

Conditional random fields (CRFs)
BiLSTM models look at a sequence of input words and predict the label for the
current word. In making this determination, only the information of previous inputs
is considered. Previous predictions play no role in making this decision. However,
there is information encoded in the sequence of labels that is being discounted.
To illustrate this point, consider a subset of NER tags: O, B-Per, I-Per, B-Geo, and
I-Geo. This represents two domains of person and geographical entities and an
Other category for everything else. Based on the structure of IOB tags, we know
that any I- tag must be preceded by a B-I from the same domain. This also implies
that an I- tag cannot be preceded by an O tag. The following diagram shows the
possible state transitions between these tags:

Figure 3.2: Possible NER tag transitions

Figure 3.2 color codes similar types of transitions with the same color. An O tag can
transition only to a B tag. A B tag can go to its corresponding I tag or back to the O
tag. An I tag can transition back to itself, an O tag, or a B tag of a different domain
(not represented in the diagram for simplicity). For a set of N tags, these transitions
can be represented by a matrix of dimension N x N. Pi,j denotes the possibility of
tag j coming after tag i. Note that these transition weights can be learned based on
the data. Such a learned transition weights matrix could be used during prediction
to consider the entire sequence of predicted labels and make updates to the
probabilities.

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[88]

Here is an illustrative matrix with indicative transition weights:

From > To O B-Geo I-Geo B-Org I-Org

O 3.28 2.20 0.00 3.66 0.00

B-Geo -0.25 -0.10 4.06 0.00 0.00

I-Geo -0.17 -0.61 3.51 0.00 0.00

B-Org -0.10 -0.23 0.00 -1.02 4.81

I-Org -0.33 -1.75 0.00 -1.38 5.10

As per the table above, the weight of the edge connecting I-Org to B-Org has a
weight of -1.38, implying that this transition is extremely unlikely to happen.
Practically, implementing a CRF has three main steps. The first step is modifying
the score generated by the BiLSTM layer and accounting for the transition weights,
as shown above. A sequence of predictions𝒚𝒚 𝒚 𝒚𝒚𝒚1, 𝒚𝒚2, … , 𝒚𝒚𝑛𝑛)
generated by the BiLSTM layer above for a sequence of n tags in the space of k
unique tags is available, which operates on an input sequence X. P represents a
matrix of dimensions n × k, where the element Pi,j represents the probability of jth tag
for output at the position yi. Let A be a square matrix of transition probabilities as
shown above, with a dimension of (k + 2) × (k + 2) where two additional tokens are
added for start- and end-of-sentence markers. Element Ai,j represents the transition
probability from i to tag j. Using these values, a new score can be calculated like so:

𝑠𝑠(𝑿𝑿𝑿 𝑿𝑿) = ∑ 𝐴𝐴𝑦𝑦𝑖𝑖𝑿𝑦𝑦𝑖𝑖𝑖𝑖 + ∑ 𝑃𝑃𝑖𝑖𝑿𝑦𝑦𝑖𝑖
𝑛𝑛

𝑖𝑖𝑖𝑖
𝑛𝑛

𝑖𝑖𝑖𝑖

Chapter 3

[89]

A softmax can be calculated over all possible tag sequences to get the probability for
a given sequence y:

𝑝𝑝(𝒚𝒚|𝑿𝑿) = 𝑒𝑒𝑠𝑠(𝑿𝑿𝑠𝒚𝒚)∑ 𝑦𝑦𝑦 𝑦 𝑦𝑦𝑋𝑋𝑒𝑒𝑠𝑠(𝑿𝑿𝑠�̃�𝒚)

YX represents all possible tag sequences, including those that may not conform to the
IOB tag format. To train using this softmax, a log-likelihood can be calculated over
this. Through clever use of dynamic programming, a combinatorial explosion can be
avoided, and the denominator can be computed quite efficiently.

While decoding, the output sequence is the one that has the maximum score among
these possible sequences, calculated conceptually using an argmax style function. The
Viterbi algorithm is commonly used to implement a dynamic programming solution
for decoding. First, let us code the model and the training for it before getting into
decoding.

NER with BiLSTM and CRFs
Implementing a BiLSTM network with CRFs requires adding a CRF layer on top
of the BiLSTM network developed above. However, a CRF is not a core part of the
TensorFlow or Keras layers. It is available through the tensorflow_addons or tfa
package. The first step is to install this package:

!pip install tensorflow_addons==0.11.2

Only simplistic math is shown to help build an intuition of how
this method works. The actual computations will become clear in
the custom layer implementation below.

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[90]

There are many sub-packages, but the convenience functions for the CRF are in the
tfa.text subpackage:

Figure 3.3: tfa.text methods

While low-level methods for implementing the CRF layer are provided, a high-level
layer-like construct is not provided. The implementation of a CRF requires a custom
layer, a loss function, and a training loop. Post training, we will look at how to
implement a customized inference function that will use Viterbi decoding.

Chapter 3

[91]

Implementing the custom CRF layer, loss, and
model
Similar to the flow above, there will be an embedding layer and a BiLSTM layer.
The output of the BiLSTM needs to be evaluated with the CRF log-likelihood loss
described above. This is the loss that needs to be used to train the model. The
first step in implementation is creating a custom layer. Implementing a custom
layer in Keras requires subclassing keras.layers.Layer. The main method to be
implemented is call(), which takes inputs to the layer, transforms them, and
returns the result. Additionally, the constructor to the layer can also set up any
parameters that are needed. Let's start with the constructor:

from tensorflow.keras.layers import Layer
from tensorflow.keras import backend as K

class CRFLayer(Layer):
 """
 Computes the log likelihood during training
 Performs Viterbi decoding during prediction
 """
 def __init__(self,
 label_size, mask_id=0,
 trans_params=None, name='crf',
 **kwargs):
 super(CRFLayer, self).__init__(name=name, **kwargs)
 self.label_size = label_size
 self.mask_id = mask_id
 self.transition_params = None

 if trans_params is None: # not reloading pretrained params
 self.transition_params = tf.Variable(
tf.random.uniform(shape=(label_size, label_size)),
 trainable=False)
 else:
 self.transition_params = trans_params

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[92]

The main parameters that are needed are:

• The number of labels and the transition matrix: As described in the section
above, a transition matrix needs to be learned. The dimension of that square
matrix is the number of labels. The transition matrix is initialized using
the parameters. This transition parameters matrix is not trainable through
gradient descent. It is calculated as a consequence of computing the log-
likelihoods. The transition parameters matrix can also be passed into this
layer if it has been learned in the past.

• The mask id: Since the sequences are padded, it is important to recover the
original sequence lengths for computing transition scores. By convention, a
value of 0 is used for the mask, and that is the default. This parameter is set
up for future configurability.

The second method is to compute the result of applying this layer. Note that as a
layer, the CRF layer merely regurgitates the outputs during training time. The CRF
layer is useful only during inference. At inference time, it uses the transition matrix
and logic to correct the sequences' output by the BiLSTM layers before returning
them. For now, this method is quite simple:

def call(self, inputs, seq_lengths, training=None):

 if training is None:
 training = K.learning_phase()

 # during training, this layer just returns the logits
 if training:
 return inputs
 return inputs # to be replaced later

This method takes the inputs as well as a parameter that helps specify if this method
is called during training or during inference. If this variable is not passed, it is pulled
from the Keras backend. When models are trained with the fit() method, learning_
phase() returns True. When the .predict() method is called on a model, this flag is
set to false.

As sequences being passed are masked, this layer needs to know the real sequence
lengths during inference time for decoding. A variable is passed for it but is unused
at this time. Now that the basic CRF layer is ready, let's build the model.

Chapter 3

[93]

A custom CRF model
Since the model builds on a number of preexisting layers in addition to the custom
CRF layer above, explicit imports help the readability of the code:

from tensorflow.keras import Model, Input, Sequential
from tensorflow.keras.layers import LSTM, Embedding, Dense,
TimeDistributed
from tensorflow.keras.layers import Dropout, Bidirectional
from tensorflow.keras import backend as K

The first step is to define a constructor that will create the various layers and store
the appropriate dimensions:

class NerModel(tf.keras.Model):
 def __init__(self, hidden_num, vocab_size, label_size,
 embedding_size,
 name='BilstmCrfModel', **kwargs):
 super(NerModel, self).__init__(name=name, **kwargs)
 self.num_hidden = hidden_num
 self.vocab_size = vocab_size
 self.label_size = label_size

 self.embedding = Embedding(vocab_size, embedding_size,
 mask_zero=True,
 name="embedding")
 self.biLSTM =Bidirectional(LSTM(hidden_num,
 return_sequences=True),
 name="bilstm")
 self.dense = TimeDistributed(tf.keras.layers.Dense(
 label_size), name="dense")
 self.crf = CRFLayer(self.label_size, name="crf")

This constructor takes in the number of hidden units for the BiLSTM later, the size of
words in the vocabulary, the number of NER labels, and the size of the embeddings.
Additionally, a default name is set by the constructor, which can be overridden at
the time of instantiation. Any additional parameters supplied are passed along as
keyword arguments.

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[94]

During training and prediction, the following method will be called:

def call(self, text, labels=None, training=None):
 seq_lengths = tf.math.reduce_sum(
tf.cast(tf.math.not_equal(text, 0), dtype=tf.int32), axis=-1)

 if training is None:
 training = K.learning_phase()

 inputs = self.embedding(text)
 bilstm = self.biLSTM(inputs)
 logits = self.dense(bilstm)
 outputs = self.crf(logits, seq_lengths, training)

 return outputs

So, in a few lines of code, we have implemented a customer model using the custom
CRF layer developed above. The only thing that we need now to train this model is a
loss function.

A custom loss function for NER using a CRF
Let's implement the loss function as part of the CRF layer, encapsulated in a function
of the same name. Note that when this function is called, it is usually passed the
labels and predicted values. We will model our loss function on the custom loss
functions in TensorFlow. Add this code to the CRF layer class:

 def loss(self, y_true, y_pred):
 y_pred = tf.convert_to_tensor(y_pred)
 y_true = tf.cast(self.get_proper_labels(y_true), y_pred.dtype)

 seq_lengths = self.get_seq_lengths(y_true)
 log_likelihoods, self.transition_params =\
tfa.text.crf_log_likelihood(y_pred,
 y_true, seq_lengths)

 # save transition params
 self.transition_params = tf.Variable(self.transition_params,
 trainable=False)
 # calc loss
 loss = - tf.reduce_mean(log_likelihoods)
 return loss

Chapter 3

[95]

This function takes the true labels and predicted labels. Both of these tensors are
usually of the shape (batch size, max sequence length, number of NER labels).
However, the log-likelihood function in the tfa package expects the labels to be
in a (batch size, max sequence length)-shaped tensor. So a convenience function,
implemented as part of the CRF layer and shown below, is used to perform the
conversion of label shapes:

 def get_proper_labels(self, y_true):
 shape = y_true.shape
 if len(shape) > 2:
 return tf.argmax(y_true, -1, output_type=tf.int32)
 return y_true

The log-likelihood function also requires the actual sequence lengths for each
example. These sequence lengths can be computed from the labels and the mask
identifier that was set up in the constructor of this layer (see above). This process is
encapsulated in another convenience function, also part of the CRF layer:

 def get_seq_lengths(self, matrix):
 # matrix is of shape (batch_size, max_seq_len)
 mask = tf.not_equal(matrix, self.mask_id)
 seq_lengths = tf.math.reduce_sum(
 tf.cast(mask, dtype=tf.int32),
 axis=-1)

 return seq_lengths
First, a Boolean mask is generated from the labels by comparing the value of the
label to the mask ID. Then, through casting the Boolean as an integer and summing
across the row, the length of the sequence is regenerated. Now, the tfa.text.crf_
log_likelihood() function is called to calculate and return the log-likelihoods and
the transition matrix. The CRF layer's transition matrix is updated with the transition
matrix returned from the function call. Finally, the loss is computed by summing up
all the log-likelihoods returned.

At this point, our coded custom model is ready to start training. We will need to set
up the data and create a custom training loop.

Implementing custom training
The model needs to be instantiated and initialized for training:

Length of the vocabulary
vocab_size = len(text_vocab) + 1

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[96]

The embedding dimension
embedding_dim = 64

Number of RNN units
rnn_units = 100

#batch size
BATCH_SIZE=90

num of NER classes
num_classes = len(ner_vocab) + 1

blc_model = NerModel(rnn_units, vocab_size, num_classes,
embedding_dim, dynamic=True)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)

As in past examples, an Adam optimizer will be used. Next, we will construct
tf.data.DataSet from the DataFrames loaded in the BiLSTM section above:

create training and testing splits
total_sentences = 62010
test_size = round(total_sentences / BATCH_SIZE * 0.2)
X_train = x_pad[BATCH_SIZE*test_size:]
Y_train = Y[BATCH_SIZE*test_size:]

X_test = x_pad[0:BATCH_SIZE*test_size]
Y_test = Y[0:BATCH_SIZE*test_size]
Y_train_int = tf.cast(Y_train, dtype=tf.int32)

train_dataset = tf.data.Dataset.from_tensor_slices((X_train,
Y_train_int))
train_dataset = train_dataset.batch(BATCH_SIZE,
drop_remainder=True)

Roughly 20% of the data is reserved for testing. The rest is used for training.

To implement a custom training loop, TensorFlow 2.0 exposes a gradient tape. This
allows low-level management of the main steps required for training any model with
gradient descent. These steps are:

1. Computing the forward pass predictions
2. Computing the loss when these predictions are compared with the labels

Chapter 3

[97]

3. Computing the gradients for the trainable parameters based on the loss and
then using the optimizer to adjust the weights

Let us train this model for 5 epochs and watch the loss as training progresses.
Compare this to the 15 epochs of training for the previous model. The custom
training loop is shown below:

loss_metric = tf.keras.metrics.Mean()

epochs = 5

Iterate over epochs.
for epoch in range(epochs):
 print('Start of epoch %d' % (epoch,))

 # Iterate over the batches of the dataset.
 for step, (text_batch, labels_batch) in enumerate(
train_dataset):
 labels_max = tf.argmax(labels_batch, -1,
output_type=tf.int32)
 with tf.GradientTape() as tape:
 logits = blc_model(text_batch, training=True)
 loss = blc_model.crf.loss(labels_max, logits)

 grads = tape.gradient(loss,
blc_model.trainable_weights)
 optimizer.apply_gradients(zip(grads,
blc_model.trainable_weights))

 loss_metric(loss)
 if step % 50 == 0:
 print('step %s: mean loss = %s' %
(step, loss_metric.result()))

A metric is created to keep track of the average loss over time. For 5 epochs,
inputs and labels are pulled from the training data set, one batch at a time. Using
tf.GradientTape() to keep track of the operations, the steps outlined in the bullets
above are implemented. Note that we pass the trainable variable manually as this
is a custom training loop. Finally, the loss metric is printed every 50th step to show
training progress. This yields the results below, which have been abbreviated:

Start of epoch 0
step 0: mean loss = tf.Tensor(71.14853, shape=(), dtype=float32)

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[98]

step 50: mean loss = tf.Tensor(31.064453, shape=(), dtype=float32)
...
Start of epoch 4
step 0: mean loss = tf.Tensor(4.4125915, shape=(), dtype=float32)
step 550: mean loss = tf.Tensor(3.8311224, shape=(), dtype=float32)

Given we implemented a custom training loop, without requiring a compilation of
the model, we could not obtain a summary of the model parameters before. To get an
idea of the size of the model, a summary can be obtained now:

blc_model.summary()

Model: "BilstmCrfModel"

Layer (type) Output Shape Param #
===
embedding (Embedding) multiple 2523072

bilstm (Bidirectional) multiple 132000

dense (TimeDistributed) multiple 3819

crf (CRFLayer) multiple 361
===
Total params: 2,659,252
Trainable params: 2,658,891
Non-trainable params: 361

It is comparable in size to the previous model but has some untrainable parameters.
These are coming from the transition matrix. The transition matrix is not learned
through gradient descent. Thus, they are classified as non-trainable parameters.

However, training loss is hard to interpret. To compute accuracy, we need to
implement decoding, which is the focus of the next section. For the moment, let's
assume that decoding is available and examine the results of training for 5 epochs.
For illustration purposes, here is a sentence from the test set with the results pulled
at the end of the first epoch and at the end of five epochs.

The example sentence is:

Writing in The Washington Post newspaper , Mr. Ushakov also
said it is inadmissible to move in the direction of demonizing Russia .

Chapter 3

[99]

The corresponding true label is:

O O B-org I-org I-org O O B-per B-org O O O O O O O O O O O O B-geo O

This is a difficult example for NER with The Washington Post as a three-word
organization, where the first word is very common and used in multiple contexts,
and the second word is also the name of a geographical location. Also note the
imperfect labels of the GMB data set, where the second tag of the name Ushakov
is tagged as an organization. At the end of the first epoch of training, the model
predicts:

O O O B-geo I-org O O B-per I-per O O O O O O O O O O O O B-geo O

It gets confused by the organization not being where it expects it to be. It also shows
that it hasn't learned the transition probabilities by putting an I-org tag after a B-geo
tag. However, it does not make a mistake in the person portion. Unfortunately for
the model, it will not get credit for this great prediction of the person tag, and due to
imperfect labels, it will still count as a miss. The result after five epochs of training is
better than the original:

O O B-org I-org I-org O O B-per I-per O O O O O O O O O O O O B-geo O

This is a great result, given the limited amount of training we have done. Now, let's
see how we can decode the sentence in the CRF layer to get these sequences. The
algorithm used for decoding is called the Viterbi decoder.

Viterbi decoding
A straightforward way to predict the sequence of labels is to output the label that
has the highest activation from the previous layers of the network. However, this
could be sub-optimal as it assumes that each label prediction is independent of
the previous or successive predictions. The Viterbi algorithm is used to take the
predictions for each word in the sequence and apply a maximization algorithm
so that the output sequence has the highest likelihood. In future chapters, we will
see another way of accomplishing the same objective through beam search. Viterbi
decoding involves maximizing over the entire sequence as opposed to optimizing
at each word of the sequence. To illustrate this algorithm and way of thinking, let's
take an example of a sentence of 5 words, and a set of 3 labels. These labels could
be O, B-geo, and I-geo as an example.

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[100]

This algorithm needs the transition matrix values between labels. Recall that this was
generated and stored in the custom CRF layer above. Let's say that the matrix looks
like so:

From > To Mask O B-geo I-geo
Mask 0.6 0.3 0.2 0.01
O 0.8 0.5 0.6 0.01
B-geo 0.2 0.4 0.01 0.7
I-geo 0.3 0.4 0.01 0.5

To explain how the algorithm works, the figure shown below will be used:

Figure 3.4: Steps in the Viterbi decoder

The sentence starts from the left. Arrows from the start of the word to the first token
represent the probability of the transition between the two tokens. The numbers
on the arrows should match the values in the transition matrix above. Within
the circles denoting labels, scores generated by the neural network, the BiLSTM
model, in our case, are shown for the first word. These scores need to be added
together to give the final score of the words. Note that we switched the terminology
from probabilities to scores as normalization is not being performed for this
particular example.

Chapter 3

[101]

The probability of the first word label
Score of O: 0.3 (transition score) + 0.2 (activation score) = 0.5

Score of B-geo: 0.2 (transition score) + 0.3 (activation score) = 0.5

Score of I-geo: 0.01 (transition score) + 0.01 (activation score) = 0.02

At this point, it is equally likely that an O or B-geo tag will be the starting tag. Let's
consider the next tag and calculate the scores using the same approach for the
following sequences:

(O, B-geo) = 0.6 + 0.3 = 0.9 (B-geo, O) = 0.4 + 0.3 = 0.7
(O, I-geo) = 0.01+ 0.25 = 0.26 (B-geo, B-geo) = 0.01 + 0.3 = 0.31
(O, O) = 0.5 + 0.3 = 0.8 (B-geo, I-geo) = 0.7 + 0.25 = 0.95

This process is called the forward pass. It should also be noted, even though this is
a contrived example, that activations at a given input may not be the best predictor
of the right label for that word once the previous labels have been considered. If
the sentence was only two words, then the scores for various sequences could be
calculated by summing by each step:

(Start, O, B-Geo) = 0.5 + 0.9 = 1.4 (Start, B-Geo, O) = 0.5 + 0.7 = 1.2
(Start, O, O) = 0.5 + 0.8 = 1.3 (Start, B-geo, B-geo) = 0.5 + 0.31 = 0.81
(Start, O, I-Geo) = 0.5 + 0.26 = 0.76 (Start, B-geo, I-geo) = 0.5 + 0.95) = 1.45

If only the activation scores were considered, the most probable sequences would
be either (Start, B-geo, O) or (Start, B-geo, B-geo). However, using the transition scores
along with the activations means that the sequence with the highest probability
is (Start, B-geo, I-geo) in this example. While the forward pass gives the highest
score of the entire sequence given the last token, the backward pass process would
reconstruct the sequence that resulted in this highest score. This is essentially the
Viterbi algorithm, which uses dynamic programming to perform these steps in an
efficient manner.

Implementing this algorithm is aided by the fact the core computation is provided as
a method in the tfa package. This decoding step will be implemented in the call()
method of the CRF layer implemented above. Modify this method to look like so:

 def call(self, inputs, seq_lengths, training=None):
 if training is None:
 training = K.learning_phase()

 # during training, this layer just returns the logits

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[102]

 if training:
 return inputs

 # viterbi decode logic to return proper
 # results at inference
 _, max_seq_len, _ = inputs.shape
 seqlens = seq_lengths
 paths = []
 for logit, text_len in zip(inputs, seqlens):
 viterbi_path, _ = tfa.text.viterbi_decode(logit[:text_len],
 self.transition_params)
 paths.append(self.pad_viterbi(viterbi_path, max_seq_len))

 return tf.convert_to_tensor(paths)

The new lines added have been highlighted. The viterbi_decode() method takes
the activations from the previous layers and the transition matrix along with the
maximum sequence length to compute the path with the highest score. This score is
also returned, but we ignore it for our purposes of inference. This process needs to be
performed for each sequence in the batch. Note that this method returns sequences
on different lengths. This makes it harder to convert into tensors, so a utility function
is used to pad the returned sequences:

 def pad_viterbi(self, viterbi, max_seq_len):
 if len(viterbi) < max_seq_len:
 viterbi = viterbi + [self.mask_id] * \
 (max_seq_len - len(viterbi))
 return viterbi

Now that the layer is modified and ready, the model needs to be re-instantiated and
trained. Post-training, inference can be performed like so:

A dropout layer works completely opposite to the way this CRF
layer works. A dropout layer modifies the inputs only during
training time. During inference, it merely passes all the inputs
through.

Our CRF layer works in the exact opposite fashion. It passes the
inputs through during training, but it transforms inputs using
the Viterbi decoder during inference time. Note the use of the
training parameter to control the behavior.

Chapter 3

[103]

Y_test_int = tf.cast(Y_test, dtype=tf.int32)

test_dataset = tf.data.Dataset.from_tensor_slices((X_test,
 Y_test_int))
test_dataset = test_dataset.batch(BATCH_SIZE, drop_remainder=True)

out = blc_model.predict(test_dataset.take(1))

This will run inference on a small batch of testing data. Let's check the result for the
example sentence:

text_tok.sequences_to_texts([X_test[2]])

['Writing in The Washington Post newspaper , Mr. Ushakov also said it
is inadmissible to move in the direction of demonizing Russia . <OOV>
<OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV>
<OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV> <OOV>
<OOV> <OOV>']

As we can see in the highlighted output, the results are better than the actual data!

print("Ground Truth: ",
ner_tok.sequences_to_texts([tf.argmax(Y_test[2],
 -1).numpy()]))
print("Prediction: ", ner_tok.sequences_to_texts([out[2]]))

Ground Truth: ['O O B-org I-org I-org O O B-per B-org O O O O O O O O
O O O O B-geo O <OOV> <SNIP> <OOV>']
Prediction: ['O O B-org I-org I-org O O B-per I-per O O O O O O O O O
O O O B-geo O <OOV> <SNIP> <OOV>']

To get a sense of the accuracy of the training, a custom method needs to be
implemented. This is shown below:

def np_precision(pred, true):
 # expect numpy arrays
 assert pred.shape == true.shape
 assert len(pred.shape) == 2
 mask_pred = np.ma.masked_equal(pred, 0)
 mask_true = np.ma.masked_equal(true, 0)
 acc = np.equal(mask_pred, mask_true)
 return np.mean(acc.compressed().astype(int))

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

[104]

Using numpy's MaskedArray feature, the predictions and labels are compared and
converted to an integer array, and the mean is calculated to compute the accuracy:

np_precision(out, tf.argmax(Y_test[:BATCH_SIZE], -1).numpy())

0.9664461247637051

This is a pretty accurate model, just after 5 epochs of training and with very simple
architecture, all while using embeddings that are trained from scratch. A recall
metric can also be implemented in a similar fashion. A BiLSTM-only model, shown
earlier, took 15 epochs of training to get to a similar accuracy!

This completes the implementation of an NER model using BiLSTMs and CRFs.
If this is interesting and you would like to continue working on this, look for the
CoNLL 2003 data set for NER. Even today, papers are being published that aim to
improve the accuracy of the models based on that data set.

Summary
We have covered quite a lot of ground in this chapter. NER and its importance in
the industry were explained. To build NER models, BiLSTMs and CRFs are needed.
Using BiLSTMs, which we learned about in the previous chapter while building
a sentiment classification model, we built a first version of a model that can label
named entities. This model was further improved using CRFs. In the process of
building these models, we covered the use of the TensorFlow DataSet API. We also
built advanced models for CRF mode by building a custom Keras layer, a custom
model, custom loss function, and a custom training loop.

Thus far, we have trained embeddings for tokens in the models. A considerable
amount of lift can be achieved by using pre-trained embeddings. In the next chapter,
we'll focus on the concept of transfer learning and the use of pre-trained embeddings
like BERT.

[105]

4
Transfer Learning with BERT

Deep learning models really shine with large amounts of training data. Having
enough labeled data is a constant challenge in the field, especially in NLP. A
successful approach that has yielded great results in the last couple of years is that
of transfer learning. A model is trained in an unsupervised or semi-supervised
way on a large corpus and then fine-tuned for a specific application. Such models
have shown excellent results. In this chapter, we will build on the IMDb movie
review sentiment analysis and use transfer learning to build models using GloVe
(Global Vectors for Word Representation) pre-trained embeddings and BERT (Bi-
Directional Encoder Representations from Transformers) contextual models. In
this chapter, we will cover the following topics:

• Overview of transfer learning and use in NLP
• Loading pre-trained GloVe embeddings in a model
• Building a sentiment analysis model using pre-trained GloVe embeddings

and fine-tuning
• Overview of contextual embeddings using Attention – BERT
• Loading pre-trained BERT models using the Hugging Face library
• Using pre-trained and custom BERT-based fine-tuned models for sentiment

analysis

Transfer learning is a core concept that has made rapid advances in NLP possible.
We will discuss transfer learning first.

Transfer Learning with BERT

[106]

Transfer learning overview
Traditionally, a machine learning model is trained for performance on a specific task.
It is only expected to work for that task and is not likely to have high performance
beyond that task. Let's take the example of the problem of classifying the sentiment
of IMDb movie reviews Chapter 2, Understanding Sentiment in Natural Language with
BiLSTMs. The model that was trained for this particular task was optimized for
performance on this task alone. A separate set of labeled data specific to a different
task is required if we wish to train another model. Building another model might
not be effective if there isn't enough labeled data for that task.

Transfer learning is the concept of learning a fundamental representation of the
data that can be adapted to different tasks. In the case of transfer learning, a more
abundantly available dataset may be used to distill knowledge and in building a
new ML model for a specific task. Through the use of this knowledge, this new ML
model can have decent performance even when there is not enough labeled data
available for a traditional ML approach to return good results. For this scheme to
be effective, there are a few important considerations:

• The knowledge distillation step, called pre-training, should have an
abundant amount of data available relatively cheaply

• Adaptation, often called fine-tuning, should be done with data that shares
similarities with the data used for pre-training

The figure below illustrates this concept:

Figure 4.1: Comparing traditional machine learning with transfer learning

Chapter 4

[107]

This technique has been very effective in computer vision. ImageNet is often used
as the dataset for pre-training. Specific models are then fine-tuned for a variety of
tasks such as image classification, object detection, image segmentation, and pose
detection, among others.

Types of transfer learning
The concepts of domains and tasks underpin the concept of transfer learning. A
domain represents a specific area of knowledge or data. News articles, social media
posts, medical records, Wikipedia entries, and court judgments could be considered
examples of different domains. A task is a specific objective or action within a
domain. Sentiment analysis and stance detection of tweets are specific tasks in the
social media posts domain. Detection of cancer and fractures could be different tasks
in the domain of medical records. Different types of transfer learning have different
combinations of source and target domains and tasks. Three main types of transfer
learning, namely domain adaptation, multi-task learning, and sequential learning,
are described below.

Domain adaptation
In this setting, the domains of source and target tasks are usually the same. However,
the differences are related to the distribution of training and testing data. This
case of transfer learning is related to a fundamental assumption in any machine
learning task – the assumption that training and testing data are i.i.d. The first i
stands for independent, which implies that each sample is independent of the others.
In practice, this assumption can be violated when there are feedback loops, like in
recommendation systems. The second section is i.d., which stands for identically
distributed and implies that the distribution of labels and other characteristics
between training and test samples is the same.

Suppose the domain was animal photos, and the task was identifying cats in the
photos. This task can be modeled as a binary classification problem. The identically
distributed assumption implies that the distribution of cats in the photos between
training and test samples is similar. This also implies that characteristics of photos,
such as resolutions, lighting conditions, and orientations, are very similar. In
practice, this assumption is also frequently violated.

There is a case about a very early perceptron model built to identify tanks in the
woods. The model was performing quite well on the training set. When the test set
was expanded, it was discovered that all the pictures of tanks in woods were taken
on sunny days, whereas the pictures of woods without tanks were taken on a cloudy
day.

Transfer Learning with BERT

[108]

In this case, the network learned to differentiate sunny and cloudy conditions more
than the presence or absence of tanks. During testing, the pictures supplied were
from a different distribution, but the same domain, which led to the model failing.

Dealing with similar situations is called domain adaptation. There are many
techniques for domain adaptation, one of which is data augmentation. In computer
vision, images in the training set can be cropped, warped, or rotated, and varying
amounts of exposure or contrast or saturation can be applied to them. These
transformations would increase the training data and could mitigate the gap between
training and potential testing data. Similar techniques are used in speech and audio
by adding random noises, including street sounds or background chatter, to an
audio sample. Domain adaptation techniques are well known in traditional machine
learning with several resources already available on it.

However, what makes transfer learning exciting is using data from a different source
domain or task for pre-training results in improvements in model performance on
a different task or domain. There are two types of transfer learning in this area.
The first one is multi-task learning, and the second one is sequential learning.

Multi-task learning
In multi-task learning, data from different but related tasks are passed through a
set of common layers. Then, there may be task-specific layers on the top that learn
about a particular task objective. Figure 4.2 shows the multi-task learning setting:

Figure 4.2: Multi-task transfer learning

Chapter 4

[109]

The output of these task-specific layers would be evaluated on different loss
functions. All the training examples for all the tasks are passed through all the
layers of the model. The task-specific layers are not expected to do well for all the
tasks. The expectation is that the common layers learn some of the underlying
structure that is shared by the different tasks. This information about structure
provides useful signals and improves the performance of all the models. The data
for each task has many features. However, these features may be used to construct
representations that can be useful in other related tasks.

Intuitively, people learn some elementary skills before mastering more complex
skills. Learning to write requires first becoming skilled in holding a pen or pencil.
Writing, drawing, and painting can be considered different tasks that share a
standard "layer" of holding a pen or pencil. The same concept applies while learning
a new language where the structure and grammar of one language may help with
learning a related language. Learning Latin-based languages like French, Italian,
and Spanish becomes more comfortable if one of the other Latin languages is
known, as these languages share word roots.

Multi-task learning increases the amount of data available for training by pooling
data from different tasks together. Further, it forces the network to generalize better
by trying to learn representations that are common across tasks in shared layers.

Multi-task learning is a crucial reason behind the recent success of models such as
GPT-2 and BERT. It is the most common technique used for pre-training models
that are then used for specific tasks.

Sequential learning
Sequential learning is the most common form of transfer learning. It is named so
because it involves two simple steps executed in sequence. The first step is pre-
training and the second step is fine-tuning. These steps are shown in Figure 4.3:

Figure 4.3: Sequential learning

Transfer Learning with BERT

[110]

The first step is to pre-train a model. The most successful pre-trained models use
some form of multi-task learning objectives, as depicted on the left side of the figure.
A portion of the model used for pre-training is then used for different tasks shown
on the right in the figure. This reusable part of the pre-trained model depends on the
specific architecture and may have a different set of layers. The reusable partition
shown in Figure 4.3 is just illustrative. In the second step, the pre-trained model is
loaded and added as the starting layer of a task-specific model. The weights learned
by the pre-trained model can be frozen during the training of the task-specific model,
or those weights can be updated or fine-tuned. When the weights are frozen, then
this pattern of using the pre-trained model is called feature extraction.

Generally, fine-tuning gives better performance than a feature extraction approach.
However, there are some pros and cons to both approaches. In fine-tuning, not all
weights get updated as the task-specific training data may be much smaller in size.
If the pre-trained model is an embedding for words, then other embeddings can
become stale. If the task is such that it has a small vocabulary or has many out-of-
vocabulary words, then this can hurt the performance of the model. Generally, if the
source and target tasks are similar, then fine-tuning would produce better results.

An example of such a pre-trained model is Word2vec, which we saw in Chapter
1, Essentials of NLP. There is another model of generating word-level embeddings
called GloVe or Global Vectors for Word Representation, introduced in 2014
by researchers from Stanford. Let's take a practical tour of transfer learning by
re-building the IMDb movie sentiment analysis using GloVe embeddings in the
next section. After that, we shall take a tour of BERT and apply BERT in the same
sequential learning setting.

IMDb sentiment analysis with GloVe
embeddings
In Chapter 2, Understanding Sentiment in Natural Language with BiLSTMs, a BiLSTM
model was built to predict the sentiment of IMDb movie reviews. That model
learned embeddings of the words from scratch. This model had an accuracy of
83.55% on the test set, while the SOTA result was closer to 97.4%. If pre-trained
embeddings are used, we expect an increase in model accuracy. Let's try this out
and see the impact of transfer learning on this model. But first, let's understand
the GloVe embedding model.

Chapter 4

[111]

GloVe embeddings
In Chapter 1, Essentials of NLP, we discussed the Word2Vec algorithm, which is based
on skip-grams with negative sampling. The GloVe model came out in 2014, a year
after the Word2Vec paper came out. The GloVe and Word2Vec models are similar
as the embeddings generated for a word are determined by the words that occur
around it. However, these context words occur with different frequencies. Some of
these context words appear more frequently in the text compared to other words.
Due to this difference in frequencies of occurrence, training data for some words
may be more common than other words.

Beyond this part, Word2Vec does not use these statistics of co-occurrence in any
way. GloVe takes these frequencies into account and posits that the co-occurrences
provide vital information. The Global part of the name refers to the fact that the
model considers these co-occurrences over the entire corpus. Rather than focus
on the probabilities of co-occurrence, GloVe focuses on the ratios of co-occurrence
considering probe words.

In the paper, the authors take the example of the words ice and steam to illustrate
the concept. Let's say that solid is another word that is going to be used to probe
the relationship between ice and steam. A probability of occurrence of solid given
steam is psolid|steam. Intuitively, we expect this probability to be small. Conversely, the
probability of occurrence of solid with ice is represented by psolid|ice and is expected

to be large. If 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is computed, we expect this value to be significant. If the

same ratio is computed with the probe word being gas, the opposite behavior would
be expected. In cases where both are equally probable, either due to the probe word
being unrelated, or equally probable to occur with the two words, then the ratio
should be closer to 1. An example of a probe word close to both ice and steam is
water. An example of a word unrelated to ice or steam is fashion. GloVe ensures that
this relationship is factored into the embeddings generated for the words. It also has
optimizations for rare co-occurrences, numerical stability issues computation, and
others.

Now let us see how to use these pre-trained embeddings for predicting sentiment.
The first step is to load the data. The code here is identical to the code used in Chapter
2, Understanding Sentiment in Natural Language with BiLSTMs; it's provided here for
the sake of completeness.

All the code for this exercise is in the file imdb-transfer-
learning.ipynb located in the chapter4-Xfer-learning-BERT
directory in GitHub.

Transfer Learning with BERT

[112]

Loading IMDb training data
TensorFlow Datasets or the tfds package will be used to load the data:

import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np
import pandas as pd

imdb_train, ds_info = tfds.load(name="imdb_reviews",
 split="train",
 with_info=True, as_supervised=True)

imdb_test = tfds.load(name="imdb_reviews", split="test",
 as_supervised=True)

Note that the additional 50,000 reviews that are unlabeled are ignored for the
purpose of this exercise. After the training and test sets are loaded as shown above,
the content of the reviews needs to be tokenized and encoded:

Use the default tokenizer settings
tokenizer = tfds.features.text.Tokenizer()

vocabulary_set = set()
MAX_TOKENS = 0

for example, label in imdb_train:
 some_tokens = tokenizer.tokenize(example.numpy())
 if MAX_TOKENS < len(some_tokens):
 MAX_TOKENS = len(some_tokens)
 vocabulary_set.update(some_tokens)

The code shown above tokenizes the review text and constructs a vocabulary.
This vocabulary is used to construct a tokenizer:

imdb_encoder = tfds.features.text.TokenTextEncoder(vocabulary_set,
 lowercase=True,
 tokenizer=tokenizer)
vocab_size = imdb_encoder.vocab_size

print(vocab_size, MAX_TOKENS)

93931 2525

Chapter 4

[113]

Note that text was converted to lowercase before encoding. Converting to lowercase
helps reduce the vocabulary size and may benefit the lookup of corresponding GloVe
vectors later on. Note that capitalization may contain important information, which
may help in tasks such as NER, which we covered in previous chapters. Also note
that all languages do not distinguish between capital and small letters. Hence, this
particular transformation should be applied after due consideration.

Now that the tokenizer is ready, the data needs to be tokenized, and sequences
padded to a maximum length. Since we are interested in comparing performance
with the model trained in Chapter 2, Understanding Sentiment in Natural Language with
BiLSTMs, we can use the same setting of sampling a maximum of 150 words of the
review. The following convenience methods help in performing this task:

transformation functions to be used with the dataset
from tensorflow.keras.preprocessing import sequence

def encode_pad_transform(sample):
 encoded = imdb_encoder.encode(sample.numpy())
 pad = sequence.pad_sequences([encoded], padding='post',
 maxlen=150)
 return np.array(pad[0], dtype=np.int64)

def encode_tf_fn(sample, label):
 encoded = tf.py_function(encode_pad_transform,
 inp=[sample],
 Tout=(tf.int64))
 encoded.set_shape([None])
 label.set_shape([])
 return encoded, label

Finally, the data is encoded using the convenience functions above like so:

encoded_train = imdb_train.map(encode_tf_fn,
 num_parallel_calls=tf.data.experimental.AUTOTUNE)
encoded_test = imdb_test.map(encode_tf_fn,
 num_parallel_calls=tf.data.experimental.AUTOTUNE)

Transfer Learning with BERT

[114]

At this point, all the training and test data is ready for training.

The next step is the foremost step in transfer learning – loading the pre-trained
GloVe embeddings and using these as the weights of the embedding layer.

Loading pre-trained GloVe embeddings
First, the pre-trained embeddings need to be downloaded and unzipped:

Download the GloVe embeddings
!wget http://nlp.stanford.edu/data/glove.6B.zip
!unzip glove.6B.zip

Archive: glove.6B.zip
 inflating: glove.6B.50d.txt
 inflating: glove.6B.100d.txt
 inflating: glove.6B.200d.txt
 inflating: glove.6B.300d.txt

Note that this is a huge download of over 800 MB, so this step may take some time
to execute. Upon unzipping, there will be four different files, as shown in the output
above. Each file has a vocabulary of 400,000 words. The main difference is the
dimensions of embeddings generated.

In the previous chapter, an embedding dimension of 64 was used for the model. The
nearest GloVe dimension is 50, so let's use that. The file format is quite simple. Each
line of the text has multiple values separated by spaces. The first item of each row is
the word, and the rest of the items are the values of the vector for each dimension.
So, in the 50-dimensional file, each row will have 51 columns. These vectors need to
be loaded up in memory:

dict_w2v = {}
with open('glove.6B.50d.txt', "r") as file:
 for line in file:

Note that in limiting the size of the reviews, only the first 150
tokens will be counted for a long review. Typically, the first few
sentences of the review have the context or description, and the
latter part of the review has the conclusion. By limiting to the first
part of the review, valuable information could be lost. The reader
is encouraged to try a different padding scheme where tokens from
the first part of the review are dropped instead of the second part
and observe the difference in the accuracy.

Chapter 4

[115]

 tokens = line.split()
 word = tokens[0]
 vector = np.array(tokens[1:], dtype=np.float32)

 if vector.shape[0] == 50:
 dict_w2v[word] = vector
 else:
 print("There was an issue with " + word)

let's check the vocabulary size
print("Dictionary Size: ", len(dict_w2v))

Dictionary Size: 400000

If the code processed the file correctly, you shouldn't see any errors and you should
see a dictionary size of 400,000 words. Once these vectors are loaded, an embedding
matrix needs to be created.

Creating a pre-trained embedding matrix
using GloVe
So far, we have a dataset, its vocabulary, and a dictionary of GloVe words and
their corresponding vectors. However, there is no correlation between these two
vocabularies. The way to connect them is through the creation of an embedding
matrix. First, let's initialize an embedding matrix of zeros:

embedding_dim = 50
embedding_matrix = np.zeros((imdb_encoder.vocab_size, embedding_dim))

Note that this is a crucial step. When a pre-trained word list is used, finding a vector
for each word in the training/test is not guaranteed. Recall the discussion on transfer
learning earlier, where the source and target domains are different. One way this
difference manifests itself is through having a mismatch in tokens between the
training data and the pre-trained model. As we go through the next steps, this will
become more apparent.

After this embedding matrix of zeros is initialized, it needs to be populated. For each
word in the vocabulary of reviews, the corresponding vector is retrieved from the
GloVe dictionary.

Transfer Learning with BERT

[116]

The ID of the word is retrieved using the encoder, and then the embedding matrix
entry corresponding to that entry is set to the retrieved vector:

unk_cnt = 0
unk_set = set()
for word in imdb_encoder.tokens:
 embedding_vector = dict_w2v.get(word)

 if embedding_vector is not None:
 tkn_id = imdb_encoder.encode(word)[0]
 embedding_matrix[tkn_id] = embedding_vector
 else:
 unk_cnt += 1
 unk_set.add(word)

Print how many weren't found
print("Total unknown words: ", unk_cnt)

Total unknown words: 14553

During the data loading step, we saw that the total number of tokens was 93,931.
Out of these, 14,553 words could not be found, which is approximately 15% of
the tokens. For these words, the embedding matrix will have zeros. This is the
first step in transfer learning. Now that the setup is completed, we will need to
use TensorFlow to use these pre-trained embeddings. There will be two different
models that will be tried – the first will be based on feature extraction and the
second one on fine-tuning.

Feature extraction model
As discussed earlier, the feature extraction model freezes the pre-trained
weights and does not update them. An important issue with this approach in the
current setup is that there are a large number of tokens, over 14,000, that have
zero embedding vectors. These words could not be matched to an entry in the
GloVe word list.

Chapter 4

[117]

If pre-trained vectors were not used, then the vectors for all the words would start
with nearly zero and get trained through gradient descent. In this case, the vectors
are already trained, so we expect the training to go along much faster. For a baseline,
one epoch of training of the BiLSTM model while training embeddings takes
between 65 seconds and 100 seconds, with most values around 63 seconds on an
Ubuntu machine with an i5 processor and an Nvidia RTX-2070 GPU.

Now, let's build the model and plug in the embedding matrix generated above into
the model. Some basic parameters need to be set up:

Length of the vocabulary in chars
vocab_size = imdb_encoder.vocab_size # len(chars)

Number of RNN units
rnn_units = 64

#batch size
BATCH_SIZE=100

To minimize the chances of not finding matches between the
pre-trained vocabulary and task-specific vocabulary, ensure
that similar tokenization schemes are used. GloVe uses a word-
based tokenization scheme like the one provided by the Stanford
tokenizer. As seen in Chapter 1, Essentials of NLP, this works better
than a whitespace tokenizer, which is used for the training data
above. We see 15% unmatched tokens due to different tokenizers.
As an exercise, the reader can implement the Stanford tokenizer
and see the reduction in unknown tokens.

Newer methods like BERT use parts of subword tokenizers.
Subword tokenization schemes can break up words into parts,
which minimizes this chance of mismatch in tokens. Some
examples of subword tokenization schemes are Byte Pair Encoding
(BPE) or WordPiece tokenization. The BERT section of this chapter
explains subword tokenization schemes in more detail.

Transfer Learning with BERT

[118]

A convenience function being set up will enable fast switching. This method enables
building models with the same architecture but different hyperparameters:

from tensorflow.keras.layers import Embedding, LSTM, \
 Bidirectional, Dense

def build_model_bilstm(vocab_size, embedding_dim,
 rnn_units, batch_size, train_emb=False):
 model = tf.keras.Sequential([
 Embedding(vocab_size, embedding_dim, mask_zero=True,
 weights=[embedding_matrix], trainable=train_emb),
 Bidirectional(LSTM(rnn_units, return_sequences=True,
 dropout=0.5)),
 Bidirectional(LSTM(rnn_units, dropout=0.25)),
 Dense(1, activation='sigmoid')
])
 return model

The model is identical to what was used in the previous chapter with the exception
of the highlighted code pieces above. First, a flag can now be passed to this method
that specifies whether the embeddings should be trained further or frozen. This
parameter is set to false as it's the default value. The second change is in the
definition of the Embedding layer. A new parameter, weights, loads the embedding
matrix as the weights for the layer. Just after this parameter, a Boolean parameter
called trainable is passed that determines whether the weights of this layer should
be updated during training time. A feature extraction-based model can now be
created like so:

model_fe = build_model_bilstm(
 vocab_size = vocab_size,
 embedding_dim=embedding_dim,
 rnn_units=rnn_units,
 batch_size=BATCH_SIZE)

model_fe.summary()

Model: "sequential_5"

Layer (type) Output Shape Param #
===
embedding_5 (Embedding) (None, None, 50) 4696550

bidirectional_6 (Bidirection (None, None, 128) 58880

Chapter 4

[119]

bidirectional_7 (Bidirection (None, 128) 98816

dense_5 (Dense) (None, 1) 129
===
Total params: 4,854,375
Trainable params: 157,825
Non-trainable params: 4,696,550

This model has about 4.8 million trainable parameters. It should be noted that this
model is considerably smaller than the previous BiLSTM model, which had over 12
million parameters. A simpler or smaller model will train faster and possibly be less
likely to overfit as the model capacity is lower.

This model needs to be compiled with the loss function, optimizer, and metrics for
observation progress of the model. Binary cross-entropy is the right loss function for
this problem of binary classification. The Adam optimizer is a decent choice in most
cases.

The metrics that will be observed are the same as before, accuracy, precision, and
recall:

model_fe.compile(loss='binary_crossentropy',
 optimizer='adam',
 metrics=['accuracy', 'Precision', 'Recall'])

Adaptive Moment Estimation or Adam Optimizer

The simplest optimization algorithm used in backpropagation
for the training of deep neural networks is mini-batch Stochastic
Gradient Descent (SGD). Any error in the prediction is
propagated back and weights, called parameters, of the various
units are adjusted according to the error. Adam is a method that
eliminates some of the issues of SGD such as getting trapped in
sub-optimal local optima, and having the same learning rate for
each parameter. Adam computes adaptive learning rates for each
parameter and adjusts them based on not only the error but also
previous adjustments. Consequently, Adam converges much faster
than other optimization methods and is recommended as the
default choice.

Transfer Learning with BERT

[120]

After setting up batches for preloading, the model is ready for training. Similar to
previously, the model will be trained for 10 epochs:

Prefetch for performance
encoded_train_batched = encoded_train.batch(BATCH_SIZE).prefetch(100)

model_fe.fit(encoded_train_batched, epochs=10)

Epoch 1/10
250/250 [==============================] - 28s 113ms/step - loss:
0.5896 - accuracy: 0.6841 - Precision: 0.6831 - Recall: 0.6870
Epoch 2/10
250/250 [==============================] - 17s 70ms/step - loss: 0.5160
- accuracy: 0.7448 - Precision: 0.7496 - Recall: 0.7354
...
Epoch 9/10
250/250 [==============================] - 17s 70ms/step - loss: 0.4108
- accuracy: 0.8121 - Precision: 0.8126 - Recall: 0.8112
Epoch 10/10
250/250 [==============================] - 17s 70ms/step - loss: 0.4061
- accuracy: 0.8136 - Precision: 0.8147 - Recall: 0.8118

A few things can be seen immediately. The model trained significantly faster. Each
epoch took approximately 17 seconds with a maximum of 28 seconds for the first
epoch. Secondly, the model has not overfit. The final accuracy is just over 81% on
the training set. In the previous setup, the accuracy on the training set was 99.56%.

For now, let's understand the utility of this model. To make an assessment of the
quality of this model, performance on the test set should be evaluated:

model_fe.evaluate(encoded_test.batch(BATCH_SIZE))

250/Unknown - 21s 85ms/step - loss: 0.3999 - accuracy: 0.8282 -
Precision: 0.7845 - Recall: 0.9050

It should also be noted that the accuracy was still increasing at the
end of the tenth epoch, with lots of room to go. This indicates that
training this model for longer would probably increase accuracy
further. Quickly changing the number of epochs to 20 and training
the model yields an accuracy of just over 85% on the testing set,
with precision at 80% and recall at 92.8%.

Chapter 4

[121]

Compared to the previous model's accuracy of 83.6% on the test set, this model
produces an accuracy of 82.82%. This performance is quite impressive because this
model is just 40% of the size of the previous model and represents a 70% reduction
in training time for a less than 1% drop in accuracy. This model has a slightly better
recall for slightly worse accuracy. This result should not be entirely unexpected.
There are over 14,000 word vectors that are zeros in this model! To fix this issue,
and also to try the fine-tuning sequential transfer learning approach, let's build a
fine-tuning-based model.

Fine-tuning model
Creating the fine-tuning model is trivial when using the convenience function. All
that is needed is to pass the train_emb parameter as true:

model_ft = build_model_bilstm(
 vocab_size=vocab_size,
 embedding_dim=embedding_dim,
 rnn_units=rnn_units,
 batch_size=BATCH_SIZE,
 train_emb=True)

model_ft.summary()

This model is identical to the feature extraction model in size. However, since the
embeddings will be fine-tuned, training is expected to take a little longer. There
are several thousand zero embeddings, which can now be updated. The resulting
accuracy is expected to be much better than the previous model. The model is
compiled with the same loss function, optimizer, and metrics, and trained for 10
epochs:

model_ft.compile(loss='binary_crossentropy',
 optimizer='adam',
 metrics=['accuracy', 'Precision', 'Recall'])

model_ft.fit(encoded_train_batched, epochs=10)

Epoch 1/10
250/250 [==============================] - 35s 139ms/step - loss:
0.5432 - accuracy: 0.7140 - Precision: 0.7153 - Recall: 0.7111
Epoch 2/10
250/250 [==============================] - 24s 96ms/step - loss: 0.3942
- accuracy: 0.8234 - Precision: 0.8274 - Recall: 0.8171
...

Transfer Learning with BERT

[122]

Epoch 9/10
250/250 [==============================] - 24s 97ms/step - loss: 0.1303
- accuracy: 0.9521 - Precision: 0.9530 - Recall: 0.9511
Epoch 10/10
250/250 [==============================] - 24s 96ms/step - loss: 0.1132
- accuracy: 0.9580 - Precision: 0.9583 - Recall: 0.9576

This accuracy is very impressive but needs to be checked against the test set:

model_ft.evaluate(encoded_test.batch(BATCH_SIZE))

250/Unknown - 22s 87ms/step - loss: 0.4624 - accuracy: 0.8710 -
Precision: 0.8789 - Recall: 0.8605

That is the best result we have obtained so far at an accuracy of 87.1%. Data
about state-of-the-art results on datasets are maintained by the paperswithcode.
com website. Research papers that have reproducible code are featured on the
leaderboards for datasets. This result would be about seventeenth on the SOTA
result on the paperswithcode.com website at the time of writing!

It can also be seen that the network is overfitting a little bit. A Dropout layer can
be added between the Embedding layer and the first LSTM layer to help reduce this
overfitting. It should also be noted that this network is still much faster than training
embeddings from scratch. Most epochs took 24 seconds for training. Overall, this
model is smaller in size, takes much less time to train, and has much higher accuracy!
This is why transfer learning is so important in machine learning in general and NLP
more specifically.

So far, we have seen the use of context-free word embeddings. The major challenge
with this approach is that a word could have multiple meanings depending on the
context. The word bank could refer to a place for storing money and valuables and
also the side of a river. A more recent innovation in this area is BERT, published
in May 2019. The next step in improving the accuracy of movie review sentiment
analysis is to use a pre-trained BERT model. The next section explains the BERT
model, its vital innovations, and the impact of using this model for the task at hand.
Please note that the BERT model is enormous! If you do not have adequate local
computing resources, using Google Colab with a GPU accelerator would be an
excellent choice for the next section.

http://paperswithcode.com
http://paperswithcode.com
http://paperswithcode.com

Chapter 4

[123]

BERT-based transfer learning
Embeddings like GloVe are context-free embeddings. Lack of context can be
limiting in NLP contexts. As discussed before, the word bank can mean different
things depending on the context. Bi-directional Encoder Representations
from Transformers, or BERT, came out of Google Research in May 2019 and
demonstrated significant improvements on baselines. The BERT model builds on
several innovations that came before it. The BERT paper also introduces several
innovations of ERT works.

Two foundational advancements that enabled BERT are the encoder-decoder
network architecture and the Attention mechanism. The Attention mechanism
further evolved to produce the Transformer architecture. The Transformer
architecture is the fundamental building block of BERT. These concepts are covered
next and detailed further in later chapters. After these two sections, we will discuss
specific innovations and structures of the BERT model.

Encoder-decoder networks
We have seen the use of LSTMs and BiLSTMs on sentences modeled as sequences
of words. These sequences can be of varying lengths as sentences are composed
of a different number of words. Recall that in Chapter 2, Understanding Sentiment
in Natural Language with BiLSTMs, we discussed the core concept of an LSTM
being a unit unrolled in time. For each input token, the LSTM unit generated an
output. Consequently, the number of outputs produced by the LSTM depends
on the number of input tokens. All of these input tokens are combined through a
TimeDistributed() layer for use by later Dense() layers in the network. The main
issue is that the input and output sequence lengths are linked. This model cannot
handle variable-length sequences effectively. Translation-type tasks where the input
and the output may have different lengths, consequently, won't do well with this
architecture.

The solution to these challenges was posed in a paper titled Sequence to Sequence
Learning with Neural Networks written by Ilya Sutskever et al. in 2014. This model is
also referred to as the seq2seq model.

Transfer Learning with BERT

[124]

The basic idea is shown in the figure below:

Figure 4.4: Encoder-decoder network

The model is divided into two parts – an encoder and a decoder. A special token that
denotes the end of the input sequence is appended to the input sequence. Note that
now the input sequence can have any length as this end of sentence token, (EOS) in
the figure above, denotes the end. In the figure above, the input sequence is denoted
by tokens (I1, I2, I3,…). Each input token, after vectorization, is passed to an LSTM
model. The output is only collected from the last (EOS) token. The vector generated
by the encoder LSTM network for the (EOS) token is a representation of the entire
input sequence. It can be thought of as a summary of the entire input. A variable-
length sequence has not been transformed into a fixed-length or dimensional vector.

This vector becomes the input to the decoder layer. The model is auto-regressive in
the sense that the output generated by the previous step of the decoder is fed into
the next step as input. Output generation continues until the special (EOS) token
is generated. This scheme allows the model to determine the length of the output
sequence. It breaks apart the dependency between the length of the input and output
sequences. Conceptually, this is a straightforward model to understand. However,
this is a potent model. Many tasks can be cast as a sequence-to-sequence problem.

Chapter 4

[125]

Some examples include translating a sentence from one language to another,
summarizing an article where the input sequence is the text of the article and the
output sequence is the summary, or question-answering where the question is the
input sequence and the output is the answer. Speech recognition is a sequence-to-
sequence problem with input sequences of 10 ms samples of voice, and the output
is text. At the time of its release, it garnered much attention because it had a massive
impact on the quality of Google Translate. In nine months of work using this model,
the team behind the seq2seq model was able to provide much higher performance
than that after over 10 years of improvements in Google Translate.

With these techniques at hand, the next innovation was the use of the Attention
mechanism, which allows the modeling of dependencies between tokens irrespective
of their distance. The Attention model became the cornerstone of the Transformer
model, described in the next section.

Attention model
In the encoder-decoder model, the encoder part of the network creates a fixed
dimensional representation of the input sequence. As the input sequence length
grows, more and more of the input is compressed into this vector. The encodings
or hidden states generated by processing the input tokens are not available to the
decoder layer. The encoder states are hidden from the decoder. The Attention
mechanism allows the decoder part of the network to see the encoder hidden states.
These hidden states are depicted in Figure 4.4 as the output of each of the input
tokens, (I1, I2, I3,…), but shown only as feeding in to the next input token.

In the Attention mechanism, these input token encodings will also be made available
to the decoder layer. This is called General Attention, and it refers to the ability of
output tokens to directly have a dependence on the encodings or hidden states of
input tokens. The main innovation here is the decoder operates on a sequence of
vectors generating by encoding the input rather than one fixed vector generated
at the end of the input. The Attention mechanism allows the decoder to focus its
attention on a subset of the encoded input vectors while decoding, hence the name.

The Great A.I. Awakening

The New York Times published a fantastic article with the above
title in 2016 that documents the journey of deep learning and
especially the authors of the seq2seq paper and its dramatic
effect on the quality of Google Translate. This article is highly
recommended to see how transformational this architecture was
for NLP. This article is available at https://www.nytimes.
com/2016/12/14/magazine/the-great-ai-awakening.html.

https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Transfer Learning with BERT

[126]

There is another form of attention, called self-attention. Self-attention enables
connections between different encodings of input tokens in different positions. As
depicted in the model in Figure 4.4, an input token only sees the encoding of the
previous token. Self-attention will allow it to look at the encodings of previous
tokens. Both forms are an improvement to the encoder-decoder architecture.

While there are many Attention architectures, a prevalent form is called Bahdanau
Attention. It is named after the first author of the paper, published in 2016, where
this Attention mechanism was proposed. Building on the encoder-decoder network,
this form enables each output state to look at the encoded inputs and learn some
weights for each of these inputs. Consequently, each output could focus on different
input tokens. An illustration of this model is shown in Figure 4.5, which is a modified
version of Figure 4.4:

Figure 4.5: Bahdanau Attention architecture

Chapter 4

[127]

Two specific changes have been made in the Attention mechanism when compared
to the encoder-decoder architecture. The first change is in the encoder. The encoder
layer here uses BiLSTMs. The use of BiLSTMs allows each word to learn from the
words preceding and succeeding them both. In the standard encoder-decoder
architecture, LSTMs were used, which meant each input word could only learn
from the words before it.

The second change is related to how the decoder uses the output of the encoders.
In the previous architecture, only the output of the last token, the end-of-sentence
token, used the summary of the entire input sequence. In the Bahdanau Attention
architecture, the hidden state output of each input token is multiplied by an
alignment weight that represents the degree of match between the input token at a
specific position with the output token in question. A context vector is computed
by multiplying each input hidden state output with the corresponding alignment
weight and concatenating all the results. This context vector is fed to the output
token along with the previous output token.

Figure 4.5 shows this computation, for only the second output token. This alignment
model with the weights for each output token can help point to the most helpful
input tokens in generating that output token. Note that some of the details have been
simplified for brevity and can be found in the paper. We will implement Attention
from scratch in later chapters.

The next advancement to the Attention model came in the form of the Transformer
architecture in 2017. The Transformer model is the key to the BERT architecture, so
let's understand that next.

Attention is not an explanation

It can be tempting to interpret the alignment scores or attention
weights as an explanation of the model predicting a particular
output token. A paper with the title of this information box
was published that tests this hypothesis that Attention is an
explanation. The conclusion from the research is that Attention
should not be interpreted as an explanation. Different attention
weights on the same set of inputs may result in the same outputs.

Transfer Learning with BERT

[128]

Transformer model
Vaswani et al. published a ground-breaking paper in 2017 titled Attention Is All
You Need. This paper laid the foundation of the Transformer model, which has
been behind most of the recent advanced models such as ELMo, GPT, GPT-2, and
BERT. The transformer model is built on the Attention model by taking the critical
innovation from it – enabling the decoder to see all of the input hidden states while
getting rid of the recurrence in it, which makes the model slow to train due to the
sequential nature of processing the input sequences.

The Transformer model has an encoder and a decoder part. This encoder-decoder
structure enables it to perform best on machine translation-type tasks. However,
not all tasks need full encoder and decoder layers. BERT only uses the encoder
part, while generative models like GPT-2 use the decoder part. In this section, only
the encoder part of the architecture is covered. The next chapter deals with the
generation of text and the best models that use the Transformer decoder. Hence, the
decoder will be covered in that chapter.

An encoder block of the Transformer has sub-layers parts – the multi-head self-
attention sub-layer and a feed-forward sub-layer. The self-attention sub-layer looks
at all the words of the input sequence and generates an encoding for these words
in the context of each other. The feed-forward sublayer is composed of two layers
using linear transformations and a ReLU activation in between. Each encoder block
is composed of these two sub-layers, while the entire encoder is composed of six
such blocks, as shown in Figure 4.6:

What is a Language Model?

A Language Model (LM) task is traditionally defined as predicting
the next word in a sequence of words. LMs are particularly useful
for text generation, but less for classification. GPT-2 is an example
of a model that fits this definition of an LM. Such a model only
has context from the words or tokens that have occurred on its
left (reverse for a right-to-left language). This is a trade-off that is
appropriate in the generation of text. However, in other tasks such
as question-answering or translation, the full sentence should be
available. In such a case, using a bi-directional model that can use
the context from both sides is useful. BERT is such a model. It loses
the auto-regression property in favor of gaining context from both
sides of a word of the token.

Chapter 4

[129]

Figure 4.6: Transformer encoder architecture

Transfer Learning with BERT

[130]

A residual connection around the multi-head attention block and the feed-forward
block is made in each encoder block. While adding the output of the sublayer with
the input it received, layer normalization is performed. The main innovation here
is the Multi-Head Attention block. There are eight identical attention blocks whose
outputs are concatenated to produce the multi-head attention output. Each attention
block takes in the encoding and defines three new vectors called the query, key, and
value vectors. Each of these vectors is defined as 64-dimensional, though this size is
a hyperparameter that can be tuned. The query, key, and value vectors are learned
through training.

To understand how this works, let's assume that the input has three tokens. Each
token has a corresponding embedding. Each of these tokens is initialized with its
query, key, and value vectors. A weight vector is also initialized, which, when
multiplied with the embedding of the input token, produces the key for that token.
After the query vector is computed for a token, it is multiplied by the key vectors of
all the input tokens. Note that the encoder has access to all the inputs, on both sides
of each token. As a result, a score has now been computed by taking the query vector
of the word in question and the value vector of all the tokens in the input sequence.
All of these scores are passed through a softmax. The result can be interpreted
as providing a sense of which tokens of the input are important to this particular
input token.

In a way, the input token in question is attentive to the other tokens with a high
softmax score. This score is expected to be high when the input token attends to itself
but can be high for other tokens as well. Next, this softmax score is multiplied by
the value vector of each token. All these value vectors of the different input tokens
are then summed up. Value vectors of tokens with higher softmax scores will have
a higher contribution to the output value vector of the input token in question. This
completes the calculation of the output for a given token in the Attention layer.

Multi-head self-attention creates multiple copies of the query, key, and value vectors
along with the weights matrix used to compute the query from the embedding of the
input token. The paper proposed eight heads, though this could be experimented
with. An additional weight matrix is used to combine the multiple outputs of each of
the heads and concatenate them together into one output value vector.

This output value vector is fed to the feed-forward layer, and the output of the feed-
forward layer goes to the next encoder block or becomes the output of the model at
the final encoder block.

While the core BERT model is essentially the core Transformer encoder model, there
are a few specific enhancements it introduced that are covered next. Note that using
the BERT model is much easier as all of these details are abstracted. Knowing these
details may, however, help in understanding BERT inputs and outputs. The code to
use BERT for the IMDb sentiment analysis follows the next section.

Chapter 4

[131]

The bidirectional encoder representations
from transformers (BERT) model
The emergence of the Transformer architecture was a seminal moment in the NLP
world. This architecture has driven a lot of innovation through several derivative
architectures. BERT is one such model. It was released in 2018. The BERT model
only uses the encoder part of the Transformer architecture. The layout of the encoder
is identical to the one described earlier with twelve encoder blocks and twelve
attention heads. The size of the hidden layers is 768. These sets of parameters are
referred to as BERT Base. These hyperparameters result in a total model size of 110
million parameters. A larger model was also published with 24 encoder blocks, 16
attention heads, and a hidden unit size of 1,024. Since the paper came out, a number
of different variants of BERT like ALBERT, DistilBERT, RoBERTa, CamemBERT,
and so on have also emerged. Each of these models has tried to improve the BERT
performance in terms of accuracy or in terms of training/inference time.

The way BERT is pre-trained is unique. It uses the multi-task transfer learning
principle explained above to pre-train on two different objectives. The first objective
is the Masked Language Model (MLM) task. In this task, some of the input tokens
are masked randomly. The model has to predict the right token given the tokens on
both sides of the masked token. Specifically, a token in the input sequence is replaced
with a special [MASK] token 80% of the time. In 10% of the cases, the selected token
is replaced with another random token from the vocabulary. In the last 10% of the
cases, the token is kept unchanged. Further, this happens for 15% of the overall
tokens in a batch. The consequence of this scheme is that the model cannot rely on
certain tokens being present and is forced to learn a contextual representation based
on the distribution of the tokens before and after any given token. Without this
masking, the bidirectional nature of the model means each word would be able to
indirectly see itself from either direction. This would make the task of predicting the
target token really easy.

The second objective the model is pre-trained on is Next Sentence Prediction (NSP).
The intuition here is that there are many NLP tasks that deal with pairs of sentences.
For example, a question-answering problem can model the question as the first
sentence, and the passage to be used to answer the question becomes the second
sentence. The output from the model may be a span identifier that identifies the start
and end token indices in the passage provided as the answer to the question. In the
case of sentence similarity or paraphrasing, both sentence pairs can be passed in to
get a similarity score. The NSP model is trained by passing in sentence pairs with
a binary label that indicates whether the second sentence follows the first sentence.
50% of the training examples are passed as actual next sentences from the corpus
with the label IsNext, while in the other 50% a random sentence is passed with the
output label NotNext.

Transfer Learning with BERT

[132]

BERT also addresses a problem we saw in the GloVe example above – out-of-
vocabulary tokens. About 15% of the tokens were not in the vocabulary. To address
this problem, BERT uses the WordPiece tokenization scheme with a vocabulary
size of 30,000 tokens. Note that this is much smaller than the GloVe vocabulary size.
WordPiece belongs to a class of tokenization schemes called subword tokenization.
Other members of this class are Byte Pair Encoding (BPE), SentencePiece, and
the Unigram language model. Inspiration for the WordPiece model came from
the Google Translate team working with Japanese and Korean texts. If you recall
the discussion on tokenization in the first chapter, we showed that the Japanese
language does not use spaces for delimiting words. Hence, it is hard to tokenize it
into words. Methods developed for creating vocabularies for such languages are
quite useful for applying to languages like English and keeping the dictionary size
down to a reasonable size.

A smaller dictionary reduces training time and memory requirements. If a smaller
dictionary does not come at the cost of out-of-vocabulary tokens, then it is quite
useful. To help understand the concept of subword tokenization, consider an
extreme example where the tokenization breaks apart the work into individual
characters and numbers. The size of this vocabulary would be 37 – with 26
alphabets, 10 numbers, and space. An example of a subword tokenization scheme
is to introduce two new tokens, -ing and -tion. Every word that ends with these two
tokens can be broken into two subwords – the part before the suffix and one of the
two suffixes. This can be done through knowledge of the language grammar and
constructs, using techniques such as stemming and lemmatization. The WordPiece
tokenization approach used in BERT is based on BPE. In BPE, the first step is
defining a target vocabulary size.

Next, the entire text is converted to a vocabulary of just the individual character
tokens and mapped to the frequency of occurrence. Now multiple passes are made
on this to combine pairs of tokens so as to maximize the frequency of the bigram
created. For each subword created, a special token is added to denote the end of
the word so that detokenization can be performed. Further, if the subword is not
the start of the word, a ## tag is added to help in reconstructing the original words.
This process is continued until the desired vocabulary is hit, or the base condition
of a minimum frequency of 1 is hit for tokens. BPE maximizes the frequency, and
WordPiece builds on top of this to include another objective.

Consider the German translation of the phrase Life Insurance
Company. This would translate to Lebensversicherungsgesellschaft.
Similarly, Gross Domestic Product would translate to
Bruttoinlandsprodukt. If words are taken as such, the size of the
vocabulary would be very large. A subword approach could
represent these words more efficiently.

Chapter 4

[133]

The objective for WordPiece includes increasing mutual information by considering
the frequencies of the tokens being merged along with the frequency of the merged
bigram. This introduces a minor adjustment to the model. RoBERTa from Facebook
experimented with using a BPE model and did not see a material difference in
performance. The GPT-2 generative model is based on the BPE model.

To take an example from the IMDb dataset, here is an example sentence:

This was an absolutely terrible movie. Don't be lured in by Christopher
Walken or Michael Ironside.

After tokenization with BERT, it would look like this:

[CLS] This was an absolutely terrible movie . Don' t be lure ##d in by
Christopher Walk ##en or Michael Iron ##side . [SEP]

Where [CLS] and [SEP] are special tokens, which will be introduced shortly. Note
how the word lured was broken up as a consequence. Now that we understand the
underlying construct of the BERT model, let's try to use it for transfer learning on the
IMDb sentiment classification problem. The first step is preparing the data.

Tokenization and normalization with BERT
After reading the description of the BERT model, you may be bracing yourself
for a difficult implementation in code. Have no fear. Our friends at Hugging Face
have provided pre-trained models as well as abstractions that make working with
advanced models like BERT a breeze. The general flow for getting BERT to work
will be:

1. Load a pre-trained model
2. Instantiate a tokenizer and tokenize the data
3. Set up a model and compile it
4. Fit the model on the data

All the code for the BERT implementation can be found in the
imdb-transfer-learning.ipynb notebook in this chapter's
GitHub folder, in the section BERT-based transfer learning. Please
run the code in the section titled Loading IMDb training data to
ensure the data is loaded prior to proceeding.

Transfer Learning with BERT

[134]

These steps won't take more than a few lines of code each. So let's get started. The
first step is to install the Hugging Face libraries:

!pip install transformers==3.0.2

The tokenizer is the first step – it needs to be imported before it can be used:

from transformers import BertTokenizer

bert_name = 'bert-base-cased'
tokenizer = BertTokenizer.from_pretrained(bert_name,
 add_special_tokens=True,
 do_lower_case=False,
 max_length=150,
 pad_to_max_length=True)

That is all there is to load a pre-trained tokenizer! A few things to note in the code
above. First, there are a number of models published by Hugging Face that are
available for download. A full list of the models and their names can be found at
https://huggingface.co/transformers/pretrained_models.html. Some key BERT
models that are available are:

Model Name Description
bert-base-uncased / bert-
base-cased

Variants of the base BERT model with 12 encoder layers,
hidden size of 768 units, and 12 attention heads for a
total of ~110 million parameters. The only difference is
whether the inputs were cased or all lowercase.

bert-large-uncased /
bert-large-cased

This model has 24 encoder layers, 1,024 hidden units, and
16 attention heads for a total of ~340 million parameters.
Similar split by cased and lowercase models.

bert-base-multilingual-
cased

Parameters here are the same as bert-base-cased
above, trained on 104 languages with the largest
Wikipedia entries. However, it is not recommended to
use the uncased version for international languages,
while that model is available.

bert-base-cased-
finetuned-mrpc

This model has been fine-tuned on the Microsoft Research
Paraphrase Corpus task for paraphrase identification in
the news domain.

bert-base-japanese Same size as the base model but trained on Japanese text.
Note that both the MeCab and WordPiece tokenizers are
used.

bert-base-chinese Same size as the base model but trained on cased-
simplified Chinese and traditional Chinese.

https://huggingface.co/transformers/pretrained_models.html

Chapter 4

[135]

Any of the values on the left can be used in the bert_name variable above to load
the appropriate tokenizer. The second line in the code above downloads the
configuration and the vocabulary file from the cloud and instantiates a tokenizer.
This loader takes a number of parameters. Since a cased English model is being
used, we don't want the tokenizer to convert words to lowercase as specified by
the do_lower_case parameter. Note that the default value of this parameter is True.
The input sentences will be tokenized to a maximum of 150 tokens, as we saw in
the GloVe model as well. pad_to_max_length further indicates that the tokenizer
should also pad the sequences it generates.

The first argument, add_special_tokens, deserves some explanation. In the example
so far, we have taken a sequence and a maximum length. If the sequence is shorter
than this maximum length, then the sequence is padded with a special padding
token. However, BERT has a special way to encode its sequence due to the next
sentence prediction task pre-training. It needs a way to provide two sequences
as the input. In the case of classification, like the IMDb sentiment prediction,
the second sequence is just left empty. There are three sequences that need to be
provided to the BERT model:

• input_ids: This corresponds to the tokens in the inputs converted into IDs.
This is what we have been doing thus far in other examples. In the IMDb
example, we only have one sequence. However, if the problem required
passing in two sequences, then a special token, [SEP], would be added in
between the sequences. [SEP] is an example of a special token that has been
added by the tokenizer. Another special token, [CLS], is appended to the start
of the inputs. [CLS] stands for classifier token. The embedding for this token
can be viewed as the summary of the inputs in the case of a classification
problem, and additional layers on top of the BERT model would use this
token. It is also possible to use the sum of the embeddings of all the inputs as
an alternative.

• token_type_ids: If the input contains two sequences, for a question-
answering problem, for example, then these IDs tell the model indicates
which input_ids correspond to which sequence. In some texts, this is
referred to as the segment identifiers. The first sequence would be the first
segment, and the second sequence would be the second segment.

• attention_mask: Given that the sequences are padded, this mask tells the
model where the actual tokens end so that the attention calculation does not
use the padding tokens.

Transfer Learning with BERT

[136]

Given that BERT can take two sequences as input, understanding the padding is
essential as it can be confusing how padding works in the context of the maximum
sequence length when a pair of sequences is provided. The maximum sequence
length refers to the combined length of the pair. There are three different ways to do
truncation if the combined length exceeds the maximum length. The first two could
be to reduce the lengths from either the first or the second sequence. The third way
is to truncate from the lengthiest sequence, a token at a time so that the lengths of
the pair are only off by one at maximum. In the constructor, this behavior can be
configured by passing the truncation_strategy parameter with the values only_
first, only_second, or longest_first.

Figure 4.7 shows how an input sequence is converted into the three input sequences
listed above:

Figure 4.7: Mapping inputs to BERT sequences

If the input sequence was Don't be lured, then the figure above shows how it is
tokenized with the WordPiece tokenizer as well as the addition of special tokens. The
example above sets a maximum sequence length of nine tokens. Only one sequence
is provided, hence the token type IDs or segment IDs all have the same value. The
attention mask is set to 1, where the corresponding entry in the tokens is an actual
token. The following code is used to generate these encodings:

tokenizer.encode_plus(" Don't be lured", add_special_tokens=True,
 max_length=9,
 pad_to_max_length=True,
 return_attention_mask=True,
 return_token_type_ids=True)

{'input_ids': [101, 1790, 112, 189, 1129, 19615, 1181, 102, 0], 'token_
type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1,
1, 1, 1, 1, 0]}

Chapter 4

[137]

Even though we won't be using a pair of sequences in this chapter, it is useful to be
aware of how the encodings look when a pair is passed. If two strings are passed to
the tokenizer, then they are treated as a pair. This is shown in the code below:

tokenizer.encode_plus(" Don't be"," lured", add_special_tokens=True,
 max_length=10,
 pad_to_max_length=True,
 return_attention_mask=True,
 return_token_type_ids=True)

{'input_ids': [101, 1790, 112, 189, 1129, 102, 19615, 1181, 102, 0],
'token_type_ids': [0, 0, 0, 0, 0, 0, 1, 1, 1, 0], 'attention_mask': [1,
1, 1, 1, 1, 1, 1, 1, 1, 0]}

The input IDs have two separators to distinguish between the two sequences. The
token type IDs help distinguish which tokens correspond to which sequence. Note
that the token type ID for the padding token is set to 0. In the network, it is never
used as all the values are multiplied by the attention mask.

To perform encoding of the inputs for all the IMDb reviews, a helper function is
defined, as shown below:

def bert_encoder(review):
 txt = review.numpy().decode('utf-8')
 encoded = tokenizer.encode_plus(txt, add_special_tokens=True,
 max_length=150,
 pad_to_max_length=True,
 return_attention_mask=True,
 return_token_type_ids=True)

 return encoded['input_ids'], encoded['token_type_ids'], \
 encoded['attention_mask']

The method is pretty straightforward. It takes the input tensor and uses UTF-8
decoding. Using the tokenizer, this input is converted into the three sequences.

This would be a great opportunity to implement a different
padding algorithm. For example, implement an algorithm that
takes the last 150 tokens instead of the first 150 and compare the
performance of the two methods.

Transfer Learning with BERT

[138]

Now, this needs to be applied to every review in the training data:

bert_train = [bert_encoder(r) for r, l in imdb_train]
bert_lbl = [l for r, l in imdb_train]
bert_train = np.array(bert_train)
bert_lbl = tf.keras.utils.to_categorical(bert_lbl, num_classes=2)

Labels of the reviews are also converted into categorical values. Using the sklearn
package, the training data is split into training and validation sets:

create training and validation splits
from sklearn.model_selection import train_test_split

x_train, x_val, y_train, y_val = train_test_split(bert_train,
 bert_lbl,
 test_size=0.2,
 random_state=42)

print(x_train.shape, y_train.shape)

(20000, 3, 150) (20000, 2)

A little more data processing is required to wrangle the inputs into three input
dictionaries in tf.DataSet for easy use in training:

tr_reviews, tr_segments, tr_masks = np.split(x_train, 3, axis=1)
val_reviews, val_segments, val_masks = np.split(x_val, 3, axis=1)

tr_reviews = tr_reviews.squeeze()
tr_segments = tr_segments.squeeze()
tr_masks = tr_masks.squeeze()

val_reviews = val_reviews.squeeze()
val_segments = val_segments.squeeze()
val_masks = val_masks.squeeze()

These training and validation sequences are converted into a dataset like so:

def example_to_features(input_ids,attention_masks,token_type_ids,y):
 return {"input_ids": input_ids,
 "attention_mask": attention_masks,
 "token_type_ids": token_type_ids},y

Chapter 4

[139]

train_ds = tf.data.Dataset.from_tensor_slices((tr_reviews,
tr_masks, tr_segments, y_train)).\
 map(example_to_features).shuffle(100).batch(16)

valid_ds = tf.data.Dataset.from_tensor_slices((val_reviews,
val_masks, val_segments, y_val)).\
 map(example_to_features).shuffle(100).batch(16)

A batch size of 16 has been used here. The memory of the GPU is the limiting factor
here. Google Colab can support a batch length of 32. An 8 GB RAM GPU can support
a batch size of 16. Now, we are ready to train a model using BERT for classification.
We will see two approaches. The first approach will use a pre-built classification
model on top of BERT. This is shown in the next section. The second approach will
use the base BERT model and adds custom layers on top to accomplish the same
task. This technique will be demonstrated in the section after.

Pre-built BERT classification model
Hugging Face libraries make it really easy to use a pre-built BERT model for
classification by providing a class to do so:

from transformers import TFBertForSequenceClassification
bert_model = TFBertForSequenceClassification.from_pretrained(bert_name)

That was quite easy, wasn't it? Note that the instantiation of the model will require
a download of the model from the cloud. However, these models are cached on
the local machine if the code is being run from a local or dedicated machine. In the
Google Colab environment, this download will be run every time a Colab instance
is initialized. To use this model, we only need to provide an optimizer and a loss
function and compile the model:

optimizer = tf.keras.optimizers.Aadam(learning_rate=2e-5)
loss = tf.keras.losses.BinaryCrossentropy(from_logits=True)

bert_model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])

Transfer Learning with BERT

[140]

This model is actually quite simple in layout as its summary shows:

bert_model.summary()

Model: "tf_bert_for_sequence_classification_7"

Layer (type) Output Shape Param #
===
bert (TFBertMainLayer) multiple 108310272

dropout_303 (Dropout) multiple 0

classifier (Dense) multiple 1538
===
Total params: 108,311,810
Trainable params: 108,311,810
Non-trainable params: 0

So, the model has the entire BERT model, a dropout layer, and a classifier layer on
top. This is as simple as it gets.

In the previous section, we batched the data into sets of 16. Here, the Adam
optimizer is configured to use a learning rate of 2e-5. Let's train this model for 3
epochs. Note that training is going to be quite slow:

print("Fine-tuning BERT on IMDB")
bert_history = bert_model.fit(train_ds, epochs=3,
 validation_data=valid_ds)

Fine-tuning BERT on IMDB
Train for 1250 steps, validate for 313 steps
Epoch 1/3
1250/1250 [==============================] - 480s 384ms/step - loss:
0.3567 - accuracy: 0.8320 - val_loss: 0.2654 - val_accuracy: 0.8813
Epoch 2/3

The BERT paper suggests some settings for fine-tuning. They
suggest a batch size of 16 or 32, run for 2 to 4 epochs. Further,
they suggest using one of the following learning rates for Adam:
5e-5, 3e-5, or 2e-5. Once this model is up and running in your
environment, please feel free to train with different settings to see
the impact on accuracy.

Chapter 4

[141]

1250/1250 [==============================] - 469s 375ms/step - loss:
0.2009 - accuracy: 0.9188 - val_loss: 0.3571 - val_accuracy: 0.8576
Epoch 3/3
1250/1250 [==============================] - 470s 376ms/step - loss:
0.1056 - accuracy: 0.9613 - val_loss: 0.3387 - val_accuracy: 0.8883

The validation accuracy is quite impressive for the little work we have done here if it
holds on the test set. That needs to be checked next. Using the convenience methods
from the previous section, the test data will be tokenized and encoded in the right
format:

prep data for testing
bert_test = [bert_encoder(r) for r,l in imdb_test]
bert_tst_lbl = [l for r, l in imdb_test]

bert_test2 = np.array(bert_test)
bert_tst_lbl2 = tf.keras.utils.to_categorical (bert_tst_lbl,
 num_classes=2)

ts_reviews, ts_segments, ts_masks = np.split(bert_test2, 3, axis=1)
ts_reviews = ts_reviews.squeeze()
ts_segments = ts_segments.squeeze()
ts_masks = ts_masks.squeeze()

test_ds = tf.data.Dataset.from_tensor_slices((ts_reviews,
 ts_masks, ts_segments, bert_tst_lbl2)).\
 map(example_to_features).shuffle(100).batch(16)

Evaluating the performance of this model on the test dataset, we get the following:

bert_model.evaluate(test_ds)

1563/1563 [==============================] - 202s 129ms/step - loss:
0.3647 - accuracy: 0.8799

[0.3646871318983454, 0.8799]

The model accuracy is almost 88%! This is higher than the best GloVe model shown
previously, and it took much less code to implement.

In the next section, let's try to build custom layers on top of the BERT model to take
transfer learning to the next level.

Transfer Learning with BERT

[142]

Custom model with BERT
The BERT model outputs contextual embeddings for all of the input tokens. The
embedding corresponding to the [CLS] token is generally used for classification
tasks, and it represents the entire document. The pre-built model from Hugging Face
returns the embeddings for the entire sequence as well as this pooled output, which
represents the entire document as the output of the model. This pooled output vector
can be used in future layers to help with the classification task. This is the approach
we will take in building a customer model.

The starting point for this exploration is the base TFBertModel. It can be imported and
instantiated like so:

from transformers import TFBertModel
bert_name = 'bert-base-cased'
bert = TFBertModel.from_pretrained(bert_name)
bert.summary()

Model: "tf_bert_model"

Layer (type) Output Shape Param #
===
bert (TFBertMainLayer) multiple 108310272
===
Total params: 108,310,272
Trainable params: 108,310,272
Non-trainable params: 0

Since we are using the same pre-trained model, the cased BERT-Base model, we
can reuse the tokenized and prepared data from the section above. If you haven't
already, take a moment to ensure the code in the Tokenization and normalization with
BERT section has been run to prepare the data.

The code for this section is under the heading Customer Model With
BERT in the same notebook as above.

Chapter 4

[143]

Now, the custom model needs to be defined. The first layer of this model is the BERT
layer. This layer will take three inputs, namely the input tokens, attention masks, and
token type IDs:

max_seq_len = 150
inp_ids = tf.keras.layers.Input((max_seq_len,), dtype=tf.int64,
name="input_ids")
att_mask = tf.keras.layers.Input((max_seq_len,), dtype=tf.int64,
name="attention_mask")
seg_ids = tf.keras.layers.Input((max_seq_len,), dtype=tf.int64,
name="token_type_ids")

These names need to match the dictionary defined in the training and testing dataset.
This can be checked by printing the specification of the dataset:

train_ds.element_spec

({'input_ids': TensorSpec(shape=(None, 150), dtype=tf.int64,
name=None),
 'attention_mask': TensorSpec(shape=(None, 150), dtype=tf.int64,
name=None),
 'token_type_ids': TensorSpec(shape=(None, 150), dtype=tf.int64,
name=None)},
 TensorSpec(shape=(None, 2), dtype=tf.float32, name=None))

The BERT model expects these inputs in a dictionary. It can also accept the inputs as
named arguments, but this approach is clearer and makes it easy to trace the inputs.
Once the inputs are mapped, the output of the BERT model can be computed:

inp_dict = {"input_ids": inp_ids,
 "attention_mask": att_mask,
 "token_type_ids": seg_ids}
outputs = bert(inp_dict)
let's see the output structure
outputs

(<tf.Tensor 'tf_bert_model_3/Identity:0' shape=(None, 150, 768)
dtype=float32>,
 <tf.Tensor 'tf_bert_model_3/Identity_1:0' shape=(None, 768)
dtype=float32>)

Transfer Learning with BERT

[144]

The first output has embeddings for each of the input tokens including the special
tokens [CLS] and [SEP]. The second output corresponds to the output of the [CLS]
token. This output will be used further in the model:

x = tf.keras.layers.Dropout(0.2)(outputs[1])
x = tf.keras.layers.Dense(200, activation='relu')(x)
x = tf.keras.layers.Dropout(0.2)(x)
x = tf.keras.layers.Dense(2, activation='sigmoid')(x)

custom_model = tf.keras.models.Model(inputs=inp_dict, outputs=x)

The model above is only illustrative, to demonstrate the technique. We add a dense
layer and a couple of dropout layers before an output layer. Now, the customer
model is ready for training. The model needs to be compiled with an optimizer, loss
function, and metrics to watch for:

optimizer = tf.keras.optimizers.Adam(learning_rate=2e-5)
loss = tf.keras.losses.BinaryCrossentropy(from_logits=True)
custom_model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])

Here is what this model looks like:

custom_model.summary()

Chapter 4

[145]

This custom model has 154,202 additional trainable parameters in addition to the
BERT parameters. The model is ready to be trained. We will use the same settings
from the previous BERT section and train the model for 3 epochs:

print("Custom Model: Fine-tuning BERT on IMDB")
custom_history = custom_model.fit(train_ds, epochs=3,
 validation_data=valid_ds)

Custom Model: Fine-tuning BERT on IMDB
Train for 1250 steps, validate for 313 steps
Epoch 1/3
1250/1250 [==============================] - 477s 381ms/step - loss:
0.5912 - accuracy: 0.8069 - val_loss: 0.6009 - val_accuracy: 0.8020
Epoch 2/3
1250/1250 [==============================] - 469s 375ms/step - loss:
0.5696 - accuracy: 0.8570 - val_loss: 0.5643 - val_accuracy: 0.8646
Epoch 3/3
1250/1250 [==============================] - 470s 376ms/step - loss:
0.5559 - accuracy: 0.8883 - val_loss: 0.5647 - val_accuracy: 0.8669

Evaluating on the test set gives an accuracy of 86.29%. Note that the test data
encoding steps used in the pretrained BERT model section are used here as well:

custom_model.evaluate(test_ds)

1563/1563 [==============================] - 201s 128ms/step - loss:
0.5667 - accuracy: 0.8629

Fine-tuning of BERT is run for a small number of epochs with a small value for
Adam's learning rate. If a lot of fine-tuning is done, then there is a risk of BERT
forgetting its pretrained parameters. This can be a limitation while building custom
models on top as a few epochs may not be sufficient to train the layers that have
been added. In this case, the BERT model layer can be frozen, and training can be
continued further. Freezing the BERT layer is fairly easy, though it needs the
re-compilation of the model:

bert.trainable = False # don't train BERT any more
optimizer = tf.keras.optimizers.Adam() # standard learning rate
custom_model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])

Transfer Learning with BERT

[146]

We can check the model summary to verify that the number of trainable parameters
has changed to reflect the BERT layer being frozen:

custom_model.summary()

Figure 4.8: Model summary

We can see that all the BERT parameters are now set to non-trainable. Since the model
was being recompiled, we also took the opportunity to change the learning rate.

Now, training can be continued for a number of epochs like so:

print("Custom Model: Keep training custom model on IMDB")
custom_history = custom_model.fit(train_ds, epochs=10,
 validation_data=valid_ds)

The training output has not been shown for brevity. Checking the model on the test
set yields 86.96% accuracy:

custom_model.evaluate(test_ds)

Changing the sequence length and learning rate during training
are advanced techniques in TensorFlow. The BERT model also
used 128 as the sequence length for initial epochs, which was
changed to 512 later in training. It is also common to see a learning
rate increase for the first few epochs and then decrease as training
proceeds.

Chapter 4

[147]

1563/1563 [==============================] - 195s 125ms/step - loss:
0.5657 - accuracy: 0.8696

If you are contemplating whether the accuracy of this custom model is lower than the
pre-trained model, then it is a fair question to ponder over. A bigger network is not
always better, and overtraining can lead to a reduction in model performance due
to overfitting. Something to try in the custom model is to use the output encodings
of all the input tokens and pass them through an LSTM layer or concatenate them
together to pass through dense layers and then make the prediction.

Having done the tour of the encoder side of the Transformer architecture, we
are ready to look into the decoder side of the architecture, which is used for text
generation. That will be the focus of the next chapter. Before we go there, let's review
everything we covered in this chapter.

Summary
Transfer learning has made a lot of progress possible in the world of NLP, where
data is readily available, but labeled data is a challenge. We covered different types
of transfer learning first. Then, we took pre-trained GloVe embeddings and applied
them to the IMDb sentiment analysis problem, seeing comparable accuracy with a
much smaller model that takes much less time to train.

Next, we learned about seminal moments in the evolution of NLP models, starting
from encoder-decoder architectures, attention, and Transformer models, before
understanding the BERT model. Using the Hugging Face library, we used a pre-
trained BERT model and a custom model built on top of BERT for the purpose of
sentiment classification of IMDb reviews.

BERT only uses the encoder part of the Transformer model. The decoder side of the
stack is used in text generation. The next two chapters will focus on completing the
understanding of the Transformer model. The next chapter will use the decoder side
of the stack to perform text generation and sentence completion. The chapter after
that will use the full encoder-decoder network architecture for text summarization.

Thus far, we have trained embeddings for tokens in the models. A considerable
amount of lift can be achieved by using pre-trained embeddings. The next chapter
will focus on the concept of transfer learning and the use of pre-trained embeddings
like BERT.

[149]

5
Generating Text with

RNNs and GPT-2
When your mobile phone completes a word as you type a message or when Gmail
suggests a short reply or completes a sentence as you reply to an email, a text
generation model is working in the background. The Transformer architecture
forms the basis of state-of-the-art text generation models. BERT, as explained in
the previous chapter, uses only the encoder part of the Transformer architecture.

However, BERT, being bi-directional, is not suitable for the generation of text. A
left-to-right (or right-to-left, depending on the language) language model built on
the decoder part of the Transformer architecture is the foundation of text generation
models today.

Text can be generated a character at a time or with words and sentences together.
Both of these approaches are shown in this chapter. Specifically, we will cover the
following topics:

• Generating text with:
• Character-based RNNs for generating news headlines and

completing text messages
• GPT-2 to generate full sentences

Generating Text with RNNs and GPT-2

[150]

• Improving the quality of text generation using techniques such as:
• Greedy search
• Beam search
• Top-K sampling

• Using advanced techniques such as learning rate annealing and
checkpointing to enable long training times:

• Details of the Transformer decoder architecture
• Details of the GPT and GPT-2 models

A character-based approach for generating text is shown first. Such models can be
quite useful for generating completions of a partially typed word in a sentence on
a messaging platform, for example.

Generating text – one character at a time
Text generation yields a window into whether deep learning models are learning
about the underlying structure of language. Text will be generated using two
different approaches in this chapter. The first approach is an RNN-based model that
generates a character at a time.

In the previous chapters, we have seen different tokenization methods based on
words and sub-words. Text is tokenized into characters, which include capital and
small letters, punctuation symbols, and digits. There are 96 tokens in total. This
tokenization is an extreme example to test how much a model can learn about the
language structure. The model will be trained to predict the next character based
on a given set of input characters. If there is indeed an underlying structure in the
language, the model should pick it up and generate reasonable-looking sentences.

Generating coherent sentences one character at a time is a very challenging
task. The model does not have a dictionary or vocabulary, and it has no sense of
capitalization of nouns or any grammar rules. Yet, we are expecting it to generate
reasonable-looking sentences. The structure of words and their order in a sentence
is not random but driven by grammar rules in a language. Words have some
structure, based on parts of speech and word roots. A character-based model has
the smallest possible vocabulary, but we hope that the model learns a lot about the
use of the letters. This may seem like a tall order but be prepared to be surprised.
Let's get started with the data loading and pre-processing steps.

Chapter 5

[151]

Data loading and pre-processing
For this particular example, we are going to use data from a constrained domain – a
set of news headlines. The hypothesis is that news headlines are usually short and
follow a particular structure. These headlines are usually a summary of an article and
contain a large number of proper nouns like names of companies and celebrities. For
this particular task, data from two different datasets are joined together and used.
The first dataset is called the News Aggregator dataset generated by the Artificial
Intelligence Lab, part of the Faculty of Engineering at Roma Tre University in Italy.
The University of California, Irvine, has made the dataset available for download
from https://archive.ics.uci.edu/ml/datasets/News+Aggregator. This dataset has
over 420,000 news article titles, URLs, and other information. The second dataset is a
set of over 200,000 news articles from The Huffington Post, called the News Category
dataset, collected by Rishabh Mishra and posted on Kaggle at https://www.kaggle.
com/rmisra/news-category-dataset.

News article headlines from both datasets are extracted and compiled into one file.
This step is already done to save time. The compressed output file is called news-
headlines.tsv.zip and is located in the chapter5-nlg-with-transformer-gpt/char-
rnn GitHub folder corresponding to this chapter. The folder is located inside the
GitHub repository for this book. The format of this file is pretty simple. It has two
columns separated by a tab. The first column is the original headline, and the second
column is an uncased version of the same headline. This example uses the first
column of the file only.

However, you can try the uncased version to see how the results differ. Training
such models usually takes a lot of time, often several hours. Training in an IPython
notebook can be difficult as a number of issues, such as the loss of the connection
to the kernel or the kernel process dying, can result in the loss of the trained model.
What we are attempting to do in this example is akin to training BERT from scratch.
Don't worry; we train the model for a much shorter time than it took to train
BERT. Running long training loops runs the risk of training loops crashing in the
middle. In such a case, we don't want to restart training from scratch. The model
is checkpointed frequently during training so that the model state can be restored
from the last checkpoint if a failure occurs. Then, training can be restarted from the
last checkpoint. Python files executed from the command line give the most control
when running long training loops.

https://archive.ics.uci.edu/ml/datasets/News+Aggregator
https://www.kaggle.com/rmisra/news-category-dataset
https://www.kaggle.com/rmisra/news-category-dataset

Generating Text with RNNs and GPT-2

[152]

Going back to the data format, all that needs to be done for loading the data is to
unzip the prepared headline file. Navigate to the folder where the ZIP file has been
pulled down from GitHub. The compressed file of headlines can be unzipped and
inspected:

$ unzip news-headlines.tsv.zip
Archive: news-headlines.tsv.zip
 inflating: news-headlines.tsv

Let's inspect the contents of the file to get a sense of the data:

$ head -3 news-headlines.tsv
There Were 2 Mass Shootings In Texas Last Week, But Only 1 On TV there
were 2 mass shootings in texas last week, but only 1 on tv
Will Smith Joins Diplo And Nicky Jam For The 2018 World Cup's Official
Song will smith joins diplo and nicky jam for the 2018 world cup's
official song
Hugh Grant Marries For The First Time At Age 57 hugh grant marries for
the first time at age 57

The model is trained on the headlines shown above. We are ready to move on to the
next step and load the file to perform normalization and tokenization.

Data normalization and tokenization
As discussed above, this model uses a token per character. So, each letter, including
punctuation, numbers, and space, becomes a token. Three additional tokens are
added. These are:

• <EOS>: Denotes end of sentences. The model can use this token to indicate
that the generation of text is complete. All headlines end with this token.

The command-line instructions shown in this example were tested
on an Ubuntu 18.04 LTS machine. These commands should work
as is on a macOS command line but may need some adjustments.
Windows users may need to translate these commands for their
operating system. Windows 10 power users should be able to use
the Windows Subsystem for Linux (WSL) capabilities to execute
the same commands.

Chapter 5

[153]

• <UNK>: While this is a character-level model, it is possible to have different
characters from other languages or character sets in the dataset. When a
character is detected that is not present in our set of 96 characters, this token
is used. This approach is consistent with word-based vocabulary approaches
where it is common to replace out-of-vocabulary words with a special token.

• <PAD>: This is a unique padding token used to pad all headlines to the
same length. Padding is done by hand in this example as opposed to using
TensorFlow methods, which we have seen previously.

All the code in this section will refer to the rnn-train.py file from the chapter5-nlg-
with-transformer-gpt folder of the GitHub repo of the book. The first part of this file
has the imports and optional instructions for setting up a GPU. Ignore this section if
your setup does not use a GPU.

The code for data normalization and tokenization is between lines 32 and 90 of this
file. To start, the tokenization function needs to be set up:

chars = sorted(set("abcdefghijklmnopqrstuvwxyz0123456789
-,;.!?:'''/\|_@#$%ˆ&*˜'+-=()[]{}' ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
chars = list(chars)
EOS = '<EOS>'
UNK = "<UNK>"
PAD = "<PAD>" # need to move mask to '0'index for Embedding layer
chars.append(UNK)
chars.append(EOS) # end of sentence

chars.insert(0, PAD) # now padding should get index of 0

Once the token list is ready, methods need to be defined for converting characters to
tokens and vice versa. Creating mapping is relatively straightforward:

Creating a mapping from unique characters to indices
char2idx = {u:i for i, u in enumerate(chars)}
idx2char = np.array(chars)

def char_idx(c):
 # takes a character and returns an index
 # if character is not in list, returns the unknown token

A GPU is an excellent investment for deep learning engineers and
researchers. A GPU could speed up your training times by orders
of magnitude or more! It would be worthwhile to outfit your deep
learning setup with a GPU like the Nvidia GeForce RTX 2070.

Generating Text with RNNs and GPT-2

[154]

 if c in chars:
 return char2idx[c]

 return char2idx[UNK]

Now, the data needs can be read in from the TSV file. A maximum length of 75
characters is used for the headlines. If the headlines are shorter than this length,
they are padded. Any headlines longer than 75 characters are snipped. The <EOS>
token is appended to the end of every headline. Let's set this up:

data = [] # load into this list of lists
MAX_LEN = 75 # maximum length of a headline

with open("news-headlines.tsv", "r") as file:
 lines = csv.reader(file, delimiter='\t')
 for line in lines:
 hdln = line[0]
 cnvrtd = [char_idx(c) for c in hdln[:-1]]
 if len(cnvrtd) >= MAX_LEN:
 cnvrtd = cnvrtd[0:MAX_LEN-1]
 cnvrtd.append(char2idx[EOS])
 else:
 cnvrtd.append(char2idx[EOS])
 # add padding tokens
 remain = MAX_LEN - len(cnvrtd)
 if remain > 0:
 for i in range(remain):
 cnvrtd.append(char2idx[PAD])
 data.append(cnvrtd)
print("**** Data file loaded ****")

All the data is loaded into a list with the code above. You may be wondering about
the ground truth here for training as we only have a line of text. Since we want this
model to generate text, the objective can be reduced to predicting the next character
given a set of characters. Hence, a trick will be used to construct the ground truth
– we will just shift the input sequence by one character and set it as the expected
output. This transformation is quite easy do with numpy:

now convert to numpy array
np_data = np.array(data)

for training, we use one character shifted data
np_data_in = np_data[:, :-1]
np_data_out = np_data[:, 1:]

Chapter 5

[155]

With this nifty trick, we have both inputs and expected outputs ready for training.
The final step is to convert it into tf.Data.DataSet for ease of batching and shuffling:

Create TF dataset
x = tf.data.Dataset.from_tensor_slices((np_data_in, np_data_out))

Now everything is ready to start training.

Training the model
The code for model training starts at line 90 in the rnn-train.py file. The model is
quite simple. It has an embedding layer, followed by a GRU layer and a dense layer.
The size of the vocabulary, the number of RNN units, and the size of the embeddings
are set up:

Length of the vocabulary in chars
vocab_size = len(chars)

The embedding dimension
embedding_dim = 256

Number of RNN units
rnn_units = 1024

batch size
BATCH_SIZE=256

With the batch size being defined, training data can be batched and ready for use by
the model:

create tf.DataSet
x_train = x.shuffle(100000, reshuffle_each_iteration=True).batch(BATCH_
SIZE, drop_remainder=True)

Similar to code in previous chapters, a convenience method to build models is
defined like so:

define the model
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
 model = tf.keras.Sequential([
 tf.keras.layers.Embedding(vocab_size, embedding_dim,
 mask_zero=True,
 batch_input_shape=[batch_size, None]),
 tf.keras.layers.GRU(rnn_units,

Generating Text with RNNs and GPT-2

[156]

 return_sequences=True,
 stateful=True,
 recurrent_initializer='glorot_uniform'),
 tf.keras.layers.Dropout(0.1),
 tf.keras.layers.Dense(vocab_size)
])
 return model

A model can be instantiated with this method:

model = build_model(
 vocab_size = vocab_size,
 embedding_dim=embedding_dim,
 rnn_units=rnn_units,
 batch_size=BATCH_SIZE)

print("**** Model Instantiated ****")
print(model.summary())

**** Model Instantiated ****
Model: "sequential"

Layer (type) Output Shape Param #
===
embedding (Embedding) (256, None, 256) 24576

gru (GRU) (256, None, 1024) 3938304

dropout (Dropout) (256, None, 1024) 0

dense (Dense) (256, None, 96) 98400
===
Total params: 4,061,280
Trainable params: 4,061,280
Non-trainable params: 0

There are just over 4 million trainable parameters in this model. The Adam
optimizer, with a sparse categorical loss function, is used for training this model:

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer = 'adam', loss = loss)

Chapter 5

[157]

Since training is potentially going to take a long time, we need to set up checkpoints
along with the training. If there is any problem in training and training stops, these
checkpoints can be used to restart the training from the last saved checkpoint. A
directory is created using the current timestamp for saving these checkpoints:

Setup checkpoints
dynamically build folder names
dt = datetime.datetime.today().strftime("%Y-%b-%d-%H-%M-%S")

Directory where the checkpoints will be saved
checkpoint_dir = './training_checkpoints/'+dt

Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")

checkpoint_callback=tf.keras.callbacks.ModelCheckpoint(
 filepath=checkpoint_prefix,
 save_weights_only=True)

A custom callback that saves checkpoints during training is defined in the last line
of code above. This is passed to the model.fit() function to be called at the end of
every epoch. Starting the training loop is straightforward:

print("**** Start Training ****")
EPOCHS=25
start = time.time()
history = model.fit(x_train, epochs=EPOCHS,
 callbacks=[checkpoint_callback])
print("**** End Training ****")
print("Training time: ", time.time()- start)

The model will be trained for 25 epochs. The time taken in training will be logged as
well in the code above. The final piece of code uses the history to plot the loss and
save it as a PNG file in the same directory:

Plot accuracies
lossplot = "loss-" + dt + ".png"
plt.plot(history.history['loss'])
plt.title('model loss')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.savefig(lossplot)

print("Saved loss to: ", lossplot)

Generating Text with RNNs and GPT-2

[158]

The best way to start training is to start the Python process so that it can run in the
background without needing a Terminal or command-line. On Unix systems, this
can be done with the nohup command:

$ nohup python rnn-train.py > training.log &

This command line starts the process in a way that disconnecting the Terminal
would not interrupt the training process. On my machine, this training took
approximately 1 hour and 43 minutes. Let's check out the loss curve:

Figure 5.1: Loss curve

As we can see, the loss decreases to a point and then shoots up. The standard
expectation is that loss would monotonically decrease as the model was trained for
more epochs. In the case shown above, the loss suddenly shoots up. In other cases,
you may observe a NaN, or Not-A-Number, error. NaNs result from the exploding
gradient problem during backpropagation through RNNs. The gradient direction
causes weights to grow very large quickly and overflow, resulting in NaNs. Given
how prevalent this is, there are quite a few jokes about NLP engineers and Indian
food to go with the nans (referring to a type of Indian bread).

Chapter 5

[159]

The primary reason behind these occurrences is gradient descent overshooting the
minima and starting to climb the slope before reducing again. This happens when
the steps gradient descent is taking are too large. Another way to prevent the NaN
issue is gradient clipping where gradients are clipped to an absolute maximum,
preventing loss from exploding. In the RNN model above, a scheme needs to be
used that reduces the learning rate over time. Reducing the learning rate over epochs
reduces the chances for gradient descent to overshoot the minima. This technique
of reducing the learning rate over time is called learning rate annealing or learning
rate decay. The next section walks through implementing learning rate decay while
training the model.

Implementing learning rate decay as custom
callback
There are two ways to implement learning rate decay in TensorFlow. The first way
is to use one of the prebuilt schedulers that are part of the tf.keras.optimizers.
schedulers package and use a configured instance with the optimizer. An example
of a prebuilt scheduler is InverseTimeDecay, and it can be set up as shown below:

lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay(
 0.001,
 decay_steps=STEPS_PER_EPOCH*(EPOCHS/10),
 decay_rate=2,
 staircase=False)

The first parameter, 0.001 in the example above, is the initial learning rate. The
number of steps per epoch can be calculated by dividing the number of training
examples by batch size. The number of decay steps determines how the learning
rate is reduced. The equation used to compute the learning rate is:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛 𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1 + 𝑑𝑑𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑟 𝑟 𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑑𝑑𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑−𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠)
After being set up, all this function needs is the step number for computing the new
learning rate. Once the schedule is set up, it can be passed to the optimizer:

optimizer = tf.keras.optimizers.Adam(lr_schedule)

Generating Text with RNNs and GPT-2

[160]

That's it! The rest of the training loop code is unchanged. However, this learning
rate scheduler starts reducing the learning rate from the first epoch itself. A lower
learning rate increases the amount of training time. Ideally, we would keep the
learning rate unchanged for the first few epochs and then reduce it.

Looking at Figure 5.1 above, the learning rate is probably effective until about the
tenth epoch. BERT also uses learning rate warmup before learning rate decay.
Learning rate warmup generally refers to increasing the learning rate for a few
epochs. BERT was trained for 1,000,000 steps, which roughly translates to 40 epochs.
For the first 10,000 steps, the learning rate was increased, and then it was linearly
decayed. Implementing such a learning rate schedule is better accomplished by a
custom callback.

Custom callbacks in TensorFlow enable the execution of custom logic at various
points during training and inference. We saw an example of a prebuilt callback that
saves checkpoints during training. A custom callback provides hooks that enable
desired logic that can be executed at various points during training. This main
step is to define a subclass of tf.keras.callbacks.Callback. Then, one or more of
the following functions can be implemented to hook onto the events exposed by
TensorFlow:

• on_[train,test,predict]_begin / on_[train,test,predict]_end: This
callback happens at the start of training or the end of the training. There are
methods for training, testing, and prediction loops. Names for these methods
can be constructed using the appropriate stage name from the possibilities
shown in brackets. The method naming convention is a common pattern
across other methods in the rest of the list.

• on_[train,test,predict]_batch_begin / on_[train,test,predict] _batch_
end: These callbacks happen when training for a specific batch starts or ends.

• on_epoch_begin / on_epoch_end: This is a training-specific function called at
the start or end of an epoch.

We will implement a callback for the start of the epoch that adjusts that epoch's
learning rate. Our implementation will keep the learning rate constant for a
configurable number of initial epochs and then reduce the learning rate in a fashion
similar to the inverse time decay function described above. This learning rate would
look like the following Figure 5.2:

Chapter 5

[161]

Figure 5.2: Custom learning rate decay function

First, a subclass is created with the function defined in it. The best place to put this
in rnn_train.py is just around the checkpoint callback, before the start of training.
This class definition is shown below:

class LearningRateScheduler(tf.keras.callbacks.Callback):
 """Learning rate scheduler which decays the learning rate"""

 def __init__(self, init_lr, decay, steps, start_epoch):
 super().__init__()
 self.init_lr = init_lr # initial learning rate
 self.decay = decay # how sharply to decay
 self.steps = steps # total number of steps of decay
 self.start_epoch = start_epoch # which epoch to start decaying

 def on_epoch_begin(self, epoch, logs=None):
 if not hasattr(self.model.optimizer, 'lr'):
 raise ValueError('Optimizer must have a "lr" attribute.')
 # Get the current learning rate

Generating Text with RNNs and GPT-2

[162]

 lr = float(tf.keras.backend.get_value(self.model.optimizer.lr))
 if(epoch >= self.start_epoch):
 # Get the scheduled learning rate.
 scheduled_lr = self.init_lr / (1 + self.decay * (epoch / self.
steps))
 # Set the new learning rate
 tf.keras.backend.set_value(self.model.optimizer.lr,
 scheduled_lr)
 print('\nEpoch %05d: Learning rate is %6.4f.' % (epoch, scheduled_lr))

Using this callback in the training loop requires the instantiation of the callback. The
following parameters are set while instantiating the callback:

• The initial learning rate is set to 0.001.
• The decay rate is set to 4. Please feel free to play around with different

settings.
• The number of steps is set to the number of epochs. The model is trained for

150 epochs.
• Learning rate decay should start after epoch 10, so the start epoch is set to 10.

The training loop is updated to include the callback like so:

print("**** Start Training ****")
EPOCHS=150
lr_decay = LearningRateScheduler(0.001, 4., EPOCHS, 10)
start = time.time()
history = model.fit(x_train, epochs=EPOCHS,
 callbacks=[checkpoint_callback, lr_decay])
print("**** End Training ****")
print("Training time: ", time.time()- start)
print("Checkpoint directory: ", checkpoint_dir)

Changes are highlighted above. Now, the model is ready to be trained using the
command shown above. Training 150 epochs took over 10 hours on the GPU-capable
machine. The loss surface is shown in Figure 5.3:

Chapter 5

[163]

Figure 5.3: Model loss after learning rate decay

In the figure above, the loss drops very fast for the first few epochs before plateauing
near epoch 10. Learning rate decay kicks in at that point, and the loss starts to fall
again. This can be verified from a snippet of the log file:

...
Epoch 8/150
2434/2434 [==================] - 249s 102ms/step - loss: 0.9055
Epoch 9/150
2434/2434 [==================] - 249s 102ms/step - loss: 0.9052
Epoch 10/150
2434/2434 [==================] - 249s 102ms/step - loss: 0.9064

Epoch 00010: Learning rate is 0.00078947.
Epoch 11/150
2434/2434 [==================] - 249s 102ms/step - loss: 0.8949

Epoch 00011: Learning rate is 0.00077320.
Epoch 12/150

Generating Text with RNNs and GPT-2

[164]

2434/2434 [==================] - 249s 102ms/step - loss: 0.8888
...
Epoch 00149: Learning rate is 0.00020107.
Epoch 150/150
2434/2434 [==================] - 249s 102ms/step - loss: 0.7667
**** End Training ****
Training time: 37361.16723680496
Checkpoint directory: ./training_checkpoints/2021-Jan-01-09-55-03
Saved loss to: loss-2021-Jan-01-09-55-03.png

Note the highlighted loss above. The loss slightly increased around epoch 10 as
learning rate decay kicked in, and the loss started falling again. The small bumps
in the loss that can be seen in Figure 5.3 correlate with places where the learning
rate was higher than needed, and learning rate decay kicked it down to make the
loss go lower. The learning rate started at 0.001 and ended at a fifth of that at 0.0002.

Training this model took much time and advanced tricks like learning rate decay to
train. But how does this model do in terms of generating text? That is the focus of
the next section.

Generating text with greedy search
Checkpoints were taken during the training process at the end of every epoch.
These checkpoints are used to load a trained model for generating text. This part of
the code is implemented in an IPython notebook. The code for this section is found
in the charRNN-text-generation.ipynb file in this chapter's folder in GitHub. The
generation of text is dependent on the same normalization and tokenization logic
used during training. The Setup Tokenization section of the notebook has this code
replicated.

There are two main steps in generating text. The first step is restoring a trained
model from the checkpoint. The second step is generating a character at a time
from a trained model until a specific end condition is met.

The Load the Model section of the notebook has the code to define the model. Since
the checkpoints only stored the weights for the layers, defining the model structure
is important. The main difference from the training network is the batch size. We
want to generate a sentence at a time, so we set the batch size as 1:

Length of the vocabulary in chars
vocab_size = len(chars)

The embedding dimension

Chapter 5

[165]

embedding_dim = 256

Number of RNN units
rnn_units = 1024

Batch size
BATCH_SIZE=1

A convenience function for setting up the model structure is defined like so:

this one is without padding masking or dropout layer
def build_gen_model(vocab_size, embedding_dim, rnn_units, batch_size):
 model = tf.keras.Sequential([
 tf.keras.layers.Embedding(vocab_size, embedding_dim,
 batch_input_shape=[batch_size, None]),
 tf.keras.layers.GRU(rnn_units,
 return_sequences=True,
 stateful=True,
 recurrent_initializer='glorot_uniform'),
 tf.keras.layers.Dense(vocab_size)
])
 return model

gen_model = build_gen_model(vocab_size, embedding_dim, rnn_units,
 BATCH_SIZE)

Note that the embedding layer does not use masking because, in text generation,
we are not passing an entire sequence but only part of a sequence that needs to be
completed. Now that the model is defined, the weights for the layers can be loaded
in from the checkpoint. Please remember to replace the checkpoint directory with
your local directory containing the checkpoints from training:

checkpoint_dir = './training_checkpoints/<YOUR-CHECKPOINT-DIR>'

gen_model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))

gen_model.build(tf.TensorShape([1, None]))

Generating Text with RNNs and GPT-2

[166]

The second main step is to generate text a character at a time. Generating text needs
a seed or a starting few letters, which are completed by the model into a sentence.
The process of generation is encapsulated in the function below:

def generate_text(model, start_string, temperature=0.7, num_
generate=75):
 # Low temperatures results in more predictable text.
 # Higher temperatures results in more surprising text.
 # Experiment to find the best setting.

 # Converting our start string to numbers (vectorizing)
 input_eval = [char2idx[s] for s in start_string]
 input_eval = tf.expand_dims(input_eval, 0)

 # Empty string to store our results
 text_generated = []

 # Here batch size == 1
 for i in range(num_generate):
 predictions = model(input_eval)
 # remove the batch dimension
 predictions = tf.squeeze(predictions, 0)

 # using a categorical distribution to predict the
 # word returned by the model
 predictions = predictions / temperature
 predicted_id = tf.random.categorical(predictions,
 num_samples=1)[-1,0].numpy()

 # We pass the predicted word as the next input to the model
 # along with the previous hidden state
 input_eval = tf.expand_dims([predicted_id], 0)

 text_generated.append(idx2char[predicted_id])
 # lets break is <EOS> token is generated
 # if idx2char[predicted_id] == EOS:
 # break #end of a sentence reached, let's stop

 return (start_string + ''.join(text_generated))

Chapter 5

[167]

The generation method takes in a seed string that is used as the starting point for the
generation. This seed string is vectorized. The actual generation happens in a loop,
where one character is generated at a time and appended to the sequence generated.
At every point, the character with the highest likelihood is chosen. Choosing the
next letter with the highest probability is called greedy search. However, there
is a configuration parameter called temperature, which can be used to adjust the
predictability of the generated text.

Once probabilities for all characters are predicted, dividing the probabilities by the
temperature changes the distribution of the generated characters. Smaller values of
the temperature generate text that is closer to the original text. Larger values of the
temperature generate more creative text. Here, a value of 0.7 is chosen to bias more
on the surprising side.

To generate the text, all that is needed is one line of code:

print(generate_text(gen_model, start_string=u"Google"))

Google plans to release the Xbox One vs. Samsung Galaxy
Gea<EOS><PAD>ote on Mother's Day

Each execution of the command may generate slightly different results. The line
generated above, while obviously nonsensical, is pretty well structured. The model
has learned capitalization rules and headline structure. Normally, we would not
generate text beyond the <EOS> token, but all 75 characters are generated here for the
sake of understanding the model output.

Note that the output shown for text generation is indicative. You
may see a different output for the same prompt. There is some
inherent randomness that is built into this process, which we
can try and control by setting random seeds. When a model is
retrained, it may end up on a slightly different point on the loss
surface, where even though the loss numbers look similar, there
may be slight differences in the model weights. Please take the
outputs presented in the entire chapter as indicative versus actual.

Generating Text with RNNs and GPT-2

[168]

Here are some other examples of seed strings and model outputs, snipped after the
end-of-sentence tag:

Seed Generated Sentence
S&P S&P 500 closes above 190<EOS>

S&P: Russell Slive to again find any business manufacture<EOS>

S&P closes above 2000 for first tim<EOS>
Beyonce Beyonce and Solange pose together for 'American Idol' contes<EOS>

Beyonce's sister Solange rules' Dawn of the Planet of the Apes' report<EOS>

Beyonce & Jay Z Get Married<EOS>

Note the model's use of quotes in the first two sentences for Beyonce as the seed
word. The following table shows the impact of different temperature settings for
similar seed words:

Seed Temperature Generated Sentence
S&P 0.1

0.3

0.5

0.9

S&P 500 Closes Above 1900 For First Tim<EOS>

S&P Close to $5.7 Billion Deal to Buy Beats Electronic<EOS>

S&P 500 index slips to 7.2%, signaling a strong retail
sale<EOS>

S&P, Ack Factors at Risk of what you see This Ma<EOS>
Kim 0.1

0.3

0.5

0.9

Kim Kardashian and Kanye West wedding photos
release<EOS>

Kim Kardashian Shares Her Best And Worst Of His First Look
At The Met Gala<EOS>

Kim Kardashian Wedding Dress Dress In The Works From
Fia<EOS>

Kim Kardashian's en<EOS>

Generally, the quality of the text goes down at higher values of temperature. All
these examples were generated by passing in the different temperature values to the
generation function.

A practical application of such a character-based model is to complete words in a text
messaging or email app. By default, the generate_text() method is generating 75
characters to complete the headline. It is easy to pass in much shorter lengths to see
what the model proposes as the next few letters or words.

Chapter 5

[169]

The table below shows some experiments of trying to complete the next 10 characters
of text fragments. These completions were generated using:

print(generate_text(gen_model, start_string=u"Lets meet tom",
 temperature=0.7, num_generate=10))

Lets meet tomorrow to t

Prompt Completion
I need some money from ba I need some money from bank chairma
Swimming in the p Swimming in the profitabili
Can you give me a Can you give me a Letter to
are you fr are you from around
The meeting is The meeting is back in ex
Lets have coffee at S Lets have coffee at Samsung hea

Lets have coffee at Staples stor

Lets have coffee at San Diego Z

Given that the dataset used was only from news headlines, it is biased toward
certain types of activities. For example, the second sentence could be completed with
pool instead of the model trying to fill it in with profitability. If a more general text
dataset was used, then this model could do quite well at generating completions for
partially typed words at the end of the sentence. However, there is one limitation
that this text generation method has – the use of the greedy search algorithm.

The greedy search process is a crucial part of the text generation above. It is one of
several ways to generate text. Let's take an example to understand this process. For
this example, bigram frequencies were analyzed by Peter Norvig and published on
http://norvig.com/mayzner.html. Over 743 billion English words were analyzed in
this work. With 26 characters in an uncased model, there are theoretically 26 x 26 =
676 bigram combinations. However, the article reports that the following bigrams
were never seen in roughly 2.8 trillion bigram instances: JQ, QG, QK, QY, QZ, WQ,
and WZ.

The Greedy Search with Bigrams section of the notebook has code to download and
process the full dataset and show the process of greedy search. After downloading
the set of all n-grams, bigrams are extracted. A set of dictionaries is constructed to
help look up the highest-probability next letter given a starting letter. Then, using
some recursive code, a tree is constructed, picking the top three choices for the next
letter. In the generation code above, only the top letter is chosen. However, the top
three letters are chosen to show how greedy search works and its shortcomings.

http://norvig.com/mayzner.html

Generating Text with RNNs and GPT-2

[170]

Using the nifty anytree Python package, a nicely formatted tree can be visualized.
This tree is shown in the following figure:

Figure 5.4: Greedy search tree starting with WI

Chapter 5

[171]

The algorithm was given the task of completing WI in a total of five characters.
The preceding tree shows cumulative probabilities for a given path. More than one
path is shown so that the branches not taken by greedy search can also be seen. If a
three-character word was being built, the highest probability choice is WIN with a
probability of 0.243, followed by WIS at 0.01128. If four-letter words are considered,
then the greedy search would consider only those words that start with WIN as that
was the path with the highest probability considering the first three letters. WIND
has the highest probability of 0.000329 in this path. However, a quick scan across all
four-letter words shows that the highest probability word should be WITH having a
probability of 0.000399.

This, in essence, is the challenge of the greedy search algorithm for text generation.
Higher-probability options considering joint probabilities are hidden due to
optimization at each character instead of cumulative probability. Whether the text is
generated a character or a word at a time, greedy search suffers from the same issue.

An alternative algorithm, called beam search, allows tracking multiple options, and
pruning out the lower-probability options as generation proceeds. The tree shown in
Figure 5.4 can also be seen as an illustration of tracking beams of probabilities. To see
the power of this technique, a more sophisticated model for generating text would be
better. The GPT-2, or Generative Pre-Training, based model published by OpenAI
set many benchmarks including in open-ended text generation. This is the subject of
the next half of this chapter, where the GPT-2 model is explained first. The next topic
is fine-tuning a GPT-2 model for completing email messages. Beam search and other
options to improve the quality of the generated text are also shown.

Generative Pre-Training (GPT-2) model
OpenAI released the first version of the GPT model in June 2018. They followed up
with GPT-2 in February 2019. This paper attracted much attention as full details of
the large GPT-2 model were not released with the paper due to concerns of nefarious
uses. The large GPT-2 model was released subsequently in November 2019. The
GPT-3 model is the most recent, released in May 2020.

Generating Text with RNNs and GPT-2

[172]

Figure 5.5 shows the number of parameters in the largest of each of these models:

Figure 5.5: Parameters in different GPT models

The first model used the standard Transformer decoder architecture with twelve
layers, each with twelve attention heads and 768-dimensional embeddings, for a total
of approximately 110 million parameters, which is very similar to the BERT model.
The largest GPT-2 has over 1.5 billion parameters, and the most recently released
GPT-3 model's largest variant has over 175 billion parameters!

Cost of training language models

As the number of parameters and dataset sizes increase, the time
taken for training also increases. As per a Lambda Labs article, If
the GPT-3 model were to be trained on a single Nvidia V100 GPU,
it would take 342 years. Using stock Microsoft Azure pricing, this
would cost over $3 million. GPT-2 model training is estimated to
run to $256 per hour. Assuming a similar running time as BERT,
which is about four days, that would cost about $25,000. If the
cost of training multiple models during research is factored in, the
overall cost can easily increase ten-fold.

At such costs, training these models from scratch is out of reach for
individuals and even most companies. Transfer learning and the
availability of pre-trained models from companies like Hugging
Face make it possible for the general public to use these models.

Chapter 5

[173]

The base architecture of GPT models uses the decoder part of the Transformer
architecture. The decoder is a left-to-right language model. The BERT model, in
contrast, is a bidirectional model. A left-to-right model is autoregressive, that is, it
uses tokens generated thus far to generate the next token. Since it cannot see future
tokens like a bi-directional model, this language model is ideal for text generation.

Figure 5.6 shows the full Transformer architecture with the encoder blocks on the
left and decoder blocks on the right:

Figure 5.6: Full Transformer architecture with encoder and decoder blocks

The left side of Figure 5.6 should be familiar – it is essentially Figure 4.6 from the
Transformer model section of the previous chapter. The encoder blocks shown are the
same as the BERT model. The decoder blocks are very similar to the encoder blocks
with a couple of notable differences.

Generating Text with RNNs and GPT-2

[174]

In the encoder block, there is only one source of input – the input sequence and all of
the input tokens are available for the multi-head attention to operate on. This enables
the encoder to understand the context of the token from both the left and right sides.

In the decoder block, there are two inputs to each block. The outputs generated by
the encoder blocks are available to all the decoder blocks and fed to the middle of
the decoder block through multi-head attention and layer norms.

However, the tokens generated by the decoder thus far are fed back through a
masked multi-head self-attention and added to the output from the encoder blocks.
Masked here refers to the fact that tokens to the right of the token being generated
are masked, and the decoder cannot see them. Similar to the encoder, there are
several such blocks stacked on top of each other. However, GPT architecture is only
one half of the Transformer. This requires some modifications to the architecture.

What is layer normalization?

Large deep neural networks are trained using the Stochastic
Gradient Descent (SGD) optimizer or a variant like Adam.
Training large models on big datasets can take a significant amount
of time for the model to converge. Techniques such as weight
normalization, batch normalization, and layer normalization are
aimed at reducing training time by helping models to converge
faster while also acting as a regularizer. The idea behind layer
normalization is to scale the inputs of a given hidden layer with
the mean and standard deviation of the inputs. First, the mean and
standard deviation are computed:

𝜇𝜇𝑙𝑙 = 1𝐻𝐻 ∑ 𝑎𝑎𝑖𝑖𝑙𝑙𝐻𝐻
𝑖𝑖𝑖𝑖 𝜎𝜎𝑙𝑙 = √1𝐻𝐻 ∑(𝑎𝑎𝑖𝑖𝑙𝑙 − 𝜇𝜇𝑙𝑙)𝐻𝐻

𝑖𝑖𝑖𝑖
2

H denotes the number of hidden units in layer l. Inputs to the layer
are normalized using the above-calculated values:

𝑎𝑎 𝑖𝑖 𝑙𝑙 = 𝑔𝑔𝑖𝑖𝑙𝑙𝜎𝜎𝑖𝑖𝑙𝑙 (𝑎𝑎𝑖𝑖𝑙𝑙 − 𝜇𝜇𝑖𝑖𝑙𝑙)

where g is a gain parameter. Note that the formulation of the mean
and standard deviation is not dependent on the size of the mini-
batches or dataset size. Hence, this type of normalization can be
used for RNNs and other sequence modeling problems.

Chapter 5

[175]

The modified architecture for GPT is shown in Figure 5.7. Since there is no encoder
block to feed the representation of the input sequence, the multi-head layer is no
longer required. The outputs generated by the model are recursively fed back to
generate the next token.

The smallest GPT-2 model has twelve layers and 768 dimensions for each token.
The largest GPT-2 model has 48 layers and 1,600 dimensions per token. To pre-train
models of this size, the authors of GPT-2 needed to create a new dataset. Web pages
provide a great source of text, but the text comes with quality issues. To solve this
challenge, they scraped all outbound links from Reddit, which had received at least
three karma points. The assumption made by the authors is that karma points are
an indicator of the quality of the web page being linked. This assumption allows
scraping a huge set of text data. The resulting dataset was approximately 45 million
links.

To extract text from the HTML on the web pages, two Python libraries were used:
Dragnet and Newspaper. After some quality checks and deduplication, the final
dataset was about 8 million documents with 40 GB of text. One exciting thing that
the authors did was to remove any Wikipedia documents as they felt many of the
test datasets used Wikipedia, and adding these pages would cause an overlap
between test and training data sets. The pre-training objective is a standard LM
training objective of predicting the next word given a set of previous words:

Figure 5.7: GPT architecture
(Source: Improving Language Understanding by Generative Pre-Training by Radford et al.)

Generating Text with RNNs and GPT-2

[176]

During pre-training, the GPT-2 model is trained with a maximum sequence length
of 1,024 tokens. A Byte Pair Encoding (BPE) algorithm is used for tokenization, with
a vocabulary size of about 50,000 tokens. GPT-2 uses byte sequences rather than
Unicode code points for the byte pair merges. If GPT-2 only used bytes for encoding,
then the vocabulary would only be 256 tokens. On the other hand, using Unicode
code points would yield a vocabulary of over 130,000 tokens. By cleverly using bytes
in BPE, GPT-2 is able to keep the vocabulary size to a manageable 50,257 tokens.

Another peculiarity of the tokenizer in GPT-2 is that it converts all text to lowercase
and uses spaCy and ftfy tokenizers prior to using BPE. The ftfy library is quite
useful for fixing Unicode issues. If these two are not available, then the basic BERT
tokenizer is used.

There are several ways to encode the inputs to solve various problems, even though
the left-to-right model may seem limiting. These are shown in Figure 5.8:

Figure 5.8: Input transformations in GPT-2 for different problems
(Source: Improving Language Understanding by Generative Pre-Training by Radford et al.)

The figure above shows how a pre-trained GPT-2 model can be used for a variety
of tasks other than text generation. In each instance, start and end tokens are added
before and after the input sequence. In all cases, a linear layer is added to the end
that is trained during model fine-tuning. The major advantage being claimed is that
many different types of tasks can be accomplished using the same architecture. The
topmost architecture in Figure 5.8 shows how it can be used for classification. GPT-2
could be used for IMDb sentiment analysis using this approach, for example.

Chapter 5

[177]

The second example is of textual entailment. Textual entailment is an NLP task
where the relationship between two fragments of text needs to be established.
The first text fragment is called a premise, and the second fragment is called the
hypothesis. Different relationships can exist between the premise and hypothesis.
The premise can validate or contradict the hypothesis, or they may be unrelated.

Let's say the premise is Exercising every day is an important part of a healthy lifestyle
and longevity. If the hypothesis is exercise increases lifespan, then the premise entails
or validates the hypothesis. Alternatively, if the hypothesis is Running has no benefits,
then the premise contradicts the hypothesis. Lastly, if the hypothesis is that lifting
weights can build a six-pack, then the premise neither entails nor contradicts the
hypothesis. To perform entailment with GPT-2, the premise and hypothesis are
concatenated with a delimiter, usually $, in between them.

For text similarity, two input sequences are constructed, one with the first text
sequence first and the second with the second text sequence first. The output from
the GPT model is added together and fed to the linear layer. A similar approach
is used for multiple-choice questions. However, our focus in this chapter is text
generation.

Generating text with GPT-2
Hugging Face's transformers library simplifies the process of generating text with
GPT-2. Similar to the pre-trained BERT model, as shown in the previous chapter,
Hugging Face provides pre-trained GPT and GPT-2 models. These pre-trained
models are used in the rest of the chapter. Code for this and the rest of the sections
of this chapter can be found in the IPython notebook named text-generation-
with-GPT-2.ipynb. After running the setup, scoot over to the Generating Text with
GPT-2 section. A section showing the generation of text with GPT is also provided
for reference. The first step in generating text is to download the pre-trained model,
and its corresponding tokenizer:

from transformers import TFGPT2LMHeadModel, GPT2Tokenizer

gpt2tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

add the EOS token as PAD token to avoid warnings
gpt2 = TFGPT2LMHeadModel.from_pretrained("gpt2",
 pad_token_id=gpt2tokenizer.eos_token_id)

Generating Text with RNNs and GPT-2

[178]

This may take a few minutes as the models need to be downloaded. You may see a
warning if spaCy and ftfy are not available in your environment. These two libraries
are not mandatory for text generation. The following code can be used to generate
text using a greedy search algorithm:

encode context the generation is conditioned on
input_ids = gpt2tokenizer.encode('Robotics is the domain of ', return_
tensors='tf')

generate text until the output length
(which includes the context length) reaches 50
greedy_output = gpt2.generate(input_ids, max_length=50)

print("Output:\n" + 50 * '-')
print(gpt2tokenizer.decode(greedy_output[0], skip_special_tokens=True))

Output:

Robotics is the domain of the United States Government.

The United States Government is the primary source of information on
the use of drones in the United States.

The United States Government is the primary source of information on
the use of drones

A prompt was supplied for the model to complete. The model started in a promising
manner but soon resorted to repeating the same output.

Issues with the greedy search were noted in the previous section. Beam search
can be considered as an alternative. At each step of generating a token, a set of top
probability tokens are kept as part of the beam instead of just the highest-probability
token. The sequence with the highest overall probability is returned at the end
of the generation. Figure 5.4, in the previous section with a greedy search, can be
considered as the output of a beam search algorithm with a beam size of 3.

Note that the output shown for text generation is indicative. You
may see different outputs for the same prompt. There are a few
different reasons for this. There is some inherent randomness
that is built into this process, which we can try and control by
setting random seeds. The models themselves may be retrained
periodically by the Hugging Face team and may evolve with newer
versions.

Chapter 5

[179]

Generating text using beam search is trivial:

BEAM SEARCH
activate beam search and early_stopping
beam_output = gpt2.generate(
 input_ids,
 max_length=50,
 num_beams=5,
 early_stopping=True
)

print("Output:\n" + 50 * '-')
print(gpt2tokenizer.decode(beam_output[0], skip_special_tokens=True))

Output:
--
Robotics is the domain of science and technology. It is the domain of
science and technology. It is the domain of science and technology. It
is the domain of science and technology. It is the domain of science
and technology. It is the domain

Qualitatively, the first sentence makes a lot more sense than the one generated by
the greedy search. The early_stopping parameter signals generation to stop when
all beams reach the EOS token. However, there is still much repetition going on. One
parameter that can be used to control the repetition is by setting a limit on n-grams
being repeated:

set no_repeat_ngram_size to 2
beam_output = gpt2.generate(
 input_ids,
 max_length=50,
 num_beams=5,
 no_repeat_ngram_size=3,
 early_stopping=True
)

print("Output:\n" + 50 * '-')
print(gpt2tokenizer.decode(beam_output[0], skip_special_tokens=True))

Output:
--
Robotics is the domain of science and technology.

In this article, we will look at some of the most important aspects of

Generating Text with RNNs and GPT-2

[180]

robotics and how they can be used to improve the lives of people around
the world. We will also take a look

This has made a considerable difference in the quality of the generated text. The no_
repeat_ngram_size parameter prevents the model from generating any 3-grams or
triplets of tokens more than once. While this improves the quality of the text, using
the n-gram constraint can have a significant impact on the quality of the generated
text. If the generated text is about The White House, then these three words can only
be used once in the entire generated text. In such a case, using the n-gram constraint
will be counter-productive.

To beam or not to beam

Beam search works well in cases where the generated sequence
is of a restricted length. As the length of the sequence increases,
the number of beams to be maintained and computed increases
significantly. Consequently, beam search works well in tasks like
summarization and translation but performs poorly in open-ended
text generation. Further, beam search, by trying to maximize the
cumulative probability, generates more predictable text. The text
feels less natural. The following piece of code can be used to get
a feel for the various beams being generated. Just make sure that
the number of beams is greater than or equal to the number of
sequences to be returned:

Returning multiple beams
beam_outputs = gpt2.generate(
 input_ids,
 max_length=50,
 num_beams=7,
 no_repeat_ngram_size=3,
 num_return_sequences=3,
 early_stopping=True,
 temperature=0.7
)

print("Output:\n" + 50 * '-')
for i, beam_output in enumerate(beam_outputs):
 print("\n{}: {}".format(i,
 gpt2tokenizer.decode(beam_output,
 skip_special_tokens=True)))

Chapter 5

[181]

There is another method for improving the coherence and creativity of the text being
generated called Top-K sampling. This is the preferred method in GPT-2 and plays
an essential role in the success of GPT-2 in story generation. Before explaining how
this works, let's try it out and see the output:

Top-K sampling
tf.random.set_seed(42) # for reproducible results
beam_output = gpt2.generate(
 input_ids,
 max_length=50,
 do_sample=True,
 top_k=25,
 temperature=2
)

print("Output:\n" + 50 * '-')
print(gpt2tokenizer.decode(beam_output[0], skip_special_tokens=True))

Output:
--
Robotics is the domain of people with multiple careers working with
robotics systems. The purpose of Robotics & Machine Learning in Science

Output:
--
0: Robotics is the domain of the U.S. Department of
Homeland Security. The agency is responsible for
the security of the United States and its allies,
including the United Kingdom, Canada, Australia, New
Zealand, and the European Union.
1: Robotics is the domain of the U.S. Department of
Homeland Security. The agency is responsible for
the security of the United States and its allies,
including the United Kingdom, France, Germany,
Italy, Japan, and the European Union.

2: Robotics is the domain of the U.S. Department of
Homeland Security. The agency is responsible for
the security of the United States and its allies,
including the United Kingdom, Canada, Australia, New
Zealand, the European Union, and the United
The text generated is very similar but differs near
the end. Also, note that temperature is available to
control the creativity of the generated text.

Generating Text with RNNs and GPT-2

[182]

and engineering research is not necessarily different for any given
research type because the results would be much more diverse.

Our team uses

The above sample was generated by selecting a high temperature value. A random
seed was set to ensure repeatable results. The Top-K sampling method was
published in a paper titled Hierarchical Neural Story Generation by Fan Lewis and
Dauphin in 2018. The algorithm is relatively simple – at every step, it picks a token
from the top K highest probability tokens. If K is set to 1, then this algorithm is
identical to the greedy search.

In the code example above, the model looks at the 25 top tokens out of the 50,000+
tokens while generating text. Then, it picks a random word from these and continues
the generation. Choosing larger values will result in more surprising or creative text.
Choosing lower values of K will result in more predictable text. If you are a little
underwhelmed by the results thus far, that is because the prompt selected is a really
tough one. Consider this output generated with Top-K of 50 for the prompt In the
dark of the night, there was a:

In the dark of the night, there was a sudden appearance of light.

Sighing, Xiao Chen slowly stood up and looked at Tian Cheng standing over. He took a step
to look closely at Tian Cheng's left wrist and frowned.

Lin Feng was startled, and quickly took out a long sword!

Lin Feng didn't understand what sort of sword that Long Fei had wielded in the Black and
Crystal Palace!

The Black and Crystal Palace was completely different than his original Black Stone City.
Long Fei carried a sword as a souvenir, which had been placed on the back of his father's arm
by Tian Cheng.

Chapter 5

[183]

He drew the sword from his dad's arm again!

The black blade was one of the most valuable weapons within the Black and Crystal Palace.
The sword was just as sharp as the sharpest of all weapons, which had been placed on Long
Fei's father's arm by the Black Stone City's Black Ice, for him to

The above longer form text was generated by the smallest GPT-2 model, which
has roughly 124 million parameters. Several different settings and model sizes
are available for you to now play with. Remember, with great power comes great
responsibility.

Between the last chapter and this one, we have covered both the encoder and
decoder parts of the Transformer architecture conceptually. Now, we are ready to
put both parts together in the next chapter. Let's quickly review what we covered in
this chapter.

Summary
Generating text is a complicated task. There are practical uses that can make typing
text messages or composing emails easier. On the other hand, there are creative uses,
like generating stories. In this chapter, we covered a character-based RNN model to
generate headlines one character at a time and noted that it picked up the structure,
capitalization, and other things quite well. Even though the model was trained on
a particular dataset, it showed promise in completing short sentences and partially
typed words based on the context. The next section covered the state-of-the-art
GPT-2 model, which is based on the Transformer decoder architecture. The previous
chapter had covered the Transformer encoder architecture, which is used by BERT.

Generating text has many knobs to tune like temperature to resample distributions,
greedy search, beam search, and Top-K sampling to balance the creativity and
predictability of the generated text. We saw the impact of these settings on text
generation and used a pre-trained GPT-2 model provided by Hugging Face to
generate text.

Now that both the encoder and decoder parts of the Transformer architecture
have been covered, the next chapter will use the full Transformer to build a text
summarization model. Text summarization is at the cutting edge of NLP today.
We will build a model that will read news articles and summarize them in a few
sentences. Onward!

[185]

6
Text Summarization with

Seq2seq Attention and
Transformer Networks

Summarizing a piece of text challenges a deep learning model's understanding of
language. Summarization can be considered a uniquely human ability, where the
gist of a piece of text needs to be understood and phrased. In the previous chapters,
we have built components that can help in summarization. First, we used BERT to
encode text and perform sentiment analysis. Then, we used a decoder architecture
with GPT-2 to generate text. Putting the Encoder and Decoder together yields
a summarization model. In this chapter, we will implement a seq2seq Encoder-
Decoder with Bahdanau Attention. Specifically, we will cover the following topics:

• Overview of extractive and abstractive text summarization
• Building a seq2seq model with attention to summarize text
• Improving summarization with beam search
• Addressing beam search issues with length normalizations
• Measuring the performance of summarization with ROUGE metrics
• A review of state-of-the-art summarization

The first step of this journey begins with understanding the main ideas behind text
summarization. It is important to understand the task before building a model.

Text Summarization with Seq2seq Attention and Transformer Networks

[186]

Overview of text summarization
The core idea in summarization is to condense long-form text or articles into a short
representation. The shorter representation should contain the main idea of crucial
information from the longer form. A single document can be summarized. This
document could be long or may contain just a couple of sentences. An example of a
short document summarization is generating a headline from the first few sentences
of an article. This is called sentence compression. When multiple documents are
being summarized, they are usually related. They could be the financial reports of
a company or news reports about an event. The generated summary could itself be
long or short. A shorter summary would be desirable when generating a headline.
A lengthier summary would be something like an abstract and could have multiple
sentences.

There are two main approaches when summarizing text:

• Extractive summarization: Phrases or sentences from the articles are selected
and put together to create a summary. A mental model for this approach
is using a highlighter on the long-form text, and the summary is the
highlights put together. Extractive summarization is a more straightforward
approach as sentences from the source text can be copied, which leads to
fewer grammatical issues. The quality of the summarization is also easier to
measure using metrics such as ROUGE. This metric is detailed later in this
chapter. Extractive summarization was the predominant approach before
deep learning and neural networks.

• Abstractive summarization: A person may use the full vocabulary available
in a language while summarizing an article. They are not restricted to only
using words from the article. The mental model is that the person is penning
a new piece of text. The model must have some understanding of the
meaning of different words so that the model can use them in the summary.
Abstractive summarization is quite hard to implement and evaluate. The
advent of the seq2seq architecture made significant improvements to the
quality of abstractive summarization models.

This chapter focuses on abstractive summarization. Here are some examples of
summaries that our model can generate:

Chapter 6

[187]

Source text Generated summary
american airlines group inc said on sunday it plans to raise ##
billion by selling shares and convertible senior notes , to improve
the airline's liquidity as it grapples with travel restrictions
caused by the coronavirus .

american airlines to
raise ## bln convertible
bond issue

sales of newly-built single-family houses occurred at a seasonally
adjusted annual rate of ## in may , that represented a #.#%
increase from the downwardly revised pace of ## in april .

new home sales rise in
may

jc penney will close another ## stores for good . the department
store chain , which filed for bankruptcy last month , is inching
toward its target of closing ## stores .

jc penney to close more
stores

The source text was pre-processed to be all in lowercase, and numbers were replaced
with placeholder tokens to prevent the model from inventing numbers in the
summary. The generated summaries have some words highlighted. Those words
were not present in the source text. The model was able to propose these words in
the summary. Thus, the model is an abstractive summarization model. So, how can
such a model be built?

One way of looking at the summarization problem is that the model is translating
an input sequence of tokens into a smaller set of output tokens. The model learns
the output lengths based on the supervised examples provided. Another well-
known problem is mapping an input sequence to an output sequence – the problem
of Neural Machine Translation or NMT. In NMT, the input sequence could be a
sentence from the source language, and the output could be a sequence of tokens
in the target language. The process for translation is as follows:

1. Convert the input text into tokens
2. Learn embeddings for these tokens
3. Pass the token embeddings through an encoder to calculate the hidden states

and outputs
4. Use the hidden states with the attention mechanism for generating a context

vector for the inputs
5. Pass encoder outputs, hidden states, and context vectors to the decoder part

of the network
6. Generate the outputs from left to right using an autoregressive model

Text Summarization with Seq2seq Attention and Transformer Networks

[188]

Google AI published a tutorial on NMT using a seq2seq attention model in July
2017. This model uses a left-to-right encoder with GRU cells. The Decoder also uses
GRU cells. In summarization, the piece of text to be summarized is a prerequisite.
This may or may not be valid for machine translation. In some cases, the translation
is performed on the fly. In that case, a left-to-right encoder is useful. However, if
the entire text to be translated or summarized is available from the outset, a bi-
directional Encoder can encode context from both sides of a given token. BiRNN
in the Encoder leads to much better performance of the overall model. The NMT
tutorial code serves as inspiration for the seq2seq attention model and the attention
tutorial referenced previously. Before we work on the model, let's look at the datasets
that are used for this purpose.

Data loading and pre-processing
There are several summarization-related datasets available for training. These
datasets are available through the TensorFlow Datasets or tfds package, which we
have used in the previous chapters as well. The datasets that are available differ
in length and style. The CNN/DailyMail dataset is one of the most commonly
used datasets. It was published in 2015, with approximately a total of 1 million
news articles. Articles from CNN, starting in 2007, and Daily Mail, starting in
2010, were collected until 2015. The summaries are usually multi-sentence. The
Newsroom dataset, available from https://summari.es, contains over 1.3 million
news articles from 38 publications. However, this dataset requires that you register
to download it, which is why it is not used in this book. The wikiHow data set
contains full Wikipedia article pages and the summary sentences for those articles.
The LCSTS data set contains Chinese language data collected from Sina Weibo with
paragraphs and their one-sentence summaries.

Another popular dataset is the Gigaword dataset. It provides the first one or two
sentences of a news story and has the headline of the story as the summary. This
dataset is quite large, with just under 4 million rows. This dataset was published in
a paper titled Annotated Gigaword by Napoles et al. in 2011. It is quite easy to import
this dataset using tfds. Given the large size of the dataset and long training times
for the model, the training code is stored in Python files, while the inference code is
in an IPython notebook. This pattern was used in the previous chapter as well. The
code for training is in the s2s-training.py file. The top part of the file contains the
imports and a method called setupGPU() to initialize the GPU. The file contains a
main function, which provides the control flow, and several functions that perform
specific actions.

https://summari.es

Chapter 6

[189]

The dataset needs to be loaded first. The code for loading the data is in the load_
data() function:

def load_data():
 print(" Loading the dataset")
 (ds_train, ds_val, ds_test), ds_info = tfds.load(
 'gigaword',
 split=['train', 'validation', 'test'],
 shuffle_files=True,
 as_supervised=True,
 with_info=True,
)
 return ds_train, ds_val, ds_test

The corresponding section in the main function looks like this:

if __name__ == "__main__":
 setupGPU() # OPTIONAL – only if using GPU
 ds_train, _, _ = load_data()

Only the training dataset is being loaded. The validation dataset contains
approximately 190,000 examples, while the test split contains over 1,900 examples.
In contrast, the training set contains over 3.8 million examples. Depending on the
internet connection, downloading the dataset may take a while:

Downloading and preparing dataset gigaword/1.2.0 (download: 551.61
MiB, generated: Unknown size, total: 551.61 MiB) to /xxx/tensorflow_
datasets/gigaword/1.2.0...
/xxx/anaconda3/envs/tf21g/lib/python3.7/site-packages/urllib3/
connectionpool.py:986: InsecureRequestWarning: Unverified HTTPS
request is being made to host 'drive.google.com'. Adding certificate
verification is strongly advised. See: https://urllib3.readthedocs.io/
en/latest/advanced-usage.html#ssl-warnings
 InsecureRequestWarning,
 InsecureRequestWarning,

Shuffling and writing examples to /xxx/tensorflow_datasets/
gigaword/1.2.0.incomplete1FP5M4/gigaword-train.tfrecord
100%
<snip/>
100%
1950/1951 [00:00<00:00, 45393.40 examples/s]
Dataset gigaword downloaded and prepared to /xxx/tensorflow_datasets/
gigaword/1.2.0. Subsequent calls will reuse this data.

Text Summarization with Seq2seq Attention and Transformer Networks

[190]

The warning about insecure requests can be safely ignored. The data is now ready to
be tokenized and vectorized.

Data tokenization and vectorization
The Gigaword dataset has been already cleaned, normalized, and tokenized using
the StanfordNLP tokenizer. All the data is converted into lowercase and normalized
using the StanfordNLP tokenizer, as seen in the preceding examples. The main task
in this step is to create a vocabulary. A word-based tokenizer is the most common
choice in summarization. However, we will use a subword tokenizer in this chapter.
A subword tokenizer provides the benefit of limiting the size of the vocabulary while
minimizing the number of unknown words. Chapter 3, Named Entity Recognition
(NER) with BiLSTMs, CRFs, and Viterbi Decoding, on BERT, described different types
of tokenizers. Consequently, models such specifically the part as BERT and GPT-2
use some variant of a subword tokenizer. The tfds package provides a way for us
to create a subword tokenizer, initialized from a corpus of text. Since generating the
vocabulary requires running it over all of the training data, this process can be slow.
After initialization, the tokenizer can be persisted to disk for future use. The code for
this process is defined in the get_tokenizer() function:

def get_tokenizer(data, file="gigaword32k.enc"):
 if os.path.exists(file+.subwords):
 # data has already been tokenized - just load and return
 tokenizer = \
tfds.features.text.SubwordTextEncoder.load_from_file(file)
 else:
 # This takes a while
 tokenizer = \
tfds.features.text.SubwordTextEncoder.build_from_corpus(
 ((art.numpy() + b" " + smm.numpy()) for art, smm in data),
 target_vocab_size=2**15
) # End tokenizer construction

 tokenizer.save_to_file(file) # save for future iterations

 print("Tokenizer ready. Total vocabulary size: ", tokenizer.vocab_size)
 return tokenizer

This method checks to see if a subword tokenizer is saved and loads it. If no
tokenizer exists on disk, it creates one by feeding in the articles and summaries
combined. Note that creating a new tokenizer took over 20 minutes on my machine.

Chapter 6

[191]

Hence, it is a good idea to do this process only once and persist the results for future
use. The GitHub folder for this chapter contains a saved version of the tokenizer to
save some of your time.

Two additional tokens that denote the start and end of a sequence are added to the
vocabulary after its creation. These tokens help the model start and end the inputs
and outputs. The end of sequence token provides a way for the Decoder, which
generates the summary, to signal the end of the summary. The main method at
this point looks like so:

if __name__ == "__main__":
 setupGPU() # OPTIONAL - only if using GPU
 ds_train, _, _ = load_data()
 tokenizer = get_tokenizer(ds_train)
 # Test tokenizer
 txt = "Coronavirus spread surprised everyone"
 print(txt, " => ", tokenizer.encode(txt.lower()))

 for ts in tokenizer.encode(txt.lower()):
 print ('{} ----> {}'.format(ts, tokenizer.decode([ts])))

 # add start and end of sentence tokens
 start = tokenizer.vocab_size + 1
 end = tokenizer.vocab_size
 vocab_size = end + 2

Articles and their summaries can be tokenized using the tokenizer. Articles can be
of varying lengths and will need to be truncated at a maximum length. A maximum
token length of 128 has been chosen as the Gigaword dataset only contains a few
sentences from the article. Note that 128 tokens are not the same as 128 words due
to the subword tokenizer. Using a subword tokenizer minimizes the presence of
unknown tokens during summary generation.

Once the tokenizer is ready, both the article and summary texts need to be tokenized.
Since the summary will be fed to the Decoder one token at a time, the provided
summary text will be shifted right by adding a start token, as shown previously.
An end token will be appended to the summary to let the Decoder learn how
to signal the end of the summary's generation. The encode() method in the file
seq2seq.py defines the vectorization step:

def encode(article, summary, start=start, end=end,
 tokenizer=tokenizer, art_max_len=128,
 smry_max_len=50):
 # vectorize article

Text Summarization with Seq2seq Attention and Transformer Networks

[192]

 tokens = tokenizer.encode(article.numpy())
 if len(tokens) > art_max_len:
 tokens = tokens[:art_max_len]
 art_enc = sequence.pad_sequences([tokens], padding='post',
 maxlen=art_max_len).squeeze()
 # vectorize summary
 tokens = [start] + tokenizer.encode(summary.numpy())
 if len(tokens) > smry_max_len:
 tokens = tokens[:smry_max_len]
 else:
 tokens = tokens + [end]

 smry_enc = sequence.pad_sequences([tokens], padding='post',
 maxlen=smry_max_len).squeeze()

 return art_enc, smry_enc

Since this is a Python function working on the contents of the text of tensors, another
function needs to be defined. This can be passed to the dataset to be applied to all the
rows of the data. This function is also defined in the same file as the encode function:

def tf_encode(article, summary):
 art_enc, smry_enc = tf.py_function(encode, [article, summary],
 [tf.int64, tf.int64])
 art_enc.set_shape([None])
 smry_enc.set_shape([None])
 return art_enc, smry_enc

Going back to the main function in the s2s-training.py file, the dataset can be
vectorized with the help of the preceding functions like so:

BUFFER_SIZE = 1500000 # dataset is 3.8M samples, using less
BATCH_SIZE = 64 # try bigger batch for faster training

train = ds_train.take(BUFFER_SIZE) # 1.5M samples
print("Dataset sample taken")
train_dataset = train.map(s2s.tf_encode)

train_dataset = train_dataset.shuffle(BUFFER_SIZE) – optional
train_dataset = train_dataset.batch(BATCH_SIZE,
drop_remainder=True)
print("Dataset batching done")

Chapter 6

[193]

Note that shuffling the dataset is recommended. By shuffling the dataset, it is easier
for the model to converge and not overfit to batches. However, this adds to the
training time. This has been commented out here as this is an optional step. Shuffling
records in batches while training models for production use cases is recommended.
The last step in preparing the data is batching it, as shown in the last step here. Now,
we are ready to build the model and train it.

Seq2seq model with attention
The summarization model has an Encoder part with a bidirectional RNN and a
unidirectional decoder part. There is an attention layer that helps the Decoder
focus on specific parts of the input while generating an output token. The overall
architecture is shown in the following diagram:

Figure 6.1: Seq2seq and attention model

These layers are detailed in the following subsections. All the code for these parts
of the model are in the file seq2seq.py. All the layers use common hyperparameters
specified in the main function in the s2s-training.py file:

embedding_dim = 128
units = 256 # from pointer generator paper

Text Summarization with Seq2seq Attention and Transformer Networks

[194]

The code and architecture for this section have been inspired by the paper titled Get
To The Point: Summarization with Pointer-Generator Networks by Abigail See, Peter Liu,
and Chris Manning, published in April 2017. The fundamental architecture is easy
to follow and provides impressive performance for a model that can be trained on
a desktop with a commodity GPU.

Encoder model
The detailed architecture of the Encoder layer is shown in the following diagram.
Tokenized and vectorized input is fed through an embedding layer. Embeddings for
the tokens generated by the tokenizer are learned from scratch. It is possible to use
a set of pre-trained embeddings like GloVe and use the corresponding tokenizer.
While using a pre-trained set of embeddings can help with the accuracy of the
model, a word-based vocabulary would have many unknown tokens, as we saw in
the IMDb example and GloVe vectors earlier. The unknown tokens would impact
the ability of the model to create summaries with words it hasn't seen before. If the
summarization model is used on daily news, there can be several unknown words,
like names of people, places, or new products:

Figure 6.2: Encoder architecture

Chapter 6

[195]

The embedding layer has a dimension of 128, as configured in the hyperparameters.
These hyperparameters have been chosen to resemble those in the paper. We
then create an embedding singleton that can be used by both the Encoder and the
Decoder. The code for the class is in the seq2seq.py file:

class Embedding(object):
 embedding = None # singleton

 @classmethod
 def get_embedding(self, vocab_size, embedding_dim):
 if self.embedding is None:
 self.embedding = tf.keras.layers.Embedding(vocab_size,
 embedding_dim,
 mask_zero=True)
 return self.embedding

Input sequences will be padded to a fixed length of 128. Hence, a masking parameter
is passed to the embedding layer so that the embedding layer ignores the mask
tokens. Next, let's define an Encoder class and instantiate the embedding layer in the
constructor:

Encoder
class Encoder(tf.keras.Model):
 def __init__(self, vocab_size, embedding_dim, enc_units, batch_size):
 super(Encoder, self).__init__()
 self.batch_size = batch_size
 self.enc_units = enc_units
 # Shared embedding layer
 self.embedding = Embedding.get_embedding(vocab_size,
 embedding_dim)

The constructor takes a number of parameters:

• Size of the vocabulary: In the present case, this is 32,899 tokens.
• Embedding dimensions: This is 128 dimensions. Feel free to experiment

with a larger or smaller embedding dimension. Smaller dimensions would
reduce the model's size and memory required for training the model.

• Encoder units: The number of forward and backward units in the
bidirectional layer. 256 units will be used for a total of 512 units.

Text Summarization with Seq2seq Attention and Transformer Networks

[196]

• Batch size: The size of the input batches. 64 records will be in one batch. A
larger batch would make training go faster but would need more memory
on the GPU. So, this number can be adjusted based on the capacity of the
training hardware.

The output of the embedding layer is fed to a bidirectional RNN layer. There are
256 GRU units in each direction. The bidirectional layer in Keras provides options
on how to combine the output of the forward and backward layer. In this case, we
concatenate the outputs of the forward and backward GRU cells. Hence, the output
will be 512-dimensional. Furthermore, the hidden states are also needed for the
attention mechanism to work, so a parameter is passed to retrieve the output states.
The bidirectional GRU layer is configured like so:

 self.bigru = Bidirectional(GRU(self.enc_units,
 return_sequences=True,
 return_state=True,
 recurrent_initializer='glorot_uniform'),
 merge_mode='concat'
)
 self.relu = Dense(self.enc_units, activation='relu')

A dense layer with ReLU activation is also set up. The two layers return their hidden
layers. However, the Decoder and attention layers require one vector of hidden
states. We pass the hidden states through the dense layer and convert the dimensions
from 512 into 256, which is expected by the Decoder and attention modules. This
completes the constructor for the Encoder class. Given this is a custom model with
specific ways to compute the model, a call() method is defined that operates on
a batch of inputs to produce the output and hidden states. This method takes in
hidden states to seed the bidirectional layer:

 def call(self, x, hidden):
 x = self.embedding(x) # We are using a mask

 output, forward_state, backward_state = self.bigru(x, initial_
state = hidden)
now, concat the hidden states through the dense ReLU
layer
 hidden_states = tf.concat([forward_state, backward_state],
 axis=1)
 output_state = self.relu(hidden_states)

 return output, output_state

Chapter 6

[197]

First, the input is passed through the embedding layer. The output is fed to the
bidirectional layer, and the output and hidden states are retrieved. The two hidden
states are concatenated and fed through the dense layer to create the output hidden
state. Lastly, a utility method to return initial hidden states is defined:

def initialize_hidden_state(self):
 return [tf.zeros((self.batch_size, self.enc_units))
 for i in range(2)]

This completes the code for the Encoder. Before going into the Decoder, an attention
layer needs to be defined, which will be used in the Decoder. Bahdanau's attention
formulation will be used for this. Note that TensorFlow/Keras does not provide an
attention layer out of the box. However, this simple attention layer code should be
entirely reusable.

Bahdanau attention layer
Bahdanau et al. published this form of global attention in 2015. It has been widely
used in Transformer models, as we saw in the previous chapters. Now, we are going
to implement an attention layer from scratch. This part of the code is inspired by the
NMT tutorial published by the TensorFlow team.

The core idea behind attention is to let the Decoder see all the inputs and focus
on the most relevant inputs while predicting the output token. A global attention
mechanism allows the Decoder to see all the inputs. This global version of the
attention mechanism will be implemented. At an abstract level, the purpose of the
attention mechanism maps a set of values to a given query. It does this by providing
a relevance score of each of these values for a given query.

In our case, the query is the Decoder's hidden state, and the values are the Encoder
outputs. We are interested in figuring out which inputs can best help in generating
the next token from the Decoder. The first step is computing a score using the
Encoder output and the Decoder's previous hidden state. If this is the first step of
decoding, then the hidden states from the Encoder are used to seed the Decoder. A
corresponding weight matrix is multiplied by the Encoder's output and Decoder's
hidden state. The output is passed through a tanh activation function and multiplied
by another weight matrix to produce the final score. The following equation shows
this formulation:𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑠𝑠2 𝑠 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠𝑏

Text Summarization with Seq2seq Attention and Transformer Networks

[198]

Matrices V, W1, and W2 are trainable. Then, to understand the alignment between the
Decoder output and the Encoder outputs, a softmax is computed:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠
The last step is to produce a context vector. The context vector is produced by
multiplying the attention weights by the Encoder outputs:𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑤𝑤𝑣𝑣𝑤𝑤𝑤𝑤𝑤𝑣𝑣𝑡𝑡 ∙ 𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣

These are all the computations in the attention layer.

The first step is setting up the constructor for the attention class:

class BahdanauAttention(tf.keras.layers.Layer):
 def __init__(self, units):
 super(BahdanauAttention, self).__init__()
 self.W1 = tf.keras.layers.Dense(units)
 self.W2 = tf.keras.layers.Dense(units)
 self.V = tf.keras.layers.Dense(1)

The call() method of the BahdanauAttention class implements the equations shown
previously with some additional code to manage the tensor shapes. This is shown
here:

def call(self, decoder_hidden, enc_output):
 # decoder hidden state shape == (64, 256)
 # [batch size, decoder units]
 # encoder output shape == (64, 128, 256)
 # which is [batch size, max sequence length, encoder units]
 query = decoder_hidden # to map our code to generic
 # form of attention
 values = enc_output

 # query_with_time_axis shape == (batch_size, 1, hidden size)
 # we are doing this to broadcast addition along the time axis
 query_with_time_axis = tf.expand_dims(query, 1)

 # score shape == (batch_size, max_length, 1)
 score = self.V(tf.nn.tanh(
 self.W1(query_with_time_axis) + self.W2(values)))

 # attention_weights shape == (batch_size, max_length, 1)

Chapter 6

[199]

 attention_weights = tf.nn.softmax(score, axis=1)

 # context_vector shape after sum == (batch_size, hidden_size)
 context_vector = attention_weights * values
 context_vector = tf.reduce_sum(context_vector, axis=1)

 return context_vector, attention_weights

The only thing we have left to do is implement the Decoder model.

Decoder model
The detailed Decoder model is shown in the following diagram:

Figure 6.3: Detailed decoder architecture

Text Summarization with Seq2seq Attention and Transformer Networks

[200]

Hidden states from the Encoder are used to initialize the hidden states of the
Decoder. The start token initiates the summaries being generated. The hidden states
of the Decoder, along with the Encoder output, are used to compute the attention
weights and the context vector. The context vector, along with the embeddings of the
output token, are concatenated and passed through the unidirectional GRU cell. The
output of the GRU cell is passed through a dense layer, with a softmax activation
function to get the output token. This process is repeated token by token.

Note that the Decoder functions differently during training and inference. During
training, the output token from the Decoder is used to calculate the loss but is not
fed back into the Decoder to produce the next token. Instead, the next token from the
ground truth is fed into the Decoder at each time step. This process is called teacher
forcing. The output tokens generated by the Decoder are only fed back in during
inference when summaries are being generated.

A Decoder class is defined in the seq2seq.py file. The constructor for this class sets
up the dimensions and the various layers:

class Decoder(tf.keras.Model):
 def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
 super(Decoder, self).__init__()
 self.batch_sz = batch_sz
 self.dec_units = dec_units
 # Unique embedding layer
 self.embedding = tf.keras.layers.Embedding(vocab_size,
 embedding_dim,
 mask_zero=True)
 # Shared embedding layer
 # self.embedding = Embedding.get_embedding(vocab_size,
 # embedding_dim)
 self.gru = tf.keras.layers.GRU(self.dec_units,
 return_sequences=True,
 return_state=True,
 recurrent_initializer=\
 'glorot_uniform')
 self.fc1 = tf.keras.layers.Dense(vocab_size,
 activation='softmax')

 # used for attention
 self.attention = BahdanauAttention(self.dec_units)

Chapter 6

[201]

The embedding layer in the Decoder is not shared with the Encoder. This is a
design choice. It is common in summarization to use a shared embedding layer. The
structure of the articles and their summaries is slightly different in the Gigaword
dataset as news headlines are not proper sentences but fragments of sentences.
During training, using different embedding layers gave better results than shared
embeddings. It is possible that, on the CNN/DailyMail dataset, shared embeddings
give better results than on the Gigaword dataset. In the case of machine translation,
the Encoder and Decoder are seeing different languages, so having separate
embedding layers is a best practice. You are encouraged to try out both versions on
different datasets and build your own intuition. The preceding commented code
makes it easy to switch back and forth between shared and separate embeddings
between the Encoder and Decoder.

The next part of the Decoder is the computation that calculates the output:

def call(self, x, hidden, enc_output):
 # enc_output shape == (batch_size, max_length, hidden_size)
 context_vector, attention_weights = self.attention(hidden,
 enc_output)

 # x shape after passing through embedding
 # == (batch_size, 1, embedding_dim)
 x = self.embedding(x)

 x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)

 # passing the concatenated vector to the GRU
 output, state = self.gru(x)

 output = tf.reshape(output, (-1, output.shape[2]))

 x = self.fc1(output)

 return x, state, attention_weights

The computation is fairly straightforward. The model looks like this:

Model: "encoder"

Layer (type) Output Shape Param #
===
embedding (Embedding) multiple 4211072

Text Summarization with Seq2seq Attention and Transformer Networks

[202]

bidirectional (Bidirectional multiple 592896

dense (Dense) multiple 131328
===
Total params: 4,935,296
Trainable params: 4,935,296
Non-trainable params: 0

Model: "decoder"

Layer (type) Output Shape Param #
===
embedding_1 (Embedding) multiple 4211072

gru_1 (GRU) multiple 689664

dense_1 (Dense) multiple 8455043

bahdanau_attention (Bahdanau multiple 197377
===
Total params: 13,553,156
Trainable params: 13,553,156
Non-trainable params: 0

The Encoder model contains 4.9M parameters, while the Decoder model contains
13.5M parameters for a total of 18.4M parameters. Now, we are ready to train the
model.

Training the model
There are a number of steps to be performed in training that require a custom
training loop. First, let's define a method that executes one step of the training loop.
This method is defined in the s2s-training.py file:

@tf.function
def train_step(inp, targ, enc_hidden, max_gradient_norm=5):
 loss = 0

 with tf.GradientTape() as tape:
 # print("inside gradient tape")
 enc_output, enc_hidden = encoder(inp, enc_hidden)

Chapter 6

[203]

 dec_hidden = enc_hidden
 dec_input = tf.expand_dims([start] * BATCH_SIZE, 1)

 # Teacher forcing - feeding the target as the next input
 for t in range(1, targ.shape[1]):
 # passing enc_output to the decoder
 predictions, dec_hidden, _ = decoder(dec_input,
 dec_hidden, enc_output)

 loss += s2s.loss_function(targ[:, t], predictions)
 # using teacher forcing
 dec_input = tf.expand_dims(targ[:, t], 1)

 batch_loss = (loss / int(targ.shape[1]))

 variables = encoder.trainable_variables + \
decoder.trainable_variables
 gradients = tape.gradient(loss, variables)

 # Gradient clipping
 clipped_gradients, _ = tf.clip_by_global_norm(
 gradients, max_gradient_norm)

 optimizer.apply_gradients(zip(clipped_gradients, variables))

 return batch_loss

This is a custom training loop that uses GradientTape, which tracks the different
variables of the model and calculates the gradients. The preceding function runs
once for each batch of inputs. Inputs are passed through the Encoder to get the
final encoding and the last hidden state. The Decoder is initialized with the last
Encoder hidden state, and summaries are generated one token at a time. However,
the generated token is not fed back into the Decoder. Instead, the actual token is
fed back. This method is known as Teacher Forcing. A custom loss function is
defined in the seq2seq.py file:

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
 from_logits=False, reduction='none')

def loss_function(real, pred):
 mask = tf.math.logical_not(tf.math.equal(real, 0))
 loss_ = loss_object(real, pred)

Text Summarization with Seq2seq Attention and Transformer Networks

[204]

 mask = tf.cast(mask, dtype=loss_.dtype)
 loss_ *= mask

 return tf.reduce_mean(loss_)

The key to the loss function is to use a mask to handle summaries of varying lengths.
The last part of the model is using an optimizer. The Adam optimizer is being used
here, with a learning rate schedule that reduces the learning rate over epochs of
training. The concept of learning rate annealing was covered in previous chapters.
The code for the optimizer is inside the main function in the s2s-training.py file:

steps_per_epoch = BUFFER_SIZE // BATCH_SIZE
embedding_dim = 128
units = 256 # from pointer generator paper
EPOCHS = 16

encoder = s2s.Encoder(vocab_size, embedding_dim, units, BATCH_SIZE)
decoder = s2s.Decoder(vocab_size, embedding_dim, units, BATCH_SIZE)

Learning rate scheduler
lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay(
 0.001,
 decay_steps=steps_per_epoch*(EPOCHS/2),
 decay_rate=2,
 staircase=False)

optimizer = tf.keras.optimizers.Adam(lr_schedule)

Since the model is going to be trained for a long time, it is important to set up
checkpoints that can be used to restart training in case issues occur. Checkpoints
also provide us with an opportunity to adjust some of the training parameters across
runs. The next part of the main function sets up the checkpointing system. We
looked at checkpoints in the previous chapter. We will extend what we've learned
and set up an optional command-line argument that specifies if training needs to be
restarted from a specific checkpoint:

if args.checkpoint is None:
 dt = datetime.datetime.today().strftime("%Y-%b-%d-%H-%M-%S")
 checkpoint_dir = './training_checkpoints-' + dt
else:
 checkpoint_dir = args.checkpoint

Chapter 6

[205]

checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
 encoder=encoder,
 decoder=decoder)
if args.checkpoint is not None:
 # restore last model
 print("Checkpoint being restored: ",
 tf.train.latest_checkpoint(checkpoint_dir))
 chkpt_status = checkpoint.restore(
tf.train.latest_checkpoint(checkpoint_dir))
 # to check loading worked
 chkpt_status.assert_existing_objects_matched()
else:
 print("Starting new training run from scratch")

print("New checkpoints will be stored in: ", checkpoint_dir)

If training needs to be restarted from a checkpoint, then a command-line argument
in the form –-checkpoint <dir> can be specified while invoking the training script.
If no argument is supplied, then a new checkpoint directory will be created. Training
with 1.5M records takes over 3 hours. Running 10 iterations will take over a day and
a half. The Pointer-Generator model we referenced earlier in this chapter was trained
for 33 epochs, which took over 4 days of training. However, it is possible to see some
results after 4 epochs of training.

Now, the last part of the main function is to start the training process:

print("Starting Training. Total number of steps / epoch: ", steps_per_
epoch)

 for epoch in range(EPOCHS):
 start_tm = time.time()
 enc_hidden = encoder.initialize_hidden_state()
 total_loss = 0
 for (batch, (art, smry)) in enumerate(train_dataset.take(steps_
per_epoch)):
 batch_loss = train_step(art, smry, enc_hidden)
 total_loss += batch_loss
 if batch % 100 == 0:
 ts = datetime.datetime.now().\
strftime("%d-%b-%Y (%H:%M:%S)")
 print('[{}] Epoch {} Batch {} Loss {:.6f}'.\
 format(ts,epoch + 1, batch,

Text Summarization with Seq2seq Attention and Transformer Networks

[206]

 batch_loss.numpy())) # end print

 # saving (checkpoint) the model every 2 epochs
 if (epoch + 1) % 2 == 0:
 checkpoint.save(file_prefix = checkpoint_prefix)
 print('Epoch {} Loss {:.6f}'.\
 format(epoch + 1, total_loss / steps_per_epoch))

 print('Time taken for 1 epoch {} sec\n'.\
 format(time.time() - start_tm))

The training loop prints the loss every 100 batches and saves a checkpoint every
second epoch. Feel free to adjust these settings as needed. The following command
can be used to start training:

$ python s2s-training.py

The output of this script should be something similar to:

Loading the dataset
Tokenizer ready. Total vocabulary size: 32897
Coronavirus spread surprised everyone => [16166, 2342, 1980, 7546,
21092]
16166 ----> corona
2342 ----> virus
1980 ----> spread
7546 ----> surprised
21092 ----> everyone
Dataset sample taken
Dataset batching done
Starting new training run from scratch
New checkpoints will be stored in: ./training_checkpoints-2021-
Jan-04-04-33-42
Starting Training. Total number of steps / epoch: 31
[04-Jan-2021 (04:34:45)] Epoch 1 Batch 0 Loss 2.063991
...
Epoch 1 Loss 1.921176
Time taken for 1 epoch 83.241370677948 sec
[04-Jan-2021 (04:35:06)] Epoch 2 Batch 0 Loss 1.487815
Epoch 2 Loss 1.496654
Time taken for 1 epoch 21.058568954467773 sec

Chapter 6

[207]

This sample run used only 2,000 samples since we edited this line:

BUFFER_SIZE = 2000 # 3500000 takes 7hr/epoch

If training is being restarted from a checkpoint, then the command line will be:

$ python s2s-trainingo.py --checkpoint training_checkpoints-2021-
Jan-04-04-33-42

With this comment, the model is hydrated from the checkpoint directory we used in
the training step. Training continues from that point. Once the model has finished
training, we are ready to generate the summaries. Note that the model we'll be
using in the next section was trained for 8 epochs with 1.5M records. Using all 3.8M
records and training for more epochs would give better results.

Generating summaries
The critical thing to note while generating summaries is that a new inference loop
will need to be built. Recall that teacher forcing was used during training, and the
output of the Decoder was not used in predicting the next token. While generating
summaries, we would like to use the generated tokens in predicting the next token.
Since we would like to play with various input texts and generate summaries,
we will use the code in the generating-summaries.ipynb IPython notebook. After
importing and setting everything up, the tokenizer needs to be instantiated. The
Setup Tokenization section of the notebook loads the tokenizers and sets up the
vocabulary by adding start and end token IDs. Similar to when we loaded the
data, the data encoding method is set up to encode the input articles.

Now, we must hydrate the model from the saved checkpoint. All of the model
objects are created first:

BATCH_SIZE = 1 # for inference
embedding_dim = 128
units = 256 # from pointer generator paper
vocab_size = end + 2

Create encoder and decoder objects
encoder = s2s.Encoder(vocab_size, embedding_dim, units,
 BATCH_SIZE)
decoder = s2s.Decoder(vocab_size, embedding_dim, units,
 BATCH_SIZE)
optimizer = tf.keras.optimizers.Adam()

Text Summarization with Seq2seq Attention and Transformer Networks

[208]

Next, a checkpoint with the appropriate checkpoint directory is defined:

Hydrate the model from saved checkpoint
checkpoint_dir = 'training_checkpoints-2021-Jan-25-09-26-31'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")

checkpoint = tf.train.Checkpoint(optimizer=optimizer,
 encoder=encoder,
 decoder=decoder)

Then, the last checkpoint is checked:

The last training checkpoint
tf.train.latest_checkpoint(checkpoint_dir)

'training_checkpoints-2021-Jan-25-09-26-31/ckpt-11'

Since checkpoints are stored after every alternate epoch, this checkpoint corresponds
to 8 epochs of training. Checkpoints can be loaded and tested with the following
code:

chkpt_status = checkpoint.restore(
 tf.train.latest_checkpoint(checkpoint_dir))
chkpt_status.assert_existing_objects_matched()

<tensorflow.python.training.tracking.util.CheckpointLoadStatus at
0x7f603ae03c90>

That's it! The model is now ready for inference.

Checkpoints and variable names

It is possible that the second command may give an error if it
cannot match the names of the variables in the checkpoint with the
names in the model. This can happen as we did not explicitly name
the layers when they were instantiated in the model. TensorFlow
will provide a dynamically generated name for the layer when the
model is instantiated:

for layer in decoder.layers:
 print(layer.name)

embedding_1
gru_1
fc1

Chapter 6

[209]

Inference can be done via the greedy search or beam search algorithms. Both of
these methods will be demonstrated here. Before going into the code for generating
summaries, a convenience method for plotting attention weights will be defined.
This helps in providing some intuition on what inputs contributed to a given token
being generated in the summary:

function for plotting the attention weights
def plot_attention(attention, article, summary):
 fig = plt.figure(figsize=(10,10))
 ax = fig.add_subplot(1, 1, 1)
 # https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html
 # for scales
 ax.matshow(attention, cmap='cividis')

 fontdict = {'fontsize': 14}

 ax.set_xticklabels([''] + article, fontdict=fontdict, rotation=90)

 ax.set_yticklabels([''] + summary, fontdict=fontdict)

 ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
 ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

 plt.show()

Variable names in the checkpoint can be inspected with:

tf.train.list_variables(
 tf.train.latest_checkpoint('./<chkpt_dir>/')
)

If the model is instantiated again, these names may change,
and restore from checkpoint may fail. There are two solutions
to prevent this. A quick fix is to restart the notebook kernel. A
better fix is to edit the code and add names to each layer in the
Encoder and Decoder constructors before training. This ensures
that checkpoints will always find the variables. An example of this
approach is shown for the fc1 layer in the Decoder:

self.fc1 = tf.keras.layers.Dense(
 vocab_size, activation='softmax',
 name='fc1')

Text Summarization with Seq2seq Attention and Transformer Networks

[210]

A plot is configured with the input sequence as the columns and the output
summary tokens as the rows. Feel free to play with different color scales to get a
better idea of the strength of the association between the tokens.

We have covered much ground and possibly trained a network for hours. It is time
to see the fruits of our labor!

Greedy search
Greedy search uses the highest probability token at each time step to construct the
sequence. The predicted token is fed back into the model to generate the next token.
This is the same model that was used in the previous chapter while generating
characters in the char-RNN model:

art_max_len = 128
smry_max_len = 50

def greedy_search(article):
 # To store attention plots of the output
 attention_plot = np.zeros((smry_max_len, art_max_len))

 tokens = tokenizer.encode(article)
 if len(tokens) > art_max_len:
 tokens = tokens[:art_max_len]

 inputs = sequence.pad_sequences([tokens], padding='post',
 maxlen=art_max_len).squeeze()
 inputs = tf.expand_dims(tf.convert_to_tensor(inputs), 0)

 # output summary tokens will be stored in this
 summary = "

 hidden = [tf.zeros((1, units)) for i in range(2)] #BiRNN
 enc_out, enc_hidden = encoder(inputs, hidden)
 dec_hidden = enc_hidden
 dec_input = tf.expand_dims([start], 0)

 for t in range(smry_max_len):
 predictions, dec_hidden, attention_weights = \
decoder(dec_input, dec_hidden, enc_out)

 predicted_id = tf.argmax(predictions[0]).numpy()

Chapter 6

[211]

 if predicted_id == end:
 return summary, article, attention_plot
 # storing the attention weights to plot later on
 attention_weights = tf.reshape(attention_weights, (-1,))
 attention_plot[t] = attention_weights.numpy()

 summary += tokenizer.decode([predicted_id])
 # the predicted ID is fed back into the model
 dec_input = tf.expand_dims([predicted_id], 0)

 return summary, article, attention_plot

The first part of the code encodes the inputs the same way they were encoded during
training. These inputs are passed through the Encoder to the final encoder output
and the last hidden state. The Decoder's initial hidden state is set to the last hidden
state of the Encoder. Now, the process of generating the output tokens begins.
First, the inputs are fed to the Decoder, which generates a prediction, the hidden
state, and the attention weights. Attention weights are added to a running list of
attention weights per time step. This generation continues until whichever comes
earlier; producing an end-of-sequence token, or producing 50 tokens. The resulting
summary and attention plot are returned. A summarization method is defined,
which calls this greedy search algorithm, plots the attention weights, and converts
the generated tokens into proper words:

Summarize
def summarize(article, algo='greedy'):
 if algo == 'greedy':
 summary, article, attention_plot = greedy_search(article)
 else:
 print("Algorithm {} not implemented".format(algo))
 return

 print('Input: %s' % (article))
 print('** Predicted Summary: {}'.format(summary))

 attention_plot = \
attention_plot[:len(summary.split(' ')), :len(article.split(' '))]

 plot_attention(attention_plot, article.split(' '),
 summary.split(' '))

Text Summarization with Seq2seq Attention and Transformer Networks

[212]

The preceding method has a spot where we can plug in beam search later. Let's test
the model:

Test Summarization
txt = "president georgi parvanov summoned france 's ambassador on
wednesday in a show of displeasure over comments from french president
jacques chirac chiding east european nations for their support of
washington on the issue of iraq ."
summarize(txt.lower())

Input: president georgi parvanov summoned france's ambassador on
wednesday in a show of displeasure over comments from french president
jacques chirac chiding east european nations for their support of
washington on the issue of iraq .
** Predicted Summary: bulgarian president summons french ambassador
over remarks on iraq

Figure 6.4: Attention plot for an example summary

Let's take a look at the generated summary:

bulgarian president summons french ambassador over remarks on iraq

It is a pretty good summary! The most surprising part is that the model was able to
identify the Bulgarian president, even though Bulgaria is not mentioned anywhere
in the source text. It contains other words not found in the original text. These are
highlighted in the preceding output. The model was able to change the tense of the
word summoned to summons. The word remarks never appears in the source text. The
model was able to infer this from a number of input tokens. The notebook contains
many examples, both good and bad, of summaries generated by the model.

Chapter 6

[213]

Here is an example of a piece of challenging text for the model:

• Input: charles kennedy , leader of britain's third-ranked liberal democrats ,
announced saturday he was quitting with immediate effect and would not stand
in a new leadership election . us president george w. bush on saturday called for
extending tax cuts adopted in his first term , which he said had bolstered economic
growth.

• Predicted summary: kennedy quits to be a step toward new term

In this article, there are two seemingly unrelated sentences. The model is trying to
make sense of them but messes it up. There are other examples where the model
doesn't do so well:

• Input: jc penney will close another ## stores for good . the department store chain
, which filed for bankruptcy last month , is inching toward its target of closing ##
stores.

• Predicted summary: jc penney to close another ## stores for #nd stores

In this example, the model repeats itself, attending to the same positions. In fact,
this is a common problem with summarization models. One solution to prevent
repetition is to add coverage loss. Coverage loss keeps a running total of the
attention weights across time steps and feeds it back to the attention mechanism, as a
way to clue it in to previously attended positions. Furthermore, coverage loss terms
are added to the overall loss equation to penalize repetition. Training the model for
much longer would also help in this particular case. Note that Transformer-based
models suffer a little less from repetition.

The second example is the model inventing something:

• Input: the german engineering giant siemens is working on a revamped version
of its defective tram car , of which the ### units sold so far worldwide are being
recalled owing to a technical fault , a company spokeswoman said on tuesday.

• Predicted summary: siemens to launch reb-made cars

Text Summarization with Seq2seq Attention and Transformer Networks

[214]

The model invents reb-made, which is incorrect:

Figure 6.5: Model invents the word "reb-made"

Looking at the preceding attention plot, the new word is being generated by
attending to revamped, version, defective, and tram. This made-up word garbles the
summary generated.

As noted earlier, using beam search can help in further improving the accuracy of
the translations. We will try some of these challenging examples after implementing
the beam search algorithm.

Beam search
Beam search uses multiple paths or beams to generate tokens and tries to minimize
the overall conditional probability. At each time step, all the options are evaluated,
and the cumulative conditional probabilities are evaluated over all the time steps so
far. Only the top k beams, where k is the beam width, are kept; the rest are pruned for
the next time step. Greedy search is a special case of beam search with a beam width
of 1. In fact, this property serves as a test case for the beam search algorithm. The
code for this section can be found in the Beam Search section of the IPython notebook.

A new method called beam_search() is defined. The first part of this method is
similar to greedy search, where inputs are tokenized and passed through the
Encoder. The main difference between this algorithm and the greedy search
algorithm is the core loop, which processes one token at a time. In beam search, a
token needs to be generated for every beam. This makes beam search slower than
greedy search, and running time increases in proportion to beam width. At each
time step, for each of the k beams, the top k tokens are generated, sorted, and pruned
back to k items. This step is performed until each beam generates an end of sequence
token or has generated the maximum number of tokens. If there are m tokens to be
generated, then beam search would require k * m runs of the Decoder to generate
the output sequence. The main loop is shown in the following code:

Chapter 6

[215]

initial beam with (tokens, last hidden state, attn, score)
start_pt = [([start], dec_hidden, attention_plot, 0.0)] # initial beam

for t in range(smry_max_len):
 options = list() # empty list to store candidates
 for row in start_pt:
 # handle beams emitting end signal
 allend = True
 dec_input = row[0][-1]
 if dec_input != end_tk:
 # last token
 dec_input = tf.expand_dims([dec_input], 0)

 dec_hidden = row[1] # second item is hidden states
 attn_plt = np.zeros((smry_max_len, art_max_len)) +\
 row[2] # new attn vector

 predictions, dec_hidden, attention_weights = \
decoder(dec_input, dec_hidden, enc_out)

 # storing the attention weights to plot later on
 attention_weights = tf.reshape(attention_weights, (-1,))
 attn_plt[t] = attention_weights.numpy()

 # take top-K in this beam
 values, indices = tf.math.top_k(predictions[0],
 k=beam_width)

 for tokid, scre in zip(indices, values):
 score = row[3] - np.log(scre)
 options.append((row[0]+[tokid], dec_hidden,
 attn_plt, score))
 allend=False
 else:
 options.append(row) # add ended beams back in

 if allend:
 break # end for loop as all sequences have ended

 start_pt = sorted(options, key=lambda tup:tup[3])[:beam_width]

Text Summarization with Seq2seq Attention and Transformer Networks

[216]

At the start, there is only one beam within the start token. A list to keep track of the
beams generated is then defined. The list of tuples stores the attention plots, tokens,
last hidden state, and the overall cost of the beam. Conditional probability requires a
product of all probabilities. Given that all probabilities are numbers between 0 and 1,
the conditional probability could become very small. Instead, logs of the probabilities
are added together, as shown in the preceding highlighted code. The best beams
minimize this score. Finally, a small section is inserted that prints all the top beams
with their scores once the function completes its execution. This part is optional and
can be removed:

 if verbose: # to control output
 # print all the final summaries
 for idx, row in enumerate(start_pt):
 tokens = [x for x in row[0] if x < end_tk]
 print("Summary {} with {:5f}: {}".format(idx, row[3],
 tokenizer.decode(tokens)))

At the end, the function returns the best beam:

 # return final sequence
 summary = tokenizer.decode([x for x in start_pt[0][0] if x < end_
tk])
 attention_plot = start_pt[0][2] # third item in tuple
 return summary, article, attention_plot

The summarize() method is extended so that you can generate greedy and beam
search, like so:

Summarize
def summarize(article, algo='greedy', beam_width=3, verbose=True):
 if algo == 'greedy':
 summary, article, attention_plot = greedy_search(article)
 elif algo=='beam':
 summary, article, attention_plot = beam_search(article,
 beam_width=beam_width,
 verbose=verbose)
 else:
 print("Algorithm {} not implemented".format(algo))
 return

 print('Input: %s' % (article))
 print('** Predicted Summary: {}'.format(summary))

Chapter 6

[217]

 attention_plot = attention_plot[:len(summary.split(' ')),
 :len(article.split(' '))]
 plot_attention(attention_plot, article.split(' '),
 summary.split(' '))

Let's re-run the Siemens tram car example:

• Greedy search summary: siemens to launch reb-made cars
• Beam search summary: siemens working on revamped european tram car

The beam search summary contains more detail and represents the text better. It
introduces a new word, european, which may or may not be accurate in the current
context. Contrast the following attention plot with the one shown previously:

Figure 6.6: Attention plot of summary generated by beam search

The summary generated by beam search covers more concepts from the source text.
For the JC Penney example, beam search makes the output better:

• Greedy search summary: jc penney to close another ## stores stores for #nd
stores

• Beam search summary: jc penney to close ## more stores

The beam search summary is more concise and grammatically correct. These
examples were generated with a beam width of 3. The notebook contains several
other examples for you to play with. You will notice that generally, beam search
improves the results, but it reduces the length of the output. Beam search suffers
from issues where the score of sequences is not normalized for the sequence length,
and repeatedly attending to the same input tokens has no penalty.

Text Summarization with Seq2seq Attention and Transformer Networks

[218]

There are two specific penalties that address these issues, both of which will be
discussed in the next section.

Decoding penalties with beam search
Wu et al. proposed two penalties in the seminal paper Google's Neural Machine
Translation System, published in 2016. These penalties are:

• Length normalization: Aimed at encouraging longer or short summaries.
• Coverage normalization: Aimed at penalizing generation if the output

focuses too much on the same part of the input sequence. As per the pointer-
generator paper, this is best added during training for the last few iterations
of training. This will not be implemented in this section.

These methods are inspired by NMT and must be adapted for the needs of
summarization. At a high level, the score can be represented by the following
formula:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
For example, the beam search algorithm naturally produces shorter sequences.
The length penalty is important for NMT as the output sequence should address
the input text. This is different from summarization, where shorter outputs are
preferred. Length normalization computes a factor based on a parameter and the
current token number. The cost of the beam is divided by this factor to calculate a
length-normalized score. The paper proposes the following empirical formula:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌) = (5 + |𝑌𝑌|)𝛼𝛼(5 + 1)𝛼𝛼

Smaller values of alpha produce shorter sequences, and larger values produce
longer sequences. Values of 𝛼𝛼 are between 0 and 1. The conditional probability score
is divided by the preceding quantity to give the normalized score for a beam. The
length_wu() method normalizes the score using this parameter.

The most significant improvement at this point will come from
training the model for longer and on more examples. The model
that was used for these examples was trained for 22 epochs on
1.5M samples out of 3.8M from the Gigaword dataset. However,
it is important to have beam search and various penalties in your
back pocket to improve the quality of your model.

Chapter 6

[219]

Note that all the code for this part is in the Beam Search with Length Normalizations
section of the notebook:

def length_wu(step, score, alpha=0.):
 # NMT length re-ranking score from
 # "Google's Neural Machine Translation System" paper by Wu et al
 modifier = (((5 + step) ** alpha) /
 ((5 + 1) ** alpha))
 return (score / modifier)

It is easy to implement in the code. A new beam search method with normalizations
is created. Most of the code is the same as in the previous implementation. The key
change for enabling length normalization involves adding an alpha parameter to
the method signature and updating the computation of the score so that it uses the
aforementioned method:

Beam search implementation with normalization
def beam_search_norm(article, beam_width=3,
 art_max_len=128,
 smry_max_len=50,
 end_tk=end,
 alpha=0.,
 verbose=True)

Next, the score is normalized like so (around line 60 in the code):

 for tokid, scre in zip(indices, values):
 score = row[3] - np.log(scre)
 score = length_wu(t, score, alpha)

Let's try the settings out on some examples. First, we will try placing a length
normalization penalty on the Siemens example:

• Greedy search: siemens to launch reb-made cars
• Beam search: siemens working on revamped european tram car
• Beam search with length penalties: siemens working on new version of defective

tram car

Text Summarization with Seq2seq Attention and Transformer Networks

[220]

A beam size of 5 and an alpha of 0.8 was used to generate the preceding example.
Length normalization generates longer summaries, which corrects some of the
challenges that are faced by the summaries generated purely by beam search:

Figure 6.7: Beam search with length normalization produces a great summary

Now, let's take a look at a more complex contemporary example, which is not in the
training set at all:

• Input: the uk on friday said that it would allow a quarantine-free international
travel to some low-risk countries falling in its green zone list of an estimated ##
nations . uk transport secretary said that the us will fall within the red zone

• Greedy search: uk to allow free travel to low-risk countries
• Beam search: britain to allow free travel to low-risk countries
• Beam search with length normalization: britain to allow quarantines free travel

to low-risk countries

The best summary uses beam search and length normalization. Note that beam
search alone was removing a very important word, "quarantines", before "free
travel." This changed the meaning of the summary. With length normalization,
the summary contains all the right details. Note that the Gigaword dataset has
very short summaries in general, and beam search is making them even shorter.
Hence, we use larger values of alpha. Generally, smaller values of alpha are used
for summarization and larger values for NMT. You can try different values of
the length normalization parameter and beam width to build some intuition.
Note that the formulation for the length penalty was empirical. It should also
be experimented with.

The penalty adds a new parameter that needs to be tuned in addition to beam size.
Selecting the right parameters requires a better way of evaluating summaries than
human inspection. This is the focus of the next section.

Chapter 6

[221]

Evaluating summaries
When people write summaries, they use inventive language. Human-written
summaries often use words that are not present in the vocabulary of the text
being summarized. When models generate abstractive summaries, they may also
use words that are different from the words used in the ground truth summaries
provided. There is no real way to do an effective semantic comparison of the
ground truth summary and the generated summary. In summarization problems, a
human evaluation step is often involved, which is where a qualitative check of the
generated summaries is done. This method is both unscalable and expensive. There
are approximations that uses n-gram overlaps and the longest common subsequence
matches after stemming and lemmatization. The hope is that such pre-processing
helps bring ground truth and generated summaries closer together for evaluation.
The most common metric used for evaluating summaries is Recall-Oriented
Understudy for Gisting Evaluation, also referred to as ROUGE. In machine
translation, metrics such as Bilingual Evaluation Understudy (BLEU) and Metric for
Evaluation of Translation with Explicit Ordering (METEOR) are used. BLEU relies
mainly on precision, as precision is very important for translation. In summarization,
recall is more important. Consequently, ROUGE is the metric of choice for evaluating
summarization models. It was proposed by Chin-Yew Lin in 2004 in a paper titled
Rouge: A Package for Automatic Evaluation of Summaries.

ROUGE metric evaluation
A summary that's generated by a model should be readable, coherent, and factually
correct. In addition, it should be grammatically correct. Human evaluation of
summaries can be a mammoth task. If a person took 30 seconds to evaluate one
summary in the Gigaword dataset, then it would take over 26 hours for one person
to check the validation set. Since abstractive summaries are being generated, this
human evaluation work will need to be done every time summaries are produced.
The ROUGE metric tries to measure various aspects of an abstractive summary.
It is a collection of four metrics:

• ROUGE-N is the n-gram recall between a generated summary and the
ground truth or reference summary. "N" at the end of the name specifies the
length of the n-gram. It is common to report ROUGE-1 and ROUGE-2. The
metric is calculated as the ratio of matching n-grams between the ground
truth summary and the generated summary, divided by the total number
of n-grams in the ground truth. This formulation is oriented toward recall.
If multiple reference summaries exist, the ROUGE-N metric is calculated
pairwise for each reference summary, and the maximum score is taken. In
our example, only one reference summary exists.

Text Summarization with Seq2seq Attention and Transformer Networks

[222]

• ROUGE-L uses the longest common subsequence (LCS) between the
generated summary and the ground truth to calculate the metric. Often,
the sequences are stemmed prior to computing the LCS. Once the length
of the LCS is known, precision is calculated by dividing it by the length
of the reference summary; recall is calculated by dividing by the length of
the generated score. The F1 score, which is the harmonic mean of precision
and recall, is also calculated and reported. The F1 score provides a way for
us to balance precision and recall. Since the LCS already includes common
n-grams, choosing an n-gram length is not required. This particular version
of ROUGE-L is called the sentence-level LCS score. There is a summary-level
score as well, for cases when the summary contains more than one sentence.
It is used for the CNN and DailyMail datasets, among others. The summary-
level score matches each sentence in the ground truth with all the generated
sentences to calculate the union LCS precision and recall. Details of the
method can be found in the paper referenced previously.

• ROUGE-W is a weighted version of the previous metric, where contiguous
matches in the LCS are weighted higher than if the tokens were separated by
some other tokens in the middle.

• ROUGE-S uses skip-bigram co-occurrence statistics. A skip-bigram allows
there to be arbitrary gaps between two tokens. Precision and recall are
calculated using this measure.

The paper that proposed these metrics also contained code, in Perl, for calculating
these metrics. This requires generating text files with references and generating
summaries. Google Research has published a full Python implementation that is
available from their GitHub repository: https://github.com/google-research/
google-research. The rouge/ directory contains the code for these metrics. Please
follow the installation instructions from the repository. Once installed, we can
evaluate greedy search, beam search, and beam search with length normalization
to judge their quality using the ROUGE-L metric. The code for this part is in the
ROUGE Evaluation section.

The scorer library can be imported and initialized like so:

from rouge_score import rouge_scorer as rs
scorer = rs.RougeScorer(['rougeL'], use_stemmer=True)

A version of the summarize() method, called summarize_quietly(), is used to
summarize pieces of text without printing any outputs like attention plots. Random
samples from the validation test will be used to measure the performance. The
code for loading the data and the quiet summarization method can be found in the
notebook and should be run prior to running metrics. Evaluation can be run using a
greedy search, as shown in the following code fragment:

https://github.com/google-research/google-research
https://github.com/google-research/google-research

Chapter 6

[223]

total eval size: 189651
articles = 1000
f1 = 0.
prec = 0.
rec = 0.
beam_width = 1

for art, smm in ds_val.take(articles):
 summ = summarize_quietly(str(art.numpy()), algo='beam-norm',
 beam_width=1, verbose=False)

 score = scorer.score(str(smm.numpy()), summ)
 f1 += score['rougeL'].fmeasure / articles
 prec += score['rougeL'].precision / articles
 rec += score['rougeL'].recall / articles

 # see if a sample needs to be printed
 if random.choices((True, False), [1, 99])[0] is True:
 # 1% samples printed out
 print("Article: ", art.numpy())
 print("Ground Truth: ", smm.numpy())
 print("Greedy Summary: ", summarize_quietly(str(art.numpy()),
 algo='beam-norm',
 beam_width=1, verbose=False))
 print("Beam Search Summary :", summ, "\n")

print("Precision: {:.6f}, Recall: {:.6f}, F1-Score: {:.6f}".
format(prec, rec, f1))

While the validation set contains close to 190,000 records, the preceding code runs
metrics on 1,000 records. The code also randomly prints out summaries for about 1%
of the samples. The results of this evaluation should look similar to these:

Precision: 0.344725, Recall: 0.249029, F1-Score: 0.266480

This is not a bad start since we have high precision, but the recall is low. The current
leaderboard for the Gigaword dataset has 36.74 as the highest ROUGE-L F1 score,
as per paperswithcode.com. Let's run the same test with beam search and see the
results. The code here is identical to the preceding code, with the only difference
being that a beam width of 3 is being used:

Precision: 0.382001, Recall: 0.226766, F1-Score: 0.260703

Text Summarization with Seq2seq Attention and Transformer Networks

[224]

It seems that the precision has improved considerably at the expense of recall.
Overall, the F1 score shows a slight decrease. Beam search does produce shorter
summaries, which could be the reason for the decrease in recall. Adjusting length
normalization could help with this. Another hypothesis could be to try bigger
beams. Trying a bigger beam size of 5 produces this result:

Precision: 0.400730, Recall: 0.219472, F1-Score: 0.258531

There is a significant improvement in precision and a further decrease in recall. Now,
let's try some length normalization. Running beam search with an alpha of 0.7 gives
us the following:

Precision: 0.356155, Recall: 0.253459, F1-Score: 0.271813

By running a larger beam width of 5 with the same alpha, we obtain this result:

Precision: 0.356993, Recall: 0.252384, F1-Score: 0.273171

There is a considerable increase in recall due to there being a decline in precision.
Overall, for a basic model trained only on a slice of data, the performance is quite
good. A score of 27.3 would yield a spot on the top 20 of the leaderboard.

Seq2seq-based text summarization was the main approach prior to the advent
of Transformer-based models. Now, Transformer-based models, which include
both the Encoder and Decoder parts, are used for summarization. The next section
reviews state-of-the-art approaches to summarization.

Summarization – state of the art
Today, the predominant approach to summarization uses the full Transformer
architecture. Such models are quite big, often ranging from 223M parameters to
over a billion in the case of GPT-3. Google Research published a paper at ICML in
June 2020 titled PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
Summarization. This paper sets the benchmark for state-of-the-art results as of the
time of writing. The key innovation proposed by this model is a specific pre-training
objective for summarization. Recall that BERT was pre-trained using a masked
language model (MLM) objective, where tokens were randomly masked and
the model had to predict them. The PEGASUS model proposed a Gap Sentence
Generation (GSG) pre-training objective, where important sentences are completely
replaced with a special masking token, and the model has to generate the sequence.

Chapter 6

[225]

The importance of the sentence is judged using the ROUGE1-F1 score of a given
score compared to the entire document. A certain number of top-scoring sentences
are masked from the input, and the model needs to predict them. Additional details
can be found in the aforementioned paper. The base Transformer model is very
similar to the BERT configurations. The pre-training objective makes a significant
difference to the ROUGE1/2/L-F1 scores and sets new records on many of the
datasets.

These models are quite large and training them on a desktop is not realistic. Often,
the models are pre-trained on humongous datasets for several days at a time.
Thankfully, pre-trained versions of such models are available through libraries
like HuggingFace.

Summary
Summarizing text is considered a uniquely human trait. Deep learning NLP models
have made great strides in this area in the past 2-3 years. Summarization remains
a very hot area of research within many applications. In this chapter, we built a
seq2seq model from scratch that can summarize sentences from news articles and
generate a headline. This model obtains fairly good results due to its simplicity. We
were able to train the model for a long period of time due to learning rate annealing.
By checkpointing the model, training was made resilient as it could be restarted
from the last checkpoint in case of failure. Post-training, we improved our generated
summaries through a custom implementation of beam search. As beam search has
a tendency to provide short summaries, length normalization techniques were used
to make the summaries even better.

Measuring the quality of generated summaries is a challenge in abstractive
summarization. Here is a random example from the validation dataset:

• Input: the french soccer star david ginola on saturday launched his anti-land mines
campaign on behalf of the international committee for the red cross which has taken
him on as a sort of poster boy for the cause .

• Ground truth: soccer star joins red cross effort against land mines
• Beam search (5/0.7): former french star ginola launches anti-land mine campaign

The generated summary is very comparable to the ground truth. However, matching
token by token would give us a very low score. ROUGE metrics that use n-grams
and the LCS allow us to measure the quality of the summaries.

Text Summarization with Seq2seq Attention and Transformer Networks

[226]

Finally, we took a quick look at the current state-of-the-art models for
summarization. Large models that are pre-trained on even larger datasets are
ruling the roost. Unfortunately, training a model of such size is often beyond
the resources of a single individual.

Now, we will move on to a very new and exciting area of research – multi-modal
networks. Thus far, we have only treated text in isolation. But is a picture really
worth a thousand words? We shall find out when we try to caption images and
answer questions about them in the next chapter.

[227]

7
Multi-Modal Networks
and Image Captioning

with ResNets and
Transformer Networks

"A picture is worth a thousand words" is a famous adage. In this chapter, we'll put
this adage to the test and generate captions for an image. In doing so, we'll work
with multi-modal networks. Thus far, we have operated on text as input. Humans
can handle multiple sensory inputs together to make sense of the environment
around them. We can watch a video with subtitles and combine the information
provided to understand the scene. We can use facial expressions and lip movement
along with sounds to understand speech. We can recognize text in an image, and
we can answer natural language questions about images. In other words, we have
the ability to process information from different modalities at the same time, and
then put them together to understand the world around us. The future of artificial
intelligence and deep learning is in building multi-modal networks as they closely
mimic human cognitive functions.

Recent advances in image, speech, and text processing lay a solid foundation for
multi-modal networks. This chapter transitions you from the world of NLP to the
world of multi-modal learning, where we will combine visual and textual features
using the familiar Transformer architecture.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[228]

We will cover the following topics in this chapter:

• Overview of multi-modal deep learning
• Vision and language tasks
• Detailed overview of the Image Captioning task and the MS-COCO dataset
• Architecture of a residual network, specifically ResNet
• Extracting features from images using pre-trained ResNet50
• Building a full Transformer model from scratch
• Ideas for improving the performance of image captioning

Our journey starts with an overview of the various tasks in the visual understanding
domain, with a focus on tasks that combine language and images.

Multi-modal deep learning
The dictionary definition of "modality" states that it is "a particular mode in which
something exists or is experienced or expressed." Sensory modalities, like touch,
taste, smell, vision, and sound, allow humans to experience the world around them.
Suppose you are out at the farm picking strawberries, and your friend tells you to
pick ripe and red strawberries. The instruction, ripe and red strawberries, is processed
and converted into a visual and haptic criterion. As you see strawberries and feel
them, you know instinctively if they match the criteria of ripe and red. This task is
an example of multiple modalities working together for a task. As you can imagine,
these capabilities are essential for robotics.

As a direct application of the preceding example, consider a harvesting robot
that needs to pick ripe and ready fruit. In December 1976, Harry McGurk and
John MacDonald published a piece of research titled Hearing lips and seeing voices
(https://www.nature.com/articles/264746a0) in the reputed journal, Nature. They
recorded a video of a young woman talking, where utterances of the syllable ba
had been dubbed onto the lip movement of the syllable ga. When this video was
played back to adults, people repeated hearing the syllable da. When the audio track
was played without the video, the right syllable was reported. This research paper
highlighted the role of vision in speech recognition. Speech recognition models
using lip-reading information were developed in the field of Audio-Visual Speech
Recognition (AVSR). There are several exciting applications of multi-modal deep
learning models in medical devices and diagnosis, learning technology, and other
Artificial Intelligence (AI) areas.

https://www.nature.com/articles/264746a0

Chapter 7

[229]

Let's drill down into the specific interaction of vision and language and the various
tasks we can perform.

Vision and language tasks
A combination of Computer Vision (CV) and Natural Language Processing (NLP)
allows us to build smart AI systems that can see and talk. CV and NLP together
produce interesting tasks for model development. Taking an image and generating
a caption for it is a well-known task. A practical application of this task is generating
alt-text tags for images on web pages. Visually impaired readers use screen readers,
which can read these tags while reading the page, improving the accessibility of
web pages. Other topics in this area include video captioning and storytelling –
composing a story from a sequence of images. The following image shows some
examples of images and captions. Our primary focus in this chapter is on image
captioning:

Figure 7.1: Example images with captions

Visual Question Answering (VQA) is the challenging task of answering questions
about objects in the image. The following image shows some examples from the
VQA dataset. Compared to image captioning, where prominent objects are reflected
in the caption, VQA is a more complex task. Answering the question may also
require some reasoning.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[230]

Consider the bottom-right panel in the following image. Answering the question,
"Does this person have 20/20 vision?" requires reasoning. Datasets for VQA are
available at visualqa.org:

Figure 7.2: Examples from the VQA Dataset
(Source: VQA: Visual Question Answering by Agrawal et al.)

Reasoning leads to another challenging but fascinating task – Visual Commonsense
Reasoning (VCR). When we look at an image, we can guess emotions, actions, and
frame a hypothesis of what is happening. Such a task is quite easy for people and
may even happen without conscious effort. The aim of the VCR task is to build
models that can perform such a task. These models should also be able to explain
or choose an appropriate reason for the logical inference that's been made. The
following image shows an example from the VCR dataset. More details on the VCR
dataset can be found at visualcommonsense.com:

http://visualqa.org
http://visualcommonsense.com

Chapter 7

[231]

Figure 7.3: VCR example (Source: From Recognition to
Cognition: Visual Commonsense Reasoning by Zellers et al.)

Thus far, we have gone from images to text. The reverse is also possible and is
an active area of research. In this task, images or videos are generated from text
using GANs and other generative architectures. Imagine being able to generate an
illustrative comic book from the text of a story! This particular task is at the forefront
of research currently.

A critical concept in this area is visual grounding. Grounding enables tying concepts
in language to the real world. Simply put, it matches words to objects in a picture. By
combining vision and language, we can ground concepts from languages to parts of
an image. For example, mapping the word "basketball" to something that looks like
one in an image is called visual grounding. There can be more abstract concepts that
can be grounded. For example, a short elephant and a short person have different
measurements. Grounding provides us with a way to see what models are learning
and helps us guide them in the right direction.

Now that we have a proper perspective on vision and language tasks, let's dive deep
into an image captioning task.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[232]

Image captioning
Image captioning is all about describing the contents of an image in a sentence.
Captions can help in content-based image retrieval and visual search. We already
discussed how captions could improve the accessibility of websites by making
it easier for screen readers to summarize the content of an image. A caption can
be considered a summary of the image. Once we frame the problem as an image
summarization problem, we can adapt the seq2seq model from the previous
chapter to solve this problem. In text summarization, the input is a sequence of the
long-form article, and the output is a short sequence summarizing the content. In
image captioning, the output is similar in format to summarization. However, it
may not be obvious how to structure an image that consists of pixels as a sequence
of embeddings to be fed into the Encoder.

Secondly, the summarization architecture used Bi-directional Long Short-Term
Memory networks (BiLSTMs), with the underlying principle that words that are
closer together to each other are similar to each other in meaning. BiLSTMs exploited
this property by looking at the input sequence from both sides and generated
encoded representations. Generating a representation for an image that works for the
Encoder requires some thought.

A naïve solution for representing images as a sequence could be expressing them
as a list of pixels. So, an image of size 28x28 pixels becomes a sequence of 784 tokens.
When the tokens represent text, an Embedding layer learns the representation of
each token. If this Embedding layer had a dimension of 64, then each token would
be represented by a 64-dimensional vector. This embedding vector was learned
during training. Extending our analogy of using a pixel as a token, a straightforward
solution is to use the value of the Red/Green/Blue channels of the pixel in an
image to generate a three-dimensional embedding. However, training these three
dimensions does not sound like a logical approach. More importantly, pixels are
laid out in a 2D representation, while the text is laid out in a 1D representation. This
concept is illustrated in the following image. Words are related to words next to
each other. When pixels are laid out in a sequence, the data locality of these pixels
is broken since the content of a pixel is related to the pixels all around it, not just to
the left and right of it. This idea is shown by the following super zoomed in image
of a tulip:

Chapter 7

[233]

Figure 7.4: Data locality in text versus images

Data locality and translation invariance are two critical properties of images.
Translation invariance is the idea that an object can appear in various spots in an
image. In a fully connected model, the model would try to learn the position of
the object, which would prevent the model from generalizing. The specialized
architecture of Convolutional Neural Networks (CNNs) can be used to exploit
these properties and extract signals from the image. At a high level, we use CNNs,
specifically the ResNet50 architecture, to convert the image into a tensor that can be
fed to a seq2seq architecture. Our model will combine the best of CNNs and RNNs
to handle the image and text parts under the seq2seq model. The following diagram
shows our architecture at a very high level:

Figure 7.5: High-level image captioning model architecture

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[234]

While a comprehensive explanation of CNNs is beyond the scope of this book, we
will review the key concepts in short. Since we will be using a pre-trained CNN
model, we won't have to go into much depth about CNNs. Python Machine Learning,
Third Edition, published by Packt, is an excellent resource for reading up on CNNs.

In the previous chapter on text summarization, we built a seq2seq model with
attention. In this chapter, we will build a Transformer model. Transformer models
are currently state of the art in NLP. The Encoder part of the Transformer is the
core of the Bidirectional Encoder Representations from Transformers (BERT)
architecture. The Decoder part of the Transformer is the core of the Generative Pre-
trained Transformer (GPT) family of architectures. There is a specific advantage
of the Transformer architecture that is relevant to the image captioning problem.
In the seq2seq architecture, we used BiLSTMS, which tries to learn relationships
via co-occurrence. In the Transformer architecture, there is no recurrence. Instead,
positional encodings and self-attention model relationships are made between
inputs. This change enables us to feed in processed image patches as input and hope
that the relationships between the image patches will be learned.

The main steps of building our model are summarized here:

1. Downloading the data: Given the large size of the dataset, this is a time-
consuming activity.

2. Pre-processing captions: Since the captions are in JSON format, they are
flattened into a CSV for easier processing.

3. Feature extraction: We pass the image files through ResNet50 to extract
features and save them to speed up training.

4. Transformer training: A full Transformer model with positional encoding,
multi-head attention, an Encoder, and a Decoder is trained on the processed
data.

5. Inference: Use the trained model to caption some images!
6. Evaluating performance: Bilingual Evaluation Understudy (BLEU) scores

are used to compare the trained models with ground truth data.

Let's start with the dataset first.

Implementing the image captioning model requires a large amount
of code as we will implement several pieces, like pre-processing
images, with ResNet50 and a complete implementation of
Transformer architecture from scratch. This chapter contains much
more code than the other chapters. We will rely on code fragments
to highlight the most important aspects of the code rather than
going over every line of code in detail, as we have been doing
so far.

Chapter 7

[235]

MS-COCO dataset for image captioning
Microsoft published the Common Objects in Context or COCO dataset in 2014. All
the versions of the dataset can be found at cocodataset.org. The COCO dataset is
a big dataset that's used for object detection, segmentation, and captioning, among
other annotations. Our focus will be on the 2014 training and validation images,
where five captions per image are available. There are roughly 83K images in the
training set and 41K images in the validation set. The training and validation images
and captions need to be downloaded from the COCO website.

Given that these are large downloads, you may wish to use the download that's the
most comfortable to you. If wget is available on your environment, you could use it
to download the files, like so:

$ wget http://images.cocodataset.org/zips/train2014.zip
$ wget http://images.cocodataset.org/zips/val2014.zip
$ wget http://images.cocodataset.org/annotations/annotations_
trainval2014.zip

Note that the annotations for the training and validation sets are in one compressed
archive. Once the files have been downloaded, they need to be unzipped. Each of
these compressed files creates its own folder and puts the contents in there. We will
create a folder called data and move all the expanded contents inside it:

$ mkdir data
$ mv train2014 data/
$ mv val2014 data/
$ mv annotations data/

Large download warning: The training image dataset is
approximately 13 GB, while the validation dataset is over 6 GB.
The annotations for the image files, which include captions, are
about 214 MB in size. Please be careful of your internet bandwidth
usage and potential costs as you download this dataset.

Google has also published a new Conceptual Captions dataset
at https://ai.google.com/research/ConceptualCaptions.
It contains over 3M images. Having a large dataset allows deep
models to train better. There is a corresponding competition
where you can submit your models and see how they compete
with others.

http://cocodataset.org
https://ai.google.com/research/ConceptualCaptions

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[236]

All the images are either in the train2014 or val2014 folder. The code for the initial
pre-processing of the data is in the data-download-preprocess.py file. Captions for
the training and validation images can be found in the captions_train2014.json
or captions_val2014.json JSON file inside the annotations subfolder. Both of these
files are in a similar format. The files have four main keys – info, image, license,
and annotation. The image key contains a record per image, along with information
about the size, URL, name, and a unique ID that is used to refer to that image in the
dataset. Captions are stored as a tuple of the image ID and caption text, along with
a unique ID for the caption. We use the Python json module to read and process
these files:

valcaptions = json.load(open(
 './data/annotations/captions_val2014.json', 'r'))
trcaptions = json.load(open(
 './data/annotations/captions_train2014.json', 'r'))

inspect the annotations
print(trcaptions.keys())

dict_keys(['info', 'images', 'licenses', 'annotations'])

Our objective is to produce a single simple file with two columns – one for the image
file name and another containing the caption for that file. Note that the validation
set contains half the number of images of the training set. In a seminal paper on
captioning titled Deep Visual-Semantic Alignment for Generating Image Descriptions,
Andrej Karpathy and Fei-Fei Li proposed training on all the training and validation
images after reserving 5,000 images from the validation set for testing. We will
follow this approach by processing the image names and IDs into a dictionary:

prefix = "./data/"
val_prefix = prefix + 'val2014/'
train_prefix = prefix + 'train2014/'

training images
trimages = {x['id']: x['file_name'] for x in trcaptions['images']}

validation images
take all images from validation except 5k - karpathy split
valset = len(valcaptions['images']) - 5000 # leave last 5k
valimages = {x['id']: x['file_name'] for x in valcaptions['images']
[:valset]}

truevalimg = {x['id']: x['file_name'] for x in valcaptions['images']
[valset:]}

Chapter 7

[237]

Since each image has five captions, the validation set cannot be split based on
captions. Otherwise, there will be leakage of data from the training set into the
validation/test set. In the preceding code, we reserved the last 5K images for the
validation set.

Now, let's go over the captions for the training and validation images and create
a combined list. We will create empty lists to store the tuples of image paths and
captions:

we flatten to (caption, image_path) structure
data = list()
errors = list()
validation = list()

Next, we will process all the training captions:

for item in trcaptions['annotations']:
 if int(item['image_id']) in trimages:
 fpath = train_prefix + trimages[int(item['image_id'])]
 caption = item['caption']
 data.append((caption, fpath))
 else:
 errors.append(item)

For the validation captions, the logic is similar, but we need to ensure that no
captions are included for the images that have been reserved:

for item in valcaptions['annotations']:
 caption = item['caption']
 if int(item['image_id']) in valimages:
 fpath = val_prefix + valimages[int(item['image_id'])]
 data.append((caption, fpath))
 elif int(item['image_id']) in truevalimg: # reserved
 fpath = val_prefix + truevalimg[int(item['image_id'])]
 validation.append((caption, fpath))
 else:
 errors.append(item)

Hopefully, there should not be any errors. If you encounter errors, this could be due
to corrupted downloads or errors while unzipping the files. The training dataset is
shuffled to aid in training. Finally, two CSV files are persisted with the training and
testing data:

persist for future use

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[238]

with open(prefix + 'data.csv', 'w') as file:
 writer = csv.writer(file, quoting=csv.QUOTE_ALL)
 writer.writerows(data)

persist for future use
with open(prefix + 'validation.csv', 'w') as file:
 writer = csv.writer(file, quoting=csv.QUOTE_ALL)
 writer.writerows(validation)

print("TRAINING: Total Number of Captions: {}, Total Number of Images:
{}".format(
 len(data), len(trimages) + len(valimages)))

print("VALIDATION/TESTING: Total Number of Captions: {}, Total Number
of Images: {}".format(
 len(validation), len(truevalimg)))

print("Errors: ", errors)

TRAINING: Total Number of Captions: 591751, Total Number of Images:
118287
VALIDATION/TESTING: Total Number of Captions: 25016, Total Number of
Images: 5000
Errors: []

At this point, the data download and pre-processing phases are complete. The next
step is to pre-process all the images using ResNet50 to extract features. Before we
write the code for that, we will take a short detour and look at CNNs and the ResNet
architecture. If you are already comfortable with CNNs, you may skip ahead to the
code part.

Chapter 7

[239]

Image processing with CNNs and
ResNet50
In the world of deep learning, specific architectures have been developed to handle
specific modalities. CNNs have been incredibly successful in processing images and
are the standard architecture for CV tasks. A good mental model for using a pre-
trained model for extracting features from images is that of using pre-trained word
embeddings like GloVe for text. In this particular case, we use a specific architecture
called ResNet50. While a comprehensive treatment of CNNs is outside the scope of
this book, a brief overview of CNNs and ResNet will be provided in this section. If
you are already comfortable with these concepts, you may skip ahead to the section
titled Image feature extraction with ResNet50.

CNNs
CNNs are an architecture designed to learn from the following key properties,
which are relevant to image recognition:

• Data locality: The pixels in an image are highly correlated to the pixels
around them.

• Translation invariance: An object of interest, for example, a bird, may
appear at different places in an image. The model should be able to identify
the object, irrespective of the object's position in the image.

• Scale invariance: An object of interest may have a smaller or large size,
depending on the zoom. Ideally, the model should be able to identify objects
of interest in an image, irrespective of their size.

Convolution and pooling layers are key components that aid CNNs in extracting
features from images.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[240]

Convolutions
A convolution is a mathematical operation that is performed on patches taken from
an image with a filter. A filter is a matrix, usually square and with 3x3, 5x5, and 7x7
as common dimensions. The following image shows an example of a 3x3 convolution
matrix applied to a 5x5 image. The image patches are taken from left to right and
then top to bottom. The number of pixels this patch shifts by every step is called
the stride length. A stride length of 1 in a horizontal and vertical direction reduces
a 5x5 image to a 3x3 image, as shown here:

Figure 7.6: Example of a convolution operation

The specific filter that was applied here is an edge detection filter. Prior to CNNs,
CV relied heavily on handcrafted filters. Sobel filters are an example of a special
filter for the purpose of edge detection. The convolution-example.ipynb notebook
provides an example of detecting edges using the Sobel filter. The code is quite
straightforward. After the imports, the image file is loaded and converted into a
grayscale image:

tulip = Image.open("chap7-tulip.jpg")

convert to gray scale image
tulip_grey = tulip.convert('L')
tulip_ar = np.array(tulip_grey)

Next, we define and apply the Sobel filters to the image:

Sobel Filter
kernel_1 = np.array([[1, 0, -1],
 [2, 0, -2],
 [1, 0, -1]]) # Vertical edge
kernel_2 = np.array([[1, 2, 1],

Chapter 7

[241]

 [0, 0, 0],
 [-1, -2, -1]]) # Horizontal edge
out1 = convolve2d(tulip_ar, kernel_1) # vertical filter
out2 = convolve2d(tulip_ar, kernel_2) # horizontal filter
Create a composite image from the two edge detectors
out3 = np.sqrt(out1**2 + out2**2)

The original image, along with the intermediate versions, are shown in the following
image:

Figure 7.7: Edge detection using Sobel filters

Constructing such filters is very tedious. However, CNNs can learn many such filters
by treating the filter matrices as learnable parameters. CNNs often pass an image
through hundreds or thousands of such filters, referred to as channels, and stack
them together. You can think of each filter as detecting some features, like vertical
lines, horizontal lines, arcs, circles, trapezoids, and so on. However, the magic
happens when multiple such layers are put together. Stacking multiple layers leads
to learning hierarchical representations. An easy way to understand this concept is
by imagining that earlier layers are learning simple shapes like lines and arcs, middle
layers are learning shapes like circles and hexagons, and the top layers are learning
complex objects like stop signs and steering wheels. The convolution operation is the
key innovation that exploits data locality and extracts features that enable translation
invariance.

A consequence of this layering is the amount of data flowing through the model
increasing. Pooling is an operation that helps reduce the dimensions of the data
flowing through and further highlights these features.

Pooling
Once the values from the convolution operation have been computed, a pooling
operation can be applied to patches to further concentrate the signal in the image.
The most common form of pooling is called Max pooling and is demonstrated in the
following diagram. It is as simple as taking the maximum value in a patch.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[242]

The following diagram shows max pooling on non-overlapping 2x2 patches:

Figure 7.8: Max pooling operation

Another way to pool is by averaging the values. While pooling reduces the
complexity and computation load, it also helps modestly with scale invariance.
However, there is a chance that such a model overfits and does not generalize well.
Dropout is a technique that helps with regularization and enables such models to
generalize better.

Regularization with dropout
You may recall that we used dropout settings in previous chapters with the LSTM and
BiLSTM settings. The core idea behind dropout is shown in the following diagram:

Figure 7.9: Dropout

Chapter 7

[243]

Rather than connecting every unit from a lower layer to every unit in the next higher
layer of the model, some of the connections are randomly dropped during training
time. Inputs are dropped only during training time. Since dropping inputs reduces
the total input reaching a node compared to test/inference time, inputs are upscaled
in the proportion of dropout to ensure the relative magnitudes are preserved.
Dropping some of the inputs during training forces the model to learn more from
each of the inputs. This is because it cannot rely on the presence of a specific input.
This helps the network build resilience to missing inputs and consequently helps
generalize the models.

A combination of these techniques helped build deeper and deeper networks.
A challenge that showed up as networks got deeper was that the signal from the
inputs became quite small in the higher layers. Residual connections is a technique
that helps deal with this problem.

Residual connections and ResNets
Intuition suggests that adding more layers should make performance better.
A deeper network has more model capacity, so it should be able to model more
complex distributions compared to shallower networks. As deeper and deeper
models were built, a degradation in accuracy was observed. Since the reduction
happened even on the training data, overfitting can be ruled out as a probable
cause. As inputs pass through more and more layers, the optimizers have a harder
time adjusting the gradients to the point where learning is impaired in the model.
Kaiming He and his collaborators published the ResNet architecture in their seminal
paper titled Deep Residual Learning for Image Recognition.

We must understand residual connections before understanding ResNets. The core
concept of the residual connection is shown in the following diagram. In a regular
dense layer, the input is first multiplied by the weights. Then, biases are added in,
which is a linear operation. The output is passed through an activation function, like
ReLU, which introduces non-linearity in the layer. The output from the activation
function is the final output of the layer.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[244]

However, residual connections introduce a summation in-between the linear
computation and the activation function, as shown on the right-hand side of
the following diagram:

Figure 7.10: A conceptual residual connection

Note that the preceding diagram is only for illustrating the core concept behind
residual connections. In ResNets, the residual connection is made between multiple
blocks. The following diagram shows the basic building blocks of ResNet50, also
referred to as the bottleneck design. This design is called the bottleneck design
because the 1x1 convolution blocks reduce the dimensions of the inputs before
passing them to the 3x3 convolution. The last 1x1 block scales the inputs out again
for the next layer:

Figure 7.11: ResNet50 bottleneck building block

Chapter 7

[245]

ResNet50 is composed of several such blocks stacked on top of each other. There
are four groups, each consisting of three to seven such blocks. BatchNorm or
batch normalization was proposed by Sergey Ioffe and Christian Szegedy in their
paper titled Batch Normalization: Accelerating Deep Network Training By Reducing
Internal Covariate Shift in 2015. Batch normalization aims to reduce the variance of
the outputs coming from one layer being fed into the next layer. By reducing this
variance, BatchNorm acts like L2 regularization, which attempts to do the same
thing by adding the penalties of the magnitude of the weights to the cost function.
The main motivation of BatchNorm is to efficiently backpropagate gradient updates
through a large number of layers, while minimizing the risk that this update could
result in divergence. In stochastic gradient descent, gradients are used to update
the weights of all the layers at the same time, assuming that the output of one layer
doesn't impact any other layers. However, this is not a completely valid assumption.
For an n-layer network, computing this would need nth order gradients, which is
intractable. Instead, batch-norm is used, which works on one mini-batch at a time
and the constraints of the updates to reduce this unwanted shift in the distribution
of weights. It does this by normalizing the outputs before they are fed into the
next layer.

The last two layers of ResNet50 are dense layers that classify the outputs from
the last block into an object category. Covering ResNets comprehensively is a
tough ask, but hopefully, this crash course on CNNs and ResNets has given you
enough background on how they work. You are encouraged to read the referenced
papers and Deep Learning with TensorFlow 2 and Keras, Second Edition, published by
Packt, for a detailed treatment of this topic. Fortunately for us, TensorFlow provides
a pre-trained ResNet50 model that is ready for use. In the next section, we'll use this
pre-trained ResNet50 model for extracting image features.

Image feature extraction with ResNet50
ResNet50 models are trained on the ImageNet dataset. This dataset contains millions
of images in over 20,000 categories. The large-scale visual recognition challenge,
ILSVRC, focuses on the top 1,000 categories for models to compete on recognizing
images. Consequently, the top layers of the ResNet50 that perform classification have
a dimension of 1,000. The idea behind using a pre-trained ResNet50 model is that it is
already able to parse out objects that may be useful in image captioning.

The tensorflow.keras.applications package provides pre-trained models like
ResNet50. At the time of writing, all the pre-trained models provided are related to
CV. Loading up the pre-trained model is quite easy. All the code for this section is in
the feature-extraction.py file in this chapter's folder on GitHub. The main reason
for using a separate file is that it gives us the ability to run feature extraction as a
script.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[246]

Given that we will be processing over 100,000 images, this process may take a while.
CNNs benefit greatly from a GPU in computation. Let's get into the code now. First,
we must set up the paths for the CSV file we created from the JSON annotations in
the previous chapter:

prefix = './data/'
save_prefix = prefix + "features/" # for storing prefixes
annot = prefix + 'data.csv'
load the pre-processed file
inputs = pd.read_csv(annot, header=None, names=["caption", "image"])

ResNet50 expects each image to be 224x224 pixels with three channels. The input
images from the COCO set have different sizes. Hence, we must convert the input
files into the standard that ResNet was trained on:

We are going to use the last residual block of
the ResNet50 architecture
which has dimension 7x7x2048 and store into individual file
def load_image(image_path, size=(224, 224)):
 # pre-processes images for ResNet50 in batches
 image = tf.io.read_file(image_path)
 image = tf.io.decode_jpeg(image, channels=3)
 image = tf.image.resize(image, size)
 image = preprocess_input(image) # from keras.applications.ResNet50
 return image, image_path

The highlighted code shows a special pre-processing function provided by the
ResNet50 package. The pixels in the input image are loaded into an array via the
decode_jpeg() function. Each pixel has a value between 0 and 255 for each color
channel. The preprocess_input() function normalizes the pixel values so that their
mean is 0. Since each input image has five captions, we should only process the
unique images in the dataset:

uniq_images = sorted(inputs['image'].unique())
print("Unique images: ", len(uniq_images)) # 118,287 images

Next, we must convert the dataset into a tf.dat.Dataset, which makes it easier to
batch and process the input files using the convenience function defined previously:

image_dataset = tf.data.Dataset.from_tensor_slices(uniq_images)
image_dataset = image_dataset.map(
 load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE).
batch(16)

Chapter 7

[247]

For efficiently processing and generating features, we must process 16 image files at
a time. The next step is loading a pre-trained ResNet50 model:

rs50 = tf.keras.applications.ResNet50(
 include_top=False,
 weights="imagenet",
 input_shape=(224, 224, 3)
)

new_input = rs50.input
hidden_layer = rs50.layers[-1].output

features_extract = tf.keras.Model(new_input, hidden_layer)
features_extract.summary()

__
Layer (type) Output Shape Param #
Connected to
==
input_1 (InputLayer) [(None, 224, 224, 3) 0
__
<CONV BLOCK 1>
__
<CONV BLOCK 2>
__
<CONV BLOCK 3>
__
<CONV BLOCK 4>
__
<CONV BLOCK 5>
==
Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120
__

The preceding output has been abbreviated for brevity. The model contains over 23
million trainable parameters. We don't need the top classification layer as we are
using the model for feature extraction. We defined a new model with the input and
output layer. Here, we took the output from the last layer. We could take output
from different parts of ResNet by changing the definition of the hidden_layer
variable. In fact, this variable can be a list of layers, in which case the output of the
features_extract model will be the output from each of the layers in the list.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[248]

Next, a directory must be set up to store the extracted features:

save_prefix = prefix + "features/"
try:
 # Create this directory
 os.mkdir(save_prefix)
except FileExistsError:
 pass # Directory already exists

The feature extraction model can work on batches of images and predict the output.
The output is 2,048 patches of 7x7 pixels for each image. If a batch of 16 images is
supplied, then the output from the model will be a tensor of dimensions [16, 7, 7,
2048]. We store the features of each image file as a separate file while flattening the
dimensions to [49, 2048]. Each image has now been converted into a sequence of 49
pixels, with an embedding size of 2,048. The following code performs this action:

for img, path in tqdm(image_dataset):
 batch_features = features_extract(img)
 batch_features = tf.reshape(batch_features,
 (batch_features.shape[0], -1,
 batch_features.shape[3]))

 for feat, p in zip(batch_features, path):
 filepath = p.numpy().decode("utf-8")
 filepath = save_prefix + filepath.split('/')[-1][:-3] + "npy"
 np.save(filepath, feat.numpy())

print("Images saved as npy files")

This could be a time-consuming operation, depending on your computing
environment. On my Ubuntu Linux box with an RTX 2070 GPU, this took ~23
minutes.

The last step in data pre-processing is to train the Subword Encoder. This part should
be quite familiar to you as it is identical to what we've done in previous chapters:

Chapter 7

[249]

Now, read the labels and create a subword tokenizer with it
~8K vocab size
cap_tokenizer = tfds.features.text.SubwordTextEncoder.build_from_
corpus(
 inputs['caption'].map(lambda x: x.lower().strip()).tolist(),
 target_vocab_size=2**13, reserved_tokens=['<s>', '</s>'])
cap_tokenizer.save_to_file("captions")

Note that we included two special tokens to signal the start and end of the sequences.
You may recall this technique from Chapter 5, Generating Text with RNNs and GPT-2.
Here, we used a slightly different way of accomplishing the same technique to show
how you can accomplish the same objective in different ways.

With that, pre-processing and feature extraction is complete. The next step is
defining the Transformer model. Then, we will be ready to train the model.

The Transformer model
The Transformer model was discussed in Chapter 4, Transfer Learning with BERT. It
was inspired by the seq2seq model and has an Encoder and a Decoder part. Since the
Transformer model does not rely on RNNs, input sequences need to be annotated
with positional encodings, which allow the model to learn about the relationships
between inputs. Removing recurrence improves the speed of the model vastly while
reducing the memory footprint. This innovation of the Transformer model has made
very large-sized models such as BERT and GPT-3 possible. The Encoder part of the
Transformer model was shown in the aforementioned chapter. The full Transformer
model was shown in Chapter 5, Generating Text with RNNs and GPT-2. We will start
with a modified version of the full Transformer. Specifically, we will modify the
Encoder part of the Transformer to create a visual Encoder, which takes image data
as input instead of text sequences. There are some other small modifications to be
made to accommodate images as input to the Encoder. The Transformer model we
are going to build is shown in the following diagram. The main difference here is
how the input sequence is encoded. In the case of text, we will tokenize the text using
a Subword Encoder and pass it through an Embedding layer, which is trainable.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[250]

As training proceeds, the embeddings of the tokens are also learned. In the case of
image captioning, we will pre-process the images into a sequence of 49 pixels, each
with an "embedding" size of 2,048. This actually simplifies padding the inputs. All
the images are pre-processed so that they're the same length. Consequently, padding
and masking the inputs is not required:

Figure 7.12: Transformer model with a visual Encoder

The following pieces of code need to be implemented to build the Transformer
model:

• Positional encoding of the inputs, along with input and output masks. Our
inputs are of a fixed length, but the output and captions are of a variable
length.

• Scaled dot-product attention and multi-head attention to enable the Encoders
and Decoders to focus on specific aspects of the data.

Chapter 7

[251]

• An Encoder that consists of multiple repeating blocks.
• A Decoder that uses the outputs from the Encoder through its repeating

blocks.

The code for the Transformer has been taken from the TensorFlow tutorial titled
Transformer model for language understanding. We will be using this code as the base
and adapting it for the image captioning use case. One of the beautiful things about
the Transformer architecture is that if we can cast a problem as a sequence-to-
sequence problem, then we can apply the Transformer model. As we describe the
implementation, the main points of the code will be highlighted. Note that the code
for this section is in the visual_transformer.py file.

Implementing the full Transformer model does take a little bit of code. If you are
already familiar with the Transformer model or want to only know where our model
differs from the standard Transformer model, please focus on the next section and
the VisualEncoder section. You can read the rest of the sections at your leisure.

Positional encoding and masks
Transformer models don't use RNNs. This allows them to compute all the outputs
in one step, leading to significant improvements in speed and also the ability to
learn dependencies across long inputs. However, it comes at the cost of the model
not knowing anything about the relationship between neighboring words or tokens.
A positional encoding vector, with values for the odd and even positions of the
tokens to help the model learn relationships between the positions of inputs, helps
compensate for the lack of information about the ordering of tokens.

In image captioning, this is important for captions. Technically, we don't need to
provide these positional encodings for the image inputs as ResNet50 should have
produced appropriate patches. Positional encoding can, however, still be used
for the inputs as well. Positional encoding uses a sin function for even positions
and a cos function for odd positions. The formula for computing the encodings
for a position is:

𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 = { sin(𝑤𝑤𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑖𝑖𝑖cos(𝑤𝑤𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑖𝑖𝑖 𝑖 𝑖

Embeddings help place tokens that are similar in meaning close
to each other in the embedding space. Positional encodings put
tokens closer to each other based on their position in the sentence.
Put together, the two are quite powerful.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[252]

Here, wi is defined as:

𝑤𝑤𝑖𝑖 = 110002𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
In the preceding formula, pos refers to the position of a given token, dmodel refers to
the dimensions of the embeddings, and i is the specific dimension being computed.
The positional encoding process produces a vector with the same dimensions as the
embedding for each token. You may be wondering why this complex formulation is
used for computing these positional encodings. Wouldn't numbering the tokens from
one side to the other suffice? It turns out that the positional encoding algorithm must
have a few characteristics. First, the values must generalize easily to sequences of a
variable length. Using a straight-up numbering scheme would prevent inputs that
have sequences longer than those in the training data. The output should be unique
for each token's position. Furthermore, the distance between any two positions
should be consistent across different lengths of input sequences. This formulation is
relatively simple to implement. The code for this is in the Positional Encoder section
of the file.

First, we must compute the angle, as shown in the preceding wi formula, like so:

def get_angles(pos, i, d_model):
 angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_
model))
 return pos * angle_rates

Then, we must compute the vector of positional encodings:

def positional_encoding(position, d_model):
 angle_rads = get_angles(np.arange(position)[:, np.newaxis],
 np.arange(d_model)[np.newaxis, :],
 d_model)

 # apply sin to even indices in the array; 2i
 angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])

 # apply cos to odd indices in the array; 2i+1
 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])

 pos_encoding = angle_rads[np.newaxis, ...]

 return tf.cast(pos_encoding, dtype=tf.float32)

Chapter 7

[253]

The next step is to compute the masks for input and output. Let's focus on the
Decoder for a second. Since we are not using an RNN, the entire output is fed to
the Decoder at once. However, we don't want the Decoder to look at data from
future timesteps. So, the outputs must be masked. In terms of the Encoder, masks
are needed if the input is padded to a fixed length. However, in our case, the inputs
are always exactly a length of 49. So, the mask is a fixed vector of ones:

def create_padding_mask(seq):
 seq = tf.cast(tf.math.equal(seq, 0), tf.float32)

 # add extra dimensions to add the padding
 # to the attention logits.
 return seq[:, tf.newaxis, tf.newaxis, :]
 # (batch_size, 1, 1, seq_len)

while decoding, we dont have recurrence and dont want Decoder
to see tokens from the future

def create_look_ahead_mask(size):
 mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
 return mask # (seq_len, seq_len)

The first method is used to mask inputs if they are padded. This method has been
included for the sake of completeness, but you will see later that we pass it a
sequence of ones. So, all this method does is reshape the masks. The second mask
function is used for masking Decoder inputs so that it can only see the positions it
has generated.

The layers of the transfer Encoder and Decoder use a specific form of attention. This
is a fundamental building block of the architecture and will be implemented next.

Scaled dot-product and multi-head attention
The purpose of the attention function is to match a query to a set of key-value pairs.
The output is a sum of the values, weighted by the correspondence between the
query and the key. multi-head attention learns multiple ways to compute the scaled
dot-product attention and combines it.

Scaled dot-product attention is computed by multiplying the query vector by the
key vector. This product is scaled by the square root of the dimensions of the query
and key. Note that this formulation assumes that the key and query vectors have the
same dimensions. Practically, the dimensions of the query, key, and value vectors are
all set to the size of the embedding.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[254]

This was referred to as dmodel in the position encoding. After computing the scaled
product of the key and query vector, a softmax is applied, and the result of the
softmax is multiplied by the value vector. A mask is used to mask the product
of the query and keys:

def scaled_dot_product_attention(q, k, v, mask):
 # (..., seq_len_q, seq_len_k)
 matmul_qk = tf.matmul(q, k, transpose_b=True)

 # scale matmul_qk
 dk = tf.cast(tf.shape(k)[-1], tf.float32)
 scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)

 # add the mask to the scaled tensor.
 if mask is not None:
 scaled_attention_logits += (mask * -1e9)

 # softmax is normalized on the last axis (seq_len_k)
 # so that the scores
 # add up to 1.
 attention_weights = tf.nn.softmax(
 scaled_attention_logits,
 axis=-1) # (..., seq_len_q, seq_len_k)

 output = tf.matmul(attention_weights, v)
 # (..., seq_len_q, depth_v)

 return output, attention_weights

Multi-ahead attention concatenates outputs from multiple scaled dot-product
attention units and passes them through a linear layer. The dimensions of the
embedding inputs are divided by the number of heads to compute the dimensions
of the key and value vectors. Multi-head attention is implemented as a custom layer.
First, we must create the constructor:

class MultiHeadAttention(tf.keras.layers.Layer):
 def __init__(self, d_model, num_heads):
 super(MultiHeadAttention, self).__init__()
 self.num_heads = num_heads
 self.d_model = d_model

 assert d_model % self.num_heads == 0

Chapter 7

[255]

 self.depth = d_model // self.num_heads

 self.wq = tf.keras.layers.Dense(d_model)
 self.wk = tf.keras.layers.Dense(d_model)
 self.wv = tf.keras.layers.Dense(d_model)

 self.dense = tf.keras.layers.Dense(d_model)

Note the assert statement that is highlighted. When the Transformer model is
instantiated, it is vital to choose some parameters so that the number of heads
divides the model size or embedding dimensions completely. The main computation
of this layer is in the call() function:

 def call(self, v, k, q, mask):
 batch_size = tf.shape(q)[0]

 q = self.wq(q) # (batch_size, seq_len, d_model)
 k = self.wk(k) # (batch_size, seq_len, d_model)
 v = self.wv(v) # (batch_size, seq_len, d_model)

 # (batch_size, num_heads, seq_len_q, depth)
 q = self.split_heads(q, batch_size)
 # (batch_size, num_heads, seq_len_k, depth)
 k = self.split_heads(k, batch_size)
 # (batch_size, num_heads, seq_len_v, depth)
 v = self.split_heads(v, batch_size)

 # scaled_attention.shape == (batch_size, num_heads,
 # seq_len_q, depth)
 # attention_weights.shape == (batch_size, num_heads,
 # seq_len_q, seq_len_k)
 scaled_attention, attention_weights = scaled_dot_product_
attention(q, k, v, mask)

 # (batch_size, seq_len_q, num_heads, depth)
 scaled_attention = tf.transpose(scaled_attention,
 perm=[0, 2, 1, 3])

 concat_attention = tf.reshape(scaled_attention,
 (batch_size, -1,
 self.d_model))
 # (batch_size, seq_len_q, d_model)

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[256]

 # (batch_size, seq_len_q, d_model)
 output = self.dense(concat_attention)

 return output, attention_weights

The three highlighted rows show splitting the vectors into multiple heads. split_
heads() is defined like so:

 def split_heads(self, x, batch_size):
 """Split the last dimension into (num_heads, depth).
 Transpose the result such that the shape is (batch_size,
 num_heads, seq_len, depth)
 """
 x = tf.reshape(x, (batch_size, -1,
self.num_heads, self.depth))
 return tf.transpose(x, perm=[0, 2, 1, 3])

This completes the multi-head attention implementation. This is the key part of the
Transformer model. There is a small detail surrounding a Dense layer, which is used
to aggregate the outputs from multi-head attention. It is quite simple:

def point_wise_feed_forward_network(d_model, dff):
 return tf.keras.Sequential([
 # (batch_size, seq_len, dff)
 tf.keras.layers.Dense(dff, activation='relu'),
 tf.keras.layers.Dense(d_model)
 # (batch_size, seq_len, d_model)
])

Thus far, we have looked at the following parameters for specifying a Transformer
mode:

• dmodel is used for the size of the embeddings and primary flow of inputs
• dff is the size of the output from the intermediate Dense layer in the

FeedForward part
• h specifies the number of heads for multi-head attention

Next, we will implement a visual Encoder, which has been modified to accommodate
images as input.

Chapter 7

[257]

VisualEncoder
The diagram shown in the The Transformer model section shows the Encoder's
structure. The Encoder processes the inputs with positional encodings and masks,
and then passes them through stacks of multi-head attention and feed-forward
blocks. The implementation deviates from the TensorFlow tutorial as the input in
the tutorial is text. In our case, we are passing 49x2,048 vectors that were generated
by passing images through ResNet50. The main difference is in how the inputs are
handled. VisualEncoder is built as a layer to allow composition into the eventual
Transform model:

class VisualEncoder(tf.keras.layers.Layer):
 def __init__(self, num_layers, d_model, num_heads, dff,
 maximum_position_encoding=49, dropout_rate=0.1,
 use_pe=True):
 # we have 7x7 images from ResNet50,
 # and each pixel is an input token
 # which has been embedded into 2048 dimensions by ResNet
 super(VisualEncoder, self).__init__()

 self.d_model = d_model
 self.num_layers = num_layers

 # FC layer replaces embedding layer in traditional encoder
 # this FC layers takes 49x2048 image
 # and projects into model dims
 self.fc = tf.keras.layers.Dense(d_model, activation='relu')
 self.pos_encoding = positional_encoding(
 maximum_position_encoding,
 self.d_model)

 self.enc_layers = [EncoderLayer(d_model, num_heads,
 dff, dropout_rate)
 for _ in range(num_layers)]

 self.dropout = tf.keras.layers.Dropout(dropout_rate)

 self.use_pe = use_pe

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[258]

The constructor is shown next. A new parameter that states the number of layers is
introduced. The original paper used 6 layers, 512 as dmodel, 8 multi-attention heads,
and 2,048 as the size of the intermediate feed-forward output. Note the highlighted
lines in the preceding code. The dimensions of the pre-processed images can vary
depending on the layer of ResNet50 from which output is pulled. We pass the input
through a dense layer, fc, to the size inputs according to the model. This allows us to
experiment with different models to pre-process images such as VGG19 or Inception
without changing the architecture. Also, note that the maximum position encoding
is hardcoded to 49, since that is the dimension of the output of the ResNet50 model.
Lastly, we add a flag that can switch positional encoding on or off in the Visual
Encoder. You should experiment with training models with and without positional
encodings in the input to see if this helps or hinders learning.

VisualEncoder is composed of multiple multi-head attention and feed-forward
blocks. We can utilize a convenience class, EncoderLayer, to define one such block.
A stack of these blocks is created based on the input parameters. We will examine
the internals of EncoderLayer momentarily. First, let's see how inputs pass through
VisualEncoder. The call() function is used to produce the outputs for the given
inputs:

 def call(self, x, training, mask):
 # all inp image sequences are always 49, so mask not needed
 seq_len = tf.shape(x)[1]

 # adding embedding and position encoding.
 # input size should be batch_size, 49, 2048)
 # output dims should be (batch_size, 49, d_model)
 x = self.fc(x)
 # scaled dot product attention
 x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
 if self.use_pe:
 x += self.pos_encoding[:, :seq_len, :]

 x = self.dropout(x, training=training)

 for i in range(self.num_layers):
 x = self.enc_layers[i](
 x, training, mask) # mask shouldnt be needed

 return x # (batch_size, 49, d_model)

Chapter 7

[259]

This code is fairly simple due to the abstractions defined previously. Note the use
of the training flag to turn dropout on or off. Now, let's see how EncoderLayer is
defined. Each Encoder building is composed of two sub-blocks. The first sub-block
passes inputs through multi-head attention, while the second sub-block passes the
output of the first sub-block through the 2-layer feed-forward layer:

class EncoderLayer(tf.keras.layers.Layer):
 def __init__(self, d_model, num_heads, dff, rate=0.1):
 super(EncoderLayer, self).__init__()

 self.mha = MultiHeadAttention(d_model, num_heads)
 self.ffn = point_wise_feed_forward_network(d_model, dff)

 self.layernorm1 = tf.keras.layers.LayerNormalization(
 epsilon=1e-6)
 self.layernorm2 = tf.keras.layers.LayerNormalization(
 epsilon=1e-6)

 self.dropout1 = tf.keras.layers.Dropout(rate)
 self.dropout2 = tf.keras.layers.Dropout(rate)

 def call(self, x, training, mask):
 # (batch_size, input_seq_len, d_model)
 attn_output, _ = self.mha(x, x, x, mask)
 attn_output = self.dropout1(attn_output,
 training=training)
 # (batch_size, input_seq_len, d_model)
 out1 = self.layernorm1(x + attn_output) # Residual connection

 # (batch_size, input_seq_len, d_model)
 ffn_output = self.ffn(out1)
 ffn_output = self.dropout2(ffn_output, training=training)
 # (batch_size, input_seq_len, d_model)
 out2 = self.layernorm2(out1 + ffn_output) # Residual conx

 return out2

Each layer first computes the output from multi-head attention and passes it through
dropout. A residual connection passes the sum of the output and input through
LayerNorm. The second part of this block passes the output of the first LayerNorm
through the feed-forward layer and another dropout layer.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[260]

Again, a residual connection combines the output and input to the feed-forward
part before passing it through LayerNorm. Note the use of dropout and residual
connections, which were developed for CV in the Transformer architecture.

With VisualEncoder in place, we are ready to implement the Decoder before we put
this all together into the full Transformer.

Decoder
The Decoder is also composed of blocks, just like the Encoder. Each block of the
Decoder, however, contains three sub-blocks, as shown in the diagram in the
The Transformer model section. There is a masked multi-head attention sub-block,
followed by a multi-head attention block, and finally a feed-forward sub-block.
The feed-forward sub-block is identical to the Encoder sub-block. We must define a
Decoder layer that can be stacked to construct the Decoder. The constructor for this
is shown here:

class DecoderLayer(tf.keras.layers.Layer):
 def __init__(self, d_model, num_heads, dff, rate=0.1):
 super(DecoderLayer, self).__init__()

 self.mha1 = MultiHeadAttention(d_model, num_heads)
 self.mha2 = MultiHeadAttention(d_model, num_heads)

 self.ffn = point_wise_feed_forward_network(d_model, dff)

 self.layernorm1 = tf.keras.layers.LayerNormalization(
 epsilon=1e-6)
 self.layernorm2 = tf.keras.layers.LayerNormalization(
 epsilon=1e-6)

Layer normalization or LayerNorm

LayerNorm was proposed in 2016 in a paper by the same name as
an alternative to BatchNorm for RNNs. BatchNorm, as described
in the CNNs section, normalizes the outputs across the entire
batch. But sequences can be of variable length in the case of RNNs.
A different formulation is required for normalization that can
handle variable sequence lengths. LayerNorm normalizes across
all the hidden units in a given layer. It is independent of the batch
size, and the normalization is the same for all the units in a given
layer. LayerNorm results in a significant speedup of training and
convergence of seq2seq style models.

Chapter 7

[261]

 self.layernorm3 = tf.keras.layers.LayerNormalization(
 epsilon=1e-6)

 self.dropout1 = tf.keras.layers.Dropout(rate)
 self.dropout2 = tf.keras.layers.Dropout(rate)
 self.dropout3 = tf.keras.layers.Dropout(rate)

Three sub-blocks should be quite evident based on the preceding variables.
Input passes through this layer and is converted into output, as defined by the
computations in the call() function:

 def call(self, x, enc_output, training,
 look_ahead_mask, padding_mask):
 # enc_output.shape == (batch_size, input_seq_len, d_model)

 attn1, attn_weights_block1 = self.mha1(
 x, x, x, look_ahead_mask)
 # args ^ => (batch_size, target_seq_len, d_model)

 attn1 = self.dropout1(attn1, training=training)
 out1 = self.layernorm1(attn1 + x) # residual

 attn2, attn_weights_block2 = self.mha2(
 enc_output, enc_output, out1, padding_mask)
 # args ^ => (batch_size, target_seq_len, d_model)

 attn2 = self.dropout2(attn2, training=training)
 # (batch_size, target_seq_len, d_model)
 out2 = self.layernorm2(attn2 + out1)

 ffn_output = self.ffn(out2)
 ffn_output = self.dropout3(ffn_output, training=training)
 # (batch_size, target_seq_len, d_model)
 out3 = self.layernorm3(ffn_output + out2)

 return out3, attn_weights_block1, attn_weights_block2

The first sub-block, also referred to as the masked multi-head attention block, uses
the output tokens, masked to the current position being generated. The outputs,
in our case, are the tokens that make up the caption. The look-ahead mask masks
tokens that haven't been generated yet.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[262]

Note that this sub-block does not use the output of the Encoder. It is trying to
predict the relationship of the next token to the previous token that was generated.
The second sub-block uses the output of the Encoder, along with the output of the
previous sub-block, to generate the outputs. Finally, the feed-forward network
generates the final output by operating on the output of the second sub-block.
Both the multi-head attention sub-blocks have their own attention weights.

We define the Decoder as a custom layer that is composed of multiple DecoderLayer
blocks. The structure of the Transformer is symmetrical. The number of Encoder and
Decoder blocks is the same. The constructor is defined first:

class Decoder(tf.keras.layers.Layer):
 def __init__(self, num_layers, d_model, num_heads,
 dff, target_vocab_size,
 maximum_position_encoding, rate=0.1):
 super(Decoder, self).__init__()

 self.d_model = d_model
 self.num_layers = num_layers

 self.embedding = tf.keras.layers.Embedding(
 target_vocab_size, d_model)
 self.pos_encoding = positional_encoding(
 maximum_position_encoding,
 d_model)

 self.dec_layers = [DecoderLayer(d_model, num_heads,
 dff, rate)
 for _ in range(num_layers)]
 self.dropout = tf.keras.layers.Dropout(rate)

The output of the Decoder is computed by the call() function:

 def call(self, x, enc_output, training,
 look_ahead_mask, padding_mask):

 seq_len = tf.shape(x)[1]
 attention_weights = {}

 x = self.embedding(x)
 x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
 x += self.pos_encoding[:, :seq_len, :]

Chapter 7

[263]

 x = self.dropout(x, training=training)

 for i in range(self.num_layers):
 x, block1, block2 = self.dec_layers[i](x, enc_output,
 training, look_ahead_mask, padding_mask)

 attention_weights['decoder_layer{}_block1'.format(i + 1)] =
block1
 attention_weights['decoder_layer{}_block2'.format(i + 1)] =
block2

 # x.shape == (batch_size, target_seq_len, d_model)
 return x, attention_weights

Whew, that was a fair amount of code. The structure of the Transformer model is
so elegant. The beauty of the model allows us to stack more Encoder and Decoder
layers to create more powerful models, as demonstrated by GPT-3 recently. Let's
put the Encoder and Decoder together to create a full Transformer.

Transformer
The Transformer is composed of the Encoder, the Decoder, and the final Dense layer
for generating output token distributions across the subword vocabulary:

class Transformer(tf.keras.Model):
 def __init__(self, num_layers, d_model, num_heads, dff,
 target_vocab_size, pe_input, pe_target, rate=0.1,
 use_pe=True):
 super(Transformer, self).__init__()

 self.encoder = VisualEncoder(num_layers, d_model,
 num_heads, dff,
 pe_input, rate, use_pe)

 self.decoder = Decoder(num_layers, d_model, num_heads,
 dff, target_vocab_size, pe_target, rate)

 self.final_layer = tf.keras.layers.Dense(
 target_vocab_size)

 def call(self, inp, tar, training, enc_padding_mask,
 look_ahead_mask, dec_padding_mask):

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[264]

 # (batch_size, inp_seq_len, d_model)
 enc_output = self.encoder(inp, training, enc_padding_mask)

 # dec_output.shape == (batch_size, tar_seq_len, d_model)
 dec_output, attention_weights = self.decoder(
 tar, enc_output, training,
 look_ahead_mask, dec_padding_mask)

 # (batch_size, tar_seq_len, target_vocab_size)
 final_output = self.final_layer(dec_output)

 return final_output, attention_weights

That was a whirlwind tour of the full Transformer code. Ideally, Keras in TensorFlow
will provide a higher-level API for defining a Transformer model without you
having to write the code out. If this was too much to absorb, then focus on the masks
and VisualEncoder as they are the only deviations from the standard Transformer
architecture.

We are now ready to train the model. We'll take a very similar approach to the
one we adopted in the previous chapter, by setting up learning rate annealing
and checkpointing.

Training the Transformer model with
VisualEncoder
Training the Transformer model can take hours as we want to train for around
20 epochs. It is best to put the training code into a file so that it can be run from the
command line. Note that the model will be able to show some results even after
4 epochs of training. The training code is in the caption-training.py file. At a high
level, the following steps need to be performed before starting training. First, the
CSV file with captions and image names is loaded in, and the corresponding paths
for the files with extracted image features are appended. The Subword Encoder is
also loaded in. A tf.data.Dataset is created with the encoded captions and image
features for easy batching and feeding them into the model for training. A loss
function, an optimizer with a learning rate schedule, is created for use in training.
A custom training loop is used to train the Transformer model. Let's go over these
steps in detail.

Chapter 7

[265]

Loading training data
The following code loads the CSV file we generated in the pre-processing step:

prefix = './data/'
save_prefix = prefix + "features/" # for storing prefixes
annot = prefix + 'data.csv'

inputs = pd.read_csv(annot, header=None,
 names=["caption", "image"])
print("Data file loaded")

The captions in the data are tokenized using the Subword Encoder we generated and
persisted to disk earlier:

cap_tokenizer = \
 tfds.features.text.SubwordTextEncoder.load_from_file(
 "captions")
print(cap_tokenizer.encode(
 "A man riding a wave on top of a surfboard.".lower())
)
print("Tokenizer hydrated")

Max length of captions split by spaces
lens = inputs['caption'].map(lambda x: len(x.split()))

Max length of captions after tokenization
tfds demonstrated in earlier chapters
This is a quick way if data fits in memory
lens = inputs['caption'].map(
 lambda x: len(cap_tokenizer.encode(x.lower()))
)

We will set this as the max length of captions
which cover 99% of the captions without truncation
max_len = int(lens.quantile(0.99) + 1) # for special tokens

The maximum length of the captions is generated to accommodate 99% of the
caption lengths. All the captions are truncated or padded to this maximum length:

start = '<s>'
end = '</s>'
inputs['tokenized'] = inputs['caption'].map(

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[266]

 lambda x: start + x.lower().strip() + end)

def tokenize_pad(x):
 x = cap_tokenizer.encode(x)
 if len(x) < max_len:
 x = x + [0] * int(max_len - len(x))
 return x[:max_len]

inputs['tokens'] = inputs.tokenized.map(lambda x: tokenize_pad(x))

Image features are persisted to disk. When training begins, those features need to be
read from the disk and fed in, along with the encoded captions. The name of the file
containing the image features is then added to the dataset:

now to compute a column with the new name of the saved
image feature file
inputs['img_features'] = inputs['image'].map(lambda x:
 save_prefix +
 x.split('/')[-1][:-3]
 + 'npy')

A tf.data.Dataset is created and a map function that reads image features while
enumerating batches is set up:

captions = inputs.tokens.tolist()
img_names = inputs.img_features.tolist()

Load the numpy file with extracted ResNet50 feature

def load_image_feature(img_name, cap):
 img_tensor = np.load(img_name.decode('utf-8'))
 return img_tensor, cap

dataset = tf.data.Dataset.from_tensor_slices((img_train,
 cap_train))

Use map to load the numpy files in parallel
dataset = dataset.map(lambda item1, item2: tf.numpy_function(
 load_image_feature, [item1, item2], [tf.float32, tf.int32]),
 num_parallel_calls=tf.data.experimental.AUTOTUNE)

Chapter 7

[267]

Now that the dataset has been prepared, we are ready to instantiate the Transformer
model.

Instantiating the Transformer model
We will instantiate a small model in terms of the number of layers, attention heads,
embedding dimensions, and feed-forward units:

Small Model
num_layers = 4
d_model = 128
dff = d_model * 4
num_heads = 8

For comparison, the BERT base model contains the following parameters:

BERT Base Model
num_layers = 12
d_model = 768
dff = d_model * 4
num_heads = 12

These settings are available in the file but commented out. Using these settings slows
down training and requires a large amount of GPU memory. A couple of other
parameters need to be set up and the Transformer instantiated:

target_vocab_size = cap_tokenizer.vocab_size
already includes start/end tokens
dropout_rate = 0.1

EPOCHS = 20 # should see results in 4-10 epochs also

transformer = vt.Transformer(num_layers, d_model, num_heads, dff,
 target_vocab_size,
 pe_input=49, # 7x7 pixels
 pe_target=target_vocab_size,
 rate=dropout_rate,
 use_pe=False
)

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[268]

This model contains over 4 million trainable parameters. It is a smaller model than
we have seen previously:

Model: "transformer"

Layer (type) Output Shape Param #
===
visual_encoder (VisualEncode multiple 1055360

decoder (Decoder) multiple 2108544

dense_65 (Dense) multiple 1058445
===
Total params: 4,222,349
Trainable params: 4,222,349
Non-trainable params: 0

However, the model summary is not available since the input dimensions have not
yet been supplied. The summary will be available once we've run a training example
through the model.

A custom learning rate schedule is created for training the model. A custom
learning rate schedule anneals or reduces the learning rate as the model improves its
accuracy, resulting in better accuracy. This process is called learning rate decay or
learning rate annealing and was discussed in detail in Chapter 5, Generating Text with
RNNs and GPT-2.

Custom learning rate schedule
This rate schedule is identical to the one proposed in the Attention Is All You Need
paper:

class CustomSchedule(tf.keras.optimizers.schedules.
LearningRateSchedule):
 def __init__(self, d_model, warmup_steps=4000):
 super(CustomSchedule, self).__init__()

 self.d_model = d_model
 self.d_model = tf.cast(self.d_model, tf.float32)

 self.warmup_steps = warmup_steps

Chapter 7

[269]

 def __call__(self, step):
 arg1 = tf.math.rsqrt(step)
 arg2 = step * (self.warmup_steps ** -1.5)

 return tf.math.rsqrt(self.d_model) * \
 tf.math.minimum(arg1, arg2)

learning_rate = CustomSchedule(d_model)

optimizer = tf.keras.optimizers.Adam(learning_rate,
 beta_1=0.9, beta_2=0.98,
 epsilon=1e-9)

The following graph shows the learning schedule:

Figure 7.13: Custom learning rate schedule

When training starts, a higher learning rate is used as the loss is high. As the model
learns more and more, the loss starts decreasing, which requires a lower learning
rate. Using the preceding learning rate schedule significantly speeds up training
and convergence. We also need a loss function to optimize.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[270]

Loss and metrics
The loss function is based on categorical cross-entropy. It is a common loss function
that we have used in previous chapters. In addition to the loss, an accuracy metric is
also defined to track how the model is doing on the training set:

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
 from_logits=True, reduction='none')

def loss_function(real, pred):
 mask = tf.math.logical_not(tf.math.equal(real, 0))
 loss_ = loss_object(real, pred)

 mask = tf.cast(mask, dtype=loss_.dtype)
 loss_ *= mask

 return tf.reduce_sum(loss_) / tf.reduce_sum(mask)

train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
 name='train_accuracy')

This formulation has been used in previous chapters as well. We are almost ready
to start training. There are two more steps we must follow before we get into the
custom training function. We need to set up checkpoints to save progress in case
of failures, and we also need to mask inputs for the Encoder and Decoder.

Checkpoints and masks
We need to specify a checkpoint directory for TensorFlow to save progress. We will
use a CheckpointManager here, which automatically manages the checkpoints and
stores a limited number of them. A checkpoint can be quite large. Five checkpoints
for the small model would take up approximately 243 MB of space. Larger models
would take up more space:

checkpoint_path = "./checkpoints/train-small-model-40ep"

ckpt = tf.train.Checkpoint(transformer=transformer,
 optimizer=optimizer)

ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path,

Chapter 7

[271]

 max_to_keep=5)

if a checkpoint exists, restore the latest checkpoint.
if ckpt_manager.latest_checkpoint:
 ckpt.restore(ckpt_manager.latest_checkpoint)
 print ('Latest checkpoint restored!!')

Next, a method that will create masks for the input images and captions must be
defined:

def create_masks(inp, tar):
 # Encoder padding mask - This should just be 1's
 # input shape should be (batch_size, 49, 2048)
 inp_seq = tf.ones([inp.shape[0], inp.shape[1]])

 enc_padding_mask = vt.create_padding_mask(inp_seq)

 # Used in the 2nd attention block in the Decoder.
 # This padding mask is used to mask the encoder outputs.
 dec_padding_mask = vt.create_padding_mask(inp_seq)

 # Used in the 1st attention block in the Decoder.
 # It is used to pad and mask future tokens in the input
 # received by the decoder.
 look_ahead_mask = vt.create_look_ahead_mask(tf.shape(tar)[1])
 dec_target_padding_mask = vt.create_padding_mask(tar)
 combined_mask = tf.maximum(dec_target_padding_mask,
 look_ahead_mask)

 return enc_padding_mask, combined_mask, dec_padding_mask

Inputs are always a constant length, so the input sequence is set as ones. Only the
captions, which are used by the Decoder, are masked. There are two types of masks
for the Decoder. The first mask is the padding mask. Since the captions are set to the
maximum length to handle 99% of the captions, which works out at about 22 tokens,
any captions that are smaller than this number of tokens have padding appended
to the end of them. The padding mask helps separate caption tokens from padding
tokens. The second mask is the look-ahead mask. It prevents the Decoder from
seeing tokens from the future or tokens it has not generated yet. Now, we are ready
to train the model.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[272]

Custom training
Similar to the summarization model, teacher forcing will be used for training.
Consequently, a custom training function will be used. First, we must define
a function that will train on one batch of data:

@tf.function
def train_step(inp, tar):
 tar_inp = tar[:, :-1]
 tar_real = tar[:, 1:]

 enc_padding_mask, combined_mask, dec_padding_mask = create_
masks(inp, tar_inp)

 with tf.GradientTape() as tape:
 predictions, _ = transformer(inp, tar_inp,
 True,
 enc_padding_mask,
 combined_mask,
 dec_padding_mask)
 loss = loss_function(tar_real, predictions)

 gradients = tape.gradient(loss,
 transformer.trainable_variables)

 optimizer.apply_gradients(zip(gradients,
 transformer.trainable_variables))

 train_loss(loss)
 train_accuracy(tar_real, predictions)

This method is very similar to the summarization training code. All we need to do
now is define the number of epochs and batch size and start training:

setup training parameters
BUFFER_SIZE = 1000
BATCH_SIZE = 64 # can +/- depending on GPU capacity
Shuffle and batch
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

Begin Training
for epoch in range(EPOCHS):

Chapter 7

[273]

 start_tm = time.time()

 train_loss.reset_states()
 train_accuracy.reset_states()

 # inp -> images, tar -> caption
 for (batch, (inp, tar)) in enumerate(dataset):
 train_step(inp, tar)

 if batch % 100 == 0:
 ts = datetime.datetime.now().strftime(
 "%d-%b-%Y (%H:%M:%S)")
 print('[{}] Epoch {} Batch {} Loss {:.6f} Accuracy'+\
 '{:.6f}'.format(ts, epoch + 1, batch,
 train_loss.result(),
 train_accuracy.result()))

 if (epoch + 1) % 2 == 0:
 ckpt_save_path = ckpt_manager.save()
 print('Saving checkpoint for epoch {} at {}'.format(
 epoch + 1,
 ckpt_save_path))

 print('Epoch {} Loss {:.6f} Accuracy {:.6f}'.format(epoch + 1,
 train_loss.result(),
 train_accuracy.result()))

 print('Time taken for 1 epoch: {} secs\n'.format(
 time.time() - start_tm))

Training can be started from the command line:

(tf24nlp) $ python caption-training.py

This training may take some time. An epoch of training takes about 11 minutes on
my GPU-enabled machine. If you contrast this to the summarization model, this
model is training extremely fast. Compared to the summarization model, which
contains 13 million parameters, it is much smaller and trains very fast. This speed
boost is due to the lack of recurrence.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[274]

A longer training time allows the model to learn better. However, this model
can give reasonable results in as few as 5-10 epochs of training. Once training is
complete, we can try the model on some images.

Generating captions
First, you need to be congratulated! You made it through a whirlwind
implementation of the Transformer. I am sure you must have noticed a number of
common building blocks that were used in previous chapters. Since the Transformer
model is complex, we left it for this chapter to look at other techniques like Bahdanau
attention, custom layers, custom rate schedules, custom training using teacher
forcing, and checkpointing so that we could cover a lot of ground quickly in this
chapter. You should consider all these building blocks an important part of your
toolkit when you try and solve an NLP problem.

Without further ado, let's try and caption some images. Again, we will use a Jupyter
notebook for inference so that we can quickly try out different images. All the code
for inference is in the image-captioning-inference.ipynb file.

The inference code needs to load the Subword Encoder, set up masking, instantiate
a ResNet50 model to extract features from test images, and generate captions a token
at a time until the end of the sequence or a maximum sequence length is reached.
Let's go over these steps one at a time.

Once we've done the appropriate imports and optionally initialized the GPU, we can
load the Subword Encoder that was saved when we pre-processed the data:

cap_tokenizer = tfds.features.text.SubwordTextEncoder.load_from_
file("captions")

We must now instantiate the Transformer model. This is an important step to ensure
the parameters are the same as the checkpoint ones:

Small Model
num_layers = 4

The state-of-the-art summarization models use the Transformer
architecture along with subword encoding. Given that you have
all the pieces of the Transformer, a good exercise to test your
understanding would be editing the VisualEncoder to process
text and rebuild the summarization model as a Transformer.
You will then be able to experience these speedup and accuracy
improvements.

Chapter 7

[275]

d_model = 128
dff = d_model * 4
num_heads = 8

target_vocab_size = cap_tokenizer.vocab_size # already includes
 # start/end tokens

dropout_rate = 0. # immaterial during inference

transformer = vt.Transformer(num_layers, d_model, num_heads, dff,
 target_vocab_size,
 pe_input=49, # 7x7 pixels
 pe_target=target_vocab_size,
 rate=dropout_rate
)

Restoring the model from the checkpoint requires the optimizer, even though we
are not training the model. So, we will reuse the custom scheduler from the training
code. As this code was provided previously, it has been omitted here. For the
checkpoint, I used a model that was trained for 40 epochs, but without positional
encoding in the Encoder:

checkpoint_path = "./checkpoints/train-small-model-nope-40ep"

ckpt = tf.train.Checkpoint(transformer=transformer,
 optimizer=optimizer)

ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path,
 max_to_keep=5)

if a checkpoint exists, restore the latest checkpoint.
if ckpt_manager.latest_checkpoint:
 ckpt.restore(ckpt_manager.latest_checkpoint)
 print ('Latest checkpoint restored!!')

Finally, we must set up the masking function for the generated captions. Note that
the look ahead masks don't really help during inference as future tokens have not
been generated yet:

Helper function for creating masks
def create_masks(inp, tar):
 # Encoder padding mask - This should just be 1's
 # input shape should be (batch_size, 49, 2048)

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[276]

 inp_seq = tf.ones([inp.shape[0], inp.shape[1]])

 enc_padding_mask = vt.create_padding_mask(inp_seq)

 # Used in the 2nd attention block in the Decoder.
 # This padding mask is used to mask the encoder outputs.
 dec_padding_mask = vt.create_padding_mask(inp_seq)

 # Used in the 1st attention block in the Decoder.
 # It is used to pad and mask future tokens in the input received by
 # the decoder.
 look_ahead_mask = vt.create_look_ahead_mask(tf.shape(tar)[1])
 dec_target_padding_mask = vt.create_padding_mask(tar)
 combined_mask = tf.maximum(dec_target_padding_mask,
 look_ahead_mask)

 return enc_padding_mask, combined_mask, dec_padding_mask

The main code for inference is in an evaluate() function. This method takes in
the image features generated by ResNet50 as input and seeds the output caption
sequence with the start token. Then, it runs in a loop to generate a token at a time
while updating the masks, until an end of sequence token is encountered or the
maximum length of the caption is reached:

def evaluate(inp_img, max_len=21):
 start_token = cap_tokenizer.encode("<s>")[0]
 end_token = cap_tokenizer.encode("</s>")[0]

 encoder_input = inp_img # batch of 1

 # start token for caption
 decoder_input = [start_token]
 output = tf.expand_dims(decoder_input, 0)
 for i in range(max_len):
 enc_padding_mask, combined_mask, dec_padding_mask = \
 create_masks(encoder_input, output)

 # predictions.shape == (batch_size, seq_len, vocab_size)
 predictions, attention_weights = transformer(
 encoder_input,
 output,
 False,

Chapter 7

[277]

 enc_padding_mask,
 combined_mask,
 dec_padding_mask)

 # select the last word from the seq_len dimension
 predictions = predictions[: ,-1:, :]

 predicted_id = tf.cast(tf.argmax(predictions, axis=-1),
 tf.int32)

 # return the result if predicted_id is equal to end token
 if predicted_id == end_token:
 return tf.squeeze(output, axis=0), attention_weights

 # concatenate the predicted_id to the output which is
 # given to the decoder as its input.
 output = tf.concat([output, predicted_id], axis=-1)

 return tf.squeeze(output, axis=0), attention_weights

A wrapper method is used to call the evaluation method and print out the caption:

def caption(image):
 end_token = cap_tokenizer.encode("</s>")[0]
 result, attention_weights = evaluate(image)

 predicted_sentence = cap_tokenizer.decode([i for i in result
 if i > end_token])
 print('Predicted Caption: {}'.format(predicted_sentence))

The only thing remaining now is instantiating a ResNet50 model to extract features
from image files on the fly:

rs50 = tf.keras.applications.ResNet50(
 include_top=False,
 weights="imagenet", # no pooling
 input_shape=(224, 224, 3)
)
new_input = rs50.input
hidden_layer = rs50.layers[-1].output

features_extract = tf.keras.Model(new_input, hidden_layer)

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[278]

It's the moment of truth, finally! Let's try out the model on an image. We will load
the image, pre-process it for ResNet50, and extract the features from it:

from keras
image = load_img("./beach-surf.jpg", target_size=(224, 224))
image = img_to_array(image)
image = np.expand_dims(image, axis=0) # batch of one
image = preprocess_input(image) # from resnet

eval_img = features_extract.predict(image)

caption(eval_img)

The following is the example image and its caption:

Figure 7.14: Generated caption - A man is riding a surfboard on a wave

This looks like an amazing caption for the given image! However, the overall
accuracy of the model is in the low 30s. There is a lot of scope for improvement
in the model. The next section talks about the state-of-the-art techniques for
image captioning and also proposes some simpler ideas that you can try and
play around with.

Note that you may see slightly different results. The reviewer for
this book got the result A man in a black shirt is riding a surfboard
while running this code. This is expected as slight differences
in the probabilities and the exact place where the model stops
training in the loss surface is not exact. We are operating in the
probabilistic realm here, so there may be slight differences. You
may have experienced similar differences in the text generation
and summarization code in the previous chapters as well.

Chapter 7

[279]

The following image shows some more examples of images and their captions.
The notebook contains several good, as well as some atrocious, examples of the
generated labels:

Figure 7.15: Examples of images and their generated captions

None of these images were in the training set. The caption quality goes down from
top to bottom. Our model understands close up, cake, groups of people, sandy
beaches, streets, and luggage, among other things. However, the bottom two
examples are concerning. They hint at some bias in the model. In both of the bottom
two images, the model is misinterpreting gender.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[280]

The images were deliberately chosen to show a woman in a business suit and women
playing basketball. In both cases, the model proposes men in the captions. When the
model was tried with a female tennis player's image, it guessed the right gender,
but it changed genders in an image from a women's soccer game. Bias in models is
a very important concern. In cases such as image captioning, this bias is immediately
apparent. In fact, over 600,000 images were removed from the ImageNet database
(https://bit.ly/3qk4FgN) in 2019 after bias was found in how it classifies and tags
people in its pictures. ResNet50 is pre-trained on ImageNet. However, in other
models, the bias may be harder to detect. Building fair deep learning models and
reducing bias in models are active areas of research in the ML community.

You may have noticed that we skipped running the model on an evaluation set and
on the test set. This was done for brevity, and also because those techniques were
covered previously.

A quick note on metrics for evaluating the quality of captions. We saw ROUGE
metrics in the previous chapters. ROUGE-L is still applicable in the case of image
captioning. You can use a mental model of the caption as a summary of an image,
as opposed to the summary of a paragraph in text summarization. There can be
more than one way to express the summary, and ROUGE-L tries to capture the
intent. There are two other commonly reported metrics:

• BLEU: This stands for Bilingual Evaluation Understudy and is the most
popular metric in machine translation. We can cast the image captioning
problem as a machine translation problem as well. It relies on n-grams for
computing the overlap of the predicted text with a number of reference texts
and combines the results into one score.

• CIDEr: This stands for Consensus-Based Image Description Evaluation
and was proposed in a paper by the same name in 2015. It tries to deal with
the difficulty of automatic evaluation when multiple captions could be
reasonable by combining TF-IDF and n-grams. The metric tries to compare
the captions generated by the model against multiple captions by human
annotators and tries to score them based on consensus.

Before wrapping up this chapter, let's spend a little time discussing ways to improve
performance and state-of-the-art models.

https://bit.ly/3qk4FgN

Chapter 7

[281]

Improving performance and state-of-the-
art models
Let's first talk through some simple experiments you can try to improve performance
before talking about the latest models. Recall our discussion on positional encodings
for inputs in the Encoder. Adding or removing positional encodings helps or
hinders performance. In the previous chapter, we implemented the beam search
algorithm for generating summaries. You can adapt the beam search code and see
an improvement in the results with beam search. Another avenue of exploration is
the ResNet50. We used a pre-trained network and did not fine-tune it further. It is
possible to build an architecture where ResNet is part of the architecture and not
a pre-processing step. Image files are loaded in, and features are extracted from
ResNet50 as part of the VisualEncoder. ResNet50 layers can be trained from the
get-go, or only in the last few iterations. This idea is implemented in the resnet-
finetuning.py file for you to try. Another line of thinking is using a different object
detection model than ResNet50 or using the output from a different layer. You can
try a more complex version of ResNet like ResNet152, or a different object detection
model like Detectron from Facebook or other models. It should be quite easy to use
a different model in our code as it is quite modular.

Recall that we just used the pixels from the image directly. This was based on a paper
published recently at CVPR titled Pixel-BERT. Most models use region proposals
extracted from images instead of the pixels directly. Object detection in an image
involves drawing a boundary around that object in the image. Another way to
perform the same task is to classify each pixel into an object or background. These
region proposals can be in the form of bounding boxes in an image. State-of-the-art
models use bounding boxes or region proposals as input.

When you use a different model for extracting image features, the
key will be to make sure tensor dimensions are flowing properly
through the Encoder. The Decoder should not require any changes.
Depending on the complexity of the model, you can either pre-
process and store the image features or compute them on the fly.

Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks

[282]

The second-biggest gain in image captioning comes from pre-training. Recall that
BERT and GPT are pre-trained on specific pre-training objectives. Models differ
based on whether the Encoder is pre-trained or both the Encoder and Decoder
are pre-trained. A common pre-training objective is a version of the BERT MLM
task. Recall that BERT inputs are structured as [CLS] I1 I2 … In [SEP] J1 J2 …
Jk [SEP], where some of the tokens from the input sequence are masked. This is
adapted for image captioning, where the image features and caption tokens in the
input are concatenated. Caption tokens are masked similar to how they are in the
BERT model, and the pre-training objective is for the model to predict the masked
token. After pre-training, the output of the CLS token can be used for classification or
fed to the Decoder to generate the caption. Care must be exercised to not pre-train on
the same dataset, like that for evaluation. An example of the setup could be using the
Visual Genome and Flickr30k datasets for pre-training and COCO for fine-tuning.

Image captioning is an active area of research. The research is just getting started on
multi-modal networks in general. Now, let's recap everything we've learned in this
chapter.

Summary
In the world of deep learning, specific architectures have been developed to
handle specific modalities. Convolutional Neural Networks (CNNs) have been
incredibly effective in processing images and is the standard architecture for CV
tasks. However, the world of research is moving toward the world of multi-modal
networks, which can take multiple types of inputs, like sounds, images, text, and
so on and perform cognition like humans. After reviewing multi-modal networks,
we dived into vision and language tasks as a specific focus. There are a number
of problems in this particular area, including image captioning, visual question
answering, VCR, and text-to-image, among others.

Building on our learnings from previous chapters on seq2seq architectures, custom
TensorFlow layers and models, custom learning schedules, and custom training
loops, we implemented a Transformer model from scratch. Transformers are state of
the art at the time of writing. We took a quick look at the basic concepts of CNNs to
help with the image side of things. We were able to build a model that may not be
able to generate a thousand words for a picture but is definitely able to generate a
human-readable caption. Its performance still needs improvement, and we discussed
a number of possibilities so that we can try to do so, including the latest techniques.

Chapter 7

[283]

It is apparent that deep models perform very well when they contain a lot of data.
The BERT and GPT models have shown the value of pre-training on massive
amounts of data. It is still very hard to get good quality labeled data for use in
pre-training or fine-tuning. In the world of NLP, we have a lot of text data, but
not enough labeled data. The next chapter focuses on weak supervision to build
classification models that can label data for pre-training or even fine-tuning tasks.

[285]

8
Weakly Supervised Learning

for Classification with Snorkel
Models such as BERT and GPT use massive amounts of unlabeled data along with an
unsupervised training objective, such as a masked language model (MLM) for BERT
or a next word prediction model for GPT, to learn the underlying structure of text.
A small amount of task-specific data is used for fine-tuning the pre-trained model
using transfer learning. Such models are quite large, with hundreds of millions of
parameters, and require massive datasets for pre-training and lots of computation
capacity for training and pre-training. Note that the critical problem being solved
is the lack of adequate training data. If there were enough domain-specific training
data, the gains from BERT-like pre-trained models would not be that big. In certain
domains such as medicine, the vocabulary used in task-specific data is typical for the
domain. Modest increases in training data can improve the quality of the model to
a large extent. However, hand labeling data is a tedious, resource-intensive, and
unscalable task for the amounts required for deep learning to be successful.

We discuss an alternative approach in this chapter, based on the concept of weak
supervision. Using the Snorkel library, we label tens of thousands of records in a
couple of hours and exceed the accuracy of the model developed in Chapter 3, Named
Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding using, BERT. This
chapter covers:

• An overview of weakly supervised learning
• An overview of the differences between generative and discriminative

models

Weakly Supervised Learning for Classification with Snorkel

[286]

• Building a baseline model with handcrafted features for labeling data
• Snorkel library basics
• Augmenting training data using Snorkel labeling functions at scale
• Training models using noisy machine-labeled data

It is essential to understand the concept of weakly supervised learning, so let's cover
that first.

Weak supervision
Deep learning models have delivered incredible results in the recent past. Deep
learning architectures obviated the need for feature engineering, given enough
training data. However, enormous amounts of data are needed for a deep learning
model to learn the underlying structure of the data. On the one hand, deep learning
reduced the manual effort required to handcraft features, but on the other, it
significantly increased the need for labeled data for a specific task. In most domains,
gathering a sizable set of high-quality, labeled data is an expensive and resource-
intensive task.

This problem can be solved in several different ways. In previous chapters,
we have seen the use of transfer learning to train a model on a large dataset before
fine-tuning the model for a specific task. Figure 8.1 shows this and other approaches
to acquiring labels:

Figure 8.1: Options for getting more labeled data

Chapter 8

[287]

Hand labeling the data is a common approach. Ideally, we have enough time and
money to hire subject matter experts (SMEs) to hand label every piece of data,
which is not practical. Consider labeling a tumor detection dataset and hiring
oncologists for the labeling task. Labeling data is probably way lower in priority for
an oncologist than treating tumor patients. In a previous company, we organized
pizza parties where we would feed people lunch for labels. In an hour, a person
could label about 100 records. Feeding 10 people monthly for a year resulted in
12,000 labeled records! This scheme was useful for ongoing maintenance of models,
where we would sample the records that were out of distribution, or that the model
had shallow confidence in. Thus, we adopted active learning, which determines the
records upon labeling, which would have the highest impact on the performance of
a classifier.

Another option is to hire labelers that are not experts but are more abundant and
cheaper. This is the approach taken by the Amazon Mechanical Turk service. There
are a large number of companies that provide labeling services. Since the labelers
are not experts, the same record is labeled by multiple people, and some mechanism,
like majority vote, is used to decide on the final label of the record. The charge
for labeling one record by one labeler may vary from a few cents to a few dollars
depending on the complexity of the steps needed for associating a label. The output
of such a process is a set of noisy labels that have high coverage, as long as your
budget allows for it. We still need to figure out the quality of the labels acquired to
see how these labels can be used in the eventual model.

Weak supervision tries to address the problem differently. What if, using heuristics,
an SME could hand label thousands of records in a fraction of the time? We will
work on the IMDb movie review dataset and try to predict the sentiment of the
review. We used the IMDb dataset in Chapter 4 , Transfer Learning with BERT, where
we explored transfer learning. It is appropriate to use the same example to show an
alternate technique to transfer learning.

Weak supervision techniques don't have to be used as substitutes
for transfer learning. Weak supervision techniques help create
larger domain-specific labeled datasets. In the absence of transfer
learning, a larger labeled dataset improves model performance
even with noisy labels coming from weak supervision. However,
the gain in model performance will be even more significant if
transfer learning and weak supervision are both used together.

Weakly Supervised Learning for Classification with Snorkel

[288]

An example of a simple heuristic function for labeling a review as having a positive
sentiment can be shown with the following pseudocode:

if movie.review has "amazing acting" in it:
then sentiment is positive

While this may seem like a trivial example for our use case, you will be surprised
how effective it can be. In a more complicated setting, an oncologist can provide
some of these heuristics and define a few of these functions, which can be called
labeling functions, to label some records. These functions may conflict or overlap
with each other, similar to crowdsourced labels. Another approach for getting labels
is through distant supervision. An external knowledge base, like Wikipedia, can be
used to label data records heuristically. In a Named-Entity Recognition (NER) use
case, a gazetteer is used to match entities to a list of known entities, as discussed
in Chapter 2, Understanding Sentiment in Natural Language with BiLSTMs. In relation
extraction between entities, for example, employee of or spouse of, the Wikipedia
page of an entity can be mined to extract the relation, and the data record can be
labeled. There are other methods of obtaining these labels, such as using thorough
knowledge of the underlying distributions generating the data.

For a given data set, there can be several sources for labels. Each crowdsourced
labeler is a source. Each heuristic function, like the "amazing acting" one shown
above, is also a source. The core problem in weak supervision is combining these
multiple sources to yield labels of sufficient quality for the final classifier. The key
points of the model are described in the next section.

Inner workings of weak supervision with
labeling functions
The idea that a few heuristic labeling functions with low coverage and less than
perfect accuracy can help improve the accuracy of a discriminative model sounds
fantastic. This section provides a high-level overview of how this works, before we
see it in practice on the IMDb sentiment analysis dataset.

We assume a binary classification problem for the sake of explanation though the
scheme works for any number of labels. The set of labels for binary classification is
{NEG, POS}. We have a set of unlabeled data points, X, with m samples.

The domain-specific model is being referred to as the classifier
in this chapter as the example we are taking is the binary
classification of movie review sentiment. However, the labels
generated can be used for a variety of domain-specific models.

Chapter 8

[289]

Note that we do not have access to the actual labels for these data points, but we
represent the generated labels using Y. Let's assume we have n labeling functions
LF1 to LFn, each of which produces a label. However, we add another label for weak
supervision – an abstain label. Each labeling function has the ability to choose
whether it wants to apply a label or abstain from labeling. This is a vital aspect
of the weak supervision approach. Hence, the set of labels produced by labeling
functions is expanded to {NEG, ABSTAIN, POS}.

In this setting, the objective is to train a generative model which models two things:

• The probability of a given labeling function abstaining for a given data point
• The probability of a given labeling function correctly assigning a label to a

data point

By applying all the labeling functions on all the data points, we generate an m × n
matrix of data points and their labels. The label generated by the heuristic LFj on the
data point Xi can be represented by:𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖 = 𝐻𝐻𝐿𝐿𝑖𝑖(𝑋𝑋𝑚𝑚)
The generative model is trying to learn from the agreements and disagreements
between the labeling functions to learn the parameters.

Generative versus Discriminative models

If we have a set of data, X, and labels, Y corresponding to the data,
then we can say that the discriminative model tries to capture the
conditional probability p(Y | X). A generative model captures the
joint probability p(X, Y). Generative models, as their name implies,
can generate new data points. We saw examples of generative
models in Chapter 5, Generating Text with RNNs and GPT-2, where
we generated news headlines. GANs (Generative Adversarial
Networks) and AutoEncoders are well-known generative models.
Discriminative models label data points in a given data set. It
does so by drawing a plane in the space of features that separates
the data points into different classes. Classifiers, like the IMDb
sentiment review prediction model, are typically discriminative
models.

As can be imagined, generative models have a much more
challenging task of learning the whole underlying structure of the
data.

Weakly Supervised Learning for Classification with Snorkel

[290]

The parameter weights, w, of the generative model Pw can be estimated via:

𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 lo𝑤 ∑ 𝑃𝑃𝑤𝑤(𝐻𝐻𝐻𝐻, 𝑌𝑌𝑌𝑌𝑌 𝑌 {𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁𝑁𝑁}𝑚𝑚
Not that the log marginal likelihood of the observed labels factors out the predicted
labels Y. Hence, this generative model works in an unsupervised fashion. Once the
parameters of the generative model are computed, we can predict the labels for the
data points as:

𝑌𝑌�̂�𝑖 = 𝑃𝑃�̂�𝑤(𝑌𝑌𝑖𝑖| 𝐿𝐿𝐿𝐿)

Where Yi represents labels based on labeling functions and 𝑌𝑌�̂�𝑖 represents the
predicted label from the generative model. These predicted labels can be fed to a
downstream discriminative model for classification.

These concepts were implemented in the Snorkel library. The authors of the Snorkel
library were the key contributors to introducing the Data Programming approach,
in a paper of the same name presented at the Neural Information Process Systems
conference in 2016. The Snorkel library was introduced formally in a paper titled
Snorkel: rapid training data creation with weak supervision by Ratner et al. in 2019. Apple
and Google have published papers using the Snorkel library, with papers on Overton
and Snorkel Drybell, respectively. These papers can provide an in-depth discussion
of the mathematical proof underlying the creation of training data with weak
supervision.

As complex as the underlying principles may be, using Snorkel for labeling data is
not difficult in practice. Let us get started by preparing the data set.

Using weakly supervised labels to
improve IMDb sentiment analysis
Sentiment analysis of movie reviews on the IMDb website is a standard task for
classification-type Natural Language Processing (NLP) models. We used this data in
Chapter 4 to demonstrate transfer learning with GloVe and VERT embeddings. The
IMDb data set has 25,000 training examples and 25,000 testing examples. The dataset
also includes 50,000 unlabeled reviews. In previous attempts, we ignored these
unsupervised data points. Adding more training data will improve the accuracy
of the model. However, hand labeling would be a time-consuming and expensive
exercise. We'll use Snorkel-powered labeling functions to see if the accuracy of the
predictions can be improved on the testing set.

Chapter 8

[291]

Pre-processing the IMDb dataset
Previously, we used the tensorflow_datasets package to download and manage
the dataset. However, we need lower-level access to the data to enable writing the
labeling functions. Hence, the first step is to download the dataset from the web.

The dataset is available in one compressed archive and can be downloaded and
expanded like so, as shown in snorkel-labeling.ipynb:

(tf24nlp) $ wget https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_
v1.tar.gz
(tf24nlp) $ tar xvzf aclImdb_v1.tar.gz

This expands the archive in the aclImdb directory. The training and unsupervised
data is in the train/ subdirectory while the testing data is in the test/ subdirectory.
There are additional files, but they can be ignored. Figure 8.2 below shows the
directory structure:

Figure 8.2: Directory structure for the IMDb data

Reviews are stored as individual text files inside the leaf directories. Each file
is named using the format <review_id>_<rating>.txt. Review identifiers are
sequentially numbered from 0 to 24999 for training and testing examples. For the
unsupervised data, the highest review number is 49999.

The code for this chapter is split across two files. The snorkel-
labeling.ipynb file contains the code for downloading data
and generating labels using Snorkel. The second file, imdb-with-
snorkel-labels.ipynb, contains the code that trains models with
and without the additional labeled data. If running the code, then it
is best to run all the code in the snorkel-labeling.ipynb file first
so that all the labeled data files are generated.

Weakly Supervised Learning for Classification with Snorkel

[292]

The rating is a number between 0 and 9 and has meaning only in the test and
training data. This number reflects the actual rating given to a certain review.
The sentiment of all reviews in the pos/ subdirectory is positive. The sentiment
of reviews in the neg/ subdirectory is negative. Ratings of 0 to 4 are considered
negative, while ratings between 5 and 9 inclusive are considered positive. In this
particular example, we do not use the actual rating and only consider the overall
sentiment.

We load the data into pandas DataFrames for ease of processing. A convenience
function is defined to load reviews from a subdirectory into a DataFrame:

def load_reviews(path, columns=["filename", 'review']):
 assert len(columns) == 2
 l = list()
 for filename in glob.glob(path):
 # print(filename)
 with open(filename, 'r') as f:
 review = f.read()
 l.append((filename, review))
 return pd.DataFrame(l, columns=columns)

The method above loads the data into two columns – one for the name of the file and
one for the text of the file. Using this method, the unsupervised dataset is loaded:

unsup_df = load_reviews("./aclImdb/train/unsup/*.txt")
unsup_df.describe()

filename review

count 50000 50000
unique 50000 49507

top ./aclImdb/train/
unsup/24211_0.txt

Am not from America,
I usually watch this
show...

freq 1 5

A slightly different method is used for the training and testing datasets:

Chapter 8

[293]

def load_labelled_data(path, neg='/neg/',
 pos='/pos/', shuffle=True):
 neg_df = load_reviews(path + neg + "*.txt")
 pos_df = load_reviews(path + pos + "*.txt")
 neg_df['sentiment'] = 0
 pos_df['sentiment'] = 1
 df = pd.concat([neg_df, pos_df], axis=0)
 if shuffle:
 df = df.sample(frac=1, random_state=42)
 return df

This method returns three columns – the file name, the text of the review, and a
sentiment label. The sentiment label is 0 if the sentiment is negative and 1 if the
sentiment is positive, as determined by the directory the review is found in.

The training dataset can now be loaded in like so:

train_df = load_labelled_data("./aclImdb/train/")
train_df.head()

filename review sentiment

6868
./aclImdb/
train//
neg/6326_4.txt

If you're in the mood
for some dopey light
ent...

0

11516
./aclImdb/
train//
pos/11177_8.txt

*****Spoilers
herein*****

What real...

1

9668
./aclImdb/
train//
neg/2172_2.txt

Bottom of the barrel,
unimaginative, and
pract...

0

1140
./aclImdb/
train//
pos/2065_7.txt

Fearful Symmetry is a
pleasant episode with
a ...

1

1518
./aclImdb/
train//
pos/7147_10.txt

I found the storyline
in this movie to be
very...

1

Weakly Supervised Learning for Classification with Snorkel

[294]

The testing data can be loaded using the same convenience function by passing a
different starting data directory.

test_df = load_labelled_data("./aclImdb/test/")

Once the reviews are loaded in, the next step is to create a tokenizer.

Learning a subword tokenizer
A subword tokenizer can be learned using the tensorflow_datasets package. Note
that we want to pass all the training and unsupervised reviews while learning this
tokenizer.

text = unsup_df.review.to_list() + train_df.review.to_list()

This step creates a list of 75,000 items. If the text of the reviews is inspected, there are
some HTML tags in the reviews as they were scraped from the IMDb website. We
use the Beautiful Soup package to clean these tags.

txt = [BeautifulSoup(x).text for x in text]

Then, we learn the vocabulary with 8,266 entries.

encoder = tfds.features.text.SubwordTextEncoder.\
 build_from_corpus(txt, target_vocab_size=2**13)
encoder.save_to_file("imdb")

While we don't use the raw scores for the sentiment analysis, it is
a good exercise for you to try predicting the score instead of the
sentiment on your own. To help with processing the score from the
raw files, the following code can be used, which extracts the scores
from the file names:

def fn_to_score(f):
 scr = f.split("/")[-1] # get file name
 scr = scr.split(".")[0] # remove extension
 scr = int (scr.split("_")[-1]) #the score
 return scr
train_df['score'] = train_df.filename.apply(fn_to_
score)

This adds a new score column to the DataFrame, which can be used
as a starting point.

Chapter 8

[295]

This encoder is saved to disk. Learning the vocabulary can be a time-consuming task
and needs to be done only once. Saving it to disk saves effort on subsequent runs of
the code.

Before we jump into a model using data labeled with Snorkel, let us define a baseline
model so that we can compare the performance of the models before and after the
addition of weakly supervised labels.

A BiLSTM baseline model
To understand the impact of additional labeled data on model performance, we
need a point of comparison. So, we set up a BiLSTM model that we have seen
previously as the baseline. There are a few steps of data processing, like tokenizing,
vectorization, and padding/truncating the lengths of the data. Since this is code
we have seen before in Chapter 3 and 4, it is replicated here for completeness with
concise descriptions.

Snorkel is effective when the training data size is 10x to 50x the original. IMDb
provides 50,000 unlabeled examples. If all these were labeled, then the training
data would be 3x the original, which is not enough to show the value of Snorkel.
Consequently, we simulate an ~18x ratio by limiting the training data to only 2,000
records. The rest of the training records are treated as unlabeled data, and Snorkel
is used to supply noisy labels. To prevent the leakage of labels, we split the training
data and store two separate DataFrames. The code for this split can be found in the
snorkel-labeling.ipynb notebook. The code fragment used to generate the split is
shown below:

from sklearn.model_selection import train_test_split

Randomly split training into 2k / 23k sets
train_2k, train_23k = train_test_split(train_df, test_size=23000,
 random_state=42,
 stratify=train_df.sentiment)
train_2k.to_pickle("train_2k.df")

A pre-trained subword encoder is supplied. It can be found in the
GitHub folder corresponding to this chapter and is titled imdb.
subwords in case you want to skip these steps.

Weakly Supervised Learning for Classification with Snorkel

[296]

A stratified split is used to ensure an equal number of positive and negative labels
are sampled. A DataFrame with 2,000 records is saved. This DataFrame is used for
training the baseline. Note that this may look like a contrived example but remember
that the key feature of text data is that there is a lot of it; however, labels are scarce.
Often the main barrier to labeling is the amount of effort required to label more data.
Before we see how to label large amounts of data, let's complete training the baseline
model for comparison.

Tokenization and vectorizing data
We tokenize all reviews in the training set and truncate/pad to a maximum of
150 tokens. Reviews are passed through Beautiful Soup to remove any HTML
markup. All the code for this section can be found in the section titled Training Data
Vectorization in the imdb-with-snorkel-labels.ipynb file. Only the specific pieces of
code are shown here for brevity:

we need a sample of 2000 reviews for training
num_recs = 2000
train_small = pd.read_pickle("train_2k.df")
we dont need the snorkel column
train_small = train_small.drop(columns=['snorkel'])

remove markup
cleaned_reviews = train_small.review.apply(lambda x: BeautifulSoup(x).
text)
convert pandas DF in to tf.Dataset
train = tf.data.Dataset.from_tensor_slices(
 (cleaned_reviews.values,
 train_small.sentiment.values))

Tokenization and vectorization are done through helper functions and applied over
the dataset:

transformation functions to be used with the dataset
from tensorflow.keras. pre-processing import sequence

def encode_pad_transform(sample):
 encoded = imdb_encoder.encode(sample.numpy())
 pad = sequence.pad_sequences([encoded], padding='post', maxlen=150)
 return np.array(pad[0], dtype=np.int64)

def encode_tf_fn(sample, label):

Chapter 8

[297]

 encoded = tf.py_function(encode_pad_transform,
 inp=[sample],
 Tout=(tf.int64))
 encoded.set_shape([None])
 label.set_shape([])
 return encoded, label

encoded_train = train.map(encode_tf_fn,
 num_parallel_calls=tf.data.experimental.AUTOTUNE)

The test data is also processed similarly:

remove markup
cleaned_reviews = test_df.review.apply(
lambda x: BeautifulSoup(x).text)
convert pandas DF in to tf.Dataset
test = tf.data.Dataset.from_tensor_slices((cleaned_reviews.values,
 test_df.sentiment.values))
encoded_test = test.map(encode_tf_fn,
 num_parallel_calls=tf.data.experimental.AUTOTUNE)

Once the data is ready, the next step is setting up the model.

Training using a BiLSTM model
The code for creating and training the baseline is in the Baseline Model section of the
notebook. A modestly sized model is created as the focus is on showing the gains
from unsupervised labeling as opposed to model complexity. Plus, a smaller model
trains faster and allows more iteration:

Length of the vocabulary
vocab_size = imdb_encoder.vocab_size

Number of RNN units
rnn_units = 64

Embedding size
embedding_dim = 64

#batch size
BATCH_SIZE=100

Weakly Supervised Learning for Classification with Snorkel

[298]

The model uses a small 64-dimensional embedding and RNN units. The function for
creating the model is below:

from tensorflow.keras.layers import Embedding, LSTM, \
 Bidirectional, Dense,\
 Dropout

dropout=0.5

def build_model_bilstm(vocab_size, embedding_dim, rnn_units, batch_
size, dropout=0.):
 model = tf.keras.Sequential([
 Embedding(vocab_size, embedding_dim, mask_zero=True,
 batch_input_shape=[batch_size, None]),
 Bidirectional(LSTM(rnn_units, return_sequences=True)),
 Bidirectional(tf.keras.layers.LSTM(rnn_units)),
 Dense(rnn_units, activation='relu'),
 Dropout(dropout),
 Dense(1, activation='sigmoid')
])
 return model

A modest amount of dropout is added to have the model generalize better. This
model has about 700K parameters.

bilstm = build_model_bilstm(
 vocab_size = vocab_size,
 embedding_dim=embedding_dim,
 rnn_units=rnn_units,
 batch_size=BATCH_SIZE)

bilstm.summary()

Model: "sequential"

Layer (type) Output Shape Param #
===
embedding_4 (Embedding) (100, None, 64) 529024

bidirectional_8 (Bidirection (100, None, 128) 66048

bidirectional_9 (Bidirection (100, 128) 98816

Chapter 8

[299]

dense_6 (Dense) (100, 64) 8256

dropout_6 (Dropout) (100, 64) 0

dense_7 (Dense) (100, 1) 65
===
Total params: 702,209
Trainable params: 702,209
Non-trainable params: 0

The model is compiled with a binary cross-entropy loss function and the ADAM
optimizer. Accuracy, precision, and recall metrics are tracked. This model is trained
for 15 epochs and it can be seen that the model is saturated:

bilstm.compile(loss='binary_crossentropy',
 optimizer='adam',
 metrics=['accuracy', 'Precision', 'Recall'])

encoded_train_batched = encoded_train.shuffle(num_recs, seed=42).\
 batch(BATCH_SIZE)

bilstm.fit(encoded_train_batched, epochs=15)

Train for 15 steps
Epoch 1/15
20/20 [==============================] - 16s 793ms/step - loss: 0.6943
- accuracy: 0.4795 - Precision: 0.4833 - Recall: 0.5940
…
Epoch 15/15
20/20 [==============================] - 4s 206ms/step - loss: 0.0044 -
accuracy: 0.9995 - Precision: 0.9990 - Recall: 1.0000

As we can see, the model is overfitting to the small training set even after dropout
regularization.

Weakly Supervised Learning for Classification with Snorkel

[300]

Let us see how this model does on the test data:

bilstm.evaluate(encoded_test.batch(BATCH_SIZE))

250/250 [==============================] - 33s 134ms/step - loss:
2.1440 - accuracy: 0.7591 - precision: 0.7455 - recall: 0.7866

The model has 75.9% accuracy. The precision of the model is higher than the recall.
Now that we have a baseline, we can see if weakly supervised labeling helps
improve model performance. That is the focus of the next section.

Weakly supervised labeling with Snorkel
The IMDb dataset has 50,000 unlabeled reviews. This is double the size of the
training set, which has 25,000 labeled reviews. As explained in the previous
section, we have reserved 23,000 records from the training data in addition to the
unsupervised set for weakly supervised labeling. Labeling records in Snorkel is
performed via labeling functions. Each labeling function can return one of the
possible labels of abstain from labeling. Since this is a binary classification problem,
corresponding constants are defined. A sample labeling function is also shown. All
the code for this section can be found in the notebook titled snorkel-labeling.ipynb:

POSITIVE = 1
NEGATIVE = 0
ABSTAIN = -1

from snorkel.labeling.lf import labeling_function

Batch-and-Shuffle or Shuffle-and-Batch

Note the second line of code in the fragment above, which shuffles
and batches the data. The data is shuffled and then batched.
Shuffling data between epochs is a form of regularization and
enables the model to learn better. Shuffling before batching is a
key point to remember in TensorFlow. If data is batched before
shuffling, then only the order of the batches will be moved
around when being fed to the model. However, the composition
of each batch remains the same across epochs. By shuffling before
batching, we ensure each batch looks different in each epoch.
You are encouraged to train with and without shuffled data.
While shuffling increases training time slightly, it gives better
performance on the test set.

Chapter 8

[301]

@labeling_function()
def time_waste(x):
 if not isinstance(x.review, str):
 return ABSTAIN
 ex1 = "time waste"
 ex2 = "waste of time"
 if ex1 in x.review.lower() or ex2 in x.review.lower():
 return NEGATIVE
 return ABSTAIN

Labeling functions are annotated with a labeling_function() provided Snorkel.
Note that the Snorkel library needs to be installed. Detailed instructions can be found
on GitHub in this chapter's subdirectory. In short, Snorkel can be installed by:

(tf24nlp) $ pip install snorkel==0.9.5

Any warnings you see can be safely ignored as the library uses different versions
of components such as TensorBoard. To be doubly sure, you can create a separate
conda/virtual environment for Snorkel and its dependencies.

Coming back to the labeling function, the function above is expecting a row from
a DataFrame. It is expecting that the row has a text "review" column. This function
tries to see if the review states that the movie or show was a waste of time. If so, it
returns a negative label; else, it abstains from labeling the row of data. Note that
we are trying to label thousands of rows of data in a short time using these labeling
functions. The best way to do this is to print some random samples of positive and
negative reviews and use some words from the text as labeling functions. The central
idea here is to create a number of functions that have good accuracy for a subset of
the rows. Let's examine some negative reviews in the training set to see what labeling
functions can be created:

neg = train_df[train_df.sentiment==0].sample(n=5, random_state=42)
for x in neg.review.tolist():
 print(x)

This chapter would not have been possible without the support
of the Snorkel.ai team. Frederic Sala and Alexander Ratner from
Snorkel.ai were instrumental in providing guidance and the script
for hyperparameter tuning to get the most out of Snorkel.

Weakly Supervised Learning for Classification with Snorkel

[302]

One of the reviews starts off as "A very cheesy and dull road movie," which gives an
idea for a labeling function:

@labeling_function()
def cheesy_dull(x):
 if not isinstance(x.review, str):
 return ABSTAIN
 ex1 = "cheesy"
 ex2 = "dull"
 if ex1 in x.review.lower() or ex2 in x.review.lower():
 return NEGATIVE
 return ABSTAIN

There are a number of different words that occur in negative reviews. Here is a
subset of negative labeling functions. The full list is in the notebook:

@labeling_function()
def garbage(x):
 if not isinstance(x.review, str):
 return ABSTAIN
 ex1 = "garbage"
 if ex1 in x.review.lower():
 return NEGATIVE
 return ABSTAIN

@labeling_function()
def terrible(x):
 if not isinstance(x.review, str):
 return ABSTAIN
 ex1 = "terrible"
 if ex1 in x.review.lower():
 return NEGATIVE
 return ABSTAIN

@labeling_function()
def unsatisfied(x):
 if not isinstance(x.review, str):
 return ABSTAIN
 ex1 = "unsatisf" # unsatisfactory, unsatisfied
 if ex1 in x.review.lower():
 return NEGATIVE
 return ABSTAIN

Chapter 8

[303]

All the negative labeling functions are added to a list:

neg_lfs = [atrocious, terrible, piece_of, woefully_miscast,
 bad_acting, cheesy_dull, disappoint, crap, garbage,
 unsatisfied, ridiculous]

Examining a sample of negative reviews can give us many ideas. Typically, a small
amount of effort from a domain expert can yield multiple labeling functions that
can be implemented easily. If you have ever watched a movie, you are an expert as
far as this dataset is concerned. Examining a sample of positive reviews results in
more labeling functions. Here is a sample of labeling functions that identify positive
sentiment in reviews:

import re

@labeling_function()
def classic(x):
 if not isinstance(x.review, str):
 return ABSTAIN
 ex1 = "a classic"
 if ex1 in x.review.lower():
 return POSITIVE
 return ABSTAIN

@labeling_function()
def great_direction(x):
 if not isinstance(x.review, str):
 return ABSTAIN
 ex1 = "(great|awesome|amazing|fantastic|excellent) direction"
 if re.search(ex1, x.review.lower()):
 return POSITIVE
 return ABSTAIN

@labeling_function()
def great_story(x):
 if not isinstance(x.review, str):
 return ABSTAIN
 ex1 = "(great|awesome|amazing|fantastic|excellent|dramatic)
(script|story)"
 if re.search(ex1, x.review.lower()):
 return POSITIVE
 return ABSTAIN

Weakly Supervised Learning for Classification with Snorkel

[304]

All of the positive labeling functions can be seen in the notebook. Similar to the
negative functions, a list of the positive labeling functions is defined:

pos_lfs = [classic, must_watch, oscar, love, great_entertainment,
 very_entertaining, amazing, brilliant, fantastic,
 awesome, great_acting, great_direction, great_story,
 favourite]

set of labeling functions
lfs = neg_lfs + pos_lfs

The development of labeling is an iterative process. Don't be intimidated by the
number of labeling functions shown here. You can see that they are quite simple, for
the most part. To help you understand the amount of effort, I spent a total of 3 hours
on creating and testing labeling functions:

The process involved looking at some samples and creating the labeling functions,
followed by evaluating the results on a subset of the data. Checking out examples of
where the labeling functions disagreed with the labeled examples was very useful in
making functions narrower or adding compensating functions. So, let's see how we
can evaluate these functions so we can iterate on them.

Iterating on labeling functions
Once a set of labeling functions are defined, they can be applied to a pandas
DataFrame, and a model can be trained to compute the weights assigned to various
labeling functions while computing the labels. Snorkel provides functions that help
with these tasks. First, let us apply these labeling functions to compute a matrix. This
matrix has as many columns as there are labeling functions for every row of data:

let's take a sample of 100 records from training set
lf_train = train_df.sample(n=1000, random_state=42)

from snorkel.labeling.model import LabelModel
from snorkel.labeling import PandasLFApplier

Note that the notebook contains a large number of simple labeling
functions, of which only a subset are shown here. Please refer to
the actual code for all the labeling functions.

Chapter 8

[305]

Apply the LFs to the unlabeled training data
applier = PandasLFApplier(lfs)
L_train = applier.apply(lf_train)

In the code above, a sample of 1000 rows of data from the training data is extracted.
Then, the list of all labeling functions created previously is passed to Snorkel and
applied to this sample of training data. If we created 25 labeling functions, the shape
of L_train would be (1000, 25). Each column represents the output of a labeling
function. A generative model can now be trained on this label matrix:

Train the label model and compute the training labels
label_model = LabelModel(cardinality=2, verbose=True)
label_model.fit(L_train, n_epochs=500, log_freq=50, seed=123)
lf_train["snorkel"] = label_model.predict(L=L_train,
 tie_break_policy="abstain")

A LabelModel instance is created with a parameter specifying how many labels are in
the actual model. This model is then trained, and labels are predicted for the subset
of data. These predicted labels are added as a new column to the DataFrame. Note
the tie_break_policy parameter being passed into the predict() method. In case
the model has conflicting outputs from labeling functions, and they have the same
scores from the model, this parameter specifies how the conflict should be resolved.
Here, we instruct the model to abstain from labeling the records in case of a conflict.
Another possible setting is "random," where the model will randomly assign the
output from one of the tied labeling functions. The main difference between these
two options, in the context of the problem at hand, is precision. By asking the model
to abstain from labeling, we get higher precision results, but fewer records will be
labeled. Randomly choosing one of the functions that were tied results in higher
coverage, but presumably at lower quality. This hypothesis can be tested by training
the same model with the outputs of the two options separately. You are encouraged
to try these options and see the results for yourself.

Since the abstain policy was chosen, all of the 1000 rows may not have been labeled:

pred_lfs = lf_train[lf_train.snorkel > -1]
pred_lfs.describe()

sentiment score snorkel

count 598.000000 598.000000 598.000000

Weakly Supervised Learning for Classification with Snorkel

[306]

Out of 1000 records, only 458 were labeled. Let's check how many of these were
labeled incorrectly:

pred_mistake = pred_lfs[pred_lfs.sentiment != pred_lfs.snorkel]
pred_mistake.describe()

sentiment score snorkel

count 164.000000 164.000000 164.000000

Snorkel, armed with our labeling functions, labeled 598 records, out of which 434
labels were correct and 164 records were incorrectly labeled. The label model has
an accuracy of ~72.6%. To get inspiration for more labeling functions, you should
inspect a few of the rows where the label model produced the wrong results and
update or add labeling functions. As mentioned above, a total of approximately
3 hours was spent on iterating and creating labeling functions to get a total of 25
functions. To get more out of Snorkel, we need to increase the amount of training
data. The objective is to develop a method that gets us many labels quickly, without
a lot of manual effort. One technique that can be used in this specific case is training
a simple Naïve-Bayes model to get words that are highly correlated with positive
or negative labels. This is the focus of the next section. Naïve-Bayes (NB) is a basic
technique covered in many basic NLP books.

Naïve-Bayes model for finding keywords
Building an NB model on this dataset takes under an hour and has the potential to
significantly increase the quality and coverage of the labeling functions. The core
model code for the NB model can be found in the spam-inspired-technique-naive-
bayes.ipynb notebook. Note that these explorations are aside from the main labeling
code, and this section can be skipped if desired, as the learnings from this section
are applied to construct better labeling functions outlined in the snorkel-labeling.
ipynb notebook.

The main flow of the NB-based exploration is to load the reviews, remove stop
words, take the top 2,000 words to construct a simple vectorization scheme, and
train an NB model. Since data loading is the same as covered in previous sections,
the details are skipped in this section.

Chapter 8

[307]

Word clouds help get an aggregate understanding of the positive and negative
review text. Note that counters are required for the top-2000 word vectorization
scheme. A convenience function that cleans HTML text along with removing stop
words and tokenizing the rest into a list is defined as follows:

en_stopw = set(stopwords.words("english"))

def get_words(review, words, stopw=en_stopw):
 review = BeautifulSoup(review).text # remove HTML tags
 review = re.sub('[^A-Za-z]', ' ', review) # remove non letters
 review = review.lower()

 tok_rev = wt(review)
 rev_word = [word for word in tok_rev if word not in stopw]
 words += rev_word

Then, the positive reviews are separated and a word cloud is generated for
visualization purposes:

pos_rev = train_df[train_df.sentiment == 1]
pos_words = []
pos_rev.review.apply(get_words, args=(pos_words,))
from wordcloud import WordCloud
import matplotlib.pyplot as plt

pos_words_sen = " ".join(pos_words)
pos_wc = WordCloud(width = 600,height = 512).generate(pos_words_sen)
plt.figure(figsize = (12, 8), facecolor = 'k')
plt.imshow(pos_wc)
plt.axis('off')
plt.tight_layout(pad = 0)
plt.show()

This section uses the NLTK and wordcloud Python packages.
NLTK should already be installed as we have used it in Chapter 1,
Essentials of NLP. wordcloud can be installed with:

(tf24nlp) $ pip install wordcloud==1.8

Weakly Supervised Learning for Classification with Snorkel

[308]

The output of the preceding code is shown in Figure 8.3:

Figure 8.3: Positive reviews word cloud

Chapter 8

[309]

It is not surprising that movie and film are the biggest words. However, there are a
number of other suggestions for keywords that can be seen here. Similarly, a word
cloud for the negative reviews can be generated, as shown in Figure 8.4:

Figure 8.4: Negative reviews word cloud

Weakly Supervised Learning for Classification with Snorkel

[310]

These visualizations are interesting; however, a clearer picture will emerge after
training the model. Only the top 2,000 words are needed for training the model:

from collections import Counter
pos = Counter(pos_words)
neg = Counter(neg_words)
let's try to build a naive bayes model for sentiment classification
tot_words = pos + neg
tot_words.most_common(10)

[('movie', 44031),
 ('film', 40147),
 ('one', 26788),
 ('like', 20274),
 ('good', 15140),
 ('time', 12724),
 ('even', 12646),
 ('would', 12436),
 ('story', 11983),
 ('really', 11736)]

Combined counters show the top 10 most frequently appearing words in all reviews.
These are extracted into a list:

top2k = [x for (x, y) in tot_words.most_common(2000)]

The vectorization of each review is fairly simple – each of the 2000 words becomes a
column for a given review. If the word represented by the column is present in the
review, the value of the column is marked as 1 for that review, or 0 otherwise. So,
each review is represented by a sequence of 0s and 1s representing which of the top
2000 words the review contained. The code below shows this transformation:

def featurize(review, topk=top2k, stopw=en_stopw):
 review = BeautifulSoup(review).text # remove HTML tags
 review = re.sub('[^A-Za-z]', ' ', review) # remove nonletters
 review = review.lower()

 tok_rev = wt(review)
 rev_word = [word for word in tok_rev if word not in stopw]
 features = {}
 for word in top2k:
 features['contains({})'.format(word)] = (word in rev_word)
 return features

Chapter 8

[311]

train = [(featurize(rev), senti) for (rev, senti) in
 zip(train_df.review, train_df.sentiment)]

Training the model is quite trivial. Note that the Bernoulli NB model is used here
as each word is represented according to its presence or absence in the review.
Alternatively, the frequency of the word in the review could also be used. If
the frequency of the word is used while vectorizing the review above, then the
multinomial form of NB should be used.

NLTK also provides a way to inspect the most informative features:

classifier = nltk.NaiveBayesClassifier.train(train)
0: negative sentiment, 1: positive sentiment
classifier.show_most_informative_features(20)

Most Informative Features
 contains(unfunny) = True 0 : 1 = 14.1 : 1.0
 contains(waste) = True 0 : 1 = 12.7 : 1.0
 contains(pointless) = True 0 : 1 = 10.4 : 1.0
 contains(redeeming) = True 0 : 1 = 10.1 : 1.0
 contains(laughable) = True 0 : 1 = 9.3 : 1.0
 contains(worst) = True 0 : 1 = 9.0 : 1.0
 contains(awful) = True 0 : 1 = 8.4 : 1.0
 contains(poorly) = True 0 : 1 = 8.2 : 1.0
 contains(wonderfully) = True 1 : 0 = 7.6 : 1.0
 contains(sucks) = True 0 : 1 = 7.0 : 1.0
 contains(lame) = True 0 : 1 = 6.9 : 1.0
 contains(pathetic) = True 0 : 1 = 6.4 : 1.0
 contains(delightful) = True 1 : 0 = 6.0 : 1.0
 contains(wasted) = True 0 : 1 = 6.0 : 1.0
 contains(crap) = True 0 : 1 = 5.9 : 1.0
 contains(beautifully) = True 1 : 0 = 5.8 : 1.0
 contains(dreadful) = True 0 : 1 = 5.7 : 1.0
 contains(mess) = True 0 : 1 = 5.6 : 1.0
 contains(horrible) = True 0 : 1 = 5.5 : 1.0
 contains(superb) = True 1 : 0 = 5.4 : 1.0
 contains(garbage) = True 0 : 1 = 5.3 : 1.0
 contains(badly) = True 0 : 1 = 5.3 : 1.0
 contains(wooden) = True 0 : 1 = 5.2 : 1.0
 contains(touching) = True 1 : 0 = 5.1 : 1.0
 contains(terrible) = True 0 : 1 = 5.1 : 1.0

Weakly Supervised Learning for Classification with Snorkel

[312]

This whole exercise was done to find which words are most useful in predicting
negative and positive reviews. The table above shows the words and the likelihood
ratios. Taking the first row of the output for the word unfunny as an example, the
model is saying that reviews containing unfunny are negative 14.1 times more often
than they are positive. The labeling functions are updated using a number of these
keywords.

Upon analyzing the labels assigned by the labeling functions in snorkel-labeling.
ipynb, it can be seen that more negative reviews are being labeled as compared to
positive reviews. Consequently, the labeling functions use a larger list of words for
positive labels as compared to negative labels. Note that imbalanced datasets have
issues with overall training accuracy and specifically with recall. The following
code fragment shows augmented labeling functions using the keywords discovered
through NB above:

Some positive high prob words - arbitrary cutoff of 4.5x
'''
 contains(wonderfully) = True 1 : 0 = 7.6 : 1.0
 contains(delightful) = True 1 : 0 = 6.0 : 1.0
 contains(beautifully) = True 1 : 0 = 5.8 : 1.0
 contains(superb) = True 1 : 0 = 5.4 : 1.0
 contains(touching) = True 1 : 0 = 5.1 : 1.0
 contains(brilliantly) = True 1 : 0 = 4.7 : 1.0
 contains(friendship) = True 1 : 0 = 4.6 : 1.0
 contains(finest) = True 1 : 0 = 4.5 : 1.0
 contains(terrific) = True 1 : 0 = 4.5 : 1.0
 contains(gem) = True 1 : 0 = 4.5 : 1.0
 contains(magnificent) = True 1 : 0 = 4.5 : 1.0
'''

wonderfully_kw = make_keyword_lf(keywords=["wonderfully"],
label=POSITIVE)
delightful_kw = make_keyword_lf(keywords=["delightful"],
label=POSITIVE)
superb_kw = make_keyword_lf(keywords=["superb"], label=POSITIVE)

pos_words = ["beautifully", "touching", "brilliantly",
"friendship", "finest", "terrific", "magnificent"]
pos_nb_kw = make_keyword_lf(keywords=pos_words, label=POSITIVE)

@labeling_function()
def superlatives(x):
 if not isinstance(x.review, str):

Chapter 8

[313]

 return ABSTAIN
 ex1 = ["best", "super", "great","awesome","amaz", "fantastic",
 "excellent", "favorite"]
 pos_words = ["beautifully", "touching", "brilliantly",
 "friendship", "finest", "terrific", "magnificent",
 "wonderfully", "delightful"]
 ex1 += pos_words
 rv = x.review.lower()
 counts = [rv.count(x) for x in ex1]
 if sum(counts) >= 3:
 return POSITIVE
 return ABSTAIN

Since keyword-based labeling functions are quite common, Snorkel provides an easy
way to define such functions. The following code fragment uses two programmatic
ways of converting a list of words into a set of labeling functions:

Utilities for defining keywords based functions
def keyword_lookup(x, keywords, label):
 if any(word in x.review.lower() for word in keywords):
 return label
 return ABSTAIN

def make_keyword_lf(keywords, label):
 return LabelingFunction(
 name=f"keyword_{keywords[0]}",
 f=keyword_lookup,
 resources=dict(keywords=keywords, label=label),
)

The first function does the simple matching and returns the specific label, or it
abstains. Check out the snorkel-labeling.ipynb file for the full list of labeling
functions that were iteratively developed. All in all, I spent approximately 12-14
hours on labeling functions and investigations.

Before we try to train the model using this data, let us evaluate the accuracy of this
model on the entire training data set.

Weakly Supervised Learning for Classification with Snorkel

[314]

Evaluating weakly supervised labels on the
training set
We apply the labeling functions and train a model on the entire training dataset just
to evaluate the quality of this model:

L_train_full = applier.apply(train_df)
label_model = LabelModel(cardinality=2, verbose=True)
label_model.fit(L_train_full, n_epochs=500, log_freq=50, seed=123)

metrics = label_model.score(L=L_train_full, Y=train_df.sentiment,
 tie_break_policy="abstain",
 metrics=["accuracy", "coverage",
 "precision",
 "recall", "f1"])
print("All Metrics: ", metrics)

Label Model Accuracy: 78.5%
All Metrics: {'accuracy': 0.7854110013835218, 'coverage': 0.83844,
'precision': 0.8564883605745418, 'recall': 0.6744344773790951, 'f1':
0.7546367008509709}

Our set of labeling functions covers 83.4% of the 25,000 training records, with 85.6%
correct labels. Snorkel provides the ability to analyze the performance of each
labeling function:

from snorkel.labeling import LFAnalysis

LFAnalysis(L=L_train_full, lfs=lfs).lf_summary()

 j Polarity Coverage Overlaps Conflicts
atrocious 0 [0] 0.00816 0.00768 0.00328
terrible 1 [0] 0.05356 0.05356 0.02696
piece_of 2 [0] 0.00084 0.00080 0.00048
woefully_miscast 3 [0] 0.00848 0.00764 0.00504
bad_acting 4 [0] 0.08748 0.08348 0.04304
cheesy_dull 5 [0] 0.05136 0.04932 0.02760
bad 11 [0] 0.03624 0.03624 0.01744
keyword_waste 12 [0] 0.07336 0.06848 0.03232
keyword_pointless 13 [0] 0.01956 0.01836 0.00972
keyword_redeeming 14 [0] 0.01264 0.01192 0.00556
keyword_laughable 15 [0] 0.41036 0.37368 0.20884
negatives 16 [0] 0.35300 0.34720 0.17396

Chapter 8

[315]

classic 17 [1] 0.01684 0.01476 0.00856
must_watch 18 [1] 0.00176 0.00140 0.00060
oscar 19 [1] 0.00064 0.00060 0.00016
love 20 [1] 0.08660 0.07536 0.04568
great_entertainment 21 [1] 0.00488 0.00488 0.00292
very_entertaining 22 [1] 0.00544 0.00460 0.00244
amazing 23 [1] 0.05028 0.04516 0.02340
great 31 [1] 0.27728 0.23568 0.13800
keyword_wonderfully 32 [1] 0.01248 0.01248 0.00564
keyword_delightful 33 [1] 0.01188 0.01100 0.00500
keyword_superb 34 [1] 0.02948 0.02636 0.01220
keyword_beautifully 35 [1] 0.08284 0.07428 0.03528
superlatives 36 [1] 0.14656 0.14464 0.07064
keyword_remarkable 37 [1] 0.32052 0.26004 0.14748

Note that a snipped version of the output has been presented here. The full output is
available in the notebook. For each labeling function, the table presents what labels
are produced and the coverage of the function – that is, the fraction of records it
provides a label for, the fraction where it overlaps with another function producing
the same label, and the fraction where it conflicts with another function producing
a different label. A positive and a negative label function are highlighted. The bad_
acting() function covers 8.7% of the records but overlaps with other functions about
8.3% of the time. However, it conflicts with a function producing a positive label
about 4.3% of the time. The amazing() function covers about 5% of the dataset. It
conflicts about 2.3% of the time. This data can be used to fine-tune specific functions
further and examine how we've separated the data. Figure 8.5 shows the balance
between positive, negative, and abstain labels:

Figure 8.5: Distribution of labels generated by Snorkel

Weakly Supervised Learning for Classification with Snorkel

[316]

Snorkel has several options for hyperparameter tuning to improve the quality of
labeling even further. We execute a grid search over the parameters to find the best
training parameters, while we exclude the labeling functions that are adding noise in
the final output.

Hyperparameter tuning is done via choosing different learning rates, L2
regularizations, numbers of epochs to run training on, and optimizers to use. Finally,
a threshold is used to determine which labeling functions should be kept for the
actual labeling task:

Grid Search
from itertools import product

lrs = [1e-1, 1e-2, 1e-3]
l2s = [0, 1e-1, 1e-2]
n_epochs = [100, 200, 500]
optimizer = ["sgd", "adam"]
thresh = [0.8, 0.9]
lma_best = 0
params_best = []

for params in product(lrs, l2s, n_epochs, optimizer, thresh):
 # do the initial pass to access the accuracies
 label_model.fit(L_train_full, n_epochs=params[2], log_freq=50,
 seed=123, optimizer=params[3], lr=params[0],
 l2=params[1])

 # accuracies
 weights = label_model.get_weights()

 # LFs above our threshold
 vals = weights > params[4]

 # the LM requires at least 3 LFs to train
 if sum(vals) >= 3:
 L_filtered = L_train_full[:, vals]

 label_model.fit(L_filtered, n_epochs=params[2],
 log_freq=50, seed=123,
 optimizer=params[3], lr=params[0],
 l2=params[1])

 label_model_acc = label_model.score(L=L_filtered,

Chapter 8

[317]

 Y=train_df.sentiment,
 tie_break_policy="abstain")["accuracy"]

 if label_model_acc > lma_best:
 lma_best = label_model_acc
 params_best = params

print("best = ", lma_best, " params ", params_best)

Snorkel may print a warning that metrics are being calculated over non-abstain
labels only. This is by design, as we are interested in high-confidence labels. If there
is a conflict between labeling functions, then our model abstains from giving it a
label. The best parameters printed out are:

best = 0.8399649430324277 params (0.001, 0.1, 200, 'adam', 0.9)

Through this tuning, the accuracy of the model improved from 78.5% to 84%!

Using these parameters, we label the 23k records from the training set and 50k
records from the unsupervised set. For the first part, we label all the 25k training
records and then split them into two sets. This particular part of splitting was
referenced in the baseline model section above:

train_df["snorkel"] = label_model.predict(L=L_filtered,
 tie_break_policy="abstain")
from sklearn.model_selection import train_test_split

Randomly split training into 2k / 23k sets
train_2k, train_23k = train_test_split(train_df, test_size=23000,
 random_state=42,
 stratify=train_df.sentiment)
train_23k.snorkel.hist()
train_23k.sentiment.hist()

Weakly Supervised Learning for Classification with Snorkel

[318]

The last two lines of code inspect the state of the labels and contrasts with actual
labels and generate the graph shown in Figure 8.6:

Figure 8.6: Comparison of labels in the training set versus labels generated using Snorkel

When the Snorkel model abstains from labeling, it assigns -1 for the label. We see
that the model is able to label a lot more negative reviews than positive labels. We
filter out the rows where Snorkel abstained from labeling and saved the records:

lbl_train = train_23k[train_23k.snorkel > -1]
lbl_train = lbl_train.drop(columns=["sentiment"])
p_sup = lbl_train.rename(columns={"snorkel": "sentiment"})
p_sup.to_pickle("snorkel_train_labeled.df")

However, the key question that we face is that if we augmented the training data
with these noisy labels, which are 84% accurate, would it make our model perform
better or worse? Note that the baseline model had an accuracy of ~74%.

To answer this question, we label the unsupervised set and then train the same
model architecture as the baseline.

Chapter 8

[319]

Generating unsupervised labels for
unlabeled data
As we saw in the previous section, where we labeled the training data set, it is quite
simple to run the model on the unlabeled reviews of the dataset:

Now apply this to all the unsupervised reviews
Apply the LFs to the unlabeled training data
applier = PandasLFApplier(lfs)

now let's apply on the unsupervised dataset
L_train_unsup = applier.apply(unsup_df)
label_model = LabelModel(cardinality=2, verbose=True)
label_model.fit(L_train_unsup[:, vals], n_epochs=params_best[2],
 optimizer=params_best[3],
 lr=params_best[0], l2=params_best[1],
 log_freq=100, seed=42)

unsup_df["snorkel"] = label_model.predict(L=L_train_unsup[:, vals],
 tie_break_policy="abstain")
rename snorkel to sentiment & concat to the training dataset
pred_unsup_lfs = unsup_df[unsup_df.snorkel > -1]
p2 = pred_unsup_lfs.rename(columns={"snorkel": "sentiment"})
print(p2.info())
p2.to_pickle("snorkel-unsup-nbs.df")

Now the label model is trained, and predictions are added to an additional column
of the unsupervised dataset. The model labels 29,583 records out of 50,000. This
is almost equal to the size of the training dataset. Assuming that the error rate on
the unsupervised set is similar to that observed on the training set, we just added
~24,850 records with correct labels and ~4,733 records with incorrect labels into
the training set. However, the balance of this dataset is very tilted, as positive label
coverage is still poor. There are approximately 9,000 positive labels for over 20,000
negative labels. The Increase Positive Label Coverage section of the notebook tries
to further improve the coverage of the positive labels by adding more keyword
functions.

Weakly Supervised Learning for Classification with Snorkel

[320]

This results in a slightly more balanced set, as shown in the following chart:

Figure 8.7: Further improvements in labeling functions applied to the
unsupervised dataset improves the positive labels

This dataset is saved to disk for use during training:

p3 = pred_unsup_lfs2.rename(columns={"snorkel2": "sentiment"})
print(p3.info())
p3.to_pickle("snorkel-unsup-nbs-v2.df")

We switch our focus back to the imdb-with-snorkel-labels.ipynb notebook,
which has the models for training. The code for this part begins from the section
With Snorkel Labeled Data. The newly labeled records need to be loaded from disk,
cleansed, vectorized, and padded before training can be run. We extract the labeled
records and remove HTML markup, as shown below:

labelled version of training data split
p1 = pd.read_pickle("snorkel_train_labeled.df")

p2 = pd.read_pickle("snorkel-unsup-nbs-v2.df")

Labeled datasets are saved to disk and reloaded in the training
code for better modularity and ease of readability. In a production
pipeline, intermediate outputs may not be persisted and fed
directly into the training steps. Another small consideration here is
the separation of virtual/conda environments for running Snorkel.
Having a separate script for weakly supervised labeling allows the
use of a different Python environment as well.

Chapter 8

[321]

p2 = p2.drop(columns=['snorkel']) # so that everything aligns

now concatenate the three DFs
p2 = pd.concat([train_small, p1, p2]) # training plus snorkel
 # labelled data
print("showing hist of additional data")

now balance the labels
pos = p2[p2.sentiment == 1]
neg = p2[p2.sentiment == 0]
recs = min(pos.shape[0], neg.shape[0])
pos = pos.sample(n=recs, random_state=42)
neg = neg.sample(n=recs, random_state=42)

p3 = pd.concat((pos,neg))
p3.sentiment.hist()

The original training dataset was balanced across positive and negative labels.
However, there is an imbalance in the data labeled using Snorkel. We balance the
dataset and ignore the excess rows with negative labels. Note that the 2,000 training
records used in the baseline model also need to be added, resulting in a total of
33,914 training records. As mentioned before, it really shines when the amount of
data is 10x to 50x the original dataset. Here, we achieve a ratio closer to 17x, or 18x if
the 2,000 training records are also included.

Figure 8.8: Distribution of records after using Snorkel and weak supervision

Weakly Supervised Learning for Classification with Snorkel

[322]

As shown in Figure 8.8 above, the records in blue are dropped to balance the dataset.
Next, the data needs to be cleansed and vectorized using the subword vocabulary:

remove markup
cleaned_unsup_reviews = p3.review.apply(
 lambda x: BeautifulSoup(x).text)
snorkel_reviews = pd.concat((cleaned_reviews, cleaned_unsup_reviews))
snorkel_labels = pd.concat((train_small.sentiment, p3.sentiment))

Finally, we convert the pandas DataFrames into TensorFlow data sets and vectorize
and pad them:

convert pandas DF in to tf.Dataset
snorkel_train = tf.data.Dataset.from_tensor_slices((
 snorkel_reviews.values,
 snorkel_labels.values))
encoded_snorkel_train = snorkel_train.map(encode_tf_fn,
 num_parallel_calls=tf.data.experimental.AUTOTUNE)

We are ready to try training our BiLSTM model to see if the performance improves
on this task.

Training BiLSTM on weakly supervised data
from Snorkel
To ensure we are comparing apples to apples, we use the same BiLSTM as the
baseline model. We instantiate a model with 64-dimensional embeddings, 64 RNN
units, and a batch size of 100. The model uses the binary cross-entropy loss and the
Adam optimizer. Accuracy, precision, and recall are tracked as the model is trained.
An important step is to shuffle the datasets every epoch to help the model keep
errors to a minimum.

This is an important concept. Deep models work on the assumption that the loss is
a convex surface, and the gradient is descending to the bottom of this surface. The
surface has many local minima or saddle points in reality. If the model gets stuck in
local minima during a mini-batch, it will be hard for the model to come out of it as
across epochs, it receives the same data points again and again. Shuffling the data
changes the data set and the order in which the model receives it. This enables the
model to learn better by getting out of these local minima faster. The code for this
section is in the imdb-with-snorkel-labels.ipynb file:

Chapter 8

[323]

shuffle_size = snorkel_reviews.shape[0] // BATCH_SIZE * BATCH_SIZE
encoded_snorkel_batched = encoded_snorkel_train.shuffle(
 buffer_size=shuffle_size,
 seed=42).batch(BATCH_SIZE,
 drop_remainder=True)

Note that we cache all the records that will be part of the batch so that we can get
perfect buffering. This comes at the cost of slightly slower training and higher
memory use. Also, since our batch size is 100 and the dataset has 35,914 records, we
drop the remainder of the records. We train the model for 20 epochs, a little more
than the baseline model. The baseline model was overfitting at 15 epochs. So, it was
not useful to train it longer. This model has a lot more data to train on. Consequently,
it needs more epochs to learn:

bilstm2.fit(encoded_snorkel_batched, epochs=20)

Train for 359 steps
Epoch 1/20
359/359 [==============================] - 92s 257ms/step - loss:
0.4399 - accuracy: 0.7860 - Precision: 0.7900 - Recall: 0.7793
…
Epoch 20/20
359/359 [==============================] - 82s 227ms/step - loss:
0.0339 - accuracy: 0.9886 - Precision: 0.9879 - Recall: 0.9893

The model achieves an accuracy of 98.9%. The precision and recall numbers are quite
close to each other. Evaluating the baseline model on the test data gave an accuracy
score of 76.23%, which clearly proved that it was overfitting to the training data.
Upon evaluating the model trained with weakly supervised labeling, the following
results are obtained:

bilstm2.evaluate(encoded_test.batch(BATCH_SIZE))

250/250 [==============================] - 35s 139ms/step - loss:
1.9134 - accuracy: 0.7658 - precision: 0.7812 - recall: 0.7386

This model trained on weakly supervised noisy labels achieves 76.6% accuracy,
which is 0.7%% higher than baseline mode. Also note that the precision went from
74.5% to 78.1% but recall decreased. In this toy setting, we kept a lot of the variables
constant, such as model type, dropout ratio, etc. In a realistic setting, we can drive
the accuracy even higher by optimizing the model architecture and hyperparameter
tuning. There are other options to try. Recall that we instruct Snorkel to abstain from
labeling if it is unsure.

Weakly Supervised Learning for Classification with Snorkel

[324]

By changing that to a majority vote or some other policy, the amount of training data
could be increased even further. You could also try and train on unbalanced datasets
and see the impact. The focus here was on showing the value of weak supervision
for massively increasing the amount of training data rather than building the
best model. However, you should be able to take these lessons and apply them to
your projects.

It is important to take a moment and think about the causes of this result. There are a
few important deep learning lessons hidden in this story. First, more labeled data is
always good, given a model of sufficient complexity. There is a correlation between
the amount of data and model capacity. Models with higher capacities can handle
more complex relationships in the data. They also need much larger datasets to
learn the complexities. However, if the model is kept a constant and with sufficient
capacity, the quantity of labeled data makes a huge difference, as evidenced here.
There are some limits to how much of an improvement we can achieve by increasing
labeled data scale. In a paper titled Revisiting Unreasonable Effectiveness of Data in
Deep Learning Era by Chen Sun et al., published at ICCV 2017, the authors examine
the role of data in the computer vision domain. They report that the performance of
models increases logarithmically with an increase in training data. The second result
they report is that learning representations through pretraining helps downstream
tasks quite a bit. Techniques in this chapter can be applied to generate more data for
the fine-tuning step, which will significantly boost the performance of the fine-tuned
model.

The second lesson is one about the basics of machine learning – shuffling the
training data set has a disproportionate impact on the performance of the model.
In the book, we have not always done this in order to manage training times. For
training production models, it is important to focus on basics such as shuffling data
sets before each epoch.

Let's review everything we learned in this chapter.

Summary
It is apparent that deep models perform very well when they have a lot of data.
BERT and GPT models have shown the value of pre-training on massive amounts
of data. It is still very hard to get good-quality labeled data for use in pretraining or
fine-tuning. We used the concepts of weak supervision combined with generative
models to cheaply label data. With relatively small amounts of effort, we were able
to multiply the amount of training data by 18x. Even though the additional training
data was noisy, the BiLSTM model was able to learn effectively and beat the baseline
model by 0.6%.

Chapter 8

[325]

Representation learning or pre-training leads to transfer learning and fine-tuning
models performing well on their downstream tasks. However, in many domains
like medicine, the amount of labeled data may be small or quite expensive to
acquire. Using the techniques learned in this chapter, the amount of training data
can be expanded rapidly with little effort. Building a state-of-the-art- beating model
helped recall some basic lessons in deep learning, such as how larger data boosts
performance quite a bit, and that larger models are not always better.

Now, we turn our focus to conversational AI. Building a conversational AI system is
a very challenging task with many layers. The material covered so far in the book can
help in building various parts of chatbots. The next chapter goes over the key parts
of conversational AI or chatbot systems and outlines effective ways to build them.

[327]

9
Building Conversational

AI Applications with
Deep Learning

The art of conversation is considered a uniquely human trait. The ability of machines
to have a dialog with humans has been a research topic for many years. Alan Turing
proposed the now-famous Turing Test to see if a human could converse with another
human and a machine through written messages, and identify each participant as
machine or human correctly. In recent times, digital assistants such as Alexa by
Amazon and Siri by Apple have made considerable strides in conversational AI. This
chapter discusses different conversational agents and puts the techniques learned in
the previous chapters into context. While there are several approaches to building
conversational agents, we'll focus on the more recent deep learning approaches and
cover the following topics:

• Overview of conversational agents and their general architecture
• An end-to-end pipeline for building a conversational agent
• The architecture of different types of conversational agents, such as

• Question-answering bots
• Slot-filling or task-oriented bots
• General conversation bots

We'll start with an overview of the general architecture of conversational agents.

Building Conversational AI Applications with Deep Learning

[328]

Overview of conversational agents
A conversational agent interacts with people using speech or text. Facebook
Messenger would be an example of a text-based agent while Alexa and Siri are
examples of agents that interact through speech. In either case, the agent needs to
understand the user's intent and respond accordingly. Hence, the core part of the
agent would be a natural language understanding (NLU) module. This module
would interface with a natural language generation (NLG) module to supply a
response back to the user. Voice agents differ from text-based agents in having an
additional module that converts voice to text and vice versa. We can imagine the
system having the following logical structure for a voice-activated agent:

Figure 9.1: Conceptual architecture of a conversational AI system

The main difference between a speech-based system and a text-based system is how
the users communicate with the system. All the other parts to the right of the Speech
Recognition and Generation section shown in Figure 9.1 above are identical in both
types of conversational AI systems.

The user communicates with the agent using speech. The agent first converts speech
to text. Many advancements have been made in the past few years in this area, and it
is generally considered a solved problem for major languages like English.

English is spoken in many countries across the globe, resulting in many different
pronunciations and dialects. Consequently, companies like Apple develop various
models for different accents, such as British English, Indian English, and Australian
English. Figure 9.2 below shows some English and French accents from the Siri
control panel on an iPhone 11 running iOS 13.6. French, German, and some other
languages also have multiple variants. Another way to do this could be by putting
an accent and language classification model as the first step and then processing the
input through the appropriate speech recognition model:

Chapter 9

[329]

Figure 9.2: Language variants in Siri for speech recognition

For virtual assistants, there are specific models for wake word detection. The
model's objective is to start the bot once it detects a wake word or phrase such as
"OK Google." The wake word triggers the bot to listen to the utterances until the
conversation is completed. Once the user's speech has been converted into words, it
is easy to apply to various NLP techniques that we have seen in multiple chapters
in this book. The breakdown of the elements shown inside the NLP box in Figure
9.1 can be considered conceptual. Depending on the system and the task, these
components may be different models or one end-to-end model. However, it is useful
to think of the logical breakdown, as shown in the figure.

Understanding the user's commands and the intent is a crucial part. Intent
identification is essential for general-purpose systems like Amazon's Alexa or
Apple's Siri, which serve multiple purposes. Specific dialogue management systems
may be invoked based on the intent identified. The dialog management may invoke
APIs provided by a fulfillment system. In a banking bot, the command may be to
get the latest balances, and the fulfillment may be a banking system that retrieves
the latest balance. The dialogue manager would process the balance and use an
NLG system to convert the balance into a proper sentence. Note that some of these
systems are built on rules-based systems and others use end-to-end deep learning.
A question-answering system is an example of an end-to-end deep learning system
where dialog management, and NLU are a single unit.

Building Conversational AI Applications with Deep Learning

[330]

There are different types of conversational AI applications. The most common ones
are:

• Task-oriented or slot-filling systems
• Question-answering
• Machine reading comprehension
• Social or chit-chat bots

Each of these types is described in the following sections.

Task-oriented or slot-filling systems
Task-oriented systems are purpose-built to satisfy a specific task. Some examples
of tasks are ordering a pizza, getting the latest balance of a bank account, calling a
person, sending a text message, turning a light on, and so on. Most of the capabilities
exposed by virtual assistants can be classified into this category. Once the user's
intent has been identified, control is transferred to the model managing a specific
intent to gather all the information to perform the task and manage the dialog
with the user. NER and POS detection models form a crucial part of such systems.
Imagine that the user needs to fill a form with some information, and the bot
interacts with the user to find the required information to fulfill the task. Let's take
the example of ordering a pizza. The table below shows a simplified example of the
choices in this process:

Size Crust Toppings Delivery Quantity

Small

Medium

Large

XL

Thin

Regular

Deep dish

Gluten-free

Cheese

Jalapeno

Pineapple

Pepperoni

Take-out

Delivery

1

2

…

Chapter 9

[331]

Here is a made-up example of a conversation with a bot:

Figure 9.3: A possible pizza-ordering bot conversation

The bot tracks the information needed and keeps marking the information it has
received from the person as the conversation progresses. Once the bot has all the
information needed to complete the task, it can execute the task. Note that some
steps, such as confirming the order or the customer asking for options for toppings,
have been excluded for brevity.

Building Conversational AI Applications with Deep Learning

[332]

In today's world, solutions like Dialogflow, part of Google Cloud, and LUIS, part of
Azure, simplify building such conversational agents to just the configuration. Let's
see how a simple bot that implements a portion of the pizza-ordering task above
can be implemented with Dialogflow. Note that this example has been kept small to
simplify configuration and use the free tier of Dialogflow. The first step is to navigate
to https://cloud.google.com/dialogflow, which is the home page for this service.
There are two version of Dialogflow – Essentials or ES, and CX. CX is the advanced
version with a lot more features and controls. Essentials is a simplified version with a
free tier that is perfect for a bot's trial build. Scroll down on the page so that you can
see the Dialogflow Essentials section and click on the Go to console link, as shown in
Figure 9.4 below:

Figure 9.4: Dialogflow console access

Clicking on the console may require the authorization of the service, and you may
need to log in with your Google Cloud account. Alternatively, you may navigate
to dialogflow.cloud.google.com/#/agents to see a list of configured agents. This
screen is shown in Figure 9.5:

https://cloud.google.com/dialogflow
http://dialogflow.cloud.google.com/#/agents

Chapter 9

[333]

Figure 9.5: Agents configuration in Dialogflow

A new agent can be created by clicking on the blue CREATE AGENT button on the
top right. If you see a different interface, please check that you are using Dialogflow
Essentials. You can also use this URL to get to the agents section: https://
dialogflow.cloud.google.com/#/agents. This brings up the new agent configuration
screen, shown in Figure 9.6:

Figure 9.6: Creating a new agent

https://dialogflow.cloud.google.com/#/agents
https://dialogflow.cloud.google.com/#/agents

Building Conversational AI Applications with Deep Learning

[334]

Please note that this is not a comprehensive tutorial of Dialogflow, so we will be
using several default values to illustrate the concept of building slot-filling bots.
Hitting CREATE will build a new bot and load a screen, as shown in Figure 9.7. The
main part of building the bot is to define intent. The main intent of our bot is to order
pizza. Before we create an intent, we will configure a few entities:

Figure 9.7: A barebones agent ready for configuration

These entities are the slots that the bot will fill out in conversation with the user. In
this case, we will define two entities – the crust of the pizza and the size of the pizza.
Click on the + sign next to Entities on the left in the previous screenshot, and you'll
see the following screen:

Figure 9.8: Configuring options for the crust entity in Dialogflow

Chapter 9

[335]

The values on the left represent the values for the crust entity, and the multiple
options or synonyms on the right are the terms the user can input or speak
corresponding to each choice. We will configure four options corresponding to the
table above. Another entity will be created for the size of the pizza. The configured
entity looks like Figure 9.9:

Figure 9.9: Configuration of the size entity

Building Conversational AI Applications with Deep Learning

[336]

Now we are ready to build the intent. Click on the + sign next to the Intents section
on the left navigation bar. We will name this intent order, as this intent will get the
options for crust and size from the user. First, we need to specify a set of training
phrases that will trigger this intent. Some examples of such training phrases can be
"I would like to order pizza" or "Can I get a pizza?". Figure 9.10 shows some of the
configured training phrases for the intent:

Figure 9.10: Training phrases that trigger the ordering intent

There is a lot of hidden machine learning and deep learning happening in this
picture, simplified by Dialogflow. For example, the platform can process text input
as well as speech. These training examples are indicative, and the actual phrasing
does not need to match any of these expressions directly.

The next step is to define the parameters we need from the user. We add an action
with two parameters – size and crust. Note that the ENTITY column links the
parameter with the defined entities and their values. The VALUE column defines a
variable name that can be used in future dialogue or for integration with APIs:

Chapter 9

[337]

Figure 9.11: Required parameters for the order intent

For each parameter, we need to specify some prompts that the agent will use to ask
the user for the information. Figure 9.12 below shows some example prompts for the
size parameter. You may choose to configure your phrasings for the prompts:

Figure 9.12: Prompt options for the size parameter

Building Conversational AI Applications with Deep Learning

[338]

The last step in configuring the intent is configuring a response once the information
is collected. This configuration is done in the Responses section and is shown in
Figure 9.13:

Figure 9.13: Response configuration for the order intent

Note the use of $size.original and $crust.original in the response text. It uses the
original terms used by the user while ordering when it repeats the order back. Finally,
note that we set this intent as the end of the conversation as we have obtained all the
information we needed to get. Our bot is ready to be trained and tested. Hit the blue
Save button at the top of the page after you have configured the training phrases,
action and parameters, and the responses. There is another section at the bottom called
fulfilment. This allows connecting the intent with a web service to complete the intent.
The bot can be tested using the right side. Note that though we configured only text,
Dialogflow enables both text and voice interfaces. While we demonstrate the text
interface here, you are encouraged to try the voice interface as well:

Chapter 9

[339]

Figure 9.14: An example of dialog showing the response processing and the variable being set

Cloud-based solutions have made it quite easy to build task-oriented conversational
agents for general uses. However, building an agent for a specialized domain like
medical uses may require custom builds. Let's look at options for specific parts of
such a system:

• Intent identification: The simplest way to identify intent is to treat it as a
classification problem. Given an utterance or input text, the model needs to
classify it into several intents. Standard RNN-based architectures, like those
seen in earlier chapters, can be used and adapted for this task.

• Slot tagging: Tagging slots used in a sentence to correspond to inputs can be
treated as a sequence classification problem. This is similar to the approach
used in the second chapter, where named entities were tagged in a sequence
of text. Bi-directional RNN models are quite effective in this part.

Building Conversational AI Applications with Deep Learning

[340]

Different models can be developed for these parts, or they can be combined in
one end-to-end model with a dialog manager. Dialog state tracking systems
can be built by using a set of rules generated by experts or by using CRFs (see
Chapter 2, Understanding Sentiment in Natural Language with BiLSTMs, for a detailed
explanation). Recent approaches include a Neural Belief Tracker proposed by Mrkšić
et al. in 2017 in their paper titled Neural Belief Tracker: Data-Driven Dialogue State
Tracking. This system takes three inputs:

1. The last system output
2. The last user utterance
3. A slot-value pair from the possible candidates for slots

These three inputs are combined through the content model and semantic decoding
model and fed to a binary decision (softmax) layer to produce a final output. Deep
reinforcement learning is being used to optimize the dialog policy overall.

In the NLG part, the most common approach is to define a set of templates that can
be dynamically populated. This approach was shown in the preceding figure Figure
9.13. Neural methods, such as semantically controlled LSTM, as proposed by Wen et
al. in their paper Semantically Conditioned LSTM-based Natural Language Generation for
Spoken Dialogue Systems in 2015, are being actively researched.

Now, let's move on to another interesting area of conversational agents – question-
answering and machine reading comprehension.

Question-answering and MRC
conversational agents
Bots can be trained to answer questions based on information contained in a
knowledge base (KB). This setting is called the question-answering setting. Another
related area is machine reading comprehension or MRC. In MRC, questions need
to be answered with respect to a set of passages or documents provided with the
query. Both of these areas are seeing a lot of startup activity and innovation. A
very large number of business use cases can be enabled with both of these types of
conversational agents. Passing the financial report to a bot and answering questions
such as the increase in revenue given the financial report would be an example of
MRC. Organizations have large digital caches of information, with new information
pouring in every day. Building such agents empowers knowledge workers to process
and parse large amounts of information quickly. Startups like Pryon are delivering
conversational AI agents that merge, ingest, and adapt a myriad of structured and
unstructured data into unified knowledge domains that end users can ask natural
language questions as a way to discover information.

Chapter 9

[341]

KBs typically consist of subject-predicate-object triples. The subject and object are
entities, while the predicate indicates a relationship between them. The KB can be
represented as a knowledge graph, where objects and subjects are nodes connected
by predicate edges. A big challenge is the maintenance of such knowledge bases and
graphs in real life. Most deep NLP approaches are focused on determining whether
a given subject-predicate-object triplet is true or not. The problem is reduced to
a binary classification through this reformulation. There are several approaches,
including the use of BERT models, which can solve the classification problem. The
key here is to learn an embedding of the KB and then frame queries on top of this
embedding. Dat Nguyen's survey paper, titled A survey of embedding models of entities
and relationships for knowledge graph completion, provides an excellent overview of
various topics for a deeper dive. We focus on MRC for the rest of this section now.

MRC is a challenging task as the objective is to answer any set of questions about a
given set of passages or documents. These passages are not known in advance and
may be of variable length. The most common research dataset used for evaluating
models is the Stanford Question Answering Dataset or SQuAD, as it is commonly
called. The dataset has 100,000 questions for different Wikipedia articles. The
objective of the model is to output the span of text from the article that answers the
question. A more challenging dataset has been published by Microsoft based on Bing
queries. This dataset is called the MAchine Reading COmprehension or MARCO
dataset. This dataset has over 1 million anonymized questions, with over 8.8 million
passages extracted from over 3.5 million documents. Some of the questions in this
dataset may not be answerable based on the passages, which is not the case with the
SQuAD dataset, which makes this a challenging dataset. The second challenging
aspect of MARCO as compared to SQuAD is that MARCO requires the generation
of an answer by combining information from multiple passages, whereas SQuAD
requires marking the span from the given passage.

BERT and its variants such as ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations published at ICLR 2020 form the basis of most competitive
baselines today. BERT architecture is well suited to this task as it allows passing in
two pieces of input text separated by a [SEP] token. The BERT paper evaluated their
language model on a number of tasks, including performance on the SQuAD task.
Question tokens formed the first part of the pair, and the passage/document formed
the second part of the pair. The output tokens corresponding to the second part, the
passage, are scored to represent whether the token represents the start of the span or
the end of the span.

Building Conversational AI Applications with Deep Learning

[342]

A high-level depiction of the architecture is shown in Figure 9.15:

Figure 9.15: BERT fine-tuning approach for SQuAD question answering

A multi-modal aspect of question answering is Visual QA, which was briefly
introduced in Chapter 7, Multi-modal Networks and Image Captioning with ResNets and
Transformer. Analogous architectures to the one proposed for image captioning,
which can take images as well as text tokens, are used for solving this challenge.

The setting for QA above is called single turn because the user presents a question
with a passage from where the question needs to be answered. However, people
have conversations with a back and forth dialog. Such a setting is called multi-turn
dialog. A follow-up question may have context from a previous question or answer
in the conversation. One of the challenges in a multi-turn dialog is coreference
resolution. Consider the following dialog:

Person: Can you tell me the balance in my account #XYZ?

Bot: Your balance is $NNN.

Person: Can you transfer $MM to account #ABC from that account?

"that" in the second instruction refers to account #XYZ, which was mentioned in the
first question from the person. This is called coreference resolution. In a multi-turn
conversation, resolving references could be quite complicated based on the distance
between the references. Several strides have been made in this area with respect to
general conversation bots, which we'll cover next.

Chapter 9

[343]

General conversational agents
Seq2seq models provide the best inspiration for learning multi-turn general
conversations. A useful mental model is that of machine translation. Similar to the
machine translation problem, the response to the previous question can be thought
of as a translation of that input into a different language – the response. Encoding
more context into a conversation can be achieved by passing in a sliding window
of the previous conversation turns instead of just the last question/statement. The
term open-domain is often used to describe bots in this area as the domain of the
conversation is not fixed. The bot should be able to discuss a wide variety of topics.
There are several issues that are their own research topics.

Lack of personality or blandness is one such problem. The dialog is very dry. As
an example, we have seen the use of a temperature hyperparameter to adjust the
predictability of the response in previous chapters. Conversational agents have a
high propensity to generate "I don't know" responses due to a lack of specificity in
the dialog. A variety of techniques, including GANs, can be used to address this. The
Personalizing Dialogue Agents paper authored by Zhang et al. from Facebook outlines
some of the approaches used to address this problem.

Two recent examples that highlight the state of the art of writing human-like
comments come from Google and Facebook. Google published a paper titled Towards
a Human-like Open-Domain Chatbot, with a chatbot named Meena with over 2.6 billion
parameters. The core model is a seq2seq model using an Evolved Transformer (ET)
block for encoding and decoding. The model architecture has one ET block in the
encoder and 13 ET block in the decoder. ET block was discovered through neural
architecture search (NAS) on top of the Transformer architecture. A new human
evaluation metric called Sensibleness and Specificity Average (SSA) was proposed
in the paper. The current literature has a variety of different metrics being proposed
for the evaluation of such open-domain chatbots with little standardization.

Another example of an open-domain chatbot is described by Facebook on https://
ai.facebook.com/blog/state-of-the-art-open-source-chatbot/. This paper builds
on several years of research and combines the work on personalization, empathy,
and KBs into a blended model called BlenderBot. Similar to Google's research,
different datasets and benchmarks are used to train this chatbot. The code for the
bot has been shared on https://parl.ai/projects/recipes/. ParlAI, by Facebook
research, provides several models for chatbots through https://github.com/
facebookresearch/ParlAI.

https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://parl.ai/projects/recipes/
https://github.com/facebookresearch/ParlAI
https://github.com/facebookresearch/ParlAI

Building Conversational AI Applications with Deep Learning

[344]

This is a very hot area of active research with a lot of action happening in it.
Comprehensive coverage of this topic would take a book of its own. Hopefully, you
have learned many techniques in this book that can be combined to build amazing
conversational agents. Let's wrap up.

Summary
We discussed the various types of conversational agents, such as task-oriented,
question-answering, machine reading comprehension, and general chit-chat bots.
Building a conversational AI system is a very challenging task with many layers, and
it is an area of active research and development. The material covered earlier in the
book can also help in building various parts of chatbots.

Epilogue
First, let me congratulate you on reaching the end of the book. I hope this book
helped you get a grounding in advanced NLP models. The main challenge facing a
book such as this is that it will likely be obsolete by the time it reaches the press. The
key thing is that new developments are based on past developments; for example,
the Evolved Transformer is based on the Transformer architecture. Knowledge of all
the models presented in the book will give you a solid foundation and significantly
cut down the amount of time you need to spend to understand a new development.
A set of influential and important papers for each chapter have also been made
available in the GitHub repository. I am excited to see what you will discover and
build next!

[345]

10
Installation and Setup
Instructions for Code

Instructions for setting up an environment for the code in the book are provided in
this chapter. These instructions:

• Have been tested on macOS 10.15 and Ubuntu 18.04.3 LTS. You may have to
translate these instructions for Windows.

• Only cover the CPU version of TensorFlow. For the latest GPU installation
instructions, please follow https://www.tensorflow.org/install/gpu. Please
note that the use of a GPU is highly recommended. It will cut down the
training times of complex models from days to hours.

The installation uses Anaconda and pip. It is assumed that Anaconda is set up and
ready to go on your machine. Note that we use some new and some uncommon
packages. These packages may not be available through conda. We will use pip in
such cases.

Notes:

• On macOS: conda 49.2, pip 20.3.1
• On Ubuntu: conda 4.6.11, pip 20.0.2

https://www.tensorflow.org/install/gpu

Installation and Setup Instructions for Code

[346]

GitHub location
The code for this book is located in the following public GitHub repository:

https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-
with-TensorFlow-2

Please clone this repository to access all the code for the book. Please note that
seminal papers for each of the chapters are included in the GitHub repository inside
each chapter's directory.

Now, the common steps to set up the conda environment are explained below:

• Step 1: Create a new conda environment with Python 3.7.5:
$ conda create -n tf24nlp python==3.7.5

The environment is named tf24nlp but feel free to use your own name
and make sure you use that in the following steps. I like to prefix my
environment names with the version of TensorFlow being used and I suffix
a "g" if that environment has a GPU version of the library. As you can
probably infer, we are going to use TensorFlow 2.4.

• Step 2: Activate the environment and install the following packages:
$ conda activate tf24nlp
(tf24nlp) $ conda install pandas==1.0.1 numpy==1.18.1

This installs the NumPy and pandas libraries in our newly created
environment.

• Step 3: Install TensorFlow 2.4. To do this, we will need to use pip. As of
the time of writing, the conda distribution of TensorFlow was still at 2.0.
TensorFlow has been moving quite fast. In general, conda distributions are a
little behind the latest versions available:

(tf24nlp) $ pip install tensorflow==2.4

Please note that these instructions are for the CPU version of TensorFlow. For
GPU installation instructions, please refer to https://www.tensorflow.org/
install/gpu.

https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-TensorFlow-2
https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-TensorFlow-2
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install/gpu

Chapter 10

[347]

• Step 4: Install Jupyter Notebook – feel free to install the latest version:

(tf24nlp) $ conda install Jupyter

The rest of the installation instructions are about specific libraries used in
specific chapters. If you have trouble installing through Jupyter Notebook,
you can install them from the command line.

Specific instructions for each of the chapters are given as follows.

Chapter 1 installation instructions
No specific instructions are required for this chapter, as the code for this chapter is
run on Google Colab, at colab.research.google.com.

Chapter 2 installation instructions
The tfds package needs to be installed:

(tf24nlp) $ pip install tensorflow_datasets==3.2.1

We use tfds in most of the chapters going forward.

Chapter 3 installation instructions
1. Install matplotlib via the following command:

(tf24nlp) $ conda install matplotlib==3.1.3

A newer version may work as well.

2. Install the TensorFlow Addons package for Viterbi decoding:

(tf24nlp) $ pip install tensorflow_addons==0.11.2

Note that this package is not available through conda.

http://colab.research.google.com

Installation and Setup Instructions for Code

[348]

Chapter 4 installation instructions
This chapter requires the installation of sklearn:

(tf24nlp) $ conda install scikit-learn==0.23.1

Hugging Face's Transformers library needs to be installed as well:

(tf24nlp) $ pip install transformers==3.0.2

Chapter 5 installation instructions
None required.

Chapter 6 installation instructions
A library that will be used to compute ROUGE scores needs to be installed:

(tf24nlp) $ pip install rouge_score

Chapter 7 installation instructions
We require the Pillow library for processing images. This library is the friendly
version of the Python Imaging Library. It can be installed like so:

(tf24nlp) conda install pillow==7.2.0

TQDM is a nice utility to display progress bars while executing long loops:

(tf24nlp) $ conda install tqdm==4.47.0

Chapter 8 installation instructions
Snorkel needs to be installed. At the time of writing, the version of Snorkel installed
was 0.9.5. Note that this version of Snorkel uses older versions of pandas and
TensorBoard. You should be able to safely ignore any warnings about mismatched
versions for the purposes of the code in this book. However, if you continue to face
conflicts in your environment, then I suggest creating a separate Snorkel-specific
conda environment.

Chapter 10

[349]

Run the labeling functions in that environment and store the outputs as a separate
CSV file. TensorFlow training can be run by switching back to the tf24nlp
environment and loading the labeled data in:

(tf24nlp) $ pip install snorkel==0.9.5

We'll also use BeautifulSoup for parsing HTML tags out of the text:

(tf24nlp) $ conda install beautifulsoup4==4.9

There is an optional section in the chapter that involves plotting word clouds. This
requires the following package to be installed:

(tf24nlp) $ pip install wordcloud==1.8

Note that this chapter also uses NLTK, which we installed in the first chapter.

Chapter 9 installation instructions
None.

Share your experience

Thank you for taking the time to read this book. If you enjoyed this book, help
others to find it. Leave a review at https://www.amazon.com/dp/1800200935.

https://www.amazon.com/dp/1800200935

[351]

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Deep Learning with TensorFlow 2 and Keras - Second Edition
Antonio Gulli
Amita Kapoor
Sujit Pal

ISBN: 978-1-83882-341-2

 ● Build machine learning and deep learning systems with TensorFlow 2 and
the Keras API

 ● Use Regression analysis, the most popular approach to machine learning
 ● Understand ConvNets (convolutional neural networks) and how they are

essential for deep learning systems such as image classifiers

https://www.packtpub.com/product/deep-learning-with-tensorflow-2-and-keras-second-edition/9781838823412

[352]

Other Books You May Enjoy

 ● Use GANs (generative adversarial networks) to create new data that fits with
existing patterns

 ● Discover RNNs (recurrent neural networks) that can process sequences of input
intelligently, using one part of a sequence to correctly interpret another

 ● Apply deep learning to natural human language and interpret natural language
texts to produce an appropriate response

 ● Train your models on the cloud and put TF to work in real environments
 ● Explore how Google tools can automate simple ML workflows without the

need for complex modeling

[353]

Other Books You May Enjoy

Transformers for Natural Language Processing
Denis Rothman

ISBN: 978-1-80056-579-1

 ● Use the latest pre-trained transformer models
 ● Grasp the workings of the original Transformer, GPT-2, BERT, T5, and other

transformer models
 ● Create language understanding Python programs using concepts that

outperform classical deep learning models
 ● Use a variety of NLP platforms, including Hugging Face, Trax, and AllenNLP
 ● Apply Python, TensorFlow, and Keras programs to sentiment analysis,

text summarization, speech recognition, machine translations, and more
 ● Measure productivity of key transformers to define their scope, potential,

and limits, in production

https://www.packtpub.com/product/transformers-for-natural-language-processing/9781800565791

[355]

Index
A
abstractive summaries

examples 186, 187
Adaptive Moment Estimation

(Adam Optimizer) 119
Attention mechanism 123
Audio-Visual Speech Recognition (AVSR) 228

B
Bahdanau Attention architecture 126
Bahdanau attention layer 197-199
Batch Normalization (BatchNorm) 245
beam search 171, 180

used, for decoding penalties 218-220
used, for improving text

summarization 214-217
BERT-based transfer learning 123

attention model 125, 127
encoder-decoder networks 123, 124
transformer model 128, 130

BERT fine-tuning approach
for SQuAD question answering 341, 342

bidirectional encoder representations from
transformers (BERT) model 131-133

custom layers, building 142-147
normalization 133-139
sequences 135
tokenization 133-139

Bi-directional Long Short-Term Memory
(BiLSTM) 25, 47

Bilingual Evaluation Understudy
(BLEU) 221, 280

BiLSTM baseline model 295
data tokenization 296, 297

data, vectorizing 296, 297
training, on weakly supervised data from

Snorkel 322-324
used, for training 297-300

BiLSTM model 65-69
building 83-86

bottleneck design 244
Byte Pair Encoding (BPE) 26, 117, 132

C
captions

generating 274-280
cloud-based solutions, for building task-x

task-oriented conversational agents
intent identification 339
slot tagging 339

Common Objects in Context (COCO)
URL 235

conda environment
setting up 346

Conditional Random Fields (CRFs)
working 87, 89

Consensus-Based Image Description
Evaluation (CIDEr) 280

constructor
parameters 195, 196

context-free vectorization 36
Continuous Bag-of-Words 41
Continuous Skip-gram 41
conversational agents

overview 328-338
conversational AI applications 330
conversation, with bot

example 331

[356]

Convolutional Neural Networks (CNNs)
convolutions 240, 241
image processing with 239
key properties 239
pooling 241
regularization, with dropout 242, 243
residual connections 243-245
ResNets 243-245

count-based vectorization 34
modeling after 35, 36

custom CRF Layer
implementing 91, 92

custom CRF model
implementing 93, 94
training, with loss function 94, 95

custom training
implementing 95-99

D
data

loading 75-79
modeling, with Parts-of-Speech (POS)

tagging 30, 31
modeling, with stop words removed 24-26
normalizing 80-83
vectorizing 80-83

data locality 232
Decoder model 199-202

training 202-207
Dialogflow

agents configuration 333
console access 332
URL 332

domain adaptation 107
domains 107
dropout layer 102

E
embeddings 40
encoder 56
encoder-decoder network 123
Encoder model 194-197

training 202-207

encoding 58

F
feature extraction model 110, 116-120

creating 121, 122
forward pass 101

G
Gap Sentence Generation (GSG) 224
gated recurrent units (GRUs) 49, 51
gazetteer 73

URL 73
General Attention 125
general conversational agents 343, 344
generating text model

training 155-159
generative adversarial networks (GANs) 289
Generative Pre-Training (GPT-2)

model 171-177
using, for text generation 177-183

Global Vectors for Word Representation
(GloVe) 110

GloVe embeddings 111
used, for creating pre-trained embedding

matrix 115, 116
used, for performing IMDb sentiment

analysis 110
Google Colab

GPUs, enabling on 7, 8
gradient clipping 49
greedy search

used, for improving text
summarization 210-214

using, for text generation 164-171
Groningen Meaning Bank (GMB) dataset 74

H
Hidden Markov Model (HMM)-based

models 25
high-level image captioning model

building, steps 234
human-computer interaction (HCI) 46

[357]

I
image captioning 232-234

MS-COCO dataset, using for 235-238
performance, improving 281, 282

image feature extraction
performing, with ResNet50 245-249

image processing
with CNNs 239
with ResNet50 239

IMDb sentiment analysis
improving, with weakly supervised labels 290
performing, with GloVe embeddings 110

IMDb training data
loading 112-114

inner workings, of weak supervision
with labeling functions 288-290

In-Other-Begin (IOB) 77
Inverse Document Frequency 37

K
knowledge base (KB) 340

L
labeled data

collecting 3
development environment setup, for collection

of 4-6
labeling functions 288

iterating on 304-306
language models (LM) 128

training cost 172
layer normalization 174
learning rate annealing 159
learning rate decay 159

implementing, as custom callback 159-164
learning rate warmup 160
lemma 32
lemmatization 31-33
longest common subsequence (LCS) 222
Long-Short Term Memory (LSTM) 49

cell value 50
forget gate 50

input gate 50
output gate 50

Long Short-Term Memory (LSTM)
networks 50, 51

LSTM model
with embeddings 62-65

M
Machine Learning (ML) project 2
MAchine Reading COmprehension

database (MARCO) 341
masked language model (MLM)

objective 131, 224
Max pooling 241
Metric for Evaluation of Translation with

Explicit Ordering (METEOR) 221
morphology 32
MRC conversational agents 340, 341
MS-COCO dataset

used, for image captioning 235-238
Multi-Head Attention block 130
multi-modal deep learning 228

language tasks 229-231
vision 229-231

multi-task learning 108, 109

N
Naïve-Bayes (NB) 306
Naïve-Bayes (NB) model

used, for finding keywords 306-313
Named Entity Recognition (NER) 72-74

GMB dataset 74, 75
using, with BiLSTM 89
using, with CRFs 89, 90

natural language generation (NLG) 340
Natural Language Processing (NLP) 229
natural language understanding (NLU) 46
natural language understanding (NLU)

module 328
NER datasets

URL 73
News Aggregator dataset 151
normalization 55

[358]

P
padding 58-60
Parts-of-Speech (POS) tagging 26-30

data, modeling with 30, 31
penalties

coverage normalization 218-220
decoding, with beam search 218
length normalization 218

performance optimization
with tf.data 61

Porter stemmer 31
prebuilt BERT classification model 139-141
pre-process IMDb dataset 291-294
pre-trained embedding matrix

creating, with GloVe embeddings 115, 116
pre-trained GloVe embeddings

loading 114, 115
pre-training 106

Q
question-answering setting 340

R
ragged tensors 59
re3d

URL 73
Recall-Oriented Understudy for Gisting

Evaluation (ROUGE) 221
Recurrent Neural Networks (RNNs) 7

building blocks 48, 49
representation learning 40
ResNet50

image feature extraction, performing
with 245-249

image processing with 239
root morpheme 32
ROUGE metric

evaluating 221-224
ROUGE-L 222
ROUGE-N 221
ROUGE-S 222
ROUGE-W 222

S
segmentation 13, 15

in Japanese 13-18
self-attention 126
sentence compression 186
sentiment classification, with LSTMs 51, 52

data, loading 52-55
seq2seq model 123

building, with attention layer 193
seq2seq model, with attention layer

Bahdanau attention layer 197-202
building 193, 194
Decoder model 199
Encoder layer 194-197

sequential learning 109, 110
Skip-gram Negative Sampling (SGNS) 41
Snorkel

used, for weakly supervised
labelling 300-304

sparse representations 38
Stanford Question Answering Dataset

(SQuAD) 3, 341
state-of-the-art approach 224, 225
state-of-the-art models 281, 282
stemming 31-33
Stochastic Gradient Descent (SGD) 174
stop word removal 20-25
stride length 240
subject matter experts (SMEs) 287
subword tokenization 132
subword tokenizer 294, 295
summaries

generating 207-210

T
tasks 107
teacher forcing process 200
temperature 167
Term Frequency - Inverse Document

Frequency (TF-IDF) 37, 38
Term Frequency (TF) 37
text generation

character-based approach 150
data loading 151, 152

[359]

data normalization 152-154
data pre-processing 151, 152
data tokenization 152-154
GPT-2 model, using 177-183
improving, with greedy search 164-171

text normalization 8-10
normalized data, modeling 11-13
stop word removal 20-24
tokenization 13

text processing workflow 2
data collection 2, 3
data labeling 2, 3
stages 2
text normalization 8
text vectorization 33

text summaries
data loading 188, 189
data pre-processing 188, 189
data tokenization 190-193
data vectorization 190-193
evaluating 221
generating 207
overview 186, 188

text summaries, approaches
abstractive summarization 186
extractive summarization 186

text vectorization 33, 34
count-based vectorization 34
Term Frequency - Inverse Document

Frequency (TF-IDF) 37
word vectors 40

TF-IDF features
used, for modeling 39

tokenization 55, 58
tokenized data

modeling 19, 20
tokenizer 56
Top-K sampling

using, for text generation 181-183
transfer learning

considerations 106
overview 106
types 107

transfer learning, types
domain adaptation 107, 108
multi-task learning 108, 109
sequential learning 109, 110

Transformer architecture 123
Transformer model 125, 249-251

creating 263, 264
Decoder 260-263
masks 251-253
multi-head attention 253-256
positional encoding 251-253
scaled dot-product 253-256
training, with VisualEncoder 264
VisualEncoder 257-260

Transformer model, training with
VisualEncoder 264

checkpoints 270, 271
custom learning rate schedule 268, 269
custom training 272-274
instantiating 267, 268
loss function 270
masks 270, 271
metrics 270
training data, loading 265, 267

U
Universal POS (UPOS) tags 26
unsupervised labels

generating, unlabeled data 319-322

V
vectorization 55
Visual Commonsense Reasoning (VCR) 230

URL 230
visual grounding 231
Visual Question Answering (VQA) 229

URL 229
VisualEncoder

Transformer model, training with 264
Viterbi decoder 99
Viterbi decoding 99, 100

first word label probability 101-103

[360]

W
weakly supervised data, from Snorkel

BiLSTM baseline model, training on 322-324
weakly supervised labelling

with Snorkel 300-304
weakly supervised labels

evaluating, on training data set 314-318
using, to improve IMDb sentiment

analysis 290
weak supervision 286-288
Windows Subsystem for Linux (WSL) 152
Word2Vec embeddings

using, with pretrained models 42, 43
WordPiece tokenization 132
word vectors 40, 41

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Essentials of NLP
	A typical text processing workflow
	Data collection and labeling
	Collecting labeled data
	Development environment setup

	Enabling GPUs on Google Colab

	Text normalization
	Modeling normalized data
	Tokenization
	Segmentation in Japanese
	Modeling tokenized data

	Stop word removal
	Modeling data with stop words removed

	Part-of-speech tagging
	Modeling data with POS tagging

	Stemming and lemmatization

	Vectorizing text
	Count-based vectorization
	Modeling after count-based vectorization

	Term Frequency-Inverse Document Frequency (TF-IDF)
	Modeling using TF-IDF features

	Word vectors
	Pretrained models using Word2Vec embeddings

	Summary

	Chapter 2: Understanding Sentiment in Natural Language with BiLSTMs
	Natural language understanding
	Bi-directional LSTMs – BiLSTMs
	RNN building blocks
	Long short-term memory (LSTM) networks
	Gated recurrent units (GRUs)
	Sentiment classification with LSTMs
	Loading the data
	Normalization and vectorization
	LSTM model with embeddings
	BiLSTM model

	Summary

	Chapter 3: Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding
	Named Entity Recognition
	The GMB data set

	Loading the data
	Normalizing and vectorizing data
	A BiLSTM model
	Conditional random fields (CRFs)
	NER with BiLSTM and CRFs
	Implementing the custom CRF layer, loss, and model
	A custom CRF model
	A custom loss function for NER using a CRF

	Implementing custom training

	Viterbi decoding
	The probability of the first word label

	Summary

	Chapter 4: Transfer Learning with BERT
	Transfer learning overview
	Types of transfer learning
	Domain adaptation
	Multi-task learning
	Sequential learning

	IMDb sentiment analysis with GloVe embeddings
	GloVe embeddings
	Loading IMDb training data
	Loading pre-trained GloVe embeddings
	Creating a pre-trained embedding matrix using GloVe
	Feature extraction model
	Fine-tuning model

	BERT-based transfer learning
	Encoder-decoder networks
	Attention model
	Transformer model
	The bidirectional encoder representations from transformers (BERT) model
	Tokenization and normalization with BERT
	Pre-built BERT classification model
	Custom model with BERT

	Summary

	Chapter 5: Generating Text with RNNs and GPT-2
	Generating text – one character at a time
	Data loading and pre-processing
	Data normalization and tokenization
	Training the model
	Implementing learning rate decay as custom callback
	Generating text with greedy search

	Generative Pre-Training (GPT-2) model
	Generating text with GPT-2

	Summary

	Chapter 6: Text Summarization with Seq2seq Attention and Transformer Networks
	Overview of text summarization
	Data loading and pre-processing
	Data tokenization and vectorization
	Seq2seq model with attention
	Encoder model
	Bahdanau attention layer
	Decoder model

	Training the model
	Generating summaries
	Greedy search
	Beam search
	Decoding penalties with beam search

	Evaluating summaries
	ROUGE metric evaluation
	Summarization – state of the art
	Summary

	Chapter 7: Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks
	Multi-modal deep learning
	Vision and language tasks

	Image captioning
	MS-COCO dataset for image captioning
	Image processing with CNNs and ResNet50
	CNNs
	Convolutions
	Pooling
	Regularization with dropout
	Residual connections and ResNets

	Image feature extraction with ResNet50
	The Transformer model
	Positional encoding and masks
	Scaled dot-product and multi-head attention
	VisualEncoder
	Decoder
	Transformer

	Training the Transformer model with VisualEncoder
	Loading training data
	Instantiating the Transformer model
	Custom learning rate schedule
	Loss and metrics
	Checkpoints and masks
	Custom training

	Generating captions
	Improving performance and state-of-the-art models
	Summary

	Chapter 8: Weakly Supervised Learning for Classification with Snorkel
	Weak supervision
	Inner workings of weak supervision with labeling functions

	Using weakly supervised labels to improve IMDb sentiment analysis
	Pre-processing the IMDb dataset
	Learning a subword tokenizer
	A BiLSTM baseline model
	Tokenization and vectorizing data
	Training using a BiLSTM model

	Weakly supervised labeling with Snorkel
	Iterating on labeling functions

	Naïve-Bayes model for finding keywords
	Evaluating weakly supervised labels on the training set
	Generating unsupervised labels for unlabeled data
	Training BiLSTM on weakly supervised data from Snorkel

	Summary

	Chapter 9: Building Conversational AI Applications with Deep Learning
	Overview of conversational agents
	Task-oriented or slot-filling systems

	Question-answering and MRC conversational agents
	General conversational agents
	Summary
	Epilogue

	Installation and Setup Instructions for Code
	GitHub location
	Chapter 1 installation instructions
	Chapter 2 installation instructions
	Chapter 3 installation instructions
	Chapter 4 installation instructions
	Chapter 5 installation instructions
	Chapter 6 installation instructions
	Chapter 7 installation instructions
	Chapter 8 installation instructions
	Chapter 9 installation instructions

	Other Books You May Enjoy
	Index

