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Preface
The topic of this book is reinforcement learning (RL), which is a subfield of machine 
learning (ML); it focuses on the general and challenging problem of learning 
optimal behavior in a complex environment. The learning process is driven only by 
the reward value and observations obtained from the environment. This model is 
very general and can be applied to many practical situations, from playing games 
to optimizing complex manufacturing processes.

Due to its flexibility and generality, the field of RL is developing very quickly and 
attracting lots of attention, both from researchers who are trying to improve existing 
methods or create new methods and from practitioners interested in solving their 
problems in the most efficient way.

Why I wrote this book
This book was written as an attempt to fill the obvious gap in practical and 
structured information about RL methods and approaches. On the one hand, 
there is lots of research activity all around the world. New research papers are 
being published almost every day, and a large portion of deep learning (DL) 
conferences, such as Neural Information Processing Systems (NeurIPS) or the 
International Conference on Learning Representations (ICLR), are dedicated 
to RL methods. There are also several large research groups focusing on the 
application of RL methods to robotics, medicine, multi-agent systems, and others.

Information about the recent research is widely available, but it is too specialized 
and abstract to be easily understandable. Even worse is the situation surrounding 
the practical aspect of RL, as it is not always obvious how to make the step from an 
abstract method described in its mathematical-heavy form in a research paper to a 
working implementation solving an actual problem. 
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This makes it hard for somebody interested in the field to get a clear understanding 
of the methods and ideas behind papers and conference talks. There are some very 
good blog posts about various RL aspects that are illustrated with working examples, 
but the limited format of a blog post allows authors to describe only one or two 
methods, without building a complete structured picture and showing how different 
methods are related to each other. This book is my attempt to address this issue.

The approach
Another aspect of the book is its orientation to practice. Every method is 
implemented for various environments, from the very trivial to the quite complex. 
I've tried to make the examples clean and easy to understand, which was made 
possible by the expressiveness and power of PyTorch. On the other hand, the 
complexity and requirements of the examples are oriented to RL hobbyists without 
access to very large computational resources, such as clusters of graphics processing 
units (GPUs) or very powerful workstations. This, I believe, will make the fun-filled 
and exciting RL domain accessible to a much wider audience than just research 
groups or large artificial intelligence companies. This is still deep RL, so access 
to a GPU is highly recommended. Approximately half of the examples in the 
book will benefit from being run on a GPU.

In addition to traditional medium-sized examples of environments used in RL, such 
as Atari games or continuous control problems, the book contains several chapters 
(10, 14, 15, 16, and 18) that contain larger projects, illustrating how RL methods can 
be applied to more complicated environments and tasks. These examples are still 
not full-sized, real-life projects (they would occupy a separate book on their own), 
but just larger problems illustrating how the RL paradigm can be applied to domains 
beyond the well-established benchmarks.

Another thing to note about the examples in the first three parts of the book is 
that I've tried to make them self-contained, with the source code shown in full. 
Sometimes this has led to the repetition of code pieces (for example, the training loop 
is very similar in most of the methods), but I believe that giving you the freedom to 
jump directly into the method you want to learn is more important than avoiding a 
few repetitions. All examples in the book are available on GitHub: https://github.
com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-
Edition, and you're welcome to fork them, experiment, and contribute.

https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
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Who this book is for
The main target audience is people who have some knowledge of ML, but want to 
get a practical understanding of the RL domain. The reader should be familiar with 
Python and the basics of DL and ML. An understanding of statistics and probability 
is an advantage, but is not absolutely essential for understanding most of the 
book's material.

What this book covers
Chapter 1, What Is Reinforcement Learning?, contains an introduction to RL ideas and 
the main formal models.

Chapter 2, OpenAI Gym, introduces the practical aspects of RL, using the open source 
library Gym.

Chapter 3, Deep Learning with PyTorch, gives a quick overview of the PyTorch library.

Chapter 4, The Cross-Entropy Method, introduces one of the simplest methods in RL 
to give you an impression of RL methods and problems.

Chapter 5, Tabular Learning and the Bellman Equation, introduces the value-based 
family of RL methods.

Chapter 6, Deep Q-Networks, describes deep Q-networks (DQNs), an extension of the 
basic value-based methods, allowing us to solve a complicated environment.

Chapter 7, Higher-Level RL Libraries, describes the library PTAN, which we will use 
in the book to simplify the implementations of RL methods.

Chapter 8, DQN Extensions, gives a detailed overview of a modern extension to the 
DQN method, to improve its stability and convergence in complex environments.

Chapter 9, Ways to Speed up RL Methods, provides an overview of ways to make the 
execution of RL code faster.

Chapter 10, Stocks Trading Using RL, is the first practical project and focuses on 
applying the DQN method to stock trading.

Chapter 11, Policy Gradients—an Alternative, introduces another family of RL methods 
that is based on policy learning.

Chapter 12, The Actor-Critic Method, describes one of the most widely used methods 
in RL.
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Chapter 13, Asynchronous Advantage Actor-Critic, extends the actor-critic method with 
parallel environment communication, which improves stability and convergence.

Chapter 14, Training Chatbots with RL, is the second project and shows how to apply 
RL methods to natural language processing problems.

Chapter 15, The TextWorld Environment, covers the application of RL methods to 
interactive fiction games.

Chapter 16, Web Navigation, is another long project that applies RL to web page 
navigation using the MiniWoB set of tasks.

Chapter 17, Continuous Action Space, describes the specifics of environments using 
continuous action spaces and various methods.

Chapter 18, RL in Robotics, covers the application of RL methods to robotics problems. 
In this chapter, I describe the process of building and training a small hardware 
robot with RL methods.

Chapter 19, Trust Regions – PPO, TRPO, ACKTR, and SAC, is yet another chapter 
about continuous action spaces describing the trust region set of methods.

Chapter 20, Black-Box Optimization in RL, shows another set of methods that don't use 
gradients in their explicit form.

Chapter 21, Advanced Exploration, covers different approaches that can be used for 
better exploration of the environment.

Chapter 22, Beyond Model-Free – Imagination, introduces the model-based approach 
to RL and uses recent research results about imagination in RL.

Chapter 23, AlphaGo Zero, describes the AlphaGo Zero method and applies it to the 
game Connect 4.

Chapter 24, RL in Discrete Optimization, describes the application of RL methods to 
the domain of discrete optimization, using the Rubik's Cube as an environment.

Chapter 25, Multi-agent RL, introduces a relatively new direction of RL methods for 
situations with multiple agents.

To get the most out of this book
All the chapters in this book describing RL methods have the same structure: in 
the beginning, we discuss the motivation of the method, its theoretical foundation, 
and the idea behind it. Then, we follow several examples of the method applied to 
different environments with the full source code.



Preface

[ xvii ]

You can use the book in different ways:

1. To quickly become familiar with some method, you can read only the 
introductory part of the relevant chapter

2. To get a deeper understanding of the way the method is implemented, 
you can read the code and the comments around it

3. To gain a deep familiarity with the method (the best way to learn, I believe) 
you can try to reimplement the method and make it work, using the 
provided source code as a reference point

In any case, I hope the book will be useful for you!

Download the example code files
You can download the example code files for this book from your account at www.
packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.
4. Enter the name of the book in the Search box and follow the on-screen 

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-
Edition. In case there's an update to the code, it will be updated on the existing 
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available 
at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com/
http://www.packt.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
https://github.com/PacktPublishing/


Preface

[ xviii ]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838826994_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter 
handles. For example; "Mount the downloaded WebStorm-10*.dmg disk image file as 
another disk in your system."

A block of code is set as follows:

def grads_func(proc_name, net, device, train_queue):
    envs = [make_env() for _ in range(NUM_ENVS)]

    agent = ptan.agent.PolicyAgent(
        lambda x: net(x)[0], device=device, apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        envs, agent, gamma=GAMMA, steps_count=REWARD_STEPS)

    batch = []
    frame_idx = 0
    writer = SummaryWriter(comment=proc_name)

Any command-line input or output is written as follows:

rl_book_samples/Chapter11$ ./02_a3c_grad.py --cuda -n final

Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes, also appear in the text like this. For example: 
"Select System info from the Administration panel."

 Warnings or important notes appear like this.

https://static.packt-cdn.com/downloads/9781838826994_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838826994_ColorImages.pdf
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the 
book title in the subject of your message and email us at customercare@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be grateful 
if you would report this to us. Please visit, www.packtpub.com/support/errata, 
selecting your book, clicking on the Errata Submission Form link, and entering 
the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address or 
website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, 
please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a 
review on the site that you purchased it from? Potential readers can then see and use 
your unbiased opinion to make purchase decisions, we at Packt can understand what 
you think about our products, and our authors can see your feedback on their book. 
Thank you!

For more information about Packt, please visit packt.com.

 Tips and tricks appear like this.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://packt.com
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What Is Reinforcement 
Learning?

Reinforcement learning (RL) is a subfield of machine learning (ML) that 
addresses the problem of the automatic learning of optimal decisions over time. 
This is a general and common problem that has been studied in many scientific 
and engineering fields.

In our changing world, even problems that look like static input-output problems 
can become dynamic if time is taken into account. For example, imagine that you 
want to solve the simple supervised learning problem of pet image classification 
with two target classes—dog and cat. You gather the training dataset and implement 
the classifier using your favorite deep learning (DL) toolkit. After a while, the 
model that has converged demonstrates excellent performance. Great! You deploy 
it and leave it running for a while. However, after a vacation at some seaside resort, 
you return to discover that dog grooming fashions have changed and a significant 
portion of your queries are now misclassified, so you need to update your training 
images and repeat the process again. Not so great!

The preceding example is intended to show that even simple ML problems have 
a hidden time dimension. This is frequently overlooked, but it might become an 
issue in a production system. RL is an approach that natively incorporates an extra 
dimension (which is usually time, but not necessarily) into learning equations. 
This places RL much closer to how people understand artificial intelligence (AI).

In this chapter, we will discuss RL in more detail and you will become familiar 
with the following:

• How RL is related to and differs from other ML disciplines: supervised 
and unsupervised learning
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• What the main RL formalisms are and how they are related to each other
• Theoretical foundations of RL—the Markov decision processes

Supervised learning
You may be familiar with the notion of supervised learning, which is the most 
studied and well-known machine learning problem. Its basic question is, how do you 
automatically build a function that maps some input into some output when given 
a set of example pairs? It sounds simple in those terms, but the problem includes 
many tricky questions that computers have only recently started to address with 
some success. There are lots of examples of supervised learning problems, including 
the following:

• Text classification: Is this email message spam or not?
• Image classification and object location: Does this image contain a picture 

of a cat, dog, or something else?
• Regression problems: Given the information from weather sensors, what 

will be the weather tomorrow?
• Sentiment analysis: What is the customer satisfaction level of this review?

These questions may look different, but they share the same idea—we have many 
examples of input and desired output, and we want to learn how to generate the 
output for some future, currently unseen input. The name supervised comes from the 
fact that we learn from known answers provided by a "ground truth" data source.

Unsupervised learning
At the other extreme, we have the so-called unsupervised learning, which assumes 
no supervision and has no known labels assigned to our data. The main objective is 
to learn some hidden structure of the dataset at hand. One common example of such 
an approach to learning is the clustering of data. This happens when our algorithm 
tries to combine data items into a set of clusters, which can reveal relationships 
in data. For instance, you might want to find similar images or clients with common 
behaviors.

Another unsupervised learning method that is becoming more and more popular 
is generative adversarial networks (GANs). When we have two competing neural 
networks, the first network is trying to generate fake data to fool the second network, 
while the second network is trying to discriminate artificially generated data from 
data sampled from our dataset. Over time, both networks become more and more 
skillful in their tasks by capturing subtle specific patterns in the dataset. 
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Reinforcement learning
RL is the third camp and lies somewhere in between full supervision and a complete 
lack of predefined labels. On the one hand, it uses many well-established methods 
of supervised learning, such as deep neural networks for function approximation, 
stochastic gradient descent, and backpropagation, to learn data representation. 
On the other hand, it usually applies them in a different way.

In the next two sections of the chapter, we will explore specific details of the RL 
approach, including assumptions and abstractions in its strict mathematical form. 
For now, to compare RL with supervised and unsupervised learning, we will take 
a less formal, but more easily understood, path.

Imagine that you have an agent that needs to take actions in some environment. 
(Both "agent" and "environment" will be defined in detail later in this chapter.) 
A robot mouse in a maze is a good example, but you can also imagine an 
automatic helicopter trying to perform a roll, or a chess program learning how 
to beat a grandmaster. Let's go with the robot mouse for simplicity.

Figure 1.1: The robot mouse maze world
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In this case, the environment is a maze with food at some points and electricity at 
others. The robot mouse can take actions, such as turn left/right and move forward. 
At each moment, it can observe the full state of the maze to make a decision about 
the actions to take. The robot mouse tries to find as much food as possible while 
avoiding getting an electric shock whenever possible. These food and electricity 
signals stand as the reward that is given to the agent (robot mouse) by the 
environment as additional feedback about the agent's actions. The reward is a very 
important concept in RL, and we will talk about it later in the chapter. For now, it is 
enough for you to know that the final goal of the agent is to get as much total reward 
as possible. In our particular example, the robot mouse could suffer a slight electric 
shock to get to a place with plenty of food—this would be a better result for the 
robot mouse than just standing still and gaining nothing.

We don't want to hard-code knowledge about the environment and the best actions 
to take in every specific situation into the robot mouse—it will take too much effort 
and may become useless even with a slight maze change. What we want is to have 
some magic set of methods that will allow our robot mouse to learn on its own how 
to avoid electricity and gather as much food as possible. RL is exactly this magic 
toolbox and it behaves differently from supervised and unsupervised learning 
methods; it doesn't work with predefined labels in the way that supervised learning 
does. Nobody labels all the images that the robot sees as good or bad, or gives it the 
best direction to turn in.

However, we're not completely blind as in an unsupervised learning setup—we 
have a reward system. The reward can be positive from gathering the food, negative 
from electric shocks, or neutral when nothing special happens. By observing the 
reward and relating it to the actions taken, our agent learns how to perform an action 
better, gather more food, and get fewer electric shocks. Of course, RL generality 
and flexibility comes with a price. RL is considered to be a much more challenging 
area than supervised or unsupervised learning. Let's quickly discuss what makes 
RL tricky.

RL's complications
The first thing to note is that observation in RL depends on an agent's behavior and, 
to some extent, it is the result of this behavior. If your agent decides to do inefficient 
things, then the observations will tell you nothing about what it has done wrong 
and what should be done to improve the outcome (the agent will just get negative 
feedback all the time). If the agent is stubborn and keeps making mistakes, then 
the observations will give the false impression that there is no way to get a larger 
reward—life is suffering—which could be totally wrong. 
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In ML terms, this can be rephrased as having non-i.i.d. data. The abbreviation i.i.d. 
stands for independent and identically distributed, a requirement for most 
supervised learning methods.

The second thing that complicates our agent's life is that it needs to not only exploit 
the knowledge it has learned, but actively explore the environment, because maybe 
doing things differently will significantly improve the outcome. The problem is that 
too much exploration may also seriously decrease the reward (not to mention the 
agent can actually forget what it has learned before), so we need to find a balance 
between these two activities somehow. This exploration/exploitation dilemma is 
one of the open fundamental questions in RL. People face this choice all the time—
should I go to an already known place for dinner or try this fancy new restaurant? 
How frequently should I change jobs? Should I study a new field or keep working 
in my area? There are no universal answers to these questions.

The third complication factor lies in the fact that reward can be seriously delayed 
after actions. In chess, for example, one single strong move in the middle of the 
game can shift the balance. During learning, we need to discover such causalities, 
which can be tricky to discern during the flow of time and our actions.

However, despite all these obstacles and complications, RL has seen huge 
improvements in recent years and is becoming more and more active as a field 
of research and practical application.

Interested in learning more? Let's dive into the details and look at RL formalisms 
and play rules.

RL formalisms
Every scientific and engineering field has its own assumptions and limitations. In 
the previous section, we discussed supervised learning, in which such assumptions 
are the knowledge of input-output pairs. You have no labels for your data? You need 
to figure out how to obtain labels or try to use some other theory. This doesn't make 
supervised learning good or bad; it just makes it inapplicable to your problem.

There are many historical examples of practical and theoretical breakthroughs that 
have occurred when somebody tried to challenge rules in a creative way. However, 
we also must understand our limitations. It's important to know and understand 
game rules for various methods, as it can save you tons of time in advance. Of 
course, such formalisms exist for RL, and we will spend the rest of this book 
analyzing them from various angles.
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The following diagram shows two major RL entities—agent and environment—
and their communication channels—actions, reward, and observations. We will 
discuss them in detail in the next few sections:

Figure 1.2: RL entities and their communication channels

Reward
Let's return to the notion of reward. In RL, it's just a scalar value we obtain 
periodically from the environment. As mentioned, reward can be positive or 
negative, large or small, but it's just a number. The purpose of reward is to tell our 
agent how well it has behaved. We don't define how frequently the agent receives 
this reward; it can be every second or once in an agent's lifetime, although it's 
common practice to receive rewards every fixed timestamp or at every environment 
interaction, just for convenience. In the case of once-in-a-lifetime reward systems, 
all rewards except the last one will be zero.

As I stated, the purpose of reward is to give an agent feedback about its success, 
and it's a central thing in RL. Basically, the term reinforcement comes from the fact 
that reward obtained by an agent should reinforce its behavior in a positive or 
negative way. Reward is local, meaning that it reflects the success of the agent's 
recent activity and not all the successes achieved by the agent so far. Of course, 
getting a large reward for some action doesn't mean that a second later you won't 
face dramatic consequences as a result of your previous decisions. It's like robbing 
a bank—it could look like a good idea until you think about the consequences.
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What an agent is trying to achieve is the largest accumulated reward over its 
sequence of actions. To give you a better understanding of reward, here is a list 
of some concrete examples with their rewards:

• Financial trading: An amount of profit is a reward for a trader buying 
and selling stocks.

• Chess: Reward is obtained at the end of the game as a win, lose, or draw. 
Of course, it's up to interpretation. For me, for example, achieving a 
draw in a match against a chess grandmaster would be a huge reward. In 
practice, we need to specify the exact reward value, but it could be a fairly 
complicated expression. For instance, in the case of chess, the reward could 
be proportional to the opponent's strength.

• Dopamine system in the brain: There is a part of the brain (limbic system) 
that produces dopamine every time it needs to send a positive signal to 
the rest of the brain. Higher concentrations of dopamine lead to a sense 
of pleasure, which reinforces activities considered by this system to be 
good. Unfortunately, the limbic system is ancient in terms of the things it 
considers good—food, reproduction, and dominance—but that is a totally 
different story!

• Computer games: They usually give obvious feedback to the player, which is 
either the number of enemies killed or a score gathered. Note in this example 
that reward is already accumulated, so the RL reward for arcade games 
should be the derivative of the score, that is, +1 every time a new enemy 
is killed and 0 at all other time steps.

• Web navigation: There are problems, with high practical value, that require 
the automated extraction of information available on the web. Search engines 
are trying to solve this task in general, but sometimes, to get to the data 
you're looking for, you need to fill in some forms or navigate through a series 
of links, or complete CAPTCHAs, which can be difficult for search engines 
to do. There is an RL-based approach to those tasks in which the reward is 
the information or the outcome that you need to get.

• Neural network (NN) architecture search: RL has been successfully applied 
to the domain of NN architecture optimization, where the aim is to get the 
best performance metric on some dataset by tweaking the number of layers 
or their parameters, adding extra bypass connections, or making other 
changes to the NN architecture. The reward in this case is the performance 
(accuracy or another measure showing how accurate the NN predictions are).
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• Dog training: If you have ever tried to train a dog, you know that you need 
to give it something tasty (but not too much) every time it does the thing 
you've asked. It's also common to punish your pet a bit (negative reward) 
when it doesn't follow your orders, although recent studies have shown 
that this isn't as effective as a positive reward.

• School marks: We all have experience here! School marks are a reward 
system designed to give pupils feedback about their studying.

As you can see from the preceding examples, the notion of reward is a very general 
indication of the agent's performance, and it can be found or artificially injected into 
lots of practical problems around us.

The agent
An agent is somebody or something who/that interacts with the environment by 
executing certain actions, making observations, and receiving eventual rewards 
for this. In most practical RL scenarios, the agent is our piece of software that is 
supposed to solve some problem in a more-or-less efficient way. For our initial 
set of six examples, the agents will be as follows:

• Financial trading: A trading system or a trader making decisions about order 
execution

• Chess: A player or a computer program
• Dopamine system: The brain itself, which, according to sensory data, decides 

whether it was a good experience
• Computer games: The player who enjoys the game or the computer program. 

(Andrej Karpathy once tweeted that "we were supposed to make AI do all 
the work and we play games but we do all the work and the AI is playing 
games!")

• Web navigation: The software that tells the browser which links to click on, 
where to move the mouse, or which text to enter

• NN architecture search: The software that controls the concrete architecture 
of the NN being evaluated

• Dog training: You make decisions about the actions (feeding/punishing), 
so, the agent is you

• School: Student/pupil
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The environment
The environment is everything outside of an agent. In the most general sense, it's the 
rest of the universe, but this goes slightly overboard and exceeds the capacity of even 
tomorrow's computers, so we usually follow the general sense here.

The agent's communication with the environment is limited to reward 
(obtained from the environment), actions (executed by the agent and given to 
the environment), and observations (some information besides the reward that the 
agent receives from the environment). We have discussed reward already, so let's 
talk about actions and observations next.

Actions
Actions are things that an agent can do in the environment. Actions can, for 
example, be moves allowed by the rules of play (if it's a game), or doing homework 
(in the case of school). They can be as simple as move pawn one space forward or as 
complicated as fill the tax form in for tomorrow morning.

In RL, we distinguish between two types of actions—discrete or continuous. 
Discrete actions form the finite set of mutually exclusive things an agent can do, such 
as move left or right. Continuous actions have some value attached to them, such as 
a car's action turn the wheel having an angle and direction of steering. Different angles 
could lead to a different scenario a second later, so just turn the wheel is definitely 
not enough.

Observations
Observations of the environment form the second information channel for an agent, 
with the first being reward. You may be wondering why we need a separate data 
source. The answer is convenience. Observations are pieces of information that the 
environment provides the agent with that say what's going on around the agent.

Observations may be relevant to the upcoming reward (such as seeing a bank 
notification about being paid) or may not be. Observations can even include reward 
information in some vague or obfuscated form, such as score numbers on a computer 
game's screen. Score numbers are just pixels, but potentially we could convert them 
into reward values; it's not a big deal with modern DL at hand.

On the other hand, reward shouldn't be seen as a secondary or unimportant 
thing—reward is the main force that drives the agent's learning process. If a reward 
is wrong, noisy, or just slightly off course from the primary objective, then there 
is a chance that training will go in a wrong direction.
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It's also important to distinguish between an environment's state and observations. 
The state of an environment potentially includes every atom in the universe, which 
makes it impossible to measure everything about the environment. Even if we limit 
the environment's state to be small enough, most of the time, it will be either not 
possible to get full information about it or our measurements will contain noise. 
This is completely fine, though, and RL was created to support such cases natively. 
Once again, let's return to our set of examples to capture the difference:

• Financial trading: Here, the environment is the whole financial market and 
everything that influences it. This is a huge list of things, such as the latest 
news, economic and political conditions, weather, food supplies, and Twitter 
trends. Even your decision to stay home today can potentially indirectly 
influence the world's financial system (if you believe in the "butterfly effect"). 
However, our observations are limited to stock prices, news, and so on. We 
don't have access to most of the environment's state, which makes trading 
such a nontrivial thing.

• Chess: The environment here is your board plus your opponent, which 
includes their chess skills, mood, brain state, chosen tactics, and so on. 
Observations are what you see (your current chess position), but, at some 
levels of play, knowledge of psychology and the ability to read an opponent's 
mood could increase your chances.

• Dopamine system: The environment here is your brain plus your nervous 
system and your organs' states plus the whole world you can perceive. 
Observations are the inner brain state and signals coming from your senses.

• Computer game: Here, the environment is your computer's state, including 
all memory and disk data. For networked games, you need to include other 
computers plus all Internet infrastructure between them and your machine. 
Observations are a screen's pixels and sound only. These pixels are not a tiny 
amount of information (somebody calculated that the total number of possible 
moderate-size images (1024×768) is significantly larger than the number of 
atoms in our galaxy), but the whole environment state is definitely larger.

• Web navigation: The environment here is the Internet, including all the 
network infrastructure between the computer on which our agent works 
and the web server, which is a really huge system that includes millions and 
millions of different components. The observation is normally the web page 
that is loaded at the current navigation step.

• NN architecture search: In this example, the environment is fairly simple 
and includes the NN toolkit that performs the particular NN evaluation and 
the dataset that is used to obtain the performance metric. In comparison to 
the Internet, this looks like a tiny toy environment. 
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Observations might be different and include some information about 
testing, such as loss convergence dynamics or other metrics obtained 
from the evaluation step.

• Dog training: Here, the environment is your dog (including its hardly 
observable inner reactions, mood, and life experiences) and everything 
around it, including other dogs and even a cat hiding in a bush. Observations 
are signals from your senses and memory.

• School: The environment here is the school itself, the education system of the 
country, society, and the cultural legacy. Observations are the same as for the 
dog training example—the student's senses and memory.

This is our mise en scène and we will play around with it in the rest of this book. You 
will have already noticed that the RL model is extremely flexible and general, and it 
can be applied to a variety of scenarios. Let's now look at how RL is related to other 
disciplines, before diving into the details of the RL model.

There are many other areas that contribute or relate to RL. The most significant 
are shown in the following diagram, which includes six large domains heavily 
overlapping each other on the methods and specific topics related to decision-
making (shown inside the inner gray circle).

Figure 1.3: Various domains in RL
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At the intersection of all those related, but still different, scientific areas sits RL, 
which is so general and flexible that it can take the best available information from 
these varying domains:

• ML: RL, being a subfield of ML, borrows lots of its machinery, tricks, and 
techniques from ML. Basically, the goal of RL is to learn how an agent should 
behave when it is given imperfect observational data.

• Engineering (especially optimal control): This helps with taking a sequence 
of optimal actions to get the best result.

• Neuroscience: We used the dopamine system as our example, and it has 
been shown that the human brain acts similarly to the RL model.

• Psychology: This studies behavior in various conditions, such as how people 
react and adapt, which is close to the RL topic.

• Economics: One of the important topics is how to maximize reward in terms 
of imperfect knowledge and the changing conditions of the real world.

• Mathematics: This works with idealized systems and also devotes significant 
attention to finding and reaching the optimal conditions in the field of 
operations research.

In the next part of the chapter, you will become familiar with the theoretical 
foundations of RL, which will make it possible to start moving toward the methods 
used to solve the RL problem. The upcoming section is important for understanding 
the rest of the book.

The theoretical foundations of RL
In this section, I will introduce you to the mathematical representation and notation 
of the formalisms (reward, agent, actions, observations, and environment) that we 
just discussed. Then, using this as a knowledge base, we will explore the second-
order notions of the RL language, including state, episode, history, value, and 
gain, which will be used repeatedly to describe different methods later in the book.

Markov decision processes
Before that, we will cover Markov decision processes (MDPs), which will be 
described like a Russian matryoshka doll: we will start from the simplest case 
of a Markov process (MP), then extend that with rewards, which will turn it into 
a Markov reward process. Then, we will put this idea into an extra envelope by 
adding actions, which will lead us to an MDP.
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MPs and MDPs are widely used in computer science and other engineering fields. 
So, reading this chapter will be useful for you not only for RL contexts, but also for 
a much wider range of topics. If you're already familiar with MDPs, then you can 
quickly skim this chapter, paying attention only to the terminology definitions,  
as we will use them later on.

The Markov process
Let's start with the simplest child of the Markov family: the MP, which is also 
known as the Markov chain. Imagine that you have some system in front of you that 
you can only observe. What you observe is called states, and the system can switch 
between states according to some laws of dynamics. Again, you cannot influence the 
system, but can only watch the states changing.

All possible states for a system form a set called the state space. For MPs, we require 
this set of states to be finite (but it can be extremely large to compensate for this 
limitation). Your observations form a sequence of states or a chain (that's why MPs 
are also called Markov chains). For example, looking at the simplest model of the 
weather in some city, we can observe the current day as sunny or rainy, which is our 
state space. A sequence of observations over time forms a chain of states, such as 
[sunny, sunny, rainy, sunny, …], and this is called history.

To call such a system an MP, it needs to fulfill the Markov property, which means 
that the future system dynamics from any state have to depend on this state only. 
The main point of the Markov property is to make every observable state self-
contained to describe the future of the system. In other words, the Markov property 
requires the states of the system to be distinguishable from each other and unique. 
In this case, only one state is required to model the future dynamics of the system 
and not the whole history or, say, the last N states.

In the case of our toy weather example, the Markov property limits our model to 
represent only the cases when a sunny day can be followed by a rainy one with the 
same probability, regardless of the amount of sunny days we've seen in the past. 
It's not a very realistic model, as from common sense we know that the chance of 
rain tomorrow depends not only on the current conditions but on a large number 
of other factors, such as the season, our latitude, and the presence of mountains and 
sea nearby. It was recently proven that even solar activity has a major influence on 
the weather. So, our example is really naïve, but it's important to understand the 
limitations and make conscious decisions about them.

Of course, if we want to make our model more complex, we can always do this 
by extending our state space, which will allow us to capture more dependencies 
in the model at the cost of a larger state space. For example, if you want to capture 
separately the probability of rainy days during summer and winter, then you can 
include the season in your state. 
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In this case, your state space will be [sunny+summer, sunny+winter, rainy+summer, 
rainy+winter] and so on.

As your system model complies with the Markov property, you can capture transition 
probabilities with a transition matrix, which is a square matrix of the size N×N, where 
N is the number of states in our model. Every cell in a row, i, and a column, j, in the 
matrix contains the probability of the system to transition from state i to state j.

For example, in our sunny/rainy example, the transition matrix could be as follows:

Sunny Rainy

Sunny 0.8 0.2
Rainy 0.1 0.9

In this case, if we have a sunny day, then there is an 80% chance that the next day 
will be sunny and a 20% chance that the next day will be rainy. If we observe a rainy 
day, then there is a 10% probability that the weather will become better and a 90% 
probability of the next day being rainy.

So, that's it. The formal definition of an MP is as follows:

• A set of states (S) that a system can be in
• A transition matrix (T), with transition probabilities, which defines the 

system dynamics

A useful visual representation of an MP is a graph with nodes corresponding to 
system states and edges, labeled with probabilities representing a possible transition 
from state to state. If the probability of a transition is 0, we don't draw an edge (there 
is no way to go from one state to another). This kind of representation is also widely 
used in finite state machine representation, which is studied in automata theory.

Figure 1.4: The sunny/rainy weather model
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Again, we're talking about observation only. There is no way for us to influence the 
weather, so we just observe it and record our observations.

To give you a more complicated example, let's consider another model called office 
worker (Dilbert, the main character in Scott Adams' famous cartoons, is a good 
example). His state space in our example has the following states:

• Home: He's not at the office
• Computer: He's working on his computer at the office
• Coffee: He's drinking coffee at the office
• Chatting: He's discussing something with colleagues at the office

The state transition graph looks like this:

Figure 1.5: The state transition graph for our office worker

We assume that our office worker's weekday usually starts from the Home state and 
that he starts his day with Coffee without exception (no 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐇𝐇𝐇𝐇𝐂𝐂𝐂𝐂𝐂𝐂𝐇𝐇𝐂𝐂  edge 
and no 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂  edge). The preceding diagram also shows that workdays 
always end (that is, going to the Home state) from the Computer state.

The transition matrix for the preceding diagram is as follows:

Home Coffee Chat Computer

Home 60% 40% 0% 0%
Coffee 0% 10% 70% 20%
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Chat 0% 20% 50% 30%
Computer 20% 20% 10% 50%

The transition probabilities could be placed directly on the state transition graph, as 
shown here:

Figure 1.6: The state transition graph with transition probabilities

In practice, we rarely have the luxury of knowing the exact transition matrix. A much 
more real-world situation is when we only have observations of our system's states, 
which are also called episodes:

• 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐇𝐇𝐂𝐂𝐂𝐂𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐇𝐇𝐂𝐂𝐂𝐂𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐇𝐇𝐂𝐂𝐂𝐂𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐇𝐇𝐇𝐇𝐂𝐂𝐂𝐂𝐂𝐂𝐇𝐇𝐂𝐂 → 𝐂𝐂𝐇𝐇𝐇𝐇𝐂𝐂𝐂𝐂𝐂𝐂𝐇𝐇𝐂𝐂 → 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 

• 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 → 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐇𝐇𝐂𝐂𝐂𝐂𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐇𝐇𝐇𝐇𝐂𝐂𝐂𝐂𝐂𝐂𝐇𝐇𝐂𝐂 → 𝐂𝐂𝐇𝐇𝐂𝐂𝐂𝐂𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐇𝐇𝐂𝐂𝐂𝐂𝐇𝐇𝐇𝐇 

It's not complicated to estimate the transition matrix from our observations—we 
just count all the transitions from every state and normalize them to a sum of 1. 
The more observation data we have, the closer our estimation will be to the true 
underlying model.

It's also worth noting that the Markov property implies stationarity (that is, 
the underlying transition distribution for any state does not change over time). 
Nonstationarity means that there is some hidden factor that influences our system 
dynamics, and this factor is not included in observations. However, this contradicts 
the Markov property, which requires the underlying probability distribution to be 
the same for the same state regardless of the transition history. 



Chapter 1

[ 17 ]

It's important to understand the difference between the actual transitions observed in 
an episode and the underlying distribution given in the transition matrix. Concrete 
episodes that we observe are randomly sampled from the distribution of the model, 
so they can differ from episode to episode. However, the probability of the concrete 
transition to be sampled remains the same. If this is not the case, Markov chain 
formalism becomes nonapplicable.

Now we can go further and extend the MP model to make it closer to our RL 
problems. Let's add rewards to the picture!

Markov reward processes
To introduce reward, we need to extend our MP model a bit. First, we need to 
add value to our transition from state to state. We already have probability, but 
probability is being used to capture the dynamics of the system, so now we have 
an extra scalar number without extra burden.

Reward can be represented in various forms. The most general way is to have 
another square matrix, similar to the transition matrix, with reward given for 
transitioning from state i to state j, which reside in row i and column j.

As mentioned, reward can be positive or negative, large or small. In some cases, 
this representation is redundant and can be simplified. For example, if reward 
is given for reaching the state regardless of the previous state, we can keep only 
𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 → 𝐫𝐫𝐬𝐬𝐫𝐫𝐬𝐬𝐫𝐫𝐫𝐫  pairs, which are a more compact representation. However, this is 
applicable only if the reward value depends solely on the target state, which is not 
always the case.

The second thing we're adding to the model is the discount factor 𝛾𝛾  (gamma), which 
is a single number from 0 to 1 (inclusive). The meaning of this will be explained after 
the extra characteristics of our Markov reward process have been defined.

As you will remember, we observe a chain of state transitions in an MP. This is still 
the case for a Markov reward process, but for every transition, we have our extra 
quantity—reward. So now, all our observations have a reward value attached to 
every transition of the system.

For every episode, we define return at the time, t, as this quantity:

𝐺𝐺𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑅𝑅𝑡𝑡+2 +⋯ =∑𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1
∞

𝑘𝑘=0
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Let's try to understand what this means. For every time point, we calculate return 
as a sum of subsequent rewards, but more distant rewards are multiplied by the 
discount factor raised to the power of the number of steps we are away from the 
starting point at t. The discount factor stands for the foresightedness of the agent. 
If gamma equals 1, then return, Gt, just equals a sum of all subsequent rewards 
and corresponds to the agent that has perfect visibility of any subsequent rewards. 
If gamma equals 0, Gt will be just immediate reward without any subsequent state 
and will correspond to absolute short-sightedness.

These extreme values are useful only in corner cases, and most of the time, gamma is 
set to something in between, such as 0.9 or 0.99. In this case, we will look into future 
rewards, but not too far. The value of 𝛾𝛾 = 1  might be applicable in situations of short 
finite episodes.

This gamma parameter is important in RL, and we will meet it a lot in the 
subsequent chapters. For now, think about it as a measure of how far into the future 
we look to estimate the future return. The closer it is to 1, the more steps ahead of us 
we will take into account.

This return quantity is not very useful in practice, as it was defined for every specific 
chain we observed from our Markov reward process, so it can vary widely, even 
for the same state. However, if we go to the extreme and calculate the mathematical 
expectation of return for any state (by averaging a large number of chains), we will 
get a much more useful quantity, which is called the value of the state:

𝑉𝑉(𝑠𝑠) = 𝔼𝔼[𝐺𝐺|𝑆𝑆𝑡𝑡 = 𝑠𝑠] 

This interpretation is simple—for every state, s, the value, V(s), is the average 
(or expected) return we get by following the Markov reward process.

To show this theoretical stuff in practice, let's extend our office worker (Dilbert) 
process with reward and turn it into a Dilbert reward process (DRP). Our reward 
values will be as follows:

• 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 → 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶ 1  (as it's good to be home)
• 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 → 𝐂𝐂𝐇𝐇𝐂𝐂𝐂𝐂𝐇𝐇𝐇𝐇 ∶ 1 

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ 5  (working hard is a good thing)
• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ −3  (it's not good to be distracted)
• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ 2 

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ 1 

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ 3 
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• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ 1 

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ 2 

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ 1 

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∶ −1  (long conversations become boring)

A diagram of this is shown here:

Figure 1.7: A state transition graph with transition probabilities (dark) and rewards (light)

Let's return to our gamma parameter and think about the values of states with 
different values of gamma. We will start with a simple case: gamma = 0. How do you 
calculate the values of states here? To answer this question, let's fix our state to Chat. 
What could the subsequent transition be? The answer is that it depends on chance. 
According to our transition matrix for the Dilbert process, there is a 50% probability 
that the next state will be Chat again, 20% that it will be Coffee, and 30% that it 
will be Computer. When gamma = 0, our return is equal only to a value of the next 
immediate state. So, if we want to calculate the value of the Chat state, then we need 
to sum all transition values and multiply that by their probabilities:

V(chat) = –1 * 0.5 + 2 * 0.3 + 1 * 0.2 = 0.3

V(coffee) = 2 * 0.7 + 1 * 0.1 + 3 * 0.2 = 2.1

V(home) = 1 * 0.6 + 1 * 0.4 = 1.0

V(computer) = 5 * 0.5 + (–3) * 0.1 + 1 * 0.2 + 2 * 0.2 = 2.8



What Is Reinforcement Learning?

[ 20 ]

So, Computer is the most valuable state to be in (if we care only about immediate 
reward), which is not surprising as 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 → 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂  is frequent, has a large 
reward, and the ratio of interruptions is not too high.

Now a trickier question—what's the value when gamma = 1? Think about this 
carefully. The answer is that the value is infinite for all states. Our diagram doesn't 
contain sink states (states without outgoing transitions), and when our discount 
equals 1, we care about a potentially infinite number of transitions in the future. 
As you've seen in the case of gamma = 0, all our values are positive in the short 
term, so the sum of the infinite number of positive values will give us an infinite 
value, regardless of the starting state.

This infinite result shows us one of the reasons to introduce gamma into a Markov 
reward process instead of just summing all future rewards. In most cases, the 
process can have an infinite (or large) amount of transitions. As it is not very 
practical to deal with infinite values, we would like to limit the horizon we calculate 
values for. Gamma with a value less than 1 provides such a limitation, and we 
will discuss this later in this book. On the other hand, if you're dealing with finite-
horizon environments (for example, the tic-tac-toe game, which is limited by at most 
nine steps), then it will be fine to use gamma = 1. As another example, there is an 
important class of environments with only one step called the multi-armed bandit 
MDP. This means that on every step, you need to make a selection of one alternative 
action, which provides you with some reward and the episode ends.

As I already mentioned about the Markov reward process, gamma is usually set to 
a value between 0 and 1. However, with such values, it becomes almost impossible 
to calculate them accurately by hand, even for Markov reward processes as small 
as our Dilbert example, because it will require summing hundreds of values. 
Computers are good at tedious tasks such as this, and there are several simple 
methods that can quickly calculate values for Markov reward processes for given 
transition and reward matrices. We will see and even implement one such method 
in Chapter 5, Tabular Learning and the Bellman Equation, when we will start looking 
at Q-learning methods.

For now, let's put another layer of complexity around our Markov reward processes 
and introduce the final missing piece: actions.

Adding actions
You may already have ideas about how to extend our Markov reward process to 
include actions. Firstly, we must add a set of actions (A), which has to be finite. This 
is our agent's action space. Secondly, we need to condition our transition matrix 
with actions, which basically means that our matrix needs an extra action dimension, 
which turns it into a cube.
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If you remember, in the case of MPs and Markov reward processes, the transition 
matrix had a square form, with the source state in rows and target state in columns. 
So, every row, i, contained a list of probabilities to jump to every state:

Figure 1.8: The transition matrix in square form

Now the agent no longer passively observes state transitions, but can actively choose 
an action to take at every state transition. So, for every source state, we don't have a 
list of numbers, but we have a matrix, where the depth dimension contains actions 
that the agent can take, and the other dimension is what the target state system will 
jump to after actions are performed by the agent. The following diagram shows 
our new transition table, which became a cube with the source state as the height 
dimension (indexed by i), the target state as the width (j), and the action the agent 
can take as the depth (k) of the transition table:

Figure 1.9: Transition probabilities for the MDP
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So, in general, by choosing an action, the agent can affect the probabilities of the 
target states, which is a useful ability.

To give you an idea of why we need so many complications, let's imagine a small 
robot that lives in a 3×3 grid and can execute the actions turn left, turn right, and go 
forward. The state of the world is the robot's position plus orientation (up, down, left, 
and right), which gives us 3 × 3 × 4 = 36 states (the robot can be at any location in any 
orientation).

Also, imagine that the robot has imperfect motors (which is frequently the case in the 
real world), and when it executes turn left or turn right, there is a 90% chance that the 
desired turn happens, but sometimes, with a 10% probability, the wheel slips and the 
robot's position stays the same. The same happens with go forward—in 90% of cases 
it works, but for the rest (10%) the robot stays at the same position.

In the following illustration, a small part of a transition diagram is shown, displaying 
the possible transitions from the state (1, 1, up), when the robot is in the center of the 
grid and facing up. If the robot tries to move forward, there is a 90% chance that it 
will end up in the state (0, 1, up), but there is a 10% probability that the wheels will 
slip and the target position will remain (1, 1, up).

To properly capture all these details about the environment and possible reactions to 
the agent's actions, the general MDP has a 3D transition matrix with the dimensions 
source state, action, and target state.

Figure 1.10: A grid world environment

Finally, to turn our Markov reward process into an MDP, we need to add actions 
to our reward matrix in the same way that we did with the transition matrix. Our 
reward matrix will depend not only on the state but also on the action. In other 
words, the reward the agent obtains will now depend not only on the state it ends 
up in but also on the action that leads to this state. 
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This is similar to when you put effort into something—you're usually gaining 
skills and knowledge, even if the result of your efforts wasn't too successful. So, the 
reward could be better if you're doing something rather than not doing something, 
even if the final result is the same.

Now, with a formally defined MDP, we're finally ready to cover the most important 
thing for MDPs and RL: policy.

Policy
The simple definition of policy is that it is some set of rules that controls the agent's 
behavior. Even for fairly simple environments, we can have a variety of policies. For 
example, in the preceding example with the robot in the grid world, the agent can 
have different policies, which will lead to different sets of visited states. For example, 
the robot can perform the following actions:

• Blindly move forward regardless of anything
• Try to go around obstacles by checking whether that previous forward action 

failed
• Funnily spin around to entertain its creator
• Choose an action by randomly modeling a drunk robot in the grid world 

scenario

You may remember that the main objective of the agent in RL is to gather as much 
return as possible. So, again, different policies can give us different amounts of 
return, which makes it important to find a good policy. This is why the notion of 
policy is important.

Formally, policy is defined as the probability distribution over actions for every 
possible state:

𝜋𝜋(𝑎𝑎|𝑠𝑠) = 𝑃𝑃[𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠] 

This is defined as probability and not as a concrete action to introduce randomness 
into an agent's behavior. We will talk later in the book about why this is important 
and useful. Deterministic policy is a special case of probabilistics with the needed 
action having 1 as its probability.

Another useful notion is that if our policy is fixed and not changing, then our MDP 
becomes a Markov reward process, as we can reduce the transition and reward 
matrices with a policy's probabilities and get rid of the action dimensions.
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Congratulations on getting to this stage! This chapter was challenging, but it 
was important for understanding subsequent practical material. After two more 
introductory chapters about OpenAI Gym and deep learning, we will finally start 
tackling this question—how do we teach agents to solve practical tasks?

Summary
In this chapter, you started your journey into the RL world by learning what 
makes RL special and how it relates to the supervised and unsupervised learning 
paradigms. We then learned about the basic RL formalisms and how they interact 
with each other, after which we covered MPs, Markov reward processes, and MDPs. 
This knowledge will be the foundation for the material that we will cover in the rest 
of the book.

In the next chapter, we will move away from the formal theory to the practice of 
RL. We will cover the setup required and libraries, and then you will write your 
first agent.
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OpenAI Gym
After talking so much about the theoretical concepts of reinforcement learning (RL) 
in Chapter 1, What Is Reinforcement Learning?, let's start doing something practical! 
In this chapter, you will learn the basics of OpenAI Gym, a library used to provide 
a uniform API for an RL agent and lots of RL environments. This removes the need 
to write boilerplate code.

You will also write your first randomly behaving agent and become more familiar 
with the basic concepts of RL that we have covered so far. By the end of the chapter, 
you will have an understanding of:

• The high-level requirements that need to be implemented to plug the agent 
into the RL framework

• A basic, pure-Python implementation of the random RL agent
• OpenAI Gym

The anatomy of the agent
As you learned in the previous chapter, there are several entities in RL's view of 
the world:

• The agent: A thing, or person, that takes an active role. In practice, the agent 
is some piece of code that implements some policy. Basically, this policy 
decides what action is needed at every time step, given our observations.

• The environment: Some model of the world that is external to the agent 
and has the responsibility of providing observations and giving rewards. 
The environment changes its state based on the agent's actions.



OpenAI Gym

[ 26 ]

Let's explore how both can be implemented in Python for a simple situation. We will 
define an environment that will give the agent random rewards for a limited number 
of steps, regardless of the agent's actions. This scenario is not very useful, but it will 
allow us to focus on specific methods in both the environment and agent classes. 
Let's start with the environment:

class Environment:
    def __init__(self):
        self.steps_left = 10

In the preceding code, we allowed the environment to initialize its internal state. In 
our case, the state is just a counter that limits the number of time steps that the agent 
is allowed to take to interact with the environment.

    def get_observation(self) -> List[float]:
        return [0.0, 0.0, 0.0]

The get_observation()method is supposed to return the current environment's 
observation to the agent. It is usually implemented as some function of the internal 
state of the environment. If you're curious about what is meant by-> List[float], 
that's an example of Python type annotations, which were introduced in Python 
3.5. You can find out more in the documentation at https://docs.python.org/3/
library/typing.html. In our example, the observation vector is always zero, as the 
environment basically has no internal state.

    def get_actions(self) -> List[int]:
        return [0, 1]

The get_actions() method allows the agent to query the set of actions it can 
execute. Normally, the set of actions that the agent can execute does not change 
over time, but some actions can become impossible in different states (for example, 
not every move is possible in any position of the tic-tac-toe game). In our simplistic 
example, there are only two actions that the agent can carry out, which are encoded 
with the integers 0 and 1.

    def is_done(self) -> bool:
        return self.steps_left == 0

The preceding method signaled the end of the episode to the agent. As you saw 
in Chapter 1, What Is Reinforcement Learning?, the series of environment-agent 
interactions is divided into a sequence of steps called episodes. Episodes can be 
finite, like in a game of chess, or infinite, like the Voyager 2 mission (a famous 
space probe that was launched over 40 years ago and has traveled beyond our solar 
system). To cover both scenarios, the environment provides us with a way to detect 
when an episode is over and there is no way to communicate with it anymore.

https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html
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    def action(self, action: int) -> float:
        if self.is_done():
            raise Exception("Game is over")
        self.steps_left -= 1
        return random.random()

The action() method is the central piece in the environment's functionality. It does 
two things – handles an agent's action and returns the reward for this action. In our 
example, the reward is random and its action is discarded. Additionally, we update 
the count of steps and refuse to continue the episodes that are over.

Now when looking at the agent's part, it is much simpler and includes only two 
methods: the constructor and the method that performs one step in the environment:

class Agent:
    def __init__(self):
        self.total_reward = 0.0

In the constructor, we initialize the counter that will keep the total reward 
accumulated by the agent during the episode.

    def step(self, env: Environment):
        current_obs = env.get_observation()
        actions = env.get_actions()
        reward = env.action(random.choice(actions))
        self.total_reward += reward

The step function accepts the environment instance as an argument and allows 
the agent to perform the following actions:

• Observe the environment
• Make a decision about the action to take based on the observations
• Submit the action to the environment
• Get the reward for the current step

For our example, the agent is dull and ignores the observations obtained during the 
decision-making process about which action to take. Instead, every action is selected 
randomly. The final piece is the glue code, which creates both classes and runs 
one episode:

if __name__ == "__main__":
    env = Environment()
    agent = Agent()
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    while not env.is_done():
        agent.step(env)

    print("Total reward got: %.4f" % agent.total_reward)

You can find the preceding code in this book's GitHub repository at https://
github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-
Second-Edition in the Chapter02/01_agent_anatomy.py file. It has no external 
dependencies and should work with any more-or-less modern Python version. 
By running it several times, you'll get different amounts of reward gathered by 
the agent.

The simplicity of the preceding code illustrates the important basic concepts that 
come from the RL model. The environment could be an extremely complicated 
physics model, and an agent could easily be a large neural network (NN) that 
implements the latest RL algorithm, but the basic pattern will stay the same – on 
every step, the agent will take some observations from the environment, do its 
calculations, and select the action to take. The result of this action will be a reward 
and a new observation.

You may ask, if the pattern is the same, why do we need to write it from scratch? 
What if it is already implemented by somebody and could be used as a library? 
Of course, such frameworks exist, but before we spend some time discussing them, 
let's prepare your development environment.

Hardware and software requirements
The examples in this book were implemented and tested using Python version 3.7. 
I assume that you're already familiar with the language and common concepts such 
as virtual environments, so I won't cover in detail how to install the package and 
how to do this in an isolated way. The examples will use the previously mentioned 
Python type annotations, which will allow us to provide type signatures for 
functions and class methods.

The external libraries that we will use in this book are open source software, and 
they include the following:

• NumPy: This is a library for scientific computing, and implementing matrix 
operations and common functions.

• OpenCV Python bindings: This is a computer vision library and provides 
many functions for image processing.

https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
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• Gym: This is an RL framework that has various environments that can 
be communicated with in a unified way.

• PyTorch: This is a flexible and expressive deep learning (DL) library. A short 
crash course on it will be given in Chapter 3, Deep Learning with PyTorch.

• PyTorch Ignite: This is a set of high-level tools on top of PyTorch used 
to reduce boilerplate code. It will be covered briefly in Chapter 3. The full 
documentation is available here: https://pytorch.org/ignite/.

• PTAN (https://github.com/Shmuma/ptan): This is an open source 
extension to Gym that I created to support the modern deep RL methods 
and building blocks. All classes used will be described in detail together 
with the source code.

Other libraries will be used for specific chapters; for example, we will use Microsoft 
TextWorld for solving text-based games, PyBullet for robotic simulations, OpenAI 
Universe for browser-based automation problems, and so on. Those specialized 
chapters will include installation instructions for those libraries.

A significant portion of this book (parts two, three, and four) is focused on the 
modern deep RL methods that have been developed over the past few years. The 
word "deep" in this context means that DL is heavily used. You may be aware that 
DL methods are computationally hungry. One modern graphics processing unit 
(GPU) can be 10 to 100 times faster than even the fastest multiple central processing 
unit (CPU) systems. In practice, this means that the same code that takes one hour 
to train on a system with a GPU could take from half a day to one week even on the 
fastest CPU system. It doesn't mean that you can't try the examples from this book 
without having access to a GPU, but it will take longer. To experiment with the code 
on your own (the most useful way to learn anything), it is better to get access to 
a machine with a GPU. This can be done in various ways:

• Buying a modern GPU suitable for CUDA
• Using cloud instances. Both Amazon Web Services and Google Cloud 

can provide you with GPU-powered instances

• Google Colab offers free GPU access to its Jupyter notebooks

The instructions on how to set up the system are beyond the scope of this book, but 
there are plenty of manuals available on the Internet. In terms of an operating system 
(OS), you should use Linux or macOS. Windows is supported by PyTorch and Gym, 
but the examples in the book were not fully tested under Windows OS.

https://pytorch.org/ignite/
https://github.com/Shmuma/ptan
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To give you the exact versions of the external dependencies that we will use 
throughout the book, here is an output of the pip freeze command (it may be useful 
for the potential troubleshooting of examples in the book, as open source software 
and DL toolkits are evolving extremely quickly):

atari-py==0.2.6

gym==0.15.3

numpy==1.17.2

opencv-python==4.1.1.26

tensorboard==2.0.1

torch==1.3.0

torchvision==0.4.1

pytorch-ignite==0.2.1

tensorboardX==1.9

tensorflow==2.0.0

ptan==0.6

All the examples in the book were written and tested with PyTorch 1.3, which can 
be installed by following the instructions on the http://pytorch.org website 
(normally, that's just the conda install pytorch torchvision -c pytorch 
command).

Now, let's go into the details of the OpenAI Gym API, which provides us with tons 
of environments, from trivial to challenging ones.

The OpenAI Gym API
The Python library called Gym was developed and has been maintained by 
OpenAI (www.openai.com). The main goal of Gym is to provide a rich collection 
of environments for RL experiments using a unified interface. So, it is not surprising 
that the central class in the library is an environment, which is called Env. Instances 
of this class expose several methods and fields that provide the required information 
about its capabilities. At a high level, every environment provides these pieces of 
information and functionality:

• A set of actions that is allowed to be executed in the environment. Gym 
supports both discrete and continuous actions, as well as their combination

• The shape and boundaries of the observations that the environment provides 
the agent with

http://pytorch.org
http://www.openai.com
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• A method called step to execute an action, which returns the current 
observation, the reward, and the indication that the episode is over

• A method called reset, which returns the environment to its initial state 
and obtains the first observation

Let's now talk about these components of the environment in detail.

The action space
As mentioned, the actions that an agent can execute can be discrete, continuous, or 
a combination of the two. Discrete actions are a fixed set of things that an agent can 
do, for example, directions in a grid like left, right, up, or down. Another example 
is a push button, which could be either pressed or released. Both states are mutually 
exclusive, because a main characteristic of a discrete action space is that only one 
action from a finite set of actions is possible.

A continuous action has a value attached to it, for example, a steering wheel, which 
can be turned at a specific angle, or an accelerator pedal, which can be pressed with 
different levels of force. A description of a continuous action includes the boundaries 
of the value that the action could have. In the case of a steering wheel, it could be 
from −720 degrees to 720 degrees. For an accelerator pedal, it's usually from 0 to 1.

Of course, we are not limited to a single action; the environment could take multiple 
actions, such as pushing multiple buttons simultaneously or steering the wheel and 
pressing two pedals (the brake and the accelerator). To support such cases, Gym 
defines a special container class that allows the nesting of several action spaces into 
one unified action.

The observation space
As mentioned in Chapter 1, What Is Reinforcement Learning?, observations are pieces 
of information that an environment provides the agent with, on every timestamp, 
besides the reward. Observations can be as simple as a bunch of numbers or as 
complex as several multidimensional tensors containing color images from several 
cameras. An observation can even be discrete, much like action spaces. An example 
of a discrete observation space is a lightbulb, which could be in two states – on or off, 
given to us as a Boolean value.
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So, you can see the similarity between actions and observations, and how they have 
found their representation in Gym's classes. Let's look at a class diagram:

Figure 2.1: The hierarchy of the Space class in Gym

The basic abstract class Space includes two methods that are relevant to us:

• sample(): This returns a random sample from the space
• contains(x): This checks whether the argument, x, belongs to the space's 

domain

Both of these methods are abstract and reimplemented in each of the Space 
subclasses:

• The Discrete class represents a mutually exclusive set of items, numbered 
from 0 to n – 1. Its only field, n, is a count of the items it describes. For 
example, Discrete(n=4) can be used for an action space of four directions 
to move in [left, right, up, or down].

• The Box class represents an n-dimensional tensor of rational numbers 
with intervals [low, high]. For instance, this could be an accelerator pedal 
with one single value between 0.0 and 1.0, which could be encoded by 
Box(low=0.0, high=1.0, shape=(1,), dtype=np.float32)(the shape 
argument is assigned a tuple of length 1 with a single value of 1, which 
gives us a one-dimensional tensor with a single value). The dtype parameter 
specifies the space's value type and here we specify it as a NumPy 32-bit 
float. Another example of Box could be an Atari screen observation (we 
will cover lots of Atari environments later), which is an RGB (red, green, 
and blue) image of size 210×160: Box(low=0, high=255, shape=(210, 160, 
3), dtype=np.uint8). In this case, the shape argument is a tuple of three 
elements: the first dimension is the height of the image, the second is the 
width, and the third equals 3, which all correspond to three color planes 
for red, green, and blue, respectively. So, in total, every observation is 
a three-dimensional tensor with 100,800 bytes.
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• The final child of Space is a Tuple class, which allows us to combine 
several Space class instances together. This enables us to create action 
and observation spaces of any complexity that we want. For example, 
imagine we want to create an action space specification for a car. The car 
has several controls that can be changed at every timestamp, including the 
steering wheel angle, brake pedal position, and accelerator pedal position. 
These three controls can be specified by three float values in one single Box 
instance. Besides these essential controls, the car has extra discrete controls, 
like a turn signal (which could be off, right, or left) or horn (on or off). To 
combine all of this into one action space specification class, we can create 
Tuple(spaces=(Box(low=-1.0, high=1.0, shape=(3,), dtype=np.
float32), Discrete(n=3),Discrete(n=2))). This flexibility is rarely used; 
for example, in this book, you will see only the Box and Discrete actions 
and observation spaces, but the Tuple class can be useful in some cases.

There are other Space subclasses defined in Gym, but the preceding three are the 
most useful ones. All subclasses implement the sample() and contains() methods. 
The sample() function performs a random sample corresponding to the Space class 
and parameters. This is mostly useful for action spaces, when we need to choose the 
random action. The contains() method verifies that the given arguments comply 
with the Space parameters, and it is used in the internals of Gym to check an agent's 
actions for sanity. For example, Discrete.sample() returns a random element from 
a discrete range, and Box.sample() will be a random tensor with proper dimensions 
and values lying inside the given range.

Every environment has two members of type Space: the action_space and 
observation_space. This allows us to create generic code that could work with 
any environment. Of course, dealing with the pixels of the screen is different from 
handling discrete observations (as in the former case, we may want to preprocess 
images with convolutional layers or with other methods from the computer vision 
toolbox); so, most of the time, this means optimizing the code for a particular 
environment or group of environments, but Gym doesn't prevent us from writing 
generic code.

The environment
The environment is represented in Gym by the Env class, as mentioned earlier, which 
has the following members:

• action_space: This is the field of the Space class and provides 
a specification for allowed actions in the environment.
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• observation_space: This field has the same Space class, but specifies the 
observations provided by the environment.

• reset(): This resets the environment to its initial state, returning the initial 
observation vector.

• step(): This method allows the agent to take the action and returns 
information about the outcome of the action – the next observation, the local 
reward, and the end-of-episode flag. This method is a bit complicated and we 
we will look at it in detail later in this section.

There are extra utility methods in the Env class, such as render(), which allows 
us to obtain the observation in a human-friendly form, but we won't use them. You 
can find the full list in Gym's documentation, but let's focus on the core Env methods: 
reset() and step().

So far, you have seen how our code can get information about the environment's 
actions and observations, so now you need to get familiar with actioning itself. 
Communications with the environment are performed via step and reset.

As reset is much simpler, we will start with it. The reset() method has no 
arguments; it instructs an environment to reset into its initial state and obtain 
the initial observation. Note that you have to call reset() after the creation of 
the environment. As you may remember from Chapter 1, What Is Reinforcement 
Learning?, the agent's communication with the environment may have an end (like 
a "Game Over" screen). Such sessions are called episodes, and after the end of the 
episode, an agent needs to start over. The value returned by this method is the first 
observation of the environment.

The step() method is the central piece in the environment's functionality. It does 
several things in one call, which are as follows:

• Telling the environment which action we will execute on the next step
• Getting the new observation from the environment after this action
• Getting the reward the agent gained with this step
• Getting the indication that the episode is over

The first item (action) is passed as the only argument to this method, and the rest are 
returned by the step() method. Precisely, this is a tuple (Python tuple and not the 
Tuple class we discussed in the previous section) of four elements (observation, 
reward, done, and info). They have these types and meanings:

• observation: This is a NumPy vector or a matrix with observation data.
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• reward: This is the float value of the reward.
• done: This is a Boolean indicator, which is True when the episode is over.
• info: This could be anything environment-specific with extra information 

about the environment. The usual practice is to ignore this value in general 
RL methods (not taking into account the specific details of the particular 
environment).

You may have already got the idea of environment usage in an agent's code – in 
a loop, we call the step() method with an action to perform until this method's 
done flag becomes True. Then we can call reset() to start over. There is only one 
piece missing – how we create Env objects in the first place.

Creating an environment
Every environment has a unique name of the EnvironmentName-vN form, 
where N is the number used to distinguish between different versions of the same 
environment (when, for example, some bugs get fixed or some other major changes 
are made). To create an environment, the gym package provides the make(env_name) 
function, whose only argument is the environment's name in string form.

At the time of writing, Gym version 0.13.1 contains 859 environments with different 
names. Of course, all of those are not unique environments, as this list includes all 
versions of an environment. Additionally, the same environment can have different 
variations in the settings and observations spaces. For example, the Atari game 
Breakout has these environment names:

• Breakout-v0, Breakout-v4: The original Breakout with a random initial 
position and direction of the ball

• BreakoutDeterministic-v0, BreakoutDeterministic-v4: Breakout with the 
same initial placement and speed vector of the ball

• BreakoutNoFrameskip-v0, BreakoutNoFrameskip-v4: Breakout with every 
frame displayed to the agent

• Breakout-ram-v0, Breakout-ram-v4: Breakout with the observation of the full 
Atari emulation memory (128 bytes) instead of screen pixels

• Breakout-ramDeterministic-v0, Breakout-ramDeterministic-v4
• Breakout-ramNoFrameskip-v0, Breakout-ramNoFrameskip-v4
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In total, there are 12 environments for good old Breakout. In case you've never seen 
it before, here is a screenshot of its gameplay:

Figure 2.2: The gameplay of Breakout

Even after the removal of such duplicates, Gym 0.13.1 comes with an impressive list 
of 154 unique environments, which can be divided into several groups:

• Classic control problems: These are toy tasks that are used in optimal control 
theory and RL papers as benchmarks or demonstrations. They are usually 
simple, with low-dimension observation and action spaces, but they are 
useful as quick checks when implementing algorithms. Think about them as 
the "MNIST for RL" (MNIST is a handwriting digit recognition dataset from 
Yann LeCun, which you can find at http://yann.lecun.com/exdb/mnist/).

• Atari 2600: These are games from the classic game platform from the 1970s. 
There are 63 unique games.

• Algorithmic: These are problems that aim to perform small computation 
tasks, such as copying the observed sequence or adding numbers.

• Board games: These are the games of Go and Hex.
• Box2D: These are environments that use the Box2D physics simulator to 

learn walking or car control.

http://yann.lecun.com/exdb/mnist/
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• MuJoCo: This is another physics simulator used for several continuous 
control problems.

• Parameter tuning: This is RL being used to optimize NN parameters.
• Toy text: These are simple grid world text environments.
• PyGame: These are several environments implemented using the PyGame 

engine.
• Doom: These are nine mini-games implemented on top of ViZDoom.

The full list of environments can be found at https://gym.openai.com/envs or on 
the wiki page in the project's GitHub repository. An even larger set of environments 
is available in OpenAI Universe (currently discontinued by OpenAI), which provides 
general connectors to virtual machines while running Flash and native games, web 
browsers, and other real-world applications. OpenAI Universe extends the Gym 
API, but it follows the same design principles and paradigm. You can check it 
out at https://github.com/openai/universe. We will deal with Universe more 
closely in Chapter 13, Asynchronous Advantage Actor-Critic, in terms of MiniWoB and 
browser automation.

Enough theory! Let's now look at a Python session working with one of Gym's 
environments.

The CartPole session
Let's apply our knowledge and explore one of the simplest RL environments that 
Gym provides.

$ python

Python 3.7.5 |Anaconda, Inc.| (default, Mar 29 2018, 18:21:58)

[GCC 7.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import gym

>>> e = gym.make('CartPole-v0')

Here, we have imported the gym package and created an environment called 
CartPole. This environment is from the classic control group and its gist is to control 
the platform with a stick attached by its bottom part (see the following figure). 

https://gym.openai.com/envs
https://github.com/openai/universe
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The trickiness is that this stick tends to fall right or left and you need to balance it by 
moving the platform to the right or left on every step.

Figure 2.3: The CartPole environment

The observation of this environment is four floating-point numbers containing 
information about the x coordinate of the stick's center of mass, its speed, its angle to 
the platform, and its angular speed. Of course, by applying some math and physics 
knowledge, it won't be complicated to convert these numbers into actions when 
we need to balance the stick, but our problem is this – how do we learn to balance 
this system without knowing the exact meaning of the observed numbers and only 
by getting the reward? The reward in this environment is 1, and it is given on every 
time step. The episode continues until the stick falls, so to get a more accumulated 
reward, we need to balance the platform in a way to avoid the stick falling.

This problem may look difficult, but in just two chapters, we will write the algorithm 
that will easily solve CartPole in minutes, without any idea about what the observed 
numbers mean. We will do it only by trial and error and using a bit of RL magic.

Let's continue with our session.

>>> obs = e.reset()
>>> obs
array([-0.04937814, -0.0266909 , -0.03681807, -0.00468688])

Here, we reset the environment and obtained the first observation (we always need 
to reset the newly created environment). As I said, the observation is four numbers, 
so let's check how we can know this in advance.

>>> e.action_space
Discrete(2)
>>> e.observation_space
Box(4,)
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The action_space field is of the Discrete type, so our actions will be just 0 or 
1, where 0 means pushing the platform to the left and 1 means to the right. The 
observation space is of Box(4,), which means a vector of size 4 with values inside 
the [−inf, inf] interval.

>>> e.step(0)
(array([-0.04991196, -0.22126602, -0.03691181, 0.27615592]), 1.0,
False, {})

Here, we pushed our platform to the left by executing the action 0 and got the tuple 
of four elements:

• A new observation, which is a new vector of four numbers
• A reward of 1.0
• The done flag with value False, which means that the episode is not over yet 

and we are more or less okay
• Extra information about the environment, which is an empty dictionary

Next, we will use the sample() method of the Space class on the action_space and 
observation_space.

>>> e.action_space.sample()
0
>>> e.action_space.sample()
1
>>> e.observation_space.sample()
array([2.06581792e+00, 6.99371255e+37, 3.76012475e-02,
-5.19578481e+37])
>>> e.observation_space.sample()
array([4.6860966e-01, 1.4645028e+38, 8.6090848e-02, 3.0545910e+37])

This method returned a random sample from the underlying space, which in the 
case of our Discrete action space means a random number of 0 or 1, and for the 
observation space means a random vector of four numbers. The random sample 
of the observation space may not look useful, and this is true, but the sample from 
the action space could be used when we are not sure how to perform an action. This 
feature is especially handy because you don't know any RL methods yet, but we still 
want to play around with the Gym environment. Now that you know enough to 
implement your first randomly behaving agent for CartPole, let's do it.
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The random CartPole agent
Although the environment is much more complex than our first example in 
The anatomy of the agent section, the code of the agent is much shorter. This is the 
power of reusability, abstractions, and third-party libraries!

So, here is the code (you can find it in Chapter02/02_cartpole_random.py).

import gym

if __name__ == "__main__":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()

Here, we created the environment and initialized the counter of steps and the reward 
accumulator. On the last line, we reset the environment to obtain the first observation 
(which we will not use, as our agent is stochastic).

    while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break

    print("Episode done in %d steps, total reward %.2f" % (
        total_steps, total_reward))

In this loop, we sampled a random action, then asked the environment to execute 
it and return to us the next observation (obs), the reward, and the done flag. If the 
episode is over, we stop the loop and show how many steps we have taken and 
how much reward has been accumulated. If you start this example, you will see 
something like this (not exactly, though, due to the agent's randomness):

rl_book_samples/Chapter02$ python 02_cartpole_random.py
Episode done in 12 steps, total reward 12.00
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As with the interactive session, the warning is not related to our code, but to Gym's 
internals. On average, our random agent takes 12 to 15 steps before the pole falls 
and the episode ends. Most of the environments in Gym have a "reward boundary," 
which is the average reward that the agent should gain during 100 consecutive 
episodes to "solve" the environment. For CartPole, this boundary is 195, which 
means that, on average, the agent must hold the stick for 195 time steps or longer. 
Using this perspective, our random agent's performance looks poor. However, don't 
be disappointed; we are just at the beginning, and soon you will solve CartPole and 
many other much more interesting and challenging environments.

Extra Gym functionality – wrappers and 
monitors
What we have discussed so far covers two-thirds of the Gym core API and the 
essential functions required to start writing agents. The rest of the API you can live 
without, but it will make your life easier and your code cleaner. So, let's briefly cover 
the rest of the API.

Wrappers
Very frequently, you will want to extend the environment's functionality in some 
generic way. For example, imagine an environment gives you some observations, 
but you want to accumulate them in some buffer and provide to the agent the N 
last observations. This is a common scenario for dynamic computer games, when 
one single frame is just not enough to get the full information about the game state. 
Another example is when you want to be able to crop or preprocess an image's 
pixels to make it more convenient for the agent to digest, or if you want to normalize 
reward scores somehow. There are many such situations that have the same 
structure – you want to "wrap" the existing environment and add some extra logic 
for doing something. Gym provides a convenient framework for these situations – 
the Wrapper class. 
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The class structure is shown in the following diagram.

Figure 2.4: The hierarchy of Wrapper classes in Gym

The Wrapper class inherits the Env class. Its constructor accepts the only argument 
– the instance of the Env class to be "wrapped." To add extra functionality, you need 
to redefine the methods you want to extend, such as step() or reset(). The only 
requirement is to call the original method of the superclass.

To handle more specific requirements, such as a Wrapper class that wants to 
process only observations from the environment, or only actions, there are subclasses 
of Wrapper that allow the filtering of only a specific portion of information. They are 
as follows:

• ObservationWrapper: You need to redefine the observation (obs) method 
of the parent. The obs argument is an observation from the wrapped 
environment, and this method should return the observation that will 
be given to the agent.

• RewardWrapper: This exposes the reward (rew) method, which can modify 
the reward value given to the agent.

• ActionWrapper: You need to override the action (act) method, which can 
tweak the action passed to the wrapped environment by the agent.
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To make it slightly more practical, let's imagine a situation where we want to 
intervene in the stream of actions sent by the agent and, with a probability of 10%, 
replace the current action with a random one. It might look like an unwise thing 
to do, but this simple trick is one of the most practical and powerful methods for 
solving the exploration/exploitation problem that I mentioned briefly in Chapter 1, 
What Is Reinforcement Learning?. By issuing the random actions, we make our agent 
explore the environment and from time to time drift away from the beaten track of 
its policy. This is an easy thing to do using the ActionWrapper class (a full example 
is in Chapter02/03_random_action_wrapper.py).

import gym
from typing import TypeVar
import random

Action = TypeVar('Action')

class RandomActionWrapper(gym.ActionWrapper):
    def __init__(self, env, epsilon=0.1):
        super(RandomActionWrapper, self).__init__(env)
        self.epsilon = epsilon

Here, we initialized our wrapper by calling a parent's __init__ method and saving 
epsilon (the probability of a random action).

    def action(self, action: Action) -> Action:
        if random.random() < self.epsilon:
            print("Random!")
            return self.env.action_space.sample()
        return action

This is a method that we need to override from a parent's class to tweak the agent's 
actions. Every time we roll the die, and with the probability of epsilon, we sample a 
random action from the action space and return it instead of the action the agent has 
sent to us. Note that using action_space and wrapper abstractions, we were able to 
write abstract code, which will work with any environment from Gym. Additionally, 
we must print the message every time we replace the action, just to verify that our 
wrapper is working. In the production code, of course, this won't be necessary.

if __name__ == "__main__":
    env = RandomActionWrapper(gym.make("CartPole-v0"))
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Now it's time to apply our wrapper. We will create a normal CartPole environment 
and pass it to our Wrapper constructor. From here on, we will use our wrapper as 
a normal Env instance, instead of the original CartPole. As the Wrapper class inherits 
the Env class and exposes the same interface, we can nest our wrappers in any 
combination we want. This is a powerful, elegant, and generic solution.

    obs = env.reset()
    total_reward = 0.0

    while True:
        obs, reward, done, _ = env.step(0)
        total_reward += reward
        if done:
            break

    print("Reward got: %.2f" % total_reward)

Here is almost the same code, except that every time we issue the same action, 0, 
our agent is dull and does the same thing. By running the code, you should see that 
the wrapper is indeed working.

rl_book_samples/Chapter02$ python 03_random_actionwrapper.py

Random!

Random!

Random!

Random!

Reward got: 12.00

If you want, you can play with the epsilon parameter on the wrapper's creation 
and verify that randomness improves the agent's score on average.

We should move on now and look at another interesting gem that is hidden inside 
Gym: Monitor.
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Monitor
Another class that you should be aware of is Monitor. It is implemented like 
Wrapper and can write information about your agent's performance in a file, with 
an optional video recording of your agent in action. Some time ago, it was possible 
to upload the result of the Monitor class' recording to the https://gym.openai.
com website and see your agent's position in comparison to other people's results 
(see the following screenshot), but, unfortunately, at the end of August 2017, OpenAI 
decided to shut down this upload functionality and froze all the results. There are 
several alternatives to the original website, but they are not ready yet. I hope this 
situation will be resolved soon, but at the time of writing, it is not possible to check 
your results against those of others.

Just to give you an idea of how the Gym web interface looked, here is the CartPole 
environment leaderboard:

Figure 2.5: The Gym web interface with CartPole submissions

https://gym.openai.com
https://gym.openai.com
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Every submission in the web interface had details about training dynamics. 
For example, the following is my solution for one of Doom's mini-games:

Figure 2.6: Submission dynamics for the DoomDefendLine environment

Despite this, Monitor is still useful, as you can take a look at your agent's life inside 
the environment. So, here is how we add Monitor to our random CartPole agent, 
which is the only difference (the entire code is in Chapter02/04_cartpole_random_
monitor.py).

if __name__ == "__main__":
    env = gym.make("CartPole-v0")
    env = gym.wrappers.Monitor(env, "recording")

The second argument that we pass to Monitor is the name of the directory that it will 
write the results to. This directory shouldn't exist, otherwise your program will fail 
with an exception (to overcome this, you could either remove the existing directory 
or pass the force=True argument to the Monitor class' constructor).

The Monitor class requires the FFmpeg utility to be present on the system, which 
is used to convert captured observations into an output video file. This utility must 
be available, otherwise Monitor will raise an exception. The easiest way to install 
FFmpeg is using your system's package manager, which is OS distribution-specific.
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To start this example, one of these three extra prerequisites should be met:

• The code should be run in an X11 session with the OpenGL extension (GLX)
• The code should be started in an Xvfb virtual display
• You can use X11 forwarding in an SSH connection

The reason for this is video recording, which is done by taking screenshots of the 
window drawn by the environment. Some of the environment uses OpenGL to draw 
its picture, so the graphical mode with OpenGL needs to be present. This could 
be a problem for a virtual machine in the cloud, which physically doesn't have a 
monitor and graphical interface running. To overcome this, there is a special "virtual" 
graphical display, called Xvfb (X11 virtual framebuffer), which basically starts a 
virtual graphical display on the server and forces the program to draw inside it. This 
would be enough to make Monitor happily create the desired videos.

To start your program in the Xvfb environment, you need to have it installed on your 
machine (this usually requires installing the xvfb package) and run the special script, 
xvfb-run:

$ xvfb-run -s "-screen 0 640x480x24" python 04_cartpole_random_monitor.py 
[2017-09-22 12:22:23,446] Making new env: CartPole-v0

[2017-09-22 12:22:23,451] Creating monitor directory recording

[2017-09-22 12:22:23,570] Starting new video recorder writing to 
recording/openaigym.video.0.31179.video000000.mp4

Episode done in 14 steps, total reward 14.00

[2017-09-22 12:22:26,290] Finished writing results. You can upload them 
to the scoreboard via gym.upload('recording')

As you may see from the preceding log, the video has been written successfully, 
so you can peek inside one of your agent's sections by playing it.

Another way to record your agent's actions is to use SSH X11 forwarding, which uses 
the SSH ability to tunnel X11 communications between the X11 client (Python code 
that wants to display some graphical information) and X11 server (software that 
knows how to display this information and has access to your physical display).
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In X11 architecture, the client and the server are separated and can work on different 
machines. To use this approach, you need the following:

1. An X11 server running on your local machine. Linux comes with an X11 
server as a standard component (all desktop environments use X11). On 
a Windows machine, you can set up third-party X11 implementations, such 
as open source VcXsrv (available in https://sourceforge.net/projects/
vcxsrv/).

2. The ability to log into your remote machine via SSH, passing the –X 
command-line option: ssh –X servername. This enables X11 tunneling 
and allows all processes started in this session to use your local display 
for graphics output.

Then, you can start a program that uses the Monitor class and it will display the 
agent's actions, capturing the images in a video file.

Summary
You have started to learn about the practical side of RL! In this chapter, we installed 
OpenAI Gym, with its tons of environments to play with. We studied its basic API 
and created a randomly behaving agent.

You also learned how to extend the functionality of existing environments in 
a modular way and became familiar with a way to record our agent's activity 
using the Monitor class. This will be heavily used in the upcoming chapters.

In the next chapter, we will do a quick DL recap using PyTorch, which is a favorite 
library among DL researchers. Stay tuned.

https://sourceforge.net/projects/vcxsrv/
https://sourceforge.net/projects/vcxsrv/
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Deep Learning with PyTorch
In the previous chapter, you became familiar with open source libraries, which 
provided you with a collection of reinforcement learning (RL) environments. 
However, recent developments in RL, and especially its combination with deep 
learning (DL), now make it possible to solve much more challenging problems 
than ever before. This is partly due to the development of DL methods and tools. 
This chapter is dedicated to one such tool, PyTorch, which enables us to implement 
complex DL models with just a bunch of lines of Python code.

The chapter doesn't pretend to be a complete DL manual, as the field is very wide 
and dynamic; however, we will cover:

• The PyTorch library specifics and implementation details (assuming that you 
are already familiar with DL fundamentals)

• Higher-level libraries on top of PyTorch, with the aim of simplifying 
common DL problems

• The library PyTorch ignite, which will be used in some examples

 Compatibility note

All of the examples in this chapter were updated for the latest 
PyTorch 1.3.0, which has some minor changes in comparison 
to 0.4.0, which was used in the first edition of this book. If you 
are using the old PyTorch, consider upgrading. Throughout this 
chapter, we will discuss the differences that are present in the 
latest version.
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Tensors
A tensor is the fundamental building block of all DL toolkits. The name sounds 
rather mystical, but the underlying idea is that a tensor is a multi-dimensional array. 
Using the analogy of school math, one single number is like a point, which is zero-
dimensional, while a vector is one-dimensional like a line segment, and a matrix is a 
two-dimensional object. Three-dimensional number collections can be represented 
by a parallelepiped of numbers, but they don't have a separate name in the same way 
as a matrix. We can keep the term "tensor" for collections of higher dimensions.

Another thing to note about tensors used in DL is that they are only partially 
related to tensors used in tensor calculus or tensor algebra. In DL, a tensor is any multi-
dimensional array, but in mathematics, a tensor is a mapping between vector spaces, 
which might be represented as a multi-dimensional array in some cases, but has much 
more semantical payload behind it. Mathematicians usually frown at anybody who 
uses well-established mathematical terms to name different things, so be warned!

Figure 3.1: Going from a single number to an n-dimensional tensor

The creation of tensors
If you are familiar with the NumPy library (and you should be), then you 
already know that its central purpose is the handling of multi-dimensional arrays 
in a generic way. In NumPy, such arrays aren't called tensors, but they are, in fact, 
tensors. Tensors are used very widely in scientific computations as generic storage 
for data. For example, a color image could be encoded as a 3D tensor with the 
dimensions of width, height, and color plane.

Apart from dimensions, a tensor is characterized by the type of its elements. 
There are eight types supported by PyTorch: three float types (16-bit, 32-bit, and 
64-bit) and five integer types (8-bit signed, 8-bit unsigned, 16-bit, 32-bit, and 64-
bit). Tensors of different types are represented by different classes, with the most 
commonly used being torch.FloatTensor (corresponding to a 32-bit float), torch.
ByteTensor (an 8-bit unsigned integer), and torch.LongTensor (a 64-bit signed 
integer). The rest can be found in the PyTorch documentation.
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There are three ways to create a tensor in PyTorch:

• By calling a constructor of the required type.
• By converting a NumPy array or a Python list into a tensor. In this case, 

the type will be taken from the array's type.
• By asking PyTorch to create a tensor with specific data for you. For example, 

you can use the torch.zeros() function to create a tensor filled with zero 
values.

To give you examples of these methods, let's look at a simple session:

>>> import torch
>>> import numpy as np
>>> a = torch.FloatTensor(3, 2)
>>> a
tensor([[4.1521e+09,  4.5796e-41],
        [ 1.9949e-20, 3.0774e-41],
        [ 4.4842e-44, 0.0000e+00]])

Here, we imported both PyTorch and NumPy and created an uninitialized 
tensor of size 3×2. By default, PyTorch allocates memory for the tensor, but doesn't 
initialize it with anything. To clear the tensor's content, we need to use its operation:

>>> a.zero_()
tensor([[ 0., 0.],
        [ 0., 0.],
        [ 0., 0.]])

There are two types of operation for tensors: inplace and functional. Inplace 
operations have an underscore appended to their name and operate on the tensor's 
content. After this, the object itself is returned. The functional equivalent creates 
a copy of the tensor with the performed modification, leaving the original tensor 
untouched. Inplace operations are usually more efficient from a performance and 
memory point of view.

Another way to create a tensor by its constructor is to provide a Python iterable 
(for example, a list or tuple), which will be used as the contents of the newly 
created tensor:

>>> torch.FloatTensor([[1,2,3],[3,2,1]])
tensor([[ 1., 2., 3.],
        [ 3., 2., 1.]])

Here, we are creating the same tensor with zeros using NumPy:

>>> n = np.zeros(shape=(3, 2))
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>>> n
array([[ 0., 0.],
       [ 0., 0.],
       [ 0., 0.]])
>>> b = torch.tensor(n)
>>> b
tensor([[ 0., 0.],
        [ 0., 0.],
        [ 0., 0.]], dtype=torch.float64)

The torch.tensor method accepts the NumPy array as an argument and creates 
a tensor of appropriate shape from it. In the preceding example, we created a NumPy 
array initialized by zeros, which created a double (64-bit float) array by default. So, 
the resulting tensor has the DoubleTensor type (which is shown in the preceding 
example with the dtype value). Usually, in DL, double precision is not required and 
it adds an extra memory and performance overhead. Common practice is to use the 
32-bit float type, or even the 16-bit float type, which is more than enough. To create 
such a tensor, you need to specify explicitly the type of NumPy array:

>>> n = np.zeros(shape=(3, 2), dtype=np.float32)
>>> torch.tensor(n)
tensor([[ 0., 0.],
        [ 0., 0.],
        [ 0., 0.]])

As an option, the type of the desired tensor could be provided to the torch.tensor 
function in the dtype argument. However, be careful, since this argument expects to 
get a PyTorch type specification and not the NumPy one. PyTorch types are kept in 
the torch package, for example, torch.float32, torch.uint8.

>>> n = np.zeros(shape=(3,2))
>>> torch.tensor(n, dtype=torch.float32)
tensor([[ 0., 0.],
        [ 0., 0.],
        [ 0., 0.]])

 Compatibility note

The torch.tensor() method and explicit PyTorch type 
specification were added in the 0.4.0 release, and this is a step 
toward the simplification of tensor creation. In previous versions, 
the torch.from_numpy() function was a recommended way 
to convert NumPy arrays, but it had issues with handling the 
combination of the Python list and NumPy arrays. This from_
numpy() function is still present for backward compatibility, but it is 
deprecated in favor of the more flexible torch.tensor() method.
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Scalar tensors
Since the 0.4.0 release, PyTorch has supported zero-dimensional tensors that 
correspond to scalar values (on the left of Figure 1). Such tensors can be the result of 
some operations, such as summing all values in a tensor. Previously, such cases were 
handled by the creation of a one-dimensional (vector) tensor with a single dimension 
equal to one.

This solution worked, but it wasn't very simple, as extra indexation was needed 
to access the value. Now, zero-dimensional tensors are natively supported and 
returned by the appropriate functions, and they can be created by the torch.
tensor() function. For accessing the actual Python value of such a tensor, there 
is the special item() method:

>>> a = torch.tensor([1,2,3])
>>> a
tensor([ 1, 2, 3])
>>> s = a.sum()
>>> s
tensor(6)
>>> s.item()
6
>>> torch.tensor(1)
tensor(1)

Tensor operations
There are lots of operations that you can perform on tensors, and there are too 
many to list them all. Usually, it's enough to search in the PyTorch documentation 
at http://pytorch.org/docs/. I need to mention that besides the inplace 
and functional variants that we already discussed (that is, with and without an 
underscore, like abs() and abs_()), there are two places to look for operations: 
the torch package and the tensor class. In the first case, the function usually 
accepts the tensor as an argument. In the second, it operates on the called tensor.

Most of the time, tensor operations are trying to correspond to their NumPy 
equivalent, so if there is some not-very-specialized function in NumPy, then 
there is a good chance that PyTorch will also have it. Examples are torch.stack(), 
torch.transpose(), and torch.cat().

GPU tensors
PyTorch transparently supports CUDA GPUs, which means that all operations have 
two versions—CPU and GPU—that are automatically selected. The decision is made 
based on the type of tensors that you are operating on. 

http://pytorch.org/docs/
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Every tensor type that I mentioned is for CPU and has its GPU equivalent. The 
only difference is that GPU tensors reside in the torch.cuda package, instead of just 
torch. For example, torch.FloatTensor is a 32-bit float tensor that resides in CPU 
memory, but torch.cuda.FloatTensor is its GPU counterpart.

To convert from CPU to GPU, there is a tensor method, to(device), that creates 
a copy of the tensor to a specified device (this could be CPU or GPU). If the tensor 
is already on the device, nothing happens and the original tensor will be returned. 
The device type can be specified in different ways. First of all, you can just pass a string 
name of the device, which is "cpu" for CPU memory or "cuda" for GPU. A GPU 
device could have an optional device index specified after the colon; for example, the 
second GPU card in the system could be addressed by "cuda:1" (index is zero-based).

Another slightly more efficient way to specify a device in the to() method is 
by using the torch.device class, which accepts the device name and optional 
index. To access the device that your tensor is currently residing in, it has 
a device property.

>>> a = torch.FloatTensor([2,3])
>>> a
tensor([ 2., 3.])
>>> ca = a.to('cuda'); ca
tensor([ 2.,3.], device='cuda:0')

Here, we created a tensor on CPU, then copied it to GPU memory. Both copies can 
be used in computations and all GPU-specific machinery is transparent to the user:

>>> a + 1
tensor([ 3., 4.])
>>> ca + 1
tensor([ 3., 4.], device='cuda:0')
>>> ca.device
device(type='cuda', index=0)

Compatibility note

The to() method and torch.device class were introduced 
in 0.4.0. In previous versions, copying between CPU and GPU 
was performed by separate tensor methods, cpu() and cuda(), 
respectively, which required adding the extra lines of code to 
explicitly convert tensors into their CUDA versions. In the latest 
version, you can create a desired torch.device object at the 
beginning of the program and use to(device) on every tensor that 
you're creating. The old methods in the tensor, cpu() and cuda(), 
are still present and might be handy if you want to ensure that a 
tensor is in CPU or GPU memory regardless of its original location. 
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Gradients
Even with transparent GPU support, all of this dancing with tensors isn't worth 
bothering with without one "killer feature"—the automatic computation of gradients. 
This functionality was originally implemented in the Caffe toolkit and then became 
the de facto standard in DL libraries.

Computing gradients manually was extremely painful to implement and debug, even 
for the simplest neural network (NN). You had to calculate derivatives for all your 
functions, apply the chain rule, and then implement the result of the calculations, 
praying that everything was done right. This could be a very useful exercise for 
understanding the nuts and bolts of DL, but it wasn't something that you wanted 
to repeat over and over again by experimenting with different NN architectures.

Luckily, those days have gone now, much like programming your hardware using 
a soldering iron and vacuum tubes! Now, defining an NN of hundreds of layers 
requires nothing more than assembling it from predefined building blocks or, 
in the extreme case of you doing something fancy, defining the transformation 
expression manually. 

All gradients will be carefully calculated for you, backpropagated, and applied to 
the network. To be able to achieve this, you need to define your network architecture 
in terms of the DL library used, which can be different in the details, but generally 
must be the same—you must define the order in which your network will transform 
inputs to outputs.

Figure 3.2: Data and gradients flowing through the NN

What can make a fundamental difference is how your gradients are calculated. There 
are two approaches:

• Static graph: In this method, you need to define your calculations in advance 
and it won't be possible to change them later. The graph will be processed 
and optimized by the DL library before any computation is made. This model 
is implemented in TensorFlow (<2), Theano, and many other DL toolkits.
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• Dynamic graph: You don't need to define your graph in advance exactly as it 
will be executed; you just need to execute operations that you want to use for 
data transformation on your actual data. During this, the library will record 
the order of the operations performed, and when you ask it to calculate 
gradients, it will unroll its history of operations, accumulating the gradients 
of the network parameters. This method is also called notebook gradients 
and it is implemented in PyTorch, Chainer, and some others.

Both methods have their strengths and weaknesses. For example, static graph is 
usually faster, as all computations can be moved to the GPU, minimizing the data 
transfer overhead. Additionally, in static graph, the library has much more freedom 
in optimizing the order that computations are performed in or even removing parts 
of the graph.

On the other hand, although dynamic graph has a higher computation overhead, 
it gives a developer much more freedom. For example, they can say, "For this piece 
of data, I can apply this network two times, and for this piece of data, I'll use a 
completely different model with gradients clipped by the batch mean." Another 
very appealing strength of the dynamic graph model is that it allows you to express 
your transformation more naturally and in a more "Pythonic" way. In the end, it's 
just a Python library with a bunch of functions, so just call them and let the library 
do the magic.

Tensors and gradients
PyTorch tensors have a built-in gradient calculation and tracking machinery, so all 
you need to do is convert the data into tensors and perform computations using the 
tensor methods and functions provided by torch. Of course, if you need to access 
underlying low-level details, you always can, but most of the time, PyTorch does 
what you're expecting.

There are several attributes related to gradients that every tensor has:

• grad: A property that holds a tensor of the same shape containing computed 
gradients.

 Compatibility note

Since version 1.0, PyTorch has supported the just-in-time 
(JIT) compiler, which takes PyTorch code and exports it into so-
called TorchScript. This is intermediate representation that can be 
executed faster and without Python dependency in a production 
environment.
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• is_leaf: True if this tensor was constructed by the user and False if the 
object is a result of function transformation.

• requires_grad: True if this tensor requires gradients to be calculated. 
This property is inherited from leaf tensors, which get this value from the 
tensor construction step (torch.zeros() or torch.tensor() and so on). By 
default, the constructor has requires_grad=False, so if you want gradients 
to be calculated for your tensor, then you need to explicitly say so.

To make all of this gradient-leaf machinery clearer, let's consider this session:

>>> v1 = torch.tensor([1.0, 1.0], requires_grad=True)
>>> v2 = torch.tensor([2.0, 2.0])

In the preceding code, we created two tensors. The first requires gradients to be 
calculated and the second doesn't.

>>> v_sum = v1 + v2
>>> v_res = (v_sum*2).sum()
>>> v_res

tensor(12., grad_fn=<SumBackward0>)

So, now we have added both vectors element-wise (which is vector [3, 3]), 
doubled every element, and summed them together. The result is a zero-dimensional 
tensor with the value 12. Okay, so this is simple math so far. Now let's look at the 
underlying graph that our expressions created:

Figure 3.3: Graph representation of the expression

If we check the attributes of our tensors, then we will find that v1 and v2 are the 
only leaf nodes and every variable, except v2, requires gradients to be calculated:

>>> v1.is_leaf, v2.is_leaf
(True, True)
>>> v_sum.is_leaf, v_res.is_leaf
(False, False)
>>> v1.requires_grad
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True
>>> v2.requires_grad
False
>>> v_sum.requires_grad
True
>>> v_res.requires_grad
True

Now, let's tell PyTorch to calculate the gradients of our graph:

>>> v_res.backward()
>>> v1.grad

tensor([ 2., 2.])

By calling the backward function, we asked PyTorch to calculate the numerical 
derivative of the v_res variable with respect to any variable that our graph has. 
In other words, what influence do small changes to the v_res variable have on the 
rest of the graph? In our particular example, the value of two in the gradients of v1 
means that by increasing any element of v1 by one, the resulting value of v_res will 
grow by two.

As mentioned, PyTorch calculates gradients only for leaf tensors with requires_
grad=True. Indeed, if we try to check the gradients of v2, we get nothing:

>>> v2.grad

The reason for that is efficiency in terms of computations and memory. In real 
life, our network can have millions of optimized parameters, with hundreds of 
intermediate operations performed on them. During gradient descent optimization, 
we are not interested in gradients of any intermediate matrix multiplication; the only 
things we want to adjust in the model are gradients of loss with respect to model 
parameters (weights). Of course, if you want to calculate the gradients of input 
data (it could be useful if you want to generate some adversarial examples to fool 
the existing NN or adjust pretrained word embeddings), then you can easily do so 
by passing requires_grad=True on tensor creation.

Basically, you now have everything needed to implement your own NN optimizer. 
The rest of this chapter is about extra, convenient functions, which will provide 
you with higher-level building blocks of NN architectures, popular optimization 
algorithms, and common loss functions. However, don't forget that you can easily 
reimplement all of these bells and whistles in any way that you like. This is why 
PyTorch is so popular among DL researchers—for its elegance and flexibility.
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NN building blocks
In the torch.nn package, you will find tons of predefined classes providing you with 
the basic functionality blocks. All of them are designed with practice in mind (for 
example, they support mini-batches, they have sane default values, and the weights 
are properly initialized). All modules follow the convention of callable, which means 
that the instance of any class can act as a function when applied to its arguments. 
For example, the Linear class implements a feed-forward layer with optional bias:

>>> import torch.nn as nn
>>> l = nn.Linear(2, 5)
>>> v = torch.FloatTensor([1, 2])
>>> l(v)
tensor([ 1.0532,  0.6573, -0.3134,  1.1104, -0.4065], grad_
fn=<AddBackward0>)

Here, we created a randomly initialized feed-forward layer, with two inputs and 
five outputs, and applied it to our float tensor. All classes in the torch.nn packages 
inherit from the nn.Module base class, which you can use to implement your own 
higher-level NN blocks. You will see how you can do this in the next section, but, 
for now, let's look at useful methods that all nn.Module children provide. They are 
as follows:

• parameters(): This function returns an iterator of all variables that require 
gradient computation (that is, module weights).

• zero_grad(): This function initializes all gradients of all parameters to zero.
• to(device): This function moves all module parameters to a given device 

(CPU or GPU).

 Compatibility note

Support of gradients calculation in tensors is one of the major 
changes in PyTorch 0.4.0. In previous versions, graph tracking 
and gradients accumulation were done in a separate, very thin 
class, Variable. This worked as a wrapper around the tensor 
and automatically saved the history of computations in order to 
be able to backpropagate. This class is still present in 0.4.0, but it is 
deprecated and will go away soon, so new code should avoid using 
it. From my perspective, this change is great, as the Variable logic 
was really thin, but it still required extra code and the developer's 
attention to wrap and unwrap tensors. Now, gradients are a built-in 
tensor property, which makes the API much cleaner.
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• state_dict(): This function returns the dictionary with all module 
parameters and is useful for model serialization.

• load_state_dict(): This function initializes the module with the state 
dictionary.

The whole list of available classes can be found in the documentation at http://
pytorch.org/docs.

Now, I should mention one very convenient class that allows you to combine other 
layers into the pipe: Sequential. The best way to demonstrate Sequential is 
through an example:

>>> s = nn.Sequential(
... nn.Linear(2, 5),
... nn.ReLU(),
... nn.Linear(5, 20),
... nn.ReLU(),
... nn.Linear(20, 10),
... nn.Dropout(p=0.3),
... nn.Softmax(dim=1))
>>> s
Sequential(
  (0): Linear(in_features=2, out_features=5, bias=True)
  (1): ReLU()
  (2): Linear(in_features=5, out_features=20, bias=True)
  (3): ReLU()
  (4): Linear(in_features=20, out_features=10, bias=True)
  (5): Dropout(p=0.3)
  (6): Softmax()
)

Here, we defined a three-layer NN with softmax on output, applied along dimension 
1 (dimension 0 is batch samples), rectified linear unit (ReLU) nonlinearities, and 
dropout. Let's push something through it:

>>> s(torch.FloatTensor([[1,2]]))
tensor([[0.1115, 0.0702, 0.1115, 0.0870, 0.1115, 0.1115, 0.0908, 
0.0974, 0.0974, 0.1115]], grad_fn=<SoftmaxBackward>)

So, our mini-batch is one example successfully traversed through the network!

http://pytorch.org/docs
http://pytorch.org/docs
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Custom layers
In the previous section, I briefly mentioned the nn.Module class as a base parent for 
all NN building blocks exposed by PyTorch. It's not just a unifying parent for the 
existing layers—it's much more than that. By subclassing the nn.Module class, you 
can create your own building blocks, which can be stacked together, reused later, 
and integrated into the PyTorch framework flawlessly.

At its core, the nn.Module provides quite rich functionality to its children:

• It tracks all submodules that the current module includes. For example, your 
building block can have two feed-forward layers used somehow to perform 
the block's transformation.

• It provides functions to deal with all parameters of the registered 
submodules. You can obtain a full list of the module's parameters 
(parameters() method), zero its gradients (zero_grads() method), move 
to CPU or GPU (to(device) method), serialize and deserialize the module 
(state_dict() and load_state_dict()), and even perform generic 
transformations using your own callable (apply() method).

• It establishes the convention of Module application to data. Every module 
needs to perform its data transformation in the forward() method by 
overriding it.

• There are some more functions, such as the ability to register a hook function 
to tweak module transformation or gradients flow, but they are more for 
advanced use cases.

These functionalities allow us to nest our submodels into higher-level models in 
a unified way, which is extremely useful when dealing with complexity. It could 
be a simple one-layer linear transformation or a 1001-layer residual NN (ResNet) 
monster, but if they follow the conventions of nn.Module, then both of them could 
be handled in the same way. This is very handy for code simplicity and reusability.

To make our life simpler, when following the preceding convention, PyTorch 
authors simplified the creation of modules through careful design and a good dose 
of Python magic. So, to create a custom module, we usually have to do only two 
things—register submodules and implement the forward() method. 
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Let's look at how this can be done for our Sequential example from the previous 
section, but in a more generic and reusable way (full sample is Chapter03/01_
modules.py):

class OurModule(nn.Module):
    def __init__(self, num_inputs, num_classes, dropout_prob=0.3):
        super(OurModule, self).__init__()
        self.pipe = nn.Sequential(
            nn.Linear(num_inputs, 5),
            nn.ReLU(),
            nn.Linear(5, 20),
            nn.ReLU(),
            nn.Linear(20, num_classes),
            nn.Dropout(p=dropout_prob),
            nn.Softmax(dim=1)
        )

This is our module class that inherits nn.Module. In the constructor, we pass three 
parameters: the input size, the output size, and the optional dropout probability. 
The first thing we need to do is call the parent's constructor to let it initialize itself.

In the second step, we need to create an already familiar nn.Sequential with 
a bunch of layers and assign it to our class field named pipe. By assigning a 
Sequential instance to our field, we will automatically register this module (nn.
Sequential inherits from nn.Module, as does everything in the nn package). To 
register it, we don't need to call anything, we just need to assign our submodules to 
fields. After the constructor finishes, all those fields will be registered automatically 
(if you really want to, there is a function in nn.Module to register submodules).

    def forward(self, x):
        return self.pipe(x)

Here, we must override the forward function with our implementation of data 
transformation. As our module is a very simple wrapper around other layers, we 
just need to ask them to transform the data. Note that to apply a module to the data, 
we need to call the module as callable (that is, pretend that the module instance is 
a function and call it with the arguments) and not use the forward() function of 
the nn.Module class. This is because nn.Module overrides the __call__()method, 
which is being used when we treat an instance as callable. This method does some 
nn.Module magic stuff and calls our forward() method. If we call forward() 
directly, we will intervene with the nn.Module duty, which can give wrong results.
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So, that's what we need to do to define our own module. Now, let's use it:

if __name__ == "__main__":
    net = OurModule(num_inputs=2, num_classes=3)
    v = torch.FloatTensor([[2, 3]])
    out = net(v)
    print(net)
    print(out)

We create our module, providing it with the desired number of inputs and outputs, 
then we create a tensor and ask our module to transform it, following the same 
convention of using it as callable. After that, we print our network's structure (nn.
Module overrides __str__() and __repr__()) to represent the inner structure 
in a nice way. The last thing we show is the result of the network's transformation.

The output of our code should look like this:

rl_book_samples/Chapter03$ python 01_modules.py

OurModule(

  (pipe): Sequential(

    (0): Linear(in_features=2, out_features=5, bias=True)

    (1): ReLU()

    (2): Linear(in_features=5, out_features=20, bias=True)

    (3): ReLU()

    (4): Linear(in_features=20, out_features=3, bias=True)

    (5): Dropout(p=0.3, inplace=False)

    (6): Softmax(dim=1)

  )

)

tensor([[0.5436, 0.3243, 0.1322]], grad_fn=<SoftmaxBackward>)

Cuda's availability is True

Data from cuda: tensor([[0.5436, 0.3243, 0.1322]], device='cuda:0', grad_
fn=<CopyBackwards>)

Of course, everything that was said about the dynamic nature of PyTorch is still 
true. The forward() method is called for every batch of data, so if you want to 
do some complex transformations based on the data you need to process, like 
hierarchical softmax or a random choice of network to apply, then nothing can stop 
you from doing so. The count of arguments to your module is also not limited by 
one parameter. So, if you want, you can write a module with multiple required 
parameters and dozens of optional arguments, and it will be fine.



Deep Learning with PyTorch

[ 64 ]

Next, we need to get familiar with two important pieces of the PyTorch library that 
will simplify our lives: loss functions and optimizers.

The final glue – loss functions and 
optimizers
The network that transforms input data into output is not the only thing we need 
for training. We need to define our learning objective, which is to have a function 
that accepts two arguments—the network's output and the desired output. Its 
responsibility is to return to us a single number—how close the network's prediction 
is from the desired result. This function is called the loss function, and its output is 
the loss value. Using the loss value, we calculate gradients of network parameters 
and adjust them to decrease this loss value, which pushes our model to better 
results in the future. Both the loss function and the method of tweaking a network's 
parameters by gradient are so common and exist in so many forms that both of them 
form a significant part of the PyTorch library. Let's start with loss functions.

Loss functions
Loss functions reside in the nn package and are implemented as an nn.Module 
subclass. Usually, they accept two arguments: output from the network (prediction) 
and desired output (ground-truth data, which is also called the label of the data 
sample). At the time of writing, PyTorch 1.3.0 contains 20 different loss functions 
and, of course, nothing stops you from writing any function you want to optimize 
in the explicit form.

The most commonly used standard loss functions are:

• nn.MSELoss: The mean square error between arguments, which is the 
standard loss for regression problems.

• nn.BCELoss and nn.BCEWithLogits: Binary cross-entropy loss. The first 
version expects a single probability value (usually it's the output of the 
Sigmoid layer), while the second version assumes raw scores as input and 
applies Sigmoid itself. The second way is usually more numerically stable 
and efficient. These losses (as their names suggest) are frequently used in 
binary classification problems.

• nn.CrossEntropyLoss and nn.NLLLoss: Famous "maximum likelihood" 
criteria that are used in multi-class classification problems. The first version 
expects raw scores for each class and applies LogSoftmax internally, while 
the second expects to have log probabilities as the input.
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There are other loss functions available and you are always free to write your own 
Module subclass to compare the output and target. Now, let's look at the second 
piece of the optimization process.

Optimizers
The responsibility of the basic optimizer is to take the gradients of model parameters 
and change these parameters in order to decrease the loss value. By decreasing the 
loss value, we are pushing our model toward the desired output, which can give 
us hope for better model performance in the future. Changing parameters may 
sound simple, but there are lots of details here and the optimizer procedure is still 
a hot research topic. In the torch.optim package, PyTorch provides lots of popular 
optimizer implementations and the most widely known are as follows:

• SGD: A vanilla stochastic gradient descent algorithm with an optional 
momentum extension

• RMSprop: An optimizer proposed by Geoffrey Hinton
• Adagrad: An adaptive gradients optimizer
• Adam: A quite successful and popular combination of both RMSprop 

and Adagrad

All optimizers expose the unified interface, which makes it easy to experiment with 
different optimization methods (sometimes the optimization method can really make 
a difference in convergence dynamics and the final result). On construction, you 
need to pass an iterable of tensors, which will be modified during the optimization 
process. The usual practice is to pass the result of the params() call of the upper-
level nn.Module instance, which will return an iterable of all leaf tensors with 
gradients.

Now, let's discuss the common blueprint of a training loop.

for batch_x, batch_y in iterate_batches(data, batch_size=32):   #1
    batch_x_t = torch.tensor(batch_x)                           #2
    batch_y_t = torch.tensor(batch_y)                           #3
    out_t = net(batch_x_t)                                      #4
    loss_t = loss_function(out_t, batch_y_t).                   #5
    loss_t.backward()                                           #6
    optimizer.step()                                            #7
    optimizer.zero_grad()                                       #8

Usually, you iterate over your data over and over again (one iteration over a full 
set of examples is called an epoch). Data is usually too large to fit into CPU or GPU 
memory at once, so it is split into batches of equal size. Every batch includes data 
samples and target labels, and both of them have to be tensors (lines 2 and 3).
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You pass data samples to your network (line 4) and feed its output and target labels 
to the loss function (line 5). The result of the loss function shows the "badness" of the 
network result relative to the target labels. As input to the network and the network's 
weights are tensors, all transformations of your network are nothing more than 
a graph of operations with intermediate tensor instances. The same is true for the 
loss function—its result is also a tensor of one single loss value.

Every tensor in this computation graph remembers its parent, so to calculate 
gradients for the whole network, all you need to do is call the backward() function 
on a loss function result (line 6). The result of this call will be the unrolling of the 
graph of the performed computations and the calculating of gradients for every leaf 
tensor with require_grad=True. Usually, such tensors are our model's parameters, 
such as the weights and biases of feed-forward networks, and convolution filters. 
Every time a gradient is calculated, it is accumulated in the tensor.grad field, so 
one tensor can participate in a transformation multiple times and its gradients will 
be properly summed together. For example, one single recurrent neural network 
(RNN) cell could be applied to multiple input items.

After the loss.backward() call is finished, we have the gradients accumulated, 
and now it's time for the optimizer to do its job—it takes all gradients from the 
parameters we have passed to it on construction and applies them. All this is done 
with the method step() (line 7).

The last, but not least, piece of the training loop is our responsibility to zero gradients 
of parameters. This can be done by calling zero_grad() on our network, but, for 
our convenience, the optimizer also exposes such a call, which does the same thing 
(line 8). Sometimes zero_grad() is placed at the beginning of the training loop, but 
it doesn't matter much.

The preceding scheme is a very flexible way to perform optimization and it can 
fulfill the requirements even in sophisticated research. For example, you can have 
two optimizers tweaking the options of different models on the same data (and this 
is a real-life scenario from generative adversarial network (GAN) training).

So, we are done with the essential functionality of PyTorch required to train NNs. 
This chapter ends with a practical medium-size example to demonstrate all the 
concepts covered, but before we get to it, we need to discuss one important topic 
that is essential for an NN practitioner—monitoring the learning process.
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Monitoring with TensorBoard
If you have ever tried to train an NN on your own, then you will know how painful 
and uncertain it can be. I'm not talking about following the existing tutorials and 
demos, when all the hyperparameters are already tuned for you, but about taking 
some data and creating something from scratch. Even with modern DL high-level 
toolkits, where all best practices, such as proper weights initialization; optimizers' 
betas, gammas, and other options set to sane defaults; and tons of other stuff hidden 
under the hood, there are still lots of decisions that you can make, hence lots of 
things that could go wrong. As a result, your network almost never works from 
the first run and this is something that you should get used to.

Of course, with practice and experience, you will develop a strong intuition about 
the possible causes of problems, but intuition needs input data about what's going 
on inside your network. So, you need to be able to peek inside your training process 
somehow and observe its dynamics. Even small networks (such as tiny MNIST 
tutorial networks) could have hundreds of thousands of parameters with quite 
nonlinear training dynamics.

DL practitioners have developed a list of things that you should observe during your 
training, which usually includes the following:

• Loss value, which normally consists of several components like base loss 
and regularization losses. You should monitor both the total loss and the 
individual components over time.

• Results of validation on training and test datasets.
• Statistics about gradients and weights.
• Values produced by the network. For example, if you are solving 

a classification problem, you definitely want to measure the entropy 
of predicted class probabilities. In the case of a regression problem, 
raw predicted values can give tons of data about the training.

• Learning rates and other hyperparameters, if they are adjusted over time.

The list could be much longer and include domain-specific metrics, such as word 
embedding projections, audio samples, and images generated by GANs. You also 
may want to monitor values related to training speed, like how long an epoch takes, 
to see the effect of your optimizations or problems with hardware.

To make a long story short, you need a generic solution to track lots of values over 
time and represent them for analysis, preferably developed especially for DL (just 
imagine looking at such statistics in an Excel spreadsheet). Luckily, such tools exist 
and we will explore them next.
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TensorBoard 101
When the first edition of this book was written, there wasn't too much choice 
for NN monitoring. As time has passed by and new people and companies have 
become involved with the pursuit of machine learning (ML) and DL, more new 
tools have appeared. In this book, we will still focus on the TensorBoard utility from 
TensorFlow, but you might consider trying other utilities around that.

From the first public version, TensorFlow included a special tool called TensorBoard, 
which was developed to solve the problem we are talking about—how to observe 
and analyze various NN characteristics over training. TensorBoard is a powerful, 
generic solution with a large community and it looks quite pretty:

Figure 3.4: The TensorBoard web interface

From the architecture point of view, TensorBoard is a Python web service that you 
can start on your computer, passing it the directory where your training process 
will save values to be analyzed. Then, you point your browser to TensorBoard's port 
(usually 6006), and it shows you an interactive web interface with values updated 
in real time. It's nice and convenient, especially when your training is performed on 
a remote machine somewhere in the cloud.

Originally, TensorBoard was deployed as a part of TensorFlow, but recently, it has 
been moved to a separate project (it's still being maintained by Google) and it has its 
own package name. However, TensorBoard still uses the TensorFlow data format, so 
to be able to write training statistics from PyTorch optimization, you will need both 
the tensorboard and tensorflow packages installed.
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In theory, this is all you need to start monitoring your networks, as the tensorflow 
package provides you with classes to write the data that TensorBoard will be able 
to read. However, it's not very practical, as those classes are very low level. To 
overcome this, there are several third-party open source libraries that provide a 
convenient high-level interface. One of my favorites, which is used in this book, is 
tensorboardX (https://github.com/lanpa/tensorboardX). It can be installed 
with pip install tensorboardX.

Plotting stuff
To give you an impression of how simple tensorboardX is, let's consider a small 
example that is not related to NNs, but is just about writing stuff into TensorBoard 
(the full example code is in Chapter03/02_tensorboard.py).

import math
from tensorboardX import SummaryWriter

if __name__ == "__main__":
    writer = SummaryWriter()
    funcs = {"sin": math.sin, "cos": math.cos, "tan": math.tan}

We import the required packages, create a writer of data, and define functions 
that we are going to visualize. By default, SummaryWriter will create a unique 
directory under the runs directory for every launch, to be able to compare different 
launches of training. The names of the new directory include the current date and 
time, and the hostname. To override this, you can pass the log_dir argument to 
SummaryWriter. You can also add a suffix to the name of the directory by passing 
a comment option, for example to capture different experiments' semantics, such 
as dropout=0.3 or strong_regularisation.

    for angle in range(-360, 360):
        angle_rad = angle * math.pi / 180
        for name, fun in funcs.items():
            val = fun(angle_rad)
            writer.add_scalar(name, val, angle)

    writer.close()

 Compatibility note

In PyTorch 1.1, experimental support of the TensorBoard 
format was implemented, which makes it unnecessary to have 
tensorboardX installed (for details, check https://pytorch.
org/docs/stable/tensorboard.html). But we will still use 
this third-party package, as PyTorch Ignite depends on it.

https://github.com/lanpa/tensorboardX
https://pytorch.org/docs/stable/tensorboard.html
https://pytorch.org/docs/stable/tensorboard.html
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Here, we loop over angle ranges in degrees, convert them into radians, and calculate 
our functions' values. Every value is added to the writer using the add_scalar 
function, which takes three arguments: the name of the parameter, its value, 
and the current iteration (which has to be an integer).

The last thing we need to do after the loop is close the writer. Note that the writer 
does a periodical flush (by default, every two minutes), so even in the case of 
a lengthy optimization process, you will still see your values.

The result of running this will be zero output on the console, but you will see a new 
directory created inside the runs directory with a single file. To look at the result, 
we need to start TensorBoard:

rl_book_samples/Chapter03$ tensorboard --logdir runs

TensorBoard 2.0.1 at http://127.0.0.1:6006/ (Press CTRL+C to quit)

If you are running TensorBoard on a remote server, you will need to add the 
--bind_all command-line option to make it accessible from the outside. Now 
you can open http://localhost:6006 in your browser to see something like this:

Figure 3.5: Plots produced by the example

The graphs are interactive, so you can hover over them with your mouse to see 
the actual values and select regions to zoom in and look at details. To zoom out, 
double-click inside the graph. If you run your program several times, then you will 
see several items in the Runs list on the left, which can be enabled and disabled in 
any combination, allowing you to compare the dynamics of several optimizations. 
TensorBoard allows you to analyze not only scalar values but also images, audio, 
text data, and embeddings, and it can even show you the structure of your network. 
Refer to the documentation of tensorboardX and tensorboard for all those features.
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Now, it's time to combine everything you learned in this chapter and look at a real 
NN optimization problem using PyTorch.

Example – GAN on Atari images
Almost every book about DL uses the MNIST dataset to show you the power 
of DL, which, over the years, has made this dataset extremely boring, like a fruit 
fly for genetic researchers. To break this tradition, and add a bit more fun to the 
book, I've tried to avoid well-beaten paths and illustrate PyTorch using something 
different. I briefly referred to GANs earlier in the chapter. They were invented and 
popularized by Ian Goodfellow. In this example, we will train a GAN to generate 
screenshots of various Atari games.

The simplest GAN architecture is this: we have two networks and the first works as a 
"cheater" (it is also called the generator), and the other is a "detective" (another name 
is the discriminator). Both networks compete with each other—the generator tries to 
generate fake data, which will be hard for the discriminator to distinguish from your 
dataset, and the discriminator tries to detect the generated data samples. Over time, 
both networks improve their skills—the generator produces more and more realistic 
data samples, and the discriminator invents more sophisticated ways to distinguish 
the fake items.

Practical usage of GANs includes image quality improvement, realistic image 
generation, and feature learning. In our example, practical usefulness is almost zero, 
but it will be a good example of how clean and short PyTorch code can be for quite 
complex models.

So, let's get started. The whole example code is in the file Chapter03/03_atari_
gan.py. Here, we will look at only significant pieces of code, without the import 
section and constants declaration:

class InputWrapper(gym.ObservationWrapper):
    def __init__(self, *args):
        super(InputWrapper, self).__init__(*args)
        assert isinstance(self.observation_space, gym.spaces.Box)
        old_space = self.observation_space
        self.observation_space = gym.spaces.Box(
            self.observation(old_space.low),
            self.observation(old_space.high),
            dtype=np.float32)

    def observation(self, observation):
        new_obs = cv2.resize(
            observation, (IMAGE_SIZE, IMAGE_SIZE))
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        # transform (210, 160, 3) -> (3, 210, 160)
        new_obs = np.moveaxis(new_obs, 2, 0)
        return new_obs.astype(np.float32)

This class is a wrapper around a Gym game, which includes several transformations:

• Resize the input image from 210×160 (the standard Atari resolution) 
to a square size 64×64

• Move the color plane of the image from the last position to the first, to meet 
the PyTorch convention of convolution layers that input a tensor with the 
shape of the channels, height, and width

• Cast the image from bytes to float

Then, we define two nn.Module classes: Discriminator and Generator. The first 
takes our scaled color image as input and, by applying five layers of convolutions, 
converts it into a single number passed through a Sigmoid nonlinearity. The output 
from Sigmoid is interpreted as the probability that Discriminator thinks our input 
image is from the real dataset.

Generator takes as input a vector of random numbers (latent vector) and using the 
"transposed convolution" operation (it is also known as deconvolution) converts 
this vector into a color image of the original resolution. We will not look at those 
classes here as they are lengthy and not very relevant to our example; you can find 
them in the complete example file.

Figure 3.6: Sample screenshots from three Atari games

As input, we will use screenshots from several Atari games played simultaneously 
by a random agent. Figure 3.6 is an example of what the input data looks like and it 
is generated by the following function:

def iterate_batches(envs, batch_size=BATCH_SIZE):
    batch = [e.reset() for e in envs]
    env_gen = iter(lambda: random.choice(envs), None)

    while True:
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        e = next(env_gen)
        obs, reward, is_done, _ = e.step(e.action_space.sample())
        if np.mean(obs) > 0.01:
            batch.append(obs)
        if len(batch) == batch_size:
            # Normalising input between -1 to 1
            batch_np = np.array(batch, dtype=np.float32)
            batch_np *= 2.0 / 255.0 - 1.0
            yield torch.tensor(batch_np)
            batch.clear()
        if is_done:
            e.reset()

This infinitely samples the environment from the provided array, issues random 
actions, and remembers observations in the batch list. When the batch becomes 
of the required size, we normalize the image, convert it to a tensor, and yield from 
the generator. The check for the non-zero mean of the observation is required due 
to a bug in one of the games to prevent the flickering of an image.

Now, let's look at our main function, which prepares models and runs the 
training loop.

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--cuda", default=False, action='store_true',
        help="Enable cuda computation")
    args = parser.parse_args()

    device = torch.device("cuda" if args.cuda else "cpu")
    envs = [
        InputWrapper(gym.make(name))
        for name in ('Breakout-v0', 'AirRaid-v0', 'Pong-v0')
    ]
    input_shape = envs[0].observation_space.shape

Here, we process the command-line arguments (which could be only one 
optional argument, --cuda, enabling the GPU computation mode) and create our 
environment pool with a wrapper applied. This environment array will be passed 
to the iterate_batches function to generate training data.

    net_discr = Discriminator(input_shape=input_shape).to(device)
    net_gener = Generator(output_shape=input_shape).to(device)

    objective = nn.BCELoss()
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    gen_optimizer = optim.Adam(
        params=net_gener.parameters(), lr=LEARNING_RATE,
        betas=(0.5, 0.999))
    dis_optimizer = optim.Adam(
        params=net_discr.parameters(), lr=LEARNING_RATE,
        betas=(0.5, 0.999))
    writer = SummaryWriter()

In this piece, we create our classes—a summary writer, both networks, a loss 
function, and two optimizers. Why two? It's because that's the way that GANs 
get trained: to train the discriminator, we need to show it both real and fake data 
samples with appropriate labels (1 for real and 0 for fake). During this pass, we 
update only the discriminator's parameters.

After that, we pass both real and fake samples through the discriminator again, 
but this time, the labels are 1s for all samples and we update only the generator's 
weights. The second pass teaches the generator how to fool the discriminator and 
confuse real samples with the generated ones.

    gen_losses = []
    dis_losses = []
    iter_no = 0

    true_labels_v = torch.ones(BATCH_SIZE, device=device)
    fake_labels_v = torch.zeros(BATCH_SIZE, device=device)

Here, we define arrays, which will be used to accumulate losses, iterator counters, 
and variables with the true and fake labels.

    for batch_v in iterate_batches(envs):
        # fake samples, input is 4D: batch, filters, x, y
        gen_input_v = torch.FloatTensor(
            BATCH_SIZE, LATENT_VECTOR_SIZE, 1, 1)
        gen_input_v.normal_(0, 1).to(device)
        batch_v = batch_v.to(device)
        gen_output_v = net_gener(gen_input_v)

At the beginning of the training loop, we generate a random vector and pass it to the 
Generator network.

        dis_optimizer.zero_grad()
        dis_output_true_v = net_discr(batch_v)
        dis_output_fake_v = net_discr(gen_output_v.detach())
        dis_loss = objective(dis_output_true_v, true_labels_v) + \
                   objective(dis_output_fake_v, fake_labels_v)
        dis_loss.backward()
        dis_optimizer.step()
        dis_losses.append(dis_loss.item())



Chapter 3

[ 75 ]

At first, we train the discriminator by applying it two times: to the true data samples 
in our batch and to the generated ones. We need to call the detach() function on 
the generator's output to prevent gradients of this training pass from flowing into 
the generator (detach() is a method of tensor, which makes a copy of it without 
connection to the parent's operation).

        gen_optimizer.zero_grad()
        dis_output_v = net_discr(gen_output_v)
        gen_loss_v = objective(dis_output_v, true_labels_v)
        gen_loss_v.backward()
        gen_optimizer.step()
        gen_losses.append(gen_loss_v.item())

Now it's the generator's training time. We pass the generator's output to the 
discriminator, but now we don't stop the gradients. Instead, we apply the objective 
function with True labels. It will push our generator in the direction where the 
samples that it generates make the discriminator confuse them with the real data.

That was the code related to training, and the next couple of lines report losses and 
feed image samples to TensorBoard:

        iter_no += 1
        if iter_no % REPORT_EVERY_ITER == 0:
            log.info("Iter %d: gen_loss=%.3e, dis_loss=%.3e",
                     iter_no, np.mean(gen_losses),
                     np.mean(dis_losses))
            writer.add_scalar(
                "gen_loss", np.mean(gen_losses), iter_no)
            writer.add_scalar(
                "dis_loss", np.mean(dis_losses), iter_no)
            gen_losses = []
            dis_losses = []
        if iter_no % SAVE_IMAGE_EVERY_ITER == 0:
            writer.add_image("fake", vutils.make_grid(
                gen_output_v.data[:64], normalize=True), iter_no)
            writer.add_image("real", vutils.make_grid(
                batch_v.data[:64], normalize=True), iter_no)

The training of this example is quite a lengthy process. On a GTX 1080 GPU, 
100 iterations take about 40 seconds. At the beginning, the generated images are 
completely random noise, but after 10k-20k iterations, the generator becomes more 
and more proficient at its job and the generated images become more and more 
similar to the real game screenshots.
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My experiments gave the following images after 40k-50k of training iterations 
(several hours on a GPU):

Figure 3.7: Sample images produced by the generator network

PyTorch Ignite
PyTorch is an elegant and flexible library, which makes it a favorite choice for 
thousands of researchers, DL enthusiasts, industry developers, and others. But 
flexibility has its own price: too much code to be written to solve your problem. 
Sometimes, this is very beneficial, such as when implementing some new 
optimization method or DL trick that hasn't been included in the standard library 
yet. Then you just implement the formulas using Python and PyTorch magic will 
do all the gradients and backpropagation machinery for you. Another example is 
in situations when you have to work on a very low level, fiddling with gradients, 
optimizer details, and the way your data is transformed by the NN.

However, sometimes you don't need this flexibility, which happens when you work on 
routine tasks, like the simple supervised training of an image classifier. For such tasks, 
standard PyTorch might be at too low a level when you need to deal with the same 
code over and over again. The following is a non-exhaustive list of topics that are an 
essential part of any DL training procedure, but require some code to be written:

• Data preparation and transformation, and the generation of batches
• Calculation of training metrics, like loss values, accuracy, and F1-scores
• Periodical testing of the model being trained on the test and validation 

datasets
• Model checkpointing after some number of iterations or when a new best 

metric is achieved
• Sending metrics into a monitoring tool like TensorBoard
• Hyperparameters change over time, like a learning rate decrease/increase 

schedule
• Writing training progress messages on the console
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They are all doable using only PyTorch, of course, but it might require you to write 
a significant amount of code. As those tasks occur in any DL project, it quickly 
becomes cumbersome to write the same code over and over again. The normal 
approach to solving the issue is to write the functionality once, wrap it into a library, 
and reuse it later. If the library is open source and of good quality (easy to use, 
provides a good level of flexibility, written properly, and so on), it will become 
popular as more and more people use it in their projects. This process is not DL-
specific; it happens everywhere in the software industry.

There are several libraries for PyTorch that simplify the solving of common tasks: 
ptlearn, fastai, ignite and some others. The current list of "PyTorch ecosystem 
projects" can be found here: https://pytorch.org/ecosystem.

It might be appealing to start using those high-level libraries from the beginning, 
as they allow you to solve common problems with just a couple of lines of code, but 
there is some danger here. If you only know how to use high-level libraries without 
understanding low-level details, you might get stuck on problems that can't be 
solved solely by standard methods. In the very dynamic field of ML, this happens 
very often.

The main focus of this book is to ensure that you understand RL methods, their 
implementation, and their applicability, so, we will use an incremental approach. In 
the beginning, we will implement methods using only PyTorch code, but with more 
progress, examples will be implemented using high-level libraries. For RL, this will 
be the small library written by me: PTAN (https://github.com/Shmuma/ptan/), 
and it will be introduced in Chapter 7, Higher-Level RL Libraries.

To reduce the amount of DL boilerplate code, we will use a library called PyTorch 
Ignite: https://pytorch.org/ignite/. In this section, a small overview of Ignite 
will be given, then we will check the Atari GAN example once it has been rewritten 
using Ignite.

Ignite concepts
At a high level, Ignite simplifies the writing of the training loop in PyTorch DL. 
Earlier in this chapter (in the section Optimizers), you saw that the minimal training 
loop consists of:

• Sampling a batch of training data
• Applying an NN to this batch to calculate the loss function—the single value 

we want to minimize
• Running backpropagation of the loss to get gradients on the network's 

parameters in respect to the loss

https://pytorch.org/ecosystem
https://github.com/Shmuma/ptan/
https://pytorch.org/ignite/
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• Asking the optimizer to apply the gradients to the network
• Repeating until we are happy or bored of waiting

The central piece of Ignite is the Engine class, which loops over the data source, 
applying the processing function to the data batch. In addition to that, Ignite offers 
the ability to provide functions to be called at specific conditions of the training loop. 
Those conditions are called Events and could be at the:

• Beginning/end of the whole training process
• Beginning/end of a training epoch (iteration over the data)
• Beginning/end of a single batch processing

In addition to that, custom events exist and allow you to specify your function to 
be called every N events, for example, if you want to do some calculations every 
100 batches or every second epoch.

A very simplistic example of Ignite is shown in the following code block:

from ignite.engine import Engine, Events

def training(engine, batch):
    optimizer.zero_grad()
    x, y = prepare_batch()
    y_out = model(x)
    loss = loss_fn(y_out, y)
    loss.backward()
    optimizer.step()
    return loss.item()

engine = Engine(training)
engine.run(data)

This code is not runnable, as it misses lots of stuff, like the data source, model, 
and optimizer creation, but it shows the basic idea of Ignite usage. The main 
benefit of Ignite is in the ability it provides to extend the training loop with existing 
functionality. You want the loss value to be smoothed and written in TensorBoard 
every 100 batches? No problem! Add two lines and it will be done. You want to run 
model validation every 10 epochs? Okay, write a function to run a test and attach it 
to engine, and it will be called.

A description of the full Ignite functionality is beyond the scope of the book, but you 
can read the documentation on the official website: https://pytorch.org/ignite.

https://pytorch.org/ignite
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To give you an illustration of Ignite, let's change the example of GAN training 
on Atari images. The full example code is available in Chapter03/04_atari_gan_
ignite.py, so in the following code snippets, I'll show only the parts that differ.

from ignite.engine import Engine, Events
from ignite.metrics import RunningAverage
from ignite.contrib.handlers import tensorboard_logger as tb_logger

First, we import several Ignite classes, Engine and Events, which have already been 
outlined. The package ignite.metrics contains classes related to working with the 
performance metrics of the training process, such as confusion matrices, precision, 
and recall. In our example, we will use the class RunningAverage, which provides 
a way to smooth time series values. In the previous example, we did this by calling 
np.mean() on an array of losses, but RunningAverage provides a more convenient 
(and mathematically more correct) way of doing this. In addition, we import 
TensorBoard logger from the Ignite contrib package (the functionality of which 
is contributed by others).

    def process_batch(trainer, batch):
        gen_input_v = torch.FloatTensor(
            BATCH_SIZE, LATENT_VECTOR_SIZE, 1, 1)
        gen_input_v.normal_(0, 1).to(device)
        batch_v = batch.to(device)
        gen_output_v = net_gener(gen_input_v)

        dis_optimizer.zero_grad()
        dis_output_true_v = net_discr(batch_v)
        dis_output_fake_v = net_discr(gen_output_v.detach())
        dis_loss = objective(dis_output_true_v, true_labels_v) + \
                   objective(dis_output_fake_v, fake_labels_v)
        dis_loss.backward()
        dis_optimizer.step()

        gen_optimizer.zero_grad()
        dis_output_v = net_discr(gen_output_v)
        gen_loss = objective(dis_output_v, true_labels_v)
        gen_loss.backward()
        gen_optimizer.step()

        if trainer.state.iteration % SAVE_IMAGE_EVERY_ITER == 0:
            fake_img = vutils.make_grid(
                gen_output_v.data[:64], normalize=True)
            trainer.tb.writer.add_image(
                "fake", fake_img, trainer.state.iteration)
            real_img = vutils.make_grid(
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                batch_v.data[:64], normalize=True)
            trainer.tb.writer.add_image(
                "real", real_img, trainer.state.iteration)
            trainer.tb.writer.flush()
        return dis_loss.item(), gen_loss.item()

As a next step, we need to define our processing function, which takes the data batch 
and does an update of both the discriminator and generator models on this batch. 
This function can return any data to be tracked during the training process; in our 
case, it will be two loss values for both models. In this function, we can also save 
images to be displayed in TensorBoard.

After this is done, all we need to do is create an Engine instance, attach the required 
handlers, and run the training process.

    engine = Engine(process_batch)
    tb = tb_logger.TensorboardLogger(log_dir=None)
    engine.tb = tb
    RunningAverage(output_transform=lambda out: out[0]).\
        attach(engine, "avg_loss_gen")
    RunningAverage(output_transform=lambda out: out[1]).\
        attach(engine, "avg_loss_dis")

    handler = tb_logger.OutputHandler(tag="train",
        metric_names=['avg_loss_gen', 'avg_loss_dis'])
    tb.attach(engine, log_handler=handler,
              event_name=Events.ITERATION_COMPLETED)

In the preceding code, we create our engine, passing our processing function and 
attaching two RunningAverage transformations for our two loss values. Being 
attached, every RunningAverage produces a so-called "metric"—a derived value 
kept around during the training process. The names of our smoothed metrics 
are avg_loss_gen for smoothed loss from the generator and avg_loss_dis 
for smoothed loss from the discriminator. Those two values will be written in 
TensorBoard after every iteration.

    @engine.on(Events.ITERATION_COMPLETED)
    def log_losses(trainer):
        if trainer.state.iteration % REPORT_EVERY_ITER == 0:
            log.info("%d: gen_loss=%f, dis_loss=%f",
                     trainer.state.iteration,
                     trainer.state.metrics['avg_loss_gen'],
                     trainer.state.metrics['avg_loss_dis'])

    engine.run(data=iterate_batches(envs))



Chapter 3

[ 81 ]

The last piece of code attaches another event handler, which will be our function, 
and is called by the Engine on every iteration completion. It will write a log line with 
an iteration index and values of smoothed metrics. The final line starts our engine, 
passing the already defined function as the data source (function iterate_batches 
is a generator, returning the normal iterator over batches, so, it will be perfectly fine 
to pass its output as a data argument).

And that's it. If you run the example Chapter03/04_atari_gan_ignite.py, it will 
work the same way as our previous example, which might not be very impressive 
for such a small example, but in real projects, Ignite usage normally pays off by 
making your code cleaner and more extensible.

Summary
In this chapter, you saw a quick overview of PyTorch's functionality and features. 
We talked about basic fundamental pieces, such as tensors and gradients, and you 
saw how an NN can be made from the basic building blocks, before learning how 
to implement those blocks yourself.

We discussed loss functions and optimizers, as well as the monitoring of training 
dynamics. Finally, you were introduced to PyTorch Ignite, a library used to provide 
a higher-level interface for training loops. The goal of the chapter was to give a very 
quick introduction to PyTorch, which will be used later in the book.

In the next chapter, we are ready to start dealing with the main subject of this book: 
RL methods.
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The Cross-Entropy Method
In the last chapter, you got to know PyTorch. In this chapter, we will wrap up part 
one of this book and you will become familiar with one of the reinforcement learning 
(RL) methods: cross-entropy.

Despite the fact that it is much less famous than other tools in the RL practitioner's 
toolbox, such as deep Q-network (DQN) or advantage actor-critic, the cross-entropy 
method has its own strengths. Firstly, the cross-entropy method is really simple, 
which makes it an easy method to follow. For example, its implementation on 
PyTorch is less than 100 lines of code.

Secondly, the method has good convergence. In simple environments that don't 
require complex, multistep policies to be learned and discovered, and that have short 
episodes with frequent rewards, the cross-entropy method usually works very well. 
Of course, lots of practical problems don't fall into this category, but sometimes they 
do. In such cases, the cross-entropy method (on its own or as part of a larger system) 
can be the perfect fit.

In this chapter, we will cover:

• The practical side of the cross-entropy method
• How the cross-entropy method works in two environments in Gym (the 

familiar CartPole and the grid world of FrozenLake)
• The theoretical background of the cross-entropy method. This section is 

optional and requires a bit more knowledge of probability and statistics, but 
if you want to understand why the method works, then you can delve into it
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The taxonomy of RL methods
The cross-entropy method falls into the model-free and policy-based category of 
methods. These notions are new, so let's spend some time exploring them. All the 
methods in RL can be classified into various aspects:

• Model-free or model-based
• Value-based or policy-based
• On-policy or off-policy

There are other ways that you can taxonomize RL methods, but, for now, we are 
interested in the preceding three. Let's define them, as your problem specifics can 
influence your decision on a particular method.

The term "model-free" means that the method doesn't build a model of the 
environment or reward; it just directly connects observations to actions (or values 
that are related to actions). In other words, the agent takes current observations and 
does some computations on them, and the result is the action that it should take. 
In contrast, model-based methods try to predict what the next observation and/or 
reward will be. Based on this prediction, the agent tries to choose the best possible 
action to take, very often making such predictions multiple times to look more and 
more steps into the future.

Both classes of methods have strong and weak sides, but usually pure model-based 
methods are used in deterministic environments, such as board games with strict 
rules. On the other hand, model-free methods are usually easier to train as it's hard 
to build good models of complex environments with rich observations. All of the 
methods described in this book are from the model-free category, as those methods 
have been the most active area of research for the past few years. Only recently 
have researchers started to mix the benefits from both worlds (for example, refer 
to DeepMind's papers on imagination in agents. This approach will be described 
in Chapter 22, Beyond Model-Free – Imagination).

By looking from another angle, policy-based methods directly approximate the 
policy of the agent, that is, what actions the agent should carry out at every step. The 
policy is usually represented by a probability distribution over the available actions.

In contrast, the method could be value-based. In this case, instead of the probability 
of actions, the agent calculates the value of every possible action and chooses the 
action with the best value. Both of those families of methods are equally popular and 
we will discuss value-based methods in the next part of the book. Policy methods 
will be the topic of part three.
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The third important classification of methods is on-policy versus off-policy. We will 
discuss this distinction more in parts two and three of the book, but, for now, it will 
be enough to explain off-policy as the ability of the method to learn on historical data 
(obtained by a previous version of the agent, recorded by human demonstration, 
or just seen by the same agent several episodes ago).

So, our cross-entropy method is model-free, policy-based, and on-policy, which 
means the following:

• It doesn't build any model of the environment; it just says to the agent 
what to do at every step

• It approximates the policy of the agent
• It requires fresh data obtained from the environment

The cross-entropy method in practice
The cross-entropy method's description is split into two unequal parts: practical 
and theoretical. The practical part is intuitive in its nature, while the theoretical 
explanation of why the cross-entropy method works, and what's happening, is 
more sophisticated.

You may remember that the central and trickiest thing in RL is the agent, which is 
trying to accumulate as much total reward as possible by communicating with the 
environment. In practice, we follow a common machine learning (ML) approach and 
replace all of the complications of the agent with some kind of nonlinear trainable 
function, which maps the agent's input (observations from the environment) to 
some output. The details of the output that this function produces may depend 
on a particular method or a family of methods, as described in the previous section 
(such as value-based versus policy-based methods). As our cross-entropy method 
is policy-based, our nonlinear function (neural network (NN)) produces the policy, 
which basically says for every observation which action the agent should take.

Figure 4.1: A high-level approach to RL

In practice, the policy is usually represented as a probability distribution over 
actions, which makes it very similar to a classification problem, with the amount 
of classes being equal to the amount of actions we can carry out. 
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This abstraction makes our agent very simple: it needs to pass an observation 
from the environment to the NN, get a probability distribution over actions, and 
perform random sampling using the probability distribution to get an action to 
carry out. This random sampling adds randomness to our agent, which is a good 
thing, as at the beginning of the training, when our weights are random, the agent 
behaves randomly. After the agent gets an action to issue, it fires the action to 
the environment and obtains the next observation and reward for the last action. 
Then the loop continues.

During the agent's lifetime, its experience is presented as episodes. Every episode is 
a sequence of observations that the agent has got from the environment, actions it 
has issued, and rewards for these actions. Imagine that our agent has played several 
such episodes. For every episode, we can calculate the total reward that the agent 
has claimed. It can be discounted or not discounted; for simplicity, let's assume 
a discount factor of 𝛾𝛾 = 1 , which means just a sum of all local rewards for every 
episode. This total reward shows how good this episode was for the agent.

Let's illustrate this with a diagram, which contains four episodes (note that different 
episodes have different values for oi, ai, and ri):

Figure 4.2: Sample episodes with their observations, actions, and rewards

Every cell represents the agent's step in the episode. Due to randomness in the 
environment and the way that the agent selects actions to take, some episodes 
will be better than others. The core of the cross-entropy method is to throw away 
bad episodes and train on better ones. So, the steps of the method are as follows:

1. Play N number of episodes using our current model and environment.
2. Calculate the total reward for every episode and decide on a reward 

boundary. Usually, we use some percentile of all rewards, such as 50th 
or 70th.

3. Throw away all episodes with a reward below the boundary.
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4. Train on the remaining "elite" episodes using observations as the input and 
issued actions as the desired output.

5. Repeat from step 1 until we become satisfied with the result.

So, that's the cross-entropy method's description. With the preceding procedure, 
our NN learns how to repeat actions, which leads to a larger reward, constantly 
moving the boundary higher and higher. Despite the simplicity of this method, 
it works well in basic environments, it's easy to implement, and it's quite robust 
to hyperparameters changing, which makes it an ideal baseline method to try. Let's 
now apply it to our CartPole environment.

The cross-entropy method on CartPole
The whole code for this example is in Chapter04/01_cartpole.py, but the 
following are the most important parts. Our model's core is a one-hidden-layer 
NN, with rectified linear unit (ReLU) and 128 hidden neurons (which is absolutely 
arbitrary). Other hyperparameters are also set almost randomly and aren't tuned, 
as the method is robust and converges very quickly.

HIDDEN_SIZE = 128
BATCH_SIZE = 16
PERCENTILE = 70

We define constants at the top of the file and they include the count of neurons 
in the hidden layer, the count of episodes we play on every iteration (16), and the 
percentile of episodes' total rewards that we use for "elite" episode filtering. We will 
take the 70th percentile, which means that we will leave the top 30% of episodes 
sorted by reward.

class Net(nn.Module):
    def __init__(self, obs_size, hidden_size, n_actions):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, n_actions)
        )

    def forward(self, x):
        return self.net(x)
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There is nothing special about our NN; it takes a single observation from the 
environment as an input vector and outputs a number for every action we can 
perform. The output from the NN is a probability distribution over actions, so 
a straightforward way to proceed would be to include softmax nonlinearity after 
the last layer. However, in the preceding NN, we don't apply softmax to increase 
the numerical stability of the training process. Rather than calculating softmax 
(which uses exponentiation) and then calculating cross-entropy loss (which uses 
a logarithm of probabilities), we can use the PyTorch class nn.CrossEntropyLoss, 
which combines both softmax and cross-entropy in a single, more numerically 
stable expression. CrossEntropyLoss requires raw, unnormalized values from the 
NN (also called logits). The downside of this is that we need to remember to apply 
softmax every time we need to get probabilities from our NN's output.

Episode = namedtuple('Episode', field_names=['reward', 'steps'])
EpisodeStep = namedtuple(
    'EpisodeStep',field_names=['observation', 'action'])

Here we will define two helper classes that are named tuples from the collections 
package in the standard library:

• EpisodeStep: This will be used to represent one single step that our agent 
made in the episode, and it stores the observation from the environment 
and what action the agent completed. We will use episode steps from "elite" 
episodes as training data.

• Episode: This is a single episode stored as total undiscounted reward and 
a collection of EpisodeStep.

Let's look at a function that generates batches with episodes:

def iterate_batches(env, net, batch_size):
    batch = []
    episode_reward = 0.0
    episode_steps = []
    obs = env.reset()
    sm = nn.Softmax(dim=1)

The preceding function accepts the environment (the Env class instance from 
the Gym library), our NN, and the count of episodes it should generate on every 
iteration. The batch variable will be used to accumulate our batch (which is a list of 
Episode instances). We also declare a reward counter for the current episode and its 
list of steps (the EpisodeStep objects). Then we reset our environment to obtain the 
first observation and create a softmax layer, which will be used to convert the NN's 
output to a probability distribution of actions. That's our preparations complete, 
so we are ready to start the environment loop.
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    while True:
        obs_v = torch.FloatTensor([obs])
        act_probs_v = sm(net(obs_v))
        act_probs = act_probs_v.data.numpy()[0]

At every iteration, we convert our current observation to a PyTorch tensor and pass 
it to the NN to obtain action probabilities. There are several things to note here:

• All nn.Module instances in PyTorch expect a batch of data items and the 
same is true for our NN, so we convert our observation (which is a vector 
of four numbers in CartPole) into a tensor of size 1×4 (to achieve this, we 
pass an observation in a single-element list).

• As we haven't used nonlinearity at the output of our NN, it outputs raw 
action scores, which we need to feed through the softmax function.

• Both our NN and the softmax layer return tensors that track gradients, 
so we need to unpack this by accessing the tensor.data field and then 
converting the tensor into a NumPy array. This array will have the same  
two-dimensional structure as the input, with the batch dimension on axis 0, 
so we need to get the first batch element to obtain a one-dimensional vector 
of action probabilities.

        action = np.random.choice(len(act_probs), p=act_probs)
        next_obs, reward, is_done, _ = env.step(action)

Now that we have the probability distribution of actions, we can use it to obtain 
the actual action for the current step by sampling this distribution using NumPy's 
function random.choice(). After this, we will pass this action to the environment 
to get our next observation, our reward, and the indication of the episode ending.

        episode_reward += reward
        step = EpisodeStep(observation=obs,action=action)
        episode_steps.append(step)

The reward is added to the current episode's total reward, and our list of episode 
steps is also extended with an (observation, action) pair. Note that we save the 
observation that was used to choose the action, but not the observation returned by 
the environment as a result of the action. These are the tiny, but important, details 
that you need to keep in mind.

        if is_done:
            e = Episode(reward=episode_reward,steps=episode_steps)
            batch.append(e)
            episode_reward = 0.0
            episode_steps = []
            next_obs = env.reset()
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            if len(batch) == batch_size:
                yield batch
                batch = []

This is how we handle the situation when the current episode is over (in the case 
of CartPole, the episode ends when the stick has fallen down despite our efforts). 
We append the finalized episode to the batch, saving the total reward (as the episode 
has been completed and we have accumulated all the reward) and steps we have 
taken. Then we reset our total reward accumulator and clean the list of steps. After 
that, we reset our environment to start over.

In case our batch has reached the desired count of episodes, we return it to the 
caller for processing using yield. Our function is a generator, so every time the 
yield operator is executed, the control is transferred to the outer iteration loop and 
then continues after the yield line. If you are not familiar with Python's generator 
functions, refer to the Python documentation: https://wiki.python.org/moin/
Generators. After processing, we will clean up the batch.

        obs = next_obs

The last, but very important, step in our loop is to assign an observation obtained 
from the environment to our current observation variable. After that, everything 
repeats infinitely—we pass the observation to the NN, sample the action to 
perform, ask the environment to process the action, and remember the result 
of this processing.

One very important fact to understand in this function logic is that the training 
of our NN and the generation of our episodes are performed at the same time. They 
are not completely in parallel, but every time our loop accumulates enough episodes 
(16), it passes control to this function caller, which is supposed to train the NN using 
gradient descent. So, when yield is returned, the NN will have different, slightly 
better (we hope) behavior.

We don't need to explore proper synchronization, as our training and data gathering 
activities are performed at the same thread of execution, but you need to understand 
those constant jumps from NN training to its utilization.

Okay, now we need to define yet another function and then we will be ready to 
switch to the training loop.

def filter_batch(batch, percentile):
    rewards = list(map(lambda s: s.reward, batch))
    reward_bound = np.percentile(rewards, percentile)
    reward_mean = float(np.mean(rewards))

https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Generators
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This function is at the core of the cross-entropy method—from the given batch 
of episodes and percentile value, it calculates a boundary reward, which is used 
to filter "elite" episodes to train on. To obtain the boundary reward, we will use 
NumPy's percentile function, which, from the list of values and the desired 
percentile, calculates the percentile's value. Then, we will calculate the mean 
reward, which is used only for monitoring.

    train_obs = []
    train_act = []
    for reward, steps in batch:
        if reward < reward_bound:
            continue
        train_obs.extend(map(lambda step: step.observation,steps))
        train_act.extend(map(lambda step: step.action, steps))

Next, we will filter off our episodes. For every episode in the batch, we will check 
that the episode has a higher total reward than our boundary and if it has, we will 
populate lists of observations and actions that we will train on.

    train_obs_v = torch.FloatTensor(train_obs)
    train_act_v = torch.LongTensor(train_act)
    return train_obs_v, train_act_v, reward_bound, reward_mean

As the final step of the function, we will convert our observations and actions from 
"elite" episodes into tensors, and return a tuple of four: observations, actions, the 
boundary of reward, and the mean reward. The last two values will be used only 
to write them into TensorBoard to check the performance of our agent.

Now, the final chunk of code that glues everything together, and mostly consists 
of the training loop, is as follows:

if __name__ == "__main__":
    env = gym.make("CartPole-v0")
    # env = gym.wrappers.Monitor(env, directory="mon", force=True)
    obs_size = env.observation_space.shape[0]
    n_actions = env.action_space.n

    net = Net(obs_size, HIDDEN_SIZE, n_actions)
    objective = nn.CrossEntropyLoss()
    optimizer = optim.Adam(params=net.parameters(), lr=0.01)
    writer = SummaryWriter(comment="-cartpole")

In the beginning, we create all the required objects: the environment, our NN, the 
objective function, the optimizer, and the summary writer for TensorBoard. 
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The commented line creates a monitor to write videos of your agent's performance.

    for iter_no, batch in enumerate(iterate_batches(
            env, net,BATCH_SIZE)):
        obs_v, acts_v, reward_b, reward_m = \
            filter_batch(batch, PERCENTILE)
        optimizer.zero_grad()
        action_scores_v = net(obs_v)
        loss_v = objective(action_scores_v, acts_v)
        loss_v.backward()
        optimizer.step()

In the training loop, we iterate our batches (a list of Episode objects), then we 
perform filtering of the "elite" episodes using the filter_batch function. The 
result is variables of observations and taken actions, the reward boundary used for 
filtering, and the mean reward. After that, we zero gradients of our NN and pass 
observations to the NN, obtaining its action scores. These scores are passed to the 
objective function, which will calculate cross-entropy between the NN output 
and the actions that the agent took. The idea of this is to reinforce our NN to carry 
out those "elite" actions that have led to good rewards. Then, we calculate gradients 
on the loss and ask the optimizer to adjust our NN.

        print("%d: loss=%.3f, reward_mean=%.1f, rw_bound=%.1f" % (
            iter_no, loss_v.item(), reward_m, reward_b))
        writer.add_scalar("loss", loss_v.item(), iter_no)
        writer.add_scalar("reward_bound", reward_b, iter_no)
        writer.add_scalar("reward_mean", reward_m, iter_no)

The rest of the loop is mostly the monitoring of progress. On the console, we 
show the iteration number, the loss, the mean reward of the batch, and the reward 
boundary. We also write the same values to TensorBoard, to get a nice chart of the 
agent's learning performance.

        if reward_m > 199:
            print("Solved!")
            break
    writer.close()
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The last check in the loop is the comparison of the mean rewards of our batch 
episodes. When this becomes greater than 199, we stop our training. Why 199? In 
Gym, the CartPole environment is considered to be solved when the mean reward 
for the last 100 episodes is greater than 195, but our method converges so quickly 
that 100 episodes are usually what we need. The properly trained agent can balance 
the stick infinitely long (obtaining any amount of score), but the length of an episode 
in CartPole is limited to 200 steps (if you look at the environment variable of 
CartPole, you may notice the TimeLimit wrapper, which stops the episode after 200 
steps). With all this in mind, we will stop training after the mean reward in the batch 
is greater than 199, which is a good indication that our agent knows how to balance 
the stick like a pro.

That's it. So let's start our first RL training!

rl_book_samples/Chapter04$ ./01_cartpole.py

[2017-10-04 12:44:39,319] Making new env: CartPole-v0

0: loss=0.701, reward_mean=18.0, rw_bound=21.0

1: loss=0.682, reward_mean=22.6, rw_bound=23.5

2: loss=0.688, reward_mean=23.6, rw_bound=25.5

3: loss=0.675, reward_mean=22.8, rw_bound=22.0

4: loss=0.658, reward_mean=31.9, rw_bound=34.0

.........

36: loss=0.527, reward_mean=135.9, rw_bound=168.5

37: loss=0.527, reward_mean=147.4, rw_bound=160.5

38: loss=0.528, reward_mean=179.8, rw_bound=200.0

39: loss=0.530, reward_mean=178.7, rw_bound=200.0

40: loss=0.532, reward_mean=192.1, rw_bound=200.0

41: loss=0.523, reward_mean=196.8, rw_bound=200.0

42: loss=0.540, reward_mean=200.0, rw_bound=200.0

Solved!
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It usually doesn't take the agent more than 50 batches to solve the environment. 
My experiments show something from 25 to 45 episodes, which is a really good 
learning performance (remember, we need to play only 16 episodes for every batch). 
TensorBoard shows our agent consistently making progress, pushing the upper 
boundary at almost every batch (there are some periods of rolling down, but most 
of the time it improves).

Figure 4.3: Mean reward (left) and loss (right) during the training

Figure 4.4: The reward boundary during the training

To check our agent in action, you can enable Monitor by uncommenting the next line 
after the environment creation. 
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After restarting (possibly with xvfb-run to provide a virtual X11 display), our 
program will create a mon directory with videos recorded at different training steps.

Chapter04$ xvfb-run -s "-screen 0 640x480x24" ./01_cartpole.py

[2017-10-04 13:52:23,806] Making new env: CartPole-v0

[2017-10-04 13:52:23,814] Creating monitor directory mon

[2017-10-04 13:52:23,920] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000000.mp4

[2017-10-04 13:52:25,229] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000001.mp4

[2017-10-04 13:52:25,771] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000008.mp4

0: loss=0.682, reward_mean=18.9, rw_bound=20.5

[2017-10-04 13:52:26,297] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000027.mp4

1: loss=0.687, reward_mean=16.6, rw_bound=19.0

2: loss=0.677, reward_mean=21.1, rw_bound=21.0

[2017-10-04 13:52:26,964] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000064.mp4

3: loss=0.653, reward_mean=33.2, rw_bound=48.5

4: loss=0.642, reward_mean=37.4, rw_bound=42.5

.........

29: loss=0.561, reward_mean=111.6, rw_bound=122.0

30: loss=0.540, reward_mean=135.1, rw_bound=166.0

[2017-10-04 13:52:40,176] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000512.mp4

31: loss=0.546, reward_mean=147.5, rw_bound=179.5

32: loss=0.559, reward_mean=140.0, rw_bound=171.5

33: loss=0.558, reward_mean=160.4, rw_bound=200.0

34: loss=0.547, reward_mean=167.6, rw_bound=195.5

35: loss=0.550, reward_mean=179.5, rw_bound=200.0

36: loss=0.563, reward_mean=173.9, rw_bound=200.0

37: loss=0.542, reward_mean=162.9, rw_bound=200.0

38: loss=0.552, reward_mean=159.1, rw_bound=200.0

39: loss=0.548, reward_mean=189.6, rw_bound=200.0

40: loss=0.546, reward_mean=191.1, rw_bound=200.0

41: loss=0.548, reward_mean=199.1, rw_bound=200.0

Solved!
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As you can see from the output, it turns a periodical recording of the agent's activity 
into separate video files, which can give you an idea of what your agent's sessions 
look like.

Figure 4.5: Visualization of the CartPole state

Let's now pause a bit and think about what's just happened. Our NN has learned 
how to play the environment purely from observations and rewards, without any 
interpretation of observed values. The environment could easily not be a cart with 
a stick; it could be, say, a warehouse model with product quantities as an observation 
and money earned as the reward. Our implementation doesn't depend on 
environment details. This is the beauty of the RL model, and in the next section, we 
will look at how exactly the same method can be applied to a different environment 
from the Gym collection.

The cross-entropy method on 
FrozenLake
The next environment that we will try to solve using the cross-entropy method is 
FrozenLake. Its world is from the so-called grid world category, when your agent 
lives in a grid of size 4×4 and can move in four directions: up, down, left, and right. 
The agent always starts at a top-left position, and its goal is to reach the bottom-right 
cell of the grid. There are holes in the fixed cells of the grid and if you get into those 
holes, the episode ends and your reward is zero. If the agent reaches the destination 
cell, then it obtains a reward of 1.0 and the episode ends.

To make life more complicated, the world is slippery (it's a frozen lake after all), 
so the agent's actions do not always turn out as expected—there is a 33% chance that 
it will slip to the right or to the left. If you want the agent to move left, for example, 
there is a 33% probability that it will, indeed, move left, a 33% chance that it will end 
up in the cell above, and a 33% chance that it will end up in the cell below. As you 
will see at the end of the section, this makes progress difficult.
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Figure 4.6: The FrozenLake environment

Let's look at how this environment is represented in Gym:

>>> e = gym.make("FrozenLake-v0")
[2017-10-05 12:39:35,827] Making new env: FrozenLake-v0
>>> e.observation_space
Discrete(16)
>>> e.action_space
Discrete(4)
>>> e.reset()
0
>>> e.render()
SFFF
FHFH
FFFH
HFFG

Our observation space is discrete, which means that it's just a number from zero to 
15 inclusive. Obviously, this number is our current position in the grid. The action 
space is also discrete, but it can be from zero to three. Our NN from the CartPole 
example expects a vector of numbers. To get this, we can apply the traditional one-
hot encoding of discrete inputs, which means that the input to our network will 
have 16 float numbers and zero everywhere except the index that we will encode. 
To minimize changes in our code, we can use the ObservationWrapper class from 
Gym and implement our DiscreteOneHotWrapper class:

class DiscreteOneHotWrapper(gym.ObservationWrapper):
    def __init__(self, env):
        super(DiscreteOneHotWrapper, self).__init__(env)
        assert isinstance(env.observation_space,
                          gym.spaces.Discrete)
        shape = (env.observation_space.n, )
        self.observation_space = gym.spaces.Box(
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            0.0, 1.0, shape, dtype=np.float32)

    def observation(self, observation):
        res = np.copy(self.observation_space.low)
        res[observation] = 1.0
        return res

With that wrapper applied to the environment, both the observation space and action 
space are 100% compatible with our CartPole solution (source code Chapter04/02_
frozenlake_naive.py). However, by launching it, we can see that this doesn't 
improve the score over time.

Figure 4.7: Reward (left) and loss (right) of the FrozenLake environment

Figure 4.8: The reward boundary during the training (extremely boring)
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To understand what's going on, we need to look deeper at the reward structure of both 
environments. In CartPole, every step of the environment gives us the reward 1.0, until 
the moment that the pole falls. So, the longer our agent balanced the pole, the more 
reward it obtained. Due to randomness in our agent's behavior, different episodes 
were of different lengths, which gave us a pretty normal distribution of the episodes' 
rewards. After choosing a reward boundary, we rejected less successful episodes 
and learned how to repeat better ones (by training on successful episodes' data).

This is shown in the following diagram:

Figure 4.9: Distribution of the reward in the CartPole environment

In the FrozenLake environment, episodes and their rewards look different. We get 
the reward of 1.0 only when we reach the goal, and this reward says nothing about 
how good each episode was. Was it quick and efficient or did we make four rounds 
on the lake before we randomly stepped into the final cell? We don't know; it's just 1.0 
reward and that's it. The distribution of rewards for our episodes are also problematic. 
There are only two kinds of episodes possible, with zero reward (failed) and one 
reward (successful), and failed episodes will obviously dominate in the beginning of 
the training. So, our percentile selection of "elite" episodes is totally wrong and gives 
us bad examples to train on. This is the reason for our training failure.

Figure 4.10: Reward distribution of the FrozenLake environment
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This example shows us the limitations of the cross-entropy method:

• For training, our episodes have to be finite and, preferably, short
• The total reward for the episodes should have enough variability to separate 

good episodes from bad ones
• There is no intermediate indication about whether the agent has succeeded 

or failed

Later in the book, you will become familiar with other methods that address these 
limitations. For now, if you are curious about how FrozenLake can be solved using 
the cross-entropy method, here is a list of tweaks of the code that you need to make 
(the full example is in Chapter04/03_frozenlake_tweaked.py):

• Larger batches of played episodes: In CartPole, it was enough to have 
16 episodes on every iteration, but FrozenLake requires at least 100 just  
to get some successful episodes.

• Discount factor applied to the reward: To make the total reward for an 
episode depend on its length, and add variety in episodes, we can use 
a discounted total reward with the discount factor 0.9 or 0.95. In this case, 
the reward for shorter episodes will be higher than the reward for longer 
ones. This increases variability in reward distribution, which helps to avoid 
situations like the one shown in Figure 4.10.

• Keeping "elite" episodes for a longer time: In the CartPole training, 
we sampled episodes from the environment, trained on the best ones, 
and threw them away. In FrozenLake, a successful episode is a much rarer 
animal, so we need to keep them for several iterations to train on them.

• Decreasing learning rate: This will give our NN time to average more 
training samples.

• Much longer training time: Due to the sparsity of successful episodes, and 
the random outcome of our actions, it's much harder for our NN to get an 
idea of the best behavior to perform in any particular situation. To reach 
50% successful episodes, about 5k training iterations are required.
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To incorporate all these into our code, we need to change the filter_batch function 
to calculate discounted reward and return "elite" episodes for us to keep:

def filter_batch(batch, percentile):
    filter_fun = lambda s: s.reward * (GAMMA ** len(s.steps))
    disc_rewards = list(map(filter_fun, batch))
    reward_bound = np.percentile(disc_rewards, percentile)

    train_obs = []
    train_act = []
    elite_batch = []
    for example, discounted_reward in zip(batch, disc_rewards):
        if discounted_reward > reward_bound:
            train_obs.extend(map(lambda step: step.observation,
                                 example.steps))
            train_act.extend(map(lambda step: step.action,
                                 example.steps))
            elite_batch.append(example)
    return elite_batch, train_obs, train_act, reward_bound

Then, in the training loop, we will store previous "elite" episodes to pass them to the 
preceding function on the next training iteration.

    full_batch = []
    for iter_no, batch in enumerate(iterate_batches(
            env, net, BATCH_SIZE)):
        reward_mean = float(np.mean(list(map(
            lambda s: s.reward, batch))))
        full_batch, obs, acts, reward_bound = \
            filter_batch(full_batch + batch, PERCENTILE)
        if not full_batch:
            continue
        obs_v = torch.FloatTensor(obs)
        acts_v = torch.LongTensor(acts)
        full_batch = full_batch[-500:]
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The rest of the code is the same, except that the learning rate decreased 10 times 
and the BATCH_SIZE was set to 100. After a period of patient waiting (the new 
version takes about one and a half hours to finish 10k iterations), you can see that 
the training of the model stopped improving at around 55% of solved episodes. 
There are ways to address this (by applying entropy loss regularization, for 
example), but those techniques will be discussed in upcoming chapters.

Figure 4.11: Reward (left) and loss (right) of the tweaked training

Figure 4.12: The reward boundary of the tweaked version
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The final point to note here is the effect of slipperiness in the FrozenLake 
environment. Each of our actions with 33% probability is replaced with the 90° 
rotated one (the "up" action, for instance, will succeed with 0.33 probability and there 
will be a 0.33 chance that it will be replaced with the "left" action and 0.33 with the 
"right" action).

The nonslippery version is in Chapter04/04_frozenlake_nonslippery.py, and the 
only difference is in the environment creation (we need to peek into the core of Gym 
to create the instance of the environment with tweaked arguments):

    env = gym.envs.toy_text.frozen_lake.FrozenLakeEnv(
        is_slippery=False)
    env.spec = gym.spec("FrozenLake-v0")
    env = gym.wrappers.TimeLimit(env, max_episode_steps=100)
    env = DiscreteOneHotWrapper(env)

The effect is dramatic! The nonslippery version of the environment can be solved in 
120-140 batch iterations, which is 100 times faster than the noisy environment:

rl_book_samples/Chapter04$ ./04_frozenlake_nonslippery.py

0: loss=1.379, reward_mean=0.010, reward_bound=0.000, batch=1

1: loss=1.375, reward_mean=0.010, reward_bound=0.000, batch=2

2: loss=1.359, reward_mean=0.010, reward_bound=0.000, batch=3

3: loss=1.361, reward_mean=0.010, reward_bound=0.000, batch=4

4: loss=1.355, reward_mean=0.000, reward_bound=0.000, batch=4

5: loss=1.342, reward_mean=0.010, reward_bound=0.000, batch=5

6: loss=1.353, reward_mean=0.020, reward_bound=0.000, batch=7

7: loss=1.351, reward_mean=0.040, reward_bound=0.000, batch=11

......

124: loss=0.484, reward_mean=0.680, reward_bound=0.000, batch=68

125: loss=0.373, reward_mean=0.710, reward_bound=0.430, batch=114

126: loss=0.305, reward_mean=0.690, reward_bound=0.478, batch=133

128: loss=0.413, reward_mean=0.790, reward_bound=0.478, batch=73

129: loss=0.297, reward_mean=0.810, reward_bound=0.478, batch=108 Solved!
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Figure 4.13: Reward (left) and loss (right) of the nonslippery version of FrozenLake

Figure 4.14: The reward boundary for the nonslippery version

The theoretical background of the cross-
entropy method
This section is optional and included for readers who are interested in why the 
method works. If you wish, you can refer to the original paper on the cross-entropy 
method, which will be given at the end of the section.

The basis of the cross-entropy method lies in the importance sampling theorem, 
which states this:
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𝔼𝔼𝑥𝑥~𝑝𝑝(𝑥𝑥)[𝐻𝐻(𝑥𝑥)] = ∫ 𝑝𝑝(𝑥𝑥)𝐻𝐻(𝑥𝑥)𝑑𝑑𝑥𝑥
 

𝑥𝑥
= ∫ 𝑞𝑞(𝑥𝑥) 𝑝𝑝(𝑥𝑥)

𝑞𝑞(𝑥𝑥) 𝐻𝐻(𝑥𝑥)𝑑𝑑𝑥𝑥
 

𝑥𝑥
= 𝔼𝔼𝑥𝑥~𝑞𝑞(𝑥𝑥) [𝑝𝑝(𝑥𝑥)

𝑞𝑞(𝑥𝑥) 𝐻𝐻(𝑥𝑥)] 

In our RL case, H(x) is a reward value obtained by some policy, x, and p(x) is a 
distribution of all possible policies. We don't want to maximize our reward by 
searching all possible policies; instead we want to find a way to approximate p(x)
H(x) by q(x), iteratively minimizing the distance between them. The distance between 
two probability distributions is calculated by Kullback-Leibler (KL) divergence, 
which is as follows:

𝐾𝐾𝐾𝐾(𝑝𝑝1(𝑥𝑥) ∥ 𝑝𝑝2(𝑥𝑥)) = 𝔼𝔼𝑥𝑥~𝑝𝑝1(𝑥𝑥) log
𝑝𝑝1(𝑥𝑥)
𝑝𝑝2(𝑥𝑥)

= 𝔼𝔼𝑥𝑥~𝑝𝑝1(𝑥𝑥)[log𝑝𝑝1(𝑥𝑥)] − 𝔼𝔼𝑥𝑥~𝑝𝑝1(𝑥𝑥)[log𝑝𝑝2(𝑥𝑥)] 

The first term in KL is called entropy and it doesn't depend on p2(x), so it could be 
omitted during the minimization. The second term is called cross-entropy, which  
is a very common optimization objective in deep learning.

Combining both formulas, we can get an iterative algorithm, which starts with 
q0(x) = p(x) and on every step improves. This is an approximation of p(x)H(x) with 
an update:

𝑞𝑞𝑖𝑖+1(𝑥𝑥) = arg min
𝑞𝑞𝑖𝑖+1(𝑥𝑥)

− 𝔼𝔼𝑥𝑥~𝑞𝑞𝑖𝑖(𝑥𝑥)
𝑝𝑝(𝑥𝑥)
𝑞𝑞𝑖𝑖(𝑥𝑥) 𝐻𝐻(𝑥𝑥) log 𝑞𝑞𝑖𝑖+1(𝑥𝑥) 

This is a generic cross-entropy method that can be significantly simplified in our 
RL case. Firstly, we replace our H(x) with an indicator function, which is 1 when 
the reward for the episode is above the threshold and 0 when the reward is below. 
Our policy update will look like this:

𝜋𝜋𝑖𝑖+1(𝑎𝑎|𝑠𝑠) = arg min
𝜋𝜋𝑖𝑖+1

− 𝔼𝔼𝑧𝑧~𝜋𝜋𝑖𝑖(𝑎𝑎|𝑠𝑠)[𝑅𝑅(𝑧𝑧) ≥ 𝜓𝜓𝑖𝑖] log 𝜋𝜋𝑖𝑖+1(𝑎𝑎|𝑠𝑠) 

Strictly speaking, the preceding formula misses the normalization term, but it still 
works in practice without it. So, the method is quite clear: we sample episodes using 
our current policy (starting with some random initial policy) and minimize the 
negative log likelihood of the most successful samples and our policy.

There is a whole book written by Dirk P. Kroese that is dedicated to this method. 
A shorter description can be found in the Cross-Entropy Method paper by him 
(https://people.smp.uq.edu.au/DirkKroese/ps/eormsCE.pdf).

https://people.smp.uq.edu.au/DirkKroese/ps/eormsCE.pdf
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Summary
In this chapter, you became familiar with the cross-entropy method, which is simple 
but quite powerful, despite its limitations. We applied it to a CartPole environment 
(with huge success) and to FrozenLake (with much more modest success). In 
addition, we discussed the taxonomy of RL methods, which will be referenced 
many times during the rest of the book, as different approaches to RL problems 
have different properties, which influences their applicability.

This chapter ends the introductory part of the book. In the next part, we will switch 
to a more systematic study of RL methods and discuss the value-based family of 
methods. In upcoming chapters, we will explore more complex, but more powerful, 
tools of deep RL.
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Tabular Learning and the 
Bellman Equation

In the previous chapter, you became acquainted with your first reinforcement 
learning (RL) algorithm, the cross-entropy method, along with its strengths and 
weaknesses. In this new part of the book, we will look at another group of methods 
that has much more flexibility and power: Q-learning. This chapter will establish 
the required background shared by those methods.

We will also revisit the FrozenLake environment and explore how new concepts fit 
with this environment and help us to address issues of its uncertainty.

In this chapter, we will:

• Review the value of the state and value of the action, and learn how to 
calculate them in simple cases

• Talk about the Bellman equation and how it establishes the optimal policy 
if we know the values

• Discuss the value iteration method and try it on the FrozenLake environment
• Do the same for the Q-learning method

Despite the simplicity of the environments in this chapter, it establishes the 
required preparation for deep Q-learning, which is a much more powerful and 
generic method.

Value, state, and optimality
You may remember our definition of the value of the state from Chapter 1, What Is 
Reinforcement Learning?. This is a very important notion and the time has come to 
explore it further. 
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This whole part of the book is built around the value and how to approximate 
it. We defined the value as an expected total reward (optionally discounted) 
that is obtainable from the state. In a formal way, the value of the state is 

𝑉𝑉(𝑠𝑠) = 𝔼𝔼 [∑ 𝑟𝑟𝑡𝑡𝛾𝛾𝑡𝑡
∞

𝑡𝑡=0
] , where rt is the local reward obtained at step t of the episode.

The total reward could be discounted with 𝛾𝛾  or not (the undiscounted case 
corresponds to 𝛾𝛾 = 1 ); it's up to us how to define it. The value is always calculated 
in terms of some policy that our agent follows. To illustrate this, let's consider a 
very simple environment with three states:

1. The agent's initial state.
2. The final state that the agent is in after executing action "right" from the 

initial state. The reward obtained from this is 1.
3. The final state that the agent is in after action "down." The reward obtained 

from this is 2:

Figure 5.1: An example of an environment's states transition with rewards

The environment is always deterministic—every action succeeds and we always 
start from state 1. Once we reach either state 2 or state 3, the episode ends. Now, 
the question is, what's the value of state 1? This question is meaningless without 
information about our agent's behavior or, in other words, its policy. Even in a 
simple environment, our agent can have an infinite amount of behaviors, each of 
which will have its own value for state 1. Consider this example:

• Agent always goes right
• Agent always goes down
• Agent goes right with a probability of 0.5 and down with a probability of 0.5
• Agent goes right in 10% of cases and in 90% of cases executes the "down" 

action

To demonstrate how the value is calculated, let's do it for all the preceding policies:
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• The value of state 1 in the case of the "always right" agent is 1.0 (every time it 
goes left, it obtains 1 and the episode ends)

• For the "always down" agent, the value of state 1 is 2.0
• For the 50% right/50% down agent, the value is 1.0 * 0.5 + 2.0 * 0.5 = 1.5
• For the 10% right/90% down agent, the value is 1.0 * 0.1 + 2.0 * 0.9 = 1.9

Now, another question: what's the optimal policy for this agent? The goal of RL is 
to get as much total reward as possible. For this one-step environment, the total 
reward is equal to the value of state 1, which, obviously, is at the maximum at policy 
2 (always down).

Unfortunately, such simple environments with an obvious optimal policy are not 
that interesting in practice. For interesting environments, the optimal policies are 
much harder to formulate and it's even harder to prove their optimality. However, 
don't worry; we are moving toward the point when we will be able to make 
computers learn the optimal behavior on their own.

From the preceding example, you may have a false impression that we should 
always take the action with the highest reward. In general, it's not that simple. To 
demonstrate this, let's extend our preceding environment with yet another state that 
is reachable from state 3. State 3 is no longer a terminal state but a transition to state 
4, with a bad reward of –20. Once we have chosen the "down" action in state 1, this 
bad reward is unavoidable, as from state 3 we have only one exit. So, it's a trap for 
the agent, which has decided that "being greedy" is a good strategy.

Figure 5.2: The same environment, with an extra state added

With that addition, our values for state 1 will be calculated this way:

• The "always right" agent is the same: 1.0
• The "always down" agent gets 2.0 + (–20) = –18
• The 50%/50% agent gets 0.5 * 1.0 + 0.5 * (2.0 + (–20)) = –8.5
• The 10%/90% agent gets 0.1 * 1.0 + 0.9 * (2.0 + (–20)) = –16.1
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So, the best policy for this new environment is now policy 1: always go right.

We spent some time discussing naïve and trivial environments so that you realize 
the complexity of this optimality problem and can appreciate the results of Richard 
Bellman better. Bellman was an American mathematician who formulated and 
proved his famous Bellman equation. We will talk about it in the next section.

The Bellman equation of optimality
To explain the Bellman equation, it's better to go a bit abstract. Don't be afraid; 
I'll provide concrete examples later to support your learning! Let's start with a 
deterministic case, when all our actions have a 100% guaranteed outcome. Imagine 
that our agent observes state s0 and has N available actions. Every action leads to 
another state, s1 ... sN, with a respective reward, r1 ... rN. Also, assume that we know 
the values, Vi, of all states connected to state s0. What will be the best course of 
action that the agent can take in such a state?

Figure 5.3: An abstract environment with N states reachable from the initial state

If we choose the concrete action, ai, and calculate the value given to this action, then 
the value will be 𝑉𝑉0(𝑎𝑎 = 𝑎𝑎𝑖𝑖) = 𝑟𝑟𝑖𝑖 + 𝑉𝑉𝑖𝑖 . So, to choose the best possible action, the agent 
needs to calculate the resulting values for every action and choose the maximum 
possible outcome. In other words, 𝑉𝑉0 = max𝑎𝑎∈1…𝑁𝑁(𝑟𝑟𝑎𝑎 + 𝑉𝑉𝑎𝑎) . If we are using the 
discount factor 𝛾𝛾 , we need to multiply the value of the next state by gamma:

𝑉𝑉0 = max𝑎𝑎∈1…𝑁𝑁(𝑟𝑟𝑎𝑎 + 𝛾𝛾𝑉𝑉𝑎𝑎) 

This may look very similar to our greedy example from the previous section, and, 
in fact, it is. However, there is one difference: when we act greedily, we do not only 
look at the immediate reward for the action, but at the immediate reward plus the 
long-term value of the state. 
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Bellman proved that with that extension, our behavior will get the best possible 
outcome. In other words, it will be optimal. So, the preceding equation is called the 
Bellman equation of value (for a deterministic case).

It's not very complicated to extend this idea for a stochastic case, when our actions 
have the chance of ending up in different states. What we need to do is calculate 
the expected value for every action, instead of just taking the value of the next state. 
To illustrate this, let's consider one single action available from state s0, with three 
possible outcomes.

Figure 5.4: An example of the transition from the state in a stochastic case

Here we have one action, which can lead to three different states with different 
probabilities. With probability p1, the action can end up in state s1, with p2 in state 
s2, and with p3 in state s3 (p1 + p2 + p3 = 1, of course). Every target state has its own 
reward (r1, r2, or r3). To calculate the expected value after issuing action 1, we need to 
sum all values, multiplied by their probabilities:

𝑉𝑉0(𝑎𝑎 = 1) = 𝑝𝑝1(𝑟𝑟1 + 𝛾𝛾𝑉𝑉1) + 𝑝𝑝2(𝑟𝑟2 + 𝛾𝛾𝑉𝑉2) + 𝑝𝑝3(𝑟𝑟3 + 𝛾𝛾𝑉𝑉3) 

Or, more formally:

𝑉𝑉0(𝑎𝑎) = 𝔼𝔼𝑠𝑠~𝑆𝑆[𝑟𝑟𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝑠𝑠] =∑𝑝𝑝𝑎𝑎,0→𝑠𝑠(𝑟𝑟𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝑠𝑠)
𝑠𝑠∈𝑆𝑆
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By combining the Bellman equation, for a deterministic case, with a value for 
stochastic actions, we get the Bellman optimality equation for a general case:

𝑉𝑉0 = max
𝑎𝑎∈𝐴𝐴

𝔼𝔼𝑠𝑠~𝑆𝑆[𝑟𝑟𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝑠𝑠] = max
𝑎𝑎∈𝐴𝐴

∑𝑝𝑝𝑎𝑎,0→𝑠𝑠(𝑟𝑟𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝑠𝑠)
𝑠𝑠∈𝑆𝑆

 

The interpretation is still the same: the optimal value of the state is equal to the 
action, which gives us the maximum possible expected immediate reward, plus 
the discounted long-term reward for the next state. You may also notice that 
this definition is recursive: the value of the state is defined via the values of the 
immediately reachable states. This recursion may look like cheating: we define 
some value, pretending that we already know it. However, this is a very powerful 
and common technique in computer science and even in math in general (proof 
by induction is based on the same trick). This Bellman equation is a foundation 
not only in RL but also in much more general dynamic programming, which is 
a widely used method for solving practical optimization problems.

These values not only give us the best reward that we can obtain, but they basically 
give us the optimal policy to obtain that reward: if our agent knows the value for 
every state, then it automatically knows how to gather all this reward. Thanks to 
Bellman's optimality proof, at every state the agent ends up in, it needs to select 
the action with the maximum expected reward, which is a sum of the immediate 
reward and the one-step discounted long-term reward. That's it. So, those values 
are really useful to know. Before you get familiar with a practical way to calculate 
them, I need to introduce one more mathematical notation. It's not as fundamental 
as the value of the state, but we need it for our convenience.

The value of the action
To make our life slightly easier, we can define different quantities, in addition to the 
value of the state, V(s), as the value of the action, Q(s, a). Basically, this equals the 
total reward we can get by executing action a in state s and can be defined via V(s). 
Being a much less fundamental entity than V(s), this quantity gave a name to the 
whole family of methods called Q-learning, because it is more convenient. 

Note that 𝑝𝑝𝑎𝑎,𝑖𝑖→𝑗𝑗  means the probability of action a, issued 
in state i, ending up in state j.
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In these methods, our primary objective is to get values of Q for every pair of state 
and action.

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝑠𝑠′~𝑆𝑆[𝑟𝑟(𝑠𝑠, 𝑎𝑎) + 𝛾𝛾𝑉𝑉(𝑠𝑠′)] = ∑ 𝑝𝑝𝑎𝑎,𝑠𝑠→𝑠𝑠′(𝑟𝑟(𝑠𝑠, 𝑎𝑎) + 𝛾𝛾𝑉𝑉(𝑠𝑠′))
𝑠𝑠′∈𝑆𝑆

 

Q for this state, s, and action, a, equals the expected immediate reward and the 
discounted long-term reward of the destination state. We also can define V(s) via 
Q(s, a):

𝑉𝑉(𝑠𝑠) = max
𝑎𝑎∈𝐴𝐴

𝑄𝑄(𝑠𝑠, 𝑎𝑎) 

This just means that the value of some state equals to the value of the maximum 
action we can execute from this state. Finally, we can express Q(s, a) recursively 
(which will be used in Chapter 6, Deep Q-Networks:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟(𝑠𝑠, 𝑎𝑎) + 𝛾𝛾max
𝑎𝑎′∈𝐴𝐴

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) 

In the preceding formula, the index on the immediate reward, s, a, depends on 
environment details. If immediate reward is given to us after executing a particular 
action, a, from state s, index (s, a) is used and the formula is exactly as shown above. 
But if reward is provided for reaching some state, s', via action a', the reward 
will have the index (s', a') and will need to be moved into the max operator. That 
difference is not very significant from a mathematical point of view, but it could be 
important during the implementation of the methods. The first situation is more 
common, so, we will stick to the preceding formula.

To give you a concrete example, let's consider an environment that is similar 
to FrozenLake, but has a much simpler structure: we have one initial state (s0) 
surrounded by four target states, s1, s2, s3, s4, with different rewards.

Figure 5.5: A simplified grid-like environment



Tabular Learning and the Bellman Equation

[ 114 ]

Every action is probabilistic in the same way as in FrozenLake: with a 33% chance 
that our action will be executed without modifications, but with a 33% chance that 
we will slip to the left, relatively, of our target cell and a 33% chance that we will slip 
to the right. For simplicity, we use discount factor 𝛾𝛾 = 1 .

Figure 5.6: A transition diagram of the grid environment

Let's calculate the values of the actions to begin with. Terminal states s1 ... s4 have no 
outbound connections, so Q for those states is zero for all actions. Due to this, the 
values of the terminal states are equal to their immediate reward (once we get there, 
our episode ends without any subsequent states): V1 = 1, V2 = 2, V3 = 3, V4 = 4.

The values of the actions for state 0 are a bit more complicated. Let's start with the 
"up" action. Its value, according to the definition, is equal to the expected sum of 
the immediate reward plus the long-term value for subsequent steps. We have no 
subsequent steps for any possible transition for the "up" action:

𝑄𝑄(𝑠𝑠0, 𝑢𝑢𝑢𝑢) = 0.33 ⋅ 𝑉𝑉1 + 0.33 ⋅ 𝑉𝑉2 + 0.33 ⋅ 𝑉𝑉4 = 0.33 ⋅ 1 + 0.33 ⋅ 2 + 0.33 ⋅ 4 = 2.31 

Repeating this for the rest of the s0 actions results in the following:

𝑄𝑄(𝑠𝑠0, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 0.33 ⋅ 𝑉𝑉1 + 0.33 ⋅ 𝑉𝑉2 + 0.33 ⋅ 𝑉𝑉3 = 1.98
𝑄𝑄(𝑠𝑠0, 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙) = 0.33 ⋅ 𝑉𝑉4 + 0.33 ⋅ 𝑉𝑉1 + 0.33 ⋅ 𝑉𝑉3 = 2.64
𝑄𝑄(𝑠𝑠0, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 0.33 ⋅ 𝑉𝑉3 + 0.33 ⋅ 𝑉𝑉2 + 0.33 ⋅ 𝑉𝑉4 = 2.97
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The final value for state s0 is the maximum of those actions' values, which is 2.97.

Q-values are much more convenient in practice, as for the agent, it's much simpler 
to make decisions about actions based on Q than on V. In the case of Q, to choose 
the action based on the state, the agent just needs to calculate Q for all available 
actions using the current state and choose the action with the largest value of Q. 
To do the same using values of the states, the agent needs to know not only values, 
but also probabilities for transitions. In practice, we rarely know them in advance, 
so the agent needs to estimate transition probabilities for every action and state 
pair. Later in this chapter, you will see this in practice by solving the FrozenLake 
environment both ways. However, to be able to do this, we have one important 
thing still missing: a general way to calculate those Vs and Qs.

The value iteration method
In the simplistic example you just saw, to calculate the values of the states and 
actions, we exploited the structure of the environment: we had no loops in 
transitions, so we could start from terminal states, calculate their values, and then 
proceed to the central state. However, just one loop in the environment builds an 
obstacle in our approach. Let's consider such an environment with two states:

Figure 5.7: A sample environment with a loop in the transition diagram

We start from state s1, and the only action we can take leads us to state s2. We get the 
reward r = 1, and the only transition from s2 is an action, which brings us back to s1. 
So, the life of our agent is an infinite sequence of states [𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠1, 𝑠𝑠2,… ] . To 
deal with this infinity loop, we can use a discount factor: 𝛾𝛾 = 0.9 . Now, the question 
is, what are the values for both the states? The answer is not very complicated, in 
fact. Every transition from s1 to s2 gives us a reward of 1 and every back transition 
gives us 2. So, our sequence of rewards will be [1, 2, 1, 2, 1, 2, 1, 2, ….]. As there is 
only one action available in every state, our agent has no choice, so we can omit the 
max operation in formulas (there is only one alternative). 
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The value for every state will be equal to the infinite sum:

𝑉𝑉(𝑠𝑠1) = 1 + 𝛾𝛾 (2 + 𝛾𝛾(1 + 𝛾𝛾(2 +⋯))) = ∑1𝛾𝛾2𝑖𝑖 + 2𝛾𝛾2𝑖𝑖+1
∞

𝑖𝑖=0

𝑉𝑉(𝑠𝑠2) = 2 + 𝛾𝛾 (1 + 𝛾𝛾(2 + 𝛾𝛾(1 +⋯))) = ∑2𝛾𝛾2𝑖𝑖 + 1𝛾𝛾2𝑖𝑖+1
∞

𝑖𝑖=0

 

Strictly speaking, we can't calculate the exact values for our states, but with 𝛾𝛾 = 0.9 ,  
the contribution of every transition quickly decreases over time. For example, after 
10 steps, 𝛾𝛾10 = 0.910 = 0.349 , but after 100 steps, it becomes just 0.0000266. Due to 
this, we can stop after 50 iterations and still get quite a precise estimation.

>>> sum([0.9**(2*i) + 2*(0.9**(2*i+1)) for i in range(50)])
14.736450674121663
>>> sum([2*(0.9**(2*i)) + 0.9**(2*i+1) for i in range(50)])
15.262752483911719

The preceding example can be used to get the gist of a more general procedure 
called the value iteration algorithm. This allows us to numerically calculate the 
values of the states and values of the actions of Markov decision processes (MDPs) 
with known transition probabilities and rewards. The procedure (for values of the 
states) includes the following steps:

1. Initialize the values of all states, Vi, to some initial value (usually zero)
2. For every state, s, in the MDP, perform the Bellman update:

𝑉𝑉𝑠𝑠 ← max𝑎𝑎∑ 𝑝𝑝𝑎𝑎,𝑠𝑠→𝑠𝑠′(𝑟𝑟𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝑠𝑠′)
𝑠𝑠′

 

3. Repeat step 2 for some large number of steps or until changes become too 
small

In the case of action values (that is, Q), only minor modifications to the preceding 
procedure are required:

1. Initialize every Qs,a to zero
2. For every state, s, and action, a, in this state, perform this update:

𝑄𝑄𝑠𝑠,𝑎𝑎 ← ∑ 𝑝𝑝𝑎𝑎,𝑠𝑠→𝑠𝑠′(𝑟𝑟𝑠𝑠,𝑎𝑎 + 𝛾𝛾 max𝑎𝑎′𝑄𝑄𝑠𝑠′,𝑎𝑎′)
𝑠𝑠′

 

3. Repeat step 2
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Okay, so that's the theory. In practice, this method has several obvious limitations. 
First of all, our state space should be discrete and small enough to perform multiple 
iterations over all states. This is not an issue for FrozenLake-4x4 and even for 
FrozenLake-8x8 (it exists in Gym as a more challenging version), but for CartPole, 
it's not totally clear what to do. Our observation for CartPole is four float values, 
which represent some physical characteristics of the system. Even a small difference 
in those values could have an influence on the state's value. A potential solution for 
that could be discretization of our observation's values; for example, we can split 
the observation space of CartPole into bins and treat every bin as an individual 
discrete state in space. However, this will create lots of practical problems, such as 
how large bin intervals should be and how much data from the environment we 
will need to estimate our values. I will address this issue in subsequent chapters, 
when we get to the usage of neural networks in Q-learning.

The second practical problem arises from the fact that we rarely know the 
transition probability for the actions and rewards matrix. Remember the interface 
provided by Gym to the agent's writer: we observe the state, decide on an action, 
and only then do we get the next observation and reward for the transition. We 
don't know (without peeking into Gym's environment code) what the probability 
is of getting into state s1 from state s0 by issuing action a0.

What we do have is just the history from the agent's interaction with the 
environment. However, in Bellman's update, we need both a reward for every 
transition and the probability of this transition. So, the obvious answer to this issue 
is to use our agent's experience as an estimation for both unknowns. Rewards could 
be used as they are. We just need to remember what reward we got on the transition 
from s0 to s1 using action a, but to estimate probabilities, we need to maintain 
counters for every tuple (s0, s1, a) and normalize them.

Okay, now let's look at how the value iteration method will work for FrozenLake.

Value iteration in practice
The complete example is in Chapter05/01_frozenlake_v_iteration.py. The 
central data structures in this example are as follows:

• Reward table: A dictionary with the composite key "source state" + "action" + 
"target state". The value is obtained from the immediate reward.

• Transitions table: A dictionary keeping counters of the experienced 
transitions. The key is the composite "state" + "action", and the value is 
another dictionary that maps the target state into a count of times that we 
have seen it. For example, if in state 0 we execute action 1 ten times, after 
three times it will lead us to state 4 and after seven times to state 5. 
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The entry with the key (0, 1) in this table will be a dict with contents 
{4: 3, 5: 7}. We can use this table to estimate the probabilities of our 
transitions.

• Value table: A dictionary that maps a state into the calculated value of this 
state.

The overall logic of our code is simple: in the loop, we play 100 random steps from 
the environment, populating the reward and transition tables. After those 100 
steps, we perform a value iteration loop over all states, updating our value table. 
Then we play several full episodes to check our improvements using the updated 
value table. If the average reward for those test episodes is above the 0.8 boundary, 
then we stop training. During the test episodes, we also update our reward and 
transition tables to use all data from the environment.

Okay, so let's come to the code. In the beginning, we import the used packages and 
define constants:

import gym
import collections
from tensorboardX import SummaryWriter

ENV_NAME = "FrozenLake-v0"
GAMMA = 0.9
TEST_EPISODES = 20

Then we define the Agent class, which will keep our tables and contain functions 
that we will be using in the training loop:

class Agent:
    def __init__(self):
        self.env = gym.make(ENV_NAME)
        self.state = self.env.reset()
        self.rewards = collections.defaultdict(float)
        self.transits = collections.defaultdict(
            collections.Counter)
        self.values = collections.defaultdict(float)

In the class constructor, we create the environment that we will be using for data 
samples, obtain our first observation, and define tables for rewards, transitions, 
and values.

    def play_n_random_steps(self, count):
        for _ in range(count):
            action = self.env.action_space.sample()
            new_state, reward, is_done, _ = self.env.step(action)



Chapter 5

[ 119 ]

            self.rewards[(self.state, action, new_state)] = reward
            self.transits[(self.state, action)][new_state] += 1
            self.state = self.env.reset() \
                if is_done else new_state

This function is used to gather random experience from the environment and update 
the reward and transition tables. Note that we don't need to wait for the end of the 
episode to start learning; we just perform N steps and remember their outcomes. 
This is one of the differences between value iteration and the cross-entropy method, 
which can learn only on full episodes.

The next function calculates the value of the action from the state using our 
transition, reward, and values tables. We will use it for two purposes: to select the 
best action to perform from the state and to calculate the new value of the state on 
value iteration. Its logic is illustrated in the following diagram.

We do the following:

1. We extract transition counters for the given state and action from the 
transition table. Counters in this table have a form of dict, with target states 
as the key and a count of experienced transitions as the value. We sum all 
counters to obtain the total count of times we have executed the action from 
the state. We will use this total value later to go from an individual counter 
to probability.

2. Then we iterate every target state that our action has landed on and calculate 
its contribution to the total action value using the Bellman equation. This 
contribution is equal to immediate reward plus discounted value for the 
target state. We multiply this sum to the probability of this transition and 
add the result to the final action value.

Figure 5.8: The calculation of the state's value

In our diagram, we have an illustration of a calculation of the value for state s and 
action a. Imagine that, during our experience, we have executed this action several 
times (c1 + c2) and it ends up in one of two states, s1 or s2. How many times we have 
switched to each of these states is stored in our transition table as dict {s1: c1, s2: c2}. 
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Then, the approximate value for the state and action, Q(s, a), will be equal to the 
probability of every state, multiplied to the value of the state. From the Bellman 
equation, this equals the sum of the immediate reward and the discounted long-term 
state value.

    def calc_action_value(self, state, action):
        target_counts = self.transits[(state, action)]
        total = sum(target_counts.values())
        action_value = 0.0
        for tgt_state, count in target_counts.items():
            reward = self.rewards[(state, action, tgt_state)]
            val = reward + GAMMA * self.values[tgt_state]
            action_value += (count / total) * val
        return action_value

The next function uses the function that I just described to make a decision about 
the best action to take from the given state. It iterates over all possible actions in 
the environment and calculates the value for every action. The action with the 
largest value wins and is returned as the action to take. This action selection process 
is deterministic, as the play_n_random_steps() function introduces enough 
exploration. So, our agent will behave greedily in regard to our value approximation.

    def select_action(self, state):
        best_action, best_value = None, None
        for action in range(self.env.action_space.n):
            action_value = self.calc_action_value(state, action)
            if best_value is None or best_value < action_value:
                best_value = action_value
                best_action = action
        return best_action

The play_episode() function uses select_action() to find the best action to take 
and plays one full episode using the provided environment. This function is used to 
play test episodes, during which we don't want to mess with the current state of the 
main environment used to gather random data. So, we use the second environment 
passed as an argument. The logic is very simple and should be already familiar to 
you: we just loop over states accumulating reward for one episode.

    def play_episode(self, env):
        total_reward = 0.0
        state = env.reset()
        while True:
            action = self.select_action(state)
            new_state, reward, is_done, _ = env.step(action)
            self.rewards[(state, action, new_state)] = reward
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            self.transits[(state, action)][new_state] += 1
            total_reward += reward
            if is_done:
                break
            state = new_state
        return total_reward

The final method of the Agent class is our value iteration implementation and it 
is surprisingly simple, thanks to the preceding functions. What we do is just loop 
over all states in the environment, then for every state, we calculate the values for 
the states reachable from it, obtaining candidates for the value of the state. Then we 
update the value of our current state with the maximum value of the action available 
from the state.

    def value_iteration(self):
        for state in range(self.env.observation_space.n):
            state_values = [
                self.calc_action_value(state, action)
                for action in range(self.env.action_space.n)
            ]
            self.values[state] = max(state_values)

That's all of our agent's methods, and the final piece is a training loop and the 
monitoring of the code:

if __name__ == "__main__":
    test_env = gym.make(ENV_NAME)
    agent = Agent()
    writer = SummaryWriter(comment="-v-iteration")

We create the environment that we will be using for testing, the Agent class instance, 
and the summary writer for TensorBoard.

    iter_no = 0
    best_reward = 0.0
    while True:
        iter_no += 1
        agent.play_n_random_steps(100)
        agent.value_iteration()

The two lines in the preceding code snippet are the key piece in the training loop. 
First, we perform 100 random steps to fill our reward and transition tables with 
fresh data, and then we run value iteration over all states. The rest of the code plays 
test episodes using the value table as our policy, then writes data into TensorBoard, 
tracks the best average reward, and checks for the training loop stop condition.
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        reward = 0.0
        for _ in range(TEST_EPISODES):
            reward += agent.play_episode(test_env)
        reward /= TEST_EPISODES
        writer.add_scalar("reward", reward, iter_no)
        if reward > best_reward:
            print("Best reward updated %.3f -> %.3f" % (
                best_reward, reward))
            best_reward = reward
        if reward > 0.80:
            print("Solved in %d iterations!" % iter_no)
            break
    writer.close()

Okay, let's run our program:

rl_book_samples/Chapter05$ ./01_frozenlake_v_iteration.py

[2017-10-13 11:39:37,778] Making new env: FrozenLake-v0

[2017-10-13 11:39:37,988] Making new env: FrozenLake-v0

Best reward updated 0.000 -> 0.150

Best reward updated 0.150 -> 0.500

Best reward updated 0.500 -> 0.550

Best reward updated 0.550 -> 0.650

Best reward updated 0.650 -> 0.800

Best reward updated 0.800 -> 0.850

Solved in 36 iterations!

Our solution is stochastic, and my experiments usually required from 12 to 100 
iterations to reach a solution, but in all cases, it took less than a second to find a good 
policy that could solve the environment in 80% of runs. If you remember how many 
hours were required to achieve a 60% success ratio using the cross-entropy method, 
then you can understand that this is a major improvement. There are several reasons 
for that.

First of all, the stochastic outcome of our actions, plus the length of the episodes 
(six to 10 steps on average), makes it hard for the cross-entropy method to 
understand what was done right in the episode and which step was a mistake. Value 
iteration works with individual values of the state (or action) and incorporates the 
probabilistic outcome of actions naturally by estimating probability and calculating 
the expected value. So, it's much simpler for value iteration and requires much less 
data from the environment (which is called sample efficiency in RL).
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The second reason is the fact that value iteration doesn't need full episodes to 
start learning. In an extreme case, we can start updating our values just from a 
single example. However, for FrozenLake, due to the reward structure (we get 
1 only after successfully reaching the target state), we still need to have at least 
one successful episode to start learning from a useful value table, which may 
be challenging to achieve in more complex environments. For example, you can 
try switching the existing code to a larger version of FrozenLake, which has the 
name FrozenLake8x8-v0. The larger version of FrozenLake can take from 150 to 
1,000 iterations to solve, and, according to TensorBoard charts, most of the time 
it waits for the first successful episode, then it very quickly reaches convergence. 
Below are two charts: the first one shows reward dynamics during training on 
FrozenLake-4x4 and the second is for the 8x8 version.

Figure 5.9: The reward dynamics for FrozenLake-4x4

Figure 5.10: The reward dynamics on 8x8
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Now it's time to compare the code that learns the values of the states, as we just 
discussed, with the code that learns the values of the actions.

Q-learning for FrozenLake
The whole example is in the Chapter05/02_frozenlake_q_iteration.py file, 
and the difference is really minor. The most obvious change is to our value table. 
In the previous example, we kept the value of the state, so the key in the dictionary 
was just a state. Now we need to store values of the Q-function, which has two 
parameters: state and action, so the key in the value table is now a composite.

The second difference is in our calc_action_value() function. We just don't need 
it anymore, as our action values are stored in the value table.

Finally, the most important change in the code is in the agent's value_iteration() 
method. Before, it was just a wrapper around the calc_action_value() call, 
which did the job of Bellman approximation. Now, as this function has gone and 
been replaced by a value table, we need to do this approximation in the value_
iteration() method.

Let's look at the code. As it's almost the same, I will jump directly to the most 
interesting value_iteration() function:

    def value_iteration(self):
        for state in range(self.env.observation_space.n):
            for action in range(self.env.action_space.n):
                action_value = 0.0
                target_counts = self.transits[(state, action)]
                total = sum(target_counts.values())
                for tgt_state, count in target_counts.items():
                    key = (state, action, tgt_state)
                    reward = self.rewards[key]
                    best_action = self.select_action(tgt_state)
                    val = reward + GAMMA * \
                          self.values[(tgt_state, best_action)]
                    action_value += (count / total) * val
                self.values[(state, action)] = action_value

The code is very similar to calc_action_value() in the previous example and, 
in fact, it does almost the same thing. For the given state and action, it needs to 
calculate the value of this action using statistics about target states that we have 
reached with the action. To calculate this value, we use the Bellman equation and 
our counters, which allow us to approximate the probability of the target state. 
However, in Bellman's equation, we have the value of the state; now, we need to 
calculate it differently.
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Before, we had it stored in the value table (as we approximated the value of the 
states), so we just took it from this table. We can't do this anymore, so we have to 
call the select_action method, which will choose for us the action with the largest 
Q-value, and then we take this Q-value as the value of the target state. Of course, 
we can implement another function that can calculate for us this value of the state, 
but select_action does almost everything we need, so we will reuse it here.

There is another piece of this example that I'd like to emphasize here. Let's look at 
our select_action method:

    def select_action(self, state):
        best_action, best_value = None, None
        for action in range(self.env.action_space.n):
            action_value = self.values[(state, action)]
            if best_value is None or best_value < action_value:
                best_value = action_value
                best_action = action
        return best_action

As I said, we don't have the calc_action_value method anymore, so, to select 
an action, we just iterate over the actions and look up their values in our values 
table. It could look like a minor improvement, but if you think about the data that 
we used in calc_action_value, it may become obvious why the learning of the 
Q-function is much more popular in RL than the learning of the V-function.

Our calc_action_value function uses both information about the reward and 
probabilities. It's not a huge problem for the value iteration method, which relies 
on this information during training. However, in the next chapter, you will learn 
about the value iteration method extension, which doesn't require probability 
approximation, but just takes it from the environment samples. For such methods, 
this dependency on probability adds an extra burden for the agent. In the case of 
Q-learning, what the agent needs to make the decision is just Q-values.

I don't want to say that V-functions are completely useless, because they are an 
essential part of the actor-critic method, which we will talk about in part three 
of this book. However, in the area of value learning, Q-functions is the definite 
favorite. With regards to convergence speed, both our versions are almost identical 
(but the Q-learning version requires four times more memory for the value table).

rl_book_samples/Chapter05$ ./02_frozenlake_q_iteration.py

[2017-10-13 12:38:56,658] Making new env: FrozenLake-v0

[2017-10-13 12:38:56,863] Making new env: FrozenLake-v0

Best reward updated 0.000 -> 0.050

Best reward updated 0.050 -> 0.200
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Best reward updated 0.200 -> 0.350

Best reward updated 0.350 -> 0.700

Best reward updated 0.700 -> 0.750

Best reward updated 0.750 -> 0.850

Solved in 22 iterations!

Summary
My congratulations, you have made another step towards understanding modern, 
state-of-the-art RL methods! In this chapter, you learned about some very important 
concepts that are widely used in deep RL: the value of the state, the value of the 
action, and the Bellman equation in various forms.

We also covered the value iteration method, which is a very important building 
block in the area of Q-learning. Finally, you got to know how value iteration can 
improve our FrozenLake solution.

In the next chapter, you will learn about deep Q-networks, which started the deep 
RL revolution in 2013 by beating humans on lots of Atari 2600 games.
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Deep Q-Networks
In Chapter 5, Tabular Learning and the Bellman Equation, you became familiar with the 
Bellman equation and the practical method of its application called value iteration. 
This approach allowed us to significantly improve our speed and convergence in 
the FrozenLake environment, which is promising, but can we go further? In this 
chapter, we will apply the same approach to problems of much greater complexity: 
arcade games from the Atari 2600 platform, which are the de facto benchmark of 
the reinforcement learning (RL) research community.

To deal with this new and more challenging goal, in this chapter, we will:

• Talk about problems with the value iteration method and consider its 
variation, called Q-learning.

• Apply Q-learning to so-called grid world environments, which is called 
tabular Q-learning.

• Discuss Q-learning in conjunction with neural networks (NNs). This 
combination has the name deep Q-network (DQN).

At the end of the chapter, we will reimplement a DQN algorithm from the famous 
paper Playing Atari with Deep Reinforcement Learning by V. Mnih and others, which 
was published in 2013 and started a new era in RL development.

Real-life value iteration
The improvements that we got in the FrozenLake environment by switching from 
the cross-entropy method to the value iteration method are quite encouraging, so 
it's tempting to apply the value iteration method to more challenging problems. 
However, let's first look at the assumptions and limitations that our value iteration 
method has.
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We will start with a quick recap of the method. On every step, the value iteration 
method does a loop on all states, and for every state, it performs an update of 
its value with a Bellman approximation. The variation of the same method for 
Q-values (values for actions) is almost the same, but we approximate and store 
values for every state and action. So, what's wrong with this process?

The first obvious problem is the count of environment states and our ability to 
iterate over them. In value iteration, we assume that we know all states in our 
environment in advance, can iterate over them, and can store value approximations 
associated with them. It's definitely true for the simple grid world environment of 
FrozenLake, but what about other tasks?

First, let's try to understand how scalable the value iteration approach is, or, in 
other words, how many states we can easily iterate over in every loop. Even a 
moderate-sized computer can keep several billion float values in memory (8.5 
billion in 32 GB of RAM), so the memory required for value tables doesn't look like 
a huge constraint. Iteration over billions of states and actions will be more central 
processing unit (CPU) intensive, but not an insurmountable problem.

Nowadays, we have multicore systems that are mostly idle. The real problem is 
the number of samples required to get good approximations for state transition 
dynamics. Imagine that you have some environment with, say, a billion states 
(which corresponds approximately to a FrozenLake of size 31600×31600). To 
calculate even a rough approximation for every state of this environment, we 
would need hundreds of billions of transitions evenly distributed over our states, 
which is not practical.

To give you an example of an environment with an even larger number of potential 
states, let's consider the Atari 2600 game console again. This was very popular in 
the 1980s, and many arcade-style games were available for it. The Atari console 
is archaic by today's gaming standards, but its games provide an excellent set of 
RL problems that humans can master fairly quickly, yet still are challenging for 
computers. Not surprisingly, this platform (using an emulator, of course) is a very 
popular benchmark within RL research, as I mentioned.

Let's calculate the state space for the Atari platform. The resolution of the screen is 
210×160 pixels, and every pixel has one of 128 colors. So, every frame of the screen 
has 210 × 160 = 33600 pixels and the total number of different screens possible 
is 12833600, which is slightly more than 1070802. If we decide to just enumerate all 
possible states of the Atari once, it will take billions of billions of years even for the 
fastest supercomputer. Also, 99(.9)% of this job will be a waste of time, as most of 
the combinations will never be shown during even long gameplay, so we will never 
have samples of those states. However, the value iteration method wants to iterate 
over them just in case.
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Another problem with the value iteration approach is that it limits us to discrete 
action spaces. Indeed, both Q(s, a) and V(s) approximations assume that our actions 
are a mutually exclusive discrete set, which is not true for continuous control 
problems where actions can represent continuous variables, such as the angle of a 
steering wheel, the force on an actuator, or the temperature of a heater. This issue 
is much more challenging than the first, and we will talk about it in the last part of 
the book, in chapters dedicated to continuous action space problems. For now, let's 
assume that we have a discrete count of actions and that this count is not very large 
(orders of 10s). How should we handle the state space size issue?

Tabular Q-learning
First of all, do we really need to iterate over every state in the state space? We have 
an environment that can be used as a source of real-life samples of states. If some 
state in the state space is not shown to us by the environment, why should we care 
about its value? We can use states obtained from the environment to update the 
values of states, which can save us a lot of work.

This modification of the value iteration method is known as Q-learning, as 
mentioned earlier, and for cases with explicit state-to-value mappings, it has the 
following steps:

1. Start with an empty table, mapping states to values of actions.
2. By interacting with the environment, obtain the tuple s, a, r, s' (state, 

action, reward, and the new state). In this step, you need to decide which 
action to take, and there is no single proper way to make this decision. We 
discussed this problem as exploration versus exploitation in Chapter 1, What Is 
Reinforcement Learning? and will talk a lot about it in this chapter.

3. Update the Q(s, a) value using the Bellman approximation:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) ← 𝑟𝑟 + 𝛾𝛾 max
𝑎𝑎′∈𝐴𝐴

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) 

4. Repeat from step 2.

As in value iteration, the end condition could be some threshold of the update, or 
we could perform test episodes to estimate the expected reward from the policy.

Another thing to note here is how to update the Q-values. As we take samples 
from the environment, it's generally a bad idea to just assign new values on top 
of existing values, as training can become unstable. 
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What is usually done in practice is updating the Q(s, a) with approximations using 
a "blending" technique, which is just averaging between old and new values of Q 
using learning rate 𝛼𝛼  with a value from 0 to 1:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) ← (1 − 𝛼𝛼)𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼 (𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′∈𝐴𝐴

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)) 

This allows values of Q to converge smoothly, even if our environment is noisy. 
The final version of the algorithm is here:

1. Start with an empty table for Q(s, a).
2. Obtain (s, a, r, s') from the environment.

3. Make a Bellman update: 𝑄𝑄(𝑠𝑠, 𝑎𝑎) ← (1 − 𝛼𝛼)𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼 (𝑟𝑟 + 𝛾𝛾 max
𝑎𝑎′∈𝐴𝐴

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)) .

4. Check convergence conditions. If not met, repeat from step 2.

As mentioned earlier, this method is called tabular Q-learning, as we keep a table of 
states with their Q-values. Let's try it on our FrozenLake environment. The whole 
example code is in Chapter06/01_frozenlake_q_learning.py.

import gym
import collections
from tensorboardX import SummaryWriter

ENV_NAME = "FrozenLake-v0"
GAMMA = 0.9
ALPHA = 0.2
TEST_EPISODES = 20

class Agent:
    def __init__(self):
        self.env = gym.make(ENV_NAME)
        self.state = self.env.reset()
        self.values = collections.defaultdict(float)

In the beginning, we import packages and define constants. The new thing here 
is the value of 𝛼𝛼 , which will be used as the learning rate in the value update. The 
initialization of our Agent class is simpler now, as we don't need to track the history 
of rewards and transition counters, just our value table. This will make our memory 
footprint smaller, which is not a big issue for FrozenLake, but can be critical for 
larger environments.

    def sample_env(self):
        action = self.env.action_space.sample()
        old_state = self.state
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        new_state, reward, is_done, _ = self.env.step(action)
        self.state = self.env.reset() if is_done else new_state
        return old_state, action, reward, new_state

The preceding method is used to obtain the next transition from the environment. 
We sample a random action from the action space and return the tuple of the old 
state, action taken, reward obtained, and the new state. The tuple will be used in 
the training loop later.

    def best_value_and_action(self, state):
        best_value, best_action = None, None
        for action in range(self.env.action_space.n):
            action_value = self.values[(state, action)]
            if best_value is None or best_value < action_value:
                best_value = action_value
                best_action = action
        return best_value, best_action

The next method receives the state of the environment and finds the best action to 
take from this state by taking the action with the largest value that we have in the 
table. If we don't have the value associated with the state and action pair, then we 
take it as zero. This method will be used two times: first, in the test method that 
plays one episode using our current values table (to evaluate our policy's quality), 
and second, in the method that performs the value update to get the value of the 
next state.

    def value_update(self, s, a, r, next_s):
        best_v, _ = self.best_value_and_action(next_s)
        new_v = r + GAMMA * best_v
        old_v = self.values[(s, a)]
        self.values[(s, a)] = old_v * (1-ALPHA) + new_v * ALPHA

Here, we update our values table using one step from the environment. To do this, 
we calculate the Bellman approximation for our state, s, and action, a, by summing 
the immediate reward with the discounted value of the next state. Then we obtain 
the previous value of the state and action pair, and blend these values together 
using the learning rate. The result is the new approximation for the value of state s 
and action a, which is stored in our table.

    def play_episode(self, env):
        total_reward = 0.0
        state = env.reset()
        while True:
            _, action = self.best_value_and_action(state)
            new_state, reward, is_done, _ = env.step(action)
            total_reward += reward
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            if is_done:
                break
            state = new_state
        return total_reward

The last method in our Agent class plays one full episode using the provided test 
environment. The action on every step is taken using our current value table of 
Q-values. This method is used to evaluate our current policy to check the progress 
of learning. Note that this method doesn't alter our value table: it only uses it to 
find the best action to take.

The rest of the example is the training loop, which is very similar to examples from 
Chapter 5, Tabular Learning and the Bellman Equation: we create a test environment, 
agent, and summary writer, and then, in the loop, we do one step in the environment 
and perform a value update using the obtained data. Next, we test our current policy 
by playing several test episodes. If a good reward is obtained, then we stop training.

if __name__ == "__main__":
    test_env = gym.make(ENV_NAME)
    agent = Agent()
    writer = SummaryWriter(comment="-q-learning")

    iter_no = 0
    best_reward = 0.0
    while True:
        iter_no += 1
        s, a, r, next_s = agent.sample_env()
        agent.value_update(s, a, r, next_s)

        reward = 0.0
        for _ in range(TEST_EPISODES):
            reward += agent.play_episode(test_env)
        reward /= TEST_EPISODES
        writer.add_scalar("reward", reward, iter_no)
        if reward > best_reward:
            print("Best reward updated %.3f -> %.3f" % (
                best_reward, reward))
            best_reward = reward
        if reward > 0.80:
            print("Solved in %d iterations!" % iter_no)
            break
    writer.close()

The result of the example is shown here:
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rl_book_samples/Chapter06$./01_frozenlake_q_learning.py

Best reward updated 0.000 -> 0.150

Best reward updated 0.150 -> 0.250

Best reward updated 0.250 -> 0.300

Best reward updated 0.300 -> 0.350

Best reward updated 0.350 -> 0.400

Best reward updated 0.400 -> 0.450

Best reward updated 0.450 -> 0.550

Best reward updated 0.550 -> 0.600

Best reward updated 0.600 -> 0.650

Best reward updated 0.650 -> 0.700

Best reward updated 0.700 -> 0.750

Best reward updated 0.750 -> 0.800

Best reward updated 0.800 -> 0.850

Solved in 5738 iterations!

You may have noticed that this version used more iterations to solve the problem 
compared to the value iteration method from the previous chapter. The reason 
for that is that we are no longer using the experience obtained during testing. (In 
example Chapter05/02_frozenlake_q_iteration.py, periodical tests caused an 
update of Q-table statistics. Here, we don't touch Q-values during the test, which 
causes more iterations before the environment gets solved.) Overall, the total number 
of samples required from the environment is almost the same. The reward chart in 
TensorBoard also shows good training dynamics, which are very similar to the value 
iteration method.

Figure 6.1: Reward dynamics of FrozenLake



Deep Q-Networks

[ 134 ]

Deep Q-learning
The Q-learning method that we have just covered solves the issue of iteration over 
the full set of states, but still can struggle with situations when the count of the 
observable set of states is very large. For example, Atari games can have a large 
variety of different screens, so if we decide to use raw pixels as individual states, 
we will quickly realize that we have too many states to track and approximate 
values for.

In some environments, the count of different observable states could be almost 
infinite. For example, in CartPole, the environment gives us a state that is four 
floating point numbers. The number of value combinations is finite (they're 
represented as bits), but this number is extremely large. We could create some bins 
to discretize those values, but this often creates more problems than it solves: we 
would need to decide what ranges of parameters are important to distinguish as 
different states and what ranges could be clustered together.

In the case of Atari, one single pixel change doesn't make much difference, so it's 
efficient to treat both images as a single state. However, we still need to distinguish 
some of the states.

The following image shows two different situations in a game of Pong. We're 
playing against the artificial intelligence (AI) opponent by controlling a paddle 
(our paddle is on the right, whereas our opponent's is on the left). The objective of 
the game is to get the bouncing ball past our opponent's paddle, while preventing 
the ball from getting past our paddle. We can consider the two situations to be 
completely different: in the right-hand situation, the ball is close to the opponent, 
so we can relax and watch. However, the situation on the left is more demanding: 
assuming that the ball is moving from left to right, the ball is moving toward our 
side, so we need to move our paddle quickly to avoid losing a point. The situations 
in Figure 6.2 are just two from the 1070802 possible situations, but we want our agent 
to act on them differently.

Figure 6.2: The ambiguity of observations in Pong. In the left image, the ball is moving to the right toward our 
paddle, and on the right, its direction is opposite
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As a solution to this problem, we can use a nonlinear representation that maps both 
the state and action onto a value. In machine learning, this is called a "regression 
problem." The concrete way to represent and train such a representation can vary, 
but as you may have already guessed from this section's title, using a deep NN 
is one of the most popular options, especially when dealing with observations 
represented as screen images. With this in mind, let's make modifications to the 
Q-learning algorithm:

1. Initialize Q(s, a) with some initial approximation.
2. By interacting with the environment, obtain the tuple (s, a, r, s').
3. Calculate loss: ℒ = (𝑄𝑄(𝑠𝑠, 𝑎𝑎) − 𝑟𝑟)2  if the episode has ended, or 

ℒ = (𝑄𝑄(𝑠𝑠, 𝑎𝑎) − (𝑟𝑟 + 𝛾𝛾 max
𝑎𝑎′∈𝐴𝐴

𝑄𝑄𝑠𝑠′,𝑎𝑎′))
2
  otherwise.

4. Update Q(s, a) using the stochastic gradient descent (SGD) algorithm, by 
minimizing the loss with respect to the model parameters.

5. Repeat from step 2 until converged.

The preceding algorithm looks simple, but, unfortunately, it won't work very well. 
Let's discuss what could go wrong.

Interaction with the environment
First of all, we need to interact with the environment somehow to receive data to 
train on. In simple environments, such as FrozenLake, we can act randomly, but 
is this the best strategy to use? Imagine the game of Pong. What's the probability 
of winning a single point by randomly moving the paddle? It's not zero, but it's 
extremely small, which just means that we will need to wait for a very long time for 
such a rare situation. As an alternative, we can use our Q-function approximation 
as a source of behavior (as we did before in the value iteration method, when we 
remembered our experience during testing).

If our representation of Q is good, then the experience that we get from the 
environment will show the agent relevant data to train on. However, we're in 
trouble when our approximation is not perfect (at the beginning of the training, for 
example). In such a case, our agent can be stuck with bad actions for some states 
without ever trying to behave differently. This is the exploration versus exploitation 
dilemma mentioned briefly in Chapter 1, What Is Reinforcement Learning?, and earlier 
in this chapter. On the one hand, our agent needs to explore the environment to 
build a complete picture of transitions and action outcomes. On the other hand, we 
should use interaction with the environment efficiently: we shouldn't waste time by 
randomly trying actions that we have already tried and have learned outcomes for.
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As you can see, random behavior is better at the beginning of the training when 
our Q approximation is bad, as it gives us more uniformly distributed information 
about the environment states. As our training progresses, random behavior becomes 
inefficient, and we want to fall back to our Q approximation to decide how to act.

A method that performs such a mix of two extreme behaviors is known as an 
epsilon-greedy method, which just means switching between random and Q policy 
using the probability hyperparameter 𝜀𝜀 . By varying 𝜀𝜀 , we can select the ratio of 
random actions. The usual practice is to start with 𝜀𝜀 = 1.0  (100% random actions) 
and slowly decrease it to some small value, such as 5% or 2% random actions. 
Using an epsilon-greedy method helps us both to explore the environment in 
the beginning and stick to good policy at the end of the training. There are other 
solutions to the exploration versus exploitation problem, and we will discuss some 
of them in the third part of the book. This problem is one of the fundamental open 
questions in RL and an active area of research that is not even close to being resolved 
completely.

SGD optimization
The core of our Q-learning procedure is borrowed from supervised learning. Indeed, 
we are trying to approximate a complex, nonlinear function, Q(s, a), with an NN. To 
do this, we must calculate targets for this function using the Bellman equation and 
then pretend that we have a supervised learning problem at hand. That's okay, but 
one of the fundamental requirements for SGD optimization is that the training data 
is independent and identically distributed (frequently abbreviated as i.i.d.).

In our case, data that we are going to use for the SGD update doesn't fulfill these 
criteria:

1. Our samples are not independent. Even if we accumulate a large batch of 
data samples, they will all be very close to each other, as they will belong to 
the same episode.

2. Distribution of our training data won't be identical to samples provided 
by the optimal policy that we want to learn. Data that we have will be a 
result of some other policy (our current policy, random, or both in the case 
of epsilon-greedy), but we don't want to learn how to play randomly: we 
want an optimal policy with the best reward.

To deal with this nuisance, we usually need to use a large buffer of our past 
experience and sample training data from it, instead of using our latest experience. 
This technique is called replay buffer. The simplest implementation is a buffer of 
fixed size, with new data added to the end of the buffer so that it pushes the oldest 
experience out of it. 
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Replay buffer allows us to train on more-or-less independent data, but the data will 
still be fresh enough to train on samples generated by our recent policy. In the next 
chapter, we will check another kind of replay buffer: prioritized, which provides a 
more sophisticated sampling approach.

Correlation between steps
Another practical issue with the default training procedure is also related to the lack 
of i.i.d data, but in a slightly different manner. The Bellman equation provides us 
with the value of Q(s, a) via Q(s', a') (this process is called bootstrapping). However, 
both the states s and s' have only one step between them. This makes them very 
similar, and it's very hard for NNs to distinguish between them. When we perform 
an update of our NN's parameters to make Q(s, a) closer to the desired result, we 
can indirectly alter the value produced for Q(s', a') and other states nearby. This can 
make our training very unstable, like chasing our own tail: when we update Q for 
state s, then on subsequent states we will discover that Q(s', a') becomes worse, but 
attempts to update it can spoil our Q(s, a) approximation, and so on.

To make training more stable, there is a trick, called target network, by which we 
keep a copy of our network and use it for the Q(s', a') value in the Bellman equation. 
This network is synchronized with our main network only periodically, for example, 
once in N steps (where N is usually quite a large hyperparameter, such as 1k or 10k 
training iterations).

The Markov property
Our RL methods use Markov decision process (MDP) formalism as their basis, 
which assumes that the environment obeys the Markov property: observations 
from the environment are all that we need to act optimally. (In other words, our 
observations allow us to distinguish states from one another.)

As you saw from the preceding Pong screenshot, one single image from the Atari 
game is not enough to capture all the important information (using only one 
image, we have no idea about the speed and direction of objects, like the ball and 
our opponent's paddle). This obviously violates the Markov property and moves 
our single-frame Pong environment into the area of partially observable MDPs 
(POMDPs). A POMDP is basically MDP without the Markov property, and it is 
very important in practice. For example, for most card games in which you don't 
see your opponents' cards, game observations are POMDPs, because the current 
observation (your cards and cards on the table) could correspond to different cards 
in your opponents' hands.
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We won't discuss POMDPs in detail in this book, but we will use a small technique 
to push our environment back into the MDP domain. The solution is maintaining 
several observations from the past and using them as a state. In the case of Atari 
games, we usually stack k subsequent frames together and use them as the 
observation at every state. This allows our agent to deduct the dynamics of the 
current state, for instance, to get the speed of the ball and its direction. The usual 
"classical" number of k for Atari is four. Of course, it's just a hack, as there can be 
longer dependencies in the environment, but for most of the games, it works well.

The final form of DQN training
There are many more tips and tricks that researchers have discovered to make 
DQN training more stable and efficient, and we will cover the best of them in the 
next chapter. However, epsilon-greedy, replay buffer, and target network form the 
basis that has allowed the AI company DeepMind to successfully train a DQN on a 
set of 49 Atari games and demonstrate the efficiency of this approach when applied 
to complicated environments.

The original paper (without target network) was published at the end of 2013 
(Playing Atari with Deep Reinforcement Learning, 1312.5602v1, Mnih and others) and 
used seven games for testing. Later, at the beginning of 2015, a revised version of 
the article, with 49 different games, was published in Nature (Human-Level Control 
Through Deep Reinforcement Learning, doi:10.1038/nature14236, Mnih and others).

The algorithm for DQN from the preceding papers has the following steps:

1. Initialize the parameters for 𝑄𝑄(𝑠𝑠, 𝑎𝑎)  and �̂�𝑄(𝑠𝑠, 𝑎𝑎)  with random weights, 𝜀𝜀 ← 1.0 , 
and empty the replay buffer.

2. With probability 𝜀𝜀 , select a random action, a; otherwise, 𝑎𝑎 = argmax𝑎𝑎 𝑄𝑄(𝑠𝑠, 𝑎𝑎) .
3. Execute action a in an emulator and observe the reward, r, and the next state, 

s'.
4. Store transition (s, a, r, s′) in the replay buffer.
5. Sample a random mini-batch of transitions from the replay buffer.
6. For every transition in the buffer, calculate target y = r if the episode has 

ended at this step, or 𝑦𝑦 = 𝑟𝑟 + 𝛾𝛾 max
𝑎𝑎′∈𝐴𝐴

�̂�𝑄(𝑠𝑠′, 𝑎𝑎′)  otherwise.

7. Calculate loss: ℒ = (𝑄𝑄(𝑠𝑠, 𝑎𝑎) − 𝑦𝑦)2 .
8. Update Q(s, a) using the SGD algorithm by minimizing the loss in respect to 

the model parameters.
9. Every N steps, copy weights from Q to �̂�𝑄 .
10. Repeat from step 2 until converged.
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Let's implement it now and try to beat some of the Atari games!

DQN on Pong
Before we jump into the code, some introduction is needed. Our examples are 
becoming increasingly challenging and complex, which is not surprising, as 
the complexity of the problems that we are trying to tackle is also growing. The 
examples are as simple and concise as possible, but some of the code may be 
difficult to understand at first.

Another thing to note is performance. Our previous examples for FrozenLake, or 
CartPole, were not demanding from a performance perspective, as observations 
were small, NN parameters were tiny, and shaving off extra milliseconds in the 
training loop wasn't important. However, from now on, that's not the case. One 
single observation from the Atari environment is 100k values, which have to be 
rescaled, converted to floats, and stored in the replay buffer. One extra copy of 
this data array can cost you training speed, which will not be seconds and minutes 
anymore, but could be hours on even the fastest graphics processing unit (GPU) 
available.

The NN training loop could also be a bottleneck. Of course, RL models are not 
as huge monsters as state-of-the-art ImageNet models, but even the DQN model 
from 2015 has more than 1.5M parameters, which is a lot for a GPU to crunch. 
So, to make a long story short, performance matters, especially when you are 
experimenting with hyperparameters and need to wait not for a single model to 
train, but for dozens of them.

PyTorch is quite expressive, so more-or-less efficient processing code could look 
much less cryptic than optimized TensorFlow graphs, but there is still a significant 
opportunity for doing things slowly and making mistakes. For example, a naïve 
version of DQN loss computation, which loops over every batch sample, is about two 
times slower than a parallel version. However, a single extra copy of the data batch 
could make the speed of the same code 13 times slower, which is quite significant.

This example has been split into three modules due to its length, logical structure, 
and reusability. The modules are as follows:

• Chapter06/lib/wrappers.py: These are Atari environment wrappers, 
mostly taken from the OpenAI Baselines project.

• Chapter06/lib/dqn_model.py: This is the DQN NN layer, with the same 
architecture as the DeepMind DQN from the Nature paper.

• Chapter06/02_dqn_pong.py: This is the main module, with the training 
loop, loss function calculation, and experience replay buffer.
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Wrappers
Tackling Atari games with RL is quite demanding from a resource perspective. 
To make things faster, several transformations are applied to the Atari platform 
interaction, which are described in DeepMind's paper. Some of these transformations 
influence only performance, but some address Atari platform features that make 
learning long and unstable. Transformations are usually implemented as OpenAI 
Gym wrappers of various kinds. The full list is quite lengthy and there are several 
implementations of the same wrappers in various sources. My personal favorite is 
in the OpenAI Baselines repository, which is a set of RL methods and algorithms 
implemented in TensorFlow and applied to popular benchmarks to establish the 
common ground for comparing methods. The repository is available from https://
github.com/openai/baselines, and wrappers are available in this file: https://
github.com/openai/baselines/blob/master/baselines/common/atari_
wrappers.py.

The list of the most popular Atari transformations used by RL researchers includes:

• Converting individual lives in the game into separate episodes. In general, 
an episode contains all the steps from the beginning of the game until 
the "Game over" screen appears, which can last for thousands of game 
steps (observations and actions). Usually, in arcade games, the player 
is given several lives, which provide several attempts in the game. This 
transformation splits a full episode into individual small episodes for every 
life that a player has. Not all games support this feature (for example, Pong 
doesn't), but for the supported environments, it usually helps to speed up 
convergence, as our episodes become shorter.

• At the beginning of the game, performing a random amount (up to 30) of no-op 
actions. This skips intro screens in some Atari games, which are not relevant 
for the gameplay.

• Making an action decision every K steps, where K is usually 4 or 3. On 
intermediate frames, the chosen action is simply repeated. This allows 
training to speed up significantly, as processing every frame with an NN is 
quite a demanding operation, but the difference between consequent frames 
is usually minor.

• Taking the maximum of every pixel in the last two frames and using it as an 
observation. Some Atari games have a flickering effect, which is due to the 
platform's limitation. (Atari has a limited number of sprites that can be 
shown on a single frame.) For the human eye, such quick changes are not 
visible, but they can confuse NNs.

https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
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• Pressing FIRE at the beginning of the game. Some games (including Pong and 
Breakout) require a user to press the FIRE button to start the game. Without 
this, the environment becomes a POMDP, as from observation, an agent 
cannot tell whether FIRE was already pressed.

• Scaling every frame down from 210×160, with three color frames, to a single-color 
84×84 image. Different approaches are possible. For example, the DeepMind 
paper describes this transformation as taking the Y-color channel from the 
YCbCr color space and then rescaling the full image to an 84×84 resolution. 
Some other researchers do grayscale transformation, cropping non-relevant 
parts of the image and then scaling down. In the Baselines repository (and in 
the following example code), the latter approach is used.

• Stacking several (usually four) subsequent frames together to give the network 
information about the dynamics of the game's objects. This approach was already 
discussed as a quick solution to the lack of game dynamics in a single game 
frame.

• Clipping the reward to –1, 0, and 1 values. The obtained score can vary wildly 
among the games. For example, in Pong you get a score of 1 for every ball 
that your opponent passes behind you. However, in some games, like 
KungFuMaster, you get a reward of 100 for every enemy killed. This spread 
in reward values makes our loss have completely different scales between 
the games, which makes it harder to find common hyperparameters for a set 
of games. To fix this, the reward just gets clipped to the range [–1...1].

• Converting observations from unsigned bytes to float32 values. The screen 
obtained from the emulator is encoded as a tensor of bytes with values from 
0 to 255, which is not the best representation for an NN. So, we need to 
convert the image into floats and rescale the values to the range [0.0…1.0].

In our Pong example, we don't need some of these wrappers, such as converting 
lives into separate episodes and reward clipping, so those wrappers aren't included 
in the example code. However, you should be aware of them, just in case you decide 
to experiment with other games. Sometimes, when the DQN is not converging, the 
problem is not in the code but in the wrongly wrapped environment. I've spent 
several days debugging convergence issues caused by missing the FIRE button press 
at the beginning of a game!

Let's take a look at the implementation of individual wrappers from Chapter06/
lib/wrappers.py:

import cv2
import gym
import gym.spaces
import numpy as np
import collections
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class FireResetEnv(gym.Wrapper):
    def __init__(self, env=None):
        super(FireResetEnv, self).__init__(env)
        assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
        assert len(env.unwrapped.get_action_meanings()) >= 3

    def step(self, action):
        return self.env.step(action)

    def reset(self):
        self.env.reset()
        obs, _, done, _ = self.env.step(1)
        if done:
            self.env.reset()
        obs, _, done, _ = self.env.step(2)
        if done:
            self.env.reset()
        return obs

The preceding wrapper presses the FIRE button in environments that require that 
for the game to start. In addition to pressing FIRE, this wrapper checks for several 
corner cases that are present in some games.

class MaxAndSkipEnv(gym.Wrapper):
    def __init__(self, env=None, skip=4):
        super(MaxAndSkipEnv, self).__init__(env)
        self._obs_buffer = collections.deque(maxlen=2)
        self._skip = skip

    def step(self, action):
        total_reward = 0.0
        done = None
        for _ in range(self._skip):
            obs, reward, done, info = self.env.step(action)
            self._obs_buffer.append(obs)
            total_reward += reward
            if done:
                break
        max_frame = np.max(np.stack(self._obs_buffer), axis=0)
        return max_frame, total_reward, done, info

    def reset(self):
        self._obs_buffer.clear()



Chapter 6

[ 143 ]

        obs = self.env.reset()
        self._obs_buffer.append(obs)
        return obs

This wrapper combines the repetition of actions during K frames and pixels from 
two consecutive frames.

class ProcessFrame84(gym.ObservationWrapper):
    def __init__(self, env=None):
        super(ProcessFrame84, self).__init__(env)
        self.observation_space = gym.spaces.Box(
            low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)

    def observation(self, obs):
        return ProcessFrame84.process(obs)

    @staticmethod
    def process(frame):
        if frame.size == 210 * 160 * 3:
            img = np.reshape(frame, [210, 160, 3]).astype(
                np.float32)
        elif frame.size == 250 * 160 * 3:
            img = np.reshape(frame, [250, 160, 3]).astype(
                np.float32)
        else:
            assert False, "Unknown resolution."
        img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + \
              img[:, :, 2] * 0.114
        resized_screen = cv2.resize(
            img, (84, 110), interpolation=cv2.INTER_AREA)
        x_t = resized_screen[18:102, :]
        x_t = np.reshape(x_t, [84, 84, 1])
        return x_t.astype(np.uint8)

The goal of this wrapper is to convert input observations from the emulator, which 
normally has a resolution of 210×160 pixels with RGB color channels, to a grayscale 
84×84 image. It does this using a colorimetric grayscale conversion (which is closer 
to human color perception than a simple averaging of color channels), resizing the 
image, and cropping the top and bottom parts of the result.

class BufferWrapper(gym.ObservationWrapper):
    def __init__(self, env, n_steps, dtype=np.float32):
        super(BufferWrapper, self).__init__(env)
        self.dtype = dtype
        old_space = env.observation_space
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        self.observation_space = gym.spaces.Box(
            old_space.low.repeat(n_steps, axis=0),
            old_space.high.repeat(n_steps, axis=0), dtype=dtype)

    def reset(self):
        self.buffer = np.zeros_like(
            self.observation_space.low, dtype=self.dtype)
        return self.observation(self.env.reset())

    def observation(self, observation):
        self.buffer[:-1] = self.buffer[1:]
        self.buffer[-1] = observation
        return self.buffer

This class creates a stack of subsequent frames along the first dimension and returns 
them as an observation. The purpose is to give the network an idea about the 
dynamics of the objects, such as the speed and direction of the ball in Pong or how 
enemies are moving. This is very important information, which it is not possible to 
obtain from a single image.

class ImageToPyTorch(gym.ObservationWrapper):
    def __init__(self, env):
        super(ImageToPyTorch, self).__init__(env)
        old_shape = self.observation_space.shape
        new_shape = (old_shape[-1], old_shape[0], old_shape[1])
        self.observation_space = gym.spaces.Box(
            low=0.0, high=1.0, shape=new_shape, dtype=np.float32)

    def observation(self, observation):
        return np.moveaxis(observation, 2, 0)

This simple wrapper changes the shape of the observation from HWC (height, width, 
channel) to the CHW (channel, height, width) format required by PyTorch. The 
input shape of the tensor has a color channel as the last dimension, but PyTorch's 
convolution layers assume the color channel to be the first dimension.

class ScaledFloatFrame(gym.ObservationWrapper):
    def observation(self, obs):
        return np.array(obs).astype(np.float32) / 255.0

The final wrapper we have in the library converts observation data from bytes to 
floats, and scales every pixel's value to the range [0.0...1.0].

def make_env(env_name):
    env = gym.make(env_name)
    env = MaxAndSkipEnv(env)
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    env = FireResetEnv(env)
    env = ProcessFrame84(env)
    env = ImageToPyTorch(env)
    env = BufferWrapper(env, 4)
    return ScaledFloatFrame(env)

At the end of the file is a simple function that creates an environment by its name 
and applies all the required wrappers to it. That's it for wrappers, so let's look at our 
model.

The DQN model
The model published in Nature has three convolution layers followed by two 
fully connected layers. All layers are separated by rectified linear unit (ReLU) 
nonlinearities. The output of the model is Q-values for every action available in 
the environment, without nonlinearity applied (as Q-values can have any value). 
The approach of having all Q-values calculated with one pass through the network 
helps us to increase speed significantly in comparison to treating Q(s, a) literally and 
feeding observations and actions to the network to obtain the value of the action.

The code of the model is in Chapter06/lib/dqn_model.py:

import torch
import torch.nn as nn
import numpy as np

class DQN(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(DQN, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )

        conv_out_size = self._get_conv_out(input_shape)
        self.fc = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions)
        )
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To be able to write our network in the generic way, it was implemented in two 
parts: convolution and sequential. PyTorch doesn't have a "flatter" layer that could 
transform a 3D tensor into a 1D vector of numbers, with the requirement of feeding 
convolution output to the fully connected layer. This problem is solved in the 
forward() function, where we can reshape our batch of 3D tensors into a batch of 
1D vectors.

Another small problem is that we don't know the exact number of values in the 
output from the convolution layer produced with the input of the given shape. 
However, we need to pass this number to the first fully connected layer constructor. 
One possible solution would be to hard-code this number, which is a function of 
input shape (for 84×84 input, the output from the convolution layer will have 3136 
values); however, it's not the best way, as our code will become less robust to input 
shape change. The better solution would be to have a simple function, _get_conv_
out(), that accepts the input shape and applies the convolution layer to a fake 
tensor of such a shape. The result of the function would be equal to the number of 
parameters returned by this application. It would be fast, as this call would be done 
once on model creation, but also, it would allow us to have generic code.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        conv_out = self.conv(x).view(x.size()[0], -1)
        return self.fc(conv_out)

The final piece of the model is the forward() function, which accepts the 4D input 
tensor. (The first dimension is batch size and the second is the color channel, which 
is our stack of subsequent frames; the third and fourth are image dimensions.)

The application of transformations is done in two steps: first we apply the 
convolution layer to the input, and then we obtain a 4D tensor on output. This 
result is flattened to have two dimensions: a batch size and all the parameters 
returned by the convolution for this batch entry as one long vector of numbers. 
This is done by the view() function of the tensors, which lets one single dimension 
be a -1 argument as a wildcard for the rest of the parameters. For example, if we 
have a tensor, T, of shape (2, 3, 4), which is a 3D tensor of 24 elements, we can 
reshape it into a 2D tensor with six rows and four columns using T.view(6, 4). This 
operation doesn't create a new memory object or move the data in memory; it just 
changes the higher-level shape of the tensor. The same result could be obtained by 
T.view(-1, 4) or T.view(6, -1), which is very convenient when your tensor has a 
batch size in the first dimension. Finally, we pass this flattened 2D tensor to our fully 
connected layers to obtain Q-values for every batch input.
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Training
The third module contains the experience replay buffer, the agent, the loss function 
calculation, and the training loop itself. Before going into the code, something needs 
to be said about the training hyperparameters. DeepMind's Nature paper contained 
a table with all the details about hyperparameters used to train its model on all 49 
Atari games used for evaluation. DeepMind kept all those parameters the same for 
all games (but trained individual models for every game), and it was the team's 
intention to show that the method is robust enough to solve lots of games with 
varying complexity, action space, reward structure, and other details using one 
single model architecture and hyperparameters. However, our goal here is much 
more modest: we want to solve just the Pong game.

Pong is quite simple and straightforward in comparison to other games in the Atari 
test set, so the hyperparameters in the paper are overkill for our task. For example, 
to get the best result on all 49 games, DeepMind used a million-observations replay 
buffer, which requires approximately 20 GB of RAM to keep and lots of samples 
from the environment to populate.

The epsilon decay schedule that was used is also not the best for a single Pong game. 
In the training, DeepMind linearly decayed epsilon from 1.0 to 0.1 during the first 
million frames obtained from the environment. However, my own experiments 
have shown that for Pong, it's enough to decay epsilon over the first 150k frames 
and then keep it stable. The replay buffer also can be much smaller: 10k transitions 
will be enough.

In the following example, I've used my parameters. These differ from the parameters 
in the paper but will allow us to solve Pong about 10 times faster. On a GeForce GTX 
1080 Ti, the following version converges to a mean score of 19.0 in one to two hours, 
but with DeepMind's hyperparameters, it will require at least a day.

This speedup, of course, is fine-tuning for one particular environment and can break 
convergence on other games. You are free to play with the options and other games 
from the Atari set.

from lib import wrappers
from lib import dqn_model

import argparse
import time
import numpy as np
import collections

import torch
import torch.nn as nn
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import torch.optim as optim

from tensorboardX import SummaryWriter

First, we import required modules and define the hyperparameters.

DEFAULT_ENV_NAME = "PongNoFrameskip-v4"
MEAN_REWARD_BOUND = 19.0

These two values set the default environment to train on and the reward boundary 
for the last 100 episodes to stop training. If you want, you can redefine the 
environment name using the command line.

GAMMA = 0.99
BATCH_SIZE = 32
REPLAY_SIZE = 10000
REPLAY_START_SIZE = 10000
LEARNING_RATE = 1e-4
SYNC_TARGET_FRAMES = 1000

These parameters define the following:

• Our gamma value used for Bellman approximation (GAMMA)
• The batch size sampled from the replay buffer (BATCH_SIZE)
• The maximum capacity of the buffer (REPLAY_SIZE)
• The count of frames we wait for before starting training to populate the 

replay buffer (REPLAY_START_SIZE)
• The learning rate used in the Adam optimizer, which is used in this example 

(LEARNING_RATE)

• How frequently we sync model weights from the training model to the 
target model, which is used to get the value of the next state in the Bellman 
approximation (SYNC_TARGET_FRAMES)

EPSILON_DECAY_LAST_FRAME = 150000
EPSILON_START = 1.0
EPSILON_FINAL = 0.01

The last batch of hyperparameters is related to the epsilon decay schedule. To 
achieve proper exploration, we start with epsilon = 1.0 at the early stages of training, 
which causes all actions to be selected randomly. Then, during the first 150,000 
frames, epsilon is linearly decayed to 0.01, which corresponds to the random action 
taken in 1% of steps. A similar scheme was used in the original DeepMind paper, 
but the duration of decay was almost 10 times longer (so, epsilon = 0.01 was reached 
after a million frames).
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The next chunk of code defines our experience replay buffer, the purpose of which 
is to keep the transitions obtained from the environment (tuples of the observation, 
action, reward, done flag, and the next state). Each time we do a step in the 
environment, we push the transition into the buffer, keeping only a fixed number of 
steps (in our case, 10k transitions). For training, we randomly sample the batch of 
transitions from the replay buffer, which allows us to break the correlation between 
subsequent steps in the environment.

Experience = collections.namedtuple(
    'Experience', field_names=['state', 'action', 'reward',
                               'done', 'new_state'])

class ExperienceBuffer:
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)

    def __len__(self):
        return len(self.buffer)

    def append(self, experience):
        self.buffer.append(experience)

    def sample(self, batch_size):
        indices = np.random.choice(len(self.buffer), batch_size,
                                   replace=False)
        states, actions, rewards, dones, next_states = \
            zip(*[self.buffer[idx] for idx in indices])
        return np.array(states), np.array(actions), \
               np.array(rewards, dtype=np.float32), \
               np.array(dones, dtype=np.uint8), \
               np.array(next_states)

Most of the experience replay buffer code is quite straightforward: it basically 
exploits the capability of the deque class to maintain the given number of entries 
in the buffer. In the sample() method, we create a list of random indices and then 
repack the sampled entries into NumPy arrays for more convenient loss calculation.

The next class we need to have is an Agent, which interacts with the environment 
and saves the result of the interaction into the experience replay buffer that you 
have just seen:

class Agent:
    def __init__(self, env, exp_buffer):
        self.env = env
        self.exp_buffer = exp_buffer
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        self._reset()

    def _reset(self):
        self.state = env.reset()
        self.total_reward = 0.0

During the agent's initialization, we need to store references to the environment 
and experience replay buffer, tracking the current observation and the total reward 
accumulated so far.

    @torch.no_grad()
    def play_step(self, net, epsilon=0.0, device="cpu"):
        done_reward = None

        if np.random.random() < epsilon:
            action = env.action_space.sample()
        else:
            state_a = np.array([self.state], copy=False)
            state_v = torch.tensor(state_a).to(device)
            q_vals_v = net(state_v)
            _, act_v = torch.max(q_vals_v, dim=1)
            action = int(act_v.item())

The main method of the agent is to perform a step in the environment and store its 
result in the buffer. To do this, we need to select the action first. With the probability 
epsilon (passed as an argument), we take the random action; otherwise, we use the 
past model to obtain the Q-values for all possible actions and choose the best.

        new_state, reward, is_done, _ = self.env.step(action)
        self.total_reward += reward

        exp = Experience(self.state, action, reward,
                         is_done, new_state)
        self.exp_buffer.append(exp)
        self.state = new_state
        if is_done:
            done_reward = self.total_reward
            self._reset()
        return done_reward

As the action has been chosen, we pass it to the environment to get the next 
observation and reward, store the data in the experience buffer, and then handle 
the end-of-episode situation. The result of the function is the total accumulated 
reward if we have reached the end of the episode with this step, or None if not.
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Now it is time for the last function in the training module, which calculates the loss 
for the sampled batch. This function is written in a form to maximally exploit GPU 
parallelism by processing all batch samples with vector operations, which makes 
it harder to understand when compared with a naïve loop over the batch. Yet this 
optimization pays off: the parallel version is more than two times faster than an 
explicit loop over the batch.

As a reminder, here is the loss expression we need to calculate: 

ℒ = (𝑄𝑄(𝑠𝑠, 𝑎𝑎) − (𝑟𝑟 + 𝛾𝛾 max
𝑎𝑎′∈𝐴𝐴

�̂�𝑄(𝑠𝑠′, 𝑎𝑎′)))
2
  for steps that aren't at the end of the episode, 

or ℒ = (𝑄𝑄(𝑠𝑠, 𝑎𝑎) − 𝑟𝑟)2  for final steps.

def calc_loss(batch, net, tgt_net, device="cpu"):
    states, actions, rewards, dones, next_states = batch

In arguments, we pass our batch as a tuple of arrays (repacked by the sample() 
method in the experience buffer), our network that we are training, and the target 
network, which is periodically synced with the trained one.

The first model (passed as the argument network) is used to calculate gradients; 
the second model in the tgt_net argument is used to calculate values for the next 
states, and this calculation shouldn't affect gradients. To achieve this, we use the 
detach() function of the PyTorch tensor to prevent gradients from flowing into the 
target network's graph. This function was described in Chapter 3, Deep Learning with 
PyTorch.

    states_v = torch.tensor(np.array(
        states, copy=False)).to(device)
    next_states_v = torch.tensor(np.array(
        next_states, copy=False)).to(device)
    actions_v = torch.tensor(actions).to(device)
    rewards_v = torch.tensor(rewards).to(device)
    done_mask = torch.BoolTensor(dones).to(device)

The preceding code is simple and straightforward: we wrap individual NumPy 
arrays with batch data in PyTorch tensors and copy them to GPU if the CUDA device 
was specified in arguments.

    state_action_values = net(states_v).gather(
        1, actions_v.unsqueeze(-1)).squeeze(-1)

In the preceding line, we pass observations to the first model and extract the 
specific Q-values for the taken actions using the gather() tensor operation. The 
first argument to the gather() call is a dimension index that we want to perform 
gathering on (in our case, it is equal to 1, which corresponds to actions). 
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The second argument is a tensor of indices of elements to be chosen. Extra 
unsqueeze() and squeeze() calls are required to compute the index argument 
for the gather functions, and to get rid of the extra dimensions that we created, 
respectively. (The index should have the same number of dimensions as the data we 
are processing.) In Figure 6.3, you can see an illustration of what gather() does on 
the example case, with a batch of six entries and four actions:

Figure 6.3: Transformation of tensors during a DQN loss calculation

Keep in mind that the result of gather() applied to tensors is a differentiable 
operation that will keep all gradients with respect to the final loss value.

        next_state_values = tgt_net(next_states_v).max(1)[0]

In the preceding line, we apply the target network to our next state observations 
and calculate the maximum Q-value along the same action dimension, 1. Function 
max() returns both maximum values and indices of those values (so it calculates 
both max and argmax), which is very convenient. However, in this case, we are 
interested only in values, so we take the first entry of the result.

        next_state_values[done_mask] = 0.0

Here we make one simple, but very important, point: if transition in the batch 
is from the last step in the episode, then our value of the action doesn't have a 
discounted reward of the next state, as there is no next state from which to gather 
the reward. This may look minor, but it is very important in practice: without this, 
training will not converge.

    next_state_values = next_state_values.detach()

In this line, we detach the value from its computation graph to prevent gradients 
from flowing into the NN used to calculate Q approximation for the next states. 



Chapter 6

[ 153 ]

This is important, as without this, our backpropagation of the loss will start to affect 
both predictions for the current state and the next state. However, we don't want 
to touch predictions for the next state, as they are used in the Bellman equation 
to calculate reference Q-values. To block gradients from flowing into this branch 
of the graph, we are using the detach() method of the tensor, which returns the 
tensor without connection to its calculation history.

    expected_state_action_values = next_state_values * GAMMA + \
                                   rewards_v
    return nn.MSELoss()(state_action_values,
                        expected_state_action_values)

Finally, we calculate the Bellman approximation value and the mean squared error 
loss. This ends our loss function calculation, and the rest of the code is our training 
loop.

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False,
                        action="store_true", help="Enable cuda")
    parser.add_argument("--env", default=DEFAULT_ENV_NAME,
                        help="Name of the environment, default=" +
                             DEFAULT_ENV_NAME)
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

To begin with, we create a parser of command-line arguments. Our script allows 
us to enable CUDA and train on environments that are different from the default.

    env = wrappers.make_env(args.env)
    net = dqn_model.DQN(env.observation_space.shape,
                        env.action_space.n).to(device)
    tgt_net = dqn_model.DQN(env.observation_space.shape,
                            env.action_space.n).to(device)

Here, we create our environment with all required wrappers applied, the NN that 
we are going to train, and our target network with the same architecture. In the 
beginning, they will be initialized with different random weights, but it doesn't 
matter much, as we will sync them every 1k frames, which roughly corresponds to 
one episode of Pong.

    writer = SummaryWriter(comment="-" + args.env)
    print(net)

    buffer = ExperienceBuffer(REPLAY_SIZE)
    agent = Agent(env, buffer)
    epsilon = EPSILON_START
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Then we create our experience replay buffer of the required size and pass it to the 
agent. Epsilon is initially initialized to 1.0, but will be decreased every iteration.

    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
    total_rewards = []
    frame_idx = 0
    ts_frame = 0
    ts = time.time()
    best_m_reward = None

The last things we do before the training loop are to create an optimizer, a buffer for 
full episode rewards, a counter of frames and several variables to track our speed, 
and the best mean reward reached. Every time our mean reward beats the record, 
we will save the model in the file.

    while True:
        frame_idx += 1
        epsilon = max(EPSILON_FINAL, EPSILON_START -
                      frame_idx / EPSILON_DECAY_LAST_FRAME)

At the beginning of the training loop, we count the number of iterations completed 
and decrease epsilon according to our schedule. Epsilon will drop linearly during 
the given number of frames (EPSILON_DECAY_LAST_FRAME=150k) and then be kept 
on the same level of EPSILON_FINAL=0.01.

        reward = agent.play_step(net, epsilon, device=device)
        if reward is not None:
            total_rewards.append(reward)
            speed = (frame_idx - ts_frame) / (time.time() - ts)
            ts_frame = frame_idx
            ts = time.time()
            m_reward = np.mean(total_rewards[-100:])
            print("%d: done %d games, reward %.3f, "
                  "eps %.2f, speed %.2f f/s" % (
                frame_idx, len(total_rewards), m_reward, epsilon,
                speed
            ))
            writer.add_scalar("epsilon", epsilon, frame_idx)
            writer.add_scalar("speed", speed, frame_idx)
            writer.add_scalar("reward_100", m_reward, frame_idx)
            writer.add_scalar("reward", reward, frame_idx)

In this block of code, we ask our agent to make a single step in the environment 
(using our current network and value for epsilon). This function returns a non-None 
result only if this step is the final step in the episode. 
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In that case, we report our progress. Specifically, we calculate and show, both in the 
console and in TensorBoard, these values:

• Speed as a count of frames processed per second
• Count of episodes played
• Mean reward for the last 100 episodes
• Current value for epsilon

            if best_m_reward is None or best_m_reward < m_reward:
                torch.save(net.state_dict(), args.env +
                           "-best_%.0f.dat" % m_reward)
                if best_m_reward is not None:
                    print("Best reward updated %.3f -> %.3f" % (
                        best_m_reward, m_reward))
                best_m_reward = m_reward
            if m_reward > MEAN_REWARD_BOUND:
                print("Solved in %d frames!" % frame_idx)
                break

Every time our mean reward for the last 100 episodes reaches a maximum, we 
report this and save the model parameters. If our mean reward exceeds the 
specified boundary, then we stop training. For Pong, the boundary is 19.0, which 
means winning more than 19 from 21 possible games.

        if len(buffer) < REPLAY_START_SIZE:
            continue

        if frame_idx % SYNC_TARGET_FRAMES == 0:
            tgt_net.load_state_dict(net.state_dict())

Here we check whether our buffer is large enough for training. In the beginning, 
we should wait for enough data to start, which in our case is 10k transitions. The 
next condition syncs parameters from our main network to the target network 
every SYNC_TARGET_FRAMES, which is 1k by default.

        optimizer.zero_grad()
        batch = buffer.sample(BATCH_SIZE)
        loss_t = calc_loss(batch, net, tgt_net, device=device)
        loss_t.backward()
        optimizer.step()

The last piece of the training loop is very simple but requires the most time to 
execute: we zero gradients, sample data batches from the experience replay buffer, 
calculate loss, and perform the optimization step to minimize the loss.
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Running and performance
This example is demanding on resources. On Pong, it requires about 400k frames 
to reach a mean reward of 17 (which means winning more than 80% of games). 
A similar number of frames will be required to get from 17 to 19, as our learning 
progress will saturate and it will be hard for the model to improve the score. So, on 
average, a million frames are needed to train it fully. On the GTX 1080 Ti, I have 
a speed of about 120 frames per second, which is about two hours of training. On 
a CPU, the speed is much slower: about nine frames per second, which will take 
about a day and a half. Remember that this is for Pong, which is relatively easy to 
solve. Other games require hundreds of millions of frames and a 100 times larger 
experience replay buffer.

In Chapter 8, DQN Extensions, we will look at various approaches found by 
researchers since 2015 that can help to increase both training speed and data 
efficiency. Chapter 9, Ways to Speed up RL, will be devoted to engineering tricks to 
speed up RL methods' performance. Nevertheless, for Atari, you will need resources 
and patience. The following figure shows charts with training dynamics:

Figure 6.4: Dynamics of average reward calculated over the last 100 episodes

In the beginning of the training:

rl_book_samples/Chapter06$ ./02_dqn_pong.py –-cuda

  (conv): Sequential(

    (0): Conv2d(4, 32, kernel_size=(8, 8), stride=(4, 4))

    (1): ReLU()



Chapter 6

[ 157 ]

    (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))

    (3): ReLU()

    (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))

    (5): ReLU()

  )

  (fc): Sequential(

    (0): Linear(in_features=3136, out_features=512, bias=True)

    (1): ReLU()

    (2): Linear(in_features=512, out_features=6, bias=True)

  )

)

971: done 1 games, reward -21.000, eps 0.99, speed 890.81 f/s

1733: done 2 games, reward -21.000, eps 0.98, speed 984.59 f/s

2649: done 3 games, reward -20.667, eps 0.97, speed 987.53 f/s

Best reward updated -21.000 -> -20.667, saved

3662: done 4 games, reward -20.500, eps 0.96, speed 921.47 f/s

Best reward updated -20.667 -> -20.500, saved

4619: done 5 games, reward -20.600, eps 0.95, speed 965.86 f/s

5696: done 6 games, reward -20.500, eps 0.94, speed 963.99 f/s

6671: done 7 games, reward -20.429, eps 0.93, speed 967.28 f/s

Best reward updated -20.500 -> -20.429, saved

7648: done 8 games, reward -20.375, eps 0.92, speed 948.15 f/s

Best reward updated -20.429 -> -20.375, saved

8528: done 9 games, reward -20.444, eps 0.91, speed 954.72 f/s

9485: done 10 games, reward -20.400, eps 0.91, speed 936.82 f/s

10394: done 11 games, reward -20.455, eps 0.90, speed 256.84 f/s

11292: done 12 games, reward -20.417, eps 0.89, speed 127.90 f/s

12132: done 13 games, reward -20.385, eps 0.88, speed 130.18 f/s

During the first 10k steps, our speed is very high, as we don't do any training, which 
is the most expensive operation in our code. After 10k, we start sampling the training 
batches and the performance drops significantly.

Hundreds of games later, our DQN should start to figure out how to win one or two 
games out of 21. The speed has decreased due to epsilon drop; we need to use our 
model not only for training, but also for the environment step:
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94101: done 86 games, reward -19.512, eps 0.06, speed 120.67 f/s

Best reward updated -19.541 -> -19.512, saved

96279: done 87 games, reward -19.460, eps 0.04, speed 120.21 f/s

Best reward updated -19.512 -> -19.460, saved

98140: done 88 games, reward -19.455, eps 0.02, speed 119.10 f/s

Best reward updated -19.460 -> -19.455, saved

99884: done 89 games, reward -19.416, eps 0.02, speed 123.34 f/s

Best reward updated -19.455 -> -19.416, saved

101451: done 90 games, reward -19.411, eps 0.02, speed 120.53 f/s

Best reward updated -19.416 -> -19.411, saved

103812: done 91 games, reward -19.330, eps 0.02, speed 122.41 f/s

Best reward updated -19.411 -> -19.330, saved

105908: done 92 games, reward -19.283, eps 0.02, speed 119.85 f/s

Best reward updated -19.330 -> -19.283, saved

108259: done 93 games, reward -19.172, eps 0.02, speed 122.09 f/s

Best reward updated -19.283 -> -19.172, saved

Finally, after many more games, our DQN can finally dominate and beat the (not 
very sophisticated) built-in Pong AI opponent:

1097050: done 522 games, reward 18.800, eps 0.01, speed 132.71 f/s

Best reward updated 18.770 -> 18.800, saved

1098741: done 523 games, reward 18.820, eps 0.01, speed 134.58 f/s

Best reward updated 18.800 -> 18.820, saved

1100507: done 524 games, reward 18.890, eps 0.01, speed 132.11 f/s

Best reward updated 18.820 -> 18.890, saved

1102198: done 525 games, reward 18.920, eps 0.01, speed 133.68 f/s

Best reward updated 18.890 -> 18.920, saved

1103947: done 526 games, reward 18.920, eps 0.01, speed 130.07 f/s

1105745: done 527 games, reward 18.920, eps 0.01, speed 130.27 f/s

1107423: done 528 games, reward 18.960, eps 0.01, speed 130.08 f/s

Best reward updated 18.920 -> 18.960, saved

1109286: done 529 games, reward 18.940, eps 0.01, speed 129.04 f/s

1111058: done 530 games, reward 18.940, eps 0.01, speed 128.59 f/s

1112836: done 531 games, reward 18.930, eps 0.01, speed 130.84 f/s

1114622: done 532 games, reward 18.980, eps 0.01, speed 130.34 f/s

Best reward updated 18.960 -> 18.980, saved

1116437: done 533 games, reward 19.080, eps 0.01, speed 130.09 f/s

Best reward updated 18.980 -> 19.080, saved

Solved in 1116437 frames!
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Due to randomness in the training process, your actual dynamics might differ 
from what is displayed here. In some rare cases (one run from 10 according to my 
experiments), the training does not converge at all, which looks like a constant 
stream of rewards –21 for a long time. If your training doesn't show any positive 
dynamics for the first 100k-200k iterations, you should restart it.

Your model in action
The training process is just one half of the whole. Our final goal is not just to train 
the model; we also want our model to play the game with a good outcome. During 
the training, every time we update the maximum of the mean reward for the last 
100 games, we save the model into the file PongNoFrameskip-v4-best.dat. In the 
Chapter06/03_dqn_play.py file, we have a program that can load this model file 
and play one episode, displaying the model's dynamics.

The code is very simple, but it can be like magic seeing how several matrices, with 
a million parameters, can play Pong with superhuman accuracy by observing only 
the pixels.

import gym
import time
import argparse
import numpy as np
import torch

from lib import wrappers
from lib import dqn_model

import collections

DEFAULT_ENV_NAME = "PongNoFrameskip-v4"
FPS = 25

In the beginning, we import the familiar PyTorch and Gym modules. The preceding FPS 
(frames per second) parameter specifies the approximate speed of the shown frames.

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-m", "--model", required=True,
                        help="Model file to load")
    parser.add_argument("-e", "--env", default=DEFAULT_ENV_NAME,
                        help="Environment name to use, default=" +
                             DEFAULT_ENV_NAME)
    parser.add_argument("-r", "--record", help="Directory for video")
    parser.add_argument("--no-vis", default=True, dest='vis',
                        help="Disable visualization",
                        action='store_false')
    args = parser.parse_args()
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The script accepts the filename of the saved model and allows the specification of 
the Gym environment. (Of course, the model and environment have to match.) 
Additionally, you can pass option -r with the name of a nonexistent directory, 
which will be used to save a video of your game (using the Monitor wrapper). 
By default, the script just shows frames, but if you want to upload your model's 
gameplay to YouTube, for example, -r could be handy.

    env = wrappers.make_env(args.env)
    if args.record:
        env = gym.wrappers.Monitor(env, args.record)
    net = dqn_model.DQN(env.observation_space.shape,
                        env.action_space.n)
    state = torch.load(args.model, map_location=lambda stg,_: stg)
    net.load_state_dict(state)

    state = env.reset()
    total_reward = 0.0
    c = collections.Counter()

The preceding code should be clear without comments: we create the environment 
and our model, and then we load weights from the file passed in the arguments. 
The argument map_location, passed to the torch.load() function, is needed to 
map the loaded tensor location from GPU to CPU. By default, torch tries to load 
tensors on the same device where they were saved, but if you copy the model from 
the machine you used for training (with a GPU) to a laptop without a GPU, the 
locations need to be remapped. Our example doesn't use GPU at all, as inference is 
fast enough without acceleration.

    while True:
        start_ts = time.time()
        if args.vis:
            env.render()
        state_v = torch.tensor(np.array([state], copy=False))
        q_vals = net(state_v).data.numpy()[0]
        action = np.argmax(q_vals)
        c[action] += 1

This is almost an exact copy of the Agent class' method play_step() from the 
training code, without the epsilon-greedy action selection. We just pass our 
observation to the agent and select the action with maximum value. The only new 
thing here is the render() method in the environment, which is a standard way in 
Gym to display the current observation. (You need to have a graphical user interface 
(GUI) for this.)
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        state, reward, done, _ = env.step(action)
        total_reward += reward
        if done:
            break
        if args.vis:
            delta = 1/FPS - (time.time() - start_ts)
            if delta > 0:
                time.sleep(delta)
    print("Total reward: %.2f" % total_reward)
    print("Action counts:", c)
    if args.record:
        env.env.close()

The rest of the code is also simple. We pass the action to the environment, count the 
total reward, and stop our loop when the episode ends. After the episode, we show 
the total reward and the count of times that the agent executed the action.

In this YouTube playlist, you can find recordings of the gameplay at different stages 
of the training: https://www.youtube.com/playlist?list=PLMVwuZENsfJklt4vC
ltrWq0KV9aEZ3ylu.

Things to try
If you are curious and want to experiment with this chapter's material on your own, 
then here is a short list of directions to explore. Be warned though: they can take lots 
of time and may cause you some moments of frustration during your experiments. 
However, these experiments are a very efficient way to really master the material 
from a practical point of view:

• Try to take some other games from the Atari set, such as Breakout, Atlantis, 
or River Raid (my childhood favorite). This could require the tuning of 
hyperparameters.

• As an alternative to FrozenLake, there is another tabular environment, Taxi, 
which emulates a taxi driver who needs to pick up passengers and take them 
to a destination.

• Play with Pong hyperparameters. Is it possible to train faster? OpenAI 
claims that it can solve Pong in 30 minutes using the asynchronous 
advantage actor-critic method (which is a subject of part three of this 
book). Maybe it's possible with a DQN.

https://www.youtube.com/playlist?list=PLMVwuZENsfJklt4vCltrWq0KV9aEZ3ylu
https://www.youtube.com/playlist?list=PLMVwuZENsfJklt4vCltrWq0KV9aEZ3ylu
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• Can you make the DQN training code faster? The OpenAI Baselines project 
has shown 350 FPS using TensorFlow on GTX 1080 Ti. So, it looks like it's 
possible to optimize the PyTorch code. We will discuss this topic in Chapter 
8, DQN Extensions, but meanwhile, you can do your own experiments.

• In the video recording, you might notice that models with a mean score 
around zero play quite well. In fact, I had the impression that those models 
play better than models with mean scores of 10-19. This might be the case 
due to overfitting to the particular game situations. Could you try to fix 
this? Maybe it will be possible to use a generative adversarial network-style 
approach to make one model play with another?

• Can you get The Ultimate Pong Dominator model with a mean score of 21? It 
shouldn't be very hard—learning rate decay is the obvious method to try.

Summary
In this chapter, we covered a lot of new and complex material. You became 
familiar with the limitations of value iteration in complex environments with large 
observation spaces, and we discussed how to overcome them with Q-learning. We 
checked the Q-learning algorithm on the FrozenLake environment and discussed 
the approximation of Q-values with NNs, and the extra complications that arise 
from this approximation.

We covered several tricks for DQNs to improve their training stability and 
convergence, such as an experience replay buffer, target networks, and frame 
stacking. Finally, we combined those extensions into one single implementation 
of DQN that solves the Pong environment from the Atari games suite.

In the next chapter, we will look at a set of tricks that researchers have found since 
2015 to improve DQN convergence and quality, which (combined) can produce 
state-of-the-art results on most of the 54 (new games have been added) Atari games. 
This set was published in 2017, and we will analyze and reimplement all of the tricks.
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Higher-Level RL Libraries
In Chapter 6, Deep Q-Networks, we implemented the deep Q-network (DQN) 
model published by DeepMind in 2015 (https://deepmind.com/research/
publications/playing-atari-deep-reinforcement-learning). This paper 
had a significant effect on the RL field by demonstrating that, despite common belief, 
it's possible to use nonlinear approximators in RL. This proof of concept stimulated 
great interest in the deep Q-learning field and in deep RL in general.

In this chapter, we will take another step towards practical RL by discussing 
higher-level RL libraries, which will allow you to build your code from higher-level 
blocks and focus on the details of the method that you are implementing. Most of 
the chapter will describe the PyTorch Agent Net (PTAN) library, which will be 
used in the rest of the book to avoid code repetition, so will be covered in detail.

We will cover:

• The motivation for using high-level libraries, rather than reimplementing 
everything from scratch

• The PTAN library, including coverage of the most important parts, which 
will be illustrated with code examples

• DQN on CartPole, implemented using the PTAN library
• Other RL libraries that you might consider

Why RL libraries?
Our implementation of basic DQN in Chapter 6, Deep Q-Networks wasn't very, long 
and complicated—about 200 lines of training code plus 120 lines in environment 
wrappers. When you are becoming familiar with RL methods, it is very useful to 
implement everything yourself to understand how things actually work. However, 
the more involved you become in the field, the more often you will realize that you 
are writing the same code over and over again.

https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning
https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning
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This repetition comes from the generality of RL methods. As we already discussed 
in Chapter 1, What Is Reinforcement Learning?, RL is quite flexible and many real-
life problems fall into the environment-agent interaction scheme. RL methods 
don't make many assumptions about the specifics of observations and actions, so 
code implemented for the CartPole environment will be applicable to Atari games 
(maybe with some minor tweaks).

Writing the same code over and over again is not very efficient, as bugs might be 
introduced every time, which will cost you time for debugging and understanding. 
In addition, carefully designed code that has been used in several projects 
usually has a higher quality in terms of performance, unit tests, readability, 
and documentation.

The practical applications of RL are quite young by computer science standards, 
so in comparison to other more mature domains, you might not have that rich a 
choice of approaches. For example, in web development, even if you limit yourself 
with just Python, you have hundreds of very good libraries of all sorts: Django 
for heavyweight, fully functional websites; Flask for light Web Server Gateway 
Interface (WSGI) apps; and much more, large and small.

In RL, this process has just started, but still, you can choose from several projects 
that are trying to simplify RL practitioners' lives. In addition, you can always write 
your own set of tools, as I did several years ago. This library is called PTAN, and, 
as mentioned, it will be used in the rest of the book to illustrate examples.

The PTAN library
The library is available in GitHub: https://github.com/Shmuma/ptan. All the 
subsequent examples were implemented using version 0.6 of PTAN, which can be 
installed in your virtual environment by running the following:

pip install ptan==0.6

The original goal of PTAN was to simplify my RL experiments, and it tries to keep 
the balance between two extremes:

• Import the library and then write one line with tons of parameters to train 
one of the provided methods, like DQN (a very vivid example is the OpenAI 
Baselines project)

• Implement everything from scratch

https://github.com/Shmuma/ptan
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The first approach is very inflexible. It works well when you are using the library 
the way it is supposed to be used. But if you want to do something fancy, you will 
quickly find yourself hacking the library and fighting with the constraints that I 
imposed, rather than solving the problem you want to solve.

The second extreme gives too much freedom and requires implementing replay 
buffers and trajectory handling over and over again, which is error-prone, boring, 
and inefficient.

PTAN tries to balance those extremes, providing high-quality building blocks to 
simplify your RL code, but at the same time being flexible and not limiting your 
creativity.

At a high level, PTAN provides the following entities:

• Agent: a class that knows how to convert a batch of observations to a batch 
of actions to be executed. It can contain an optional state, in case you need 
to track some information between consequent actions in one episode. 
(We will use this approach in Chapter 17, Continuous Action Space, in the 
deep deterministic policy gradient (DDPG) method, which includes the 
Ornstein–Uhlenbeck random process for exploration.) The library provides 
several agents for the most common RL cases, but you always can write your 
own subclass of BaseAgent.

• ActionSelector: a small piece of logic that knows how to choose the action 
from some output of the network. It works in tandem with Agent.

• ExperienceSource and variations: the Agent instance and a Gym 
environment object can provide information about the trajectory from 
episodes. In its simplest form, it is one single (a, r, s') transition at a time, but 
its functionality goes beyond this.

• ExperienceSourceBuffer and friends: replay buffers with various 
characteristics. They include a simple replay buffer and two versions of 
prioritized replay buffers.

• Various utility classes, like TargetNet and wrappers for time series 
preprocessing (used for tracking training progress in TensorBoard).

• PyTorch Ignite helpers to integrate PTAN into the Ignite framework.
• Wrappers for Gym environments, for example, wrappers for Atari games 

(copied and pasted from OpenAI Baselines with some tweaks).

And that's basically it. In the following sections, we will take a look at those pieces in 
detail.
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Action selectors
In PTAN terminology, an action selector is an object that helps with going from 
network output to concrete action values. The most common cases include:

• Argmax: commonly used by Q-value methods when the network predicts 
Q-values for a set of actions and the desired action is the action with the 
largest Q(s, a).

• Policy-based: the network outputs the probability distribution (in the form 
of logits or normalized distribution), and an action needs to be sampled from 
this distribution. You have already seen this case in Chapter 4, The Cross-
Entropy Method, where we discussed the cross-entropy method.

An action selector is used by the Agent and rarely needs to be customized (but you 
have this option). The concrete classes provided by the library are:

• ArgmaxActionSelector: applies argmax on the second axis of a passed 
tensor. (It assumes a matrix with batch dimension along the first axis.)

• ProbabilityActionSelector: samples from the probability distribution  
of a discrete set of actions.

• EpsilonGreedyActionSelector: has the parameter epsilon, which 
specifies the probability of a random action to be taken.

All the classes assume that NumPy arrays will be passed to them. The complete 
example from this section can be found in Chapter07/01_actions.py.

>>> import numpy as np
>>> import ptan
>>> q_vals = np.array([[1, 2, 3], [1, -1, 0]])
>>> q_vals
array([[ 1,  2,  3],
       [ 1, -1,  0]])
>>> selector = ptan.actions.ArgmaxActionSelector()
>>> selector(q_vals)
array([2, 0])

As you can see, the selector returns indices of actions with the largest values.

>>> selector = ptan.actions.EpsilonGreedyActionSelector(epsilon=0.0)
>>> selector(q_vals)
array([2, 0])
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The result of the EpsilonGreedyActionSelector application is the same, as 
epsilon is 0.0, which means no random actions are taken. If we change epsilon 
to 1, actions will be random:

>>> selector = ptan.actions.EpsilonGreedyActionSelector(epsilon=1.0)
>>> selector(q_vals)
array([1, 1])

Working with ProbabilityActionSelector is the same, but the input needs to be a 
normalized probability distribution:

>>> selector = ptan.actions.ProbabilityActionSelector()
>>> for _ in range(10):
...     acts = selector(np.array([
...         [0.1, 0.8, 0.1],
...         [0.0, 0.0, 1.0],
...         [0.5, 0.5, 0.0]
...     ]))
...     print(acts)
...
[1 2 1]
[0 2 1]
[1 2 0]
[1 2 0]
[1 2 0]
[2 2 0]
[1 2 0]
[1 2 0]
[1 2 0]
[1 2 0]

In the preceding example, we sample from three distributions: in the first, the action 
with index 1 is chosen with probability 80%; in the second distribution, we always 
select action number 2; and in the third, actions 0 and 1 are equally likely.

The agent
The agent entity provides a unified way of bridging observations from the 
environment and the actions that we want to execute. So far, you have seen only 
a simple, stateless DQN agent that uses a neural network (NN) to obtain actions' 
values from the current observation and behaves greedily on those values. We have 
used epsilon-greedy behavior to explore the environment, but this doesn't change 
the picture much.
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In the RL field, this could be more complicated. For example, instead of predicting 
the values of the actions, our agent could predict a probability distribution over the 
actions. Such agents are called policy agents, and we will talk about those methods 
in part three of the book.

The other requirement could be the necessity for the agent to keep a state 
between observations. For example, very often one observation (or even the k last 
observation) is not enough to make a decision about the action, and we want to keep 
some memory in the agent to capture the necessary information. There is a whole 
subdomain of RL that tries to address this complication with partially observable 
Markov decision process (POMDP) formalism, which is not covered in the book.

The third variant of the agent is very common in continuous control problems, which 
will be discussed in part four of the book. For now, it will be enough to say that in 
such cases, actions are not discrete anymore but some continuous value, and the 
agent needs to predict them from the observations.

To capture all those variants and make the code flexible, the agent in PTAN is 
implemented as an extensible hierarchy of classes with the ptan.agent.BaseAgent 
abstract class at the top. From a high level, the agent needs to accept the batch of 
observations (in the form of a NumPy array) and return the batch of actions that it 
wants to take. The batch is used to make the processing more efficient, as processing 
several observations in one pass in a graphics processing unit (GPU) is frequently 
much faster than processing them individually.

The abstract base class doesn't define the types of input and output, which makes 
it very flexible and easy to extend. For example, in the continuous domain, our 
actions will no longer be indices of discrete actions, but float values.

In any case, the agent can be seen as something that knows how to convert 
observations into actions, and it's up to the agent how to do this. In general, 
there are no assumptions made on observation and action types, but the concrete 
implementation of agents is more limiting. PTAN provides two of the most common 
ways to convert observations into actions: DQNAgent and PolicyAgent.

In real problems, a custom agent is often needed. These are some of the reasons:

• The architecture of the NN is fancy—its action space is a mixture of 
continuous and discrete, it has multimodal observations (text and pixels, 
for example), or something like that.

• You want to use non-standard exploration strategies, for example, the 
Ornstein–Uhlenbeck process (a very popular exploration strategy in the 
continuous control domain).
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• You have a POMDP environment, and the agent's decision is not fully 
defined by observations, but by some internal agent state (which is also 
the case for Ornstein–Uhlenbeck exploration).

All those cases are easily supported by subclassing the BaseAgent class, and in the 
rest of the book, several examples of such redefinition will be given.

Let's now check the standard agents provided by the library: DQNAgent and 
PolicyAgent. The complete example is in Chapter07/02_agents.py.

DQNAgent
This class is applicable in Q-learning when the action space is not very large, 
which covers Atari games and lots of classical problems. This representation is not 
universal, and later in the book, you will see ways of dealing with that. DQNAgent 
takes a batch of observations on input (as a NumPy array), applies the network 
on them to get Q-values, and then uses the provided ActionSelector to convert 
Q-values to indices of actions.

Let's consider a small example. For simplicity, our network always produces the 
same output for the input batch.

class DQNNet(nn.Module):
    def __init__(self, actions: int):
        super(DQNNet, self).__init__()
        self.actions = actions
        
    def forward(self, x):
        return torch.eye(x.size()[0], self.actions)

Once we have defined the above class, we can use it as a DQN model:

>>> net = DQNNet(actions=3)
>>> net(torch.zeros(2, 10))
tensor([[1., 0., 0.],
        [0., 1., 0.]])

We start with the simple argmax policy, so the agent will always return actions 
corresponding to 1s in the network output.

>>> selector = ptan.actions.ArgmaxActionSelector()
>>> agent = ptan.agent.DQNAgent(dqn_model=net, action_
selector=selector)
>>> agent(torch.zeros(2, 5))
(array([0, 1]), [None, None])
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On the input, a batch of two observations, each having five values, was given, 
and on the output, the agent returned a tuple of two objects:

• An array with actions to be executed for every batch. In our case, this 
is action 0 for the first batch sample and action 1 for the second.

• A list with the agent's internal state. This is used for stateful agents and 
is a list of None in our case. As our agent is stateless, you can ignore it.

Now let's make the agent with an epsilon-greedy exploration strategy. For this, 
we just need to pass a different action selector:

>>> selector = ptan.actions.EpsilonGreedyActionSelector(epsilon=1.0)
>>> agent = ptan.agent.DQNAgent(dqn_model=net, action_
selector=selector)
>>> agent(torch.zeros(10, 5))[0]
array([2, 0, 0, 0, 1, 2, 1, 2, 2, 1])

As epsilon is 1.0, all the actions will be random, regardless of the network's output. 
But we can change the epsilon value on the fly, which is very handy during the 
training when we are supposed to anneal epsilon over time:

>>> selector.epsilon = 0.5
>>> agent(torch.zeros(10, 5))[0]
array([0, 1, 0, 1, 0, 0, 2, 1, 1, 2])
>>> selector.epsilon = 0.1
>>> agent(torch.zeros(10, 5))[0]
array([0, 1, 2, 0, 0, 0, 0, 0, 2, 0])

PolicyAgent
PolicyAgent expects the network to produce policy distribution over a discrete set 
of actions. Policy distribution could be either logits (unnormalized) or a normalized 
distribution. In practice, you should always use logits to improve the numeric 
stability of the training process.

Let's reimplement our previous example, but now the network will produce 
probability:

class PolicyNet(nn.Module):
    def __init__(self, actions: int):
        super(PolicyNet, self).__init__()
        self.actions = actions
        
    def forward(self, x):
        # Now we produce the tensor with first two actions
        # having the same logit scores
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        shape = (x.size()[0], self.actions)
        res = torch.zeros(shape, dtype=torch.float32)
        res[:, 0] = 1
        res[:, 1] = 1
        return res

The class above could be used to get the action logits for a batch of observations 
(which is ignored in our example):

>>> net = PolicyNet(actions=5)
>>> net(torch.zeros(6, 10))
tensor([[1., 1., 0., 0., 0.],
        [1., 1., 0., 0., 0.],
        [1., 1., 0., 0., 0.],
        [1., 1., 0., 0., 0.],
        [1., 1., 0., 0., 0.],
        [1., 1., 0., 0., 0.]])

Now we can use PolicyAgent in combination with ProbabilityActionSelector. 
As the latter expects normalized probabilities, we need to ask PolicyAgent to apply 
softmax to the network's output.

>>> selector = ptan.actions.ProbabilityActionSelector()
>>> agent = ptan.agent.PolicyAgent(model=net, action_
selector=selector, apply_softmax=True)
>>> agent(torch.zeros(6, 5))[0]
array([0, 4, 0, 0, 1, 2])

Please note that the softmax operation produces non-zero probabilities for zero 
logits, so our agent can still select actions >1.

>>> torch.nn.functional.softmax(net(torch.zeros(1, 10)), dim=1)
tensor([[0.3222, 0.3222, 0.1185, 0.1185, 0.1185]])

Experience source
The agent abstraction described in the previous section allows us to implement 
environment communications in a generic way. These communications happen in the 
form of trajectories, produced by applying the agent's actions to the Gym environment.

At a high level, experience source classes take the agent instance and environment 
and provide you with step-by step data from the trajectories. The functionality 
of those classes includes:

• Support of multiple environments being communicated at the same time. 
This allows efficient GPU utilization as a batch of observations is being 
processed by the agent at once.
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• A trajectory can be preprocessed and presented in a convenient form for 
further training. For example, there is an implementation of subtrajectory 
rollouts with accumulation of the reward. That preprocessing is convenient 
for DQN and n-step DQN, when we are not interested in individual 
intermediate steps in subtrajectories, so they can be dropped. This 
saves memory and reduces the amount of code we need to write.

• Support of vectorized environments from OpenAI Universe. We will 
cover this in Chapter 17, Continuous Action Space, for web automation and 
MiniWoB environments.

So, the experience source classes act as a "magic black box" to hide the environment 
interaction and trajectory handling complexities from the library user. But the overall 
PTAN philosophy is to be flexible and extensible, so if you want, you can subclass 
one of the existing classes or implement your own version as needed.

There are three classes provided by the system:

• ExperienceSource: using the agent and the set of environments, it produces 
n-step subtrajectories with all intermediate steps

• ExperienceSourceFirstLast: this is the same as ExperienceSource, but 
instead of a full subtrajectory (with all steps), it keeps only the first and last 
steps, with proper reward accumulation in between. This can save a lot of 
memory in the case of n-step DQN or advantage actor-critic (A2C) rollouts

• ExperienceSourceRollouts: this follows the asynchronous advantage 
actor-critic (A3C) rollouts scheme described in Mnih's paper about Atari 
games (referenced in Chapter 12, The Actor-Critic Method)

All the classes are written to be efficient both in terms of central processing unit 
(CPU) and memory, which is not very important for toy problems, but might become 
an issue when you want to solve Atari games and need to keep 10M samples in the 
replay buffer using commodity hardware.

Toy environment
For demonstration, we will implement a very simple Gym environment with 
a small predictable observation state to show how experience source classes work. 
This environment has integer observation, which increases from 0 to 4, integer 
action, and a reward equal to the action given.

class ToyEnv(gym.Env):
    def __init__(self):
        super(ToyEnv, self).__init__()
        self.observation_space = gym.spaces.Discrete(n=5)
        self.action_space = gym.spaces.Discrete(n=3)
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        self.step_index = 0

    def reset(self):
        self.step_index = 0
        return self.step_index

    def step(self, action):
        is_done = self.step_index == 10
        if is_done:
            return self.step_index % self.observation_space.n, \
                   0.0, is_done, {}
        self.step_index += 1
        return self.step_index % self.observation_space.n, \
               float(action), self.step_index == 10, {}

In addition to this environment, we will use an agent that always generates fixed 
actions regardless of observations:

class DullAgent(ptan.agent.BaseAgent):
    """
    Agent always returns the fixed action
    """
    def __init__(self, action: int):
        self.action = action

    def __call__(self, observations: List[Any],
                 state: Optional[List] = None) \
            -> Tuple[List[int], Optional[List]]:
        return [self.action for _ in observations], state

The ExperienceSource class
The first class is ptan.experience.ExperienceSource, which generates chunks 
of agent trajectories of the given length. The implementation automatically handles 
the end of episode situation (when the step() method in the environment returns 
is_done=True) and resets the environment.

The constructor accepts several arguments:

• The Gym environment to be used. Alternatively, it could be the list of 
environments.

• The agent instance.
• steps_count=2: the length of subtrajectories to be generated.
• vectorized=False: if set to True, the environment needs to be an OpenAI 

Universe vectorized environment. We will discuss such environments in 
detail in Chapter 16, Web Navigation.
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The class instance provides the standard Python iterator interface, so you can just 
iterate over this to get subtrajectories:

>>> env = ToyEnv()
>>> agent = DullAgent(action=1)
>>> exp_source = ptan.experience.ExperienceSource(env=env, 
agent=agent, steps_count=2)
>>> for idx, exp in enumerate(exp_source):
...     if idx > 2:
...         break
...     print(exp)
...
(Experience(state=0, action=1, reward=1.0, done=False), 
Experience(state=1, action=1, reward=1.0, done=False))
(Experience(state=1, action=1, reward=1.0, done=False), 
Experience(state=2, action=1, reward=1.0, done=False))
(Experience(state=2, action=1, reward=1.0, done=False), 
Experience(state=3, action=1, reward=1.0, done=False))

On every iteration, ExperienceSource returns a piece of the agent's trajectory 
in environment communication. It might look simple, but there are several things 
happening under the hood of our example:

1. reset() was called in the environment to get the initial state
2. The agent was asked to select the action to execute from the state returned
3. The step() method was executed to get the reward and the next state
4. This next state was passed to the agent for the next action
5. Information about the transition from one state to the next state was returned
6. The process iterated (from step 3) until it iterated over the experience source

If the agent changes the way it generates actions (we can get this by updating the 
network weights, decreasing epsilon, or by some other means), it will immediately 
affect the experience trajectories that we get.

The ExperienceSource instance returns tuples of length equal to or less than the 
argument step_count passed on construction. In our case, we asked for two-step 
subtrajectories, so tuples will be of length 2 or 1 (at the end of episodes). Every object 
in a tuple is an instance of the ptan.experience.Experience class, which is a 
namedtuple with the following fields:

• state: the state we observed before taking the action
• action: the action we completed
• reward: the immediate reward we got from env
• done: whether the episode was done
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If the episode reaches the end, the subtrajectory will be shorter and the underlying 
environment will be reset automatically, so we don't need to bother with this and 
can just keep iterating.

>>> for idx, exp in enumerate(exp_source):
>>>     if idx > 15:
>>>         break
>>>     print(exp)
(Experience(state=0, action=1, reward=1.0, done=False), 
Experience(state=1, action=1, reward=1.0, done=False))
......
(Experience(state=3, action=1, reward=1.0, done=False), 
Experience(state=4, action=1, reward=1.0, done=True))
(Experience(state=4, action=1, reward=1.0, done=True),)
(Experience(state=0, action=1, reward=1.0, done=False), 
Experience(state=1, action=1, reward=1.0, done=False))
......
(Experience(state=0, action=1, reward=1.0, done=False), 
Experience(state=1, action=1, reward=1.0, done=False))

We can ask ExperienceSource for subtrajectories of any length.

>>> exp_source = ptan.experience.ExperienceSource(env=env,
...                  agent=agent, steps_count=4)
>>> next(iter(exp_source))
(Experience(state=0, action=1, reward=1.0, done=False),
 Experience(state=1, action=1, reward=1.0, done=False),
 Experience(state=2, action=1, reward=1.0, done=False),
 Experience(state=3, action=1, reward=1.0, done=False))

We can pass it several instances of gym.Env. In that case, they will be used in round-
robin fashion.

>>> exp_source = ptan.experience.ExperienceSource(env=[env, env], 
agent=agent, steps_count=4)
>>> for idx, exp in enumerate(exp_source):
...     if idx > 4:
...         break
...     print(exp)
(Experience(state=0, action=1, reward=1.0, done=False), 
Experience(state=1, action=1, reward=1.0, done=False))
(Experience(state=0, action=1, reward=1.0, done=False), 
Experience(state=1, action=1, reward=1.0, done=False))
(Experience(state=1, action=1, reward=1.0, done=False), 
Experience(state=2, action=1, reward=1.0, done=False))
(Experience(state=1, action=1, reward=1.0, done=False), 
Experience(state=2, action=1, reward=1.0, done=False))
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(Experience(state=2, action=1, reward=1.0, done=False), 
Experience(state=3, action=1, reward=1.0, done=False))

ExperienceSourceFirstLast
The class ExperienceSource provides us with full subtrajectories of the given length 
as the list of (s, a, r) objects. The next state, s', is returned in the next tuple, which is 
not always convenient. For example, in DQN training, we want to have tuples (s, a, 
r, s') at once to do one-step Bellman approximation during the training. In addition, 
some extension of DQN, like n-step DQN, might want to collapse longer sequences 
of observations into (first-state, action, total-reward-for-n-steps, state-after-step-n).

To support this in a generic way, a simple subclass of ExperienceSource is 
implemented: ExperienceSourceFirstLast. It accepts almost the same arguments 
in the constructor, but returns different data.

>>> exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=1.0, steps_count=1)

>>> for idx, exp in enumerate(exp_source):
...     print(exp)
...     if idx > 10:
...         break
ExperienceFirstLast(state=0, action=1, reward=1.0, last_state=1)
ExperienceFirstLast(state=1, action=1, reward=1.0, last_state=2)
ExperienceFirstLast(state=2, action=1, reward=1.0, last_state=3)
ExperienceFirstLast(state=3, action=1, reward=1.0, last_state=4)
ExperienceFirstLast(state=4, action=1, reward=1.0, last_state=0)
ExperienceFirstLast(state=0, action=1, reward=1.0, last_state=1)
ExperienceFirstLast(state=1, action=1, reward=1.0, last_state=2)
ExperienceFirstLast(state=2, action=1, reward=1.0, last_state=3)
ExperienceFirstLast(state=3, action=1, reward=1.0, last_state=4)
ExperienceFirstLast(state=4, action=1, reward=1.0, last_state=None)
ExperienceFirstLast(state=0, action=1, reward=1.0, last_state=1)
ExperienceFirstLast(state=1, action=1, reward=1.0, last_state=2)

Now it returns a single object on every iteration, which is again a namedtuple 
with the following fields:

• state: the state we used to decide on the action to take
• action: the action we took at this step
• reward: the partial accumulated reward for steps_count (in our case, 

steps_count=1, so it is equal to the immediate reward)
• last_state: the state we got after executing the action. If our episode ends, 

we have None here
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This data is much more convenient for DQN training, as we can apply Bellman 
approximation directly to it.

Let's check the result with a larger number of steps:

>>> exp_source = ptan.experience.ExperienceSourceFirstLast(env,
...                  agent, gamma=1.0, steps_count=2)
>>> for idx, exp in enumerate(exp_source):
...     print(exp)
...     if idx > 10:
...         break
ExperienceFirstLast(state=0, action=1, reward=2.0, last_state=2)
ExperienceFirstLast(state=1, action=1, reward=2.0, last_state=3)
ExperienceFirstLast(state=2, action=1, reward=2.0, last_state=4)
ExperienceFirstLast(state=3, action=1, reward=2.0, last_state=0)
ExperienceFirstLast(state=4, action=1, reward=2.0, last_state=1)
ExperienceFirstLast(state=0, action=1, reward=2.0, last_state=2)
ExperienceFirstLast(state=1, action=1, reward=2.0, last_state=3)
ExperienceFirstLast(state=2, action=1, reward=2.0, last_state=4)
ExperienceFirstLast(state=3, action=1, reward=2.0, last_state=None)
ExperienceFirstLast(state=4, action=1, reward=1.0, last_state=None)
ExperienceFirstLast(state=0, action=1, reward=2.0, last_state=2)
ExperienceFirstLast(state=1, action=1, reward=2.0, last_state=3)

So, now we are collapsing two steps on every iteration and calculating the immediate 
reward (that's why reward=2.0 for most of the samples). More interesting samples 
are at the end of the episode:

ExperienceFirstLast(state=3, action=1, reward=2.0, last_state=None)
ExperienceFirstLast(state=4, action=1, reward=1.0, last_state=None)

As the episode ends, we have last_state=None in those samples, but additionally, 
we calculate the reward for the tail of the episode. Those tiny details are very easy 
to implement wrongly if you are doing all the trajectory handling yourself.

Experience replay buffers
In DQN, we rarely deal with immediate experience samples, as they are heavily 
correlated, which leads to instability in the training. Normally, we have large replay 
buffers, which are populated with experience pieces. Then the buffer is sampled 
(randomly or with priority weights) to get the training batch. The replay buffer 
normally has a maximum capacity, so old samples are pushed out when the replay 
buffer reaches the limit.
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There are several implementation tricks here, which become extremely important 
when you need to deal with large problems:

• How to efficiently sample from a large buffer
• How to push old samples from the buffer
• In the case of a prioritized buffer, how priorities need to be maintained and 

handled in the most efficient way

All this becomes a quite non-trivial task if you want to solve Atari, keeping 10-100M 
samples, where every sample is an image from the game. A small mistake can lead 
to a 10-100x memory increase and major slowdowns of the training process.

PTAN provides several variants of replay buffers, which integrate simply with 
ExperienceSource and Agent machinery. Normally, what you need to do is ask 
the buffer to pull a new sample from the source and sample the training batch. The 
provided classes are:

• ExperienceReplayBuffer: a simple replay buffer of predefined size with 
uniform sampling.

• PrioReplayBufferNaive: a simple, but not very efficient, prioritized replay 
buffer implementation. The complexity of sampling is O(n), which might 
become an issue with large buffers. This version has the advantage over the 
optimized class, having much easier code.

• PrioritizedReplayBuffer: uses segment trees for sampling, which makes 
the code cryptic, but with O(log(n)) sampling complexity.

The following shows how the replay buffer could be used:

>>> env = ToyEnv()
>>> agent = DullAgent(action=1)
>>> exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=1.0, steps_count=1)
>>> buffer = ptan.experience.ExperienceReplayBuffer(exp_source, 
buffer_size=100)
>>> len(buffer)
0

All replay buffers provide the following interface:

• A Python iterator interface to walk over all the samples in the buffer
• The method populate(N) to get N samples from the experience source 

and put them into the buffer
• The method sample(N) to get the batch of N experience objects
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So, the normal training loop for DQN looks like an infinite repetition of the following 
steps:

1. Call buffer.populate(1) to get a fresh sample from the environment
2. batch = buffer.sample(BATCH_SIZE) to get the batch from the buffer
3. Calculate the loss on the sampled batch
4. Backpropagate
5. Repeat until convergence (hopefully)

All the rest happens automatically: resetting the environment, handling 
subtrajectories, buffer size maintenance, and so on.

>>> for step in range(6):
...     buffer.populate(1)
...     if len(buffer) < 5:
...         continue
...     batch = buffer.sample(4)
...     print("Train time, %d batch samples:" % len(batch))
...     for s in batch:
...         print(s)
Train time, 4 batch samples:
ExperienceFirstLast(state=0, action=1, reward=1.0, last_state=1)
ExperienceFirstLast(state=3, action=1, reward=1.0, last_state=4)
ExperienceFirstLast(state=2, action=1, reward=1.0, last_state=3)
ExperienceFirstLast(state=4, action=1, reward=1.0, last_state=0)
Train time, 4 batch samples:
ExperienceFirstLast(state=3, action=1, reward=1.0, last_state=4)
ExperienceFirstLast(state=2, action=1, reward=1.0, last_state=3)
ExperienceFirstLast(state=0, action=1, reward=1.0, last_state=1)
ExperienceFirstLast(state=3, action=1, reward=1.0, last_state=4)

The TargetNet class
TargetNet is a small but useful class that allows us to synchronize two NNs 
of the same architecture. The purpose of this was described in the previous 
chapter: improving training stability. TargetNet supports two modes of such 
synchronization:

• sync(): weights from the source network are copied into the target network.
• alpha_sync(): the source network's weights are blended into the target 

network with some alpha weight (between 0 and 1).
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The first mode is the standard way to perform a target network sync in discrete 
action space problems, like Atari and CartPole. We did this in Chapter 6, Deep 
Q-Networks. The latter mode is used in continuous control problems, which will 
be described in several chapters in part four of the book. In such problems, the 
transition between two networks' parameters should be smooth, so alpha blending is 
used, given by the formula 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖𝛼𝛼 + 𝑠𝑠𝑖𝑖(1 − 𝛼𝛼) , where wi is the target network's ith 
parameter and si is the source network's weight. The following is a small example of 
how TargetNet should be used in code.

Assume we have the following network:

class DQNNet(nn.Module):
    def __init__(self):
        super(DQNNet, self).__init__()
        self.ff = nn.Linear(5, 3)

    def forward(self, x):
        return self.ff(x)

The target network could be created as follows:

>>> net = DQNNet()
>>> net
DQNNet(
  (ff): Linear(in_features=5, out_features=3, bias=True)
)
>>> tgt_net = ptan.agent.TargetNet(net)

The target network contains two fields: model, which is the reference to the original 
network, and target_model, which is a deep copy of it. If we examine both 
networks' weights, they will be the same:

>>> net.ff.weight
Parameter containing:
tensor([[-0.3287,  0.1219,  0.1804,  0.0993, -0.0996],
        [ 0.1890, -0.1656, -0.0889,  0.3874,  0.1428],
        [-0.3872, -0.2714, -0.0618, -0.2972,  0.4414]], requires_
grad=True)

>>> tgt_net.target_model.ff.weight
Parameter containing:
tensor([[-0.3287,  0.1219,  0.1804,  0.0993, -0.0996],
        [ 0.1890, -0.1656, -0.0889,  0.3874,  0.1428],
        [-0.3872, -0.2714, -0.0618, -0.2972,  0.4414]], requires_
grad=True)
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They are independent of each other, however, just having the same architecture:

>>> net.ff.weight.data += 1.0
>>> net.ff.weight
Parameter containing:
tensor([[0.6713, 1.1219, 1.1804, 1.0993, 0.9004],
        [1.1890, 0.8344, 0.9111, 1.3874, 1.1428],
        [0.6128, 0.7286, 0.9382, 0.7028, 1.4414]], requires_grad=True)
>>> tgt_net.target_model.ff.weight
Parameter containing:
tensor([[-0.3287,  0.1219,  0.1804,  0.0993, -0.0996],
        [ 0.1890, -0.1656, -0.0889,  0.3874,  0.1428],
        [-0.3872, -0.2714, -0.0618, -0.2972,  0.4414]], requires_
grad=True)

To synchronize them again, the sync() method can be used:

>>> tgt_net.sync()
>>> net.ff.weight
Parameter containing:
tensor([[0.6713, 1.1219, 1.1804, 1.0993, 0.9004],
        [1.1890, 0.8344, 0.9111, 1.3874, 1.1428],
        [0.6128, 0.7286, 0.9382, 0.7028, 1.4414]], requires_grad=True)

>>> tgt_net.target_model.ff.weight
Parameter containing:
tensor([[0.6713, 1.1219, 1.1804, 1.0993, 0.9004],
        [1.1890, 0.8344, 0.9111, 1.3874, 1.1428],
        [0.6128, 0.7286, 0.9382, 0.7028, 1.4414]], requires_grad=True)

Ignite helpers
PyTorch Ignite was briefly discussed in Chapter 3, Deep Learning with PyTorch and it 
will be used in the rest of the book to reduce the amount of training loop code. PTAN 
provides several small helpers to simplify integration with Ignite, which reside in the 
ptan.ignite package:

• EndOfEpisodeHandler: attached to the ignite.Engine, it emits an 
EPISODE_COMPLETED event, and tracks the reward and number of steps in 
the event in the engine's metrics. It also can emit an event when the average 
reward for the last episodes reaches the predefined boundary, which is 
supposed to be used to stop the training on some goal reward.

• EpisodeFPSHandler: tracks the number of interactions between the agent 
and environment that are performed and calculates performance metrics as 
frames per second. It also keeps the number of seconds passed since the start 
of the training.
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• PeriodicEvents: emits corresponding events every 10, 100, or 1,000 training 
iterations. It is useful for reducing the amount of data being written into 
TensorBoard.

A detailed illustration of how the preceding classes can be used will be given in the 
next chapter, when we will use them to reimplement DQN training from Chapter 6, 
Deep Q-Networks, and then check several DQN extensions and tweaks to improve 
basic DQN convergence.

The PTAN CartPole solver
Let's now take the PTAN classes (without Ignite so far) and try to combine 
everything together to solve our first environment: CartPole. The complete code 
is in Chapter07/06_cartpole.py. I will show only the important parts of the code 
related to the material that we have just covered.

net = Net(obs_size, HIDDEN_SIZE, n_actions)
tgt_net = ptan.agent.TargetNet(net)
selector = ptan.actions.ArgmaxActionSelector()
selector = ptan.actions.EpsilonGreedyActionSelector(
    epsilon=1, selector=selector)
agent = ptan.agent.DQNAgent(net, selector)
exp_source = ptan.experience.ExperienceSourceFirstLast(
    env, agent, gamma=GAMMA)
buffer = ptan.experience.ExperienceReplayBuffer(
    exp_source, buffer_size=REPLAY_SIZE)

In the beginning, we create the NN (the simple two-layer feed-forward NN that 
we used for CartPole before) and target the NN epsilon-greedy action selector and 
DQNAgent. Then the experience source and replay buffer are created. With those few 
lines, we have finished with our data pipeline. Now we just need to call populate() 
on the buffer and sample training batches from it:

while True:
    step += 1
    buffer.populate(1)

    for reward, steps in exp_source.pop_rewards_steps():
        episode += 1
        print("%d: episode %d done, reward=%.3f, epsilon=%.2f" % (
            step, episode, reward, selector.epsilon))
        solved = reward > 150
    if solved:
        print("Congrats!")
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        break

    if len(buffer) < 2*BATCH_SIZE:
        continue
    batch = buffer.sample(BATCH_SIZE)

In the beginning of every training loop iteration, we ask the buffer to fetch one 
sample from the experience source and then check for the finished episode. The 
method pop_rewards_steps() in the ExperienceSource class returns the list of 
tuples with information about episodes completed since the last call to the method.

    states_v, actions_v, tgt_q_v = unpack_batch(
        batch, tgt_net.target_model, GAMMA)
    optimizer.zero_grad()
    q_v = net(states_v)
    q_v = q_v.gather(1, actions_v.unsqueeze(-1)).squeeze(-1)
    loss_v = F.mse_loss(q_v, tgt_q_v)
    loss_v.backward()
    optimizer.step()
    selector.epsilon *= EPS_DECAY

    if step % TGT_NET_SYNC == 0:
        tgt_net.sync()

Later in the training loop, we convert a batch of ExperienceFirstLast objects into 
tensors suitable for DQN training, calculate the loss, and do a backpropagation 
step. Finally, we decay epsilon in our action selector (with the hyperparameters 
used, epsilon decays to zero at training step 500) and ask the target network to sync 
every 10 training iterations.

When started, the code should converge in 1,000-2,000 training iterations:

$ python 06_cartpole.py

18: episode 1 done, reward=17.000, steps=17, epsilon=1.00

33: episode 2 done, reward=15.000, steps=15, epsilon=0.99

58: episode 3 done, reward=25.000, steps=25, epsilon=0.77

100: episode 4 done, reward=42.000, steps=42, epsilon=0.50

116: episode 5 done, reward=16.000, steps=16, epsilon=0.43

129: episode 6 done, reward=13.000, steps=13, epsilon=0.38

140: episode 7 done, reward=11.000, steps=11, epsilon=0.34

152: episode 8 done, reward=12.000, steps=12, epsilon=0.30

......

348: episode 27 done, reward=9.000, steps=9, epsilon=0.04
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358: episode 28 done, reward=10.000, steps=10, epsilon=0.04

435: episode 29 done, reward=77.000, steps=77, epsilon=0.02

537: episode 30 done, reward=102.000, steps=102, epsilon=0.01

737: episode 31 done, reward=200.000, steps=200, epsilon=0.00

Congrats!

Other RL libraries
As we discussed earlier, there are several RL-specific libraries available. Overall, 
TensorFlow is more popular than PyTorch, as it is more widespread in the deep 
learning community. The following is my (very biased) list of libraries:

• Keras-RL: started by Matthias Plappert in 2016, this includes basic deep RL 
methods. As suggested by the name, this library was implemented using 
Keras, which is a higher-level wrapper around TensorFlow (https://
github.com/keras-rl/keras-rl).

• Dopamine: a library from Google published in 2018. It is TensorFlow-
specific, which is not surprising for a library from Google (https://github.
com/google/dopamine).

• Ray: a library for distributed execution of machine learning code. It includes 
RL utilities as part of the library (https://github.com/ray-project/ray).

• TF-Agents: another library from Google published in 2018 (https://
github.com/tensorflow/agents).

• ReAgent: a library from Facebook Research. It uses PyTorch internally and 
uses a declarative style of configuration (when you are creating a JSON file to 
describe your problem), which limits extensibility. But, of course, as it is open 
source, you can always extend the functionality (https://github.com/
facebookresearch/ReAgent).

• Catalyst.RL: a project started by Sergey Kolesnikov (one of this book's 
technical reviewers). It uses PyTorch as the backend (https://github.com/
catalyst-team/catalyst).

• SLM Lab: another PyTorch RL library (https://github.com/kengz/SLM-
Lab).

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/google/dopamine
https://github.com/google/dopamine
https://github.com/ray-project/ray
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/facebookresearch/ReAgent
https://github.com/facebookresearch/ReAgent
https://github.com/catalyst-team/catalyst
https://github.com/catalyst-team/catalyst
https://github.com/kengz/SLM-Lab
https://github.com/kengz/SLM-Lab
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Summary
In this chapter, we talked about higher-level RL libraries, their motivation, and their 
requirements. Then we took a deep look into the PTAN library, which will be used 
in the rest of the book to simplify example code.

In the next chapter, we will return to DQN methods by exploring extensions that 
researchers and practitioners have discovered since the classic DQN introduction 
to improve the stability and performance of the method.
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DQN Extensions
Since DeepMind published its paper on the deep Q-network (DQN) model 
(https://deepmind.com/research/publications/playing-atari-deep-
reinforcement-learning) in 2015, many improvements have been proposed, 
along with tweaks to the basic architecture, which, significantly, have improved 
the convergence, stability, and sample efficiency of DeepMind's basic DQN. In 
this chapter, we will take a deeper look at some of those ideas.

Very conveniently, in October 2017, DeepMind published a paper called Rainbow: 
Combining Improvements in Deep Reinforcement Learning ([1] Hessel and others, 2017), 
which presented the seven most important improvements to DQN; some were 
invented in 2015, but others were very recent. In this paper, state-of-the-art results 
on the Atari games suite were reached, just by combining those seven methods. 
This chapter will go through all those methods. We will analyze the ideas behind 
them, alongside how they can be implemented and compared to the classic DQN 
performance. Finally, we will check the combined system with all the methods.

The DQN extensions that we will become familiar with are the following:

• N-step DQN: how to improve convergence speed and stability with a simple 
unrolling of the Bellman equation, and why it's not an ultimate solution

• Double DQN: how to deal with DQN overestimation of the values of the 
actions

• Noisy networks: how to make exploration more efficient by adding noise 
to the network weights

• Prioritized replay buffer: why uniform sampling of our experience is not the 
best way to train

• Dueling DQN: how to improve convergence speed by making our network's 
architecture represent more closely the problem that we are solving

https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning
https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning
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• Categorical DQN: how to go beyond the single expected value of the action 
and work with full distributions

Basic DQN
To get started, we will implement the same DQN method as in Chapter 6, Deep 
Q-Networks, but leveraging the high-level libraries described in Chapter 7, Higher-
Level RL Libraries. This will make our code much more compact, which is good, 
as non-relevant details won't distract us from the method's logic.

At the same time, the purpose of this book is not to teach you how to use the existing 
libraries, but rather how to develop intuition about RL methods and, if necessary, 
implement everything from scratch. From my perspective, this is a much more 
valuable skill, as libraries come and go, but true understanding of the domain will 
allow you to quickly make sense of other people's code and apply it consciously.

In the basic DQN implementation, we have three modules:

• Chapter08/lib/dqn_model.py: the DQN neural network (NN), which is the 
same as Chapter 6, so I won't repeat it

• Chapter08/lib/common.py: common functions and declarations shared by 
the code in this chapter

• Chapter08/01_dqn_basic.py: 60 lines of code leveraging the PTAN and 
Ignite libraries, implementing the basic DQN method

Common library
Let's start with the contents of lib/common.py. First of all, we have hyperparameters 
for our Pong environment from the previous chapter. The hyperparameters are 
stored in the SimpleNamespace object, which is a class from the Python standard 
library that provides simple access to a variable set of keys and values. This makes 
it easy to add another configuration set for different, more complicated Atari games 
and allows us to experiment with hyperparameters:

HYPERPARAMS = {
    'pong': SimpleNamespace(**{
        'env_name':         "PongNoFrameskip-v4",
        'stop_reward':      18.0,
        'run_name':         'pong',
        'replay_size':      100000,
        'replay_initial':   10000,
        'target_net_sync':  1000,
        'epsilon_frames':   10**5,
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        'epsilon_start':    1.0,
        'epsilon_final':    0.02,
        'learning_rate':    0.0001,
        'gamma':            0.99,
        'batch_size':       32
    }),

The instance of the SimpleNamespace class provides a generic container for values; 
for example, with the preceding hyperparameters, you can write:

params = common.HYPERPARAMS['pong']
print("Env %s, gamma %.2f" % (params.env_name, params.gamma))

The next function from lib/common.py has the name unpack_batch and it takes 
the batch of transitions and converts it into the set of NumPy arrays suitable 
for training. Every transition from ExperienceSourceFirstLast has a type 
of ExperienceFirstLast, which is a namedtuple with the following fields:

• state: observation from the environment.
• action: integer action taken by the agent.
• reward: if we have created ExperienceSourceFirstLast with the 

attribute steps_count=1, it's just the immediate reward. For larger step 
counts, it contains the discounted sum of rewards for this number of steps.

• last_state: if the transition corresponds to the final step in the 
environment, then this field is None; otherwise, it contains the last 
observation in the experience chain.

The code of unpack_batch is as follows:

def unpack_batch(batch:List[ptan.experience.ExperienceFirstLast]):
    states, actions, rewards, dones, last_states = [],[],[],[],[]
    for exp in batch:
        state = np.array(exp.state, copy=False)
        states.append(state)
        actions.append(exp.action)
        rewards.append(exp.reward)
        dones.append(exp.last_state is None)
        if exp.last_state is None:
            lstate = state # the result will be masked anyway
        else:
            lstate = np.array(exp.last_state, copy=False)
        last_states.append(lstate)
    return np.array(states, copy=False), np.array(actions), \
           np.array(rewards, dtype=np.float32), \
           np.array(dones, dtype=np.uint8), \
           np.array(last_states, copy=False)
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Note how we handle the final transitions in the batch. To avoid the special handling 
of such cases, for terminal transitions, we store the initial state in the last_states 
array. To make our calculations of the Bellman update correct, we can mask such 
batch entries during the loss calculation using the dones array. Another solution 
would be to calculate the value of the last states only for non-terminal transitions, 
but it would make our loss function logic a bit more complicated.

Calculation of the DQN loss function is provided by the function calc_loss_dqn, 
and the code is almost the same as in Chapter 6, Deep Q-Networks. One small addition 
is torch.no_grad(), which stops the PyTorch calculation graph from being recorded.

def calc_loss_dqn(batch, net, tgt_net, gamma, device="cpu"):
    states, actions, rewards, dones, next_states = \
        unpack_batch(batch)

    states_v = torch.tensor(states).to(device)
    next_states_v = torch.tensor(next_states).to(device)
    actions_v = torch.tensor(actions).to(device)
    rewards_v = torch.tensor(rewards).to(device)
    done_mask = torch.BoolTensor(dones).to(device)

    actions_v = actions_v.unsqueeze(-1)
    state_action_vals = net(states_v).gather(1, actions_v)
    state_action_vals = state_action_vals.squeeze(-1)
    with torch.no_grad():
        next_state_vals = tgt_net(next_states_v).max(1)[0]
        next_state_vals[done_mask] = 0.0

    bellman_vals = next_state_vals.detach() * gamma + rewards_v
    return nn.MSELoss()(state_action_vals, bellman_vals)

Besides those core DQN functions, common.py provides several utilities related to our 
training loop, data generation, and TensorBoard tracking. The first such utility is a 
small class that implements epsilon decay during the training. Epsilon defines the 
probability of taking the random action by the agent. It should be decayed from 1.0 in 
the beginning (fully random agent) to some small number, like 0.02 or 0.01. The code 
is trivial but needed in almost any DQN, so it is provided by the following little class:

class EpsilonTracker:
    def __init__(self, 
                 selector: ptan.actions.EpsilonGreedyActionSelector,
                 params: SimpleNamespace):
        self.selector = selector
        self.params = params
        self.frame(0)
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    def frame(self, frame_idx: int):
        eps = self.params.epsilon_start - \
              frame_idx / self.params.epsilon_frames
        self.selector.epsilon = max(self.params.epsilon_final,eps)

Another small function is batch_generator, which takes ExperienceReplayBuffer 
(the PTAN class described in Chapter 7, Higher-Level RL Libraries) and infinitely 
generates training batches sampled from the buffer. In the beginning, the function 
ensures that the buffer contains the required amount of samples.

def batch_generator(buffer:ptan.experience.ExperienceReplayBuffer,
                    initial: int, batch_size: int):
    buffer.populate(initial)
    while True:
        buffer.populate(1)
        yield buffer.sample(batch_size)

Finally, a lengthy, but nevertheless very useful, function called setup_ignite 
attaches the needed Ignite handlers, showing the training progress and writing 
metrics to TensorBoard. Let's look at this function piece by piece.

def setup_ignite(engine: Engine, params: SimpleNamespace,
                 exp_source, run_name: str,
                 extra_metrics: Iterable[str] = ()):
    warnings.simplefilter("ignore", category=UserWarning)
    handler = ptan_ignite.EndOfEpisodeHandler(
        exp_source, bound_avg_reward=params.stop_reward)
    handler.attach(engine)
    ptan_ignite.EpisodeFPSHandler().attach(engine)

Initially, setup_ignite attaches two Ignite handlers provided by PTAN:

• EndOfEpisodeHandler, which emits the Ignite event every time a game 
episode ends. It can also fire an event when the averaged reward for 
episodes crosses some boundary. We use this to detect when the game 
is finally solved.

• EpisodeFPSHandler, a small class that tracks the time the episode has taken 
and the amount of interactions that we have had with the environment. 
From this, we calculate frames per second (FPS), which is an important 
performance metric to track.

    @engine.on(ptan_ignite.EpisodeEvents.EPISODE_COMPLETED)
    def episode_completed(trainer: Engine):
        passed = trainer.state.metrics.get('time_passed', 0)
        print("Episode %d: reward=%.0f, steps=%s, "
              "speed=%.1f f/s, elapsed=%s" % (
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            trainer.state.episode, trainer.state.episode_reward,
            trainer.state.episode_steps,
            trainer.state.metrics.get('avg_fps', 0),
            timedelta(seconds=int(passed))))

    @engine.on(ptan_ignite.EpisodeEvents.BOUND_REWARD_REACHED)
    def game_solved(trainer: Engine):
        passed = trainer.state.metrics['time_passed']
        print("Game solved in %s, after %d episodes "
              "and %d iterations!" % (
            timedelta(seconds=int(passed)),
            trainer.state.episode, trainer.state.iteration))
        trainer.should_terminate = True

Then we install two event handlers, with one being called at the end of an episode. 
It will show information about the completed episode on the console. Another 
function will be called when the average reward grows above the boundary defined 
in the hyperparameters (18.0 in the case of Pong). This function shows a message 
about the solved game and stops the training.

The rest of the function is related to the TensorBoard data that we want to track:

    now = datetime.now().isoformat(timespec='minutes')
    logdir = f"runs/{now}-{params.run_name}-{run_name}"
    tb = tb_logger.TensorboardLogger(log_dir=logdir)
    run_avg = RunningAverage(output_transform=lambda v: v['loss'])
    run_avg.attach(engine, "avg_loss")

First, we create a TensorboardLogger, a special class provided by Ignite to write 
into TensorBoard. Our processing function will return the loss value, so we attach 
the RunningAverage transformation (also provided by Ignite) to get a smoothed 
version of the loss over time.

    metrics = ['reward', 'steps', 'avg_reward']
    handler = tb_logger.OutputHandler(
        tag="episodes", metric_names=metrics)
    event = ptan_ignite.EpisodeEvents.EPISODE_COMPLETED
    tb.attach(engine, log_handler=handler, event_name=event)

TensorboardLogger can track two groups of values from Ignite: outputs (values 
returned by the transformation function) and metrics (calculated during the training 
and kept in the engine state). EndOfEpisodeHandler and EpisodeFPSHandler 
provide metrics, which are updated at the end of every game episode. So, we attach 
OutputHandler, which will write into TensorBoard information about the episode 
every time it is completed.
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    # write to tensorboard every 100 iterations
    ptan_ignite.PeriodicEvents().attach(engine)
    metrics = ['avg_loss', 'avg_fps']
    metrics.extend(extra_metrics)
    handler = tb_logger.OutputHandler(
        tag="train", metric_names=metrics,
        output_transform=lambda a: a)
    event = ptan_ignite.PeriodEvents.ITERS_100_COMPLETED
    tb.attach(engine, log_handler=handler, event_name=event)

Another group of values that we want to track are metrics from the training process: 
loss, FPS, and, possibly, some custom metrics. Those values are updated every 
training iteration, but we are going to do millions of iterations, so we will store 
values in TensorBoard every 100 training iterations; otherwise, the data files will be 
huge. All this functionality might look too complicated, but it provides us with the 
unified set of metrics gathered from the training process. In fact, Ignite is not very 
complicated and provides a very flexible framework. That's it for common.py.

Implementation
Now, let's take a look at 01_dqn_basic.py, which creates the needed classes and 
starts the training. I'm going to omit non-relevant code and focus only on important 
pieces. The full version is available in the GitHub repo.

env = gym.make(params.env_name)
env = ptan.common.wrappers.wrap_dqn(env)
env.seed(common.SEED)

net = dqn_model.DQN(env.observation_space.shape,
                    env.action_space.n).to(device)
tgt_net = ptan.agent.TargetNet(net)

First, we create the environment and apply a set of standard wrappers. We have 
already discussed them in Chapter 6, Deep Q-Networks and will also touch upon them 
in the next chapter, when we optimize the performance of the Pong solver. Then, we 
create the DQN model and the target network.

selector = ptan.actions.EpsilonGreedyActionSelector(
    epsilon=params.epsilon_start)
epsilon_tracker = common.EpsilonTracker(selector, params)
agent = ptan.agent.DQNAgent(net, selector, device=device)

Next, we create the agent, passing it an epsilon-greedy action selector. During 
the training, epsilon will be decreased by the EpsilonTracker class that we have 
already discussed. 
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This will decrease the amount of randomly selected actions and give more control to 
our NN.

exp_source = ptan.experience.ExperienceSourceFirstLast(
    env, agent, gamma=params.gamma)
buffer = ptan.experience.ExperienceReplayBuffer(
    exp_source, buffer_size=params.replay_size)

The next two very important objects are ExperienceSource and 
ExperienceReplayBuffer. The first one takes the agent and environment and 
provides transitions over game episodes. Those transitions will be kept in the 
experience replay buffer.

optimizer = optim.Adam(net.parameters(),
                       lr=params.learning_rate)

def process_batch(engine, batch):
    optimizer.zero_grad()
    loss_v = common.calc_loss_dqn(
        batch, net, tgt_net.target_model,
        gamma=params.gamma, device=device)
    loss_v.backward()
    optimizer.step()
    epsilon_tracker.frame(engine.state.iteration)
    if engine.state.iteration % params.target_net_sync == 0:
        tgt_net.sync()
    return {
        "loss": loss_v.item(),
        "epsilon": selector.epsilon,
    }

Then we create an optimizer and define the processing function, which will 
be called for every batch of transitions to train the model. To do this, we call 
function common.calc_loss_dqn and then backpropagate on the result. 
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This function also asks EpsilonTracker to decrease the epsilon and does periodical 
target network synchronization.

engine = Engine(process_batch)
common.setup_ignite(engine, params, exp_source, NAME)
engine.run(common.batch_generator(buffer, params.replay_initial,
                                  params.batch_size))

And, finally, we create the Ignite Engine object, configure it using a function from 
common.py, and run our training process.

Results
Okay, let's start the training.

rl_book_samples/Chapter08$ ./01_dqn_basic.py --cuda

Episode 2: reward=-21, steps=809, speed=0.0 f/s, elapsed=0:00:15

Episode 3: reward=-21, steps=936, speed=0.0 f/s, elapsed=0:00:15

Episode 4: reward=-21, steps=817, speed=0.0 f/s, elapsed=0:00:15

Episode 5: reward=-20, steps=927, speed=0.0 f/s, elapsed=0:00:15

Episode 6: reward=-19, steps=1164, speed=0.0 f/s, elapsed=0:00:15

Episode 7: reward=-20, steps=955, speed=0.0 f/s, elapsed=0:00:15

Episode 8: reward=-21, steps=783, speed=0.0 f/s, elapsed=0:00:15

Episode 9: reward=-21, steps=785, speed=0.0 f/s, elapsed=0:00:15

Episode 10: reward=-19, steps=1030, speed=0.0 f/s, elapsed=0:00:15

Episode 11: reward=-21, steps=761, speed=0.0 f/s, elapsed=0:00:15

Episode 12: reward=-21, steps=968, speed=162.7 f/s, elapsed=0:00:19

Episode 13: reward=-19, steps=1081, speed=162.7 f/s, elapsed=0:00:26

Episode 14: reward=-19, steps=1184, speed=162.7 f/s, elapsed=0:00:33

Episode 15: reward=-20, steps=894, speed=162.7 f/s, elapsed=0:00:39

Episode 16: reward=-21, steps=880, speed=162.6 f/s, elapsed=0:00:44

...
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Every line in the output is written at the end of the next episode, showing the 
episode reward, a count of steps, speed, and the total training time. For the basic 
DQN version, it usually takes about 1M frames to reach the mean reward of 18, so 
be patient. During the training, we can check the dynamics of the training process in 
TensorBoard, which shows charts for epsilon, raw reward values, average reward, 
and speed. The following charts show the reward and the number of steps for 
episodes. (The bottom x axis shows wall clock time, and the top axis is the episode 
number.)

Figure 8.1: Information about episodes played during the training

Figure 8.2: Training metrics: speed and loss
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N-step DQN
The first improvement that we will implement and evaluate is quite an old one. 
It was first introduced in the paper Learning to Predict by the Methods of Temporal 
Differences, by Richard Sutton ([2] Sutton, 1988). To get the idea, let's look at the 
Bellman update used in Q-learning once again:

𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) 

This equation is recursive, which means that we can express Q(st+1, at+1) in terms 
of itself, which gives us this result:

𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max
𝑎𝑎

[𝑟𝑟𝑎𝑎,𝑡𝑡+1 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑡𝑡+2, 𝑎𝑎′)] 

Value ra,t+1 means local reward at time t+1, after issuing action a. However, if we 
assume that action a at the step t+1 was chosen optimally, or close to optimally, 
we can omit the maxa operation and obtain this:

𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑟𝑟𝑡𝑡+1 + 𝛾𝛾2max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑡𝑡+2, 𝑎𝑎′) 

This value can be unrolled again and again any number of times. As you may 
guess, this unrolling can be easily applied to our DQN update by replacing one-step 
transition sampling with longer transition sequences of n-steps. To understand why 
this unrolling will help us to speed up training, let's consider the example illustrated 
in Figure 8.3. Here, we have a simple environment of four states (s1, s2, s3, s4) and the 
only action available at every state, except s4, which is a terminal state.

Figure 8.3: A transition diagram for a simple environment

So, what happens in a one-step case? We have three total updates possible (we don't 
use max, as there is only one action available):

1. 𝑄𝑄(𝑠𝑠1, 𝑎𝑎) ← 𝑟𝑟1 + 𝛾𝛾 𝑄𝑄(𝑠𝑠2, 𝑎𝑎) 
2. 𝑄𝑄(𝑠𝑠2, 𝑎𝑎) ← 𝑟𝑟2 + 𝛾𝛾 𝑄𝑄(𝑠𝑠3, 𝑎𝑎) 
3. 𝑄𝑄(𝑠𝑠3, 𝑎𝑎) ← 𝑟𝑟3 
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Let's imagine that, at the beginning of the training, we complete the preceding 
updates in this order. The first two updates will be useless, as our current Q(s2, a) 
and Q(s3, a) are incorrect and contain initial random data. The only useful update 
will be update 3, which will correctly assign reward r3 to the state s3 prior to the 
terminal state.

Now let's complete the updates over and over again. On the second iteration, the 
correct value will be assigned to Q(s2, a), but the update of Q(s1, a) will still be noisy. 
Only on the third iteration will we get the valid values for every Q. So, even in a one-
step case, it takes three steps to propagate the correct values to all the states.

Now let's consider a two-step case. This situation again has three updates:

1. 𝑄𝑄(𝑠𝑠1, 𝑎𝑎) ← 𝑟𝑟1 + 𝛾𝛾𝑟𝑟2 + 𝛾𝛾2𝑄𝑄(𝑠𝑠3, 𝑎𝑎) 
2. 𝑄𝑄(𝑠𝑠2, 𝑎𝑎) ← 𝑟𝑟2 + 𝛾𝛾𝑟𝑟3 

3. 𝑄𝑄(𝑠𝑠3, 𝑎𝑎) ← 𝑟𝑟3 

In this case, on the first loop over the updates, the correct values will be assigned 
to both Q(s2, a) and Q(s3, a). On the second iteration, the value of Q(s1, a) also will 
be properly updated. So, multiple steps improve the propagation speed of values, 
which improves convergence. You may be thinking, "If it's so helpful, let's unroll the 
Bellman equation, say, 100 steps ahead. Will it speed up our convergence 100 times?" 
Unfortunately, the answer is no.

Despite our expectations, our DQN will fail to converge at all. To understand 
why, let's again return to our unrolling process, especially where we dropped the 
maxa. Was it correct? Strictly speaking, no. We omitted the max operation at the 
intermediate step, assuming that our action selection during experience gathering 
(or our policy) was optimal. What if it wasn't, for example, at the beginning of the 
training, when our agent acted randomly? In that case, our calculated value for Q(st, 
at) may be smaller than the optimal value of the state (as some steps have been taken 
randomly, but not following the most promising paths by maximizing the Q-value). 
The more steps on which we unroll the Bellman equation, the more incorrect our 
update could be.

Our large experience replay buffer will make the situation even worse, as it will 
increase the chance of getting transitions obtained from the old bad policy (dictated 
by old bad approximations of Q). This will lead to a wrong update of the current 
Q approximation, so it can easily break our training progress. This problem is a 
fundamental characteristic of RL methods, as was briefly mentioned in Chapter 4, 
The Cross-Entropy Method, when we talked about RL methods' taxonomy.
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There are two large classes: the off-policy and on-policy methods. The first class 
of off-policy methods doesn't depend on "freshness of data." For example, a simple 
DQN is off-policy, which means that we can use very old data sampled from the 
environment several million steps ago, and this data will still be useful for learning. 
That's because we are just updating the value of the action, Q(st,at), with the 
immediate reward, plus the discounted current approximation of the best action's 
value. Even if action at was sampled randomly, it doesn't matter because for this 
particular action at, in the state st, our update will be correct. That's why in off-policy 
methods, we can use a very large experience buffer to make our data closer to being 
independent and identically distributed (i.i.d.).

On the other hand, on-policy methods heavily depend on the training data to be 
sampled according to the current policy that we are updating. That happens because 
on-policy methods are trying to improve the current policy indirectly (as in the 
previous n-step DQN) or directly (all of part three of the book is devoted to such 
methods).

So, which class of methods is better? Well, it depends. Off-policy methods allow 
you to train on the previous large history of data or even on human demonstrations, 
but they usually are slower to converge. On-policy methods are typically faster, 
but require much more fresh data from the environment, which can be costly. 
Just imagine a self-driving car trained with the on-policy method. It will cost you 
a lot of crashed cars before the system learns that walls and trees are things that 
it should avoid!

You may have a question: why are we talking about an n-step DQN if this 
"n-stepness" turns it into an on-policy method, which will make our large experience 
buffer useless? In practice, this is usually not black and white. You may still use 
an n-step DQN if it will help to speed up DQNs, but you need to be modest with 
the selection of n. Small values of two or three usually work well, because our 
trajectories in the experience buffer are not that different from one-step transitions. 
In such cases, convergence speed usually improves proportionally, but large values 
of n can break the training process. So, the number of steps should be tuned, but 
convergence speeding up usually makes it worth doing.

Implementation
As the ExperienceSourceFirstLast class already supports the multi-step 
Bellman unroll, our n-step version of a DQN is extremely simple. There are only two 
modifications that we need to make to the basic DQN to turn it into an n-step version:

• Pass the count of steps that we want to unroll on 
ExperienceSourceFirstLast creation in the steps_count parameter.
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• Pass the correct gamma to the calc_loss_dqn function. This modification 
is really easy to overlook, which could be harmful to convergence. As our 
Bellman is now n-steps, the discount coefficient for the last state in the 
experience chain will no longer be just 𝛾𝛾 , but 𝛾𝛾𝑛𝑛 .

You can find the whole example in Chapter08/02_dqn_n_steps.py, but here are the 
modified lines:

exp_source = ptan.experience.ExperienceSourceFirstLast(
    env, agent, gamma=params.gamma, steps_count=args.n)

The args.n value is a count of steps passed in command-line arguments; the default 
is to use four steps. Another modification is in gamma passed to the calc_loss_dqn 
function:

    loss_v = common.calc_loss_dqn(
        batch, net, tgt_net.target_model,
        gamma=params.gamma**args.n, device=device)

Results
The training module Chapter08/02_dqn_n_steps.py can be started as before, with 
the additional command-line option -n, which gives a count of steps to unroll the 
Bellman equation.

These are charts for our baseline and n-step DQN, with n being equal to 2 and 3. 
As you can see, the Bellman unroll has given a significant boost in convergence.

Figure 8.4: The reward and number of steps for basic (one-step) DQN and n-step versions
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As you can see in the diagram, the three-step DQN converges more than twice as 
fast as the simple DQN, which is a nice improvement. So, what about a larger n? 
The following chart shows the reward dynamics for n = 3…6:

Figure 8.5: A comparison of a two-step DQN and three-step DQN

As you can see, going from three steps to four has given some improvement, but 
it is much less than before. The variant with n = 5 is almost the same as n = 4, but  
n = 6 behaves worse. So, in our case, n = 4 looks optimal.

Double DQN
The next fruitful idea on how to improve a basic DQN came from DeepMind 
researchers in the paper titled Deep Reinforcement Learning with Double Q-Learning 
([3] van Hasselt, Guez, and Silver, 2015). In the paper, the authors demonstrated that 
the basic DQN tends to overestimate values for Q, which may be harmful to training 
performance and sometimes can lead to suboptimal policies. The root cause of this is 
the max operation in the Bellman equation, but the strict proof is too complicated to 
write down here. As a solution to this problem, the authors proposed modifying the 
Bellman update a bit.

In the basic DQN, our target value for Q looked like this:

𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄′(𝑠𝑠𝑡𝑡+1, 𝑎𝑎) 
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Q'(st+1, a) was Q-values calculated using our target network, so we update with the 
trained network every n steps. The authors of the paper proposed choosing actions 
for the next state using the trained network, but taking values of Q from the target 
network. So, the new expression for target Q-values will look like this:

𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄′ (𝑠𝑠𝑡𝑡+1, argmax
𝑎𝑎

𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎)) 

The authors proved that this simple tweak fixes overestimation completely, and they 
called this new architecture double DQN.

Implementation
The core implementation is very simple. What we need to do is slightly modify our 
loss function. Let's go a step further and compare action values produced by the 
basic DQN and double DQN. To do this, we store a random held-out set of states 
and periodically calculate the mean value of the best action for every state in the 
evaluation set.

The complete example is in Chapter08/03_dqn_double.py. Let's first take a look 
at the loss function:

def calc_loss_double_dqn(batch, net, tgt_net, gamma,
                         device="cpu", double=True):
    states, actions, rewards, dones, next_states = \
        common.unpack_batch(batch)

The double extra argument turns on and off the double DQN way of calculating 
actions to take.

    states_v = torch.tensor(states).to(device)
    actions_v = torch.tensor(actions).to(device)
    rewards_v = torch.tensor(rewards).to(device)
    done_mask = torch.BoolTensor(dones).to(device)

The preceding section is the same as before.

    actions_v = actions_v.unsqueeze(-1)
    state_action_vals = net(states_v).gather(1, actions_v)
    state_action_vals = state_action_vals.squeeze(-1)
    with torch.no_grad():
        next_states_v = torch.tensor(next_states).to(device)
        if double:
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            next_state_acts = net(next_states_v).max(1)[1]
            next_state_acts = next_state_acts.unsqueeze(-1)
            next_state_vals = tgt_net(next_states_v).gather(
                1, next_state_acts).squeeze(-1)
        else:
            next_state_vals = tgt_net(next_states_v).max(1)[0]
        next_state_vals[done_mask] = 0.0
        exp_sa_vals = next_state_vals.detach()*gamma+rewards_v
    return nn.MSELoss()(state_action_vals, exp_sa_vals)

Here is the difference compared to the basic DQN loss function. If double DQN is 
enabled, we calculate the best action to take in the next state using our main trained 
network, but values corresponding to this action come from the target network. 
Of course, this part could be implemented in a faster way, by combining next_
states_v with states_v and calling our main network only once, but it will make 
the code less clear.

The rest of the function is the same: we mask completed episodes and compute the 
mean squared error (MSE) loss between Q-values predicted by the network and 
approximated Q-values. The last function that we consider calculates the values 
of our held-out state:

def calc_values_of_states(states, net, device="cpu"):
    mean_vals = []
    for batch in np.array_split(states, 64):
        states_v = torch.tensor(batch).to(device)
        action_values_v = net(states_v)
        best_action_values_v = action_values_v.max(1)[0]
        mean_vals.append(best_action_values_v.mean().item())
    return np.mean(mean_vals)

There is nothing too complicated here: we just split our held-out states array into 
equal chunks and pass every chunk to the network to obtain action values. From 
those values, we choose the action with the largest value (for every state) and 
calculate the mean of such values. As our array with states is fixed for the whole 
training process, and this array is large enough (in the code we store 1,000 states), 
we can compare the dynamics of this mean value in both DQN variants.

The rest of the 03_dqn_double.py file is almost the same; the two differences are 
usage of our tweaked loss function and keep randomly sampled 1,000 states for 
periodical evaluation.
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Results
To train a double DQN, with the extension enabled, pass the --double command-
line argument:

Chapter08$ ./03_dqn_double.py --cuda --double

To compare the Q-values with those for a basic DQN, train it again without the 
--double option. Training will take some time, depending on your computing 
power. On GTX 1080 Ti, 1M frames take about two hours. In addition, I've noticed 
that double extension convergence is less frequent than with the basic version. 
In basic DQN, about one in 10 runs fails to converge, but with double extension, 
it is about one in three. Very likely, hyperparameters need to be tuned, but 
our comparison is supposed to check the effect of extensions without touching 
hyperparameters.

Anyway, as you can see on the following chart, double DQN shows better reward 
dynamics (the average reward for episodes starts to grow earlier), but the final time 
to solve the game is almost the same as in our baseline.

Figure 8.6: Reward dynamics for double and baseline DQN

Besides the standard metrics, the example also outputs the mean value for the 
held-out set of states. They are shown on the next chart; indeed, basic DQN does 
overestimation of values, so values are decreasing after some level. In contrast, 
double DQN grows more consistently. In my experiments, double DQN has only a 
small effect on the training time, but this doesn't necessary mean that double DQN is 
useless, as Pong is a simple environment. In more complicated games, double DQN 
could give better results.



Chapter 8

[ 205 ]

Figure 8.7: Values predicted by the network for held-out states

Noisy networks
The next improvement that we are going to look at addresses another RL problem: 
exploration of the environment. The paper that we will draw from is called Noisy 
Networks for Exploration ([4] Fortunato and others, 2017) and it has a very simple idea 
for learning exploration characteristics during training instead of having a separate 
schedule related to exploration.

Classical DQN achieves exploration by choosing random actions with a specially 
defined hyperparameter epsilon, which is slowly decreased over time from 1.0 (fully 
random actions) to some small ratio of 0.1 or 0.02. This process works well for simple 
environments with short episodes, without much non-stationarity during the game; 
but even in such simple cases, it requires tuning to make the training processes 
efficient.

In the Noisy Networks paper, the authors proposed a quite simple solution that, 
nevertheless, works well. They add noise to the weights of fully connected layers 
of the network and adjust the parameters of this noise during training using 
backpropagation. Of course, this method shouldn't be confused with "the network 
decides where to explore more," which is a much more complex approach that also 
has widespread support (for example, see articles about intrinsic motivation and 
count-based exploration methods, [5] or [6]). We will discuss advanced exploration 
techniques in Chapter 21, Advanced Exploration.
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The authors proposed two ways of adding the noise, both of which work according 
to their experiments, but they have different computational overheads:

1. Independent Gaussian noise: for every weight in a fully connected layer, we 
have a random value that we draw from the normal distribution. Parameters 
of the noise, 𝜇𝜇  and 𝜎𝜎 , are stored inside the layer and get trained using 
backpropagation in the same way that we train weights of the standard 
linear layer. The output of such a "noisy layer" is calculated in the same way 
as in a linear layer.

2. Factorized Gaussian noise: to minimize the number of random values to 
be sampled, the authors proposed keeping only two random vectors: one 
with the size of the input and another with the size of the output of the 
layer. Then, a random matrix for the layer is created by calculating the outer 
product of the vectors.

Implementation
In PyTorch, both methods can be easily implemented in a very straightforward 
way. What we need to do is create our own nn.Linear layer equivalent with 
the additional random values sampled every time forward() gets called. I've 
implemented both noisy layers, and their implementations are in Chapter08/
lib/dqn_extra.py in classes NoisyLinear (for independent Gaussian noise) 
and NoisyFactorizedLinear (for the factorized noise variant).

class NoisyLinear(nn.Linear):
    def __init__(self, in_features, out_features,
                 sigma_init=0.017, bias=True):
        super(NoisyLinear, self).__init__(
            in_features, out_features, bias=bias)
        w = torch.full((out_features, in_features), sigma_init)
        self.sigma_weight = nn.Parameter(w)
        z = torch.zeros(out_features, in_features)
        self.register_buffer("epsilon_weight", z)
        if bias:
            w = torch.full((out_features,), sigma_init)
            self.sigma_bias = nn.Parameter(w)
            z = torch.zeros(out_features)
            self.register_buffer("epsilon_bias", z)
        self.reset_parameters()

In the constructor, we create a matrix for 𝜎𝜎 . (Values of 𝜇𝜇  will be stored in a matrix 
inherited from nn.Linear.) To make sigmas trainable, we need to wrap the tensor 
in an nn.Parameter. 
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The register_buffer method creates a tensor in the network that won't be 
updated during backpropagation, but will be handled by the nn.Module machinery 
(for example, it will be copied to GPU with the cuda() call). An extra parameter 
and buffer are created for the bias of the layer. The initial value for sigmas (0.017) 
was taken from the Noisy Networks article cited in the beginning of this section. At 
the end, we call the reset_parameters() method, which was overridden from 
nn.Linear and is supposed to perform the initialization of the layer.

    def reset_parameters(self):
        std = math.sqrt(3 / self.in_features)
        self.weight.data.uniform_(-std, std)
        self.bias.data.uniform_(-std, std)

In the reset_parameters method, we perform initialization of the nn.Linear 
weight and bias according to the recommendations in the article.

    def forward(self, input):
        self.epsilon_weight.normal_()
        bias = self.bias
        if bias is not None:
            self.epsilon_bias.normal_()
            bias = bias + self.sigma_bias * \
                   self.epsilon_bias.data
        v = self.sigma_weight * self.epsilon_weight.data + \
            self.weight
        return F.linear(input, v, bias)

In the forward() method, we sample random noise in both weight and bias 
buffers, and perform linear transformation of the input data in the same way 
that nn.Linear does.

Factorized Gaussian noise works in a similar way and I haven't found much 
difference in the results, so I'll just include its code here for completeness. If you 
are curious, you can find the details and equations in the article [4].

class NoisyFactorizedLinear(nn.Linear):
    def __init__(self, in_features, out_features,
                 sigma_zero=0.4, bias=True):
        super(NoisyFactorizedLinear, self).__init__(
            in_features, out_features, bias=bias)
        sigma_init = sigma_zero / math.sqrt(in_features)
        w = torch.full((out_features, in_features), sigma_init)
        self.sigma_weight = nn.Parameter(w)
        z1 = torch.zeros(1, in_features)
        self.register_buffer("epsilon_input", z1)
        z2 = torch.zeros(out_features, 1)
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        self.register_buffer("epsilon_output", z2)
        if bias:
            w = torch.full((out_features,), sigma_init)
            self.sigma_bias = nn.Parameter(w)

    def forward(self, input):
        self.epsilon_input.normal_()
        self.epsilon_output.normal_()

        func = lambda x: torch.sign(x) * \
                         torch.sqrt(torch.abs(x))
        eps_in = func(self.epsilon_input.data)
        eps_out = func(self.epsilon_output.data)

        bias = self.bias
        if bias is not None:
            bias = bias + self.sigma_bias * eps_out.t()
        noise_v = torch.mul(eps_in, eps_out)
        v = self.weight + self.sigma_weight * noise_v
        return F.linear(input, v, bias)

From the implementation point of view, that's it. What we now need to do to 
turn the classic DQN into a noisy network variant is just replace nn.Linear 
(which are the two last layers in our DQN network) with the NoisyLinear layer 
(or NoisyFactorizedLinear if you wish). Of course, you have to remove all the 
code related to the epsilon-greedy strategy.

To check the internal noise level during training, we can monitor the signal-to-
noise ratio (SNR) of our noisy layers, which is a ratio of RMS(𝜇𝜇 ) / RMS(𝜎𝜎 ), where 
RMS is the root mean square of the corresponding weights. In our case, SNR shows 
how many times the stationary component of the noisy layer is larger than the 
injected noise.

Results
After the training, the TensorBoard charts show much better training dynamics. 
The model was able to reach the mean score of 18 in less than 600k frames seen.
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Figure 8.8: Noisy networks compared to the baseline DQN

After checking the SNR chart, you may notice that both layers' noise levels have 
decreased very quickly. The first layer has gone from 1 to almost 1/2.5 ratio of noise. 
The second layer is even more interesting, as its noise level decreased from 1/3 in 
the beginning to 1/15, but after 250k frames (roughly the same time as when raw 
rewards climbed close to the 20 score), the level of noise in the last layer started to 
increase back, pushing the agent to explore the environment more. This makes a lot 
of sense, as after reaching high score levels, the agent basically knows how to play at 
a good level, but still needs to "polish" its actions to improve the results even more.

Figure 8.9: Noise level changes during the training
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Prioritized replay buffer
The next very useful idea on how to improve DQN training was proposed in 2015 
in the paper Prioritized Experience Replay ([7] Schaul and others, 2015). This method 
tries to improve the efficiency of samples in the replay buffer by prioritizing those 
samples according to the training loss.

The basic DQN used the replay buffer to break the correlation between immediate 
transitions in our episodes. As we discussed in Chapter 6, Deep Q-Networks, the 
examples we experience during the episode will be highly correlated, as most of 
the time, the environment is "smooth" and doesn't change much according to our 
actions. However, the stochastic gradient descent (SGD) method assumes that the 
data we use for training has an i.i.d. property. To solve this problem, the classic 
DQN method uses a large buffer of transitions, randomly sampled to get the next 
training batch.

The authors of the paper questioned this uniform random sample policy and 
proved that by assigning priorities to buffer samples, according to training loss and 
sampling the buffer proportional to those priorities, we can significantly improve 
convergence and the policy quality of the DQN. This method's basic idea could be 
explained as "train more on data that surprises you." The tricky point here is to keep 
the balance of training on an "unusual" sample and training on the rest of the buffer. 
If we focus only on a small subset of the buffer, we can lose our i.i.d. property and 
simply overfit on this subset.

From the mathematical point of view, the priority of every sample in the buffer is 

calculated as 𝑃𝑃(𝑖𝑖) = 𝑝𝑝𝑖𝑖𝛼𝛼
∑ 𝑝𝑝𝑘𝑘𝛼𝛼𝑘𝑘

 , where pi is the priority of the ith sample in the buffer and 

𝛼𝛼  is the number that shows how much emphasis we give to the priority. If 𝛼𝛼 = 0 , our 
sampling will become uniform as in the classic DQN method. Larger values for 𝛼𝛼  put 
more stress on samples with higher priority. So, it's another hyperparameter to tune, 
and the starting value of 𝛼𝛼  proposed by the paper is 0.6.

There were several options proposed in the paper for how to define the priority, 
and the most popular is to make it proportional to the loss for this particular 
example in the Bellman update. New samples added to the buffer need to be 
assigned a maximum value of priority to be sure that they will be sampled soon.

By adjusting the priorities for the samples, we are introducing bias into our data 
distribution (we sample some transitions much more frequently than others), which 
we need to compensate for if SGD is to work. To get this result, the authors of the 
study used sample weights, which needed to be multiplied to the individual sample 
loss. The value of the weight for each sample is defined as 𝑤𝑤𝑖𝑖 = (𝑁𝑁 ⋅ 𝑃𝑃(𝑖𝑖))−𝛽𝛽 , where 𝛽𝛽  
is another hyperparameter that should be between 0 and 1. 
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With 𝛽𝛽 = 1 , the bias introduced by the sampling is fully compensated, but the 
authors showed that it's good for convergence to start with some 𝛽𝛽  between 0 and 
1 and slowly increase it to 1 during the training.

Implementation
To implement this method, we have to introduce several changes in our code. 
First of all, we need a new replay buffer that will track priorities, sample a batch 
according to them, calculate weights, and let us update priorities after the loss has 
become known. The second change will be the loss function itself. Now we not only 
need to incorporate weights for every sample, but we need to pass loss values back 
to the replay buffer to adjust the priorities of the sampled transitions.

In the example file Chapter08/05_dqn_prio_replay.py, we have all those changes 
implemented. For the sake of simplicity, the new priority replay buffer class uses 
a very similar storage scheme to our previous replay buffer. Unfortunately, new 
requirements for prioritization make it impossible to implement sampling in O(1) 
time to buffer size. If we are using simple lists, every time that we sample a new 
batch, we need to process all the priorities, which makes our sampling have O(N) 
time complexity in proportion to the buffer size. It's not a big deal if our buffer is 
small, such as 100k samples, but may become an issue for real-life large buffers 
of millions of transitions. There are other storage schemes that support efficient 
sampling in O(log N) time, for example, using the segment tree data structure. You 
can find such implementation in the OpenAI Baselines project: https://github.
com/openai/baselines. The PTAN library also provides an efficient prioritized 
replay buffer in the class ptan.experience.PrioritizedReplayBuffer. You can 
update the example to use the more efficient version and check the effect on training 
performance.

But, for now, let's take a look at the naïve version, whose source code is in lib/dqn_
extra.py.

BETA_START = 0.4
BETA_FRAMES = 100000

In the beginning, we define parameters for the 𝛽𝛽  increase rate. Our beta will be changed 
from 0.4 to 1.0 during the first 100k frames. Now the prioritized replay buffer class:

class PrioReplayBuffer:
    def __init__(self, exp_source, buf_size, prob_alpha=0.6):
        self.exp_source_iter = iter(exp_source)
        self.prob_alpha = prob_alpha
        self.capacity = buf_size
        self.pos = 0
        self.buffer = []

https://github.com/openai/baselines
https://github.com/openai/baselines
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        self.priorities = np.zeros(
            (buf_size, ), dtype=np.float32)
        self.beta = BETA_START

The class for the priority replay buffer stores samples in a circular buffer (it allows 
us to keep a fixed amount of entries without reallocating the list) and a NumPy array 
to keep priorities. We also store the iterator to the experience source object to pull 
the samples from the environment.

    def update_beta(self, idx):
        v = BETA_START + idx * (1.0 - BETA_START) / \
            BETA_FRAMES
        self.beta = min(1.0, v)
        return self.beta

    def __len__(self):
        return len(self.buffer)

    def populate(self, count):
        max_prio = self.priorities.max() if \
            self.buffer else 1.0
        for _ in range(count):
            sample = next(self.exp_source_iter)
            if len(self.buffer) < self.capacity:
                self.buffer.append(sample)
            else:
                self.buffer[self.pos] = sample
            self.priorities[self.pos] = max_prio
            self.pos = (self.pos + 1) % self.capacity

The populate() method needs to pull the given number of transitions from the 
ExperienceSource object and store them in the buffer. As our storage for the 
transitions is implemented as a circular buffer, we have two different situations 
with this buffer:

• When our buffer hasn't reached the maximum capacity, we just need to 
append a new transition to the buffer.

• If the buffer is already full, we need to overwrite the oldest transition, which 
is tracked by the pos class field, and adjust this position modulo buffer's size.

The method update_beta needs to be called periodically to increase beta according 
to schedule.

    def sample(self, batch_size):
        if len(self.buffer) == self.capacity:
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            prios = self.priorities
        else:
            prios = self.priorities[:self.pos]
        probs = prios ** self.prob_alpha
        probs /= probs.sum()

In the sample method, we need to convert priorities to probabilities using our 𝛼𝛼  
hyperparameter.

        indices = np.random.choice(len(self.buffer),
                                   batch_size, p=probs)
        samples = [self.buffer[idx] for idx in indices]

Then, using those probabilities, we sample our buffer to obtain a batch of samples.

        total = len(self.buffer)
        weights = (total * probs[indices]) ** (-self.beta)
        weights /= weights.max()
        return samples, indices, \
               np.array(weights, dtype=np.float32)

As the last step, we calculate weights for samples in the batch and return three 
objects: the batch, indices, and weights. Indices for batch samples are required to 
update priorities for sampled items.

    def update_priorities(self, batch_indices,
                          batch_priorities):
        for idx, prio in zip(batch_indices,
                             batch_priorities):
            self.priorities[idx] = prio

The last function of the priority replay buffer allows us to update new priorities for 
the processed batch. It's the responsibility of the caller to use this function with the 
calculated losses for the batch.

The next custom function that we have in our example is the loss calculation. As 
the MSELoss class in PyTorch doesn't support weights (which is understandable, as 
MSE is loss used in regression problems, but weighting of the samples is commonly 
utilized in classification losses), we need to calculate the MSE and explicitly multiply 
the result on the weights:

def calc_loss(batch, batch_weights, net, tgt_net,
              gamma, device="cpu"):
    states, actions, rewards, dones, next_states = \
        common.unpack_batch(batch)

    states_v = torch.tensor(states).to(device)
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    actions_v = torch.tensor(actions).to(device)
    rewards_v = torch.tensor(rewards).to(device)
    done_mask = torch.BoolTensor(dones).to(device)
    batch_weights_v = torch.tensor(batch_weights).to(device)

    actions_v = actions_v.unsqueeze(-1)
    state_action_vals = net(states_v).gather(1, actions_v)
    state_action_vals = state_action_vals.squeeze(-1)
    with torch.no_grad():
        next_states_v = torch.tensor(next_states).to(device)
        next_s_vals = tgt_net(next_states_v).max(1)[0]
        next_s_vals[done_mask] = 0.0
        exp_sa_vals = next_s_vals.detach() * gamma + rewards_v
    l = (state_action_vals - exp_sa_vals) ** 2
    losses_v = batch_weights_v * l
    return losses_v.mean(), \
           (losses_v + 1e-5).data.cpu().numpy()

In the last part of the loss calculation, we implement the same MSE loss but write 
our expression explicitly, rather than using the library. This allows us to take into 
account the weights of samples and keep individual loss values for every sample. 
Those values will be passed to the priority replay buffer to update priorities. A small 
value is added to every loss to handle the situation of zero loss value, which will lead 
to zero priority for an entry in the replay buffer.

In the main section of the utility, we have only two updates: the creation of the 
replay buffer and our processing function. Buffer creation is straightforward, 
so we will take a look at only a new processing function:

def process_batch(engine, batch_data):

    batch, batch_indices, batch_weights = batch_data

    optimizer.zero_grad()

    loss_v, sample_prios = calc_loss(

        batch, batch_weights, net, tgt_net.target_model,

        gamma=params.gamma, device=device)

    loss_v.backward()

    optimizer.step()

    buffer.update_priorities(batch_indices, sample_prios)

    epsilon_tracker.frame(engine.state.iteration)

    if engine.state.iteration % params.target_net_sync == 0:

        tgt_net.sync()

    return {

        "loss": loss_v.item(),
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        "epsilon": selector.epsilon,

        "beta": buffer.update_beta(engine.state.iteration),

    }

There are several changes here:

• Our batch now contains three entities: the batch of data, indices of sampled 
items, and samples' weights.

• We call our new loss function, which accepts weights and returns the 
additional items' priorities. They are passed to the buffer.update_
priorities function to reprioritize items that we have sampled.

• We call the update_beta method of the buffer to change the beta parameter 
according to schedule.

Results
This example can be trained as usual. According to my experiments, the prioritized 
replay buffer took almost the same absolute time to solve the environment: almost 
two hours. But it took fewer training iterations and fewer episodes. So, wall clock 
time is the same mostly due to the less efficient replay buffer, which, of course, 
could be resolved by proper O(log N) implementation of the buffer.

Here are the charts of reward dynamics of the baseline (left) and prioritized replay 
buffer (right). The top axes show the number of game episodes.

Figure 8.10: Prioritized replay buffer in comparison to basic DQN
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Another difference to note on the TensorBoard charts is a much lower loss for the 
prioritized replay buffer. The following chart shows the comparison.

Figure 8.11: The comparison of loss during the training

Lower loss value is also expected and is a good sign that our implementation works. 
The idea of prioritization is to train more on samples with high loss value, so training 
becomes more efficient. But there is a danger here: loss value during the training is 
not the primary objective to optimize; we can have very low loss, but due to a lack 
of exploration, the final policy learned could be far from being optimal.

Dueling DQN
This improvement to DQN was proposed in 2015, in the paper called Dueling 
Network Architectures for Deep Reinforcement Learning ([8] Wang et al., 2015). The 
core observation of this paper is that the Q-values, Q(s, a), that our network is trying 
to approximate can be divided into quantities: the value of the state, V(s), and the 
advantage of actions in this state, A(s, a).

You have seen the quantity V(s) before, as it was the core of the value iteration 
method from Chapter 5, Tabular Learning and the Bellman Equation. It is just equal to 
the discounted expected reward achievable from this state. The advantage A(s, a) 
is supposed to bridge the gap from A(s) to Q(s, a), as, by definition, Q(s, a) = V(s) + 
A(s, a). In other words, the advantage A(s, a) is just the delta, saying how much extra 
reward some particular action from the state brings us. The advantage could be 
positive or negative and, in general, can have any magnitude. For example, at some 
tipping point, the choice of one action over another can cost us a lot of the total reward.
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The Dueling paper's contribution was an explicit separation of the value and the 
advantage in the network's architecture, which brought better training stability, 
faster convergence, and better results on the Atari benchmark. The architecture 
difference from the classic DQN network is shown in the following illustration. The 
classic DQN network (top) takes features from the convolution layer and, using fully 
connected layers, transforms them into a vector of Q-values, one for each action. On 
the other hand, dueling DQN (bottom) takes convolution features and processes 
them using two independent paths: one path is responsible for V(s) prediction, which 
is just a single number, and another path predicts individual advantage values, 
having the same dimension as Q-values in the classic case. After that, we add V(s) 
to every value of A(s, a) to obtain Q(s, a), which is used and trained as normal.

Figure 8.12: A basic DQN (top) and dueling architecture (bottom)

These changes in the architecture are not enough to make sure that the network will 
learn V(s) and A(s, a) as we want it to. Nothing prevents the network, for example, 
from predicting some state, V(s) = 0, and A(s) = [1, 2, 3, 4], which is completely 
wrong, as the predicted V(s) is not the expected value of the state. We have yet 
another constraint to set: we want the mean value of the advantage of any state 
to be zero. In that case, the correct prediction for the preceding example will be  
V(s) = 2.5 and A(s) = [–1.5, –0.5, 0.5, 1.5].

This constraint could be enforced in various ways, for example, via the loss 
function; but in the Dueling paper, the authors proposed a very elegant 
solution of subtracting the mean value of the advantage from the Q expression 
in the network, which effectively pulls the mean for the advantage to zero: 

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑉𝑉(𝑠𝑠) + 𝐴𝐴(𝑠𝑠, 𝑎𝑎) − 1
𝑁𝑁∑ 𝐴𝐴(𝑠𝑠, 𝑘𝑘)

𝑘𝑘
 . This keeps the changes that need to be made 

in the classic DQN very simple: to convert it to the double DQN, you need to change 
only the network architecture, without affecting other pieces of the implementation.
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Implementation
A complete example is available in Chapter08/06_dqn_dueling.py. All the changes 
sit in the network architecture, so here I'll show only the network class (which is 
in the lib/dqn_extra.py module).

class DuelingDQN(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(DuelingDQN, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32,
                      kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )

The convolution layers are completely the same as before.

        conv_out_size = self._get_conv_out(input_shape)
        self.fc_adv = nn.Sequential(
            nn.Linear(conv_out_size, 256),
            nn.ReLU(),
            nn.Linear(256, n_actions)
        )
        self.fc_val = nn.Sequential(
            nn.Linear(conv_out_size, 256),
            nn.ReLU(),
            nn.Linear(256, 1)
        )

Instead of defining a single path of fully connected layers, we create two different 
transformations: one for advantages and one for value prediction. Also, to keep the 
number of parameters in the model comparable to the original network, the inner 
dimension in both paths is decreased from 512 to 256.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        adv, val = self.adv_val(x)
        return val + (adv - adv.mean(dim=1, keepdim=True))
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    def adv_val(self, x):
        fx = x.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)
        return self.fc_adv(conv_out), self.fc_val(conv_out)

The changes in the forward() function are also very simple, thanks to PyTorch's 
expressiveness: we calculate the value and advantage for our batch of samples 
and add them together, subtracting the mean of the advantage to obtain the final 
Q-values. A subtle, but important, difference lies in calculating the mean along the 
second dimension of the tensor, which produces a vector of the mean advantage for 
every sample in our batch.

Results
After training a dueling DQN, we can compare it to the classic DQN convergence 
on our Pong benchmark, as shown here.

Figure 8.13: The reward dynamic of dueling DQN compared to the baseline version

Our example also outputs the advantage and value for a fixed set of states, shown in 
the following charts. 
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They meet our expectations: the advantage is not very different from zero, but the 
value improves over time (and resembles the value from the Double DQN section).

Figure 8.14: The advantage (left) and value (right) on a fixed set of states

Categorical DQN
The last, and the most complicated, method in our DQN improvements toolbox is from 
a very recent paper, published by DeepMind in June 2017, called A Distributional 
Perspective on Reinforcement Learning ([9] Bellemare, Dabney, and Munos, 2017).

In the paper, the authors questioned the fundamental piece of Q-learning—Q-
values—and tried to replace them with a more generic Q-value probability 
distribution. Let's try to understand the idea. Both the Q-learning and value iteration 
methods work with the values of the actions or states represented as simple numbers 
and showing how much total reward we can achieve from a state, or an action 
and a state. However, is it practical to squeeze all future possible rewards into one 
number? In complicated environments, the future could be stochastic, giving us 
different values with different probabilities.

For example, imagine the commuter scenario when you regularly drive from home 
to work. Most of the time, the traffic isn't that heavy, and it takes you around 
30 minutes to reach your destination. It's not exactly 30 minutes, but on average it's 
30. From time to time, something happens, like road repairs or an accident, and due 
to traffic jams, it takes you three times longer to get to work. The probability of your 
commute time can be represented as a distribution of the "commute time" random 
variable and it is shown in the following chart.
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Figure 8.15: The probability distribution of commute time

Now imagine that you have an alternative way to get to work: the train. It takes a 
bit longer, as you need to get from home to the train station and from the station to 
the office, but they are much more reliable. Say, for example, that the train commute 
time is 40 minutes on average, with a small chance of train disruption, which adds 
20 minutes of extra time to the journey. The distribution of the train commute is 
shown in the following graph.

Figure 8.16: The probability distribution of train commute time
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Imagine that now we want to make the decision on how to commute. If we know 
only the mean time for both car and train, a car looks more attractive, as on average 
it takes 35.43 minutes to travel, which is better than 40.54 minutes for the train.

However, if we look at full distributions, we may decide to go by train, as even 
in the worst-case scenario, it will be one hour of commuting versus one hour and 
30 minutes. Switching to statistical language, the car distribution has much higher 
variance, so in situations when you really have to be at the office in 60 minutes 
max, the train is better.

The situation becomes even more complicated in the Markov decision process (MDP) 
scenario, when the sequence of decisions needs to be made and every decision might 
influence the future situation. In the commute example, it might be the time of an 
important meeting that you need to arrange given the way that you are going to 
commute. In that case, working with mean reward values might mean losing lots 
of information about the underlying dynamics.

Exactly the same idea was proposed by the authors of Distributional Perspective on 
Reinforcement Learning [9]. Why do we limit ourselves by trying to predict an average 
value for an action, when the underlying value may have a complicated underlying 
distribution? Maybe it will help us to work with distributions directly.

The results presented in the paper show that, in fact, this idea could be helpful, but 
at the cost of introducing a more complicated method. I'm not going to put a strict 
mathematical definition here, but the overall idea is to predict the distribution of 
value for every action, similar to the distributions for our car/train example. As 
the next step, the authors showed that the Bellman equation can be generalized for 
a distribution case, and it will have the form 𝑍𝑍(𝑥𝑥, 𝑎𝑎) =𝐷𝐷 𝑅𝑅(𝑥𝑥, 𝑎𝑎) + 𝛾𝛾 𝑍𝑍(𝑥𝑥′, 𝑎𝑎′) , which 
is very similar to the familiar Bellman equation, but now Z(x, a) and R(x, a) are the 
probability distributions and not numbers.

The resulting distribution can be used to train our network to give better predictions 
of value distribution for every action of the given state, exactly in the same way as 
with Q-learning. The only difference will be in the loss function, which now has to 
be replaced with something suitable for distribution comparison. There are several 
alternatives available, for example, Kullback-Leibler (KL) divergence (or cross-
entropy loss), which is used in classification problems, or the Wasserstein metric. 
In the paper, the authors gave theoretical justification for the Wasserstein metric, 
but when they tried to apply it in practice, they faced limitations. So, in the end, 
the paper used KL divergence. The paper is very recent, so it's quite probable that 
improvements to the methods will follow.
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Implementation
As mentioned, the method is quite complex, so it took me a while to implement 
it and make sure it was working. The complete code is in Chapter08/07_dqn_
distrib.py, which uses a function in lib/dqn_extra.py that we haven't discussed 
before to perform distribution projection. Before we start it, I need to say several 
words about the implementation logic.

The central part of the method is the probability distribution, which we are 
approximating. There are lots of ways to represent the distribution, but the authors 
of the paper chose a quite generic parametric distribution, which is basically a fixed 
number of values placed regularly on a values range. The range of values should 
cover the range of possible accumulated discounted reward. In the paper, the 
authors did experiments with various numbers of atoms, but the best results were 
obtained with the range split on N_ATOMS=51 intervals in the range of values from 
Vmin=-10 to Vmax=10.

For every atom (we have 51 of them), our network predicts the probability that 
the future discounted value will fall into this atom's range. The central part of the 
method is the code, which performs the contraction of distribution of the next state's 
best action using gamma, adds local reward to the distribution, and projects the 
results back into our original atoms. The following is the function that does exactly 
this:

def distr_projection(next_distr, rewards, dones, gamma):
    batch_size = len(rewards)
    proj_distr = np.zeros((batch_size, N_ATOMS),
                          dtype=np.float32)
    delta_z = (Vmax - Vmin) / (N_ATOMS - 1)

In the beginning, we allocate the array that will keep the result of the projection. 
This function expects the batch of distributions with a shape (batch_size, 
N_ATOMS), the array of rewards, flags for completed episodes, and our 
hyperparameters: Vmin, Vmax, N_ATOMS, and gamma. The delta_z variable is the 
width of every atom in our value range.

    for atom in range(N_ATOMS):
        v = rewards + (Vmin + atom * delta_z) * gamma
        tz_j = np.minimum(Vmax, np.maximum(Vmin, v))

In the preceding code, we iterate over every atom in the original distribution that 
we have and calculate the place that this atom will be projected to by the Bellman 
operator, taking into account our value bounds. 
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For example, the very first atom, with index 0, corresponds with the value Vmin=-10, 
but for the sample with reward +1 will be projected into the value –10 * 0.99 + 1 = 
–8.9. In other words, it will be shifted to the right (assume gamma=0.99). If the value 
falls beyond our value range given by Vmin and Vmax, we clip it to the bounds.

        b_j = (tz_j - Vmin) / delta_z

In the next line, we calculate the atom numbers that our samples have projected. 
Of course, samples can be projected between atoms. In such situations, we spread 
the value in the original distribution at the source atom between the two atoms that 
it falls between. This spreading should be carefully handled, as our target atom can 
land exactly at some atom's position. In that case, we just need to add the source 
distribution value to the target atom.

        l = np.floor(b_j).astype(np.int64)
        u = np.ceil(b_j).astype(np.int64)
        eq_mask = u == l
        proj_distr[eq_mask, l[eq_mask]] += \
            next_distr[eq_mask, atom]

The preceding code handles the situation when the projected atom lands exactly 
on the target atom. Otherwise, b_j won't be the integer value and variables l and 
u (which correspond to the indices of atoms below and above the projected point).

        ne_mask = u != l
        proj_distr[ne_mask, l[ne_mask]] += \
            next_distr[ne_mask, atom] * (u - b_j)[ne_mask]
        proj_distr[ne_mask, u[ne_mask]] += \
            next_distr[ne_mask, atom] * (b_j - l)[ne_mask]

When the projected point lands between atoms, we need to spread the probability 
of the source atom between the atoms below and above. This is carried out by two 
lines in the preceding code, and, of course, we need to properly handle the final 
transitions of episodes. In that case, our projection shouldn't take into account the 
next distribution and should just have a 1 probability corresponding to the reward 
obtained. However, we again need to take into account our atoms and properly 
distribute this probability if the reward value falls between atoms. This case is 
handled by the following code branch, which zeroes the resulting distribution 
for samples with the done flag set and then calculates the resulting projection.

    if dones.any():
        proj_distr[dones] = 0.0
        tz_j = np.minimum(
            Vmax, np.maximum(Vmin, rewards[dones]))
        b_j = (tz_j - Vmin) / delta_z
        l = np.floor(b_j).astype(np.int64)
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        u = np.ceil(b_j).astype(np.int64)
        eq_mask = u == l
        eq_dones = dones.copy()
        eq_dones[dones] = eq_mask
        if eq_dones.any():
            proj_distr[eq_dones, l[eq_mask]] = 1.0
        ne_mask = u != l
        ne_dones = dones.copy()
        ne_dones[dones] = ne_mask
        if ne_dones.any():
            proj_distr[ne_dones, l[ne_mask]] = \
                (u - b_j)[ne_mask]
            proj_distr[ne_dones, u[ne_mask]] = \
                (b_j - l)[ne_mask]
    return proj_distr

To give you an illustration of what this function does, let's look at artificially made 
distributions processed by this function (Figure 8.17). I used them to debug the 
function and make sure that it worked as intended. The code for these checks is 
in Chapter08/adhoc/distr_test.py.

Figure 8.17: The sample of the probability distribution transformation applied to a normal distribution

The top chart of Figure 8.17 (named "Source") is a normal distribution with zero 
mean and scale=3. The chart following that (named "Projected") is obtained from 
distribution projection with gamma=0.9 and is shifted to the right with reward=2. 
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In the situation when we pass done=True with the same data, the result will be 
different and is shown on Figure 8.18. In such cases, the source distribution will 
be ignored completely, and the result will have only the reward projected.

Figure 8.18: The projection of distribution for the final step in the episode

There are two versions of this method: in Chapter08/07_dqn_distrib.py there is 
only the essential code; I put the same code in source Chapter08/07_dqn_distrib_
plots.py, but it additionally saved images of underlying probability distributions 
for a fixed set of states. Those images were essential during the development of the 
code, and I believe they could be useful if you want to understand and visualize the 
convergence dynamics. Sample images are shown in Figure 8.21 and Figure 8.22.

I'm going to show only essential pieces of the implementation here. The core of the 
method, the function distr_projection, was already covered, and it is the most 
complicated piece. What is still missing is the network architecture and modified 
loss function.

Let's start with the network, which is in lib/dqn_extra.py, in the class 
DistributionalDQN.

Vmax = 10
Vmin = -10
N_ATOMS = 51
DELTA_Z = (Vmax - Vmin) / (N_ATOMS - 1)

class DistributionalDQN(nn.Module):
    def __init__(self, input_shape, n_actions):
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        super(DistributionalDQN, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32,
                      kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )

        conv_out_size = self._get_conv_out(input_shape)
        self.fc = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions * N_ATOMS)
        )

        sups = torch.arange(Vmin, Vmax + DELTA_Z, DELTA_Z)
        self.register_buffer("supports", sups)
        self.softmax = nn.Softmax(dim=1)

The main difference is the output of the fully connected layer. Now it outputs the 
vector of n_actions * N_ATOMS values, which is 6 × 51 = 306 for Pong. For every 
action, it needs to predict the probability distribution on 51 atoms. Every atom 
(called "support") has a value, which corresponds to a particular reward. Those 
atoms' rewards are evenly distributed from –10 to 10, which gives a grid with 
step 0.4. Those supports are stored in the network's buffer.

    def forward(self, x):
        batch_size = x.size()[0]
        fx = x.float() / 256
        conv_out = self.conv(fx).view(batch_size, -1)
        fc_out = self.fc(conv_out)
        return fc_out.view(batch_size, -1, N_ATOMS)

    def both(self, x):
        cat_out = self(x)
        probs = self.apply_softmax(cat_out)
        weights = probs * self.supports
        res = weights.sum(dim=2)
        return cat_out, res

    def qvals(self, x):
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        return self.both(x)[1]

    def apply_softmax(self, t):
        return self.softmax(t.view(-1, N_ATOMS)).view(t.size())

The method forward() returns the predicted probability distribution as a 3D 
tensor (batch, actions, and supports). The network also defines several 
helper functions to simplify the calculation of Q-values and apply softmax on the 
probability distribution.

The final change is the new loss function that has to apply distribution projection 
instead of the Bellman equation, and calculate KL divergence between predicted 
and projected distributions.

def calc_loss(batch, net, tgt_net, gamma, device="cpu"):
    states, actions, rewards, dones, next_states = \
        common.unpack_batch(batch)
    batch_size = len(batch)

    states_v = torch.tensor(states).to(device)
    actions_v = torch.tensor(actions).to(device)
    next_states_v = torch.tensor(next_states).to(device)

    next_distr_v, next_qvals_v = tgt_net.both(next_states_v)
    next_acts = next_qvals_v.max(1)[1].data.cpu().numpy()
    next_distr = tgt_net.apply_softmax(next_distr_v)
    next_distr = next_distr.data.cpu().numpy()

    next_best_distr = next_distr[range(batch_size), next_acts]
    dones = dones.astype(np.bool)

    proj_distr = dqn_extra.distr_projection(
        next_best_distr, rewards, dones, gamma)

    distr_v = net(states_v)
    sa_vals = distr_v[range(batch_size), actions_v.data]
    state_log_sm_v = F.log_softmax(sa_vals, dim=1)
    proj_distr_v = torch.tensor(proj_distr).to(device)

    loss_v = -state_log_sm_v * proj_distr_v
    return loss_v.sum(dim=1).mean()
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The preceding code is not very complicated; it is just preparing to call  
distr_projection and KL divergence, which is defined as 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃 ∥ 𝑄𝑄) = −∑ 𝑝𝑝𝑖𝑖 log 𝑞𝑞𝑖𝑖

𝑖𝑖
 . 

To calculate the logarithm of probability, we use the PyTorch function log_softmax, 
which performs both log and softmax in a numerical and stable way.

Results
From my experiments, the distributional version of DQN converged a bit slower and 
less stably than the original DQN, which is not surprising, as the network output is 
now 51 times larger and the loss function has changed. So, hyperparameter tuning 
is required. I've tried to avoid this, as it might take another chapter to describe 
the process and not allow us to compare the effect of the methods in a meaningful 
way. The following charts show the reward dynamics and loss value over time. 
Obviously, the learning rate could be increased.

Figure 8.19: Reward dynamics
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Figure 8.20: Loss decrease

As you can see, the categorical DQN is the only method that we have compared, 
and it behaves worse than the classic DQN. However, there is one factor that protects 
this new method: Pong is too simple a game to draw conclusions. In the 2017 A 
Distributional Perspective paper, the authors reported state-of-the-art scores for more 
than half of the games from the Atari benchmark (Pong was not among them).

It might be interesting to look into the dynamics of the probability distribution 
during the training. The extended version of the code in Chapter08/07_dqn_
distrib_plots.py has two flags—SAVE_STATES_IMG and SAVE_TRANSITIONS_
IMG—that enable the saving of probability distribution images during the training. 
For example, the following image shows the probability distribution for all six 
actions for one state at the beginning of the training (after 30k frames).
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Figure 8.21: Probability distribution at the beginning of training

All the distributions are very wide (as the network hasn't converged yet), and the 
peak in the middle corresponds to the negative reward that the network expects 
to get from its actions. The same state after 500k frames of training is shown in the 
following figure:

Figure 8.22: Probability distribution produced by the trained network
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Now we can see that different actions have different distributions. The first action 
(which corresponds to the NOOP, the do nothing action) has its distribution shifted to 
the left, so doing nothing in this state usually leads to losing. The fifth action, which 
is RIGHTFIRE, has the mean value shifted to the right, so this action leads to a better 
score.

Combining everything
You have now seen all the DQN improvements mentioned in the paper Rainbow: 
Combining Improvements in Deep Reinforcement Learning, but it was done in an 
incremental way, which helped you to understand the idea and implementation 
of every improvement. The main point of the paper was to combine those 
improvements and check the results. In the final example, I've decided to exclude 
categorical DQN and double DQN from the final system, as they haven't shown too 
much improvement on our guinea pig environment. If you want, you can add them 
and try using a different game. The complete example is available in Chapter08/08_
dqn_rainbow.py.

First of all, we need to define our network architecture and the methods that have 
contributed to it:

• Dueling DQN: our network will have two separate paths for the value of 
the state distribution and advantage distribution. On the output, both paths 
will be summed together, providing the final value probability distributions 
for actions. To force the advantage distribution to have a zero mean, we will 
subtract the distribution with the mean advantage in every atom.

• Noisy networks: our linear layers in the value and advantage paths will be 
noisy variants of nn.Linear.

In addition to network architecture changes, we will use the prioritized replay buffer 
to keep environment transitions and sample them proportionally to the MSE loss. 
Finally, we will unroll the Bellman equation to n-steps.

I'm not going to repeat all the code, as individual methods have already been given 
in the preceding sections, and it should be obvious what the final result of combining 
the methods will look like. If you have any trouble, you can find the code on GitHub.

Results
The following are reward charts. On the left is the combined system alone, and on 
the right, it is compared to our baseline code.
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Figure 8.23: Reward dynamics of the combined system

As you can see, we got an improvement both in terms of wall clock time (50 minutes 
versus two hours) and the number of game episodes required (180 versus 520). The 
wall clock time speed-up is much more modest than sample efficiency, due to lower 
system performance in terms of FPS. The following chart compares the performance:

Figure 8.24: The performance comparison of the combined and baseline systems

From the chart, you can see that at the beginning of the training, the combined 
system showed 110 FPS, but the performance dropped to 95 due to inefficiencies in 
the replay buffer. The drop from 160 to 110 FPS was caused by the more complicated 
network architecture (noisy networks, dueling). Probably the code could be 
optimized in some way. Anyway, the final result is still positive.
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The final chart I'd like to discuss is the number of steps in episodes (Figure 8.25). 
As you can see, the combined system discovered very quickly how to win very 
efficiently. The first peak to 3k steps corresponds to the initial phase of training when 
the system found ways to stand against the opponent for longer. The later drop in 
the number of steps corresponds to the "policy polishing" phase, when our agent 
optimized the actions to win faster (as discounted factor gamma pushed it toward 
shorter episodes).

Figure 8.25: The number of steps in episodes

Of course, you are free to experiment with other combinations of improvements, or 
you can even combine them with the material of the next chapter, which discusses 
ways to speed up RL methods from the technical angle.

Summary
In this chapter, we have walked through and implemented a lot of DQN 
improvements that have been discovered by researchers since the first DQN 
paper was published in 2015. This list is far from complete. First of all, for the list 
of methods, I used the paper Rainbow: Combining Improvements in Deep Reinforcement 
Learning, which was published by DeepMind, so the list of methods is definitely 
biased to DeepMind papers. Secondly, RL is so active nowadays that new papers 
come out almost every day, which makes it very hard to keep up, even if we 
limit ourselves to one kind of RL model, such as a DQN. The goal of this chapter 
was to give you a practical view of different ideas that the field has developed.
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In the next chapter, we will continue discussing practical DQN applications from 
an engineering perspective by talking about ways to improve DQN performance 
without touching the underlying method.
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Ways to Speed up RL
In Chapter 8, DQN Extensions, you saw several practical tricks to make the deep 
Q-network (DQN) method more stable and converge faster. They involved the basic 
DQN method modifications (like injecting noise into the network or unrolling the 
Bellman equation) to get a better policy, with less time spent on training. But there is 
another way: tweaking the implementation details of the method to improve the speed 
of the training. This is a pure engineering approach, but it's also important in practice.

In this chapter, we will:

• Take the Pong environment from Chapter 8 and try to get it solved as fast as 
possible

• In a step-by-step manner, get Pong solved 3.5 times faster using exactly the 
same commodity hardware

• Discuss fancier ways to speed up reinforcement learning (RL) training that 
could become common in the future

Why speed matters
First, let's talk a bit about why speed is important and why we optimize it at all. It 
might not be obvious, but enormous hardware performance improvements have 
happened in the last decade or two. 14 years ago, I was involved with a project 
that focused on building a supercomputer for computational fluid dynamics (CFD) 
simulations performed by an aircraft engine design company. The system consisted 
of 64 servers, occupied three 42-inch racks, and required dedicated cooling and 
power subsystems. The hardware alone (without cooling) cost almost $1M.

In 2005, this supercomputer occupied fourth place for Russian supercomputers and 
was the fastest system installed in the industry. Its theoretical performance was 922 
GFLOPS (billion floating-point operations per second), but in comparison to the 
GTX 1080 Ti released 12 years later, all the capabilities of this pile of iron look tiny. 
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One single GTX 1080 Ti is able to perform 11,340 GFLOPS, which is 12.3 times more. 
And the price was $700 per card! If we count computation power per $1, we get a 
price drop of more than 17,500 times for every GFLOP.

It has been said many times that artificial intelligence (AI) progress (and machine 
learning (ML) in general) is being driven by data availability and computing power 
increases, and I believe that this is absolutely true. Imagine some computations that 
require a month to complete on one machine (a very common situation in CFD and 
other physics simulations). If we are able to increase speed by five times, this month 
of patient waiting will turn into six days. Speeding up by 100 times will mean that 
this heavy one-month computation will end up taking eight hours, so you could 
have three of them done in just one day! It's very cool to be able to get 20,000 times 
more power for the same money nowadays. (By the way, speeding up by 20k times 
will mean that our one-month problem will be done in two to three minutes!)

This has happened not only in the "big iron" (also known as high-performance 
computing) world; basically, it is everywhere. Modern microcontrollers have the 
performance characteristics of desktops that we worked with 15 years ago. (For 
example, you can build a pocket computer for $50, with a 32-bit microcontroller 
running at 120 MHz, that is able to run the Atari 2600 emulator [1]: https://
hackaday.io/project/80627-badge-for-hackaday-conference-2018-in-
belgrade.) I'm not even talking about modern smartphones, which normally have 
four to eight cores, a graphics processing unit (GPU), and several GBs of RAM.

Of course, there are a lot of complications there. It's not just taking the same code 
that you used a decade ago and now, magically, finding that it works several 
thousand times faster. It might be the opposite: you might not be able to run it 
at all, due to a change in libraries, operating system interfaces, and other factors. 
(Have you ever tried to read old CD-RW disks written just seven years ago?) 
Nowadays, to get the full capabilities of modern hardware, you need to parallelize 
your code, which automatically means tons of details about distributed systems, 
data locality, communications, and the internal characteristics of the hardware and 
libraries. High-level libraries are trying to hide all those complications from you, 
but you can't ignore all of them to use them efficiently. However, it is definitely worth 
it—one month of patient waiting could be turned into three minutes, remember.

It might not be fully obvious why we need to speed things up in the first place. 
One month is not that long, after all; just lock the computer in a server room and 
go on vacation! 

The Atari 2600 emulator for this hardware is a project that 
I am currently working on: https://hackaday.io/
project/166288-atari-emulator-for-hackaday-badge. 
I hope it will be done when the book is published.

https://hackaday.io/project/80627-badge-for-hackaday-conference-2018-in-belgrade
https://hackaday.io/project/80627-badge-for-hackaday-conference-2018-in-belgrade
https://hackaday.io/project/80627-badge-for-hackaday-conference-2018-in-belgrade
https://hackaday.io/project/166288-atari-emulator-for-hackaday-badge
https://hackaday.io/project/166288-atari-emulator-for-hackaday-badge
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But think about the process involved in preparing and making this computation 
work. You might already have noticed that even simple ML problems can be almost 
impossible to implement properly from the first attempt. 

They require many trial runs before you find good hyperparameters, and fix all 
the bugs and the code ready for a clean launch. There is exactly the same process 
in physics simulations, RL research, big data processing, and programming in 
general. So, if we are able to make something run faster, it's not only beneficial for 
the single run, but also enables us to iterate quickly and do more experiments with 
code, which might significantly speed up the whole process and improve the quality 
of the final result.

I remember one situation from my career when we deployed a Hadoop cluster in 
our department, where we were developing a web search engine (similar to Google, 
but for Russian websites). Before the deployment, it took several weeks to conduct 
even simple experiments with data. Several terabytes of data were lying on different 
servers; you needed to run your code several times on every machine, gather and 
combine intermediate results, deal with occasional hardware failures, and do a 
lot of manual tasks not related to the problem that you were supposed to solve. 
After integrating the Hadoop platform into the data processing, the time needed 
for experiments dropped to several hours, which was completely game-changing. 
Since then, developers have been able to conduct many experiments much more 
easily and faster without bothering with unnecessary details. The number of 
experiments (and willingness to run them) has increased significantly, which has 
also increased the quality of the final product.

Another reason in favor of optimization is the size of problems that we can deal 
with. Making some method run faster might mean two different things: we can get 
the results sooner, or we can increase the size (or some other measure of the problem's 
complexity). A complexity increase might have different meanings in different cases, 
like getting more accurate results, making fewer simplifications of the real world, or 
taking into account more data, but, almost always, this is a good thing.

Returning to the main topic of the book, let's outline how RL methods might benefit 
from speed-ups. First of all, even state-of-the-art RL methods are not very sample 
efficient, which means that training needs to communicate with the environment 
many times (in the case of Atari, millions of times) before learning a good policy, and 
that might mean weeks of training. If we can speed up this process a bit, we can get 
the results faster, do more experiments, and find better hyperparameters. Besides 
this, if we have faster code, we might increase the complexity of the problems that 
they are applied to.

In modern RL, Atari games are considered solved; even so-called "hard-exploration 
games," like Montezuma's Revenge, can be trained to superhuman accuracy. 
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Therefore, new frontiers in research require more complex problems, with richer 
observation and action spaces, which inevitably require more training time and 
more hardware. Such research has already been started (and has increased the 
complexity of problems a bit too much, from my point of view) by DeepMind 
and OpenAI, which have switched from Atari to much more challenging games 
like StarCraft II and Dota 2. Those games require hundreds of GPUs for training, 
but allow us to explore ways of improving existing methods and developing new 
methods.

I want to end this discussion with a small warning: all performance optimizations 
make sense only when the core method is working properly (which is not always 
obvious in cases of RL and ML in general). As an instructor in an online course 
about performance optimizations said, "It's much better to have a slow and correct 
program than a fast but incorrect one."

The baseline
In the rest of the chapter, we will take the Atari Pong environment that you are 
already familiar with and try to speed up its convergence. As a baseline, we will 
take the same simple DQN that we used in Chapter 8, DQN Extensions, and the 
hyperparameters will also be the same. To compare the effect of our changes, we will 
use two characteristics:

• The number of frames that we consume from the environment every second 
(FPS). It indicates how fast we can communicate with the environment 
during the training. It is very common in RL papers to indicate the number 
of frames that the agent observed during the training; normal numbers are 
25M-50M frames. So, if our FPS=200, it will take 50M/200/60/60/24 ≈ 2.8  
days. In such calculations, you need to take into account that RL papers 
commonly report raw environment frames. But if frame skip is used (and it 
almost always is), this number needs to be divided by the frame skip factor, 
which is commonly equal to 4. In our measurements, we calculate FPS in 
terms of agent communications with the environment, so the environment 
FPS will be four times larger.

• The wall clock time before the game is solved. We stop training when the 
smoothed reward for the last 100 episodes reaches 17. (The maximum score 
in Pong is 21.) This boundary could be increased, but normally 17 is a good 
indication that the agent has almost mastered the game and polishing the 
policy to perfection is just a matter of the training time. We check the wall 
clock time because FPS alone is not the best indicator of training speed-up. 
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Due to our manipulations performed with the code, we can get a very high 
FPS, but convergence might suffer. This value alone also can't be used 
as a reliable characteristic of our improvements, as the training process 
is stochastic. Even by specifying random seeds (we need to set seeds 
explicitly for PyTorch, Gym, and NumPy), parallelization (which will be 
used in subsequent steps) adds randomness to the process, which is almost 
impossible to avoid. So, the best we can do is run the benchmark several 
times and average the results. But one single run's outcome can't be used to 
make any decisions.

All the benchmarks in this chapter use the same machine with an i5-6600K central 
processing unit (CPU), a GTX 1080 Ti GPU with CUDA 10.0, and NVIDIA drivers 
version 410.79. Our first benchmark will be our baseline version, which is in 
Chapter09/01_baseline.py. I will not provide the source code here, as it has 
already been given in Chapter 8 and is the same here. During the training, the code 
writes into TensorBoard several metrics:

• reward: the raw undiscounted reward from the episode; the x axis is the 
episode number.

• avg_reward: the same as reward but smoothed by running the average with 
alpha=0.98.

• steps: the number of steps that the episode lasted. Normally, in the 
beginning, the agent loses very quickly, so every episode is around 1,000 
steps. Then, it learns how to act better, so the number of steps increases with 
the reward increase; but, in the end, when the agent masters the game, the 
number of steps drops back to 2,000 steps, as the policy is polished to win 
as quickly as possible (due to the discount factor gamma). In fact, this drop 
in episode length might be an indication of overfitting to the environment, 
which is a huge problem in RL. However, this experiment is beyond the 
scope of the book.

• loss: the loss during the training, sampled every 100 iterations. It should be 
around 2e-3…7e-3, with occasional increases when the agent discovers new 
behavior, leading to a different reward than that learned by the Q-value.

• avg_loss: a smoothed version of the loss.
• epsilon: the current value of epsilon.
• avg_fps: the speed of agent communication with environment (observations 

per second), smoothed with a running average.
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In Figure 9.1 and Figure 9.2, the charts are averaged from several baseline runs. As 
usual, each chart is drawn with two x axes: the bottom one is the wall clock time in 
hours, and the top is the step number (episode in Figure 9.1 and training iteration in 
Figure 9.2).

Figure 9.1: Reward and episode length

Figure 9.2: Loss and FPS dynamics during the training

The computation graph in PyTorch
Our first examples won't be around speeding up the baseline, but will show one 
common, and not always obvious, situation that can cost you performance. In 
Chapter 3, Deep Learning with PyTorch, we discussed the way PyTorch calculates 
gradients: it builds the graph of all operations that you perform on tensors, and 
when you call the backward() method of the final loss, all gradients in the model 
parameters are automatically calculated. 
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This works well, but RL code is normally much more complex than traditional 
supervised learning models, so the RL model that we are currently training is also 
being applied to get the actions that the agent needs to perform in the environment. 
The target network discussed in Chapter 6 makes it even more tricky. So, in DQN, 
a neural network (NN) is normally used in three different situations:

1. When we want to calculate Q-values predicted by the network to get the 
loss in respect to reference Q-values approximated by the Bellman equation

2. When we apply the target network to get Q-values for the next state to 
calculate a Bellman approximation

3. When the agent wants to make a decision about the action to perform

It is very important to make sure that gradients are calculated only for the first 
situation. In Chapter 6, we avoided gradients by explicitly calling detach() on the 
tensor returned by the target network. This detach is very important, as it prevents 
gradients from flowing into our model "from the unexpected direction." (Without 
this, the DQN might not converge at all.) In the third situation, gradients were 
stopped by converting the network result into a NumPy array.

Our code in Chapter 6, Deep Q-Networks, worked, but we missed one subtle detail: 
the computation graph that is created for all three situations. This is not a major 
problem, but creating the graph still uses some resources (in terms of both speed and 
memory), which are wasted because PyTorch creates this computation graph even if 
we don't call backward() on some graph. To prevent this, one very nice thing exists: 
the decorator torch.no_grad().

Decorators in Python is a very wide topic. They give the developer a lot of power 
(when properly used), but are well beyond the scope of this book. Here, I'll just give 
an example.

>>> import torch
>>> @torch.no_grad()
... def fun_a(t):
...     return t*2
>>> def fun_b(t):
...     return t*2

We define two functions, both doing the same thing: doubling its argument; but the 
first function is declared with torch.no_grad(), and the second is just a normal 
function. This decorator temporarily disables gradient computation for all tensors 
passed to the function.

>>> t = torch.ones(3, requires_grad=True)
>>> t
tensor([1., 1., 1.], requires_grad=True)
>>> a = fun_a(t)



Ways to Speed up RL

[ 244 ]

>>> b = fun_b(t)
>>> b
tensor([2., 2., 2.], grad_fn=<MulBackward0>)
>>> a
tensor([2., 2., 2.])

As you can see, although the tensor, t, requires grad, the result from fun_a 
(the decorated function) doesn't have gradients. But this effect is bound inside 
the decorated function:

>>> a*t
tensor([2., 2., 2.], grad_fn=<MulBackward0>)

The function torch.no_grad() also could be used as a context manager (another 
powerful Python concept that I recommend you learn about), to stop gradients in 
some chunk of code:

>>> with torch.no_grad():
...     c = t*2
...
>>> c
tensor([2., 2., 2.])

This functionality provides you with a very convenient way to indicate parts of your 
code that should be excluded from the gradient machinery completely. This has 
already been done in ptan.agent.DQNAgent (and other agents provided by PTAN) 
and in the common.calc_loss_dqn function. But if you are writing a custom agent or 
implementing your own code, it might be very easy to forget about this.

To benchmark the effect of unnecessary graph calculation, I've provided the 
modified baseline code in Chapter09/00_slow_grads.py, which is exactly the 
same, but the agent and loss calculations are copied without torch.no_grad(). 
The following charts show the effect of this.

Figure 9.3: A comparison of reward and FPS between the baseline and version without torch.no_grad()
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As you can see, the speed penalty is not that large (only a couple of FPS), but that 
might become different in the case of a larger network with a more complicated 
structure. I've seen a 50% performance boost in more complex recurrent NNs 
obtained after adding torch.no_grad().

Several environments
The first idea that we usually apply to speed up deep learning training is larger 
batch size. It's applicable to the domain of deep RL, but you need to be careful here. 
In the normal supervised learning case, the simple rule "a large batch is better" is 
usually true: you just increase your batch as your GPU memory allows, and a larger 
batch normally means more samples will be processed in a unit of time thanks to 
enormous GPU parallelism.

The RL case is slightly different. During the training, two things happen 
simultaneously:

• Your network is trained to get better predictions on the current data
• Your agent explores the environment

As the agent explores the environment and learns about the outcome of its actions, 
the training data changes. In a shooter example, your agent can run randomly for a 
time while being shot by monsters and have only a miserable "death is everywhere" 
experience in the training buffer. But after a while, the agent will discover that it has 
a weapon it can use. This new experience can dramatically change the data that we 
are using for training.

RL convergence usually lies on a fragile balance between training and exploration. If 
we just increase a batch size without tweaking other options, we can easily overfit to 
the current data. (For our shooter example, your agent can start thinking that "dying 
young" is the only option to minimize suffering and may never discover the gun it 
has.)

So, in example Chapter09/02_n_envs.py, our agent uses several copies of the same 
environment to gather the training data. On every training iteration, we populate 
our replay buffer with samples from all those environments and then sample a 
proportionally larger batch size. This also allows us to speed up inference time a bit, 
as we can make a decision about the actions to execute for all N environments in one 
forward pass of the NN.

In terms of implementation, the preceding logic requires just a few changes in the code:

• As PTAN supports several environments out of the box, what we need to do 
is just pass N Gym environments to the ExperienceSource instance
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• The agent code (in our case DQNAgent) is already optimized for the batched 
application of the NN

Here are several pieces of code that were changed:

def batch_generator(
        buffer: ptan.experience.ExperienceReplayBuffer,
        initial: int, batch_size: int, steps: int):
    buffer.populate(initial)
    while True:
        buffer.populate(steps)
        yield buffer.sample(batch_size)

The function that generates batches now performs several steps in the environment 
for every training iteration.

    envs = []
    for _ in range(args.envs):
        env = gym.make(params.env_name)
        env = ptan.common.wrappers.wrap_dqn(env)
        env.seed(common.SEED)
        envs.append(env)

    params.batch_size *= args.envs
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        envs, agent, gamma=params.gamma)

The experience source accepts the array of environments instead of a single 
environment. Other changes are just minor tweaks of constants to adjust the FPS 
tracker and compensated speed of epsilon decay (ratio of random steps).

As the number of environments is the new hyperparameter that needs to be tuned, I 
ran several experiments with N from 2…6. The following charts show the averaged 
dynamics.

Figure 9.4: Reward dynamics and FPS in the baseline, two, and three environments
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Figure 9.5: Reward and FPS in the baseline, four, five, and six environments

As you can see from the charts, adding an extra environment added 30% to FPS and 
sped up the convergence. The same effect came from adding the third environment 
(+43% to FPS), but adding more environments had a negative effect on convergence 
speed, despite a further increase in FPS. So, it looks like N = 3 is more or less the 
optimal value for our hyperparameter, but, of course, you are free to tweak and 
experiment.

Play and train in separate processes
At a high level, our training contains a repetition of the following steps:

1. Ask the current network to choose actions and execute them in our array 
of environments

2. Put observations into the replay buffer
3. Randomly sample the training batch from the replay buffer
4. Train on this batch

The purpose of the first two steps is to populate the replay buffer with samples from 
the environment (which are observation, action, reward, and next observation). The 
last two steps are for training our network.

The following is an illustration of the preceding steps that will make potential 
parallelism slightly more obvious. On the left, the training flow is shown. The 
training steps use environments, the replay buffer, and our NN. The solid lines 
show data and code flow. 
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Dotted lines represent usage of the NN for training and inference.

Figure 9.6: A sequential diagram of the training process

As you can see, the top two steps communicate with the bottom only via the 
replay buffer and NN. This makes it possible to separate those two parts as distinct 
processes. The following figure is a diagram of the scheme.

Figure 9.7: The parallel version of the training and play steps
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In the case of our Pong environment, it might look like an unnecessary complication 
of the code, but this separation might be extremely useful in some cases. Imagine 
that you have a very slow and heavy environment, so every step takes seconds 
of computations. That's not a contrived example; for instance, recent NeurIPS 
competitions, such as Learning to Run, AI for Prosthetics Challenge, and Learn to Move 
[1], have very slow neuromuscular simulators, so you have to separate experience 
gathering from the training process. In such cases, you can have many concurrent 
environments that deliver the experience to the central training process.

To turn our serial code into a parallel one, some modifications are needed. In the 
file Chapter09/03_parallel.py, you can find the full source of the example. In 
the following, I'll focus only on major differences.

import torch.multiprocessing as mp

BATCH_MUL = 4

EpisodeEnded = collections.namedtuple(
    'EpisodeEnded', field_names=('reward', 'steps', 'epsilon'))

def play_func(params, net, cuda, exp_queue):
    env = gym.make(params.env_name)
    env = ptan.common.wrappers.wrap_dqn(env)
    env.seed(common.SEED)
    device = torch.device("cuda" if cuda else "cpu")

    selector = ptan.actions.EpsilonGreedyActionSelector(
        epsilon=params.epsilon_start)
    epsilon_tracker = common.EpsilonTracker(selector, params)
    agent = ptan.agent.DQNAgent(net, selector, device=device)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        env, agent, gamma=params.gamma)

    for frame_idx, exp in enumerate(exp_source):
        epsilon_tracker.frame(frame_idx/BATCH_MUL)
        exp_queue.put(exp)
        for reward, steps in exp_source.pop_rewards_steps():
            exp_queue.put(EpisodeEnded(reward, steps,
                                       selector.epsilon))

First of all, we use the torch.multiprocessing module as a drop-in replacement 
for the standard Python multiprocessing module. 
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The version from the standard library provides several primitives to work with 
code executed in separated processes, such as mp.Queue (distributed queue), 
mp.Process (child process), and others. PyTorch provides a wrapper around 
the standard multiprocessing library, which allows torch tensors to be shared 
between processes without copying them. This is implemented using shared 
memory in the case of CPU tensors, or CUDA references for tensors on a GPU. 
This sharing mechanism removes the major bottleneck when communication is 
performed within the single computer. Of course, in the case of truly distributed 
communications, you need to serialize data yourself.

The function play_func implements our "play process" and will be running in a 
separate child process started by the "training process." Its responsibility is to get 
experience from the environment and push it into the shared queue. In addition, 
it wraps information about episode ends into a namedtuple and pushes it into the 
same queue to keep the training process informed about the episode reward and 
the number of steps.

class BatchGenerator:
    def __init__(self,
                 buffer: ptan.experience.ExperienceReplayBuffer,
                 exp_queue: mp.Queue,
                 fps_handler: ptan_ignite.EpisodeFPSHandler,
                 initial: int, batch_size: int):
        self.buffer = buffer
        self.exp_queue = exp_queue
        self.fps_handler = fps_handler
        self.initial = initial
        self.batch_size = batch_size
        self._rewards_steps = []
        self.epsilon = None

    def pop_rewards_steps(self) -> List[Tuple[float, int]]:
        res = list(self._rewards_steps)
        self._rewards_steps.clear()
        return res

    def __iter__(self):
        while True:
            while exp_queue.qsize() > 0:
                exp = exp_queue.get()
                if isinstance(exp, EpisodeEnded):
                    self._rewards_steps.append((exp.reward,
                                                exp.steps))
                    self.epsilon = exp.epsilon
                else:
                    self.buffer._add(exp)
                    self.fps_handler.step()
            if len(self.buffer) < self.initial:
                continue
            yield self.buffer.sample(self.batch_size * BATCH_MUL)
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The function batch_generator is replaced by the class BatchGenerator, which 
provides an iterator over batches and additionally mimics the ExperienceSource 
interface with the method pop_reward_steps(). The logic of this class is simple: 
it consumes the queue (populated by the "play process"), and if it is information 
about episode reward and steps, it remembers it; otherwise, the object is a piece 
of experience that needs to be added into the replay buffer. From the queue, we 
consume all objects available at the moment, and then the training batch is sampled 
from the buffer and yielded.

if __name__ == "__main__":
    warnings.simplefilter("ignore", category=UserWarning)

    mp.set_start_method('spawn')

In the beginning of the training process, we need to tell torch.multiprocess which 
start method to use. There are several of them, but spawn is the most flexible.

    exp_queue = mp.Queue(maxsize=BATCH_MUL*2)
    play_proc = mp.Process(target=play_func, args=(params, net,
                                                   args.cuda,
                                                   exp_queue))
    play_proc.start()

Then the queue for communication is created, and we start our play_func as 
a separate process. As arguments, we pass the NN, hyperparameters, and queue 
to be used for experience.

The rest of the code is almost the same, with the exception that we 
use a BatchGenerator instance as the data source for Ignite and for 
EndOfEpisodeHandler (which requires the method pop_rewards_steps()).

The following charts were obtained from my benchmarks.

Figure 9.8: The parallel version versus the baseline (left), and the parallel version's FPS (right)
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As you can see, in terms of FPS, we got a large boost of 152%: 402 FPS in the parallel 
version versus 159 in the baseline. But the total training time looks worse than the 
results obtained by the version with N_envs=3 in the previous section: one hour of 
training of the parallel version versus 45 minutes. That happened due to more data 
being fed into the replay buffer, which caused a longer training time. Probably, some 
hyperparameters could be tweaked in the parallel version to improve convergence, 
but that's left as an exercise for the curious reader.

Tweaking wrappers
The final step in our sequence of experiments will be tweaking wrappers applied to 
the environment. This is very easy to overlook, as wrappers are normally written 
once, or just borrowed from other code, applied to the environment, and left to 
sit there. But you should be aware of their importance in terms of the speed and 
convergence of your method. For example, the normal DeepMind-style stack of 
wrappers applied to an Atari game looks like this:

1. NoopResetEnv: applies a random amount of NOOP operations to the 
game reset. In some Atari games, this is needed to remove weird initial 
observations.

2. MaxAndSkipEnv: applies max to N observations (four by default) and returns 
this as an observation for the step. This solves the "flickering" problem in 
some Atari games, when the game draws different portions of the screen on 
even and odd frames (a normal practice among 2600 developers to increase 
the complexity of the game's sprites).

3. EpisodicLifeEnv: in some games, this detects a lost life and turns this 
situation into the end of the episode. This significantly increases convergence, 
as our episodes become shorter (one single life versus several given by the 
game logic). This is relevant only for some games supported by the Atari 
2600 Learning Environment.

4. FireResetEnv: executes a FIRE action on game reset. Some games require 
this to start the gameplay. Without this, our environment becomes a partially 
observable Markov decision process (POMDP), which makes it impossible 
to converge.

5. WarpFrame also known as ProcessFrame84, it converts an image to grayscale 
and resizes it to 84×84.

6. ClipRewardEnv: clips the reward to a –1…1 range, which is not the best, but 
a working solution to a wide variety of scores in different Atari games. For 
example, Pong might have a –21…21 score range, but the score in the River 
Raid game (my favorite) could be 0…∞ .
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7. FrameStack: stacks N sequential observations into the stack (the default is 
four). As we already discussed in Chapter 6, Deep Q-Networks, in some games 
this is required to fulfill the Markov property. For example, in Pong, from 
one single frame it is impossible to get the direction the ball is moving in.

The code of those wrappers was heavily optimized by many people and several 
versions exist. My personal favorite is the OpenAI Baselines set of wrappers, which 
can be found here: https://github.com/openai/baselines/blob/master/
baselines/common/atari_wrappers.py. But you shouldn't take this code as 
the final source of truth, as your concrete environment might have different 
requirements and specifics. For example, if you are interested in speeding up one 
specific game from the Atari suite, NoopResetEnv and MaxAndSkipEnv (more 
precisely, max pooling from MaxAndSkipEnv) might be not needed. Another thing 
that could be tweaked is the number of frames in the FrameStack wrapper. The 
normal practice is to use four, but you need to understand that this number was 
used by DeepMind and other researchers to train on the full Atari 2600 game suite, 
which currently includes more than 50 games. For your specific case, a history of 
two frames might be enough to give you a performance boost, as less data will need 
to be processed by the NN.

Finally, the image resize could be the bottleneck of wrappers, so you might want to 
optimize libraries used by wrappers, for example, rebuilding them or replacing them 
with faster versions. In our particular case, my experiments have shown that the 
following tweaks could be applied to our Pong example to improve performance:

• Replace the cv2 library with the optimized Pillow fork called pillow-simd: 
https://github.com/uploadcare/pillow-simd

• Disable NoopResetEnv
• Replace MaxAndSkipEnv with my wrapper, which just skips four frames 

without max pooling
• Keep only two frames in FrameStack

Let's discuss the code changes in detail. For brevity, I'll show only the relevant 
changes. The full code can be found in the files Chapter09/04_new_wrappers_n_
env.py, Chapter09/04_new_wrappers_parallel.py, and Chapter09/lib/atari_
wrappers.py.

First of all, the pillow-simd library was installed with pip install pillow-simd, 
which is a heavily optimized drop-in replacement of the Pillow library. Standard 
wrappers use cv2, but my experiments have shown that pillow-simd is faster.

https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
https://github.com/uploadcare/pillow-simd
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Then, the latest version of atari_wrappers.py was taken from the OpenAI 
Baselines repository and modified for PyTorch tensor shapes. This was needed, 
as Baselines is implemented on TensorFlow, which has a different organization of 
image tensors. Specifically, TensorFlow tensors are (width, height, channel), but 
PyTorch uses (channel, width, height). To take this into account, minor modifications 
were required in the FrameStack and LazyFrames classes. In addition, a small 
wrapper was implemented to change the axes:

class ImageToPyTorch(gym.ObservationWrapper):
    """
    Change image shape to CWH
    """
    def __init__(self, env):
        super(ImageToPyTorch, self).__init__(env)
        old_shape = self.observation_space.shape
        new_shape = (old_shape[-1], old_shape[0], old_shape[1])
        self.observation_space = gym.spaces.Box(
            low=0.0, high=1.0, shape=new_shape, dtype=np.uint8)

    def observation(self, observation):
        return np.swapaxes(observation, 2, 0)

Then, WarpFrame was modified to use the pillow-simd library instead of cv2, but it 
was kept simple to give the option to switch back:

USE_PIL = True
if USE_PIL:
    from PIL import Image
else:
    import cv2
    cv2.ocl.setUseOpenCL(False)

# ... WarpFrame class (beginning of class is omitted)
    def observation(self, obs):
        if self._key is None:
            frame = obs
        else:
            frame = obs[self._key]
        if USE_PIL:
            frame = Image.fromarray(frame)
            if self._grayscale:
                frame = frame.convert("L")
            frame = frame.resize((self._width, self._height))
            frame = np.array(frame)
        else:
            if self._grayscale:
                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
            frame = cv2.resize(
                frame, (self._width, self._height),
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                interpolation=cv2.INTER_AREA
            )

A trimmed version of MaxAndSkipEnv was implemented, which just does a skip of N 
steps, without calculating a maxpool of observations:

class SkipEnv(gym.Wrapper):
    def __init__(self, env, skip=4):
        """Return only every 'skip'-th frame"""
        gym.Wrapper.__init__(self, env)
        self._skip = skip

    def step(self, action):
        """Repeat action, sum reward, and max over last 
observations."""
        total_reward = 0.0
        done = None
        for i in range(self._skip):
            obs, reward, done, info = self.env.step(action)
            total_reward += reward
            if done:
                break
        return obs, total_reward, done, info

    def reset(self, **kwargs):
        return self.env.reset(**kwargs)

Then, extra flags were added in the make_atari and wrap_deepmind functions to 
give more control over the set of wrappers applied:

def make_atari(env_id, max_episode_steps=None,
               skip_noop=False, skip_maxskip=False):
    env = gym.make(env_id)
    assert 'NoFrameskip' in env.spec.id
    if not skip_noop:
        env = NoopResetEnv(env, noop_max=30)
    if not skip_maxskip:
        env = MaxAndSkipEnv(env, skip=4)
    else:
        env = SkipEnv(env, skip=4)
    if max_episode_steps is not None:
        env = TimeLimit(env, max_episode_steps=max_episode_steps)
    return env

def wrap_deepmind(env, episode_life=True, clip_rewards=True,
                  frame_stack=False, scale=False,
                  pytorch_img=False,
                  frame_stack_count=4, skip_firereset=False):
    """Configure environment for DeepMind-style Atari.
    """
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    if episode_life:
        env = EpisodicLifeEnv(env)
    if 'FIRE' in env.unwrapped.get_action_meanings():
        if not skip_firereset:
            env = FireResetEnv(env)
    env = WarpFrame(env)
    if pytorch_img:
        env = ImageToPyTorch(env)
    if scale:
        env = ScaledFloatFrame(env)
    if clip_rewards:
        env = ClipRewardEnv(env)
    if frame_stack:
        env = FrameStack(env, frame_stack_count)
    return env

So, as you can see, nothing really fancy was done. Then, the environment creation 
code was changed to use the new version:

    env = atari_wrappers.make_atari(params.env_name,
                                    skip_noop=True,
                                    skip_maxskip=True)
    env = atari_wrappers.wrap_deepmind(env, pytorch_img=True,
                                       frame_stack=True,
                                       frame_stack_count=2)

That's it! Benchmarks were used for two versions: sequential with three 
environments and parallel from the previous section. The following charts came 
from benchmarking both versions.

Figure 9.9: The effect of new wrappers applied to the version with three environments
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Figure 9.10: The effect of new wrappers applied to the parallel version

Benchmark summary
I summarized our experiments in the following table. The percentages show the 
changes versus the baseline version.

Step FPS Solution time in 
minutes

Baseline 159 105
Version without torch.no_grad() 157 (-1.5%) 115 (+10%)
Three environments 228 (+43%) 44 (-58%)
Parallel version 402 (+152%) 59 (-43%)
Tweaked wrappers, three environments 330 (+108%) 40 (-62%)
Tweaked wrappers, parallel version 409 (+157%) 31 (-70%)

So, by using only engineering tweaks, we were able to increase the FPS 2.5 times 
and get Pong solved 3.5 times faster. Not bad!

Going hardcore: CuLE
During the writing of this chapter, NVIDIA researchers published the paper and 
code for their latest experiments with porting the Atari emulator on GPU: Steven 
Dalton, Iuri Frosio, GPU-Accelerated Atari Emulation for Reinforcement Learning, 2019, 
arXiv:1907.08467. The code of their Atari port is called CuLE (CUDA Learning 
Environment) and is available on GitHub: https://github.com/NVlabs/cule.

https://github.com/NVlabs/cule
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According to their paper, by keeping both the Atari emulator and NN on the GPU, 
they were able to get Pong solved within one to two minutes and reach FPS of 50k 
(on the advantage actor-critic (A2C) method, which will be the subject of the next 
part of the book).

Unfortunately, at the time of writing, the code wasn't stable enough. I failed to 
make it work on my hardware, but I hope that when you read this, the situation 
will have already changed. In any case, this project shows a somewhat extreme, but 
very efficient, way to increase RL methods' performance. By eliminating CPU-GPU 
interaction, speed could be increased by a factor of hundreds.

Another example of such "hardcore" ways to speed up an RL environment 
and methods uses a field-programmable gate array (FPGA) to implement an 
environment. One such project was a Game Boy emulator implemented in Verilog 
(https://github.com/krocki/gb), which was able to reach millions of FPS. Of 
course, the major challenge is what to do with those frames, as FPGA is not very 
suitable for ML, but who knows where the progress will take us!

Summary
In this chapter, you saw several ways to improve the performance of the RL method 
using a pure engineering approach, which was in contrast to the "algorithmic" or 
"theoretical" approach covered in Chapter 8, DQN Extensions. From my perspective, 
both approaches complement each other, and a good RL practitioner needs to 
both know the latest tricks that researchers have found and be aware of the 
implementation details.

In the next chapter, we will apply our DQN knowledge to stocks trading.

References
1. https://www.aicrowd.com/challenges/neurips-2019-learn-to-move-

walk-around

https://github.com/krocki/gb
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Stocks Trading Using RL
Rather than learning new methods to solve toy reinforcement learning (RL) problems 
in this chapter, we will try to utilize our deep Q-network (DQN) knowledge to deal 
with the much more practical problem of financial trading. I can't promise that the 
code will make you super rich on the stock market or Forex, because my goal is 
much less ambitious: to demonstrate how to go beyond the Atari games and apply 
RL to a different practical domain.

In this chapter, we will:

• Implement our own OpenAI Gym environment to simulate the stock market
• Apply the DQN method that you learned in Chapter 6, Deep Q-Networks, 

and Chapter 8, DQN Extensions, to train an agent to trade stocks to maximize 
profit

Trading
There are a lot of financial instruments traded on markets every day: goods, 
stocks, and currencies. Even weather forecasts can be bought or sold using so-
called "weather derivatives," which is just a consequence of the complexity of the 
modern world and financial markets. If your income depends on future weather 
conditions, like a business growing crops, then you might want to hedge the risks 
by buying weather derivatives. All these different items have a price that changes 
over time. Trading is the activity of buying and selling financial instruments with 
different goals, like making a profit (investment), gaining protection from future 
price movement (hedging), or just getting what you need (like buying steel or 
exchanging USD for JPY to pay a contract).

Since the first financial market was established, people have been trying to predict 
future price movements, as this promises many benefits, like "profit from nowhere" 
or protecting capital from sudden market movements. 



Stocks Trading Using RL

[ 260 ]

This problem is known to be complex, and there are a lot of financial consultants, 
investment funds, banks, and individual traders trying to predict the market and 
find the best moments to buy and sell to maximize profit.

The question is: can we look at the problem from the RL angle? Let's say that we 
have some observation of the market, and we want to make a decision: buy, sell, or 
wait. If we buy before the price goes up, our profit will be positive; otherwise, we 
will get a negative reward. What we're trying to do is get as much profit as possible. 
The connections between market trading and RL are quite obvious.

Data
In our example, we will use the Russian stock market prices from the period of 2015-
2016, which are placed in Chapter08/data/ch08-small-quotes.tgz and have to 
be unpacked before model training.

Inside the archive, we have CSV files with M1 bars, which means that every row 
in each CSV file corresponds to a single minute in time, and price movement 
during that minute is captured with four prices: open, high, low, and close. Here, 
an open price is the price at the beginning of the minute, high is the maximum 
price during the interval, low is the minimum price, and the close price is the 
last price of the minute time interval. Every minute interval is called a bar and 
allows us to have an idea of price movement within the interval. For example, in 
the YNDX_160101_161231.csv file (which has Yandex company stocks for 2016), 
we have 130k lines in this form:

<DATE>,<TIME>,<OPEN>,<HIGH>,<LOW>,<CLOSE>,<VOL>

20160104,100100,1148.9,1148.9,1148.9,1148.9,0

20160104,100200,1148.9,1148.9,1148.9,1148.9,50

20160104,100300,1149.0,1149.0,1149.0,1149.0,33

20160104,100400,1149.0,1149.0,1149.0,1149.0,4

20160104,100500,1153.0,1153.0,1153.0,1153.0,0

20160104,100600,1156.9,1157.9,1153.0,1153.0,43

20160104,100700,1150.6,1150.6,1150.4,1150.4,5

20160104,100800,1150.2,1150.2,1150.2,1150.2,4

...

The first two columns are the date and time for the minute; the next four columns are 
open, high, low, and close prices; and the last value represents the number of buy 
and sell orders performed during the bar. The exact interpretation of this number 
is stock- and market-dependent, but usually, volumes give you an idea about how 
active the market was.
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The typical way to represent those prices is called a candlestick chart, where every 
bar is shown as a candle. Part of Yandex's quotes for one day in February 2016 is 
shown in the following chart. The archive contains two files with M1 data for 2016 
and 2015. We will use data from 2016 for model training and data from 2015 for 
validation.

Figure 10.1: Price data for Yandex in February 2016

Problem statements and key decisions
The finance domain is large and complex, so you can easily spend several years 
learning something new every day. In our example, we will just scratch the surface 
a bit with our RL tools, and our problem will be formulated as simply as possible, 
using price as an observation. We will investigate whether it will be possible for 
our agent to learn when the best time is to buy one single share and then close the 
position to maximize the profit. The purpose of this example is to show how flexible 
the RL model can be and what the first steps are that you usually need to take to 
apply RL to a real-life use case.

As you already know, to formulate RL problems, three things are needed: 
observation of the environment, possible actions, and a reward system. In previous 
chapters, all three were already given to us, and the internal machinery of the 
environment was hidden. Now we're in a different situation, so we need to decide 
ourselves what our agent will see and what set of actions it can take. The reward 
system is also not given as a strict set of rules; rather, it will be guided by our 
feelings and knowledge of the domain, which gives us lots of flexibility.
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Flexibility, in this case, is good and bad at the same time. It's good that we have 
the freedom to pass some information to the agent that we feel will be important to 
learn efficiently. For example, you can pass to the trading agent not only prices, but 
also news or important statistics (which are known to influence financial markets 
a lot). The bad part is that this flexibility usually means that to find a good agent, 
you need to try a lot of variants of data representation, and it's not always obvious 
which will work better. In our case, we will implement the basic trading agent in 
its simplest form. The observation will include the following information:

• N past bars, where each has open, high, low, and close prices
• An indication that the share was bought some time ago (only one share at 

a time will be possible)
• Profit or loss that we currently have from our current position (the share 

bought)

At every step, after every minute's bar, the agent can take one of the following 
actions:

• Do nothing: skip the bar without taking an action
• Buy a share: if the agent has already got the share, nothing will be bought; 

otherwise, we will pay the commission, which is usually some small 
percentage of the current price

• Close the position: if we do not have a previously purchased share, nothing 
will happen; otherwise, we will pay the commission for the trade

The reward that the agent receives can be expressed in various ways. On the one 
hand, we can split the reward into multiple steps during our ownership of the share. 
In that case, the reward on every step will be equal to the last bar's movement. On 
the other hand, the agent will receive the reward only after the close action and 
receive the full reward at once. At first sight, both variants should have the same 
final result, but maybe with different convergence speeds. However, in practice, 
the difference could be dramatic. We will implement both variants to compare them.

One last decision to make is how to represent the prices in our environment 
observation. Ideally, we would like our agent to be independent of actual price 
values and take into account relative movement, such as "the stock has grown 1% 
during the last bar" or "the stock has lost 5%." This makes sense, as different stocks' 
prices can vary, but they can have similar movement patterns. In finance, there is 
a branch of analytics called technical analysis that studies such patterns to help to 
make predictions from them. We would like our system to be able to discover the 
patterns (if they exist). To achieve this, we will convert every bar's open, high, low, 
and close prices to three numbers showing high, low, and close prices represented 
as a percentage of the open price.
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This representation has its own drawbacks, as we're potentially losing the 
information about key price levels. For example, it's known that markets have a 
tendency to bounce from round price numbers (like $8,000 per bitcoin) and levels 
that were turning points in the past. However, as already stated, we're just playing 
with the data here and checking the concept. Representation in the form of relative 
price movement will help the system to find repeating patterns in the price level (if 
they exist, of course), regardless of the absolute price position. Potentially, the NN 
could learn this on its own (it's just the mean price that needs to be subtracted from 
the absolute price values), but relative representation simplifies the NN's task.

The trading environment
As we have a lot of code (methods, utility classes in PTAN, and so on) that is 
supposed to work with OpenAI Gym, we will implement the trading functionality 
following Gym's Env class API, which should be familiar to you. Our environment 
is implemented in the StocksEnv class in the Chapter10/lib/environ.py module. 
It uses several internal classes to keep its state and encode observations. Let's first 
look at the public API class:

import gym
import gym.spaces
from gym.utils import seeding
from gym.envs.registration import EnvSpec
import enum
import numpy as np

from . import data

class Actions(enum.Enum):
    Skip = 0
    Buy = 1
    Close = 2

We encode all available actions as an enumerator's fields. We support a very simple 
set of actions with only three options: do nothing, buy a single share, and close the 
existing position.

class StocksEnv(gym.Env):
    metadata = {'render.modes': ['human']}
    spec = EnvSpec("StocksEnv-v0")
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The fields metadata and spec are required for gym.Env compatibility. We don't 
provide render functionality, so you can ignore this.

    @classmethod
    def from_dir(cls, data_dir, **kwargs):
        prices = {
            file: data.load_relative(file)
            for file in data.price_files(data_dir)
        }
        return StocksEnv(prices, **kwargs)

Our environment class provides two ways to create its instance. The first way 
is to call the class method from_dir with the data directory as the argument. In 
that case, it will load all quotes from CSV files in the directory and construct the 
environment. To deal with price data in our form, we have several helper functions 
in Chapter10/lib/data.py. Another way is to construct the class instance directly. 
In that case, you should pass the prices dictionary, which has to map the quote 
tag to the Prices tuple declared in data.py. This object has five fields containing 
open, high, low, close, and volume time series in the NumPy array format. You 
can construct such objects using data.py library functions, like data.load_
relative().

    def __init__(self, prices, bars_count=DEFAULT_BARS_COUNT,
                 commission=DEFAULT_COMMISSION_PERC,
                 reset_on_close=True, conv_1d=False,
                 random_ofs_on_reset=True, reward_on_close=False,
                 volumes=False):

The constructor of the environment accepts a lot of arguments to tweak the 
environment's behavior and observation representation:

• prices: Contains one or more stock prices for one or more instruments as 
a dict, where keys are the instrument's name and the value is a container 
object data.Prices, which holds price data arrays.

• bars_count: The count of bars that we pass in the observation. By default, 
this is 10 bars.

• commission: The percentage of the stock price that we have to pay to the 
broker on buying and selling the stock. By default, it's 0.1%.

• reset_on_close: If this parameter is set to True, which it is by default, 
every time the agent asks us to close the existing position (in other words, 
sell a share), we stop the episode. Otherwise, the episode will continue until 
the end of our time series, which is one year of data.
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• conv_1d: This Boolean argument switches between different representations 
of price data in the observation passed to the agent. If it is set to True, 
observations have a 2D shape, with different price components for 
subsequent bars organized in rows. For example, high prices (max price 
for the bar) are placed on the first row, low prices on the second, and close 
prices on the third. This representation is suitable for doing 1D convolution 
on time series, where every row in the data has the same meaning as 
different color planes (red, green, or blue) in Atari 2D images. If we set 
this option to False, we have one single array of data with every bar's 
components placed together. This organization is convenient for a fully 
connected network architecture. Both representations are illustrated in 
Figure 10.2.

• random_ofs_on_reset: If the parameter is True (by default), on every reset 
of the environment, the random offset in the time series will be chosen. 
Otherwise, we will start from the beginning of the data.

• reward_on_close: This Boolean parameter switches between the two 
reward schemes discussed previously. If it is set to True, the agent will 
receive a reward only on the "close" action issue. Otherwise, we will give a 
small reward every bar, corresponding to price movement during that bar.

• volumes: This argument switches on volumes in observations and is 
disabled by default.

Figure 10.2: Different data representations for the NN

Now we will continue looking at the environment constructor:

        assert isinstance(prices, dict)
        self._prices = prices
        if conv_1d:
            self._state = State1D(
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                bars_count, commission, reset_on_close,
                reward_on_close=reward_on_close, volumes=volumes)
        else:
            self._state = State(
                bars_count, commission, reset_on_close,
                reward_on_close=reward_on_close, volumes=volumes)
        self.action_space = gym.spaces.Discrete(n=len(Actions))
        self.observation_space = gym.spaces.Box(
            low=-np.inf, high=np.inf,
            shape=self._state.shape, dtype=np.float32)
        self.random_ofs_on_reset = random_ofs_on_reset
        self.seed()

Most of the functionality of the StocksEnv class is implemented in two internal 
classes: State and State1D. They are responsible for observation preparation and 
our bought share state and reward. They implement a different representation 
of our data in the observations, and we will take a look at their code later. In the 
constructor, we create the state object, action space, and observation space fields 
that are required by Gym.

    def reset(self):
        self._instrument = self.np_random.choice(
            list(self._prices.keys()))
        prices = self._prices[self._instrument]
        bars = self._state.bars_count
        if self.random_ofs_on_reset:
            offset = self.np_random.choice(
                prices.high.shape[0]-bars*10) + bars
        else:
            offset = bars
        self._state.reset(prices, offset)
        return self._state.encode()

This method defines the reset() functionality for our environment. According 
to the gym.Env semantics, we randomly switch the time series that we will work 
on and select the starting offset in this time series. The selected price and offset 
are passed to our internal state instance, which then asks for an initial observation 
using its encode() function.

    def step(self, action_idx):
        action = Actions(action_idx)
        reward, done = self._state.step(action)
        obs = self._state.encode()
        info = {
            "instrument": self._instrument,
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            "offset": self._state._offset
        }
        return obs, reward, done, info

This method has to handle the action chosen by the agent and return the next 
observation, reward, and done flag. All real functionality is implemented in our 
state classes, so this method is a very simple wrapper around the call to state 
methods.

    def render(self, mode='human', close=False):
        pass

    def close(self):
        pass

The API for gym.Env allows you to define the render() method handler, which 
is supposed to render the current state in human or machine-readable format. 
Generally, this method is used to peek inside the environment state and is useful 
for debugging or tracing the agent's behavior. For example, the market environment 
could render current prices as a chart to visualize what the agent sees at that 
moment. Our environment doesn't support rendering, so this method does nothing. 
Another method is close(), which gets called on the environment's destruction to 
free the allocated resources.

    def seed(self, seed=None):
        self.np_random, seed1 = seeding.np_random(seed)
        seed2 = seeding.hash_seed(seed1 + 1) % 2 ** 31
        return [seed1, seed2]

This method is part of Gym's magic related to Python random number generator 
problems. For example, when you create several environments at the same time, 
their random number generators could be initialized with the same seed (which is 
the current timestamp, by default). It's not very relevant for our code (as we're using 
only one environment instance for DQN), but it will become useful in the next part 
of the book, when we look at the asynchronous advantage actor-critic (A3C) 
method, which is supposed to use several environments concurrently.

Let's now look at the internal environ.State class, which implements most of the 
environment's functionality:

class State:
    def __init__(self, bars_count, commission_perc,
                 reset_on_close, reward_on_close=True,
                 volumes=True):
        assert isinstance(bars_count, int)
        assert bars_count > 0
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        assert isinstance(commission_perc, float)
        assert commission_perc >= 0.0
        assert isinstance(reset_on_close, bool)
        assert isinstance(reward_on_close, bool)
        self.bars_count = bars_count
        self.commission_perc = commission_perc
        self.reset_on_close = reset_on_close
        self.reward_on_close = reward_on_close
        self.volumes = volumes

The constructor does nothing more than just check and remember the arguments in 
the object's fields.

    def reset(self, prices, offset):
        assert isinstance(prices, data.Prices)
        assert offset >= self.bars_count-1
        self.have_position = False
        self.open_price = 0.0
        self._prices = prices
        self._offset = offset

The reset() method is called every time that the environment is asked to reset 
and has to save the passed prices data and starting offset. In the beginning, we 
don't have any shares bought, so our state has have_position=False and open_
price=0.0.

    @property
    def shape(self):
        # [h, l, c] * bars + position_flag + rel_profit
        if self.volumes:
            return 4 * self.bars_count + 1 + 1,
        else:
            return 3 * self.bars_count + 1 + 1,

This property returns the shape of the state representation in a NumPy array.

The State class is encoded into a single vector, which includes prices with optional 
volumes and two numbers indicating the presence of a bought share and position 
profit.

    def encode(self):
        res = np.ndarray(shape=self.shape, dtype=np.float32)
        shift = 0
        for bar_idx in range(-self.bars_count+1, 1):
            ofs = self._offset + bar_idx
            res[shift] = self._prices.high[ofs]
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            shift += 1
            res[shift] = self._prices.low[ofs]
            shift += 1
            res[shift] = self._prices.close[ofs]
            shift += 1
            if self.volumes:
                res[shift] = self._prices.volume[ofs]
                shift += 1
        res[shift] = float(self.have_position)
        shift += 1
        if not self.have_position:
            res[shift] = 0.0
        else:
            res[shift] = self._cur_close() / self.open_price - 1.0
        return res

The preceding method encodes prices at the current offset into a NumPy array, 
which will be the observation of the agent.

    def _cur_close(self):
        open = self._prices.open[self._offset]
        rel_close = self._prices.close[self._offset]
        return open * (1.0 + rel_close)

This helper method calculates the current bar's close price. Prices passed to the State 
class have the relative form in respect of the open price: the high, low, and close 
components are relative ratios to the open price. This representation was already 
discussed when we talked about the training data, and it will (probably) help our 
agent to learn price patterns that are independent of actual price value.

    def step(self, action):
        assert isinstance(action, Actions)
        reward = 0.0
        done = False
        close = self._cur_close()

This method is the most complicated piece of code in the State class, which is 
responsible for performing one step in our environment. On exit, it has to return the 
reward in a percentage and an indication of the episode ending.

        if action == Actions.Buy and not self.have_position:
            self.have_position = True
            self.open_price = close
            reward -= self.commission_perc
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If the agent has decided to buy a share, we change our state and pay the commission. 
In our state, we assume the instant order execution at the current bar's close price, 
which is a simplification on our side; normally, an order can be executed on a 
different price, which is called price slippage.

        elif action == Actions.Close and self.have_position:
            reward -= self.commission_perc
            done |= self.reset_on_close
            if self.reward_on_close:
                reward += 100.0 * (close / self.open_price - 1.0)
            self.have_position = False
            self.open_price = 0.0

If we have a position and the agent asks us to close it, we pay commission again, 
change the done flag if we're in reset_on_close mode, give a final reward for the 
whole position, and change our state.

        self._offset += 1
        prev_close = close
        close = self._cur_close()
        done |= self._offset >= self._prices.close.shape[0]-1
        if self.have_position and not self.reward_on_close:
            reward += 100.0 * (close / prev_close - 1.0)
        return reward, done

In the rest of the function, we modify the current offset and give the reward for the 
last bar movement. That's it for the State class, so let's look at State1D, which has 
the same behavior and just overrides the representation of the state passed to the 
agent:

class State1D(State):
    @property
    def shape(self):
        if self.volumes:
            return (6, self.bars_count)
        else:
            return (5, self.bars_count)

The shape of this representation is different, as our prices are encoded as a 2D 
matrix suitable for a 1D convolution operator.

    def encode(self):
        res = np.zeros(shape=self.shape, dtype=np.float32)
        start = self._offset-(self.bars_count-1)
        stop = self._offset+1
        res[0] = self._prices.high[start:stop]
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        res[1] = self._prices.low[start:stop]
        res[2] = self._prices.close[start:stop]
        if self.volumes:
            res[3] = self._prices.volume[start:stop]
            dst = 4
        else:
            dst = 3
        if self.have_position:
            res[dst] = 1.0
            res[dst+1] = self._cur_close() / self.open_price - 1.0
        return res

This method encodes the prices in our matrix, depending on the current offset, 
whether we need volumes, and whether we have stock. That's it for our trading 
environment. Compatibility with the Gym API allows us to plug it into the familiar 
classes that we used to handle the Atari games. Let's do that now.

Models
In this example, two architectures of DQN are used: a simple feed-forward network 
with three layers and a network with 1D convolution as a feature extractor, 
followed by two fully connected layers to output Q-values. Both of them use the 
dueling architecture described in Chapter 8, DQN Extensions. Double DQN and two-
step Bellman unrolling have also been used. The rest of the process is the same as in 
a classical DQN (from Chapter 6, Deep Q-Networks).

Both models are in Chapter10/lib/models.py and are very simple.

class SimpleFFDQN(nn.Module):
    def __init__(self, obs_len, actions_n):
        super(SimpleFFDQN, self).__init__()

        self.fc_val = nn.Sequential(
            nn.Linear(obs_len, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )

        self.fc_adv = nn.Sequential(
            nn.Linear(obs_len, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
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            nn.ReLU(),
            nn.Linear(512, actions_n)
        )

    def forward(self, x):
        val = self.fc_val(x)
        adv = self.fc_adv(x)
        return val + (adv - adv.mean(dim=1, keepdim=True))

The convolutional model has a common feature extraction layer with the 1D 
convolution operations and two fully connected heads to output the value of the 
state and advantages for actions.

class DQNConv1D(nn.Module):
    def __init__(self, shape, actions_n):
        super(DQNConv1D, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv1d(shape[0], 128, 5),
            nn.ReLU(),
            nn.Conv1d(128, 128, 5),
            nn.ReLU(),
        )
        out_size = self._get_conv_out(shape)

        self.fc_val = nn.Sequential(
            nn.Linear(out_size, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )

        self.fc_adv = nn.Sequential(
            nn.Linear(out_size, 512),
            nn.ReLU(),
            nn.Linear(512, actions_n)
        )

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        conv_out = self.conv(x).view(x.size()[0], -1)
        val = self.fc_val(conv_out)
        adv = self.fc_adv(conv_out)
        return val + (adv - adv.mean(dim=1, keepdim=True))
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Training code
We have two very similar training modules in this example: one for the feed-forward 
model and one for 1D convolutions. For both of them, there is nothing new added to 
our examples from Chapter 8, DQN Extensions:

• They're using epsilon-greedy action selection to perform exploration. 
The epsilon linearly decays over the first 1M steps from 1.0 to 0.1.

• A simple experience replay buffer of size 100k is being used, which is 
initially populated with 10k transitions.

• For every 1,000 steps, we calculate the mean value for the fixed set of 
states to check the dynamics of the Q-values during the training.

• For every 100k steps, we perform validation: 100 episodes are played 
on the training data and on previously unseen quotes. Characteristics 
of orders are recorded in TensorBoard, such as the mean profit, the 
mean count of bars, and the share held. This step allows us to check 
for overfitting conditions.

The training modules are in Chapter10/train_model.py (feed-forward model) 
and Chapter10/train_model_conv.py (with a 1D convolutional layer). Both 
versions accept the same command-line options.

To start the training, you need to pass training data with the --data option, which 
could be an individual CSV file or the whole directory with files. By default, the 
training module uses Yandex quotes for 2016 (file data/YNDX_160101_161231.
csv). For the validation data, there is an option, --val, that takes Yandex 2015 
quotes by default. Another required option will be -r, which is used to pass the 
name of the run. This name will be used in the TensorBoard run name and to 
create directories with saved models.

Results
Let's now take a look at the results.

The feed-forward model
The convergence on Yandex data for one year requires about 10M training steps, 
which can take a while. (GTX 1080 Ti trains at a speed of 230-250 steps per second.) 
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During the training, we have several charts in TensorBoard showing us what's 
going on.

Figure 10.3: The reward for episodes during the training

Figure 10.4: The reward for test episodes
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The two preceding charts show the reward for episodes played during the training 
and the reward obtained from testing (which is done on the same quotes, but with 
epsilon=0). From them, we see that our agent is learning how to increase the profit 
from its actions over time.

Figure 10.5: The lengths of played episodes

Figure 10.6: The values predicted by the network on a subset of states
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The lengths of episodes also increased after 1M training iterations. The number of 
values predicted by the network is growing.

Figure 10.7: The reward obtained on the validation dataset

Figure 10.7 shows quite important information: the amount of reward obtained 
during the training on the validation set (which is quotes from 2015 by default). 
This reward doesn't have as obvious a trend as the reward on the training data. 
This might be an indication of overfitting of the agent, which starts after 3M training 
iterations. But still, the reward is above line –0.2% (which is a broker commission 
in our environment) and means that our agent is better than a random "buying 
and selling monkey."

During the training, our code saves models for later experiments. It does this every 
time the mean Q-values on our held-out states set update the maximum or when 
the reward on the validation sets beats the previous record. There is a tool that loads 
the model, trades on prices you've provided to it with the command-line option, 
and draws the plots with the profit change over time. The tool is called Chapter10/
run_model.py and it can be used as shown here:

$ ./run_model.py -d data/YNDX_160101_161231.csv -m saves/ff- YNDX16/mean_
val-0.332.data -b 10 -n test
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The options that the tool accepts are as follows:

• -d: This is the path to the quotes to use. In the preceding example, we apply 
the model to the data that it was trained on.

• -m: This is the path to the model file. By default, the training code saves it in 
the saves dir.

• -b: This shows how many bars to pass to the model in the context. It has to 
match the count of bars used on training, which is 10 by default and can be 
changed in the training code.

• -n: This is the suffix to be prepended to the images produced.
• --commission: This allows you to redefine the broker's commission, which 

has a default of 0.1%.

At the end, the tool creates a chart of the total profit dynamics (in percentages). The 
following is the reward chart on Yandex 2016 quotes (used for training).

Figure 10.8: Trading profit on the 2016 Yandex training data
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The result looks amazing: more than 200% profit in a year. However, let's look at 
what will happen with the 2015 data:

Figure 10.9: Trading profit on the 2015 Yandex validation data

This result is much worse, as we've seen from the validation plots in TensorBoard. 
To check that our system is profitable with zero commission, we must rerun on the 
same data with the --commission 0.0 option.

Figure 10.10: Trading profit on validation with zero broker commission
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We have some bad days with drawdown, but the overall results are good: without 
commission, our agent can be profitable. Of course, the commission is not the only 
issue. Our order simulation is very primitive and doesn't take into account real-life 
situations, such as price spread and a slip in order execution.

If we take the model with the best reward on the validation set, the reward dynamics 
are a bit better. Profitability is lower, but the drawdown on unseen quotes is much less.

Figure 10.11: The reward from the model with the best validation reward (on 2016 data)

Figure 10.12: The reward from the model with the best validation reward (on 2015 data)
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The convolution model
The second model implemented in this example uses 1D convolution filters to 
extract features from the price data. This allows us to increase the number of bars in 
the context window that our agent sees on every step without a significant increase 
in the network size. By default, the convolution model example uses 50 bars of 
context. The training code is in Chapter10/train_model_conv.py, and it accepts 
the same set of command-line parameters as the feed-forward version.

Training dynamics are almost identical, but the reward obtained on the validation 
set is slightly higher and starts to overfit later.

Figure 10.13: The reward during the training of the convolution version
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Figure 10.14: The validation reward of the convolution version

Things to try
As already mentioned, financial markets are large and complicated. The methods 
that we've tried are just the very beginning. Using RL to create a complete and 
profitable trading strategy is a large project, which can take several months 
of dedicated labor. However, there are things that we can try to get a better 
understanding of the topic:

• Our data representation is definitely not perfect. We don't take into account 
significant price levels (support and resistance), round price values, and 
others. Incorporating them into the observation could be a challenging 
problem.
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• Market prices are usually analyzed at different timeframes. Low-level data 
like one-minute bars are noisy (as they include lots of small price movements 
caused by individual trades), and it is like looking at the market using a 
microscope. At larger scales, such as one-hour or one-day bars, you can see 
large, long trends in data movement, which could be extremely important 
for price prediction.

• More training data is needed. One year of data for one stock is just 130k bars, 
which might be not enough to capture all market situations. Ideally, a real-
life agent should be trained on a much larger dataset, such as the prices for 
hundreds of stocks for the past 10 years.

• Experiment with the network architecture. The convolution model has 
shown much faster convergence than the feed-forward model, but there 
are a lot of things to optimize: the count of layers, kernel size, residual 
architecture, attention mechanism, and so on.

Summary
In this chapter, we saw a practical example of RL and implemented the trading 
agent and custom Gym environment. We tried two different architectures: a 
feed-forward network with price history on input and a 1D convolution network. 
Both architectures used the DQN method, with some extensions described in 
Chapter 8, DQN Extensions.

This is the last chapter in part two of this book. In part three, we will talk about 
a different family of RL methods: policy gradients. We've touched on this approach 
a bit, but in the upcoming chapters, we will go much deeper into the subject, 
covering the REINFORCE method and the best method in the family: A3C.
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Policy Gradients – an 
Alternative

In this first chapter of part three of the book, we will consider an alternative way 
to handle Markov decision process (MDP) problems, which forms a full family 
of methods called policy gradient methods.

In this chapter, we will:

• Cover an overview of the methods, their motivations, and their strengths 
and weaknesses in comparison to the already familiar Q-learning

• Start with a simple policy gradient method called REINFORCE and try 
to apply it to our CartPole environment, comparing this with the deep 
Q-network (DQN) approach

Values and policy
Before we start talking about policy gradients, let's refresh our minds with the 
common characteristics of the methods covered in part two of this book. The central 
topic in value iteration and Q-learning is the value of the state (V) or value of the state 
and action (Q). Value is defined as the discounted total reward that we can gather 
from this state or by issuing this particular action from the state. If we know the 
value, our decision on every step becomes simple and obvious: we just act greedily 
in terms of value, and that guarantees us a good total reward at the end of the 
episode. So, the values of states (in the case of the value iteration method) or state + 
action (in the case of Q-learning) stand between us and the best reward. To obtain 
these values, we have used the Bellman equation, which expresses the value on the 
current step via the values on the next step.
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In Chapter 1, What Is Reinforcement Learning?, we defined the entity that tells us 
what to do in every state as the policy. As in Q-learning methods, when values 
are dictating to us how to behave, they are actually defining our policy. Formally, 
this can be written as 𝜋𝜋(𝑠𝑠) = arg max𝑎𝑎𝑄𝑄(𝑠𝑠, 𝑎𝑎) , which means that the result of our 
policy 𝜋𝜋 , at every state s, is the action with the largest Q.

This policy-values connection is obvious, so I haven't placed emphasis on the policy 
as a separate entity and we have spent most of our time talking about values and 
the way to approximate them correctly. Now it's time to focus on this connection 
and the policy itself.

Why the policy?
There are several reasons why the policy is an interesting topic to explore. First 
of all, the policy is what we are looking for when we are solving a reinforcement 
learning (RL) problem. When the agent obtains the observation and needs to make 
a decision about what to do next, it needs the policy, not the value of the state or 
particular action. We do care about the total reward, but at every state, we may 
have little interest in the exact value of the state.

Imagine this situation: you're walking in the jungle and you suddenly realize that 
there is a hungry tiger hiding in the bushes. You have several alternatives, such as 
run, hide, or try to throw your backpack at it, but asking, "What's the exact value of 
the run action and is it larger than the value of the do nothing action?" is a bit silly. 
You don't care much about the value, because you need to make the decision on 
what to do fast and that's it. Our Q-learning approach tried to answer the policy 
question indirectly by approximating the values of the states and trying to choose 
the best alternative, but if we are not interested in values, why do extra work?

Another reason why policies may be more attractive than values is due to 
environments with lots of actions or, in the extreme case, with a continuous 
action space. To be able to decide on the best action to take having Q(s, a), we 
need to solve a small optimization problem, finding a, which maximizes Q(s, a). 
In the case of an Atari game with several discrete actions, this wasn't a problem: 
we just approximated values of all actions and took the action with the largest 
Q. If our action is not a small discrete set, but has a scalar value attached to it, 
such as a steering wheel angle or the speed at which we want to run from the 
tiger, this optimization problem becomes hard, as Q is usually represented by a 
highly nonlinear neural network (NN), so finding the argument that maximizes 
the function's values can be tricky. In such cases, it's much more feasible to avoid 
values and work with the policy directly.
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An extra benefit of policy learning is an environment with stochasticity. As you saw 
in Chapter 8, DQN Extensions, in categorical DQN, our agent can benefit a lot from 
working with the distribution of Q-values, instead of expected mean values, as our 
network can more precisely capture the underlying probability distribution. As you 
will see in the next section, the policy is naturally represented as the probability of 
actions, which is a step in the same direction as the categorical DQN method.

Policy representation
Now that you know the benefits of the policy, let's give it a try. So how do we 
represent the policy? In the case of Q-values, they were parametrized by the NN 
that returns values of actions as scalars. If we want our network to parametrize 
the actions, we have several options. The first and the simplest way could be 
just returning the identifier of the action (in the case of a discrete set of actions). 
However, this is not the best way to deal with a discrete set. A much more common 
solution, which is heavily used in classification tasks, is to return the probability 
distribution of our actions. In other words, for N mutually exclusive actions, we 
return N numbers representing the probability of taking each action in the given 
state (which we pass as an input to the network). This representation is shown in 
the following diagram:

Figure 11.1: Policy approximation with an NN for a discrete set of actions

Such representation of actions as probabilities has the additional advantage of 
smooth representation: if we change our network weights a bit, the output of the 
network will also change. In the case of a discrete numbers output, even a small 
adjustment of the weights can lead to a jump to a different action. However, if our 
output is the probability distribution, a small change of weights will usually lead 
to a small change in output distribution, such as slightly increasing the probability 
of one action versus the others. This is a very nice property to have, as gradient 
optimization methods are all about tweaking the parameters of a model a bit to 
improve the results. In math notation, the policy is usually represented as 𝜋𝜋(𝑠𝑠) , 
so we will use this notation as well.
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Policy gradients
We defined our policy representation, but what we haven't seen so far is how 
we are going to change our network's parameters to improve the policy. If you 
remember from Chapter 4, The Cross-Entropy Method, we solved a very similar 
problem using the cross-entropy method: our network took observations as inputs 
and returned the probability distribution of the actions. In fact, the cross-entropy 
method is a younger brother of the methods that we will discuss in this part of the 
book. To start, we will get acquainted with the method called REINFORCE, which 
has only minor differences from the cross-entropy method, but first, we need to look 
at some mathematical notation that we will use in this and the following chapters.

We define the policy gradient as ∇𝐽𝐽 ≈ 𝔼𝔼[𝑄𝑄(𝑠𝑠, 𝑎𝑎)∇ log𝜋𝜋(𝑎𝑎|𝑠𝑠)] . Of course, there is a 
strong proof of this, but it's not that important. What interests us much more is the 
meaning of this expression.

The policy gradient defines the direction in which we need to change our network's 
parameters to improve the policy in terms of the accumulated total reward. The 
scale of the gradient is proportional to the value of the action taken, which is Q(s, a) 
in the formula, and the gradient itself is equal to the gradient of log probability of 
the action taken. This means that we are trying to increase the probability of actions 
that have given us good total reward and decrease the probability of actions with 
bad final outcomes. Expectation, E in the formula, just means that we average the 
gradient of several steps that we have taken in the environment.

From a practical point of view, policy gradient methods could be implemented by 
performing optimization of this loss function: ℒ = −𝑄𝑄(𝑠𝑠, 𝑎𝑎) log𝜋𝜋(𝑎𝑎|𝑠𝑠) . The minus 
sign is important, as the loss function is minimized during stochastic gradient 
descent (SGD), but we want to maximize our policy gradient. You will see code 
examples of policy gradient methods later in this and the following chapters.

The REINFORCE method
The formula of policy gradient that you have just seen is used by most of the policy-
based methods, but the details can vary. One very important point is how exactly 
gradient scales, Q(s, a), are calculated. In the cross-entropy method from Chapter 4, 
The Cross-Entropy Method, we played several episodes, calculated the total reward for 
each of them, and trained on transitions from episodes with a better-than-average 
reward. This training procedure is a policy gradient method with Q(s, a) = 1 for state 
and action pairs from good episodes (with a large total reward) and Q(s, a) = 0 for 
state and action pairs from worse episodes.
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The cross-entropy method worked even with those simple assumptions, but the 
obvious improvement will be to use Q(s, a) for training instead of just 0 and 1. 
Why should it help? The answer is a more fine-grained separation of episodes. For 
example, transitions of the episode with the total reward of 10 should contribute 
to the gradient more than transitions from the episode with the reward of 1. The 
second reason to use Q(s, a) instead of just 0 or 1 constants is to increase probabilities 
of good actions in the beginning of the episode and decrease the actions closer to the 
end of the episode (as Q(s, a) incorporates the discount factor, uncertainty for longer 
sequences of actions is automatically taken into account). That's exactly the idea of 
the method called REINFORCE. Its steps are as follows:

1. Initialize the network with random weights
2. Play N full episodes, saving their (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′)  transitions
3. For every step, t, of every episode, k, calculate the discounted total reward for 

subsequent steps: 𝑄𝑄𝑘𝑘,𝑡𝑡 =∑𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖
𝑖𝑖=0

 

4. Calculate the loss function for all transitions: ℒ = −∑𝑄𝑄𝑘𝑘,𝑡𝑡 log (𝜋𝜋(𝑠𝑠𝑘𝑘,𝑡𝑡, 𝑎𝑎𝑘𝑘,𝑡𝑡))
𝑘𝑘,𝑡𝑡

 

5. Perform an SGD update of weights, minimizing the loss
6. Repeat from step 2 until converged

The preceding algorithm is different from Q-learning in several important aspects:

• No explicit exploration is needed. In Q-learning, we used an epsilon-greedy 
strategy to explore the environment and prevent our agent from getting 
stuck with a non-optimal policy. Now, with probabilities returned by the 
network, the exploration is performed automatically. In the beginning, 
the network is initialized with random weights, and it returns a uniform 
probability distribution. This distribution corresponds to random agent 
behavior.

• No replay buffer is used. Policy gradient methods belong to the on-policy 
methods class, which means that we can't train on data obtained from the 
old policy. This is both good and bad. The good part is that such methods 
usually converge faster. The bad side is that they usually require much more 
interaction with the environment than off-policy methods such as DQN.

• No target network is needed. Here, we use Q-values, but they are obtained 
from our experience in the environment. In DQN, we used the target 
network to break the correlation in Q-values approximation, but we are 
not approximating anymore. In the next chapter, you will see that the 
target network trick can still be useful in policy gradient methods.
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The CartPole example
To see the method in action, let's check the implementation of the REINFORCE 
method on the familiar CartPole environment. The full code of the example is in 
Chapter11/02_cartpole_reinforce.py.

GAMMA = 0.99
LEARNING_RATE = 0.01
EPISODES_TO_TRAIN = 4

In the beginning, we define hyperparameters (imports are omitted). The EPISODES_
TO_TRAIN value specifies how many complete episodes we will use for training.

class PGN(nn.Module):
    def __init__(self, input_size, n_actions):
        super(PGN, self).__init__()
        
        self.net = nn.Sequential(nn.Linear(input_size, 128),
                                 nn.ReLU(),
                                 nn.Linear(128, n_actions)
                                 )
    
    def forward(self, x):
        return self.net(x)

The network should also be familiar to you. Note that despite the fact our network 
returns probabilities, we are not applying softmax nonlinearity to the output. The 
reason behind this is that we will use the PyTorch log_softmax function to calculate 
the logarithm of the softmax output at once. This method of calculation is much more 
numerically stable; however, we need to remember that output from the network 
is not probability, but raw scores (usually called logits).

def calc_qvals(rewards):
    res = []
    sum_r = 0.0
    for r in reversed(rewards):
        sum_r *= GAMMA
        sum_r += r
        res.append(sum_r)
    return list(reversed(res))

This function is a bit tricky. It accepts a list of rewards for the whole episode and 
needs to calculate the discounted total reward for every step. To do this efficiently, 
we calculate the reward from the end of the local reward list. Indeed, the last step 
of the episode will have a total reward equal to its local reward. The step before the 
last will have the total reward of 𝑟𝑟𝑡𝑡−1 + 𝛾𝛾𝑟𝑟𝑡𝑡  (if t is an index of the last step). 
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Our sum_r variable contains the total reward for the previous steps, so to get the 
total reward for the previous step, we need to multiply sum_r by gamma and sum 
the local reward.

if __name__ == "__main__":
    env = gym.make("CartPole-v0")
    writer = SummaryWriter(comment="-cartpole-reinforce")
    
    net = PGN(env.observation_space.shape[0], env.action_space.n)
    print(net)
    
    agent = ptan.agent.PolicyAgent(net,
                                   preprocessor=ptan.agent.
                                       float32_preprocessor,
                                   apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
                     env, agent, gamma=GAMMA)
    
    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)

The preparation steps before the training loop should also be familiar to you. 
The only new element is the agent class from the PTAN library. Here, we are using 
ptan.agent.PolicyAgent, which needs to make a decision about actions for every 
observation. As our network now returns the policy as the probabilities of the 
actions, in order to select the action to take, we need to obtain the probabilities from 
the network and then perform random sampling from this probability distribution.

When we worked with DQN, the output of the network was Q-values, so if some 
action had the value of 0.4 and another action had 0.5, the second action was 
preferred 100% of the time. In the case of the probability distribution, if the first 
action has a probability of 0.4 and the second 0.5, our agent should take the first 
action with a 40% chance and the second with a 50% chance. Of course, our network 
can decide to take the second action 100% of the time, and in this case, it returns the 
probability 0 for the first action and the probability 1 for the second action.

This difference is important to understand, but the change in the implementation is 
not large. Our PolicyAgent internally calls the NumPy random.choice function with 
probabilities from the network. The apply_softmax argument instructs it to convert 
the network output to probabilities by calling softmax first. The third argument 
preprocessor is a way to get around the fact that the CartPole environment in Gym 
returns the observation as float64 instead of the float32 required by PyTorch.

    total_rewards = []
    done_episodes = 0
    
    batch_episodes = 0
    cur_rewards = []
    batch_states, batch_actions, batch_qvals = [], [], []
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Before we can start the training loop, we need several variables. The first group of 
these is used for reporting and contains the total rewards for the episodes and the 
count of completed episodes. The second group is used to gather the training data. 
The cur_rewards list contains local rewards for the episode being currently played. 
As this episode reaches the end, we calculate the discounted total rewards from 
local rewards using the calc_qvals function and append them to the batch_qvals 
list. The batch_states and batch_actions lists contain states and actions that we 
saw from the last training.

    for step_idx, exp in enumerate(exp_source):
        batch_states.append(exp.state)
        batch_actions.append(int(exp.action))
        cur_rewards.append(exp.reward)
        
        if exp.last_state is None:
            batch_qvals.extend(calc_qvals(cur_rewards))
            cur_rewards.clear()
            batch_episodes += 1

The preceding code snippet is the beginning of the training loop. Every experience 
that we get from the experience source contains the state, action, local reward, and 
next state. If the end of the episode has been reached, the next state will be None. 
For non-terminal experience entries, we just save the state, action, and local reward 
in our lists. At the end of the episode, we convert the local rewards into Q-values 
and increment the episodes counter.

        new_rewards = exp_source.pop_total_rewards()
        if new_rewards:
            done_episodes += 1
            reward = new_rewards[0]
            total_rewards.append(reward)
            mean_rewards = float(np.mean(total_rewards[-100:]))
            print("%d: reward: %6.2f, mean_100: %6.2f,"\
                  "episodes: %d" % (step_idx, reward,
                                    mean_rewards,
                                    done_episodes))
            writer.add_scalar("reward", reward, step_idx)
            writer.add_scalar("reward_100", mean_rewards,
                              step_idx)
            writer.add_scalar("episodes", done_episodes, step_idx)
            if mean_rewards > 195:
                print("Solved in %d steps and %d episodes!" %
                      (step_idx, done_episodes))
                break

This part of the training loop is performed at the end of the episode and is 
responsible for reporting the current progress and writing metrics to TensorBoard.
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        if batch_episodes < EPISODES_TO_TRAIN:
            continue
        
        optimizer.zero_grad()
        states_v = torch.FloatTensor(batch_states)
        batch_actions_t = torch.LongTensor(batch_actions)
        batch_qvals_v = torch.FloatTensor(batch_qvals)

When enough episodes have passed since the last training step, we perform 
optimization on the gathered examples. As a first step, we convert states, actions, 
and Q-values into the appropriate PyTorch form.

        logits_v = net(states_v)
        log_prob_v = F.log_softmax(logits_v, dim=1)
        log_prob_actions_v = batch_qvals_v * log_prob_v[
                                 range(len(batch_states)),
                                 batch_actions_t]
        loss_v = -log_prob_actions_v.mean()

Then we calculate the loss from the steps. To do this, we ask our network to calculate 
states into logits and calculate the logarithm + softmax of them. On the third line, 
we select log probabilities from the actions taken and scale them with Q-values. 
On the last line, we average those scaled values and do negation to obtain the loss 
to minimize. Once again, this minus sign is very important, as our policy gradient 
needs to be maximized to improve the policy. As the optimizer in PyTorch does 
minimization in respect to the loss function, we need to negate the policy gradient.

        loss_v.backward()
        optimizer.step()
        batch_episodes = 0
        batch_states.clear()
        batch_actions.clear()
        batch_qvals.clear()
        
    writer.close()

The rest of the code is clear: we perform backpropagation to gather gradients in our 
variables and ask the optimizer to perform an SGD update. At the end of the training 
loop, we reset the episodes counter and clear our lists for fresh data to gather.

Results
For reference, I've implemented DQN on the CartPole environment with almost 
the same hyperparameters as our REINFORCE example. It's in Chapter11/01_
cartpole_dqn.py. 
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Neither example requires any command-line arguments, and they should converge 
in less than a minute.

rl_book_samples/chapter11$ ./02_cartpole_reinforce.py

PGN (

  (net): Sequential (

    (0): Linear (4 -> 128)

    (1): ReLU ()

    (2): Linear (128 -> 2)

  )

)

63:  reward: 62.00, mean_100: 62.00, episodes: 1

83:  reward: 19.00, mean_100: 40.50, episodes: 2

99:  reward: 15.00, mean_100: 32.00, episodes: 3

125: reward: 25.00, mean_100: 30.25, episodes: 4

154: reward: 28.00, mean_100: 29.80, episodes: 5

...

27676: reward: 200.00, mean_100: 193.58, episodes: 224

27877: reward: 200.00, mean_100: 194.07, episodes: 225

28078: reward: 200.00, mean_100: 194.07, episodes: 226

28279: reward: 200.00, mean_100: 194.53, episodes: 227

28480: reward: 200.00, mean_100: 195.09, episodes: 228

Solved in 28480 steps and 228 episodes!

The convergence dynamics for both DQN and REINFORCE are shown in the 
following charts. Your training dynamics may vary due to the randomness of the 
training.

Figure 11.2: The number of episodes before CartPole is solved. The solid line is DQN and the dotted line is 
REINFORCE
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Figure 11.3: Smoothed reward dynamics. The solid line is DQN and the dotted line is REINFORCE

As you can see, REINFORCE converges faster and requires fewer training steps 
and episodes to solve the CartPole environment. If you remember from Chapter 4, 
The Cross-Entropy Method, the cross-entropy method required about 40 batches of 
16 episodes each to solve the CartPole environment, which is 640 episodes in total. 
The REINFORCE method was able to do the same in fewer than 300 episodes, 
which is a nice improvement.

Policy-based versus value-based methods
Let's now step back from the code that we have just seen and talk about the 
differences that both families of methods have:

• Policy methods directly optimize what we care about: our behavior. Value 
methods, such as DQN, do the same indirectly, learning the value first and 
providing us with the policy based on this value.

• Policy methods are on-policy and require fresh samples from the 
environment. Value methods can benefit from old data, obtained from the 
old policy, human demonstration, and other sources.

• Policy methods are usually less sample-efficient, which means they require 
more interaction with the environment. Value methods can benefit from 
large replay buffers. However, sample efficiency doesn't mean that value 
methods are more computationally efficient, and very often, it's the opposite.

• In the preceding example, during the training, we needed to access our NN 
only once, to get the probabilities of actions. In DQN, we need to process 
two batches of states: one for the current state and another for the next state 
in the Bellman update.
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As you can see, there is no strong preference for one family versus another. In some 
situations, policy methods will be the more natural choice, like in continuous control 
problems or cases when access to the environment is cheap and fast. However, there 
are many situations when value methods will shine, for example, the recent state-
of-the-art results on Atari games achieved by DQN variants. Ideally, you should be 
familiar with both families and understand the strong and weak sides of both camps.

In the next section, we will talk about the REINFORCE method's limitations, ways 
to improve it, and how to apply a policy gradient method to our favorite Pong game.

REINFORCE issues
In the previous section, we discussed the REINFORCE method, which is a natural 
extension of the cross-entropy method. Unfortunately, both REINFORCE and the 
cross-entropy method still suffer from several problems, which make both of them 
limited to simple environments.

Full episodes are required
First of all, we still need to wait for the full episode to complete before we can start 
training. Even worse, both REINFORCE and the cross-entropy method behave 
better with more episodes used for training (just from the fact that more episodes 
mean more training data, which means more accurate policy gradients). This 
situation is fine for short episodes in the CartPole, when in the beginning, we can 
barely handle the bar for more than 10 steps; but in Pong, it is completely different: 
every episode can last for hundreds or even thousands of frames. It's equally bad 
from the training perspective, as our training batch becomes very large, and from 
the sample efficiency perspective, as we need to communicate with the environment 
a lot just to perform a single training step.

The purpose of the complete episode requirement is to get as accurate a Q-estimation 
as possible. When we talked about DQN, you saw that, in practice, it's fine to 
replace the exact value for a discounted reward with our estimation using the one-
step Bellman equation: 𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟𝑎𝑎 + 𝛾𝛾𝛾𝛾(𝑠𝑠′) . To estimate V(s), we used our own 
Q-estimation, but in the case of the policy gradient, we don't have V(s) or Q(s, a) 
anymore.

To overcome this, two approaches exist. On the one hand, we can ask our network 
to estimate V(s) and use this estimation to obtain Q. This approach will be discussed 
in the next chapter and is called the actor-critic method, which is the most popular 
method from the policy gradient  family.
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On the other hand, we can do the Bellman equation, unrolling N steps ahead, which 
will effectively exploit the fact that the value contribution decreases when gamma 
is less than 1. Indeed, with gamma=0.9, the value coefficient at the 10th step will be 
0.910 = 0.35. At step 50, this coefficient will be 0.950 = 0.00515, which is a really small 
contribution to the total reward. In the case of gamma=0.99, the required count of 
steps will become larger, but we can still do this.

High gradients variance
In the policy gradient formula, ∇𝐽𝐽 ≈ 𝐸𝐸[𝑄𝑄(𝑠𝑠, 𝑎𝑎)∇ log𝜋𝜋(𝑎𝑎|𝑠𝑠)] , we have a gradient 
proportional to the discounted reward from the given state. However, the range 
of this reward is heavily environment-dependent. For example, in the CartPole 
environment, we get the reward of 1 for every timestamp that we are holding the 
pole vertically. If we can do this for five steps, we get a total (undiscounted) reward 
of 5. If our agent is smart and can hold the pole for, say, 100 steps, the total reward 
will be 100. The difference in value between those two scenarios is 20 times, which 
means that the scale between the gradients of unsuccessful samples will be 20 times 
lower than for more successful ones. Such a large difference can seriously affect our 
training dynamics, as one lucky episode will dominate in the final gradient.

In mathematical terms, the policy gradient has high variance, and we need to do 
something about this in complex environments; otherwise, the training process can 
become unstable. The usual approach to handling this is subtracting a value called 
the baseline from the Q. The possible choices for the baseline are as follows:

• Some constant value, which is normally the mean of the discounted rewards
• The moving average of the discounted rewards
• The value of the state, V(s)

Exploration
Even with the policy represented as the probability distribution, there is a high 
chance that the agent will converge to some locally optimal policy and stop exploring 
the environment. In DQN, we solved this using epsilon-greedy action selection: with 
probability epsilon, the agent took some random action instead of the action dictated 
by the current policy. We can use the same approach, of course, but policy gradient 
methods allow us to follow a better path, called the entropy bonus.
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In information theory, entropy is a measure of uncertainty in some system. Being 
applied to the agent's policy, entropy shows how much the agent is uncertain 
about which action to take. In math notation, the entropy of the policy is defined 

as 𝐻𝐻(𝜋𝜋) = −∑𝜋𝜋(𝑎𝑎|𝑠𝑠) log𝜋𝜋(𝑎𝑎|𝑠𝑠) . The value of entropy is always greater than zero 

and has a single maximum when the policy is uniform; in other words, all actions 

have the same probability. Entropy becomes minimal when our policy has 1 for 
some action and 0 for all others, which means that the agent is absolutely sure what 
to do. To prevent our agent from being stuck in the local minimum, we subtract 
the entropy from the loss function, punishing the agent for being too certain about 
the action to take.

Correlation between samples
As we discussed in Chapter 6, Deep Q-Networks, training samples in a single episode 
are usually heavily correlated, which is bad for SGD training. In the case of DQN, 
we solved this issue by having a large replay buffer with 100k-1M observations that 
we sampled our training batch from. This solution is not applicable to the policy 
gradient family anymore because those methods belong to the on-policy class. The 
implication is simple: using old samples generated by the old policy, we will get 
policy gradients for that old policy, not for our current one.

The obvious, but unfortunately wrong, solution would be to reduce the replay buffer 
size. It might work in some simple cases, but in general, we need fresh training data 
generated by our current policy. To solve this, parallel environments are normally 
used. The idea is simple: instead of communicating with one environment, we use 
several and use their transitions as training data.

Policy gradient methods on CartPole
Nowadays, almost nobody uses the vanilla policy gradient method, as the much 
more stable actor-critic method exists. However, I still want to show the policy 
gradient implementation, as it establishes very important concepts and metrics to 
check the policy gradient method's performance.

Implementation
So, we will start with a much simpler environment of CartPole, and in the next 
section, we will check its performance on our favorite Pong environment. 
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The complete code for the following example is available in Chapter11/04_
cartpole_pg.py.

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 8
REWARD_STEPS = 10

Besides the already familiar hyperparameters, we have two new ones: the ENTROPY_
BETA value is the scale of the entropy bonus and the REWARD_STEPS value specifies 
how many steps ahead the Bellman equation is unrolled to estimate the discounted 
total reward of every transition.

class PGN(nn.Module):
    def __init__(self, input_size, n_actions):
        super(PGN, self).__init__()
        
        self.net = nn.Sequential(
                       nn.Linear(input_size, 128),
                       nn.ReLU(),
                       nn.Linear(128, n_actions)
                   )
        
    def forward(self, x):
        return self.net(x)

The network architecture is exactly the same as in the previous examples for 
CartPole: a two-layer network with 128 neurons in the hidden layer. The preparation 
code is also the same as before, except the experience source is asked to unroll 
the Bellman equation for 10 steps. The following is the part that differs from 04_
cartpole_pg.py:

    exp_source = ptan.experience.ExperienceSourceFirstLast(
        env, agent, gamma=GAMMA, steps_count=REWARD_STEPS)

In the training loop, we maintain the sum of the discounted reward for every 
transition and use it to calculate the baseline for the policy scale:

    for step_idx, exp in enumerate(exp_source):
        reward_sum += exp.reward
        baseline = reward_sum / (step_idx + 1)
        writer.add_scalar("baseline", baseline, step_idx)
        batch_states.append(exp.state)
        batch_actions.append(int(exp.action))
        batch_scales.append(exp.reward - baseline)
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In the loss calculation, we use the same code as before to calculate the policy loss 
(which is the negated policy gradient):

        optimizer.zero_grad()
        logits_v = net(states_v)
        log_prob_v = F.log_softmax(logits_v, dim=1)
        log_prob_actions_v = batch_scale_v * log_prob_v[
                                 range(BATCH_SIZE),
                                 batch_actions_t
                                 ]
        loss_policy_v = -log_prob_actions_v.mean()

Then we add the entropy bonus to the loss by calculating the entropy of the batch 
and subtracting it from the loss. As entropy has a maximum for uniform probability 
distribution and we want to push the training toward this maximum, we need to 
subtract from the loss.

        prob_v = F.softmax(logits_v, dim=1)
        entropy_v = -(prob_v * log_prob_v).sum(dim=1).mean()
        entropy_loss_v = -ENTROPY_BETA * entropy_v
        loss_v = loss_policy_v + entropy_loss_v
        
        loss_v.backward()
        optimizer.step()

Then, we calculate the Kullback-Leibler (KL) divergence between the new policy 
and the old policy. KL divergence is an information theory measurement of how one 
probability distribution diverges from another expected probability distribution. In 
our example, it is being used to compare the policy returned by the model before and 
after the optimization step. High spikes in KL are usually a bad sign, showing that 
our policy was pushed too far from the previous policy, which is a bad idea most of 
the time (as our NN is a very nonlinear function in a high-dimensional space, such 
large changes in the model weight could have a very strong influence on the policy).

        new_logits_v = net(states_v)
        new_prob_v = F.softmax(new_logits_v, dim=1)
        kl_div_v = -((new_prob_v / prob_v).log() *
                       prob_v).sum(dim=1).mean()
        writer.add_scalar("kl", kl_div_v.item(), step_idx)
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Finally, we calculate the statistics about the gradients on this training step. It's 
usually good practice to show the graph of the maximum and L2 norm of gradients 
to get an idea about the training dynamics.

        grad_max = 0.0
        grad_means = 0.0
        grad_count = 0
        for p in net.parameters():
            grad_max = max(grad_max, p.grad.abs().max().item())
            grad_means += (p.grad ** 2).mean().sqrt().item()
            grad_count += 1

At the end of the training loop, we dump all the values that we want to monitor in 
TensorBoard:

        writer.add_scalar("baseline", baseline, step_idx)
        writer.add_scalar("entropy", entropy_v.item(), step_idx)
        writer.add_scalar("batch_scales",
                          np.mean(batch_scales),
                          step_idx)
        writer.add_scalar("loss_entropy",
                          entropy_loss_v.item(),
                          step_idx)
        writer.add_scalar("loss_policy",
                          loss_policy_v.item(),
                          step_idx)
        writer.add_scalar("loss_total",
                          loss_v.item(),
                          step_idx)
        writer.add_scalar("grad_l2",
                          grad_means / grad_count,
                          step_idx)
        writer.add_scalar("grad_max", grad_max, step_idx)
        
        batch_states.clear()
        batch_actions.clear()
        batch_scales.clear()
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Results
In this example, we will plot a lot of charts in TensorBoard. Let's start with the 
familiar one: reward. As you can see in the following chart, the dynamics and 
performance are not very different from the REINFORCE method.

Figure 11.4: The reward dynamics of the policy gradient method

The next two charts are related to our baseline and scales of policy gradients. 
We expect the baseline to converge to 1 + 0.99 + 0.992 + … + 0.999, which is 
approximately 9.56. Scales of policy gradients should oscillate around zero. 
That's exactly what we can see in the following graph.

Figure 11.5: The baseline value during the training
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Figure 11.6: Batch scales

The entropy is decreasing over time from 0.69 to 0.52. The starting value corresponds 
to the maximum entropy with two actions, which is approximately 0.69:

𝐻𝐻(𝜋𝜋) = −∑𝜋𝜋(𝑎𝑎|𝑠𝑠) log𝜋𝜋(𝑎𝑎|𝑠𝑠)
𝑎𝑎

= −(12 log (
1
2) +

1
2 log (

1
2)) ≈ 0.69 

The fact that the entropy is decreasing during the training, as indicated by the 
following chart, shows that our policy is moving from uniform distribution to more 
deterministic actions.

Figure 11.7: Entropy during the training
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The next group of plots is related to loss, which includes policy loss, entropy loss, 
and their sum. The entropy loss is scaled and is a mirrored version of the preceding 
entropy chart. The policy loss shows the mean scale and direction of the policy 
gradient computed on the batch. Here, we should check the relative size of both, 
to prevent entropy loss from dominating too much.

Figure 11.8: Entropy loss

Figure 11.9: Policy loss
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Figure 11.10: Total loss

The final set of charts shows the gradient's L2 values, maximum, and KL. Our 
gradients look healthy during the whole training: they are not too large and not too 
small, and there are no huge spikes. The KL charts also look normal, as there are 
some spikes, but they don't exceed 1e-3.

Figure 11.11: The L2 values of gradients during the training
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Figure 11.12: The maximum of gradients

Figure 11.13: The KL of policy updates

Policy gradient methods on Pong
As we covered in the previous section, the vanilla policy gradient method works 
well on a simple CartPole environment, but it works surprisingly badly on more 
complicated environments. 
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For the relatively simple Atari game Pong, our DQN was able to completely solve it 
in 1M frames and showed positive reward dynamics in just 100k frames, whereas the 
policy gradient method failed to converge. Due to the instability of policy gradient 
training, it became very hard to find good hyperparameters and was still very 
sensitive to initialization.

This doesn't mean that the policy gradient method is bad, because, as you will see in 
the next chapter, just one tweak of the network architecture to get a better baseline 
in the gradients will turn the policy gradient method into one of the best methods 
(the asynchronous advantage actor-critic method). Of course, there is a good chance 
that my hyperparameters are completely wrong or the code has some hidden 
bugs or whatever. Regardless, unsuccessful results still have value, at least as a 
demonstration of bad convergence dynamics.

Implementation
The complete code of the example is in Chapter11/05_pong_pg.py.

The three main differences from the previous example's code are as follows:

• The baseline is estimated with a moving average for 1M past transitions, 
instead of all examples

• Several concurrent environments are used
• Gradients are clipped to improve training stability

To make moving average calculations faster, a deque-backed buffer is created:

class MeanBuffer:
    def __init__(self, capacity):
        self.capacity = capacity
        self.deque = collections.deque(maxlen=capacity)
        self.sum = 0.0
    
    def add(self, val):
        if len(self.deque) == self.capacity:
            self.sum -= self.deque[0]
        self.deque.append(val)
        self.sum += val
    
    def mean(self):
        if not self.deque:
            return 0.0
        return self.sum / len(self.deque)
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The second difference in this example is working with multiple environments, and 
this functionality is supported by the PTAN library. The only action we have to 
take is to pass the array of Env objects to the ExperienceSource class. All the rest 
is done automatically. In the case of several environments, the experience source 
asks them for transitions in round-robin, providing us with less-correlated training 
samples. The last difference from the CartPole example is gradient clipping, which 
is performed using the PyTorch clip_grad_norm function from the torch.nn.utils 
package.

The hyperparameters for the best variant are the following:

GAMMA = 0.99
LEARNING_RATE = 0.0001
ENTROPY_BETA = 0.01
BATCH_SIZE = 128

REWARD_STEPS = 10
BASELINE_STEPS = 1000000
GRAD_L2_CLIP = 0.1

ENV_COUNT = 32

Results
Okay, let's look at one of the best runs of the example. The following are the reward 
charts. You can see that during the training, the rewards were almost constant for 
a while, and then some growth started, which was interrupted by flat regions of 
minimal reward: 21.

Figure 11.14: Gradients and KL divergence
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On the entropy plot, you can see that those flat regions correspond to periods when 
entropy was zero, which means that our agent had 100% certainty in its actions. 
During this time interval, gradients were zero, too, so it's quite surprising that our 
training process was able to recover from those flat regions.

Figure 11.15: Another set of plots for Pong, using the policy gradient method

The chart with the baseline mostly follows the reward and has the same patterns.

Figure 11.16: Baseline, scales, and standard deviation of scales

The KL plot has large spikes roughly at the moments to and from the zero-entropy 
transitions, which shows that the policy suffered from heavy jumps in returning 
distributions.

Figure 11.17: KL divergence and losses during training
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Summary
In this chapter, you saw an alternative way of solving RL problems: policy gradient 
methods, which are different in many ways from the familiar DQN method. We 
explored a basic method called REINFORCE, which is a generalization of our first 
method in RL-domain cross-entropy. This policy gradient method is simple, but 
when applied to the Pong environment, it didn't show good results.

In the next chapter, we will consider ways to improve the stability of policy gradient 
methods by combining both families of value-based and policy-based methods.
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The Actor-Critic Method
In Chapter 11, Policy Gradients—an Alternative, we started to investigate a policy-based 
alternative to the familiar value-based methods family. In particular, we focused on 
the method called REINFORCE and its modification, which uses discounted reward 
to obtain the gradient of the policy (which gives us the direction in which to improve 
the policy). Both methods worked well for a small CartPole problem, but for a more 
complicated Pong environment, the convergence dynamics were painfully slow.

Next, we will discuss another extension to the vanilla policy gradient method, which 
magically improves the stability and convergence speed of that method. Despite the 
modification being only minor, the new method has its own name, actor-critic, and 
it's one of the most powerful methods in deep reinforcement learning (RL).

In this chapter, we will:

• Explore how the baseline impacts statistics and the convergence of gradients
• Cover an extension of the baseline idea

Variance reduction
In the previous chapter, I briefly mentioned that one of the ways to improve 
the stability of policy gradient methods is to reduce the variance of the gradient. 
Now let's try to understand why this is important and what it means to reduce the 
variance. In statistics, variance is the expected square deviation of a random variable 
from the expected value of that variable.

Var[𝑥𝑥] = 𝔼𝔼[(𝑥𝑥 − 𝔼𝔼[𝑥𝑥])2] 
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Variance shows us how far values are dispersed from the mean. When variance is 
high, the random variable can take values that deviate widely from the mean. On the 
following plot, there is a normal (Gaussian) distribution with the same value for the 
mean, 𝜇𝜇 = 10 , but with different values for the variance.

Figure 12.1: The effect of variance on Gaussian distribution

Now let's return to policy gradients. It was stated in the previous chapter  
that the idea is to increase the probability of good actions and decrease the  
chance of bad ones. In math notation, our policy gradient was written as  
∇𝐽𝐽 ≈ 𝔼𝔼[𝑄𝑄(𝑠𝑠, 𝑎𝑎)∇ log𝜋𝜋(𝑎𝑎|𝑠𝑠)] . The scaling factor Q(s, a) specifies how much we 
want to increase or decrease the probability of the action taken in the particular 
state. In the REINFORCE method, we used the discounted total reward as the scaling 
of the gradient. In an attempt to increase REINFORCE stability, we subtracted the 
mean reward from the gradient scale. To understand why this helped, let's consider 
the very simple scenario of an optimization step on which we have three actions 
with different total discounted rewards: Q1, Q2, and Q3. Now let's consider the policy 
gradient with regard to the relative values of those Qs.

As the first example, let both Q1 and Q2 be equal to some small positive number 
and Q3 be a large negative number. So, actions at the first and second steps led 
to some small reward, but the third step was not very successful. The resulting 
combined gradient for all three steps will try to push our policy far from the action 
at step three and slightly toward the actions taken at steps one and two, which is a 
totally reasonable thing to do.
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Now let's imagine that our reward is always positive and only the value is different. 
This corresponds to adding some constant to each of the rewards: Q1, Q2, and Q3. 
In this case, Q1 and Q2 will become large positive numbers and Q3 will have a small 
positive value. However, our policy update will become different! Next, we will try 
hard to push our policy toward actions at the first and second steps, and slightly push 
it toward an action at step three. So, strictly speaking, we are no longer trying to avoid 
the action taken for step three, despite the fact that the relative rewards are the same.

This dependency of our policy update on the constant added to the reward can 
slow down our training significantly, as we may require many more samples to 
average out the effect of such a shift in the policy gradient. Even worse, as our total 
discounted reward changes over time, with the agent learning how to act better and 
better, our policy gradient variance can also change. For example, in the Atari Pong 
environment, the average reward in the beginning is –21...–20, so all the actions look 
almost equally bad.

To overcome this in the previous chapter, we subtracted the mean total reward 
from the Q-value and called this mean baseline. This trick normalized our policy 
gradient: in the case of the average reward being –21, getting a reward of –20 looks 
like a win for the agent and it pushes its policy toward the taken actions.

CartPole variance
To check this theoretical conclusion in practice, let's plot our policy gradient 
variance during the training for both the baseline version and the version without the 
baseline. The complete example is in Chapter12/01_cartpole_pg.py, and most of 
the code is the same as in Chapter 11, Policy Gradients – an Alternative. The differences 
in this version are the following:

• It now accepts the command-line option --baseline, which enables the 
mean subtraction from the reward. By default, no baseline is used.

• On every training loop, we gather the gradients from the policy loss and 
use this data to calculate the variance.

To gather only the gradients from the policy loss and exclude the gradients from 
the entropy bonus added for exploration, we need to calculate the gradients in two 
stages. Luckily, PyTorch allows this to be done easily. In the following code, only 
the relevant part of the training loop is included to illustrate the idea:

        optimizer.zero_grad()
        logits_v = net(states_v)
        log_prob_v = F.log_softmax(logits_v, dim=1)
        log_p_a_v = log_prob_v[range(BATCH_SIZE), batch_actions_t]
        log_prob_actions_v = batch_scale_v * log_p_a_v
        loss_policy_v = -log_prob_actions_v.mean()
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We calculate the policy loss as before, by calculating the log from the probabilities 
of taken actions and multiplying it by policy scales (which are the total discounted 
reward if we are not using the baseline or the total reward minus the baseline):

        loss_policy_v.backward(retain_graph=True)

In the next step, we ask PyTorch to backpropagate the policy loss, calculating 
the gradients and keeping them in our model's buffers. As we have previously 
performed optimizer.zero_grad(), those buffers will contain only the gradients 
from the policy loss. One tricky thing here is the retain_graph=True option 
when we call backward(). It instructs PyTorch to keep the graph structure of the 
variables. Normally, this is destroyed by the backward() call, but in our case, this 
is not what we want. In general, retaining the graph could be useful when we need 
to backpropagate the loss multiple times before the call to the optimizer, although 
this is not a very common situation.

        grads = np.concatenate([p.grad.data.numpy().flatten()
                                for p in net.parameters()
                                if p.grad is not None])

Then, we iterate all parameters from our model (every parameter of our model is a 
tensor with gradients) and extract their grad field in a flattened NumPy array. This 
gives us one long array with all gradients from our model's variables. However, our 
parameter update should take into account not only the policy gradient but also the 
gradient provided by our entropy bonus. To achieve this, we calculate the entropy 
loss and call backward() again. To be able to do this the second time, we need to 
pass retain_graph=True.

On the second backward() call, PyTorch will backpropagate our entropy loss and 
add the gradients to the internal gradients' buffers. So, what we now need to do 
is just ask our optimizer to perform the optimization step using those combined 
gradients:

        prob_v = F.softmax(logits_v, dim=1)
        entropy_v = -(prob_v * log_prob_v).sum(dim=1).mean()
        entropy_loss_v = -ENTROPY_BETA * entropy_v
        entropy_loss_v.backward()
        optimizer.step()

Later, the only thing we need to do is write statistics that we are interested in into 
TensorBoard:
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        g_l2 = np.sqrt(np.mean(np.square(grads)))
        g_max = np.max(np.abs(grads))
        writer.add_scalar("grad_l2", g_l2, step_idx)
        writer.add_scalar("grad_max", g_max, step_idx)
        writer.add_scalar("grad_var", np.var(grads), step_idx)

By running this example twice, once with the --baseline command-line option and 
once without it, we get a plot of variance of our policy gradient. The following are 
the charts for the reward dynamics:

Figure 12.2: The rewards of training episodes without the baseline (left) and with the baseline (right)

Figure 12.3: The smoothed rewards for both versions
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The following three charts show the gradients' magnitude, maximum value, and 
variance:

Figure 12.4: Gradient L2 (left) and maximum (right) for both versions

Figure 12.5: Gradients variance for both versions

As you can see, variance for the version with the baseline is two-to-three orders of 
magnitude lower than the version without one, which helps the system to converge 
faster.
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Actor-critic
The next step in reducing the variance is making our baseline state-dependent 
(which is a good idea, as different states could have very different baselines). Indeed, 
to decide on the suitability of a particular action in some state, we use the discounted 
total reward of the action. However, the total reward itself could be represented as a 
value of the state plus the advantage of the action: Q(s, a) = V(s) + A(s, a). You saw this 
in Chapter 8, DQN Extensions, when we discussed DQN modifications, particularly 
dueling DQN.

So, why can't we use V(s) as a baseline? In that case, the scale of our gradient will 
be just advantage, A(s, a), showing how this taken action is better in respect to the 
average state's value. In fact, we can do this, and it is a very good idea for improving 
the policy gradient method. The only problem here is that we don't know the value, 
V(s), of the state that we need to subtract from the discounted total reward, Q(s, a). 
To solve this, let's use another neural network, which will approximate V(s) for every 
observation. To train it, we can exploit the same training procedure we used in DQN 
methods: we will carry out the Bellman step and then minimize the mean square 
error to improve V(s) approximation.

When we know the value for any state (or at least have some approximation of 
it), we can use it to calculate the policy gradient and update our policy network 
to increase probabilities for actions with good advantage values and decrease the 
chance of actions with bad advantage values. The policy network (which returns a 
probability distribution of actions) is called the actor, as it tells us what to do. Another 
network is called critic, as it allows us to understand how good our actions were. This 
improvement is known under a separate name, the advantage actor-critic method, 
which is often abbreviated to A2C. The following is an illustration of its architecture:

Figure 12.6: The A2C architecture

In practice, the policy and value networks partially overlap, mostly due to efficiency 
and convergence considerations. In this case, the policy and value are implemented 
as different heads of the network, taking the output from the common body and 
transforming it into the probability distribution and a single number representing 
the value of the state. 
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This helps both networks to share low-level features (such as convolution filters in 
the Atari agent), but combine them in a different way. This architecture looks like 
the following:

Figure 12.7: The A2C architecture with a shared network body

From a training point of view, we complete these steps:

1. Initialize network parameters, 𝜃𝜃 , with random values
2. Play N steps in the environment using the current policy, 𝜋𝜋𝜃𝜃 , and saving 

the state, st, action, at, and reward, rt

3. R = 0 if the end of the episode is reached or 𝑉𝑉𝜃𝜃(𝑠𝑠𝑡𝑡) 
4. For i = t – 1 … tstart (note that steps are processed backward):

 ° 𝑅𝑅 ← 𝑟𝑟𝑖𝑖 + 𝛾𝛾𝑅𝑅 
 ° Accumulate the policy gradients: 𝜕𝜕𝜃𝜃𝜋𝜋 ← 𝜕𝜕𝜃𝜃𝜋𝜋 + ∇𝜃𝜃 log𝜋𝜋𝜃𝜃(𝑎𝑎𝑖𝑖|𝑠𝑠𝑖𝑖)(𝑅𝑅 − 𝑉𝑉𝜃𝜃(𝑠𝑠𝑖𝑖)) 

 ° Accumulate the value gradients: 𝜕𝜕𝜃𝜃𝑣𝑣 ← 𝜕𝜕𝜃𝜃𝑣𝑣 +
𝜕𝜕(𝑅𝑅 − 𝑉𝑉𝜃𝜃(𝑠𝑠𝑖𝑖))

2

𝜕𝜕𝜃𝜃𝑣𝑣
 

5. Update the network parameters using the accumulated gradients, moving 
in the direction of the policy gradients, 𝜕𝜕𝜃𝜃𝜋𝜋 , and in the opposite direction of 
the value gradients, 𝜕𝜕𝜃𝜃𝑣𝑣 

6. Repeat from step 2 until convergence is reached

The preceding algorithm is an outline and similar to those that are usually printed 
in research papers. In practice, some considerations are as follows:

• An entropy bonus is usually added to improve exploration. It's 
typically written as an entropy value added to the loss function: 

ℒ𝐻𝐻 = 𝛽𝛽∑ 𝜋𝜋𝜃𝜃(𝑠𝑠𝑖𝑖) log𝜋𝜋𝜃𝜃(𝑠𝑠𝑖𝑖)
𝑖𝑖

 . This function has a minimum when the 

probability distribution is uniform, so by adding it to the loss function, 
we push our agent away from being too certain about its actions.
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• Gradients accumulation is usually implemented as a loss function combining 
all three components: policy loss, value loss, and entropy loss. You should 
be careful with signs of these losses, as policy gradients show you the 
direction of policy improvement, but both value and entropy losses should 
be minimized.

• To improve stability, it's worth using several environments, providing you 
with observations concurrently (when you have multiple environments, 
your training batch will be created from their observations). We will look at 
several ways of doing this in the next chapter.

The version of the preceding method that uses several environments running in 
parallel is called advantage asynchronous actor-critic, which is also known as 
A3C. The A3C method will be the subject of the next chapter, but for now, let's 
implement A2C.

A2C on Pong
In the previous chapter, you saw a (not very successful) attempt to solve our favorite 
Pong environment with policy gradient methods. Let's try it again with the actor-
critic method at hand.

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 128
NUM_ENVS = 50

REWARD_STEPS = 4
CLIP_GRAD = 0.1

We start, as usual, by defining hyperparameters (imports are omitted). These values 
are not tuned, as we will do this in the next section of this chapter. We have one new 
value here: CLIP_GRAD. This hyperparameter specifies the threshold for gradient 
clipping, which basically prevents our gradients from becoming too large at the 
optimization stage and pushing our policy too far. Clipping is implemented using 
the PyTorch functionality, but the idea is very simple: if the L2 norm of the gradient 
is larger than this hyperparameter, then the gradient vector is clipped to this value.

The REWARD_STEPS hyperparameter determines how many steps ahead we will take 
to approximate the total discounted reward for every action. 
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In the policy gradient methods, we used about 10 steps, but in A2C, we will use 
our value approximation to get a state value for further steps, so it will be fine to 
decrease the number of steps.

class AtariA2C(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(AtariA2C, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )
        conv_out_size = self._get_conv_out(input_shape)
        self.policy = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions)
        )

        self.value = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )

Our network architecture has a shared convolution body and two heads: the first 
returns the policy with the probability distribution over our actions and the second 
head returns one single number, which will approximate the state's value. It might 
look similar to our dueling DQN architecture from Chapter 8, DQN Extensions, but 
our training procedure is different.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        fx = x.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)
        return self.policy(conv_out), self.value(conv_out)
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The forward pass through the network returns a tuple of two tensors: policy 
and value. Now we have a large and important function, which takes the 
batch of environment transitions and returns three tensors: the batch of states, 
batch of actions taken, and batch of Q-values calculated using the formula 

𝑄𝑄(𝑠𝑠, 𝑎𝑎) =∑ 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖 + 𝛾𝛾𝑁𝑁𝑉𝑉(𝑠𝑠𝑁𝑁)
𝑁𝑁−1

𝑖𝑖=0
 . This Q-value will be used in two places: to calculate 

mean squared error (MSE) loss to improve the value approximation in the same 
way as DQN, and to calculate the advantage of the action.

def unpack_batch(batch, net, device='cpu'):
    states = []
    actions = []
    rewards = []
    not_done_idx = []
    last_states = []
    for idx, exp in enumerate(batch):
        states.append(np.array(exp.state, copy=False))
        actions.append(int(exp.action))
        rewards.append(exp.reward)
        if exp.last_state is not None:
            not_done_idx.append(idx)
            last_states.append(
                np.array(exp.last_state, copy=False))

In the first loop, we just walk through our batch of transitions and copy their fields 
into the lists. Note that the reward value already contains the discounted reward for 
REWARD_STEPS, as we use the ptan.ExperienceSourceFirstLast class. We also 
need to handle episode-ending situations and remember indices of batch entries for 
non-terminal episodes.

    states_v = torch.FloatTensor(
        np.array(states, copy=False)).to(device)
    actions_t = torch.LongTensor(actions).to(device)

In the preceding code, we convert the gathered state and actions into a PyTorch 
tensor and copy them into the graphics processing unit (GPU) if needed. The extra 
call to np.array() might look redundant, but without it, the performance of tensor 
creation degrades 5-10x. This issue in PyTorch (https://github.com/pytorch/
pytorch/issues/13918) hasn't been solved yet, so one solution is to pass a single 
NumPy array instead of a list of arrays. 

https://github.com/pytorch/pytorch/issues/13918
https://github.com/pytorch/pytorch/issues/13918
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The rest of the function calculates Q-values, taking into account the terminal 
episodes:

    rewards_np = np.array(rewards, dtype=np.float32)
    if not_done_idx:
        last_states_v = torch.FloatTensor(
            np.array(last_states, copy=False)).to(device)
        last_vals_v = net(last_states_v)[1]
        last_vals_np = last_vals_v.data.cpu().numpy()[:, 0]
        last_vals_np *= GAMMA ** REWARD_STEPS
        rewards_np[not_done_idx] += last_vals_np

The preceding code prepares the variable with the last state in our transition chain 
and queries our network for V(s) approximation. Then, this value is multiplied by 
the discount factor and added to the immediate rewards.

    ref_vals_v = torch.FloatTensor(rewards_np).to(device)
    return states_v, actions_t, ref_vals_v

At the end of the function, we pack our Q-values into the appropriate form and 
return it.

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False,
                        action="store_true", help="Enable cuda")
    parser.add_argument("-n", "--name", required=True,
                        help="Name of the run")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    make_env = lambda: ptan.common.wrappers.wrap_dqn(
        gym.make("PongNoFrameskip-v4"))
    envs = [make_env() for _ in range(NUM_ENVS)]
    writer = SummaryWriter(comment="-pong-a2c_" + args.name)

The preparation code for the training loop is the same as usual, except that we now 
use the array of environments to gather experience, instead of one environment.

    net = AtariA2C(envs[0].observation_space.shape,
                   envs[0].action_space.n).to(device)
    print(net)

    agent = ptan.agent.PolicyAgent(
        lambda x: net(x)[0], apply_softmax=True, device=device)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        envs, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE,
                           eps=1e-3)
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One very important detail here is passing the eps parameter to the optimizer. If 
you're familiar with the Adam algorithm, you may know that epsilon is a small 
number added to the denominator to prevent zero division situations. Normally, 
this value is set to some small number such as 1e-8 or 1e-10, but in our case, these 
values turned out to be too small. I have no mathematically strict explanation for 
this, but with the default value of epsilon, the method does not converge at all. 
Very likely, the division to a small value of 1e-8 makes the gradients too large, 
which turns out to be fatal for training stability.

    batch = []

    with common.RewardTracker(writer, stop_reward=18) as tracker:
        with ptan.common.utils.TBMeanTracker(writer,
                batch_size=10) as tb_tracker:
            for step_idx, exp in enumerate(exp_source):
                batch.append(exp)

                new_rewards = exp_source.pop_total_rewards()
                if new_rewards:
                    if tracker.reward(new_rewards[0], step_idx):
                        break

                if len(batch) < BATCH_SIZE:
                    continue

In the training loop, we use two wrappers. The first is already familiar to you: common.
RewardTracker, which computes the mean reward for the last 100 episodes and 
tells us when this mean reward exceeds the desired threshold. Another wrapper, 
TBMeanTracker, is from the PTAN library and is responsible for writing into 
TensorBoard the mean of the measured parameters for the last 10 steps. This is helpful, 
as training can take millions of steps and we don't want to write millions of points 
into TensorBoard, but rather write smoothed values every 10 steps. The next code 
chunk is responsible for our calculation of losses, which is the core of the A2C method.

                states_v, actions_t, vals_ref_v = \
                    unpack_batch(batch, net, device=device)
                batch.clear()
                optimizer.zero_grad()
                logits_v, value_v = net(states_v)

In the beginning, we unpack our batch using the function we described earlier 
and ask our network to return the policy and values for this batch. The policy is 
returned in unnormalized form, so to convert it into the probability distribution, 
we need to apply softmax to it. 
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We postpone this step to use log_softmax, as it is more numerically stable.

                loss_value_v = F.mse_loss(
                    value_v.squeeze(-1), vals_ref_v)

The value loss part is almost trivial: we just calculate the MSE between the value 
returned by our network and the approximation we performed using the Bellman 
equation unrolled four steps forward.

                log_prob_v = F.log_softmax(logits_v, dim=1)
                adv_v = vals_ref_v - value_v.detach()
                log_p_a = log_prob_v[range(BATCH_SIZE), actions_t]
                log_prob_actions_v = adv_v * log_p_a
                loss_policy_v = -log_prob_actions_v.mean()

Here, we calculate the policy loss to obtain the policy gradient. The first two steps 
obtain a log of our policy and calculate the advantage of actions, which is A(s, a) 
= Q(s, a) – V(s). The call to value_v.detach() is important, as we don't want to 
propagate the policy gradient into our value approximation head. Then, we take the 
log of probability for the actions taken and scale them with advantage. Our policy 
gradient loss value will be equal to the negated mean of this scaled log of policy, as 
the policy gradient directs us toward policy improvement, but loss value is supposed 
to be minimized.

                prob_v = F.softmax(logits_v, dim=1)
                ent = (prob_v * log_prob_v).sum(dim=1).mean()
                entropy_loss_v = ENTROPY_BETA * ent

The last piece of our loss function is entropy loss, which is equal to the scaled 
entropy of our policy, taken with the opposite sign (entropy is calculated as 

𝐻𝐻(𝜋𝜋) = −∑𝜋𝜋 log𝜋𝜋 ).

                loss_policy_v.backward(retain_graph=True)
                grads = np.concatenate([
                    p.grad.data.cpu().numpy().flatten()
                    for p in net.parameters()
                    if p.grad is not None
                ])

In the preceding code, we calculate and extract gradients of our policy, which will 
be used to track the maximum gradient, its variance, and the L2 norm.

                loss_v = entropy_loss_v + loss_value_v
                loss_v.backward()
                nn_utils.clip_grad_norm_(net.parameters(),
                                         CLIP_GRAD)
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                optimizer.step()
                loss_v += loss_policy_v

As the final step of our training, we backpropagate the entropy loss and the value 
loss, clip gradients, and ask our optimizer to update the network.

                tb_tracker.track("advantage", adv_v, step_idx)
                tb_tracker.track("values", value_v, step_idx)
                tb_tracker.track("batch_rewards", vals_ref_v,
                                 step_idx)
                tb_tracker.track("loss_entropy", entropy_loss_v,
                                 step_idx)
                tb_tracker.track("loss_policy", loss_policy_v,
                                 step_idx)
                tb_tracker.track("loss_value", loss_value_v,
                                 step_idx)
                tb_tracker.track("loss_total", loss_v, step_idx)
                g_l2 = np.sqrt(np.mean(np.square(grads)))
                tb_tracker.track("grad_l2", g_l2, step_idx)
                g_max = np.max(np.abs(grads))
                tb_tracker.track("grad_max", g_max, step_idx)
                g_var = np.var(grads)
                tb_tracker.track("grad_var", g_var, step_idx)

At the end of the training loop, we track all of the values that we are going to 
monitor in TensorBoard. There are plenty of them and we will discuss them in the 
next section.

A2C on Pong results
To start the training, run 02_pong_a2c.py with the --cuda and -n options (which 
provides a name for the run for TensorBoard):

      rl_book_samples/Chapter10$ ./02_pong_a2c.py --cuda -n t2

      AtariA2C (

         (conv): Sequential (

           (0): Conv2d(4, 32, kernel_size=(8, 8), stride=(4, 4))

           (1): ReLU ()

           (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))

           (3): ReLU ()

           (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))

           (5): ReLU ()

         )
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         (policy): Sequential (

           (0): Linear (3136 -> 512)

           (1): ReLU ()

           (2): Linear (512 -> 6)

         )

         (value): Sequential (

           (0): Linear (3136 -> 512)

           (1): ReLU ()

           (2): Linear (512 -> 1)

         )

      )

      37799: done 1 games, mean reward -21.000, speed 722.89 f/s

      39065: done 2 games, mean reward -21.000, speed 749.92 f/s

      39076: done 3 games, mean reward -21.000, speed 755.26 f/s

      ...

As a word of warning, the training process is lengthy. With the original 
hyperparameters, it requires more than 8 million frames to solve, which is 
approximately three hours on a GPU. In the next section of the chapter, we will 
tweak the parameters to improve the convergence speed, but for now, it's three 
hours. To improve the situation even more, in the next chapter, we will look at the 
distributed version, which executes the environment in a separate process, but first, 
let's focus on our plots in TensorBoard.

First of all, the reward dynamics look much better than in the example from the 
previous chapter:

Figure 12.8: The mean batch value (left) and average training reward (right)
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The first plot, batch_rewards, shows Q-values approximated using the Bellman 
equation and an overall positive dynamic in Q approximation. The next plot is the 
mean training episodes reward averaged over the 100 last episodes. This shows that 
our training process is improving more or less consistently over time.

The next four charts are related to our loss and include the individual loss 
components and the total loss.

Figure 12.9: Entropy loss (left) and policy loss (right) during the training

Figure 12.10: Value loss (left) and total loss (right)

Here, we can see various things. First of all, our value loss (Figure 12.10, on the left) 
is decreasing consistently, which shows that our V(s) approximation is improving 
during the training. The second observation is that our entropy loss (Figure 12.9, on 
the left) is growing, but it doesn't dominate in the total loss. This basically means 
that our agent becomes more confident in its actions as the policy becomes less 
uniform. 
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The last thing to note here is that policy loss (Figure 12.9, on the right) is decreasing 
most of the time and is correlated to the total loss, which is good, as we are interested 
in the gradients for our policy first of all.

The last set of plots displays the advantage value and policy gradients metrics.

Figure 12.11: The advantage (left) and the gradient L2 magnitude (right) during the training

Figure 12.12: The maximum of gradients (left) and variance of gradients (right)

The advantage is a scale of our policy gradients, and it equals to Q(s, a) – V(s). We 
expect it to oscillate around zero, and the chart meets our expectations. The gradient 
charts demonstrate that our gradients are not too small and not too large. Variance is 
very small at the beginning of the training (for 1.5 million frames), but starts to grow 
later, which means that our policy is changing.
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Tuning hyperparameters
In the previous section, we had Pong solved in three hours of optimization and 
9 million frames. Now is a good time to tweak our hyperparameters to speed 
up convergence. The golden rule here is to tweak one option at a time and make 
conclusions carefully, as the whole process is stochastic.

In this section, we will start with the original hyperparameters and perform the 
following experiments:

• Increase the learning rate
• Increase the entropy beta
• Change the count of environments that we are using to gather experience
• Tweak the size of the batch

Strictly speaking, the following experiments weren't proper hyperparameter tuning 
but just an attempt to get a better understanding of how A2C convergence dynamics 
depend on the parameters. To find the best set of parameters, the full grid search or 
random sampling of values could give much better results, but they would require 
much more time and resources.

Learning rate
Our starting learning rate (LR) is 0.001, and we expect that a larger LR will lead to 
faster convergence. This turned out to be true in my tests, but only to a certain extent: 
convergence speed increased up to 0.003, but for larger values, the system didn't 
converge at all.

The performance results are as follows:

• LR=0.002: 4.8 million frames, 1.5 hours
• LR=0.003: 3.6 million frames, 1 hour
• LR=0.004: hasn't converged
• LR=0.005: hasn't converged
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The reward dynamics and the value loss are shown on the following charts. Larger 
values of LR led to lower value loss, which suggests that using two optimizers for 
policy and value heads (with different LRs) might lead to more stable learning.

Figure 12.13: Experiments with different LRs (faster convergence corresponds to a large LR)

Entropy beta
I've tried two values for entropy loss scale: 0.02 and 0.03. The first value improved 
the speed, but the second made it worse again, so the optimal lies somewhere 
between them. The results were as follows:

• beta=0.02: 6.8 million frames, 2 hours
• beta=0.03: 12 million frames, 4 hours

Count of environments
It's not obvious what count of environments will work best, so I tried several counts 
both less and greater than our initial value of 50. The results were contradictory, but 
it appears that with more environments, we get faster convergence:

• Envs=40: 8.6 million frames, 3 hours
• Envs=30: 6.2 million frames, 2 hours (looks like a lucky seed)
• Envs=20: 9.5 million frames, 3 hours
• Envs=10: hasn't converged
• Envs=60: 11.6 million frames, 4 hours (looks like an unlucky seed)
• Envs=70: 7.7 million frames, 2.5 hours
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Batch size
The experiments with batch size produced an unexpected result: a smaller batch 
size leads to faster convergence, but with a very small batch, the reward doesn't 
grow. This is logical from an RL point of view, as with smaller batches, we perform 
more frequent updates of the network and require fewer observations, but this is 
counterintuitive for deep learning, as a larger batch normally brings more training 
data:

• Batch=64: 4.9 million frames, 1.7 hours
• Batch=32: 3.8 million frames, 1.5 hours
• Batch=16, doesn't converge

Summary
In this chapter, you learned about one of the most widely used methods in deep 
RL: A2C, which wisely combines the policy gradient update with the value of the 
state approximation. We analyzed the effect of the baseline on the statistics and 
convergence of gradients. Then, we checked the extension of the baseline idea: A2C, 
where a separate network head provides us with the baseline for the current state.

In the next chapter, we will look at ways to perform the same algorithm in a 
distributed way.
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Asynchronous  
Advantage Actor-Critic

This chapter is dedicated to the extension of the advantage actor-critic (A2C) method 
that we discussed in detail in Chapter 12, The Actor-Critic Method. The extension 
adds true asynchronous environment interaction, and its full name is asynchronous 
advantage actor-critic, which is normally abbreviated to A3C. This method is one of 
the most widely used by reinforcement learning (RL) practitioners.

We will take a look at two approaches for adding asynchronous behavior to the 
basic A2C method: data-level and gradient-level parallelism. They have different 
resource requirements and characteristics, which makes them applicable to different 
situations.

In this chapter, we will:

• Discuss why it is important for policy gradient methods to gather training 
data from multiple environments

• Implement two different approaches to A3C

Correlation and sample efficiency
One of the approaches to improving the stability of the policy gradient family 
of methods is using multiple environments in parallel. The reason behind this is 
the fundamental problem we discussed in Chapter 6, Deep Q-Networks, when we 
talked about the correlation between samples, which breaks the independent and 
identically distributed (i.i.d.) assumption, which is critical for stochastic gradient 
descent (SGD) optimization. The negative consequence of such correlation is very 
high variance in gradients, which means that our training batch contains very similar 
examples, all of them pushing our network in the same direction. 
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However, this may be totally the wrong direction in the global sense, as all those 
examples may be from one single lucky or unlucky episode.

With our deep Q-network (DQN), we solved the issue by storing a large number 
of previous states in the replay buffer and sampling our training batch from this 
buffer. If the buffer is large enough, the random sample from it will be a much better 
representation of the states' distribution at large. Unfortunately, this solution won't 
work for policy gradient methods, as most of them are on-policy, which means 
that we have to train on samples generated by our current policy, so remembering 
old transitions will not be possible anymore. You can try to do this, but the resulting 
policy gradient will be for the old policy used to generate the samples and not for 
your current policy that you want to update.

For several years, this issue was the focus for researchers. Several ways to address 
it were proposed, but the problem is still far from being solved. The most commonly 
used solution is gathering transitions using several parallel environments, all of them 
exploiting the current policy. This breaks the correlation within one single episode, 
as we now train on several episodes obtained from different environments. At the 
same time, we are still using our current policy. The one very large disadvantage of 
this is sample inefficiency, as we basically throw away all the experience that we 
have obtained after one single training.

It's very simple to compare DQN with policy gradient approaches. For example, 
for DQN, if we use 1 million samples of replay buffer and a training batch size of 
32 samples for every new frame, every single transition will be used approximately 
32 times before it is pushed from the experience replay. For the priority replay 
buffer, which was discussed in Chapter 8, DQN Extensions, this number could be 
much higher, as the sample probability is not uniform. In the case of policy gradient 
methods, each experience obtained from the environment can be used only once, as 
our method requires fresh data, so the data efficiency of policy gradient methods 
could be an order of magnitude lower than the value-based, off-policy methods.

On the other hand, our A2C agent converged on Pong in 8 million frames, which is 
just eight times more than 1 million frames for basic DQN in Chapter 6 and Chapter 
8. So, this shows us that policy gradient methods are not completely useless; they're 
just different and have their own specificities that you need to take into account on 
method selection. If your environment is cheap in terms of the agent interaction 
(the environment is fast, has a low memory footprint, allows parallelization, and 
so on), policy gradient methods could be a better choice. On the other hand, if the 
environment is expensive and obtaining a large amount of experience could slow 
down the training process, the value-based methods could be a smarter way to go.
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Adding an extra A to A2C
From the practical point of view, communicating with several parallel environments 
is simple. We already did this in the previous chapter, but it wasn't explicitly 
stated. In the A2C agent, we passed an array of Gym environments into the 
ExperienceSource class, which switched it into round-robin data gathering mode. 
This means that every time we ask for a transition from the experience source, the 
class uses the next environment from our array (of course, keeping the state for 
every environment). This simple approach is equivalent to parallel communication 
with environments, but with one single difference: communication is not parallel 
in the strict sense but performed in a serial way. However, samples from our 
experience source are shuffled. This idea is shown in the following diagram:

Figure 13.1: An agent training from multiple environments in parallel

This method works fine and helped us to get convergence in the A2C method, but 
it is still not perfect in terms of computing resource utilization. Even the modest 
workstation nowadays has several central processing unit (CPU) cores, which can 
be used for computation, such as training and environment interaction. On the 
other hand, parallel programming is harder than the traditional paradigm, when 
you have a clear stream of execution. Luckily, Python is a very expressive and 
flexible language with lots of third-party libraries, which allows you to do parallel 
programming without much trouble.

Another piece of good news is that PyTorch natively supports parallel programming 
in its torch.multiprocessing module. Parallel and distributed programming is 
a very wide topic, which is far beyond the scope of this book. In this chapter, we 
will just scratch the surface of the large domain of parallelization, but there is much 
more to learn.
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With regard to actor-critic parallelization, two approaches exist:

1. Data parallelism: We can have several processes, each of them 
communicating with one or more environments, and providing us with 
transitions (𝑠𝑠, 𝑟𝑟, 𝑎𝑎, 𝑠𝑠′) . All those samples are gathered together in one single 
training process, which calculates losses and performs an SGD update. Then, 
the updated neural network (NN) parameters need to be broadcast to all 
other processes to use in future environment communications.

2. Gradients parallelism: As the goal of the training process is the calculation 
of gradients to update our NN, we can have several processes calculating 
gradients on their own training samples. Then, these gradients can be 
summed together to perform the SGD update in one process. Of course, 
updated NN weights also need to be propagated to all workers to keep 
data on-policy.

Both approaches are illustrated in the following diagrams:

Figure 13.2: The first approach to actor-critic parallelism, based on distributed training samples being gathered
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Figure 13.3: The second approach to parallelism, gathering gradients for the model

The difference between the two methods might not look very significant from the 
diagrams, but you need to be aware of the computation cost. The heaviest operation 
in A2C optimization is the training process, which consists of loss calculation from 
data samples (forward pass) and the calculation of gradients with respect to this 
loss. The SGD optimization step is quite lightweight: basically, just adding the scaled 
gradients to the NN's weights. By moving the computation of loss and gradients 
in the second approach from the central process, we eliminated the major potential 
bottleneck and made the whole process significantly more scalable.

In practice, the choice of the method mainly depends on your resources and 
your goals. If you have one single optimization problem and lots of distributed 
computation resources, such as a couple of dozen graphics processing units (GPUs) 
spread over several machines in the networks, then gradients parallelism will be the 
best approach to speed up your training. 
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However, in the case of one single GPU, both methods will provide a similar 
performance, but the first approach is generally simpler to implement, as you don't 
need to mess with low-level gradient values. In this chapter, we will implement both 
methods on our favorite Pong game to see the difference between the approaches 
and look at PyTorch multiprocessing capabilities.

Multiprocessing in Python
Python includes the multiprocessing (most of the time abbreviated to just mp) 
module to support process-level parallelism and the required communication 
primitives. In our example, we will use the two main classes from this module:

• mp.Queue: A concurrent multi-producer, multi-consumer FIFO (first in, 
first out) queue with transparent serialization and deserialization of objects 
placed in the queue

• mp.Process: A piece of code that is run in the child process and methods to 
control it from the parent process

PyTorch provides its own thin wrapper around the multiprocessing module, 
which adds the proper handling of tensors and variables on CUDA devices and 
shared memory. It provides exactly the same functionality as the multiprocessing 
module from the standard library, so all you need to do is use import torch.
multiprocessing instead of import multiprocessing.

A3C with data parallelism
The first version of A3C parallelization that we will check (which was outlined in 
Figure 13.2) has both one main process that carries out training and several child 
processes communicating with environments and gathering experience to train on.

Implementation
For simplicity and efficiency, the NN weights broadcasting from the trainer process 
are not implemented. Instead of explicitly gathering and sending weights to child 
processes, the network is shared between all processes using PyTorch built-in 
capabilities, allowing us to use the same nn.Module instance with all its weights in 
different processes by calling the share_memory() method on NN creation. Under 
the hood, this method has zero overhead for CUDA (as GPU memory is shared 
among all the host's processes), or shared memory inter-process communication 
(IPC) in the case of CPU computation. In both cases, the method improves 
performance, but limits our example of one single machine using one single GPU 
card for training and data gathering. 
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It's not very limiting for our Pong example, but if you need larger scalability, the 
example should be extended with explicit sharing of NN weights.

Another extra sophistication implemented in this example is how training samples 
are passed from child processes to the master training process. They could 
be transferred as NumPy arrays, but this will increase the count of data copy 
operations, which might become a bottleneck. In our example, we implement 
different data preparation. The child processes have the responsibility to build  
mini-batches of data, copy them to GPU, and then pass tensors via the queue. Then, 
in the main process, we concatenate those tensors and perform the training.

The complete code is in the Chapter13/01_a3c_data.py file, and it uses the 
Chapter13/lib/common.py module with the following functionality pieces:

• class AtariA2C(nn.Module): This implements the actor-critic NN module
• class RewardTracker: This handles the full episode undiscounted reward, 

writes it into TensorBoard, and checks for the game solved condition
• unpack_batch(batch, net, last_val_gamma): This function converts a 

batch of transitions (state, reward, action, and last_state) for n episode 
steps into data suitable for training

You have already seen the code of those classes and functions in the previous 
chapters, so we won't repeat them here. Now let's check the code of the main 
modules, which includes the function for child subprocesses and the main training 
loop.

#!/usr/bin/env python3
import os
import gym
import ptan
import numpy as np
import argparse
import collections
from tensorboardX import SummaryWriter

import torch.nn.utils as nn_utils
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp

from lib import common
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In the beginning, we import the required modules. There is nothing new here 
except that we import the torch.multiprocessing library.

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 128

REWARD_STEPS = 4
CLIP_GRAD = 0.1

PROCESSES_COUNT = 4
NUM_ENVS = 8
MICRO_BATCH_SIZE = 32

ENV_NAME = "PongNoFrameskip-v4"
NAME = 'pong'
REWARD_BOUND = 18

In hyperparameters, we have three new values:

• PROCESSES_COUNT specifies the number of child processes that will gather 
training data for us. This activity is mostly CPU-bound, as the heaviest 
operation here is the preprocessing of Atari frames, so this value is set 
equal to the number of CPU cores on my machine.

• MICRO_BATCH_SIZE sets the number of training samples that every child 
process needs to obtain before transferring those samples to the main 
process.

• NUM_ENVS is the number of environments every child process will use to 
gather data. This number multiplied by the number of processes is the total 
amount of parallel environments that we will get our training data from.

def make_env():
    return ptan.common.wrappers.wrap_dqn(gym.make(ENV_NAME))

TotalReward = collections.namedtuple('TotalReward',
                                     field_names='reward')

Before we get to the child process function, we need the environment construction 
function and a tiny wrapper that we will use to send the total episode reward into 
the main training process.

def data_func(net, device, train_queue):
    envs = [make_env() for _ in range(NUM_ENVS)]
    agent = ptan.agent.PolicyAgent(
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        lambda x: net(x)[0], device=device, apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        envs, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
    micro_batch = []

    for exp in exp_source:
        new_rewards = exp_source.pop_total_rewards()
        if new_rewards:
            data = TotalReward(reward=np.mean(new_rewards))
            train_queue.put(data)

        micro_batch.append(exp)
        if len(micro_batch) < MICRO_BATCH_SIZE:
            continue

        data = common.unpack_batch(
            micro_batch, net, device=device,
            last_val_gamma=GAMMA ** REWARD_STEPS)
        train_queue.put(data)
        micro_batch.clear()

The preceding function is very simple, but it is special, as it will be executed in the 
child process. (We will use the mp.Process class to launch those processes in the 
main code block.) We pass it three arguments: our NN, the device to be used to 
perform computation (cpu or cuda string), and the queue we will use to send data 
from the child process to our master process, which will perform training. The 
queue is used in the many-producers and one-consumer mode, and can contain 
two different types of objects:

• TotalReward: This is a preceding object that we've defined, which has only 
one field reward, which is a float value of the total undiscounted reward for 
the completed episode.

• A tuple with tensors returned by the function common.unpack_batch(). 
Due to torch.multiprocessing magic, those tensors will be transferred 
to the main process without copying physical memory, which might be a 
costly operation (as an Atari observation is large).

As we get the required number of experience samples for our microbatch, we 
convert them into training data using the unpack_batch function and clear the 
batch. One thing to note is that as our experience samples represent four-step 
subsequences (as REWARD_STEPS is 4), we need to use a proper discount factor of 
𝛾𝛾4  for the last V(s) reward term.
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That's it for the child processes, so now let's check the starting code for the main 
process and the training loop:

if __name__ == "__main__":
    mp.set_start_method('spawn')
    os.environ['OMP_NUM_THREADS'] = "1"
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False,
                        action="store_true", help="Enable cuda")
    parser.add_argument("-n", "--name", required=True,
                        help="Name of the run")
    args = parser.parse_args()
    device = "cuda" if args.cuda else "cpu"

    writer = SummaryWriter(comment=f"-a3c-data_pong_{args.name}")

In the beginning, we take familiar steps, except for a single call to the mp.set_
start_method, which instructs the multiprocessing module about the kind of 
parallelism we want to use. The native multiprocessing library in Python supports 
several ways to start subprocesses, but due to PyTorch multiprocessing limitations, 
spawn is the only option if you want to use GPU.

Another new line is assignment to the OMP_NUM_THREADS, which is an environment 
variable instructing the OpenMP library about the number of threads it can start. 
OpenMP (https://www.openmp.org/) is heavily used by the Gym and OpenCV 
libraries to provide a speed-up on multicore systems, which is a good thing most 
of the time. By default, the process that uses OpenMP starts a thread for every core 
in the system. But in our case, the effect from OpenMP is the opposite: as we're 
implementing our own parallelism, by launching several processes, extra threads 
overload the cores with frequent context switches, which negatively impacts 
performance. To avoid this, we explicitly set the maximum number of threads 
OpenMP can start with a single thread. If you want, you can experiment yourself 
with this parameter. On my system, I experienced a 3-4x performance drop without 
this code line.

    
    env = make_env()
    net = common.AtariA2C(env.observation_space.shape,
                          env.action_space.n).to(device)
    net.share_memory()

    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE,
                           eps=1e-3)

https://www.openmp.org/
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After that, we create our NN, move it to the CUDA device, and ask it to share its 
weights. CUDA tensors are shared by default, but for CPU mode, a call to share_
memory() is required for multiprocessing to work.

    train_queue = mp.Queue(maxsize=PROCESSES_COUNT)
    data_proc_list = []
    for _ in range(PROCESSES_COUNT):
        data_proc = mp.Process(target=data_func,
                               args=(net, device, train_queue))
        data_proc.start()
        data_proc_list.append(data_proc)

We now have to start our child processes, but first we create the queue they 
will use to deliver data to us. The argument to the queue constructor specifies 
the maximum queue capacity. All attempts to push a new item to the full queue 
will be blocked, which is very convenient for us for keeping our data samples on-
policy. After the queue creation, we start the required number of processes using 
the mp.Process class and keep them for correct shutdown in a list. Right after 
the mp.Process.start() call, our data_func function will be executed by the 
child process.

    batch_states = []
    batch_actions = []
    batch_vals_ref = []
    step_idx = 0
    batch_size = 0

    try:
        with common.RewardTracker(writer, REWARD_BOUND) as tracker:
            with ptan.common.utils.TBMeanTracker(
                    writer, 100) as tb_tracker:
                while True:
                    train_entry = train_queue.get()
                    if isinstance(train_entry, TotalReward):
                        if tracker.reward(train_entry.reward,
                                          step_idx):
                            break
                        continue

In the beginning of the training loop, we get the next entry from the queue and 
handle the possible TotalReward objects, which we pass to the reward tracker.

                    states_t, actions_t, vals_ref_t = train_entry
                    batch_states.append(states_t)
                    batch_actions.append(actions_t)
                    batch_vals_ref.append(vals_ref_t)
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                    step_idx += states_t.size()[0]
                    batch_size += states_t.size()[0]
                    if batch_size < BATCH_SIZE:
                        continue

                    states_v = torch.cat(batch_states)
                    actions_t = torch.cat(batch_actions)
                    vals_ref_v = torch.cat(batch_vals_ref)
                    batch_states.clear()
                    batch_actions.clear()
                    batch_vals_ref.clear()
                    batch_size = 0

As we can have only two types of objects in the queue (TotalReward and a tuple 
with a microbatch), we need to check an entry obtained from the queue only once. 
After the TotalReward entries are handled, we process the tuple with tensors. We 
accumulate them in lists, and once the required batch size has been reached, we 
concatenate the tensors using a torch.cat() call, which appends tensors along the 
first dimension.

The rest of the training loop is standard actor-critic loss calculation, which is 
performed in exactly the same way as in the previous chapter: we calculate the logits 
of the policy and value estimation using our current network, and calculate the 
policy, value, and entropy losses.

                    optimizer.zero_grad()
                    logits_v, value_v = net(states_v)

                    loss_value_v = F.mse_loss(
                        value_v.squeeze(-1), vals_ref_v)

                    log_prob_v = F.log_softmax(logits_v, dim=1)
                    adv_v = vals_ref_v - value_v.detach()
                    size = states_v.size()[0]
                    log_p_a = log_prob_v[range(size), actions_t]
                    log_prob_actions_v = adv_v * log_p_a
                    loss_policy_v = -log_prob_actions_v.mean()

                    prob_v = F.softmax(logits_v, dim=1)
                    ent = (prob_v * log_prob_v).sum(dim=1).mean()
                    entropy_loss_v = ENTROPY_BETA * ent

                    loss_v = entropy_loss_v + loss_value_v + \
                             loss_policy_v
                    loss_v.backward()



Chapter 13

[ 343 ]

                    nn_utils.clip_grad_norm_(
                        net.parameters(), CLIP_GRAD)
                    optimizer.step()

As the last step, we pass the calculated tensors to the TensorBoard tracker class, 
which will perform the averaging and store the data that we want to monitor:

                    tb_tracker.track("advantage", adv_v, step_idx)
                    tb_tracker.track("values", value_v, step_idx)
                    tb_tracker.track("batch_rewards", vals_ref_v,
                                     step_idx)
                    tb_tracker.track("loss_entropy",
                                     entropy_loss_v, step_idx)
                    tb_tracker.track("loss_policy",
                                     loss_policy_v, step_idx)
                    tb_tracker.track("loss_value",
                                     loss_value_v, step_idx)
                    tb_tracker.track("loss_total",
                                     loss_v, step_idx)
    finally:
        for p in data_proc_list:
            p.terminate()
            p.join()

In the last finally block, which can be executed due to an exception (Ctrl + C, for 
example) or the game solved condition, we terminate the child processes and wait for 
them. This is required to make sure that there are no leftover processes.

Results
Start the example as usual, and after some delay, it should begin writing 
performance and mean reward data. On a GTX 1080 Ti and 4-core machine, it shows 
the speed of 2,600…3,000 frames per second (FPS), which is a nice improvement on 
the 600 FPS we got in the previous chapter.

rl_book_samples/Chapter11$ ./01_a3c_data.py --cuda -n final

...

31424: done 22 games, mean reward -20.636, speed 2694.86 f/s

31776: done 23 games, mean reward -20.652, speed 2520.54 f/s

31936: done 24 games, mean reward -20.667, speed 2968.11 f/s

32288: done 25 games, mean reward -20.640, speed 2639.84 f/s

32544: done 26 games, mean reward -20.577, speed 2237.74 f/s

32736: done 27 games, mean reward -20.556, speed 3200.18 f/s

...
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In terms of convergence dynamics, the new version is similar to A2C with parallel 
environments and solves Pong in 6…7 million observations from the environment. 
However, those 7 million frames are processed in slightly less than one hour, instead 
of waiting for three hours with the version from the previous chapter.

Figure 13.4: The reward (left) and total loss (right) of the data-parallel version

Figure 13.5: Advantage during the training

A3C with gradients parallelism
The next approach that we will consider to parallelize A2C implementation will have 
several child processes, but instead of feeding training data to the central training 
loop, they will calculate the gradients using their local training data, and send those 
gradients to the central master process. 
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This process is responsible for combining those gradients together (which is basically 
just summing them) and performing an SGD update on the shared network.

The difference might look minor, but this approach is much more scalable, especially if 
you have several powerful nodes with multiple GPUs connected with the network. In 
this case, the central process in the data-parallel model quickly becomes a bottleneck, 
as the loss calculation and backpropagation are computationally demanding. Gradient 
parallelization allows for the spreading of the load on several GPUs, performing only a 
relatively simple operation of gradient combination in the central place.

Implementation
The complete example is in the Chapter13/02_a3c_grad.py file, and it uses the 
same Chapter13/lib/common.py file as in our previous example:

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01

REWARD_STEPS = 4
CLIP_GRAD = 0.1

PROCESSES_COUNT = 4
NUM_ENVS = 8

GRAD_BATCH = 64
TRAIN_BATCH = 2
ENV_NAME = "PongNoFrameskip-v4"
REWARD_BOUND = 18

As usual, we define the hyperparameters, which are mostly the same as in the 
previous example, except BATCH_SIZE is replaced by two parameters: GRAD_BATCH 
and TRAIN_BATCH. The value of GRAD_BATCH defines the size of the batch used by 
every child process to compute the loss and get the value of the gradients. The 
second parameter, TRAIN_BATCH, specifies how many gradient batches from the child 
processes will be combined on every SGD iteration. Every entry produced by the 
child process has the same shape as our network parameters, and we sum up TRAIN_
BATCH values of them together. So, for every optimization step, we use the TRAIN_
BATCH * GRAD_BATCH training samples. As the loss calculation and backpropagation 
are quite heavy operations, we use large GRAD_BATCH to make them more efficient. 
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Due to this large batch, we should keep TRAIN_BATCH relatively low to keep our 
network update on-policy.

def make_env():
    return ptan.common.wrappers.wrap_dqn(gym.make(ENV_NAME))

def grads_func(proc_name, net, device, train_queue):
    envs = [make_env() for _ in range(NUM_ENVS)]

    agent = ptan.agent.PolicyAgent(
        lambda x: net(x)[0], device=device, apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        envs, agent, gamma=GAMMA, steps_count=REWARD_STEPS)

    batch = []
    frame_idx = 0
    writer = SummaryWriter(comment=proc_name)

The preceding is the function executed by the child process, which is much more 
complicated than in our data-parallel example. As a compensation, the training loop 
in the main process becomes almost trivial. On the creation of the child process, we 
pass several arguments to the function:

• The name of the process, which is used to create the TensorBoard writer. 
In this example, every child process writes its own TensorBoard dataset

• The shared NN
• A device to perform computations (a cpu or cuda string)
• The queue used to deliver the calculated gradients to the central process

Our child process function looks very similar to the main training loop in the data-
parallel version, which is not surprising, as the responsibilities of our child process 
increased. However, instead of asking the optimizer to update the network, we 
gather gradients and send them to the queue. The rest of the code is almost the same:

    with common.RewardTracker(writer, REWARD_BOUND) as tracker:
        with ptan.common.utils.TBMeanTracker(
                writer, 100) as tb_tracker:
            for exp in exp_source:
                frame_idx += 1
                new_rewards = exp_source.pop_total_rewards()
                if new_rewards and tracker.reward(
                        new_rewards[0], frame_idx):
                    break



Chapter 13

[ 347 ]

                batch.append(exp)
                if len(batch) < GRAD_BATCH:
                    continue

Up to this point, we've gathered the batch with transitions and handled the end-of-
episode rewards.

                data = common.unpack_batch(
                    batch, net, device=device,
                    last_val_gamma=GAMMA**REWARD_STEPS)
                states_v, actions_t, vals_ref_v = data

                batch.clear()

                net.zero_grad()
                logits_v, value_v = net(states_v)
                loss_value_v = F.mse_loss(
                    value_v.squeeze(-1), vals_ref_v)

                log_prob_v = F.log_softmax(logits_v, dim=1)
                adv_v = vals_ref_v - value_v.detach()
                log_p_a = log_prob_v[range(GRAD_BATCH), actions_t]
                log_prob_actions_v = adv_v * log_p_a
                loss_policy_v = -log_prob_actions_v.mean()

                prob_v = F.softmax(logits_v, dim=1)
                ent = (prob_v * log_prob_v).sum(dim=1).mean()
                entropy_loss_v = ENTROPY_BETA * ent

                loss_v = entropy_loss_v + loss_value_v + \
                         loss_policy_v
                loss_v.backward()

In the preceding section, we calculate the combined loss from the training data 
and perform backpropagation of the loss, which effectively stores gradients in 
the tensor.grad field for every network parameter. This could be done without 
bothering with synchronization with other workers, as our network's parameters are 
shared, but the gradients are locally allocated by every process.

                tb_tracker.track("advantage", adv_v, frame_idx)
                tb_tracker.track("values", value_v, frame_idx)
                tb_tracker.track("batch_rewards", vals_ref_v,
                                 frame_idx)
                tb_tracker.track("loss_entropy", entropy_loss_v,
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                                 frame_idx)
                tb_tracker.track("loss_policy", loss_policy_v,
                                 frame_idx)
                tb_tracker.track("loss_value", loss_value_v,
                                 frame_idx)
                tb_tracker.track("loss_total", loss_v, frame_idx)

In the preceding code, we send our intermediate values that we're going to monitor 
during the training to TensorBoard.

                nn_utils.clip_grad_norm_(
                    net.parameters(), CLIP_GRAD)
                grads = [
                    param.grad.data.cpu().numpy()
                    if param.grad is not None else None
                    for param in net.parameters()
                ]
                train_queue.put(grads)

At the end of the loop, we need to clip the gradients and extract them from the 
network's parameters into a separate buffer (to prevent them from being corrupted 
by the next iteration of the loop).

    train_queue.put(None)

The last line in grads_func puts None into the queue, signaling that this child 
process has reached the game solved state and training should be stopped.

if __name__ == "__main__":
    mp.set_start_method('spawn')
    os.environ['OMP_NUM_THREADS'] = "1"
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False,
                        action="store_true", help="Enable cuda")
    parser.add_argument("-n", "--name", required=True,
                        help="Name of the run")
    args = parser.parse_args()
    device = "cuda" if args.cuda else "cpu"

    env = make_env()
    net = common.AtariA2C(env.observation_space.shape,
                          env.action_space.n).to(device)
    net.share_memory()
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The main process starts with the creation of the network and sharing of its 
weights. As in the previous section, we need to set a start method for torch.
multiprocessing and limit the number of threads started by OpenMP.

    optimizer = optim.Adam(net.parameters(),
                           lr=LEARNING_RATE, eps=1e-3)

    train_queue = mp.Queue(maxsize=PROCESSES_COUNT)
    data_proc_list = []
    for proc_idx in range(PROCESSES_COUNT):
        proc_name = f"-a3c-grad_pong_{args.name}#{proc_idx}"
        p_args = (proc_name, net, device, train_queue)
        data_proc = mp.Process(target=grads_func, args=p_args)
        data_proc.start()
        data_proc_list.append(data_proc)

Then, as before, we create the communication queue and spawn the required count 
of child processes.

    batch = []
    step_idx = 0
    grad_buffer = None

    try:
        while True:
            train_entry = train_queue.get()
            if train_entry is None:
                break

The major difference from the data-parallel version of A3C lies in the training loop, 
which is much simpler here, as child processes have done all the heavy calculations 
for us. In the beginning of the loop, we handle the situation when one of the 
processes has reached the required mean reward to stop the training. In this case, we 
just exit the loop.

            step_idx += 1

            if grad_buffer is None:
                grad_buffer = train_entry
            else:
                for tgt_grad, grad in zip(grad_buffer,
                                          train_entry):
                    tgt_grad += grad
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To average the gradients from different children, we call the optimizer's step() 
function for every TRAIN_BATCH gradient obtained. For intermediate steps, we just 
sum the corresponding gradients together.

            if step_idx % TRAIN_BATCH == 0:
                for param, grad in zip(net.parameters(),
                                       grad_buffer):
                    param.grad = torch.FloatTensor(grad).to(device)

                nn_utils.clip_grad_norm_(
                    net.parameters(), CLIP_GRAD)
                optimizer.step()
                grad_buffer = None

When we have accumulated enough gradient pieces, we convert the sum of the 
gradients into the PyTorch FloatTensor and assign them to the grad field of the 
network parameters. After that, all we need to do is call the optimizer's step() 
method to update the network parameters using the accumulated gradients.

    finally:
        for p in data_proc_list:
            p.terminate()
            p.join()

On the exit from the training loop, we stop all child processes to make sure that 
we terminated them, even if Ctrl + C was pressed to stop the optimization. This is 
needed to prevent zombie processes from occupying GPU resources.

Results
This example can be started the same way as the previous example, and after a while, 
it should start displaying speed and mean reward. However, you need to be aware 
that displayed information is local for every child process, which means that speed, 
the count of games completed, and the number of frames need to be multiplied by 
the number of processes. My benchmarks have shown speed to be around 450-550 
FPS for every child, which gives 1,800-2,200 FPS in total.

rl_book_samples/Chapter11$ ./02_a3c_grad.py --cuda -n final

11278: done 1 games, mean reward -21.000, speed 520.23 f/s

11640: done 2 games, mean reward -21.000, speed 610.54 f/s

11773: done 3 games, mean reward -21.000, speed 485.09 f/s

11803: done 4 games, mean reward -21.000, speed 359.42 f/s

11765: done 1 games, mean reward -21.000, speed 519.08 f/s

11771: done 2 games, mean reward -21.000, speed 531.22 f/s

...
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Convergence dynamics are also very similar to the previous version. The total 
number of observations is about 8…10 million, which requires one and a half hours 
to complete.

Figure 13.6: The mean reward (left) and total loss (right) for the gradient-parallel version

Figure 13.7: Advantage during the training
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Summary
In this chapter, we discussed why it is important for policy gradient methods 
to gather training data from multiple environments, due to their on-policy nature. 
We also implemented two different approaches to A3C, in order to parallelize and 
stabilize the training process. Parallelization will come up once again in this book, 
when we discuss black-box methods (Chapter 20, Black-Box Optimization in RL).

In the next three chapters, we will take a look at practical problems that can be 
solved using policy gradient methods, which will wrap up the policy gradient 
methods part of the book.
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Training Chatbots with RL
In this chapter, we will take a look at another practical application of deep 
reinforcement learning (RL), which has become popular over the past several years: 
the training of natural language models with RL methods. It started with a paper 
called Recurrent Models of Visual Attention (https://arxiv.org/abs/1406.6247), 
which was published in 2014, and has been successfully applied to a wide variety 
of problems from the natural language processing (NLP) domain.

In this chapter, we will:

• Begin with a brief introduction to the NLP basics, including recurrent 
neural networks (RNNs), word embedding, and the seq2seq (sequence-to-
sequence) model

• Discuss similarities between NLP and RL problems
• Take a look at original ideas on how to improve NLP seq2seq training using 

RL methods

The core of the chapter is a dialogue system trained on a movie dialogues dataset: 
the Cornell Movie-Dialogs Corpus.

An overview of chatbots
A trending topic in recent years has been AI-driven chatbots. There are various 
opinions on the subject, ranging from chatbots being completely useless to being 
an absolutely brilliant idea, but one thing is hard to question: chatbots open up new 
ways for people to communicate with computers that are much more human-like 
and natural than the old-style interfaces that we are all used to.

At its core, a chatbot is a computer program that uses natural language to 
communicate with other parties (humans or other computer programs) in  
a form of dialogue. 

https://arxiv.org/abs/1406.6247
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Such scenarios can take many different forms, such as one chatbot talking to a 
user, many chatbots talking to each other, and so on. For example, there might be a 
technical support chatbot that can answer free-text questions from users. However, 
usually chatbots share common properties of a dialogue interaction (the user asks a 
question, but the chatbot can ask clarifying questions to get the missing information) 
and a free form of natural language (which is different from phone menus, for 
example, when you have a fixed press N to get to X category, or enter your bank account 
number to check the balance option given to the user).

Chatbot training
Natural language understanding was the stuff of science fiction for a long time. In 
science fiction, you can just chat with your starship's computer to get useful and 
relevant information about the recent alien invasion, without pressing any button. 
This scenario was exploited by authors and filmmakers for decades, but in real life, 
such interactions with computers started to become a reality only recently. You 
still can't talk to your starship, but you can, at least, switch your toaster on and off 
without pushing buttons, which is undoubtedly a major step forward!

The reason why it took computers so long to understand language is simply due to 
the complexity of language itself. Even in trivial scenarios—like saying, "Toaster, 
switch on!"—you can imagine several ways to formulate your command, and it's 
usually very hard to capture all those ways and corner cases in advance using 
normal computer programming techniques. Unfortunately, traditional computer 
programming requires you to give computers exact, explicit instructions, and one 
single corner case, or fuzziness in the input can make your super-sophisticated 
code fail.

The recent advances in machine learning (ML) and deep learning (DL), with all 
their applications, are the first real step in the direction of breaking this strictness in 
computer programming by replacing it with a different idea: letting computers find 
patterns in data by themselves. This approach has turned out to be quite successful 
in some domains and now everybody is very excited about the new methods and 
their potential applications. The DL resurrection started in computer vision and then 
continued in the NLP domain, and you can definitely expect more and more new, 
successful, and useful applications in the future.

So, returning to our chatbots, natural language complexity was the major blocker in 
practical applications. For a long time, chatbots were mostly toy examples created by 
bored engineers for their entertainment. One of the oldest examples of such a system, 
and definitely the most popular, is ELIZA (https://en.wikipedia.org/wiki/
ELIZA), which was created in the 1960s. 

https://en.wikipedia.org/wiki/ELIZA
https://en.wikipedia.org/wiki/ELIZA
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Although ELIZA was quite successful at mimicking a psychotherapist, it had zero 
understanding of the user's phrases and just included a small set of manually created 
patterns and typical replies given to the user's input.

This approach was a major way forward in implementing such systems in a pre-
DL era. It was a common belief that we just needed to add more patterns capturing 
the real language corner cases, and after some time, computers would be able 
to understand the human language. Unfortunately, this idea turned out to be 
impractical, as the number of rules and contradicting examples that humans need 
to handle is too large and complex to be created manually.

The ML approach allows you to attack the complexity of the problem from a 
different direction. Instead of manually creating many rules to handle the user's 
input, you gather a lot of training data and allow the ML algorithm to find the 
best way to solve the problem. This approach has its own specific details related to 
the NLP domain, and we will cover an overview of them in the next section. For 
now, what is much more important is that software developers have discovered 
the ability to work with natural language in the same way as other, much more 
computer-friendly and formal things, such as document formats, network protocols, 
or computer language grammars. This is still not trivial: it requires a lot of work, 
and sometimes you step into uncharted territory, but at least this approach works 
sometimes and doesn't require you to lock hundreds of linguists into one room for 
a decade to gather NLP rules!

Chatbots are still very new and experimental, but the overall idea is to allow 
computers to communicate with the user in the form of free-text dialogue, instead 
of more formal ways. Let's take Internet shopping as an example. When you want 
to buy something, you go to an online store, such as Amazon or eBay, and look 
through categories or use the website search function to find the product that you 
want. However, this scenario has several problems. First of all, large web stores 
could have millions of items falling into thousands of categories in a very non-
deterministic way. A simple child's toy can belong to several categories, like puzzles, 
educational games, and 5-10 years old, at the same time. On the other hand, if you don't 
know exactly what you want, or at least which category it belongs to, you can easily 
spend hours browsing endless lists of similar items, hoping that you will find what 
you're looking for. The search engines of websites solve this issue only partially, 
as you can get a meaningful number of results only if you know some unique 
combination of words or the right brand name to search for.

A different view of the problem would be a chatbot that can ask the user questions 
about their intentions and price range to limit the search. Of course, this approach 
is not universal and shouldn't be seen as a complete replacement for modern 
websites with search functions, catalogs, and other user interface (UI) solutions 
developed over time, but it can provide a nice alternative in some use cases and 
serve some percentage of users better than the old-style interaction methods.
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The deep NLP basics
Hopefully, you're excited about chatbots and their potential applications, so let's 
now get to the boring details of NLP building blocks and standard approaches. 
As with almost everything in ML, there is a lot of hype around deep NLP and 
it is evolving at a fast pace, so this section will just scratch the surface and cover 
the most common and standard building blocks. For a more detailed description, 
Richard Socher's online course CS224d (http://cs224d.stanford.edu) is a really 
good starting point.

RNNs
NLP has its own specifics that make it different from computer vision or other 
domains. One such feature is processing variable-length objects. At various levels, 
NLP deals with objects that could have different lengths; for example, a word in 
a language could contain several characters. Sentences are formed from variable-
length word sequences. Paragraphs or documents consist of varying numbers of 
sentences. Such variability is not NLP-specific and can arise in different domains, 
like in signal processing or video processing. Even standard computer vision 
problems could be seen as a sequence of some objects, like an image captioning 
problem when a neural network (NN) can focus on various amounts of regions of 
the same image to better describe the image.

RNNs provide one of the standard building blocks. An RNN is a network with fixed 
input and output that is applied to a sequence of objects and can pass information 
along this sequence. This information is called the hidden state, and it is normally 
just a vector of numbers of some size.

In the following diagram, we have an RNN with one input, which is a vector of 
numbers; the output is another vector. What makes it different from a standard 
feed-forward or convolutional NN is two extra gates: one input and one output. 
The extra input feeds the hidden state from the previous item into the RNN unit, 
and the extra output provides a transformed hidden state to the next sequence.

Figure 14.1: The structure of an RNN building block

http://cs224d.stanford.edu
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This is supposed to solve our variable-length issue, and, in fact, it does. As an RNN 
has two inputs, it can be applied to input sequences of any length, just by passing 
the hidden state produced by the previous entry to the next one. In Figure 14.2, an 
RNN is applied to the sentence this is a cat, producing the output for every word 
in the sequence. During the application, we have the same RNN applied to every 
input item, but by having the hidden state, it can now pass information along the 
sequence. This is similar to convolutional NNs, when we have the same set of filters 
applied to various locations of the image, but the difference is that a convolutional 
NN can't pass the hidden state.

Figure 14.2: How an RNN is applied to a sentence

Despite the simplicity of this model, it adds an extra degree of freedom to the 
standard feed-forward NN model. The feed-forward NNs are determined by their 
input and always produce the same output for some fixed input (in testing mode, 
of course, and not during the training). An RNN's output depends not only on the 
input but on the hidden state, which could be changed by the NN itself. So, the 
NN could pass some information from the beginning of the sequence to the end 
and produce different output for the same input in different contexts. This context 
dependency is very important in NLP, as in natural language, a single word could 
have a completely different meaning in different contexts, and the meaning of a 
whole sentence could be changed by a single word.

Of course, such flexibility comes with its own cost. RNNs usually require more 
time to train and can produce some weird behavior, like loss oscillations or sudden 
amnesia during the training. However, the research community has already done 
a lot of work and is still working hard to make RNNs more practical and stable, so 
RNNs can be seen as a standard building block of the systems that need to process 
variable-length input.
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Word embedding
Another standard building block of modern DL-driven NLP is word embedding, 
which is also called word2vec by one of the most popular training methods. The 
idea comes from the problem of representing our language sequences in NNs. 
Normally, NNs work with fixed-sized vectors of numbers, but in NLP, we normally 
have words or characters as input to the model.

One possible solution might be one-hot encoding our dictionary, which is when every 
word has its own position in the input vector and we set this number to 1 when we 
encounter this word in the input sequence. This is a standard approach for NNs 
when you have to deal with some relatively small discrete set of items and want to 
represent them in an NN-friendly way.

Unfortunately, one-hot encoding doesn't work very well for several reasons. First of 
all, our input set is usually not small. If we want to encode only the most commonly 
used English dictionary, it will contain at least several thousand words. The Oxford 
English Dictionary has 170,000 commonly used words and 50,000 obsolete and rare 
words. This is only established vocabulary and doesn't count slang, new words, 
scientific terms, abbreviations, typos, jokes, Twitter memes, and so on. And this is 
only for the English language!

The second problem related to the one-hot representation of words is the uneven 
frequency of vocabulary. There are relatively small sets of very frequent words, like a 
and cat, but a very large set of much more rarely used words, like covfefe or bibliopole, 
and those rare words can occur only once or twice in a very large text corpus. So, our 
one-hot representation is very inefficient in terms of space.

Another issue with simple one-hot representation is not capturing a word's relations. 
For example, some words are synonyms and have the same meaning, but they 
will be represented by different vectors. Some words are used very frequently 
together, like United Nations or fair trade, and this fact is also not captured in one-
hot representation.

To overcome all this, we can use word embeddings, which map every word in 
some vocabulary into a dense, fixed-length vector of numbers. These numbers are 
not random but trained on a large corpus of text to capture the context of words. A 
detailed description of word embeddings is beyond the scope of this book, but this 
is a really powerful and widely used NLP technique to represent words, characters, 
and other objects in some sequence. For now, you can think about them as just 
mapping words into number vectors, and this mapping is convenient for the NN 
to be able to distinguish words from each other.
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To obtain this mapping, two methods exist. First of all, you can download pretrained 
vectors for the language that you need. There are several sources of embeddings 
available; just search on Google for GloVe pretrained vectors or word2vec pretrained. 
(GloVe and word2vec are different methods used to train such vectors, which 
produce similar results.)

Another way to obtain embeddings is to train them on your own dataset. To do 
this, you can either use special tools, such as fasttext (https://fasttext.cc/, 
an open source utility from Facebook), or just initialize embeddings randomly and 
allow your model to adjust them during normal training.

The Encoder-Decoder architecture
Another model that is widely used in NLP is called Encoder-Decoder, or seq2seq. 
It originally comes from machine translation, when your system needs to accept 
a sequence of words in the source language and produce another sequence in the 
target language. The idea behind seq2seq is to use an RNN to process an input 
sequence and encode this sequence into some fixed-length representation. This RNN 
is called an encoder. Then you feed the encoded vector into another RNN, called 
a decoder, which has to produce the resulting sequence in the target language. An 
example of this idea is shown next, where we are translating an English sentence into 
Russian:

Figure 14.3: The Encoder-Decoder architecture in machine translation

This model (with a lot of modern tweaks and extensions) is still a major workhorse 
of machine translation, but is general enough to be applicable to a much wider set of 
domains, for example, audio processing, image annotation, and video captioning. In 
our chatbot example, we will use it to generate reply phrases when given the input 
sequence of words.

https://fasttext.cc/
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Seq2seq training
That's all very interesting, but how is it related to RL? The connection lies in the 
training process of the seq2seq model, but before we come to the modern RL 
approaches to the problem, I need to say a couple of words about the standard 
way of carrying out the training.

Log-likelihood training
Imagine that we need to create a machine translation system from one language 
(say, French) into another language (English) using the seq2seq model. Let's assume 
that we have a good, large dataset of sample translations with French-English 
sentences that we're going to train our model on. How do we do this?

The encoding part is obvious: we just apply our encoder RNN to the first sentence 
in the training pair, which produces an encoded representation of the sentence. The 
obvious candidate for this representation is the hidden state returned from the last 
RNN application. At the encoding stage, we ignore the RNN's outputs, taking into 
account only the hidden state from the last RNN application. We also extend our 
sentence with the special word <END>, which signals to the encoder the end of the 
sentence. (In NLP, the elements of the sequence we're dealing with are called tokens. 
Most of the time, they are words, but they might be letters, for example.) This 
encoding process is shown in the following diagram:

Figure 14.4: The encoding step

To start decoding, we pass the encoded representation to the decoder's input 
hidden state and pass the token <BEG> as a signal to begin decoding. In this 
step, the decoder RNN has to return the first token of the translated sentence. 
However, in the beginning of training, when both the encoder and decoder RNNs 
are initialized with random weights, the decoder's output will be random; our 
goal will be to push it toward the correct translation using stochastic gradient 
descent (SGD).

The traditional approach is to treat this problem as classification, when our decoder 
needs to return the probability distribution over the tokens in the current position 
of the decoded sentence. 
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Normally, this is done by transforming the decoder's output using the shallow 
feed-forward NN and producing a vector whose length is the size of our dictionary. 
Then, we use this probability distribution and the standard loss for classification 
problems: cross-entropy loss (also known as log-likelihood loss).

That's clear with the first token in the decoded sequence, which should be 
produced by the <BEG> token given on the input, but what about the rest 
of the sequence? There are two options here. The first alternative is to feed 
tokens from the reference sentence. For example, if we have the training pair 
𝐽𝐽𝐽𝐽 𝑛𝑛𝐽𝐽 𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝐽𝐽 𝑝𝑝𝑚𝑚𝑝𝑝 𝑝𝑝𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑝𝑝 → 𝐼𝐼 ℎ𝑚𝑚𝑎𝑎𝐽𝐽𝑛𝑛′𝑡𝑡 𝐽𝐽𝑚𝑚𝑡𝑡𝐽𝐽𝑛𝑛 𝑓𝑓𝑗𝑗𝑗𝑗 𝑝𝑝𝑠𝑠𝑠𝑠 𝑑𝑑𝑚𝑚𝑑𝑑𝑝𝑝 , we feed tokens (I, haven't, 
eaten...) to the decoder and then use cross-entropy loss between the RNN's output 
and the next token in the sentence. This training mode is called teacher forcing, 
and at every step we feed a token from the correct translation, asking the RNN to 
produce the correct next token. This process is shown in the following diagram:

Figure 14.5: How the encoded vector is decoded in the teacher-forcing mode

The loss expression for the preceding example will be calculated as follows:

L = xentropy(p1,"I")     + xentropy(p2,"haven't")

  + xentropy(p3,"eaten") + xentropy(p4,"for")

  + xentropy(p5,"six")   + xentropy(p6,"days")

  + xentropy(p7,"<END>")

As both the decoder and encoder are differentiable NNs, we can just backpropagate 
the loss to push both of them toward the better classification of this example 
in the future, in the same way that we train the image classifier, for example. 
Unfortunately, this procedure doesn't solve the seq2seq training problem completely, 
and the issue is related to the way the model was used. During the training, we 
know both the input and the desired output sequences, so we can feed the valid 
output sequence to the decoder, which is being asked only to produce the next 
token of the sequence.

After the model has been trained, we won't have a target sequence (as this sequence 
is supposed to be produced by the model). So, the simplest way to use the model 
will be to encode the input sequence using the encoder and then ask the decoder to 
generate one item of the output at a time, feeding the produced token into the input 
of the decoder.
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Passing the previous result into the input might look natural, but there is a danger 
here. During the training, we haven't asked our decoder RNN to use its own output 
as input, so one single mistake during the generation may confuse the decoder and 
lead to garbage output.

To overcome this, a second approach to seq2seq training exists, called curriculum 
learning. This method uses the same log-likelihood loss, but instead of passing 
the full target sequence as the decoder's input, we just ask the decoder to decode 
the sequence in the same way as we're going to use it after training. This process 
is illustrated in the following diagram. This adds robustness to the decoder, which 
gives a better result on the practical application of the model. As a downside, this 
mode may lead to very long training, as our decoder will learn how to produce 
the desired output token by token. To compensate for this in practice, we usually 
train a model using both teacher and curriculum learning, just randomly choosing 
between those two for every batch.

Figure 14.6: How decoding in the curriculum learning mode is performed

The bilingual evaluation understudy (BLEU) 
score
Before we get into the main topic of this chapter (RL for seq2seq), I need to introduce 
the metric used to compare the quality of machine translation output in NLP 
problems. The metric, called BLEU, is one of the standard ways to compare the 
output sequence produced by the machine with some set of reference outputs. It 
allows multiple reference outputs to be used (one sentence could be translated in 
various ways), and at its core, it calculates the ratio of unigrams, bigrams, and so 
on shared between the produced output and reference sentences. Other alternatives 
exist, such as CIDEr and ROUGE. In this example, we will use BLEU implemented 
in the nltk Python library (the nltk.translate.bleu_score package).
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RL in seq2seq
RL and text generation might look very different, but there are connections, which 
could be used to improve the quality of the trained seq2seq models. The first thing to 
note is that our decoder outputs the probability distribution at every step, which is 
very similar to policy gradient models. From this perspective, our decoder could be 
seen as an agent trying to decide which token to produce at every step.

There are several advantages of such an interpretation of the decoding process. 
First of all, by treating our decoding process as stochastic, we can automatically take 
into account multiple target sequences. For example, there are many possible replies 
to the hello, how are you? phrase, and all of them are correct. By optimizing the log-
likelihood objective, our model will try to learn some average of all those replies, 
but the average of the phrases I'm fine, thanks! and not very good will not necessarily 
be a meaningful phrase. By returning the probability distribution and sampling the 
next token from it, our agent potentially could learn how to produce all possible 
variants, instead of learning some averaged answer.

The second benefit is optimizing the objective that we care about. In log-likelihood 
training, we're minimizing the cross-entropy between the produced tokens and 
tokens from the reference, but in machine translation, and many other NLP 
problems, we don't really care about log-likelihood: we want to maximize the BLEU 
score of the produced sequence. Unfortunately, the BLEU score is not differentiable, 
so we can't backpropagate on it. However, policy gradient methods, such as 
REINFORCE (from Chapter 11, Policy Gradients—an Alternative) work even when the 
reward is not differentiable: we just push up the probabilities of successful episodes 
and decrease the worse ones.

The third advantage we can exploit is in the fact that our sequence generation 
process is defined by us and we know its internals. By introducing stochasticity 
into the process of decoding, we can repeat the decoding process several times, 
gathering different decoding scenarios from the single training sample. This can 
be beneficial when our training dataset is limited, which is almost always the case, 
unless you're a Google or Facebook employee.

To understand how to switch our training from the log-likelihood objective to an 
RL scenario, let's look at both from the mathematical point of view. Log-likelihood 

estimation means maximizing the sum ∑ log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1
  by tweaking the 

model's parameter, which is exactly the same as the minimization of Kullback–
Leibler (KL) divergence between the data probability distribution and the 
probability distribution parameterized by the model, which could be written  
as a maximization of 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) .
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On the other hand, the REINFORCE method has the objective of maximizing 
𝔼𝔼𝑠𝑠~𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑~𝜋𝜋(𝑎𝑎|𝑠𝑠)𝑄𝑄(𝑠𝑠, 𝑎𝑎) log𝜋𝜋(𝑎𝑎|𝑠𝑠) . The connection is obvious and the difference 
between the two is just the scale before the logarithm and the way we're selecting 
actions (which are tokens in our dictionary).

In practice, REINFORCE for seq2seq training could be written as the following 
algorithm:

1. For every sample in the dataset, obtain the encoded representation, E, using 
the encoder RNN

2. Initialize the current token with the special begin token: T = '<BEG>'
3. Initialize the output sequence with the empty sequence: Out = []
4. While T != '<END>':

 ° Get the probability distribution of the tokens and the new hidden 
state, passing the current token and the hidden state:  
p, H = Decoder(T, E)

 ° Sample the output token, Tout, from the probability distribution
 ° Remember the probability distribution, p
 ° Append Tout to the output sequence: Out += Tout

 ° Set the current token: 𝑇𝑇 ← 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, 𝐸𝐸 ← 𝐻𝐻 

5. Calculate BLEU or another metric between Out and the reference sequences:
Q = BLEU(Out, Outref))

6. Estimate the gradients: ∇𝐽𝐽 =∑ 𝑄𝑄∇
𝑇𝑇

log𝑝𝑝(𝑇𝑇) 
7. Update the model using SGD
8. Repeat until converged

Self-critical sequence training
The described approach, despite its positive sides, also has several complications. 
First of all, it's almost useless to train from scratch. Even for simple dialogues, 
the output sequence usually has at least five words, each taken from a dictionary 
of several thousand words. The number of different phrases of size five with 
a dictionary of 1,000 words equals 51000, which is slightly less than 10700. So, the 
probability of obtaining the correct reply in the beginning of the training (when 
our weights for both the encoder and decoder are random) is negligibly small.
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To overcome this, we can combine both log-likelihood and RL approaches and 
pretrain our model with the log-likelihood objective first (switching between teacher 
forcing and curriculum learning). After the model gets to some level of quality, 
we can switch to the REINFORCE method to fine-tune the model. In general, this 
could be seen as a uniform approach to complex RL problems, when a large action 
space makes it infeasible to start with a randomly behaving agent, as the chance of 
such an agent randomly reaching the goal is negligible. There is a lot of research 
happening around the incorporation of externally generated samples into the RL 
training process, and using log-likelihood pretraining on correct actions is one of 
the approaches.

Another issue with the vanilla REINFORCE method is the high variance of the 
gradients that we discussed in Chapter 12, The Actor-Critic Method. As you might 
remember, to solve the issue, we used the A2C method, which used the dedicated 
estimation of the state's value as a variance. We can apply the A2C method that 
way, of course, by extending our decoder with another head and returning BLEU 
score estimation given the decoded sequence, but there is a better approach. In the 
paper Self-critical Sequence Training for Image Captioning [1], published by S. Rennie, 
E. Marcherett, and others in 2016, a better baseline was proposed.

To obtain the baseline, the authors of the paper used the decoder in argmax mode 
to generate a sequence, which then was used to calculate the similarity metric, like 
BLEU, for example. Switching to argmax mode makes the decoder process fully 
deterministic and provides the baseline for the REINFORCE policy gradient in this 
formula:

∇𝐽𝐽 = 𝔼𝔼[(𝑄𝑄(𝑠𝑠) − 𝑏𝑏(𝑠𝑠))∇ log𝑝𝑝(𝑎𝑎|𝑠𝑠)] 

In the following section, we will implement and train a simple chatbot from the 
movie dialogues dataset.

Chatbot example
In the beginning of this chapter, we talked a bit about chatbots and NLP, so let's try 
to implement something simple using seq2seq and RL training. There are two large 
groups of chatbots: entertainment human-mimicking and goal-oriented chatbots. 
The first group is supposed to entertain a user by giving human-like replies to their 
phrases, without fully understanding them. The latter category is much harder to 
implement and is supposed to solve a user's problem, such as providing information, 
changing reservations, or switching on and off your home toaster. 
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Most of the latest efforts in the industry are focused on the goal-oriented group, but 
the problem is far from being fully solved yet. As this chapter is supposed to give a 
short example of the methods described, we will focus on training an entertainment 
bot using an online dataset with phrases extracted from movies.

Despite the simplicity of this problem, the example is large in terms of its code and 
the new concepts presented, so the whole code is not included in the book. We will 
focus only on the central modules responsible for model training and usage, but a 
lot of functions will be covered in an overview.

The example structure
The complete example is in the Chapter14 folder and contains the following parts:

• data: A directory with the get_data.sh script to download and unpack 
the dataset that we will use in the example. The dataset archive is 10 MB, 
contains structured dialogues extracted from various sources, and is known 
as the Cornell Movie-Dialogs Corpus, which is available here: https://
www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html.

• libbots: A directory with Python modules shared between various 
example's components. Those modules are described in the next section.

• tests: A directory with unit tests for library modules.
• The root folder contains two programs to train the model: train_crossent.

py, which is used to train the model in the beginning, and train_scst.
py, which is used to fine-tune the pretrained model using the REINFORCE 
algorithm.

• A script to display various statistics and data from the dataset: cor_reader.
py.

• A script to apply the trained model to the dataset, displaying quality metrics: 
data_test.py.

• A script to use the model against a user-provided phrase: use_model.py.
• A bot for Telegram messenger, which uses the pretrained model: telegram_

bot.py.

We will start with the data-related parts of the example and then look at both 
training scripts, before finishing by covering the model usage.

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
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Modules: cornell.py and data.py
The two library modules working with the dataset used to train the model are 
cornell.py and data.py. Both are related to data processing and are used to 
transform the dataset into a form suitable for training, but working on different 
layers.

The cornell.py file includes low-level functions to parse data in the Cornell Movie-
Dialogs Corpus format and represent it in a form suitable for later processing. The 
main goal of the module is to load a list of dialogues from movies. As the dataset 
contains metadata about the movies, we can filter the dialogues to be loaded by 
various criteria, but only a genre filter is implemented. In the list of dialogues 
returned, every dialogue is represented as a list of phrases and every phrase is a list 
of lowercase words (tokens). For example, a phrase could be ["hi", "!", "how", 
"are", "you", "?"].

The conversion of sentences to the list of tokens is called tokenization in NLP, and 
even this step by itself can be a tricky process, as you need to handle punctuation, 
abbreviations, quotes, apostrophes, and other natural language specifics. Luckily, 
the nltk library includes several tokenizers, so going from a sentence to a list 
of tokens is just a matter of calling the appropriate function, which significantly 
simplifies our task. The main function in cornell.py used outside of it is the 
function load_dialogues(), which is supposed to load dialogue data with an 
optional genre filter.

The data.py module works on a higher level and doesn't include any dataset-
specific knowledge. It provides the following functionality, which is used almost 
everywhere in the example:

• Working with mappings from tokens in their integer IDs: saving and 
loading from the file (the save_emb_dict() and load_emb_dict() 
functions), encoding the list of tokens into a list of IDs (encode_words()), 
decoding the list of integer IDs into tokens (decode_words()), and 
generating the dictionary mapping from the training data (phrase_pairs_
dict())

• Working with the training data: iterating batches of a given size (iterate_
batches()) and splitting data into training/testing parts (split_train_
test())

• Loading dialogue data and converting it into phrase-reply pairs suitable 
for training: the load_data() function
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On data loading and dictionary creation, we also add special tokens with the 
predefined IDs:

• A token for unknown words, #UNK, used for all out-of-dictionary tokens
• A token for the beginning of the sequence, #BEG, prepended to all sequences
• A token for the end of the sequence, #END

Besides the optional genre filter, which could be used to limit data size during 
experiments, several other filters are applied to the loaded data. The first filter limits 
the maximum number of tokens in training pairs. RNN training can be expensive 
in terms of the number of operations and memory usage, so I left only the training 
pairs with 20 tokens for the first and the second training entry. This also helps for 
convergence speed, as the variability of dialogues with short sentences is much 
less, so it's easier for our RNN to train on this data. This also has a downside of our 
model producing only short replies.

The second filter applied to the data is related to the dictionary. The number of 
words in the dictionary has a significant influence on the performance and graphics 
processing unit (GPU) memory needed, as both our embeddings matrix (keeping 
embeddings vectors for every dict token) and decoder output projection matrix 
(which converts the decoder RNN's output into the probability distribution) have 
dictionary size as one of their dimensions. So, by reducing the number of words 
in our dictionary, we can reduce memory and improve the training speed. To get 
this during the data loading, we calculate the count of occurrences for every word 
in the dictionary and map all words that have been encountered fewer than 10 
times to an unknown token. Later, all the training pairs with an unknown token 
are removed from the training set.

BLEU score and utils.py
The nltk library is used to calculate the BLEU score, but to make the BLEU 
calculation a bit more convenient, two wrapper functions are implemented: calc_
bleu(candidate_seq, reference_seq), which calculates the score when we have 
one candidate and one reference sequence, and calc_bleu_many(candidate_seq, 
reference_sequences), which is used to get the score when we have several 
reference sequences to compare against our candidate. In the case of several 
candidates, the best BLEU score is calculated and returned.

Also, to reflect the short phrases in our dataset, BLEU is calculated for unigrams 
and bigrams only. The following is the code of the utils.py module, which is 
responsible for BLEU calculations and an extra two functions used to tokenize 
the sentences and convert the list of tokens back into a string:
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import string
from nltk.translate import bleu_score
from nltk.tokenize import TweetTokenizer

def calc_bleu_many(cand_seq, ref_sequences):
    sf = bleu_score.SmoothingFunction()
    return bleu_score.sentence_bleu(ref_sequences, cand_seq,
                                    smoothing_function=sf.method1,
                                    weights=(0.5, 0.5))

def calc_bleu(cand_seq, ref_seq):
    return calc_bleu_many(cand_seq, [ref_seq])

def tokenize(s):
    return TweetTokenizer(preserve_case=False).tokenize(s)

def untokenize(words):
    to_pad = lambda t: not t.startswith("'") and \
                       t not in string.punctuation
    return "".join([
        (" " + i) if to_pad(i) else i
        for i in words
    ]).strip()

Model
The functions related to the training process and the model itself are defined in the 
libbots/model.py file. It's important for understanding the training process, so the 
code with comments is shown as follows:

HIDDEN_STATE_SIZE = 512
EMBEDDING_DIM = 50

The first hyperparameter (HIDDEN_STATE_SIZE) defines the size of the hidden state 
used by both the encoder and decoder RNNs. In the PyTorch implementation of 
RNNs, this value defines three parameters at once:

• The dimension of the hidden state expected on the input and returned as the 
output of the RNN unit.

• The dimension of the output returned from the RNN. Despite being the same 
dimension, the output of the RNN is different from the hidden state.

• The internal count of neurons used for RNN transformation.
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The second hyperparameter, EMBEDDING_DIM, defines the dimensionality of 
our embeddings, which is a set of vectors used to represent every token in our 
dictionary. For this example, we're not using the pretrained embeddings, like 
GloVe or word2vec, but we will train them alongside the model. As our encoder 
and decoder both accept tokens on the input, this dimensionality of embeddings 
also defines the size of the RNN's input.

class PhraseModel(nn.Module):
    def __init__(self, emb_size, dict_size, hid_size):
        super(PhraseModel, self).__init__()

        self.emb = nn.Embedding(
            num_embeddings=dict_size, embedding_dim=emb_size)
        self.encoder = nn.LSTM(
            input_size=emb_size, hidden_size=hid_size,
            num_layers=1, batch_first=True)
        self.decoder = nn.LSTM(
            input_size=emb_size, hidden_size=hid_size,
            num_layers=1, batch_first=True)
        self.output = nn.Linear(hid_size, dict_size)

In the model's constructor, we create embedding, encoder, decoder, and output 
projection components. As with RNN implementation, long short-term memory 
(LSTM) is used. Internally, LSTM has a more complicated structure than the simple 
RNN layer we've discussed, but the idea is the same: we have the input, output, 
input state, and output state. The batch_first argument specifies that the batch 
will be provided as the first dimension of the input tensor to the RNN. The projection 
layer is a linear transformation, which converts the output from the decoder into the 
dictionary probability distribution.

The rest of the model consists of methods that are used to perform different 
transformations of the data using our seq2seq model. Strictly speaking, this class 
breaks PyTorch convention to override the forward method to apply the network 
to the data. This is intentional, to emphasize the fact that the seq2seq model can't be 
interpreted as a single transformation of input data to output. In our example, we 
will use the model in different ways, for example, processing the target sequence 
in teacher-forcing mode, decoding the sequence one by one using argmax, or 
performing one single decoding step.

In Chapter 3, Deep Learning with PyTorch, it was mentioned that subclasses of the 
nn.Module have to override the forward() method and use the call convention 
to transform the data with the custom nn.Module. In our implementation, we're 
violating this rule, but in current versions of PyTorch, this is fine, as the __call__() 
method of nn.Module is responsible for calling the PyTorch hooks we're not using. 
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But still, this is a violation of PyTorch conventions. We're doing so for our 
convenience.

    def encode(self, x):
        _, hid = self.encoder(x)
        return hid

The preceding method performs the simplest operation in our model: it encodes 
the input sequence and returns the hidden state from the last step of the encoder 
RNN. In PyTorch, all RNN classes return the tuple of two objects as a result. The first 
component of the tuple is the output of the RNN for every application of the RNN, 
and the second is the hidden state from the last item in the input sequence. We're not 
interested in the encoder's output, so we just return the hidden state.

    def get_encoded_item(self, encoded, index):
        # For RNN
        # return encoded[:, index:index+1]
        # For LSTM
        return encoded[0][:, index:index+1].contiguous(),\
               encoded[1][:, index:index+1].contiguous()

The preceding function is a utility method used to get access to the hidden state of 
the individual component of the input batch. It's required because we're encoding 
the whole batch of sequences in one call (using the encode() method), but decoding 
is performed for every batch sequence individually. This method is used to extract 
the hidden state of a specific element of the batch (given in the index argument). The 
details of this extraction are RNN implementation-dependent. LSTM, for example, 
has the hidden state represented as a tuple of two tensors: the cell state and the 
hidden state. However, a simple RNN implementation, like the vanilla torch.
nn.RNN class or the more complicated torch.nn.GRU, has the hidden state as a single 
tensor. So, this knowledge is encapsulated in this method, which should be adjusted 
if you switch the encoder and decoder underlying the RNN type.

The rest of the methods are solely related to the decoding process in its different 
forms. Let's start with the teacher-forcing mode:

    def decode_teacher(self, hid, input_seq):
        # Method assumes batch of size=1
        out, _ = self.decoder(input_seq, hid)
        out = self.output(out.data)
        return out

This is the simplest and most efficient way to perform decoding. In this mode, 
we simply apply the decoder RNN to the reference sequence (reply phrase of the 
training sample). 
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In teacher-forcing mode, the input for every step is known in advance; the only 
dependency that the RNN has between steps is its hidden state, which allows us 
to perform RNN transformation very efficiently, without transferring data from 
and to the GPU, implemented in the underlying CuDNN library.

This is not the case for other decoding methods, when the output of every decoder 
step defines the input for the next step. This connection between output and input 
is done in Python code, so decoding is performed step by step, not necessarily 
transferring the data (as all our tensors are already in GPU memory). However, the 
control is defined by Python code and not by the highly optimized CuDNN library.

    def decode_one(self, hid, input_x):
        out, new_hid = self.decoder(input_x.unsqueeze(0), hid)
        out = self.output(out)
        return out.squeeze(dim=0), new_hid

The preceding method performs one single decoding step for one example. We 
pass the hidden state for the decoder (which is set to the encoded sequence at the 
first step) and input the tensor with the embeddings vector for the input token. 
Then, the result from the decoder is passed through the output projection to obtain 
the raw scores for every token in the dictionary. It's not a probability distribution, 
as we don't pass the output through the softmax function, just the raw scores (also 
called logits). The result of the function is those logits and the new hidden state 
returned by the decoder.

    def decode_chain_argmax(self, hid, begin_emb, seq_len,
                            stop_at_token=None):
        res_logits = []
        res_tokens = []
        cur_emb = begin_emb

The decode_chain_argmax() method performs decoding of an encoded sequence, 
using argmax as a transition from the probability distribution to a token index 
produced. The function arguments are as follows:

• hid: The hidden state returned by the encoder for the input sequence.
• begin_emb: The embedding vector for the #BEG token used to start decoding.
• seq_len: The maximum length of the decoded sequence. The resulting 

sequence could be shorter if the decoder returns the #END token, but could 
never be longer. It helps to stop decoding when the decoder starts to repeat 
itself infinitely, which might happen at the beginning of training.

• stop_at_token: An optional token ID (normally #END token) that stops the 
decoding process.
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This function is supposed to return two values: a tensor with resulting logits 
returned by the decoder on every step and the list of token IDs produced. The first 
value is used for training, as we need the output tensors to calculate the loss, while 
the second value is passed to the quality metric function, which is the BLEU score 
in this case.

        for _ in range(seq_len):
            out_logits, hid = self.decode_one(hid, cur_emb)
            out_token_v = torch.max(out_logits, dim=1)[1]
            out_token = out_token_v.data.cpu().numpy()[0]

            cur_emb = self.emb(out_token_v)

            res_logits.append(out_logits)
            res_tokens.append(out_token)
            if stop_at_token is not None:
                if out_token == stop_at_token:
                    break
        return torch.cat(res_logits), res_tokens

At every decoding loop iteration, we apply the decoder RNN to one single token, 
passing the current hidden state for the decoder (in the beginning, it equals the 
encoded vector) and the embedding vector for the current token. The output from 
the decoder RNN is a tuple with logits (unnormalized probabilities for every word 
in the dictionary) and the new hidden state. To go from logits to the decoded 
token ID, we use the argmax function as the name of the method. Then, we obtain 
embeddings for the decoded token, save the logits and token ID in the resulting 
lists, and check for stop conditions.

    def decode_chain_sampling(self, hid, begin_emb, seq_len,
                              stop_at_token=None):
        res_logits = []
        res_actions = []
        cur_emb = begin_emb

        for _ in range(seq_len):
            out_logits, hid = self.decode_one(hid, cur_emb)
            out_probs_v = F.softmax(out_logits, dim=1)
            out_probs = out_probs_v.data.cpu().numpy()[0]
            action = int(np.random.choice(
                out_probs.shape[0], p=out_probs))
            action_v = torch.LongTensor([action])
            action_v = action_v.to(begin_emb.device)
            cur_emb = self.emb(action_v)
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            res_logits.append(out_logits)
            res_actions.append(action)
            if stop_at_token is not None:
                if action == stop_at_token:
                    break
        return torch.cat(res_logits), res_actions

The next and the last function to perform decoding of the sequence does almost the 
same as decode_chain_argmax(), but, instead of argmax, it performs the random 
sampling from the returned probability distribution. The rest of the logic is the same.

Besides the PhraseModel class, the model.py file contains several functions used to 
prepare the input to the model, which has to be in a tensor form for PyTorch RNN 
machinery to work properly.

def pack_batch_no_out(batch, embeddings, device="cpu"):
    assert isinstance(batch, list)
    # Sort descending (CuDNN requirements)
    batch.sort(key=lambda s: len(s[0]), reverse=True)
    input_idx, output_idx = zip(*batch)

This function packs the input batch (which is a list of (phrase, replay) tuples) 
into a form suitable for encoding and decode_chain_* functions. As the first 
step, we sort the batch by the first phrase's length in decreasing order. This is 
a requirement of the CuDNN library used by PyTorch as a CUDA backend.

    # create padded matrix of inputs
    lens = list(map(len, input_idx))
    input_mat = np.zeros((len(batch), lens[0]), dtype=np.int64)
    for idx, x in enumerate(input_idx):
        input_mat[idx, :len(x)] = x

Then we create a matrix with [batch, max_input_phrase] dimensions and copy 
our input phrases there. This form is called padded sequence, because our sequences 
of variable length are padded with zeros to the longest sequence.

    input_v = torch.tensor(input_mat).to(device)
    input_seq = rnn_utils.pack_padded_sequence(
        input_v, lens, batch_first=True)

As the next step, we wrap this matrix into a PyTorch tensor and use a special 
function from the PyTorch RNN module to convert this matrix from the padded 
form into the so-called packed form. In the packed form, our sequences are stored 
column-wise (that is, in a transposed form), keeping the length of every column. 
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For example, in the first row, we have all first tokens from all sequences; in the 
second row, we have tokens from the second position for sequences longer than 1; 
and so on. This representation allows CuDNN to perform RNN processing very 
efficiently, handling our batch of sequences at once.

    # lookup embeddings
    r = embeddings(input_seq.data)
    emb_input_seq = rnn_utils.PackedSequence(
        r, input_seq.batch_sizes)
    return emb_input_seq, input_idx, output_idx

At the end of the function, we convert our data from the integer token IDs into 
embeddings, which can be done in one step, as our token IDs have already been 
packed into the tensor. Then we return the resulting tuple with three items: the 
packed sequence to be passed to the encoder, and two lists of lists with the integer 
token IDs for the input and output sequences.

def pack_input(input_data, embeddings, device="cpu"):
    input_v = torch.LongTensor([input_data]).to(device)
    r = embeddings(input_v)
    return rnn_utils.pack_padded_sequence(
        r, [len(input_data)], batch_first=True)

The preceding function is used to convert the encoded phrase (as the list of token 
IDs) into the packed sequence suitable to pass to the RNN.

def pack_batch(batch, embeddings, device="cpu"):
    emb_input_seq, input_idx, output_idx = pack_batch_no_out(
        batch, embeddings, device)

    # prepare output sequences, with end token stripped
    output_seq_list = []
    for out in output_idx:
        s = pack_input(out[:-1], embeddings, device)
        output_seq_list.append(s)
    return emb_input_seq, output_seq_list, input_idx, output_idx

The next function uses the pack_batch_no_out() method, but, in addition, it 
converts the output indices into the list of packed sequences to be used in the 
teacher-forcing mode of training. Those sequences have the #END token stripped.

def seq_bleu(model_out, ref_seq):
    model_seq = torch.max(model_out.data, dim=1)[1]
    model_seq = model_seq.cpu().numpy()
    return utils.calc_bleu(model_seq, ref_seq)
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Finally, the last function in model.py, which calculates the BLEU score from the 
tensor with logits, is produced by the decoder in teacher-forcing mode. Its logic 
is simple: it just calls argmax to obtain sequence indices and then uses the BLEU 
calculation function from the utils.py module.

Dataset exploration
It's always a good idea to look at your dataset from various angles, like counting 
statistics, plotting various characteristics of data, or just eyeballing your data to get 
a better understanding of your problem and potential issues. The tool cor_reader.
py supports the minimalistic functionality for data analysis. By running it with the 
--show-genres option, you will get all genres from the dataset with a number of 
movies in each, sorted by the count of movies in order of decreasing size. The top 
10 of them are shown as follows:

$ ./cor_reader.py --show-genres

Genres:

drama: 320

thriller: 269

action: 168

comedy: 162

crime: 147

romance: 132

sci-fi: 120

adventure: 116

mystery: 102

horror: 99

The --show-dials option displays dialogues from the movies without any 
preprocessing, in the order they appear in the database. The number of dialogues is 
large, so it's worth passing the -g option to filter by genre. For example, let's look at 
two dialogues from the comedy movies:

$ ./cor_reader.py -g comedy --show-dials | head -n 10

Dialog 0 with 4 phrases:

can we make this quick?

roxanne korrine and andrew barrett are having an incredibly horrendous 
public break - up on the quad . again .

well , i thought we'd start with pronunciation , if that's okay with you 
.
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not the hacking and gagging and spitting part . please .

okay ... then how ' bout we try out some french cuisine . saturday ? 
night ?

Dialog 1 with two phrases:

you're asking me out . that's so cute . what's your name again ? forget 
it .

By passing the --show-train option, you can check the training pairs, grouped by 
the first phrase and sorted in descending order by the count of replies. This data 
already has the frequency of words (at least 10 occurrences) and phrase length (at 
most 20 tokens) filters applied. The following is a part of the output for the family 
genre:

$ ./cor_reader.py -g family --show-train | head -n 20

Training pairs (558 total)

0: #BEG yes . #END

 : #BEG but you will not ... be safe ... #END

 : #BEG oh ... oh well then , one more won't matter . #END

 : #BEG vada you've gotta stop this , there's absolutely nothing wrong 
with you ! #END

 : #BEG good . #END

 : #BEG he's getting big . vada , come here and sit down for a minute . 
#END

 : #BEG who's that with your dad ? #END

 : #BEG for this . #END

 : #BEG didn't i tell you ? i'm always right , you know , my dear ... 
aren't i ? #END

 : #BEG oh , i hope we got them in time . #END

 : #BEG oh - - now look at him ! this is terrible ! #END

1: #BEG no . #END

 : #BEG were they pretty ? #END

 : #BEG it's there . #END

 : #BEG why do you think she says that ? #END

 : #BEG come here , sit down . #END

 : #BEG what's wrong with your eyes ? #END

 : #BEG maybe we should , just to see what's the big deal . #END

 : #BEG why not ? #END
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As you can see, even in a small subset of the data, there are phrases with multiple 
reply candidates. The last option, supported by cor_reader.py, is --show-dict-
freq, which counts the frequency of words and shows them sorted by the count of 
occurrences:

$ ./cor_reader.py -g family --show-dict-freq | head -n 10

Frequency stats for 772 tokens in the dict

.: 1907

,: 1175

?: 1148

you: 840

!: 758

i: 653

-: 578

the: 506

a: 414

Training: cross-entropy
To train the first approximation of the model, the cross-entropy method is used 
and implemented in train_crossent.py. During the training, we randomly 
switch between the teacher-forcing mode (when we give the target sequence on 
the decoder's input) and argmax chain decoding (when we decode the sequence 
one step at a time, choosing the token with the highest probability in the output 
distribution). The decision between those two training modes is taken randomly 
with the fixed probability of 50%. This allows for combining the characteristics of 
both methods: fast convergence from teacher forcing and stable decoding from 
curriculum learning.

Implementation
What follows is the implementation of the cross-entropy method training from 
train_crossent.py.

SAVES_DIR = "saves"

BATCH_SIZE = 32
LEARNING_RATE = 1e-3
MAX_EPOCHES = 100

log = logging.getLogger("train")

TEACHER_PROB = 0.5
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In the beginning, we define hyperparameters specific to the cross-entropy method 
training step. The value of TEACHER_PROB defines the probability of teacher-forcing 
training being chosen randomly for every training sample.

def run_test(test_data, net, end_token, device="cpu"):
    bleu_sum = 0.0
    bleu_count = 0
    for p1, p2 in test_data:
        input_seq = model.pack_input(p1, net.emb, device)
        enc = net.encode(input_seq)
        _, tokens = net.decode_chain_argmax(
            enc, input_seq.data[0:1], seq_len=data.MAX_TOKENS,
            stop_at_token=end_token)
        bleu_sum += utils.calc_bleu(tokens, p2[1:])
        bleu_count += 1
    return bleu_sum / bleu_count

The run_test method is called every epoch to calculate the mean BLEU score for 
the held-out test dataset, which is 5% of loaded data by default.

if __name__ == "__main__":
    fmt = "%(asctime)-15s %(levelname)s %(message)s"
    logging.basicConfig(format=fmt, level=logging.INFO)
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data", required=True,
        help="Category to use for training. Empty "
             "string to train on full dataset")
    parser.add_argument(
        "--cuda", action='store_true', default=False,
        help="Enable cuda")
    parser.add_argument(
        "-n", "--name", required=True, help="Name of the run")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    saves_path = os.path.join(SAVES_DIR, args.name)
    os.makedirs(saves_path, exist_ok=True)

The program allows specifying the genre of films that we want to train on and the 
name of the current training, which is used in a TensorBoard comment and as a 
name of the directory for the periodical model checkpoints.

    phrase_pairs, emb_dict = data.load_data(
        genre_filter=args.data)
    log.info("Obtained %d phrase pairs with %d uniq words",
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             len(phrase_pairs), len(emb_dict))
    data.save_emb_dict(saves_path, emb_dict)
    end_token = emb_dict[data.END_TOKEN]
    train_data = data.encode_phrase_pairs(phrase_pairs, emb_dict)

When the arguments have been parsed, we load the dataset for the provided genre, 
save the embeddings dictionary (which is a mapping from the token's string to the 
integer ID of the token), and encode the phrase pairs. At this point, our data is a list 
of tuples with two entries, and every entry is a list of token integer IDs.

    rand = np.random.RandomState(data.SHUFFLE_SEED)
    rand.shuffle(train_data)
    log.info("Training data converted, got %d samples",
             len(train_data))
    train_data, test_data = data.split_train_test(train_data)
    log.info("Train set has %d phrases, test %d",
             len(train_data), len(test_data))

After the data has been loaded, we split it into train/test parts, and then we shuffle 
the data using a fixed random seed (to be able to repeat the same shuffle at the RL 
training stage).

    net = model.PhraseModel(
        emb_size=model.EMBEDDING_DIM, dict_size=len(emb_dict),
        hid_size=model.HIDDEN_STATE_SIZE).to(device)
    log.info("Model: %s", net)
    writer = SummaryWriter(comment="-" + args.name)
    optimiser = optim.Adam(net.parameters(), lr=LEARNING_RATE)
    best_bleu = None

Then, we create the model, passing it the dimensionality of the embeddings, the size 
of the dictionary, and the hidden size of the encoder and decoder.

    for epoch in range(MAX_EPOCHES):
        losses = []
        bleu_sum = 0.0
        bleu_count = 0
        for batch in data.iterate_batches(train_data, BATCH_SIZE):
            optimiser.zero_grad()
            input_seq, out_seq_list, _, out_idx = \
                model.pack_batch(batch, net.emb, device)
            enc = net.encode(input_seq)

Our training loop performs the fixed number of epochs, and each of them is an 
iteration over the batches of pairs of the encoded phrases. 
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For every batch, we pack it using model.pack_batch(), which returns the packed 
input sequence, packed output sequence, and two lists of input and output token 
indices of the batch. To get the encoded representation for every input sequence in 
the batch, we call net.encode(), which just passes the input sequence through our 
encoder and returns the hidden state from the last RNN application. This hidden 
state has a shape of (batch_size, model.HIDDEN_STATE_SIZE), which is (16, 512) 
by default.

            net_results = []
            net_targets = []
            for idx, out_seq in enumerate(out_seq_list):
                ref_indices = out_idx[idx][1:]
                enc_item = net.get_encoded_item(enc, idx)

Then, we decode every sequence in our batch individually. Maybe it is possible to 
parallelize this loop somehow, but it will make the example less readable. For every 
sequence in the batch, we get a reference sequence of token IDs (without training 
the #BEG token) and the encoded representation of the input sequence created by 
the encoder.

                if random.random() < TEACHER_PROB:
                    r = net.decode_teacher(enc_item, out_seq)
                    bleu_sum += model.seq_bleu(r, ref_indices)
                else:
                    r, seq = net.decode_chain_argmax(
                        enc_item, out_seq.data[0:1],
                        len(ref_indices))
                    bleu_sum += utils.calc_bleu(seq, ref_indices)

In the preceding code, we randomly decide which method of decoding to use: 
teacher forcing or curriculum learning. They differ only in the model's method 
called and the way we compute the BLEU score. For teacher-forcing mode, the 
decode_teacher() method returns the tensor of logits of size [out_seq_len, 
dict_size], so to calculate the BLEU score, we need to use the function from the 
model.py module. In the case of curriculum learning, implemented by the decode_
chain_argmax() method, it returns both a logits tensor and list of token IDs of the 
output sequence. This allows us to calculate the BLEU score directly.

                net_results.append(r)
                net_targets.extend(ref_indices)
                bleu_count += 1

At the end of sequence processing, we append the resulting logits and reference 
indices to be used later in the loss calculation.

            results_v = torch.cat(net_results)
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            targets_v = torch.LongTensor(net_targets).to(device)
            loss_v = F.cross_entropy(results_v, targets_v)
            loss_v.backward()
            optimiser.step()
            losses.append(loss_v.item())

To calculate the cross-entropy loss, we convert the list of logits tensors into one 
single tensor and convert the list with reference token IDs into a PyTorch tensor, 
putting it in GPU memory. Then, we just need to calculate the cross-entropy loss, 
perform the backpropagation, and ask the optimizer to adjust the model. This ends 
the processing of one batch.

        bleu = bleu_sum / bleu_count
        bleu_test = run_test(test_data, net, end_token, device)
        log.info("Epoch %d: mean loss %.3f, mean BLEU %.3f, "
                 "test BLEU %.3f", epoch, np.mean(losses),
                 bleu, bleu_test)
        writer.add_scalar("loss", np.mean(losses), epoch)
        writer.add_scalar("bleu", bleu, epoch)
        writer.add_scalar("bleu_test", bleu_test, epoch)

When all the batches have been processed, we calculate the mean BLEU score from 
the training, run a test on the held-out dataset, and report our metrics.

        if best_bleu is None or best_bleu < bleu_test:
            if best_bleu is not None:
                out_name = os.path.join(
                    saves_path, "pre_bleu_%.3f_%02d.dat" % (
                        bleu_test, epoch))
                torch.save(net.state_dict(), out_name)
                log.info("Best BLEU updated %.3f", bleu_test)
            best_bleu = bleu_test

        if epoch % 10 == 0:
            out_name = os.path.join(
                saves_path, "epoch_%03d_%.3f_%.3f.dat" % (
                    epoch, bleu, bleu_test))
            torch.save(net.state_dict(), out_name)

To be able to fine-tune the model, we save the model's weights with the best test 
BLEU score seen so far. We also save the checkpoint file every 10 iterations.
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Results
That's it for our training code. To start it, you need to pass the name of the run 
in the command line and provide the genre filter. The complete dataset is quite 
large (617 movies in total) and may require lots of time to train, even on a GPU. 
For example, on the GTX 1080 Ti, every epoch takes about 16 minutes, which is 
18 hours for 100 epochs.

By applying the genre filter, you can train on a subset of the movies; for example, 
the genre comedy includes 159 movies, bringing us 22,000 training phrase pairs, 
which is smaller than the 150,000 phrase pairs from the complete dataset. The 
dictionary size with the comedy filter is also much smaller (4,905 words versus 11,131 
words in the complete data). This decreases the epoch time from 16 minutes to three 
minutes. To make the training set even smaller, you can use the family genre, which 
has only 16 movies with 3,000 phrase pairs and 772 words. In this case, 100 epochs 
take only 30 minutes.

As an example, however, here's how to start training for the comedy genre. This 
process writes checkpoints into the directory saves/crossent-comedy, while 
TensorBoard metrics are written in the runs directory.

$ ./train_crossent.py --cuda --data comedy -n crossent-comedy

2019-11-14 21:39:38,670 INFO Loaded 159 movies with genre comedy

2019-11-14 21:39:38,670 INFO Read and tokenise phrases...

2019-11-14 21:39:42,496 INFO Loaded 93039 phrases

2019-11-14 21:39:42,714 INFO Loaded 24716 dialogues with 93039 phrases, 
generating training pairs

2019-11-14 21:39:42,732 INFO Counting freq of words...

2019-11-14 21:39:42,924 INFO Data has 31774 uniq words, 4913 of them 
occur more than 10

2019-11-14 21:39:43,054 INFO Obtained 47644 phrase pairs with 4905 uniq 
words

2019-11-14 21:39:43,291 INFO Training data converted, got 26491 samples

2019-11-14 21:39:43,291 INFO Train set has 25166 phrases, test 1325

2019-11-14 21:39:45,874 INFO Model: PhraseModel(

  (emb): Embedding(4905, 50)

  (encoder): LSTM(50, 512, batch_first=True)

  (decoder): LSTM(50, 512, batch_first=True)

  (output): Linear(in_features=512, out_features=4905, bias=True)

)

2019-11-14 21:41:30,358 INFO Epoch 0: mean loss 4.992, mean BLEU 0.161, 
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test BLEU 0.067

2019-11-14 21:43:15,275 INFO Epoch 1: mean loss 4.674, mean BLEU 0.168, 
test BLEU 0.074

2019-11-14 21:43:15,286 INFO Best BLEU updated 0.074

2019-11-14 21:45:01,627 INFO Epoch 2: mean loss 4.548, mean BLEU 0.176, 
test BLEU 0.092

2019-11-14 21:45:01,637 INFO Best BLEU updated 0.092

For the cross-entropy training, there are three metrics written into the TensorBoard: 
loss, the train BLEU score, and the test BLEU score. The following are the plots for 
the comedy genre, which took about three hours to train.

Figure 14.7: BLEU scores on the train (left) and test (right) datasets during training

Figure 14.8: Loss during training the cross-entropy objective on the comedy genre
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As you can see, the BLEU score for the training data is consistently growing, 
saturating around 0.83, but the BLEU score for the test dataset stopped improving 
after the 25th epoch and is much less impressive than the training data BLEU score. 
There are two reasons for this. First of all, our dataset is not large and representative 
enough for our training process to generalize reply phrases to get a good score on 
the test dataset. In the comedy genre, we have 25,166 training pairs and 1,325 testing 
pairs, so there is a high chance of testing pairs containing phrases that are totally 
new and not related to the training pairs. This happens due to the high variability 
of the dialogues that we have. We will take a look at our data in the next section.

The second possible reason for the low test BLEU score could be the fact that cross-
entropy training doesn't take into account phrases with several possible replies. As 
you will see in the next section, our data contains phrases with several alternatives 
for replies. Cross-entropy tries to find the model's weights, which will produce 
output sequences matching the desired output, but if your desired output is 
random, there is not much that the model can do about that.

Another reason for the low test score could be lack of proper regularization in the 
model, which should help to prevent overfitting. This is left as an exercise for you 
to check the effect.

Training: SCST
As we've already discussed, RL training methods applied to the seq2seq problem 
can potentially improve the final model. The main reasons are:

• Better handling of multiple target sequences. For example, hi could be 
replied with hi, hello, not interested, or something else. The RL point of view 
is to treat our decoder as a process of selecting actions when every action is 
a token to be generated, which fits better to the problem.

• Optimizing the BLEU score directly instead of cross-entropy loss. Using 
the BLEU score for the generated sequence as a gradient scale, we can push 
our model toward the successful sequences and decrease the probability of 
unsuccessful ones.

• By repeating the decoding process, we can generate more episodes to train 
on, which will lead to better gradient estimation.

• Additionally, using the self-critical sequence training approach, we can get 
the baseline almost for free, without increasing the complexity of our model, 
which could improve the convergence even more.

All this looks quite promising, so let's check it.
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Implementation
RL training is implemented as a separate training step in the train_scst.py tool. 
It requires the model file saved by train_crossent.py to be passed in a command 
line.

SAVES_DIR = "saves"

BATCH_SIZE = 16
LEARNING_RATE = 5e-4
MAX_EPOCHES = 10000

As usual, we start with hyperparameters (imports were omitted). This training 
script has the same set of hyperparameters; the only difference is a smaller batch 
size, as the GPU memory requirements for SCST are higher and have a smaller 
learning rate.

log = logging.getLogger("train")

def run_test(test_data, net, end_token, device="cpu"):
    bleu_sum = 0.0
    bleu_count = 0
    for p1, p2 in test_data:
        input_seq = model.pack_input(p1, net.emb, device)
        enc = net.encode(input_seq)
        _, tokens = net.decode_chain_argmax(
            enc, input_seq.data[0:1], seq_len=data.MAX_TOKENS,
            stop_at_token=end_token)
        ref_indices = [
            indices[1:]
            for indices in p2
        ]
        bleu_sum += utils.calc_bleu_many(tokens, ref_indices)
        bleu_count += 1
    return bleu_sum / bleu_count

The preceding is the function, which is run every epoch to calculate the BLEU score 
on the test dataset. It is almost the same as in train_crossent.py, as the only 
difference is in the test data, which is now grouped by the first phrase. So, the shape 
of the data is now [(first_phrase, [second_phrases])]. As before, we need to 
strip the #BEG token from every second phrase, but the BLEU score is now calculated 
by another function, which accepts several reference sequences and returns the best 
score from them.
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if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    fmt = "%(asctime)-15s %(levelname)s %(message)s"
    logging.basicConfig(format=fmt, level=logging.INFO)
    parser.add_argument(
        "--data", required=True,
        help="Category to use for training. Empty "
             "string to train on full dataset")
    parser.add_argument(
        "--cuda", action='store_true', default=False,
        help="Enable cuda")
    parser.add_argument(
        "-n", "--name", required=True,
        help="Name of the run")
    parser.add_argument(
        "-l", "--load", required=True,
        help="Load model and continue in RL mode")
    parser.add_argument(
        "--samples", type=int, default=4,
        help="Count of samples in prob mode")
    parser.add_argument(
        "--disable-skip", default=False, action='store_true',
        help="Disable skipping of samples with high argmax BLEU")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

The tool now accepts three new command-line arguments: option -l is passed to 
provide the file name with the model to load, while option --samples is used to 
change the number of decoding iterations performed for every training sample. 
Using more samples leads to more accurate policy gradient estimation but increases 
GPU memory requirements. The last new option, --disable-skip, could be used 
to disable the skipping of training samples with a high BLEU score (by default, the 
threshold is 0.99). This skipping functionality significantly increases the training 
speed, as we train only on training samples with bad sequences generated in argmax 
mode, but my experiments have shown that disabling this skipping leads to better 
model quality.

    saves_path = os.path.join(SAVES_DIR, args.name)
    os.makedirs(saves_path, exist_ok=True)

    phrase_pairs, emb_dict = \
        data.load_data(genre_filter=args.data)
    log.info("Obtained %d phrase pairs with %d uniq words",
             len(phrase_pairs), len(emb_dict))
    data.save_emb_dict(saves_path, emb_dict)
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    end_token = emb_dict[data.END_TOKEN]
    train_data = data.encode_phrase_pairs(phrase_pairs, emb_dict)
    rand = np.random.RandomState(data.SHUFFLE_SEED)
    rand.shuffle(train_data)
    train_data, test_data = data.split_train_test(train_data)
    log.info("Training data converted, got %d samples",
             len(train_data))

Then, we load the training data the same way we did in the cross-entropy training. 
The extra code is in the following two lines, which are used to group the training 
data by the first phrase.

    train_data = data.group_train_data(train_data)
    test_data = data.group_train_data(test_data)
    log.info("Train set has %d phrases, test %d",
             len(train_data), len(test_data))

    rev_emb_dict = {idx: word for word, idx in emb_dict.items()}

    net = model.PhraseModel(
        emb_size=model.EMBEDDING_DIM, dict_size=len(emb_dict),
        hid_size=model.HIDDEN_STATE_SIZE).to(device)
    log.info("Model: %s", net)

    writer = SummaryWriter(comment="-" + args.name)
    net.load_state_dict(torch.load(args.load))
    log.info("Model loaded from %s, continue "
             "training in RL mode...", args.load)

When the data is loaded, we create the model and load its weights from the given 
file.

    beg_token = torch.LongTensor([emb_dict[data.BEGIN_TOKEN]])
    beg_token = beg_token.to(device)

Before we start the training, we need a special tensor with the ID of #BEG token. It 
will be used to look up the embeddings and pass the result to the decoder.

    with ptan.common.utils.TBMeanTracker(
            writer, 100) as tb_tracker:
        optimiser = optim.Adam(
            net.parameters(), lr=LEARNING_RATE, eps=1e-3)
        batch_idx = 0
        best_bleu = None
        for epoch in range(MAX_EPOCHES):
            random.shuffle(train_data)
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            dial_shown = False

            total_samples = 0
            skipped_samples = 0
            bleus_argmax = []
            bleus_sample = []

For every epoch, we count the total number of samples and count the skipped 
samples (due to the high BLEU score). To track the BLEU change during the training, 
we keep arrays with the BLEU score of argmax-generated sequences and sequences 
generated by doing sampling.

            for batch in data.iterate_batches(
                    train_data, BATCH_SIZE):
                batch_idx += 1
                optimiser.zero_grad()
                input_seq, input_batch, output_batch = \
                    model.pack_batch_no_out(batch, net.emb, device)
                enc = net.encode(input_seq)

                net_policies = []
                net_actions = []
                net_advantages = []
                beg_embedding = net.emb(beg_token)

In the beginning of every batch, we pack the batch and encode all first sequences 
of the batch by calling net.encode(). Then, we declare several lists, which will be 
populated during the individual decoding of batch entries.

                for idx, inp_idx in enumerate(input_batch):
                    total_samples += 1
                    ref_indices = [
                        indices[1:]
                        for indices in output_batch[idx]
                    ]
                    item_enc = net.get_encoded_item(enc, idx)

In the preceding loop, we start processing individual entries in a batch: we strip the 
#BEG token from reference sequences and obtain an individual entry of the encoded 
batch.

                    r_argmax, actions = net.decode_chain_argmax(
                        item_enc, beg_embedding, data.MAX_TOKENS,
                        stop_at_token=end_token)
                    argmax_bleu = utils.calc_bleu_many(
                        actions, ref_indices)
                    bleus_argmax.append(argmax_bleu)
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As a next step, we decode the batch entry in argmax mode and calculate its BLEU 
score. This score will be used as a baseline in the REINFORCE policy gradient 
estimation later.

                    if not args.disable_skip:
                        if argmax_bleu > 0.99:
                            skipped_samples += 1
                            continue

In case we have sample skipping enabled, and argmax BLEU is higher than the 
threshold (a threshold of 0.99 means a near-to-perfect match of the sequences), 
we stop with this batch entry and go to the next.

                    if not dial_shown:
                        w = data.decode_words(
                            inp_idx, rev_emb_dict)
                        log.info("Input: %s", utils.untokenize(w))
                        ref_words = [
                            utils.untokenize(
                                data.decode_words(
                                    ref, rev_emb_dict))
                            for ref in ref_indices
                        ]
                        ref = " ~~|~~ ".join(ref_words)
                        log.info("Refer: %s", ref)
                        w = data.decode_words(
                            actions, rev_emb_dict)
                        log.info("Argmax: %s, bleu=%.4f",
                                 utils.untokenize(w), argmax_bleu)

The preceding code piece is executed once every epoch and provides a random 
sample input sequence, reference sequences, and the result of the decoder (the 
sequence and BLEU score). It's useless for the training process but provides us with 
information during the training.

Then, we need to perform several rounds of decoding of the batch entry using 
random sampling. By default, the count of such rounds is 4, but this is tunable using 
the command-line option.

                    for _ in range(args.samples):
                        r_sample, actions = \
                            net.decode_chain_sampling(
                                item_enc, beg_embedding,
                                data.MAX_TOKENS,
                                stop_at_token=end_token)
                        sample_bleu = utils.calc_bleu_many(
                            actions, ref_indices)
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The sampling decoding call has the same set of arguments as for argmax decoding, 
followed by the same call to the calc_bleu_many() function to obtain the BLEU 
score.

                        if not dial_shown:
                            w = data.decode_words(
                                actions, rev_emb_dict)
                            log.info("Sample: %s, bleu=%.4f",
                                     utils.untokenize(w),
                                     sample_bleu)

                        net_policies.append(r_sample)
                        net_actions.extend(actions)
                        adv = sample_bleu - argmax_bleu
                        net_advantages.extend(
                            [adv]*len(actions))
                        bleus_sample.append(sample_bleu)

At the rest of the decoding loop, we show the decoded sequence if we need to and 
populate our lists. To get the advantage of the decoding round, we subtract the 
BLEU score obtained by the argmax method from the result of the random sampling 
decoding.

                    dial_shown = True
                if not net_policies:
                    continue

When we're done with a batch, we have several lists: the list with logits from every 
step of the decoder, the list of taken actions for those steps (which are, in fact, tokens 
chosen), and the list of advantages for every step.

                policies_v = torch.cat(net_policies)
                actions_t = torch.LongTensor(
                    net_actions).to(device)
                adv_v = torch.FloatTensor(
                    net_advantages).to(device)

The returned logits are already in GPU memory, so we can use the torch.cat() 
function to combine them into the single tensor. The other two lists need to be 
converted and copied on the GPU.

                log_prob_v = F.log_softmax(policies_v, dim=1)
                lp_a = log_prob_v[range(len(net_actions)),
                                  actions_t]
                log_prob_actions_v = adv_v * lp_a
                loss_policy_v = -log_prob_actions_v.mean()

                loss_v = loss_policy_v
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                loss_v.backward()
                optimiser.step()

When everything is ready, we can calculate the policy gradient by applying 
log(softmax()) and choose values from the chosen actions, scaled by their 
advantages. The negative mean of those scaled logarithms will be our loss that 
we ask the optimizer to minimize.

                tb_tracker.track("advantage", adv_v, batch_idx)
                tb_tracker.track("loss_policy", loss_policy_v,
                                 batch_idx)
                tb_tracker.track("loss_total", loss_v, batch_idx)

As the last steps in the batch processing loop, we send the advantage and the loss 
value to TensorBoard.

            bleu_test = run_test(test_data, net,
                                 end_token, device)
            bleu = np.mean(bleus_argmax)
            writer.add_scalar("bleu_test", bleu_test, batch_idx)
            writer.add_scalar("bleu_argmax", bleu, batch_idx)
            writer.add_scalar("bleu_sample",
                              np.mean(bleus_sample), batch_idx)
            writer.add_scalar("skipped_samples",
                              skipped_samples / total_samples,
                              batch_idx)
            writer.add_scalar("epoch", batch_idx, epoch)
            log.info("Epoch %d, test BLEU: %.3f",
                     epoch, bleu_test)

The preceding code is executed at the end of every epoch and calculates the BLEU 
score for the test dataset and reports it, together with the BLEU scores obtained 
during the training, to TensorBoard.

            if best_bleu is None or best_bleu < bleu_test:
                best_bleu = bleu_test
                log.info("Best bleu updated: %.4f", bleu_test)
                torch.save(net.state_dict(), os.path.join(
                    saves_path, "bleu_%.3f_%02d.dat" % (
                        bleu_test, epoch)))
            if epoch % 10 == 0:
                torch.save(net.state_dict(), os.path.join(
                    saves_path, "epoch_%03d_%.3f_%.3f.dat" % (
                        epoch, bleu, bleu_test)))

As before, we write a model checkpoint every time that the test BLEU score updates 
the maximum or every 10 epochs.
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Results
To run the training, you need the model saved by the cross-entropy training passed 
with the -l argument. The genre your model was trained on has to match the flag 
passed to the SCST training.

$ ./train_scst.py --cuda --data comedy -l saves/crossent-comedy/
epoch_020_0.342_0.120.dat -n sc-comedy-test2

2019-11-14 23:11:41,206 INFO Loaded 159 movies with genre comedy

2019-11-14 23:11:41,206 INFO Read and tokenise phrases...

2019-11-14 23:11:44,352 INFO Loaded 93039 phrases

2019-11-14 23:11:44,522 INFO Loaded 24716 dialogues with 93039 phrases, 
generating training pairs

2019-11-14 23:11:44,539 INFO Counting freq of words...

2019-11-14 23:11:44,734 INFO Data has 31774 uniq words, 4913 of them 
occur more than 10

2019-11-14 23:11:44,865 INFO Obtained 47644 phrase pairs with 4905 uniq 
words

2019-11-14 23:11:45,101 INFO Training data converted, got 25166 samples

2019-11-14 23:11:45,197 INFO Train set has 21672 phrases, test 1253

2019-11-14 23:11:47,746 INFO Model: PhraseModel(

  (emb): Embedding(4905, 50)

  (encoder): LSTM(50, 512, batch_first=True)

  (decoder): LSTM(50, 512, batch_first=True)

  (output): Linear(in_features=512, out_features=4905, bias=True)

)

2019-11-14 23:11:47,755 INFO Model loaded from saves/crossent-comedy/
epoch_020_0.342_0.120.dat, continue training in RL mode...

2019-11-14 23:11:47,771 INFO Input: #BEG no, sir. i'm not going to deny 
it. but if you'd just let me explain-- #END

2019-11-14 23:11:47,771 INFO Refer: you better. #END

2019-11-14 23:11:47,771 INFO Argmax: well, you. #END, bleu=0.3873

2019-11-14 23:11:47,780 INFO Sample: that's. i day right. i don't want to 
be disturbed first. i don't think you'd be more, bleu=0.0162

2019-11-14 23:11:47,784 INFO Sample: you ask out clothes, don't-? #END, 
bleu=0.0527

2019-11-14 23:11:47,787 INFO Sample: it's all of your work. #END, 
bleu=0.2182

2019-11-14 23:11:47,790 INFO Sample: come time must be very well. #END, 
bleu=0.1890
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From my experiments, RL fine-tuning is able to improve both the test BLEU score 
and the training BLEU score. For example, the following charts show the cross-
entropy training on the comedy genre.

Figure 14.9: Cross-entropy BLEU scores

From those charts, you can see that the best test BLEU score was 0.124, and the 
training BLEU score stopped improving at 0.73. By fine-tuning the model, saved 
at epoch 20 (with training BLEU 0.72 and test BLEU 0.121), it was able to improve 
the train BLEU from 0.124 to 0.14. BLEU scores obtained from training samples are 
also increasing and look like they can increase even more with more training. The 
comparison charts follow:

Figure 14.10: BLEU scores during the training: argmax (left) and sampling (right)
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Figure 14.11: BLEU scores on the test set

Figure 14.12: Skipped training samples due to high BLEU scores

Separating training from the same model, but without skipping training samples 
with a high BLEU score from argmax decoding (with option --disable-skip), I was 
able to reach 0.140 BLEU on the test set, which is not very impressive; but, as already 
explained, it's hard to get good generalization on so few dialogue samples.
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Figure 14.13: BLEU scores from training without skipping samples

Figure 14.14: The BLEU test score without skipping samples

Models tested on data
Once we've got our models ready, we can check them against our dataset and 
free-form sentences. During the training, both training tools (train_crossent.py 
and train_scst.py) periodically save the model, which is done in two different 
situations: when the BLEU score on the test dataset updates the maximum and every 
10 epochs. Both kinds of models have the same format (produced by the torch.
save() method) and contain the model's weights. Except the weights, I save the 
token to integer ID mapping, which will be used by tools to preprocess the phrases.
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To experiment with models, two utilities exist: data_test.py and use_model.py. 
data_test.py loads the model, applies it to all phrases from the given genre, and 
reports the average BLEU score. Before the testing, phrase pairs are grouped by the 
first phrase. For example, the following is the result for two models, trained on the 
comedy genre. The first one was trained by the cross-entropy method and the second 
one was fine-tuned by RL methods.

$ ./data_test.py --data comedy -m saves/xe-comedy/epoch_060_0.112.dat

2019-11-14 22:26:40,650 INFO Loaded 159 movies with genre comedy

2019-11-14 22:26:40,650 INFO Read and tokenise phrases...

2019-11-14 22:26:43,781 INFO Loaded 93039 phrases

2019-11-14 22:26:43,986 INFO Loaded 24716 dialogues with 93039 phrases, 
generating training pairs

2019-11-14 22:26:44,003 INFO Counting freq of words...

2019-11-14 22:26:44,196 INFO Data has 31774 uniq words, 4913 of them 
occur more than 10

2019-11-14 22:26:44,325 INFO Obtained 47644 phrase pairs with 4905 uniq 
words

2019-11-14 22:30:06,915 INFO Processed 22767 phrases, mean BLEU = 0.2175

$ ./data_test.py --data comedy -m saves/sc-comedy2-lr5e-4/
epoch_150_0.456_0.133.dat

2019-11-14 22:34:17,035 INFO Loaded 159 movies with genre comedy

2019-11-14 22:34:17,035 INFO Read and tokenise phrases...

2019-11-14 22:34:20,162 INFO Loaded 93039 phrases

2019-11-14 22:34:20,374 INFO Loaded 24716 dialogues with 93039 phrases, 
generating training pairs

2019-11-14 22:34:20,391 INFO Counting freq of words...

2019-11-14 22:34:20,585 INFO Data has 31774 uniq words, 4913 of them 
occur more than 10

2019-11-14 22:34:20,717 INFO Obtained 47644 phrase pairs with 4905 uniq 
words

2019-11-14 12:37:42,205 INFO Processed 22767 phrases, mean BLEU = 0.4413

The second way to experiment with a model is the script use_model.py, which 
allows you to pass any string to the model and ask it to generate the reply:

rl_book_samples/Chapter12$ ./use_model.py -m saves/sc-comedy-e40-no-skip/
epoch_080_0.841_0.124.dat -s 'how are you?'

very well. thank you.
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By passing a number to the --self option, you can ask the model to process its 
own reply as input, in other words, to generate the dialogue.

rl_book_samples/Chapter12$ ./use_model.py -m saves/sc-comedy-e40-no- 
skip/epoch_080_0.841_0.124.dat -s 'how are you?' --self 10

very well. thank you.

 okay ... it's fine.

 hey ...

shut up.

 fair enough

 so?

so, i saw my draw

what are you talking about?

just one.

i have a car.

By default, the generation is performed using argmax, so the model's output is 
always defined by the input tokens. It's not always what we want, so we can 
add randomness to the output by passing the --sample option. In that case, on 
every decoder step, the next token will be sampled from the returned probability 
distribution.

rl_book_samples/Chapter12$ ./use_model.py -m saves/sc-comedy-e40-no- 
skip/epoch_080_0.841_0.124.dat -s 'how are you?' --self 2 --sample very 
well.

very well.

rl_book_samples/Chapter12$ ./use_model.py -m saves/sc-comedy-e40-no- 
skip/epoch_080_0.841_0.124.dat -s 'how are you?' --self 2 --sample very 
well. thank you.

ok.

Telegram bot
As a final step, the Telegram chatbot using the trained model was implemented. To 
be able to run it, you need to install the python-telegram-bot extra package into 
your virtual environment using pip install.

Another step you need to take to start the bot is to obtain the API token by 
registering the new bot. The complete process is described in the documentation, 
https://core.telegram.org/bots#6-botfather. The resulting token is a string 
of the form 110201543:AAHdqTcvCH1vGWJxfSeofSAs0K5PALDsaw. 

https://core.telegram.org/bots#6-botfather
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The bot requires this string to be placed in a configuration file in ~/.config/
rl_Chapter14_bot.ini, and the structure of this file is shown in the Telegram bot 
source code as follows. The logic of the bot is not very different from the other two 
tools used to experiment with the model: it receives the phrase from the user and 
replies with the sequence generated by the decoder.

#!/usr/bin/env python3
# This module requires python-telegram-bot
import os
import sys
import logging
import configparser
import argparse

try:
    import telegram.ext
except ImportError:
    print("You need python-telegram-bot package installed "
          "to start the bot")
    sys.exit()

from libbots import data, model, utils

import torch

# Configuration file with the following contents
# [telegram]
# api=API_KEY
CONFIG_DEFAULT = "~/.config/rl_Chapter14_bot.ini"

log = logging.getLogger("telegram")

if __name__ == "__main__":
    fmt = "%(asctime)-15s %(levelname)s %(message)s"
    logging.basicConfig(format=fmt, level=logging.INFO)
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config", default=CONFIG_DEFAULT,
        help="Configuration file for the bot, default=" +
             CONFIG_DEFAULT)
    parser.add_argument(
        "-m", "--model", required=True, help="Model to load")
    parser.add_argument(
        "--sample", default=False, action='store_true',
        help="Enable sampling mode")
    prog_args = parser.parse_args()
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The bot supports two modes of operations: argmax decoding, which is used by 
default, and sample mode. In argmax, the bot's replies on the same phrase are 
always the same. When the sampling is enabled, during decoding, we sample from 
the returned probability distribution on every step, which increases the variability 
of the bot's replies.

    conf = configparser.ConfigParser()
    if not conf.read(os.path.expanduser(prog_args.config)):
        log.error("Configuration file %s not found",
                  prog_args.config)
        sys.exit()

    emb_dict = data.load_emb_dict(
        os.path.dirname(prog_args.model))
    log.info("Loaded embedded dict with %d entries",
             len(emb_dict))
    rev_emb_dict = {
        idx: word for word, idx in emb_dict.items()
    }
    end_token = emb_dict[data.END_TOKEN]

    net = model.PhraseModel(
        emb_size=model.EMBEDDING_DIM, dict_size=len(emb_dict),
        hid_size=model.HIDDEN_STATE_SIZE)
    net.load_state_dict(torch.load(prog_args.model))

In the preceding code, we parse the configuration file to get the Telegram API token, 
load embeddings, and initialize the model with weights. We don't need to load the 
dataset, as no training is needed.

    def bot_func(bot, update, args):
        text = " ".join(args)
        words = utils.tokenize(text)
        seq_1 = data.encode_words(words, emb_dict)
        input_seq = model.pack_input(seq_1, net.emb)
        enc = net.encode(input_seq)

This function is called by the python-telegram-bot library to notify it about the 
user sending a phrase to the bot. Here, we obtain the phrase, tokenize it, and convert 
it to the form suitable for the model. Then, the encoder is used to obtain the initial 
hidden state for the decoder.
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        if prog_args.sample:
            _, tokens = net.decode_chain_sampling(
                enc, input_seq.data[0:1], seq_len=data.MAX_TOKENS,
                stop_at_token=end_token)
        else:
            _, tokens = net.decode_chain_argmax(
                enc, input_seq.data[0:1], seq_len=data.MAX_TOKENS,
                stop_at_token=end_token)

Next, we call one of the decoding methods, depending on the program command-
line arguments. The result that we get in both cases is the sequence of integer token 
IDs of the decoded sequence.

        if tokens[-1] == end_token:
            tokens = tokens[:-1]
        reply = data.decode_words(tokens, rev_emb_dict)
        if reply:
            reply_text = utils.untokenize(reply)
            bot.send_message(chat_id=update.message.chat_id,
                             text=reply_text)

When we've got the decoded sequence, we need to decode it back in text form using 
our dictionary and send the reply to the user.

    updater = telegram.ext.Updater(conf['telegram']['api'])
    updater.dispatcher.add_handler(
        telegram.ext.CommandHandler('bot', bot_func,
                                    pass_args=True))

    log.info("Bot initialized, started serving")
    updater.start_polling()
    updater.idle()

The last piece of code is the python-telegram-bot machinery to register our 
bot function. To trigger it, you need to use the command /bot phrase in the 
telegram chat. 
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The following is an example of a conversation generated by the trained model:

Figure 14.15: A generated conversation

Summary
Despite its simplicity, and the toy-like example in this chapter, seq2seq is a very 
widely used model in NLP and other domains, so the alternative RL approach 
could potentially be applicable to a wide range of problems. In this chapter, we've 
just scratched the surface of deep NLP models and ideas, which go well beyond the 
scope of this book. We covered the basics of NLP models, such as RNNs and the 
seq2seq model, along with different ways that it could be trained.

In the next chapter, we will take a look at another example of the application of RL 
methods in another domain: automating web navigation tasks.
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The TextWorld Environment
In the previous chapter, you saw how reinforcement learning (RL) methods can be 
applied to natural language processing (NLP) problems, in particular, to improve 
the chatbot training process. Continuing our journey into the NLP domain, in this 
chapter, we will now use RL to solve text-based interactive fiction games, using 
the environment published by Microsoft Research called TextWorld.

In this chapter, we will:

• Cover a brief historical overview of interactive fiction
• Study the TextWorld environment
• Implement the simple baseline deep Q-network (DQN) method, and then try 

to improve it by implementing a command generator using recurrent neural 
networks (RNNs). This will provide a good illustration of how RL can be 
applied to complicated environments with a rich observation space

Interactive fiction
As you have already seen, computer games are not only entertaining for humans, 
but also provide challenging problems for RL researchers due to the complicated 
observations and action spaces, long sequences of decisions to be made during 
the gameplay, and natural reward systems.

Arcade games like Atari 2600 are just one of many genres that the gaming industry 
has. From a historical perspective, the Atari 2600 platform peaked in popularity 
during the late 70s and early 80s. Then followed the era of Z80 and clones, which 
evolved into the period of the PC-compatible platforms and consoles we have now.
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Over time, computer games continually become more complex, colorful, and 
detailed in terms of graphics, which inevitably increases hardware requirements. 
This trend makes it harder for RL researchers and practitioners to apply RL methods 
to the more recent games; for example, almost everybody can train an RL agent 
to solve an Atari game, but for StarCraft II, DeepMind had to burn electricity for 
weeks, leveraging clusters of graphics processing unit (GPU) machines. Of course, 
this activity is needed for future research, as it allows us to check ideas and optimize 
methods, but the complexity of StarCraft II and Dota, for example, makes them 
prohibitively expensive for most people.

There are several ways of solving this problem. The first one is to take games that are 
"in the middle" of the complexities of Atari and StarCraft. Luckily, there are literally 
thousands of games from the Z80, NES, Sega, and C64 platforms.

Another way is to take a challenging game but make a simplification to the 
environment. There are several Doom environments (available in Gym), for example, 
that use the game engine as a platform, but the goal is much simpler than in the 
original game, like navigating the corridor, gathering weapons, or shooting enemies. 
Those microgames are also available on StarCraft II.

The third, and completely different, approach is to take some game that may not be 
very complex in terms of observation, but requires long-term planning, has complex 
exploration of the state space, and has challenging interactions between objects. 
An example of this family is the famous Montezuma's Revenge from the Atari 
suite, which is still challenging even for modern RL methods. This last approach 
is quite appealing, due to the accessibility of resources, combined with still having 
a complexity that reaches the edge of RL methods' limits.

Another example of this is text-based games, which are also known as interactive 
fiction. This genre is almost dead now, being made obsolete by modern games and 
hardware progress, but at the time of Atari and Z80, interactive fiction was provided 
concurrently with traditional games. Instead of using rich graphics to show the game 
state (which was tricky for hardware from the 70s), these games relied on the players' 
minds and imagination.

The gaming process was communicated via text when the description of the current 
game state was given to the player. An example is you are standing at the end of a road 
before a small brick building. Around you is a forest. A small stream flows out of the building 
and down a gully. 



Chapter 15

[ 405 ]

As you can see in Figure 15.1, this is the very beginning of the Adventure game from 
1976, which was the first game of this kind. Actions in the game were given in the 
form of free-text commands, which normally had a simple structure and limited set 
of words, for example "verb + noun."

Figure 15.1: An example of the interactive fiction game process

Despite the simplistic descriptions, in the 80s and early 90s, hundreds of large 
and small games were developed by individual developers and commercial studios. 
Those games sometimes required many hours of gameplay, contained thousands of 
locations, and had a lot of objects to interact with. 
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For example, the following figure shows part of the Zork I game map published by 
Infocom in 1980.

Figure 15.2: The Zork I map (underground part)

As you can imagine, the challenges of such games could be increased almost 
infinitely, as complex interactions between objects, exploration of game states, 
communication with other characters, and other real-life scenarios could be included. 
There are many such games available on the Interactive Fiction Archive website: 
http://ifarchive.org.

In June 2018, Microsoft Research released an open source project that aimed 
to provide researchers and RL enthusiasts with a simple way to experiment 
with text-based games using familiar tools. 

http://ifarchive.org
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Their project, called TextWorld, is available on GitHub (https://github.com/
microsoft/TextWorld) and provides the following functionality:

• A Gym environment for text-based games. It supports games in two formats: 
Z-machine bytecode (versions 1-8 are supported) and Glulx games.

• A game generator that allows you to produce randomly generated quests 
with requirements like the number of objects, the description complexity, 
and the quest length.

• The capability to tune (for generated games) the complexity of the 
environment by peeking into the game state. For example, intermediate 
rewards could be enabled, which will give a positive reward to the agent 
every time it makes a step in the right direction. Several such factors will 
be described in the next section.

• Various utility functions to deal with the observation and action space, 
generated games, and so forth.

In this chapter, we will explore the environment's capabilities and implement several 
versions of training code to solve the generated games. The complexity of the games 
will not be very high, but you can use them as a basis for your own experiments and 
idea validation.

The environment
At the time of writing, the TextWorld environment supports only Linux and macOS 
platforms and internally relies on the Inform 7 system (http://inform7.com). There 
are two webpages for the project: one is the Microsoft Research webpage: https://
www.microsoft.com/en-us/research/project/textworld/, which contains 
general information about the environment, and the another is on GitHub (https://
github.com/microsoft/TextWorld) and describes installation and usage. Let's 
start with installation.

Installation
The installation instructions suggest that you can install the package by just 
typing pip install textworld in your Python virtual environment, but 
at the time of writing, this step is broken by a changed URL for the Inform 7 
engine. Hopefully, this will be fixed on the next TextWorld release, but if you 
experience any issues, you can set up a version that I've tested for this example 
by running pip install git+https://github.com/microsoft/TextWorld@
f1ac489fefeb6a48684ed1f89422b84b7b4a6e4b.

https://github.com/microsoft/TextWorld
https://github.com/microsoft/TextWorld
http://inform7.com
https://www.microsoft.com/en-us/research/project/textworld/
https://www.microsoft.com/en-us/research/project/textworld/
https://github.com/microsoft/TextWorld
https://github.com/microsoft/TextWorld
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Once installed, the package can be imported in Python code, and it also provides two 
command-line utilities for game generation and gameplay: tw-make and tw-play. 
They are not needed if you have ambitious plans to solve full-featured interactive 
fiction games from http://ifarchive.org, but in our case, we will start with 
artificially generated quests for simplicity.

Game generation
The tw-make utility allows you to generate games with the following characteristics:

• Game scenario: For example, you can choose a classic quest with the aim of 
using objects and following some sequence of actions, or a "coin collection" 
scenario, when the player needs to navigate the scenes and find coins

• Game theme: You can set up the interior of the game, but at the moment, 
only the "house" and "basic" themes exist

• Object properties: You can include adjectives with objects; for instance, 
it might be the "green key" that opens the box, not just the "key"

• The number of parallel quests that the game can have: By default, there is 
only one sequence of actions to be found, but you can change this and allow 
the game to have subgoals and alternative paths

• The length of the quest: You can define how many steps the player needs 
to take before reaching the end of the game

• Random seeds: You can use these to generate reproducible games
The resulting game generated could be in Glulx or Z-machine format, which are 
standard portable virtual machine instructions that are widely used for normal 
games and supported by several interactive fiction interpreters, so you can play 
the generated games in the same way as normal interactive fiction games.

Let's generate some games and check what they bring us:

$ tw-make tw-coin_collector --output t1 --seed 10 --level 5 --force-
entity-numbering

Global seed: 10

Game generated: t1.ulx

The command generates three files: t1.ulx, t1.ni, and t1.json. The first one 
contains bytecode to be loaded into the interpreter, and the others are extended 
data that could be used by the environment to provide extra information during 
the gameplay.

http://ifarchive.org
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To play the game in interactive mode, you can use any interactive fiction interpreter 
supporting the Glulx format, or use the provided utility tw-play, which might not 
be the most convenient way to play interactive fiction games, but will enable you to 
check the result.

$ tw-play t1.ulx

Using GitGlulxMLEnvironment.

                    ________  ________  __    __  ________

                   |        \|        \|  \  |  \|        \

                    \$$$$$$$$| $$$$$$$$| $$  | $$ \$$$$$$$$

                      | $$   | $$__     \$$\/  $$   | $$

                      | $$   | $$  \     >$$  $$    | $$

                      | $$   | $$$$$    /  $$$$\    | $$

                      | $$   | $$_____ |  $$ \$$\   | $$

                      | $$   | $$     \| $$  | $$   | $$

                       \$$    \$$$$$$$$ \$$   \$$    \$$

              __       __   ______   _______   __        _______

             |  \  _  |  \ /      \ |       \ |  \      |       \

             | $$ / \ | $$|  $$$$$$\| $$$$$$$\| $$      | $$$$$$$\

             | $$/  $\| $$| $$  | $$| $$__| $$| $$      | $$  | $$

             | $$  $$$\ $$| $$  | $$| $$    $$| $$      | $$  | $$

             | $$ $$\$$\$$| $$  | $$| $$$$$$$\| $$      | $$  | $$

             | $$$$  \$$$$| $$__/ $$| $$  | $$| $$_____ | $$__/ $$

             | $$$    \$$$ \$$    $$| $$  | $$| $$     \| $$    $$

              \$$      \$$  \$$$$$$  \$$   \$$ \$$$$$$$$ \$$$$$$$

Get ready to pick stuff up and put it in places, because you've just 
entered

TextWorld! First step, try to take a trip east. And then, head south. 
Next, make

an effort to take a trip south. If you can accomplish that, try to take a 
trip

west. With that accomplished, recover the coin from the floor of the 
chamber.

Got that? Good!

-= Spare Room =-

You are in a spare room. An usual one.
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You don't like doors? Why not try going east, that entranceway is 
unblocked.

>

In this chapter, we will experiment with several games. You need to generate 
them by using the provided script: Chapter15/game/make_games.sh. It generates 
21 games of length 5, using different seed values to ensure variability between 
the games.

Observation and action spaces
Generating and playing a game might be fun, but the core value of TextWorld is in 
its ability to provide an RL interface for generated or existing games. Let's check 
what we can do with the game we just generated in the previous section:

In [1]: import textworld

In [2]: from textworld.gym import register_game

In [3]: import gym

In [4]: env_id = register_game("t1.ulx")

In [5]: env_id

Out[5]: 'tw-v0'

In [6]: env = gym.make(env_id)

In [7]: env

Out[7]: <TimeLimit<TextworldGamesEnv<tw-v0>>>

In [8]: r = env.reset()

In [9]: r

Out[9]:

("\n\n\n                    ________  ________  __    __  ________        

\n                   |        \\|        \\|  \\  |  \\|        \\       

\n                    \\$$$$$$$$| $$$$$$$$| $$  | $$ \\$$$$$$$$       

\n                      | $$   | $$__     \\$$\\/  $$   | $$          

\n                      | $$   | $$  \\     >$$  $$    | $$          

\n                      | $$   | $$$$$    /  $$$$\\    | $$          

\n                      | $$   | $$_____ |  $$ \\$$\\   | $$          

\n                      | $$   | $$     \\| $$  | $$   | $$          

\n                      \\$$    \\$$$$$$$$ \\$$   \\$$    \\$$          

\n              __       __   ______   _______   __        _______  
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\n             |  \\  _  |  \\ /      \\ |       \\ |  \\      |       

\\ \n             | $$ / \\ | $$|  $$$$$$\\| $$$$$$$\\| $$      | 

$$$$$$$\\\n             | $$/  $\\| $$| $$  | $$| $$__| $$| $$      | 

$$  | $$\n             | $$  $$$\\ $$| $$  | $$| $$    $$| $$      | 

$$  | $$\n             | $$ $$\\$$\\$$| $$  | $$| $$$$$$$\\| $$      

| $$  | $$\n             | $$$$  \\$$$$| $$__/ $$| $$  | $$| $$_____ 

| $$__/ $$\n             | $$$    \\$$$ \\$$    $$| $$  | $$| $$     

\\| $$    $$\n              \\$$      \\$$  \\$$$$$$  \\$$   \\$$ 

\\$$$$$$$$ \\$$$$$$$ \n\nGet ready to pick stuff up and put it in places, 
because you've just entered TextWorld! First step, try to take a trip 
east. And then, head south. Next, make an effort to take a trip south. If 
you can accomplish that, try to take a trip west. With that accomplished, 
recover the coin from the floor of the chamber. Got that? Good!\n\n-= 
Spare Room =-\nYou are in a spare room. An usual one.\n\n\n\nYou don't 
like doors? Why not try going east, that entranceway is unblocked.\n\n\
n\n",

 {})

So, we have registered the generated game in the Gym games registry, created 
the environment, and got the initial observation. Yes, all this text mess is our 
observation, from which our agent has to select its next action. If you check the result 
of the reset() method more carefully, you may notice that the result is not a string, 
but a tuple with a string and a dict.

This is one of the TextWorld specifics that make it incompatible with the Gym API. 
Indeed, Env.reset() has to return just the observation, but TextWorld returns the 
observation and extended information, which is a dict. We will discuss why it was 
implemented this way in the upcoming section, when we talk about the extended 
game information. For now, just note the extra dict returned from reset(), and we 
will continue our exploration of the environment.

In [10]: env.observation_space

Out[10]: Word(L=200, V=1250)

In [11]: env.action_space

Out[11]: Word(L=8, V=1250)

In [12]: env.action_space.sample()

Out[12]: array([ 575,  527,   84, 1177,  543,  702, 1139,  178])

In [13]: type(env.action_space)

Out[13]: textworld.gym.spaces.text_spaces.Word
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As you can see, both the observation and action spaces are represented by the 
custom class Word, which is provided by the TextWorld library. This class represents 
a variable-length sequence of words from some vocabulary. In the observation space, 
the maximum length of the sequence equals 200 (which is shown as L=200 in the 
preceding code), and the vocabulary is 1,250 tokens (V=1250). For the action space, 
the vocabulary is the same, but sequences are shorter: up to eight tokens.

As you saw in the previous chapter, the normal representation of sequences in NLP 
is a list of token IDs from the vocabulary. Access to this vocabulary is provided by 
the fields of the Word class. In particular, it has:

• The dictionary id2w, which maps the token ID into the word
• The dictionary w2id with reverse mapping
• The tokenize() method, which takes the string and returns the sequence 

of tokens

This functionality provides a convenient and efficient way to deal with observation 
and action sequences:

In [16]: env.action_space.tokenize("go north")

Out[16]: array([  3, 466, 729,   2])

In [17]: act = env.action_space.sample()

In [18]: act

Out[18]: array([1090,  996,  695, 1195,  447, 1244,   61,  734])

In [19]: [env.action_space.id2w[a] for a in act]

Out[19]: ['this', 'spork', 'modest', "weren't", 'g', "you've", 'amazing', 
'noticed']

This text is not very meaningful, as it was randomly sampled from the vocabulary. 
Another thing you might notice is that the tokenized version of the "go north" 
sequence has four tokens instead of two. That's due to extra tokens representing the 
beginning and the end of the sequence, which are added automatically. We used the 
same approach in the previous chapter.

Extra game information
Before we start planning our first training code, we need to discuss one additional 
functionality of TextWorld that we will use. As you might guess, even a simple 
problem might be too challenging for us. Note that observations are text sequences 
of up to 200 tokens from the vocabulary of size 1,250. Actions could be up to eight 
tokens long. Generated games have five actions to be executed in the correct order. 
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So, our chance of randomly finding the proper sequence of 8 × 5 = 40 tokens is 

something around 
1

125040 ≈
1

10123 . This is not very promising, even with the fastest 

GPUs. Of course, we have start- and end-sequence tokens, which we can take into 
account to increase our chances; still, the probability of finding the correct sequence 
of actions with random exploration is tiny.

Another challenge is the partially observable Markov decision process (POMDP) 
nature of the environment, which comes from the fact that our inventory in the 
game is usually not shown. It is a normal practice in interactive fiction games to 
display the objects your character possesses only after some explicit command, like 
"inventory." But our agent has no idea about the previous state. So, from its point of 
view, the situation after the command "take apple" is exactly the same as before 
(with the difference that the apple is no longer mentioned in the scene description). 
We can deal with that by stacking states as we did in Atari games, but we need to do 
it explicitly, and the amount of information the agent needs to process will increase 
significantly.

With all this being said, we should make some simplifications in the environment. 
Luckily, TextWorld provides us with convenient means for such cheating. During 
the game registration, we can pass extra flags to enrich the observation space with 
extra pieces of more structured information. Here is the list of internals that we can 
peek into:

• A separate description of the current room, as it will be given by the "look" 
command

• The current inventory
• The name of the current location
• The facts of the current world state
• The last action and the last command performed
• The list of admissible commands in the current state
• The sequence of actions to execute to win the game

In addition, besides extra structured observations provided on every step, we can 
ask TextWorld to give us intermediate rewards every time we move in the right 
direction in the quest. As you might guess, this is extremely helpful for speeding 
up the convergence.

The most useful features in the additional information we can add are admissible 
commands, which enormously decrease our action space from 125040 to just a dozen, 
and intermediate rewards, which guide the training in the right direction.
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To enable this extra information, we need to pass an optional argument to the 
register_game() method:

In [1]: from textworld.gym import register_game

In [2]: from textworld.envs.wrappers.filter import EnvInfos

In [3]: import gym

In [4]: env_id = register_game("t1.ulx", request_
infos=EnvInfos(inventory=True, intermediate_reward=True, admissible_
commands=True))

In [6]: env = gym.make(env_id)

In [7]: env.reset()

Out[7]:

("\n\n\n                    ________  ________  __    __  ________        

\n                   |        \\|        \\|  \\  |  \\|        \\       

\n                    \\$$$$$$$$| $$$$$$$$| $$  | $$ \\$$$$$$$$       

\n                      | $$   | $$__     \\$$\\/  $$   | $$          

\n                      | $$   | $$  \\     >$$  $$    | $$          

\n                      | $$   | $$$$$    /  $$$$\\    | $$          

\n                      | $$   | $$_____ |  $$ \\$$\\   | $$          

\n                      | $$   | $$     \\| $$  | $$   | $$          

\n                       \\$$    \\$$$$$$$$ \\$$   \\$$    \\$$          

\n              __       __   ______   _______   __        _______  

\n             |  \\  _  |  \\ /      \\ |       \\ |  \\      |       

\\ \n             | $$ / \\ | $$|  $$$$$$\\| $$$$$$$\\| $$      | 

$$$$$$$\\\n             | $$/  $\\| $$| $$  | $$| $$__| $$| $$      | 

$$  | $$\n             | $$  $$$\\ $$| $$  | $$| $$    $$| $$      | 

$$  | $$\n             | $$ $$\\$$\\$$| $$  | $$| $$$$$$$\\| $$      

| $$  | $$\n             | $$$$  \\$$$$| $$__/ $$| $$  | $$| $$_____ 

| $$__/ $$\n             | $$$    \\$$$ \\$$    $$| $$  | $$| $$     

\\| $$    $$\n              \\$$      \\$$  \\$$$$$$  \\$$   \\$$ 

\\$$$$$$$$ \\$$$$$$$ \n\nGet ready to pick stuff up and put it in places, 
because you've just entered TextWorld! First step, try to take a trip 
east. And then, head south. Next, make an effort to take a trip south. If 
you can accomplish that, try to take a trip west. With that accomplished, 
recover the coin from the floor of the chamber. Got that? Good!\n\n-= 
Spare Room =-\nYou are in a spare room. An usual one.\n\n\n\nYou don't 
like doors? Why not try going east, that entranceway is unblocked.\n\n\
n\n",

 {'inventory': 'You are carrying nothing.\n\n\n',
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  'admissible_commands': ['go east', 'inventory', 'look'],

  'intermediate_reward': 0})

As you can see, the environment now provides us with extra information in the 
dictionary that was empty before. In this state, only three commands make sense. 
Let's try the first one.

In [8]: env.step("go east")

Out[8]:

("\n-= Attic =-\nYou make a grand eccentric entrance into an attic.\n\
n\n\nYou need an unblocked exit? You should try going south. You don't 
like doors? Why not try going west, that entranceway is unblocked.\n\
n\n",

 0,

 False,

 {'inventory': 'You are carrying nothing.\n\n\n',

  'admissible_commands': ['go south', 'go west', 'inventory', 'look'],

  'intermediate_reward': 1})

The command was accepted, and we were given an intermediate reward of 1. Okay, 
that's great. Now we have everything needed to implement our first baseline DQN 
agent to solve TextWorld problems!

Baseline DQN
In this problem, the major challenge lies in inconvenient observation and action 
spaces. Text sequences might be problematic on their own, as we discussed in the 
previous chapter. The variability of sequence lengths might cause vanishing and 
exploding gradients in RNNs, slow training, and convergence issues. In addition 
to that, our TextWorld environment provides us with several such sequences that 
we need to handle separately. Our scene description string, for example, might 
have a completely different meaning to the agent than the inventory string, which 
describes our possessions.

As mentioned, another obstacle is the action space. As you have seen in the previous 
section, TextWorld might provide us with a list of commands that we can execute 
in every state. It significantly reduces the action space we need to choose from, but 
there are other complications. One of them is that the list of admissible commands 
changes from state to state (as different locations might allow different commands 
to be executed). Another issue is that every entry in the admissible commands list 
is a sequence of words. 
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Potentially, we might get rid of both of those variabilities by building a dictionary 
of all possible commands and using it as a discrete, fixed-size action space. In simple 
games, this might work, as the number of locations and objects is not that large. 
You can try this as an exercise, but we will follow a different path.

Thus far, you have seen only discrete action spaces having a small number of 
predefined actions, and this influenced the architecture of the DQN: the output from 
the network predicted Q-values for all actions in one run, which was convenient both 
during the training and model application (as we need all Q-values for all actions to 
find argmax anyway). But this choice of DQN architecture is not something dictated 
by the method, so if needed, we can tweak it. And our issue with a variable number 
of actions might be solved this way. To get a better understanding of how, let's check 
the architecture of our TextWorld baseline DQN, as shown in the following figure.

Figure 15.3: The architecture of the TextWorld baseline DQN

The major part of the diagram is occupied by preprocessing blocks. On input to 
the network (blocks on the left), we get variable sequences of individual parts of 
observations ("Raw text", "Description", and "Inventory") and the sequence of one 
action command to be evaluated. This command will be taken from the admissible 
commands list, and the goal of our network will be to predict a single Q-value for the 
current game state and this particular command. This approach is different from the 
DQNs we have used before, but as we don't know in advance which commands will 
be evaluated in every state, we will evaluate every command individually.

Those four input sequences (which are lists of token IDs in our vocabulary) will 
be passed through an embeddings layer and then fed into separate long short-term 
memory (LSTM) RNNs. We discussed embeddings and RNNs in the previous 
chapter, so if you're not familiar with those NLP concepts, you can check the 
corresponding sections there.
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The goal of LSTM networks (which are called "Encoders" in the figure) is to convert 
variable-length sequences into fixed-size vectors. Every input piece is processed 
by its own LSTM with separated weights, which will allow the network to capture 
different data from different input sequences.

The output from the encoders is concatenated into one single vector and passed to 
the main DQN network. As our variable-length sequences have been transformed 
into fixed-size vectors, the DQN network is simple: just several feed-forward layers 
producing one single Q-value. This is less efficient computationally, but for the 
baseline it is fine.

The complete source code is in the Chapter15 directory and it includes the following 
modules:

• train_basic.py: A baseline training program
• lib/common.py: Common utilities to set up the Ignite engine and 

hyperparameters
• lib/preproc.py: The preprocessing pipeline, including embeddings and 

encoder classes
• lib/model.py: The DQN model and DQN agent with helper functions

For the sake of space in this chapter, the full source code won't be given. Only 
the most important or tricky parts will be explained in the subsequent sections.

Observation preprocessing
Let's start with the leftmost part of our pipeline. On the input, we're going to 
get several lists of tokens, both for the individual state observation and for our 
command that we're going to evaluate. But as you have already seen, the TextWorld 
environment produces the string and a dict with the extended information, so 
we need to tokenize the strings and get rid of nonrelevant information. That's the 
responsibility of the TextWorldPreproc class, which is defined in the lib/preproc.
py module:

class TextWorldPreproc(gym.Wrapper):
    
    log = logging.getLogger("TextWorldPreproc")

    def __init__(self, env: gym.Env, encode_raw_text: bool = False,
                 encode_extra_fields: Iterable[str] = (
                         'description', 'inventory'),
                 use_admissible_commands: bool = True,
                 use_intermediate_reward: bool = True,
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                 tokens_limit: Optional[int] = None):
        super(TextWorldPreproc, self).__init__(env)
        if not isinstance(env.observation_space, tw_spaces.Word):
            raise ValueError(
                "Env should expose textworld obs, "
                "got %s instead" % env.observation_space)
        self._encode_raw_text = encode_raw_text
        self._encode_extra_field = tuple(encode_extra_fields)
        self._use_admissible_commands = use_admissible_commands
        self._use_intermedate_reward = use_intermediate_reward
        self._num_fields = len(self._encode_extra_field) + \
                           int(self._encode_raw_text)
        self._last_admissible_commands = None
        self._last_extra_info = None
        self._tokens_limit = tokens_limit
        self._cmd_hist = []

The class implements the gym.Wrapper interface, so it will transform the TextWorld 
environment observations and actions in the way we need. The constructor accepts 
several flags, which simplifies future experiments. For example, you can disable 
the usage of admissible commands or intermediate reward, set the limit of tokens, 
or change the set of observation fields to be processed.

    @property
    def num_fields(self):
        return self._num_fields

    def _encode(self, obs: str, extra_info: dict) -> dict:
        obs_result = []
        if self._encode_raw_text:
            tokens = self.env.observation_space.tokenize(obs)
            if self._tokens_limit is not None:
                tokens = tokens[:self._tokens_limit]
            obs_result.append(tokens)
        for field in self._encode_extra_field:
            extra = extra_info[field]
            tokens = self.env.observation_space.tokenize(extra)
            if self._tokens_limit is not None:
                tokens = tokens[:self._tokens_limit]
            obs_result.append(tokens)
        result = {"obs": obs_result}
        if self._use_admissible_commands:
            adm_result = []
            for cmd in extra_info['admissible_commands']:
                cmd_tokens = self.env.action_space.tokenize(cmd)
                adm_result.append(cmd_tokens)
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            result['admissible_commands'] = adm_result
            self._last_admissible_commands = \
                extra_info['admissible_commands']
        self._last_extra_info = extra_info
        return result

The _encode method is the heart of the observation transformation. It takes the 
observation string and the extended information dictionary and returns a single 
dictionary with the following keys:

• obs: The list of lists with the token IDs of input sequences.
• admissible_commands: A list with commands available from the current 

state. Every command is tokenized and converted into the list of token IDs.

In addition, the method remembers the extra information dictionary and raw 
admissible commands list. This is not needed for training, but will be useful during 
the model application, to be able to get back the command text from the index of the 
command.

    def reset(self):
        res = self.env.reset()
        self._cmd_hist = []
        return self._encode(res[0], res[1])

    def step(self, action):
        if self._use_admissible_commands:
            action = self._last_admissible_commands[action]
            self._cmd_hist.append(action)
        obs, r, is_done, extra = self.env.step(action)
        if self._use_intermedate_reward:
            r += extra.get('intermediate_reward', 0)
        if self._reward_wrong_last_command is not None:
            # that value is here if we gave a nonsense command
            if extra.get('last_command', '') == 'None':
                r += self._reward_wrong_last_command
        new_extra = dict(extra)
        fields = list(self._encode_extra_field)
        fields.append('admissible_commands')
        fields.append('intermediate_reward')
        for f in fields:
            if f in new_extra:
                new_extra.pop(f)
        return self._encode(obs, extra), r, is_done, new_extra

Two public methods, reset() and step(), use the _encode() method to do the 
transformation of the observation. 
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The admissible commands are enabled, and the action is expected to be the index in 
the list of commands, instead of the command text.

    @property
    def last_admissible_commands(self):
        if self._last_admissible_commands:
            return tuple(self._last_admissible_commands)
        return None

    @property
    def last_extra_info(self):
        return self._last_extra_info

Finally, there are two properties that give access to the remembered state. To 
illustrate how this class is supposed to be applied and what it does with the 
observation, let's check the following small interactive session:

In [1]: from textworld.gym import register_game

In [2]: import gym

In [3]: from lib import preproc

In [4]: from textworld.envs.wrappers.filter import EnvInfos

In [5]: env_id = register_game("games/simple1.ulx", request_
infos=EnvInfos(inventory=True, intermediate_reward=True, admissible_
commands=True, description=True))

In [6]: env = gym.make(env_id)

In [7]: env.reset()

Out[7]:

("\n\n\n                    ________  ________  __    __  ________        

\n                   |        \\|        \\|  \\  |  \\|        \\       

\n                    \\$$$$$$$$| $$$$$$$$| $$  | $$ \\$$$$$$$$       

\n                      | $$   | $$__     \\$$\\/  $$   | $$          

\n                      | $$   | $$  \\     >$$  $$    | $$          

\n                      | $$   | $$$$$    /  $$$$\\    | $$          

\n                      | $$   | $$_____ |  $$ \\$$\\   | $$          

\n                      | $$   | $$     \\| $$  | $$   | $$          

\n                       \\$$    \\$$$$$$$$ \\$$   \\$$    \\$$          

\n              __       __   ______   _______   __        _______  

\n             |  \\  _  |  \\ /      \\ |       \\ |  \\      |       

\\ \n             | $$ / \\ | $$|  $$$$$$\\| $$$$$$$\\| $$      | 

$$$$$$$\\\n             | $$/  $\\| $$| $$  | $$| $$__| $$| $$      | 
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$$  | $$\n             | $$  $$$\\ $$| $$  | $$| $$    $$| $$      | 

$$  | $$\n             | $$ $$\\$$\\$$| $$  | $$| $$$$$$$\\| $$      

| $$  | $$\n             | $$$$  \\$$$$| $$__/ $$| $$  | $$| $$_____ 

| $$__/ $$\n             | $$$    \\$$$ \\$$    $$| $$  | $$| $$     

\\| $$    $$\n              \\$$      \\$$  \\$$$$$$  \\$$   \\$$ 

\\$$$$$$$$ \\$$$$$$$ \n\nWelcome to TextWorld! Here is your task for 
today. First off, if it's not too much trouble, I need you to take a trip 
east. Then, take a trip north. And then, take the insect from the case. 
After that, go to the south. Then, sit the insect on the stand inside the 
studio. And if you do that, you're the winner!\n\n-= Spare Room =-\nYou 
find yourself in a spare room. A typical kind of place.\n\nYou rest your 
hand against a wall, but you miss the wall and fall onto a rectangular 
locker.\n\nThere is an unguarded exit to the east. You don't like doors? 
Why not try going south, that entranceway is unblocked.\n\nThere is a 
rectangular key on the floor.\n\n\n\n",

{'description': "-= Spare Room =-\nYou find yourself in a spare room. A 
typical kind of place.\n\nYou rest your hand against a wall, but you miss 
the wall and fall onto a rectangular locker.\n\nThere is an unguarded 
exit to the east. You don't like doors? Why not try going south, that 
entranceway is unblocked.\n\nThere is a rectangular key on the floor.\
n\n",

  'inventory': 'You are carrying:\n  a pair of headphones\n  a whisk\n\
n\n',

  'admissible_commands': ['drop pair of headphones',

   'drop whisk',

   'examine pair of headphones',

   'examine rectangular key',

   'examine rectangular locker',

   'examine whisk',

   'go east',

   'go south',

   'inventory',

   'look',

   'open rectangular locker',

   'take rectangular key'],

  'intermediate_reward': 0})

So, that's our raw observation obtained from the TextWorld environment. Let's apply 
our preprocessor:

In [13]: pr_env = preproc.TextWorldPreproc(env)

In [14]: pr_env.reset()
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Out[14]:

{'obs': [array([<values hidden>]),

  array([ 3, 1240, 78, 1, 35, 781, 747, 514, 35, 1203,  2])],

 'admissible_commands': [array([  3, 342, 781, 747, 514,   2]),

  array([   3,  342, 1203,    2]),

<more commands here>

  array([   3, 1053,  871,  588,    2])]}

Let's try to execute some action. Zero action corresponds to the first entry in 
the admissible commands list, which is "drop pair of headphones" in our case.

In [15]: pr_env.step(0)

Out[15]:

({'obs': [array([<values hidden>]),

   array([   3, 1240,   78,    1,   35, 1203,    2])],

  'admissible_commands': [array([   3,  342, 1203,    2]),

   array([  3, 383, 781, 747, 514,   2]),

<more commands here>

   array([   3, 1053,  871,  588,    2])]},

 0,

 False,

 {})

In [17]: pr_env.last_extra_info['inventory']

Out[17]: 'You are carrying:\n  a whisk\n\n\n'

As you can see, we no longer have the headphones, but it wasn't the right action to 
take, as an intermediate reward was not given.

Okay, this representation still can't be fed into neural networks (NNs), but it is much 
closer to what we want.

Embeddings and encoders
The next step in the preprocessing pipeline is implemented in two classes:

• Encoder: A wrapper around the LSTM unit that transforms one single 
sequence (after embeddings have been applied) into a fixed-size vector

• Preprocessor: This is responsible for the application of embeddings and the 
transformation of individual sequences with corresponding encoder classes
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The Encoder class is simpler, so let's start with it:

class Encoder(nn.Module):
    def __init__(self, emb_size: int, out_size: int):
        super(Encoder, self).__init__()
        self.net = nn.LSTM(
            input_size=emb_size, hidden_size=out_size,
            batch_first=True)

    def forward(self, x):
        self.net.flatten_parameters()
        _, hid_cell = self.net(x)
        return hid_cell[0].squeeze(0)

The logic is very simple: we apply the LSTM layer and return its hidden state 
after processing the sequence. We did the same in the previous chapter when 
we implemented the seq2seq architecture.

The Preprocessor class is a bit more complicated, as it combines several Encoder 
instances and is also responsible for embeddings:

class Preprocessor(nn.Module):
    def __init__(self, dict_size: int, emb_size: int,
                 num_sequences: int, enc_output_size: int):
        super(Preprocessor, self).__init__()

        self.emb = nn.Embedding(num_embeddings=dict_size,
                                embedding_dim=emb_size)
        self.encoders = []
        for idx in range(num_sequences):
            enc = Encoder(emb_size, enc_output_size)
            self.encoders.append(enc)
            self.add_module(f"enc_{idx}", enc)
        self.enc_commands = Encoder(emb_size, enc_output_size)

In the constructor, we create an embeddings layer, which will map every token 
in our dictionary into a fixed-size dense vector. Then we create num_sequences 
instances of Encoder for every input sequence and one additional instance to encode 
command tokens.

    def _apply_encoder(self, batch: List[List[int]],
                       encoder: Encoder):
        dev = self.emb.weight.device
        batch_t = [self.emb(torch.tensor(sample).to(dev))
                   for sample in batch]
        batch_seq = rnn_utils.pack_sequence(
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            batch_t, enforce_sorted=False)
        return encoder(batch_seq)

The internal method _apply_encoder() takes the batch of sequences (every 
sequence is a list of token IDs) and transforms it with an encoder. If you remember, 
in the previous chapter, we needed to sort a batch of variable-length sequences 
before RNN application. Since PyTorch 1.0, this is no longer needed, as this sorting 
and transformation is handled by the PackedSequence class internally. To enable 
this functionality, we need to pass the enforce_sorted=False parameter.

    def encode_sequences(self, batches):
        data = []
        for enc, enc_batch in zip(self.encoders, zip(*batches)):
            data.append(self._apply_encoder(enc_batch, enc))
        res_t = torch.cat(data, dim=1)
        return res_t

    def encode_commands(self, batch):
        return self._apply_encoder(batch, self.enc_commands)

Two public methods of the class are just calling the _apply_encoder() method to 
transform input sequences and commands. In the case of sequences, we concatenate 
the batch along the second dimension to combine fixed-size vectors produced by 
individual encoders into a single vector.

Now, let's see how the Preprocessor class is supposed to be applied:

In [1]: from textworld.gym import register_game

In [2]: import gym

In [3]: from lib import preproc

In [4]: from textworld.envs.wrappers.filter import EnvInfos

In [5]: env_id = register_game("games/simple1.ulx", request_
infos=EnvInfos(inventory=True, intermediate_reward=True, admissible_
commands=True, description=True))

In [6]: env = gym.make(env_id)

In [7]: env = preproc.TextWorldPreproc(env)

In [8]: prep = preproc.Preprocessor(dict_size=env.observation_space.
vocab_size, emb_size=10, num_sequences=env.num_fields, enc_output_
size=20)

In [9]: prep

Out[9]:

Preprocessor(

  (emb): Embedding(1250, 10)
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  (enc_0): Encoder(

    (net): LSTM(10, 20, batch_first=True)

  )

  (enc_1): Encoder(

    (net): LSTM(10, 20, batch_first=True)

  )

  (enc_commands): Encoder(

    (net): LSTM(10, 20, batch_first=True)

  )

)

We have created a Preprocessor instance, which includes embeddings of size 
10 and encodes two input sequences and the command text into vectors of size 20. 
To apply it, we need to pass input batches to one of its public methods.

In [10]: obs = env.reset()

In [11]: prep.encode_sequences([obs['obs']])

Out[11]: torch.Size([1, 40])

In [12]: prep.encode_commands(obs['admissible_commands']).size()

Out[12]: torch.Size([12, 20])

The dimensions of the outputs meet our expectations, as a single observation of two 
sequences is 2 × 20 = 40 numbers, and a list of 12 commands is encoded as a tensor of 
the shape (12, 20).

The DQN model and the agent
With all those preparations made, the DQN model is quite obvious: it should accept 
vectors of num_sequences × encoder_size and produce a single scalar value. But 
there is one difference from the other DQN models covered, which is in the way 
we apply the model.

class DQNModel(nn.Module):
    def __init__(self, obs_size: int, cmd_size: int,
                 hid_size: int = 256):
        super(DQNModel, self).__init__()

        self.net = nn.Sequential(
            nn.Linear(obs_size + cmd_size, hid_size),
            nn.ReLU(),
            nn.Linear(hid_size, 1)
        )
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    def forward(self, obs, cmd):
        x = torch.cat((obs, cmd), dim=1)
        return self.net(x)

    @torch.no_grad()
    def q_values(self, obs_t, commands_t):
        result = []
        for cmd_t in commands_t:
            qval = self(obs_t, cmd_t.unsqueeze(0))[0].cpu().item()
            result.append(qval)
        return result

The forward() method accepts two batches—observations and commands—
producing the batch of Q-values for every pair. Another method, q_values(), takes 
one observation produced by the Preprocessor class and the tensor of encoded 
commands, then applies the model and returns a list of Q-values for every command.

One final class worth showing is the PTAN agent, which combines all the logic 
together and converts environment observations (after the TextWorldPreproc class) 
into the list of actions to be taken.

class DQNAgent(ptan.agent.BaseAgent):
    def __init__(self, net: DQNModel,
                 preprocessor: preproc.Preprocessor,
                 epsilon: float = 0.0, device="cpu"):
        self.net = net
        self._prepr = preprocessor
        self._epsilon = epsilon
        self.device = device

    @property
    def epsilon(self):
        return self._epsilon

    @epsilon.setter
    def epsilon(self, value: float):
        if 0.0 <= value <= 1.0:
            self._epsilon = value

    @torch.no_grad()
    def __call__(self, states, agent_states=None):
        if agent_states is None:
            agent_states = [None] * len(states)

        # for every state in the batch, calculate



Chapter 15

[ 427 ]

        actions = []
        for state in states:
            commands = state['admissible_commands']
            if random.random() <= self.epsilon:
                actions.append(random.randrange(len(commands)))
            else:
                obs_t = self._prepr.encode_sequences(
                    [state['obs']]).to(self.device)
                commands_t = self._prepr.encode_commands(commands)
                commands_t = commands_t.to(self.device)
                q_vals = self.net.q_values(obs_t, commands_t)
                actions.append(np.argmax(q_vals))
        return actions, agent_states

The logic is quite straightforward, but it is still illustrative of how the preprocessing 
pipeline and DQN model are combined.

Training code
With all the preparations and preprocessing in place, the rest is almost the same as 
we have covered before, so I won't repeat the training code; I will just describe the 
training logic.

To train the model, the Chapter15/train_basic.py utility has to be used. It allows 
several command-line arguments to change the training behavior:

• -g or --game: This is the prefix of the game files in the games directory. The 
provided script generates several games named simpleNN.ulx, where NN 
is the game seed.

• -s or --suffices: This is the count of games to be used during the training. 
If you specify 1 (which is the default), the training will be performed only on 
the file simple1.ulx. If option -s 10 is given, 10 games with indices 1…10 
will be registered and used for training. This option is used for generalization 
experiments, which will be explained in the following section.

• -v or --validation: This is the suffix of the game to be used for validation. 
It is -val by default and defines the game file that will be used to check the 
generalization of our trained agent.

• --params: This means the hyperparameters to be used. Two sets are defined 
in lib/common.py: small and medium. The first one has a small number 
of embeddings and encoder vectors, which is great for solving a couple 
of games quickly; however, this set struggles with converging when many 
games are used for training.
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• --cuda: This enables CUDA training.
• -r or --run: This is the name of the run and is used in the name of the save 

directory and TensorBoard.

During the training, validation is performed every 100 training iterations and 
runs the validation game on the current network. The reward and the number of 
steps are recorded in TensorBoard and help us to understand the generalization 
capabilities of our agent. Generalization in RL is known to be a large issue. With 
a limited set of trajectories, the training process has a tendency to overfit to some 
states, which doesn't guarantee good behavior on unseen games. In comparison to 
Atari games, where the gameplay normally doesn't change much, the variability of 
interactive fiction games might be high, due to different quests, objects, and the way 
they communicate. So, it's an interesting experiment to check how our agent is able 
to generalize between games.

Training results
By default, the script games/make_games.sh generates 20 games with names from 
simple1.ulx to simple20.ulx, plus a game for validation: simple-val.ulx.

To begin, let's train the agent on one game, using the small hyperparameters set:

$ ./train_basic.py  -s 1 --cuda -r t1

Option -s specifies the number of game indices that will be used for training. In this 
case, only one will be used. The training stops when the average number of steps in 
the game drops below 10, which means the agent has found the proper sequence of 
steps and can reach the end of the game in an efficient way.

In the case of one game, it takes just half an hour and about 300 episodes to solve the 
game. The following charts show the reward and number of steps dynamics during 
the training.
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Figure 15.4: The reward and steps dynamics for training on one game

But if we check the validation reward (which is a reward obtained on the game 
simple-val.ulx), we see zero improvement over time. In my case, which is shown 
in Figure 15.5, validation got a negative reward by doing something weird.

Figure 15.5: The validation reward for one game
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If we try to increase the number of games used for the training, the convergence will 
require more time, as the network needs to discover more sequences of actions in 
different states. The following are the same charts for reward and steps for 10 games 
(with option -s 10 passed).

Figure 15.6: The reward and steps dynamics on 10 games

As you can see, it takes more than three hours to converge, but still our small 
hyperparameter set is able to improve the performance on 10 games played during 
the training. Unfortunately, the validation metrics are still not that great. In the 
middle of the training, the network was able to do one right action in the sequence 
(out of a total of five), but there was no improvement over time.

Figure 15.7: The reward obtained on the validation game during training on 10 games
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Increasing the number of games doesn't improve the situation much: the agent is still 
able to improve the reward on all the games, but it just takes longer to converge. Yet 
the validation game still took only one proper step.

To increase the network capacity, I experimented with a larger set of 
hyperparameters, which has both larger embeddings dimensionality (128 versus 20) 
and a larger encoder vector size (256 versus 20). It also has a larger replay size and 
anneals the epsilon parameter for longer. To switch to this set of hyperparameters, 
the command-line option --params medium needs to be used. This option specifies 
the entry in the dictionary defined in lib/common.py, so you can add your own set 
of hyperparameters for experimentation.

To compare the effect of increasing the model capacity, the following charts were 
obtained from training on 25 games in the medium and small hyperparameters sets.

Figure 15.8: Reward and steps for different hyperparameters trained on 25 games

As you can see, the larger network was able to solve the games almost two times 
faster than the small one. But the following validation chart shows the opposite 
result. The small network got a better validation score than the medium one, 
which is also not surprising, as the larger network has more capacity to overfit  
to the trained episodes. 
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The small network needs to find the efficient representation of all the states it sees, 
which is more likely to be useful in unseen games.

Figure 15.9: The validation reward for different hyperparameters on 25 games

The practical takeaway from this is that if your setup allows you to train on all 
regimes of your environment, you can consider increasing the network size to learn 
faster. But if there is the chance of something new and unusual, it might be safer to 
train a smaller network for a longer time, to finally get a more robust network. Of 
course, it's not a universal solution to this tricky problem of RL generalization and 
handling unseen data, but it's just something to keep in mind.

Figure 15.10 shows the results of my final extreme experiment, with 200 games used 
for training on medium hyperparameters. It was able to solve all of them, but took 
about 12 hours to converge.

Figure 15.10: The results on 200 games used for training



Chapter 15

[ 433 ]

But, unfortunately, even with the large number of games, the validation wasn't able 
to get above reward=1 per episode. Maybe even more games are needed, some bug 
is present in the code, or other improvements are needed. Overall, there is a lot of 
room for experimentation. For example, if, during validation, the agent gets stuck 
in some state and makes a choice to take the same action over and over again, we 
can push it from this local optimum and select the second largest Q-value.

Figure 15.11: Validation results for 200 games

The command generation model
In this part of the chapter, we will extend our baseline model with an extra 
submodule that will generate commands that our DQN network should evaluate. 
In the baseline model, commands were taken from the admissible commands list, 
which was taken from the extended information from the environment. But maybe 
we can generate commands from the observation using the same techniques that we 
covered in the previous chapter.
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The architecture of our new model is shown in Figure 15.12.

Figure 15.12: The architecture of the DQN with command generation

In comparison with Figure 15.3 from earlier in the chapter, there are several changes 
here. First of all, our preprocessor pipeline no longer accepts a command sequence in 
the input. The second difference is that the preprocessor's output now not only gets 
passed to the DQN model, but it also forks to the "Commands generator" submodule.

The responsibility of this new submodule is to produce several commands to be 
evaluated by the DQN network for potential reward. Once commands are generated, 
they are processed by the LSTM encoder in the same way they were before to 
convert the sequence into a fixed-size command representation.

Zooming in, the "Command generator" submodule includes the already familiar 
LSTM network, accompanied by a single-layer feed-forward network to convert the 
LSTM output into our vocabulary probability logits. The structure of the "Command 
generator" block is shown in the following figure:

Figure 15.13: The command generator internal structure and connections
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The model is very similar to the one we used in our example in Chapter 14, Training 
Chatbots with RL. At the first step of the command generator application, we feed 
an observation vector produced by encoders into the hidden state of the LSTM. 
On input, it gets a special start of the sequence token. The output from the LSTM is 
transformed by the feed-forward network, which produces a probability distribution 
over the token vocabulary. To get the actual produced token, we sample from this 
distribution, then this token is passed as an input to the subsequent step. Some 
output tokens are treated specially; for example, an end of the sequence token is used 
as a separator between commands. So, basically, that's just a classical left-to-right 
language model applied to our game commands.

The training of our example will be done in two steps:

1. First, we will do pretraining of the language model and preprocessor using 
the game states and admissible commands provided by the environment. 
As an objective, classical cross-entropy loss between commands produced 
by the command generator and the true list of admissible commands will be 
used. When this step reaches a point at which we can generate commands 
that are understood by the game, we will go to the next training step.

2. As the second and final step, we will freeze the weights of the preprocessor 
and command generator networks and train the command encoder and 
DQN network.

That's not the only option, and I'm not even sure that's the optimal way to do it. It 
was chosen for simplicity, and you can always experiment and try your own ideas.

As the code is complex and lengthy, I have included only the important parts of 
the implementation in the following section. The complete example can be found 
in Chapter15/train_lm.py and dependent modules.

Implementation
Let's start with the command generator, as it is the most complicated new piece in 
this example. It resides in lib/model.py, class CommandModel.

class CommandModel(nn.Module):
    def __init__(self, obs_size: int, dict_size: int,
                 embeddings: nn.Embedding, max_tokens: int,
                 max_commands: int, start_token: int,
                 sep_token: int):
        super(CommandModel, self).__init__()

        self.emb = embeddings
        self.max_tokens = max_tokens
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        self.max_commands = max_commands
        self.start_token = start_token
        self.sep_token = sep_token

        self.rnn = nn.LSTM(
            input_size=embeddings.embedding_dim,
            hidden_size=obs_size, batch_first=True)
        self.out = nn.Linear(in_features=obs_size,
                             out_features=dict_size)

The constructor accepts a lot of arguments, defining the dimensionality of the 
input observation vector, the count of tokens, the embeddings to be used, and the 
token IDs for the start and separator tokens. The arguments max_tokens and max_
commands specify the limits of tokens in each command generator and the count of 
commands we want to produce. Those limits are needed, as our command model 
can easily go overboard and start to generate very long commands, which doesn't 
make much sense. As our games normally have quite short commands, we can set 
this limitation in advance. In the constructor's body, we create both the LSTM and 
output transformation layers.

    def forward(self, input_seq, obs_t):
        hid_t = obs_t.unsqueeze(0)
        output, _ = self.rnn(input_seq, (hid_t, hid_t))
        return self.out(output)

The forward method is quite simple, but this is offset by the class' complex and 
lengthy commands() method. In the forward pass, we apply LSTM and pass the 
observations vector in the hidden state. The LSTM layer has two tensors in the 
hidden state: one is the hidden state and the other is the cell state. For simplicity, I just 
pass the observation to both inputs, but it might not be the optimal thing to do. Zero 
tensors as the cell state might work better.

Now we will cover the last method in the class, which generates commands for the 
batch of observations. This method is complicated, as we generate the commands 
token by token and need to track the end-of-sequence condition.

    def commands(self, obs_batch):
        batch_size = obs_batch.size(0)
        commands = [[] for _ in range(batch_size)]
        cur_commands = [[] for _ in range(batch_size)]

        inp_t = torch.full((batch_size, ), self.start_token,
                           dtype=torch.long)
        inp_t = inp_t.to(obs_batch.device)
        inp_t = self.emb(inp_t)
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        # adding time dimension (dim=1, as batch_first=True)
        inp_t = inp_t.unsqueeze(1)
        # hidden state is inserted on first dim
        p_hid_t = obs_batch.unsqueeze(0)
        hid = (p_hid_t, p_hid_t)

In the beginning, we create the list for completed commands and the list with 
commands currently being built. Then, we create a tensor, inp_t, which at the first 
step has the same token for all entries in the batch: the start token. The LSTM layer's 
hidden state is constructed from observations provided on the input.

        while True:
            out, hid = self.rnn(inp_t, hid)
            out = out.squeeze(1)
            out_t = self.out(out)

            cat = t_distr.Categorical(logits=out_t)
            tokens = cat.sample()

On every loop iteration, we apply LSTM to the current token, convert the 
output from LSTM into a probability distribution, construct the utility class torch.
distributions.Categorical, and sample the next token from this distribution. 
The output is a LongTensor with tokens for every sample in the batch.

            for idx, token in enumerate(tokens):
                token = token.item()
                cur_commands[idx].append(token)
                if token == self.sep_token or \
                        len(cur_commands[idx]) >= self.max_tokens:
                    if cur_commands[idx]:
                        l = len(commands[idx])
                        if l < self.max_commands:
                            commands[idx].append(
                                cur_commands[idx])
                        cur_commands[idx] = []
                    if token != self.sep_token:
                        tokens[idx] = self.sep_token

Then, we iterate for every token in the produced batch and populate our commands 
lists. We need to process situations when LSTM generates commands longer than 
our limits and stop the command sequence.

            if min(map(len, commands)) == self.max_commands:
                break
            # convert tokens into input tensor
            inp_t = self.emb(tokens)



The TextWorld Environment

[ 438 ]

            inp_t = inp_t.unsqueeze(1)
        return commands

At the end of the loop, we check that we have got enough commands, and if that's 
the case, we return them from the function.

The next new class is the agent that uses the command generator to convert 
observations into actions. If you remember, at the beginning of the chapter, you saw 
the class TextWorldPreproc, one of the responsibilities of which was to transform 
the action space from a free-text string into the index in the admissible commands 
list. In this part of the chapter, our commands are generated, rather than chosen 
from the admissible commands list, so this transformation to the environment's 
action space is disabled using the use_admissible_commands=False option in 
the TextWorldPreproc constructor. In addition to that, this preprocessor class is 
extended to check for situations when generated commands are nonsense for the 
environment. In this case, we give a small negative reward to the agent. (Check 
how the reward_wrong_last_command option in TextWorldPreproc is handled.)

The following code is the CmdAgent class, which is used in the pretraining phase. Its 
responsibility is to generate an observation vector using the preprocessor pipeline, 
generate the list of commands, and return the randomly chosen command in the 
environment.

class CmdAgent(ptan.agent.BaseAgent):
    def __init__(self, env, cmd: CommandModel,
                 preprocessor: preproc.Preprocessor,
                 device = "cpu"):
        self.env = env
        self.cmd = cmd
        self.prepr = preprocessor
        self.device = device

    @torch.no_grad()
    def __call__(self, states, agent_states=None):
        if agent_states is None:
            agent_states = [None] * len(states)

        actions = []
        for state in states:
            obs_t = self.prepr.encode_sequences(
                [state['obs']]).to(self.device)
            commands = self.cmd.commands(obs_t)[0]
            cmd = random.choice(commands)
            tokens = [
                self.env.action_space.id2w[t]
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                for t in cmd
                if t not in {self.cmd.sep_token,
                             self.cmd.start_token}
            ]
            action = " ".join(tokens)
            actions.append(action)
        return actions, agent_states

The code is not very complicated, so I will leave it without much explanation.

The final piece in our pretraining phase is the way we calculate loss. That's the 
responsibility of the pretrain_loss function in lib/model.py.

def pretrain_loss(cmd: CommandModel, commands: List,
                  observations_t: torch.Tensor):
    commands_batch = []
    target_batch = []
    min_length = None

    for cmds in commands:
        inp = [cmd.start_token]
        for c in cmds:
            inp.extend(c[1:])
        commands_batch.append(inp[:-1])
        target_batch.append(inp[1:])
        if min_length is None or len(inp) < min_length:
            min_length = len(inp)

    commands_batch = [c[:min_length-1]
                      for c in commands_batch]
    target_batch = [c[:min_length-1]
                    for c in target_batch]

In the first half of the function, we take the input batch, every item of which is a 
list of commands, and linearize this list into the single sequence that we expect our 
command generator to learn. As every command includes start and stop sequence 
tokens, we get rid of them in our target and input sequences. Then, we trim the batch 
on the shortest sequence.

    commands_t = torch.tensor(commands_batch, dtype=torch.long)

    commands_t = commands_t.to(observations_t.device)

    target_t = torch.tensor(target_batch, dtype=torch.long)

    target_t = target_t.to(observations_t.device)

    input_t = cmd.emb(commands_t)

    logits_t = cmd(input_t, observations_t)
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    logits_t = logits_t.view(-1, logits_t.size()[-1])

    target_t = target_t.view(-1)
    return F.cross_entropy(logits_t, target_t)

When the preparation steps have been completed, we convert our sequences into the 
tensor, apply embeddings, and convert the result into the logits using the command 
generator. Then, we apply cross-entropy loss to drive the command generator 
toward the desired sequences.

Pretraining results
By default, the program train_lm.py starts the pretraining of the command 
generator mode, and once it reaches the average reward of –0.5, it switches to DQN 
training. During the training, the initial reward starts from values of –5, as there are 
50 steps in the environment, and for every bad command that is not understood by 
the environment, the agent gets a reward of –0.1. So, getting an average reward of 
–0.5 means our command generator is good enough to generate valid commands, 
which don't necessarily give a positive reward, but at least make sense for the 
TextWorld environment.

Figure 15.14: Reward and loss for pretraining on one game with a "small" hyperparameter set



Chapter 15

[ 441 ]

Figure 15.15: Reward and loss for pretraining on one game with "medium" hyperparameters

From these results, it's obvious that the medium hyperparameter set has a much 
larger capacity for learning the data, which suggests a further increase of the model's 
complexity (which is left for the reader to explore). Another, less obvious, conclusion 
is that pretraining is much faster than baseline training. From the metrics, the speed 
of pretraining is ~35 observations per second, whereas the baseline is ~5.

With a larger number of games used for training, the difference between small 
and medium models is much more vivid. For example, Figure 15.16 shows the 
comparison between two setups on five games.

Figure 15.16: Reward and steps for different model sizes with five games
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DQN training code
The second phase of the training comes after the command generator has 
mastered generating command sequences that are good enough not to surprise 
the environment too much. At this stage, we freeze the preprocessor pipeline 
and the command generator, and start training the DQN and command encoder 
networks the same way we did for our baseline version. But the code is different, 
as our architecture has been modified. For instance, the agent now needs to ask the 
command generator to produce the list of commands to be evaluated by the DQN 
network. The new agent has been implemented in the CmdDQNAgent class in lib/
model.py. The logic is quite straightforward, so I won't include it here.

What might be interesting to look at is how the loss is calculated. It is implemented 
in two functions: unpack_batch_dqncmd and calc_loss_dqncmd in lib/model.py.

@torch.no_grad()
def unpack_batch_dqncmd(batch, prep: preproc.Preprocessor,
                        cmd: CommandModel,
                        cmd_encoder: preproc.Encoder,
                        net: DQNModel, env: gym.Env):
    observations, taken_actions, rewards = [], [], []
    not_done_indices, next_observations = [], []

    for idx, exp in enumerate(batch):
        observations.append(exp.state['obs'])
        taken_actions.append(
            env.action_space.tokenize(exp.action))
        rewards.append(exp.reward)
        if exp.last_state is not None:
            not_done_indices.append(idx)
            next_observations.append(exp.last_state['obs'])

    observations_t = prep.encode_sequences(observations)
    next_q_vals = [0.0] * len(batch)
    if next_observations:
        next_observations_t = \
            prep.encode_sequences(next_observations)
        next_commands = cmd.commands(next_observations_t)

        for idx, next_obs_t, next_cmds in \
                zip(not_done_indices,
                    next_observations_t,
                    next_commands):
            next_embs_t = prep._apply_encoder(
                next_cmds, cmd_encoder)
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            q_vals = net.q_values_cmd(next_obs_t, next_embs_t)
            next_q_vals[idx] = max(q_vals)

    return observations_t, taken_actions, rewards, next_q_vals

The responsibility of the unpack_batch_dqncmd function is to prepare the 
observations tensor, the list of tokenized commands executed, the immediate 
reward, and (what is most complicated to get) the best Q-values for the next state 
of the transition. To get the best Q-values, we generate commands for the next state, 
evaluate them using the DQN, and then take the maximum Q-value.

def calc_loss_dqncmd(batch, preprocessor, cmd,
                     cmd_encoder, tgt_cmd_encoder,
                     net, tgt_net, gamma, env, device="cpu"):
    obs_t, commands, rewards, next_best_qs = unpack_batch_dqncmd(
        batch, preprocessor, cmd, tgt_cmd_encoder, tgt_net, env)
    cmds_t = preprocessor._apply_encoder(commands, cmd_encoder)
    q_values_t = net(obs_t, cmds_t)
    tgt_q_t = torch.tensor(rewards) + \
              gamma * torch.tensor(next_best_qs)
    tgt_q_t = tgt_q_t.to(device)
    return F.mse_loss(q_values_t.squeeze(-1), tgt_q_t)

To calculate the loss, we unpack the batch, apply the encoder to the executed 
commands, and calculate the mean squared error between the value produced by 
the network and the Q-values approximation using the Bellman equation. There isn't 
anything new here, but you need to be careful with gradients. For example, it might 
be tempting to apply the command encoder in unpack_batch_dqncmd, but that 
would be wrong, as it will block gradients in our command encoder, which is not 
what we want.

The result of DQN training
After the pretraining step reaches the average reward of –0.5 (or, if you've become 
bored waiting, you can press Ctrl+C in the console), it switches to DQN training. 
Before that, it saves the weights of the command generator and preprocessor, so 
they can be loaded later by passing the save directory in the --load-cmd command-
line option.
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The following figures show the results of my experiments with models of 
various sizes.

Figure 15.17: The reward and loss of DQN training on "small" hyperparameters with one game

Figure 15.18: The reward and loss of DQN training on "medium" hyperparameters with one game

From these figures, you can see the same results as before: the learning capacity 
of the larger network is higher (it took the larger network only 30 minutes to get 
to 3.5 average reward). The performance of the DQN step is at ~12 observations 
per second.

In terms of generalization, the results are still not great. The small network showed 
some progress in the middle of the training, but it wasn't consistent. The following 
chart shows the validation reward for both networks.
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Figure 15.19: The validation reward for small and medium networks trained on one game

Summary
In this chapter, you have seen how DQN can be applied to interactive fiction games, 
which is an interesting and challenging domain at the intersection of RL and NLP. 
You learned how to handle complex textual data with NLP tools and experimented 
with fun and challenging interactive fiction environments, with lots of opportunities 
for future experimentations.

In the next chapter, we will continue our exploration of "RL in the wild" and check 
the applicability of methods in web automation.
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Web Navigation
We will now take a look at another practical application of reinforcement learning 
(RL): web navigation and browser automation.

In this chapter, we will:

• Discuss web navigation in general and the practical application of browser 
automation

• Explore how web navigation can be solved with an RL approach
• Take a deep look at one very interesting, but commonly overlooked and 

a bit abandoned, RL benchmark that was implemented by OpenAI, called 
Mini World of Bits (MiniWoB)

Web navigation
When the web was invented, it started as several text-only web pages interconnected 
by hyperlinks. If you're curious, here is the home of the first web page: http://
info.cern.ch/, with text and links. The only thing you can do is read the text and 
click on links to go between pages.

Several years later, in 1995, the Internet Engineering Task Force (IETF) published 
the HTML 2.0 specification, which had a lot of extensions to the original version 
invented by Tim Berners-Lee. Among these extensions were forms and form 
elements that allowed web page authors to add activity to their websites. Users could 
enter and change text, toggle checkboxes, select drop-down lists, and push buttons. 
The set of controls was similar to a minimalistic set of graphical user interface (GUI) 
application controls. The difference was that this happened inside the browser's 
window, and both the data and user interface (UI) controls that users interacted 
with were defined by the server's page, but not by the local installed application.

http://info.cern.ch/
http://info.cern.ch/
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Fast forward 22 years, and now we have JavaScript, HTML5 canvas, and office 
applications working inside our browsers. The boundary between the desktop 
and the web is so thin and blurry that you may not even know whether the app 
you're using is an HTML page or a native app. However, it is still the browser 
that understands HTML and communicates with the outside world using HTTP.

At its core, web navigation is defined as a process of a user interacting with the 
website or websites. The user can click on links, type text, or do any other actions 
to reach some goal, such as sending an email, finding out the exact dates of the 
French Revolution, or checking recent Facebook notifications. All this will be done 
using web navigation, so that leaves a question: can our program learn how to do 
the same?

Browser automation and RL
For a long time, automating website interaction focused on the very practical tasks 
of website testing and web scraping. Website testing is especially critical when 
you have some complicated website that you (or other people) have developed and 
you want to ensure that it does what it is supposed to do. For example, if you have 
a login page that was redesigned and is ready to be deployed on a live website, 
then you will want to be sure that this new design does sane things in case a wrong 
password is entered, the user clicks on I forgot my password, and so on. A complex 
website could potentially include hundreds or thousands of use cases that should 
be tested on every release, so all such functions should be automated.

Web scraping solves the problem of extracting data from websites at scale. For 
example, if you want to build a system that aggregates all prices for all pizza places 
in your town, you will potentially need to deal with hundreds of different websites, 
which could be problematic to build and maintain. Web scraping tools try to solve 
the problem of interacting with websites. Their functionality can vary from simple 
HTTP requests and subsequent HTML parsing to full emulation of the user moving 
the mouse, clicking buttons, thinking, and so on.

The standard approach to browser automation normally allows you to control the 
real browser, such as Chrome or Firefox, with your program, which can observe the 
web page data, like the Document Object Model (DOM) tree and an object's location 
on the screen, and issue the actions, like moving the mouse, pressing some keys, 
pushing the Back button or just executing some JavaScript code. The connection to 
the RL problem setup is obvious: our agent interacts with the web page and browser 
by issuing actions and observing some state. The reward is not that clear and should 
be task-specific, like successfully filling some form in or reaching the page with the 
desired information.
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Practical applications of a system that could learn browser tasks are related to the 
previous use cases. For example, in web testing for very large websites, it's extremely 
tedious to define the testing process using low-level browser actions like "move the 
mouse five pixels to the left, then press the left button." What you want to do is give 
the system some demonstrations and let it generalize and repeat the shown actions 
in all similar situations, or at least make it robust enough for UI redesign, button 
text change, and so on. Additionally, there are many cases when you don't know 
the problem in advance, for example, when you want the system to explore the 
weak points of the website, like security vulnerabilities. In that case, the RL agent 
could try a lot of weird actions very quickly, much faster than humans could. Of 
course, the action space for security testing is enormous, so random clicking won't 
be very competitive with experienced human testers. In that case, the RL-based 
system could, potentially, combine the prior knowledge and experience of humans 
but still keep the ability to explore and learn from this exploration.

Another potential domain that could benefit from RL browser automation is scraping 
and web data extraction in general. For example, you might want to extract some 
data from hundreds of thousands of different websites, like hotel websites, car 
rental agents, or other businesses around the world. Very often, before you get to 
the desired data, a form with parameters needs to be filled out, which becomes 
a very nontrivial task given the different websites' design, layout, and natural 
language flexibility. With such a task at hand, an RL agent can save tons of time 
and effort by extracting the data reliably and at scale.

The MiniWoB benchmark
Potential practical applications of browser automation with RL are attractive but 
have one very serious drawback: they're too large to be used for research and the 
comparison of methods. In fact, the implementation of a full-sized web scraping 
system could take months of effort from a team, and most of the issues would not 
be directly related to RL, like data gathering, browser engine communication, input 
and output representation, and lots of other questions that real production system 
development consists of.

By solving all those issues, we can easily miss the forest by looking at the trees. 
That's why researchers love benchmark datasets, like MNIST, ImageNet, the Atari 
suite, and many others. However, not every problem makes a good benchmark. 
On the one hand, it should be simple enough to allow quick experimentations 
and comparison between methods. On the other hand, the benchmark has to be 
challenging and leave room for improvements. For example, Atari benchmarks 
consist of a wide variety of games, from very simple games, which could be solved 
in half an hour (like Pong), to quite complex games that haven't been properly solved 
yet (like Montezuma's Revenge, which requires the complex planning of actions).
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To the best of my knowledge, there is only one such benchmark for the browser 
automation domain, which makes it even worse that this benchmark was 
undeservedly forgotten by the RL community. As an attempt to fix this issue, we 
will take a look at the benchmark in this chapter. Let's talk about its history first.

In December 2016, OpenAI published a dataset called MiniWoB that contains 80 
browser-based tasks. These tasks are observed on a pixel level (strictly speaking, 
besides pixels, a text description of tasks is given to the agent) and are supposed to 
be communicated with the mouse and keyboard actions using the Virtual Network 
Computing (VNC) client (https://en.wikipedia.org/wiki/Virtual_Network_
Computing). VNC is a standard remote-desktop protocol by which a VNC server 
allows clients to connect and work with a server's GUI applications using the mouse 
and keyboard via the network.

The 80 tasks vary a lot in terms of complexity and the actions required from the 
agent. Some tasks are very simple, even for RL, like "click on the dialog's close 
button," or "push the single button," but some require multiple steps, for example, 
"open collapsed groups and click on the link with some text," or "select a specific 
date using the date picker tool" (and this date is randomly generated every episode). 
Some of the tasks are simple for humans, but require character recognition, for 
example, "mark checkboxes with this text" (and the text is generated randomly). 
Screenshots of some MiniWoB problems are shown in the following figure:

Figure 16.1: MiniWoB environments

https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://en.wikipedia.org/wiki/Virtual_Network_Computing
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Unfortunately, despite the brilliant idea and challenging nature of MiniWoB, it was 
almost abandoned by OpenAI right after the initial release. As an attempt to right a 
wrong, in this chapter, we will take a closer look at this benchmark and learn how 
to write an agent solving some of the tasks. We will also discuss how to extract, 
preprocess, and incorporate human demonstrations into the training process, and 
check their effect on the final performance of the agents.

Before jumping into the RL part of the agent, we need to understand how MiniWoB 
works. To do this, we need to take a closer look at OpenAI Gym's extension, called 
OpenAI Universe.

OpenAI Universe
The core idea underlying OpenAI Universe (available at https://github.com/
openai/universe) is to wrap general GUI applications into an RL environment 
using the same core classes provided by Gym. To achieve this, it uses the VNC 
protocol to connect with the VNC server running inside the Docker (a standard 
method running lightweight containers) container, exposing the mouse and 
keyboard actions to the RL agent and providing the GUI application image as an 
observation.

The reward is provided by an external small rewarder daemon running inside the 
same container and giving the agent the scalar reward value based on this rewarder 
judgement. It is possible to launch several containers locally, or over the network, 
to gather episodes data in parallel, in the same way that we started several Atari 
emulators to increase the convergence of the asynchronous advantage actor-critic 
(A3C) method in Chapter 13, Asynchronous Advantage Actor-Critic. The architecture 
is illustrated in the following diagram:

Figure 16.2: The OpenAI Universe architecture

https://github.com/openai/universe
https://github.com/openai/universe
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This architecture allows quick integration of third-party applications into the RL 
framework, as you don't need to make any changes in the app itself; you just need 
to package it as a Docker container and write a relatively small rewarder daemon 
that uses a simple text protocol to communicate. On the other side, this approach is 
much more resource-intensive compared with, for example, Atari games, for which 
the emulator is relatively lightweight and works completely inside the RL agent's 
process. The VNC approach requires a VNC server to be started side by side with 
the application, and the rate of the RL agent's communication with the application 
is defined by the VNC server speed and network throughput (in the case of remote 
Docker containers).

Installation
As both Universe and MiniWoB were abandoned, their dependencies weren't 
updated for a long time, so the main environment you have created for this 
book's examples won't work here. In particular, Universe depends on the old 
Gym version, which has a set of incompatible changes. To solve the issue, you can 
create a separate Python environment with Universe and the old Gym, but with 
the latest PTAN and PyTorch versions. To do this, you can create a fresh Python 
3.6 virtual environment (later versions of Python won't work), set up Universe 
with pip install universe, and only then set up other dependencies, like PTAN 
and PyTorch.

If you're using Anaconda (which I strongly recommend), you can create 
the environment with one command, conda env create -f Chapter13/
environment.yml, which will make a new environment named rl_book_ch16 
with all dependencies installed.

In any case, that's a bit of a hassle caused by the discontinuation of MiniWoB 
support. There is an attempt to continue the development of MiniWoB, called 
MiniWoB++ (https://github.com/stanfordnlp/miniwob-plusplus) from 
the Stanford NLP Group, but due to a major change in the underlying platform 
(MiniWoB++ uses Selenium (https://selenium.dev/) for the browser 
automation) part of the examples in this chapter require a major rewrite.

Another component required by Universe is Docker, which is available on most 
modern operating systems. To install it, refer to Docker's website: https://www.
docker.com. Universe gives you the flexibility of where and how to start the 
containers, so your agent can connect to one or many remote machines with Docker 
installed. To check that Docker is up and running, try the command docker ps, 
which shows running containers.

https://github.com/stanfordnlp/miniwob-plusplus
https://selenium.dev/
https://www.docker.com
https://www.docker.com
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Actions and observations
In contrast to Atari games, or other Gym environments that we have worked with 
so far, Universe exposes a much more generic action space. Atari games used six-
to-seven discrete actions, corresponding to the controller's buttons and joystick 
directions. CartPole's action space is even smaller, with just two actions available. 
However, VNC gives our agent much more flexibility in terms of what it can do. 
First of all, the full keyboard, with control keys and the up/down state of every 
key, is exposed. So, your agent can decide to press 10 buttons simultaneously and 
it will be totally fine from a VNC point of view. The second part of the action space 
is the mouse: you can move the mouse to any coordinate and control the state of its 
buttons. This significantly increases the dimensionality of the action space that the 
agent needs to learn how to handle.

Besides the larger action space, the Universe environment has slightly different 
environment semantics compared to the Gym environments. The difference is in 
two aspects. The first is the so-called vectorized representation of the observations, 
actions, and reward. As you can see in Figure 16.2, one environment could be 
connected to several Docker containers running the same application and gather 
parallel experience from them. Such parallel communication allows policy gradient 
methods to obtain more diverse training samples, but now we need to specify which 
exact application we need to send the action to with the env.step() call. To solve 
this, the Universe environment's step() method requires not a single action, but 
a list of actions for every connected container. The return from this function is also 
vectorized and now consists of a tuple of lists: (observations, rewards, done_
flags, infos).

The second difference is dictated by the VNC protocol's asynchronous nature of 
observations and actions. In the Atari environment, every call to step() triggers 
the request to the emulator to move forward one clock tick (which is 1/25 of 
second), so our agent could block the emulator for a while and it would be 
completely transparent for the running game. With VNC, this is not the case. As 
the GUI application is running in parallel to our client, we can't block it anymore. 
If our agent decides to think for a while, it can miss observations that happened 
during that time.

Another implication of the asynchronous nature of the observations is the situation 
when the container is not ready yet or is in the middle of resetting. In that case, the 
specific observation can be None, and those situations need to be handled by the 
agent.
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Environment creation
To create the Universe environment, you need, as before, to call gym.make() with 
the environment ID. For example, a very simple problem from the MiniWoB set is 
wob.mini.ClickDialog-v0, which requires you to close the dialog by clicking on 
the × button. However, before the environment can be used, you need to configure 
it by specifying where and how many Docker instances you want. There is a special 
method of the environment called configure(). This method needs to be called 
before any other methods of the environment. It accepts several arguments.

The most important arguments are as follows:

• remotes: A parameter, which could be a number or a string. If it's specified 
as a number, it gives the number of local containers that need to be started 
for the environment. As a string, this parameter can specify the URL of 
already-running containers that the environment needs to connect in the 
form of vnc://host1:port1+port2,host2:port1+port2. The first port 
is a VNC protocol port (5900 by default). The second port is a port of 
the rewarder daemon, which is, by default, 15900. Both ports could be 
redefined on the Docker container launch.

• fps: An argument giving the expected frames per second (FPS) for the 
agent's observations.

• vnc_kwargs: An argument that has to be a dict, with extra VNC protocol 
parameters, defining the compression level and the quality of the image 
to be transferred to the agent. Those parameters are very important for 
performance, especially for containers running in the cloud.

To illustrate this, let's consider a very simple program that starts a single container 
with the ClickDialog problem and obtains its first observation as an image. This 
example is available in Chapter16/adhoc/wob_create.py.

#!/usr/bin/env python3
import gym
import universe
import time

from PIL import Image
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This example is very simple, so we need only a very small set of packages. Importing 
the universe package is required despite it not being used, as with this import it 
registers its environments in Gym.

if __name__ == "__main__":
    env = gym.make("wob.mini.ClickDialog-v0")

    env.configure(remotes=1, fps=5, vnc_kwargs={
        'encoding': 'tight', 'compress_level': 0,
        'fine_quality_level': 100, 'subsample_level': 0
    })
    obs = env.reset()

Next, we create our environment and ask it to configure itself. The passed arguments 
specify that only one local container will be started (five FPS) and the VNC 
connection will run without image compression. This will mean that a large amount 
of traffic is passed between the VNC server and VNC client, which will prevent 
compression artefacts from appearing in the image. This could be required for 
MiniWoB problems showing text in a relatively small font size.

    while obs[0] is None:
        a = env.action_space.sample()
        obs, reward, is_done, info = env.step([a])
        print("Env is still resetting...")
        time.sleep(1)

While our single observation is None (we expect only one observation in a returned 
list, as we have asked only for one remote container), we pass random actions to the 
environment, waiting for the image to appear.

    print(obs[0].keys())
    im = Image.fromarray(obs[0]['vision'])
    im.save("image.png")
    env.close()

When, finally, we have got the image from the server, we save it as a PNG file, 
shown in Figure 16.3. In MiniWoB problems, the image is not the only observation 
we get. In fact, the observation from the environment is a dict with two entries: 
vision, containing a NumPy array with screen pixels, and text, containing the 
text description of the problem. For some problems, only the image is required, 
but for some tasks from the MiniWoB suite, the text includes essential information 
for solving the problem, like which color area to click on or what dates need to be 
selected.
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The following image was cropped, as the original resolution of the observation is 
1024×768.

Figure 16.3: Part of a MiniWoB observation image

MiniWoB stability
My experiments with the original MiniWoB Docker image, published by OpenAI, 
have shown one serious issue: sometimes the server-side Python script, which 
controls the browser inside the container, crashes. This leads to training problems, 
as our environment loses the connection to the container and the training stops. 
The solution for this issue is a one-line change, but it is complicated by the fact that 
OpenAI doesn't support MiniWoB and doesn't accept the fixes. To resolve the issue, 
I had to apply the patch inside the container. There is another small patch related 
to human demonstration that fixes the issue with recording files being overwritten 
between episodes. The patched image with both fixes was pushed into my Docker 
Hub repository and is available as the shmuma/miniwob:v2 label, so you can use it 
instead of the original quay.io/openai/universe.world-of-bits:0.20.0 image. 
If you're curious, I've placed the patches and instructions on how to apply them in 
the code sample repository: Chapter16/wob_fixes.

The simple clicking approach
As the first demo, let's implement a simple A3C agent that decides where it should 
click given the image observation. This approach can solve only a small subset of 
the full MiniWoB suite, and we will discuss restrictions of this approach later. For 
now, it will allow us to get a better understanding of the problem.
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As with the previous chapter, due to its size, I won't put the complete source code 
here. We will focus on the most important functions and I will provide the rest as an 
overview. The complete source code is available in the GitHub repository.

Grid actions
When we talked about Universe's architecture and organization, it was mentioned 
that the richness and flexibility of the action space creates a lot of challenges for 
the RL agent. MiniWoB's active area inside the browser is just 160×210 (exactly the 
same dimension that the Atari emulator has), but even with such a small area, our 
agent could be asked to move the mouse, perform clicks, drag objects, and so on. 
Just the mouse alone could be problematic to master, as, in the extreme case, there 
could be an almost infinite number of different actions that the agent could perform, 
like pressing the mouse button at some point and dragging the mouse to a different 
location. In our example, we will simplify our problem a lot by just considering 
clicks at some fixed grid points inside the active webpage area. The sketch of our 
action space is as follows:

Figure 16.4: A grid action space
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This approach is already implemented in Universe as an action wrapper: universe.
wrappers.experimental.action_space.SoftmaxClickMouse. It has all the 
defaults preset for MiniWoB environments: a 160×210 region shifted 10 pixels to 
the right and 75 pixels down (to get rid of the browser's frames). The grid of actions 
is 10×10, which gives 256 final actions to choose from.

Besides the action preprocessor, we definitely need an observation preprocessor, 
as the input image from the VNC environment is a 1024×768×3 tensor, but the 
active area of MiniWoB is just 210×160. There is no suitable cropper defined, so I 
implemented it myself as a class, lib.wob_vnc.MiniWoBCropper, which is in the 
Chapter16/lib/wob_vnc.py library module. Its code is very simple and is shown 
here:

WIDTH = 160
HEIGHT = 210
X_OFS = 10
Y_OFS = 75

class MiniWoBCropper(vectorized.ObservationWrapper):
    def __init__(self, env, keep_text=False):
        super(MiniWoBCropper, self).__init__(env)
        self.keep_text = keep_text

    def _observation(self, observation_n):
        res = []
        for obs in observation_n:
            if obs is None:
                res.append(obs)
                continue
            img = obs['vision'][Y_OFS:Y_OFS+HEIGHT,
                                X_OFS:X_OFS+WIDTH, :]
            img = np.transpose(img, (2, 0, 1))
            if self.keep_text:
                t_fun = lambda d: d.get('instruction', '')
                text = " ".join(map(t_fun, obs.get('text', [{}])))
                res.append((img, text))
            else:
                res.append(img)
        return res

The optional keep_text argument in the constructor enables the mode to preserve 
the text description of the problem. We don't need it at the moment, and our first 
version of the agent will always keep it disabled. In this mode, MiniWoBCropper 
returns the NumPy array with the shape (3, 210, 160).
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Example overview
With decisions about actions and observations made, our next steps are 
straightforward. We will use the A3C method to train the agent, which should 
decide from the 160×210 observation which grid cell to click. Besides the policy, 
which is a probability distribution over 256 grid cells, our agent estimates the value 
of the state, which will be used as a baseline in policy gradient estimation.

There are several modules in this example:

• Chapter16/lib/common.py: Methods shared among examples in this 
chapter, including the already-familiar RewardTracker and unpack_batch 
functions

• Chapter16/lib/model_vnc.py: Includes a definition of the model, which 
will be shown in the next section

• Chapter16/lib/wob_vnc.py: Includes MiniWoB-specific code, like the 
observation cropper, environment configuration method, and other utility 
functions

• Chapter16/wob_click_train.py: The script used to train the model
• Chapter16/wob_click_play.py: The script that loads the model weights 

and uses them against the single environment, recording observations and 
counting statistics about the reward

The model
The model is very straightforward and uses the same patterns that you have seen 
in other A3C examples. I haven't spent much time optimizing and fine-tuning 
the architecture and hyperparameters, so it's likely that the final result could be 
improved significantly. The following is the model definition with two convolution 
layers, a single-layered policy, and value heads.

class Model(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(Model, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 64, 5, stride=5),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, stride=2),
            nn.ReLU(),
        )

        conv_out_size = self._get_conv_out(input_shape)
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        self.policy = nn.Linear(conv_out_size, n_actions)
        self.value = nn.Linear(conv_out_size, 1)

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        fx = x.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)
        return self.policy(conv_out), self.value(conv_out)

The training code
The training script is in Chapter16/wob_click_train.py and should be very 
familiar, but I put it here because it contains several Universe- and MiniWoB-specific 
pieces. This script can work in two modes: with and without human demonstrations. 
Currently we're considering only training from scratch, but some code is related to 
demonstrations and should be ignored for now. We will look at it in the appropriate 
section later.

import os
import gym
import random
import universe
import argparse
import numpy as np
from tensorboardX import SummaryWriter

from lib import wob_vnc, model_vnc, common, vnc_demo

import ptan

import torch
import torch.nn.utils as nn_utils
import torch.nn.functional as F
import torch.optim as optim

There is not much to say about the used modules, except the new universe. It 
might look unused, but you still need to import it. As mentioned earlier, on import 
it registers new environments in Gym's repository so they become available on the 
gym.make() call.

REMOTES_COUNT = 8
ENV_NAME = "wob.mini.ClickDialog-v0"
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GAMMA = 0.99
REWARD_STEPS = 2
BATCH_SIZE = 16
LEARNING_RATE = 0.0001
ENTROPY_BETA = 0.001
CLIP_GRAD = 0.05
DEMO_PROB = 0.5
SAVES_DIR = "saves"

The hyperparameters section is also mostly the same, except that a couple of 
hyperparameters are new. First of all, REMOTES_COUNT specifies the number of 
Docker containers that we will try to connect. By default, our training script assumes 
that those containers have already started on one machine and we can connect to 
them on predefined ports (5900..5907 for VNC connection and 15900..15907 for 
the rewarder daemon). We will look at the details of starting containers in the next 
section.

The parameter ENV_NAME specifies the problem that we will try to attack, and it could 
be redefined with the command-line arguments. The problem ClickDialog is very 
simple and gives the reward to the agent for clicking on the dialog's close button.

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-n", "--name", required=True,
                        help="Name of the run")
    parser.add_argument("--cuda", default=False,
                        action='store_true', help="CUDA mode")
    parser.add_argument("--port-ofs", type=int, default=0,
                        help="Offset for container's ports, "
                             "default=0")
    parser.add_argument("--env", default=ENV_NAME,
                        help="Environment name to solve, "
                             "default=" + ENV_NAME)
    parser.add_argument("--demo", help="Demo dir to load. "
                                       "Default=No demo")
    parser.add_argument("--host", default='localhost',
                        help="Host with docker containers")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

We have many command-line options, and you can use them to tweak the training 
behavior. There is only one required option to pass the name of the run, which will 
be used for TensorBoard and the directory to save the model's weights. 
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The parameter --demo should be ignored for now, as it is related to human 
demonstrations.

    env_name = args.env
    if not env_name.startswith('wob.mini.'):
        env_name = "wob.mini." + env_name

    name = env_name.split('.')[-1] + "_" + args.name

    writer = SummaryWriter(comment="-wob_click_" + name)

    saves_path = os.path.join(SAVES_DIR, name)

    os.makedirs(saves_path, exist_ok=True)

After arguments are parsed, we normalize the environment name (all MiniWoB 
environments start with the wob.mini. prefix, so we don't require it to be specified 
in the command line), start the TensorBoard writer, and create the directory for the 
models.

    demo_samples = None
    if args.demo:
        demo_samples = vnc_demo.load_demo(args.demo, env_name)
        if not demo_samples:
            demo_samples = None
        else:
            print("Loaded %d demo samples, will use them "
                  "during training" % len(demo_samples))

The preceding piece of code is related to demonstrations and should be ignored for 
now.

    env = gym.make(env_name)
    env = universe.wrappers.experimental.SoftmaxClickMouse(env)
    env = wob_vnc.MiniWoBCropper(env)
    wob_vnc.configure(env, wob_vnc.remotes_url(
        port_ofs=args.port_ofs, hostname=args.host,
        count=REMOTES_COUNT))

To prepare the environment, we ask Gym to create it, wrap it into the 
SoftmaxClickMouse wrapper described before, and then apply our cropper. 
However, this environment is not ready to be used yet. To complete the initialization, 
we need to configure it using utility functions in the wob_vnc module. Their goal is 
to call the env.configure() method with arguments specifying VNC connection 
parameters, like image quality, compression level, and the addresses of Docker 
containers that we want to connect. Those connection endpoints are specified in a 
URL of a special form, generated by the function wob_vnc.remotes_url(). 



Chapter 16

[ 463 ]

This URL has the form of vnc://host:port1+port2,host:port1+port2 and 
allows a single environment to communicate with any number of Docker containers 
running on multiple hosts.

    net = model_vnc.Model(input_shape=wob_vnc.WOB_SHAPE,
                          n_actions=env.action_space.n).to(device)
    print(net)
    optimizer = optim.Adam(net.parameters(),
                           lr=LEARNING_RATE, eps=1e-3)

    agent = ptan.agent.PolicyAgent(
        lambda x: net(x)[0], device=device, apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        [env], agent, gamma=GAMMA, steps_count=REWARD_STEPS,
        vectorized=True)

Before the training can be started, we create the model, the agent, and the 
experience source from the PTAN library. The only new thing here is the argument 
vectorized=True, which tells the experience source that our environment is 
vectorized and returns multiple results in one call.

    best_reward = None
    with common.RewardTracker(writer) as tracker:
        with ptan.common.utils.TBMeanTracker(
                writer, batch_size=10) as tb_tracker:
            batch = []
            for step_idx, exp in enumerate(exp_source):
                rewards_steps = exp_source.pop_rewards_steps()
                if rewards_steps:
                    rewards, steps = zip(*rewards_steps)
                    tb_tracker.track("episode_steps",
                                     np.mean(steps), step_idx)

                    mean_reward = tracker.reward(np.mean(rewards),
                                                 step_idx)
                    if mean_reward is not None:
                        if best_reward is None or \
                                mean_reward > best_reward:
                            if best_reward is not None:
                                name = "best_%.3f_%d.dat" % (
                                    mean_reward, step_idx)
                                fname = os.path.join(
                                    saves_path, name)
                                torch.save(net.state_dict(), fname)
                                print("Best reward updated: %.3f "
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                                      "-> %.3f" % (
                                    best_reward, mean_reward))
                            best_reward = mean_reward
                batch.append(exp)
                if len(batch) < BATCH_SIZE:
                    continue

In the beginning of the training loop, we ask our experience source for new 
experience objects and pack them into the batch. In the meantime, we track 
the average undiscounted reward, and if it updates the maximum, we save the 
model's weight.

                if demo_samples and random.random() < DEMO_PROB:
                    random.shuffle(demo_samples)
                    demo_batch = demo_samples[:BATCH_SIZE]
                    model_vnc.train_demo(
                        net, optimizer, demo_batch, writer,
                        step_idx, device=device)

The preceding piece of code is relevant to demonstrations and should be ignored 
for now.

                states_v, actions_t, vals_ref_v = \
                    common.unpack_batch(
                        batch, net, device=device,
                        last_val_gamma=GAMMA ** REWARD_STEPS)
                batch.clear()

When the batch is complete, we unpack it into individual tensors and perform 
the A3C training procedure: calculate the value loss to improve the value head 
estimation and calculate the policy gradient using the value as a baseline for the 
advantage.

                optimizer.zero_grad()
                logits_v, value_v = net(states_v)

                loss_value_v = F.mse_loss(
                    value_v.squeeze(-1), vals_ref_v)

                log_prob_v = F.log_softmax(logits_v, dim=1)
                adv_v = vals_ref_v - value_v.detach()
                lpa = log_prob_v[range(BATCH_SIZE), actions_t]
                log_prob_actions_v = adv_v * lpa
                loss_policy_v = -log_prob_actions_v.mean()

                prob_v = F.softmax(logits_v, dim=1)
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                ent_v = prob_v * log_prob_v
                entropy_loss_v = ENTROPY_BETA * ent_v
                entropy_loss_v = entropy_loss_v.sum(dim=1).mean()

To improve exploration, we add the entropy loss calculated as a scaled negative 
entropy of the policy.

                loss_v = loss_policy_v + entropy_loss_v + \
                         loss_value_v
                loss_v.backward()
                nn_utils.clip_grad_norm_(
                    net.parameters(), CLIP_GRAD)
                optimizer.step()

                tb_tracker.track("advantage", adv_v, step_idx)
                tb_tracker.track("values", value_v, step_idx)
                tb_tracker.track("batch_rewards", vals_ref_v,
                                 step_idx)
                tb_tracker.track("loss_entropy", entropy_loss_v,
                                 step_idx)
                tb_tracker.track("loss_policy", loss_policy_v,
                                 step_idx)
                tb_tracker.track("loss_value", loss_value_v,
                                 step_idx)
                tb_tracker.track("loss_total", loss_v, step_idx)

Then, we track the key quantities with TensorBoard to be able to monitor them 
during the training.

Starting containers
Before the training can be started, you need to have Docker containers with 
MiniWoB started. Universe provides an option to start them automatically. To do 
this, you need to pass the integer value to the env.configure() call; for example, 
env.configure(remotes=4) will start four Docker containers with MiniWoB 
locally.

Despite the simplicity of this start mode, it has several disadvantages:

• You have no control over the containers' location, so all containers will be 
started locally. This is not convenient when you want them to be started  
on a remote machine or multiple machines.
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• By default, Universe starts the container published in quay.io (at the time 
of writing, it's image quay.io/openai/universe.world-of-bits with 
version 0.20.0), which has a serious bug in the reward calculation. Due to 
this, your training process can crash from time to time, which is not good 
when training can take days. There is an option to env.configure(), called 
docker_image, which allows you to redefine the image used to start, but 
you need to hard-code the image into the code.

• The starting tuple of containers has an overhead, so your training has to 
wait before all the containers start.

As an alternative, I find it much more flexible to start Docker containers in advance. 
In that case, you need to pass to env.configure() a URL pointing the environment 
to the hosts and ports that it has to be connected with. To start the container, you 
need to run the following command:

docker run -d -p 5900:5900 -p 15900:15900--privileged --ipc host --cap-
add SYS_ADMIN <CONTAINER_ID> <ARGS>

The meanings of the arguments are as follows:

1. -d starts the container in detach mode. To be able to see the container's logs, 
you can replace this option with -t. In that case, the container will be started 
interactively and can be stopped with Ctrl + C.

2. -p SRC_PORT:TGT_PORT forwards the source port from the container's host 
to the target port inside the container. This option allows you to start several 
MiniWoB containers on one machine. Every container starts the VNC server 
listening on port 5900 and the rewarder daemon on port 15900. Argument-p 
5900:5900 makes the VNC server available on port 5900 on the host 
machine (the machine running the container). For the second container, you 
should pass -p 5901:5900, which makes it available on port 5901, instead 
of the occupied 5900. The same is true for rewarder: inside the container, 
it listens on port 15900. By providing the –p option, you can forward 
connections from your host machine to the container's port.

3. --privileged allows the container to access the host's devices. (The reason 
MiniWoB gets started with this option may be because there are some VNC 
server requirements.)

4. --ipc host enables containers to share the interprocess communications 
(IPC) namespace with the host.

5. --cap-add SYS_ADMIN extends the container's capabilities to perform 
extended configuration of the host's settings.
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6. <CONTAINER_ID> is the identifier of the container. This should be shmuma/
miniwob:v2, which is a patched version of the original quay.io/openai/
universe.world-of-bits:0.20.0. More details were given in the 
preceding section of MiniWoB stability.

7. <ARGS> enables you to pass extra arguments to the container to change 
its mode of operation. We will need them later for recording human 
demonstrations. For now, it can be empty.

That's it! Our training script expects eight containers to be running, sitting on 
ports 5900-5907 and 15900-15907. For example, to start them, I use the following 
commands (also available as Chapter16/adhoc/start_docker.sh):

#!/usr/bin/env bash
for i in 'seq 0 7'; do
    p1=$((5900+i))
    p2=$((15900+i))
    docker run -d -p $p1:5900 -p $p2:15900 --privileged \
        --ipc host --cap-add SYS_ADMIN shmuma/miniwob run -f 20
done

All of them will be started in the background and can be seen with the docker ps 
command:

Figure 16.5: The docker ps output

The training process
When the containers have started and are ready to be used, you can start the 
training. In the beginning, it shows messages about the connection status, but, 
finally, it should start reporting about the episodes' statistics.

$ ./wob_click_train.py -n t2 --cuda

[2018-01-29 14:27:48,545] Making new env: wob.mini.ClickDialog-v0

[2018-01-29 14:27:48,547] Using SoftmaxClickMouse with action_region=

(10, 125, 170, 285), noclick_regions=[]

[2018-01-29 14:27:48,547] SoftmaxClickMouse noclick regions removed

0 of 256 actions

[2018-01-29 14:27:48,548] Writing logs to file: /tmp/universe-9018.log 
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[2018-01-29 14:27:48,548] Using the golang VNC implementation

[2018-01-29 14:27:48,548] Using VNCSession arguments: {'compress_level':

0, 'subsample_level': 0, 'encoding': 'tight', 'start_timeout': 21, 
'fine_quality_level': 100}. (Customize by running "env.configure (vnc_
kwargs={...})"

[2018-01-29 14:27:48,579] [0] Connecting to environment: vnc:// 
localhost:5900 password=openai.

[2018-01-29 14:27:52,218] Throttle fell behind by 1.06s; lost 5.32 frames

[2018-01-29 14:27:52,955] [1:localhost:5901] Initial reset complete: 
episode_id=17803

37: done 1 games, mean reward 0.686, speed 11.77 f/s

52: done 2 games, mean reward 0.447, speed 28.29 f/s

72: done 3 games, mean reward -0.035, speed 33.24 f/s

98: done 4 games, mean reward -0.130, speed 25.92 f/s

125: done 5 games, mean reward -0.015, speed 33.64 f/s

146: done 6 games, mean reward 0.137, speed 26.18 f/s

If desired, you can manually connect to the container's VNC server using a VNC 
client, such as TurboVNC. Most environments provide a convenient in-browser VNC 
client: http://localhost:15900/viewer/?password=openai.

By default, the training process starts the ClickDialog-v0 environment, which 
should take 100k-200k to reach the mean reward of 0.8-0.99. The convergence 
dynamics are shown in the following charts:

Figure 16.6: Reward dynamics in the ClickDialog problem
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Figure 16.7: Total loss (left) and entropy loss (right) during the training

Figure 16.8: The number of steps in the training episodes

The episode_steps chart shows the mean count of actions that the agent should carry 
out before the end of the episode. Ideally, for this problem the count should be 1, as 
the only action that the agent needs to take is to click on the dialog's close button. 
However, in fact, the agent sees seven to nine frames before the episode ends. This 
happens for two reasons: the cross on the dialog close button can appear with some 
delay, and the browser inside the container adds a time gap before the agent clicks 
and the rewarder notices this. Anyway, in approximately 100k frames (which is 
about half an hour with eight containers), the training procedure converged to quite 
a good policy, which can close the dialog most of the time.
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Checking the learned policy
To be able to peek inside the agent's activity, there is a tool that loads the model 
weights from the file and runs several episodes, recording the screenshots with the 
agent's observations and actions selected. The tool is called Chapter16/wob_click_
play.py, and it connects to the first container (port 5900 and 15900), running on 
the local machine and accepting the following arguments:

• -m: The filename with the model to be loaded.
• --save <IMG_PREFIX>: If specified, this saves every observation in a 

separate file. The argument is the path prefix.
• --count: This sets the count of episodes to run.
• --env: This sets the environment name to be used, which by default is 

ClickDialog-v0.
• --verbose: This shows every step with the reward, done, and internal info.

This is useful for examining (or even debugging) the agent's behavior for different 
states during training. For example, checking the best model trained on ClickDialog 
shows us this:

rl_book_samples/Chapter16$ ./wob_click_play.py -m saves/ClickDialog-v0_
t1/best_1.047_209563.dat --count 5

[2018-01-29 15:43:57,188] [0:localhost:5900] Sending reset for env_
id=wob.mini.ClickDialog-v0 fps=60 episode_id=0

[2018-01-29 15:44:01,223] [0:localhost:5900] Initial reset complete: 
episode_id=288

Round 0 done

Round 1 done

Round 2 done

Round 3 done

Round 4 done

Done 5 rounds, mean steps 6.40, mean reward 0.734

To check the agent's actions, you can pass the --save option with the prefix of the 
images to be written. The actions that the agent performs are shown as a circle at 
the click point. The area on the right contains the technical information about the 
last reward and the time left before timeout. For example, one of the saved images 
is shown in the following figure:
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Figure 16.9: A screenshot of the agent in action

Issues with simple clicking
Unfortunately, the demonstrated approach can only be used to solve relatively 
simple problems, like ClickDialog. If you try to use it for more complicated 
tasks, convergence is unlikely. There could be multiple reasons for this. First of 
all, our agent is stateless, which basically means that it makes the decision about 
the action only from the observation, without taking into account its previous 
actions. You may remember in Chapter 1, What Is Reinforcement Learning?, that 
we discussed the Markov property of the Markov decision process (MDP) and 
that this Markov property allowed us to discard all previous history, keeping 
only the current observation. Even in relatively simple problems from MiniWoB, 
this Markov property could be violated. For example, there is a problem called 
ClickButtonSequence-v0 (the screenshot is shown in the following figure), which 
requires our agent to first click on button ONE and then on button TWO. Even if 
our agent is lucky enough to randomly click in the required order, it won't be able 
to distinguish from the single image what button needs to be clicked next.

Figure 16.10: An example of an environment that the stateless agent could struggle to solve



Web Navigation

[ 472 ]

Despite the simplicity of this problem, we cannot use our RL methods to solve 
it, because MDP formalism is not applicable anymore. Such problems are called 
partially observable MDPs, or POMDPs, and the usual approach for them is 
allowing the agent to keep some kind of state. The challenge here is to find the 
balance between keeping only minimal relevant information and overwhelming 
the agent with nonrelevant information by adding everything into the observation.

Another issue that we can face with our example is that the data required to solve 
the problem might not be available in the image or could just be in an inconvenient 
form. For example, there are two problems: ClickTab and ClickCheckboxes. In 
the first one, you need to click on one of three tabs, but every time, the tab that 
needs to be clicked is randomly chosen. Which tab needs to be clicked is shown in a 
description (provided with an in-text field of observation and shown on the top of 
the environment's page), but our agent sees only pixels, which makes it complicated 
to connect the tiny number on the top with the outcome of the random click result. 
The situation is even worse with the ClickCheckboxes problem, when several 
checkboxes with randomly generated text need to be clicked. One of the possible 
options to prevent overfitting to the problem is to use some kind of optical character 
recognition (OCR) network to convert the image in the observation into text form. 
The following figure shows examples of the two problem environments:

Figure 16.11: An example of environments where the text description is important

Yet another issue could be related just to the dimensionality of the action space 
that the agent needs to explore. Even for single-click problems, the number of 
actions could be very large, so it can take a long time for the agent to discover 
how to behave. One of the possible solutions here is incorporating demonstrations 
into the training. For example, in the following image, there is a problem called 
CountSides-v0. The goal there is to click on the button that corresponds to the 
number of sides of the shape shown.
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Figure 16.12: A screenshot of the CountSides environment

I tried to train the agent from scratch, and after a day of training, it showed almost 
zero progress. However, after adding a couple of dozen examples of correct clicks, 
it successfully solved the problem in 15 minutes of training. Of course, maybe 
my hyperparameters were bad, but, still, the effect of the demonstrations is quite 
impressive. In the next example of this chapter, we will take a look at how we can 
record and inject human demonstrations to improve the convergence.

Human demonstrations
The idea behind demonstrations is simple: to help our agent to discover the best way 
to solve the task, we show it some examples of actions that we think are required for 
the problem. Those examples could be not the best solution or not 100% accurate, but 
they should be good enough to show the agent promising directions to explore.

In fact, this is a very natural thing to do, as all human learning is based on some 
prior examples given by a teacher in class, parents, or other people. Those examples 
could be in a written form (for example, recipe books) or given as demonstrations 
that you need to repeat several times to get right (for example, dance classes). Such 
forms of training are much more effective than random searches. Just imagine how 
complicated and lengthy it would be to learn how to clean your teeth by trial and 
error alone. Of course, there is a danger from learning how to follow demonstrations, 
which could be wrong or not the most efficient way to solve the problem; but 
overall, it's much more effective than a random search.

All our previous examples used zero prior knowledge and started with random 
weights' initialization, which caused random actions to be performed at the 
beginning of the training. 
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After some iterations, the agent discovered that some actions in some states give 
more promising results (via the Q-value or policy with the higher advantage) and 
started to prefer those actions over the others. Finally, this process led to a more or 
less optimal policy, which gave the agent a high reward at the end. It worked well 
when our action space dimensionality was low and the environment's behavior 
wasn't very complex, but just doubling the action count caused at least twice the 
observations needed. In the case of our clicker agent, we have 256 different actions 
corresponding to 10×10 grids in the active area, which is 128 times more actions 
than we had in the CartPole environment. It is not surprising that the training 
process is lengthy and may fail to converge at all.

This issue of dimensionality can be addressed in various ways, like smarter 
exploration methods, training with better sampling efficiency (one-shot training), 
incorporating prior knowledge (transfer learning), and other means. There is a lot 
of research activity focused on making RL better and faster, and we can be sure 
that many breakthroughs are ahead. In this section, we will try the more traditional 
approach of incorporating the demonstration recorded by humans into the training 
process.

You might remember our discussion about on-policy and off-policy methods 
(which were discussed in Chapter 4, The Cross-Entropy Method, and Chapter 8, DQN 
Extensions). This is very relevant to our human demonstrations because, strictly 
speaking, we can't use off-policy data (human observation-actions pairs) with 
an on-policy method (A3C in our case). That is due to the nature of on-policy 
methods: they estimate the policy gradients using the samples gathered from the 
current policy. If we just push human-recorded samples into the training process, 
the estimated gradient will be relevant for a human policy, but not our current 
policy given by the neural network (NN). To solve this issue, we need to cheat a 
bit and look at our problem from the supervised learning angle. To be concrete, we 
will use the log-likelihood objective to push our NN toward taking actions from 
demonstrations.

Before we can go into the implementation details, we need to address a very 
important question: how do we obtain the demonstrations in the most convenient 
form?

Recording the demonstrations
There is no universal recipe for how to record demonstrations, as they depend on 
the observation and action space details. However, from a higher perspective, we 
should save the information available for a human or another agent, whose actions 
we want to record, as well as actions taken by this agent. 
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For example, if we want to obtain Atari game sessions played by somebody, we need 
to save the screen image, plus the button pressed on this screen.

In our case of the OpenAI Universe environment, there is an elegant solution, based 
on the VNC protocol and used as a universal transport. To save the demonstrations, 
we need to capture the screen sent by the server to the VNC client, as well as mouse 
and keyboard actions sent by the client to the server. MiniWoB provides built-in 
functionality for this based on the VNC protocol proxy, which is illustrated in the 
following scheme:

Figure 16.13: Demonstrating the recording architecture

By default, the VNC proxy is not started on the container's start, as there is a 
separate demo mode. To start the container with proxy enabled, you need to pass the 
arguments demonstration -e ENV_NAME to the container. You also will need to 
pass the port forwarding options to make port 5899 (that the VNC proxy is listening 
to) available from outside. The whole command line used to start the container 
in recording mode for env ClickTest2 is as follows (and is also available as 
Chapter16/adhoc/start_docker_demo.sh):

docker run -e TURK_DB='' -p 5899:5899 --privileged --ipc host --cap-add 
SYS_ADMIN shmuma/miniwob:v2 demonstration -e wob.mini.ClickTest2-v0

The argument TURK_DB is required, which is probably related to Mechanical Turk, 
which is used by OpenAI to gather human demonstrations for internal experiments. 
Unfortunately, OpenAI hasn't released those demonstrations, despite its promise to 
do so. So, the only way to get the demonstrations is to record them yourself.

Once the container is started, you can connect to it using any VNC client that you 
prefer. There are several alternatives available for Linux, Windows, and Mac. 
You should connect to the host of your container on port 5899. The connection 
password is openai. After connection, you should see the browser window with 
an environment that you have specified on the start of the container.
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Now you can start solving the problem, but don't forget that all your actions will 
be recorded and used later during the training; your actions should be efficient and 
not include any nonrelevant actions, like clicking at the wrong place and so on. Of 
course, you can always do an experiment checking the robustness of the training in 
such noisy demonstrations. The time given for solving the problem is also limited, 
as for most of the environments it's 10 seconds. On expiration, the problem will 
start over, and you will be given the reward of –1. If you don't see the mouse pointer, 
you should enable local mouse render mode in your VNC client.

Once you have recorded some demonstrations, you can disconnect from the server 
and copy the recorded data. Remember that your recording will be preserved only 
while the container is alive. The recorded data is placed in the /tmp/demo folder inside 
the container's filesystem, but you can see the files using the docker exec command 
(the following 80daf4b8f257 is the ID of a container started in demo mode):

$ docker exec -t 80daf4b8f257 ls -laR /tmp/demo

/tmp/demo:

total 20

drwxr-xr-x 3 root root 4096 Jan 30 17:06 .

drwxrwxrwt 19 root root 4096 Jan 30 17:07 ..

drwxr-xr-x 2 root root 4096 Jan 30 17:07

1517332006-fprnte8qiy3af3-0

-rw-r--r-- 1 nobody nogroup 20 Jan 30 17:09 env_id.txt

-rw-r--r-- 1 root root 531 Jan 30 17:09 rewards.demo

/tmp/demo/1517332006-fprnte8qiy3af3-0:

total 35132

drwxr-xr-x 2 root root 4096 Jan 30 17:07 .

drwxr-xr-x 3 root root 4096 Jan 30 17:06 ..

-rw-r--r-- 1 root root 51187 Jan 30 17:07 client.fbs

-rw-r--r-- 1 root root 20 Jan 30 17:07 env_id.txt

-rw-r--r-- 1 root root 5888 Jan 30 17:07 rewards.demo

-rw-r--r-- 1 root root 35900918 Jan 30 17:07 server.fbs
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One individual VNC session is saved inside the /tmp/demo folder in a separate 
subdirectory, so you can use the same container for several recording sessions. To 
copy the data, you can use the docker cp command:

docker cp 80daf4b8f257:/tmp/demo .

Once you've got the raw data files, you can use them for training, but first, let's talk 
about the data format.

The recording format
For every client connection, the VNC proxy records four files:

• env_id.txt: A text file with the ID of the environment used to record the 
demonstration. This is very convenient for filtering when you have several 
demonstration data directories.

• rewards.demo: A JSON file with events recorded by the rewarder daemon. 
This includes timestamped events from the environment, like a text 
description change, the reward obtained, and others.

• client.fbs: A binary format with events sent by the client to the VNC 
server. Inside it contains timestamps of raw VNC protocol messages (called 
the remote framebuffer protocol or RFP).

• server.fbs: A binary format with data sent by the VNC server to the client. 
It has the same format as client.fbs, but the set of messages is different.

The trickiest files here are client.fbs and server.fbs, as they are binary, and 
the format has no convenient reader (at least I'm not aware of such a library). The 
protocol of VNC is standardized in request for comments (RFC) 6143 and called RFP, 
which is available on the IETF website https://tools.ietf.org/html/rfc6143. 
This protocol defines the set of messages that the VNC client and server can 
exchange to provide a remote desktop to a user. The client can send the keyboard 
or mouse events, and the server is responsible for sending the image of the desktop 
to allow the client to see an up-to-date view of the applications. To improve user 
experience over slow network links, the server optimizes the transfer by optionally 
compressing the image and sending only relevant (modified) parts of the GUI 
desktop.

https://tools.ietf.org/html/rfc6143
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To make demo recordings usable for RL agent training, we need to convert this 
VNC format into a set of images and user events issued at the time of the image. 
To achieve this, I implemented a small VNC protocol parser using the Kaitai Struct 
binary parser language (the project website is http://kaitai.io/), which provides 
a convenient way to parse complex binary file formats using a declarative YAML-
formatted language. If you're curious, the source files for the client and server 
messages are in the Chapter16/ksy directory.

Python code related to the demo format is placed in the module Chapter16/lib/
vnc_demo.py, which contains a high-level function loader for the demo directory 
and the set of lower-level methods used to interpret the internal binary format. The 
result returned by the loader function, vnc_demo.load_demo(), is the list of tuples. 
Every tuple contains a NumPy array with the observation used by the MiniWoB 
model and the index of the mouse action performed.

To check the demo data, there is a small utility, Chapter16/adhoc/demo_dump.
py, that loads the demo directory with client.fbs and server.fbs and dumps 
demo samples as image files. The example of the command line used to convert the 
demonstrations that I recorded into images is as follows:

rl_book_samples/Chapter16$ ./adhoc/demo_dump.py -d data/demo-CountSides/ 
-e wob.mini.CountSides-v0 -o count

[2018-01-30 12:44:11,794] Making new env: wob.mini.CountSides-v0

[2018-01-30 12:44:11,796] Using SoftmaxClickMouse with action_region=

(10, 125, 170, 285), noclick_regions=[]

[2018-01-30 12:44:11,797] SoftmaxClickMouse noclick regions removed

0 of 256 actions Loaded 64 demo samples

[2018-01-30 12:44:12,191] Making new env: wob.mini.CountSides-v0

[2018-01-30 12:44:12,192] Using SoftmaxClickMouse with action_region=

(10, 125, 170, 285), noclick_regions=[]

[2018-01-30 12:44:12,192] SoftmaxClickMouse noclick regions removed

0 of 256 actions

This command produced 64 image files with the prefix count. What follows 
are examples of images produced by this utility, showing demonstrations that I 
recorded.

http://kaitai.io/
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Figure 16.14: On every image, the click point is shown as a circle

The binary data for this recording is available in Chapter16/demos/demo-
CountSides.tar.gz, and you need to unpack it before usage. It also needs to be 
said that my implementation of the VNC protocol reading is experimental, works 
only with files produced by the VNC proxy used in the MiniWoB image 0.20.0, and 
does not pretend to fully comply with VNC protocol RFC. Furthermore, the reading 
process is hard-coded for our action space transformation and doesn't produce 
examples of mouse movements, keys pressed, and other events. If you think it 
should be extended for a more generic case, you're always welcome to contribute.
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Training using demonstrations
Now that we know how to record and load the demonstration data, we have only 
one question unanswered: how does our training process need to be modified to 
incorporate human demonstrations? The simplest solution, which nevertheless 
works surprisingly well, is to use the log-likelihood objective that we used in 
training our chatbot in Chapter 14, Training Chatbots with RL. To do so, we need to 
look at our A3C model as a classification problem producing the classification of 
input observations in its policy head. In its simplest form, the value head will be left 
untrained, but, in fact, it won't be hard to train it: we know the rewards obtained 
during the demonstrations, so what is needed is to calculate the discounted reward 
from every observation to the end of the episode.

To check how it was implemented, let's return to the code pieces we skipped during 
the description of Chapter16/wob_click_train.py. First of all, we can pass the 
directory with the demonstration data by passing the --demo <DIR> option in the 
command line. This will enable the branch shown on the following code block, 
where we load the demonstration samples from the directory specified. Function 
vnc_demo.load_demo() is smart enough to automatically load demonstrations 
from any level of subdirectories, so you just need to pass the directory where your 
demonstrations are placed.

    demo_samples = None
    if args.demo:
        demo_samples = vnc_demo.load_demo(args.demo, env_name)
        if not demo_samples:
            demo_samples = None
        else:
            print("Loaded %d demo samples, will use them "
                  "during training" % len(demo_samples))

The second piece of code relevant to demonstration training is inside the training 
loop and is executed before any normal batch. The training from demonstrations is 
performed with some probability (by default, it is 0.5) and specified by the DEMO_
PROB hyperparameter.

                if demo_samples and random.random() < DEMO_PROB:
                    random.shuffle(demo_samples)
                    demo_batch = demo_samples[:BATCH_SIZE]
                    model_vnc.train_demo(
                        net, optimizer, demo_batch, writer,
                        step_idx, device=device)
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The logic is simple: with DEMO_PROB chance, we sample BATCH_SIZE samples from 
our demonstration data and perform the round of training of our network in the 
batch. The actual training is performed by the model_vnc.train_demo() function, 
which is shown in the following:

def train_demo(net, optimizer, batch, writer, step_idx,
              preprocessor=ptan.agent.default_states_preprocessor,
              device="cpu"):
    batch_obs, batch_act = zip(*batch)
    batch_v = preprocessor(batch_obs)
    if torch.is_tensor(batch_v):
        batch_v = batch_v.to(device)
    optimizer.zero_grad()
    ref_actions_v = torch.LongTensor(batch_act).to(device)
    policy_v = net(batch_v)[0]
    loss_v = F.cross_entropy(policy_v, ref_actions_v)
    loss_v.backward()
    optimizer.step()
    writer.add_scalar("demo_loss", loss_v.item(), step_idx)

The training code is also very simple and straightforward. We split our batch on the 
observation and the actions list, preprocess the observations to convert them into a 
PyTorch tensor, and place them on the GPU. We then ask our A3C network to return 
the policy and calculate the cross-entropy loss between the result and the desired 
actions. From an optimization point of view, we're pushing our network toward the 
actions taken in the demonstrations.

Results
To check the effect of demonstrations, I performed two sets of training on the 
CountSides problem with the same hyperparameters: one was done without 
demonstrations, and another used 64 demonstration clicks.

To start the training without human demonstrations, this command line was used:

$ ./wob_click_train.py --cuda -n v1-nodemo --env CountSides-v0

To incorporate recorded demonstrations into the training process, the training 
needed to be started like this:

$ ./wob_click_train.py --cuda -n v1-demo --env CountSides-v0 --demo demos

The archive demos/demo-CountSides.tar.gz needed to be extracted into the demos 
directory.
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The difference was dramatic. Training performed from scratch reached the best mean 
reward of –0.4 after 15 hours of training and 2.2M frames without any significant 
improvement in the training dynamics. The following are charts for training without 
demonstrations.

Figure 16.15: The reward dynamics of the CountSides environment without demonstrations

Figure 16.16: The total loss (left) and entropy loss (right) during the training
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Figure 16.17: Lengths of training episodes

With just 64 demonstration samples added and in only 20k frames, the training 
was able to reach the mean reward of 1.65. High entropy loss, shown as follows, 
demonstrates that the agent became very sure about its actions.

Figure 16.18: The mean reward dynamics during the training with demonstrations
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Figure 16.19: The total loss (left) and entropy loss (right) during the training

Figure 16.20: Lengths of training episodes

The lengths of training episodes, shown in Figure 16.20, dropped from 20 to six so 
quickly after the training that this decrease is not visible on the plot.

To put things into perspective, the following are the same charts combined.



Chapter 16

[ 485 ]

Figure 16.21: The mean reward with and without demonstrations

Figure 16.22: The total loss (left) and entropy loss (right) with and without demonstrations
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Figure 16.23: Episode steps with and without demonstrations

The tic-tac-toe problem
To check the effect of demonstrations on training, I took a more complex problem 
from MiniWoB: the tic-tac-toe game. I recorded some demonstrations (available in 
Chapter16/demos/demo-TicTacToe.tgz) and in total almost 200 actions, and some 
examples of them are as follows:

Figure 16.24: The tic-tac-toe environment with human actions

After one hour of training, the agent was able to reach the mean reward of 0.05, 
which means that it can win slightly more frequently than it loses. The training 
dynamics are shown as follows. To improve the exploration, demo training 
probability was decreased from 0.5 to 0.01 after 25k frames seen. Of course, the 
noisiness of the reward chart suggests that the policy is far from being consistently 
better than MiniWoB artificial intelligence.
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Figure 16.25: The tic-tac-toe mean reward dynamics

Figure 16.26: The total loss (left) and entropy loss (right)
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Figure 16.27: Lengths of training episodes

Using wob_click_play.py, we can check the agent's actions step by step. For 
example, the following are some games played by the best model with the mean 
reward of 0.187:

Figure 16.28: A game played by the agent

Figure 16.29: A second game played by the agent
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Figure 16.30: More games played by the agent

Adding text descriptions
As the last example of this chapter, we will add text descriptions of the problem into 
observations of our model. I have already mentioned that some problems contain 
vital information given in a text description, like the index of tabs needed to be 
clicked or the list of entries that the agent needs to check. The same information 
is shown on top of the image observation, but pixels are not always the best 
representation of simple text.

To take this text into account, we need to extend our model's input from an image 
only to an image and text data. We worked with text in the previous chapter, so 
a recurrent neural network (RNN) is quite an obvious choice (maybe not the best 
for such a toy problem, but it is flexible and scalable).
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Implementation
I'm not going to cover this example in detail but will just focus on the most important 
points of the implementation. (The whole code is in Chapter16/wob_click_mm_
train.py.) In comparison to our clicker model, text extension doesn't add too much.

First of all, we should ask the wrapper MiniWoBCropper to keep the text obtained 
from the observation. The complete source code of this class has already been shown 
earlier in this chapter. To keep the text, we should pass keep_text=True to the 
wrapper constructor, which makes this class return a tuple with a NumPy array 
and text string, instead of just a NumPy array with the image.

Then, we need to prepare our model to be able to process such tuples, instead of 
a batch of NumPy arrays. This needs to be done in two places: in our agent (when 
we use the model to choose the action) and in the training code. To adapt the 
observation in a model-friendly way, we can use a special functionality of the PTAN 
library, called preprocessor. The core idea is very simple: preprocessor is a 
callable function that needs to convert the list of observations in a form that is ready 
to be passed to the model. By default, preprocessor converts the list of NumPy 
arrays into a PyTorch tensor and, optionally, copies it in GPU memory. However, 
sometimes more sophisticated transformations are required, like in our case, when 
we need to pack the images into the tensor, but text strings require special handling. 
In that case, you can redefine the default preprocessor and pass it into the ptan.
Agent class.

In theory, the preprocessor functionality could be moved into the model itself, 
thanks to PyTorch flexibility, but the default preprocessor simplifies our lives in 
cases when observations are just NumPy arrays. The following is the preprocessor 
class source code taken from the Chapter16/lib/model_vnc.py module:

MM_EMBEDDINGS_DIM = 50
MM_HIDDEN_SIZE = 128
MM_MAX_DICT_SIZE = 100

TOKEN_UNK = "#unk"

class MultimodalPreprocessor:
    log = logging.getLogger("MulitmodalPreprocessor")

    def __init__(self, max_dict_size=MM_MAX_DICT_SIZE,
                 device="cpu"):
        self.max_dict_size = max_dict_size
        self.token_to_id = {TOKEN_UNK: 0}
        self.next_id = 1
        self.tokenizer = TweetTokenizer(preserve_case=True)
        self.device = device
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In the constructor, we create a mapping from the token to the identifier (which will 
be dynamically extended) and create the tokenizer from the nltk package.

    def __len__(self):
        return len(self.token_to_id)

    def __call__(self, batch):
        tokens_batch = []
        for img_obs, txt_obs in batch:
            tokens = self.tokenizer.tokenize(txt_obs)
            idx_obs = self.tokens_to_idx(tokens)
            tokens_batch.append((img_obs, idx_obs))
        # sort batch decreasing to seq len
        tokens_batch.sort(key=lambda p: len(p[1]), reverse=True)
        img_batch, seq_batch = zip(*tokens_batch)
        lens = list(map(len, seq_batch))

The goal of our preprocessor is to convert a batch of (image, text) tuples into two 
objects: the first has to be a tensor with the image data of shape (batch_size, 3, 210, 
160), and the second has to contain the batch of tokens from text descriptions in the 
form of a packed sequence. The packed sequence is a PyTorch data structure suitable 
for efficient processing with an RNN. We discussed this in Chapter 14, Training 
Chatbots with RL.

As the first step of our transformation, we tokenize text strings into tokens and 
convert every token into the list of integer IDs. Then, we sort our batch by decreasing 
token length, which is a requirement of the underlying cuDNN library for efficient 
RNN processing.

          img_v = torch.FloatTensor(img_batch).to(self.device)

In the preceding line, we convert observation images into the single tensor.

        seq_arr = np.zeros(shape=(len(seq_batch),
                                  max(len(seq_batch[0]), 1)),
                           dtype=np.int64)
        for idx, seq in enumerate(seq_batch):
            seq_arr[idx, :len(seq)] = seq
            # Map empty sequences into single #UNK token
            if len(seq) == 0:
                lens[idx] = 1
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To create the packed sequence class, we first need to create a padded sequence tensor, 
which is a matrix of (batch_size, len_of_longest_seq). We copy IDs of our 
sequences into this matrix.

        seq_v = torch.LongTensor(seq_arr).to(self.device)
        seq_p = rnn_utils.pack_padded_sequence(
            seq_v, lens, batch_first=True)
        return img_v, seq_p

As a final step, we create the tensors from the NumPy matrix and convert them into 
packed form by using the PyTorch utility function. The result of the transformation 
is two objects: a tensor with images and a packed sequence with tokenized texts.

    def tokens_to_idx(self, tokens):
        res = []
        for token in tokens:
            idx = self.token_to_id.get(token)
            if idx is None:
                if self.next_id == self.max_dict_size:
                    self.log.warning(
                        "Maximum size of dict reached, token "
                        "'%s' converted to #UNK token", token)
                    idx = 0
                else:
                    idx = self.next_id
                    self.next_id += 1
                    self.token_to_id[token] = idx
            res.append(idx)
        return res

The preceding utility function has to convert the list of tokens into a list of IDs. 
The tricky thing is that we don't know in advance the size of the dictionary from 
the text descriptions. One approach would be to work on the character level and 
feed individual characters into the RNN, but it would result in sequences that 
are too long to process. The alternative solution is to hard-code some reasonable 
dictionary size, say 100 tokens, and dynamically assign token IDs to tokens that we 
have never seen before. In this implementation, the latter approach is used, but it 
might not be applicable to MiniWoB problems that contain randomly generated 
strings in the text description.

    def save(self, file_name):
        with open(file_name, 'wb') as fd:
            pickle.dump(self.token_to_id, fd)
            pickle.dump(self.max_dict_size, fd)
            pickle.dump(self.next_id, fd)
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    @classmethod
    def load(cls, file_name):
        with open(file_name, "rb") as fd:
            token_to_id = pickle.load(fd)
            max_dict_size = pickle.load(fd)
            next_id = pickle.load(fd)

            res = MultimodalPreprocessor(max_dict_size)
            res.token_to_id = token_to_id
            res.next_id = next_id
            return res

As our token-to-ID mapping is dynamically generated, our preprocessor has to 
provide a way to save and load this state in a file. The preceding two functions 
do exactly that. The next piece of the puzzle is the model class itself, which is an 
extension of our model used:

class ModelMultimodal(nn.Module):
    def __init__(self, input_shape, n_actions,
                 max_dict_size=MM_MAX_DICT_SIZE):
        super(ModelMultimodal, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 64, 5, stride=5),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, stride=2),
            nn.ReLU(),
        )

        conv_out_size = self._get_conv_out(input_shape)

        self.emb = nn.Embedding(max_dict_size, MM_EMBEDDINGS_DIM)
        self.rnn = nn.LSTM(MM_EMBEDDINGS_DIM, MM_HIDDEN_SIZE,
                           batch_first=True)

        self.policy = nn.Linear(
            conv_out_size + MM_HIDDEN_SIZE*2, n_actions)
        self.value = nn.Linear(
            conv_out_size + MM_HIDDEN_SIZE*2, 1)

The difference is in a new embedding layer, which converts integer token IDs into 
dense token vectors and a long short-term memory (LSTM) RNN. 
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The outputs from the convolution and RNN layers are concatenated and fed into the 
policy and value heads, so the dimensionality of their input is the image and text 
features combined.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def _concat_features(self, img_out, rnn_hidden):
        batch_size = img_out.size()[0]
        if isinstance(rnn_hidden, tuple):
            flat_h = list(map(lambda t: t.view(batch_size, -1),
                              rnn_hidden))
            rnn_h = torch.cat(flat_h, dim=1)
        else:
            rnn_h = rnn_hidden.view(batch_size, -1)
        return torch.cat((img_out, rnn_h), dim=1)

The preceding function performs the concatenation of the image and RNN features 
into one single square tensor.

    def forward(self, x):
        x_img, x_text = x
        assert isinstance(x_text, rnn_utils.PackedSequence)

        # deal with text data
        emb_out = self.emb(x_text.data)
        emb_out_seq = rnn_utils.PackedSequence(
            emb_out, x_text.batch_sizes)
        rnn_out, rnn_h = self.rnn(emb_out_seq)

        # extract image features
        fx = x_img.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)

        feats = self._concat_features(conv_out, rnn_h)
        return self.policy(feats), self.value(feats)

In the forward function, we expect two objects prepared by the preprocessor: a 
tensor with input images and packed sequences of the batch. Images are processed 
with convolutions, and text data is fed through the RNN; then, both results are 
concatenated, and the policy and value results are calculated.
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That's most of the new code. The training Python script, wob_click_mm_train.
py, is mostly a copy of wob_click_train.py, with just the tiny difference of the 
preprocessor created. keep_text=True was passed to the MiniWoBCropper() 
constructor and other small modifications.

Results
I ran several experiments on the environment ClickButton-v0, which has the 
goal to make a selection between several random buttons. Some of the recorded 
demonstrations are shown in the following figure:

Figure 16.31: Screenshots of the ClickButton environment demonstrations

Even with demonstrations, a model without text descriptions was able to reach the 
mean reward of 0.5, which is still better than the random clicking policy, but is far 
from the optimal policy. 
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What follows are figures that show training dynamics.

Figure 16.32: The reward for ClickButton without text descriptions

Figure 16.33: Loss dynamics for ClickButton without text descriptions
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Figure 16.34: Episode steps

In addition, the agent enriched with text descriptions behaved worse (the best mean 
reward for 100 episodes was 0.45).

Figure 16.35: The reward of the ClickButton environment training with text descriptions
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Figure 16.36: The loss dynamics of training with text descriptions

Figure 16.37: Episode steps

The reward dynamics of both models are quite noisy, which may signal that tuning 
hyperparameters and/or increasing the number of parallel environments could help.

Things to try
In this chapter, we only started playing with MiniWoB by touching upon the six 
easiest environments from the full set of 80 problems, so there is plenty of uncharted 
territory ahead. If you want to practice, there are several items you can experiment 
with:
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• Testing the robustness of demonstrations to noisy clicks.
• Implementing training of the value head of A3C based on demonstration 

data.
• Implementing more sophisticated mouse control, like move mouse N pixels left/

right/top/bottom.
• Using some pretrained optical character recognition (OCR) network (or 

training your own!) to extract text information from the observations.
• Taking other problems and trying to solve them. There are some quite tricky 

and fun problems, like sort items using drag-n-drop or repeat the pattern using 
checkboxes.

• Checking MiniWoB++ (https://stanfordnlp.github.io/miniwob-
plusplus/) from the Stanford NLP Group. It will require learning and 
writing new wrappers; as mentioned earlier, Selenium is used to work with 
browsers, rather than using a Universe approach with VNC and containers.

• Another challenging problem is to make Q-learning work with MiniWoB 
tasks. In RLSS 2019 (https://rlss.inria.fr/), I tried to use MiniWoB as 
one of the practice sessions. Despite all my efforts, DQN failed to converge 
even on simple problems like CloseDialog. It might be due to some software 
bug (but I failed to find one despite all my efforts), or an indication of 
something more fundamental. You can find the RLSS 2019 practice session 
materials in this GitHub repository: https://github.com/yfletberliac/
rlss-2019. MiniWoB notebooks are available in the labs/final_project/
MiniWoB (https://github.com/yfletberliac/rlss-2019/tree/master/
labs/final_project/MiniWoB) subdirectory.

Summary
In this chapter, you saw the practical application of RL methods for browser 
automation and used the MiniWoB benchmark from OpenAI. This chapter concludes 
part three of the book. The next part will be devoted to more complicated and recent 
methods related to continuous action spaces, non-gradient methods, and other more 
advanced methods of RL.

In the next chapter, we will take a look at continuous control problems, which are an 
important subfield of RL, both theoretically and practically.

https://stanfordnlp.github.io/miniwob-plusplus/
https://stanfordnlp.github.io/miniwob-plusplus/
https://rlss.inria.fr/
https://github.com/yfletberliac/rlss-2019
https://github.com/yfletberliac/rlss-2019
https://github.com/yfletberliac/rlss-2019/tree/master/labs/final_project/MiniWoB
https://github.com/yfletberliac/rlss-2019/tree/master/labs/final_project/MiniWoB
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Continuous Action Space
This chapter kicks off the advanced reinforcement learning (RL) part of the book 
by taking a look at a problem that has only been briefly mentioned: working with 
environments when our action space is not discrete. In this chapter, you will become 
familiar with the challenges that arise in such cases and learn how to solve them.

Continuous action space problems are an important subfield of RL, both theoretically 
and practically, because they have essential applications in robotics (which will 
be the subject of the next chapter), control problems, and other fields in which we 
communicate with physical objects.

In this chapter, we will:

• Cover the continuous action space, why it is important, how it differs from 
the already familiar discrete action space, and the way it is implemented 
in the Gym API

• Discuss the domain of continuous control using RL methods
• Check three different algorithms on the problem of a four-legged robot

Why a continuous space?
All the examples that we have seen so far in the book had a discrete action space, so 
you might have the wrong impression that discrete actions dominate the field. This 
is a very biased view, of course, and just reflects the selection of domains that we 
picked our test problems from. Besides Atari games and simple, classic RL problems, 
there are many tasks that require more than just making a selection from a small and 
discrete set of things to do.

To give you an example, just imagine a simple robot with only one controllable joint 
that can be rotated in some range of degrees. Usually, to control a physical joint, you 
have to specify either the desired position or the force applied. 
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In both cases, you need to make a decision about a continuous value. This value is 
fundamentally different from a discrete action space, as the set of values on which 
you can make a decision is potentially infinite. For instance, you could ask the joint 
to move to a 13.5° angle or 13.512° angle, and the results could be different. Of 
course, there are always some physical limitations of the system. You can't specify 
the action with infinite precision, but the size of the potential values could be 
very large.

In fact, when you need to communicate with a physical world, a continuous action 
space is much more likely than having a discrete set of actions. As an example, 
different kinds of robots control systems (such as a heating/cooling controller). The 
methods of RL could be applied to this domain, but there are some details that you 
need to take into consideration before using the advantage actor-critic (A2C) or deep 
Q-network (DQN) methods.

In this chapter, we will explore how to deal with this family of problems. This will 
act as a good starting point for learning about this very interesting and important 
domain of RL.

The action space
The fundamental and obvious difference with a continuous action space is its 
continuity. In contrast to a discrete action space, when the action is defined as a 
discrete, mutually exclusive set of options to choose from (for example {left, 
right}, which contains only two elements), the continuous action has a value from 
some range (for instance, [0…1], which includes infinite elements, like 0.5, √32  , and  
𝜋𝜋3
𝑒𝑒5 ). On every time step, the agent needs to select the concrete value for the action 
and pass it to the environment.

In Gym, a continuous action space is represented as the gym.spaces.Box class, 
which was described in Chapter 2, OpenAI Gym, when we talked about the 
observation space. You may remember that Box includes a set of values with a 
shape and bounds. For example, every observation from the Atari emulator was 
represented as Box(low=0, high=255, shape=(210, 160, 3)), which means 
100,800 values organized as a 3D tensor, with values from the 0...255 range.

For the action space, it's unlikely that you'll work with such large numbers of actions. 
For example, the four-legged robot that we will use as a testing environment has 
eight continuous actions, which correspond to eight motors, two in every leg. For 
this environment, the action space will be defined as Box(low=-1, high=1, shape= 
(8, )), which means eight values from the range –1…1 have to be selected at every 
timestamp to control the robot. 
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In this case, the action passed to the env.step() at every step won't be an 
integer anymore; it will be a NumPy vector of some shape with individual action 
values. Of course, there could be more complicated cases when the action space 
is a combination of discrete and continuous actions, which may be represented 
with the gym.spaces.Tuple class.

Environments
Most of the environments that include continuous action spaces are related to the 
physical world, so physics simulations are normally used. There are lots of software 
packages that can simulate physical processes, from very simple open source tools 
to complex commercial packages that can simulate multiphysics processes (such 
as fluid, burning, and strength simulations).

In the case of robotics, one of the most popular packages is MuJoCo, which stands 
for Multi-Joint dynamics with Contact (http://www.mujoco.org). This is a 
physics engine in which you can define the components of the system and their 
interaction and properties. Then the simulator is responsible for solving the system 
by taking into account your intervention and finding the parameters (usually the 
location, velocities, and accelerations) of the components. This makes it ideal as 
a playground for RL environments, as you can define fairly complicated systems 
(such as multipede robots or robotic arms or humanoids) and then feed the 
observation into the RL agent, getting actions back.

Unfortunately, MuJoCo isn't free and requires a license. There is a one-month trial 
license available on websites, but after the trial, a full license will be required. For 
students, the MuJoCo developers provide a free license, but they impose different 
limitations. For post-university RL enthusiasts, buying a license could be overkill 
because there is an open source alternative, called PyBullet, that provides similar 
functionality (maybe at a cost of lower speed or accuracy) for free.

PyBullet is available at https://github.com/bulletphysics/bullet3 and can be 
installed by running pip install pybullet inside your virtual environment. The 
following code (which is available in Chapter17/01_check_env.py) allows you to 
check that PyBullet works. It looks at the action space and renders an image of the 
environment that we will use as a guinea pig in this chapter.

import gym
import pybullet_envs

ENV_ID = "MinitaurBulletEnv-v0"
RENDER = True

if __name__ == "__main__":

http://www.mujoco.org
https://github.com/bulletphysics/bullet3


Continuous Action Space

[ 504 ]

    spec = gym.envs.registry.spec(ENV_ID)
    spec._kwargs['render'] = RENDER
    env = gym.make(ENV_ID)

    print("Observation space:", env.observation_space)
    print("Action space:", env.action_space)
    print(env)
    print(env.reset())
    input("Press any key to exit\n")
    env.close()

After you start the utility, it should open the graphical user interface (GUI) window 
with our four-legged robot, shown in the following figure, that we will train how 
to move.

Figure 17.1: The Minitaur environment in the PyBullet GUI
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This environment provides you with 28 numbers as the observation. They 
correspond to different physical parameters of the robot: velocity, position, and 
acceleration. (You can check the source code of MinitaurBulletEnv-v0 for details.) 
The action space is eight numbers that define the parameters of the motors. There are 
two in every leg (one in every knee). The reward of this environment is the distance 
traveled by the robot minus the energy spent.

rl_book_samples/Chapter17$ ./01_check_env.py

[2019-11-15 15:02:14,305] Making new env: MinitaurBulletEnv-v0

pybullet build time: Nov 12 2019 14:02:55

...

Observation space: Box(28,) Action space: Box(8,)

<TimeLimit<MinitaurBulletEnv<MinitaurBulletEnv-v0>>>

[ 1.47892781e+00 1.47092442e+00 1.47486159e+00 1.46795948e+00

  1.48735227e+00 1.49067837e+00 1.48767487e+00 1.48856073e+00

  1.22760518e+00 1.23364264e+00 1.23980635e+00 1.23808274e+00

  1.23863620e+00 1.20957165e+00 1.22914063e+00 1.21966631e+00

  5.27463590e-01 5.87924378e-01 5.56949063e-01 6.10125678e-01

  4.58817873e-01 4.37388898e-01 4.57652322e-01 4.52128593e-01

 -3.00935339e-03 1.04264007e-03 -2.26649036e-04 9.99994903e-01]

Press any key to exit

The A2C method
The first method that we will apply to our walking robot problem is A2C, which we 
experimented with in part three of the book. This choice of method is quite obvious, 
as A2C is very easy to adapt to the continuous action domain. As a quick refresher, 
A2C's idea is to estimate the gradient of our policy as ∇𝐽𝐽 = ∇𝜃𝜃 log𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠) (𝑅𝑅 − 𝑉𝑉𝜃𝜃(𝑠𝑠)) .  
The 𝜋𝜋𝜃𝜃  policy is supposed to provide the probability distribution of actions given 
the observed state. The quantity 𝑉𝑉𝜃𝜃(𝑠𝑠)  is called a critic, equals to the value of the 
state, and is trained using the mean squared error (MSE) loss between the critic's 
return and the value estimated by the Bellman equation. To improve exploration, 
the entropy bonus 𝐿𝐿𝐻𝐻 = 𝜋𝜋𝜃𝜃(𝑠𝑠) log𝜋𝜋𝜃𝜃(𝑠𝑠)  is usually added to the loss.

Obviously, the value head of the actor-critic will be unchanged for continuous 
actions. The only thing that is affected is the representation of the policy. In the 
discrete cases that you have seen, we had only one action with several mutually 
exclusive discrete values. For such a case, the obvious representation of the policy 
was the probability distribution over all actions. 
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In a continuous case, we usually have several actions, each of which can take a value 
from some range. With that in mind, the simplest policy representation will be just 
those values returned for every action. These values should not be confused with 
the value of the state, V(s), which indicates how many rewards we can get from the 
state. To illustrate the difference, let's imagine a simple car steering case in which we 
can only turn the wheel. The action at every moment will be the wheel angle (action 
value), but the value of every state will be the potential discounted reward from the 
state, which is a totally different thing.

Returning to our action representation options, if you remember from Chapter 11, 
Policy Gradients – an Alternative, the representation of an action as a concrete value 
has different disadvantages, mostly related to the exploration of the environment. A 
much better choice will be something stochastic. The simplest alternative will be the 
network returning parameters of the Gaussian distribution. For N actions, this will 
be two vectors of size N. The first will be the mean values, 𝜇𝜇 , and the second vector 
will contain variances, 𝜎𝜎2 . In that case, our policy will be represented as a random 
N-dimensional vector of uncorrelated, normally distributed random variables, and 
our network can make a selection about the mean and the variance of every variable.

By definition, the probability density function of the Gaussian distribution is 

𝑓𝑓(𝑥𝑥|𝜇𝜇, 𝜎𝜎2) = 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2  .

We could directly use this formula to get the probabilities, but to improve numerical 
stability, it is worth doing some math and simplifying the expression for log𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠) .

The final result will be this: log𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠) = −
(𝑥𝑥 − 𝜇𝜇)2
2𝜎𝜎2 − log√2𝜋𝜋𝜎𝜎2 . The entropy of the 

Gaussian distribution could be obtained using the differential entropy definition and 
will be ln√2𝜋𝜋𝜋𝜋𝜎𝜎2 . Now we have everything we need to implement the A2C method. 
Let's do it.

Implementation
The complete source code is in Chapter17/02_train_a2c.py, Chapter17/lib/ 
model.py, and Chapter17/lib/common.py. You will be familiar with most of the 
code, so the following includes only the parts that differ. Let's start with the model 
class defined in Chapter17/lib/model.py:

HID_SIZE = 128

class ModelA2C(nn.Module):
    def __init__(self, obs_size, act_size):
        super(ModelA2C, self).__init__()
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        self.base = nn.Sequential(
            nn.Linear(obs_size, HID_SIZE),
            nn.ReLU(),
        )
        self.mu = nn.Sequential(
            nn.Linear(HID_SIZE, act_size),
            nn.Tanh(),
        )
        self.var = nn.Sequential(
            nn.Linear(HID_SIZE, act_size),
            nn.Softplus(),
        )
        self.value = nn.Linear(HID_SIZE, 1)

As you can see, our network has three heads, instead of the normal two for a discrete 
variant of A2C. The first two heads return the mean value and the variance of the 
actions, while the last is the critic head returning the value of the state. The mean 
value returned has an activation function of a hyperbolic tangent, which is the 
squashed output to the range of –1…1. The variance is transformed with the softplus 
activation function, which is log(1 + 𝑒𝑒𝑥𝑥)  and has the shape of a smoothed rectified 
linear unit (ReLU) function. This activation helps to make our variance positive. 
The value head, as usual, has no activation function applied.

    def forward(self, x):
        base_out = self.base(x)
        return self.mu(base_out), self.var(base_out), \
               self.value(base_out)

The transformation is obvious: we apply the common layer first, and then we 
calculate individual heads.

class AgentA2C(ptan.agent.BaseAgent):
    def __init__(self, net, device="cpu"):
        self.net = net
        self.device = device

    def __call__(self, states, agent_states):
        states_v = ptan.agent.float32_preprocessor(states)
        states_v = states_v.to(self.device)

        mu_v, var_v, _ = self.net(states_v)
        mu = mu_v.data.cpu().numpy()
        sigma = torch.sqrt(var_v).data.cpu().numpy()
        actions = np.random.normal(mu, sigma)
        actions = np.clip(actions, -1, 1)
        return actions, agent_states
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The next step is to implement the PTAN Agent class, which is used to convert the 
observation into actions. In the discrete case, we used the ptan.agent.DQNAgent and 
ptan.agent.PolicyAgent classes, but for our problem, we need to write our own, 
which is not complicated: you just need to write a class, derived from ptan.agent.
BaseAgent, and override the __call__ method, which needs to convert observations 
into actions.

In the preceding class, we get the mean and the variance from the network and 
sample the normal distribution using NumPy functions. To prevent the actions from 
going outside of the environment's –1…1 bounds, we use np.clip, which replaces 
all values less than –1 with –1, and values more than 1 with 1. The agent_states 
argument is not used, but it needs to be returned with the chosen actions, as our 
BaseAgent supports keeping the state of the agent. (It will become handy in the next 
section, when we will need to implement a random exploration using the Ornstein-
Uhlenbeck (OU) process.)

With the model and the agent at hand, we can now go to the training process, 
defined in Chapter17/02_train_a2c.py. It consists of the training loop and two 
functions. The first is used to perform periodical tests of our model on the separate 
testing environment. During the testing, we don't need to do any exploration; we 
will just use the mean value returned by the model directly, without any random 
sampling. The testing function is as follows:

def test_net(net, env, count=10, device="cpu"):
    rewards = 0.0
    steps = 0
    for _ in range(count):
        obs = env.reset()
        while True:
            obs_v = ptan.agent.float32_preprocessor([obs])
            obs_v = obs_v.to(device)
            mu_v = net(obs_v)[0]
            action = mu_v.squeeze(dim=0).data.cpu().numpy()
            action = np.clip(action, -1, 1)
            obs, reward, done, _ = env.step(action)
            rewards += reward
            steps += 1
            if done:
                break
    return rewards / count, steps / count

The second function defined in the training module implements the calculation of 
the logarithm of the taken actions given the policy. The formula for this was given 
earlier, and the function is a straightforward implementation of it. 
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The only tiny difference is in using the torch.clamp() function to prevent the 
division on zero when the returned variance is too small.

def calc_logprob(mu_v, var_v, actions_v):
    p1 = -((mu_v - actions_v) ** 2) / (2*var_v.clamp(min=1e-3))
    p2 = -torch.log(torch.sqrt(2 * math.pi * var_v))
    return p1 + p2

The training loop, as usual, creates the network and the agent, and then instantiates 
the two-step experience source and optimizer. The hyperparameters used are given 
as follows. They weren't tweaked much, so there is plenty of room for optimization.

ENV_ID = "MinitaurBulletEnv-v0"
GAMMA = 0.99
REWARD_STEPS = 2
BATCH_SIZE = 32
LEARNING_RATE = 5e-5
ENTROPY_BETA = 1e-4

TEST_ITERS = 1000

The code used to perform the optimization step on the collected batch is very similar 
to the A2C training that we implemented in Chapter 12, The Actor-Critic Method, and 
Chapter 13, Asynchronous Advantage Actor-Critic. The difference is only in using our 
calc_logprob() function and a different expression for the entropy bonus, which 
is shown next:

                states_v, actions_v, vals_ref_v = \
                    common.unpack_batch_a2c(
                        batch, net, device=device,
                        last_val_gamma=GAMMA ** REWARD_STEPS)
                batch.clear()

                optimizer.zero_grad()
                mu_v, var_v, value_v = net(states_v)

                loss_value_v = F.mse_loss(
                    value_v.squeeze(-1), vals_ref_v)

                adv_v = vals_ref_v.unsqueeze(dim=-1) - \
                        value_v.detach()
                log_prob_v = adv_v * calc_logprob(
                    mu_v, var_v, actions_v)
                loss_policy_v = -log_prob_v.mean()
                ent_v = -(torch.log(2*math.pi*var_v) + 1)/2
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                entropy_loss_v = ENTROPY_BETA * ent_v.mean()

                loss_v = loss_policy_v + entropy_loss_v + \
                         loss_value_v
                loss_v.backward()
                optimizer.step()

Every TEST_ITERS frames, the model is tested, and in the case of the best reward 
obtained, the model weights are saved.

Results
In comparison to other methods that we will look at in this chapter, A2C shows the 
worst results, both in terms of the best reward and convergence speed. That's likely 
because of the single environment used to gather experience, which is a weak point 
of the policy gradient (PG) methods. So, you may want to check the effect of several 
(eight or more) parallel environments on A2C.

To start the training, we pass the -n argument with the run name, which will be used 
in TensorBoard and a new directory to save the models. The --cuda option enables 
GPU usage, but due to the small dimensionality of the input and the tiny network 
size, it gives only a marginal increase in speed. The sample output from the training 
is shown as follows:

Chapter17$ ./02_train_a2c.py -n test

pybullet build time: Nov 12 2019 14:02:55

ModelA2C(

  (base): Sequential(

    (0): Linear(in_features=28, out_features=128, bias=True)

    (1): ReLU()

  )

  (mu): Sequential(

    (0): Linear(in_features=128, out_features=8, bias=True)

    (1): Tanh()

  )

  (var): Sequential(

    (0): Linear(in_features=128, out_features=8, bias=True)

    (1): Softplus(beta=1, threshold=20)

  )

  (value): Linear(in_features=128, out_features=1, bias=True)

)
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Test done is 20.32 sec, reward -0.786, steps 443

122: done 1 episodes, mean reward -0.473, speed 5.69 f/s

1123: done 2 episodes, mean reward -2.560, speed 27.54 f/s

1209: done 3 episodes, mean reward -1.838, speed 176.22 f/s

1388: done 4 episodes, mean reward -1.549, speed 137.63 f/s

After 6M frames, which took 18 hours of optimization, the training process reached 
the best score of 1.3 during the testing, which is not very impressive. The reward and 
episode steps during the training and testing are shown in the following charts:

Figure 17.2: The reward (left) and steps (right) for training episodes

 
Figure 17.3: The reward (left) and steps (right) for test episodes
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The episode steps chart (Figure 17.2, right) shows the average count of steps performed 
in the episode before the end. The time limit of the environment is 1,000 steps, 
so everything lower than 1,000 indicates that the episode was stopped due to 
environment checks. (For most of the environments, they are checking for self-
damage, which stops the simulation.) The Figure 17.3 charts show the mean reward 
and number of steps obtained during the testing.

Using models and recording videos
As you have seen before, the physical simulator can render the state of the 
environment, which makes it possible to see how our trained model behaves. To do 
that for our A2C models, there is a utility, Chapter17/03_play_a2c.py. Its logic is 
the same as in the test_net() function, so its code is not shown here. To start it, you 
need to pass the -m option with the model file and -r with a directory name, which 
will be created to save the video. To render the image, PyBullet requires OpenGL, 
so you need to use Xvfb to record the video on a headless server:

xvfb-run -s "-screen 0 640x480x24 +extension GLX" ./03_play_a2c.py -m 
model.dat -r dest-dir

There is a script that does this in Chapter17/adhoc/record_a2c.sh. For example, 
the best model that I got from A2C training produced this:

Chapter17$ ./adhoc/record_a2c.sh res/a2c-t1-long/a2c-t1/ 
best_+1.188_203000.dat a2c-res/

pybullet build time: Nov 12 2019 14:02:55

In 738 steps we got 1.261 reward

In the directory specified, there will be a recorded movie with the agent's activity.

Deterministic policy gradients
The next method that we will take a look at is called deterministic policy gradients, 
which is an actor-critic method but has a very nice property of being off-policy. The 
following is my very relaxed interpretation of the strict proofs. If you are interested 
in understanding the core of this method deeply, you can always refer to the article 
by David Silver and others called Deterministic Policy Gradient Algorithms, published 
in 2014 (http://proceedings.mlr.press/v32/silver14.pdf), and the paper by 
Timothy P. Lillicrap and others called Continuous Control with Deep Reinforcement 
Learning, published in 2015 (https://arxiv.org/abs/1509.02971).

http://proceedings.mlr.press/v32/silver14.pdf
https://arxiv.org/abs/1509.02971
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The simplest way to illustrate the method is through comparison with the already 
familiar A2C method. In this method, the actor estimates the stochastic policy, 
which returns the probability distribution over discrete actions or, as we have just 
covered in the previous section, the parameters of normal distribution. In both cases, 
our policy is stochastic, so, in other words, our action taken is sampled from this 
distribution.

Deterministic policy gradients also belong to the A2C family, but the policy is 
deterministic, which means that it directly provides us with the action to take from 
the state. This makes it possible to apply the chain rule to the Q-value, and by 
maximizing the Q, the policy will be improved as well. To understand this, let's 
look at how the actor and critic are connected in a continuous action domain.

Let's start with the actor, as it is the simpler of the two. What we want from it is the 
action to take for every given state. In a continuous action domain, every action is a 
number, so the actor network will take the state as an input and return N values, one 
for every action. This mapping will be deterministic, as the same network always 
returns the same output if the input is the same. (We're not going to use dropout 
or something similar; we're just going to use an ordinary feed-forward network.)

Now let's look at the critic. The role of the critic is to estimate the Q-value, which 
is a discounted reward of the action taken in some state. However, our action is a 
vector of numbers, so our critic network now accepts two inputs: the state and the 
action. The output from the critic will be the single number, which corresponds 
to the Q-value. This architecture is different from the DQN, when our action space 
was discrete and, for efficiency, we returned values for all actions in one pass. This 
mapping is also deterministic.

So, we have two functions: the actor, let's call it 𝜇𝜇(𝑠𝑠) , which converts the state into 
the action, and the critic, which through the state and the action gives us the Q-value: 
Q(s, a). We can substitute the actor function into the critic and get the expression with 
only one input parameter of our state: 𝑄𝑄(𝑠𝑠, 𝜇𝜇(𝑠𝑠)) . In the end, neural networks are just 
functions.

Now, the output of the critic gives us the approximation of the entity that we're 
interested in maximizing in the first place: the discounted total reward. This value 
depends not only on the input state, but also on the parameters of the 𝜃𝜃𝜇𝜇  actor and 
the 𝜃𝜃𝑄𝑄  critic networks. At every step of our optimization, we want to change the 
actor's weights to improve the total reward that we get. In mathematical terms, we 
want the gradient of our policy.

In his deterministic policy gradient theorem, David Silver proved that the stochastic 
policy gradient is equivalent to the deterministic policy gradient. In other words, to 
improve the policy, we just need to calculate the gradient of the 𝑄𝑄(𝑠𝑠, 𝜇𝜇(𝑠𝑠))  function. 
By applying the chain rule, we get the gradient: ∇𝑎𝑎𝑄𝑄(𝑠𝑠, 𝑎𝑎)∇𝜃𝜃𝜇𝜇𝜇𝜇(𝑠𝑠) .
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Note that, despite both the A2C and deep deterministic policy gradients (DDPG) 
methods belonging to the A2C family, the way that the critic is used is different. In 
A2C, we use the critic as a baseline for a reward from the experienced trajectories, 
so the critic is an optional piece (without it, we will get the REINFORCE method) 
and is used to improve the stability. This happens as the policy in A2C is stochastic, 
which builds a barrier in our backpropagation capabilities (we have no way of 
differentiating the random sampling step).

In DDPG, the critic is used in a different way. As our policy is deterministic, we 
can now calculate the gradients from Q, which is obtained from the critic network, 
which uses actions produced by the actor (check Figure 17.4), so the whole system is 
differentiable and could be optimized end to end with stochastic gradient descent 
(SGD). To update the critic network, we can use the Bellman equation to find the 
approximation of Q(s, a) and minimize the MSE objective.

All this may look a bit cryptic, but behind it stands a quite simple idea: the critic is 
updated as we did in A2C, and the actor is updated in a way to maximize the critic's 
output. The beauty of this method is that it is off-policy, which means that we can 
now have a huge replay buffer and other tricks that we used in DQN training. 
Nice, right?

Exploration
The price we have to pay for all this goodness is that our policy is now deterministic, 
so we have to explore the environment somehow. We can do this by adding noise 
to the actions returned by the actor before we pass them to the environment. There 
are several options here. The simplest method is just to add the random noise to the 
𝜇𝜇(𝑠𝑠) + 𝜀𝜀𝜀𝜀  actions. We will use this in the next method that we will consider in this 
chapter.

A fancier approach to the exploration is to use the previously mentioned stochastic 
model, which is very popular in the financial world and other domains dealing with 
stochastic processes (OU processes). This process models the velocity of a massive 
Brownian particle under the influence of friction and is defined by this stochastic 
differential equation: 𝜕𝜕𝑥𝑥𝑡𝑡 = 𝜃𝜃(𝜇𝜇 − 𝑥𝑥𝑡𝑡)𝜕𝜕𝜕𝜕 + 𝜎𝜎𝜕𝜕𝜎𝜎 , where 𝜃𝜃 , 𝜇𝜇 , and 𝜎𝜎  are parameters 
of the process and W is the Wiener process. In a discrete-time case, the OU process 
could be written as 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 + 𝜃𝜃(𝜇𝜇 − 𝑥𝑥𝑡𝑡) + 𝜎𝜎𝜎𝜎 . This equation expresses the next 
value generated by the process via the previous value of the noise, adding normal 
noise, 𝒩𝒩 . In our exploration, we will add the value of the OU process to the action 
returned by the actor.
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Implementation
This example consists of three source files:

• Chapter17/lib/model.py: contains the model and the PTAN agent
• Chapter17/lib/common.py: has a function used to unpack the batch
• Chapter17/04_train_ddpg.py: has the startup code and the training loop

Here, I will show only the significant pieces of the code. The model consists of two 
separate networks for the actor and critic, and it follows the architecture from the 
Continuous Control with Deep Reinforcement Learning paper mentioned earlier. The 
actor is extremely simple and is feed-forward with two hidden layers. The input is an 
observation vector, whereas the output is a vector with N values, one for each action. 
The output actions are transformed with hyperbolic tangent nonlinearity to squeeze 
the values to the –1…1 range.

The critic is a bit unusual, as it includes two separate paths for the observation 
and the actions, and those paths are concatenated together to be transformed into 
the critic output of one number. The following is a diagram with the structures of 
both networks:

Figure 17.4: The DDPG actor and critic networks



Continuous Action Space

[ 516 ]

The code for both classes is simple and straightforward:

class DDPGActor(nn.Module):
    def __init__(self, obs_size, act_size):
        super(DDPGActor, self).__init__()

        self.net = nn.Sequential(
            nn.Linear(obs_size, 400),
            nn.ReLU(),
            nn.Linear(400, 300),
            nn.ReLU(),
            nn.Linear(300, act_size),
            nn.Tanh()
        )

    def forward(self, x):
        return self.net(x)

class DDPGCritic(nn.Module):
    def __init__(self, obs_size, act_size):
        super(DDPGCritic, self).__init__()

        self.obs_net = nn.Sequential(
            nn.Linear(obs_size, 400),
            nn.ReLU(),
        )

        self.out_net = nn.Sequential(
            nn.Linear(400 + act_size, 300),
            nn.ReLU(),
            nn.Linear(300, 1)
        )

    def forward(self, x, a):
        obs = self.obs_net(x)
        return self.out_net(torch.cat([obs, a], dim=1))

The forward() function of the critic first transforms the observations with its small 
network and then concatenates the output and given actions to transform them into 
one single value of Q. To use the actor network with the PTAN experience source, 
we need to define the agent class that has to transform the observations into actions. 
This class is the most convenient place to put our OU exploration process, but to do 
this properly, we should use the functionality of the PTAN agents that we haven't 
used so far: optional statefulness.
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The idea is simple: our agent transforms the observations into actions. But what if 
it needs to remember something between the observations? All our examples have 
been stateless so far, but sometimes this is not enough. The issue with OU is that 
we have to track the OU values between the observations.

Another very useful use case for stateful agents is a partially observable Markov 
decision process (POMDP), which was briefly mentioned in Chapter 16, Web 
Navigation. The POMDP is a Markov decision process when the state observed by 
the agent doesn't comply with the Markov property and doesn't include the full 
information to distinguish one state from another. In that case, our agent needs 
to track the state along the trajectory to be able to take the action.

So, the code for the agent that implements the OU for exploration is as follows:

class AgentDDPG(ptan.agent.BaseAgent):
    def __init__(self, net, device="cpu", ou_enabled=True,
                 ou_mu=0.0, ou_teta=0.15, ou_sigma=0.2,
                 ou_epsilon=1.0):
        self.net = net
        self.device = device
        self.ou_enabled = ou_enabled
        self.ou_mu = ou_mu
        self.ou_teta = ou_teta
        self.ou_sigma = ou_sigma
        self.ou_epsilon = ou_epsilon

The constructor accepts a lot of parameters, most of which are the default values of 
OU taken from the previously mentioned Continuous Control with Deep Reinforcement 
Learning paper.

    def initial_state(self):
        return None

This method is derived from the BaseAgent class and has to return the initial state 
of the agent when a new episode is started. As our initial state has to have the same 
dimension as the actions (we want to have individual exploration trajectories for 
every action of the environment), we postpone the initialization of the state until 
the __call__ method, as follows:

    def __call__(self, states, agent_states):
        states_v = ptan.agent.float32_preprocessor(states)
        states_v = states_v.to(self.device)
        mu_v = self.net(states_v)
        actions = mu_v.data.cpu().numpy()
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This method is the core of the agent and the purpose of it is to convert the observed 
state and internal agent state into the action. As the first step, we convert the 
observations into the appropriate form and ask the actor network to convert them 
into deterministic actions. The rest of the method is for adding the exploration noise 
by applying the OU process.

        if self.ou_enabled and self.ou_epsilon > 0:
            new_a_states = []
            for a_state, action in zip(agent_states, actions):
                if a_state is None:
                    a_state = np.zeros(
                        shape=action.shape, dtype=np.float32)
                a_state += self.ou_teta * (self.ou_mu - a_state)
                a_state += self.ou_sigma * np.random.normal(
                    size=action.shape)

In this loop, we iterate over the batch of observations and the list of the agent 
states from the previous call, and we update the OU process value, which is a 
straightforward implementation of the preceding formula.

                action += self.ou_epsilon * a_state
                new_a_states.append(a_state)

To finalize the loop, we add the noise from the OU process to our actions and save 
the noise value for the next step.

        else:
            new_a_states = agent_states

        actions = np.clip(actions, -1, 1)
        return actions, new_a_states

Finally, we clip the actions to enforce them to fall into the –1…1 range, otherwise 
PyBullet will throw an exception.

The final piece of the DDPG implementation is the training loop in the 
Chapter17/04_train_ddpg.py file. To improve the stability, we use the replay 
buffer with 100,000 transitions and target networks for both the actor and the critic. 
We discussed both in Chapter 6, Deep Q-Networks.

    act_net = model.DDPGActor(
        env.observation_space.shape[0],
        env.action_space.shape[0]).to(device)
    crt_net = model.DDPGCritic(
        env.observation_space.shape[0],
        env.action_space.shape[0]).to(device)
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    print(act_net)
    print(crt_net)
    tgt_act_net = ptan.agent.TargetNet(act_net)
    tgt_crt_net = ptan.agent.TargetNet(crt_net)

    writer = SummaryWriter(comment="-ddpg_" + args.name)
    agent = model.AgentDDPG(act_net, device=device)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        env, agent, gamma=GAMMA, steps_count=1)
    buffer = ptan.experience.ExperienceReplayBuffer(
        exp_source, buffer_size=REPLAY_SIZE)
    act_opt = optim.Adam(act_net.parameters(), lr=LEARNING_RATE)
    crt_opt = optim.Adam(crt_net.parameters(), lr=LEARNING_RATE)

We also use two different optimizers to simplify the way that we handle gradients 
for the actor and critic training steps. The most interesting code is inside the training 
loop. On every iteration, we store the experience into the replay buffer and sample 
the training batch:

                batch = buffer.sample(BATCH_SIZE)
                states_v, actions_v, rewards_v, \
                dones_mask, last_states_v = \
                    common.unpack_batch_ddqn(batch, device)

Then, two separate training steps are performed. To train the critic, we need to 
calculate the target Q-value using the one-step Bellman equation, with the target 
critic network as the approximation of the next state.

                # train critic
                crt_opt.zero_grad()
                q_v = crt_net(states_v, actions_v)
                last_act_v = tgt_act_net.target_model(
                    last_states_v)
                q_last_v = tgt_crt_net.target_model(
                    last_states_v, last_act_v)
                q_last_v[dones_mask] = 0.0
                q_ref_v = rewards_v.unsqueeze(dim=-1) + \
                          q_last_v * GAMMA

When we have got the reference, we can calculate the MSE loss and ask the critic's 
optimizer to tweak the critic's weights. The whole process is similar to the training 
for the DQN, so nothing is really new here.

                critic_loss_v = F.mse_loss(q_v, q_ref_v.detach())
                critic_loss_v.backward()
                crt_opt.step()
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                tb_tracker.track("loss_critic",
                                 critic_loss_v, frame_idx)
                tb_tracker.track("critic_ref",
                                 q_ref_v.mean(), frame_idx)

On the actor's training step, we need to update the actor's weights in a direction 
that will increase the critic's output. As both the actor and critic are represented 
as differentiable functions, what we need to do is just pass the actor's output to 
the critic and then minimize the negated value returned by the critic.

                # train actor
                act_opt.zero_grad()
                cur_actions_v = act_net(states_v)
                actor_loss_v = -crt_net(states_v, cur_actions_v)
                actor_loss_v = actor_loss_v.mean()

This negated output of the critic could be used as a loss to backpropagate it to the 
critic network and, finally, the actor. We don't want to touch the critic's weights, 
so it's important to ask only the actor's optimizer to do the optimization step. The 
weights of the critic will still keep the gradients from this call, but they will be 
discarded on the next optimization step.

                actor_loss_v.backward()
                act_opt.step()
                tb_tracker.track("loss_actor",
                                 actor_loss_v, frame_idx)

As the last step of the training loop, we perform the update of the target networks in 
an unusual way. Previously, we synced the weights from the optimized network into 
the target every n steps. In continuous action problems, such syncing works worse 
than so-called soft sync. The soft sync is carried out on every step, but only a small 
ratio of the optimized network's weights are added to the target network. This 
makes a smooth and slow transition from the old weight to the new ones.

                tgt_act_net.alpha_sync(alpha=1 - 1e-3)
                tgt_crt_net.alpha_sync(alpha=1 - 1e-3)

Results
The code can be started in the same way as the A2C example: you need to pass 
the run name and optional --cuda flag. My experiments have shown ~30% speed 
increase from a GPU, so if you're in a hurry, using CUDA may be a good idea, but 
the increase is not that dramatic, as you have seen in the case of Atari games.
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After 5M observations, which took about a day, the DDPG algorithm was able to 
reach the mean reward of 6.5 on 10 test episodes, which is an improvement over the 
A2C result. The training dynamics are as follows:

Figure 17.5: The DDPG training reward (left) and episode steps (right)

Figure 17.6: The actor loss (left) and critic loss (right) during the DDPG training

The episode_steps value shows the mean length of the episodes that we used for 
training. The critic loss is an MSE loss and should be low, but the actor loss, as you 
will remember, is the negated critic's output, so the smaller it is, the better reward 
that the actor can (potentially) achieve. 
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From the preceding charts, the training is not very stable and is noisy.

Figure 17.7: The test reward (left) and test steps (right)

The preceding charts are also quite noisy.

Recording videos
To check the trained agent in action, we can record a video in the same way as we 
recorded it for the A2C agent. For DDPG, there is a separate tool, Chapter17/05_
play_ddpg.py, that is almost the same as for the A2C method, but just uses different 
classes for the actor. The result from my model is as follows:

rl_book_samples/Chapter17$ adhoc/record_ddpg.sh saves/ddpg-t5-simpler-
critic/best_+3.933_2484000.dat res/play-ddpg

pybullet build time: Nov 12 2019 14:02:55

In 1000 steps we got 5.346 reward

Distributional policy gradients
As the last method of this chapter, we will take a look at the very recent paper 
by Gabriel Barth-Maron, Matthew W. Hoffman, and others, called Distributed 
Distributional Deterministic Policy Gradients, published in 2018 (https://arxiv.org/
abs/1804.08617).

The full name of the method is distributed distributional deep deterministic policy 
gradients or D4PG for short. The authors proposed several improvements to the 
DDPG method to improve stability, convergence, and sample efficiency. 

https://arxiv.org/abs/1804.08617
https://arxiv.org/abs/1804.08617
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First of all, they adapted the distributional representation of the Q-value proposed 
in the paper by Marc G. Bellemare and others called A Distributional Perspective on 
Reinforcement Learning, published in 2017 (https://arxiv.org/abs/1707.06887). 
We discussed this approach in Chapter 8, DQN Extensions, when we talked about 
DQN improvements, so refer to it or to the original Bellemare paper for details. The 
core idea is to replace a single Q-value from the critic with a probability distribution. 
The Bellman equation is replaced with the Bellman operator, which transforms this 
distributional representation in a similar way.

The second improvement was the usage of the n-step Bellman equation, unrolled 
to speed up the convergence. We also discussed this in detail in Chapter 8.

Another improvement versus the original DDPG method was the usage of the 
prioritized replay buffer instead of the uniformly sampled buffer. So, strictly 
speaking, the authors took relevant improvements from the paper by Matteo Hassel 
and others, called Rainbow: Combining Improvements in Deep Reinforcement Learning, 
which was published in 2017 (https://arxiv.org/abs/1710.02298), and adapted 
them to the DDPG method. The result was impressive: this combination showed 
state-of-the-art results on the set of continuous control problems. Let's try to 
reimplement the method and check it ourselves.

Architecture
The most notable change is the critic's output. Instead of returning the single Q-value 
for the given state and the action, it now returns N_ATOMS values, corresponding to 
the probabilities of values from the predefined range. In my code, I used N_ATOMS=51 
and the distribution range of Vmin=-10 and Vmax=10, so the critic returned 51 
numbers, representing the probabilities of the discounted reward falling into bins 
with bounds in [–10, –9.6, –9.2, …, 9.6, 10].

Another difference between D4PG and DDPG is the exploration. DDPG used the OU 
process for exploration, but according to the D4PG authors, they tried both OU and 
adding simple random noise to the actions, and the result was the same. So, they 
used a simpler approach for exploration in the paper.

The last significant difference in the code is related to the training, as D4PG uses 
cross-entropy loss to calculate the difference between two probability distributions 
(returned by the critic and obtained as a result of the Bellman operator). To make 
both distributions aligned to the same supporting atoms, distribution projection is 
used in the same way as in the original paper by Bellemare.

https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1710.02298
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Implementation
The complete source code is in Chapter17/06_train_d4pg.py, Chapter17/lib/
model.py, and Chapter17/lib/common.py. As before, we start with the model 
class. The actor class has exactly the same architecture, so during the training class, 
DDPGActor is used. The critic has the same size and count of hidden layers; however, 
the output is not a single number, but N_ATOMS.

class D4PGCritic(nn.Module):
    def __init__(self, obs_size, act_size,
                 n_atoms, v_min, v_max):
        super(D4PGCritic, self).__init__()

        self.obs_net = nn.Sequential(
            nn.Linear(obs_size, 400),
            nn.ReLU(),
        )

        self.out_net = nn.Sequential(
            nn.Linear(400 + act_size, 300),
            nn.ReLU(),
            nn.Linear(300, n_atoms)
        )

        delta = (v_max - v_min) / (n_atoms - 1)
        self.register_buffer("supports", torch.arange(
            v_min, v_max + delta, delta))

We also create a helper PyTorch buffer with reward supports, which will be used 
to get from the probability distribution to the single mean Q-value.

    def forward(self, x, a):
        obs = self.obs_net(x)
        return self.out_net(torch.cat([obs, a], dim=1))

    def distr_to_q(self, distr):
        weights = F.softmax(distr, dim=1) * self.supports
        res = weights.sum(dim=1)
        return res.unsqueeze(dim=-1)

As you can see, softmax is not part of the network, as we're going to use the more 
stable log_softmax() function during the training. Due to this, softmax() needs to 
be applied when we want to get actual probabilities. The agent class is much simpler 
for D4PG and has no state to track.

class AgentD4PG(ptan.agent.BaseAgent):
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    def __init__(self, net, device="cpu", epsilon=0.3):
        self.net = net
        self.device = device
        self.epsilon = epsilon

    def __call__(self, states, agent_states):
        states_v = ptan.agent.float32_preprocessor(states)
        states_v = states_v.to(self.device)
        mu_v = self.net(states_v)
        actions = mu_v.data.cpu().numpy()
        actions += self.epsilon * np.random.normal(
            size=actions.shape)
        actions = np.clip(actions, -1, 1)
        return actions, agent_states

For every state to be converted to actions, the agent applies the actor network and 
adds Gaussian noise to the actions, scaled by the epsilon value. In the training code, 
we have the hyperparameters shown as follows. I used a smaller replay buffer of 
100,000, and it worked fine. (In the D4PG paper, the authors used 1M transitions 
in the buffer.) The buffer is prepopulated with 10,000 samples from the environment, 
and then the training starts.

ENV_ID = "MinitaurBulletEnv-v0"
GAMMA = 0.99
BATCH_SIZE = 64
LEARNING_RATE = 1e-4
REPLAY_SIZE = 100000
REPLAY_INITIAL = 10000
REWARD_STEPS = 5

TEST_ITERS = 1000

Vmax = 10
Vmin = -10
N_ATOMS = 51
DELTA_Z = (Vmax - Vmin) / (N_ATOMS - 1)

For every training loop, we perform the same two steps as before: we train the critic 
and the actor. The difference is in the way that the loss for the critic is calculated.

                batch = buffer.sample(BATCH_SIZE)
                states_v, actions_v, rewards_v, \
                dones_mask, last_states_v = \
                    common.unpack_batch_ddqn(batch, device)

                # train critic
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                crt_opt.zero_grad()
                crt_distr_v = crt_net(states_v, actions_v)
                last_act_v = tgt_act_net.target_model(
                    last_states_v)
                last_distr_v = F.softmax(
                    tgt_crt_net.target_model(
                        last_states_v, last_act_v), dim=1)

As the first step in the critic's training, we ask it to return the probability distribution 
for the states and actions taken. This probability distribution will be used as an input 
in the cross-entropy loss calculation. To get the target probability distribution, we 
need to calculate the distribution from the last states in the batch and then perform 
the Bellman projection of the distribution.

                proj_distr_v = distr_projection(
                    last_distr_v, rewards_v, dones_mask,
                    gamma=GAMMA**REWARD_STEPS, device=device)

This projection function is a bit complicated and will be explained after the training 
loop code. For now, it calculates the transformation of the last_states probability 
distribution, which is shifted according to the immediate reward and scaled to 
respect the discount factor. The result is the target probability distribution that we 
want our network to return. As there are no general cross-entropy loss functions 
in PyTorch, we calculate it manually by multiplying the logarithm of the input 
probability by the target probabilities.

                prob_dist_v = -F.log_softmax(
                    crt_distr_v, dim=1) * proj_distr_v
                critic_loss_v = prob_dist_v.sum(dim=1).mean()
                critic_loss_v.backward()
                crt_opt.step()

The actor's training is much simpler, and the only difference from the DDPG method 
is the use of the distr_to_q() function to convert from the probability distribution 
to the single mean Q-value using support atoms.

                # train actor
                act_opt.zero_grad()
                cur_actions_v = act_net(states_v)
                crt_distr_v = crt_net(states_v, cur_actions_v)
                actor_loss_v = -crt_net.distr_to_q(crt_distr_v)
                actor_loss_v = actor_loss_v.mean()
                actor_loss_v.backward()
                act_opt.step()
                tb_tracker.track("loss_actor", actor_loss_v,
                                 frame_idx)
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Now comes the most complicated piece of code in D4PG implementation: the 
projection of the probability using the Bellman operator. It was already explained in 
Chapter 8, DQN Extensions, but the function is tricky, so let's do it again. The overall 
goal of the function is to calculate the result of the Bellman operator and project 
the resulting probability distribution to the same support atoms as the original 
distribution. The Bellman operator has the form of 𝑍𝑍(𝑥𝑥, 𝑎𝑎) =𝐷𝐷 𝑅𝑅(𝑥𝑥, 𝑎𝑎) + 𝛾𝛾𝑍𝑍(𝑥𝑥′, 𝑎𝑎′)  and 
it is supposed to transform the probability distribution.

def distr_projection(next_distr_v, rewards_v, dones_mask_t,
                     gamma, device="cpu"):
    next_distr = next_distr_v.data.cpu().numpy()
    rewards = rewards_v.data.cpu().numpy()
    dones_mask = dones_mask_t.cpu().numpy().astype(np.bool)
    batch_size = len(rewards)
    proj_distr = np.zeros((batch_size, N_ATOMS), dtype=np.float32)

In the beginning, we convert the provided tensors to NumPy arrays and create an 
empty array for the resulting projected distribution.

    for atom in range(N_ATOMS):
        tz_j = np.minimum(Vmax, np.maximum(
            Vmin, rewards + (Vmin + atom * DELTA_Z) * gamma))

In the loop, we iterate over our atoms and as the first step, calculate the place that 
our atom will be projected to by the Bellman operator, taking into account the value 
range Vmin … Vmax.

        b_j = (tz_j - Vmin) / DELTA_Z

The preceding line calculates the index of the atom that this projected value belongs 
to. Of course, the value may fall between the atoms, so in that case, we project the 
value proportionally to both atoms.

        l = np.floor(b_j).astype(np.int64)
        u = np.ceil(b_j).astype(np.int64)
        eq_mask = u == l
        proj_distr[eq_mask, l[eq_mask]] += \
            next_distr[eq_mask, atom]

The preceding code handles the rare case when the project value lands exactly on 
the atom. In that case, we just add the value to the atom. Of course, we work with a 
batch, so some of the samples might comply to this case, but some might not. That's 
why we need to calculate the mask and filter with it.

        ne_mask = u != l
        proj_distr[ne_mask, l[ne_mask]] += \
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            next_distr[ne_mask, atom] * (u - b_j)[ne_mask]
        proj_distr[ne_mask, u[ne_mask]] += \
            next_distr[ne_mask, atom] * (b_j - l)[ne_mask]

As the final step of the loop, we need to process the case when the projected value 
is somewhere between two atoms. We calculate the proportion and distribute the 
projected value among two atoms.

    if dones_mask.any():
        proj_distr[dones_mask] = 0.0
        tz_j = np.minimum(Vmax, np.maximum(
            Vmin, rewards[dones_mask]))
        b_j = (tz_j - Vmin) / DELTA_Z

In this branch, we handle the situation when the episode is over and our projected 
distribution will contain only one stripe corresponding to the atom of the reward 
that we have obtained. Here we take the same actions as before, but our source 
distribution is just reward.

        l = np.floor(b_j).astype(np.int64)
        u = np.ceil(b_j).astype(np.int64)
        eq_mask = u == l
        eq_dones = dones_mask.copy()
        eq_dones[dones_mask] = eq_mask
        if eq_dones.any():
            proj_distr[eq_dones, l[eq_mask]] = 1.0
        ne_mask = u != l
        ne_dones = dones_mask.copy()
        ne_dones[dones_mask] = ne_mask
        if ne_dones.any():
            proj_distr[ne_dones, l[ne_mask]] = (u - b_j)[ne_mask]
            proj_distr[ne_dones, u[ne_mask]] = (b_j - l)[ne_mask]

At the end of the function, we pack the distribution into the PyTorch tensor and 
return it:

    return torch.FloatTensor(proj_distr).to(device)

Results
The D4PG method showed the best results in both convergence speed and the 
reward obtained. Following seven hours of training, after about 1M observations, it 
was able to reach the mean test reward of 7.2. The training process was much more 
stable than in other methods in this chapter, but the outcomes from different runs 
varied significantly. For example, the same code in experiments I did for the first 
edition of the book was able to reach a reward of 12.9 after 2M observations.
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What follows are the same set of charts with the training dynamics as for the 
previous methods.

Figure 17.8: The D4PG training episode rewards (left) and steps (right)

Figure 17.9: The D4PG actor (left) and critic (right) losses

Figure 17.10: The test reward (left) and number of steps (right)
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Video recordings
To record the video of the model activity, you can use the same Chapter17/05_
play_ddpg.py utility, as the actor's architecture is exactly the same. The best video I 
got from the trained model with the 12.9 score can be found here: https://youtu.
be/BMt40odLfyk.

Things to try
Here is a list of things you can do to improve your understanding of the topic:

1. In the D4PG code, I used a simple replay buffer, which was enough to 
get good improvement over DDPG. You can try to switch the example to 
the prioritized replay buffer in the same way as we did in Chapter 8, DQN 
Extensions, and check the effect.

2. There are lots of interesting and challenging environments around. For 
example, you can start with other PyBullet environments, but there is also 
the DeepMind Control Suite (Tassa, Yuval, et al., DeepMind Control Suite, 
arXiv abs/1801.00690 (2018)), MuJoCo-based environments in Gym, and 
many others.

3. You can request the trial license of MuJoCo and compare its stability, 
performance, and resulting policy with PyBullet.

4. You can play with the very challenging Learning to Run competition from 
NIPS-2017 (which also took place in 2018 and 2019 with more challenging 
problems), where you are given a simulator of the human body and your 
agent needs to figure out how to move it around.

Summary
In this chapter, we quickly skimmed through the very interesting domain of 
continuous control using RL methods, and we checked three different algorithms on 
one problem of a four-legged robot. In our training, we used an emulator, but there 
are real models of this robot made by the Ghost Robotics company. (You can check 
out the cool video on YouTube: https://youtu.be/bnKOeMoibLg.) We applied 
three training methods to this environment: A2C, DDPG, and D4PG (which showed 
the best results).

In the next chapter, we will continue exploring the continuous action domain and 
check a different set of improvements: trust region extension.

https://youtu.be/BMt40odLfyk
https://youtu.be/BMt40odLfyk
https://youtu.be/bnKOeMoibLg
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RL in Robotics
This chapter is a bit unusual in comparison to the other chapters in this book for the 
following reasons:

• It took me almost four months to gather all the materials, do the experiments, 
write the examples, and so on

• This is the only chapter in which we will try to step beyond emulated 
environments into the physical world

• In this chapter, we will build a small robot from accessible and cheap 
components to be controlled using reinforcement learning (RL) methods

This topic is an amazing and fascinating field for many reasons that couldn't be 
covered in a whole book, much less in a short chapter. So, this chapter doesn't 
pretend to offer anywhere close to complete coverage of the robotics field. It is 
just a short introduction that shows what can be done with commodity components, 
and outlines future directions for your own experiments and research. In addition, 
I have to admit that I'm not an expert in robotics and have never worked in the field 
professionally, so feedback is welcome.

Robots and robotics
I'm sure you know what the word "robot" means and have seen them both in real life 
and in science fiction movies. Putting aside fictitious ones, there are many robots in 
industry (check "Tesla assembly line" on YouTube), the military (if you haven't seen the 
Boston Dynamics videos, you should stop reading and check them out), agriculture, 
medicine, and our homes. Automatic vacuum cleaners, modern coffee machines, 3D 
printers, and many other applications are examples of specialized mechanisms with 
complicated logic that are driven by some kind of software. At a high level, all those 
robots have common features, which we're going to discuss. Of course, this kind of 
classification is not perfect. As is often the case, there are lots of outliers that might 
fulfill the given criteria, but could still hardly be considered as robots.
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Firstly, robots are connected to the world around them with some kind of sensors 
or other communication channels. Without this connection, a robot is blind and 
not very useful, as it can't adequately react to the events outside of it. There is a 
wide variety of different kinds of sensors, from the very simple to the extremely 
complicated and expensive; the following is just a small subset with examples:

• A simple push button with two states, on and off: This is a very popular solution 
for detecting physical contact with objects in simple cases. For example, a 
3D printer normally has so-called endstops, which are just buttons triggered 
when the moving parts reach some boundary limits. When this happens, 
the internal software (also called firmware) reacts to this event, for instance, 
by stopping the motors.

• Range sensors: These measure the distance to the objects in front of the 
sensor by using sound waves or laser beams. For example, robotic vacuum 
cleaners normally have a "cliff detector" to prevent them from falling down 
staircases. This is just a laser range sensor that measures the distance to the 
floor underneath the robot. If this distance suddenly becomes large, the robot 
knows that it's dangerous to move forward and reacts appropriately.

• Light detection and ranging (LiDAR) sensors: These are more complicated and 
expensive versions of range sensors, with the difference being that the sensors 
rotate and thus constantly scan objects on the horizontal plane. The output 
from the sensors is the stream of points (the so-called "point cloud") showing 
the range to obstacles around the robot. LiDARs are very popular in self-
driving cars, as they provide a reliable stream of information about obstacles, 
but they are quite expensive due to complicated mechanics and optics.

• Cameras: Such sensors stream video in the same way as any modern 
smartphone does, but the stream normally has to be processed by the robot's 
software to detect objects, like corners or cats. Video processing is quite 
heavy in terms of computations, so specialized hardware, like embedded 
graphics processing units (GPUs) or other neural network (NN) accelerators, 
has to be used. The good thing is that cameras can be quite cheap and 
provide a rich stream of information about the outside world.

• Physical sensors: This category includes accelerometers, digital gyroscopes, 
magnetometers, pressure sensors, thermometers, and so on. They measure 
the physical parameters of the world around the robot and usually are 
quite compact, cheap, and easy to use. All the details and complications 
are normally hidden inside the small chip, providing measures in digital 
form using some kind of communication protocol. This kind of sensor is 
very popular among hobbyists and can be found in a wide range of toys, 
consumer electronics, and DIY projects. For example, a drone can measure 
altitude using a pressure sensor, determine horizontal orientation with a 
magnetometer, and localize itself using a GPS receiver.
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The list could be continued, but I think you've got the idea!

The second common property of robots is that they normally have a way to influence 
the outside world. It might be something obvious like turning on a motor or blinking 
a light, but it also could be something really sophisticated like rotating an antenna 
according to the tracked position and sending a radio signal to Earth over a distance 
of more than 20B kilometers, as NASA's Voyager 1 routinely does. In that group, we 
have a large variety of ways that a robot can influence the outside world. A small set 
of examples follows:

• Motors and actuators of various kinds, including very cheap small servo 
motors, stepper motors used in 3D printers, and the very complicated and 
precise actuators used in industrial robots.

• Producing sound and light, like flashing an LED or turning on a buzzer. 
These are normally used to attract a human's attention to some condition. 
As this is one of the simplest external devices to work with, blinking an LED 
is commonly used as a "Hello, World!" application in hobbyist electronics 
projects.

• Heaters, water pumps, water sprinklers, or printers.

The third group of features involves the presence of some kind of software that 
connects sensors and actuators together to solve a practical task at hand. The idea 
behind robots is to free humans up from doing those tasks themselves. Robots might 
be used for something trivial, like pulling up blinds according to a schedule and 
timer, or extremely complicated, like NASA's Mars Curiosity Rover. According to 
a very nice book by Rob Manning and William L. Simon, Mars Rover Curiosity, the 
Rover's actions are not controlled fully from Earth due to signal transmission latency; 
rather, every day, a very sophisticated semi-automated program is created at the 
mission control center and uploaded to the robot. Then, during the execution, the 
robot has some freedom in its actions as it takes into account the world around it.

Before automatic control, humans pulled levers and turned knobs according to their 
knowledge and objectives. This activity was replaced by automating software and 
offloading or decreasing humans' direct influence on the process. This understanding 
might disagree with the common understanding of the term "robot" (thanks again 
to Hollywood movies), but in fact, an automatic watering machine, and a hobbyist 
project of a camera attached to a printer that detects, photographs, and prints 
photos of cats passing nearby, for example, can also be considered robots.
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Robot complexities
Now let's think how all this relates to the topic of this book. The connection lies in the 
controlling software's complexity. To illustrate this, let's consider a simple example 
of an automatic blind opener, which might be part of a "smart house" solution and 
solve the task of opening blinds in the morning and shutting them in the evening. 
It should have a motor that pulls the blind open and closed and a light sensor to 
detect when the sun is shining.

Even in such a simple operation, the logic and corner cases might be overwhelming. 
For example, you need to take into account season changes; for example, during the 
summer, the sun might rise too early to open the blinds at that time, whereas during 
the winter, it might rise too late for getting up for work.

Additional complexity adds physical world connections: sensors and actuators. 
Values returned by sensors normally include the noise added to the underlying 
physical value being measured. This noise is a source of variance in the readings. 
Different instances of sensors might also have bias added to the readings, caused 
by variability in the manufacturing process. Both this variance and bias need to be 
addressed in software by performing calibration of the sensors.

Complications might also come from unexpected directions; for example, the light 
sensor might become dirty over time, so its readings might change; the motor could 
get stuck; there might be mechanical differences from one particular motor unit 
to another; and so on. We also haven't thought yet about solar eclipses, which are 
not that frequent, but still happen and also need to be taken into account. All those 
details might lead to the situation where our system, despite working perfectly in 
the lab, does weird things after being installed. This is only in our simple example of 
an automatic blind; imagine how many corner cases exist in making a robot that can 
walk as humans do!

An additional source of headaches in the development of such systems is that 
computing resources are usually heavily constrained, due to power, space, and 
weight limitations. For instance, even powerful 32-bit microcontrollers might have 
less than 1MB of memory, so controlling software is normally written in low-level 
languages such as C, or even in machine code, which makes the implementation 
of complicated logic even more tricky.

On the other hand, the machine learning approach to software development 
provides (or at least promises to) better ways of handling such complicated, 
noisy, and incompletely defined problems: instead of writing complicated code or 
manually handling all the corner cases and conditions, let's learn the function from 
some kind of input and output! Given enough time and data, we can capture all the 
details without writing tons of manual rules.



Chapter 18

[ 535 ]

This sounds very appealing, especially with our familiar RL problem setup: we 
have observations from our sensors, we can execute actions using our actuators, 
and we need to define some kind of high-level reward that is related to the problem 
that we're solving. Plug all this into some RL method and voilà! Of course, I'm 
simplifying this a lot; there are tons of details, but the overall idea and connection 
should be obvious.

Let's now start checking our setup and pursuing the goal of this chapter: applying 
RL methods to simple robotics problems.

The hardware overview
The goal of this book is to make RL methods accessible to a broad audience of 
hobbyists, enthusiasts, and researchers. This was the driving force behind the 
selection of examples, their complexity, the software requirements (for instance, 
using open source PyBullet instead of commercial MuJoCo), and other factors 
influencing the book's contents. Despite the GPU requirement for most of the 
examples, they still don't need an extreme amount of horsepower. Just one GPU 
rented on a cloud will be enough. Unfortunately, in the robotics domain, you can't 
rent hardware in the same way that you can allocate a GPU-powered instance. You 
still need to buy the board, sensors, and actuators to be able to play with them.

The good news is that modern electronics and hobbyist platforms, like Arduino 
and Raspberry Pi, are usually cheap and powerful enough for our purposes. 
Online stores like AliExpress contain thousands of components from which you 
can assemble your small working robot for the price of $100 or less with minimal 
or no soldering (this depends on the board variant). The project in this chapter 
will be a small four-legged robot, inspired by the Minitaur platform from the 
previous chapter.

You may remember that Minitaur is a real robot, developed by Ghost Robotics, 
a Philadelphia-based company that develops four-legged robots for the military, 
industry, and other applications. If you're curious, you can check the YouTube 
channel (https://www.youtube.com/channel/UCG4Xp4nghgyWK4ud5Xbo-4g). 
Recently, Google researchers used this robot to experiment with the transferability 
of policies learned in emulators to real hardware (Jie Tan, et.al., Sim-to-Real: Learning 
Agile Locomotion For Quadruped Robots, May 2018, arXiv:1804.10332).

Unfortunately, a Minitaur robot is still too large and costly for enthusiasts to play 
with. So, in my work, I decided to sacrifice the practical usefulness of the machine to 
make it as inexpensive as possible. 

https://www.youtube.com/channel/UCG4Xp4nghgyWK4ud5Xbo-4g
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At a high level, the robot consists of four components:

• Board: An STM32F405-based board that is compatible with MicroPython 
(a reduced version of Python for embedded applications: http://
micropython.org). The price for the board I used is about $25, but 
I've seen variants that cost only $15.

• Sensors: An integrated board with four sensor chips that provide an 
accelerometer, gyroscope, magnetometer, and barometer. All those sensors 
are available on one Inter-Integrated Circuit (I2C) bus. The price is about $15.

• Servo motors: Four really cheap pulse width modulation (PWM)-driven servo 
motors that can be bought on AliExpress or other discount retailers. They are 
not very reliable, but they are more than suitable for our purposes. The price 
is $2 per servo.

• Frame: A 3D-printed support to mount all the components together. The price 
for 3D printing services may vary, but it should be about $5, as the frame 
is small and requires tiny amounts of plastic.

So, the final price barely exceeds $70, which is much more affordable than several 
thousand for Minitaur or even $500 for Lego Mindstorms (which is also a bit limited 
for RL applications).

The platform
As mentioned, for the brain of the robot, I used a MicroPython-compatible board 
with an STM32F405 ARM processor. There are several variants of this board 
available with different sizes and prices, but as size is not the major issue, you 
can use any compatible variant you want with an adjustment to the frame.

The board variant I used is available on AliExpress as "The Latest PyBoard V1.1 
MicroPython Development Board STM32F405 OpenMV3 Cam M7" (shown in the 
following photo). The benefits of this board family are that the processor is quite 
powerful, with an operating frequency of 168MHz and 512KB of memory, but the 
board is still small and lightweight enough for small servos. In addition, this board 
(as with most pyboards) has a MicroSD slot that allows us to significantly increase 
the amount of storage available for the program and other data. This is nice, as we 
might want to record observations on the robot itself, and our NN models are quite 
heavy by embedded standards. A pyboard normally comes with a portion of internal 
flash memory exposed as a filesystem, but it is tiny, so an SD card is really needed.

http://micropython.org
http://micropython.org
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Figure 18.1: The main board

There is one drawback to this board: as it is not the original pyboard distributed 
by the MicroPython authors, it has different pin names and the SD card wiring is 
slightly different. The original firmware this board comes with works fine, but if 
you want to upgrade the version or use your custom firmware, you need to make 
modifications to the board definition file. For this particular board, I put the changes 
required, along with a detailed description of how to use them, in the Chapter18/
micropython directory. But if your board is different, you might need to figure out 
the changes on your own.

As an alternative, you might consider using the original MicroPython pyboard, 
which is more expensive, but has out-of-the-box support from the MicroPython 
source code. From my perspective, this is not critical, but it might be useful if you 
haven't done anything hardware related before (like microcontrollers programming). 
There are also other MicroPython-compatible boards available; for example, at 
the beginning of this project, I used HydraBus, which has exactly the same ARM 
processor, but a larger form factor. If you're brave and experienced enough, you 
might even consider using ESP8266-based hardware, which is also supported 
by MicroPython and provides Wi-Fi connectivity. However, it uses a different 
processor and has fewer IO ports, so some code modifications might be needed.

The sensors
Robots are supposed to sense the outside world, and as we have discussed, there are 
plenty of ways to do that. In our small project, we will use a standard set of sensors 
that is also called an inertial measurement unit (IMU). Historically, IMUs were built 
as tricky mechanical devices, with the goal of sensing forces, angular velocities, and 
the orientation of the object in Earth's magnetic field. 
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Nowadays, those three sensors are implemented as compact chips that use specific 
electronic effects in materials to do the measurements and provide their results in a 
digital or analog form. This makes them much more compact, robust, and convenient 
to use in a wide variety of projects. A modern IMU board is shown in Figure 18.2 and 
includes the following sensor chips (all STMicroelectronics semiconductors, which 
are the four small squares on the top of the board):

• The accelerometer (chip LIS331DLH) measures accelerations up to ±8g on 
three axes, has 16-bit resolution of measurements, and can survive up to 
a 10,000g shock. The same accelerometer is installed in the iPhone 4S, for 
example.

• The gyroscope (chip L3G4200D) measures angular velocities on all three 
axes and can measure up to 2,000 degrees per second, which is a pretty 
fast rotation (more than 300 rpm).

• The magnetometer (chip LIS3MDL) measures the magnetic field direction 
according to its axes, so it basically shows the direction for north.

• The barometer (chip LPS331AP) measures the atmospheric pressure, 
which could be used to get the current altitude. This chip is useless for our 
purposes, as the accuracy of measurements doesn't exceed 30 cm. As our 
robot is not supposed to jump from the roof, this sensor won't be used, but 
in other cases, like for drones or plane models, knowledge of the altitude 
might be critical.

In my particular case, I used a board produced in Russia for Amperka kits (shown 
in the following photo). This exact board might be hard to get if you live outside of 
Russia, but there are plenty of alternatives you can get everywhere. All those chips 
provide the digital interface and share the same I2C bus, so to attach all four sensors, 
only four wires are required (two for the power and two for the communication). It's 
not very important to use the integrated IMU board; you can get the same results 
using separate boards with individual sensors or an accelerometer installed on the 
original pyboard. What are important are the interface and capabilities of the sensor 
chip. Normally, I2C, or Serial Peripheral Interface (SPI), is the most popular and 
convenient digital interface.
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Figure 18.2: The IMU sensor board

There are a lot of other sensors that you might want to attach to your design, 
including from our earlier list, but processing power requirements will increase.

The actuators
The original idea for our robot is movement, optimizing some high-level reward 
that we need to formulate. To interact with the physical world, we need some kind 
of actuators, and there are plenty of options to choose from. The cheapest and most 
popular options for DIY projects are the aforementioned servo motors (or servos for 
short). Servos might have different interfaces, internal mechanics, and characteristics, 
but the most common are PWM-controlled analog servos. We will discuss later what 
this means, but for now, it will be enough to say that we can tell the servo the angle it 
needs to rotate or maintain, and it will do it.

In my design, I used small, very inexpensive servos that are marked GH-S37A 
(shown in Figure 18.3). They are not very reliable, so you will probably need to 
replace one or two of them during your experiments, but the price is quite cheap. 
You might consider other options, like larger servos with metal gears inside, which 
are more reliable and powerful, but they cost more and drain more current. 
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Another affordable option is to use stepper motors (with which 3D printers are 
normally built). They consume much more power and require special driver boards, 
but they are more precise than analog servos. As an example, Minitaur from Ghost 
Robotics is built using stepper motors.

Figure 18.3: The analog servo motor

The frame
The last component in our list is the frame or base, which is an important part in any 
hardware design, as all the components need to be mounted on it. This is essential 
for the robot, which will move, so all the actuators, controlling boards, and sensors 
need to be reliably attached together. At the same time, the base needs to be light; 
otherwise, the weight will limit the robot's movement capabilities. Some time ago, 
people used wood, metal, or even cardboard to build the frame, and those options 
are still there. However, nowadays we have a very nice alternative: 3D printing, 
which has many benefits over the old-style solutions.

First of all, plastic is lightweight, and in your design, you can choose the level of infill 
(the ratio at which the internals will be filled by plastic) and make it even lighter. At 
the same time, when properly designed, the result is quite strong. Plastic still can't 
compete with metal when you need something reliable and strong, but for most 
cases, this is not needed.
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Another very good benefit is the major simplification of the design and 
manufacturing process. You can prototype your design using open source tools, 
send it to the printer, and in a couple of minutes or hours (depending on the size 
and complexity), you can hold the result in your hands. Also, if needed, you can 
easily refine the design. This offers a significant speed benefit for design iterations 
in comparison to wood processing, not to mention metal.

Finally, but very importantly, it's a lot of fun to draw something on your computer 
and then watch your design materialize from nowhere. You still need to learn basic 
3D design software, how to prepare your model for printing, and what the key 
decisions are during the design, but, still, this is a very interesting activity. On sites 
like https://www.thingiverse.com/, you can find a lot of 3D-printed designs that 
people are creating, sharing, and improving. I started to experiment with 3D printing 
during this chapter's preparation, but it quickly became an important hobby of its 
own. If you're interested, you can find my personal designs here: https://www.
thingiverse.com/shmuma/designs.

To make a frame for your robot, it needs to be designed using one of the available 
software packages. There are several alternatives, starting from very simple browser-
based design apps for kids that allow you to combine simple shapes together and 
ending with full-featured commercial software packages used to draw things as 
complex as modern cars or aircraft engines. For our purposes, we need something in 
between, and there are many choices here.

My personal favorite for interactive design is Fusion 360 from Autodesk, which 
is free and relatively simple, but powerful and oriented for engineering design 
purposes (in contrast to 3D modeling tools like Blender). Another option that 
might be even simpler for software developers to master is OpenSCAD, which 
doesn't provide rich interactive tools for design, but rather provides a specialized 
programming language for describing 3D shapes. Then this program is "compiled" 
into the 3D object that you can print. The concept is really cool and extremely 
flexible, but it requires some time to master. If you're curious, you can check 
https://www.openscad.org/ or https://www.thingiverse.com/groups/
openscad/things for examples of such designs.

The frame of the robot for the components that I used was designed using 
OpenSCAD, and the full source code of the frame is in Chapter18/stl/frame_
short_legs_pyboard.scad. In the following screenshots, the final version of 
the frame and the design process are shown. In addition to the source code, I've 
provided the STL format of the frame in Chapter18/stl/frame_short_legs_
pyboard.stl. 

https://www.thingiverse.com/
https://www.thingiverse.com/shmuma/designs
https://www.thingiverse.com/shmuma/designs
https://www.openscad.org/
https://www.thingiverse.com/groups/openscad/things
https://www.thingiverse.com/groups/openscad/things
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This is a standard format for exchanging 3D models that are ready to be printed, but 
it is quite hard to modify them. So, if you want to adjust the model for your board 
dimensions, for example, you will need to install OpenSCAD, tweak the source code, 
and then export the model as an STL file.

Figure 18.4: The render of the robot frame

Figure 18.5: The OpenSCAD design process
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Once the STL file is ready, it can be printed, which can be done following different 
paths. One option is to use the services of a company for the 3D printing of your 
model. It might be some local company or a global web-based manufacturing 
service. In that case, you normally need to upload the STL file, fill out a form with 
printing options (like the color, material, level of infill, and so forth), pay, and wait 
for the result to be mailed to you.

Another option is to use one of the 3D printers that might be available around 
you. Nowadays, schools, university labs, or hackerspaces have 3D printers. In that 
case, you will need to prepare the input for the printer firmware from the STL file. 
This input is called G-code and it contains lots of low-level instructions for the 
specific printer, like move at this coordinate or extrude that amount of plastic. The 
process of converting STL files into G-code is called slicing because fused deposition 
modeling (FDM) printers produce objects layer by layer, so a 3D model needs to 
be sliced to those layers. To do this, specialized software packages called slicers are 
used. If you've never done 3D printing before, you might want to ask somebody 
familiar with the particular printer settings to assist you, as the slicing process has 
tons of options and parameters that influence the result, like layer thickness and 
specific plastic parameters. On the other hand, you definitely don't need a PhD 
for this. There is a lot of information available online, and the whole process is 
quite logical; it just might take some time to master.

The frame design is very simple to print, requires no supports (extra plastic 
supporting the overhanging parts, as 3D printers can't print on air), and normally 
can be printed in an hour to an hour and 30 minutes, depending on the printer 
setting. The photo of the resulting frame is shown in Figure 18.6.

Figure 18.6: The printed robot frame
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To give you an idea of what the assembled thing looks like, I've included the 
following photo. The details of the connection process will be covered in the 
subsequent section, when we will start to program the hardware.

Figure 18.7: The assembled robot (almost) ready for world domination (it still needs the power plug)

The first training objective
Let's now discuss what we want our robot to do and how we're going to get there. 
It's not very hard to notice that the potential capabilities of the hardware described 
are quite limited:

• We have only four servos with a constrained angle of rotation: This makes our 
robot's movements highly dependent on friction with the surface, as it can't 
bring its individual legs up, which is also the case with the Minitaur robot, 
which has two motors attached to every leg.

• Our hardware capacity is small: The memory is limited, the central processing 
unit (CPU) is not very fast, and no hardware accelerators are present. In the 
subsequent sections, we will take a look at how to deal with those limitations 
to some extent.

• We have no external connectivity besides a micro-USB port: Some boards might 
have Wi-Fi hardware, which could be used to offload the NN inference 
to a larger machine, but in this chapter's example, I'm leaving this path 
unexplored. It might be an interesting project to add an ESP8266 board 
(which is an extremely popular microcontroller board with embedded Wi-Fi 
connectivity) to the robot (or you could even use an ESP8266 board as the 
main board) and make it wirelessly connected.
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My goal for this chapter is not to describe how to build your own T800 in your 
basement, but rather to show how a very simple robot can be programmed using 
RL methods from the very beginning. The result for this particular robot might not 
be very impressive, but when you have become familiar with the process, it will 
be much easier to extend the capabilities in all directions, like using extra servos, 
building much more complicated mechanics, adding sensors, using external GPUs, 
or even using a field-programmable gate array (FPGA) for NN acceleration, and 
so on.

Before that, we need to solve the essential problems, like getting the data from the 
sensors, controlling the servos, putting our policy on the hardware, determining 
what our inference loop will look like, and, of course, training the policy. Those 
problems are completely non-trivial for beginners, so we will take a very simple 
objective and solve it, helping you to gain experience and self-confidence along the 
path. The first objective will be simple: standing up from a lying position. On the one 
hand, I'd even say that this is trivial, as to stand up, the robot needs only to move the 
servos to the fixed location and keep them there. On the other hand, this objective is 
very simple to express in RL terms, and the trained policy could be easily checked 
on the hardware.

Besides the objective, we need to make a decision about the training process, for 
which we basically have two options. The first option is to train on live hardware, 
gathering the observations from the attached sensors, passing the actual commands 
to the servos, and measuring the objective (in our case, the distance of the robot's 
frame to the surface). Obviously, our hardware is too weak for deep learning, but 
even if we upgraded the hardware, there would be no way to make PyTorch work 
on this specialized microcontroller.

If you want to go to the extreme, you can implement your own backpropagation 
version on raw Python or low-level firmware, but that's way much more complicated 
than our goal here. If you're curious about doing this, one of the homework 
assignments in Stanford University's CS231n course on deep learning was to 
implement NN training using only the NumPy library, which is hard to do properly, 
but an extremely useful exercise to get an understanding of what's going on under 
the hood.

As a workaround, we could transfer observations using Wi-Fi or another 
communication channel to some "big computer" to train the policy and then send the 
weights back to our robot for execution, but as I've mentioned, our hardware lacks 
Wi-Fi connectivity.
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In addition to computation complexity, training on live hardware has extra issues, 
like hardware safety (we might want to prevent our robot from breaking during the 
training), sample efficiency, and the necessity of getting reliable reward information. 
The last point might be quite hard to solve, as the robot itself has no way to 
accurately measure the altitude, so some external hardware to estimate the reward 
will be required.

Another option for training is to use an emulator, in the same way as we did in the 
previous chapter when we used PyBullet. In that case, the training was performed 
on the emulated physical world, about which we had complete information, so 
measuring the reward was trivial. The only tricky thing here is how to get the 
accurate model of the real world. As you will quickly see in the next section, it might 
be quite complicated even for the simple mechanics of our tiny robot. Nevertheless, 
this path looks simpler than doing everything on real hardware, although you could 
try to follow the alternative path in your own experiments. Ultimately, this chapter 
is not a complete solution to the robotics problem, but rather it is the outline of a 
possible path.

The emulator and the model
In this section, we will cover the process of obtaining the policy that we will deploy 
on the hardware. As mentioned, we will use a physics emulator (PyBullet in our 
case) to simulate our robot. I won't describe in detail how to set up PyBullet, as it was 
covered in the previous chapter. Let's jump into the code and the model definition.

In the previous chapter, we used robot models already prepared for us, like Minitaur 
and HalfCheetah, which exposed the familiar and simple Gym interface with 
the reward, observations, and actions. Now we have custom hardware and have 
formulated our own reward objective, so we need to make everything ourselves. 
From my personal experiments, it turned out to be surprisingly complex to 
implement a low-level robot model and wrap it in a Gym environment. There were 
several reasons for that:

• PyBullet classes are quite complicated and poorly designed from a software 
engineer point of view. They contain a lot of side effects, like fields 
influencing the behavior of methods, non-obvious execution flow, and just 
too complicated and obfuscated logic. The documentation is almost missing, 
so the only sources of information are the existing models given in the source 
code, which is not the greatest way to learn. All this led to a lot of mistakes 
that I needed to solve before I got something workable.
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• Internally, PyBullet uses the Bullet library written on C++ and provides a 
generic physics emulator. Bullet has documentation about the methods and 
the overall structure, but this is not the easiest to read and is far from being 
complete.

• To define your model, you need to provide the geometry of your robot and 
environment, and you need to define all the actuators and properties of 
the model that you're simulating, like frictions, actuator types, parameters, 
masses, inertia moments, and so on. To describe the model structure, several 
formats are supported: URDF (Unified Robot Description Format), MJCF 
(the MuJoCo XML format), and others. I didn't find any of them very easy 
to write, as I was defining all the properties at a very low level. The MuJoCo 
format turned out to be slightly better documented, so I used it for my robot's 
definition, but it was still painful to understand the requirements of the file 
format and express the geometry and actuators even for our simple design. 
Maybe I've missed some super cool tool that simplifies the process, but I 
checked several alternatives and found nothing better than writing a MuJoCo 
XML file in a text editor. It was complicated and long, so obviously better 
solutions are needed for more complex designs.

• I encountered bugs in Bullet and PyBullet. As Bullet imports the MuJoCo 
file format into its own representation, it doesn't support all the features 
of MuJoCo. Even for the supported parts, it might suddenly fail to load or 
behave weirdly, which doesn't add simplicity to the design process.

Better alternatives likely exist. Some people use game engines, like Unreal Engine 
for physics simulation (which means that the game industry evolved to simulate the 
real world with quality comparable to professional simulators, which is fun), but I 
haven't checked this alternative.

The complete PyBullet environment is contained in two files: Chapter18/lib/
microtaur.py and Chapter18/models/four_short_legs.xml. The Python module 
follows the structure of other PyBullet robot environments and includes two classes:

• FourShortLegsRobot, which inherits from the pybullet_envs.robot_
bases.MJCFBasedRobot class. It loads the XML MuJoCo model and is 
responsible for low-level control of the robot, like setting the servos positions, 
getting the joint orientations, and gathering the observation vector from the 
internal PyBullet state.

• FourShortLegsEnv, which inherits from pybullet_envs.env_bases.
MJCFBaseBulletEnv and provides the Gym-compatible interface for the 
robot. It uses the FourShortLegsRobot class to obtain the observation, 
apply actions, and get the reward value.
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In addition to those two classes, there is the third class 
FourShortLegsRobotParametrized, which subclasses FourShortLegsRobot 
and allows the user to redefine internal parameters of the XML model file. 
It won't be used in this chapter's example because when I tried it during my 
experiments to make PyBullet simulation more realistic, it didn't turn out to be 
useful. I've left this class with the accompanying template file Chapter18/models/
four_short_legs.xml.tmpl if you would like to experiment with this optimization.

The model definition file
The logic of FourShortLegsRobot is heavily dependent on the underlying MuJoCo 
model file, so let's start with it. The full specification of all the tags supported by 
MuJoCo is given here: http://mujoco.org/book/XMLreference.html. This 
is a long, detailed description of the file format used by MuJoCo to describe the 
environment, the properties of objects, and the way they can interact. I'm not going 
to give you a full description as I'm not an expert in MuJoCo. The following is the 
definition of our robot geometry with my comments:

<mujoco model="four_short_legs">
    <compiler inertiafromgeom="true" settotalmass="0.05"/>

In the outer tag, the file specifies the name of the model. Then the second line 
contains options for the parser and compiler responsible for assembling the 
internal objects from file statements. This tag might contain several options 
influencing the model as a whole. In our file, we give two parameters: with 
inertiafromgeom="true" we say that the compiler needs to deduct inertial 
properties from the underlying geometry, and with option settotalmass="0.05" 
we define the total mass of our robot in kilograms. The weight of the assembled 
robot is 50 grams according to my kitchen scales. Inertial properties might be very 
important to get realistic results from simulation, so the first step in improving the 
model probably will be to disable automatic inertia deduction and give it explicitly.

    <default>
        <joint armature="0" damping="1" limited="true" 
frictionloss="0"/>
       <geom friction="0.5 0.1 0.1"/>
       <position kp="10"/>
    </default>

The default section includes parameters that will be used as fallback values for all 
objects of the applicable kind. Here we define the parameters of joints in our object. 
In our robot, we have five joints: four are rotating legs and we have one fixed joint 
that connects the IMU sensor to the robot frame. 

http://mujoco.org/book/XMLreference.html
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The parameter geom sets the friction parameters for all of our geometries. It has 
three values for different kinds of friction that the emulator deals with: sliding 
friction, torsional friction, and rolling friction. I haven't spent much time optimizing 
this, so it definitely could be improved.

The last parameter given in the default section applies to our servos, which are 
positional servos. MuJoCo supports several kinds of rotating actuators (they are 
called "hinge joints") for which you can set various control parameters. Those 
parameters might be the position (when you set the angle the actuator needs to get), 
velocity, or force.

Different types of actuators are controlled in a different way. For example, a simple 
motor has a speed of rotation proportional to the voltage applied to the motor, so the 
velocity parameter is the most appropriate. In our case, we have a positional servo, 
to which we just tell the angle it needs to keep, so our actuator will be controlled 
by the position. There are many internal parameters that define intricate details of 
actuator dynamics, so to get an accurate model, they need to be measured or taken 
from the actuator specifications and applied. In our laypeople approach, we just use 
the defaults, and the only parameter specified is kp="10", which sets the so-called 
position feedback gain that specifies the force coefficient the motor is applying to get 
to the desired position.

    <option gravity="0 0 -9.8" integrator="RK4" timestep="0.02"/>
    <size nstack="3000"/>

The last two parameters in our file header are control options specifying the gravity 
direction, the timestep, and the internal integrator used. As we're going to load this 
file into PyBullet, probably only the gravity will be taken into account; however, 
I copied other options from other files, so it won't do any harm to have them. The 
nstack parameter gives the size of the pre-allocated stack for the model interpreter.

   <worldbody>
        <!--<geom name="ground" type="plane" pos="0 0 0"/>-->
        <body name="base" pos="0 0 0.01">
            <geom name="base" pos="0 0 0.0" type="box"
                  size="0.032 0.032 0.01" euler="0 0 0"/>

The worldbody tag starts the main part of the file and describes the parts of your 
model, their geometry, and their interaction. The first (commented) geometry object 
defines the ground plane. I commented it out because the ground plane is added 
automatically by PyBullet classes, but this plane will be needed if you want to load 
it into another system; otherwise, the robot will fall into the void.
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The next tag specifies the frame body, which lies flat on the ground plane. The 
geometry of the frame is set as type="box". The size parameter defines half of 
the box dimensions, which is not very convenient, but that's a requirement of the 
MuJoCo file format (though I don't know why). Our frame (including the mounted 
servos) is 64 mm x 64 mm and about 20 mm high, so by dividing those dimensions 
by two, we get the geometry size. The euler parameter specifies the orientation of 
the geometry as a rotation around the XYZ axes. Our frame is not rotated, so we have 
zeros there. If you have trouble imagining our model from the coordinates, you can 
peek at Figure 18.8, which shows the initial position of the robot, or you can try the 
tool Chapter18/show_model.py (described later).

            <body name="leg_rb" pos="0.035 -0.022 -0.005">
                <joint axis="1 0 0" name="servo_rb" pos="0 0 0"
                       range="0 180" type="hinge"/>
                <geom fromto="0 -0.013 0 0 0.013 0" name="leg"
                      size="0.003 0.002" type="capsule"/>
            </body>
            <body name="leg_rf" pos="0.035 0.022 -0.005">
                <joint axis="1 0 0" name="servo_rf" pos="0 0 0"
                       range="-180 0" type="hinge"/>
                <geom fromto="0 -0.013 0 0 0.013 0" name="leg"
                      size="0.003 0.002" type="capsule"/>
            </body>
            <body name="leg_lb" pos="-0.035 -0.022 -0.005">
                <joint axis="1 0 0" name="servo_lb" pos="0 0 0"
                       range="0 180" type="hinge"/>
                <geom fromto="0 -0.013 0 0 0.013 0" name="leg"
                      size="0.003 0.002" type="capsule"/>
            </body>
            <body name="leg_lf" pos="-0.035 0.022 -0.005">
                <joint axis="1 0 0" name="servo_lf" pos="0 0 0"
                       range="-180 0" type="hinge"/>
                <geom fromto="0 -0.013 0 0 0.013 0" name="leg"
                      size="0.003 0.002" type="capsule"/>
            </body>
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Then, inside the base body object, we have four sub-bodies defining our robot's 
legs. All of them have the same parameters, except the position attribute specifying 
where each leg is located. To make sense of the coordinates, you need to know that 
the child body's position is defined relative to the parent body's geometry. So, the 
Z coordinate of every leg is set to –0.005, instead of 0.005.

Every leg is given by the body section with the name attribute. Using this name, we 
will be able to check its attributes during the simulation. Inside every leg's body tag, 
we have two parameters. The joint parameter sets the type, location, and range of 
the corresponding servo actuator. All our joints are aligned along the X axis, so we 
have axis="1 0 0". In addition, we need to specify the geometry of the leg using 
the geom parameter. In our case, the simplest approximation of our robot's legs will 
be type="capsule", which is a rounded cylinder with the specified dimensions.

            <!-- IMU sensor box -->
            <body name="IMU" pos="0.0025 0.03 0.02" euler="0 0 0">
                <geom name="IMU" pos="0 0 0" type="box"
                      size="0.02 0.02 0.003" euler="0 0 0"/>
                <joint armature="0" damping="0" limited="false"
                       axis="0 0 0" name="IMUroot" pos="0 0 0"
                       stiffness="0" type="fixed"/>
            </body>
        </body>
    </worldbody>

The final sub-body of our robot is a sensor board, which is represented by a separate 
box shifted towards the front of the frame and elevated a bit. This box is attached 
to the base frame by a special joint with type="fixed", which specifies the rigid 
attachment of two bodies. The sensor board is modeled by a separate body because it 
will be used to obtain the accelerations and orientation for our observations.

    <actuator>
        <position joint="servo_rb" name="servo_rb"/>
        <position joint="servo_rf" name="servo_rf"/>
        <position joint="servo_lb" name="servo_lb"/>
        <position joint="servo_lf" name="servo_lf"/>
    </actuator>
</mujoco>
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At the tail of the file, outside the worldbody tag, we define the joints and the type 
of actuators used in our model. As I mentioned, we're using position servos that 
require the angle they need to be rotated by; thus, our actuators are positional. In the 
following figure, you can see the rendered model specified by the file that we have 
just described. The model might look silly, but it contains all the important parts 
of our robot needed for RL training.

Figure 18.8: The initial position of the robot model in the PyBullet world

The robot class
The low-level behavior of the robot model is defined by the class 
FourShortLegsRobot in Chapter18/lib/microtaur.py. This class inherits from 
the PyBullet class MJCFBasedRobot, which provides functionality for loading 
the MuJoCo file and building connections between the model's components. 
Unfortunately, the code quality of MJCFBasedRobot and its parent class 
XmlBasedRobot is quite low, which makes it hard to implement working custom 
wrappers. It took me a while to make this class work properly. Hopefully, my 
modifications will save you some time in your experiments.

So, let's consider the class. At a high level, its responsibility is to load our XML file 
into PyBullet and allow us to apply the action vector to the actuators, and request the 
observations that we need. This is achieved by redefining certain methods from the 
parent class and defining our own methods dealing with PyBullet low-level details, 
like joint positions.

class FourShortLegsRobot(robot_bases.MJCFBasedRobot):
    IMU_JOINT_NAME = "IMUroot"
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    SERVO_JOINT_NAMES = ('servo_rb', 'servo_rf',
                         'servo_lb', 'servo_lf')

    def __init__(self, time_step: float, zero_yaw: bool):
        action_dim = 4
        # current servo positions + pitch, roll and yaw angles
        obs_dim = 4 + 3

        super(FourShortLegsRobot, self).__init__(
            "", "four_short_legs", action_dim, obs_dim)
        self.time_step = time_step
        self.imu_link_idx = None
        self.scene = None
        self.state_id = None
        self.pose = None
        self.zero_yaw = zero_yaw

In the constructor, we pass a lot of arguments to the parent constructor, like 
the name of our robot, the action, and the observation dimensionality. Despite the 
low-level nature of those classes in the PyBullet hierarchy, they create the Gym 
action and observation spaces. They are not used, which is the first obvious example 
of the bad design of those classes. Unfortunately, we will see much more of this later.

In our constructor, we need the timestep in the simulated environment and 
a zero_yaw flag, which controls the observation calculation (which will be explained 
later). The action space is four numbers specifying the angle of rotation of our 
servos. To simplify the task of our robot, the servos located on the back rotate in 
the counterclockwise direction (relative to the direction of the Y axis), but the servos 
on the front of the robot rotate in the opposite direction. This allows the robot to 
rise even with small rotations of the servos; overwise, it will just slip forward or 
backward. The observation vector is composed of four current servos positions 
plus the orientation of the robot's frame, which gives us seven numbers for every 
observation.

    def get_model_dir(self):
        return "models"

    def get_model_file(self):
        return "four_short_legs.xml"

    # override reset to load model from our path
    def reset(self, bullet_client):
        self._p = bullet_client
        if not self.doneLoading:
            self._p.setAdditionalSearchPath(self.get_model_dir())
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            self.objects = self._p.loadMJCF(self.get_model_file())
            assert len(self.objects) == 1
            self.parts, self.jdict, \
            self.ordered_joints, self.robot_body = \
                self.addToScene(self._p, self.objects)

            self.imu_link_idx = self._get_imu_link_index(
                self.IMU_JOINT_NAME)
            self.doneLoading = 1
            self.state_id = self._p.saveState()
        else:
            self._p.restoreState(self.state_id)
        self.robot_specific_reset(self._p)
        self.pose = self.robot_body.pose()
        return self.calc_state()

The reset() method is overridden from the parent and is responsible for loading 
the MJCF file and registering loaded robot parts in the class internals. We load the 
file only once. If it has already been loaded, we restore the PyBullet emulator state 
from a previously saved checkpoint.

    def _get_imu_link_index(self, joint_name):
        for j_idx in range(self._p.getNumJoints(self.objects[0])):
            info = self._p.getJointInfo(self.objects[0], j_idx)
            name = str(info[1], encoding='utf-8')
            if name == joint_name:
                return j_idx
        raise RuntimeError

The preceding code shows the internal method that is supposed to find the IMU link 
index by the link name. We will use this index in other helper methods to get the 
IMU position and orientation.

    def _joint_name_direction(self, j_name):
        # forward legs are rotating in inverse direction
        if j_name[-1] == 'f':
            return -1
        else:
            return 1

This method returns the direction multiplier applied to the servo joint. As I already 
mentioned, the forward actuators rotate in the opposite direction to the servos on 
the back.

    def calc_state(self):
        res = []



Chapter 18

[ 555 ]

        for idx, j_name in enumerate(self.SERVO_JOINT_NAMES):
            j = self.jdict[j_name]
            dir = self._joint_name_direction(j_name)
            res.append(j.get_position() * dir / np.pi)
        rpy = self.pose.rpy()
        if self.zero_yaw:
            res.extend(rpy[:2])
            res.append(0.0)
        else:
            res.extend(rpy)
        return np.array(res, copy=False)

The calc_state() method returns the observation vector from the current model's 
state. The first four values are our servos' angles (the positions are normalized to the 
range 0…1). The last three values in the observation vector are angles (in radians) 
of the base orientation in the space: roll, pitch, and yaw values. If the parameter 
zero_yaw (passed to the constructor) is True, the yaw component will be zeros. The 
reason behind this will be explained in the Controlling the hardware section, when we 
will start to deal with observations from the real hardware and the transferability of 
the policy.

    def robot_specific_reset(self, client):
        for j in self.ordered_joints:
            j.reset_current_position(0, 0)

    def apply_action(self, action):
        for j_name, act in zip(self.SERVO_JOINT_NAMES, action):
            pos_mul = self._joint_name_direction(j_name)
            j = self.jdict[j_name]
            res_act = pos_mul * act * np.pi
            self._p.setJointMotorControl2(
                j.bodies[j.bodyIndex], j.jointIndex,
                controlMode=p.POSITION_CONTROL,
                targetPosition=res_act, targetVelocity=50,
                positionGain=1, velocityGain=1, force=2,
                maxVelocity=100)

The last two methods perform the reset of the robot (setting the actuators to the 
initial position) and apply the actions. The action value is expected to be in the range 
of 0…1 and it defines the ratio of the servo range to position the servo.

That's it for the FourShortLegsRobot class. As you might guess, it's not very usable 
for our training, but rather provides the underlying functionality for the higher-level 
Gym environment. 
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This environment is defined in the second class in the file: FourShortLegsEnv.

class RewardScheme(enum.Enum):
    MoveForward = 0
    Height = 1
    HeightOrient = 2

class FourShortLegsEnv(env_bases.MJCFBaseBulletEnv):
    HEIGHT_BOUNDARY = 0.035
    ORIENT_TOLERANCE = 1e-2

    def __init__(self, render=False, target_dir=(0, 1),
                 timestep: float = 0.01, frameskip: int = 4,
                 reward_scheme: RewardScheme =
                     RewardScheme.Height,
                 zero_yaw: bool = False):
        self.frameskip = frameskip
        self.timestep = timestep / self.frameskip
        self.reward_scheme = reward_scheme
        robot = FourShortLegsRobot(self.timestep,
            zero_yaw=zero_yaw)
        super(FourShortLegsEnv, self).__init__(robot,
            render=render)
        self.target_dir = target_dir
        self.stadium_scene = None
        self._prev_pos = None
        self._cam_dist = 1

This class supports several reward schemes, which will be described later. 
In addition to that, the constructor enables rendering and setting the timestamp and 
the number of emulator steps that we will perform on every action (frameskip).

    def create_single_player_scene(self, bullet_client):
        self.stadium_scene =
                scene_stadium.SinglePlayerStadiumScene(
            bullet_client, gravity=9.8, timestep=self.timestep,
            frame_skip=self.frameskip)
        return self.stadium_scene

The preceding method is called by the parent's reset() method (another example 
of ugly design!) to create the scene of our robot: the ground plane and simulator 
instance.

    def _reward_check_height(self):
        return self.robot.get_link_pos()[-1] >
            self.HEIGHT_BOUNDARY
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    def _reward_check_orient(self):
        orient = self.robot.get_link_orient()
        orient = p.getEulerFromQuaternion(orient)
        return (abs(orient[0]) < self.ORIENT_TOLERANCE) and \
               (abs(orient[1]) < self.ORIENT_TOLERANCE)

Two internal methods are used to calculate the reward in different reward schemes. 
The first checks that the robot's base height is above the specified boundary height. 
As height is measured from the IMU unit, which is lifted above the robot frame, 
the boundary is 35 mm above the ground. If you're curious about the height in the 
model, you can experiment with the Chapter18/show_model.py tool, which outputs 
the height. My tests show that in the lying flat position, the IMU height is 30 mm 
(0.03), and in the standing position, it is 41 mm (0.0409). We start rewarding the 
agent when it is halfway to the full standing position.

The second method checks that the roll and pitch angles are smaller than the given 
tolerance, which effectively means that our base is almost parallel to the ground.

    def _reward(self):
        result = 0
        if self.reward_scheme == RewardScheme.MoveForward:
            pos = self.robot.get_link_pos()
            if self._prev_pos is None:
                self._prev_pos = pos
                return 0.0
            dx = pos[0] - self._prev_pos[0]
            dy = pos[1] - self._prev_pos[1]
            self._prev_pos = pos
            result = dx * self.target_dir[0] + \
                     dy * self.target_dir[1]
        elif self.reward_scheme == RewardScheme.Height:
            result = int(self._reward_check_height())
        elif self.reward_scheme == RewardScheme.HeightOrient:
            cond = self._reward_check_height() and \
                   self._reward_check_orient()
            result = int(cond)
        return result

This function is also internal and is responsible for calculating the reward value 
according to the given reward scheme. If the MoveForward scheme is selected, the 
robot is rewarded for moving as far as possible in the given direction (the default is 
the Y axis). The reward scheme Height gives a reward of 1 if the base is above the 
threshold. 
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The third reward scheme, HeightOrient, is almost the same, but in addition to the 
height boundary, it checks that the base is parallel to the ground.

    def step(self, action):
        self.robot.apply_action(action)
        self.scene.global_step()
        return self.robot.calc_state(), self._reward(), False, {}

    def reset(self):
        r = super(FourShortLegsEnv, self).reset()
        if self.isRender:
            distance, yaw = 0.2, 30
            self._p.resetDebugVisualizerCamera(
                distance, yaw, -20, [0, 0, 0])
        return r

    def close(self):
        self.robot.close()
        super(FourShortLegsEnv, self).close()

The rest of the class is almost trivial: we just combine the functionality of the 
functions that we have already discussed.

DDPG training and results
To train the policy using our model, we will use deep deterministic policy gradients 
(DDPGs), which we covered in detail in Chapter 17, Continuous Action Space. I won't 
spend time here showing the code, which is in Chapter18/train_ddpg.py and 
Chapter18/lib/ddpg.py. For exploration, the Ornstein-Uhlenbeck process was used 
in the same way as for the Minitaur model.

The only thing I'd like to emphasize is the size of the model, in which the actor 
part was intentionally reduced to meet our hardware limitations. The actor has one 
hidden layer with 20 neurons, giving just two matrices (not counting the bias) of 
28×20 and 20×4. The input dimensionality is 28, due to observation stacking, where 
four past observations are passed to the model. This dimensionality reduction leads 
to very fast training, which can be done without a GPU involved.
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To train the model, you should run the train_ddpg.py program, which accepts the 
following arguments:

• -n (--name): The name of the run, which is used in the TensorBoard metrics 
and save directory

• --cuda: This enables the GPU, which is almost useless in this case
• --reward: The scheme of the reward to be used during the training, which 

could be one of the following: MoveForward, Height, or HeightOrient
• --zero-yaw: This enables putting in a zero value instead of the yaw 

observation angle

The motivation of the --zero-yaw option and HeightOrient reward scheme will be 
explained a little later, when we get to the actual hardware running our policy. For 
now, just the Height reward objective will be enough.

To get our first "stand up" policy, you should use ./train_ddpg.py -n some_name 
–reward Height, which converges quite quickly and in 20-30 minutes produces 
a model file that is able to reach 996-998 reward during the test. Given that the 
environment limits the number of timesteps to 1,000 steps, this means that the robot's 
IMU is above the threshold during ~99.7% of timesteps, which is almost perfect.

The following are the charts of convergence that I got from my experiments.

Figure 18.9: The reference value predicted by the critic network
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Figure 18.10: The loss of the actor (left) and critic (right)

Figure 18.11: The rewards from training episodes (left) and test episodes (right)

Every time a new best reward is obtained from the testing, the actor model is saved 
into the file. To check the model of the robot in action, you can use the Chapter18/
show_model.py utility. It accepts the following command-line arguments:

• -m (--model): The file name to be loaded and used to infer actions from 
observations. This parameter is optional; if it is not given, the constant action 
(0.0 by default) is executed on the model.

• -v (--value): The constant value to be executed as an action. By default, it 
equals 0.0. This argument allows us to experiment with different leg rotations.

• -r (--rotate): If given, this sets the leg index 0…3 to be rotated back and 
forth. This allows us to check the dynamic behavior of the simulated model.

• --zero-yaw: This passes zero_yaw=True to the environment.



Chapter 18

[ 561 ]

This utility can be used for different purposes. First of all, it allows us to experiment 
with our robot model (for instance, to check the geometry of the robot), validate the 
reward scheme used, and see in the dynamics what happens when one of the legs is 
rotated. For this use case, you shouldn't pass the -m option with a trained model file. For 
instance, the following are screenshots of the model with different values passed to -v.

 
Figure 18.12: The model of the robot with different actions applied: 0.4 (left) and 0.9 (right)

Another use case of the show_model.py utility is to check the trained policy in 
action. To do that, you should pass the saved actor model file in the -m command-
line parameter. In this case, the model will be loaded and used to get actions from 
observations on every step.

By checking one of the models saved during the training, you might notice that the 
dynamics of our robot resemble reality, but they are sometimes weird. For instance, 
the model might show springy jumps when the legs are rotated suddenly. This 
is caused by imperfections in the MJCF file parameters; very likely, our actuator 
parameters are far from realistic, and the inertia properties may also not be accurate. 
Nevertheless, we have something, which is a great start. Now the question is: how 
do we move the policy to the real hardware? Let's try it out!

Controlling the hardware
In this section, I will describe how we can use the trained model on the real 
hardware.

MicroPython
For a very long time, the only option in embedded software development was using 
low-level languages like C or assembly. There are good reasons behind this: limited 
hardware capabilities, power-efficiency constraints, and the necessity of dealing 
with real-world events predictably. Using a low-level language, you normally have 
full control over the program execution and can optimize every tiny detail of your 
algorithm, which is great. 
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The downside of this is complexity in the development process, which becomes 
tricky, error-prone, and lengthy. Even for hobbyist projects that don't have very 
high efficiency standards, platforms like Arduino offer a quite limited set of 
languages, which normally includes C and C++.

MicroPython (http://micropython.org) provides an alternative to this low-
level development by bringing the Python interpreter to microcontrollers. There 
are some limitations of course: the set of supported boards is not very large, the 
Python standard library is not fully ported, and there is still memory pressure. But 
for noncritical applications and quick prototyping, MicroPython provides a really 
nice alternative to low-level languages. If you're interested, you can find the full 
documentation about the project at http://micropython.org. Here, I'll just give 
a quick overview of MicroPython's capabilities and limitations to get you started.

Normally, MicroPython comes as a firmware for a particular board. Usually, when 
you buy the board, it already has a preflashed image, so you just need to attach 
the power to it. But knowing how to build and flash the latest firmware might 
be useful if you want to install the latest version. This process is described in the 
documentation, so I'm not going to repeat it here.

Most pyboards are powered via a micro USB port, which also provides the 
communication channel to the board. Some boards, like the one I used in this 
project, might have an additional socket for a battery that enables standalone usage. 
(In Figure 18.1, that socket is in the top-left corner of the board, close to the micro 
USB socket.)

Once the board is attached to the computer, it exposes a serial port interface that 
could be connected using any serial communication client. In my case of using 
macOS, I normally use the screen utility installed from the brew ports. To connect, 
a USB port device file needs to be passed to the tool.

$ screen /dev/tty.usbmodem314D375A30372

MicroPython v1.11 on 2019-08-19; PYBv1.1 with STM32F405RG

Type "help()" for more information.

>>>

As you can see, it provides the normal Python REPL, which you can start using 
immediately for board communication. Besides the serial port, the board exposes 
a mass storage device that can be used to put programs and libraries onto the 
board. If a microSD card is attached, it is exposed; otherwise, the internal board 
flash (normally very tiny) is made available for the operating system.

http://micropython.org
http://micropython.org
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The following shows making the disk visible to the operating system in two different 
situations: when the board is attached to the microSD card and without it attached.

$ df -h

Filesystem    Size  Used  Avail Capacity  iused ifree %iused  Mounted on

/dev/disk2s1 3.7Gi  3.6Mi 3.7Gi       1%      0     0   100%  /Volumes/NO 
NAME

$ df -h

Filesystem    Size  Used  Avail Capacity  iused ifree %iused  Mounted on

/dev/disk2s1  95Ki  6.0Ki  89Ki       7%    512     0   100%  /Volumes/
PYBFLASH

As you can see, the internal flash is quite small, which might be okay for simple 
projects, but for larger storage, a microSD card should be used. The Python program 
also has access to this SD card under the /sd mount point, so your program might 
use the card for reading and writing. The following is an example of an interactive 
session showing the filesystem structure from the MicroPython interpreter:

MicroPython v1.11 on 2019-08-19; PYBv1.1 with STM32F405RG

Type "help()" for more information.

>>> import os

>>> os.listdir("/")

['flash', 'sd']

>>> os.listdir("/flash")

['boot.py', 'main.py', 'pybcdc.inf', 'README.txt']

>>> os.listdir("/sd")

['.Spotlight-V100', 'zero.py', 'run.py', 'libhw', 'bench.py', 'obs.py']

>>> os.listdir("/sd/libhw")

['sensors.py', '__init__.py', 't1.py', 'nn.py', 'hw_sensors', 'sensor_
buffer.py', 'postproc.py', 'servo.py', 't1zyh.py', 't1zyho.py']

>>> import sys

>>> sys.path

['', '/sd', '/sd/lib', '/flash', '/flash/lib']

>>>

MPY: sync filesystems

MPY: soft reboot

MicroPython v1.11 on 2019-08-19; PYBv1.1 with STM32F405RG

Type "help()" for more information.

>>>
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On the last line, Ctrl+D is pressed, which restarts the interpreter and remounts the 
filesystem. As you can see from the preceding, the Python path includes both the 
flash and SD card root, which provides a simple way to check your programs on the 
hardware: you attach the board, put your program file and libraries on the SD card 
(or flash), unmount the disk from the operating system (this is needed to flush the 
buffers), and then after pressing Ctrl+D in the interpreter, all your new files become 
available for execution. If you name your file boot.py or main.py, it will be executed 
automatically after the reset or power on.

MicroPython supports most Python 3 dialect with some portion of the standard 
library available, but still, some modules might be missing or limited. Normally, 
that's not a big problem, given the limited amount of memory in the board. During 
my experiments, I noticed only one difference from the standard Python library; 
it was related to the collection.deque class having a different constructor and 
limited functionality. The rest of the language worked just the same, but of course, 
you might be unlucky and face some limitations. In that case, you can probably 
implement a workaround. Finally, MicroPython is an open source project, so 
everybody can contribute and make it better.

Besides the standard library and the core language compatibility, MicroPython 
provides a set of extensions to the language and extra libraries to make it convenient 
to deal with the underlying hardware, as we still work with microcontrollers. All 
those extensions are covered in the documentation, and we will use some of them 
later when working with sensors and low-level things like timers. The following is 
a list of extra functionalities in no particular order:

• GPIO (general-purpose input/output) access to all pins on the board, with 
access to alternative functions exposed by the hardware. The main class is 
pyb.Pin.

• Access to millisecond and microsecond timers exposed by the hardware.
• The class pyb.Timer, which allows you to fire callbacks on timer events.
• Working with hardware PWM channels, which offloads your program from 

controlling timings. We will use this function to drive the servos.
• Support of common communication protocols like UART (universal 

asynchronous receiver-transmitter), I2C, SPI, and CAN (Controller Area 
Network), which use hardware support when it is available.

• Writing interrupt handlers in Python, which has some limitations but is still 
a very useful way to react to external events.

• MicroPython decorators, @micropython.native and @micropython.viper, 
for switching functions from Python bytecode to native instructions, which 
sometimes might speed up the execution of the code.
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• The option to work with the hardware at a very low level (memory registers), 
which sometimes is necessary to minimize the reaction time.

With all this being said, let's now check how we can implement our robot on 
MicroPython, starting with the observations provided by the sensor board.

Dealing with sensors
As I mentioned, the sensors that I used in my experiments are mounted on a 
single board, exposing four chips on the same I2C bus. In the world of electronics, 
documentation about the components comes as datasheets, in the form of documents 
(normally PDFs) with detailed specifications of the components, starting with 
dimensionality, electrical characteristics, applicability limitations, and, of course, 
a detailed specification of chip functionality. Simple components like LEDs 
or transistors might have 10-20 pages in the datasheet, but complex electronic 
components like microcontrollers could have documentation covering thousands of 
pages. So, it's quite easy to get lost in that amount of information. But datasheets are 
a very valuable source of knowledge about the details of electronic devices.

In my case, all four sensors mounted on the board were produced by the 
same company, STMicroelectronics, so they provided a uniform interface and 
similar semantics for internal registers, which was great, as it simplified my 
experimentations and dealing with the internals. As I explained earlier in the The 
sensors section, my concrete set of sensors is the following:

• Accelerometer LIS331DLH
• Gyroscope L3G4200D
• Magnetometer LIS3MDL
• Barometer LPS331AP

On average, the datasheet for each sensor is 40 pages long, which is not that much 
to read. Even better, most of those documents are not relevant to us because besides 
the basic functionality we really need, they include information about physical 
and electrical characteristics, and specifications of regimes that we are not really 
interested in, like interrupts about special conditions. In our case, all the sensor 
communication will be simple. We will do the following:

• Initialize the sensor by setting the measurement regime (all of them support 
different scales of measurements)

• Periodically read the values from the sensor
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The I2C bus
To get started with our sensors, we need to understand the bus to which all the 
sensors are connected. In my case, it is I2C, which is a very popular way to establish 
low-speed communication between digital electronic components. The bus itself is 
very simple and uses two wires for communication. One wire is the so-called clock, 
which is often abbreviated to SCL and is used to synchronize the slave devices 
on the bus with the master device. The other wire is used for serial data transfer 
and is usually called SDA. Given that power is transferred on the other two wires 
(+3.3V and ground), the sensor board is attached with only four connectors.

A pyboard normally has plenty of +3.3v and ground pins. In terms of SDA and 
SCL lines, almost any GPIO pins can be used. In my case, I have the following 
connections:

• The SCL is attached to pin Y11, which is marked on the board as P0, but 
MicroPython firmware knows it as Y11 or B0.

• The SDA is connected to pin X12. On my board, it is named P1, but the 
firmware can work with it as X12 or C5.

It might take some time to figure out the connections between the pins on the board 
and their firmware names, especially if your board is not an official MicroPython one 
(as in my case). To do that, I used an LED connected to the pin of interest and then 
turned pins on and off to get the name. You can obtain the list of all pins on your 
board from REPL, as the pyb.Pin class contains the list of all GPIO pins known by 
the firmware. REPL also supports tab completion, which is handy. The following 
shows an example of how to get the pin names and change the state of a particular 
pin. This detection might be automated by reading the GPIO pin state, instead of 
lighting the LED.

MicroPython v1.11 on 2019-08-19; PYBv1.1 with STM32F405RG

Type "help()" for more information.

>>> import pyb

>>> pyb.Pin.board.

__class__       __name__        LED_BLUE        LED_GREEN

LED_RED         LED_YELLOW      MMA_AVDD        MMA_INT

SD              SD_CK           SD_CMD          SD_D0

SD_D1           SD_D2           SD_D3           SD_SW

SW              USB_DM          USB_DP          USB_ID

USB_VBUS        X1              X10             X11

X12             X17             X18             X19

X2              X20             X21             X22
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X3              X4              X5              X6

X7              X8              X9              Y1

Y10             Y11             Y12             Y2

Y3              Y4              Y5              Y6

Y7              Y8              Y9

Here, after the Tab key is pressed, the interpreter shows the list of GPIO pins that it 
knows about. To set the particular pin on and off, you just need to create the instance 
of the class and change the pin state by calling the method on() or off().

>>> p = pyb.Pin('X11', pyb.Pin.OUT)

>>> p

Pin(Pin.cpu.C4, mode=Pin.OUT)

>>> p.on()

>>> p.off()

>>> 

The only limitation in pin selection that you'll use for sensor communications is 
avoiding using pins that are used for microSD card communication. The SD card is 
attached to the microcontroller with seven pins, so if you occasionally use the same 
pins for sensors, the SD operations might fail. To figure out which pins are used by 
the SD card, you can check the documentation for the pyboard. Official pyboards 
have very nice and clear illustrations about which pins attach to which peripherals. 
For instance, here is the illustration for the latest PYBv1.1: http://micropython.
org/resources/pybv11-pinout.jpg.

If you're using an unofficial board, it's not a huge problem. You can figure out pins 
occupied by the SD card using the firmware. The pyb.Pin class in the namespace 
board lists not only the raw GPIO pin names, but also their aliases. All names 
starting with an SD prefix are pins used by SD cards. The following is the list for 
my board:

>>> pyb.Pin.board.SD

Pin(Pin.cpu.A15, mode=Pin.IN, pull=Pin.PULL_UP)

>>> pyb.Pin.board.SD_CK

Pin(Pin.cpu.C12, mode=Pin.ALT, pull=Pin.PULL_UP, af=12)

>>> pyb.Pin.board.SD_CMD

Pin(Pin.cpu.D2, mode=Pin.ALT, pull=Pin.PULL_UP, af=12)

>>> pyb.Pin.board.SD_D0

Pin(Pin.cpu.C8, mode=Pin.ALT, pull=Pin.PULL_UP, af=12)

>>> pyb.Pin.board.SD_D1

http://micropython.org/resources/pybv11-pinout.jpg
http://micropython.org/resources/pybv11-pinout.jpg
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Pin(Pin.cpu.C9, mode=Pin.ALT, pull=Pin.PULL_UP, af=12)

>>> pyb.Pin.board.SD_D2

Pin(Pin.cpu.C10, mode=Pin.ALT, pull=Pin.PULL_UP, af=12)

>>> pyb.Pin.board.SD_D3

Pin(Pin.cpu.C11, mode=Pin.ALT, pull=Pin.PULL_UP, af=12)

The pin names with the cpu prefix, like cpu.A15 or cpu.C12, are the names of pins 
you shouldn't use. Of course, if an SD card is not used, you can employ those pins 
if you need to.

The situation with unofficial MicroPython-compatible boards might be even more 
interesting if you want to upgrade the firmware, but the board definition file (which 
defines all the aliases for low-level microcontroller pins) is wrong. It might end up 
being a non-working SD card after reflash. But that's normally quite easy to fix by 
changing a couple of lines in the board definition file in the MicroPython source 
code tree. For my board, I put the fixes to make the SD card work in the Chapter18/
micropython directory.

Anyway, I hope you've now chosen the pins to use for SDA and SCL. On the sensor 
board side, the connections are much easier. My board has clear marking of its four 
pins as V = 3.3V, G = Ground, D = Data, and C = Clock.

Once the sensors are connected, it's very simple to communicate with the board 
thanks to the existing MicroPython classes. For I2C communication, there is a handy 
class that can be used to scan the attached sensors and receive and send the data 
from/to them. If your sensors support a different bus type (it might be SPI, for 
example), MicroPython might have support for it as well.

This is an example of a device scan of what's attached to the sensor board:

>>> from machine import I2C

>>> i2c = I2C(freq=400000, scl='Y11', sda='X12')

>>> i2c.scan()

[24, 28, 92, 104]

We have got four numbers, which correspond to the I2C bus ID of every sensor 
attached to the board. If you get no result or too many numbers, check your 
wiring. The datasheets for my sensors include default values for those bus IDs and 
instructions for how to change them, which might be handy if your microcontroller 
needs to communicate with several identical sensors. In our case, however, this is 
not needed. If you're interested, there is a lot of information about I2C bus internals 
available on the Internet. Just to show that there are many things happening under 
the hood, the next figure shows the oscillogram of SDA and SCL lines during the 
i2c.scan() command.
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Figure 18.13: I2C communication

Sensor initialization and reading
We've found our sensors' bus IDs, so now let's do something useful with them. In the 
simplest mode of operation, all those sensors represent some kind of memory device 
that exposes a set of registers you can read or write using I2C commands. Detailed 
descriptions of commands and addresses of registers are device-dependent and 
documented in the datasheet.

I'm not going to give the full information about the registers of all the sensors here, 
especially given that your sensors might be different. Instead, we will take a look 
at a couple of simple examples of how to read and write some registers from one 
sensor. Then, we will look at classes that I've written to simplify communication 
with those sensors. The classes are available in the Chapter18/hw/libhw/hw_
sensors package and provide the unified interface to all our sensors.

Before checking the classes, let's check how communication is performed in general. 
The class I2C provides three groups of methods to deal with the I2C bus:

• Primitive methods: start(), stop(), readinto(), and write() operate 
with a bus on a very low level. A detailed explanation of them is well beyond 
the scope of the book, but overall, those methods allow the bus controller 
to perform data transfers with attached devices.
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• Standard operations: readfrom(), writeto(), and variations; these methods 
exchange the data with the specified slave device.

• Memory operations: readfrom_mem() and writeto_mem() work with 
slaves that provide a memory device interface: a set of registers that you 
can read or write. This is the case for us, so we will use those methods for 
communication.

Datasheets describe in detail all the registers exposed by the chip, their addresses, 
and their functionality. For illustration, let's take the simplest register, WHO_AM_I, 
which has the address 0x0F on all my sensors. (There is some sort of unification, as 
all the sensors were produced by the same company.) According to the datasheet, 
this is a read-only 8-bit register that holds the device identification value. For 
LIS331DLH, it should have the value 0x32. Let's check.

MicroPython v1.11 on 2019-08-19; PYBv1.1 with STM32F405RG

Type "help()" for more information.

>>> from machine import I2C

>>> i2c = I2C(freq=400000, scl='Y11', sda='X12')

>>> i2c.scan()

[24, 28, 92, 104]

>>> i2c.readfrom_mem(24, 0x0F, 1)

b'2'

>>> ord(i2c.readfrom_mem(24, 0x0F, 1))

50

>>> hex(50)

'0x32'

The function readfrom_mem() accepts three arguments: the device bus ID, the 
register to read, and the length in bytes. The result is a bytes string, which we convert 
with the ord() function. We are lucky because the first device checked turned out to 
be the accelerometer with the expected WHO_AM_I=0x32. Let's check other sensors:

>>> hex(ord(i2c.readfrom_mem(24, 0x0F, 1)))

'0x32'

>>> hex(ord(i2c.readfrom_mem(28, 0x0F, 1)))

'0x3d'

>>> hex(ord(i2c.readfrom_mem(92, 0x0F, 1)))

'0xbb'

>>> hex(ord(i2c.readfrom_mem(104, 0x0F, 1)))

'0xd3'

>>>
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As you can see, the values in this register are not related to the I2C bus ID. Writing 
to the device is performed in a similar way using the writeto_mem()method, but 
instead of the amount of bytes to receive, you need to pass a bytes string with data 
to be written into the register.

To practice, let's initialize our accelerometer. According to the datasheet, to enable 
its operation, we need to set up CTRL_REG1 (with address 0x20) to the proper value. 
This register has a bit-field structure, when different bits in the 8-bit register are 
responsible for different functions:

• Bits 8-6: Power mode selection; the normal operation corresponds to a bit 
value of 001.

• Bits 5-4: Data rate selection, which defines the frequency measurements 
that will be updated in the internal registers. Four different data rates are 
available: 50Hz, 100Hz, 400Hz, and 1,000Hz. We don't need very frequent 
updates, so 100Hz will be more than enough. According to the datasheet 
tables, we need to write the value 01 to switch into 100Hz mode.

• Bit 3: Enables or disables Z axis measurements.
• Bit 2: Enables Y axis measurements.
• Bit 1: Enables X axis measurements.

For our use case, we need all three axes, the data rate is 100Hz, and our power mode 
is normal. By combining all the bits together, we get a bit value of 0b00101111, which 
equals to the decimal value 47. This register is marked as read-write, so we can check 
that our value was indeed updated.

>>> ord(i2c.readfrom_mem(24, 0x20, 1))

7

>>> bin(7)

'0b111'

>>> i2c.writeto_mem(24, 0x20, bytes([47]))

>>> ord(i2c.readfrom_mem(24, 0x20, 1))

47

>>> bin(47)

'0b101111'

Yes, it works. Initially, it was in the power-down state with 50Hz frequency and all 
axes enabled. After our initialization, the device starts to measure the acceleration 
100 times per second and keeps the measurements in its internal registers. The only 
thing we need to do is read them periodically. To do that, a bit of math is required, 
as measurements are stored in 16-bit registers in two's complement form, which is 
a way to store signed numbers in an unsigned format.
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In addition, raw measurements are integers, but the acceleration is normally a float 
number. So, we need to divide the measurement by the scale before using it. The 
actual scale depends on the measurement range, which can be selected by writing 
into another control register, CTRL_REG4. Our accelerometer supports three scales 
of operation: ±2g, ±4g, and ±8g. Of course, a wider range means a lower precision 
of measurement, as the number of bits is fixed. As our robot is not going to crash 
into something, we will use the ±2g mode. This register is also responsible for other 
settings of the device, but I'm not going to cover them; you can check the datasheet.

The following is an example of how to read the acceleration value from the Z axis. 
We should measure 9.8 after all the transformations.

>>> from machine import I2C

>>> i2c = I2C(freq=400000, scl='Y11', sda='X12')

>>> i2c.writeto_mem(24, 0x20, bytes([47]))

>>> i2c.writeto_mem(24, 0x23, bytes([128]))

>>> v = ord(i2c.readfrom_mem(24, 0x2C, 1)) + 256 * ord(i2c.readfrom_
mem(24, 0x2D, 1))

>>> v

16528

>>> v = -(0x010000-v) if 0x8000 & v else v

>>> v

16528

>>> v /= 16380

>>> v

1.009035

For an extra check, I rotated the robot upside down and then onto its side.

>>> v = ord(i2c.readfrom_mem(24, 0x2C, 1)) + 256 * ord(i2c.readfrom_
mem(24, 0x2D, 1))

>>> v = -(0x010000-v) if 0x8000 & v else v

>>> v /= 16380

>>> v

-0.809768

>>> v = ord(i2c.readfrom_mem(24, 0x2C, 1)) + 256 * ord(i2c.readfrom_
mem(24, 0x2D, 1))

>>> v = -(0x010000-v) if 0x8000 & v else v

>>> v /= 16380

>>> v
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0.01855922

>>>

Looks good.

Sensor classes and timer reading
Reading values one by one is not very efficient, especially if we want to do it 
frequently and apply some transformations to them, for example, smoothing values, 
which might make sense, as raw sensor readings might be noisy. In addition, it 
would be nice to have a uniform sensor API, so we can work with a sensor without 
getting too much into the low-level details. In this case, if you have a different sensor, 
you just need to write a small class to deal with it and plug it into the system.

I implemented such classes, but I'm not going to describe them in detail. I'll just 
skim through the API and basic design assumptions, and show how they should 
be used. The complete source code is in Chapter18/hw. (This is a directory with the 
hardware-related part of the project, and its content is supposed to be copied on the 
microSD card's root.)

First of all, I need to describe the way that sensors are used. Instead of constantly 
querying sensors in the main loop of the program (also known as the polling mode), 
we will use timer interrupts. We will set up a function that will be called with the 
specified frequency, say 100 times per second. The job of the function will be to query 
all the sensors that we need and store the values in a special buffer. This method has 
the benefit of data being gathered at predictable intervals, rather than on every loop 
of our program (which might become delayed by IO, NN inference, or other things). 
But this method has some limitations that you need to account for in your code.

First of all, the interrupt handlers need to be as short as possible and do the minimal 
amount of work required, and exit. This is motivated by the nature of the interrupt 
handlers, which interrupt the flow of the main code on some event (timer expiration, 
in our case). If your interrupt handler works longer than the timer interval (1/100th 
of a second), another interrupt call might be triggered during your routine, which 
could create a mess.

Another limitation of interrupt handlers is MicroPython-specific: inside the interrupt 
routine, you can't allocate new memory; you can use only existing preallocated 
buffers. Sometimes this limitation might lead to surprising results, as Python 
allocates memory automatically and that might happen during innocent operations, 
like floating-point calculations. This is caused by the way floating points are 
implemented in Python and just means that you can't do floating-point math inside 
interrupt handlers. But with careful implementation, it's not very complicated to 
meet this requirement and use interrupt handlers.
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The following is an example of how we use timer interrupts in MicroPython and an 
illustration of such unintended memory allocation due to a floating-point operation:

>>> f = lambda t: print("Hello!")

>>> t = pyb.Timer(1, freq=2, callback=f)

>>> Hello!

Hello!

Hello!

Hello!

>>> t.deinit()

>>>

>>> f = lambda t: print(2.0/1.0)

>>> t = pyb.Timer(1, freq=2)

>>> t.callback(f)

>>> uncaught exception in Timer(1) interrupt handler

MemoryError:

The class that implements the sensor query using timer interrupts is in the module 
Chapter18/hw/libhw/sensor_buffer.py. Its logic might be tricky due to the 
timer callback limitations, but the interface is quite straightforward. The class 
SensorsBuffer is supposed to be created with a list of sensor object instances (those 
classes will be covered later), the index of the timer to be used, the polling frequency, 
the size of one batch, and the count of batches in the circular buffer. Every batch is 
a list of subsequent measures from all the sensors that we want to query. The buffer 
is a list of batches, so the capacity of the whole buffer is defined on buffer creation. 
Of course, our memory is limited, so we need to be careful with allocating too much 
memory for our sensor reading. For example, we have an accelerometer that we 
want to query 100 times every second. We also know that we will process the buffer 
at least once per second. In that case, we can create the buffer with a batch size that 
equals 10 and the total number of batches as 10. With those settings, the buffer will 
keep one second of data readings.

Here is an example of how this buffer could be created. For this example to work, 
you need to copy the Chapter18/hw directory into the microSD card root and have 
the same type of sensor.

>>> from machine import I2C

>>> i2c = I2C(freq=400000, scl='Y11', sda='X12')

>>> i2c.scan()

[24, 28, 92, 104]

>>> from libhw.hw_sensors.lis331dlh import Lis331DLH
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>>> accel = Lis331DLH(i2c)

>>> accel.query(Lis331DLH.decode)

[0.01660562, -0.03028083, 1.029548]

That's our accelerometer sensor. Let's attach it to the buffer:

>>> from libhw.sensor_buffer import SensorsBuffer

>>> buf = SensorsBuffer([accel], 1, freq=100, batch_size=10, buffer_
size=10)

>>> buf.start()

>>> for b in buf:

...     print(b)

... 

[bytearray(b''\x00\x10\xfe0B'), bytearray(b'0\x00@\xfe\xd0A'), 
bytearray(b'\xb0\x00\xf0\xfd\xb0A'), bytearray(b'\x80\x00\x00\xfe\
xc0A'), bytearray(b'0\x00 \xfe\xc0A'), bytearray(b'0\x00p\xfe\x90A'), 
bytearray(b'\xa0\x000\xfe\xa0A'), bytearray(b'P\x00 \xfe\x10B'), 
bytearray(b'\xa0\x000\xfe\xe0A'), bytearray(b'0\x00 \xfe\x10B')]

The buffer provides the iterator interface, generating all complete batches stored 
in the buffer. Every entry in the batch is a raw sensor reading, as we got it from 
the sensor's register. (Because we can't use floating-point operations in the timer 
callback, we can't do a transformation of raw bytes into floats.) This transformation 
needs to be done during the reading.

>>> for b in buf:

...     for v in b:

...         data = Lis331DLH.decode(v)

...         print(data)

... 

[0.06544567, -0.4610501, 0.9094017]

[0.05567766, -0.4620269, 0.9084249]

[0.05763126, -0.4551893, 0.9045177]

[0.06446887, -0.4630037, 0.9054945]

[0.05665446, -0.4590965, 0.9064713]

[0.06056166, -0.4561661, 0.9025641]

[0.05958486, -0.4581197, 0.9064713]

[0.06056166, -0.4561661, 0.9113553]

[0.05958486, -0.4581197, 0.9074481]

[0.05958486, -0.4649573, 0.9094017]
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The main program needs to fetch the data from the buffer periodically; otherwise, 
new values from the sensors might overwrite the existing data (as the buffer is 
circular).

Let's now discuss the common sensor interface, which is fairly simple. On the 
top is the abstract class Sensor, defined in libhw/sensors.py. The base class 
is responsible for allocating the buffer, which will be used to store the sensor's 
readings, and defines the following abstract methods, which have to be redefined 
by subclasses:

• __len__() has to return the length of raw sensor readings in bytes. Different 
sensors provide different amounts of data; for example, my accelerometer 
returns three 16-bit values for each axis, but my magnetometer returns four 
values because it contains an internal temperature register, whose readings 
are also exposed.

• refresh() has to fetch fresh data from underlying sensors and store it inside 
the internal buffer.

• decode(buf), which is a class method, needs to convert byte representation 
into the list of floats.

Observations
We are slowly but surely getting to our primary goal: obtaining the observations 
from the sensors. As the first, very simple example, I'll use only accelerometer 
readings, which will be used to estimate the roll and pitch angles of our robot. "Roll" 
means the rotation around the axis along the robot (in my sensor board location, this 
is a Y axis), and "pitch" is the rotation around the axis horizontally perpendicular to 
the roll axis, which defines the incline of the robot (which is the X axis in my case).

The third angle, the so-called yaw angle or rotation around the Z axis, is not possible 
to reliably estimate from the accelerometer alone. However, there are methods to 
find all three rotation angles using the combined readings from the accelerometer 
and gyroscope, but this implementation is left as an exercise for the advanced reader. 
You might find this article useful: https://www.monocilindro.com/2016/06/04/
how-to-calculate-tait-bryan-angles-acceleration-and-gyroscope-
sensors-signal-fusion/.

In my code, I used the simple method that gives only the roll and pitch angles by 
comparing accelerometer readings on different angles. The postprocessing code is 
in Chapter18/hw/libhw/postproc.py.

def pitch_roll_simple(gx, gy, gz):
    g_xz = math.sqrt(gx*gx + gz*gz)
    pitch = math.atan2(gy, g_xz)

https://www.monocilindro.com/2016/06/04/how-to-calculate-tait-bryan-angles-acceleration-and-gyroscope-sensors-signal-fusion/
https://www.monocilindro.com/2016/06/04/how-to-calculate-tait-bryan-angles-acceleration-and-gyroscope-sensors-signal-fusion/
https://www.monocilindro.com/2016/06/04/how-to-calculate-tait-bryan-angles-acceleration-and-gyroscope-sensors-signal-fusion/
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    roll = math.atan2(-gx, gz)
    return pitch, roll

This function calculates the pitch and roll from float acceleration readings.

class PostPitchRoll:
    SMOOTH_WINDOW = 50

    def __init__(self, buffer, pad_yaw):
        assert isinstance(buffer, SensorsBuffer)
        assert len(buffer.sensors) == 1
        assert isinstance(buffer.sensors[0],
                          hw_sensors.lis331dlh.Lis331DLH)
        self.buffer = buffer
        self.smoother = Smoother(self.SMOOTH_WINDOW, components=3)
        self.pad_yaw = pad_yaw

    def __iter__(self):
        for b_list in self.buffer:
            for b in b_list:
                data = hw_sensors.lis331dlh.Lis331DLH.decode(b)
                self.smoother.push(data)
                pitch, roll = \
                    pitch_roll_simple(*self.smoother.values())
                res = [pitch, roll]
                if self.pad_yaw:
                    res.append(0.0)
                yield res

This class takes the buffer, which should have only the accelerometer sensor 
attached, and converts the data from the buffer into pitch and roll values. Before 
calculating those angle components, the readings are smoothed by the simple 
moving average method, which is implemented by the Smoother class in the same 
postproc.py file. The method can't estimate the yaw angle, but our model expects 
to have it, so we put zero as the third component.

For testing this code, I have a small utility in Chapter18/hw/obs.py, which takes 
all the classes, but just shows the pitch and roll angles on the console. Its code is 
very simple and is shown here:

import pyb
from machine import I2C
from libhw.hw_sensors import lis331dlh as lis
from libhw.sensor_buffer import SensorsBuffer
from libhw.postproc import PostPitchRoll



RL in Robotics

[ 578 ]

SDA = 'X12'
SCL = 'Y11'

def run():
    i2c = I2C(freq=400000, scl=SCL, sda=SDA)
    acc = lis.Lis331DLH(i2c)
    buf = SensorsBuffer([acc], timer_index=1, freq=100,
                        batch_size=10, buffer_size=100)
    post = PostPitchRoll(buf, pad_yaw=True)
    buf.start()
    try:
        while True:
            for v in post:
                print("pitch=%s, roll=%s, yaw=%s" % tuple(v))
    finally:
        buf.stop()

Let's test it on our hardware.

>>> import obs

>>> obs.run()

pitch=-0.4448922, roll=-0.2352999, yaw=0.0

pitch=-0.4403271, roll=-0.2364806, yaw=0.0

pitch=-0.440678, roll=-0.237506, yaw=0.0

pitch=-0.4407347, roll=-0.2369987, yaw=0.0

pitch=-0.4420413, roll=-0.2360859, yaw=0.0

pitch=-0.4424292, roll=-0.2354495, yaw=0.0

pitch=-0.4430317, roll=-0.2366674, yaw=0.0

The shown angles are in radians and should change as you incline the sensor board 
in different directions.

Driving servos
Our servos are simple and cheap, so they are being controlled by PWM, the most 
popular method in this class of actuators. The idea of this method is very simple: the 
digital signal controlling the servo angle has the form of pulses with a fixed period, 
which most often is 50Hz. As our signal is digital, it could be in only the 0 or 1 state, 
but the ratio between the time when the signal is in state 1 and the time it is in state 
0 may vary. This ratio, also called the duty cycle, controls the angle of the servo.
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As this method is very popular in toy models, aviation, robotics, and other 
applications, there is some degree of compatibility here, so you can replace the 
servo in your radio-controlled car model and be more or less sure it will be 
compatible with the rest of the car's electronics. As usual, it might have some 
variations, but normally, it just works.

The standard parameters of position-controlled servos can be easily found on the 
internet and usually are the following: the pulse interval is 50Hz (which is 20 ms), 
the zero angle corresponds to ~3% duty cycle (which is approximately 600 us), 
and the maximum angle (normally 180°) is ~12% duty cycle (which is 2.4 ms). 
The concrete timings may slightly vary from one servo model to another. In my 
case, I found that the minimum angle is reached at 2.3% of the duty cycle, and the 
maximum at about 12.6%.

To illustrate this, Figure 18.14 and Figure 18.15 show oscillograms of three servos set 
in different positions. The top one is at the minimum angle, the middle one is at the 
50% position, and the bottom one is at the maximum angle.

Figure 18.14: Three servos at different positions
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Figure 18.15: The same three servos, but with the signal zoomed in and the bottom legend switched to timings

Before we get into the software part, something needs to be said about the hardware. 
Our servos have three connectors: power (normally a red wire), ground (black), and 
control (white). In terms of voltage, the servos work fine with +3.3V or +5V. The only 
possible issue is that the servos include small motors, which might drain the power 
from the USB port.

My measurement shows that the peak current from four servos doesn't exceed 0.7A, 
which is fine for most USB ports, but as this drain happens in short spikes (when a 
servo needs to rotate suddenly), this might introduce noise to the USB signal, and 
communication between the computer and the board might be lost.

To overcome this, several simple solutions exist. First of all, the servos could be 
powered from a different USB port. This will increase the number of wires to the 
robot, but it will help. Another option that I tried, which worked very well, was to 
add an electrolytic capacitor between the servo's power and ground wires. I used a 
capacitor of 100uF, which works as a filter and smooths power spikes. A capacitor in 
combination with a short USB cable solved my problem, and the connection worked 
reliably even during sudden moves of all four servos.

Maybe an even better solution would be to switch to a wireless connection to the 
robot and add the battery to give it full wireless freedom. That could be included 
in my next version.
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Now the question is: how do we generate such pulses to drive our four servos? The 
most obvious, but not very reliable, way is to drive pins attached to the servos up 
and down in the main loop. The issue with this approach is that the timings need 
to be precise: if our pulses are delayed for some reason, the servos might suddenly 
jump to a wrong position. As Python is not a very fast language, it might be tricky 
to generate stable pulses of a specific width.

Servo control is not our only problem. Besides controlling the servos, we will need to 
query the sensors, process their readings, and do inferences using our NN. Juggling 
all those tasks and ensuring precise timing in four PWM signals might be too much 
complexity.

A better approach will be to use timer interrupts, which can be set up to trigger 
periodically, check the desired servo pin signal, and change it. I implemented this 
approach at the beginning of my experiments, and it worked fairly well. If you're 
curious, the source of the class that can drive several servos is in module Chapter18/
hw/libhw/servo.py and is called ServoBrainOld. The code uses multiple timers: 
one timer is for driving 50Hz pulses, and several timers (one per servo being 
controlled) are responsible for measuring the time the signal should be in the 
high state. This method worked, but when checking it in conjunction with sensor 
readings, servo control wasn't very reliable. The servos sometimes jumped to a 
wrong position. Probably, this was caused by timer interrupts overlapping or some 
bug in my calculations.

To overcome this, I found a third, and from my point of view ideal, solution to servo 
control using the hardware PWM support implemented in the microcontroller. This 
also requires timers to be set up, but in this case, we will use timers not to trigger 
our function in a specific interval, but to employ the extra capabilities of timers to 
produce PWM signals directly on their own. The only thing that is needed from 
our side is to properly configure the timer and set the duty cycle that we want it 
to generate. From that moment, all the pulses will be generated by the hardware 
without any further control from our side. If we want the servos to jump to a 
different position, we just need to set a different duty cycle of a timer.

To understand how this works, we need to step a bit deeper into the microcontroller 
hardware that we're using. STM32F4xx microcontrollers can have up to 14 different 
timers, and some of them support up to four channels, each of which could be 
configured in a specific way. For instance, one channel of the timer might generate 
PWM pulses of a specific interval on some pin, but another channel of the same 
timer might produce pulses of a different length, which potentially allows us to 
drive dozens of servos, with zero CPUs involved, just using hardware. Controlling 
timer channels is supported by MicroPython, although it doesn't have very detailed 
documentation. 
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The following example shows how to drive one servo attached to the pin B6 (which 
on my board is marked as P26):

>>> import pyb

>>> t = pyb.Timer(4, freq=50)

>>> p = pyb.Pin("B6", pyb.Pin.OUT)

>>> ch = t.channel(1, pyb.Timer.PWM, pin=p)

>>> ch

TimerChannel(timer=4, channel=1, mode=PWM)

>>> p

Pin(Pin.cpu.B6, mode=Pin.ALT, af=Pin.AF2_TIM4)

>>> t

Timer(4, freq=50, prescaler=124, period=13439, mode=UP, div=1)

>>> ch.pulse_width_percent(3)

>>> ch.pulse_width_percent(12)

>>> ch.pulse_width_percent((12+3)/2)

After the line ch.pulse_width_percent(3), the servo should move to the minimal 
angle; the second command will jump it into the maximum position; and the final 
line will set it to the middle. This is extremely simple and efficient.

To find which pins have a specific timer and channel index, you can use the 
datasheet on the specific microcontroller, which includes concrete hardware details 
about the concrete chip. In contrast to the family reference manual (which, in the case 
of STM32F405 has 1,700 pages), the datasheet (https://www.st.com/resource/en/
datasheet/stm32f405rg.pdf) has only 200 pages and in Table 9 states all the timer 
and channel indices associated with the microcontroller pin (I want to thank Ernest 
Gungl, who pointed me to the proper way to find timer and channel indices).

My set of pins is saved as a constant in the servo.py file and maps the pin name 
to the pair (timer, channel).

_PINS_TO_TIMER = {
    "B6": (4, 1),
    "B7": (4, 2),
    "B8": (4, 3),
    "B9": (4, 4),
    "B10": (2, 3),
    "B11": (2, 4),
}

https://www.st.com/resource/en/datasheet/stm32f405rg.pdf
https://www.st.com/resource/en/datasheet/stm32f405rg.pdf
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I have also found that putting four servos on one timer is not the best idea, as they 
do not always work. So, in my hardware, I have two servos attached to pins B6 and 
B7, which are driven by timer 4, and two servos controlled by timer 2 on pins B10 
and B11.

The class that implements this method is called ServoBrain and it sits in the servo.
py module. As it is quite simple, I'm not going to put it here; I will just show how it 
is supposed to be used.

>>> from libhw import servo

>>> PINS = ["B6", "B7", "B10", "B11"]

>>> ch = servo.pins_to_timer_channels(PINS)

>>> ch

[('B6', (4, 1)), ('B7', (4, 2)), ('B10', (2, 3)), ('B11', (2, 4))]

>>> brain = servo.ServoBrain()

>>> brain.init(ch)

>>> brain.positions

[0.0, 0.0, 0.0, 0.0]

>>> brain.positions = [0.5, 1, 0.2, 0]

>>> brain.deinit()

>>>

At first, we build the mapping of our pin names to timers/channels. Then, the servo 
controller is created and initialized. After that, we read the last positions and change 
them using the positions property. The position of each servo is controlled by 
a float from 0 to 1.

In addition, the file Chapter18/hw/zero.py contains several helper methods that 
can be used to experiment with servos, like slowly rotating a specific leg (function 
cycle()), jumping the robot from a lying to a standing position (function stand()), 
or setting the servos to specific positions and keeping them.

A final point about the servos in our robot is that in my design, the front servos are 
flipped upside down, which means that their direction needs to be reversed. The 
ServoBrain class supports this by accepting an optional Boolean list in the init 
method.

It looks like you know how to query sensors and change the position of our servos. 
The missing part is how to apply our model, which is supposed to glue observations 
to actions. Let's do it next.
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Moving the model to hardware
The model, trained using the DDPG method, includes two parts: the actor and critic 
networks. The actor takes the observations vector and returns the actions that we 
need to take. The critic takes the observations and the actions returned by the actor 
and predicts the value that an action in a state might bring us. When the training 
is done, we don't need the critic network anymore. The final outcome is the actor 
model alone.

Under the hood, our actor model is just a bunch of matrices that does the 
transformation of the input vector with stacked observations to produce a 
four-component action vector, every value of which is the rotation angle of the 
corresponding servo motor. This is the structure of our actor network shown by 
PyTorch:

DDPGActor(
  (net): Sequential(
    (0): Linear(in_features=28, out_features=20, bias=True)
    (1): ReLU()
    (2): Linear(in_features=20, out_features=4, bias=True)
    (3): Tanh()
  )
)

When we worked with an emulator on a large computer, we imported PyTorch, 
loaded the weights, and then used the model class to do the inference. Unfortunately, 
in MicroPython, we can't do the same because we don't have PyTorch ported for 
microcontrollers, and even if it was ported, our memory limits are too low to use 
PyTorch. To overcome this, we need to go to a lower level in our abstractions and 
work with our model as matrices. At that level, to do the inference, we need to 
multiply the observation vector (having 7×4=28 numbers) to the weight matrix of 
the first layer (28×20), add its bias vector, and apply rectified linear unit (ReLU) 
nonlinearity. This will be the vector of 20 numbers, which should be passed to the 
second layer, again multiplying it to a weight matrix of size 20×4. We will then add 
bias and after tanh nonlinearity, it will give us the output.

There are libraries like numpy that have very efficient and highly optimized matrix 
multiplication routines, which is not a surprise, as those routines have a very long 
history (decades!) of the brightest computer scientists optimizing them for the 
best performance. We're also not very lucky here, as NumPy is not available for 
MicroPython either. During my experiments, I did some quick research and found 
the only library that implements matrix operations on raw Python, https://github.
com/jalawson/ulinalg, which is quite old and hasn't been maintained for a while. 

https://github.com/jalawson/ulinalg
https://github.com/jalawson/ulinalg
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After some quick benchmarks, it turned out that my very naïve matrix multiplication 
function is about 10 times faster than the version provided by ulinalg (mostly by 
avoiding copying data into temporary lists).

The function used during the model inference is in module Chapter18/hw/libhw/
nn.py. It's just one screen of code, so let's take a look.

import math as m

def matmul(a, b):
    res = []
    for r_idx, a_r in enumerate(a):
        res_row = [
            sum([a_v * b_r[b_idx] for a_v, b_r in zip(a_r, b)])
            for b_idx in range(len(b[0]))
        ]
        res.append(res_row)
    return res

The function matmul() produces a very simple and straightforward implementation 
of matrix multiplication. To better support our model's shapes, the first argument is 
expected to have a shape of (n, m), and the second matrix needs to be of the shape 
(m, k); then, the produced matrix will have a shape of (n, k). The following is a very 
simple example of its use. The module t1 contains the exported model, which will 
be covered later.

>>> from libhw import nn, t1

>>> len(t1.WEIGHTS[0][0])

20

>>> len(t1.WEIGHTS[0][0][0])

28

>>> b = [[0.0]]*28

>>> nn.matmul(t1.WEIGHTS[0][0], b)

[[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], 
[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]

>>> r = nn.matmul(t1.WEIGHTS[0][0], b)

>>> len(r)

20

>>>
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The next function in the nn.py module implements the in-place sum of two matrices. 
The second matrix is transposed during the operation. This is not very efficient, as 
the only use of this function is to add the bias vectors, which might be transposed 
during the model export, but I haven't done much optimization of the code. If you 
wish, you can experiment with it.

def matadd_t(a, b):

    for a_idx, r_a in enumerate(a):

        for idx in range(len(r_a)):

            r_a[idx] += b[idx][a_idx]

    return a

The following is an illustration of how this function is used:

>>> len(t1.WEIGHTS[0][1])

1

>>> len(t1.WEIGHTS[0][1][0])

20

>>> nn.matadd_t(r, t1.WEIGHTS[0][1])

[[0.7033747], [0.9434632], [-0.4041394], [0.6279096], [0.1745763], 
[0.9096519], [0.375916], [0.6591344], [0.1707696], [0.5205367], 
[0.2283022], [-0.1557583], [0.1096208], [-0.295357], [0.636062], 
[0.2571596], [0.7055011], [0.7361195], [0.3907547], [0.6808118]]

>>> r

[[0.7033747], [0.9434632], [-0.4041394], [0.6279096], [0.1745763], 
[0.9096519], [0.375916], [0.6591344], [0.1707696], [0.5205367], 
[0.2283022], [-0.1557583], [0.1096208], [-0.295357], [0.636062], 
[0.2571596], [0.7055011], [0.7361195], [0.3907547], [0.6808118]]

The operation is in-place to avoid allocation of the extra memory. The next group 
of methods is used for nonlinearities that we have in the model.

def apply(m, f):
    for r in m:
        for idx, v in enumerate(r):
            r[idx] = f(v)
    return m

This method does an in-place element-wise application of the function to the matrix.

def relu(x):
    return apply(x, lambda v: 0.0 if v < 0.0 else v)

def tanh(x):
    return apply(x, m.tanh)
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The two preceding functions use the apply() method to implement ReLU and tanh 
nonlinearities, and they should be obvious.

def linear(x, w_pair):
    w, b = w_pair
    return matadd_t(matmul(w, x), b)

The last method combines the matmul and matadd_t functions to apply linear layer 
transformation to the input matrix x. The second argument, w_pair, is expected 
to contain the tuple with the weight matrix and the bias.

The model export
To convert the model obtained from the training, I wrote a special utility: 
Chapter18/export_model.py. Its task is to load the model file and generate the 
Python module that contains the weights of the model and several functions to 
transform the observation vector into the actions to be executed. This is a classic 
example of metaprogramming, when one program generates another. The logic 
is not very complicated and is shown here:

import pathlib
import argparse
import torch
import torch.nn as nn
from lib import ddpg

DEFAULT_INPUT_DIM = 28
ACTIONS_DIM = 4

Initially, we import the required modules and define the constants. The utility is not 
very generic, and the output dimensions are hardcoded. (The input size could be 
redefined from the command line.)

def write_prefix(fd):
    fd.write("""from . import nn

""")

The function write_prefix is supposed to write the header of the module and just 
writes the import of the only module that we will use. To fulfill the PEP8 standards, 
we write the extra empty line, although it might be redundant.

def write_weights(fd, weights):
    fd.write("WEIGHTS = [\n")
    for w, b in weights:
        fd.write("(%s, [%s]),\n" % (
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            w.tolist(),  b.tolist()
        ))
    fd.write("]\n")

The next function, write_weights, is supposed to write the list declaration of our 
NN parameters. The input argument weights should be a list of tuples, where each 
tuple contains parameters for a specific layer. The tuple should hold two NumPy 
arrays, the first of which is the matrix with the linear layer weights, and the second 
of which is the bias vector.

def write_forward_pass(fd, forward_pass):
    fd.write("""

def forward(x):
""")

    for f in forward_pass:
        fd.write("    %s\n" % f)

    fd.write("    return x\n")

The function write_forward_pass generates the forward() function in the module, 
which is supposed to transform the input vector into the NN's output. In arguments, 
it accepts the file descriptor to feed the generated text and the list of steps that our 
network consists of. The way this list is generated will be described later, but for 
now, the important point is that it has to contain valid Python lines to be executed 
one by one, transforming the input, x, according to the NN's structure.

def write_suffix(fd, input_dim):
    fd.write(f"""

def test():
    x = [[0.0]] * {input_dim}
    y = forward(x)
    print(y)
    
    
def show():
    for idx, (w, b) in enumerate(WEIGHTS):
        print("Layer %d:" % (idx+1))
        print("W: (%d, %d), B: (%d, %d)" % (len(w), len(w[0]),
              len(b), len(b[0])))

""")
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The final function in the tool generates two functions of the module: test(), which 
applies the network to the zero vector, and show(), which prints the structure of the 
weights.

Finally, let's take a look at the main body of the utility:

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-m", "--model", required=True,
        help="Model data file to be exported")
    parser.add_argument("-o", "--output", required=True,
        help="Name of output python file to be created")
    parser.add_argument("--input-dim", type=int,
                        default=DEFAULT_INPUT_DIM,
                        help="Dimension of the input,
                        default=%s" % DEFAULT_INPUT_DIM)
    args = parser.parse_args()
    output_path = pathlib.Path(args.output)

In the beginning, we parse arguments of the tool, which allow us to specify the file 
name with the model to be converted and the output Python module to be produced. 
In addition, we redefine the input dimensionality.

    act_net = ddpg.DDPGActor(args.input_dim, ACTIONS_DIM)
    act_net.load_state_dict(torch.load(
        args.model, map_location=lambda storage, loc: storage))

The next step is to construct our actor module and load weights from the file given 
in the arguments.

    weights_data = []
    forward_pass = []

    for m in act_net.net:
        if isinstance(m, nn.Linear):
            w = [m.weight.detach().numpy(),
                 m.bias.detach().numpy()]
            forward_pass.append(
                f"x = nn.linear(x, WEIGHTS[{len(weights_data)}])")
            weights_data.append(w)
        elif isinstance(m, nn.ReLU):
            forward_pass.append("x = nn.relu(x)")
        elif isinstance(m, nn.Tanh):
            forward_pass.append("x = nn.tanh(x)")
        else:
            print('Unsupported layer! %s' % m)
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Now we're going to the core of the utility logic. We iterate the actor network and 
inspect its structure. According to the classes of every layer, we populate two lists: 
weights_data and forward_pass. The first list contains tuples with the Linear 
layer's parameters: weight and bias. At the moment, only the Linear layer is 
supported, so if you want the convolution layer to be exported, you will need 
to extend the utility. Another list, forward_pass, contains strings with Python 
transformations to be applied. This list will be passed to the write_forward_pass 
function that we have just seen. In those transformations, we're using methods from 
the nn.py module.

    with output_path.open("wt", encoding='utf-8') as fd_out:
        write_prefix(fd_out)
        write_weights(fd_out, weights_data)
        write_forward_pass(fd_out, forward_pass)
        write_suffix(fd_out, args.input_dim)

Finally, we open the output file and write its sections one by one, using the functions 
that we have just defined. The module produced could be copied to the microSD 
card of our robot and used to convert observations to actions.

Benchmarks
Initially, I was quite doubtful about the ability of a microcontroller to do an NN 
inference in a timely manner, so I wrote a simple tool to check the speed of the 
inference. The tool is in the file Chapter18/hw/bench.py and it just performs the 
inference in a loop, measuring the time it takes on every loop. The work of this 
program on my hardware is shown next:

>>> import bench

>>> bench.run()

17096

19092

16911

19100

16902

19105

16962

The numbers shown in the loop are microseconds, so the inference takes 17-19 
milliseconds, which corresponds to 53-59 inferences per second. This is pleasantly 
surprising, as it is way more than we need. Of course, our model is very simple and 
contains just 664 parameters. In the case of larger models, some optimizations might 
be needed. Now, I want to show possible ways to make your model faster and use 
less memory.
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First of all, the performance might be improved by using MicroPython decorators 
to produce the native code of the microcontroller instead of Python bytecode. 
Those decorators are @micropython.native and @micropython.viper, and they 
are covered in the documentation: http://docs.micropython.org/en/latest/
reference/speed_python.html.

Another possible way to significantly speed up the code would be to move the 
inference from Python to firmware. In that case, the matrix multiplications would 
need to be implemented in C, and the weight could be built into the firmware. This 
method has the additional benefit of using the native floating point operations of 
the underlying hardware, rather than using emulated Python floating point. This 
method might be a bit complicated, but it promises the largest improvements in both 
performance and memory usage. Information about the use of native floating-point 
using assembler is given in this documentation section: http://docs.micropython.
org/en/latest/reference/isr_rules.html#overcoming-the-float-
limitation. (Yes, you can write MicroPython functions in assembly!)

As a simpler alternative, you might consider using fixed-point operations rather than 
floating point. In this case, your transformation might be done in integers and only 
on the final step converted into the floating point. But you need to be careful with 
possible overflow in the network.

A different problem you might encounter is the amount of memory available for the 
weights. In my code, I stored weights in the module text, so during the import, this 
text needed to be parsed by the interpreter to get the Python representation of the 
weights. With a larger model, you might quickly reach the limits of the interpreter 
and available memory. The MicroPython documentation outlines possible ways 
to decrease the amount of memory required by the parser and intermediate 
representation: http://docs.micropython.org/en/latest/reference/
packages.html (see the section Cross-installing packages with freezing). This covers 
the way to precompile your module and bundle it into the firmware so that it stops 
occupying the RAM and sits in the flash ROM. This makes total sense, as our weights 
are not supposed to be modified.

Combining everything
Wrapping up all the preparations, we want to combine all three pieces into one: 
observations from the sensors are fed into the network, which produces the actions 
to be executed by the servos. The code that does exactly that is in Chapter18/hw/
run.py, and it needs the libhw package and the actor model converted into Python 
code. This Python source could have any name you wish, but it needs to be placed 
into the libhw directory on the microSD card.

http://docs.micropython.org/en/latest/reference/speed_python.html
http://docs.micropython.org/en/latest/reference/speed_python.html
http://docs.micropython.org/en/latest/reference/isr_rules.html#overcoming-the-float-limitation
http://docs.micropython.org/en/latest/reference/isr_rules.html#overcoming-the-float-limitation
http://docs.micropython.org/en/latest/reference/isr_rules.html#overcoming-the-float-limitation
http://docs.micropython.org/en/latest/reference/packages.html
http://docs.micropython.org/en/latest/reference/packages.html
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For my demonstration, I've included my three models, named t1.py, t1zyh.py, 
and t1zyho.py. If you want, you can use them. The program run.py defines the 
only function, run(), which accepts one argument: the name of the module to be 
used for inference. It should be the name of the module and not the file name, in 
other words, without the.py suffix.

The source code of run.py is quite short, so let's take a look at it.

import pyb
import utime
from machine import I2C
from libhw.hw_sensors import lis331dlh as lis
from libhw.sensor_buffer import SensorsBuffer
from libhw.postproc import PostPitchRoll
from libhw import servo

SDA = 'X12'
SCL = 'Y11'
PINS = ["B6", "B7", "B10", "B11"]
INV = [True, False, True, False]
STACK_OBS = 4

At the beginning, it imports everything we need and defines constants with the pin 
names of the sensor board and servos, the list of legs to be inverted in a particular 
direction, and the depth of our observation stack. You might need to tweak those 
parameters to meet your hardware.

def do_import(module_name):
    res = __import__("libhw.%s" % module_name,
                     globals(), locals(), [module_name])
    return res

Then, a short, but a bit tricky, helper function is defined. We don't want to constantly 
change the name of the module to be used for inference, so this name will be passed 
as a variable. Python provides a way to import the module, the name of which is 
given in a variable; this way is called the importlib module. However, MicroPython 
lacks this module, so another approach has to be used. This approach uses the __
import__ built-in function, which can do the same thing. So, this do_import helper 
calls this built-in function and returns the module instance as a result.

def run(model_name):
    model = do_import(model_name)

    i2c = I2C(freq=400000, scl=SCL, sda=SDA)
    acc = lis.Lis331DLH(i2c)
    buf = SensorsBuffer([acc], timer_index=1, freq=100,
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                        batch_size=10, buffer_size=100)
    post = PostPitchRoll(buf, pad_yaw=True)
    buf.start()
    ch = servo.pins_to_timer_channels(PINS)
    brain = servo.ServoBrain()
    brain.init(ch, inversions=INV)

In the beginning of the main function, we import the inference module and construct 
our hardware classes: we connect to the I2C bus, create a sensor wrapped into the 
sensor buffer, and create a servo controller.

    obs = []
    obs_len = STACK_OBS*(3+4)
    frames = 0
    frame_time = 0
    ts = utime.ticks_ms()

    try:
        while True:
            for v in post:
                for n in brain.positions:
                    obs.append([n])
                for n in v:
                    obs.append([n])
                obs = obs[-obs_len:]

In the loop, we construct the observation vector, which consists of the four current 
positions of the servos and the three values of roll, pitch, and yaw generated by the 
postprocessor. Those seven values are stacked to form 28 values in observations. To 
get them, we organize a sliding window to keep the four most recent observations.

                if len(obs) == obs_len:
                    frames += 1
                    frame_time += utime.ticks_diff(
                                  utime.ticks_ms(), ts)
                    ts = utime.ticks_ms()
                    res = model.forward(obs)
                    pos = [v[0] for v in res]
                    print("%s, FPS: %.3f" % (pos,
                              frames*1000/frame_time))
                    brain.positions = pos

When the observations are ready, we do the inference using the model.forward() 
method. Then, the result is transformed a little and assigned to the servo controller's 
positions property to drive the servos. 
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The performance is also monitored, just to satisfy our curiosity.

    finally:
        buf.stop()
        brain.deinit()

Finally, when Ctrl+C is pressed, we stop sensor buffer population and the timers 
driving the servos.

Here is the part of the session on my hardware:

>>> import run

>>> run.run("t1")

[0.02104034, 0.5123497, 0.6770669, 0.2932276], FPS: 22.774

[-0.5350959, -0.8016349, -0.3589837, 0.454527], FPS: 22.945

[0.1015142, 0.9643133, 0.5971705, 0.5618412], FPS: 23.132

[-0.6485986, -0.7048597, -0.4380577, 0.5697376], FPS: 23.256

[-0.2681193, 0.9673722, 0.5179501, 0.4708525], FPS: 23.401

As you can see, the full code is able to do everything about 23 times per second, 
which is not that bad for such limited hardware.

Policy experiments
The first model that I trained was with the Height objective and without zeroing 
the yaw component. A video of the robot executing the policy is available here: 
https://www.youtube.com/watch?v=u5rDogVYs9E. The movements are not very 
natural. In particular, the front-right leg is not moving at all. This model is available 
in the source tree as Chapter18/hw/libhw/t1.py.

As this might be related to the yaw observation component, which is different 
during the training and inference, the model was retrained with the --zero-yaw 
command-line option. The result is a bit better: all legs are now moving, but the 
robot's actions are still not very stable. The video is here: https://www.youtube.
com/watch?v=1JVVnWNRi9k. The model used is in Chapter18/hw/libhw/t1zyh.py.

The third experiment was done with a different training objective, HeightOrient, 
which not only takes into account the height of the model, but also checks that the 
body of the robot is parallel to the ground. The model file is available in Chapter18/
hw/libhw/t1zyho.py. This model finally produced the outcome I expected: the 
robot is able to stand and can be kept in the standing position. The video is here: 
https://www.youtube.com/watch?v=_eA4Dq8FMmo.

https://www.youtube.com/watch?v=u5rDogVYs9E
https://www.youtube.com/watch?v=1JVVnWNRi9k
https://www.youtube.com/watch?v=1JVVnWNRi9k
https://www.youtube.com/watch?v=_eA4Dq8FMmo
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I also experimented a bit with the MoveForward objective, but even in simulations, 
the resulting policy looks weird. Very likely, this is caused by bad model parameters 
that need to be improved to give a more realistic simulation of the robot. But during 
the experiments, a quite amusing result was achieved. The initial version of the 
code contained a mistake in the reward objective, so the robot was rewarded for 
moving sideways, instead of for forward movements. The video of the best policy is 
available here: https://www.youtube.com/watch?v=JFGFB8pDY0Y. Obviously, the 
optimization was able to find the policy to maximize the wrong reward objective, 
which gives us another illustration of how important the reward is for RL problems.

Summary
Thanks for reaching the end! I hope you enjoyed reading this chapter as much as I 
enjoyed writing it. This field is very interesting; we have just touched on it a little, 
but I hope that this chapter will show you a direction for your own experiments and 
projects. The goal of the chapter wasn't building a robot that will stand, as this could 
be done in a much easier and more efficient way; the true goal was to show how the 
RL way of thinking can be applied to robotics problems, and how you can do your 
own experiments with real hardware without having access to expensive robotic 
arms, complex robots, and so on.

At the same time, I see some potential for the RL approach to be applied to complex 
robots, and who knows, maybe you will build the next version of iRobot Corporation 
to bring more robots into our lives. If you are interested in buying the kits for the 
robot platform described in this chapter, it would be really helpful if you could fill 
out this form: https://forms.gle/Ug1p9C7F1PszzfYz9.

In the next chapter, we will continue our exploration of continuous control problems 
by checking a different set of improvements: trust regions.

https://www.youtube.com/watch?v=JFGFB8pDY0Y
https://forms.gle/Ug1p9C7F1PszzfYz9
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Trust Regions – PPO, TRPO, 
ACKTR, and SAC

Next, we will take a look at the approaches used to improve the stability of the 
stochastic policy gradient method. Some attempts have been made to make the 
policy improvement more stable, and in this chapter, we will focus on three methods:

• Proximal policy optimization (PPO)
• Trust region policy optimization (TRPO)
• Advantage actor-critic (A2C) using Kronecker-factored trust region 

(ACKTR).

In addition, we will compare those methods to a relatively new off-policy method 
called soft actor-critic (SAC), which is a development of the deep deterministic 
policy gradients (DDPG) method described in Chapter 17, Continuous Action Space. 
To compare them to the A2C baseline, we will use several environments from the 
Roboschool library created by OpenAI.

The overall motivation of the methods that we will look at is to improve the stability 
of the policy update during the training. There is a dilemma: on the one hand, we'd 
like to train as fast as we can, making large steps during the stochastic gradient 
descent (SGD) update. On the other hand, a large update of the policy is usually a 
bad idea. The policy is a very nonlinear thing, so a large update can ruin the policy 
we've just learned.

Things can become even worse in the reinforcement learning (RL) landscape, as 
making a bad update of the policy once won't be recovered from by subsequent 
updates. Instead, the bad policy will bring us bad experience samples that we will 
use on subsequent training steps, which could break our policy completely. Thus, 
we want to avoid making large updates by all means possible. 
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One of the naïve solutions would be to use a small learning rate to take baby steps 
during the SGD, but this would significantly slow down the convergence.

To break this vicious cycle, several attempts have been made by researchers to 
estimate the effect that our policy update is going to have in terms of the future 
outcome. One of the popular approaches is trust region optimization extension, 
which constrains the step taken during the optimization to limit its effect on 
the policy. The main idea is to prevent a dramatic policy update during the loss 
optimization by checking the Kullback-Leibler (KL) divergence between the old 
and the new policy. Of course, this is a very handwavy explanation, but it can help 
with understanding the idea, especially as those methods are quite math-heavy 
(especially TRPO).

Roboschool
To experiment with the methods in this chapter, we will use Roboschool, which 
uses PyBullet as a physics engine and has 13 environments of various complexity. 
PyBullet has similar environments, but at the time of writing, it isn't possible to 
create several instances of the same environment due to an internal OpenGL issue.

In this chapter, we will explore two problems: RoboschoolHalfCheetah-v1, which 
models a two-legged creature, and RoboschoolAnt-v1, which has four legs. Their state 
and action spaces are very similar to the Minitaur environment that we saw in Chapter 
17, Continuous Action Space: the state includes characteristics from joints, and the 
actions are activations of those joints. The goal for both is to move as far as possible, 
minimizing the energy spent. Figure 19.1 shows screenshots of the two environments.

Figure 19.1: Screenshots of two Roboschool environments: RoboschoolHalfCheetah and RoboschoolAnt

To install Roboschool, you need to follow the instructions at https://github.com/
openai/roboschool. This requires extra components to be installed in the system 
and a modified PyBullet to be built and used. 

https://github.com/openai/roboschool
https://github.com/openai/roboschool
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After the Roboschool installation, you should be able to use import roboschool 
in your code to get access to the new environments.

Installation may not be very easy and smooth; for instance, on my system, it required 
building the package from sources, because the precompiled Python package had a 
more recent version of libc as a dependency. In any case, the instructions in GitHub 
are helpful.

The A2C baseline
To establish the baseline results, we will use the A2C method in a very similar way 
to the code in the previous chapter.

Implementation
The complete source is in files Chapter19/01_train_a2c.py and Chapter19/lib/
model.py. There are a few differences between this baseline and the version we 
used in the previous chapter. First of all, there are 16 parallel environments used to 
gather experience during the training. The second difference is the model structure 
and the way that we perform exploration. To illustrate them, let's look at the model 
and the agent classes.

Both the actor and critic are placed in the separate networks without sharing 
weights. They follow the approach used in the previous chapter, with our critic 
estimating the mean and the variance for the actions. However, now variance is 
not a separate head of the base network; it is just a single parameter of the model. 
This parameter will be adjusted during the training by SGD, but it doesn't depend 
on the observation.

HID_SIZE = 64

class ModelActor(nn.Module):
    def __init__(self, obs_size, act_size):
        super(ModelActor, self).__init__()

        self.mu = nn.Sequential(
            nn.Linear(obs_size, HID_SIZE),
            nn.Tanh(),
            nn.Linear(HID_SIZE, HID_SIZE),
            nn.Tanh(),
            nn.Linear(HID_SIZE, act_size),
            nn.Tanh(),
        )
        self.logstd = nn.Parameter(torch.zeros(act_size))
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    def forward(self, x):
        return self.mu(x)

The actor network has two hidden layers of 64 neurons each with tanh nonlinearity. 
The variance is modeled as a separate network parameter and interpreted as a 
logarithm of the standard deviation.

class ModelCritic(nn.Module):
    def __init__(self, obs_size):
        super(ModelCritic, self).__init__()

        self.value = nn.Sequential(
            nn.Linear(obs_size, HID_SIZE),
            nn.ReLU(),
            nn.Linear(HID_SIZE, HID_SIZE),
            nn.ReLU(),
            nn.Linear(HID_SIZE, 1),
        )

    def forward(self, x):
        return self.value(x)

The critic network also has two hidden layers of the same size, with one single 
output value, which is the estimation of V(s), which is a discounted value of the state.

class AgentA2C(ptan.agent.BaseAgent):
    def __init__(self, net, device="cpu"):
        self.net = net
        self.device = device

    def __call__(self, states, agent_states):
        states_v = ptan.agent.float32_preprocessor(states)
        states_v = states_v.to(self.device)

        mu_v = self.net(states_v)
        mu = mu_v.data.cpu().numpy()
        logstd = self.net.logstd.data.cpu().numpy()
        rnd = np.random.normal(size=logstd.shape)
        actions = mu + np.exp(logstd) * rnd
        actions = np.clip(actions, -1, 1)
        return actions, agent_states

The agent that converts the state into the action also works by simply obtaining 
the predicted mean from the state and applying the noise with variance, dictated 
by the current value of the logstd parameter.
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Results
By default, the RoboschoolHalfCheetah-v1 environment is used, but to change 
it, you can pass the -e argument with the desired environment ID. So, to start 
HalfCheetah optimization, you should use the following command line:

$ ./01_train_a2c.py --cuda -n t1

ModelActor(

  (mu): Sequential(

    (0): Linear(in_features=26, out_features=64, bias=True)

    (1): Tanh()

    (2): Linear(in_features=64, out_features=64, bias=True)

    (3): Tanh()

    (4): Linear(in_features=64, out_features=6, bias=True)

    (5): Tanh()

  )

)

ModelCritic(

  (value): Sequential(

    (0): Linear(in_features=26, out_features=64, bias=True)

    (1): ReLU()

    (2): Linear(in_features=64, out_features=64, bias=True)

    (3): ReLU()

    (4): Linear(in_features=64, out_features=1, bias=True)

  )

)

Test done in 0.14 sec, reward 3.199, steps 18

854: done 44 episodes, mean reward -9.703, speed 853.93 f/s

2371: done 124 episodes, mean reward -6.723, speed 1509.12 f/s

3961: done 204 episodes, mean reward -4.228, speed 1501.50 f/s

5440: done 289 episodes, mean reward -8.149, speed 1471.60 f/s

6969: done 376 episodes, mean reward -6.250, speed 1501.39 f/s

The following are convergence charts that I got after 100M observations, which took 
slightly less than one day of training. The dynamics suggest that the policy could 
be further improved with more time given to optimization, but for our purpose 
of method comparison, it should be enough. Of course, if you're curious and have 
plenty of time, you can run this for longer and find the point when the policy stops 
improving. 
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According to research papers, HalfCheetah has a maximum score around 4,000-
5,000.

Figure 19.2: The training reward (left) and episode length (right) of A2C trained on HalfCheetah

Figure 19.3: Policy loss (left) and value loss (right)
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Figure 19.4: Entropy loss during the training

Figure 19.5: The test reward (left) and test episode length (right)
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The charts shown in Figure 19.5 demonstrate a better reward due to lack of noise 
injected into actions during the training episodes, but, overall, there are similar 
dynamics on the charts for training episodes.

Another environment used for comparison is RoboschoolAnt-v1, which should be 
started with the explicit environment name in the command line, as shown here:

$ ./01_train_a2c.py --cuda -n t1 -e RoboschoolAnt-v1

This environment is slower, so in 19 hours, optimization resulted in 85M 
observations. The following figures show the results:

Figure 19.6: Training reward (left) and episode steps (right) for the Ant environment

Figure 19.7: Policy loss (left) and value loss (right) for the Ant environment
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Figure 19.8: Entropy loss during the training

Figure 19.9: Test reward (left) and episode steps (right) for Ant

Video recording
As usual, there is a utility that can benchmark the trained model and record a video 
with the agent in action. It is in file Chapter19/02_play.py and can accept any 
model from the methods in this chapter (as the actor network is the same in all 
methods). You can also change the environment name using the -e command option.
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PPO
Historically, the PPO method came from the OpenAI team and it was proposed long 
after TRPO, which is from 2015. However, PPO is much simpler than TRPO, so we 
will start with it. The 2017 paper in which it was proposed is by John Schulman et. 
al., and it is called Proximal Policy Optimization Algorithms (arXiv:1707.06347).

The core improvement over the classic A2C method is changing the formula used to 
estimate the policy gradients. Instead of using the gradient of logarithm probability 
of the action taken, the PPO method uses a different objective: the ratio between the 
new and the old policy scaled by the advantages.

In math form, the old A2C objective could be written as 𝐽𝐽𝜃𝜃 = 𝐸𝐸𝑡𝑡[∇𝜃𝜃 log𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)𝐴𝐴𝑡𝑡] . 

The new objective proposed by PPO is 𝐽𝐽𝜃𝜃 = 𝐸𝐸𝑡𝑡 [ 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) 𝐴𝐴𝑡𝑡] .

The reason behind changing the objective is the same as with the cross-entropy 
method covered in Chapter 4, The Cross-Entropy Method: importance sampling. 
However, if we just start to blindly maximize this value, it may lead to a very large 
update to the policy weights. To limit the update, the clipped objective is used. If we 

write the ratio between the new and the old policy as 𝑟𝑟𝑡𝑡(𝜃𝜃) =
𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

 , the clipped 

objective could be written as 𝐽𝐽𝜃𝜃
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝔼𝔼𝑡𝑡[min(𝑟𝑟𝑡𝑡(𝜃𝜃)𝐴𝐴𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)𝐴𝐴𝑡𝑡)] .

This objective limits the ratio between the old and the new policy to be in the interval 
[1 − 𝜀𝜀, 1 + 𝜀𝜀] , so by varying 𝜀𝜀 , we can limit the size of the update.

Another difference from the A2C method is the way that we estimate the advantage. 
In the A2C paper, the advantage obtained from the finite-horizon estimation of T 
steps is in the form 𝐴𝐴𝑡𝑡 = −𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑟𝑟𝑡𝑡+1 +⋯+ 𝛾𝛾𝑇𝑇−𝑡𝑡+1𝑟𝑟𝑇𝑇−1 + 𝛾𝛾𝑇𝑇−𝑡𝑡𝑉𝑉(𝑠𝑠𝑡𝑡) .  
In the PPO paper, the authors used a more general estimation in the form 
𝐴𝐴𝑡𝑡 = 𝜎𝜎𝑡𝑡 + (𝛾𝛾𝛾𝛾)𝜎𝜎𝑡𝑡+1 + (𝛾𝛾𝛾𝛾)2𝜎𝜎𝑡𝑡+2 +⋯+ (𝛾𝛾𝛾𝛾)𝑇𝑇−𝑡𝑡+1𝜎𝜎𝑡𝑡−1 , where 𝜎𝜎𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1) − 𝛾𝛾(𝑠𝑠𝑡𝑡) .  
The original A2C estimation is a special case of the proposed method with 𝜆𝜆 = 1 .  
The PPO method also uses a slightly different training procedure: a long sequence 
of samples is obtained from the environment and then the advantage is estimated 
for the whole sequence before several epochs of training are performed.

Implementation
The code of the sample is placed in two source code files: Chapter19/04_train_ 
ppo.py and Chapter19/lib/model.py. The actor, the critic, and the agent classes 
are exactly the same as we had in the A2C baseline. 



Chapter 19

[ 607 ]

The differences are in the training procedure and the way that we calculate 
advantages, but let's start with the hyperparameters.

ENV_ID = "RoboschoolHalfCheetah-v1"
GAMMA = 0.99
GAE_LAMBDA = 0.95

The value of GAMMA is already familiar, but GAE_LAMBDA is the new constant that 
specifies the lambda factor in the advantage estimator. The value of 0.95 was used 
in the PPO paper.

TRAJECTORY_SIZE = 2049
LEARNING_RATE_ACTOR = 1e-5
LEARNING_RATE_CRITIC = 1e-4

The method assumes that a large amount of transitions will be obtained from the 
environment for every subiteration. (As mentioned previously in this section while 
describing PPO, during training, it does several epochs over the sampled training 
batch.) We also use two different optimizers for the actor and the critic (as they have 
no shared weights).

PPO_EPS = 0.2
PPO_EPOCHES = 10
PPO_BATCH_SIZE = 64

For every batch of TRAJECTORY_SIZE samples, we perform PPO_EPOCHES iterations of 
the PPO objective, with mini-batches of 64 samples. The value PPO_EPS specifies the 
clipping value for the ratio of the new and the old policy.

TEST_ITERS = 1000

For every thousand observations obtained from the environment, we perform a test 
of 10 episodes to obtain the total reward and the count of steps for the current policy. 
The following function takes the trajectory with steps and calculates advantages for 
the actor and reference values for the critic training. Our trajectory is not a single 
episode, but can be several episodes concatenated together.

def calc_adv_ref(trajectory, net_crt, states_v, device="cpu"):
    values_v = net_crt(states_v)
    values = values_v.squeeze().data.cpu().numpy()

As the first step, we ask the critic to convert states into values.

    last_gae = 0.0
    result_adv = []
    result_ref = []
    for val, next_val, (exp,) in zip(reversed(values[:-1]),
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                                     reversed(values[1:]),
                                     reversed(trajectory[:-1])):

This loop joins the values obtained and experience points. For every trajectory step, 
we need the current value (obtained from the current state) and the value for the 
next subsequent step (to perform the estimation using the Bellman equation). We 
also traverse the trajectory in reverse order, to be able to calculate more recent values 
of the advantage in one step.

        if exp.done:
            delta = exp.reward - val
            last_gae = delta
        else:
            delta = exp.reward + GAMMA * next_val - val
            last_gae = delta + GAMMA * GAE_LAMBDA * last_gae

On every step, our action depends on the done flag for this step. If this is the terminal 
step of the episode, we have no prior reward to take into account. (Remember, we're 
processing the trajectory in reverse order.) So, our value of delta in this step is just 
the immediate reward minus the value predicted for the step. If the current step is 
not terminal, the delta will be equal to the immediate reward plus the discounted 
value from the subsequent step, minus the value for the current step. In the classic 
A2C method, this delta was used as an advantage estimation, but here, the smoothed 
version is used, so the advantage estimation (tracked in the last_gae variable) is 
calculated as the sum of deltas with discount factor 𝛾𝛾𝛾𝛾 .

        result_adv.append(last_gae)
        result_ref.append(last_gae + val)

The goal of the function is to calculate advantages and reference values for the critic, 
so we save them in lists.

    adv_v = torch.FloatTensor(list(reversed(result_adv)))
    ref_v = torch.FloatTensor(list(reversed(result_ref)))
    return adv_v.to(device), ref_v.to(device)

In the training loop, we gather a trajectory of the desired size using the 
ExperienceSource(steps_count=1) class from the PTAN library. With such 
configuration, it provides us with individual steps from the environment in tuples 
(state, action, reward, done). The following is the relevant training part of 
the loop:

            trajectory.append(exp)
            if len(trajectory) < TRAJECTORY_SIZE:
                continue

            traj_states = [t[0].state for t in trajectory]
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            traj_actions = [t[0].action for t in trajectory]
            traj_states_v = torch.FloatTensor(traj_states)
            traj_states_v = traj_states_v.to(device)
            traj_actions_v = torch.FloatTensor(traj_actions)
            traj_actions_v = traj_actions_v.to(device)
            traj_adv_v, traj_ref_v = calc_adv_ref(
                trajectory, net_crt, traj_states_v, device=device)

When we've got a trajectory large enough for training (which is given by the 
TRAJECTORY_SIZE hyperparameter), we convert states and taken actions into tensors 
and use the already-described function to obtain advantages and reference values. 
Although our trajectory is quite long, the observations of our test environments are 
quite short, so it's fine to process our batch in one step. In the case of Atari frames, 
such a batch could cause a graphics processing unit (GPU) memory error.

In the next step, we calculate the logarithm of probability of the actions taken. 
This value will be used as 𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜   in the objective of PPO. Additionally, we normalize 
the advantage's mean and variance to improve the training stability.

            mu_v = net_act(traj_states_v)
            old_logprob_v = calc_logprob(
                mu_v, net_act.logstd, traj_actions_v)
            traj_adv_v = traj_adv_v - torch.mean(traj_adv_v)
            traj_adv_v /= torch.std(traj_adv_v)

The two subsequent lines drop the last entry from the trajectory to reflect the fact 
that our advantages and reference values are one step shorter than the trajectory 
length (as we shifted values in the loop inside the calc_adv_ref function).

            trajectory = trajectory[:-1]
            old_logprob_v = old_logprob_v[:-1].detach()

When all the preparations have been done, we perform several epochs of training 
on our trajectory. For every batch, we extract the portions from the corresponding 
arrays and do the critic and the actor training separately.

            for epoch in range(PPO_EPOCHES):
                for batch_ofs in range(0, len(trajectory),
                                       PPO_BATCH_SIZE):
                    batch_l = batch_ofs + PPO_BATCH_SIZE
                    states_v = traj_states_v[batch_ofs:batch_l]
                    actions_v = traj_actions_v[batch_ofs:batch_l]
                    batch_adv_v = traj_adv_v[batch_ofs:batch_l]
                    batch_adv_v = batch_adv_v.unsqueeze(-1)
                    batch_ref_v = traj_ref_v[batch_ofs:batch_l]
                    batch_old_logprob_v = \
                        old_logprob_v[batch_ofs:batch_l]
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To train the critic, all we need to do is calculate the mean squared error (MSE) loss 
with the reference values calculated beforehand.

                    opt_crt.zero_grad()
                    value_v = net_crt(states_v)
                    loss_value_v = F.mse_loss(
                        value_v.squeeze(-1), batch_ref_v)
                    loss_value_v.backward()
                    opt_crt.step()

In the actor training, we minimize the negated clipped objective:

𝔼𝔼𝑡𝑡[min(𝑟𝑟𝑡𝑡(𝜃𝜃)𝐴𝐴𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)𝐴𝐴𝑡𝑡)] , where 𝑟𝑟𝑡𝑡(𝜃𝜃) =
𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

 .

                    opt_act.zero_grad()
                    mu_v = net_act(states_v)
                    logprob_pi_v = calc_logprob(
                        mu_v, net_act.logstd, actions_v)
                    ratio_v = torch.exp(
                        logprob_pi_v - batch_old_logprob_v)
                    surr_obj_v = batch_adv_v * ratio_v
                    c_ratio_v = torch.clamp(ratio_v,
                                            1.0 - PPO_EPS,
                                            1.0 + PPO_EPS)
                    clipped_surr_v = batch_adv_v * c_ratio_v
                    loss_policy_v = -torch.min(
                        surr_obj_v, clipped_surr_v).mean()
                    loss_policy_v.backward()
                    opt_act.step()

Results
After being trained on both our test environments, the PPO method has shown a 
major improvement over the A2C method. The following charts show the training 
progress on the RoboschoolHalfCheetah-v1 environment, when the methods were 
able to reach 2,500 reward on the test episode after two hours of training and less 
than 5M observations, which is much better than A2C (with 100M observations 
and 19 hours to get the same result). 
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Unfortunately, after reaching the record, the reward increase stopped, which 
suggests that hyperparameter tweaking is required. The current hyperparameters 
were only slightly tuned.

Figure 19.10: The training reward (left) and steps (right) of PPO training on HalfCheetah

Figure 19.11: The test reward (left) and steps (right) of PPO on HalfCheetah

On RobochoolAnt-v1, the reward increase was much more stable and was able to 
reach a better policy than A2C. 



Trust Regions—PPO, TRPO, ACKTR, and SAC

[ 612 ]

Figure 19.12 shows the training and test rewards of PPO, while Figure 19.13 compares 
PPO and A2C.

Figure 19.12: The training reward (left) and test reward (right) of PPO on the Ant environment

Figure 19.13: A comparison of the training (left) and test (right) rewards of PPO and A2C on Ant

TRPO
TRPO was proposed in 2015 by Berkeley researchers in a paper by John Schulman 
et. al., called Trust Region Policy Optimization (arXiv:1502.05477). This paper was a 
step towards improving the stability and consistency of stochastic policy gradient 
optimization and has shown good results on various control tasks.
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Unfortunately, the paper and the method are quite math-heavy, so it can be 
hard to understand the details of the method. The same could be said about the 
implementation, which uses the conjugate gradients method to efficiently solve the 
constrained optimization problem.

As the first step, the TRPO method defines the discounted visitation frequencies 
of the state: 𝜌𝜌𝜋𝜋(𝑠𝑠) = 𝑃𝑃(𝑠𝑠0 = 𝑠𝑠) + 𝛾𝛾𝑃𝑃(𝑠𝑠1 = 𝑠𝑠) + 𝛾𝛾2𝑃𝑃(𝑠𝑠2 = 𝑠𝑠) +⋯ . In this equation, 
P (si = s) equals the sampled probability of state s, to be met at position i of 
the sampled trajectories. Then, TRPO defines the optimization objective as 

𝐿𝐿𝜋𝜋(�̃�𝜋) = 𝜂𝜂(𝜋𝜋) +∑ 𝜌𝜌𝜋𝜋(𝑠𝑠)
𝑠𝑠

∑ �̃�𝜋(𝑎𝑎|𝑠𝑠)𝐴𝐴𝜋𝜋(𝑠𝑠, 𝑎𝑎)
𝑎𝑎

  where 𝜂𝜂(𝜋𝜋) = 𝔼𝔼 [∑ 𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡)
∞

𝑡𝑡=0
]  is the 

expected discounted reward of the policy and �̃�𝜋 = arg max
𝑎𝑎

𝐴𝐴𝜋𝜋(𝑠𝑠, 𝑎𝑎)  defines the 
deterministic policy.

To address the issue of large policy updates, TRPO defines the additional constraint 
on the policy update, which is expressed as a maximum KL divergence between the 
old and the new policies, which could be written as �̅�𝐷𝐾𝐾𝐾𝐾

𝜌𝜌𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜, 𝜃𝜃) ≤ 𝛿𝛿 .

Implementation
Most of the TRPO implementations available on GitHub, or other open source 
repositories, are very similar to each other, probably because all of them grew from 
the original John Schulman TRPO implementation here: https://github.com/
joschu/modular_rl. My version of TRPO is also not very different and uses the core 
functions that implement the conjugate gradient method (used by TRPO to solve 
the constrained optimization problem) from this repository: https://github.com/
ikostrikov/pytorch-trpo.

The complete example is in Chapter19/03_train_trpo.py and Chapter19/lib/
trpo.py, and the training loop is very similar to the PPO example: we sample 
the trajectory of transitions of the predefined length and calculate the advantage 
estimation using the smoothed formula given in the PPO section. (Historically, this 
estimator was proposed first in the TRPO paper.) Next, we do one training step of 
the critic using MSE loss with the calculated reference value, and one step of the 
TRPO update, which consists of finding the direction we should go in by using the 
conjugate gradients method and doing a linear search along this direction to find a 
step that preserves the desired KL divergence.

https://github.com/joschu/modular_rl
https://github.com/joschu/modular_rl
https://github.com/ikostrikov/pytorch-trpo
https://github.com/ikostrikov/pytorch-trpo
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The following is the piece of the training loop that carries out both those steps:

            opt_crt.zero_grad()
            value_v = net_crt(traj_states_v)
            loss_value_v = F.mse_loss(
                value_v.squeeze(-1), traj_ref_v)
            loss_value_v.backward()
            opt_crt.step()

To perform the TRPO step, we need to provide two functions: the first will calculate 
the loss of the current actor policy, which uses the same ratio as in PPO of the new 
and the old policies multiplied by the advantage estimation. The second function 
has to calculate KL divergence between the old and the current policy.

            def get_loss():
                mu_v = net_act(traj_states_v)
                logprob_v = calc_logprob(
                    mu_v, net_act.logstd, traj_actions_v)
                dp_v = torch.exp(logprob_v - old_logprob_v)
                action_loss_v = -traj_adv_v.unsqueeze(dim=-1)*dp_v
                return action_loss_v.mean()

            def get_kl():
                mu_v = net_act(traj_states_v)
                logstd_v = net_act.logstd
                mu0_v = mu_v.detach()
                logstd0_v = logstd_v.detach()
                std_v = torch.exp(logstd_v)
                std0_v = std_v.detach()
                v = (std0_v ** 2 + (mu0_v - mu_v) ** 2) / \
                    (2.0 * std_v ** 2)
                kl = logstd_v - logstd0_v + v - 0.5
                return kl.sum(1, keepdim=True)

            trpo.trpo_step(net_act, get_loss, get_kl, args.maxkl,
                           TRPO_DAMPING, device=device)

In other words, the PPO method is TRPO that uses the simple clipping of the policy 
ratio to limit the policy update, instead of the complicated conjugate gradients and 
line search.
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Results
TRPO showed a slower reward increase than PPO, but it finally was able to find a 
better policy than both PPO and A2C. After 20 hours and 70M observations, TRPO 
showed 2,804 mean reward on 10 test episodes.

Figure 19.14 shows the TRPO training and test reward dynamics, and Figure 19.15 
compares them with PPO optimization.

Figure 19.14: TRPO on HalfCheetah—training reward (left) and test reward (right)

Figure 19.15: A comparison of TRPO and PPO on HalfCheetah—train reward (left) and test reward (right)
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Training on RoboschoolAnt-v1 was much less successful. Right after the start, the 
training process followed the PPO dynamics, but after 30 minutes, the training 
process diverged, with the best reward being 600. The following charts are for TRPO 
training alone, with accompanying PPO plots.

Figure 19.16: TRPO on the Ant environment—training reward (left) and test reward (right)

Figure 19.17: A comparison of TRPO and PPO on the Ant environment

ACKTR
The third method that we will compare, ACKTR, uses a different approach to 
address SGD stability. In the paper by Yuhuai Wu and others called Scalable Trust-
Region Method for Deep Reinforcement Learning Using Kronecker-Factored Approximation, 
published in 2017 (arXiv:1708.05144), the authors combined the second-order 
optimization methods and trust region approach.
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The idea of the second-order methods is to improve the traditional SGD by taking 
the second-order derivatives of the optimized function (in other words, its curvature) 
to improve the convergence of the optimization process. To make things more 
complicated, working with the second derivatives usually requires you to build 
and invert a Hessian matrix, which can be prohibitively large, so the practical 
methods typically approximate it in some way. This area is currently very active 
in research, as developing robust, scalable optimization methods is very important 
for the whole machine learning domain.

One of the second-order methods is called Kronecker-factored approximate 
curvature (K-FAC), which was proposed by James Martens and Roger Grosse in 
their paper Optimizing Neural Networks with Kronecker-Factored Approximate Curvature, 
published in 2015. However, a detailed description of this method is well beyond 
the scope of this book.

Implementation
As the K-FAC method is quite recent, there is no optimizer for implementing this 
method included in PyTorch. The only available PyTorch prototype is from Ilya 
Kostrikov and is available here: https://github.com/ikostrikov/pytorch-a2c-
ppo-acktr. There is another version of K-FAC for TensorFlow, which comes with 
OpenAI Baselines, but porting and testing it on PyTorch can be a hard thing to do.

For my experiments, I've taken K-FAC from the Kostrikov link and adopted it 
to the existing code, which required replacing the optimizer and doing an extra 
backward() call to gather Fisher information. The critic was trained in the same way 
as in A2C.

The complete example is in Chapter19/05_train_acktr.py and is not shown here, 
as it's basically the same as A2C. The only difference is that a different optimizer 
was used.

Results
On the RoboschoolAnt-v1 environment, the ACKTR method run was very unstable 
and wasn't able to reach any competitive policy in 10M observations. 

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
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Obviously, accurate fine-tuning of the method is needed.

Figure 19.18: ACKTR on HalfCheetah

On the Ant environment, ACKTR was slightly more stable, but still, the default 
parameters didn't show much improvement over the A2C method.

Figure 19.19: ACKTR on Ant – training reward (left) and test reward (right)

SAC
In the final section, we will check our environments on the latest state-of-the-art 
method, called SAC, which was proposed by a group of Berkeley researchers 
and introduced in the paper Soft Actor-Critic: Off-Policy Maximum Entropy Deep 
Reinforcement Learning, by Tuomas Taarnoja et. al. arXiv 1801.01290, published in 2018. 
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At the moment, it's considered to be one of the best methods for continuous control 
problems. The core idea of the method is closer to the DDPG method than to A2C 
policy gradients. The SAC method might have been more logically described in 
Chapter 17, Continuous Action Space. However, in this chapter, we have the chance 
to compare it directly with PPO's performance, which was considered to be the de 
facto standard in continuous control problems for a long time.

The central idea in the SAC method is entropy regularization, which adds a bonus 
reward at each timestamp that is proportional to the entropy of the policy at this 
timestamp. In mathematical notation, the policy we're looking for is the following:

𝜋𝜋∗ = arg max
𝑎𝑎

𝐸𝐸𝜏𝜏~𝜋𝜋 [∑ 𝛾𝛾𝑡𝑡 (𝑅𝑅(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1) + 𝛼𝛼𝛼𝛼(𝜋𝜋(⋅ |𝑠𝑠𝑡𝑡)))
∞

𝑡𝑡=0
] 

𝐻𝐻(𝑃𝑃) = 𝔼𝔼𝑥𝑥~𝑃𝑃[− log𝑃𝑃(𝑥𝑥)]  is an entropy of distribution P. In other words, we give the 
agent a bonus for getting into situations where the entropy is at maximum, which is 
very similar to the advanced exploration methods covered in Chapter 21, Advanced 
Exploration.

In addition, the SAC method incorporates the clipped double-Q trick, when, in 
addition to the value function, we learn two networks predicting Q-values, and 
choose the minimum of them for Bellman approximation. According to researchers, 
this helps with dealing with Q-value overestimation during the training.

So, in total, we train four networks: the policy, 𝜋𝜋(𝑠𝑠) , value, V(s, a) and two 
Q-networks, 𝑄𝑄1,2(𝑠𝑠, 𝑎𝑎) . For the value network, V(s, a), the target network is used. 
So, in total, SAC training looks like the following:

• Q-networks are trained using the MSE objective by doing Bellman 
approximation using the target value network: 𝑦𝑦𝑞𝑞(𝑟𝑟, 𝑠𝑠′) = 𝑟𝑟 +  𝛾𝛾𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠′)  (for 
non-terminating steps)

• The V-network is trained using the MSE objective with the following target: 
𝑦𝑦𝑣𝑣(𝑠𝑠) = min

𝑖𝑖=1,2
𝑄𝑄𝑖𝑖(𝑠𝑠, �̃�𝑎) − 𝛼𝛼 log𝜋𝜋𝜃𝜃(�̃�𝑎|𝑠𝑠) , where �̃�𝑎  is sampled from policy 𝜋𝜋𝜃𝜃(∙ |𝑠𝑠) .

• The policy network, 𝜋𝜋𝜃𝜃 , is trained in DDPG style by maximizing the 
following objective: 𝑄𝑄1(𝑠𝑠, �̃�𝑎𝜃𝜃(𝑠𝑠)) − 𝛼𝛼 log𝜋𝜋𝜃𝜃(�̃�𝑎𝜃𝜃(𝑠𝑠)|𝑠𝑠) , where �̃�𝑎𝜃𝜃(𝑠𝑠)  is a sample 
from 𝜋𝜋𝜃𝜃(∙ |𝑠𝑠) 
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Implementation
The implementation of the SAC method is in Chapter19/06_train_sac.py. The 
model consists of the following networks, defined in Chapter19/lib/model.py:

• ModelActor: This is the same policy that we used in the previous examples. 
As the policy variance is not parametrized by the state (the field logstd 
is not a network, but just a tensor), the training objective does not 100% 
comply with SAC. On the one hand, it might influence the convergence and 
performance, as the core idea in the SAC method is entropy regularization, 
which can't be implemented without parametrized variance. On the other 
hand, this decreases the number of parameters in the model. If you're 
curious, you can extend the example with parametrized variance of the 
policy and implement a proper SAC method.

• ModelCritic: This is the same value network as in the previous examples.
• ModelSACTwinQ: These two networks take the state and action as the input 

and predict Q-values.

The first function implementing the method is unpack_batch_sac(), and it is 
defined in Chapter19/lib/common.py. Its goal is to take the batch of trajectory 
steps and calculate target values for V-networks and twin Q-networks.

@torch.no_grad()
def unpack_batch_sac(batch, val_net, twinq_net, policy_net,
                     gamma: float, ent_alpha: float,
                     device="cpu"):
    states_v, actions_v, ref_q_v = \
        unpack_batch_a2c(batch, val_net, gamma, device)

    mu_v = policy_net(states_v)
    act_dist = distr.Normal(mu_v, torch.exp(policy_net.logstd))
    acts_v = act_dist.sample()
    q1_v, q2_v = twinq_net(states_v, acts_v)
    ref_vals_v = torch.min(q1_v, q2_v).squeeze() - \
                 ent_alpha * act_dist.log_prob(acts_v).sum(dim=1)
    return states_v, actions_v, ref_vals_v, ref_q_v

The first step of the function uses the already defined unpack_batch_a2c() method, 
which unpacks the batch, converts states and actions into tensors, and calculates 
the reference for Q-networks using Bellman approximation. Once this is done, we 
need to calculate the reference for the V-network from the minimum of the twin 
Q-values minus the scaled entropy coefficient. The entropy is calculated from our 
current policy network. As was already mentioned, our policy has the parametrized 
mean value, but the variance is global and doesn't depend on the state.
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In the main training loop, we use the function defined previously and do three 
different optimization steps: for V, for Q, and for the policy. The following is the 
relevant part of the training loop defined in Chapter19/06_train_sac.py:

                batch = buffer.sample(BATCH_SIZE)
                states_v, actions_v, ref_vals_v, ref_q_v = \
                    common.unpack_batch_sac(
                        batch, tgt_crt_net.target_model,
                        twinq_net, act_net, GAMMA,
                        SAC_ENTROPY_ALPHA, device)

In the beginning, we unpack the batch to get the tensors and targets for the Q- and 
V-networks.

                twinq_opt.zero_grad()
                q1_v, q2_v = twinq_net(states_v, actions_v)
                q1_loss_v = F.mse_loss(q1_v.squeeze(),
                                       ref_q_v.detach())
                q2_loss_v = F.mse_loss(q2_v.squeeze(),
                                       ref_q_v.detach())
                q_loss_v = q1_loss_v + q2_loss_v
                q_loss_v.backward()
                twinq_opt.step()

The twin Q-networks are optimized by the same target value.

                crt_opt.zero_grad()
                val_v = crt_net(states_v)
                v_loss_v = F.mse_loss(val_v.squeeze(),
                                      ref_vals_v.detach())
                v_loss_v.backward()
                crt_opt.step()

The critic network is also optimized with the trivial MSE objective, using the 
already calculated target value.

                act_opt.zero_grad()
                acts_v = act_net(states_v)
                q_out_v, _ = twinq_net(states_v, acts_v)
                act_loss = -q_out_v.mean()
                act_loss.backward()
                act_opt.step()

In comparison to the formulas given previously, the code is missing the entropy 
regularization term and corresponds to DDPG training. As our variance doesn't 
depend on the state, it can be omitted from the optimization objective. 
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This modification makes the code different from the SAC paper, but from my 
experiments, it leads to more stable training. If you're curious, in the repository, I 
have a branch named sac-experiment with properly parametrized variance and 
optimization with the entropy regularization. But this modification makes it hard 
to compare the results with the previous methods tried in the chapter.

Results
I ran SAC training on both the HalfCheetah and Ant environments for 13 hours, 
with 5M observations. The results are a bit contradictory. On the one hand, the 
sample efficiency and reward growing dynamics of SAC were better than the 
PPO method. For example, SAC was able to reach a reward of 900 after just 0.5M 
observations on HalfCheetah. PPO required more than 1M observations to reach 
the same policy. On the other hand, due to the off-policy nature of SAC, the training 
speed was much slower, as we did more calculations than with on-policy methods. 
To compare this, it took SAC an hour and 30 minutes to reach the reward 900, 
whereas PPO was able to reach the same reward after just 30 minutes of training.

This demonstrates the trade-offs between on-policy and off-policy methods, as you 
have seen many times in the book: if your environment is fast and observations are 
"cheap" to obtain, an on-policy method like PPO might be the best choice. But if 
your observations are hard to obtain, off-policy methods will do the better job, but 
require more calculations to be performed.

The following charts are SAC training alone, followed by a comparison with the PPO 
method.

Figure 19.20: SAC training on HalfCheetah—training reward (left) and test reward (right)
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Figure 19.21: A comparison of SAC with PPO on HalfCheetah

Training on the Ant environment showed slightly better dynamics and stability than 
HalfCheetah, but it was still comparable to PPO in terms of sample efficiency and 
slower in terms of wall clock time.

Figure 19.22: The SAC method on the Ant environment
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Figure 19.23: A comparison of SAC with PPO on Ant

Summary
In this chapter, we checked three different methods with the aim of improving 
the stability of the stochastic policy gradient and compared them to the A2C 
implementation on two continuous control problems. With methods from the 
previous chapter (DDPG and D4PG), they create the basic tools to work with 
a continuous control domain. Finally, we checked a relatively new off-policy 
method that is an extension of DDPG: SAC

In the next chapter, we will switch to a different set of RL methods that have been 
becoming popular recently: black-box or gradient-free methods.



[ 625 ]

Black-Box Optimization in RL
In this chapter, we will change our perspective on reinforcement learning (RL) 
training again and switch to the so-called black-box optimizations. In particular, 
this chapter will cover two examples of black-box optimization methods:

• Evolution strategies
• Genetic algorithms

These methods are at least a decade old, but recently, several research studies were 
conducted that showed the applicability of the methods to large-scale RL problems, 
and their competitiveness with the value iteration and policy gradient methods.

Black-box methods
To begin with, let's discuss the whole family of black-box methods and how it differs 
from what we've covered so far. Black-box optimization methods are the general 
approach to the optimization problem, when you treat the objective that you're 
optimizing as a black box, without any assumptions about the differentiability, the 
value function, the smoothness of the objective, and so on. The only requirement 
that those methods expose is the ability to calculate the fitness function, which 
should give us the measure of suitability of a particular instance of the optimized 
entity at hand.

One of the simplest examples in this family is random search, which is when 
you randomly sample the thing you're looking for (in the case of RL, it's the 
policy, 𝜋𝜋(𝑎𝑎|𝑠𝑠) ), check the fitness of this candidate, and if the result is good enough 
(according to some reward criteria), then you're done. Otherwise, you repeat the 
process again and again. Despite the simplicity and even naivety of this approach, 
especially when compared to the sophisticated methods that you've seen so far, 
this is a good example to illustrate the idea of black-box methods. 
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Furthermore, with some modifications, as you will see shortly, this simple approach 
can be compared in terms of efficiency and the quality of the resulting policies to the 
deep Q-network (DQN) and policy gradient methods.

Black-box methods have several very appealing properties:

• They are at least two times faster than gradient-based methods, as we don't 
need to perform the backpropagation step to obtain the gradients.

• There are very few assumptions about the optimized objective and the policy 
that are treated as a black box. Traditional methods struggle with situations 
when the reward function is non-smooth or the policy contains steps with 
random choice. All of this is not an issue for black-box methods, as they 
don't expect much from the black-box internals.

• The methods can generally be parallelized very well. For example, the 
aforementioned random search can easily scale up to thousands of central 
processing units (CPUs) or graphics processing units (GPUs) working 
in parallel, without any dependency on each other. This is not the case 
for DQN or policy gradient methods, when you need to accumulate the 
gradients and propagate the current policy to all parallel workers, which 
decreases the parallelism.

The downside of the preceding is usually lower sample efficiency. In particular, 
the naïve random search of the policy, parameterized with the neural network 
(NN) with half a million parameters, has a very low probability of succeeding.

Evolution strategies
One subset of black-box optimization methods is called evolution strategies 
(ES), and it was inspired by the evolution process. With ES, the most successful 
individuals have the highest influence on the overall direction of the search. There 
are many different methods that fall into this class, and in this chapter, we will 
consider the approach taken by the OpenAI researchers Tim Salimans, Jonathan Ho, 
and others in their paper, Evolution Strategies as a Scalable Alternative to Reinforcement 
Learning [1], published in March 2017.

The underlying idea of ES methods is simple: on every iteration, we perform random 
perturbation of our current policy parameters and evaluate the resulting policy 
fitness function. Then, we adjust the policy weights proportionally to the relative 
fitness function value.

The concrete method used in the paper is called covariance matrix adaptation 
evolution strategy (CMA-ES), in which the perturbation performed is the random 
noise sampled from the normal distribution with the zero mean and identity variance.
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Then, we calculate the fitness function of the policy with weights equal to the 
weights of the original policy plus the scaled noise. Next, according to the obtained 
value, we adjust the original policy weights by adding the noise multiplied by 
the fitness function value, which moves our policy toward weights with a higher 
value of the fitness function. To improve the stability, the update of the weights is 
performed by averaging the batch of such steps with different random noise.

More formally, the preceding method could be expressed as this sequence of steps:

1. Initialize the learning rate, 𝛼𝛼 , the noise standard deviation, 𝜎𝜎 , and the initial 
policy parameters, 𝜃𝜃0 

2. For t = 0, 1, 2, … perform:
1. The sample batch of noise with the shape of the weights: 

𝜀𝜀1, … , 𝜀𝜀𝑛𝑛~𝒩𝒩(0,1) 
2. Compute returns 𝐹𝐹𝑖𝑖 = 𝐹𝐹(𝜃𝜃𝑡𝑡 + 𝜎𝜎𝜀𝜀𝑖𝑖)  for i = 1,…, n

3. 𝜃𝜃𝑡𝑡+1 ← 𝜃𝜃𝑡𝑡 + 𝛼𝛼
1
𝑛𝑛𝑛𝑛∑ 𝐹𝐹𝑖𝑖𝜀𝜀𝑖𝑖

𝑛𝑛

𝑖𝑖=1
  to update weights

The preceding algorithm is the core of the method presented in the paper, but, as 
usual in the RL domain, the core method is not enough to obtain good results. So, the 
paper includes several tweaks to improve the method, although the core is the same. 
Let's implement and test it on our fruit fly environment: CartPole.

ES on CartPole
The complete example is in Chapter20/01_cartpole_es.py. In this example, 
we will use the single environment to check the fitness of the perturbed network 
weights. Our fitness function will be the undiscounted total reward for the episode.

#!/usr/bin/env python3
import gym
import time
import numpy as np

import torch
import torch.nn as nn

from tensorboardX import SummaryWriter

From the import statements, you will notice how self-contained our example is. 
We're not using PyTorch optimizers, as we don't perform backpropagation at all. 
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In fact, we could avoid using PyTorch completely and work only with NumPy, as 
the only thing we use PyTorch for is to perform a forward pass and calculate the 
network's output.

MAX_BATCH_EPISODES = 100
MAX_BATCH_STEPS = 10000
NOISE_STD = 0.01
LEARNING_RATE = 0.001

The number of hyperparameters is also small and includes the following values:

• MAX_BATCH_EPISODES and MAX_BATCH_STEPS: The limit of episodes and 
steps we use for training

• NOISE_STD: The standard deviation, 𝜎𝜎 , of the noise used for weight 
perturbation

• LEARNING_RATE: The coefficient used to adjust the weights on the training 
step

Now let's check the network:

class Net(nn.Module):
    def __init__(self, obs_size, action_size):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, 32),
            nn.ReLU(),
            nn.Linear(32, action_size),
            nn.Softmax(dim=1)
        )

    def forward(self, x):
        return self.net(x)

The model we're using is a simple one-hidden-layer NN, which gives us the action 
to take from the observation. We're using PyTorch NN machinery here only for 
convenience, as we need only the forward pass, but it could be replaced by the 
multiplication of matrices and nonlinearities.

def evaluate(env, net):
    obs = env.reset()
    reward = 0.0
    steps = 0
    while True:
        obs_v = torch.FloatTensor([obs])
        act_prob = net(obs_v)
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        acts = act_prob.max(dim=1)[1]
        obs, r, done, _ = env.step(acts.data.numpy()[0])
        reward += r
        steps += 1
        if done:
            break
    return reward, steps

The preceding function plays a full episode using the given policy and returns the 
total reward and the number of steps. The reward will be used as a fitness value, 
while the count of steps is needed to limit the amount of time we spend on forming 
the batch. The action selection is performed deterministically by calculating argmax 
from the network output. In principle, we could do the random sampling from the 
distribution, but we've already performed the exploration by adding noise to the 
network parameters, so the deterministic action selection is fine here.

def sample_noise(net):
    pos = []
    neg = []
    for p in net.parameters():
        noise = np.random.normal(size=p.data.size())
        noise_t = torch.FloatTensor(noise)
        pos.append(noise_t)
        neg.append(-noise_t)
    return pos, neg

In the sample_noise function, we create random noise with zero mean and unit 
variance equal to the shape of our network parameters. The function returns two 
sets of noise tensors: one with positive noise and another with the same random 
values taken with a negative sign. These two samples are later used in a batch as 
independent samples. This technique is known as mirrored sampling and is used to 
improve the stability of the convergence. In fact, without the negative noise, the 
convergence becomes very unstable.

def eval_with_noise(env, net, noise):
    old_params = net.state_dict()
    for p, p_n in zip(net.parameters(), noise):
        p.data += NOISE_STD * p_n
    r, s = evaluate(env, net)
    net.load_state_dict(old_params)
    return r, s

The preceding function takes the noise array created by the function we've just seen 
and evaluates the network with noise added. 
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To achieve this, we add the noise to the network's parameters and call the evaluate 
function to obtain the reward and number of steps taken. After this, we need to 
restore the network weights to their original state, which is completed by loading 
the state dictionary of the network.

The last and the central function of the method is train_step, which takes the 
batch with noise and respective rewards and calculates the update to the network 

parameters by applying the formula 𝜃𝜃𝑡𝑡+1 ← 𝜃𝜃𝑡𝑡 + 𝛼𝛼
1
𝑛𝑛𝑛𝑛∑ 𝐹𝐹𝑖𝑖𝜀𝜀𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 .

def train_step(net, batch_noise, batch_reward, writer, step_idx):
    weighted_noise = None
    norm_reward = np.array(batch_reward)
    norm_reward -= np.mean(norm_reward)
    s = np.std(norm_reward)
    if abs(s) > 1e-6:
        norm_reward /= s

In the beginning, we normalize rewards to have zero mean and unit variance, which 
improves the stability of the method.

    for noise, reward in zip(batch_noise, norm_reward):
        if weighted_noise is None:
            weighted_noise = [reward * p_n for p_n in noise]
        else:
            for w_n, p_n in zip(weighted_noise, noise):
                w_n += reward * p_n

Then, we iterate every pair (noise, reward) in our batch and multiply the noise 
values with the normalized reward, summing together the respective noise for 
every parameter in our policy.

    m_updates = []
    for p, p_update in zip(net.parameters(), weighted_noise):
        update = p_update / (len(batch_reward) * NOISE_STD)
        p.data += LEARNING_RATE * update
        m_updates.append(torch.norm(update))
    writer.add_scalar("update_l2", np.mean(m_updates), step_idx)

As a final step, we use the accumulated scaled noise to adjust the network 
parameters. Technically, what we do here is a gradient ascent, although the gradient 
was not obtained from backpropagation but from the Monte Carlo sampling method. 
This fact was also demonstrated in the previously mentioned ES paper [1], where 
the authors showed that CMA-ES is very similar to the policy gradient methods, 
differing in just the way that we get the gradients' estimation.
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if __name__ == "__main__":
    writer = SummaryWriter(comment="-cartpole-es")
    env = gym.make("CartPole-v0")

    net = Net(env.observation_space.shape[0], env.action_space.n)
    print(net)

The preparation before the training loop is simple: we create the environment and 
the network.

    step_idx = 0
    while True:
        t_start = time.time()
        batch_noise = []
        batch_reward = []
        batch_steps = 0
        for _ in range(MAX_BATCH_EPISODES):
            noise, neg_noise = sample_noise(net)
            batch_noise.append(noise)
            batch_noise.append(neg_noise)
            reward, steps = eval_with_noise(env, net, noise)
            batch_reward.append(reward)
            batch_steps += steps
            reward, steps = eval_with_noise(env, net, neg_noise)
            batch_reward.append(reward)
            batch_steps += steps
            if batch_steps > MAX_BATCH_STEPS:
                break

Every iteration of the training loop starts with batch creation, where we sample the 
noise and obtain rewards for both positive and negated noise. When we reach the 
limit of episodes in the batch, or the limit of the total steps, we stop gathering the 
data and do a training update.

        step_idx += 1
        m_reward = np.mean(batch_reward)
        if m_reward > 199:
            print("Solved in %d steps" % step_idx)
            break

        train_step(net, batch_noise, batch_reward,
                   writer, step_idx)

To perform the update of the network, we call the train_step() function that we've 
already covered. 
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Its goal is to scale the noise according to the total reward and then adjust the policy 
weights in the direction of the averaged noise.

        writer.add_scalar("reward_mean", m_reward, step_idx)
        writer.add_scalar("reward_std", np.std(batch_reward),
                          step_idx)
        writer.add_scalar("reward_max", np.max(batch_reward),
                          step_idx)
        writer.add_scalar("batch_episodes", len(batch_reward),
                          step_idx)
        writer.add_scalar("batch_steps", batch_steps, step_idx)
        speed = batch_steps / (time.time() - t_start)
        writer.add_scalar("speed", speed, step_idx)
        print("%d: reward=%.2f, speed=%.2f f/s" % (
            step_idx, m_reward, speed))

The final steps in the training loop write metrics into TensorBoard and show the 
training progress on the console.

Results
Training can be started by just running the program without the arguments:

Chapter20$ ./01_cartpole_es.py

Net(

  (net): Sequential(

    (0): Linear(in_features=4, out_features=32, bias=True)

    (1): ReLU()

    (2): Linear(in_features=32, out_features=2, bias=True)

    (3): Softmax(dim=1)

  )

)

1: reward=9.54, speed=6471.63 f/s

2: reward=9.93, speed=7308.94 f/s

3: reward=11.12, speed=7362.68 f/s

4: reward=18.34, speed=7116.69 f/s

...

20: reward=141.51, speed=8285.36 f/s

21: reward=136.32, speed=8397.67 f/s

22: reward=197.98, speed=8570.06 f/s

23: reward=198.13, speed=8402.74 f/s

Solved in 24 steps
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From my experiments, it usually takes ES about 40-60 batches to solve CartPole. The 
convergence dynamics for the preceding run are shown on the following charts, with 
quite a steady result:

Figure 20.1: ES on CartPole: the maximum reward (left) and mean reward (right) in the training batch

Figure 20.2: The standard deviation of the reward (left) and mean policy update (right)

ES on HalfCheetah
In the next example, we will go beyond the simplest ES implementation and look 
at how this method can be parallelized efficiently using the shared seed strategy 
proposed by the ES paper [1]. To show this approach, we will use the environment 
from the Roboschool library that we already experimented with in Chapter 19, Trust 
Regions – PPO, TRPO, ACKTR, and SAC, HalfCheetah, which is a continuous action 
problem where a weird two-legged creature gains reward by running forward 
without injuring itself.
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First, let's discuss the idea of shared seeds. The performance of the ES algorithm is 
mostly determined by the speed at which we can gather our training batch, which 
consists of sampling the noise and checking the total reward of the perturbed noise. 
As our training batch items are independent, we can easily parallelize this step to 
a large number of workers sitting on remote machines. (That's a bit similar to the 
example from Chapter 13, Asynchronous Advantage Actor-Critic, when we gathered 
gradients from A3C workers.) However, naïve implementation of this parallelization 
will require a large amount of data to be transferred from the worker machine to 
the central master, which is supposed to combine the noise checked by the workers 
and perform the policy update. Most of this data is the noise vectors, the size of 
which is equal to the size of our policy parameters.

To avoid this overhead, a quite elegant solution was proposed by the paper's 
authors. As noise sampled on a worker is produced by a pseudo-random number 
generator, which allows us to set the random seed and reproduce the random 
sequence generated, the worker can transfer to the master only the seed that was 
used to generate the noise. Then, the master can generate the same noise vector again 
using the seed. Of course, the seed on every worker needs to be generated randomly 
to still have a random optimization process. This allows for dramatically decreasing 
the amount of data that needs to be transferred from workers to the master, 
improving the scalability of the method. For example, the paper's authors reported 
linear speed up in optimizations involving 1,440 CPUs in the cloud. In our example, 
we will check local parallelization using the same approach.

Implementation
The code is placed in Chapter20/02_cheetah_es.py. As the code significantly 
overlaps with the CartPole version, we will focus here only on the differences.

We will begin with the worker, which is started as a separate process using the 
PyTorch multiprocessing wrapper. The worker's responsibilities are simple: for 
every iteration, it obtains the network parameters from the master process, and then 
it performs the fixed number of iterations, where it samples the noise and evaluates 
the reward. The result with the random seed is sent to the master using the queue.

RewardsItem = collections.namedtuple(
    'RewardsItem', field_names=['seed', 'pos_reward',
                                'neg_reward', 'steps'])

The preceding namedtuple structure is used by the worker to send the results of the 
perturbed policy evaluation. It includes the random seed, the reward obtained with 
the noise, the reward obtained with the negated noise, and the total number of steps 
we performed in both tests.
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def worker_func(worker_id, params_queue, rewards_queue,
                device, noise_std):
    env = make_env()
    net = Net(env.observation_space.shape[0],
              env.action_space.shape[0]).to(device)
    net.eval()

    while True:
        params = params_queue.get()
        if params is None:
            break
        net.load_state_dict(params)

On every training iteration, the worker waits for the network parameters to be 
broadcasted from the master. The value of None means that the master wants to stop 
the worker.

        for _ in range(ITERS_PER_UPDATE):
            seed = np.random.randint(low=0, high=65535)
            np.random.seed(seed)
            noise, neg_noise = sample_noise(net, device=device)
            pos_reward, pos_steps = eval_with_noise(
                env, net, noise, noise_std, device=device)
            neg_reward, neg_steps = eval_with_noise(
                env, net, neg_noise, noise_std, device=device)
            rewards_queue.put(RewardsItem(
                seed=seed, pos_reward=pos_reward,
                neg_reward=neg_reward, steps=pos_steps+neg_steps))

The rest is almost the same as the previous example, with the main difference being 
in the random seed generated and assigned before the noise generation. This allows 
the master to regenerate the same noise, only from the seed. Another difference lies 
in the function used by the master to perform the training step.

def train_step(optimizer, net, batch_noise, batch_reward,
               writer, step_idx, noise_std):
    weighted_noise = None
    norm_reward = compute_centered_ranks(np.array(batch_reward))

In the previous example, we normalized the batch of rewards by subtracting the 
mean and dividing by the standard deviation. According to the ES paper [1], better 
results could be obtained using ranks instead of actual rewards. As ES has no 
assumptions about the fitness function (which is a reward in our case), we can make 
any rearrangements in the reward that we want, which wasn't possible in the case of 
DQN, for example. 
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Here, rank transformation of the array means replacing the array with indices 
of the sorted array. For example, array [0.1, 10, 0.5] will have the rank array 
[0, 2, 1]. The compute_centered_ranks function takes the array with the total 
rewards of the batch, calculates the rank for every item in the array, and then 
normalizes those ranks. For example, an input array of [21.0, 5.8, 7.0] will 
have ranks [2, 0, 1], and the final centered ranks will be [0.5, -0.5, 0.0].

    for noise, reward in zip(batch_noise, norm_reward):
        if weighted_noise is None:
            weighted_noise = [reward * p_n for p_n in noise]
        else:
            for w_n, p_n in zip(weighted_noise, noise):
                w_n += reward * p_n
    m_updates = []
    optimizer.zero_grad()
    for p, p_update in zip(net.parameters(), weighted_noise):
        update = p_update / (len(batch_reward) * noise_std)
        p.grad = -update
        m_updates.append(torch.norm(update))
    writer.add_scalar("update_l2", np.mean(m_updates), step_idx)
    optimizer.step()

Another major difference in the training function is the use of PyTorch optimizers. 
To understand why they are used, and how this is possible without doing 
backpropagation, some explanations are required. First of all, in the ES paper, it 
was shown that the optimization method used by the ES algorithm is very similar 
to gradient ascent on the fitness function, with the difference being how the gradient is 
calculated. The way the stochastic gradient descent (SGD) method is usually applied 
is that the gradient is obtained from the loss function by calculating the derivative of 
the network parameters with respect to the loss value. This imposes the limitation on 
the network and loss function to be differentiable, which is not always the case; for 
example, the rank transformation performed by the ES method is not differentiable. 

On the other hand, optimization performed by ES works differently. We randomly 
sample the neighborhood of our current parameters by adding the noise to them 
and calculating the fitness function. According to the fitness function change, we 
adjust the parameters, which pushes our parameters in the direction of a higher 
fitness function. The result of this is very similar to gradient-based methods, but the 
requirements imposed on our fitness function are much looser: the only requirement 
is our ability to calculate it.

However, if we're estimating some kind of gradient by randomly sampling the 
fitness function, we can use standard optimizers from PyTorch. Normally, optimizers 
adjust the parameters of the network using gradients accumulated in the parameters' 
grad fields. 
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Those gradients are accumulated after the backpropagation step, but due to PyTorch's 
flexibility, the optimizer doesn't care about the source of the gradients. So, the only 
thing we need to do is copy the estimated parameters' update in the grad fields and 
ask the optimizer to update them. Note that the update is copied with a negative 
sign, as optimizers normally perform gradient descent (as in a normal operation, we 
minimize the loss function), but in this case, we want to do gradient ascent. This is very 
similar to the actor-critic method, when the estimated policy gradient is taken with 
the negative sign, as it shows the direction to improve the policy.

The last chunk of different code is taken from the training loop performed by the 
master process. Its responsibility is to wait for data from worker processes, perform 
the training update of the parameters, and broadcast the result to the workers. The 
communication between the master and workers is performed by two sets of queues. 
The first queue is per-worker and is used by the master to send the current policy 
parameters to use. The second queue is shared by the workers and is used to send 
the already mentioned RewardItem structure with the random seed and rewards.

    params_queues = [
        mp.Queue(maxsize=1)
        for _ in range(PROCESSES_COUNT)
    ]
    rewards_queue = mp.Queue(maxsize=ITERS_PER_UPDATE)
    workers = []

    for idx, params_queue in enumerate(params_queues):
        p_args = (idx, params_queue, rewards_queue,
                device, args.noise_std)
        proc = mp.Process(target=worker_func, args=p_args)
        proc.start()
        workers.append(proc)

    print("All started!")
    optimizer = optim.Adam(net.parameters(), lr=args.lr)

In the beginning of the master, we create all those queues, start the worker processes, 
and start the optimizer.

    for step_idx in range(args.iters):
        # broadcasting network params
        params = net.state_dict()
        for q in params_queues:
            q.put(params)
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Every training iteration starts with the network parameters being broadcast to the 
workers.

        t_start = time.time()
        batch_noise = []
        batch_reward = []
        results = 0
        batch_steps = 0
        batch_steps_data = []
        while True:
            while not rewards_queue.empty():
                reward = rewards_queue.get_nowait()
                np.random.seed(reward.seed)
                noise, neg_noise = sample_noise(net)
                batch_noise.append(noise)
                batch_reward.append(reward.pos_reward)
                batch_noise.append(neg_noise)
                batch_reward.append(reward.neg_reward)
                results += 1
                batch_steps += reward.steps
                batch_steps_data.append(reward.steps)

            if results == PROCESSES_COUNT * ITERS_PER_UPDATE:
                break
            time.sleep(0.01)

Then, in the loop, the master waits for enough data to be obtained from the workers. 
Every time a new result arrives, we reproduce the noise using the random seed.

        train_step(optimizer, net, batch_noise, batch_reward,
                   writer, step_idx, args.noise_std)

As the last step in the training loop, we call the train_step() function that you've 
already seen, which calculates the update from the noise and rewards, and calls the 
optimizer to adjust the weights.

Results
The code supports the optional --cuda flag, but from my experiments, I get zero 
speeding up from the GPU, as the network is too shallow and the batch size is 
only one for every parameter's evaluation. This also suggests potential speed 
improvements by increasing the batch size that we use during the evaluation, which 
can be done using multiple environments in every worker and carefully working 
with noise data inside the network. The values shown for every iteration are the 
mean reward obtained, the speed of training (in observations per second), two 
timing values (showing how long (in seconds) it took to gather data and perform the 
training step), and then three values about the episode lengths: the mean, minimum, 
and maximum number of steps during the episodes.
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Chapter20$ ./02_cheetah_es.py

Net(

  (mu): Sequential(

    (0): Linear(in_features=26, out_features=64, bias=True)

    (1): Tanh()

    (2): Linear(in_features=64, out_features=64, bias=True)

    (3): Tanh()

    (4): Linear(in_features=64, out_features=6, bias=True)

    (5): Tanh()

  )

)

All started!

0: reward=10.86, speed=1486.01 f/s, data_gather=0.903, train=0.008, 
steps_mean=45.10, min=32.00, max=133.00, steps_std=17.62

1: reward=11.39, speed=4648.11 f/s, data_gather=0.269, train=0.005, 
steps_mean=42.53, min=33.00, max=65.00, steps_std=8.15

2: reward=14.25, speed=4662.10 f/s, data_gather=0.270, train=0.006, 
steps_mean=42.90, min=36.00, max=59.00, steps_std=5.65

3: reward=14.33, speed=4901.02 f/s, data_gather=0.257, train=0.006, 
steps_mean=43.00, min=35.00, max=56.00, steps_std=5.01

4: reward=14.95, speed=4566.68 f/s, data_gather=0.281, train=0.005, 
steps_mean=43.60, min=37.00, max=54.00, steps_std=4.41

The dynamics of the training show very quick policy improvement in the beginning 
(in just 100 updates, which is seven minutes of training, the agent was able to reach 
the score of 700-800; however, afterward, it got stuck and wasn't able to switch from 
keeping the balance (when Cheetah can reach up to 900-1,000 total reward) to the 
running mode with a much higher reward of 2,500 or more:

Figure 20.3: ES on HalfCheetah: the maximum reward (left) and mean reward (right)
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Figure 20.4: The standard deviation of reward (left) and policy update (right)

Genetic algorithms
Another class of black-box methods that has recently become a popular alternative 
to the value-based and policy gradient methods is genetic algorithms (GA). It is a 
large family of optimization methods with more than two decades of history behind 
it and a simple core idea of generating a population of N individuals, each of which 
is evaluated with the fitness function. Every individual means some combination of 
model parameters. Then, some subset of top performers is used to produce (called 
mutation) the next generation of the population. This process is repeated until we're 
satisfied with the performance of our population.

There are a lot of different methods in the GA family, for example, how to 
complete the mutation of the individuals for the next generation or how to rank the 
performers. Here, we will consider the simple GA method with some extensions, 
published in the paper by Felipe Petroski Such, Vashisht Madhavan, and others called 
Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training Deep 
Neural Networks for Reinforcement Learning [2].

In this paper, the authors analyzed the simple GA method, which performs Gaussian 
noise perturbation of the parent's weights to perform mutation. On every iteration, 
the top performer was copied without modification. In an algorithm form, the steps 
of a simple GA method can be written as follows:

1. Initialize the mutation power, 𝜎𝜎 , the population size, N, the number of 
selected individuals, T, and the initial population, P0, with N randomly 
initialized policies and their fitness: 𝐹𝐹0 = {𝐹𝐹(𝑃𝑃𝑖𝑖0)|𝑖𝑖 = 1…𝑁𝑁} 
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2. For generation g = 1 … G:
1. Sort generation Pg–1 in the descending order of the fitness function 

value Fg–1

2. Copy elite 𝑃𝑃1
𝑔𝑔 = 𝑃𝑃1

𝑔𝑔−1, 𝐹𝐹1
𝑔𝑔 = 𝐹𝐹1

𝑔𝑔−1 
3. For individual i = 2 … N:

 ° k = the randomly select parent from 1 … T
 ° Sample 𝜀𝜀~𝒩𝒩(0, 𝐼𝐼) 
 ° Mutate the parent: 𝑃𝑃𝑖𝑖

𝑔𝑔 = 𝑃𝑃𝑖𝑖
𝑔𝑔−1 + 𝜎𝜎𝜎𝜎 

 ° Get its fitness: 𝐹𝐹𝑖𝑖
𝑔𝑔 = 𝐹𝐹(𝑃𝑃𝑖𝑖

𝑔𝑔) 

There have been several improvements to this basic method from the paper [2], 
which we will discuss later. For now, let's check the implementation of the core 
algorithm.

GA on CartPole
The source code is in Chapter20/03_cartpole_ga.py, and it has a lot in common 
with our ES example. The difference is in the lack of the gradient ascent code, which 
was replaced by the network mutation function as follows:

def mutate_parent(net):
    new_net = copy.deepcopy(net)
    for p in new_net.parameters():
        noise = np.random.normal(size=p.data.size())
        noise_t = torch.FloatTensor(noise)
        p.data += NOISE_STD * noise_t
    return new_net

The goal of the function is to create a mutated copy of the given policy by adding a 
random noise to all weights. The parent's weights are kept untouched, as a random 
selection of the parent is performed with replacement, so this network could be used 
again later.

NOISE_STD = 0.01
POPULATION_SIZE = 50
PARENTS_COUNT = 10

The count of hyperparameters is even smaller than with ES and includes the 
standard deviation of the noise added-on mutation, the population size, and the 
number of top performers used to produce the subsequent generation.

if __name__ == "__main__":
    writer = SummaryWriter(comment="-cartpole-ga")
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    env = gym.make("CartPole-v0")

    gen_idx = 0
    nets = [
        Net(env.observation_space.shape[0], env.action_space.n)
        for _ in range(POPULATION_SIZE)
    ]
    population = [
        (net, evaluate(env, net))
        for net in nets
    ]

Before the training loop, we create the population of randomly initialized networks 
and obtain their fitness.

    while True:
        population.sort(key=lambda p: p[1], reverse=True)
        rewards = [p[1] for p in population[:PARENTS_COUNT]]
        reward_mean = np.mean(rewards)
        reward_max = np.max(rewards)
        reward_std = np.std(rewards)

        writer.add_scalar("reward_mean", reward_mean, gen_idx)
        writer.add_scalar("reward_std", reward_std, gen_idx)
        writer.add_scalar("reward_max", reward_max, gen_idx)
        print("%d: reward_mean=%.2f, reward_max=%.2f, "
              "reward_std=%.2f" % (
            gen_idx, reward_mean, reward_max, reward_std))
        if reward_mean > 199:
            print("Solved in %d steps" % gen_idx)
            break

In the beginning of every generation, we sort the previous generation according to 
their fitness and record statistics about future parents.

        prev_population = population
        population = [population[0]]
        for _ in range(POPULATION_SIZE-1):
            parent_idx = np.random.randint(0, PARENTS_COUNT)
            parent = prev_population[parent_idx][0]
            net = mutate_parent(parent)
            fitness = evaluate(env, net)
            population.append((net, fitness))
        gen_idx += 1

In a separate loop over new individuals to be generated, we randomly sample a 
parent, mutate it, and evaluate its fitness score.
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Results
Despite the simplicity of the method, it works even better than ES, solving the 
CartPole environment in just several generations. In my experiments with the 
preceding code, it takes five to 15 generations to solve the environment:

Chapter20$ ./03_cartpole_ga.py

0: reward_mean=39.90, reward_max=131.00, reward_std=32.97

1: reward_mean=82.00, reward_max=145.00, reward_std=33.14

2: reward_mean=131.40, reward_max=154.00, reward_std=15.94

3: reward_mean=151.90, reward_max=200.00, reward_std=19.45

4: reward_mean=170.20, reward_max=200.00, reward_std=32.46

5: reward_mean=184.00, reward_max=200.00, reward_std=14.09

6: reward_mean=187.50, reward_max=200.00, reward_std=16.87

7: reward_mean=186.60, reward_max=200.00, reward_std=15.41

8: reward_mean=191.50, reward_max=200.00, reward_std=11.67

9: reward_mean=199.50, reward_max=200.00, reward_std=1.20

Solved in 9 steps

The dynamics of the convergence are shown on the following charts.

Figure 20.5: GA on CartPole: the maximum reward (left) and mean reward (right)
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Figure 20.6: The standard deviation of the reward in the batch

GA tweaks
In the Deep Neuroevolution paper [2], the authors checked two tweaks to the basic 
GA algorithm. The first, with the name deep GA, aimed to increase the scalability 
of the implementation, and the second, called novelty search, was an attempt to 
replace the reward objective with a different metric of the episode. In the example 
used in the following GA on HalfCheetah section, we will implement the first 
improvement, whereas the second one is left as an optional exercise.

Deep GA
Being a gradient-free method, GA is potentially even more scalable than ES methods 
in terms of speed, with more CPUs involved in the optimization. However, the 
simple GA algorithm that you have seen has a similar bottleneck to ES methods: 
the policy parameters have to be exchanged between the workers. In the previously 
mentioned paper [2], the authors proposed a trick similar to the shared seed 
approach, but taken to an extreme. They called it deep GA, and at its core, the 
policy parameters are represented as a list of random seeds used to create this 
particular policy's weights.

In fact, the initial network's weights were generated randomly on the first 
population, so the first seed in the list defines this initialization. On every population, 
mutations are also fully specified by the random seed for every mutation. So, 
the only thing we need to reconstruct the weights is the seeds themselves. In this 
approach, we need to reconstruct the weights on every worker, but usually this 
overhead is much less than the overhead of transferring full weights over the 
network.
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Novelty search
Another modification to the basic GA method is novelty search (NS), which was 
proposed by Lehman and Stanley in their paper, Abandoning Objectives: Evolution 
through the Search for Novelty Alone, which was published in 2011 [3].

The idea of NS is to change the objective in our optimization. We're no longer trying 
to increase our total reward from the environment, but rather reward the agent for 
exploring the behavior that it has never checked before (that is, novel). According to 
the authors' experiments on the maze navigation problem, with many traps for the 
agent, NS works much better than other reward-driven approaches.

To implement NS, we define the so-called behavior characteristic (BC) (𝜋𝜋 ), which 
describes the behavior of the policy and a distance between two BCs. Then, the 
k-nearest neighbors approach is used to check the novelty of the new policy and 
drive the GA according to this distance. In the Deep Neuroevolution paper [2], 
sufficient exploration by the agent was needed. The approach of NS significantly 
outperformed the ES, GA, and other more traditional approaches to RL problems.

GA on HalfCheetah
In our final example in this chapter, we will implement the parallelized deep GA on 
the HalfCheetah environment. The complete code is in Chapter20/04_cheetah_
ga.py. The architecture is very close to the parallel ES version, with one master 
process and several workers. The goal of every worker is to evaluate the batch of 
networks and return the result to the master, which merges partial results into the 
complete population, ranks the individuals according to the obtained reward, and 
generates the next population to be evaluated by the workers.

Every individual is encoded by a list of random seeds used to initialize the initial 
network weights and all subsequent mutations. This representation allows very 
compact encoding of the network, even when the number of parameters in the policy 
is not very large. For example, in our network with two hidden layers of 64 neurons, 
we have 6,278 float values (the input is 26 values and the action is six floats). Every 
float occupies 4 bytes, which is the same size used by the random seed. So, the deep 
GA representation proposed by the paper will be smaller up to 6,278 generations 
in the optimization.

In our example, we will perform parallelization on local CPUs, so the amount of 
data transferred back and forth doesn't matter much; however, if you have a couple 
of hundred cores to utilize, the representation might become a significant issue.

NOISE_STD = 0.01
POPULATION_SIZE = 2000
PARENTS_COUNT = 10
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WORKERS_COUNT = 6
SEEDS_PER_WORKER = POPULATION_SIZE // WORKERS_COUNT
MAX_SEED = 2**32 - 1

The set of hyperparameters is the same as in the CartPole example, with the 
difference of a larger population size.

def mutate_net(net, seed, copy_net=True):
    new_net = copy.deepcopy(net) if copy_net else net
    np.random.seed(seed)
    for p in new_net.parameters():
        noise = np.random.normal(size=p.data.size())
        noise_t = torch.FloatTensor(noise)
        p.data += NOISE_STD * noise_t
    return new_net

There are two functions used to build the networks based on the seeds given. The 
first one performs one mutation on the already created policy network, and it can 
perform the mutation in place or by copying the target network based on arguments. 
(Copying is needed for the first generation.)

def build_net(env, seeds):
    torch.manual_seed(seeds[0])
    net = Net(env.observation_space.shape[0],
              env.action_space.shape[0])
    for seed in seeds[1:]:
        net = mutate_net(net, seed, copy_net=False)
    return net

The second function creates the network from scratch using the list of seeds. The 
first seed is passed to PyTorch to influence the network initialization, and subsequent 
seeds are used to apply network mutations.

The worker function obtains the list of seeds to evaluate and outputs individual 
OutputItem tuples for every result obtained. The function maintains the cache of 
networks to minimize the amount of time spent recreating the parameters from the 
list of seeds. This cache is cleared for every generation, as every new generation is 
created from the current generation winners, so there is only a tiny chance that old 
networks can be reused from the cache.

OutputItem = collections.namedtuple(
    'OutputItem', field_names=['seeds', 'reward', 'steps'])

def worker_func(input_queue, output_queue):
    env = gym.make("RoboschoolHalfCheetah-v1")
    cache = {}
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    while True:
        parents = input_queue.get()
        if parents is None:
            break
        new_cache = {}
        for net_seeds in parents:
            if len(net_seeds) > 1:
                net = cache.get(net_seeds[:-1])
                if net is not None:
                    net = mutate_net(net, net_seeds[-1])
                else:
                    net = build_net(env, net_seeds)
            else:
                net = build_net(env, net_seeds)
            new_cache[net_seeds] = net
            reward, steps = evaluate(env, net)
            output_queue.put(OutputItem(
                seeds=net_seeds, reward=reward, steps=steps))
        cache = new_cache

The code of the master process is also straightforward. For every generation, we 
send the current population's seeds to workers for evaluation and wait for the 
results. Then, we sort the results and generate the next population based on the 
top performers. On the master's side, the mutation is just a seed number generated 
randomly and appended to the list of seeds of the parent.

        batch_steps = 0
        population = []
        while len(population) < SEEDS_PER_WORKER * WORKERS_COUNT:
            out_item = output_queue.get()
            population.append((out_item.seeds, out_item.reward))
            batch_steps += out_item.steps
        if elite is not None:
            population.append(elite)
        population.sort(key=lambda p: p[1], reverse=True)

        elite = population[0]
        for worker_queue in input_queues:
            seeds = []
            for _ in range(SEEDS_PER_WORKER):
                parent = np.random.randint(PARENTS_COUNT)
                next_seed = np.random.randint(MAX_SEED)
                s = list(population[parent][0]) + [next_seed]
                seeds.append(tuple(s))
            worker_queue.put(seeds)
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Results
To start the training, just launch the source code file. For every generation, it shows 
the result on the console:

Chapter20$ ./04_cheetah_ga.py

0: reward_mean=31.28, reward_max=34.37, reward_std=1.46, speed=5495.65 f/s

1: reward_mean=45.41, reward_max=54.74, reward_std=3.86, speed=6748.35 f/s

2: reward_mean=60.74, reward_max=69.25, reward_std=5.33, speed=6749.70 f/s

3: reward_mean=67.70, reward_max=84.29, reward_std=8.21, speed=6070.31 f/s

4: reward_mean=69.85, reward_max=86.38, reward_std=9.37, speed=6612.48 f/s

5: reward_mean=65.59, reward_max=86.38, reward_std=7.95, speed=6542.46 f/s

6: reward_mean=77.29, reward_max=98.53, reward_std=11.13, speed=6949.59 f/s

The overall dynamics are similar to ES experiments on the same environment, with 
the same problems getting out of the local optima of 1,010 reward. After five hours 
of training and 250 generations, the agent was able to learn how to stand perfectly 
but wasn't able to figure out that running could bring more reward. Possibly, the 
NS method could overcome this issue.

The following charts show the optimization dynamics.

Figure 20.7: GA on HalfCheetah: the maximum reward (left) and mean reward (right)
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Figure 20.8: The standard deviation of the reward in the batch

Summary
In this chapter, you saw two examples of black-box optimization methods: ES and 
GA, which can provide competition for other analytical gradient methods. Their 
strength lies in good parallelization on a large number of resources and the smaller 
number of assumptions that they have on the reward function.

In the next chapter, we will take a look at a different sphere of modern RL 
development: model-based methods.
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Advanced Exploration
Next, we will talk about the topic of exploration in reinforcement learning (RL). 
It has been mentioned several times in the book that the exploration/exploitation 
dilemma is a fundamental thing in RL and very important for efficient learning. 
However, in the previous examples, we used quite a trivial approach to exploring 
the environment, which was, in most cases, 𝜀𝜀 -greedy action selection. Now it's time 
to go deeper into the exploration subfield of RL.

In this chapter, we will:

• Discuss why exploration is such a fundamental topic in RL
• Explore the effectiveness of the epsilon-greedy (𝜀𝜀 -greedy) approach
• Take a look at alternatives and try them on different environments

Why exploration is important
In this book, lots of environments and methods have been discussed and in almost 
every chapter, exploration was mentioned. Very likely, you've already got ideas 
about why it's important to explore the environment effectively, so I'm just going 
to give a list of the main reasons.

Before that, it might be useful to agree on the term "effective exploration." In 
theoretical RL, a strict definition of this exists, but the high-level idea is simple 
and intuitive. Exploration is effective when we don't waste time in states of 
the environment that have already been seen by and are familiar to the agent. 
Rather than taking the same actions again and again, the agent needs to look for 
a new experience. As we've already discussed, exploration has to be balanced by 
exploitation, which is the opposite and means using our knowledge to get the best 
reward in the most efficient way. Let's now quickly discuss why we might be 
interested in effective exploration in the first place.
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First of all, good exploration of the environment might have a fundamental influence 
on our ability to learn a good policy. If the reward is sparse and the agent obtains 
a good reward on some rare conditions, it might experience a positive reward 
only once in many episodes, so the ability of the learning process to explore the 
environment effectively and fully might bring more samples with a good reward 
that the method could learn from.

In some cases, which are very frequent in practical applications of RL, a lack of 
good exploration might mean that the agent will never experience a positive reward 
at all, which makes everything else useless. If you have no good samples to learn 
from, you can have the most efficient RL method, but the only thing it will learn 
is that there is no way to get a good reward. This is the case for lots of practically 
interesting problems around us. Later in the chapter, we will take a closer look at 
the MountainCar environment, which has trivial dynamics, but due to a sparse 
reward scheme is quite tricky to solve.

On the other hand, even if the reward is not sparse, effective exploration increases 
the training speed due to better convergence and training stability. This happens 
because our sample from the environment becomes more diverse and requires less 
communication with the environment. As a result, our RL method has the chance 
to learn a better policy in a shorter time.

What's wrong with 𝜺𝜺 -greedy?
Throughout the book, we have used the 𝜀𝜀 -greedy exploration strategy as a simple, 
but still acceptable, approach to exploring the environment. The underlying idea 
behind 𝜀𝜀 -greedy is to take a random action with the probability of 𝜀𝜀 ; otherwise, (with 
1 − 𝜀𝜀  probability) we act greedily. By varying the 𝜀𝜀  hyperparameter, we can change 
the exploration ratio. This approach was used in most of the value-based methods 
described in the book.

Quite a similar idea was used in policy-based methods, when our network returns 
the probability distribution over actions to take. To prevent the network from 
becoming too certain about actions (by returning a probability of 1 for a specific 
action and 0 for others), we added the entropy loss, which is just the entropy of the 
probability distribution multiplied by some hyperparameter. In the early stages of 
the training, this entropy loss pushes our network toward taking random actions 
(by regularizing the probability distribution), but in later stages, when we have 
explored the environment enough and our reward is relatively high, the policy 
gradient dominates over this entropy regularization. But this hyperparameter 
requires tuning to work properly.
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At a high level, both approaches are doing the same thing: to explore the 
environment, we introduce randomness into our actions. However, recent research 
shows that this approach is very far from being ideal:

• In the case of value iteration methods, random actions taken in some pieces 
of our trajectory introduce bias into our Q-value estimation. The Bellman 
equation assumes that the Q-value for the next state is obtained from 
the action with the largest Q. In other words, the rest of the trajectory is 
supposed to be from our optimal behavior. But with 𝜀𝜀 -greedy, we might 
take not the optimal action, but just a random action, and this piece of 
trajectory will be stored in the replay buffer for a long time, until our 𝜀𝜀  is 
decayed and old samples are pushed from the buffer. Before that happens, 
we will learn wrong Q-values.

• With random actions injected into our trajectory, our policy changes with 
every step. With the frequency defined by the value of 𝜀𝜀  or the entropy 
loss coefficient, our trajectory constantly switches from a random policy 
to our current policy. This might lead to poor state space coverage in 
situations when multiple steps are needed to reach some isolated areas in the 
environment's state space.

To illustrate the last issue, let's consider a simple example taken from the paper by 
Strehl and Littman called An analysis of model-based Interval Estimation for Markov 
Decision Processes, which was published in 2008 [1]. The example is called "River 
Swim" and it models a river that the agent needs to cross. The environment contains 
six states and two actions: left and right. The following is the transition diagram for 
the first two states: 1 and 2.

Figure 21.1: Transitions for the first two states of the River Swim environment

In the first state (shown as the first/green circle) the agent stands on the ground 
of the riverbank. The only action is right, which means entering the river and 
swimming against the current to state 2. But the current is strong, and our right 
action from state 1 succeeds only with a probability of 60% (the solid line from  
state 1 to state 2). 
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With a probability of 40%, the current keeps us in state 1 (the solid line connecting 
state 1 to itself).

In the second state (the second/blue circle) we have two actions: left, which is shown 
by the dashed line connecting states 2 and 1 (this action always succeeds), and 
right, which means swimming against the current to state 3. As before, swimming 
against the current is hard, so the probability of getting from state 2 to state 3 is just 
35% (the solid line connecting states 2 and 3). With a probability of 60%, our left 
action ends up in the same state (the curved solid line connecting state 2 to itself). 
But sometimes, despite our efforts, our left action ends up in state 1, which happens 
with a 5% probability (the curved line connecting states 2 and 1).

As I've said, there are six states in River Swim, but the transitions for states 3, 4, and 
5 are identical to those for state 2. The full state diagram is shown in the following 
figure. The last state, 6, is similar to state 1, so there is only one action available there: 
left, meaning to swim back.

Figure 21.2: The full transition diagram for the River Swim environment

In terms of the reward, the agent gets a small reward of 1 for the transition between 
states 1 to 5, but it gets a very high reward of 1,000 for getting into state 6, which 
acts as compensation for all the efforts of swimming against the current.

Despite the simplicity of the environment, its structure creates a problem for 
the 𝜀𝜀 -greedy strategy being able to fully explore the state space. To check this, I 
implemented a very simple simulation of this environment, which is in Chapter21/
riverswim.py. The simulated agent always acts randomly (𝜀𝜀 = 1 ) and the result 
of the simulation is the frequency of various state visits. The number of steps 
the agent can take in one episode is limited to 10, but this can be changed using 
the command line. The code is very simple, so let's just check the results of the 
experiments:

$ ./riverswim.py

1: 40

2: 39

3: 17

4: 3
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5: 1

6: 0

With default command-line options, the simulation of 100 steps (10 episodes) was 
performed. As you can see, the agent never reached state 6 and was only in state 5 
once. By increasing the number of episodes, the situation became a bit better, but 
not much:

$ ./riverswim.py -n 1000

1: 441

2: 452

3: 93

4: 12

5: 2

6: 0

With 10 times more episodes simulated, we still didn't visit state 6, so the agent had 
no idea about the large reward there.

$ ./riverswim.py -n 10000

1: 4056

2: 4506

3: 1095

4: 281

5: 57

6: 5

Only with 1,000 episodes simulated were we able to get to state 6, but only five 
times, which is 0.05% of all the steps. It's not very likely that the training will be 
efficient, even with the best RL method. Also, that's just six states; imagine how 
inefficient it will be with 20 or 50 states, which is not that unlikely; for example, in 
Atari games, there might be hundreds of decisions to be made before something 
interesting happens.

If you want to, you can experiment with the riverswim.py tool, which allows you 
to change the random seed, the amount of steps in the episode, the total amount of 
steps, and even the amount of states in the environment.

This simple example illustrates the issue with random actions in exploration. By 
acting randomly, our agent does not try to actively explore the environment; it just 
hopes that random actions will bring something new to its experience, which is not 
always the best thing to do.

Let's now discuss more efficient approaches to the exploration problem.
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Alternative ways of exploration
In this section, we will cover an overview of a set of alternative approaches to the 
exploration problem. This won't be an exhaustive list of approaches that exist, but 
rather will provide an outline of the landscape.

We're going to check three different approaches to exploration:

• Randomness in the policy, when stochasticity is added to the policy that 
we use to get samples. The method in this family is noisy networks, which 
we have already covered.

• Count-based methods, which keep track of the count of times the agent has 
seen the particular state. We will check two methods: the direct counting of 
states and the pseudo-count method.

• Prediction-based methods, which try to predict something from the state 
and from the quality of the prediction. We can make judgements about the 
familiarity of the agent with this state. To illustrate this approach, we will 
take a look at the policy distillation method, which has shown state-of-the-art 
results on hard-exploration Atari games like Montezuma's Revenge.

In the next section, we will implement the methods described to solve a toy, but still 
challenging, problem called MountainCar. This will allow us to better understand 
the methods, the way they could be implemented, and their behavior. After that, 
we will try to tackle a harder problem from the Atari suite.

Noisy networks
Let's start with an approach that is already familiar to us. We covered the method 
called noisy networks [2] in Chapter 8, DQN Extensions, when we discussed deep 
Q-network (DQN) extensions. The idea is to add Gaussian noise to the network's 
weights and learn the noise parameters (mean and variance) using backpropagation, 
in the same way that we learn the model's weights. In Chapter 8, this simple approach 
gave a significant boost in Pong training.

At the high level, this might look very similar to the 𝜀𝜀 -greedy approach, but the 
authors of the paper [2] claimed a difference. The difference lies in the way we 
apply stochasticity to the network. In 𝜀𝜀 -greedy, randomness is added to the actions. 
In noisy networks, randomness is injected into part of the network itself (several 
fully connected layers close to the output), which means adding stochasticity to our 
current policy. In addition, parameters of the noise might be learned during the 
training, so the training process might increase or decrease this policy randomness 
if needed. 
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According to the paper, the noise in noisy layers needs to be sampled from time to 
time, which means that our training samples are not produced by our current policy, 
but by the ensemble of policies. With this, our exploration becomes directed, as 
random values added to the weights produce a different policy.

Count-based methods
This family of methods is based on the intuition to visit states that were not explored 
before. In simple cases, when the state space is not very large and different states 
are easily distinguishable from each other, we just count the number of times we 
have seen the state or state + action and prefer to get to the states for which this 
count is low.

This could be implemented as an intrinsic reward that is added to the reward 
obtained from the environment (which is called extrinsic reward in this context). 
One of the options to formulate such a reward is to use the bandits exploration 

approach (which is an important variation of the RL problem): 𝑟𝑟𝑖𝑖 = 𝑐𝑐 1
√�̃�𝑁(𝑠𝑠)

 . Here, 

�̃�𝑁(𝑠𝑠)  is a count or pseudo-count of times we have seen the state, s, and value c 
defines the weight of the intrinsic reward.

If the amount of states is small, like in the tabular learning case, we can just count 
them. In more difficult cases, when there are too many states, some transformation 
of the states needs to be introduced, like the hashing function or some embeddings 
of the states.

For pseudo-count methods, �̃�𝑁(𝑠𝑠)  is factorized into the density function and the total 
amount of states visited. There are several different methods for how to do this, 
but they might be tricky to implement, so we won't deal with complex cases in this 
chapter. If you're curious, you can check the paper from Georg Ostrovski et al. called 
Count-Based Exploration with Neural Density Models, 2017, arxiv:1703.01310v2 [3].

A special case of introducing the intrinsic reward is called curiosity-driver exploration, 
when we don't take the reward from the environment into account at all. In that case, 
the training and exploration is driven 100% by the novelty of the agent's experience. 
Surprisingly, this approach might be very efficient not only in discovering new states 
in the environment, but also in learning quite good policies.

Prediction-based methods
The third family of exploration methods is based on another idea of predicting 
something from the environment data. If the agent can make accurate predictions, 
it means the agent has been in this situation enough and it isn't worth exploring it. 
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But if something unusual happens and our prediction is significantly off, it might 
mean that we need to pay attention to the state that we're currently in. There are 
many different approaches to doing this, but in this chapter, we will talk about one 
recent paper that implemented this approach and was published by Yuri Burda et 
al. It is called Exploration by random network distillation and was published in 2018, 
arxiv:1810.12894 [4]. The authors were able to reach state-of-the-art results in so-
called hard-exploration games in Atari.

The approach used in the paper is quite simple: we add the intrinsic reward, which 
is calculated from the ability of one neural network (NN) (which is being trained) to 
predict the output from another randomly initialized (untrained) NN. The input to 
both NNs is the current observation, and the intrinsic reward is proportional to the 
mean squared error (MSE) of the prediction.

MountainCar experiments
In this section, we will try to implement and compare the effectiveness of different 
exploration approaches on a simple, but still challenging, environment, which could 
be classified as a "classical RL" problem that is very similar to the familiar CartPole. 
But in contrast to CartPole, the MountainCar problem is quite challenging from an 
exploration point of view.

The problem's illustration is shown in the following figure and it consists of a small 
car starting from the bottom of the valley. The car can move left and right, and the 
goal is to reach the top of the mountain on the right.

Figure 21.3: The MountainCar environment

The trick here is in the environment's dynamics and the action space. To reach the 
top, the actions need to be applied in a particular way to swing the car back and forth 
to speed it up. In other words, the agent needs to apply the actions for several time 
steps to make the car go faster and eventually reach the top. 
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Obviously, this coordination of actions is not something that is easy to achieve with 
just random actions, so the problem is hard from the exploration point of view and 
very similar to our River Swim example.

In Gym, this environment has the name MountainCar-v0 and it has a very simple 
observation and action space. Observations are just two numbers: the first one gives 
the horizontal position of the car and the second value is the car's velocity. The action 
could be 0, 1, or 2, where 0 means pushing the car to the left, 1 applies no force, and 
2 pushes the car to the right. The following is a very simple illustration of this in 
Python REPL.

>>> import gym

>>> e = gym.make("MountainCar-v0")

>>> e.reset()

array([-0.53143793,  0.        ])

>>> e.observation_space

Box(2,)

>>> e.action_space

Discrete(3)

>>> e.step(0)

(array([-0.51981535, -0.00103615]), -1.0, False, {})

>>> e.step(0)

(array([-0.52187987, -0.00206452]), -1.0, False, {})

>>> e.step(0)

(array([-0.52495728, -0.00307741]), -1.0, False, {})

>>> e.step(0)

(array([-0.52902451, -0.00406722]), -1.0, False, {})

>>> e.step(1)

(array([-0.53305104, -0.00402653]), -1.0, False, {})

>>> e.step(1)

(array([-0.53700669, -0.00395565]), -1.0, False, {})

>>> e.step(1)

(array([-0.54086181, -0.00385512]), -1.0, False, {})

>>> e.step(1)

(array([-0.54458751, -0.0037257 ]), -1.0, False, {})

As you can see, on every step we get the reward of -1, so the agent needs to learn 
how to get to the goal as soon as possible to get as little total negative reward as 
possible. By default, the amount of steps is limited to 200, so if we haven't got to the 
goal (which happens most of the time), our total is –200.
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The DQN method with 𝜺𝜺 -greedy
The first method that we will check will be our traditional 𝜀𝜀 -greedy approach 
to exploration. It is implemented in the source file Chapter21/mcar_dqn.py. I 
won't include the source code here, as it is already familiar to you. The source file 
implements various exploration strategies on top of the DQN method, to make a 
selection between them. Option -p allows you to specify the hyperparameters set. 
To launch the normal 𝜀𝜀 -greedy method, the option -p egreedy needs to be passed. 
The hyperparameters are decreasing 𝜀𝜀  from 1.0 to 0.02 for the first 105 training steps.

The training is quite fast; it takes just two to three minutes to do 105 training steps. 
But from the charts that follow, it is obvious that during those 105 steps, which was 
500 episodes, we didn't reach the goal state even once. That's really bad news, as our 
𝜀𝜀  has decayed, so we will do no more exploration in the future.

The 2% of random actions that we still perform are just not enough, because it 
requires dozens of coordinated steps to reach the top of the mountain (the best 
policy on MountainCar has a total reward of around –80). We can now continue our 
training for millions of steps, but the only data we will get from the environment 
will be episodes, which will take 200 steps with –200 total reward. This illustrates 
once more how important exploration is. Regardless of the training method we 
have, without proper exploration, we might just fail to train.

Figure 21.4: The reward and steps during the DQN training with the 𝜀𝜀 -greedy strategy
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Figure 21.5: Epsilon and loss during the training

So, what should we do? If we want to stay with 𝜀𝜀 -greedy, the only option for us 
is to explore for longer. You can experiment with the hyperparameters of the -p 
egreedy mode, but I went to the extreme and implemented the -p egreedy-long 
hyperparameter set.

In this regime, we keep 𝜀𝜀 = 1.0  until we reach at least one episode with a total 
reward better than –200. Once this has happened, we start training the normal way, 
decreasing 𝜀𝜀  from 1.0 to 0.02 for subsequent 106 frames. As we don't do training, 
during the initial exploration phase, it normally runs five to 10 times faster. To start 
the training in this mode, we use the following command line: $ ./mcar_dqn.py -n 
t1 -p egreedy-long.

Unfortunately, even with this improvement of 𝜀𝜀 -greedy, it still failed to solve the 
environment. I left this version to run for five hours, but after 500k episodes, it still 
hadn't faced even a single example of the goal, so I gave up. Of course, you could 
try it for a longer period.

The DQN method with noisy networks
To apply the noisy networks approach to our MountainCar problem, we just need 
to replace one of two layers in our network with the NoisyLinear class, so our 
architecture will become as follows:

MountainCarNoisyNetDQN(

  (net): Sequential(

    (0): Linear(in_features=2, out_features=128, bias=True)

    (1): ReLU()
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    (2): NoisyLinear(in_features=128, out_features=3, bias=True)

  )

)

The only difference between the NoisyLinear class and the version from Chapter 
8, DQN Extensions, is that this version has an explicit method, sample_noise(), to 
update the noise tensors, so we need to call this method on every training iteration; 
otherwise, the noise will be constant during the training. This modification is 
needed for future experiments with policy-based methods, which require the noise 
to be constant during the relatively long period of trajectories. In any case, the 
modification is simple, and we just need to call this method from time to time. In 
the case of the DQN method, it is called on every training iteration. You can find the 
code of the NoisyLinear class in the module Chapter21/lib/dqn_extra.py.

The code is the same as before, so to activate the noisy networks, you need to run 
the training with the -p noisynet command line.

The following figures are the results that I got after almost three hours of training.

Figure 21.6: Rewards during the training of the DQN method + noisy networks
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Figure 21.7: The length of training episodes

Figure 21.8: The loss during the training
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As you can see, the training process wasn't able to reach the mean reward of –130 (as 
required in the code), but after just 20k episodes, we discovered the goal state, which 
is great progress in comparison to 𝜀𝜀 -greedy, which didn't find any single instance of 
the goal state after 500k episodes. In fact, the training process discovered the goal 
state after 10k episodes (the small bump on the line in Figure 21.6), but obviously, 
the method learned nothing from this sample.

In addition, it is obvious from the charts that the training process made three 
attempts to learn how to improve the policy but failed. Probably, this could be 
improved by hyperparameter tuning, for example, decreasing a learning rate and 
increasing the replay buffer size. Anyway, that's a nice improvement and shows 
the benefits of noisy networks over the traditional 𝜀𝜀 -greedy approach.

The DQN method with state counts
The last exploration technique that we will apply to the DQN method is count-
based. As our state space is just two floating-point values, we will discretize the 
observation by rounding values to three digits after the decimal point, which should 
provide enough precision to distinguish different states from each other, but still 
group similar states together. For every individual state, we will keep the count of 
times we have seen this state before and use that to give an extra reward to the agent. 
For an off-policy method, it might not be the best idea to modify rewards during 
the training, but we will check the effect.

As before, I'm not going to provide the full source code; I will just emphasize 
the differences from the base version. First of all, we apply the wrapper to the 
environment to keep track of the counters and calculate the intrinsic reward value. 
The code of the wrapper is in the Chapter21/lib/common.py module and is 
shown here.

class PseudoCountRewardWrapper(gym.Wrapper):
    def __init__(self, env, hash_function = lambda o: o,
                 reward_scale: float = 1.0):
        super(PseudoCountRewardWrapper, self).__init__(env)
        self.hash_function = hash_function
        self.reward_scale = reward_scale
        self.counts = collections.Counter()
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In the constructor, we take the environment we want to wrap, the optional hash 
function to be applied to the observations, and the scale of the intrinsic reward. We 
also create the container for our counters, which will map the hashed state into the 
count of times we have seen it.

    def _count_observation(self, obs) -> float:
        h = self.hash_function(obs)
        self.counts[h] += 1
        return np.sqrt(1/self.counts[h])

Then, we define the helper function, which will calculate the intrinsic reward value 
of the state. It applies the hash to the observation, updates the counter, and calculates 
the reward using the formula we have already seen.

    def step(self, action):
        obs, reward, done, info = self.env.step(action)
        extra_reward = self._count_observation(obs)
        return obs, reward + self.reward_scale * extra_reward, \
               done, info

The last method of the wrapper is responsible for the environment step, where we 
call the helper function to get the reward and return the sum of the extrinsic and 
intrinsic reward components.

To apply the wrapper, we need to pass to it the hashing function, which is very 
simple in our case.

def counts_hash(obs):
    r = obs.tolist()
    return tuple(map(lambda v: round(v, 3), r))

Probably, three digits are too much, so you can experiment with a different way of 
hashing states.

To start the training, pass -p counts to the training program. My result was a 
bit surprising: it took the method only 27 minutes and 9.3k episodes to solve the 
environment, which is quite impressive. The final piece of the output that I got 
looks like this:

Episode 9329: reward=-66.44, steps=93, speed=1098.5 f/s, elapsed=0:27:49

Episode 9330: reward=-72.30, steps=98, speed=1099.0 f/s, elapsed=0:27:49

Episode 9331: reward=-125.27, steps=158, speed=1099.5 f/s, elapsed=0:27:49

Episode 9332: reward=-125.61, steps=167, speed=1100.0 f/s, elapsed=0:27:49

Episode 9333: reward=-110.20, steps=132, speed=1100.5 f/s, elapsed=0:27:49

Episode 9334: reward=-105.95, steps=128, speed=1100.9 f/s, elapsed=0:27:49
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Episode 9335: reward=-108.64, steps=129, speed=1101.3 f/s, elapsed=0:27:49

Episode 9336: reward=-64.87, steps=91, speed=1101.7 f/s, elapsed=0:27:49

Test done: got -89.000 reward after 89 steps, avg reward -131.206

Episode 9337: reward=-125.58, steps=158, speed=1101.0 f/s, elapsed=0:27:50

Episode 9338: reward=-154.56, steps=193, speed=1101.5 f/s, elapsed=0:27:50

Episode 9339: reward=-103.58, steps=126, speed=1101.9 f/s, elapsed=0:27:50

Episode 9340: reward=-129.93, steps=179, speed=1102.4 f/s, elapsed=0:27:50

Episode 9341: reward=-132.21, steps=170, speed=1097.8 f/s, elapsed=0:27:50

Episode 9342: reward=-125.93, steps=167, speed=1098.3 f/s, elapsed=0:27:50

Test done: got -88.000 reward after 88 steps, avg reward -129.046

Reward boundary has crossed, stopping training. Contgrats!

On the figures that follow, the dynamics of the training are shown.

Figure 21.9: The reward and steps of the training episodes

As you can see, due to the intrinsic reward added, the training episode rewards were 
different from –200, but the amount of steps shows where the goal state was found.
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Figure 21.10: The loss during the training

Figure 21.11: The reward and steps in the test episodes

On the preceding plots, the test episodes are shown. During the test, no intrinsic 
rewards were added.
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The proximal policy optimization method
Another set of experiments that we will conduct with our MountainCar problem 
is related to the on-policy method proximal policy optimization (PPO), which we 
have covered before. There are several motivations for this choice. First of all, as 
you saw in the DQN method + noisy networks case, when good examples are rare, 
DQNs have trouble adopting them quickly. This might be solved by increasing the 
replay buffer size and switching to the prioritized buffer, or we could try on-policy 
methods, which adjust the policy immediately according to the obtained experience.

Another reason for choosing this method is the modification of the reward during 
the training. Count-based exploration and policy distillation introduce the intrinsic 
reward component, which might change over time. The value-based methods 
might be sensitive to the modification of the underlying reward as, basically, they 
will need to relearn values during the training. On-policy methods shouldn't have 
any problems with that, as an increase of the reward just puts more emphasis on a 
sample with higher reward in terms of the policy gradient.

Finally, it's just interesting to check our exploration strategies on both families of RL 
methods. To do this, in file Chapter21/mcar_ppo.py we have a PPO with various 
exploration strategies applied to MountainCar. The code is not very different from 
the PPO from Chapter 19, Trust Regions – PPO, TRPO, ACKTR, and SAC, so I'm not 
going to repeat it here.

To start the normal PPO without extra exploration tweaks, you should run the 
command ./mcar_ppo.py -n t1 -p ppo.

As a reminder, PPO is in the policy gradient methods family, which limits Kullback-
Leibler divergence between the old and new policy during the training, avoiding 
dramatic policy updates. Our network has two heads: the actor and the critic. The 
actor network returns the probability distribution over our actions (our policy) and 
the critic estimates the value of the state. The critic is trained using MSE loss, while 
the actor is driven by the PPO surrogate objective. In addition to those two losses, we 
regularize the policy by applying entropy loss scaled by the hyperparameter 𝛽𝛽 . There 
is nothing new here so far. The following is the PPO network structure:

MountainCarBasePPO(

  (actor): Sequential(

    (0): Linear(in_features=2, out_features=64, bias=True)

    (1): ReLU()

    (2): Linear(in_features=64, out_features=3, bias=True)

  )

  (critic): Sequential(
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    (0): Linear(in_features=2, out_features=64, bias=True)

    (1): ReLU()

    (2): Linear(in_features=64, out_features=1, bias=True)

  )

)

After almost six hours of training, the basic PPO was able to solve the environment. 
What follows are the final lines of the output:

Episode 185255: reward=-159, steps=159, speed=4290.6 f/s, elapsed=5:48:50

Episode 185256: reward=-154, steps=154, speed=4303.3 f/s, elapsed=5:48:50

Episode 185257: reward=-155, steps=155, speed=4315.9 f/s, elapsed=5:48:50

Episode 185258: reward=-95, steps=95, speed=4329.2 f/s, elapsed=5:48:50

Episode 185259: reward=-151, steps=151, speed=4342.6 f/s, elapsed=5:48:50

Episode 185260: reward=-148, steps=148, speed=4356.5 f/s, elapsed=5:48:50

Episode 185261: reward=-149, steps=149, speed=4369.7 f/s, elapsed=5:48:50

Test done: got -101.000 reward after 101 steps, avg reward -129.796

Reward boundary has crossed, stopping training. Contgrats!

As you can see, despite more than five hours of training, the PPO needed "just" 185k 
episodes to figure out the optimal behavior, which is worse than the DQN method 
with counter-based exploration, but still much better than the DQN method with 
𝜀𝜀 -greedy exploration.

Figure 21.12: The reward and steps in the training episodes
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Figure 21.13: The total loss (left) and the entropy loss (right) during the training

Figure 21.14: The dynamics of the test reward

From the preceding training dynamics charts, you can see that the PPO discovered 
the goal state quite soon, after just an hour of training and 25k episodes. During 
the rest of the training, it polished the policy, which might be an indication of too 
aggressive entropy regularization.

The PPO method with noisy networks
As with the DQN method, we can apply the noisy networks exploration approach to 
our PPO method. To do that, we need to replace the output layer of the actor with the 
NoisyLinear layer. Only the actor network needs to be affected, because we would 
like to inject the noisiness only into the policy and not in to the value estimation.
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The new PPO network is shown here:

MountainCarNoisyNetsPPO(

  (actor): Sequential(

    (0): Linear(in_features=2, out_features=128, bias=True)

    (1): ReLU()

    (2): NoisyLinear(in_features=128, out_features=3, bias=True)

  )

  (critic): Sequential(

    (0): Linear(in_features=2, out_features=128, bias=True)

    (1): ReLU()

    (2): Linear(in_features=128, out_features=1, bias=True)

  )

)

There is one subtle nuance related to the application of noisy networks: where the 
random noise needs to be sampled. In Chapter 8, DQN Extensions, when you first met 
noisy networks, the noise was sampled on every forward() pass of the NoisyLinear 
layer. According to the original research paper, this is fine for off-policy methods, 
but for on-policy methods, it needs to be done differently. Indeed, when we train on-
policy, we obtain the training samples produced by our current policy and calculate 
the policy gradient, which should push the policy toward improvement. The goal of 
noisy networks is to inject randomness, but as we have discussed, we prefer directed 
exploration over just a random change of policy after every step. With that in mind, 
our random component in the NoisyLinear layer needs to be updated not after 
every forward() pass, but much less frequently. In my code, I resampled the noise 
on every PPO batch, which was 2,048 transitions.

As before, to start the training, the same tool needs to be used and just parameter -p 
noisynet needs to be passed. In my experiment, it took slightly less than an hour to 
solve the environment.

Episode 29788: reward=-174, steps=174, speed=3817.1 f/s, elapsed=0:54:14

Episode 29789: reward=-166, steps=166, speed=3793.8 f/s, elapsed=0:54:14

Episode 29790: reward=-116, steps=116, speed=3771.2 f/s, elapsed=0:54:14

Episode 29791: reward=-154, steps=154, speed=3748.7 f/s, elapsed=0:54:14

Episode 29792: reward=-144, steps=144, speed=3727.0 f/s, elapsed=0:54:14

Test done: got -86.000 reward after 86 steps, avg reward -129.196

Reward boundary has crossed, stopping training. Contgrats!
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The detailed dynamics of the training are shown on the charts that follow.

Figure 21.15: The reward and steps on the training episodes for the PPO method with noisy networks

Figure 21.16: The total loss (left) and the entropy loss during the training (right)
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Figure 21.17: The reward obtained during the test

From those plots, it's obvious that noisy networks provided a major improvement to 
the training. This version discovered the goal state much sooner and the rest of the 
policy optimization was much more efficient.

The PPO method with count-based 
exploration
In this case, exactly the same count-based approach with three-digit hashing is 
implemented for the PPO method and can be triggered by passing -p counts to the 
training process. 



Advanced Exploration

[ 674 ]

In my experiments, the method was able to solve the environment in slightly more 
than an hour, and it required 50k episodes.

Episode 49473: reward=-134, steps=143, speed=4278.1 f/s, elapsed=1:17:43

Episode 49474: reward=-142, steps=152, speed=4274.6 f/s, elapsed=1:17:43

Episode 49475: reward=-130, steps=145, speed=4272.4 f/s, elapsed=1:17:43

Episode 49476: reward=-107, steps=117, speed=4270.2 f/s, elapsed=1:17:43

Episode 49477: reward=-109, steps=119, speed=4268.3 f/s, elapsed=1:17:43

Episode 49478: reward=-140, steps=148, speed=4266.3 f/s, elapsed=1:17:43

Episode 49479: reward=-142, steps=151, speed=4264.8 f/s, elapsed=1:17:43

Episode 49480: reward=-136, steps=146, speed=4259.0 f/s, elapsed=1:17:43

Test done: got -114.000 reward after 114 steps, avg reward -129.890

Reward boundary has crossed, stopping training. Contgrats!

The training plots follow. As before, due to the intrinsic reward component, the 
training reward values were higher than for the episodes during the testing.

Figure 21.18: The reward and steps of the training episodes for the PPO method with count-based exploration
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Figure 21.19: The total loss and entropy loss

Figure 21.20: The reward for the test episodes

From these charts, you can see almost the same dynamics as with noisy networks.
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The PPO method with network distillation
As the final exploration method in our MountainCar experiment, I implemented 
the network distillation method from the paper [4] cited earlier. In this method, two 
extra NNs are introduced. Both need to map the observation into one number, in the 
same way that our value head does. The difference is in the way they are used. The 
first NN is randomly initialized and kept untrained. This will be our reference NN. 
The second one is trained to minimize the MSE loss between the second and the first 
NN. In addition, the absolute difference between the outputs of NNs is used as the 
intrinsic reward component.

The idea behind this is simple. The better the agent has explored some state, the 
better our second NN will predict the output of the first one. This will lead to a 
smaller intrinsic reward being added to the total reward, which will decrease the 
policy gradient assigned to the sample.

In the paper, the authors suggested training separate value heads to predict separate 
intrinsic and extrinsic reward components, but for this example, I decided to keep it 
simple and just added both rewards in the wrapper, the same way that we did in the 
counter-based exploration method. This minimizes the amount of modifications in 
the code.

In terms of those extra NN architectures, I did a small experiment and tried several 
architectures for both NNs. The best results were obtained with the reference NN 
having three layers, but the trained NN having just one layer. This helps to prevent 
overfitting of the trained NN, as our observation space is not very large.

Both NNs are implemented in the class MountainCarNetDistillery in the module 
Chapter21/lib/ppo.py.

class MountainCarNetDistillery(nn.Module):
    def __init__(self, obs_size: int, hid_size: int = 128):
        super(MountainCarNetDistillery, self).__init__()

        self.ref_net = nn.Sequential(
            nn.Linear(obs_size, hid_size),
            nn.ReLU(),
            nn.Linear(hid_size, hid_size),
            nn.ReLU(),
            nn.Linear(hid_size, 1),
        )
        self.ref_net.train(False)

        self.trn_net = nn.Sequential(
            nn.Linear(obs_size, 1),
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        )

    def forward(self, x):
        return self.ref_net(x), self.trn_net(x)

    def extra_reward(self, obs):
        r1, r2 = self.forward(torch.FloatTensor([obs]))
        return (r1 - r2).abs().detach().numpy()[0][0]

    def loss(self, obs_t):
        r1_t, r2_t = self.forward(obs_t)
        return F.mse_loss(r2_t, r1_t).mean()

The code is simple: besides the forward() method, which returns the output from 
both NNs, the class includes two helper methods for intrinsic reward calculation and 
for getting the loss between two NNs.

To start the training, the argument -p distill needs to be passed to the mcar_ppo.
py program. In my experiment, it took the code four hours to solve the environment, 
which is slower than other methods, but the slowdown is caused by the extra work 
we need to do. In terms of the amount of episodes, 63k were required, which is 
comparable to noisy networks and the count-based method. As usual, there might be 
some bugs and inefficiencies in my implementation, so you're welcome to improve it 
to make it faster and better.

Episode 62991: reward=-66, steps=122, speed=2468.0 f/s, elapsed=4:11:50

Episode 62992: reward=-42, steps=93, speed=2487.0 f/s, elapsed=4:11:50

Episode 62993: reward=-66, steps=116, speed=2505.1 f/s, elapsed=4:11:50

Episode 62994: reward=-70, steps=123, speed=2522.8 f/s, elapsed=4:11:50

Episode 62995: reward=-66, steps=118, speed=2540.2 f/s, elapsed=4:11:50

Episode 62996: reward=-70, steps=125, speed=2556.3 f/s, elapsed=4:11:50

Test done: got -118.000 reward after 118 steps, avg reward -129.809

Reward boundary has crossed, stopping training. Contgrats!
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The convergence dynamics are shown on the charts that follow.

Figure 21.21: The reward and steps for the training episodes

Figure 21.22: The total loss (left) and distillation loss (right) during the training
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Figure 21.23: The reward for the test episodes

As before, due to the intrinsic reward component, the training episodes have a 
higher reward on the plots. From the distillation loss plot, it is clear that before 
the agent discovered the goal state, everything was boring and predictable, but 
once it had figured out how to end the episode earlier than 200 steps, the loss 
grew significantly.

Atari experiments
The MountainCar environment is a nice and fast way to experiment with exploration 
methods, but to conclude the chapter, I've included Atari versions of the DQN 
and PPO methods with the exploration tweaks we described. As the primary 
environment, I've used Seaquest, which is a game where the submarine needs to 
shoot fish and enemy submarines, and save aquanauts. This game is not as famous as 
Montezuma's Revenge, but it still might be considered as medium-hard exploration, 
because to continue the game, you need to control the level of oxygen. When it 
becomes low, the submarine needs to rise to the surface for some time. Without this, 
the episode will end after 560 steps and with a maximum reward of 20. But once the 
agent learns how to replenish the oxygen, the game might continue almost infinitely 
and bring to the agent a 10k-100k score. Surprisingly, traditional exploration 
methods struggle with discovering this; normally, training gets stuck at 560 steps, 
after which the oxygen runs out and the submarine dies.
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The bad thing about Atari is that every experiment requires at least a day of training 
to check the effect, so my code and hyperparameters are very far from being the best, 
but they might be useful as a starting point for your own experiments. Of course, if 
you discover a way to improve the code, please share your findings on GitHub.

As before, there are two program files: Chapter21/atari_dqn.py, which 
implements the DQN method with 𝜀𝜀 -greedy and noisy networks exploration and 
Chapter21/atari_ppo.py, which is the PPO method with optional noisy networks 
and the network distillation method. To switch between hyperparameters, the 
command line -p needs to be used.

The following are the results that I got from a few runs of the code.

The DQN method with 𝜺𝜺 -greedy
Surprisingly, 𝜀𝜀 -greedy behaved quite well. With a 1M replay buffer and epsilon 
decayed from 1.0 to 0.02 for the first 1M steps, it was able to discover how to get the 
oxygen, and the training charts have almost no 560-steps boundary (which will be 
visible with other methods). After 13 hours of training, 𝜀𝜀 -greedy was able to reach 
the mean reward of 12-15, which is quite a good result. But the training was not very 
stable, which suggests that hyperparameter tuning might be needed to get better 
results.

In the DQN version, dueling, double DQN, and n-steps (with n = 4) were used.

Figure 21.24: The reward and steps in the DQN method with 𝜀𝜀 -greedy on Seaquest

Unfortunately, I haven't done enough testing of the DQN method with noisy 
networks, which is implemented in the code and could be enabled with -p 
noisynet. It is possible that with enough tuning, it will behave much better. 
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Another direction for improvement might be the usage of the prioritized replay 
buffer, as some successful examples might be quite rare. Anyway, there are lots of 
directions to experiment with, which are left as exercises.

The classic PPO method
The classic PPO method with entropy regularization showed more stable training, 
and after 13 hours, it reached the mean reward of 18-19. At the same time, there was 
an obvious boundary in episodes' steps, which might become an issue with further 
policy improvements. It is likely that the entropy regularization coefficient, 𝛽𝛽 = 0.1 , 
is too high and should be lowered.

Figure 21.25: The training reward and steps for the PPO method

Figure 21.26: The total loss (left) and policy loss (right)
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Figure 21.27: The value loss (left) and entropy loss (right)

High spikes in the value loss plot might suggest increasing the learning rate for the 
value head. At the moment, the common optimizer with the unified learning rate 
is used.

The PPO method with network distillation
The network distillation implementation follows the recommendations from the 
paper [4] and implements separate heads for predicting intrinsic and extrinsic 
reward components. The calculation for the reference values used to train those 
heads is the same as in the classic PPO method, it's just that different reward values 
are taken.

In terms of the results, they are quite similar to the classic PPO method; in 20 hours 
of training, the method was able to reach a test reward of 17-18, but the amount of 
steps in the episode was still strictly below 560.

Figure 21.28: The reward and steps during the training
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Figure 21.29: The test reward

Figure 21.30: The extrinsic (left) and intrinsic (right) reference values during training

The PPO method with noisy networks
The code is very similar; two layers in the actor head are replaced with the 
NoisyLinear class. The new noise values are sampled every new PPO batch. 
During my experiments, one of the variants I ran with lower entropy regularization, 
𝛽𝛽 = 0.01 , was able to break the 560-steps barrier and play several episodes of length 
1,000 with a reward of 21. 
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However, right after that discovery, the training process diverged. So, more 
experiments with hyperparameters are needed.

Figure 21.31: The reward and steps for training episodes

Figure 21.32: The entropy loss during the training

Summary
In this chapter, we discussed why 𝜀𝜀 -greedy exploration is not the best in some cases 
and checked alternative modern approaches for exploration. The topic of exploration 
is much wider and lots of interesting methods are left uncovered, but I hope you 
were able to get an overall impression of the new methods and the way they should 
be implemented.



Chapter 21

[ 685 ]

In the next chapter, we will take a look at a different sphere of modern RL 
development: model-based methods.
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Beyond Model- 
Free – Imagination

Model-based methods allow us to decrease the amount of communication with the 
environment by building a model of the environment and using it during training. 
In this chapter, we will:

• Take a brief look at the model-based methods in reinforcement learning (RL)
• Reimplement the model, described by DeepMind researchers in the paper 

Imagination-Augmented Agents for Deep Reinforcement Learning (https://
arxiv.org/abs/1707.06203), that adds imagination to agents

Model-based methods
To begin, let's discuss the difference between the model-free approach that we have 
used in the book and model-based methods, including their strong and weak points 
and where they might be applicable.

Model-based versus model-free
In the The taxonomy of RL methods section in Chapter 4, The Cross-Entropy Method, 
we saw several different angles from which we can classify RL methods. We 
distinguished three main aspects:

• Value-based and policy-based
• On-policy and off-policy
• Model-free and model-based

https://arxiv.org/abs/1707.06203
https://arxiv.org/abs/1707.06203
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There were enough examples of methods on both sides of the first and second 
categories, but all the methods that we have covered so far were 100% model-free. 
However, this doesn't mean that model-free methods are more important or better 
than their model-based counterparts. Historically, due to their sample efficiency, 
the model-based methods have been used in the robotics field and other industrial 
controls. This has also happened because of the cost of the hardware and the 
physical limitations of samples that can be obtained from a real robot. Robots with 
a large degree of freedom are not widely accessible, so RL researchers are more 
focused on computer games and other environments where samples are relatively 
cheap. However, the ideas from robotics are infiltrating RL, so, who knows, maybe 
the model-based methods will become more of a focus quite soon. For now, let's 
discuss where the differences between model-free and model-based lie.

In the names of both classes, "model" means the model of the environment, which 
could have various forms, for example, providing us with a new state and reward 
from the current state and action. All the methods covered so far put zero effort into 
predicting, understanding, or simulating the environment. What we were interested 
in was proper behavior (in terms of the final reward), specified directly (a policy) or 
indirectly (a value) given the observation. The source of the observations and reward 
was the environment itself, which in some cases could be very slow and inefficient.

In a model-based approach, we're trying to learn the model of the environment to 
reduce this "real environment" dependency. At the high level, the model is some 
kind of black box that approximates the real environment that we talked about 
in Chapter 1, What Is Reinforcement Learning?. If we have an accurate environment 
model, our agent can produce any number of trajectories that it needs, simply by 
using this model instead of executing the actions in the real world.

To some degree, the common playground of RL research is also just models of the 
real world; for example, MuJoCo or PyBullet are simulators of physics used to avoid 
building real robots with real actuators, sensors, and cameras to train our agents. 
The story is the same with Atari games or the TORCS car racing simulator: we use 
computer programs that model some processes, and these models can be executed 
quickly and cheaply. Even our CartPole example is an over-simplified approximation 
of a real cart with a stick attached. (By the way, in PyBullet and MuJoCo, there are 
more realistic CartPole versions with 3D actions and more accurate simulation.)

There are two motivations for using the model-based approach as opposed to 
model-free. The first and the most important one is sample efficiency caused by less 
dependency on the real environment. Ideally, by having an accurate model, we can 
avoid touching the real world and use only the trained model. In real applications, it 
is almost never possible to have the precise model of the environment, but even an 
imperfect model can significantly reduce the number of samples needed. 
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For example, in real life, you don't need an absolutely precise mental picture of some 
action (such as tying shoelaces or crossing the road), but this picture helps you in 
planning and predicting the outcome.

The second reason for a model-based approach is the transferability of the 
environment model across goals. If you have a good model for a robot manipulator, 
you can use it for a wide variety of goals without retraining everything from scratch.

There are a lot of details in this class of methods, but the aim of this chapter is to give 
you an overview and take a closer look at one particular research paper that has tried 
to combine both the model-free and model-based approaches in a sophisticated way.

Model imperfections
There is a serious issue with the model-based approach: when our model makes 
mistakes or is just inaccurate in some parts of the environment, the policy learned 
from this model may be totally wrong in real-life situations. To deal with this, 
we have several options. The most obvious option is to make the model better. 
Unfortunately, this can just mean that we need more observations from the 
environment, which is what we've tried to avoid. The more complicated and 
nonlinear the behavior of the environment, the worse the situation will be for 
modeling it properly.

Several ways have been discovered to tackle this issue. For example, there is the 
local models family of methods, when we replace one large environment model with 
a small regime-based set of models and train them using trust region tricks in the 
same way that trust region policy optimization (TRPO) does.

Another interesting way of looking at environment models is to augment model-
free policy with model-based paths. In that case, we're not trying to build the best 
possible model of the environment, but just giving our agent extra information and 
letting it decide by itself whether the information will be useful during the training 
or not.

One of the first steps in that direction was carried out by DeepMind in their system 
UNREAL, which was described in the paper by Max Jaderberg, Volodymyr Mnih, 
and others called Reinforcement Learning with Unsupervised Auxiliary Tasks, which 
was published in 2016 (arXiv:1611.05397) [1]. In this paper, the authors augmented 
the asynchronous advantage actor-critic (A3C) agent with extra tasks learned in 
an unsupervised way during the normal training. The main tests of the agent were 
performed in a partially observable first-person view maze navigation problem, 
which is where the agent needs to navigate a Doom-like maze and obtain a reward 
for gathering things or executing other actions. 
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The novel approach of the paper was in artificially injecting extra auxiliary tasks not 
related to the usual RL methods' objectives of value or discounted reward. Those 
tasks were trained in an unsupervised way from observations and include the 
following:

• An immediate reward prediction: From the history of observations, the 
agent was asked to predict the immediate reward of the current step

• Pixel control: The agent was asked to communicate with the environment 
to maximize the change in its view

• Feature control: The agent was learning how to change specific features in 
its internal representation

Those tasks were not directly related to the agent's main objective of maximizing 
the total reward, but they allowed the agent to get a better representation of low-
level features and allowed UNREAL to get better results. The first task of immediate 
reward prediction could be seen as a tiny environment model aiming to predict the 
reward. I'm not going to cover the UNREAL architecture in detail, but I recommend 
that you read the original paper.

The paper that we will cover in detail in this chapter was also published by 
DeepMind researchers [2]. In the paper, the authors augmented the model-free path 
of the standard A3C agent with the so-called "imagination module," which provides 
extra help for the agent to make decisions about actions.

The imagination-augmented agent
The overall idea of the new architecture, called imagination-augmented agent (I2A), 
is to allow the agent to imagine future trajectories using the current observations 
and incorporate these imagined paths into its decision process. The high-level 
architecture is shown in the following diagram:
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Figure 22.1: The I2A architecture

The agent consists of two different paths used to transform the input observation: 
model-free and imagination. Model-free is a standard set of convolution layers that 
transforms the input image in high-level features. The other path, imagination, 
consists of a set of trajectories imagined from the current observation. The 
trajectories are called rollouts and they are produced for every available action in the 
environment. Every rollout consists of a fixed number of steps into the future, and 
on every step, a special model, called the environment model (EM) (but not to be 
confused with the expectation maximization method), produces the next observation 
and predicted immediate reward from the current observation and the action to 
be taken.

Every rollout for every action is produced by taking the current observation into the 
EM and then feeding the predicted observation to the EM again N times. On the first 
step of the rollout, we know the action (as this is the action for which the rollout is 
generated), but on the subsequent steps, the action is chosen using the small rollout 
policy network, which is trained in conjunction with the main agent. The output 
from the rollout is N steps of imagined trajectory starting from the given action and 
continuing into the future according to the learned rollout policy. Every step of the 
rollout is imagined observation and predicted immediate reward.
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All the steps from the single rollout are passed to another network, called the rollout 
encoder, which encodes them into a fixed-size vector. For every rollout, we get 
those vectors, concatenate them together, and feed them to the head of the agent, 
which produces the usual policy and value estimations for the A3C algorithm. As 
you can see, there are some moving parts here, so I've tried to visualize all of them 
in the following diagram for the case of two rollout steps and two actions in the 
environment. In the upcoming subsections, I will describe every network and the 
steps performed by the method in detail.

Figure 22.2: The imagination path architecture

The EM
The goal of the EM is to convert the current observation and the action into the next 
observation and the immediate reward. In the I2A paper [2], the authors tested the 
I2A model on two environments: the Sokoban puzzle and MiniPacman arcade game. 
In both cases, the observations were pixels, so the EM also returned the pixels, plus 
the float value for the reward. To incorporate the action into the convolution layers, 
the action was one-hot encoded and broadcast to match the observation pixels, one 
color plane per action. This transformation is illustrated in the following diagram:
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Figure 22.3: The EM structure

There are several possible ways that this EM could be trained. The paper's authors 
discovered that the fastest convergence is obtained by pretraining the EM using 
another, partially trained baseline agent as a source of environment samples.

The rollout policy
During the rollout steps, we need to make decisions about the action to be taken 
during our imagined trajectory. As mentioned, the action for the first step is set 
explicitly, as we produce an individual rollout trajectory for every action we have, 
but the subsequent steps require somebody to make this decision. Ideally, we 
would like those actions to be similar to our agent's policy, but we can't just ask 
our agent to produce the probabilities, as it will require rollouts to be created in 
the imagination path. To break this tie, a separate rollout policy network is trained 
to produce similar output to our main agent's policy. The rollout policy is a small 
network, with a similar architecture to A3C, that is trained in parallel to the main 
I2A network using a cross-entropy loss between the rollout policy network output 
and the output of the main network. In the paper, this training process is called 
"policy distillation."
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The rollout encoder
The final component of the I2A model is the rollout encoder, which takes rollout 
steps (observation and reward pairs) as input and produces the fixed-sized vector, 
which embeds the information about the rollout. In this network, every rollout step 
was preprocessed with a small convolution network to extract the features from 
the observation, and these features were converted into a vector of fixed size by 
the long short-term memory (LSTM) network. The outputs from every rollout were 
concatenated together with features from the model-free path and used to produce 
the policy and the value estimation in the same way as in the A3C method.

The paper's results
As already mentioned, to check the effect of imagination in RL problems, the authors 
used two environments that require planning and making decisions about the 
future: randomly generated Sokoban puzzles and the MiniPacman game. In both 
environments, the imagination architecture showed better results than the baseline 
A3C agent.

In the rest of this chapter, we will apply the model to the Atari Breakout game and 
check the effect ourselves.

I2A on Atari Breakout
The training path of I2A is a bit complicated and includes a lot of code and several 
steps. To understand it better, let's start with a brief overview. In this example, we 
will implement the I2A architecture described in the paper [2], adopted to the Atari 
environments, and test it on the Breakout game. The overall goal is to check the 
training dynamics and the effect of imagination augmentation on the final policy.

Our example consists of three parts, which correspond to different steps in the training:

1. The baseline advantage actor-critic (A2C) agent in Chapter22/01_a2c.py. 
The resulting policy is used for obtaining observations of the EM.

2. The EM training in Chapter22/02_imag.py. It uses the model obtained on 
the previous step to train the EM in an unsupervised way. The result is the 
EM weights.

3. The final I2A agent training in Chapter22/03_i2a.py. In this step, we use 
the EM from step 2 to train a full I2A agent, which combines the model-free 
and rollouts paths.

Due to the size of the code, I'm not going to describe all of it here, but will focus 
instead on the important parts.
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The baseline A2C agent
The first step in the training has two goals: to establish the baseline, which will 
be used to evaluate the I2A agent, and obtain the policy for the EM step. The EM 
is trained in an unsupervised way from the tuples (s, a, s', r) obtained from the 
environment. So, the final quality of the EM is heavily dependent on the data it has 
been trained on. The closer the observations are to the data experienced by the agent 
during the real action, the better the final result will be.

The code is in Chapter22/01_a2c.py and Chapter22/lib/common.py and is the 
standard A2C algorithm that we have covered several times. To make the training 
data generation process reusable in I2A agent training, I haven't used PTAN library 
classes and have reimplemented data generation from scratch, which is in the 
common.iterate_batches() function and responsible for gathering observations 
from environments and calculating discounted rewards for the experienced 
trajectories.

This agent also has all hyperparameters set very close to the OpenAI Baseline A2C 
implementation, which I've used during debugging and the implementation of the 
agent. The only difference is the initialization of the initial weights (I rely on the 
standard PyTorch initialization of weights) and that the learning rate decreased 
from 7e-4 to 1e-4 to improve the stability of the training process.

For every 1,000 batches of training, a test of the current policy was performed, which 
consisted of three full episodes and five lives, each to be played by the agent. The 
mean reward and the number of steps were recorded, and the model was saved 
every time that a new best training reward had been achieved.

The configuration of the testing environment is different in two ways from 
environments used during the training. First of all, the test environment plays 
full episodes instead of per-life episodes, so the final reward on the test episodes 
is higher than the reward during the training. The second difference is that the 
test environment uses unclipped reward to make the test numbers interpretable. 
Clipping is a standard way to improve the stability of Atari training, as in some 
games, the raw score could have a large magnitude that negatively influences the 
estimated advantage variance.

Another difference from the classical Atari A2C agent is the number of frames 
given as an observation. Usually, four consequent frames are given, but from my 
experiments, I found out that the Breakout game has a very similar convergence on 
just two frames. Working with two frames is faster, so everywhere in this example 
the observation tensor has the dimensionality of (2, 84, 84).
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To make training repeatable, the fixed random seed is used in the baseline agent. 
This is done by the common.set_seed function, which sets the random seed 
for NumPy, Torch (both central processing unit (CPU) and CUDA), and every 
environment in the pool.

EM training
The EM is trained on data produced by the baseline agent, and you can specify any 
weight file saved on the previous step. It does not necessarily have to be the best 
model, as it just needs to be "good enough" to produce relevant observations.

The EM definition is in Chapter22/lib/i2a.py, the EnvironmentModel class, and 
has an architecture that mostly follows the model present in the I2A paper [2] for 
the Sokoban environment. The input to the model is an observation tensor that 
accompanies the action to be taken and is passed as an integer value. The action 
is one-hot encoded and broadcast to the observation tensor dimensionality. Then, 
both the broadcasted action and observation are concatenated along the "channels" 
dimension, giving the input tensor of (6, 84, 84), as Breakout has four actions.

This tensor is processed with two convolution layers of 4×4 and 3×3, then the 
residual layer is used when the output is processed by a 3×3 convolution, the result 
of which is added to the input. The resulting tensor has been fed into two paths: 
one is deconvolution, producing the output observation, and another is a reward 
predicting path, consisting of two convolution layers and two fully connected layers.

The EM has two outputs: the immediate reward value, which is a single float, and 
the next observation. To reduce the dimensionality of the observation, the difference 
from the last observation is predicted. So, the output is a tensor (1, 84, 84). 
Besides the decrease in the amount of values we need to predict, the difference has 
the benefit of being zero-centered and zero-valued for frames when nothing has 
changed, which will dominate during the Breakout gameplay, when only a few 
pixels usually change from frame to frame (the ball, the paddle, and the brick being 
hit). The architecture and code for the EM is shown in the following figure:
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Figure 22.4: The EM architecture and its input preprocessing

The following is the model implementation from the Chapter22/lib/i2a.py module:

EM_OUT_SHAPE = (1, ) + common.IMG_SHAPE[1:]

class EnvironmentModel(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(EnvironmentModel, self).__init__()

        self.input_shape = input_shape
        self.n_actions = n_actions

        n_planes = input_shape[0] + n_actions
        self.conv1 = nn.Sequential(
            nn.Conv2d(n_planes, 64, kernel_size=4,
                      stride=4, padding=1),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU()
        )
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The convolution part takes the input, which has color planes from the observation 
plus extra planes from the one-hot encoded action. As the model uses residual 
connection between both convolution layers, we will keep them as separate fields.

        self.deconv = nn.ConvTranspose2d(
            64, 1, kernel_size=4, stride=4, padding=0)

        self.reward_conv = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3),
            nn.MaxPool2d(2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3),
            nn.MaxPool2d(2),
            nn.ReLU()
        )

        rw_conv_out = self._get_reward_conv_out(
            (n_planes, ) + input_shape[1:])
        self.reward_fc = nn.Sequential(
            nn.Linear(rw_conv_out, 128),
            nn.ReLU(),
            nn.Linear(128, 1)
        )

The part after the convolution layers splits into two paths: the first one is 
deconvolution transformation, which generates the predicted observations 
of the next state, and the second generates the predicted reward of the state.

    def _get_reward_conv_out(self, shape):
        o = self.conv1(torch.zeros(1, *shape))
        o = self.reward_conv(o)
        return int(np.prod(o.size()))

    def forward(self, imgs, actions):
        batch_size = actions.size()[0]
        act_planes_v = torch.FloatTensor(
            batch_size, self.n_actions, *self.input_shape[1:])
        act_planes_v.zero_()
        act_planes_v = act_planes_v.to(actions.device)
        act_planes_v[range(batch_size), actions] = 1.0
        comb_input_v = torch.cat((imgs, act_planes_v), dim=1)
        c1_out = self.conv1(comb_input_v)
        c2_out = self.conv2(c1_out)
        c2_out += c1_out
        img_out = self.deconv(c2_out)
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        rew_conv = self.reward_conv(c2_out).view(batch_size, -1)
        rew_out = self.reward_fc(rew_conv)
        return img_out, rew_out

In the forward() method of our model, we combine all the parts together into the 
transformation shown in Figure 22.4.

The training process of the EM is simple and straightforward. The pool of 16 parallel 
environments is used to populate the batch of 64 samples. Every entry in a batch 
consists of the current observation, the next immediate observation, the action taken, 
and the immediate reward obtained. The final loss that is optimized is a sum of the 
observation loss and the reward loss. The observation loss is the mean squared error 
(MSE) loss between the predicted delta for the next observation and the real delta 
between the current and the next observation. The reward loss is again the MSE 
between rewards. To emphasize the importance of observation, the observation 
loss has a scale factor of 10.

The imagination agent
The final step in the training process is the I2A agent, which combines the model-free 
path with rollouts produced by the EM trained in the previous step.

The I2A model
The agent is implemented in the I2A class in the Chapter22/lib/i2a.py module.

class I2A(nn.Module):
    def __init__(self, input_shape, n_actions,
                 net_em, net_policy, rollout_steps):
        super(I2A, self).__init__()

The arguments of the constructor provide the shape of observations, the number of 
actions in the environment, and the two networks used during rollout: the EM and 
rollout policy and, finally, the count of steps to perform during rollouts. Both the EM 
and rollout policy networks are stored in a special way to prevent their weights from 
being included in the I2A network parameters.

        self.n_actions = n_actions
        self.rollout_steps = rollout_steps

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32,
                      kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),



Beyond Model-Free – Imagination

[ 700 ]

            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU(),
        )

The preceding code specifies the model-free path, which produces the features from 
the observation. The architecture is a familiar Atari convolution.

        conv_out_size = self._get_conv_out(input_shape)
        fc_input = conv_out_size + ROLLOUT_HIDDEN * n_actions

        self.fc = nn.Sequential(
            nn.Linear(fc_input, 512),
            nn.ReLU()
        )
        self.policy = nn.Linear(512, n_actions)
        self.value = nn.Linear(512, 1)

The input of the layers that will produce the policy and the value of the agent is 
combined from the features obtained from the model-free path and encoded rollouts. 
Every rollout is represented with the ROLLOUT_HIDDEN constant (which equals 256), 
which is a dimensionality of the LSTM layer inside the RolloutEncoder class.

        self.encoder = RolloutEncoder(EM_OUT_SHAPE)
        self.action_selector = \
            ptan.actions.ProbabilityActionSelector()
        object.__setattr__(self, "net_em", net_em)
        object.__setattr__(self, "net_policy", net_policy)

The rest of the constructor creates the RolloutEncoder class (which will be 
described later in this section) and stores the EM and rollout policy networks. 
Neither of these networks is supposed to be trained together with the I2A agent, as 
the EM is not trained at all (it is pretrained on the previous step and remains fixed) 
and the rollout policy is trained with a separate policy distillation process. However, 
PyTorch 's Module class automatically registers and joins all fields assigned to the 
class. To prevent the EM and rollout policy networks from being merged into the I2A 
agent, we save their references via the __setattr__() call, which is a bit hacky, but 
does exactly what we need.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        fx = x.float() / 255
        enc_rollouts = self.rollouts_batch(fx)
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        conv_out = self.conv(fx).view(fx.size()[0], -1)
        fc_in = torch.cat((conv_out, enc_rollouts), dim=1)
        fc_out = self.fc(fc_in)
        return self.policy(fc_out), self.value(fc_out)

The forward() function looks simple, as most of the work here is inside the 
rollouts_batch() method. The next and last method of the I2A class is a bit more 
complicated. Originally, it was written to perform all rollouts sequentially, but 
that version was painfully slow. The new version of the code performs all rollouts 
at once, step by step, which increases the speed almost five times, but makes the 
code slightly more complicated.

    def rollouts_batch(self, batch):
        batch_size = batch.size()[0]
        batch_rest = batch.size()[1:]
        if batch_size == 1:
            obs_batch_v = batch.expand(
                batch_size * self.n_actions, *batch_rest)
        else:
            obs_batch_v = batch.unsqueeze(1)
            obs_batch_v = obs_batch_v.expand(
                batch_size, self.n_actions, *batch_rest)
            obs_batch_v = obs_batch_v.contiguous()
            obs_batch_v = obs_batch_v.view(-1, *batch_rest)

At the beginning of the function, we take the batch of observations and we want 
to perform n_actions rollouts for every observation of the batch. So, we need to 
expand the batch of observations, repeating every observation n_actions times. 
The most efficient way of doing this is to use the PyTorch expand() method, which 
can repeat any tensor with 1 dimensionality and repeat it along this dimension any 
number of times. In case our batch consists of one single example, we just use this 
batch dimension; otherwise, we need to inject the extra unit dimension right after 
the batch dimension and then expand along it. Regardless of this, the resulting 
dimensionality of the obs_batch_v tensor is (batch_size * n_actions, 2, 
84, 84).

        actions = np.tile(np.arange(0, self.n_actions,
                                    dtype=np.int64), batch_size)
        step_obs, step_rewards = [], []

After that, we need to prepare the array with the actions that we want the EM to take 
for every observation. As we repeated every observation n_actions times, our actions 
array will also have the form [0, 1, 2, 3, 0, 1, 2, 3, ...] (Breakout has four 
actions in total). In the step_obs and step_rewards lists, we will save observations 
and immediate rewards produced for every rollout step by the EM model. 



Beyond Model-Free – Imagination

[ 702 ]

This data will be passed to RolloutEncoder to be embedded into fixed-vector form.

        for step_idx in range(self.rollout_steps):
            actions_t = torch.LongTensor(actions).to(batch.device)
            obs_next_v, reward_v = \
                self.net_em(obs_batch_v, actions_t)

Then, we start the loop for every rollout step. For every step, we ask the EM network 
to predict the next observation (returned as the delta to the current observation) and 
immediate reward. Subsequent steps will have actions selected using the rollout 
policy network.

            step_obs.append(obs_next_v.detach())
            step_rewards.append(reward_v.detach())
            # don't need actions for the last step
            if step_idx == self.rollout_steps-1:
                break

We store the observation delta and immediate reward in lists for RolloutEncoder 
and stop the loop if we're at the final rollout step. The early stop is possible as the 
rest of the code in the loop is supposed to select the actions, but for the last step we 
don't need actions at all.

            # combine the delta from EM into new observation
            cur_plane_v = obs_batch_v[:, 1:2]
            new_plane_v = cur_plane_v + obs_next_v
            obs_batch_v = torch.cat(
                (cur_plane_v, new_plane_v), dim=1)

To be able to use the rollout policy network, we need to create a normal observation 
tensor from the delta returned by the EM network. To do this, we take the last 
channel from the current observation, add the delta from the EM to it, creating 
a predicted frame, and then combine them into the normal observation tensor 
of shape (batch_size * n_actions, 2, 84, 84).

            # select actions
            logits_v, _ = self.net_policy(obs_batch_v)
            probs_v = F.softmax(logits_v, dim=1)
            probs = probs_v.data.cpu().numpy()
            actions = self.action_selector(probs)

In the rest of the loop, we use the created observations batch to select the actions 
using the rollout policy network and convert the returned probability distribution 
into the action indices. Then, the loop continues to predict the next rollout step.

        step_obs_v = torch.stack(step_obs)
        step_rewards_v = torch.stack(step_rewards)
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        flat_enc_v = self.encoder(step_obs_v, step_rewards_v)
        return flat_enc_v.view(batch_size, -1)

When we are done with all the steps, two lists, step_obs and step_rewards, will 
contain tensors for every step. Using the torch.stack() function, we join them on 
the new dimension. The resulting tensors have rollout steps as the first dimension 
and batch_size * n_actions as the second dimension. These two tensors are 
passed to RolloutEncoder, which produces an encoded vector for every entry in 
the second dimension. The output from the encoder is a tensor of (batch_size*n_
actions, encoded_len), and we want to concatenate encodings for different 
actions of the same batch sample together. To do this, we just reshape the output 
tensor to have batch_size as the first dimension, so the output from the function 
will have a (batch_size, encoded_len*n_actions) shape.

The Rollout encoder
The RolloutEncoder class accepts two tensors: observations of (rollout_steps, 
batch_size, 1, 84, 84) and rewards of (rollout_steps, batch_size). It 
applies a recurrent neural network (RNN) along the rollout steps to convert every 
batch series into the encoded vector. Before the RNN, we have a preprocessor that 
extracts features from the observation delta given by the EM, and then the reward 
value is just appended to the features vector.

class RolloutEncoder(nn.Module):
    def __init__(self, input_shape, hidden_size=ROLLOUT_HIDDEN):
        super(RolloutEncoder, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32,
                      kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU(),
        )

The observation preprocessor has the same Atari convolution layers, except that the 
input tensor has a single channel, which is a delta between consecutive observations 
produced by the EM.

        conv_out_size = self._get_conv_out(input_shape)
        self.rnn = nn.LSTM(input_size=conv_out_size+1,
                           hidden_size=hidden_size,
                           batch_first=False)



Beyond Model-Free – Imagination

[ 704 ]

The RNN of the encoder is an LSTM layer. The batch_first=False argument is a 
bit redundant (as the default value for the argument is also False), but is left here to 
remind us about the input tensor order, which is (rollout_steps, batch_ size, 
conv_features+1), so the time dimension has zero index.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, obs_v, reward_v):
        # Input is in (time, batch, *) order
        n_time = obs_v.size()[0]
        n_batch = obs_v.size()[1]
        n_items = n_time * n_batch
        obs_flat_v = obs_v.view(n_items, *obs_v.size()[2:])
        conv_out = self.conv(obs_flat_v)
        conv_out = conv_out.view(n_time, n_batch, -1)
        rnn_in = torch.cat((conv_out, reward_v), dim=2)
        _, (rnn_hid, _) = self.rnn(rnn_in)
        return rnn_hid.view(-1)

The forward() function is obvious from the encoder architecture and first extracts 
the features from all rollout_steps*batch_size observations and then applies 
LSTM to the sequence. As an encoded vector of the rollout, we take the hidden state 
returned by the last step of the RNN.

The training of I2A
The training process has two steps: we train the I2A model in the usual A2C manner, 
and we do a distillation of the rollout policy using a separate loss. The distillation 
training is needed to approximate the I2A behavior by a smaller policy used during 
rollout steps to select actions. The actions chosen in imagined trajectories should be 
similar to the actions that the agent will choose in real situations. However, during 
the rollouts, we can't just use our main I2A model for action selection, as the main 
I2A model will need to do rollouts again. To break this contradiction, distillation is 
used, which is a very simple cross-entropy loss between the policy of the main I2A 
model during the training and the policy returned by the rollout policy network. 
This training step has a separate optimizer responsible only for rollouts' policy 
parameters.

The piece of the training loop that is responsible for distillation is given as follows. 
The array mb_probs contains the probabilities of actions chosen by the I2A model for 
observations, obs_v.

            probs_v = torch.FloatTensor(mb_probs).to(device)
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            policy_opt.zero_grad()
            logits_v, _ = net_policy(obs_v)
            policy_loss_v = -F.log_softmax(logits_v, dim=1) * \
                            probs_v.view_as(logits_v)
            policy_loss_v = policy_loss_v.sum(dim=1).mean()
            policy_loss_v.backward()
            policy_opt.step()

Another step in the training that is supposed to train the I2A model is performed 
exactly the same way as we train the usual A2C, ignoring all the internals of the 
I2A model: the value loss is the MSE between the predicted and discounted reward 
approximated by the Bellman equation, while the policy gradient is approximated 
by the advantage multiplied by log probability of the chosen action.

Experiment results
In this section, we will take a look at the results of our multistep training process.

The baseline agent
To train the agent, run Chapter22/01_a2c.py with the optional --cuda flag to 
enable the graphics processing unit (GPU) and the required -n option with the 
experiment name used in TensorBoard and in a directory name to save the models.

Chapter22$ ./01_a2c.py --cuda -n tt

AtariA2C(

  (conv): Sequential(

    (0): Conv2d(2, 32, kernel_size=(8, 8), stride=(4, 4))

    (1): ReLU()

    (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))

    (3): ReLU()

    (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))

    (5): ReLU()

  )

  (fc): Sequential(

    (0): Linear(in_features=3136, out_features=512, bias=True)

    (1): ReLU()

  )

  (policy): Linear(in_features=512, out_features=4, bias=True)

  (value): Linear(in_features=512, out_features=1, bias=True)



Beyond Model-Free – Imagination

[ 706 ]

)

4: done 13 episodes, mean_reward=0.00, best_reward=0.00, speed=696.72

9: done 12 episodes, mean_reward=0.00, best_reward=0.00, speed=721.23

10: done 2 episodes, mean_reward=1.00, best_reward=1.00, speed=740.74

13: done 6 episodes, mean_reward=0.00, best_reward=1.00, speed=735.17

In 300k training iterations, which took 15 hours, the A2C was able to reach the 
mean reward of 400 on test episodes with five lives and unclipped reward. The 
maximum test reward on three full episodes was 720. The following figures show 
the convergence plots.

Figure 22.5: The A2C baseline: test episodes reward (left) and steps (right)

Figure 22.6: The reward (left) and steps (right) for training episodes (one game life)
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Figure 22.7: The advantage (left) and entropy loss (right) during the training

 
Figure 22.8: The policy loss (left) and value loss (right)

Training EM weights
To train the EM, you need to specify the policy produced during the baseline agent 
training. In my experiments, I took the policy from the partially trained agent to 
increase the potential diversity of the EM training data. Another way to increase the 
sample diversity would be to use several policies for data generation.

$ ./02_imag.py --cuda -m saves/01_a2c_t1/best_0400.333.dat -n t1

EnvironmentModel(

  (conv1): Sequential(

    (0): Conv2d(6,64,kernel_size=(4,4),stride=(4, 4),padding=(1,1))

    (1): ReLU()
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    (2): Conv2d(64,64,kernel_size=(3,3),stride=(1,1),padding=(1,1))

    (3): ReLU()

  )

  (conv2): Sequential(

    (0): Conv2d(64,64,kernel_size=(3,3),stride=(1,1),padding=(1,1))

    (1): ReLU()

  )

  (deconv): ConvTranspose2d(64,1,kernel_size=(4,4),stride=(4,4))

  (reward_conv): Sequential(

    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))

    (1): MaxPool2d(kernel_size=2,stride=2,padding=0,dilation=1)

    (2): ReLU()

    (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))

    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)

    (5): ReLU()

  )

  (reward_fc): Sequential(

    (0): Linear(in_features=576, out_features=128, bias=True)

    (1): ReLU()

    (2): Linear(in_features=128, out_features=1, bias=True)

  )

)

Best loss updated: inf -> 1.7988e-02

Best loss updated: 1.7988e-02 -> 1.1621e-02

Best loss updated: 1.1621e-02 -> 9.8923e-03

Best loss updated: 9.8923e-03 -> 8.6424e-03

...

In 200k training iterations, the loss almost stopped decreasing. The EM model with 
the smallest loss could be used for final training of the I2A model. The EM training 
dynamics follow.
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Figure 22.9: The EM training loss: observations (left) and reward (right)

Training with the I2A model
The imagination path comes with a significant computation cost, which is 
proportional to the number of rollout steps performed. I experimented with several 
values for this hyperparameter. For Breakout, there is not much difference between 
five and three steps, but the speed is almost two times faster.

$ ./03_i2a.py --cuda -n t1 --em saves/02_env_t1/best_9.78e-04.dat

I2A(

  (conv): Sequential(

    (0): Conv2d(2, 32, kernel_size=(8, 8), stride=(4, 4))

    (1): ReLU()

    (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))

    (3): ReLU()

    (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))

    (5): ReLU()

  )

  (fc): Sequential(

    (0): Linear(in_features=4160, out_features=512, bias=True)

    (1): ReLU()

  )

  (policy): Linear(in_features=512, out_features=4, bias=True)

  (value): Linear(in_features=512, out_features=1, bias=True)

  (encoder): RolloutEncoder(
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    (conv): Sequential(

      (0): Conv2d(1, 32, kernel_size=(8, 8), stride=(4, 4))

      (1): ReLU()

      (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))

      (3): ReLU()

      (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))

      (5): ReLU()

    )

    (rnn): LSTM(3137, 256)

  )

)

2: done 1 episodes, mean_reward=0, best_reward=0, speed=160.41 f/s

4: done 12 episodes, mean_reward=0, best_reward=0, speed=190.84 f/s

7: done 1 episodes, mean_reward=0, best_reward=0, speed=169.94 f/s

...

In 300k training steps, which took more than two days on my hardware, I2A was 
able to reach the mean reward of 500 on the test, which shows better dynamics than 
the baseline. The maximum test reward on three full episodes was 750, which is also 
better than the 720 obtained by the baseline. The only serious downside of the I2A 
method is much lower performance, which is approximately four times slower than 
A2C. Following are figures for I2A training.

Figure 22.10: The reward (left) and steps (right) for the I2A test episodes
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Figure 22.11: I2A training episodes (one life): the reward (left) and steps (right)

Figure 22.12: Distillation loss

I also ran an experiment with a single step in the rollout; surprisingly, the training 
dynamics between one step and three steps weren't much different, which may be 
a sign that in Breakout, the agent doesn't need to imagine the trajectory for too long 
to get the benefits from the EM. This is appealing, as with a single step, we don't 
need rollout policy at all (as the first step is always performed on all actions). An 
RNN is not needed either, which can significantly speed up the agent, pushing its 
performance close to the baseline A2C.
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Summary
In this chapter, we discussed the model-based approach to RL and implemented one 
of the recent research architectures from DeepMind that augments the model of the 
environment. This model tries to join both model-free and model-based paths into 
one to allow the agent to decide which knowledge to use.

In the next chapter, we will take a look at a recent DeepMind breakthrough in the 
area of full-information games: the AlphaGo Zero algorithm.
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AlphaGo Zero
We will now continue our discussion about model-based methods by exploring the 
cases when we have a model of the environment, but this environment is being used 
by two competing parties. This situation is very familiar in board games, where 
the rules of the game are fixed and the full position is observable, but we have 
an opponent who has the primary goal of preventing us from winning the game.

Recently, DeepMind proposed a very elegant approach to solving such problems. 
No prior domain knowledge is required, but the agent improves its policy only via 
self-play. This method is called AlphaGo Zero.

In this chapter, we will:

• Discuss the structure of the AlphaGo Zero method
• Implement the method for playing the game Connect 4

Board games
Most board games provide a setup that is different from an arcade scenario. The 
Atari game suite assumes that one player is making decisions in some environment 
with complex dynamics. By generalizing and learning from the outcome of their 
actions, the player improves their skills, increasing their final score. In a board game 
setup, however, the rules of the game are usually quite simple and compact. What 
makes the game complicated is the number of different positions on the board and 
the presence of an opponent with an unknown strategy who tries to win the game.

With board games, the ability to observe the game state and the presence of explicit 
rules opens up the possibility of analyzing the current position, which isn't the case 
for Atari. This analysis means taking the current state of the game, evaluating all the 
possible moves that we can make, and then choosing the best move as our action.
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The simplest approach to evaluation is to iterate over the possible actions and 
recursively evaluate the position after the action is taken. Eventually, this process 
will lead us to the final position, when no more moves are possible. By propagating 
the game result back, we can estimate the expected value of any action in any 
position. One possible variation of this method is called minimax, which is when 
we are trying to make the strongest move, but our opponent is trying to make 
the worst move for us, so we are iteratively minimizing and maximizing the final 
game objective of walking down the tree of game states (which will be described 
in detail later).

If the number of different positions is small enough to be analyzed entirely, like 
in the tic-tac-toe game (which has only 138 terminal states), it's not a problem to 
walk down this game tree from any state that we have and figure out the best move 
to make.

Unfortunately, this brute-force approach doesn't work even for medium-complexity 
games, as the number of configurations grows exponentially. For example, in the 
game of draughts (also known as checkers), the total game tree has 5*1020 nodes, 
which is quite a challenge even for modern hardware. In the case of more complex 
games, like chess or Go, this number is much larger, so it's just not possible to 
analyze all the positions reachable from every state. To handle this, usually some 
kind of approximation is used, when we analyze the tree up to some depth. With 
a combination of careful search and stop criteria, called tree pruning, and the smart 
predefined evaluation of positions, we can make a computer program that plays 
complex games at a fairly good level.

In late 2017, DeepMind published an article in the journal Nature presenting a novel 
approach called AlphaGo Zero, which was able to achieve a superhuman level of 
play in complex games, like Go and chess, without any prior knowledge except the 
game rules. The agent was able to improve its policy by constantly playing against 
itself and reflecting on the outcomes. No large game databases, handmade features, 
or pretrained models were needed. Another nice property of the method is its 
simplicity and elegance.

In the example of this chapter, we will try to understand and implement this 
approach for the game Connect 4 (also known as four in a row or four in a line) 
to evaluate it ourselves.
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The AlphaGo Zero method
In this section, we will discuss the structure of the method. The whole system 
contains several parts that need to be understood before we can implement them.

Overview
At a high level, the method consists of three components, all of which will be 
explained in detail later, so don't worry if something is not completely clear from 
this section:

• We constantly traverse the game tree using the Monte Carlo tree search 
(MCTS) algorithm, the core idea of which is to semi-randomly walk down 
the game states, expanding them and gathering statistics about the frequency 
of moves and underlying game outcomes. As the game tree is huge, both 
in terms of the depth and width, we don't try to build the full tree; we just 
randomly sample its most promising paths (that's the source of the method's 
name).

• At every moment, we have a best player, which is the model used to generate 
the data via self-play. Initially, this model has random weights, so it makes 
moves randomly, like a four-year-old just learning how chess pieces move. 
However, over time, we replace this best player with better variations of 
it, which generate more and more meaningful and sophisticated game 
scenarios. Self-play means that the same current best model is used on both 
sides of the board. This might not look very useful, as having the same 
model play against itself has an approximately 50% chance outcome, but 
that's actually what we need: samples of the games where our best model 
can demonstrate its best skills. The analogy is simple: it's usually not very 
interesting to watch a match between the outsider and the leader; the leader 
will win easily. What is much more fun and intriguing to see is when players 
of roughly equal skill compete. That's why the final in any championship 
attracts much more attention than the preceding matches: both teams or 
players in the final usually excel in the game, so they will need to play 
their best game to win.

• The third component in the method is the training process of the other, 
apprentice model, which is trained on the data gathered by the best model 
during self-play. This model could be compared to a kid sitting and 
constantly analyzing the chess games played by two adults. Periodically, 
we play several matches between this trained model and our current best 
model. When the trainee is able to beat the best model in the majority of 
games, we announce the trained model as the new best model and the 
process continues.
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Despite the simplicity and even naivety of this, AlphaGo Zero was able to beat all 
the previous AlphaGo versions and became the best Go player in the world, without 
any prior knowledge except the game rules. After the paper called Mastering the 
Game of Go Without Human Knowledge [1] was published, DeepMind adapted the 
same method to fit chess and published the paper called Mastering Chess and Shogi by 
Self-Play with a General Reinforcement Learning Algorithm [2], where the model trained 
from scratch beat Stockfish, which was the best chess program and took more than 
a decade for human experts to develop.

Now, let's check all three components of the method in detail.

MCTS
To understand what MCTS does, let's consider a simple subtree of the tic-tac-toe 
game, as shown in the following diagram. In the beginning, the game field is empty 
and the cross (X) needs to choose where to move. There are nine different options 
for the first move, so our root state has nine different branches leading to the 
corresponding states.

Figure 23.1: The game tree of tic-tac-toe

The number of possible actions at some particular game state is called the branching 
factor, and it shows the bushiness of the game tree. Of course, this is not constant 
and may vary, as some moves are not always doable. In the case of tic-tac-toe, the 
number of available actions could vary from nine at the beginning of the game 
to zero at the leaf nodes. The branching factor allows us to estimate how quickly 
the game tree grows, as every available action leads to another set of actions that 
could be taken.

For our example, after the cross has made its move, the nought (0) has eight 
alternatives at every nine positions, which makes 9*8 total positions at the second 
level of the tree. The total number of nodes in the tree can be up to 9! = 362880, but 
the actual number is less, as not all the games could be played to the maximum depth.
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Tic-tac-toe is tiny, but if we consider larger games and, for example, think about 
the count of the first moves that white could make at the beginning of a chess 
game (which is 20) or the number of spots that the white stone could be placed 
at in Go (361 in total for a 19×19 game field), the number of game positions in the 
complete tree quickly becomes enormous. With every new level, the number of 
states gets multiplied by the average number of actions that we could perform on 
the previous level.

To deal with this combinatorial explosion, random sampling comes into play. In 
a general MCTS, we perform many iterations of depth-first search, starting at the 
current game state and either selecting the actions randomly or with some strategy, 
which should include enough randomness in its decisions. Every search is continued 
until the end state of the game, and then it is followed by updating the weights of 
the visited tree branches according to the game's outcome. This process is similar 
to the value iteration method, when we played the episodes and the final step of the 
episode influenced the value estimation of all the previous steps. This is a general 
MCTS, and there are many variants of this method related to expansion strategy, 
branch selection policy, and other details.

In AlphaGo Zero, a variant of MCTS is used. For every edge (representing the move 
from some position), this set of statistics is stored: a prior probability, P(s, a), of the 
edge, a visit count, N(s, a), and an action value, Q(s, a). Each search starts from the 
root state following the most promising actions, selected using the utility value, 

U(s, a), proportional to 𝑄𝑄(𝑠𝑠, 𝑎𝑎) +
𝑃𝑃(𝑠𝑠, 𝑎𝑎)

1 + 𝑁𝑁(𝑠𝑠, 𝑎𝑎) .

Randomness is added to the selection process to ensure enough exploration of the 
game tree. Every search could end up with two outcomes: the end state of the game 
is reached, or we face a state that hasn't been explored yet (in other words, has no 
statistics for values). In the latter case, the policy neural network (NN) is used to 
obtain the prior probabilities and the value of the state estimation, and the new tree 
node with N(s, a) = 0, P(s, a) = pnet (which is a probability of the move returned by 
the network) and Q(s, a) = 0 is created. Besides the prior probability of the actions, 
the network returns the estimation of the game's outcome (or the value of the state) 
as seen from the current player.

As we have obtained the value (by reaching the final game state or by expanding 
the node using the NN), a process called the backup of value is performed. During 
the process, we traverse the game path and update statistics for every visited 
intermediate node; in particular, the visit count, N(s, a), is incremented by one and 
Q(s, a) is updated to include the game outcome from the current state perspective. 
As two players are exchanging moves, the final game outcome changes the sign in 
every backup step.
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This search process is performed several times (in AlphaGo Zero's case, one to two 
thousand searches are performed), gathering enough statistics about the action to 
use the N(s, a) counter as an action probability to be taken in the root node.

Self-play
In AlphaGo Zero, the NN is used to approximate the prior probabilities of the actions 
and evaluate the position, which is very similar to the advantage actor-critic (A2C) 
two-headed setup. On the input of the network, we pass the current game position 
(augmented with several previous positions) and return two values. The policy head 
returns the probability distribution over the actions, and the value head estimates the 
game outcome as seen from the player's perspective. This value is undiscounted, as 
moves in Go are deterministic. Of course, if you have stochasticity in a game, like in 
backgammon, some discounting should be used.

As has already been described, we're maintaining the current best network, which 
constantly self-plays to gather the training data for our apprentice network. Every 
step in each self-play game starts with several MCTSes from the current position 
to gather enough statistics about the game subtree to select the best action. The 
concrete selection depends on the move and our settings. For self-play games, 
which are supposed to produce enough variance in the training data, the first 
moves are selected in a stochastic way. However, after some number of steps 
(which is a hyperparameter in the method), action selection becomes deterministic, 
and we select the action with the largest visit counter, N(s, a). In evaluation games 
(when we check the network being trained versus the current best model), all the 
steps are deterministic and selected solely on the largest visit counter.

Once the self-play game has been finished and the final outcome has become known, 
every step of the game is added to the training dataset, which is a list of tuples 
(𝑠𝑠𝑡𝑡, 𝜋𝜋𝑡𝑡, 𝑟𝑟𝑡𝑡) , where 𝑠𝑠𝑡𝑡  is the game state, 𝜋𝜋𝑡𝑡  is the action probabilities calculated from 
MCTS sampling, and 𝑟𝑟𝑡𝑡  is the game's outcome from the perspective of the player 
at step t.

Training and evaluation
The self-play process between two clones of the current best network provides us 
with a stream of the training data, consisting of states, action probabilities, and 
position values obtained from the self-play games. With this at hand, our training 
is simple: we sample mini-batches from the replay buffer of training examples and 
minimize the mean squared error (MSE) between the value head prediction and the 
actual position value, as well as cross-entropy loss between predicted probabilities 
and sampled probabilities, 𝜋𝜋 .
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As mentioned earlier, once in several training steps the evaluation of the trained 
network is performed, which consists of playing several games between the current 
best and trained networks. Once the trained network becomes significantly better 
than the current best network, we copy the trained network into the best network 
and continue the process.

The Connect 4 bot
To see the method in action, let's implement AlphaGo Zero for Connect 4. The 
game is for two players with fields 6×7. Players have disks of two different colors, 
which they drop in turn into any of the seven columns. The disks fall to the bottom, 
stacking vertically. The game objective is to be the first to form a horizontal, vertical, 
or diagonal group of four disks of the same color. Two game situations are shown in 
the following diagram. In the first situation, the first player has just won, while in the 
second, the second player is going to form a group.

Figure 23.2: Two game positions in Connect 4

Despite its simplicity, this game has 4.5*1012 different game states, which is 
challenging for computers to solve with brute force. This example consists of several 
tools and library modules:

• Chapter23/lib/game.py: A low-level game representation that contains 
functions to make moves, encode, and decode the game state, and other 
game-related utilities.

• Chapter23/lib/mcts.py: The MCTS implementation that allows graphics 
processing unit-accelerated expansion of leaves and node backup. The central 
class here is also responsible for keeping the game node statistics, which are 
reused between the searches.



AlphaGo Zero

[ 720 ]

• Chapter23/lib/model.py: The NN and other model-related functions, such 
as the conversion between game states and the model's input and the playing 
of a single game.

• Chapter23/train.py: The main training utility that glues everything 
together and produces the model checkpoints of the new best networks.

• Chapter23/play.py: The tool that organizes the automated tournament 
between the model checkpoints. This accepts several model files and plays 
the given number of games against each other to form a leaderboard.

• Chapter23/telegram-bot.py: The bot for the Telegram chat platform that 
allows the user to play against any model file, keeping the statistics. This 
bot was used for human verification of the example's results.

The game model
The whole approach is based on our ability to predict the outcome of our actions; 
in other words, we need to be able to get the resulting game state after we execute 
some particular game move. This is a much stronger requirement than we had in 
Atari environments and Gym in general, where you can't specify any current state 
that you want to act from. So, we need a model of the game that encapsulates the 
game's rules and dynamics. Luckily, most board games have a simple and compact 
set of rules, which makes the model implementation a straightforward task.

In our case, the full game state of Connect 4 is represented by the state of the 6×7 
game field cells and the indicator of who is going to move. What is important for 
our example is to make the game state representation occupy as little memory as 
possible, but still allow it to work efficiently. The memory requirement is dictated by 
the necessity of storing large numbers of game states during the MCTS. As our game 
tree is huge, the more nodes we're able to keep during the MCTS, the better our final 
approximation of move probabilities will be. So, potentially, we'd like to be able to 
keep millions, or maybe even billions, of game states in the memory.

With this in mind, the compactness of the game state representation could have 
a huge impact on memory requirements and the performance of our training process. 
However, the game state representation has to be convenient to work with, for 
example, when checking the board for a winning position, making a move, and 
finding all the valid moves from some state.

To keep this balance, two representations of the game field were implemented in 
Chapter23/lib/game.py. The first encoded form is very memory-efficient and takes 
only 63 bits to encode the full field, which makes it extremely fast and lightweight, as 
it fits in a machine world on 64-bit architectures. 
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Another decoded game field representation has the form of a list, with length seven, 
where every entry is a list of integers and keeps the disks in a particular column. 
This form takes much more memory, but it is more convenient to work with.

I'm not going to show the full code of Chapter23/lib/game.py, but if you need it, 
it's available in the repository. Here, let's just take a look at the list of the constants 
and functions that it provides:

GAME_ROWS = 6
GAME_COLS = 7
BITS_IN_LEN = 3
PLAYER_BLACK = 1
PLAYER_WHITE = 0
COUNT_TO_WIN = 4
INITIAL_STATE = encode_lists([[]] * GAME_COLS)

The first two constants in the preceding code define the dimensionality of the game 
field and are used everywhere in the code, so you can try to change them and 
experiment with a larger or smaller game. The BITS_IN_LEN value is used in state 
encoding functions and specifies how many bits are used to encode the height of 
the column (the number of disks present). In the 6×7 game, we could have up to six 
disks in every column, so three bits is enough to keep values from zero to seven. If 
you change the number of rows, you will need to adjust BITS_IN_LEN accordingly.

The PLAYER_BLACK and PLAYER_WHITE values define the values used in the decoded 
game representation and, finally, COUNT_TO_WIN sets the length of the group that 
needs to be formed to win the game. So, in theory, you can try to experiment with 
the code and train the agent for, say, five in a row on a 20×40 field by just changing 
four numbers in game.py.

The INITIAL_STATE value contains the encoded representation for an initial game 
state, which has GAME_COLS empty lists. The rest of the code is functions. Some of 
them are used internally, but some make an interface of the game used everywhere 
in the example. Let's list them quickly:

• encode_lists(state_lists): This converts from a decoded to an encoded 
representation of the game state. The argument has to be a list of GAME_COLS 
lists, with the contents of the column specified in the bottom-to-top order. 
In other words, to drop a new disk on the top of the stack, we just need to 
append it to the corresponding list. The result of the function is an integer 
with 63 bits representing the game state.

• decode_binary(state_int): This converts the integer representation of the 
field back into list form.
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• possible_moves(state_int): This returns the list with indices of columns 
that could be moved from the given encoded game state. The columns are 
numbered from zero to six, left to right.

• move(state_int, col, player): The central function of the file, which 
provides game dynamics combined with a win/lose check. In arguments, 
it accepts the game state in the encoded form, the column to place the disk 
in, and the index of the player that moves. The column index has to be valid 
(be present in the result of possible_moves(state_int)), otherwise an 
exception will be raised. The function returns a tuple with two elements: 
a new game state in the encoded form after the move has been performed 
and a Boolean indicating the move leading to the win of the player. As a 
player can win only after their move, a single Boolean is enough. Of course, 
there is a chance of getting a draw state (when nobody won, but there are no 
possible moves remaining). Such situations have to be checked by calling the 
possible_moves function after the move() function.

• render(state_int): This returns a list of strings representing the field's 
state. This function is used in the Telegram bot to send the field state to 
the user.

Implementing MCTS
MCTS is implemented in Chapter23/lib/mcts.py and represented by a single 
class, MCTS, which is responsible for performing a batch of MCTSes and keeping the 
statistics gathered during it. The code is not very large, but it still has several tricky 
pieces, so let's check it in detail.

class MCTS:
    def __init__(self, c_puct=1.0):
        self.c_puct = c_puct
        # count of visits, state_int -> [N(s, a)]
        self.visit_count = {}
        # total value of the state's act, state_int -> [W(s, a)]
        self.value = {}
        # average value of actions, state_int -> [Q(s, a)]
        self.value_avg = {}
        # prior probability of actions, state_int -> [P(s,a)]
        self.probs = {}

The constructor has no arguments except the c_puct constant, which is used in the 
node selection process and was mentioned in the original AlphaGo Zero paper [1] as 
could be tweaked to increase exploration, but I'm not redefining it anywhere and haven't 
experimented with it. The body of the constructor creates an empty container to keep 
statistics about the states. 



Chapter 23

[ 723 ]

The key in all of those dicts is the encoded game state (an integer), and values are 
lists, keeping the various parameters of actions that we have. The comments above 
every container have the same notations of values as in the AlphaGo Zero paper.

    def clear(self):
        self.visit_count.clear()
        self.value.clear()
        self.value_avg.clear()
        self.probs.clear()

The preceding method clears the state without destroying the MCTS object, which 
happens when we switch the current best model to the new one and the gathered 
statistics become obsolete.

    def find_leaf(self, state_int, player):
        states = []
        actions = []
        cur_state = state_int
        cur_player = player
        value = None

This method is used during the search to perform a single traversal of the game tree, 
starting from the root node given by the state_int argument and continuing to 
walk down until one of these two situations has been faced: we reach the final game 
state or a yet unexplored leaf has been found. During the search, we keep track of the 
visited states and the executed actions to be able to update the nodes' statistics later.

        while not self.is_leaf(cur_state):
            states.append(cur_state)

            counts = self.visit_count[cur_state]
            total_sqrt = m.sqrt(sum(counts))
            probs = self.probs[cur_state]
            values_avg = self.value_avg[cur_state]

Every iteration of the loop processes the game state that we're currently at. For this 
state, we extract the statistics that we need to make the decision about the action.

            if cur_state == state_int:
                noises = np.random.dirichlet(
                    [0.03] * game.GAME_COLS)
                probs = [
                    0.75 * prob + 0.25 * noise
                    for prob, noise in zip(probs, noises)
                ]
            score = [
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                value + self.c_puct*prob*total_sqrt/(1+count)
                for value, prob, count in
                    zip(values_avg, probs, counts)
            ]

The decision about the action is taken based on the action utility, which is a sum 
between Q(s, a) and the prior probabilities scaled to the visit count. The root node 
of the search process has an extra noise added to the probabilities to improve the 
exploration of the search process. As we perform the MCTS from different game 
states along the self-play trajectories, this extra noise ensures that we have tried 
different actions along the path.

            invalid_actions = set(range(game.GAME_COLS)) - \
                              set(game.possible_moves(cur_state))
            for invalid in invalid_actions:
                score[invalid] = -np.inf
            action = int(np.argmax(score))
            actions.append(action)

As we have calculated the score for the actions, we need to mask invalid actions for 
the state. (For example, when the column is full, we can't place another disk on the 
top.) After that, the action with the maximum score is selected and recorded.

            cur_state, won = game.move(
                cur_state, action, cur_player)
            if won:
                value = -1.0
            cur_player = 1-cur_player
            # check for the draw
            moves_count = len(game.possible_moves(cur_state))
            if value is None and moves_count == 0:
                value = 0.0
        return value, cur_state, cur_player, states, actions

To finish the loop, we ask our game engine to make the move, returning the new 
state and the indication of whether the player won the game. The final game states 
(win, lose, or draw) are never added to the MCTS statistics, so they will always be 
leaf nodes. The function returns the game's value for the leaf player (or None if the 
final state hasn't been reached), the current player at the leaf state, the list of states 
we have visited during the search, and the list of the actions taken.

    def is_leaf(self, state_int):
        return state_int not in self.probs

    def search_batch(self, count, batch_size, state_int,
                     player, net, device="cpu"):
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        for _ in range(count):
            self.search_minibatch(batch_size, state_int,
                                  player, net, device)

The main entry point to the MCTS class is the search_batch() function, which 
performs several batches of searches. Every search consists of finding the leaf of the 
tree, optionally expanding the leaf, and doing backup. The main bottleneck here is 
the expand operation, which requires the NN to be used to get the prior probabilities 
of the actions and the estimated game value. To make this expansion more efficient, 
we use mini-batches when we search for several leaves, but then perform expansion 
in a single NN execution. This approach has one disadvantage: as several MCTSes 
are performed in one batch, we don't get the same outcome as the execution of 
them serially.

Indeed, initially, when we have no nodes stored in the MCTS class, our first search 
will expand the root node, the second will expand some of its child nodes, and 
so on. However, one single batch of searches can expand only one root node in 
the beginning. Of course, later, individual searches in the batch could follow the 
different game paths and expand more, but in the beginning, mini-batch expansion 
is much less efficient in terms of exploration than a sequential MCTS.

To compensate for this, I still use mini-batches, but perform several of them.

    def search_minibatch(self, count, state_int, player,
                         net, device="cpu"):
        backup_queue = []
        expand_states = []
        expand_players = []
        expand_queue = []
        planned = set()
        for _ in range(count):
            value, leaf_state, leaf_player, states, actions = \
                self.find_leaf(state_int, player)
            if value is not None:
                backup_queue.append((value, states, actions))
            else:
                if leaf_state not in planned:
                    planned.add(leaf_state)
                    leaf_state_lists = game.decode_binary(
                        leaf_state)
                    expand_states.append(leaf_state_lists)
                    expand_players.append(leaf_player)
                    expand_queue.append((leaf_state, states,
                                         actions))
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In the mini-batch search, we first perform the leaf search starting from the same 
state. If the search has found a final game state (in that case, the returned value will 
not be equal to None), no expansion is required and we save the result for a backup 
operation. Otherwise, we store the leaf for later expansion.

        if expand_queue:
            batch_v = model.state_lists_to_batch(
                expand_states, expand_players, device)
            logits_v, values_v = net(batch_v)
            probs_v = F.softmax(logits_v, dim=1)
            values = values_v.data.cpu().numpy()[:, 0]
            probs = probs_v.data.cpu().numpy()

To expand, we convert the states into the form required by the model (there is 
a special function in the model.py library) and ask our network to return prior 
probabilities and values for the batch of states. We will use those probabilities to 
create nodes, and the values will be backed up on a final statistics update.

            for (leaf_state, states, actions), value, prob in \
                    zip(expand_queue, values, probs):
                self.visit_count[leaf_state] = [0]*game.GAME_COLS
                self.value[leaf_state] = [0.0]*game.GAME_COLS
                self.value_avg[leaf_state] = [0.0]*game.GAME_COLS
                self.probs[leaf_state] = prob
                backup_queue.append((value, states, actions))

Node creation is just storing zeros for every action in the visit count and action 
values (total and average). In prior probabilities, we store values obtained from the 
network.

        for value, states, actions in backup_queue:
            cur_value = -value
            for state_int, action in zip(states[::-1],
                                         actions[::-1]):
                self.visit_count[state_int][action] += 1
                self.value[state_int][action] += cur_value
                self.value_avg[state_int][action] = \
                    self.value[state_int][action] / \
                    self.visit_count[state_int][action]
                cur_value = -cur_value

The backup operation is the core process in MCTS and it updates the statistics for 
a state visited during the search. The visit count of the taken actions is incremented, 
the total values are just summed, and the average values are normalized using 
visit counts. 
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It's very important to properly track the value of the game during the backup, 
as we have two opponents, and at every turn, the value changes the sign (as a 
winning position for the current player is a losing game state for the opponent).

    def get_policy_value(self, state_int, tau=1):
        counts = self.visit_count[state_int]
        if tau == 0:
            probs = [0.0] * game.GAME_COLS
            probs[np.argmax(counts)] = 1.0
        else:
            counts = [count ** (1.0 / tau) for count in counts]
            total = sum(counts)
            probs = [count / total for count in counts]
        values = self.value_avg[state_int]
        return probs, values

The final function in the class returns the probability of actions and the action values 
for the game state, using the statistics gathered during the MCTS. There are two 
modes of probability calculation, specified by the 𝜏𝜏  parameter. If it equals to zero, 
the selection becomes deterministic, as we select the most frequently visited action. 

In other cases, the distribution given by 𝑁𝑁(𝑠𝑠, 𝑎𝑎)
1
𝜏𝜏

∑ 𝑁𝑁(𝑠𝑠, 𝑘𝑘)
1
𝜏𝜏𝑘𝑘

  is used, which, again, improves 

exploration.

The model
The NN used is a residual convolution network with six layers, which is a simplified 
version of the network used in the original AlphaGo Zero method. On the input, we 
pass the encoded game state, which consists of two 6×7 channels. The first has places 
with the current player's disks, and the second channel has 1.0 where the opponent 
has their disks. This representation allows us to make the network player invariant 
and analyze the position from the perspective of the current player.

The network consists of the common body with residual convolution filters. The 
features produced by them are passed to the policy and the value heads, which are 
the combination of a convolution layer and a fully connected layer. The policy head 
returns the logits for every possible action (the column that drops the disk) and a 
single-value float. The details are available in the Chapter23/lib/model.py file.

Besides the model, this file contains two functions. The first, with the name state_
lists_to_batch, converts the batch of game states represented in lists into the 
model's input form. The second method has the play_game name and is very 
important for both the training and testing processes. 
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Its purpose is to simulate the game between two NNs, perform the MCTS, and 
optionally store the taken moves in a replay buffer.

def play_game(mcts_stores, replay_buffer, net1, net2,
              steps_before_tau_0, mcts_searches, mcts_batch_size,
              net1_plays_first=None, device="cpu"):
    if mcts_stores is None:
        mcts_stores = [mcts.MCTS(), mcts.MCTS()]
    elif isinstance(mcts_stores, mcts.MCTS):
        mcts_stores = [mcts_stores, mcts_stores]

The function accepts a lot of parameters:

• The MCTS class instance, which could be a single instance, a list of two 
instances, or None. We need to be flexible there to cover different usages 
of this function

• An optional replay buffer
• NNs to be used during the game
• The number of game steps that need to be taken before the 𝜏𝜏  parameter used 

for the action probability calculation will be changed from 1 to 0
• The amount of MCTSes to perform
• The MCTS batch size
• Which player acts first

    state = game.INITIAL_STATE
    nets = [net1, net2]
    if net1_plays_first is None:
        cur_player = np.random.choice(2)
    else:
        cur_player = 0 if net1_plays_first else 1
    step = 0
    tau = 1 if steps_before_tau_0 > 0 else 0
    game_history = []

Before the game loop, we initialize the game state and make a selection of the first 
player. If there is no information given about who will make the first move, this is 
chosen randomly.

    result = None
    net1_result = None

    while result is None:
        mcts_stores[cur_player].search_batch(
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            mcts_searches, mcts_batch_size, state,
            cur_player, nets[cur_player], device=device)
        probs, _ = mcts_stores[cur_player].get_policy_value(
            state, tau=tau)
        game_history.append((state, cur_player, probs))
        action = np.random.choice(game.GAME_COLS, p=probs)

At every turn, we perform the MCTS to populate the statistics and then obtain the 
probability of actions, which will be sampled to get the action.

        if action not in game.possible_moves(state):
            print("Impossible action selected")
        state, won = game.move(state, action, cur_player)
        if won:
            result = 1
            net1_result = 1 if cur_player == 0 else -1
            break
        cur_player = 1-cur_player
        # check the draw case
        if len(game.possible_moves(state)) == 0:
            result = 0
            net1_result = 0
            break
        step += 1
        if step >= steps_before_tau_0:
            tau = 0

Then, the game state is updated using the function in the game engine module, 
and the handling of end-of-game situations is performed.

    if replay_buffer is not None:
        for state, cur_player, probs in reversed(game_history):
            replay_buffer.append(
                (state, cur_player, probs, result)
            )
            result = -result
    return net1_result, step

At the end of the function, we populate the replay buffer with probabilities for the 
action and the game result from the perspective of the current player. This data will 
be used to train the network.
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Training
With all those functions in hand, the training process is a simple combination of 
them in the correct order. The training program is available in Chapter23/train.py, 
and it has logic that has already been described: in the loop, our current best model 
constantly plays against itself, saving the steps in the replay buffer. Another network 
is being trained on this data, minimizing the cross-entropy between the probabilities 
of actions sampled from MCTS and the result of the policy head. MSE between the 
value head predictions, about the game and the actual game result, is also added to 
the total loss.

Periodically, the network being trained and the current best network play 100 
matches, and if the current network is able to win in more than 60% of them, the 
network's weights are synced. This process continues infinitely, hopefully, finding 
models that are more and more proficient in the game.

Testing and comparison
During the training process, the model's weights are saved every time the current 
best model is replaced with the trained model. As a result, we get multiple agents 
of various strengths. In theory, the skills of the later models should be better than 
preceding ones, but we would like to check this ourselves. To do this, there is a 
tool, Chapter23/play.py, that takes several model files and plays a tournament 
when every model plays a specified number of rounds with all others. The results 
table, with the number of wins achieved by every model, will represent the relative 
model's strength.

Another way of checking the performance of resulting agents is by playing them 
against humans. This was done by me, my kids (thanks Julia and Fedor!), and my 
friends, who played several matches against the selected models of various strengths. 
This was done using the bot written for Telegram Messenger, which allows the user 
to select the model to play against and keeps the global score table for all games. The 
bot is available in Chapter23/telegram-bot.py and it has the same requirements 
and installation process as the bot from Chapter 14, Training Chatbots with RL. (To get 
it up and running, you need a Telegram bot token to be created and placed in the 
config file.)

Connect 4 results
To make the training fast, I intentionally chose the hyperparameters of the training 
process to be small. For example, at every step of the self-play process, only 10 
MCTSes were performed, each with a mini-batch size of eight. This, in combination 
with efficient mini-batch MCTS and the fast game engine, made training very fast. 
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Basically, after just one hour of training and 2,500 games played in the self-play 
mode, the produced model was sophisticated enough to be enjoyable to play against. 
Of course, the level of its play was well below even a kid's level, but it showed some 
rudimentary strategies and made mistakes in only every other move, which was 
good progress.

The training was left running for a day, which resulted in 60k games played by a best 
model and, in total, 105 best model rotations. The training dynamics are shown in the 
following charts. Figure 23.3 shows the win ratio (win/loss for the current evaluated 
policy versus the current best policy).

Figure 23.3: The win ratio for the evaluated network

Figure 23.4: Policy loss (left) and value loss (right)
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Figure 23.4 shows the loss components, and both have no clear trend. This is due to 
constant switches of the current best policy, which leads to constant retraining of the 
trained model.

The tournament verification was complicated by the number of different models, as 
several games needed to be played by each pair to estimate their strength. To handle 
this, all 105 models were separated into 10 groups (sorted by time), 100 games were 
played between all pairs in each group, and then two favorites from each group were 
selected for a final round. You can find the results in the Chapter23/tournament 
directory.

The chart with the scores obtained by the systems in the final round is shown here. 
The x axis is the model's index, while the y axis is the relative win ratio the model 
achieved in the final round:

Figure 23.5: The win ratio among the best models saved

The chart shows a slightly noisy, but still consistent, uptrend in the model's success 
ratio. It is quite likely that with more training, an even better policy might be found.

The top 10 final leaderboard is shown here:

1.  best_091_51000.dat:     w=2254, l=1542, d=4

2.  best_105_62400.dat:     w=2163, l=1634, d=3

3.  best_087_48300.dat:     w=2156, l=1640, d=4

4.  best_088_48500.dat:     w=2155, l=1644, d=1

5.  best_072_39800.dat:     w=2133, l=1665, d=2

6.  best_066_37500.dat:     w=2115, l=1683, d=2

7.  best_068_37800.dat:     w=2031, l=1767, d=2

8.  best_006_01500.dat:     w=2022, l=1777, d=1

9.  best_008_01700.dat:     w=1990, l=1809, d=1

10. best_050_29900.dat:     w=1931, l=1869, d=0
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Human verification was done in the first edition of this book. That time the best 
model was best_008_02500.dat, which was able to win 50% of the played games. 
The leaderboard is shown here.

Figure 23.6: The leaderboard of human verification. My daughter is dominating.

Summary
In this chapter, we implemented the AlphaGo Zero method, which was created by 
DeepMind to solve board games. The primary point of this method is to allow agents 
to improve their strength via self-play, without any prior knowledge from human 
games or other data sources.

In the next chapter, we will discuss another direction of practical RL: discrete 
optimization problems, which play an important role in various real-life problems, 
from schedule optimization to protein folding.
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RL in Discrete Optimization
Next, we will explore the new field in reinforcement learning (RL) application: 
discrete optimization problems, which will be showcased using the famous 
Rubik's Cube puzzle.

In this chapter, we will:

• Briefly discuss the basics of discrete optimization
• Cover step by step the paper called Solving the Rubik's Cube Without 

Human Knowledge, by UCI researchers Stephen McAleer et al., 2018, arxiv: 
1805.07470, which applies RL methods to the Rubik's Cube optimization 
problem

• Explore experiments that I've done in an attempt to reproduce the paper's 
results and directions for future method improvement

RL's reputation
The perception of deep RL is that it is a tool to be used mostly for game playing. 
This is not surprising given the fact that, historically, the first success in the field was 
achieved on the Atari game suite by DeepMind in 2015 (https://deepmind.com/
research/dqn/). The Atari benchmark suite (https://github.com/mgbellemare/
Arcade-Learning-Environment) turned out to be very successful for RL problems 
and, even now, lots of research papers use it to demonstrate the efficiency of their 
methods. As the RL field progresses, the classic 53 Atari games continue to become 
less and less challenging (at the time of writing, almost all the games have been 
solved with superhuman accuracy) and researchers are turning to more complex 
games, like StarCraft and Dota 2.

https://deepmind.com/research/dqn/
https://deepmind.com/research/dqn/
https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment
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This perception, which is especially prevalent in the media, is something that I've 
tried to counterbalance in this book by accompanying Atari games with examples 
from other domains, including stock trading, chatbots and natural language 
processing (NLP) problems, web navigation automation, continuous control, board 
games, and robotics. In fact, RL's very flexible Markov decision process (MDP) model 
potentially could be applied to a wide variety of domains; computer games are just 
one convenient and attention-grabbing example of complicated decision-making.

In this chapter, I've tried to write a detailed description of the recent attempt to 
apply RL to the field of combinatorial optimization (https://en.wikipedia.org/
wiki/Combinatorial_optimization) in the aforementioned paper (https://
arxiv.org/abs/1805.07470). In addition, we will cover my implementation of the 
method described in the paper (which is in the directory Chapter24 of the book's 
examples repository) and discuss directions to improve the method. I've intertwined 
the description of the paper's method with code pieces from my version to illustrate 
the concepts with concrete implementation.

Let's start with an overview of the Rubik's Cube and combinatorial optimization 
in general.

The Rubik's Cube and combinatorial 
optimization
I doubt it's possible to find a person who hasn't heard about the Rubik's Cube, so 
I'm not going to repeat the Wikipedia description (https://en.wikipedia.org/
wiki/Rubik%27s_Cube) of this puzzle, but rather focus on the connections it has 
to mathematics and computer science. If it's not explicitly stated, by "cube" I mean 
the 3×3 classic Rubik's Cube. There are lots of variations based on the original 3×3 
puzzle, but they are still far less popular than the classic invention.

Despite being quite simple in terms of mechanics and the task at hand, the cube is 
quite a tricky object in terms of all the transformations we can make by possible 
rotations of its sides. It was calculated that in total, the cube has ~4.33 × 1019 distinct 
states reachable by rotating it. That's only the states that are reachable without 
disassembling the cube; by taking it apart and then assembling it, you can get 
12 times more states in total: ~5.19 × 1020, but those "extra" states make the cube 
unsolvable without disassembling it.

All those states are quite intimately intertwined with each other through rotations of 
the cube's sides. For example, if we rotate the left side clockwise in some state, we get 
to the state from which rotation of the same side counterclockwise will destroy the 
effect of the transformation, and we will get into the original state. 

https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://arxiv.org/abs/1805.07470
https://arxiv.org/abs/1805.07470
https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://en.wikipedia.org/wiki/Rubik%27s_Cube
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But if we apply the left-side rotation three times in a row, the shortest path to the 
original state will be just a single rotation of the left side clockwise, but not three 
times counterclockwise (which is also possible, but just not optimal).

As the cube has six edges and each edge can be rotated in two directions, we have 
12 possible rotations in total. Sometimes, half turns (which are two consecutive 
rotations in the same direction) are also included as distinct rotations, but for 
simplicity, we will treat them as two distinct transformations of the cube.

In mathematics, there are several areas that study objects of this kind. First of all, 
there is abstract algebra, a very broad division of math that studies abstract sets 
of objects with operations on top of them. In these terms, the Rubik's Cube is an 
example of a quite complicated group (https://en.wikipedia.org/wiki/Group_
theory) with lots of interesting properties.

The cube is not only states and transformations: it's a puzzle, with the primary goal 
to find a sequence of rotations with the solved cube as the end point. Problems of 
this kind are studied using combinatorial optimization, which is a subfield of applied 
math and theoretical computer science. This discipline has lots of famous problems 
of high practical value, for example:

• The Traveling Salesman Problem (https://en.wikipedia.org/wiki/
Travelling_salesman_problem): Finds the shortest closed path in a graph

• The protein folding simulation (https://en.wikipedia.org/wiki/
Protein_folding): Finds possible 3D structures of protein

• Resource allocation: How to spread a fixed set of resources among consumers 
to get the best objective

What those problems have in common is a huge state space, which makes it 
infeasible to just check all possible combinations to find the best solution. Our "toy 
cube problem" also falls into the same category, because a state space of 4.33 × 1019 
makes a brute force approach very impractical.

Optimality and God's number
What makes the combinatorial optimization problem tricky is that we're not looking 
for any solution; we're in fact interested in the optimal solution of the problem. The 
difference is obvious: right after the Rubik's Cube was invented, it was known how 
to reach the goal state (but it took Ernő Rubik about a month to figure out the first 
method of solving his own invention, which I guess was a frustrating experience). 
Nowadays, there are lots of different ways or schemes of cube solving: the beginner's 
method, the method by Jessica Fridrich (very popular among speedcubers), and 
so on.

https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Protein_folding
https://en.wikipedia.org/wiki/Protein_folding
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All of them vary by the amount of moves to be taken. For example, a very simple 
beginner's method requires about 100 rotations to solve the cube using 5…7 
sequences of rotations to be memorized. In contrast, the current world record in the 
speedcubing competition is solving the cube in 4.22 seconds, which requires much 
fewer steps, but more sequences to be memorized. The method by Fridrich requires 
about 55 moves on average, but you need to familiarize yourself with ~120 different 
sequences of moves.

Of course, the big question is: what is the shortest sequence of actions to solve 
any given state of the cube? Surprisingly, after 54 years of huge popularity of the 
cube, humanity still doesn't know the full answer to this question. Only in 2010 
did a group of researchers from Google prove that the minimum number of moves 
needed to solve any cube state is 20. This number is also known as God's number. Of 
course, on average, the optimal solution is shorter, as only a bunch of states require 
20 moves and one single state doesn't require any moves at all (the solved state). This 
result only proves the minimal amount of moves; it does not find the solution itself. 
How to find the optimal solution for any given state is still an open question.

Approaches to cube solving
Before the aforementioned paper was published, there were two major directions 
for solving the Rubik's Cube:

• By using group theory, it is possible to significantly reduce the state space 
to be checked. One of the most popular solutions using this approach is 
Kociemba's algorithm (https://en.wikipedia.org/wiki/Optimal_
solutions_for_Rubik%27s_Cube#Kociemba's_algorithm).

• By using brute force search accompanied by manually crafted heuristics, 
we can direct the search in the most promising direction. A vivid example 
of this is Korf's algorithm (https://en.wikipedia.org/wiki/Optimal_
solutions_for_Rubik%27s_Cube#Korf's_algorithm), which uses A* 
search with a large database of patterns to cut out bad directions.

The paper introduced a third approach: by training the neural network (NN) 
on lots of randomly shuffled cubes, it is possible to get the policy that will show 
us the direction to take toward the solved state. The training is done without any 
prior knowledge about the domain; the only thing needed is the cube itself (not the 
physical one, but the computer model of it). This is a contrast with the two preceding 
methods, which require lots of human knowledge about the domain and labor to 
implement them in the form of a computer code.

In the subsequent sections, we will take a detailed look at this new approach.

https://en.wikipedia.org/wiki/Optimal_solutions_for_Rubik%27s_Cube#Kociemba's_algorithm
https://en.wikipedia.org/wiki/Optimal_solutions_for_Rubik%27s_Cube#Kociemba's_algorithm
https://en.wikipedia.org/wiki/Optimal_solutions_for_Rubik%27s_Cube#Korf's_algorithm
https://en.wikipedia.org/wiki/Optimal_solutions_for_Rubik%27s_Cube#Korf's_algorithm
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Data representation
In the beginning, let's start with data representation. In our cube problem, we have two 
entities to be encoded somehow: actions and states.

Actions
Actions are possible rotations that we can do from any given cube state and, as has 
already been mentioned, we have only 12 actions in total. For every side, we have 
two different actions, corresponding to the clockwise and counterclockwise rotation 
of the side (90° or –90°). One small, but very important, detail is that a rotation is 
performed from the position when the desired side is facing toward you. This is 
obvious for the front side, for example, but for the back side, it might be confusing 
due to the mirroring of the rotation.

The names of the actions are taken from the cube sides that we're rotating: left, right, 
top, bottom, front, and back. The first letter of a side's name is used. For instance, the 
rotation of the right side clockwise is named as R. There are different notations for 
counter-clockwise actions: sometimes they are denoted with an apostrophe (R') or 
with a lowercase letter (r), or even with a tilde (�̃�𝑅 ). The first and the last notations are 
not very practical for computer code, so in my implementation, I've used lowercase 
actions to denote counterclockwise rotations. For the right side we have two actions: 
R and r, and we have another two for the left side: L and l, and so on.

In my code, the action space is implemented using Python enum in libcube/cubes/
cube3x3.py, in the class Action, where each action is mapped into the unique 
integer value. In addition, we describe the dictionary with reverse actions:

class Action(enum.Enum):
    R = 0
    L = 1
    T = 2
    D = 3
    F = 4
    B = 5
    r = 6
    l = 7
    t = 8
    d = 9
    f = 10
    b = 11

_inverse_action = {
    Action.R: Action.r,
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    Action.r: Action.R,
    Action.L: Action.l,
    Action.l: Action.L,
    Action.T: Action.t,
    Action.t: Action.T,
    Action.D: Action.d,
    Action.d: Action.D,
    Action.F: Action.f,
    Action.f: Action.F,
    Action.B: Action.b,
    Action.b: Action.B
}

States
A state is a particular configuration of the cube's colored stickers and, as I have 
already mentioned, the size of our state space is very large (4.33 × 1019 different 
states). But the amount of states is not the only complication we have; in addition, 
we have different objectives that we would like to meet when we choose a particular 
representation of a state:

• Avoid redundancy: In the extreme case, we can represent a state of the cube 
by just recording the colors of every sticker on every side. But if we just count 
the number of such combinations, we get 66∙8 = 648 ≈ 2.5 × 1037 , which is 
significantly larger than our cube's state space size, which just means that 
this representation is highly redundant; for example, it allows all sides of the 
cube to have one single color (except the center cubelets). If you're curious 
how I got 66∙8 , this is simple: we have six sides of a cube, each having eight 
small cubes (we're not counting centers), so we have 48 stickers in total and 
each of them could be colored in one of six colors.

• Memory efficiency: As you will see shortly, during the training and, 
even more so, during the model application, we will need to keep in our 
computer's memory a large amount of different states of the cube, which 
might influence the performance of the process. So, we would like the 
representation to be as compact as possible.

• Performance of the transformations: On the other hand, we need to 
implement all the actions applied to the state, and those actions need to be 
taken quickly. If our representation is very compact in terms of memory (uses 
bit-encoding, for example), but requires us to do a lengthy unpacking process 
for every rotation of the cube's side, our training will become too slow.



Chapter 24

[ 741 ]

• NN friendliness: Not every data representation is equally as good as an 
input for the NN. This is true not only for our case, but for machine learning 
in general; for example, in NLP, it is common to use bag-of-words or word 
embeddings; in computer vision, images are decoded from JPEG into raw 
pixels; random forests require data to be heavily feature-engineered; and so on.

In the paper, every state of the cube is represented as a 20×24 tensor with one-hot 
encoding. To understand how this is done and why it has this shape, let's start with 
the picture taken from the paper.

Figure 24.1: Stickers we need to track in the cube are marked in a lighter color

Here, with the light color, are marked the stickers of the cubelets that we need to 
track; the rest of the stickers (shown as darker) are redundant and there is no need 
to track them. As you know, a cube consists of three types of cubelets: eight corner 
cubelets with three stickers, 12 side cubelets with two stickers, and six central ones 
with a single sticker. It might not be obvious from first sight, but the central cubelets 
do not need to be tracked at all, as they can't change their relative position and can 
only rotate. So, in terms of the central cubelets, we need only to agree on the cube 
alignment and stick to it.

As an example, in my implementation, the white side is always on the top, the front 
is red, the left is green, and so on. This makes our state rotation-invariant, which 
basically means that all possible rotations of the cube as a whole are considered 
as the same state.

As the central cubelets are not tracked at all, on the figure, they are marked with 
the darker color. What about the rest? Obviously, every cubelet of a particular kind 
(corner or side) has a unique color combination of its stickers. For example, the 
assembled cube in my orientation (white on top, red on the front, and so on) has 
a top-left cubelet facing us with the following colors: green, white, and red. 
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There are no other corner cubelets with those colors (please check in case of any 
doubt). The same is true for the side cubelets.

Due to this, to find the position of some particular cubelet, we need to know 
the position of only one of its stickers. The selection of such stickers is completely 
arbitrary, but once they are selected, you need to stick to this. As shown on the 
preceding figure, we track eight stickers from the top side, eight stickers from the 
bottom, and four additional side stickers: two on the front face and two on the back. 
This gives us 20 stickers to be tracked.

Now, let's discuss where "24" in the tensor dimension comes from. In total, we have 
20 different stickers to track, but in which positions could they appear due to cube 
transformations? It depends on the kind of cubelet we're tracking. Let's start with 
corner cubelets. In total, there are eight corner cubelets and cube transformations can 
reshuffle them in any order. So, any particular cubelet could end up in any of eight 
possible corners.

In addition, every corner cubelet could be rotated, so our "green, white, and red" 
cubelet could end up in three possible orientations:

1. White on top, green left, and red front
2. Green on top, red left, and white front
3. Red on top, white left, and green front

So, to precisely indicate the position and the orientation of the corner cubelet, we 
have 8 × 3 = 24 different combinations.

In the case of the 12 side cubelets, they have only two stickers, so there are only two 
orientations possible, which again, gives us 24 combinations, but they are obtained 
from a different calculation: 12 × 2 = 24. Finally, we have 20 cubelets to be tracked, 
eight corner and 12 side, each having 24 positions that it could end up in.

The very popular option to feed such data into an NN is one-hot encoding, when the 
concrete position of the object has 1, with other positions filled with 0. This gives us 
the final representation of the state as a tensor with the shape 20 × 24.

From the redundancy point of view, this representation is much closer to the total 
state space; the amount of possible combinations equals to 2420 ≈ 4.02 × 1027 . It is 
still larger than the cube state space (it could be said that it is significantly larger, as 
the factor of 108 is a lot), but it is better than encoding all the colors of every sticker. 
This redundancy comes from tricky properties of cube transformations; for example, 
it is not possible to rotate one single corner cubelet (or flip one side cubelet) leaving all 
others in their places. Mathematical properties are well beyond the scope of this book, 
but if you're interested, I recommend the wonderful book by Alexander Frey and 
David Singmaster called Handbook of Cubik Math.
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You might have noticed that the tensor representation of the cube state has one 
significant drawback: memory inefficiency. Indeed, by keeping the state as a floating-
point tensor of 20 × 24, we're wasting 4 × 20 × 24 = 1,920 bytes of memory, which is 
a lot given the requirement to keep thousands of states during the training process 
and millions of them during the cube solving (as you will get to know shortly). 
To overcome this, in my implementation, I used two representations: one tensor is 
intended for NN input and another, much more compact, representation is needed 
to store different states for longer. This compact state is saved as a bunch of lists, 
encoding the permutations of corner and side cubelets, and their orientation. This 
representation is not only much more memory efficient (160 bytes) but also much 
more convenient for transformation implementation.

To illustrate this, what follows is the piece of the cube 3×3 library, libcube/cubes/
cube3x3.py, that is responsible for compact representation.

State = collections.namedtuple("State", field_names=[
    'corner_pos', 'side_pos', 'corner_ort', 'side_ort'])

initial_state = State(corner_pos=tuple(range(8)),
                      side_pos=tuple(range(12)),
                      corner_ort=tuple([0]*8),
                      side_ort=tuple([0]*12))

The variable intial_state is the encoding of the solved state of the cube. In it, 
corner and side stickers that we're tracking are in their original positions, and both 
orientation lists are zero, indicating the initial orientation of the cubelets.

The transformation of the cube is a bit complicated and includes lots of tables 
keeping the rearrangements of cubelets after different rotations are applied. I'm 
not going to put this code here; if you're curious, you can start with the function 
transform(state, action) in libcube/cubes/cube3x3.py. It also might be 
helpful to check unit tests of this code in tests/libcube/cubes/test_cube3x3.py.

Besides the actions and compact state representation and transformation, the module 
cube3x3.py includes the function that converts the compact representation of the 
cube state (as the State namedtuple) into the tensor form. This functionality is 
provided by the encode_inplace() method.

Another functionality implemented is the ability to render the compact state into 
human-friendly form by applying the render() function. It is very useful for 
debugging the transformation of the cube, but it's not used in the training code.
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The training process
Now that you know how the state of the cube is encoded in a 20 × 24 tensor, let's talk 
about the NN architecture and how it is trained.

The NN architecture
On the figure that follows (taken from the paper), the network architecture is shown.

Figure 24.2: The NN architecture transforming the observation (top) to the action and value (bottom)

As the input, it accepts the already familiar cube state representation as a 20 × 24 
tensor and produces two outputs:

• The policy, which is a vector of 12 numbers, representing the probability 
distribution over our actions.

• The value, a single scalar estimating the "goodness" of the state passed. 
The concrete meaning of a value will be discussed later.

Between the input and output, the network has several fully connected layers with 
exponential linear unit (ELU) activations. In my implementation, the architecture is 
exactly the same as in the paper, and the model is in the module libcube/model.py.

class Net(nn.Module):
    def __init__(self, input_shape, actions_count):
        super(Net, self).__init__()

        self.input_size = int(np.prod(input_shape))
        self.body = nn.Sequential(
            nn.Linear(self.input_size, 4096),
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            nn.ELU(),
            nn.Linear(4096, 2048),
            nn.ELU()
        )
        self.policy = nn.Sequential(
            nn.Linear(2048, 512),
            nn.ELU(),
            nn.Linear(512, actions_count)
        )
        self.value = nn.Sequential(
            nn.Linear(2048, 512),
            nn.ELU(),
            nn.Linear(512, 1)
        )

    def forward(self, batch, value_only=False):
        x = batch.view((-1, self.input_size))
        body_out = self.body(x)
        value_out = self.value(body_out)
        if value_only:
            return value_out
        policy_out = self.policy(body_out)
        return policy_out, value_out

Nothing is really complicated here, but the forward() call might be used in two 
modes: to get both the policy and the value, or whenever value_only=True, only the 
value. This saves us some computations in the case when only the value head's result 
is of interest.

The training
The network is quite simple and straightforward: the policy tells us what 
transformation we should apply to the state, and the value estimates how good 
the state is. But the big question still remains: how do we train the network?

The training method proposed in the paper has the name Autodidactic Iterations 
(ADI) and it has a surprisingly simple structure. We start with the goal state (the 
assembled cube) and apply the sequence of random transformations of some 
predefined length, N. This gives us a sequence of N states.

For each state, s, in this sequence, we carry out the following procedure:

1. Apply every possible transformation (12 in total) to s.
2. Pass those 12 states to our current NN, asking for the value output. This 

gives us 12 values for every substate of s.
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3. The target value for s is calculated as 𝑦𝑦𝑣𝑣𝑖𝑖 = max𝑎𝑎(𝑣𝑣𝑠𝑠(𝑎𝑎) + 𝑅𝑅(𝐴𝐴(𝑠𝑠, 𝑎𝑎))) , where 
A(s, a) is the state after the action, a, is applied to s and R(s) equals 1 if s is 
the goal state and –1 otherwise.

4. The target policy for s is calculated using the same formula, but instead 
of max, we take argmax: 𝑦𝑦𝑝𝑝𝑖𝑖 = argmax𝑎𝑎(𝑣𝑣𝑠𝑠(𝑎𝑎) + 𝑅𝑅(𝐴𝐴(𝑠𝑠, 𝑎𝑎))) . This just means 
that our target policy will have 1 at the position of the maximum value for 
the substate and 0 on all other positions.

This process is shown on the figure that follows, taken from the paper. The sequence 
of scrambles x0, x1, … xN, is generated, where the cube, xi is shown expanded. For this 
state, xi, we make targets for the policy and value heads from the expanded states by 
applying the preceding formulas.

Figure 24.3: Data generation for training

Using this process, we can generate any amounts of training data that we want.

The model application
Okay, imagine that we have trained the model using the process just described. How 
should we use it to solve the scrambled cube? From the network's structure, you 
might imagine the obvious, but not very successful, way:

1. Feed the model the current state of the cube that we want to solve
2. From the policy head, get the largest action to perform (or sample it from the 

resulting distribution)
3. Apply the action to the cube
4. Repeat the process until the solved state has been reached
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On paper, this method should work, but in practice, it has one serious issue: it 
doesn't! The main reason for that is our model's quality. Due to the size of the state 
space and the nature of the NNs, it just isn't possible to train an NN to return the 
exact optimal action for any input state all of the time. Rather than telling us what 
to do to get the solved state, our model shows us promising directions to explore. 
Those directions could bring us closer to the solution, but sometimes they could be 
misleading, just from the fact that this particular state has never been seen during 
the training. Don't forget, there are 4.33 × 1019 of them, so even with a graphics 
processing unit (GPU) training speed of hundreds of thousands of states per 
second, and after a month of training, we will only see a tiny portion of the state 
space, about 0.0000005%. So, a more sophisticated approach has to be used.

There is a family of very popular methods, called Monte Carlo tree search (MCTS), 
and one of these methods was covered in the last chapter. There are lots of variants 
of those methods, but the overall idea is simple and can be described in comparison 
with the well-known brute-force search methods, like breadth-first search (BFS) or 
depth-first search (DFS). In BFS and DFS, we perform the exhaustive search of our 
state space by trying all the possible actions and exploring all the states that we get 
from those actions. That behavior is the other extreme of the procedure described 
previously (when we have something that tells us where to go at every state).

MCTS offers something in between those extremes: we want to perform the search 
and we have some information about where we should go, but this information 
could be unreliable, noisy, or just wrong in some situations. However, sometimes, 
this information could show us the promising directions that could speed up the 
search process.

As I've mentioned, MCTS is a family of methods and they vary in their particular 
details and characteristics. In the paper, the method called Upper Confidence Bound 
1 is used. The method operates on the tree, where the nodes are the states and the 
edges are actions connecting those states. The whole tree is enormous in most cases 
(4.33 × 1019 for our cube), so we can't try to build the whole tree, just some tiny 
portion of it.

In the beginning, we start with a tree consisting of a single node, which is our current 
state. On every step of the MCTS, we walk down the tree exploring some path in the 
tree, and there are two options we can face:

• Our current node is a leaf node (we haven't explored this direction yet)
• Our current node is in the middle of the tree and has children

In the case of a leaf node, we "expand" it by applying all the possible actions to the 
state. All the resulting states are checked for being the goal state (if the goal state of 
the solved cube has been found, our search is done). 
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The leaf state is passed to the model and the outputs from both the value and policy 
heads are stored for later use.

If the node is not the leaf, we know about its children (reachable states), and we have 
value and policy outputs from the network. So, we need to make the decision about 
which path to follow (in other words, which action is more promising to explore). 
This decision is not a trivial one and this is the exploration versus exploitation 
problem that we have covered previously in this book. On the one hand, our policy 
from the network says what to do. But what if it is wrong? This could be solved by 
exploring surrounding states, but we don't want to explore all the time (as the state 
space is enormous). So, we should keep the balance, and this has a direct influence 
on the performance and the outcome of the search process.

To solve this, for every state, we keep the counter for every possible action (there are 
12 of them), which is incremented every time the action has been chosen during the 
search. To make the decision to follow a particular action, we use this counter; the 
more an action has been taken, the less likely it is to be chosen in the future.

In addition, the value returned by the model is also used in this decision-making. 
The value is tracked as the maximum from the current state's value and the value 
from its children. This allows the most promising paths (from the model perspective) 
to be seen from the parent's states.

To summarize, the action to follow from a non-leaf tree is chosen by using the 
following formula:

𝐴𝐴𝑡𝑡 = argmax𝑎𝑎(𝑈𝑈𝑠𝑠𝑡𝑡(𝑎𝑎) + 𝑊𝑊𝑠𝑠𝑡𝑡(𝑎𝑎)) , where 𝑈𝑈𝑠𝑠𝑡𝑡(𝑎𝑎) = 𝑐𝑐𝑃𝑃𝑠𝑠𝑡𝑡(𝑎𝑎) √∑ 𝑁𝑁𝑠𝑠𝑡𝑡(𝑎𝑎′)𝑎𝑎′

1 + 𝑁𝑁𝑠𝑠𝑡𝑡(𝑎𝑎)  

Here, 𝑁𝑁𝑠𝑠𝑡𝑡(𝑎𝑎)  is a count of times that action a has been chosen in state st.

𝑃𝑃𝑠𝑠𝑡𝑡(𝑎𝑎)  is the policy returned by the model for state st and 𝑊𝑊𝑠𝑠𝑡𝑡(𝑎𝑎)  is the maximum 
value returned by the model for all children states of st under the branch a.
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This procedure is repeated until the solution has been found or our time budget has 
been exhausted. To speed up the process, MCTS is very frequently implemented in 
a parallel way, where several searches are performed by multiple threads. In that 
case, some extra loss could be subtracted from At to prevent multiple threads from 
exploring the same paths of the tree.

The final piece in solving the process picture is how to get the solution from 
the MCTS tree once we have reached the goal state. The authors of the paper 
experimented with two approaches:

• Naïve: Once we have faced the goal state, we use our path from the root state 
as the solution

• The BFS way: After reaching the goal state, BFS is performed on the MCTS 
tree to find the shortest path from the root to this state

According to the authors, the second method finds shorter solutions than the naïve 
version, which is not surprising, as the stochastic nature of the MCTS process can 
introduce cycles to the solution path.

The paper's results
The final result published in the paper is quite impressive. After 44 hours of training 
on a machine with three GPUs, the network learned how to solve cubes at the same 
level as (and sometimes better than) human-crafted solvers. The final model has been 
compared against the two solvers described earlier: the Kociemba two-stage solver 
and Korf. The method proposed in the paper is named DeepCube.

To compare efficiency, 640 randomly scrambled cubes were used in all the methods. 
The depth of the scramble was 1,000 moves. The time limit for the solution was an 
hour and both the DeepCube and Kociemba solvers were able to solve all of the 
cubes within the limit. The Kociemba solver is very fast, and its median solution time 
is just one second, but due to the hardcoded rules implemented in the method, its 
solutions are not always the shortest ones.

The DeepCube method took much more time, with the median time being about 10 
minutes, but it was able to match the length of the Kociemba solutions or do better in 
55% of cases. From my personal perspective, 55% is not enough to say that NNs are 
significantly better, but at least they are not worse.
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On the figure that follows, taken from the paper, the length distributions for all 
the solvers are shown. As you can see, the Korf solver wasn't compared in 1,000 
scramble test cases, due to the very long time needed to solve the cube. To compare 
the performance of DeepCube against the Korf solver, a much easier 15-step 
scramble test set was created.

Figure 24.4: The length of solutions found by various solvers

The code outline
Okay, now let's switch to the code, which is in directory Chapter24 in the book's 
repository. In this section, I'm going to give a quick outline of my implementation 
and the key design decisions, but before that, I have to emphasize the important 
points about the code to set up the correct expectations:

• I'm not a researcher, so the original goal of this code was just to reimplement 
the paper's method. Unfortunately, the paper has very few details about the 
exact hyperparameters used, so I had to guess and experiment a lot, and still, 
my results are very different from those published in the paper.

• At the same time, I've tried to implement everything in a general way to 
simplify further experiments. For example, the exact details about the cube 
state and transformations are abstracted away, which allows us to implement 
more puzzles similar to the 3×3 cube just by adding a new module. In my 
code, two cubes are implemented: 2×2 and 3×3, but any fully observable 
environment with a fixed set of predictable actions can be implemented and 
experimented with. The details are given in the next subsection.
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• Code clarity and simplicity was put ahead of performance. Of course, when 
it was possible to improve performance without introducing much overhead, 
I did so. For example, the training process was sped up by a factor of five 
by just splitting the generation of the scrambled cubes and the forward 
network pass. But if the performance required refactoring everything into 
multi-GPU and multithreaded mode, I preferred to keep things simple. 
A very vivid example is the MCTS process, which is normally implemented 
as multithreaded code sharing the tree. It usually gets sped up several times, 
but requires tricky synchronization between processes. So, my version of 
MCTS is serial, with only trivial optimization of the batched search.

Overall, the code consists of the following parts:

1. The cube environment, which defines the observation space, the possible 
actions, and the exact representation of the state to the network. This part 
is implemented in the libcube/cubes module.

2. The NN part, which describes the model that we will train, the generation 
of training samples, and the training loop. It includes the training tool 
train.py and the module libcube/model.py.

3. The solver of cubes, including the solver.py utility and the module 
libcube/mcts.py, which implements MCTS.

4. Various tools used to glue up other parts, like configuration files with 
hyperparameters and tools used to generate cube problem sets.

Cube environments
As you have already seen, combinatorial optimization problems are quite large 
and diverse. Even the narrow area of cube-like puzzles includes a couple of dozen 
variations. The most popular ones are 2×2×2, 3×3×3, and 4×4×4 Rubik's Cubes, 
Square-1, Pyraminx, and tons of others (https://ruwix.com/twisty-puzzles/). 
At the same time, the method presented in the paper is quite general and doesn't 
depend on prior domain knowledge, the amount of actions, and the state space size. 
The critical assumptions imposed on the problem include:

• States of the environment need to be fully observable and observations need 
to distinguish states from each other. That's the case for the cube when we 
can see all the sides' states, but it doesn't hold true for most variants of poker, 
for example, when we can't see the cards of our opponent.

https://ruwix.com/twisty-puzzles/
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• The amount of actions needs to be discrete and finite. There are limited 
amounts of actions we can take with the cube, but if our action space is 
"rotate the steering wheel on angle 𝛼𝛼 ∈ [−120°…120°] ," we have a different 
problem domain here, as you have already seen in chapters devoted to the 
continuous control problems.

• We need to have a reliable model of the environment; in other words, we 
have to be able to answer questions like "what will be the result of applying 
action ai to the state sj?" Without this, both ADI and MCTS become non-
applicable. This is a strong requirement and, for most of the problems, we 
don't have such a model or its outputs are quite noisy. On the other hand, 
in games like chess or Go, we have such a model: the rules of the game.

• In addition, our domain is deterministic, as the same action applied to the 
same state always ends up in the same final state. The counter example might 
be backgammon, when, on each turn, players roll the dice to get the amount 
of moves they can possibly make. I have a feeling that the methods should 
work even when we have stochastic actions, but I might be wrong.

To simplify the application of the methods to domains different from the 3×3 cube, 
all concrete environment details are moved to separate modules, communicating 
with the rest of the code via the abstract interface CubeEnv, which is described in 
the libcube/cubes/_env.py module. Its interface is shown and commented in the 
following code block.

class CubeEnv:
    def __init__(self, name, state_type, initial_state,
                 is_goal_pred, action_enum, transform_func,
                 inverse_action_func, render_func, encoded_shape,
                 encode_func):
        self.name = name
        self._state_type = state_type
        self.initial_state = initial_state
        self._is_goal_pred = is_goal_pred
        self.action_enum = action_enum
        self._transform_func = transform_func
        self._inverse_action_func = inverse_action_func
        self._render_func = render_func
        self.encoded_shape = encoded_shape
        self._encode_func = encode_func

The constructor of the class takes a bunch of arguments:

• The name of the environment.
• The type of the environment state.
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• The instance of the initial (assembled) state of the cube.
• The predicate function to check that a particular state represents the 

assembled cube. For 3×3 cubes, this might look like an overhead, as we 
possibly could just compare this with the initial state passed in the initial_
state argument, but cubes of size 2×2 and 4×4, for instance, might have 
multiple final states, so a separate predicate is needed to cover such cases.

• The enumeration of actions that we can apply to the state.
• The transformation function, which takes the state and the action and returns 

the resulting state.
• The inverse function, which maps every action into its inverse.
• The render function to represent the state in human-readable form.
• The shape of the encoded state tensor.
• The function to encode the compact state representation into an NN-friendly 

form.

As you can see, cube environments are not compatible with the Gym API, which I 
did intentionally to illustrate how you can step beyond Gym.

    def __repr__(self):
        return "CubeEnv(%r)" % self.name

    def is_goal(self, state):
        return self._is_goal_pred(state)

    def transform(self, state, action):
        return self._transform_func(state, action)

    def inverse_action(self, action):
        return self._inverse_action_func(action)

    def render(self, state):
        return self._render_func(state)

    def is_state(self, state):
        return isinstance(state, self._state_type)

    def encode_inplace(self, target, state):
        return self._encode_func(target, state)

Some of the methods in the CubeEnv API are just wrappers around functions passed 
to the constructor. This allows the new environment to be implemented in a separate 
module, register itself in the environment registry, and provide the consistent 
interface to the rest of the code.
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All the other methods in the class provide extended uniform functionality based 
on those primitive operations.

    def sample_action(self, prev_action=None):
        while True:
            res = self.action_enum(
                random.randrange(len(self.action_enum)))
            if prev_action is None or
                    self.inverse_action(res) != prev_action:
                return res

The preceding method provides the functionality of randomly sampling the random 
action. If the prev_action argument is passed, we exclude the reverse action from 
possible results, which is handy to avoid a generation of short loops, like Rr or Ll, 
for example.

    def scramble(self, actions):
        s = self.initial_state
        for action in actions:
            s = self.transform(s, action)
        return s

The method scramble() applies the list of actions to the initial state of the cube, 
returning the final state.

    def scramble_cube(self, scrambles_count, return_inverse=False,
                      include_initial=False):
        state = self.initial_state
        result = []
        if include_initial:
            assert not return_inverse
            result.append((1, state))
        prev_action = None
        for depth in range(scrambles_count):
            action = self.sample_action(prev_action=prev_action)
            state = self.transform(state, action)
            prev_action = action
            if return_inverse:
                inv_action = self.inverse_action(action)
                res = (depth+1, state, inv_action)
            else:
                res = (depth+1, state)
            result.append(res)
        return result
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The preceding method is a bit lengthy and provides the functionality of randomly 
scrambling the cube, returning all the intermediate states. In the case of the return_
inverse argument being False, the function returns the list of tuples with (depth, 
state) for every step of the scrambling process. If the argument is True, it returns a 
tuple with three values: (depth, state, inv_action), which are needed in some 
situations.

    def explore_state(self, state):
        res_states, res_flags = [], []
        for action in self.action_enum:
            new_state = self.transform(state, action)
            is_init = self.is_goal(new_state)
            res_states.append(new_state)
            res_flags.append(is_init)
        return res_states, res_flags

The method explore_states implements functionality for ADI and applies all the 
possible actions to the given cube state. The result is a tuple of lists in which the 
first list contains the expanded states, and the second has flags of those states as 
the goal state.

With this generic functionality, a similar environment might be implemented and 
plugged into the existing training and testing methods with very little boilerplate 
code. As an example, I have provided both the 2×2×2 cube and 3×3×3 cube that I 
used in my experiments. Their internals reside in libcube/cubes/cube2x2.py and 
libcube/cubes/cube3x3.py, which you can use as a base to implement your own 
environments of this kind.

Every environment needs to register itself by creating the instance of the CubeEnv 
class and passing the instance into the function register(), defined in libcube/
cubes/_env.py. The following is the piece of code from the cube2x2.py module.

_env.register(_env.CubeEnv(
    name="cube2x2", state_type=State, initial_state=initial_state,
    is_goal_pred=is_initial, action_enum=Action,
    transform_func=transform, inverse_action_func=inverse_action,
    render_func=render, encoded_shape=encoded_shape,
    encode_func=encode_inplace))

Once this is done, the cube environment can be obtained by using the libcube.
cubes.get() method, which takes the environment name as an argument. The rest 
of the code uses only the public interface of the CubeEnv class, which makes the code 
cube-type agnostic and simplifies the extensibility.
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Training
The training process is implemented in the tool train.py and the module libcube/
model.py, and it is a straightforward implementation of the training process 
described in the paper, with one difference: the code supports two methods of 
calculating the target values for the value head of the network. One of the methods 
is exactly how it was described in the paper and the other is my modification, which 
I'll explain in the details of the subsequent section.

To simplify the experimentation and make the results reproducible, all the 
parameters of the training are specified in a separate .ini file, which gives the 
following options for training:

• The name of the environment to be used; currently cube2x2 and cube3x3 are 
available.

• The name of the run, which is used in TensorBoard names and directories to 
save models.

• What target value calculation method in ADI will be used. I implemented 
two of them: one is described in the paper and then there is my modification, 
which, from my experiments, has more stable convergence.

• The training parameters: the batch size, the usage of CUDA, the learning rate, 
the learning rate decay, and others.

You can find the examples of my experiments in the ini folder in the repo. During 
the training, TensorBoard metrics of the parameters are written in the runs folder. 
Models with the best loss value are saved in the saves directory.

To give you an idea of what the configuration file looks like, the following is ini/
cube2x2-paper-d200.ini, which defines the experiment for a 2×2 cube, using the 
value calculation method from the paper and a scramble depth of 200:

[general]
cube_type=cube2x2
run_name=paper

[train]
cuda=True
lr=1e-5
batch_size=10000
scramble_depth=200
report_batches=10
checkpoint_batches=100
lr_decay=True
lr_decay_gamma=0.95
lr_decay_batches=1000
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To start the training, you need to pass the .ini file to the train.py utility; for 
example, this is how the preceding .ini file could be used to train the model.

$ ./train.py -i ini/cube2x2-paper-d200.ini -n t1

The extra argument -n gives the name of the run, which will be combined with 
the name in the .ini file to be used as the name of a TensorBoard series.

The search process
The result of the training is a model file with the network's weights. The file could 
be used to solve cubes using MCTS, which is implemented in the tool solver.py 
and the module libcube/mcts.py.

The solver tool is quite flexible and could be used in various modes:

1. To solve a single scrambled cube given as a comma-separated list of action 
indices, passed in the -p option. For example -p 1,6,1 is a cube scrambled 
by applying the second action, then the seventh action, and finally, the 
second action again. The concrete meaning of the actions is environment-
specific, which is passed with the -e option. You can find actions with their 
indices in the cube environment module. For example, the actions 1,6,1 for 
a 2×2 cube mean an L,R',L transformation.

2. To read permutations from a text file (one cube per line) and solve 
them. The file name is passed with the -i option. There are several sample 
problems available in the folder cubes_tests. You can generate your own 
random problem sets using the gen_cubes_py tool, which allows you to set 
the random seed, the depth of the scramble, and other options.

3. To generate a random scramble of the given depth and solve it.
4. To run a series of tests with increasing complexity (scramble depth), solve 

them, and write a CSV file with the result. This mode is enabled by passing 
the -o option and is very useful for evaluating the quality of the trained 
model, but it can take lots of time to complete. Optionally, plots with those 
test results are produced.

In all cases, you need to pass the environment name with the -e option and the 
file with the model's weights (-m option). In addition, there are other parameters, 
allowing you to tweak MCTS options and time or search step limits. You can find 
the names of those options in the code of solver.py.
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The experiment results
Unfortunately, the paper provided no details about very important aspects of the 
method, like training hyperparameters, how deeply cubes were scrambled during 
the training, and the obtained convergence. To fill in the missing blanks, I did lots 
of experiments with various values of hyperparameters, but still my results are very 
different from those published in the paper. First of all, the training convergence 
of the original method is very unstable. Even with a small learning rate and a large 
batch size, the training eventually diverges, with the value loss component growing 
exponentially. Examples of this behavior are shown on the figure that follows.

Figure 24.5: The policy loss (left) and value loss (right) of two runs of the paper's method

After several experiments with this, I came to the conclusion that this behavior is 
a result of the wrong value objective being proposed in the method. Indeed, in the 
formula 𝑦𝑦𝑣𝑣𝑖𝑖 = max𝑎𝑎(𝑣𝑣𝑠𝑠(𝑎𝑎) + 𝑅𝑅(𝐴𝐴(𝑠𝑠, 𝑎𝑎))) , the value 𝑣𝑣𝑠𝑠(𝑎𝑎)  returned by the network 
is always added to the actual reward, 𝑅𝑅(𝑠𝑠) , even for the goal state. With this, the 
actual values returned by the network could be anything: –100, 106, or 3.1415. This is 
not a great situation for NN training, especially with the mean squared error (MSE) 
objective.

To check this, I modified the method of the target value calculation by assigning zero 
target for the goal state:

𝑦𝑦𝑣𝑣𝑖𝑖 = {max𝑎𝑎 (𝑣𝑣𝑠𝑠(𝑎𝑎) + 𝑅𝑅(𝐴𝐴(𝑠𝑠, 𝑎𝑎))) , if 𝑠𝑠 is not the goal
0, if 𝑠𝑠 is a goal state

 

This target could be enabled in the .ini file by specifying the parameter value_
targets_method to be zero_goal_value, instead of the default value_targets_
method=paper.
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With this simple modification, the training process converged much quicker to stable 
values returned by the value head of the network. An example of convergence is 
shown on the following figures.

Figure 24.6: Values predicted by the value head during training

Figure 24.7: The policy loss (left) and value loss (right) after modifications

The 2×2 cube
In the paper, the authors reported training for 44 hours on a machine with 
three Titan Xp GPUs. During the training, their model saw 8 billion cube states. 
Those numbers correspond to the training speed ~50,000 cubes/second. My 
implementation shows 15,000 cubes/second on a single GTX 1080 Ti, which is 
comparable. So, to repeat the training process on a single GPU, we need to wait for 
almost six days, which is not very practical for experimentation and hyperparameter 
tuning.
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To overcome this, I implemented a much simpler 2×2 cube environment, which takes 
just an hour to train. To reproduce my training, there are two .ini files in the repo:

• ini/cube2x2-paper-d200.ini: This uses the value target method described 
in the paper

• ini/cube2x2-zero-goal-d200.ini: The value target is set to zero for goal 
states

Both configurations use batches of 10k states and a scramble depth of 200, and the 
training parameters are the same. After the training, using both configurations, 
two models were produced (both are stored in the repo in the models directory):

• The paper's method: loss 0.18184
• The zero goal method: loss 0.014547

My experiments (using the solver.py utility) have shown that the model with a 
lower loss has a much higher success ratio of solving randomly scrambled cubes of 
increasing depth. The results for both models are shown on the figure that follows.

Figure 24.8: The ratio of solved cubes of various scramble depths

The next parameter to compare is the number of MCTS steps done during the 
solution. It is shown on the figure that follows. The zero goal model normally finds 
a solution in fewer steps. In other words, the policy it has learned is better.
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Figure 24.9: The number of MCTS steps for solved cubes of various depths

Finally, let's check the length of the found solutions. On the figure that follows, both 
the naïve and BFS solution lengths are plotted. From those plots, it can be seen that 
the naïve solutions are much longer (by a factor of 10) than solutions found by BFS. 
Such a difference might be an indication of untuned MCTS parameters, which could 
be improved. The zero goal model shows longer solutions than the paper's model, 
as the former fails to find longer solutions at all.

Figure 24.10: A comparison of naïve (left) and BFS (right) ways of solution generation
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The 3×3 cube
The training of the 3×3 cube model is much more heavy, so I've probably just 
scratched the surface here. But even my limited experiments show that zero goal 
modifications to the training method greatly improve the training stability and 
resulting model quality. Training requires about 20 hours, so running lots of 
experiments requires time and patience.

My results are not as shiny as those reported in the paper: the best model I was able 
to obtain can solve cubes up to a scrambling depth of 12…15, but consistently fails 
at more complicated problems. Probably, those numbers could be improved with 
more central processing unit (CPU) cores plus parallel MCTS. To get the data, the 
search process was limited to 10 minutes and, for every scramble depth, five random 
scrambles were generated.

Figure 24.11: The ratio of solved 3×3 cubes by both methods

The preceding figure shows a comparison of solution rates for the method presented 
in the paper and the modified version with the zero value target.
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Figure 24.12: Solution lengths for both methods on a 3×3 cube

The final figure shows the length of the optimal solution found. There are two 
interesting issues that could be noted here. First of all, the length of solutions found 
by the zero target method in the 10…15 scramble depth range is larger than the 
scramble depth. This means that the model failed to find the scramble sequence 
used to generate the test problem, but still discovered some longer way to the goal 
state. Another observation is that for the depth range 12…18, the paper's method 
found solutions that were shorter than the scramble sequence. This could be due 
to a degenerative test sequence that was generated.

Further improvements and experiments
There are lots of directions and things that could be tried:

• More input and network engineering: the cube is a complicated thing, so 
simple feed-forward NNs may not be the best model. Probably, the network 
could greatly benefit from convolutions.

• Oscillations and instability during training might be a sign of a common RL 
issue with inter-step correlations. The usual approach is the target network, 
when we use the old version of the network to get bootstrapped values.
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• The priority replay buffer might help the training speed.
• My experiments show that the samples' weighting (inversely proportional 

to the scramble depth) helps to get a better policy that knows how to solve 
slightly scrambled cubes, but might slow down the learning of deeper states. 
Probably, this weighting could be made adaptive to make it less aggressive 
in later training stages.

• Entropy loss could be added to the training to regularize our policy.
• The 2×2 cube model doesn't take into account the fact that the cube doesn't 

have central cubelets, so the whole cube could be rotated. This might not 
be very important for a 2×2 cube, as the state space is small, but the same 
observation will be critical for 4×4 cubes.

• More experiments are needed to get better training and MCTS parameters.

Summary
In this chapter, I described the application of RL methods to discrete optimization 
problems, using the Rubik's Cube as a well-known, but still challenging, problem. 
In the final chapter of the book, we will talk about multi-agent problems in RL.
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Multi-agent RL
In the last chapter, we dived into discrete optimization problems. In this final 
chapter, we will discuss a relatively new direction of reinforcement learning (RL) 
and deep RL, which is related to the situations when multiple agents communicate 
in an environment.

In this chapter, we will:

• Start with an overview of the similarities and differences between the 
classical single-agent RL problem and multi-agent RL

• Cover the MAgent environment, which was implemented and open sourced 
by the Geek.AI UK/China research group

• Use MAgent to train models in different environments with several groups 
of agents

Multi-agent RL explained
The multi-agent setup is a natural extension of the familiar RL model that we 
covered in Chapter 1, What Is Reinforcement Learning?, In the normal RL setup, we 
have one agent communicating with the environment using the observation, reward, 
and actions. But in some problems, which often arise in reality, we have several 
agents involved in the environment interaction. To give some concrete examples:

• A chess game, when our program tries to beat the opponent
• A market simulation, like product advertisements or price changes, 

when our actions might lead to counter-actions from other participants
• Multiplayer games, like Dota2 or StarCraft II, when the agent needs 

to control several units competing with other players' units
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If other agents are outside of our control, we can treat them as part of the 
environment and still stick to the normal RL model with the single agent. 
But sometimes, that's too limited and not exactly what we want. As you saw in 
Chapter 23, AlphaGo Zero, training via self-play is a very powerful technique, which 
might lead to good policies without much sophistication on the environment side.

In addition, as recent research shows, a group of simple agents might demonstrate 
collaborative behavior that is way more complex than expected. One such example is 
the OpenAI blog post (https://openai.com/blog/emergent-tool-use/) and paper 
(https://arxiv.org/abs/1909.07528) about the "hide-and-seek" game, when the 
group of agents collaborate and develop more and more sophisticated strategies and 
counter-strategies to win against another group of agents, for example "build a fence 
from available objects" and "use a trampoline to catch agents behind the fence."

Forms of communication
In terms of different ways that agents might communicate, they can be separated into 
two groups:

• Competitive: when two or more agents try to beat each other in order to 
maximize their reward. The simplest setup is a two-player game, like chess, 
backgammon or Atari Pong.

• Collaboration: when a group of agents needs to use joint efforts to reach 
some goal.

There are lots of examples that fall into one of the groups, but the most interesting 
and close to real-life scenarios normally are a mixture of both behaviors. There are 
tons of examples, starting from some board games that allow you to form allies, and 
going up to modern corporations, where 100% collaboration is assumed, but real life 
is normally much more complicated than that.

From the theoretical point of view, game theory has quite a developed foundation for 
both communication forms, but for the sake of brevity, I'm not going to deep dive into 
the field, which is large and has different terminology. The curious reader can find lots 
of books and courses about it. To give an example, the minimax algorithm is a well-
known result of game theory, and you saw it modified in Chapter 23, AlphaGo Zero.

The RL approach
Multi-agent RL (sometimes abbreviated to MARL) is a very young field, but activity 
has been growing over time, so, it might be interesting to keep an eye on it. For 
instance, the recent interest of DeepMind and OpenAI in multiplayer strategy 
games (StarCraft II and Dota2) is an obvious step in this direction.

https://openai.com/blog/emergent-tool-use/
https://arxiv.org/abs/1909.07528
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In this chapter, we will just take a quick glance at MARL and experiment a bit 
with simple environments, but, of course, if you find it interesting, there are lots 
of things you can experiment with. In our experiments, we will use a simple and 
straightforward approach, with agents sharing the policy that we are optimizing, but 
the observation will be given from the agent's standpoint and include information 
about the other agent's location. With that simplification, our RL methods will stay 
the same, and just the environment will require preprocessing and must handle the 
presence of multiple agents.

The MAgent environment
Before we jump into our first MARL example, I will describe our environment 
to experiment with.

Installation
If you want to play with MARL, your choice is a bit limited. All the environments 
that come with Gym support only one agent. There are some patches for Atari Pong, 
to switch it into two-player mode, but they are not standard and are an exception 
rather than the rule.

DeepMind, together with Blizzard, has made StarCraft II publicly available 
(https://github.com/deepmind/pysc2) and it makes for a very interesting and 
challenging environment for experimentation. However, for somebody who is 
taking their first steps in MARL, it might be too complex. In that regard, I found 
the MAgent environment from Geek.AI (https://github.com/geek-ai/MAgent) 
perfectly suitable: it is simple, fast, and has minimal dependency, but it still allows 
you to simulate different multi-agent scenarios for experimentation. It doesn't 
provide a Gym-compatible API, but we will implement it on our own.

All the examples in this chapter expect you to have MAgent cloned and installed in 
the Chapter25/MAgent directory. MAgent doesn't provide a Python package yet, 
so, to install it, you need to take the following steps:

• Run git clone https://github.com/geek-ai/MAgent.git in the 
Chapter25 directory

• Build MAgent by running bash build.sh in the Chapter25/MAgent 
directory (you probably will need to install dependencies listed in https://
github.com/geek-ai/MAgent)

https://github.com/deepmind/pysc2
https://github.com/geek-ai/MAgent
https://github.com/geek-ai/MAgent
https://github.com/geek-ai/MAgent
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An overview
The high-level concepts of MAgent are simple and efficient. It provides the 
simulation of a grid world that 2D agents inhabit. They can observe things 
around them (according to their perception length), move to some distance from 
their location, and attack other agents around them.

There might be different groups of agents with various characteristics and 
interaction parameters. For example, the first environment that we will consider 
is a predator-prey model, where "tigers" hunt "deer" and obtain reward for that. 
In the environment configuration, you can specify lots of aspects of the group, like 
perception, movement, attack distance, the initial health of every agent in the group, 
how much health they spend on movement and attack, and so on. Aside from the 
agents, the environment might contain walls, which are not crossable by the agents.

The nice thing about MAgent is that it is very scalable, as it is implemented in C++ 
internally, just exposing the Python interface. This means that the environment 
can have thousands of agents in the group, providing you with observations 
and processing the agents' actions.

A random environment
To quickly understand the MAgent API and logic, I've implemented a simple 
environment with "tiger" and "deer" agents, where both groups are driven by the 
random policy. It might not be very interesting from RL's perspective, but it will 
allow us to quickly learn the API to implement the Gym environment wrapper.

The example is in Chapter25/forest_random.py and it is short enough to be 
shown here in full.

import os
import sys
sys.path.append(os.path.join(os.getcwd(), "MAgent/python"))

As MAgent is not installed as a package, we need to tweak Python's import path 
before importing it.

import magent
from magent.builtin.rule_model import RandomActor

MAP_SIZE = 64

We import the main package provided by MAgent and the random actor class. 
In addition, we define the size of our environment, which is a 64×64 grid.

if __name__ == "__main__":
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    env = magent.GridWorld("forest", map_size=MAP_SIZE)
    env.set_render_dir("render")

First of all, we create the environment, which is represented by the GridWorld class. 
In its constructor, we can pass various configuration parameters, tweaking the 
world's configuration. The first argument, "forest", selects one of the predefined 
worlds in the MAgent code base, which is fully described in this source file: 
https://github.com/geek-ai/MAgent/blob/master/python/magent/builtin/
config/forest.py. This configuration describes two groups of animals: tigers and 
deer. Tigers can attack deer, obtaining health points and rewards, but they spend 
energy that they need to replenish. Deer are not aggressive and have worse vision 
than tigers, but they recover their health over time (by eating grass, I suppose).

There are predefined configurations that are shipped with MAgent and you can 
always define your own. In the case of custom configuration, the Config class 
instance needs to be passed in the constructor.

The call env.set_render_dir() specifies the directory, which will be used to store 
the game's progress. This progress could be loaded by a separate utility, and we 
will take a look at how to do this later.

    deer_handle, tiger_handle = env.get_handles()
    models = [
        RandomActor(env, deer_handle),
        RandomActor(env, tiger_handle),
    ]

Once the environment is created, we need to get so-called "group handles" to 
provide us with access to the agent groups. For efficiency, all interactions with 
the environment are performed on a group level, rather than individually. In the 
preceding code, we get the handles of our groups and create two instances of the 
RandomActor class, which will select random actions for every group.

    env.reset()
    env.add_walls(method="random", n=MAP_SIZE * MAP_SIZE * 0.04)
    env.add_agents(deer_handle, method="random", n=5)
    env.add_agents(tiger_handle, method="random", n=2)

On the next step, we reset the environment and place key players in it. In MAgent 
terminology, reset() clears the grid completely, which is different from the Gym 
reset() call. The preceding code turns 4% of grid cells into unpassable walls by 
calling env.add_walls(), and randomly places five deer and two tigers.

    v = env.get_view_space(tiger_handle)
    r = env.get_feature_space(tiger_handle)
    print("Tiger view: %s, features: %s" % (v, r))

https://github.com/geek-ai/MAgent/blob/master/python/magent/builtin/config/forest.py
https://github.com/geek-ai/MAgent/blob/master/python/magent/builtin/config/forest.py
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    vv = env.get_view_space(deer_handle)
    rr = env.get_feature_space(deer_handle)
    print("Deer view: %s, features: %s" % (vv, rr))

Now, let's explore our observations a bit. In MAgent, the observation of every agent 
is divided into two parts: view space and feature space. View space is spatial and 
represents various information about the grid cells around the agent. If we run the 
code, it will output those lines with observation shapes:

Tiger view: (9, 9, 5), features: (20,)

Deer view: (3, 3, 5), features: (16,)

This means that every tiger gets a 9×9 matrix with five different planes of 
information. Deer are more short-sighted, so their observation is just 3×3. The 
observation always contains the agent in the center, so it shows the grid around 
this specific agent. The five planes of information include:

• Walls: 1 if this cell contains the wall and 0 otherwise
• Group 1 (the agent belongs to this): 1 if the cell contains agents from the 

agent's group and 0 otherwise
• Group 1 health: The relative health of the agent in this cell
• Group 2 enemy agents: 1 if there is an enemy in this cell
• Group 2 health: The relative health of the enemy or 0 if nothing is there.

If more groups are configured, the observation will contain more planes in the 
observation tensor. In addition, MAgent has a "minimap" functionality, which is 
disabled by default, that includes the "zoomed out" location of agents of every group. 
Group 1 and group 2 are relative to the agent's group, so, in the second plane, deer 
have information about other deer and for tigers this plane includes other tigers. This 
allows us to train a single policy for both groups if needed.

Another part of the observation is the so-called feature space. It is not spatial and 
is represented as just a vector of numbers. It includes one-hot encoding of the 
agent's ID, last action, last reward, and normalized position. Concrete details could 
be found in the MAgent source code, but they are not relevant at the moment.

Let's continue our code description.

    done = False
    step_idx = 0
    while not done:
        deer_obs = env.get_observation(deer_handle)
        tiger_obs = env.get_observation(tiger_handle)
        if step_idx == 0:
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            print("Tiger obs: %s, %s" % (
                tiger_obs[0].shape, tiger_obs[1].shape))
            print("Deer obs: %s, %s" % (
                deer_obs[0].shape, deer_obs[1].shape))
        print("%d: HP deers:  %s" % (
            step_idx, deer_obs[0][:, 1, 1, 2]))
        print("%d: HP tigers: %s" % (
            step_idx, tiger_obs[0][:, 4, 4, 2]))

We start the step loop, where we get observations. The code will show the following:

Tiger obs: (2, 9, 9, 5), (2, 20)

Deer obs: (5, 3, 3, 5), (5, 16)

0: HP deers:  [1. 1. 1. 1. 1.]

0: HP tigers: [1. 1.]

As we have two tigers and five deer, the call env.get_observation() returns 
a NumPy array of the corresponding shape. This makes the communication with the 
environment very efficient, as the observation of the whole group is obtained at once.

Health points for both groups are taken from the center of the second plane, which 
includes information about the agent. So, the health vector shown is the health for 
the group.

        deer_act = models[0].infer_action(deer_obs)
        tiger_act = models[1].infer_action(tiger_obs)
        env.set_action(deer_handle, deer_act)
        env.set_action(tiger_handle, tiger_act)

In the next lines, we will ask the model to select the actions from the observations 
(which are taken randomly) and pass those actions to the environment. Once again, 
the actions are represented as a vector of integers for the entire group. Using this, 
we can have very large amounts of agents under our control.

        env.render()
        done = env.step()
        env.clear_dead()
        t_reward = env.get_reward(tiger_handle)
        d_reward = env.get_reward(deer_handle)
        print("Rewards: deer %s, tiger %s" % (d_reward, t_reward))
        step_idx += 1

In the rest of the loop, we do several things. First of all, we ask the environment to 
save information about the agents and their location to be explored later. Then we 
call env.step() to do one time step in the grid-world simulation. This function 
returns a single Boolean flag, which will become True once all the agents are dead. 
Then we get the rewards vector for the group, show it, and iterate the loop again.
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If you start the program, it shows something like this:

Tiger view: (9, 9, 5), features: (20,)

Deer view: (3, 3, 5), features: (16,)

Tiger obs: (2, 9, 9, 5), (2, 20)

Deer obs: (5, 3, 3, 5), (5, 16)

0: HP deers:  [1. 1. 1. 1. 1.]

0: HP tigers: [1. 1.]

Rewards: deer [0. 0. 0. 0. 0.], tiger [1. 1.]

1: HP deers:  [1. 1. 1. 1. 1.]

1: HP tigers: [0.95 0.95]

Rewards: deer [0. 0. 0. 0. 0.], tiger [1. 1.]

2: HP deers:  [1. 1. 1. 1. 1.]

2: HP tigers: [0.9 0.9]

...

19: HP deers:  [1. 1. 1. 1. 1.]

19: HP tigers: [0.05 0.05]

Rewards: deer [0. 0. 0. 0. 0.], tiger [1. 1.]

20: HP deers:  [1. 1. 1. 1. 1.]

20: HP tigers: [0. 0.]

Rewards: deer [0. 0. 0. 0. 0.], tiger []

So, as you can see, tigers have their health decreased on every time step and after just 
20 steps, all tigers are dead from starvation. As their actions are random, it is highly 
unlikely that they will eat a deer in one episode to live longer.

After the simulation completion, it stores the trace information in render directory, 
which is represented with two files, config.json and video_1.txt. To visualize 
them, you need to start the special program, which was built during the MAgent 
installation. It will act as a server for an HTML page, which will display the 
environment's progress. To start it, you need to run the MAgent/build/render/
render tool, as shown in the following command:

Chapter25$ MAgent/build/render/render

[2019-10-20 19:47:38] [0x1076a65c0] Listening on port 9030

After that, you need to load with your browser the HTML file from the MAgent 
source to display the recorded information: Chapter25/MAgent/build/render/
index.html. It will ask you for config.json and video_1.txt location, as shown 
in Figure 25.1:
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Figure 25.1: The MAgent render interface in browser

After you press the Load & Play! button, the recording will be loaded and the 
animation of the grid world shown. In our case, tigers and deer are moving 
randomly for 20 steps. The interface is shown in Figure 25.2.

Figure 25.2: The grid world of our example

The rendering interface has hotkeys, which are displayed after the "h" button press. 
Using them, you can change the files, pause things, and show dialog with speed and 
progress.
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Deep Q-network for tigers
In the previous example, both groups of agents were behaving randomly, which 
is not very interesting. Now we will apply the deep Q-network (DQN) model to the 
tiger group of agents to check whether they can learn some interesting policy. All 
of the agents share the network, so their behavior will be the same.

The training code is in Chapter25/forest_tigers_dqn.py, and it doesn't differ 
much from the other DQN versions from the previous chapters. To make the 
MAgent environment work with our classes, gym.Env wrapper was implemented in 
Chapter25/lib/data.py in class MAgentEnv. Let's check it to understand how it fits 
into the rest of the code.

class MAgentEnv(VectorEnv):
    def __init__(self, env: magent.GridWorld, handle,
                 reset_env_func: Callable[[], None],
                 is_slave: bool = False,
                 steps_limit: Optional[int] = None):
        reset_env_func()
        action_space = self.handle_action_space(env, handle)
        observation_space = self.handle_obs_space(env, handle)

        count = env.get_num(handle)

        super(MAgentEnv, self).__init__(count, observation_space,
                                        action_space)
        self.action_space = self.single_action_space
        self._env = env
        self._handle = handle
        self._reset_env_func = reset_env_func

Our class is inherited from the gym.vector.vector_env.VectorEnv class, which 
allows two modes of vectorized environments: sync and async. Our communication 
is sync, but we will need to take into account this class implementation to subclass it 
properly. The constructor takes three arguments: the MAgent environment instance, 
the handle of the group that we will control, and the function reset_env_func, 
which has to reset the MAgent environment to the initial state (clear the grid, put 
walls in, and place agents). Helper methods are used to build action and observation 
space descriptions from the environment and handle.

    @classmethod
    def handle_action_space(cls, env: magent.GridWorld,
                            handle) -> gym.Space:
        return spaces.Discrete(env.get_action_space(handle)[0])

We assume that the action space is just a discrete set of actions, so we get its size 
from the environment.
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    @classmethod
    def handle_obs_space(cls, env: magent.GridWorld,
                         handle) -> gym.Space:
        v = env.get_view_space(handle)
        r = env.get_feature_space(handle)
        view_shape = (v[-1],) + v[:2]
        view_space = spaces.Box(low=0.0, high=1.0,
                                shape=view_shape)
        extra_space = spaces.Box(low=0.0, high=1.0, shape=r)
        return spaces.Tuple((view_space, extra_space))

The observation space is a bit more complicated. We have two parts to it: spatial, 
which will be processed with convolution networks, and a feature vector. Spatial 
features need to be rearranged to meet the PyTorch convention of (C, W, H). Then, 
we construct two spaces.Box instances and combine them using spaces.Tuple.

    @classmethod
    def handle_observations(cls, env: magent.GridWorld,
                            handle) -> List[Tuple[np.ndarray,
                                                  np.ndarray]]:
        view_obs, feats_obs = env.get_observation(handle)
        entries = view_obs.shape[0]
        if entries == 0:
            return []
        view_obs = np.array(view_obs)
        feats_obs = np.array(feats_obs)
        view_obs = np.moveaxis(view_obs, 3, 1)

        res = []
        for o_view, o_feats in zip(np.vsplit(view_obs, entries),
                                   np.vsplit(feats_obs, entries)):
            res.append((o_view[0], o_feats[0]))
        return res

This class method is responsible for building observations from the current 
environment state. It queries the observations, copies both components into NumPy 
arrays, changes the axis order, and splits both observations on the first dimension, 
converting them into a list of tuples. Every tuple in the returned list contains 
observations for every alive agent in the group. Those observations will be added 
to the replay buffer and sampled for training, so we need to split them into items.

    def reset_wait(self):
        self._steps_done = 0
        if not self._is_slave:
            self._reset_env_func()
        return self.handle_observations(self._env, self._handle)
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The rest of the class uses helper class methods that we have defined. To reset the 
environment, we call the reset function and build the observation list.

    def step_async(self, actions):
        act = np.array(actions, dtype=np.int32)
        self._env.set_action(self._handle, act)

The step method consists of two parts: async, which sets the actions in the 
underlying MAgent environment, and sync, which does the actual step call and 
gathers the information we need from the step() method in the Gym environment.

    def step_wait(self):
        self._steps_done += 1
        if not self._is_slave:
            done = self._env.step()
            self._env.clear_dead()
            if self._steps_limit is not None and
                    self._steps_limit <= self._steps_done:
                done = True
        else:
            done = False

        obs = self.handle_observations(self._env, self._handle)
        r = self._env.get_reward(self._handle).tolist()
        dones = [done] * len(r)
        if done:
            obs = self.reset()
            dones = [done] * self.num_envs
            r = [0.0] * self.num_envs
        return obs, r, dones, {}

In step_wait(), we ask the MAgent environment to do a step in the simulation, 
then we clear dead agents from all groups and prepare the results. Special handling 
of partial groups is needed. As our agents might die during the episode, the length 
of observations and rewards might decrease over time. It's not an issue for PTAN 
classes, but we will need to take care of the dones array. If the episode ends, which will 
happen when all our agents die, we reset the episode and return the fresh observation.

That's all for the MAgentEnv class; the rest of the code is the same as before, so I'm not 
going to show it.

Training and results
To start the training, run ./forest_tigers_dqn.py -n run_name –cuda. In about 
three hours of training, the tigers' test reward has reached the best score of 70, which 
is a significant improvement over the random baseline. Acting randomly, tigers die 
after 20 steps (thus, they obtain the reward of 20). 
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For every deer, the tigers obtain eight health points, which allows them to survive for 
an extra 16 steps. So, the reward of 70 for the group of 10 tigers means that they have 
eaten 31 deer during the episode, which is not that bad given that there were 50 deer 
in total and the sparsity of the deer on the map.

It's quite likely that the policy stopped improving just because of the limited view 
of the tigers. If you are curious, you can enable the minimap in the environment 
settings and experiment. With more information about the food's location, it's 
likely that the policy could be improved even more.

The following are the charts of the training process.

Figure 25.3: Average reward (left) and the steps of training episodes (right)

From the reward and steps charts, it's quite obvious that the training process stopped 
converging after 30k-40k episodes.

Figure 25.4: Training loss (left) and epsilon (right) during the training
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Figure 25.5: The reward value of test episodes

Every 10k training iterations, one full episode was played to check the current policy 
alone (without random actions introduced by epsilon-greedy exploration). Once the 
best reward is updated, the model can be saved into the file.

There is a tool, Chapter25/forest_tigers_play.py, that can load the saved policy 
and record the tigers in action. This utility loads the model and plays one episode, 
and then saves the recording file in the Chapter25/render directory. Recorded 
text files can be visualized in the browser using the record utility, as was already 
described. It's not possible to insert animation into this book, so the following are 
links to videos of the tigers' policy at different stages of the training.

• Score 23: https://www.youtube.com/watch?v=NJPAGCGVeDM. Tigers moved 
almost randomly; only one tiger was close enough to a deer to eat it and live 
a bit longer.

• Score 39: https://www.youtube.com/watch?v=kkNrnIQ3j3U. Looks like the 
tigers always moved left and ate everything they found. This allowed some 
of them to get better reward and live longer, but still, this policy is not the 
best.

• Score 67: https://www.youtube.com/watch?v=W0aJ9mu1MwA. This was the 
best policy that I got. Tigers were actively trying to eat deer. The last survivor 
even stole food from its slower colleague (at five seconds into the video).

https://www.youtube.com/watch?v=NJPAGCGVeDM
https://www.youtube.com/watch?v=kkNrnIQ3j3U
https://www.youtube.com/watch?v=W0aJ9mu1MwA
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Collaboration by the tigers
The second experiment that I implemented was designed to make the tigers' lives 
more complicated and encourage collaboration between them. The training and play 
code are the same; the only difference is in the MAgent environment's configuration. 
I took the double_attack configuration file from MAgent (https://github.
com/geek-ai/MAgent/blob/master/python/magent/builtin/config/double_
attack.py) and tweaked it to add the reward of 0.1 after every step for both tigers 
and deer. The following is the modified function config_double_attack() from 
Chapter25/lib/data.py:

def config_double_attack(map_size):
    gw = magent.gridworld
    cfg = gw.Config()
    cfg.set({"map_width": map_size, "map_height": map_size})
    cfg.set({"embedding_size": 10})

We create the configuration object and set the map dimensions. The embedding size 
is the dimensionality of the minimap, which is not enabled in this configuration.

    deer = cfg.register_agent_type("deer", {
        'width': 1, 'length': 1, 'hp': 5, 'speed': 1,
        'view_range': gw.CircleRange(1),
        'attack_range': gw.CircleRange(0),
        'step_recover': 0.2,
        'kill_supply': 8,
        'step_reward': 0.1,
    })

Then we register the group of agents for deer. They have a low health point and 
small observation range, and they can't attack, but they can recover over time. The 
parameter step_reward was added by me to get the reward from deer's actions.

    tiger = cfg.register_agent_type("tiger", {
        'width': 1, 'length': 1, 'hp': 10, 'speed': 1,
        'view_range': gw.CircleRange(4),
        'attack_range': gw.CircleRange(1),
        'damage': 1, 'step_recover': -0.2,
        'step_reward': 0.1,
    })

Now the second group: tigers. They have higher reward, a larger observation range, 
and can attack others. But they lose health with every step, so they need food.

    deer_group  = cfg.add_group(deer)
    tiger_group = cfg.add_group(tiger)

https://github.com/geek-ai/MAgent/blob/master/python/magent/builtin/config/double_attack.py
https://github.com/geek-ai/MAgent/blob/master/python/magent/builtin/config/double_attack.py
https://github.com/geek-ai/MAgent/blob/master/python/magent/builtin/config/double_attack.py
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    a = gw.AgentSymbol(tiger_group, index='any')
    b = gw.AgentSymbol(tiger_group, index='any')
    c = gw.AgentSymbol(deer_group,  index='any')
    # tigers get reward when they attack a deer simultaneously
    e1 = gw.Event(a, 'attack', c)
    e2 = gw.Event(b, 'attack', c)
    cfg.add_reward_rule(e1 & e2, receiver=[a, b], value=[1, 1])
    return cfg

Next, we create a rule in the system that rewards two tigers for attacking a deer at 
the same time. Please note that they can still attack deer alone, but they just won't 
be rewarded for this. So, that's the model of "social" tigers.

To activate this mode, argument --mode double_attack needs to be passed to the 
training program, so, to train the previous example in collaboration mode, you need 
to run it as follows: ./forest_tigers_dqn.py -n run_name --mode double_
attack --cuda.

Another tweak I needed to make was related to the exploration. In the previous 
example, it was 10 tigers and 50 deer, which is enough when one tiger can eat the 
deer. But now, two tigers need to attack the deer simultaneously, which is much less 
likely. So, to simplify exploration, I increased the amount of both deer and tigers 
to 512 and 20, respectively. Otherwise, the process would have failed to converge 
due to the lack of samples with good reward. Of course, this is not the best solution 
and better exploration techniques could be used, but I've tried to keep the examples 
simple. You can experiment with the methods described in Chapter 21, Advanced 
Exploration.

The following are convergence charts that I got from training in this mode.

Figure 25.6: Reward and steps of the training episodes
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In hindsight, it looks like I stopped the training too early, being scared by a fall in the 
mean reward. But maybe not; this fall could be a sign of bad hyperparameters, for 
example, replay size (as the number of agents was doubled, replay size also needs 
to be enlarged). But anyway, the training has brought us the policy to check.

Figure 25.7: Training loss and epsilon values

Figure 25.8: The reward value of test episodes

As before, every time the best reward from the test episode is obtained, the model 
file is saved. The following are visualizations of models obtained during the training:

• Score 5, small amount of agents: https://youtu.be/_dtuac7ii7k
• Score 5, large amount of agents: https://youtu.be/GMyTEbKHATQ

https://youtu.be/_dtuac7ii7k
https://youtu.be/GMyTEbKHATQ 
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• Score 30, small amount of agents: https://youtu.be/5CWiy4Ye57E
• Score 30, large amount of agents: https://youtu.be/M4IRD5sGi7U
• Score 50, small amount of agents: https://youtu.be/qr2rvCjpWis
• Score 50, large amount of agents: https://youtu.be/JiS06bF9hJM

From these videos, it's obvious that due to my changes in the reward system 
(giving 0.1 reward on every step), the tigers haven't learned how to collaborate at 
all. Instead, they eat deer alone to live longer. Potentially, they could discover that 
attacking the deer together is more profitable, but this is hard from an exploration 
point of view.

We can also consider the third mode in the utility ./forest_tigers_dqn.py, called 
double_attack_nn, which uses noisy networks and gives the reward only for 
situations when deer are killed by two tigers. But, unfortunately, after seven hours 
of training, this version still hadn't got any non-zero reward, so this double_attack_
nn mode is left as an advanced exercise for the curious reader.

Training both tigers and deer
The next example is the scenario when both tigers and deer are controlled by 
different DQN models being trained simultaneously. Tigers are rewarded for living 
longer, which means eating more deer, as at every step in the simulation they lose 
health points. Deer are also rewarded on every timestamp.

The code is in Chapter25/forest_both_dqn.py and it is quite a simple extension 
of the previous example. For both groups of agents, we have a separate Agent class 
instance, which communicates with the environment. As the observation for both 
groups is different, we have two separate networks, replay buffers, and experience 
sources. On every training step, we sample batches from both replay buffers and 
then train both networks independently.

I'm not going to put the code here, as it differs from the previous example only 
in small details. If you are curious, you can check GitHub examples. The following 
are plots with the convergence results.

https://youtu.be/5CWiy4Ye57E
https://youtu.be/M4IRD5sGi7U
https://youtu.be/qr2rvCjpWis
https://youtu.be/JiS06bF9hJM


Chapter 25

[ 783 ]

Figure 25.9: Reward and steps for tiger episodes during the training

Figure 25.10: Training loss for the deer (left) and tiger networks (right)

Figure 25.11: Test reward for deer (left) and tigers (right)
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As you can see from Figure 25.11, deer are way more successful than tigers, which is 
not surprising, as the speed of both is the same, so the deer just need to move all the 
time and wait for the tigers to die from starvation. If you want, you can experiment 
with the environment settings, either by increasing the tigers' speed or by increasing 
the wall density. The following are recordings of some models that I made and the 
scores, which support this thinking:

• Model: tigers 72, deer 109: https://youtu.be/u50_B5OcgXw
• Model: tigers 72, deer 114: https://youtu.be/rvWe0mJkkrw
• Model: tigers 72, deer 228: https://youtu.be/nAvqQ-yPlws

As you can see, the deer policy just overfits to the "run in one direction" policy.

The battle between equal actors
The final example in this chapter is the situation when one policy drives fighting 
between two groups of identical agents. This version is implemented in Chapter25/
battle_dqn.py. The code is straightforward and won't be put here.

I did only a couple of experiments with the code, so hyperparameters could be 
improved. In addition, you can experiment with the training process. In the code, 
both groups are driven by the same policy that we are optimizing, which may not 
be the best approach. Instead, you can experiment with an AlphaGo Zero style of 
training, when the best policy is used for one group and another group is driven 
by the policy that we are optimizing at the moment. Once the best policy starts to 
consistently lose, it is updated. In this case, the optimized policy may have time to 
learn all the tricks and weaknesses of the current best policy, which may start an 
improvement loop.

In my experiments, the training wasn't very stable, but it showed some progress. The 
following are a couple of recordings that I got from using the obtained policies. To 
play the battle between the two saved models, you can use the utility Chapter25/
battle_play.py:

• Model with score –0.9 versus model with score –0.8: https://youtu.be/
sWxJMeC7psY

• Model with score –0.8 versus model with score –0.7: https://youtu.be/
LArNodOT1oQ

• Model with score –0.6 versus model with score –0.8: https://youtu.be/
LLn_DNVdyGU

https://youtu.be/u50_B5OcgXw
https://youtu.be/rvWe0mJkkrw
https://youtu.be/nAvqQ-yPlws
https://youtu.be/sWxJMeC7psY
https://youtu.be/sWxJMeC7psY
https://youtu.be/LArNodOT1oQ
https://youtu.be/LArNodOT1oQ
https://youtu.be/LLn_DNVdyGU 
https://youtu.be/LLn_DNVdyGU 
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Summary
In this chapter, we just touched a bit on the very interesting and dynamic field of 
MARL. There are lots of things that you can try on your own using the MAgent 
environment or other environments (like PySC2).

My congratulations on reaching the end of the book! I hope that the book was 
useful and you enjoyed reading it as much as I enjoyed gathering the material and 
writing all the chapters. As a final word, I would like to wish you good luck in this 
exciting and dynamic area of RL. The domain is developing very rapidly, but with an 
understanding of the basics, it will become much simpler for you to keep track of the 
new developments and research in this field.

There are many very interesting topics left uncovered, such as partially observable 
Markov decision processes (where environment observations don't fulfill the Markov 
property) or recent approaches to exploration, such as the count-based methods. 
There has been a lot of recent activity around multi-agent methods, where many 
agents need to learn how to coordinate to solve a common problem.

I haven't mentioned the memory-based RL approach, where your agent can maintain 
some sort of a memory to keep its knowledge and experience. A great deal of effort 
is being put into increasing the RL sample efficiency, which will ideally be close to 
the human learning performance one day, but this is still a far-reaching goal at the 
moment.

Of course, it's not possible to cover the full domain in a small book, because new 
ideas appear almost every day. However, the goal of this book was to give you 
a practical foundation in the field, simplifying your own learning of the common 
methods.

Finally, I'd like to quote Volodymir Mnih's words from his talk, Recent Advances and 
Frontiers in Deep RL, from the Deep RL Bootcamp 2017: "The field of deep RL is very 
new and everything is still exciting. Literally, nothing is solved yet!"
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Another Book You  
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili

ISBN: 978-1-78995-575-0

 ● Master the frameworks, models, and techniques that enable machines to 'learn' 
from data

 ● Use scikit-learn for machine learning and TensorFlow for deep learning
 ● Apply machine learning to image classification, sentiment analysis, intelligent 

web applications, and more
 ● Build and train neural networks, GANs, and other models
 ● Discover best practices for evaluating and tuning models
 ● Predict continuous target outcomes using regression analysis
 ● Dig deeper into textual and social media data using sentiment analysis

https://www.packtpub.com/data/python-machine-learning-third-edition
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Another Book You May Enjoy

Leave a review - let other readers know 
what you think
Please share your thoughts on this book with others by leaving a review on the site that 
you bought it from. If you purchased the book from Amazon, please leave us an honest 
review on this book's Amazon page. This is vital so that other potential readers can see 
and use your unbiased opinion to make purchasing decisions, we can understand what 
our customers think about our products, and our authors can see your feedback on the 
title that they have worked with Packt to create. It will only take a few minutes of your 
time, but is valuable to other potential customers, our authors, and Packt. Thank you!
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