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Preface

The topic of this book is reinforcement learning (RL), which is a subfield of machine
learning (ML); it focuses on the general and challenging problem of learning
optimal behavior in a complex environment. The learning process is driven only by
the reward value and observations obtained from the environment. This model is
very general and can be applied to many practical situations, from playing games
to optimizing complex manufacturing processes.

Due to its flexibility and generality, the field of RL is developing very quickly and
attracting lots of attention, both from researchers who are trying to improve existing
methods or create new methods and from practitioners interested in solving their
problems in the most efficient way.

Why | wrote this book

This book was written as an attempt to fill the obvious gap in practical and
structured information about RL methods and approaches. On the one hand,
there is lots of research activity all around the world. New research papers are
being published almost every day, and a large portion of deep learning (DL)
conferences, such as Neural Information Processing Systems (NeurIPS) or the
International Conference on Learning Representations (ICLR), are dedicated

to RL methods. There are also several large research groups focusing on the
application of RL methods to robotics, medicine, multi-agent systems, and others.

Information about the recent research is widely available, but it is too specialized
and abstract to be easily understandable. Even worse is the situation surrounding
the practical aspect of RL, as it is not always obvious how to make the step from an
abstract method described in its mathematical-heavy form in a research paper to a
working implementation solving an actual problem.

[ xiii ]
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This makes it hard for somebody interested in the field to get a clear understanding
of the methods and ideas behind papers and conference talks. There are some very
good blog posts about various RL aspects that are illustrated with working examples,
but the limited format of a blog post allows authors to describe only one or two
methods, without building a complete structured picture and showing how different
methods are related to each other. This book is my attempt to address this issue.

The approach

Another aspect of the book is its orientation to practice. Every method is
implemented for various environments, from the very trivial to the quite complex.
I've tried to make the examples clean and easy to understand, which was made
possible by the expressiveness and power of PyTorch. On the other hand, the
complexity and requirements of the examples are oriented to RL hobbyists without
access to very large computational resources, such as clusters of graphics processing
units (GPUs) or very powerful workstations. This, I believe, will make the fun-filled
and exciting RL domain accessible to a much wider audience than just research
groups or large artificial intelligence companies. This is still deep RL, so access

to a GPU is highly recommended. Approximately half of the examples in the

book will benefit from being run on a GPU.

In addition to traditional medium-sized examples of environments used in RL, such
as Atari games or continuous control problems, the book contains several chapters
(10, 14, 15, 16, and 18) that contain larger projects, illustrating how RL methods can
be applied to more complicated environments and tasks. These examples are still

not full-sized, real-life projects (they would occupy a separate book on their own),
but just larger problems illustrating how the RL paradigm can be applied to domains
beyond the well-established benchmarks.

Another thing to note about the examples in the first three parts of the book is

that I've tried to make them self-contained, with the source code shown in full.
Sometimes this has led to the repetition of code pieces (for example, the training loop
is very similar in most of the methods), but I believe that giving you the freedom to
jump directly into the method you want to learn is more important than avoiding a

few repetitions. All examples in the book are available on GitHub: https://github.
com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-

Edition, and you're welcome to fork them, experiment, and contribute.
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Who this book is for

The main target audience is people who have some knowledge of ML, but want to
get a practical understanding of the RL domain. The reader should be familiar with
Python and the basics of DL and ML. An understanding of statistics and probability
is an advantage, but is not absolutely essential for understanding most of the

book's material.

What this book covers

Chapter 1, What Is Reinforcement Learning?, contains an introduction to RL ideas and
the main formal models.

Chapter 2, OpenAl Gym, introduces the practical aspects of RL, using the open source
library Gym.

Chapter 3, Deep Learning with PyTorch, gives a quick overview of the PyTorch library.

Chapter 4, The Cross-Entropy Method, introduces one of the simplest methods in RL
to give you an impression of RL methods and problems.

Chapter 5, Tabular Learning and the Bellman Equation, introduces the value-based
family of RL methods.

Chapter 6, Deep Q-Networks, describes deep Q-networks (DQNs), an extension of the
basic value-based methods, allowing us to solve a complicated environment.

Chapter 7, Higher-Level RL Libraries, describes the library PTAN, which we will use
in the book to simplify the implementations of RL methods.

Chapter 8, DQN Extensions, gives a detailed overview of a modern extension to the
DQN method, to improve its stability and convergence in complex environments.

Chapter 9, Ways to Speed up RL Methods, provides an overview of ways to make the
execution of RL code faster.

Chapter 10, Stocks Trading Using RL, is the first practical project and focuses on
applying the DQN method to stock trading.

Chapter 11, Policy Gradients —an Alternative, introduces another family of RL methods
that is based on policy learning.

Chapter 12, The Actor-Critic Method, describes one of the most widely used methods
in RL.

[xv]
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Chapter 13, Asynchronous Advantage Actor-Critic, extends the actor-critic method with
parallel environment communication, which improves stability and convergence.

Chapter 14, Training Chatbots with RL, is the second project and shows how to apply
RL methods to natural language processing problems.

Chapter 15, The TextWorld Environment, covers the application of RL methods to
interactive fiction games.

Chapter 16, Web Navigation, is another long project that applies RL to web page
navigation using the MiniWoB set of tasks.

Chapter 17, Continuous Action Space, describes the specifics of environments using
continuous action spaces and various methods.

Chapter 18, RL in Robotics, covers the application of RL methods to robotics problems.
In this chapter, I describe the process of building and training a small hardware
robot with RL methods.

Chapter 19, Trust Regions — PPO, TRPO, ACKTR, and SAC, is yet another chapter
about continuous action spaces describing the trust region set of methods.

Chapter 20, Black-Box Optimization in RL, shows another set of methods that don't use
gradients in their explicit form.

Chapter 21, Advanced Exploration, covers different approaches that can be used for
better exploration of the environment.

Chapter 22, Beyond Model-Free — Imagination, introduces the model-based approach
to RL and uses recent research results about imagination in RL.

Chapter 23, AlphaGo Zero, describes the AlphaGo Zero method and applies it to the
game Connect 4.

Chapter 24, RL in Discrete Optimization, describes the application of RL methods to
the domain of discrete optimization, using the Rubik's Cube as an environment.

Chapter 25, Multi-ngent RL, introduces a relatively new direction of RL methods for
situations with multiple agents.

To get the most out of this book

All the chapters in this book describing RL methods have the same structure: in
the beginning, we discuss the motivation of the method, its theoretical foundation,
and the idea behind it. Then, we follow several examples of the method applied to
different environments with the full source code.
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You can use the book in different ways:
1. To quickly become familiar with some method, you can read only the
introductory part of the relevant chapter

2. To get a deeper understanding of the way the method is implemented,
you can read the code and the comments around it

3. To gain a deep familiarity with the method (the best way to learn, I believe)
you can try to reimplement the method and make it work, using the
provided source code as a reference point

In any case, I hope the book will be useful for you!

Download the example code files

You can download the example code files for this book from your account at www.
packt .com/. If you purchased this book elsewhere, you can visit www. packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Login or register at http://www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the on-screen
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

* 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-
Edition. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!
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Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838826994 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "Mount the downloaded webStorm-10+.dmg disk image file as
another disk in your system."

A block of code is set as follows:

def grads_func(proc_name, net, device, train_ queue):
envs = [make env() for _ in range (NUM_ENVS) ]

agent = ptan.agent.PolicyAgent (
lambda x: net(x) [0], device=device, apply softmax=True)
exp_source = ptan.experience.ExperienceSourceFirstLast (
envs, agent, gamma=GAMMA, steps_count:REWARD_STEPS)

batch = []
frame_idx = 0
writer = SummaryWriter (comment=proc_name)

Any command-line input or output is written as follows:
rl book samples/Chapterll$ ./02 a3c _grad.py --cuda -n final

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

\/;p’; Warnings or important notes appear like this.

[ xviii ]
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\ 7/
‘,@\' Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at customercare@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering

the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyrightepackt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt . com.
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What Is Reinforcement
Learning?

Reinforcement learning (RL) is a subfield of machine learning (ML) that
addresses the problem of the automatic learning of optimal decisions over time.
This is a general and common problem that has been studied in many scientific
and engineering fields.

In our changing world, even problems that look like static input-output problems
can become dynamic if time is taken into account. For example, imagine that you
want to solve the simple supervised learning problem of pet image classification
with two target classes —dog and cat. You gather the training dataset and implement
the classifier using your favorite deep learning (DL) toolkit. After a while, the
model that has converged demonstrates excellent performance. Great! You deploy

it and leave it running for a while. However, after a vacation at some seaside resort,
you return to discover that dog grooming fashions have changed and a significant
portion of your queries are now misclassified, so you need to update your training
images and repeat the process again. Not so great!

The preceding example is intended to show that even simple ML problems have

a hidden time dimension. This is frequently overlooked, but it might become an
issue in a production system. RL is an approach that natively incorporates an extra
dimension (which is usually time, but not necessarily) into learning equations.
This places RL much closer to how people understand artificial intelligence (AI).

In this chapter, we will discuss RL in more detail and you will become familiar
with the following:

* How RL is related to and differs from other ML disciplines: supervised
and unsupervised learning

[11]
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*  What the main RL formalisms are and how they are related to each other

* Theoretical foundations of RL —the Markov decision processes

Supervised learning

You may be familiar with the notion of supervised learning, which is the most
studied and well-known machine learning problem. Its basic question is, how do you
automatically build a function that maps some input into some output when given

a set of example pairs? It sounds simple in those terms, but the problem includes
many tricky questions that computers have only recently started to address with
some success. There are lots of examples of supervised learning problems, including
the following:

* Text classification: Is this email message spam or not?

* Image classification and object location: Does this image contain a picture
of a cat, dog, or something else?

* Regression problems: Given the information from weather sensors, what
will be the weather tomorrow?

* Sentiment analysis: What is the customer satisfaction level of this review?

These questions may look different, but they share the same idea—we have many
examples of input and desired output, and we want to learn how to generate the
output for some future, currently unseen input. The name supervised comes from the
fact that we learn from known answers provided by a "ground truth" data source.

Unsupervised learning

At the other extreme, we have the so-called unsupervised learning, which assumes
no supervision and has no known labels assigned to our data. The main objective is
to learn some hidden structure of the dataset at hand. One common example of such
an approach to learning is the clustering of data. This happens when our algorithm
tries to combine data items into a set of clusters, which can reveal relationships

in data. For instance, you might want to find similar images or clients with common
behaviors.

Another unsupervised learning method that is becoming more and more popular

is generative adversarial networks (GANSs). When we have two competing neural
networks, the first network is trying to generate fake data to fool the second network,
while the second network is trying to discriminate artificially generated data from
data sampled from our dataset. Over time, both networks become more and more
skillful in their tasks by capturing subtle specific patterns in the dataset.

[2]
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Reinforcement learning

RL is the third camp and lies somewhere in between full supervision and a complete
lack of predefined labels. On the one hand, it uses many well-established methods
of supervised learning, such as deep neural networks for function approximation,
stochastic gradient descent, and backpropagation, to learn data representation.

On the other hand, it usually applies them in a different way.

In the next two sections of the chapter, we will explore specific details of the RL
approach, including assumptions and abstractions in its strict mathematical form.
For now, to compare RL with supervised and unsupervised learning, we will take
a less formal, but more easily understood, path.

Imagine that you have an agent that needs to take actions in some environment.
(Both "agent" and "environment" will be defined in detail later in this chapter.)
A robot mouse in a maze is a good example, but you can also imagine an
automatic helicopter trying to perform a roll, or a chess program learning how
to beat a grandmaster. Let's go with the robot mouse for simplicity.
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Figure 1.1: The robot mouse maze world
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In this case, the environment is a maze with food at some points and electricity at
others. The robot mouse can take actions, such as turn left/right and move forward.
At each moment, it can observe the full state of the maze to make a decision about
the actions to take. The robot mouse tries to find as much food as possible while
avoiding getting an electric shock whenever possible. These food and electricity
signals stand as the reward that is given to the agent (robot mouse) by the
environment as additional feedback about the agent's actions. The reward is a very
important concept in RL, and we will talk about it later in the chapter. For now, it is
enough for you to know that the final goal of the agent is to get as much total reward
as possible. In our particular example, the robot mouse could suffer a slight electric
shock to get to a place with plenty of food — this would be a better result for the
robot mouse than just standing still and gaining nothing.

We don't want to hard-code knowledge about the environment and the best actions
to take in every specific situation into the robot mouse — it will take too much effort
and may become useless even with a slight maze change. What we want is to have
some magic set of methods that will allow our robot mouse to learn on its own how
to avoid electricity and gather as much food as possible. RL is exactly this magic
toolbox and it behaves differently from supervised and unsupervised learning
methods; it doesn't work with predefined labels in the way that supervised learning
does. Nobody labels all the images that the robot sees as good or bad, or gives it the
best direction to turn in.

However, we're not completely blind as in an unsupervised learning setup —we
have a reward system. The reward can be positive from gathering the food, negative
from electric shocks, or neutral when nothing special happens. By observing the
reward and relating it to the actions taken, our agent learns how to perform an action
better, gather more food, and get fewer electric shocks. Of course, RL generality

and flexibility comes with a price. RL is considered to be a much more challenging
area than supervised or unsupervised learning. Let's quickly discuss what makes

RL tricky.

RL's complications

The first thing to note is that observation in RL depends on an agent's behavior and,
to some extent, it is the result of this behavior. If your agent decides to do inefficient
things, then the observations will tell you nothing about what it has done wrong
and what should be done to improve the outcome (the agent will just get negative
feedback all the time). If the agent is stubborn and keeps making mistakes, then

the observations will give the false impression that there is no way to get a larger
reward — life is suffering — which could be totally wrong.

[4]
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In ML terms, this can be rephrased as having non-i.i.d. data. The abbreviation i.i.d.
stands for independent and identically distributed, a requirement for most
supervised learning methods.

The second thing that complicates our agent's life is that it needs to not only exploit
the knowledge it has learned, but actively explore the environment, because maybe
doing things differently will significantly improve the outcome. The problem is that
too much exploration may also seriously decrease the reward (not to mention the
agent can actually forget what it has learned before), so we need to find a balance
between these two activities somehow. This exploration/exploitation dilemma is
one of the open fundamental questions in RL. People face this choice all the time —
should I go to an already known place for dinner or try this fancy new restaurant?
How frequently should I change jobs? Should I study a new field or keep working
in my area? There are no universal answers to these questions.

The third complication factor lies in the fact that reward can be seriously delayed
after actions. In chess, for example, one single strong move in the middle of the
game can shift the balance. During learning, we need to discover such causalities,
which can be tricky to discern during the flow of time and our actions.

However, despite all these obstacles and complications, RL has seen huge
improvements in recent years and is becoming more and more active as a field
of research and practical application.

Interested in learning more? Let's dive into the details and look at RL formalisms
and play rules.

RL formalisms

Every scientific and engineering field has its own assumptions and limitations. In
the previous section, we discussed supervised learning, in which such assumptions
are the knowledge of input-output pairs. You have no labels for your data? You need
to figure out how to obtain labels or try to use some other theory. This doesn't make
supervised learning good or bad; it just makes it inapplicable to your problem.

There are many historical examples of practical and theoretical breakthroughs that
have occurred when somebody tried to challenge rules in a creative way. However,
we also must understand our limitations. It's important to know and understand
game rules for various methods, as it can save you tons of time in advance. Of
course, such formalisms exist for RL, and we will spend the rest of this book
analyzing them from various angles.
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The following diagram shows two major RL entities —agent and environment —
and their communication channels —actions, reward, and observations. We will
discuss them in detail in the next few sections:

Actions

Environment

Observations

Figure 1.2: RL entities and their communication channels

Reward

Let's return to the notion of reward. In RL, it's just a scalar value we obtain
periodically from the environment. As mentioned, reward can be positive or
negative, large or small, but it's just a number. The purpose of reward is to tell our
agent how well it has behaved. We don't define how frequently the agent receives
this reward; it can be every second or once in an agent's lifetime, although it's
common practice to receive rewards every fixed timestamp or at every environment
interaction, just for convenience. In the case of once-in-a-lifetime reward systems,
all rewards except the last one will be zero.

As I stated, the purpose of reward is to give an agent feedback about its success,
and it's a central thing in RL. Basically, the term reinforcement comes from the fact
that reward obtained by an agent should reinforce its behavior in a positive or
negative way. Reward is local, meaning that it reflects the success of the agent's
recent activity and not all the successes achieved by the agent so far. Of course,
getting a large reward for some action doesn't mean that a second later you won't
face dramatic consequences as a result of your previous decisions. It's like robbing
a bank —it could look like a good idea until you think about the consequences.
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What an agent is trying to achieve is the largest accumulated reward over its
sequence of actions. To give you a better understanding of reward, here is a list
of some concrete examples with their rewards:

Financial trading: An amount of profit is a reward for a trader buying
and selling stocks.

Chess: Reward is obtained at the end of the game as a win, lose, or draw.
Of course, it's up to interpretation. For me, for example, achieving a

draw in a match against a chess grandmaster would be a huge reward. In
practice, we need to specify the exact reward value, but it could be a fairly
complicated expression. For instance, in the case of chess, the reward could
be proportional to the opponent's strength.

Dopamine system in the brain: There is a part of the brain (limbic system)
that produces dopamine every time it needs to send a positive signal to
the rest of the brain. Higher concentrations of dopamine lead to a sense

of pleasure, which reinforces activities considered by this system to be
good. Unfortunately, the limbic system is ancient in terms of the things it
considers good —food, reproduction, and dominance —but that is a totally
different story!

Computer games: They usually give obvious feedback to the player, which is
either the number of enemies killed or a score gathered. Note in this example
that reward is already accumulated, so the RL reward for arcade games
should be the derivative of the score, that is, +1 every time a new enemy

is killed and 0 at all other time steps.

Web navigation: There are problems, with high practical value, that require
the automated extraction of information available on the web. Search engines
are trying to solve this task in general, but sometimes, to get to the data
you're looking for, you need to fill in some forms or navigate through a series
of links, or complete CAPTCHAs, which can be difficult for search engines

to do. There is an RL-based approach to those tasks in which the reward is
the information or the outcome that you need to get.

Neural network (NN) architecture search: RL has been successfully applied
to the domain of NN architecture optimization, where the aim is to get the
best performance metric on some dataset by tweaking the number of layers
or their parameters, adding extra bypass connections, or making other
changes to the NN architecture. The reward in this case is the performance
(accuracy or another measure showing how accurate the NN predictions are).
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Dog training: If you have ever tried to train a dog, you know that you need
to give it something tasty (but not too much) every time it does the thing
you've asked. It's also common to punish your pet a bit (negative reward)
when it doesn't follow your orders, although recent studies have shown
that this isn't as effective as a positive reward.

School marks: We all have experience here! School marks are a reward
system designed to give pupils feedback about their studying.

As you can see from the preceding examples, the notion of reward is a very general
indication of the agent's performance, and it can be found or artificially injected into
lots of practical problems around us.

The agent

An agent is somebody or something who/that interacts with the environment by
executing certain actions, making observations, and receiving eventual rewards
for this. In most practical RL scenarios, the agent is our piece of software that is
supposed to solve some problem in a more-or-less efficient way. For our initial
set of six examples, the agents will be as follows:

Financial trading: A trading system or a trader making decisions about order
execution

Chess: A player or a computer program

Dopamine system: The brain itself, which, according to sensory data, decides
whether it was a good experience

Computer games: The player who enjoys the game or the computer program.
(Andrej Karpathy once tweeted that "we were supposed to make Al do all
the work and we play games but we do all the work and the Al is playing
games!")

Web navigation: The software that tells the browser which links to click on,
where to move the mouse, or which text to enter

NN architecture search: The software that controls the concrete architecture
of the NN being evaluated

Dog training: You make decisions about the actions (feeding/punishing),
so, the agent is you

School: Student/pupil

[8]
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The environment

The environment is everything outside of an agent. In the most general sense, it's the
rest of the universe, but this goes slightly overboard and exceeds the capacity of even
tomorrow's computers, so we usually follow the general sense here.

The agent's communication with the environment is limited to reward

(obtained from the environment), actions (executed by the agent and given to

the environment), and observations (some information besides the reward that the
agent receives from the environment). We have discussed reward already, so let's
talk about actions and observations next.

Actions

Actions are things that an agent can do in the environment. Actions can, for
example, be moves allowed by the rules of play (if it's a game), or doing homework
(in the case of school). They can be as simple as move pawn one space forward or as
complicated as fill the tax form in for tomorrow morning.

In RL, we distinguish between two types of actions — discrete or continuous.

Discrete actions form the finite set of mutually exclusive things an agent can do, such
as move left or right. Continuous actions have some value attached to them, such as
a car's action turn the wheel having an angle and direction of steering. Different angles
could lead to a different scenario a second later, so just turn the wheel is definitely

not enough.

Observations

Observations of the environment form the second information channel for an agent,
with the first being reward. You may be wondering why we need a separate data
source. The answer is convenience. Observations are pieces of information that the
environment provides the agent with that say what's going on around the agent.

Observations may be relevant to the upcoming reward (such as seeing a bank
notification about being paid) or may not be. Observations can even include reward
information in some vague or obfuscated form, such as score numbers on a computer
game's screen. Score numbers are just pixels, but potentially we could convert them
into reward values; it's not a big deal with modern DL at hand.

On the other hand, reward shouldn't be seen as a secondary or unimportant

thing —reward is the main force that drives the agent's learning process. If a reward
is wrong, noisy, or just slightly off course from the primary objective, then there

is a chance that training will go in a wrong direction.

[o]



What Is Reinforcement Learning?

It's also important to distinguish between an environment's state and observations.
The state of an environment potentially includes every atom in the universe, which
makes it impossible to measure everything about the environment. Even if we limit
the environment's state to be small enough, most of the time, it will be either not
possible to get full information about it or our measurements will contain noise.
This is completely fine, though, and RL was created to support such cases natively.
Once again, let's return to our set of examples to capture the difference:

Financial trading: Here, the environment is the whole financial market and
everything that influences it. This is a huge list of things, such as the latest
news, economic and political conditions, weather, food supplies, and Twitter
trends. Even your decision to stay home today can potentially indirectly
influence the world's financial system (if you believe in the "butterfly effect").
However, our observations are limited to stock prices, news, and so on. We
don't have access to most of the environment's state, which makes trading
such a nontrivial thing.

Chess: The environment here is your board plus your opponent, which
includes their chess skills, mood, brain state, chosen tactics, and so on.
Observations are what you see (your current chess position), but, at some
levels of play, knowledge of psychology and the ability to read an opponent's
mood could increase your chances.

Dopamine system: The environment here is your brain plus your nervous
system and your organs' states plus the whole world you can perceive.
Observations are the inner brain state and signals coming from your senses.

Computer game: Here, the environment is your computer's state, including
all memory and disk data. For networked games, you need to include other
computers plus all Internet infrastructure between them and your machine.
Observations are a screen's pixels and sound only. These pixels are not a tiny
amount of information (somebody calculated that the total number of possible
moderate-size images (1024x768) is significantly larger than the number of
atoms in our galaxy), but the whole environment state is definitely larger.

Web navigation: The environment here is the Internet, including all the
network infrastructure between the computer on which our agent works
and the web server, which is a really huge system that includes millions and
millions of different components. The observation is normally the web page
that is loaded at the current navigation step.

NN architecture search: In this example, the environment is fairly simple
and includes the NN toolkit that performs the particular NN evaluation and
the dataset that is used to obtain the performance metric. In comparison to
the Internet, this looks like a tiny toy environment.

[10]
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Observations might be different and include some information about
testing, such as loss convergence dynamics or other metrics obtained
from the evaluation step.

* Dog training: Here, the environment is your dog (including its hardly
observable inner reactions, mood, and life experiences) and everything
around it, including other dogs and even a cat hiding in a bush. Observations
are signals from your senses and memory.

* School: The environment here is the school itself, the education system of the
country, society, and the cultural legacy. Observations are the same as for the
dog training example — the student's senses and memory.

This is our mise en scéne and we will play around with it in the rest of this book. You
will have already noticed that the RL model is extremely flexible and general, and it
can be applied to a variety of scenarios. Let's now look at how RL is related to other
disciplines, before diving into the details of the RL model.

There are many other areas that contribute or relate to RL. The most significant
are shown in the following diagram, which includes six large domains heavily
overlapping each other on the methods and specific topics related to decision-
making (shown inside the inner gray circle).

Computer Science

Engineering Machike Neuroscience

Learning
Optimal Reward

Control System
Reinforcement
Learning
Operations Classical/Operant
Research Conditioning

Bounded

x A Psycholo
Rationality 4 9y

Mathematics

Economics

Figure 1.3: Various domains in RL

[11]



What Is Reinforcement Learning?

At the intersection of all those related, but still different, scientific areas sits RL,
which is so general and flexible that it can take the best available information from
these varying domains:

* ML: RL, being a subfield of ML, borrows lots of its machinery, tricks, and
techniques from ML. Basically, the goal of RL is to learn how an agent should
behave when it is given imperfect observational data.

* Engineering (especially optimal control): This helps with taking a sequence
of optimal actions to get the best result.

* Neuroscience: We used the dopamine system as our example, and it has
been shown that the human brain acts similarly to the RL model.

* Psychology: This studies behavior in various conditions, such as how people
react and adapt, which is close to the RL topic.

* Economics: One of the important topics is how to maximize reward in terms
of imperfect knowledge and the changing conditions of the real world.

* Mathematics: This works with idealized systems and also devotes significant
attention to finding and reaching the optimal conditions in the field of
operations research.

In the next part of the chapter, you will become familiar with the theoretical
foundations of RL, which will make it possible to start moving toward the methods
used to solve the RL problem. The upcoming section is important for understanding
the rest of the book.

The theoretical foundations of RL

In this section, I will introduce you to the mathematical representation and notation
of the formalisms (reward, agent, actions, observations, and environment) that we
just discussed. Then, using this as a knowledge base, we will explore the second-
order notions of the RL language, including state, episode, history, value, and

gain, which will be used repeatedly to describe different methods later in the book.

Markov decision processes

Before that, we will cover Markov decision processes (MDPs), which will be
described like a Russian matryoshka doll: we will start from the simplest case

of a Markov process (MP), then extend that with rewards, which will turn it into
a Markov reward process. Then, we will put this idea into an extra envelope by
adding actions, which will lead us to an MDP.

[12]
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MPs and MDPs are widely used in computer science and other engineering fields.
So, reading this chapter will be useful for you not only for RL contexts, but also for
a much wider range of topics. If you're already familiar with MDPs, then you can
quickly skim this chapter, paying attention only to the terminology definitions,

as we will use them later on.

The Markov process

Let's start with the simplest child of the Markov family: the MP, which is also
known as the Markov chain. Imagine that you have some system in front of you that
you can only observe. What you observe is called states, and the system can switch
between states according to some laws of dynamics. Again, you cannot influence the
system, but can only watch the states changing.

All possible states for a system form a set called the state space. For MPs, we require
this set of states to be finite (but it can be extremely large to compensate for this
limitation). Your observations form a sequence of states or a chain (that's why MPs
are also called Markov chains). For example, looking at the simplest model of the
weather in some city, we can observe the current day as sunny or rainy, which is our
state space. A sequence of observations over time forms a chain of states, such as
[sunny, sunny, rainy, sunny, ...], and this is called history.

To call such a system an MP, it needs to fulfill the Markov property, which means
that the future system dynamics from any state have to depend on this state only.
The main point of the Markov property is to make every observable state self-
contained to describe the future of the system. In other words, the Markov property
requires the states of the system to be distinguishable from each other and unique.
In this case, only one state is required to model the future dynamics of the system
and not the whole history or, say, the last N states.

In the case of our toy weather example, the Markov property limits our model to
represent only the cases when a sunny day can be followed by a rainy one with the
same probability, regardless of the amount of sunny days we've seen in the past.
It's not a very realistic model, as from common sense we know that the chance of
rain tomorrow depends not only on the current conditions but on a large number
of other factors, such as the season, our latitude, and the presence of mountains and
sea nearby. It was recently proven that even solar activity has a major influence on
the weather. So, our example is really naive, but it's important to understand the
limitations and make conscious decisions about them.

Of course, if we want to make our model more complex, we can always do this

by extending our state space, which will allow us to capture more dependencies
in the model at the cost of a larger state space. For example, if you want to capture
separately the probability of rainy days during summer and winter, then you can
include the season in your state.

[13]



What Is Reinforcement Learning?

In this case, your state space will be [sunny+summer, sunny+winter, rainy+summer,
rainy+winter] and so on.

As your system model complies with the Markov property, you can capture transition
probabilities with a transition matrix, which is a square matrix of the size NxN, where
N is the number of states in our model. Every cell in a row, i, and a column, j, in the
matrix contains the probability of the system to transition from state i to state ;.

For example, in our sunny/rainy example, the transition matrix could be as follows:

Sunny Rainy
Sunny 0.8 0.2
Rainy 0.1 0.9

In this case, if we have a sunny day, then there is an 80% chance that the next day
will be sunny and a 20% chance that the next day will be rainy. If we observe a rainy
day, then there is a 10% probability that the weather will become better and a 90%
probability of the next day being rainy.

So, that's it. The formal definition of an MP is as follows:

* A set of states (S) that a system can be in

* A transition matrix (T), with transition probabilities, which defines the
system dynamics

A useful visual representation of an MP is a graph with nodes corresponding to
system states and edges, labeled with probabilities representing a possible transition
from state to state. If the probability of a transition is 0, we don't draw an edge (there
is no way to go from one state to another). This kind of representation is also widely
used in finite state machine representation, which is studied in automata theory.

S —
/

08 0.9)
\_____ Sunny Rainy
T

Figure 1.4: The sunny/rainy weather model
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Again, we're talking about observation only. There is no way for us to influence the
weather, so we just observe it and record our observations.

To give you a more complicated example, let's consider another model called office
worker (Dilbert, the main character in Scott Adams' famous cartoons, is a good
example). His state space in our example has the following states:

* Home: He's not at the office

* Computer: He's working on his computer at the office

* Coffee: He's drinking coffee at the office

* Chatting: He's discussing something with colleagues at the office

The state transition graph looks like this:

O

Figure 1.5: The state transition graph for our office worker

We assume that our office worker's weekday usually starts from the Home state and
that he starts his day with Coffee without exception (no Home — Computer edge
and no Home — Chatting edge). The preceding diagram also shows that workdays
always end (that is, going to the Home state) from the Computer state.

The transition matrix for the preceding diagram is as follows:

Home Coffee Chat Computer
Home 60% 40% 0% 0%
Coffee 0% 10% 70% 20%
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Chat 0% 20% 50% 30%
Computer 20% 20% 10% 50%

The transition probabilities could be placed directly on the state transition graph, as
shown here:

Figure 1.6: The state transition graph with transition probabilities

In practice, we rarely have the luxury of knowing the exact transition matrix. A much
more real-world situation is when we only have observations of our system's states,
which are also called episodes:

¢ Home — Coffee — Coffee —» Chat —» Chat —» Coffee - Computer - Computer — Home
¢ Computer - Computer —» Chat —» Chat — Coffee - Computer - Computer - Computer

¢ Home — Home — Coffee — Chat - Computer — Coffee — Coffee

It's not complicated to estimate the transition matrix from our observations —we
just count all the transitions from every state and normalize them to a sum of 1.
The more observation data we have, the closer our estimation will be to the true
underlying model.

It's also worth noting that the Markov property implies stationarity (that is,

the underlying transition distribution for any state does not change over time).
Nonstationarity means that there is some hidden factor that influences our system
dynamics, and this factor is not included in observations. However, this contradicts
the Markov property, which requires the underlying probability distribution to be
the same for the same state regardless of the transition history.
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It's important to understand the difference between the actual transitions observed in
an episode and the underlying distribution given in the transition matrix. Concrete
episodes that we observe are randomly sampled from the distribution of the model,
so they can differ from episode to episode. However, the probability of the concrete
transition to be sampled remains the same. If this is not the case, Markov chain
formalism becomes nonapplicable.

Now we can go further and extend the MP model to make it closer to our RL
problems. Let's add rewards to the picture!

Markov reward processes

To introduce reward, we need to extend our MP model a bit. First, we need to
add value to our transition from state to state. We already have probability, but
probability is being used to capture the dynamics of the system, so now we have
an extra scalar number without extra burden.

Reward can be represented in various forms. The most general way is to have
another square matrix, similar to the transition matrix, with reward given for
transitioning from state i to state j, which reside in row i and column j.

As mentioned, reward can be positive or negative, large or small. In some cases,
this representation is redundant and can be simplified. For example, if reward

is given for reaching the state regardless of the previous state, we can keep only
state — reward pairs, which are a more compact representation. However, this is
applicable only if the reward value depends solely on the target state, which is not
always the case.

The second thing we're adding to the model is the discount factor y (gamma), which
is a single number from 0 to 1 (inclusive). The meaning of this will be explained after
the extra characteristics of our Markov reward process have been defined.

As you will remember, we observe a chain of state transitions in an MP. This is still
the case for a Markov reward process, but for every transition, we have our extra
quantity —reward. So now, all our observations have a reward value attached to
every transition of the system.

For every episode, we define return at the time, £, as this quantity:

Gt =Rty + YRy +0 = Z Y*Retks1
k=0
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Let's try to understand what this means. For every time point, we calculate return
as a sum of subsequent rewards, but more distant rewards are multiplied by the
discount factor raised to the power of the number of steps we are away from the
starting point at t. The discount factor stands for the foresightedness of the agent.
If gamma equals 1, then return, G, just equals a sum of all subsequent rewards
and corresponds to the agent that has perfect visibility of any subsequent rewards.
If gamma equals 0, G, will be just immediate reward without any subsequent state
and will correspond to absolute short-sightedness.

These extreme values are useful only in corner cases, and most of the time, gamma is
set to something in between, such as 0.9 or 0.99. In this case, we will look into future
rewards, but not too far. The value of y = 1 might be applicable in situations of short
finite episodes.

This gamma parameter is important in RL, and we will meet it a lot in the
subsequent chapters. For now, think about it as a measure of how far into the future
we look to estimate the future return. The closer it is to 1, the more steps ahead of us
we will take into account.

This return quantity is not very useful in practice, as it was defined for every specific
chain we observed from our Markov reward process, so it can vary widely, even

for the same state. However, if we go to the extreme and calculate the mathematical
expectation of return for any state (by averaging a large number of chains), we will
get a much more useful quantity, which is called the value of the state:

V(s) = E[G|S; = s]

This interpretation is simple —for every state, s, the value, V(s), is the average
(or expected) return we get by following the Markov reward process.

To show this theoretical stuff in practice, let's extend our office worker (Dilbert)
process with reward and turn it into a Dilbert reward process (DRP). Our reward
values will be as follows:

* Home - Home:1 (asit's good to be home)

. Home — Coffee: 1

*  Computer —» Computer : 5 (working hard is a good thing)

*  Computer - Chat: —3 (it's not good to be distracted)

. Chat —» Computer : 2

. Computer — Coffee : 1

. Coffee —» Computer : 3

[18]



Chapter 1

. Coffee — Coffee: 1
. Coffee — Chat: 2
. Chat — Coffee: 1

* Chat - Chat: -1 (long conversations become boring)

A diagram of this is shown here:

Figure 1.7: A state transition graph with transition probabilities (dark) and rewards (light)

Let's return to our gamma parameter and think about the values of states with
different values of gamma. We will start with a simple case: gamma = 0. How do you
calculate the values of states here? To answer this question, let's fix our state to Chat.
What could the subsequent transition be? The answer is that it depends on chance.
According to our transition matrix for the Dilbert process, there is a 50% probability
that the next state will be Chat again, 20% that it will be Coffee, and 30% that it

will be Computer. When gamma = 0, our return is equal only to a value of the next
immediate state. So, if we want to calculate the value of the Chat state, then we need
to sum all transition values and multiply that by their probabilities:
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So, Computer is the most valuable state to be in (if we care only about immediate
reward), which is not surprising as Computer — Computer is frequent, has a large
reward, and the ratio of interruptions is not too high.

Now a trickier question —what's the value when gamma = 1? Think about this
carefully. The answer is that the value is infinite for all states. Our diagram doesn't
contain sink states (states without outgoing transitions), and when our discount
equals 1, we care about a potentially infinite number of transitions in the future.
As you've seen in the case of gamma = 0, all our values are positive in the short
term, so the sum of the infinite number of positive values will give us an infinite
value, regardless of the starting state.

This infinite result shows us one of the reasons to introduce gamma into a Markov
reward process instead of just summing all future rewards. In most cases, the
process can have an infinite (or large) amount of transitions. As it is not very
practical to deal with infinite values, we would like to limit the horizon we calculate
values for. Gamma with a value less than 1 provides such a limitation, and we

will discuss this later in this book. On the other hand, if you're dealing with finite-
horizon environments (for example, the tic-tac-toe game, which is limited by at most
nine steps), then it will be fine to use gamma = 1. As another example, there is an
important class of environments with only one step called the multi-armed bandit
MDP. This means that on every step, you need to make a selection of one alternative
action, which provides you with some reward and the episode ends.

As I already mentioned about the Markov reward process, gamma is usually set to
a value between 0 and 1. However, with such values, it becomes almost impossible
to calculate them accurately by hand, even for Markov reward processes as small
as our Dilbert example, because it will require summing hundreds of values.
Computers are good at tedious tasks such as this, and there are several simple
methods that can quickly calculate values for Markov reward processes for given
transition and reward matrices. We will see and even implement one such method
in Chapter 5, Tabular Learning and the Bellman Equation, when we will start looking
at Q-learning methods.

For now, let's put another layer of complexity around our Markov reward processes
and introduce the final missing piece: actions.

Adding actions

You may already have ideas about how to extend our Markov reward process to
include actions. Firstly, we must add a set of actions (A), which has to be finite. This
is our agent's action space. Secondly, we need to condition our transition matrix
with actions, which basically means that our matrix needs an extra action dimension,
which turns it into a cube.
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If you remember, in the case of MPs and Markov reward processes, the transition
matrix had a square form, with the source state in rows and target state in columns.
So, every row, i, contained a list of probabilities to jump to every state:

— "
{Good old MP

Target state

Probability for
1 i— jtransition

Source O
state

Figure 1.8: The transition matrix in square form

Now the agent no longer passively observes state transitions, but can actively choose
an action to take at every state transition. So, for every source state, we don't have a
list of numbers, but we have a matrix, where the depth dimension contains actions
that the agent can take, and the other dimension is what the target state system will
jump to after actions are performed by the agent. The following diagram shows

our new transition table, which became a cube with the source state as the height
dimension (indexed by i), the target state as the width (j), and the action the agent
can take as the depth (k) of the transition table:

/ Probability for

i—> j given action K

y
\0(\/ 77 >

* f f i Z 7
?g’}; 7 7 7 7 7
Vi Vi Vi
Source
state

Target state

Figure 1.9: Transition probabilities for the MDP
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So, in general, by choosing an action, the agent can affect the probabilities of the
target states, which is a useful ability.

To give you an idea of why we need so many complications, let's imagine a small
robot that lives in a 3x3 grid and can execute the actions turn left, turn right, and go
forward. The state of the world is the robot's position plus orientation (up, down, left,
and right), which gives us 3 x 3 x 4 = 36 states (the robot can be at any location in any
orientation).

Also, imagine that the robot has imperfect motors (which is frequently the case in the
real world), and when it executes turn left or turn right, there is a 90% chance that the
desired turn happens, but sometimes, with a 10% probability, the wheel slips and the
robot's position stays the same. The same happens with go forward —in 90% of cases
it works, but for the rest (10%) the robot stays at the same position.

In the following illustration, a small part of a transition diagram is shown, displaying
the possible transitions from the state (1, 1, up), when the robot is in the center of the
grid and facing up. If the robot tries to move forward, there is a 90% chance that it
will end up in the state (0, 1, up), but there is a 10% probability that the wheels will
slip and the target position will remain (1, 1, up).

To properly capture all these details about the environment and possible reactions to
the agent's actions, the general MDP has a 3D transition matrix with the dimensions
source state, action, and target state.

L e

Robot at cell (1,1)
facing up

Part of robot's transition diagram

Figure 1.10: A grid world environment

Finally, to turn our Markov reward process into an MDP, we need to add actions
to our reward matrix in the same way that we did with the transition matrix. Our
reward matrix will depend not only on the state but also on the action. In other
words, the reward the agent obtains will now depend not only on the state it ends
up in but also on the action that leads to this state.
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This is similar to when you put effort into something — you're usually gaining

skills and knowledge, even if the result of your efforts wasn't too successful. So, the
reward could be better if you're doing something rather than not doing something,
even if the final result is the same.

Now, with a formally defined MDP, we're finally ready to cover the most important
thing for MDPs and RL: policy.

Policy

The simple definition of policy is that it is some set of rules that controls the agent's
behavior. Even for fairly simple environments, we can have a variety of policies. For
example, in the preceding example with the robot in the grid world, the agent can
have different policies, which will lead to different sets of visited states. For example,
the robot can perform the following actions:

* Blindly move forward regardless of anything

* Try to go around obstacles by checking whether that previous forward action
failed

* Funnily spin around to entertain its creator

* Choose an action by randomly modeling a drunk robot in the grid world
scenario

You may remember that the main objective of the agent in RL is to gather as much
return as possible. So, again, different policies can give us different amounts of
return, which makes it important to find a good policy. This is why the notion of
policy is important.

Formally, policy is defined as the probability distribution over actions for every
possible state:

m(als) = P[A; = a|S; = s]

This is defined as probability and not as a concrete action to introduce randomness
into an agent's behavior. We will talk later in the book about why this is important
and useful. Deterministic policy is a special case of probabilistics with the needed
action having 1 as its probability.

Another useful notion is that if our policy is fixed and not changing, then our MDP
becomes a Markov reward process, as we can reduce the transition and reward
matrices with a policy's probabilities and get rid of the action dimensions.
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Congratulations on getting to this stage! This chapter was challenging, but it

was important for understanding subsequent practical material. After two more
introductory chapters about OpenAl Gym and deep learning, we will finally start
tackling this question —how do we teach agents to solve practical tasks?

Summary

In this chapter, you started your journey into the RL world by learning what

makes RL special and how it relates to the supervised and unsupervised learning
paradigms. We then learned about the basic RL formalisms and how they interact
with each other, after which we covered MPs, Markov reward processes, and MDPs.
This knowledge will be the foundation for the material that we will cover in the rest
of the book.

In the next chapter, we will move away from the formal theory to the practice of
RL. We will cover the setup required and libraries, and then you will write your
first agent.
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After talking so much about the theoretical concepts of reinforcement learning (RL)
in Chapter 1, What Is Reinforcement Learning?, let's start doing something practical!
In this chapter, you will learn the basics of OpenAl Gym, a library used to provide
a uniform API for an RL agent and lots of RL environments. This removes the need
to write boilerplate code.

You will also write your first randomly behaving agent and become more familiar
with the basic concepts of RL that we have covered so far. By the end of the chapter,
you will have an understanding of:

* The high-level requirements that need to be implemented to plug the agent
into the RL framework

* A basic, pure-Python implementation of the random RL agent
*  OpenAl Gym

The anatomy of the agent

As you learned in the previous chapter, there are several entities in RL's view of
the world:

* The agent: A thing, or person, that takes an active role. In practice, the agent
is some piece of code that implements some policy. Basically, this policy
decides what action is needed at every time step, given our observations.

* The environment: Some model of the world that is external to the agent
and has the responsibility of providing observations and giving rewards.
The environment changes its state based on the agent's actions.

[25]



OpenAl Gym

Let's explore how both can be implemented in Python for a simple situation. We will
define an environment that will give the agent random rewards for a limited number
of steps, regardless of the agent's actions. This scenario is not very useful, but it will
allow us to focus on specific methods in both the environment and agent classes.
Let's start with the environment:

class Environment:
def init (self):
self.steps left = 10

In the preceding code, we allowed the environment to initialize its internal state. In
our case, the state is just a counter that limits the number of time steps that the agent
is allowed to take to interact with the environment.

def get_observation(self) -> List[float]:
return [0.0, 0.0, 0.0]

The get_observation () method is supposed to return the current environment's
observation to the agent. It is usually implemented as some function of the internal
state of the environment. If you're curious about what is meant by-> List [float],
that's an example of Python type annotations, which were introduced in Python

3.5. You can find out more in the documentation at https://docs.python.org/3/
library/typing.html. In our example, the observation vector is always zero, as the
environment basically has no internal state.

def get actions(self) -> List[int]:
return [0, 1]

The get_actions () method allows the agent to query the set of actions it can
execute. Normally, the set of actions that the agent can execute does not change
over time, but some actions can become impossible in different states (for example,
not every move is possible in any position of the tic-tac-toe game). In our simplistic
example, there are only two actions that the agent can carry out, which are encoded
with the integers 0 and 1.

def is done(self) -> bool:
return self.steps left == 0

The preceding method signaled the end of the episode to the agent. As you saw

in Chapter 1, What Is Reinforcement Learning?, the series of environment-agent
interactions is divided into a sequence of steps called episodes. Episodes can be
finite, like in a game of chess, or infinite, like the Voyager 2 mission (a famous
space probe that was launched over 40 years ago and has traveled beyond our solar
system). To cover both scenarios, the environment provides us with a way to detect
when an episode is over and there is no way to communicate with it anymore.
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def action(self, action: int) -> float:
if self.is done():
raise Exception("Game is over")
self.steps left -=1
return random.random ()

The action () method is the central piece in the environment's functionality. It does
two things - handles an agent's action and returns the reward for this action. In our
example, the reward is random and its action is discarded. Additionally, we update
the count of steps and refuse to continue the episodes that are over.

Now when looking at the agent's part, it is much simpler and includes only two
methods: the constructor and the method that performs one step in the environment:

class Agent:
def  init (self):
self.total reward = 0.0

In the constructor, we initialize the counter that will keep the total reward
accumulated by the agent during the episode.

def step(self, env: Environment) :
current obs = env.get observation()
actions = env.get actions()
reward = env.action(random.choice (actions))
self.total reward += reward

The step function accepts the environment instance as an argument and allows
the agent to perform the following actions:
* Observe the environment
* Make a decision about the action to take based on the observations
* Submit the action to the environment
* Get the reward for the current step
For our example, the agent is dull and ignores the observations obtained during the
decision-making process about which action to take. Instead, every action is selected

randomly. The final piece is the glue code, which creates both classes and runs
one episode:

if name == " main ":
env = Environment ()
agent = Agent ()

[27]



OpenAl Gym

while not env.is done() :
agent.step (env)

)

print ("Total reward got: %.4f" % agent.total reward)

You can find the preceding code in this book's GitHub repository at https://
github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-
Second-Edition in the Chapter02/01 agent anatomy.py file. It has no external
dependencies and should work with any more-or-less modern Python version.
By running it several times, you'll get different amounts of reward gathered by
the agent.

The simplicity of the preceding code illustrates the important basic concepts that
come from the RL model. The environment could be an extremely complicated
physics model, and an agent could easily be a large neural network (NN) that
implements the latest RL algorithm, but the basic pattern will stay the same - on
every step, the agent will take some observations from the environment, do its
calculations, and select the action to take. The result of this action will be a reward
and a new observation.

You may ask, if the pattern is the same, why do we need to write it from scratch?
What if it is already implemented by somebody and could be used as a library?

Of course, such frameworks exist, but before we spend some time discussing them,
let's prepare your development environment.

Hardware and software requirements

The examples in this book were implemented and tested using Python version 3.7.
I assume that you're already familiar with the language and common concepts such
as virtual environments, so I won't cover in detail how to install the package and
how to do this in an isolated way. The examples will use the previously mentioned
Python type annotations, which will allow us to provide type signatures for
functions and class methods.

The external libraries that we will use in this book are open source software, and
they include the following:

*  NumPy: This is a library for scientific computing, and implementing matrix
operations and common functions.

* OpenCV Python bindings: This is a computer vision library and provides
many functions for image processing.
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* Gym: This is an RL framework that has various environments that can
be communicated with in a unified way.

* PyTorch: This is a flexible and expressive deep learning (DL) library. A short
crash course on it will be given in Chapter 3, Deep Learning with PyTorch.

* PyTorch Ignite: This is a set of high-level tools on top of PyTorch used
to reduce boilerplate code. It will be covered briefly in Chapter 3. The full
documentation is available here: https://pytorch.org/ignite/.

* PTAN (https://github.com/Shmuma/ptan): This is an open source
extension to Gym that I created to support the modern deep RL methods
and building blocks. All classes used will be described in detail together
with the source code.

Other libraries will be used for specific chapters; for example, we will use Microsoft
TextWorld for solving text-based games, PyBullet for robotic simulations, OpenAl
Universe for browser-based automation problems, and so on. Those specialized
chapters will include installation instructions for those libraries.

A significant portion of this book (parts two, three, and four) is focused on the
modern deep RL methods that have been developed over the past few years. The
word "deep" in this context means that DL is heavily used. You may be aware that
DL methods are computationally hungry. One modern graphics processing unit
(GPU) can be 10 to 100 times faster than even the fastest multiple central processing
unit (CPU) systems. In practice, this means that the same code that takes one hour
to train on a system with a GPU could take from half a day to one week even on the
fastest CPU system. It doesn't mean that you can't try the examples from this book
without having access to a GPU, but it will take longer. To experiment with the code
on your own (the most useful way to learn anything), it is better to get access to

a machine with a GPU. This can be done in various ways:

* Buying a modern GPU suitable for CUDA

* Using cloud instances. Both Amazon Web Services and Google Cloud
can provide you with GPU-powered instances

* Google Colab offers free GPU access to its Jupyter notebooks

The instructions on how to set up the system are beyond the scope of this book, but
there are plenty of manuals available on the Internet. In terms of an operating system
(OS), you should use Linux or macOS. Windows is supported by PyTorch and Gym,
but the examples in the book were not fully tested under Windows OS.
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To give you the exact versions of the external dependencies that we will use
throughout the book, here is an output of the pip freeze command (it may be useful
for the potential troubleshooting of examples in the book, as open source software
and DL toolkits are evolving extremely quickly):

atari-py==0.2.6
gym==0.15.3
numpy==1.17.2
opencv-python==4.1.1.26
tensorboard==2.0.1
torch==1.3.0
torchvision==0.4.1
pytorch-ignite==0.2.1
tensorboardX==1.9
tensorflow==2.0.0

ptan==0.6

All the examples in the book were written and tested with PyTorch 1.3, which can
be installed by following the instructions on the http: //pytorch.org website
(normally, that's just the conda install pytorch torchvision -c pytorch
command).

Now, let's go into the details of the OpenAl Gym API, which provides us with tons
of environments, from trivial to challenging ones.

The OpenAl Gym API

The Python library called Gym was developed and has been maintained by

OpenAl (www.openai . com). The main goal of Gym is to provide a rich collection

of environments for RL experiments using a unified interface. So, it is not surprising
that the central class in the library is an environment, which is called Env. Instances
of this class expose several methods and fields that provide the required information
about its capabilities. At a high level, every environment provides these pieces of
information and functionality:

* A set of actions that is allowed to be executed in the environment. Gym
supports both discrete and continuous actions, as well as their combination

* The shape and boundaries of the observations that the environment provides
the agent with
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* A method called step to execute an action, which returns the current
observation, the reward, and the indication that the episode is over

¢ A method called reset, which returns the environment to its initial state
and obtains the first observation

Let's now talk about these components of the environment in detail.

The action space

As mentioned, the actions that an agent can execute can be discrete, continuous, or
a combination of the two. Discrete actions are a fixed set of things that an agent can
do, for example, directions in a grid like left, right, up, or down. Another example

is a push button, which could be either pressed or released. Both states are mutually
exclusive, because a main characteristic of a discrete action space is that only one
action from a finite set of actions is possible.

A continuous action has a value attached to it, for example, a steering wheel, which
can be turned at a specific angle, or an accelerator pedal, which can be pressed with
different levels of force. A description of a continuous action includes the boundaries
of the value that the action could have. In the case of a steering wheel, it could be
from —-720 degrees to 720 degrees. For an accelerator pedal, it's usually from 0 to 1.

Of course, we are not limited to a single action; the environment could take multiple
actions, such as pushing multiple buttons simultaneously or steering the wheel and
pressing two pedals (the brake and the accelerator). To support such cases, Gym
defines a special container class that allows the nesting of several action spaces into
one unified action.

The observation space

As mentioned in Chapter 1, What Is Reinforcement Learning?, observations are pieces
of information that an environment provides the agent with, on every timestamp,
besides the reward. Observations can be as simple as a bunch of numbers or as
complex as several multidimensional tensors containing color images from several
cameras. An observation can even be discrete, much like action spaces. An example
of a discrete observation space is a lightbulb, which could be in two states - on or off,
given to us as a Boolean value.
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So, you can see the similarity between actions and observations, and how they have
found their representation in Gym's classes. Let's look at a class diagram:

Space

sample()
7

A contains() \
/ -
~ \ :
Box Discrete Tuple
" n
low spaces

high
shape

Figure 2.1: The hierarchy of the Space class in Gym

The basic abstract class Space includes two methods that are relevant to us:

sample () : This returns a random sample from the space

contains (x): This checks whether the argument, %, belongs to the space's
domain

Both of these methods are abstract and reimplemented in each of the Space
subclasses:

The Discrete class represents a mutually exclusive set of items, numbered
from 0 to n - 1. Its only field, 7, is a count of the items it describes. For
example, Discrete (n=4) can be used for an action space of four directions
to move in [left, right, up, or down].

The Box class represents an n-dimensional tensor of rational numbers

with intervals [low, high]. For instance, this could be an accelerator pedal
with one single value between 0.0 and 1.0, which could be encoded by
Box (low=0.0, high=1.0, shape=(1,), dtype=np.float32) (the shape
argument is assigned a tuple of length 1 with a single value of 1, which
gives us a one-dimensional tensor with a single value). The dtype parameter
specifies the space's value type and here we specify it as a NumPy 32-bit
float. Another example of Box could be an Atari screen observation (we
will cover lots of Atari environments later), which is an RGB (red, green,
and blue) image of size 210%160: Box (low=0, high=255, shape= (210, 160,
3), dtype=np.uint8). In this case, the shape argument is a tuple of three
elements: the first dimension is the height of the image, the second is the
width, and the third equals 3, which all correspond to three color planes

for red, green, and blue, respectively. So, in total, every observation is

a three-dimensional tensor with 100,800 bytes.
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e The final child of Space is a Tuple class, which allows us to combine
several Space class instances together. This enables us to create action
and observation spaces of any complexity that we want. For example,
imagine we want to create an action space specification for a car. The car
has several controls that can be changed at every timestamp, including the
steering wheel angle, brake pedal position, and accelerator pedal position.
These three controls can be specified by three float values in one single Box
instance. Besides these essential controls, the car has extra discrete controls,
like a turn signal (which could be off, right, or left) or horn (on or off). To
combine all of this into one action space specification class, we can create
Tuple (spaces=(Box (low=-1.0, high=1.0, shape=(3,), dtype=np.
float32), Discrete (n=3),Discrete (n=2))). This flexibility is rarely used;
for example, in this book, you will see only the Box and Discrete actions
and observation spaces, but the Tuple class can be useful in some cases.

There are other Space subclasses defined in Gym, but the preceding three are the
most useful ones. All subclasses implement the sample () and contains () methods.
The sample () function performs a random sample corresponding to the Space class
and parameters. This is mostly useful for action spaces, when we need to choose the
random action. The contains () method verifies that the given arguments comply
with the space parameters, and it is used in the internals of Gym to check an agent's
actions for sanity. For example, Discrete.sample () returns a random element from
a discrete range, and Box. sample () will be a random tensor with proper dimensions
and values lying inside the given range.

Every environment has two members of type Space: the action_space and
observation_space. This allows us to create generic code that could work with
any environment. Of course, dealing with the pixels of the screen is different from
handling discrete observations (as in the former case, we may want to preprocess
images with convolutional layers or with other methods from the computer vision
toolbox); so, most of the time, this means optimizing the code for a particular
environment or group of environments, but Gym doesn't prevent us from writing
generic code.

The environment

The environment is represented in Gym by the Env class, as mentioned earlier, which
has the following members:

* action_space: This is the field of the space class and provides
a specification for allowed actions in the environment.
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* observation_space: This field has the same Space class, but specifies the
observations provided by the environment.

* reset (): This resets the environment to its initial state, returning the initial
observation vector.

* step(): This method allows the agent to take the action and returns
information about the outcome of the action - the next observation, the local
reward, and the end-of-episode flag. This method is a bit complicated and we
we will look at it in detail later in this section.

There are extra utility methods in the Env class, such as render (), which allows

us to obtain the observation in a human-friendly form, but we won't use them. You
can find the full list in Gym's documentation, but let's focus on the core Env methods:
reset () and step ().

So far, you have seen how our code can get information about the environment's
actions and observations, so now you need to get familiar with actioning itself.
Communications with the environment are performed via step and reset.

As reset is much simpler, we will start with it. The reset () method has no
arguments; it instructs an environment to reset into its initial state and obtain

the initial observation. Note that you have to call reset () after the creation of

the environment. As you may remember from Chapter 1, What Is Reinforcement
Learning?, the agent's communication with the environment may have an end (like
a "Game Over" screen). Such sessions are called episodes, and after the end of the
episode, an agent needs to start over. The value returned by this method is the first
observation of the environment.

The step () method is the central piece in the environment's functionality. It does
several things in one call, which are as follows:

* Telling the environment which action we will execute on the next step

* Getting the new observation from the environment after this action

* Getting the reward the agent gained with this step

* Getting the indication that the episode is over
The first item (action) is passed as the only argument to this method, and the rest are
returned by the step () method. Precisely, this is a tuple (Python tuple and not the

Tuple class we discussed in the previous section) of four elements (observation,
reward, done, and info). They have these types and meanings:

* observation: This is a NumPy vector or a matrix with observation data.
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* reward: This is the float value of the reward.
* done: This is a Boolean indicator, which is True when the episode is over.

* info: This could be anything environment-specific with extra information
about the environment. The usual practice is to ignore this value in general
RL methods (not taking into account the specific details of the particular
environment).

You may have already got the idea of environment usage in an agent's code - in

a loop, we call the step () method with an action to perform until this method's
done flag becomes True. Then we can call reset () to start over. There is only one
piece missing - how we create Env objects in the first place.

Creating an environment

Every environment has a unique name of the EnvironmentName-vN form,

where N is the number used to distinguish between different versions of the same
environment (when, for example, some bugs get fixed or some other major changes
are made). To create an environment, the gym package provides the make (env_name)
function, whose only argument is the environment's name in string form.

At the time of writing, Gym version 0.13.1 contains 859 environments with different
names. Of course, all of those are not unique environments, as this list includes all
versions of an environment. Additionally, the same environment can have different
variations in the settings and observations spaces. For example, the Atari game
Breakout has these environment names:

* Breakout-v0, Breakout-v4: The original Breakout with a random initial
position and direction of the ball

*  BreakoutDeterministic-v0, BreakoutDeterministic-v4: Breakout with the
same initial placement and speed vector of the ball

* BreakoutNoFrameskip-v0, BreakoutNoFrameskip-v4: Breakout with every
frame displayed to the agent

e Breakout-ram-v0, Breakout-ram-v4: Breakout with the observation of the full
Atari emulation memory (128 bytes) instead of screen pixels

¢ Breakout-ramDeterministic-v0, Breakout-ramDeterministic-v4

* Breakout-ramNoFrameskip-v0, Breakout-ramNoFrameskip-v4
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In total, there are 12 environments for good old Breakout. In case you've never seen
it before, here is a screenshot of its gameplay:

Figure 2.2: The gameplay of Breakout

Even after the removal of such duplicates, Gym 0.13.1 comes with an impressive list
of 154 unique environments, which can be divided into several groups:

* Classic control problems: These are toy tasks that are used in optimal control
theory and RL papers as benchmarks or demonstrations. They are usually
simple, with low-dimension observation and action spaces, but they are
useful as quick checks when implementing algorithms. Think about them as
the "MINIST for RL" (MNIST is a handwriting digit recognition dataset from
Yann LeCun, which you can find at http://yann.lecun.com/exdb/mnist/).

* Atari 2600: These are games from the classic game platform from the 1970s.
There are 63 unique games.

* Algorithmic: These are problems that aim to perform small computation
tasks, such as copying the observed sequence or adding numbers.

* Board games: These are the games of Go and Hex.

* Box2D: These are environments that use the Box2D physics simulator to
learn walking or car control.
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* Mu]JoCo: This is another physics simulator used for several continuous
control problems.

* Parameter tuning: This is RL being used to optimize NN parameters.

* Toy text: These are simple grid world text environments.

* PyGame: These are several environments implemented using the PyGame
engine.

* Doom: These are nine mini-games implemented on top of ViZDoom.

The full list of environments can be found at https://gym.openai.com/envs or on
the wiki page in the project's GitHub repository. An even larger set of environments
is available in OpenAl Universe (currently discontinued by OpenAl), which provides
general connectors to virtual machines while running Flash and native games, web
browsers, and other real-world applications. OpenAl Universe extends the Gym
API, but it follows the same design principles and paradigm. You can check it

out at https://github.com/openai/universe. We will deal with Universe more
closely in Chapter 13, Asynchronous Advantage Actor-Critic, in terms of MiniWoB and
browser automation.

Enough theory! Let's now look at a Python session working with one of Gym's
environments.

The CartPole session

Let's apply our knowledge and explore one of the simplest RL environments that
Gym provides.

$ python

Python 3.7.5 |Anaconda, Inc.| (default, Mar 29 2018, 18:21:58)

[GCC 7.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import gym

>>> e = gym.make('CartPole-v0')
Here, we have imported the gym package and created an environment called

cartPole. This environment is from the classic control group and its gist is to control
the platform with a stick attached by its bottom part (see the following figure).
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The trickiness is that this stick tends to fall right or left and you need to balance it by
moving the platform to the right or left on every step.

Episode 8

Figure 2.3: The CartPole environment

The observation of this environment is four floating-point numbers containing
information about the x coordinate of the stick's center of mass, its speed, its angle to
the platform, and its angular speed. Of course, by applying some math and physics
knowledge, it won't be complicated to convert these numbers into actions when

we need to balance the stick, but our problem is this - how do we learn to balance
this system without knowing the exact meaning of the observed numbers and only

by getting the reward? The reward in this environment is 1, and it is given on every
time step. The episode continues until the stick falls, so to get a more accumulated
reward, we need to balance the platform in a way to avoid the stick falling.

This problem may look difficult, but in just two chapters, we will write the algorithm
that will easily solve CartPole in minutes, without any idea about what the observed
numbers mean. We will do it only by trial and error and using a bit of RL magic.

Let's continue with our session.

>>> obs = e.reset()
>>> obs
array([-0.04937814, -0.0266909 , -0.03681807, -0.00468688])

Here, we reset the environment and obtained the first observation (we always need
to reset the newly created environment). As I said, the observation is four numbers,
so let's check how we can know this in advance.

>>> e.action_space
Discrete (2)

>>> e.observation_ space
Box (4,)
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The action_space field is of the Discrete type, so our actions will be just 0 or

1, where 0 means pushing the platform to the left and 1 means to the right. The
observation space is of Box (4, ), which means a vector of size 4 with values inside
the [-inf, inf] interval.

>>> e.step(0)
(array ([-0.04991196, -0.22126602, -0.03691181, 0.27615592]), 1.0,
False, {})

Here, we pushed our platform to the left by executing the action 0 and got the tuple
of four elements:

* A new observation, which is a new vector of four numbers
e Arewardof1.0

* The done flag with value False, which means that the episode is not over yet
and we are more or less okay

* Extra information about the environment, which is an empty dictionary

Next, we will use the sample () method of the Space class on the action space and
observation_ space.

>>> e.action_ space.sample ()

0

>>> e.action_ space.sample ()

1

>>> e.observation space.sample ()

array([2.06581792e+00, 6.99371255e+37, 3.76012475e-02,
-5.19578481e+37])

>>> e.observation space.sample ()

array([4.6860966e-01, 1.4645028e+38, 8.6090848e-02, 3.0545910e+37])

This method returned a random sample from the underlying space, which in the
case of our Discrete action space means a random number of 0 or 1, and for the
observation space means a random vector of four numbers. The random sample

of the observation space may not look useful, and this is true, but the sample from
the action space could be used when we are not sure how to perform an action. This
feature is especially handy because you don't know any RL methods yet, but we still
want to play around with the Gym environment. Now that you know enough to
implement your first randomly behaving agent for CartPole, let's do it.
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The random CartPole agent

Although the environment is much more complex than our first example in
The anatomy of the agent section, the code of the agent is much shorter. This is the
power of reusability, abstractions, and third-party libraries!

So, here is the code (you can find it in Chapter02/02_cartpole_random.py).

import gym

if name == " main ":
env = gym.make ("CartPole-vO")
total reward = 0.0
total steps = 0
obs = env.reset ()

Here, we created the environment and initialized the counter of steps and the reward
accumulator. On the last line, we reset the environment to obtain the first observation
(which we will not use, as our agent is stochastic).

while True:
action = env.action space.sample ()
obs, reward, done, _ = env.step(action)
total reward += reward
total steps += 1
if done:
break
print ("Episode done in %d steps, total reward %.2f" % (
total steps, total reward))

In this loop, we sampled a random action, then asked the environment to execute
it and return to us the next observation (obs), the reward, and the done flag. If the
episode is over, we stop the loop and show how many steps we have taken and
how much reward has been accumulated. If you start this example, you will see
something like this (not exactly, though, due to the agent's randomness):

rl book samples/Chapter02$ python 02 cartpole random.py
Episode done in 12 steps, total reward 12.00
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As with the interactive session, the warning is not related to our code, but to Gym's
internals. On average, our random agent takes 12 to 15 steps before the pole falls
and the episode ends. Most of the environments in Gym have a "reward boundary,"
which is the average reward that the agent should gain during 100 consecutive
episodes to "solve" the environment. For CartPole, this boundary is 195, which
means that, on average, the agent must hold the stick for 195 time steps or longer.
Using this perspective, our random agent's performance looks poor. However, don't
be disappointed; we are just at the beginning, and soon you will solve CartPole and
many other much more interesting and challenging environments.

Extra Gym functionality — wrappers and
monitors

What we have discussed so far covers two-thirds of the Gym core API and the
essential functions required to start writing agents. The rest of the API you can live
without, but it will make your life easier and your code cleaner. So, let's briefly cover
the rest of the API.

Wrappers

Very frequently, you will want to extend the environment's functionality in some
generic way. For example, imagine an environment gives you some observations,
but you want to accumulate them in some buffer and provide to the agent the N
last observations. This is a common scenario for dynamic computer games, when
one single frame is just not enough to get the full information about the game state.
Another example is when you want to be able to crop or preprocess an image's
pixels to make it more convenient for the agent to digest, or if you want to normalize
reward scores somehow. There are many such situations that have the same
structure - you want to "wrap" the existing environment and add some extra logic
for doing something. Gym provides a convenient framework for these situations -
the Wrapper class.
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The class structure is shown in the following diagram.

Env
F ¥
Wrapper
A
RewardWrapper
ObservationWrapper reward(rew)
observation(obs)

ActionWrapper
action(act)

Figure 2.4: The hierarchy of Wrapper classes in Gym

The wrapper class inherits the Env class. Its constructor accepts the only argument
- the instance of the Env class to be "wrapped." To add extra functionality, you need
to redefine the methods you want to extend, such as step () or reset (). The only
requirement is to call the original method of the superclass.

To handle more specific requirements, such as a Wrapper class that wants to

process only observations from the environment, or only actions, there are subclasses
of Wrapper that allow the filtering of only a specific portion of information. They are
as follows:

* ObservationWrapper: You need to redefine the observation (cbs) method
of the parent. The obs argument is an observation from the wrapped
environment, and this method should return the observation that will
be given to the agent.

* RewardWrapper: This exposes the reward (rew) method, which can modify
the reward value given to the agent.

* ActionWrapper: You need to override the action (act) method, which can
tweak the action passed to the wrapped environment by the agent.
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To make it slightly more practical, let's imagine a situation where we want to
intervene in the stream of actions sent by the agent and, with a probability of 10%,
replace the current action with a random one. It might look like an unwise thing

to do, but this simple trick is one of the most practical and powerful methods for
solving the exploration/exploitation problem that I mentioned briefly in Chapter 1,
What Is Reinforcement Learning?. By issuing the random actions, we make our agent
explore the environment and from time to time drift away from the beaten track of
its policy. This is an easy thing to do using the ActionWrapper class (a full example
isin Chapter02/03_random action wrapper.py).

import gym
from typing import TypeVar
import random

Action = TypeVar ('Action')

class RandomActionWrapper (gym.ActionWrapper) :
def init (self, env, epsilon=0.1):
super (RandomActionWrapper, self). init (env)
self.epsilon = epsilon

Here, we initialized our wrapper by calling a parent's __init__ method and saving
epsilon (the probability of a random action).

def action(self, action: Action) -> Action:
if random.random() < self.epsilon:
print ("Random!")
return self.env.action space.sample ()
return action

This is a method that we need to override from a parent's class to tweak the agent's
actions. Every time we roll the die, and with the probability of epsilon, we sample a
random action from the action space and return it instead of the action the agent has
sent to us. Note that using action_space and wrapper abstractions, we were able to
write abstract code, which will work with any environment from Gym. Additionally,
we must print the message every time we replace the action, just to verify that our
wrapper is working. In the production code, of course, this won't be necessary.

if name == " main ":
env = RandomActionWrapper (gym.make ("CartPole-v0"))
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Now it's time to apply our wrapper. We will create a normal CartPole environment
and pass it to our Wrapper constructor. From here on, we will use our wrapper as

a normal Env instance, instead of the original CartPole. As the Wrapper class inherits
the Env class and exposes the same interface, we can nest our wrappers in any
combination we want. This is a powerful, elegant, and generic solution.

)

obs = env.reset (
total reward = 0.0

while True:

obs, reward, done, _ = env.step(0)
total reward += reward
if done:

break

print ("Reward got: %.2f" % total reward)

Here is almost the same code, except that every time we issue the same action, o,
our agent is dull and does the same thing. By running the code, you should see that
the wrapper is indeed working.

rl book samples/Chapter02$ python 03 random actionwrapper.py
Random!
Random!
Random!
Random!

Reward got: 12.00

If you want, you can play with the epsilon parameter on the wrapper's creation
and verify that randomness improves the agent's score on average.

We should move on now and look at another interesting gem that is hidden inside
Gym: Monitor.
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Monitor

Another class that you should be aware of is Monitor. It is implemented like
Wrapper and can write information about your agent's performance in a file, with

an optional video recording of your agent in action. Some time ago, it was possible
to upload the result of the Monitor class' recording to the https://gym.openai.
com website and see your agent's position in comparison to other people's results
(see the following screenshot), but, unfortunately, at the end of August 2017, OpenAl
decided to shut down this upload functionality and froze all the results. There are
several alternatives to the original website, but they are not ready yet. I hope this
situation will be resolved soon, but at the time of writing, it is not possible to check
your results against those of others.

Just to give you an idea of how the Gym web interface looked, here is the CartPole
environment leaderboard:

A pole is attached by an un-actuated joint to a cart, which
moves along a frictionless track. The system is controlled by
applying a force of +1 or -1 to the cart. The pendulum starts

upright, and the goal is to prevent it from falling over. A reward

of +1 is provided for every timestep that the pole remains
upright. The episode ends when the pole is more than 15
degrees from vertical, or the cart moves more than 2.4 units

from the center.
Episode 0

eward of 195.0 ov

environn corresponds to th 0 t-pole problem
describ y Barto, Sutton, and Anders
CartPole-v0 Evaluations
ALGORITHM EPISODES BEFORE SOLVE SUBMITTED
nltry's algorithm writeup 85.0 11 days ago
mbalunovic's algorithm writeup 306.0 11 days ago
ruippeixotog's algorithm  writeup 933.0 12 days ago
ruippeixotog’s algorithm  writeup 961.0 13 days ago

Figure 2.5: The Gym web interface with CartPole submissions
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Every submission in the web interface had details about training dynamics.
For example, the following is my solution for one of Doom's mini-games:

algorithm on DoomDefendLine-vO

@ Writeup 5 months ago

Learning performance Episode Total Reward ¥ Episode v

0 200 400 600 800 1000

Solved after 205 episodes. Best 100-episode average reward was 18.42 = 0.76.
e 2 | (DoomDefendLine-v0 is considered "solved” when the agent obtains an average reward of
. at least 15.0 over 100 consecutive episodes.)

a 50
0 300
- . v i u

Episodes to solve Total episodes Solved Time to solve Download Tweet

Figure 2.6: Submission dynamics for the DoomDefendLine environment

Despite this, Monitor is still useful, as you can take a look at your agent's life inside
the environment. So, here is how we add Monitor to our random CartPole agent,
which is the only difference (the entire code is in Chapter02/04_cartpole_random_
monitor.py).

if __name_ == "_main_ ":
env = gym.make ("CartPole-v0")
env = gym.wrappers.Monitor (env, "recording")

The second argument that we pass to Monitor is the name of the directory that it will
write the results to. This directory shouldn't exist, otherwise your program will fail
with an exception (to overcome this, you could either remove the existing directory
or pass the force=True argument to the Monitor class' constructor).

The Monitor class requires the FFmpeg utility to be present on the system, which

is used to convert captured observations into an output video file. This utility must
be available, otherwise Monitor will raise an exception. The easiest way to install
FFmpeg is using your system's package manager, which is OS distribution-specific.
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To start this example, one of these three extra prerequisites should be met:

* The code should be run in an X11 session with the OpenGL extension (GLX)
* The code should be started in an xv£b virtual display

*  You can use X11 forwarding in an SSH connection

The reason for this is video recording, which is done by taking screenshots of the
window drawn by the environment. Some of the environment uses OpenGL to draw
its picture, so the graphical mode with OpenGL needs to be present. This could

be a problem for a virtual machine in the cloud, which physically doesn't have a
monitor and graphical interface running. To overcome this, there is a special "virtual"
graphical display, called Xvfb (X11 virtual framebuffer), which basically starts a
virtual graphical display on the server and forces the program to draw inside it. This
would be enough to make Monitor happily create the desired videos.

To start your program in the Xvfb environment, you need to have it installed on your
machine (this usually requires installing the xvfb package) and run the special script,
xvib-run:

$ xvfb-run -s "-screen 0 640x480x24" python 04 cartpole random monitor.py
[2017-09-22 12:22:23,446] Making new env: CartPole-v0

[2017-09-22 12:22:23,451] Creating monitor directory recording

[2017-09-22 12:22:23,570] Starting new video recorder writing to
recording/openaigym.video.0.31179.video000000.mp4

Episode done in 14 steps, total reward 14.00

[2017-09-22 12:22:26,290] Finished writing results. You can upload them
to the scoreboard via gym.upload('recording')

As you may see from the preceding log, the video has been written successfully,
so you can peek inside one of your agent's sections by playing it.

Another way to record your agent's actions is to use SSH X11 forwarding, which uses
the SSH ability to tunnel X11 communications between the X11 client (Python code
that wants to display some graphical information) and X11 server (software that
knows how to display this information and has access to your physical display).
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In X11 architecture, the client and the server are separated and can work on different
machines. To use this approach, you need the following;:

1. An X11 server running on your local machine. Linux comes with an X11
server as a standard component (all desktop environments use X11). On
a Windows machine, you can set up third-party X11 implementations, such
as open source VcXsrv (available in https://sourceforge.net/projects/
vexsrv/).

2. The ability to log into your remote machine via SSH, passing the -x
command-line option: ssh -X servername. This enables X11 tunneling
and allows all processes started in this session to use your local display
for graphics output.

Then, you can start a program that uses the Monitor class and it will display the
agent's actions, capturing the images in a video file.

Summary

You have started to learn about the practical side of RL! In this chapter, we installed
OpenAl Gym, with its tons of environments to play with. We studied its basic API
and created a randomly behaving agent.

You also learned how to extend the functionality of existing environments in
a modular way and became familiar with a way to record our agent's activity
using the Monitor class. This will be heavily used in the upcoming chapters.

In the next chapter, we will do a quick DL recap using PyTorch, which is a favorite
library among DL researchers. Stay tuned.
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Deep Learning with PyTorch

In the previous chapter, you became familiar with open source libraries, which
provided you with a collection of reinforcement learning (RL) environments.
However, recent developments in RL, and especially its combination with deep
learning (DL), now make it possible to solve much more challenging problems
than ever before. This is partly due to the development of DL methods and tools.
This chapter is dedicated to one such tool, PyTorch, which enables us to implement
complex DL models with just a bunch of lines of Python code.

The chapter doesn't pretend to be a complete DL manual, as the field is very wide
and dynamic; however, we will cover:

* The PyTorch library specifics and implementation details (assuming that you
are already familiar with DL fundamentals)

* Higher-level libraries on top of PyTorch, with the aim of simplifying
common DL problems

* The library PyTorch ignite, which will be used in some examples

Compatibility note

All of the examples in this chapter were updated for the latest
‘ / PyTorch 1.3.0, which has some minor changes in comparison
\p/ to 0.4.0, which was used in the first edition of this book. If you
are using the old PyTorch, consider upgrading. Throughout this
chapter, we will discuss the differences that are present in the
latest version.
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Tensors

A tensor is the fundamental building block of all DL toolkits. The name sounds
rather mystical, but the underlying idea is that a tensor is a multi-dimensional array.
Using the analogy of school math, one single number is like a point, which is zero-
dimensional, while a vector is one-dimensional like a line segment, and a matrix is a
two-dimensional object. Three-dimensional number collections can be represented
by a parallelepiped of numbers, but they don't have a separate name in the same way
as a matrix. We can keep the term "tensor" for collections of higher dimensions.

Another thing to note about tensors used in DL is that they are only partially

related to tensors used in tensor calculus or tensor algebra. In DL, a tensor is any multi-
dimensional array, but in mathematics, a tensor is a mapping between vector spaces,
which might be represented as a multi-dimensional array in some cases, but has much
more semantical payload behind it. Mathematicians usually frown at anybody who
uses well-established mathematical terms to name different things, so be warned!

7[6 (’\N\/ L
3 1 > — é
== J

\\-\_ﬂ‘\\-\_‘/f

number vector matrix 3D-tensor s e e s

Figure 3.1: Going from a single number to an n-dimensional tensor

The creation of tensors

If you are familiar with the NumPy library (and you should be), then you

already know that its central purpose is the handling of multi-dimensional arrays
in a generic way. In NumPy, such arrays aren't called tensors, but they are, in fact,
tensors. Tensors are used very widely in scientific computations as generic storage
for data. For example, a color image could be encoded as a 3D tensor with the
dimensions of width, height, and color plane.

Apart from dimensions, a tensor is characterized by the type of its elements.

There are eight types supported by PyTorch: three float types (16-bit, 32-bit, and
64-bit) and five integer types (8-bit signed, 8-bit unsigned, 16-bit, 32-bit, and 64-
bit). Tensors of different types are represented by different classes, with the most
commonly used being torch.FloatTensor (corresponding to a 32-bit float), torch.
ByteTensor (an 8-bit unsigned integer), and torch.LongTensor (a 64-bit signed
integer). The rest can be found in the PyTorch documentation.
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There are three ways to create a tensor in PyTorch:

* By calling a constructor of the required type.

* By converting a NumPy array or a Python list into a tensor. In this case,
the type will be taken from the array's type.

* By asking PyTorch to create a tensor with specific data for you. For example,
you can use the torch. zeros () function to create a tensor filled with zero
values.

To give you examples of these methods, let's look at a simple session:

>>> import torch

>>> import numpy as np

>>> a = torch.FloatTensor (3, 2)

>>> a

tensor([[4.1521e+09, 4.5796e-41],
[ 1.9949e-20, 3.0774e-41],
[ 4.4842e-44, 0.0000e+00]1])

Here, we imported both PyTorch and NumPy and created an uninitialized
tensor of size 3%2. By default, PyTorch allocates memory for the tensor, but doesn't
initialize it with anything. To clear the tensor's content, we need to use its operation:

>>> a.zero ()
., 0.1,
., 0.1,

0.11)

tensor ([

o o o]

[
[
[ 0.,
There are two types of operation for tensors: inplace and functional. Inplace
operations have an underscore appended to their name and operate on the tensor's
content. After this, the object itself is returned. The functional equivalent creates

a copy of the tensor with the performed modification, leaving the original tensor
untouched. Inplace operations are usually more efficient from a performance and
memory point of view.

Another way to create a tensor by its constructor is to provide a Python iterable
(for example, a list or tuple), which will be used as the contents of the newly
created tensor:

>>> torch.FloatTensor ([[1,2,3],1[3,2,1]])
tensor ([[ 1., 2., 3.1,
[ 3., 2., 1.11)

Here, we are creating the same tensor with zeros using NumPy:

>>> n = np.zeros (shape=(3, 2))
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>>> Il
array([[ 0., 0.1,
[ 0., 0.1,
[ 0., 0.11)
>>> b = torch.tensor (n)
>>> b
tensor ([[

0., 0.1,
[ 0., 0.1,
[ 0., 0.1], dtype=torch.floaté4)

’

The torch. tensor method accepts the NumPy array as an argument and creates

a tensor of appropriate shape from it. In the preceding example, we created a NumPy
array initialized by zeros, which created a double (64-bit float) array by default. So,
the resulting tensor has the DoubleTensor type (which is shown in the preceding
example with the dtype value). Usually, in DL, double precision is not required and
it adds an extra memory and performance overhead. Common practice is to use the
32-bit float type, or even the 16-bit float type, which is more than enough. To create
such a tensor, you need to specify explicitly the type of NumPy array:

>>> n = np.zeros (shape=(3, 2), dtype=np.float32)
>>> torch.tensor (n)

tensor([[ 0., 0.1,
[ 0., 0.1,
[ 0., 0.11)

As an option, the type of the desired tensor could be provided to the torch. tensor
function in the dtype argument. However, be careful, since this argument expects to
get a PyTorch type specification and not the NumPy one. PyTorch types are kept in

the torch package, for example, torch.float32, torch.uints.

>>> n = np.zeros (shape=(3,2))
>>> torch.tensor(n, dtype=torch.float32)

tensor ([[ 0., 0.],

[ 0., 0.1,

[ 0., 0.11)
Compatibility note

The torch. tensor () method and explicit PyTorch type
specification were added in the 0.4.0 release, and this is a step
‘ , toward the simplification of tensor creation. In previous versions,
\p/ the torch. from_numpy () function was a recommended way
to convert NumPy arrays, but it had issues with handling the
combination of the Python list and NumPy arrays. This from_
numpy () function is still present for backward compatibility, but it is
deprecated in favor of the more flexible torch. tensor () method.
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Scalar tensors

Since the 0.4.0 release, PyTorch has supported zero-dimensional tensors that
correspond to scalar values (on the left of Figure 1). Such tensors can be the result of
some operations, such as summing all values in a tensor. Previously, such cases were
handled by the creation of a one-dimensional (vector) tensor with a single dimension
equal to one.

This solution worked, but it wasn't very simple, as extra indexation was needed
to access the value. Now, zero-dimensional tensors are natively supported and
returned by the appropriate functions, and they can be created by the torch.
tensor () function. For accessing the actual Python value of such a tensor, there
is the special item () method:

>>> a = torch.tensor(I[1,2,3])

>>> a

tensor([ 1, 2, 31)
>>> 8 = a.sum()
>>> S

tensor (6)

>>> s.item()

6

>>> torch.tensor (1)
tensor (1)

Tensor operations

There are lots of operations that you can perform on tensors, and there are too
many to list them all. Usually, it's enough to search in the PyTorch documentation
athttp://pytorch.org/docs/. I need to mention that besides the inplace

and functional variants that we already discussed (that is, with and without an
underscore, like abs () and abs_ () ), there are two places to look for operations:
the torch package and the tensor class. In the first case, the function usually
accepts the tensor as an argument. In the second, it operates on the called tensor.

Most of the time, tensor operations are trying to correspond to their NumPy
equivalent, so if there is some not-very-specialized function in NumPy, then

there is a good chance that PyTorch will also have it. Examples are torch.stack(),
torch.transpose (), and torch.cat ().

GPU tensors

PyTorch transparently supports CUDA GPUs, which means that all operations have
two versions — CPU and GPU — that are automatically selected. The decision is made
based on the type of tensors that you are operating on.
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Every tensor type that I mentioned is for CPU and has its GPU equivalent. The

only difference is that GPU tensors reside in the torch. cuda package, instead of just
torch. For example, torch.FloatTensor is a 32-bit float tensor that resides in CPU
memory, but torch. cuda.FloatTensor is its GPU counterpart.

To convert from CPU to GPU, there is a tensor method, to (device), that creates

a copy of the tensor to a specified device (this could be CPU or GPU). If the tensor

is already on the device, nothing happens and the original tensor will be returned.

The device type can be specified in different ways. First of all, you can just pass a string
name of the device, which is "cpu" for CPU memory or "cuda" for GPU. A GPU
device could have an optional device index specified after the colon; for example, the
second GPU card in the system could be addressed by "cuda:1" (index is zero-based).

Another slightly more efficient way to specify a device in the to () method is
by using the torch.device class, which accepts the device name and optional
index. To access the device that your tensor is currently residing in, it has

a device property.

>>> a = torch.FloatTensor([2,3])

>>> a

tensor([ 2., 3.1)

>>> ca = a. to('cuda'); ca
tensor ([ 2.,3.], device='cuda:0"')

Here, we created a tensor on CPU, then copied it to GPU memory. Both copies can
be used in computations and all GPU-specific machinery is transparent to the user:

>>> a + 1

tensor ([ 3., 4.1)

>>> ca + 1

tensor ([ 3., 4.], device='cuda:0")
>>> ca.device

device (type='cuda', index=0)

Compatibility note

The to () method and torch.device class were introduced
in 0.4.0. In previous versions, copying between CPU and GPU
was performed by separate tensor methods, cpu () and cuda (),

‘ , respectively, which required adding the extra lines of code to

\p/ explicitly convert tensors into their CUDA versions. In the latest
version, you can create a desired torch.device object at the
beginning of the program and use to (device) on every tensor that
you're creating. The old methods in the tensor, cpu () and cuda (),
are still present and might be handy if you want to ensure that a
tensor is in CPU or GPU memory regardless of its original location.
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Gradients

Even with transparent GPU support, all of this dancing with tensors isn't worth
bothering with without one "killer feature" — the automatic computation of gradients.
This functionality was originally implemented in the Caffe toolkit and then became
the de facto standard in DL libraries.

Computing gradients manually was extremely painful to implement and debug, even
for the simplest neural network (NN). You had to calculate derivatives for all your
functions, apply the chain rule, and then implement the result of the calculations,
praying that everything was done right. This could be a very useful exercise for
understanding the nuts and bolts of DL, but it wasn't something that you wanted

to repeat over and over again by experimenting with different NN architectures.

Luckily, those days have gone now, much like programming your hardware using
a soldering iron and vacuum tubes! Now, defining an NN of hundreds of layers
requires nothing more than assembling it from predefined building blocks or,

in the extreme case of you doing something fancy, defining the transformation
expression manually.

All gradients will be carefully calculated for you, backpropagated, and applied to
the network. To be able to achieve this, you need to define your network architecture
in terms of the DL library used, which can be different in the details, but generally
must be the same — you must define the order in which your network will transform
inputs to outputs.

GRADIENTS

Qutput

AN

DATA

»
>

Figure 3.2: Data and gradients flowing through the NN

What can make a fundamental difference is how your gradients are calculated. There
are two approaches:

* Static graph: In this method, you need to define your calculations in advance
and it won't be possible to change them later. The graph will be processed
and optimized by the DL library before any computation is made. This model
is implemented in TensorFlow (<2), Theano, and many other DL toolkits.
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* Dynamic graph: You don't need to define your graph in advance exactly as it
will be executed; you just need to execute operations that you want to use for
data transformation on your actual data. During this, the library will record
the order of the operations performed, and when you ask it to calculate
gradients, it will unroll its history of operations, accumulating the gradients
of the network parameters. This method is also called notebook gradients
and it is implemented in PyTorch, Chainer, and some others.

Both methods have their strengths and weaknesses. For example, static graph is
usually faster, as all computations can be moved to the GPU, minimizing the data
transfer overhead. Additionally, in static graph, the library has much more freedom
in optimizing the order that computations are performed in or even removing parts
of the graph.

On the other hand, although dynamic graph has a higher computation overhead,

it gives a developer much more freedom. For example, they can say, "For this piece
of data, I can apply this network two times, and for this piece of data, I'll use a
completely different model with gradients clipped by the batch mean." Another
very appealing strength of the dynamic graph model is that it allows you to express
your transformation more naturally and in a more "Pythonic" way. In the end, it's
just a Python library with a bunch of functions, so just call them and let the library
do the magic.

Compatibility note

, Since version 1.0, PyTorch has supported the just-in-time
\/{p: (JIT) compiler, which takes PyTorch code and exports it into so-
called TorchScript. This is intermediate representation that can be

executed faster and without Python dependency in a production
environment.

Tensors and gradients

PyTorch tensors have a built-in gradient calculation and tracking machinery, so all
you need to do is convert the data into tensors and perform computations using the
tensor methods and functions provided by torch. Of course, if you need to access
underlying low-level details, you always can, but most of the time, PyTorch does
what you're expecting.

There are several attributes related to gradients that every tensor has:

* grad: A property that holds a tensor of the same shape containing computed
gradients.
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* is_leaf: True if this tensor was constructed by the user and False if the
object is a result of function transformation.

* requires_grad: True if this tensor requires gradients to be calculated.
This property is inherited from leaf tensors, which get this value from the
tensor construction step (torch.zeros () or torch.tensor () and so on). By
default, the constructor has requires_grad=False, so if you want gradients
to be calculated for your tensor, then you need to explicitly say so.

To make all of this gradient-leaf machinery clearer, let's consider this session:

>>> vl = torch.tensor([1.0, 1.0], requires grad=True)
>>> v2 = torch.tensor([2.0, 2.0])

In the preceding code, we created two tensors. The first requires gradients to be
calculated and the second doesn't.

>>> v_sum = vl + V2
>>> v_res = (v_sum*2) .sum()

>>> V_res

tensor(12., grad fn=<SumBackward0>)

So, now we have added both vectors element-wise (which is vector [3, 31]),
doubled every element, and summed them together. The result is a zero-dimensional
tensor with the value 12. Okay, so this is simple math so far. Now let's look at the
underlying graph that our expressions created:

v_sum v_res

()
)

Figure 3.3: Graph representation of the expression

If we check the attributes of our tensors, then we will find that vl and v2 are the
only leaf nodes and every variable, except v2, requires gradients to be calculated:

>>> vl.is leaf, v2.is_leaf
(True, True)

>>> v_sum.is leaf, v _res.is leaf
(False, False)

>>> vl.requires grad
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True

>>> v2.requires grad
False

>>> V_sum.requires grad
True

>>> V_res.requires grad
True

Now, let's tell PyTorch to calculate the gradients of our graph:

>>> v_res.backward ()
>>> vl.grad

tensor ([ 2., 2.1)

By calling the backward function, we asked PyTorch to calculate the numerical
derivative of the v_res variable with respect to any variable that our graph has.

In other words, what influence do small changes to the v_res variable have on the
rest of the graph? In our particular example, the value of two in the gradients of v1
means that by increasing any element of v1 by one, the resulting value of v_res will
grow by two.

As mentioned, PyTorch calculates gradients only for leaf tensors with requires_
grad=True. Indeed, if we try to check the gradients of v2, we get nothing:

>>> v2.grad

The reason for that is efficiency in terms of computations and memory. In real

life, our network can have millions of optimized parameters, with hundreds of
intermediate operations performed on them. During gradient descent optimization,
we are not interested in gradients of any intermediate matrix multiplication; the only
things we want to adjust in the model are gradients of loss with respect to model
parameters (weights). Of course, if you want to calculate the gradients of input

data (it could be useful if you want to generate some adversarial examples to fool
the existing NN or adjust pretrained word embeddings), then you can easily do so
by passing requires_grad=True on tensor creation.

Basically, you now have everything needed to implement your own NN optimizer.
The rest of this chapter is about extra, convenient functions, which will provide
you with higher-level building blocks of NN architectures, popular optimization
algorithms, and common loss functions. However, don't forget that you can easily
reimplement all of these bells and whistles in any way that you like. This is why
PyTorch is so popular among DL researchers —for its elegance and flexibility.
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Compatibility note

Support of gradients calculation in tensors is one of the major
changes in PyTorch 0.4.0. In previous versions, graph tracking
and gradients accumulation were done in a separate, very thin

, class, Variable. This worked as a wrapper around the tensor

\/iP: and automatically saved the history of computations in order to

be able to backpropagate. This class is still present in 0.4.0, but it is
deprecated and will go away soon, so new code should avoid using
it. From my perspective, this change is great, as the Variable logic
was really thin, but it still required extra code and the developer's
attention to wrap and unwrap tensors. Now, gradients are a built-in
tensor property, which makes the API much cleaner.

NN building blocks

In the torch.nn package, you will find tons of predefined classes providing you with
the basic functionality blocks. All of them are designed with practice in mind (for
example, they support mini-batches, they have sane default values, and the weights
are properly initialized). All modules follow the convention of callable, which means
that the instance of any class can act as a function when applied to its arguments.

For example, the Linear class implements a feed-forward layer with optional bias:

>>> import torch.nn as nn

>>> 1 = nn.Linear (2, 5)

>>> v = torch.FloatTensor ([1, 2])

>>> 1(v)

tensor ([ 1.0532, 0.6573, -0.3134, 1.1104, -0.4065], grad
fn=<AddBackward0>)

Here, we created a randomly initialized feed-forward layer, with two inputs and
five outputs, and applied it to our float tensor. All classes in the torch.nn packages
inherit from the nn.Module base class, which you can use to implement your own
higher-level NN blocks. You will see how you can do this in the next section, but,
for now, let's look at useful methods that all nn.Module children provide. They are
as follows:

* parameters (): This function returns an iterator of all variables that require
gradient computation (that is, module weights).
* zero_grad(): This function initializes all gradients of all parameters to zero.

* to(device): This function moves all module parameters to a given device
(CPU or GPU).
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* state_dict (): This function returns the dictionary with all module
parameters and is useful for model serialization.

* load state_dict (): This function initializes the module with the state
dictionary.

The whole list of available classes can be found in the documentation at http://
pytorch.org/docs.

Now, I should mention one very convenient class that allows you to combine other
layers into the pipe: Sequential. The best way to demonstrate Sequential is
through an example:

>>> s = nn.Sequential (
. nn.Linear (2, 5),
. nn.ReLU(),
. nn.Linear (5, 20),
. nn.ReLU(),
. nn.Linear (20, 10),
. nn.Dropout (p=0.3),
. nn.Softmax (dim=1))

>>> S

Sequential (
(0) : Linear(in features=2, out features=5, bias=True)
(1) : ReLU()
(2) : Linear(in_ features=5, out features=20, bias=True)
(3): ReLU()
(4) : Linear(in features=20, out features=10, bias=True)
(5) : Dropout (p=0.3)
(6) : Softmax ()

)

Here, we defined a three-layer NN with softmax on output, applied along dimension
1 (dimension 0 is batch samples), rectified linear unit (ReLU) nonlinearities, and
dropout. Let's push something through: it:

>>> g (torch.FloatTensor ([[1,2]]))
tensor([[0.1115, 0.0702, 0.1115, 0.0870, 0.1115, 0.1115, 0.0908,
0.0974, 0.0974, 0.1115]], grad fn=<SoftmaxBackwards)

So, our mini-batch is one example successfully traversed through the network!
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Custom layers

In the previous section, I briefly mentioned the nn.Module class as a base parent for
all NN building blocks exposed by PyTorch. It's not just a unifying parent for the
existing layers —it's much more than that. By subclassing the nn.Module class, you
can create your own building blocks, which can be stacked together, reused later,
and integrated into the PyTorch framework flawlessly.

At its core, the nn.Module provides quite rich functionality to its children:

e It tracks all submodules that the current module includes. For example, your
building block can have two feed-forward layers used somehow to perform
the block's transformation.

* It provides functions to deal with all parameters of the registered
submodules. You can obtain a full list of the module's parameters
(parameters () method), zero its gradients (zero_grads () method), move
to CPU or GPU (to (device) method), serialize and deserialize the module
(state_dict () and load_state_dict ()), and even perform generic
transformations using your own callable (apply () method).

* It establishes the convention of Module application to data. Every module
needs to perform its data transformation in the forward () method by
overriding it.

* There are some more functions, such as the ability to register a hook function
to tweak module transformation or gradients flow, but they are more for
advanced use cases.

These functionalities allow us to nest our submodels into higher-level models in

a unified way, which is extremely useful when dealing with complexity. It could
be a simple one-layer linear transformation or a 1001-layer residual NN (ResNet)
monster, but if they follow the conventions of nn.Module, then both of them could
be handled in the same way. This is very handy for code simplicity and reusability.

To make our life simpler, when following the preceding convention, PyTorch
authors simplified the creation of modules through careful design and a good dose
of Python magic. So, to create a custom module, we usually have to do only two
things —register submodules and implement the forward () method.
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Let's look at how this can be done for our Sequential example from the previous
section, but in a more generic and reusable way (full sample is Chapter03/01_
modules.py):

class OurModule (nn.Module) :
def  init (self, num_inputs, num classes, dropout prob=0.3):

super (OurModule, self). init ()

self.pipe = nn.Sequential (
nn.Linear (num_inputs, 5),
nn.ReLU(),
nn.Linear (5, 20),
nn.ReLU(),
nn.Linear (20, num classes),
nn.Dropout (p=dropout_prob) ,
nn.Softmax (dim=1)

)

This is our module class that inherits nn.Module. In the constructor, we pass three
parameters: the input size, the output size, and the optional dropout probability.
The first thing we need to do is call the parent's constructor to let it initialize itself.

In the second step, we need to create an already familiar nn. Sequential with

a bunch of layers and assign it to our class field named pipe. By assigning a
Sequential instance to our field, we will automatically register this module (nn.
Sequential inherits from nn.Module, as does everything in the nn package). To
register it, we don't need to call anything, we just need to assign our submodules to
fields. After the constructor finishes, all those fields will be registered automatically
(if you really want to, there is a function in nn.Module to register submodules).

def forward(self, x):
return self.pipe (x)

Here, we must override the forward function with our implementation of data
transformation. As our module is a very simple wrapper around other layers, we
just need to ask them to transform the data. Note that to apply a module to the data,
we need to call the module as callable (that is, pretend that the module instance is

a function and call it with the arguments) and not use the forward () function of

the nn.Module class. This is because nn.Module overrides the call () method,
which is being used when we treat an instance as callable. This method does some
nn.Module magic stuff and calls our forward () method. If we call forward ()
directly, we will intervene with the nn.Module duty, which can give wrong results.
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So, that's what we need to do to define our own module. Now, let's use it:

if name == " main ":
net = OurModule (num_inputs=2, num classes=3)
v = torch.FloatTensor ([[2, 3]11])
out = net (v)
print (net)
print (out)

We create our module, providing it with the desired number of inputs and outputs,
then we create a tensor and ask our module to transform it, following the same
convention of using it as callable. After that, we print our network's structure (nn.
Module overrides _ str () and _ repr__ ()) to represent the inner structure

in a nice way. The last thing we show is the result of the network's transformation.

The output of our code should look like this:

rl book samples/Chapter03$ python 01 modules.py
OurModule (
(pipe) : Sequential (
(0) : Linear(in features=2, out features=5, bias=True)
(1) : ReLU()
(2) : Linear(in features=5, out features=20, bias=True)
(3): ReLU()
(4) : Linear(in features=20, out features=3, bias=True)
(5) : Dropout (p=0.3, inplace=False)
(6) : Softmax(dim=1)

)
tensor ([[0.5436, 0.3243, 0.1322]], grad fn=<SoftmaxBackward>)
Cuda's availability is True

Data from cuda: tensor([[0.5436, 0.3243, 0.1322]], device='cuda:0', grad
fn=<CopyBackwards>)

Of course, everything that was said about the dynamic nature of PyTorch is still
true. The forward () method is called for every batch of data, so if you want to

do some complex transformations based on the data you need to process, like
hierarchical softmax or a random choice of network to apply, then nothing can stop
you from doing so. The count of arguments to your module is also not limited by
one parameter. So, if you want, you can write a module with multiple required
parameters and dozens of optional arguments, and it will be fine.
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Next, we need to get familiar with two important pieces of the PyTorch library that
will simplify our lives: loss functions and optimizers.

The final glue — loss functions and
optimizers

The network that transforms input data into output is not the only thing we need

for training. We need to define our learning objective, which is to have a function
that accepts two arguments — the network's output and the desired output. Its
responsibility is to return to us a single number —how close the network's prediction
is from the desired result. This function is called the loss function, and its output is
the loss value. Using the loss value, we calculate gradients of network parameters
and adjust them to decrease this loss value, which pushes our model to better
results in the future. Both the loss function and the method of tweaking a network's
parameters by gradient are so common and exist in so many forms that both of them
form a significant part of the PyTorch library. Let's start with loss functions.

Loss functions

Loss functions reside in the nn package and are implemented as an nn.Module
subclass. Usually, they accept two arguments: output from the network (prediction)
and desired output (ground-truth data, which is also called the label of the data
sample). At the time of writing, PyTorch 1.3.0 contains 20 different loss functions
and, of course, nothing stops you from writing any function you want to optimize
in the explicit form.

The most commonly used standard loss functions are:

* nn.MSELoss: The mean square error between arguments, which is the
standard loss for regression problems.

* nn.BCELoss and nn.BCEWithLogits: Binary cross-entropy loss. The first
version expects a single probability value (usually it's the output of the
Sigmoid layer), while the second version assumes raw scores as input and
applies Sigmoid itself. The second way is usually more numerically stable
and efficient. These losses (as their names suggest) are frequently used in
binary classification problems.

®* nn.CrossEntropyLoss and nn.NLLLoss: Famous "maximum likelihood"
criteria that are used in multi-class classification problems. The first version
expects raw scores for each class and applies LogSof tmax internally, while
the second expects to have log probabilities as the input.
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There are other loss functions available and you are always free to write your own
Module subclass to compare the output and target. Now, let's look at the second
piece of the optimization process.

Optimizers

The responsibility of the basic optimizer is to take the gradients of model parameters
and change these parameters in order to decrease the loss value. By decreasing the
loss value, we are pushing our model toward the desired output, which can give

us hope for better model performance in the future. Changing parameters may
sound simple, but there are lots of details here and the optimizer procedure is still

a hot research topic. In the torch. optim package, PyTorch provides lots of popular
optimizer implementations and the most widely known are as follows:

* 3sGD: A vanilla stochastic gradient descent algorithm with an optional
momentum extension

* RMSprop: An optimizer proposed by Geoffrey Hinton
* Adagrad: An adaptive gradients optimizer

* Adam: A quite successful and popular combination of both RMSprop
and Adagrad

All optimizers expose the unified interface, which makes it easy to experiment with
different optimization methods (sometimes the optimization method can really make
a difference in convergence dynamics and the final result). On construction, you
need to pass an iterable of tensors, which will be modified during the optimization
process. The usual practice is to pass the result of the params () call of the upper-
level nn.Module instance, which will return an iterable of all leaf tensors with
gradients.

Now, let's discuss the common blueprint of a training loop.

for batch x, batch y in iterate batches(data, batch size=32): #1
batch x t = torch.tensor (batch x) #2
batch y t = torch.tensor (batch y) #3
out_t = net(batch x t) #4
loss t = loss_function(out t, batch y t). #5
loss_t.backward() #6
optimizer.step () #7
optimizer.zero grad() #8

Usually, you iterate over your data over and over again (one iteration over a full
set of examples is called an epoch). Data is usually too large to fit into CPU or GPU
memory at once, so it is split into batches of equal size. Every batch includes data
samples and target labels, and both of them have to be tensors (lines 2 and 3).
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You pass data samples to your network (line 4) and feed its output and target labels
to the loss function (line 5). The result of the loss function shows the "badness" of the
network result relative to the target labels. As input to the network and the network's
weights are tensors, all transformations of your network are nothing more than

a graph of operations with intermediate tensor instances. The same is true for the
loss function —its result is also a tensor of one single loss value.

Every tensor in this computation graph remembers its parent, so to calculate
gradients for the whole network, all you need to do is call the backward () function
on a loss function result (line 6). The result of this call will be the unrolling of the
graph of the performed computations and the calculating of gradients for every leaf
tensor with require_grad=True. Usually, such tensors are our model's parameters,
such as the weights and biases of feed-forward networks, and convolution filters.
Every time a gradient is calculated, it is accumulated in the tensor.grad field, so
one tensor can participate in a transformation multiple times and its gradients will
be properly summed together. For example, one single recurrent neural network
(RNN) cell could be applied to multiple input items.

After the loss.backward () call is finished, we have the gradients accumulated,
and now it's time for the optimizer to do its job—it takes all gradients from the
parameters we have passed to it on construction and applies them. All this is done
with the method step () (line 7).

The last, but not least, piece of the training loop is our responsibility to zero gradients
of parameters. This can be done by calling zero_grad () on our network, but, for

our convenience, the optimizer also exposes such a call, which does the same thing
(line 8). Sometimes zero_grad () is placed at the beginning of the training loop, but
it doesn't matter much.

The preceding scheme is a very flexible way to perform optimization and it can
fulfill the requirements even in sophisticated research. For example, you can have
two optimizers tweaking the options of different models on the same data (and this
is a real-life scenario from generative adversarial network (GAN) training).

So, we are done with the essential functionality of PyTorch required to train NNs.
This chapter ends with a practical medium-size example to demonstrate all the
concepts covered, but before we get to it, we need to discuss one important topic
that is essential for an NN practitioner — monitoring the learning process.
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Monitoring with TensorBoard

If you have ever tried to train an NN on your own, then you will know how painful
and uncertain it can be. I'm not talking about following the existing tutorials and
demos, when all the hyperparameters are already tuned for you, but about taking
some data and creating something from scratch. Even with modern DL high-level
toolkits, where all best practices, such as proper weights initialization; optimizers'
betas, gammas, and other options set to sane defaults; and tons of other stuff hidden
under the hood, there are still lots of decisions that you can make, hence lots of
things that could go wrong. As a result, your network almost never works from

the first run and this is something that you should get used to.

Of course, with practice and experience, you will develop a strong intuition about
the possible causes of problems, but intuition needs input data about what's going
on inside your network. So, you need to be able to peek inside your training process
somehow and observe its dynamics. Even small networks (such as tiny MNIST
tutorial networks) could have hundreds of thousands of parameters with quite
nonlinear training dynamics.

DL practitioners have developed a list of things that you should observe during your
training, which usually includes the following;:

* Loss value, which normally consists of several components like base loss
and regularization losses. You should monitor both the total loss and the
individual components over time.

* Results of validation on training and test datasets.
* Statistics about gradients and weights.

* Values produced by the network. For example, if you are solving
a classification problem, you definitely want to measure the entropy
of predicted class probabilities. In the case of a regression problem,
raw predicted values can give tons of data about the training.

* Learning rates and other hyperparameters, if they are adjusted over time.

The list could be much longer and include domain-specific metrics, such as word
embedding projections, audio samples, and images generated by GANSs. You also
may want to monitor values related to training speed, like how long an epoch takes,
to see the effect of your optimizations or problems with hardware.

To make a long story short, you need a generic solution to track lots of values over
time and represent them for analysis, preferably developed especially for DL (just
imagine looking at such statistics in an Excel spreadsheet). Luckily, such tools exist
and we will explore them next.
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TensorBoard 101

When the first edition of this book was written, there wasn't too much choice

for NN monitoring. As time has passed by and new people and companies have
become involved with the pursuit of machine learning (ML) and DL, more new
tools have appeared. In this book, we will still focus on the TensorBoard utility from
TensorFlow, but you might consider trying other utilities around that.

From the first public version, TensorFlow included a special tool called TensorBoard,
which was developed to solve the problem we are talking about—how to observe
and analyze various NN characteristics over training. TensorBoard is a powerful,
generic solution with a large community and it looks quite pretty:
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Figure 3.4: The TensorBoard web interface

From the architecture point of view, TensorBoard is a Python web service that you
can start on your computer, passing it the directory where your training process
will save values to be analyzed. Then, you point your browser to TensorBoard's port
(usually 6006), and it shows you an interactive web interface with values updated
in real time. It's nice and convenient, especially when your training is performed on
a remote machine somewhere in the cloud.

Originally, TensorBoard was deployed as a part of TensorFlow, but recently, it has
been moved to a separate project (it's still being maintained by Google) and it has its
own package name. However, TensorBoard still uses the TensorFlow data format, so
to be able to write training statistics from PyTorch optimization, you will need both
the tensorboard and tensorflow packages installed.
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In theory, this is all you need to start monitoring your networks, as the tensorflow
package provides you with classes to write the data that TensorBoard will be able
to read. However, it's not very practical, as those classes are very low level. To
overcome this, there are several third-party open source libraries that provide a
convenient high-level interface. One of my favorites, which is used in this book, is
tensorboardX (https://github.com/lanpa/tensorboardx). It can be installed
with pip install tensorboardX.

Compatibility note

/ In PyTorch 1.1, experimental support of the TensorBoard
\/iP: format was implemented, which makes it unnecessary to have
tensorboardX installed (for details, check https://pytorch.

org/docs/stable/tensorboard.html). But we will still use
this third-party package, as PyTorch Ignite depends on it.

Plotting stuff

To give you an impression of how simple tensorboardX is, let's consider a small
example that is not related to NNs, but is just about writing stuff into TensorBoard
(the full example code is in Chapter03/02_tensorboard.py).

import math
from tensorboardX import SummaryWriter

if name == " main ":
writer = SummaryWriter ()
funcs = {"sin": math.sin, "cos": math.cos, "tan": math.tan}

We import the required packages, create a writer of data, and define functions

that we are going to visualize. By default, SummaryWriter will create a unique
directory under the runs directory for every launch, to be able to compare different
launches of training. The names of the new directory include the current date and
time, and the hostname. To override this, you can pass the 1og_dir argument to
SummaryWriter. You can also add a suffix to the name of the directory by passing
a comment option, for example to capture different experiments' semantics, such
as dropout=0.3 Or strong_regularisation.

for angle in range(-360, 360):
angle rad = angle * math.pi / 180
for name, fun in funcs.items() :
val = fun(angle rad)
writer.add scalar (name, val, angle)

writer.close ()
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Here, we loop over angle ranges in degrees, convert them into radians, and calculate
our functions' values. Every value is added to the writer using the add_scalar
function, which takes three arguments: the name of the parameter, its value,

and the current iteration (which has to be an integer).

The last thing we need to do after the loop is close the writer. Note that the writer
does a periodical flush (by default, every two minutes), so even in the case of
a lengthy optimization process, you will still see your values.

The result of running this will be zero output on the console, but you will see a new
directory created inside the runs directory with a single file. To look at the result,
we need to start TensorBoard:

rl book samples/Chapter03$ tensorboard --logdir runs

TensorBoard 2.0.1 at http://127.0.0.1:6006/ (Press CTRL+C to quit)

If you are running TensorBoard on a remote server, you will need to add the
--bind_all command-line option to make it accessible from the outside. Now
you can open http://localhost:6006 in your browser to see something like this:

TensorBoard SCALARS INACTIVE -

] Show data downicad links Q.
Ignore outfiers in chart scaling

2 (all tags)
Tooftip sorting method; default =~

Smoothing 120 | 1.20 5 fi= 8.00

Horizontal Axis -0.600 —F 7 -0.600 A \ |/ -4.00

1.20 | -1.20 -8.00
-300.0 -100.0 100.0 300.0 -300.0 -100.0 100.0 300.0 -300.0 -100.0 100.0 300.0

DEQ DER DED

STEP RELATIVE WALL

Runs

Write a regex to filter runs cos

5ep30_10-13-11_home sin

Figure 3.5: Plots produced by the example

The graphs are interactive, so you can hover over them with your mouse to see

the actual values and select regions to zoom in and look at details. To zoom out,
double-click inside the graph. If you run your program several times, then you will
see several items in the Runs list on the left, which can be enabled and disabled in
any combination, allowing you to compare the dynamics of several optimizations.
TensorBoard allows you to analyze not only scalar values but also images, audio,
text data, and embeddings, and it can even show you the structure of your network.
Refer to the documentation of tensorboardx and tensorboard for all those features.
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Now, it's time to combine everything you learned in this chapter and look at a real
NN optimization problem using PyTorch.

Example — GAN on Atari images

Almost every book about DL uses the MNIST dataset to show you the power

of DL, which, over the years, has made this dataset extremely boring, like a fruit
fly for genetic researchers. To break this tradition, and add a bit more fun to the
book, I've tried to avoid well-beaten paths and illustrate PyTorch using something
different. I briefly referred to GANSs earlier in the chapter. They were invented and
popularized by lan Goodfellow. In this example, we will train a GAN to generate
screenshots of various Atari games.

The simplest GAN architecture is this: we have two networks and the first works as a
"cheater" (it is also called the generator), and the other is a "detective" (another name
is the discriminator). Both networks compete with each other —the generator tries to
generate fake data, which will be hard for the discriminator to distinguish from your
dataset, and the discriminator tries to detect the generated data samples. Over time,
both networks improve their skills — the generator produces more and more realistic
data samples, and the discriminator invents more sophisticated ways to distinguish
the fake items.

Practical usage of GANs includes image quality improvement, realistic image
generation, and feature learning. In our example, practical usefulness is almost zero,
but it will be a good example of how clean and short PyTorch code can be for quite
complex models.

So, let's get started. The whole example code is in the file Chapter03/03_atari_
gan.py. Here, we will look at only significant pieces of code, without the import
section and constants declaration:

class InputWrapper (gym.ObservationWrapper) :
def  init (self, *args):

super (InputWrapper, self). init (*args)

assert isinstance(self.observation space, gym.spaces.Box)

old_space = self.observation_ space

self.observation space = gym.spaces.Box(
self.observation(old space.low),
self.observation(old space.high),
dtype=np.float32)

def observation(self, observation) :
new_obs = cv2.resize(
observation, (IMAGE SIZE, IMAGE SIZE))
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# transform (210, 160, 3) -> (3, 210, 160)
new obs = np.moveaxis(new obs, 2, 0)
return new obs.astype (np.float32)

This class is a wrapper around a Gym game, which includes several transformations:

* Resize the input image from 210x160 (the standard Atari resolution)
to a square size 64x64

* Move the color plane of the image from the last position to the first, to meet
the PyTorch convention of convolution layers that input a tensor with the
shape of the channels, height, and width

* Cast the image from bytes to float

Then, we define two nn.Module classes: Discriminator and Generator. The first
takes our scaled color image as input and, by applying five layers of convolutions,
converts it into a single number passed through a sigmoid nonlinearity. The output
from sigmoid is interpreted as the probability that Discriminator thinks our input
image is from the real dataset.

Generator takes as input a vector of random numbers (latent vector) and using the
"transposed convolution" operation (it is also known as deconvolution) converts
this vector into a color image of the original resolution. We will not look at those
classes here as they are lengthy and not very relevant to our example; you can find
them in the complete example file.

Figure 3.6: Sample screenshots from three Atari games

As input, we will use screenshots from several Atari games played simultaneously
by a random agent. Figure 3.6 is an example of what the input data looks like and it
is generated by the following function:

def iterate batches(envs, batch size=BATCH SIZE) :
batch = [e.reset () for e in envs]
env_gen = iter(lambda: random.choice(envs), None)

while True:
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e = next (env_gen)
obs, reward, is done, = e.step(e.action space.sample())
if np.mean(obs) > 0.01:
batch.append (obs)
if len(batch) == batch size:
# Normalising input between -1 to 1
batch np = np.array(batch, dtype=np.float32)
batch np *= 2.0 / 255.0 - 1.0
yield torch.tensor (batch np)
batch.clear ()
if is _done:
e.reset ()

This infinitely samples the environment from the provided array, issues random
actions, and remembers observations in the batch list. When the batch becomes

of the required size, we normalize the image, convert it to a tensor, and yield from
the generator. The check for the non-zero mean of the observation is required due
to a bug in one of the games to prevent the flickering of an image.

Now, let's look at our main function, which prepares models and runs the
training loop.

if name == "_ main_":
parser = argparse.ArgumentParser ()
parser.add_argument (
"--cuda", default=False, action='store true',
help="Enable cuda computation")
args = parser.parse_args ()

device = torch.device("cuda" if args.cuda else "cpu")
envs = [

InputWrapper (gym.make (name) )

for name in ('Breakout-v0', 'AirRaid-vO0', 'Pong-v0')
1

input shape = envs[0] .observation space.shape

Here, we process the command-line arguments (which could be only one
optional argument, - - cuda, enabling the GPU computation mode) and create our
environment pool with a wrapper applied. This environment array will be passed
to the iterate_batches function to generate training data.

net discr = Discriminator (input shape=input shape) .to(device)
net gener = Generator (output shape=input shape) .to(device)

objective nn.BCELoss ()
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gen optimizer = optim.Adam(
params=net gener.parameters(), lr=LEARNING RATE,
betas=(0.5, 0.999))

dis optimizer = optim.Adam/(
params=net discr.parameters(), lr=LEARNING RATE,
betas=(0.5, 0.999))

writer = SummaryWriter ()

In this piece, we create our classes —a summary writer, both networks, a loss
function, and two optimizers. Why two? It's because that's the way that GANs
get trained: to train the discriminator, we need to show it both real and fake data
samples with appropriate labels (1 for real and 0 for fake). During this pass, we
update only the discriminator's parameters.

After that, we pass both real and fake samples through the discriminator again,
but this time, the labels are 1s for all samples and we update only the generator's
weights. The second pass teaches the generator how to fool the discriminator and
confuse real samples with the generated ones.

(]
(]

gen_losses
dis_losses
iter no = 0

true labels v = torch.ones (BATCH SIZE, device=device)

fake labels v = torch.zeros (BATCH SIZE, device=device)
Here, we define arrays, which will be used to accumulate losses, iterator counters,
and variables with the true and fake labels.

for batch v in iterate_batches (envs) :
# fake samples, input is 4D: batch, filters, x, vy
gen_input v = torch.FloatTensor (
BATCH SIZE, LATENT VECTOR SIZE, 1, 1)
gen input v.normal (0, 1).to(device)
batch v = batch v.to(device)
gen_output_v = net_gener (gen_input_v)

At the beginning of the training loop, we generate a random vector and pass it to the
Generator network.

dis optimizer.zero grad()

dis output true v = net discr(batch v)

dis output fake v = net discr(gen output v.detach())

dis_loss = objective(dis_output_true v, true labels v) + \
objective (dis_output_ fake v, fake labels v)

dis_loss.backward ()

dis optimizer.step()

dis losses.append(dis loss.item())
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At first, we train the discriminator by applying it two times: to the true data samples
in our batch and to the generated ones. We need to call the detach () function on
the generator's output to prevent gradients of this training pass from flowing into
the generator (detach () is a method of tensor, which makes a copy of it without
connection to the parent's operation).

gen optimizer.zero grad()

dis output v = net discr(gen output v)

gen loss v = objective(dis output v, true labels v)
gen loss_v.backward()

gen optimizer.step()

gen losses.append(gen loss v.item())

Now it's the generator's training time. We pass the generator's output to the
discriminator, but now we don't stop the gradients. Instead, we apply the objective
function with True labels. It will push our generator in the direction where the
samples that it generates make the discriminator confuse them with the real data.

That was the code related to training, and the next couple of lines report losses and
feed image samples to TensorBoard:

iter no +=1
if iter no % REPORT EVERY ITER == 0:
log.info("Iter %d: gen loss=%.3e, dis loss=%.3e",
iter no, np.mean(gen losses),
np.mean(dis losses))
writer.add scalar(
"gen loss", np.mean(gen losses), iter no)
writer.add scalar(
"dis loss", np.mean(dis losses), iter no)
gen losses = []
dis losses = []
if iter no % SAVE IMAGE EVERY ITER ==
writer.add image("fake", vutils.make grid(
gen output v.data[:64], normalize=True), iter no)
writer.add image("real", vutils.make grid(
batch v.data[:64], normalize=True), iter_ no)

The training of this example is quite a lengthy process. On a GTX 1080 GPU,

100 iterations take about 40 seconds. At the beginning, the generated images are
completely random noise, but after 10k-20k iterations, the generator becomes more
and more proficient at its job and the generated images become more and more
similar to the real game screenshots.
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My experiments gave the following images after 40k-50k of training iterations
(several hours on a GPU):

T —— ] EE—— T e e—— T :I_":"-*""."ﬂ' o

Figure 3.7: Sample images produced by the generator network

PyTorch Ignite

PyTorch is an elegant and flexible library, which makes it a favorite choice for
thousands of researchers, DL enthusiasts, industry developers, and others. But
flexibility has its own price: too much code to be written to solve your problem.
Sometimes, this is very beneficial, such as when implementing some new
optimization method or DL trick that hasn't been included in the standard library
yet. Then you just implement the formulas using Python and PyTorch magic will
do all the gradients and backpropagation machinery for you. Another example is
in situations when you have to work on a very low level, fiddling with gradients,
optimizer details, and the way your data is transformed by the NN.

However, sometimes you don't need this flexibility, which happens when you work on
routine tasks, like the simple supervised training of an image classifier. For such tasks,
standard PyTorch might be at too low a level when you need to deal with the same
code over and over again. The following is a non-exhaustive list of topics that are an
essential part of any DL training procedure, but require some code to be written:

* Data preparation and transformation, and the generation of batches

* Calculation of training metrics, like loss values, accuracy, and F1-scores

* Periodical testing of the model being trained on the test and validation
datasets

* Model checkpointing after some number of iterations or when a new best
metric is achieved

* Sending metrics into a monitoring tool like TensorBoard

* Hyperparameters change over time, like a learning rate decrease/increase
schedule

*  Writing training progress messages on the console
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They are all doable using only PyTorch, of course, but it might require you to write
a significant amount of code. As those tasks occur in any DL project, it quickly
becomes cumbersome to write the same code over and over again. The normal
approach to solving the issue is to write the functionality once, wrap it into a library,
and reuse it later. If the library is open source and of good quality (easy to use,
provides a good level of flexibility, written properly, and so on), it will become
popular as more and more people use it in their projects. This process is not DL-
specific; it happens everywhere in the software industry.

There are several libraries for PyTorch that simplify the solving of common tasks:
y plry g

ptlearn, fastai, ignite and some others. The current list of "PyTorch ecosystem

projects" can be found here: https://pytorch.org/ecosystem.

It might be appealing to start using those high-level libraries from the beginning,

as they allow you to solve common problems with just a couple of lines of code, but
there is some danger here. If you only know how to use high-level libraries without
understanding low-level details, you might get stuck on problems that can't be
solved solely by standard methods. In the very dynamic field of ML, this happens
very often.

The main focus of this book is to ensure that you understand RL methods, their
implementation, and their applicability, so, we will use an incremental approach. In
the beginning, we will implement methods using only PyTorch code, but with more
progress, examples will be implemented using high-level libraries. For RL, this will
be the small library written by me: PTAN (https://github.com/Shmuma/ptan/),
and it will be introduced in Chapter 7, Higher-Level RL Libraries.

To reduce the amount of DL boilerplate code, we will use a library called PyTorch
Ignite: https://pytorch.org/ignite/. In this section, a small overview of Ignite
will be given, then we will check the Atari GAN example once it has been rewritten
using Ignite.

Ignite concepts

At a high level, Ignite simplifies the writing of the training loop in PyTorch DL.
Earlier in this chapter (in the section Optimizers), you saw that the minimal training
loop consists of:

* Sampling a batch of training data

* Applying an NN to this batch to calculate the loss function — the single value
we want to minimize

* Running backpropagation of the loss to get gradients on the network's
parameters in respect to the loss

[77]


https://pytorch.org/ecosystem
https://github.com/Shmuma/ptan/
https://pytorch.org/ignite/

Deep Learning with PyTorch

* Asking the optimizer to apply the gradients to the network

* Repeating until we are happy or bored of waiting

The central piece of Ignite is the Engine class, which loops over the data source,
applying the processing function to the data batch. In addition to that, Ignite offers
the ability to provide functions to be called at specific conditions of the training loop.
Those conditions are called Events and could be at the:

* Beginning/end of the whole training process
* Beginning/end of a training epoch (iteration over the data)

* Beginning/end of a single batch processing

In addition to that, custom events exist and allow you to specify your function to
be called every N events, for example, if you want to do some calculations every
100 batches or every second epoch.

A very simplistic example of Ignite is shown in the following code block:

from ignite.engine import Engine, Events

def training(engine, batch) :
optimizer.zero grad()
X, Yy = prepare batch()
y_out = model (x)
loss = loss_fn(y out, y)
loss.backward ()
optimizer.step()
return loss.item()

engine = Engine(training)
engine.run(data)

This code is not runnable, as it misses lots of stuff, like the data source, model,

and optimizer creation, but it shows the basic idea of Ignite usage. The main
benefit of Ignite is in the ability it provides to extend the training loop with existing
functionality. You want the loss value to be smoothed and written in TensorBoard
every 100 batches? No problem! Add two lines and it will be done. You want to run
model validation every 10 epochs? Okay, write a function to run a test and attach it
to engine, and it will be called.

A description of the full Ignite functionality is beyond the scope of the book, but you
can read the documentation on the official website: https://pytorch.org/ignite.
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To give you an illustration of Ignite, let's change the example of GAN training
on Atari images. The full example code is available in Chapter03/04_atari_gan_
ignite.py, so in the following code snippets, I'll show only the parts that differ.

from ignite.engine import Engine, Events
from ignite.metrics import RunningAverage
from ignite.contrib.handlers import tensorboard logger as tb logger

First, we import several Ignite classes, Engine and Events, which have already been
outlined. The package ignite.metrics contains classes related to working with the
performance metrics of the training process, such as confusion matrices, precision,
and recall. In our example, we will use the class RunningAverage, which provides

a way to smooth time series values. In the previous example, we did this by calling
np.mean () on an array of losses, but RunningAverage provides a more convenient
(and mathematically more correct) way of doing this. In addition, we import
TensorBoard logger from the Ignite contrib package (the functionality of which

is contributed by others).

def process batch(trainer, batch):
gen_input v = torch.FloatTensor (

BATCH SIZE, LATENT VECTOR SIZE, 1, 1)
gen _input v.normal (0, 1).to(device)
batch v = batch.to(device)
gen_output v = net gener (gen_ input v)

dis_optimizer.zero grad()

dis_output_ true v = net discr(batch v)

dis_output fake v = net discr(gen output v.detach())

dis loss = objective (dis_output true v, true labels v) + \
objective (dis output fake v, fake labels v)

dis_loss.backward()

dis_optimizer.step()

gen optimizer.zero grad()

dis_output v = net discr(gen output v)

gen loss = objective(dis_ output v, true labels v)
gen_loss.backward()

gen _optimizer.step()

if trainer.state.iteration % SAVE IMAGE EVERY ITER == O0:
fake img = vutils.make grid(
gen_output v.data[:64], normalize=True)
trainer.tb.writer.add image(
"fake", fake img, trainer.state.iteration)
real img = vutils.make grid(
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batch v.data[:64], normalize=True)
trainer.tb.writer.add image(
"real", real img, trainer.state.iteration)
trainer.tb.writer.flush()
return dis loss.item(), gen loss.item()

As a next step, we need to define our processing function, which takes the data batch
and does an update of both the discriminator and generator models on this batch.
This function can return any data to be tracked during the training process; in our
case, it will be two loss values for both models. In this function, we can also save
images to be displayed in TensorBoard.

After this is done, all we need to do is create an Engine instance, attach the required
handlers, and run the training process.

engine = Engine (process batch)

tb = tb logger.TensorboardLogger (log dir=None)

engine.tb = tb

RunningAverage (output transform=lambda out: out[0]) .\
attach(engine, "avg loss gen")

RunningAverage (output transform=lambda out: out[1]) .\
attach(engine, "avg loss dis")

handler = tb_logger.OutputHandler (tag="train",
metric names=['avg loss gen', 'avg loss dis'l])
tb.attach(engine, log handler=handler,
event_name=Events.ITERATION_ COMPLETED)

In the preceding code, we create our engine, passing our processing function and
attaching two RunningAverage transformations for our two loss values. Being
attached, every RunningAverage produces a so-called "metric"—a derived value
kept around during the training process. The names of our smoothed metrics
are avg_loss_gen for smoothed loss from the generator and avg_loss_dis
for smoothed loss from the discriminator. Those two values will be written in
TensorBoard after every iteration.

@engine.on (Events.ITERATION COMPLETED)
def log losses(trainer) :
if trainer.state.iteration % REPORT_EVERY ITER == O:
log.info("%d: gen loss=%f, dis loss=%f",
trainer.state.iteration,
trainer.state.metrics['avg loss gen'],
trainer.state.metrics(['avg loss dis'])

engine.run(data=iterate batches (envs))
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The last piece of code attaches another event handler, which will be our function,
and is called by the Engine on every iteration completion. It will write a log line with
an iteration index and values of smoothed metrics. The final line starts our engine,
passing the already defined function as the data source (function iterate_batches
is a generator, returning the normal iterator over batches, so, it will be perfectly fine
to pass its output as a data argument).

And that's it. If you run the example Chapter03/04_atari_gan_ignite.py, it will
work the same way as our previous example, which might not be very impressive
for such a small example, but in real projects, Ignite usage normally pays off by
making your code cleaner and more extensible.

Summary

In this chapter, you saw a quick overview of PyTorch's functionality and features.
We talked about basic fundamental pieces, such as tensors and gradients, and you
saw how an NN can be made from the basic building blocks, before learning how
to implement those blocks yourself.

We discussed loss functions and optimizers, as well as the monitoring of training
dynamics. Finally, you were introduced to PyTorch Ignite, a library used to provide
a higher-level interface for training loops. The goal of the chapter was to give a very
quick introduction to PyTorch, which will be used later in the book.

In the next chapter, we are ready to start dealing with the main subject of this book:
RL methods.
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In the last chapter, you got to know PyTorch. In this chapter, we will wrap up part
one of this book and you will become familiar with one of the reinforcement learning
(RL) methods: cross-entropy.

Despite the fact that it is much less famous than other tools in the RL practitioner's
toolbox, such as deep Q-network (DQN) or advantage actor-critic, the cross-entropy
method has its own strengths. Firstly, the cross-entropy method is really simple,
which makes it an easy method to follow. For example, its implementation on
PyTorch is less than 100 lines of code.

Secondly, the method has good convergence. In simple environments that don't
require complex, multistep policies to be learned and discovered, and that have short
episodes with frequent rewards, the cross-entropy method usually works very well.
Of course, lots of practical problems don't fall into this category, but sometimes they
do. In such cases, the cross-entropy method (on its own or as part of a larger system)
can be the perfect fit.

In this chapter, we will cover:

* The practical side of the cross-entropy method

* How the cross-entropy method works in two environments in Gym (the
familiar CartPole and the grid world of FrozenLake)

* The theoretical background of the cross-entropy method. This section is
optional and requires a bit more knowledge of probability and statistics, but
if you want to understand why the method works, then you can delve into it
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The taxonomy of RL methods

The cross-entropy method falls into the model-free and policy-based category of
methods. These notions are new, so let's spend some time exploring them. All the
methods in RL can be classified into various aspects:

* Model-free or model-based
* Value-based or policy-based
*  On-policy or off-policy

There are other ways that you can taxonomize RL methods, but, for now, we are
interested in the preceding three. Let's define them, as your problem specifics can
influence your decision on a particular method.

The term "model-free" means that the method doesn't build a model of the
environment or reward; it just directly connects observations to actions (or values
that are related to actions). In other words, the agent takes current observations and
does some computations on them, and the result is the action that it should take.

In contrast, model-based methods try to predict what the next observation and/or
reward will be. Based on this prediction, the agent tries to choose the best possible
action to take, very often making such predictions multiple times to look more and
more steps into the future.

Both classes of methods have strong and weak sides, but usually pure model-based
methods are used in deterministic environments, such as board games with strict
rules. On the other hand, model-free methods are usually easier to train as it's hard
to build good models of complex environments with rich observations. All of the
methods described in this book are from the model-free category, as those methods
have been the most active area of research for the past few years. Only recently
have researchers started to mix the benefits from both worlds (for example, refer

to DeepMind's papers on imagination in agents. This approach will be described

in Chapter 22, Beyond Model-Free — Imagination).

By looking from another angle, policy-based methods directly approximate the
policy of the agent, that is, what actions the agent should carry out at every step. The
policy is usually represented by a probability distribution over the available actions.

In contrast, the method could be value-based. In this case, instead of the probability
of actions, the agent calculates the value of every possible action and chooses the
action with the best value. Both of those families of methods are equally popular and
we will discuss value-based methods in the next part of the book. Policy methods
will be the topic of part three.
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The third important classification of methods is on-policy versus off-policy. We will
discuss this distinction more in parts two and three of the book, but, for now, it will
be enough to explain off-policy as the ability of the method to learn on historical data
(obtained by a previous version of the agent, recorded by human demonstration,

or just seen by the same agent several episodes ago).

So, our cross-entropy method is model-free, policy-based, and on-policy, which
means the following;:

* It doesn't build any model of the environment; it just says to the agent
what to do at every step

* Itapproximates the policy of the agent

* It requires fresh data obtained from the environment

The cross-entropy method in practice

The cross-entropy method's description is split into two unequal parts: practical
and theoretical. The practical part is intuitive in its nature, while the theoretical
explanation of why the cross-entropy method works, and what's happening, is
more sophisticated.

You may remember that the central and trickiest thing in RL is the agent, which is
trying to accumulate as much total reward as possible by communicating with the
environment. In practice, we follow a common machine learning (ML) approach and
replace all of the complications of the agent with some kind of nonlinear trainable
function, which maps the agent's input (observations from the environment) to
some output. The details of the output that this function produces may depend

on a particular method or a family of methods, as described in the previous section
(such as value-based versus policy-based methods). As our cross-entropy method

is policy-based, our nonlinear function (neural network (NN)) produces the policy,
which basically says for every observation which action the agent should take.

. Policy
. Trainable
Observation s |:{> function (NN) |:{> (als)

Figure 4.1: A high-level approach to RL

In practice, the policy is usually represented as a probability distribution over
actions, which makes it very similar to a classification problem, with the amount
of classes being equal to the amount of actions we can carry out.
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This abstraction makes our agent very simple: it needs to pass an observation
from the environment to the NN, get a probability distribution over actions, and
perform random sampling using the probability distribution to get an action to
carry out. This random sampling adds randomness to our agent, which is a good
thing, as at the beginning of the training, when our weights are random, the agent
behaves randomly. After the agent gets an action to issue, it fires the action to

the environment and obtains the next observation and reward for the last action.
Then the loop continues.

During the agent's lifetime, its experience is presented as episodes. Every episode is
a sequence of observations that the agent has got from the environment, actions it
has issued, and rewards for these actions. Imagine that our agent has played several
such episodes. For every episode, we can calculate the total reward that the agent
has claimed. It can be discounted or not discounted; for simplicity, let's assume

a discount factor of y = 1, which means just a sum of all local rewards for every
episode. This total reward shows how good this episode was for the agent.

Let's illustrate this with a diagram, which contains four episodes (note that different
episodes have different values for o, a, and r)):

Episode 1 0p,81,1 | 02,82,12 | 03,83,75 | 04,84,74 | 05,85,05 | 05,86.T6 R=ry+t2+...+1g
Episode 2 01,8:,0 | 02,82,12 | 05,835,153 | 0s,84,14 R=r +ry+r3+14
Episode 3 0p,4,,ry | 02,82,r5 | 03,83,z | O4,84,4 | 05,85,I5 R=I’;+I'2+...+I'5
Episode 4 0,4,y | 02,42, | 03,483,I3 R=r+ry+r;

Figure 4.2: Sample episodes with their observations, actions, and rewards

Every cell represents the agent's step in the episode. Due to randomness in the
environment and the way that the agent selects actions to take, some episodes
will be better than others. The core of the cross-entropy method is to throw away
bad episodes and train on better ones. So, the steps of the method are as follows:

1. Play N number of episodes using our current model and environment.

2. Calculate the total reward for every episode and decide on a reward
boundary. Usually, we use some percentile of all rewards, such as 50th
or 70th.

3. Throw away all episodes with a reward below the boundary.
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4. Train on the remaining "elite" episodes using observations as the input and
issued actions as the desired output.

5. Repeat from step 1 until we become satisfied with the result.

So, that's the cross-entropy method's description. With the preceding procedure,
our NN learns how to repeat actions, which leads to a larger reward, constantly
moving the boundary higher and higher. Despite the simplicity of this method,

it works well in basic environments, it's easy to implement, and it's quite robust

to hyperparameters changing, which makes it an ideal baseline method to try. Let's
now apply it to our CartPole environment.

The cross-entropy method on CartPole

The whole code for this example is in Chapter04/01_cartpole.py, but the
following are the most important parts. Our model's core is a one-hidden-layer
NN, with rectified linear unit (ReLU) and 128 hidden neurons (which is absolutely
arbitrary). Other hyperparameters are also set almost randomly and aren't tuned,
as the method is robust and converges very quickly.

HIDDEN SIZE = 128
BATCH_SIZE = 16
PERCENTILE = 70

We define constants at the top of the file and they include the count of neurons

in the hidden layer, the count of episodes we play on every iteration (16), and the
percentile of episodes' total rewards that we use for "elite" episode filtering. We will
take the 70th percentile, which means that we will leave the top 30% of episodes
sorted by reward.

class Net (nn.Module) :
def init (self, obs size, hidden size, n_actions):
super (Net, self). init ()
self.net = nn.Sequential (
nn.Linear (obs size, hidden size),
nn.ReLU(),
nn.Linear (hidden size, n_actions)

def forward(self, x):
return self.net (x)
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There is nothing special about our NN; it takes a single observation from the
environment as an input vector and outputs a number for every action we can
perform. The output from the NN is a probability distribution over actions, so

a straightforward way to proceed would be to include softmax nonlinearity after
the last layer. However, in the preceding NN, we don't apply softmax to increase
the numerical stability of the training process. Rather than calculating softmax
(which uses exponentiation) and then calculating cross-entropy loss (which uses

a logarithm of probabilities), we can use the PyTorch class nn.CrossEntropyLoss,
which combines both softmax and cross-entropy in a single, more numerically
stable expression. CrossEntropyLoss requires raw, unnormalized values from the
NN (also called logits). The downside of this is that we need to remember to apply
softmax every time we need to get probabilities from our NN's output.

Episode = namedtuple ('Episode', field names=['reward',K 'steps'])
EpisodeStep = namedtuple (
'EpisodeStep',field names=['observation',6 'action'])

Here we will define two helper classes that are named tuples from the collections
package in the standard library:

* Episodestep: This will be used to represent one single step that our agent
made in the episode, and it stores the observation from the environment
and what action the agent completed. We will use episode steps from "elite"
episodes as training data.

* Episode: This is a single episode stored as total undiscounted reward and
a collection of EpisodeStep.

Let's look at a function that generates batches with episodes:

def iterate batches(env, net, batch size):
batch = []
episode reward = 0.0
episode steps = []
obs = env.reset ()
sm = nn.Softmax (dim=1)

The preceding function accepts the environment (the Env class instance from

the Gym library), our NN, and the count of episodes it should generate on every
iteration. The batch variable will be used to accumulate our batch (which is a list of
Episode instances). We also declare a reward counter for the current episode and its
list of steps (the EpisodeStep objects). Then we reset our environment to obtain the
first observation and create a softmax layer, which will be used to convert the NN's
output to a probability distribution of actions. That's our preparations complete,

so we are ready to start the environment loop.
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while True:
obs v = torch.FloatTensor ([obs])
act probs v = sm(net (obs v))
act probs = act probs v.data.numpy () [0]

At every iteration, we convert our current observation to a PyTorch tensor and pass
it to the NN to obtain action probabilities. There are several things to note here:

* All nn.Module instances in PyTorch expect a batch of data items and the
same is true for our NN, so we convert our observation (which is a vector
of four numbers in CartPole) into a tensor of size 1x4 (to achieve this, we
pass an observation in a single-element list).

* Aswe haven't used nonlinearity at the output of our NN, it outputs raw
action scores, which we need to feed through the softmax function.

* Both our NN and the softmax layer return tensors that track gradients,
so we need to unpack this by accessing the tensor.data field and then
converting the tensor into a NumPy array. This array will have the same
two-dimensional structure as the input, with the batch dimension on axis 0,
so we need to get the first batch element to obtain a one-dimensional vector
of action probabilities.

action = np.random.choice (len(act probs), p=act probs)
next obs, reward, is done, _ = env.step(action)

Now that we have the probability distribution of actions, we can use it to obtain
the actual action for the current step by sampling this distribution using NumPy's
function random. choice (). After this, we will pass this action to the environment
to get our next observation, our reward, and the indication of the episode ending.

episode reward += reward
step = EpisodeStep (observation=obs,action=action)
episode steps.append (step)

The reward is added to the current episode's total reward, and our list of episode
steps is also extended with an (observation, action) pair. Note that we save the
observation that was used to choose the action, but not the observation returned by
the environment as a result of the action. These are the tiny, but important, details
that you need to keep in mind.

if is_done:
e = Episode (reward=episode reward, steps=episode steps)
batch.append (e)
episode reward = 0.0
episode steps = []
next obs = env.reset()
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if len(batch) == batch size:
yield batch
batch = []

This is how we handle the situation when the current episode is over (in the case

of CartPole, the episode ends when the stick has fallen down despite our efforts).

We append the finalized episode to the batch, saving the total reward (as the episode
has been completed and we have accumulated all the reward) and steps we have
taken. Then we reset our total reward accumulator and clean the list of steps. After
that, we reset our environment to start over.

In case our batch has reached the desired count of episodes, we return it to the
caller for processing using yield. Our function is a generator, so every time the
yield operator is executed, the control is transferred to the outer iteration loop and
then continues after the yield line. If you are not familiar with Python's generator
functions, refer to the Python documentation: https://wiki.python.org/moin/
Generators. After processing, we will clean up the batch.

obs = next obs

The last, but very important, step in our loop is to assign an observation obtained
from the environment to our current observation variable. After that, everything
repeats infinitely —we pass the observation to the NN, sample the action to
perform, ask the environment to process the action, and remember the result

of this processing.

One very important fact to understand in this function logic is that the training

of our NN and the generation of our episodes are performed at the same time. They
are not completely in parallel, but every time our loop accumulates enough episodes
(16), it passes control to this function caller, which is supposed to train the NN using
gradient descent. So, when yield is returned, the NN will have different, slightly
better (we hope) behavior.

We don't need to explore proper synchronization, as our training and data gathering
activities are performed at the same thread of execution, but you need to understand
those constant jumps from NN training to its utilization.

Okay, now we need to define yet another function and then we will be ready to
switch to the training loop.

def filter batch(batch, percentile):
rewards = list(map(lambda s: s.reward, batch))
reward bound = np.percentile(rewards, percentile)
reward mean = float (np.mean(rewards))
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This function is at the core of the cross-entropy method — from the given batch
of episodes and percentile value, it calculates a boundary reward, which is used
to filter "elite" episodes to train on. To obtain the boundary reward, we will use
NumPy's percentile function, which, from the list of values and the desired
percentile, calculates the percentile's value. Then, we will calculate the mean
reward, which is used only for monitoring.

train obs = []
train act = []
for reward, steps in batch:
if reward < reward bound:
continue
train obs.extend (map(lambda step: step.observation,steps))
train act.extend(map(lambda step: step.action, steps))

Next, we will filter off our episodes. For every episode in the batch, we will check
that the episode has a higher total reward than our boundary and if it has, we will
populate lists of observations and actions that we will train on.

train obs v = torch.FloatTensor (train obs)
train act v = torch.LongTensor (train act)
return train obs v, train act v, reward bound, reward mean

As the final step of the function, we will convert our observations and actions from
"elite" episodes into tensors, and return a tuple of four: observations, actions, the
boundary of reward, and the mean reward. The last two values will be used only
to write them into TensorBoard to check the performance of our agent.

Now, the final chunk of code that glues everything together, and mostly consists
of the training loop, is as follows:

if name == " main ":
env = gym.make ("CartPole-v0")
# env = gym.wrappers.Monitor (env, directory="mon", force=True)
obs size = env.observation space.shape[0]
n _actions = env.action space.n

net = Net(obs size, HIDDEN SIZE, n_ actions)

objective = nn.CrossEntropyLoss ()

optimizer = optim.Adam(params=net.parameters(), lr=0.01)
writer = SummaryWriter (comment="-cartpole")

In the beginning, we create all the required objects: the environment, our NN, the
objective function, the optimizer, and the summary writer for TensorBoard.
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The commented line creates a monitor to write videos of your agent's performance.

for iter no, batch in enumerate (iterate batches(

env, net,BATCH SIZE)):

obs v, acts_v, reward b, reward m = \
filter batch(batch, PERCENTILE)

optimizer.zero grad()

action scores v = net(obs_ v)

loss v = objective(action scores v, acts v)

loss_v.backward()

optimizer.step ()

In the training loop, we iterate our batches (a list of Episode objects), then we
perform filtering of the "elite" episodes using the filter_ batch function. The
result is variables of observations and taken actions, the reward boundary used for
filtering, and the mean reward. After that, we zero gradients of our NN and pass
observations to the NN, obtaining its action scores. These scores are passed to the
objective function, which will calculate cross-entropy between the NN output
and the actions that the agent took. The idea of this is to reinforce our NN to carry
out those "elite" actions that have led to good rewards. Then, we calculate gradients
on the loss and ask the optimizer to adjust our NN.

print ("$d: loss=%.3f, reward mean=%.1f, rw bound=%.1f" % (
iter no, loss_v.item(), reward m, reward b))

writer.add scalar("loss", loss v.item(), iter no)

writer.add scalar ("reward bound", reward b, iter no)

writer.add scalar ("reward mean", reward m, iter no)

The rest of the loop is mostly the monitoring of progress. On the console, we
show the iteration number, the loss, the mean reward of the batch, and the reward
boundary. We also write the same values to TensorBoard, to get a nice chart of the
agent's learning performance.

if reward m > 199:
print ("Solved!")
break

writer.close ()
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The last check in the loop is the comparison of the mean rewards of our batch
episodes. When this becomes greater than 199, we stop our training. Why 199? In
Gym, the CartPole environment is considered to be solved when the mean reward
for the last 100 episodes is greater than 195, but our method converges so quickly
that 100 episodes are usually what we need. The properly trained agent can balance
the stick infinitely long (obtaining any amount of score), but the length of an episode
in CartPole is limited to 200 steps (if you look at the environment variable of
CartPole, you may notice the TimeLimit wrapper, which stops the episode after 200
steps). With all this in mind, we will stop training after the mean reward in the batch
is greater than 199, which is a good indication that our agent knows how to balance
the stick like a pro.

That's it. So let's start our first RL training!

rl book samples/Chapter04$ ./01 cartpole.py
[2017-10-04 12:44:39,319] Making new env: CartPole-vO0
0: loss=0.701, reward mean=18.0, rw bound=21.0
loss=0.682, reward mean=22.6, rw_bound=23.
loss=0.688, reward mean=23.

5
, rw_bound=25.5
, rw_bound=22.0

0

1
2
3: loss=0.675, reward mean=22.
4

loss=0.658, reward mean=31.9, rw bound=34.

36: loss=0.527, reward mean=135.9, rw bound=168.
rw_bound=160.
rw_bound=200.
39: loss=0.530, reward mean=178. rw_bound=200.

37: loss=0.527, reward mean=147.4,
8,
7,
40: loss=0.532, reward mean=192.1, rw bound=200.
8,
0,

38: loss=0.528, reward mean=179.

41l: loss=0.523, reward mean=196. rw_bound=200.

rw_bound=200.

O O o o o u uw

42: loss=0.540, reward mean=200.

Solved!
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It usually doesn't take the agent more than 50 batches to solve the environment.

My experiments show something from 25 to 45 episodes, which is a really good
learning performance (remember, we need to play only 16 episodes for every batch).
TensorBoard shows our agent consistently making progress, pushing the upper
boundary at almost every batch (there are some periods of rolling down, but most
of the time it improves).
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Figure 4.3: Mean reward (left) and loss (right) during the training
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Figure 4.4: The reward boundary during the training

To check our agent in action, you can enable Monitor by uncommenting the next line
after the environment creation.
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After restarting (possibly with xvfb-run to provide a virtual X11 display), our
program will create a mon directory with videos recorded at different training steps.

Chapter04$ xvfb-run -s "-screen 0 640x480x24" ./0l1 cartpole.py
[2017-10-04 13:52:23,806] Making new env: CartPole-v0
[2017-10-04 13:52:23,814] Creating monitor directory mon

[2017-10-04 13:52:23,920] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000000.mp4

[2017-10-04 13:52:25,229] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000001.mp4

[2017-10-04 13:52:25,771] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000008.mp4

0: loss=0.682, reward mean=18.9, rw bound=20.5

[2017-10-04 13:52:26,297] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000027 .mp4

1l: loss=0.687, reward mean=16.6, rw bound=19.0
2: loss=0.677, reward mean=21.1, rw _bound=21.0

[2017-10-04 13:52:26,964] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000064 .mp4

3: loss=0.653, reward mean=33.2, rw bound=48.5
4: loss=0.642, reward mean=37.4, rw _bound=42.5
29: loss=0.561, reward mean=111.6, rw_bound=122.0
30: loss=0.540, reward mean=135.1, rw bound=166.0

[2017-10-04 13:52:40,176] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000512.mp4

31: loss=0.546, reward mean=147.5, rw _bound=179.
32: loss=0.559, reward mean=140.0, rw bound=171.
33: loss=0.558, reward mean=160.4, rw_bound=200.
34: loss=0.547, reward mean=167.6, rw_bound=195.
, rw_bound=200.
, rw_bound=200.

, rw_bound=200.

35: loss=0.550, reward mean=179.
36: loss=0.563, reward mean=173.
37: loss=0.542, reward mean=162.
39: loss=0.548, reward mean=189.6, rw bound=200.
, rw_bound=200.
, rw_bound=200.

40: loss=0.546, reward mean=191.

O O O O O o o u o u wu

6
5
9
9
38: loss=0.552, reward mean=159.1, rw bound=200.
6
1
1

41l: loss=0.548, reward mean=199.

Solved!
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As you can see from the output, it turns a periodical recording of the agent's activity
into separate video files, which can give you an idea of what your agent's sessions
look like.

Figure 4.5: Visualization of the CartPole state

Let's now pause a bit and think about what's just happened. Our NN has learned
how to play the environment purely from observations and rewards, without any
interpretation of observed values. The environment could easily not be a cart with

a stick; it could be, say, a warehouse model with product quantities as an observation
and money earned as the reward. Our implementation doesn't depend on
environment details. This is the beauty of the RL model, and in the next section, we
will look at how exactly the same method can be applied to a different environment
from the Gym collection.

The cross-entropy method on
FrozenLake

The next environment that we will try to solve using the cross-entropy method is
FrozenLake. Its world is from the so-called grid world category, when your agent
lives in a grid of size 4x4 and can move in four directions: up, down, left, and right.
The agent always starts at a top-left position, and its goal is to reach the bottom-right
cell of the grid. There are holes in the fixed cells of the grid and if you get into those
holes, the episode ends and your reward is zero. If the agent reaches the destination
cell, then it obtains a reward of 1.0 and the episode ends.

To make life more complicated, the world is slippery (it's a frozen lake after all),

so the agent's actions do not always turn out as expected — there is a 33% chance that
it will slip to the right or to the left. If you want the agent to move left, for example,
there is a 33% probability that it will, indeed, move left, a 33% chance that it will end
up in the cell above, and a 33% chance that it will end up in the cell below. As you
will see at the end of the section, this makes progress difficult.
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Figure 4.6: The FrozenLake environment

Let's look at how this environment is represented in Gym:

>>> e = gym.make ("FrozenLake-vO0")
[2017-10-05 12:39:35,827] Making new env: FrozenLake-v0
>>> e.observation space
Discrete(16)

>>> e.action space

Discrete (4)

>>> e.reset ()

0

>>> e.render ()

SFFF

FHFH

FFFH

HFFG

Our observation space is discrete, which means that it's just a number from zero to
15 inclusive. Obviously, this number is our current position in the grid. The action
space is also discrete, but it can be from zero to three. Our NN from the CartPole
example expects a vector of numbers. To get this, we can apply the traditional one-
hot encoding of discrete inputs, which means that the input to our network will
have 16 float numbers and zero everywhere except the index that we will encode.
To minimize changes in our code, we can use the ObservationWrapper class from
Gym and implement our DiscreteOneHotWrapper class:

class DiscreteOneHotWrapper (gym.ObservationWrapper) :
def init (self, env):
super (DiscreteOneHotWrapper, self). init (env)
assert isinstance(env.observation space,
gym.spaces.Discrete)
shape = (env.observation space.n, )
self.observation space = gym.spaces.Box(
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0.0, 1.0, shape, dtype=np.float32)

def observation(self, observation) :

res = np.copy(self.observation space.low)

res [observation] = 1.0

return res

With that wrapper applied to the environment, both the observation space and action
space are 100% compatible with our CartPole solution (source code Chapter04/02_
frozenlake naive.py). However, by launching it, we can see that this doesn't
improve the score over time.
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Figure 4.7: Reward (left) and loss (right) of the FrozenLake environment
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Figure 4.8: The reward boundary during the training (extremely boring)
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To understand what's going on, we need to look deeper at the reward structure of both
environments. In CartPole, every step of the environment gives us the reward 1.0, until
the moment that the pole falls. So, the longer our agent balanced the pole, the more
reward it obtained. Due to randomness in our agent's behavior, different episodes
were of different lengths, which gave us a pretty normal distribution of the episodes'
rewards. After choosing a reward boundary, we rejected less successful episodes

and learned how to repeat better ones (by training on successful episodes' data).

This is shown in the following diagram:

elite episodes
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Figure 4.9: Distribution of the reward in the CartPole environment

In the FrozenLake environment, episodes and their rewards look different. We get

the reward of 1.0 only when we reach the goal, and this reward says nothing about
how good each episode was. Was it quick and efficient or did we make four rounds
on the lake before we randomly stepped into the final cell? We don't know; it's just 1.0
reward and that's it. The distribution of rewards for our episodes are also problematic.
There are only two kinds of episodes possible, with zero reward (failed) and one
reward (successful), and failed episodes will obviously dominate in the beginning of
the training. So, our percentile selection of "elite" episodes is totally wrong and gives
us bad examples to train on. This is the reason for our training failure.

0000001 Y =1 freq A 70% percentile=0
000000000 2=0
0001 T =1

L,

0 1 reward

Figure 4.10: Reward distribution of the FrozenLake environment
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This example shows us the limitations of the cross-entropy method:

For training, our episodes have to be finite and, preferably, short

The total reward for the episodes should have enough variability to separate
good episodes from bad ones

There is no intermediate indication about whether the agent has succeeded
or failed

Later in the book, you will become familiar with other methods that address these
limitations. For now, if you are curious about how FrozenLake can be solved using
the cross-entropy method, here is a list of tweaks of the code that you need to make
(the full example is in Chapter04/03_frozenlake tweaked.py):

Larger batches of played episodes: In CartPole, it was enough to have
16 episodes on every iteration, but FrozenLake requires at least 100 just
to get some successful episodes.

Discount factor applied to the reward: To make the total reward for an
episode depend on its length, and add variety in episodes, we can use

a discounted total reward with the discount factor 0.9 or 0.95. In this case,
the reward for shorter episodes will be higher than the reward for longer
ones. This increases variability in reward distribution, which helps to avoid
situations like the one shown in Figure 4.10.

Keeping "elite" episodes for a longer time: In the CartPole training,

we sampled episodes from the environment, trained on the best ones,

and threw them away. In FrozenLake, a successful episode is a much rarer
animal, so we need to keep them for several iterations to train on them.

Decreasing learning rate: This will give our NN time to average more
training samples.

Much longer training time: Due to the sparsity of successful episodes, and
the random outcome of our actions, it's much harder for our NN to get an
idea of the best behavior to perform in any particular situation. To reach
50% successful episodes, about 5k training iterations are required.
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To incorporate all these into our code, we need to change the filter batch function
to calculate discounted reward and return "elite" episodes for us to keep:

def filter batch(batch, percentile):
filter fun = lambda s: s.reward * (GAMMA ** len(s.steps))
disc_rewards = list(map(filter fun, batch))
reward bound = np.percentile(disc_rewards, percentile)

train obs = []
train act = []
elite batch = []
for example, discounted reward in zip(batch, disc_rewards) :
if discounted reward > reward bound:
train obs.extend (map(lambda step: step.observation,
example.steps))
train act.extend(map(lambda step: step.action,
example.steps))
elite batch.append (example)
return elite batch, train obs, train act, reward bound

Then, in the training loop, we will store previous "elite" episodes to pass them to the
preceding function on the next training iteration.

full batch = []
for iter_no, batch in enumerate(iterate_batches (
env, net, BATCH SIZE)):
reward mean = float (np.mean(list (map (
lambda s: s.reward, batch))))
full batch, obs, acts, reward bound = \
filter batch(full batch + batch, PERCENTILE)
if not full batch:
continue
obs v = torch.FloatTensor (obs)
acts v = torch.LongTensor (acts)
full batch = full batch[-500:]
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The rest of the code is the same, except that the learning rate decreased 10 times

and the BATCH_SIZE was set to 100. After a period of patient waiting (the new

version takes about one and a half hours to finish 10k iterations), you can see that
the training of the model stopped improving at around 55% of solved episodes.
There are ways to address this (by applying entropy loss regularization, for

example), but those techniques will be discussed in upcoming chapters.
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Figure 4.11: Reward (left) and loss (right) of the tweaked training
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Figure 4.12: The reward boundary of the tweaked version
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The final point to note here is the effect of slipperiness in the FrozenLake
environment. Each of our actions with 33% probability is replaced with the 90°
rotated one (the "up" action, for instance, will succeed with 0.33 probability and there
will be a 0.33 chance that it will be replaced with the "left" action and 0.33 with the
"right" action).

The nonslippery version is in Chapter04/04_frozenlake_nonslippery.py, and the
only difference is in the environment creation (we need to peek into the core of Gym
to create the instance of the environment with tweaked arguments):

env = gym.envs.toy text.frozen lake.FrozenLakeEnv (
is_slippery=False)

env.spec = gym.spec ("FrozenLake-v0")

env = gym.wrappers.TimeLimit (env, max episode steps=100)

env = DiscreteOneHotWrapper (env)

The effect is dramatic! The nonslippery version of the environment can be solved in
120-140 batch iterations, which is 100 times faster than the noisy environment:

rl book samples/Chapter04$ ./04 frozenlake nonslippery.py

loss=1.379, reward mean=0.010, reward bound=0.000, batch=1
loss=1.375, reward mean=0.010, reward bound=0.000, batch=2
loss=1.359, reward mean=0.010, reward bound=0.000, batch=3
loss=1.361, reward mean=0.010, reward bound=0.000, batch=4
loss=1.355, reward mean=0.000, reward bound=0.000, batch=4
loss=1.342, reward mean=0.010, reward bound=0.000, batch=5
loss=1.353, reward mean=0.020, reward bound=0.000, batch=7

N o ol A WD B O

loss=1.351, reward mean=0.040, reward bound=0.000, batch=11

124: loss=0.484, reward mean=0.680, reward bound=0.000, batch=68

125: loss=0.373, reward mean=0.710, reward bound=0.430, batch=114

126: loss=0.305, reward mean=0.690, reward bound=0.478, batch=133

128: loss=0.413, reward mean=0.790, reward bound=0.478, batch=73

129: loss=0.297, reward mean=0.810, reward bound=0.478, batch=108 Solved!
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Figure 4.13: Reward (left) and loss (right) of the nonslippery version of FrozenLake
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Figure 4.14: The reward boundary for the nonslippery version

The theoretical background of the cross-
entropy method

This section is optional and included for readers who are interested in why the
method works. If you wish, you can refer to the original paper on the cross-entropy
method, which will be given at the end of the section.

The basis of the cross-entropy method lies in the importance sampling theorem,

which states this:
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(x) (x)
PIHEx = [ 9GO TS HEOx = Exgir | s

Eep(e) [H(X)] :f q(x)

H (x)]
X
In our RL case, H(x) is a reward value obtained by some policy, x, and p(x) is a
distribution of all possible policies. We don't want to maximize our reward by
searching all possible policies; instead we want to find a way to approximate p(x)
H(x) by g(x), iteratively minimizing the distance between them. The distance between
two probability distributions is calculated by Kullback-Leibler (KL) divergence,
which is as follows:

KL(p1 (x) I P2 (X)) = IEx~pl(x) logzz—g; = ]Ex~p1(x) [lngl (x)] - IEx~p1(x) [logpz (X)]

The first term in KL is called entropy and it doesn't depend on p,(x), so it could be
omitted during the minimization. The second term is called cross-entropy, which
is a very common optimization objective in deep learning.

Combining both formulas, we can get an iterative algorithm, which starts with
g,(x) = p(x) and on every step improves. This is an approximation of p(x)H(x) with
an update:

. p(x)
qi+1(x) = argmin — E,_ g, —— H(x) log gi41(x)
q;(x)

qi+1(x)

This is a generic cross-entropy method that can be significantly simplified in our
RL case. Firstly, we replace our H(x) with an indicator function, which is 1 when
the reward for the episode is above the threshold and 0 when the reward is below.
Our policy update will look like this:

mi+1(als) = arg min — IE'z~7r,-(als) [R(2) = Y;]logm; 14 (als)

Ti+1

Strictly speaking, the preceding formula misses the normalization term, but it still
works in practice without it. So, the method is quite clear: we sample episodes using
our current policy (starting with some random initial policy) and minimize the
negative log likelihood of the most successful samples and our policy.

There is a whole book written by Dirk P. Kroese that is dedicated to this method.
A shorter description can be found in the Cross-Entropy Method paper by him
(https://people.smp.ug.edu.au/DirkKroese/ps/eormsCE.pdf).
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The Cross-Entropy Method

Summary

In this chapter, you became familiar with the cross-entropy method, which is simple
but quite powerful, despite its limitations. We applied it to a CartPole environment
(with huge success) and to FrozenLake (with much more modest success). In
addition, we discussed the taxonomy of RL methods, which will be referenced
many times during the rest of the book, as different approaches to RL problems
have different properties, which influences their applicability.

This chapter ends the introductory part of the book. In the next part, we will switch
to a more systematic study of RL methods and discuss the value-based family of
methods. In upcoming chapters, we will explore more complex, but more powerful,
tools of deep RL.
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Tabular Learning and the
Bellman Equation

In the previous chapter, you became acquainted with your first reinforcement
learning (RL) algorithm, the cross-entropy method, along with its strengths and
weaknesses. In this new part of the book, we will look at another group of methods
that has much more flexibility and power: Q-learning. This chapter will establish
the required background shared by those methods.

We will also revisit the FrozenLake environment and explore how new concepts fit
with this environment and help us to address issues of its uncertainty.

In this chapter, we will:

Review the value of the state and value of the action, and learn how to
calculate them in simple cases

Talk about the Bellman equation and how it establishes the optimal policy
if we know the values

Discuss the value iteration method and try it on the FrozenLake environment

Do the same for the Q-learning method

Despite the simplicity of the environments in this chapter, it establishes the
required preparation for deep Q-learning, which is a much more powerful and
generic method.

Value, state, and optimality

You may remember our definition of the value of the state from Chapter 1, What Is
Reinforcement Learning?. This is a very important notion and the time has come to
explore it further.
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This whole part of the book is built around the value and how to approximate
it. We defined the value as an expected total reward (optionally discounted)
that is obtainable from the state. In a formal way, the value of the state is

V(s)=E [z m/t], where 7, is the local reward obtained at step ¢ of the episode.
=0

The total reward could be discounted with ¥ or not (the undiscounted case
corresponds to y = 1); it's up to us how to define it. The value is always calculated
in terms of some policy that our agent follows. To illustrate this, let's consider a
very simple environment with three states:

1. The agent's initial state.

2. The final state that the agent is in after executing action "right" from the
initial state. The reward obtained from this is 1.

3. The final state that the agent is in after action "down." The reward obtained
from this is 2:

r=1.0
end

s=2

end

Figure 5.1: An example of an environment's states transition with rewards

The environment is always deterministic —every action succeeds and we always
start from state 1. Once we reach either state 2 or state 3, the episode ends. Now,
the question is, what's the value of state 1? This question is meaningless without
information about our agent's behavior or, in other words, its policy. Even in a
simple environment, our agent can have an infinite amount of behaviors, each of
which will have its own value for state 1. Consider this example:

* Agent always goes right

* Agent always goes down

* Agent goes right with a probability of 0.5 and down with a probability of 0.5
* Agent goes right in 10% of cases and in 90% of cases executes the "down"

action

To demonstrate how the value is calculated, let's do it for all the preceding policies:
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* The value of state 1 in the case of the "always right" agent is 1.0 (every time it
goes left, it obtains 1 and the episode ends)

* For the "always down" agent, the value of state 1 is 2.0
* For the 50% right/50% down agent, the valueis 1.0 *0.5+2.0* 0.5 =1.5
* For the 10% right/90% down agent, the valueis 1.0 *0.1 +2.0*0.9 =1.9

Now, another question: what's the optimal policy for this agent? The goal of RL is

to get as much total reward as possible. For this one-step environment, the total
reward is equal to the value of state 1, which, obviously, is at the maximum at policy
2 (always down).

Unfortunately, such simple environments with an obvious optimal policy are not
that interesting in practice. For interesting environments, the optimal policies are
much harder to formulate and it's even harder to prove their optimality. However,
don't worry; we are moving toward the point when we will be able to make
computers learn the optimal behavior on their own.

From the preceding example, you may have a false impression that we should
always take the action with the highest reward. In general, it's not that simple. To
demonstrate this, let's extend our preceding environment with yet another state that
is reachable from state 3. State 3 is no longer a terminal state but a transition to state
4, with a bad reward of -20. Once we have chosen the "down" action in state 1, this
bad reward is unavoidable, as from state 3 we have only one exit. So, it's a trap for
the agent, which has decided that "being greedy" is a good strategy.

Figure 5.2: The same environment, with an extra state added
With that addition, our values for state 1 will be calculated this way:
* The "always right" agent is the same: 1.0
* The "always down" agent gets 2.0 + (-20) = -18

* The50%/50% agent gets 0.5* 1.0 + 0.5 * (2.0 + (-20)) = -8.5
* The10%/90% agent gets 0.1 * 1.0 + 0.9 * (2.0 + (-20)) = -16.1
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So, the best policy for this new environment is now policy 1: always go right.

We spent some time discussing naive and trivial environments so that you realize
the complexity of this optimality problem and can appreciate the results of Richard
Bellman better. Bellman was an American mathematician who formulated and
proved his famous Bellman equation. We will talk about it in the next section.

The Bellman equation of optimality

To explain the Bellman equation, it's better to go a bit abstract. Don't be afraid;

I'll provide concrete examples later to support your learning! Let's start with a
deterministic case, when all our actions have a 100% guaranteed outcome. Imagine
that our agent observes state s, and has N available actions. Every action leads to
another state, s, ... s,, with a respective reward, 7, ... r,. Also, assume that we know
the values, V, of all states connected to state s;. What will be the best course of
action that the agent can take in such a state?

Figure 5.3: An abstract environment with N states reachable from the initial state

If we choose the concrete action, a, and calculate the value given to this action, then
the value will be Vp(a = a;) = 1; + V;. So, to choose the best possible action, the agent
needs to calculate the resulting values for every action and choose the maximum
possible outcome. In other words, Vy = maxgeq n (15 + V). If we are using the
discount factor ¥, we need to multiply the value of the next state by gamma:

Vo = maXaEl...N(ra + VVEL)

This may look very similar to our greedy example from the previous section, and,
in fact, it is. However, there is one difference: when we act greedily, we do not only
look at the immediate reward for the action, but at the immediate reward plus the
long-term value of the state.
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Bellman proved that with that extension, our behavior will get the best possible
outcome. In other words, it will be optimal. So, the preceding equation is called the
Bellman equation of value (for a deterministic case).

It's not very complicated to extend this idea for a stochastic case, when our actions
have the chance of ending up in different states. What we need to do is calculate
the expected value for every action, instead of just taking the value of the next state.
To illustrate this, let's consider one single action available from state s, with three
possible outcomes.

Py P3

1 I3

Figure 5.4: An example of the transition from the state in a stochastic case

Here we have one action, which can lead to three different states with different
probabilities. With probability p,, the action can end up in state s,, with p, in state

s, and with p, in state s, (p, + p, + p, =1, of course). Every target state has its own
reward (r,, r,, or r,). To calculate the expected value after issuing action 1, we need to
sum all values, multiplied by their probabilities:

Vola=1) =pi(ry +vV1) + p2(r; +¥V2) + p3(r3 +¥V3)

Or, more formally:

Vo(a) =[Es.s [rs,a + VVS] = Z pa,0—>s(7§,a + VVS)

SES
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By combining the Bellman equation, for a deterministic case, with a value for
stochastic actions, we get the Bellman optimality equation for a general case:

Vo = maxEg s[r;q +vVs] = rgggz Pao-s(Tsa + YY)

SES

\/V Note that Pa,i~j means the probability of action a, issued

in state 7, ending up in state ;.

The interpretation is still the same: the optimal value of the state is equal to the
action, which gives us the maximum possible expected immediate reward, plus
the discounted long-term reward for the next state. You may also notice that

this definition is recursive: the value of the state is defined via the values of the
immediately reachable states. This recursion may look like cheating: we define
some value, pretending that we already know it. However, this is a very powerful
and common technique in computer science and even in math in general (proof
by induction is based on the same trick). This Bellman equation is a foundation
not only in RL but also in much more general dynamic programming, which is

a widely used method for solving practical optimization problems.

These values not only give us the best reward that we can obtain, but they basically
give us the optimal policy to obtain that reward: if our agent knows the value for
every state, then it automatically knows how to gather all this reward. Thanks to
Bellman's optimality proof, at every state the agent ends up in, it needs to select
the action with the maximum expected reward, which is a sum of the immediate
reward and the one-step discounted long-term reward. That's it. So, those values
are really useful to know. Before you get familiar with a practical way to calculate
them, I need to introduce one more mathematical notation. It's not as fundamental
as the value of the state, but we need it for our convenience.

The value of the action

To make our life slightly easier, we can define different quantities, in addition to the
value of the state, V(s), as the value of the action, Q(s, a). Basically, this equals the
total reward we can get by executing action a in state s and can be defined via V(s).
Being a much less fundamental entity than V(s), this quantity gave a name to the
whole family of methods called Q-learning, because it is more convenient.
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In these methods, our primary objective is to get values of Q for every pair of state
and action.

0(5,@) = By _[r(5,0) + YV (N = ) posns((5,@) +1V(5)

s'es

Q for this state, s, and action, g, equals the expected immediate reward and the
discounted long-term reward of the destination state. We also can define V(s) via

Q(s, a):

V(s) = max Q(s,a)

This just means that the value of some state equals to the value of the maximum
action we can execute from this state. Finally, we can express Q(s, a) recursively
(which will be used in Chapter 6, Deep Q-Networks:

Q(s,a) =7(s,a) +ymaxQ(s',a’)

In the preceding formula, the index on the immediate reward, s, a, depends on
environment details. If immediate reward is given to us after executing a particular
action, g, from state s, index (s, a) is used and the formula is exactly as shown above.
But if reward is provided for reaching some state, s', via action a', the reward

will have the index (s', a') and will need to be moved into the max operator. That
difference is not very significant from a mathematical point of view, but it could be
important during the implementation of the methods. The first situation is more
common, so, we will stick to the preceding formula.

To give you a concrete example, let's consider an environment that is similar
to FrozenLake, but has a much simpler structure: we have one initial state (s,)
surrounded by four target states, s, s,, s,, s,, with different rewards.

S, Sp- initial state

Sy [ So | S4 S, 8, 83 8, - final states

Figure 5.5: A simplified grid-like environment
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Every action is probabilistic in the same way as in FrozenLake: with a 33% chance
that our action will be executed without modifications, but with a 33% chance that
we will slip to the left, relatively, of our target cell and a 33% chance that we will slip
to the right. For simplicity, we use discount factor y = 1.

Figure 5.6: A transition diagram of the grid environment

Let's calculate the values of the actions to begin with. Terminal states s, ... s, have no
outbound connections, so Q for those states is zero for all actions. Due to this, the
values of the terminal states are equal to their immediate reward (once we get there,
our episode ends without any subsequent states): V, =1, V,=2,V, =3, V, =4.

The values of the actions for state 0 are a bit more complicated. Let's start with the
"up" action. Its value, according to the definition, is equal to the expected sum of
the immediate reward plus the long-term value for subsequent steps. We have no
subsequent steps for any possible transition for the "up" action:

Q(soup) = 033V, +0.33 -V, +0.33-V, =0.33-1+0.33-2 + 0.33 -4 = 2.31

Repeating this for the rest of the s actions results in the following;:
Q(so,left) = 0.33-V,+0.33-V,+0.33-V, = 1.98

Q(so right) = 033-V,+0.33-V,+0.33-V, = 2.64
Q(sy down) = 0.33-V,+0.33-V,+0.33-V, = 2.97
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The final value for state s, is the maximum of those actions' values, which is 2.97.

Q-values are much more convenient in practice, as for the agent, it's much simpler
to make decisions about actions based on Q than on V. In the case of Q, to choose
the action based on the state, the agent just needs to calculate Q for all available
actions using the current state and choose the action with the largest value of Q.
To do the same using values of the states, the agent needs to know not only values,
but also probabilities for transitions. In practice, we rarely know them in advance,
so the agent needs to estimate transition probabilities for every action and state
pair. Later in this chapter, you will see this in practice by solving the FrozenLake
environment both ways. However, to be able to do this, we have one important
thing still missing: a general way to calculate those Vs and Qs.

The value iteration method

In the simplistic example you just saw, to calculate the values of the states and
actions, we exploited the structure of the environment: we had no loops in
transitions, so we could start from terminal states, calculate their values, and then
proceed to the central state. However, just one loop in the environment builds an
obstacle in our approach. Let's consider such an environment with two states:

¥=0.9

r=1

r=2

Figure 5.7: A sample environment with a loop in the transition diagram

We start from state s,, and the only action we can take leads us to state s,. We get the
reward r = 1, and the only transition from s, is an action, which brings us back to s,.
So, the life of our agent is an infinite sequence of states [sy, S,, S1, S2, 51, 52,51, S, ... |. TO
deal with this infinity loop, we can use a discount factor: y = 0.9. Now, the question
is, what are the values for both the states? The answer is not very complicated, in
fact. Every transition from s, to s, gives us a reward of 1 and every back transition
gives us 2. So, our sequence of rewards will be [1,2,1,2,1, 2,1, 2, ....]. As there is
only one action available in every state, our agent has no choice, so we can omit the
max operation in formulas (there is only one alternative).
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The value for every state will be equal to the infinite sum:

Vi) = 14y (24 7(1+y@+))) = ) 1y2+2y24
i=0

Vs = 247 (1+y(2+y(+-))) = ) 2p2+ 124
i=0

Strictly speaking, we can't calculate the exact values for our states, but with y = 0.9,
the contribution of every transition quickly decreases over time. For example, after
10 steps, y1? = 0.91° = 0.349, but after 100 steps, it becomes just 0.0000266. Due to
this, we can stop after 50 iterations and still get quite a precise estimation.

>>> sum([0.9*%* (2*i) + 2*(0.9** (2*i+1)) for i in range(50)])
14.736450674121663
>>> sum([2*% (0.9** (2*1i)) + 0.9**(2*i+1) for i in range(50)])

15.262752483911719

The preceding example can be used to get the gist of a more general procedure
called the value iteration algorithm. This allows us to numerically calculate the
values of the states and values of the actions of Markov decision processes (MDPs)
with known transition probabilities and rewards. The procedure (for values of the
states) includes the following steps:

1. Initialize the values of all states, V, to some initial value (usually zero)

2. For every state, s, in the MDP, perform the Bellman update:
Vs « maxaz , pa,s—>s’(rs,a + VVS')
S

3. Repeat step 2 for some large number of steps or until changes become too
small

In the case of action values (that is, Q), only minor modifications to the preceding
procedure are required:

1. [Initialize every Q__ to zero

2. For every state, s, and action, 4, in this state, perform this update:
Qs,a < Z ,pa,s—>s’ (rs,a +y maXa’Qs’,a’)
S

3. Repeat step 2
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Okay, so that's the theory. In practice, this method has several obvious limitations.
First of all, our state space should be discrete and small enough to perform multiple
iterations over all states. This is not an issue for FrozenLake-4x4 and even for
FrozenLake-8x8 (it exists in Gym as a more challenging version), but for CartPole,
it's not totally clear what to do. Our observation for CartPole is four float values,
which represent some physical characteristics of the system. Even a small difference
in those values could have an influence on the state's value. A potential solution for
that could be discretization of our observation's values; for example, we can split
the observation space of CartPole into bins and treat every bin as an individual
discrete state in space. However, this will create lots of practical problems, such as
how large bin intervals should be and how much data from the environment we
will need to estimate our values. I will address this issue in subsequent chapters,
when we get to the usage of neural networks in Q-learning.

The second practical problem arises from the fact that we rarely know the
transition probability for the actions and rewards matrix. Remember the interface
provided by Gym to the agent's writer: we observe the state, decide on an action,
and only then do we get the next observation and reward for the transition. We
don't know (without peeking into Gym's environment code) what the probability
is of getting into state s, from state s, by issuing action a,.

What we do have is just the history from the agent's interaction with the
environment. However, in Bellman's update, we need both a reward for every
transition and the probability of this transition. So, the obvious answer to this issue
is to use our agent's experience as an estimation for both unknowns. Rewards could
be used as they are. We just need to remember what reward we got on the transition
from s; to s, using action 4, but to estimate probabilities, we need to maintain
counters for every tuple (s, s,, 4) and normalize them.

Okay, now let's look at how the value iteration method will work for FrozenLake.

Value iteration in practice

The complete example is in Chapter05/01_frozenlake v_iteration.py. The
central data structures in this example are as follows:

* Reward table: A dictionary with the composite key "source state" + "action" +
"target state". The value is obtained from the immediate reward.

* Transitions table: A dictionary keeping counters of the experienced
transitions. The key is the composite "state" + "action", and the value is
another dictionary that maps the target state into a count of times that we
have seen it. For example, if in state 0 we execute action 1 ten times, after
three times it will lead us to state 4 and after seven times to state 5.
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The entry with the key (0, 1) in this table will be a dict with contents
{a: 3, 5: 7}. We can use this table to estimate the probabilities of our
transitions.

* Value table: A dictionary that maps a state into the calculated value of this
state.

The overall logic of our code is simple: in the loop, we play 100 random steps from
the environment, populating the reward and transition tables. After those 100
steps, we perform a value iteration loop over all states, updating our value table.
Then we play several full episodes to check our improvements using the updated
value table. If the average reward for those test episodes is above the 0.8 boundary,
then we stop training. During the test episodes, we also update our reward and
transition tables to use all data from the environment.

Okay, so let's come to the code. In the beginning, we import the used packages and
define constants:

import gym
import collections
from tensorboardX import SummaryWriter

ENV_NAME = "FrozenLake-v0"
GAMMA = 0.9
TEST EPISODES = 20

Then we define the Agent class, which will keep our tables and contain functions
that we will be using in the training loop:

class Agent:
def  init (self):
self.env = gym.make (ENV_NAME)
self.state = self.env.reset()
self.rewards = collections.defaultdict (float)
self.transits = collections.defaultdict (
collections.Counter)
self.values = collections.defaultdict (float)

In the class constructor, we create the environment that we will be using for data
samples, obtain our first observation, and define tables for rewards, transitions,
and values.

def play n random steps(self, count):
for in range(count) :
action = self.env.action space.sample ()
new_state, reward, is done, _ = self.env.step(action)
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self.rewards[(self.state, action, new state)] = reward
self.transits[(self.state, action)] [new state] += 1
self.state = self.env.reset () \

if is done else new state

This function is used to gather random experience from the environment and update
the reward and transition tables. Note that we don't need to wait for the end of the
episode to start learning; we just perform N steps and remember their outcomes.
This is one of the differences between value iteration and the cross-entropy method,
which can learn only on full episodes.

The next function calculates the value of the action from the state using our
transition, reward, and values tables. We will use it for two purposes: to select the
best action to perform from the state and to calculate the new value of the state on
value iteration. Its logic is illustrated in the following diagram.

We do the following:

1. We extract transition counters for the given state and action from the
transition table. Counters in this table have a form of dict, with target states
as the key and a count of experienced transitions as the value. We sum all
counters to obtain the total count of times we have executed the action from
the state. We will use this total value later to go from an individual counter
to probability.

2. Then we iterate every target state that our action has landed on and calculate
its contribution to the total action value using the Bellman equation. This
contribution is equal to immediate reward plus discounted value for the
target state. We multiply this sum to the probability of this transition and
add the result to the final action value.

transit [(s,a)] = {S;:C4,85:Co}
total = Ci+02

= 1 (re+V(S)) + 2 (ro +yV(Sy)
Qls,a) total AR total 2 | °

Figure 5.8: The calculation of the state's value

In our diagram, we have an illustration of a calculation of the value for state s and

action a. Imagine that, during our experience, we have executed this action several
times (c, + ¢)) and it ends up in one of two states, s, or s, How many times we have
switched to each of these states is stored in our transition table as dict {s,: ¢, s,: c,}.
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Then, the approximate value for the state and action, Q(s, ), will be equal to the
probability of every state, multiplied to the value of the state. From the Bellman
equation, this equals the sum of the immediate reward and the discounted long-term
state value.

def calc_action_value(self, state, action):

target counts = self.transits|[(state, action)]
total = sum(target counts.values())
action value = 0.0

for tgt state, count in target counts.items():
reward = self.rewards|[(state, action, tgt state)]
val = reward + GAMMA * self.values[tgt state]
action value += (count / total) * wval

return action value

The next function uses the function that I just described to make a decision about

the best action to take from the given state. It iterates over all possible actions in

the environment and calculates the value for every action. The action with the
largest value wins and is returned as the action to take. This action selection process
is deterministic, as the play n_random_steps () function introduces enough
exploration. So, our agent will behave greedily in regard to our value approximation.

def select action(self, state):
best action, best value = None, None
for action in range(self.env.action space.n):
action value = self.calc_action value(state, action)
if best value is None or best value < action value:
best value = action value
best action = action
return best action

The play episode () function uses select _action() to find the best action to take
and plays one full episode using the provided environment. This function is used to
play test episodes, during which we don't want to mess with the current state of the
main environment used to gather random data. So, we use the second environment
passed as an argument. The logic is very simple and should be already familiar to
you: we just loop over states accumulating reward for one episode.

def play episode(self, env):
total reward = 0.0
state = env.reset ()
while True:
action = self.select _action(state)
new state, reward, is done, _ = env.step(action)
self .rewards[(state, action, new state)] = reward
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self.transits[(state, action)] [new state] += 1
total reward += reward
if is _done:
break
state = new_state
return total reward

The final method of the Agent class is our value iteration implementation and it

is surprisingly simple, thanks to the preceding functions. What we do is just loop
over all states in the environment, then for every state, we calculate the values for
the states reachable from it, obtaining candidates for the value of the state. Then we
update the value of our current state with the maximum value of the action available
from the state.

def value iteration(self):
for state in range(self.env.observation space.n):
state values = [
self.calc_action value(state, action)
for action in range(self.env.action space.n)
]

self.values[state] = max(state values)

That's all of our agent's methods, and the final piece is a training loop and the
monitoring of the code:

if name == " main ":
test env = gym.make (ENV_NAME)
agent = Agent ()
writer = SummaryWriter (comment="-v-iteration")

We create the environment that we will be using for testing, the Agent class instance,
and the summary writer for TensorBoard.

iter no = 0

best reward = 0.0

while True:
iter no += 1
agent.play n random steps (100)
agent.value iteration()

The two lines in the preceding code snippet are the key piece in the training loop.
First, we perform 100 random steps to fill our reward and transition tables with
fresh data, and then we run value iteration over all states. The rest of the code plays
test episodes using the value table as our policy, then writes data into TensorBoard,
tracks the best average reward, and checks for the training loop stop condition.
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reward = 0.0
for in range (TEST EPISODES) :
reward += agent.play episode(test env)
reward /= TEST EPISODES
writer.add scalar ("reward", reward, iter no)
if reward > best reward:
print ("Best reward updated %.3f -> $.3f" & (
best reward, reward))
best reward = reward
if reward > 0.80:
print ("Solved in %d iterations!" % iter no)
break
writer.close()

Okay, let's run our program:

rl book samples/Chapter05$ ./01 frozenlake v iteration.py
[2017-10-13 11:39:37,778] Making new env: FrozenLake-v0
[2017-10-13 11:39:37,988] Making new env: FrozenLake-v0
Best reward updated 0.000 -> 0.150

Best reward updated 0.150 -> 0.500

Best reward updated 0.500 -> 0.550

Best reward updated 0.550 -> 0.650
Best reward updated 0.650 -> 0.800
Best reward updated 0.800 -> 0.850

Solved in 36 iterations!

Our solution is stochastic, and my experiments usually required from 12 to 100
iterations to reach a solution, but in all cases, it took less than a second to find a good
policy that could solve the environment in 80% of runs. If you remember how many
hours were required to achieve a 60% success ratio using the cross-entropy method,
then you can understand that this is a major improvement. There are several reasons
for that.

First of all, the stochastic outcome of our actions, plus the length of the episodes

(six to 10 steps on average), makes it hard for the cross-entropy method to
understand what was done right in the episode and which step was a mistake. Value
iteration works with individual values of the state (or action) and incorporates the
probabilistic outcome of actions naturally by estimating probability and calculating
the expected value. So, it's much simpler for value iteration and requires much less
data from the environment (which is called sample efficiency in RL).
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The second reason is the fact that value iteration doesn't need full episodes to

start learning. In an extreme case, we can start updating our values just from a
single example. However, for FrozenLake, due to the reward structure (we get
1 only after successfully reaching the target state), we still need to have at least

one successful episode to start learning from a useful value table, which may

be challenging to achieve in more complex environments. For example, you can
try switching the existing code to a larger version of FrozenLake, which has the
name FrozenLake8x8-v0. The larger version of FrozenLake can take from 150 to
1,000 iterations to solve, and, according to TensorBoard charts, most of the time
it waits for the first successful episode, then it very quickly reaches convergence.
Below are two charts: the first one shows reward dynamics during training on
FrozenLake-4x4 and the second is for the 8x8 version.
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Figure 5.9: The reward dynamics for FrozenLake-4x4
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Figure 5.10: The reward dynamics on 8x8
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Now it's time to compare the code that learns the values of the states, as we just
discussed, with the code that learns the values of the actions.

Q-learning for FrozenLake

The whole example is in the Chapter05/02_frozenlake_g_iteration.py file,
and the difference is really minor. The most obvious change is to our value table.
In the previous example, we kept the value of the state, so the key in the dictionary
was just a state. Now we need to store values of the Q-function, which has two
parameters: state and action, so the key in the value table is now a composite.

The second difference is in our calc_action_value () function. We just don't need
it anymore, as our action values are stored in the value table.

Finally, the most important change in the code is in the agent's value_iteration()
method. Before, it was just a wrapper around the calc_action_value () call,
which did the job of Bellman approximation. Now, as this function has gone and
been replaced by a value table, we need to do this approximation in the value_
iteration () method.

Let's look at the code. As it's almost the same, I will jump directly to the most
interesting value_iteration () function:

def value iteration(self):
for state in range(self.env.observation space.n):
for action in range(self.env.action space.n):

action value = 0.0
target counts = self.transits|[(state, action)]
total = sum(target counts.values())

for tgt state, count in target counts.items():
key = (state, action, tgt_ state)
reward = self.rewards [key]
best action = self.select action(tgt state)
val = reward + GAMMA * \
self.values|[(tgt state, best action)]
action value += (count / total) * wval
self.values|[(state, action)] = action value

The code is very similar to calc_action_value() in the previous example and,
in fact, it does almost the same thing. For the given state and action, it needs to
calculate the value of this action using statistics about target states that we have
reached with the action. To calculate this value, we use the Bellman equation and
our counters, which allow us to approximate the probability of the target state.
However, in Bellman's equation, we have the value of the state; now, we need to
calculate it differently.
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Before, we had it stored in the value table (as we approximated the value of the
states), so we just took it from this table. We can't do this anymore, so we have to
call the select_action method, which will choose for us the action with the largest
Q-value, and then we take this Q-value as the value of the target state. Of course,
we can implement another function that can calculate for us this value of the state,
but select_action does almost everything we need, so we will reuse it here.

There is another piece of this example that I'd like to emphasize here. Let's look at
our select action method:

def select action(self, state):
best action, best value = None, None
for action in range(self.env.action space.n):
action value = self.values|[(state, action)]
if best value is None or best value < action value:
best value = action value
best _action = action
return best action

AsIsaid, we don't have the calc_action_value method anymore, so, to select
an action, we just iterate over the actions and look up their values in our values
table. It could look like a minor improvement, but if you think about the data that
we used in calc_action_value, it may become obvious why the learning of the
Q-function is much more popular in RL than the learning of the V-function.

Our calc_action value function uses both information about the reward and
probabilities. It's not a huge problem for the value iteration method, which relies
on this information during training. However, in the next chapter, you will learn
about the value iteration method extension, which doesn't require probability
approximation, but just takes it from the environment samples. For such methods,
this dependency on probability adds an extra burden for the agent. In the case of
Q-learning, what the agent needs to make the decision is just Q-values.

I don't want to say that V-functions are completely useless, because they are an
essential part of the actor-critic method, which we will talk about in part three

of this book. However, in the area of value learning, Q-functions is the definite
favorite. With regards to convergence speed, both our versions are almost identical
(but the Q-learning version requires four times more memory for the value table).

rl book samples/Chapter05$ ./02 frozenlake g iteration.py
[2017-10-13 12:38:56,658] Making new env: FrozenLake-v0
[2017-10-13 12:38:56,863] Making new env: FrozenLake-v0
Best reward updated 0.000 -> 0.050

Best reward updated 0.050 -> 0.200
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Best reward updated 0.200 -> 0.350
Best reward updated 0.350 -> 0.700
Best reward updated 0.700 -> 0.750
Best reward updated 0.750 -> 0.850

Solved in 22 iterations!

Summary

My congratulations, you have made another step towards understanding modern,
state-of-the-art RL methods! In this chapter, you learned about some very important
concepts that are widely used in deep RL: the value of the state, the value of the
action, and the Bellman equation in various forms.

We also covered the value iteration method, which is a very important building
block in the area of Q-learning. Finally, you got to know how value iteration can
improve our FrozenLake solution.

In the next chapter, you will learn about deep Q-networks, which started the deep
RL revolution in 2013 by beating humans on lots of Atari 2600 games.
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In Chapter 5, Tabular Learning and the Bellman Equation, you became familiar with the
Bellman equation and the practical method of its application called value iteration.
This approach allowed us to significantly improve our speed and convergence in
the FrozenLake environment, which is promising, but can we go further? In this
chapter, we will apply the same approach to problems of much greater complexity:
arcade games from the Atari 2600 platform, which are the de facto benchmark of
the reinforcement learning (RL) research community.

To deal with this new and more challenging goal, in this chapter, we will:

* Talk about problems with the value iteration method and consider its
variation, called Q-learning.

* Apply Q-learning to so-called grid world environments, which is called
tabular Q-learning.

* Discuss Q-learning in conjunction with neural networks (NNs). This
combination has the name deep Q-network (DQN).

At the end of the chapter, we will reimplement a DQN algorithm from the famous
paper Playing Atari with Deep Reinforcement Learning by V. Mnih and others, which
was published in 2013 and started a new era in RL development.

Real-life value iteration

The improvements that we got in the FrozenLake environment by switching from
the cross-entropy method to the value iteration method are quite encouraging, so
it's tempting to apply the value iteration method to more challenging problems.
However, let's first look at the assumptions and limitations that our value iteration
method has.
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We will start with a quick recap of the method. On every step, the value iteration
method does a loop on all states, and for every state, it performs an update of

its value with a Bellman approximation. The variation of the same method for
Q-values (values for actions) is almost the same, but we approximate and store
values for every state and action. So, what's wrong with this process?

The first obvious problem is the count of environment states and our ability to
iterate over them. In value iteration, we assume that we know all states in our
environment in advance, can iterate over them, and can store value approximations
associated with them. It's definitely true for the simple grid world environment of
FrozenLake, but what about other tasks?

First, let's try to understand how scalable the value iteration approach is, or, in
other words, how many states we can easily iterate over in every loop. Even a
moderate-sized computer can keep several billion float values in memory (8.5
billion in 32 GB of RAM), so the memory required for value tables doesn't look like
a huge constraint. Iteration over billions of states and actions will be more central
processing unit (CPU) intensive, but not an insurmountable problem.

Nowadays, we have multicore systems that are mostly idle. The real problem is
the number of samples required to get good approximations for state transition
dynamics. Imagine that you have some environment with, say, a billion states
(which corresponds approximately to a FrozenLake of size 31600%31600). To
calculate even a rough approximation for every state of this environment, we
would need hundreds of billions of transitions evenly distributed over our states,
which is not practical.

To give you an example of an environment with an even larger number of potential
states, let's consider the Atari 2600 game console again. This was very popular in
the 1980s, and many arcade-style games were available for it. The Atari console

is archaic by today's gaming standards, but its games provide an excellent set of

RL problems that humans can master fairly quickly, yet still are challenging for
computers. Not surprisingly, this platform (using an emulator, of course) is a very
popular benchmark within RL research, as I mentioned.

Let's calculate the state space for the Atari platform. The resolution of the screen is
210x160 pixels, and every pixel has one of 128 colors. So, every frame of the screen
has 210 x 160 = 33600 pixels and the total number of different screens possible

is 128%¢% which is slightly more than 107, If we decide to just enumerate all
possible states of the Atari once, it will take billions of billions of years even for the
fastest supercomputer. Also, 99(.9) % of this job will be a waste of time, as most of
the combinations will never be shown during even long gameplay, so we will never
have samples of those states. However, the value iteration method wants to iterate
over them just in case.

[128]



Chapter 6

Another problem with the value iteration approach is that it limits us to discrete
action spaces. Indeed, both Q(s, a) and V/(s) approximations assume that our actions
are a mutually exclusive discrete set, which is not true for continuous control
problems where actions can represent continuous variables, such as the angle of a
steering wheel, the force on an actuator, or the temperature of a heater. This issue
is much more challenging than the first, and we will talk about it in the last part of
the book, in chapters dedicated to continuous action space problems. For now, let's
assume that we have a discrete count of actions and that this count is not very large
(orders of 10s). How should we handle the state space size issue?

Tabular Q-learning

First of all, do we really need to iterate over every state in the state space? We have
an environment that can be used as a source of real-life samples of states. If some
state in the state space is not shown to us by the environment, why should we care
about its value? We can use states obtained from the environment to update the
values of states, which can save us a lot of work.

This modification of the value iteration method is known as Q-learning, as
mentioned earlier, and for cases with explicit state-to-value mappings, it has the
following steps:

1. Start with an empty table, mapping states to values of actions.

2. By interacting with the environment, obtain the tuple s, a, r, s' (state,
action, reward, and the new state). In this step, you need to decide which
action to take, and there is no single proper way to make this decision. We
discussed this problem as exploration versus exploitation in Chapter 1, What Is
Reinforcement Learning? and will talk a lot about it in this chapter.

3. Update the Q(s, a) value using the Bellman approximation:

Q(s,a) «r+y maxQ(s',a")
a'ed

4. Repeat from step 2.

As in value iteration, the end condition could be some threshold of the update, or
we could perform test episodes to estimate the expected reward from the policy.

Another thing to note here is how to update the Q-values. As we take samples
from the environment, it's generally a bad idea to just assign new values on top
of existing values, as training can become unstable.
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What is usually done in practice is updating the Q(s, a) with approximations using
a "blending" technique, which is just averaging between old and new values of Q
using learning rate a with a value from 0 to 1:

Q(s,a) « (1—a)Q(s,a) + a (r + yg}‘zg‘(Q(s’, a’))

This allows values of Q to converge smoothly, even if our environment is noisy.
The final version of the algorithm is here:

1. Start with an empty table for Q(s, a).

2. Obtain (s, a, 1, s') from the environment.

3. Make a Bellman update: Q(s,a) « (1 — a)Q(s,a) + a (r +y max Q(s', a’)).
a

4. Check convergence conditions. If not met, repeat from step 2.

As mentioned earlier, this method is called tabular Q-learning, as we keep a table of
states with their Q-values. Let's try it on our FrozenLake environment. The whole
example code is in Chapter06/01_frozenlake g_learning.py.

import gym
import collections
from tensorboardX import SummaryWriter

ENV_NAME = "FrozenLake-vO0"
GAMMA = 0.9

ALPHA = 0.2

TEST EPISODES = 20

class Agent:
def init (self):
self.env = gym.make (ENV_NAME)
self.state = self.env.reset()
self.values = collections.defaultdict (float)

In the beginning, we import packages and define constants. The new thing here

is the value of @, which will be used as the learning rate in the value update. The
initialization of our Agent class is simpler now, as we don't need to track the history
of rewards and transition counters, just our value table. This will make our memory
footprint smaller, which is not a big issue for FrozenLake, but can be critical for
larger environments.

def sample env(self):
action = self.env.action space.sample ()
old state = self.state
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new state, reward, is done, = = self.env.step(action)
self.state = self.env.reset() if is done else new state
return old state, action, reward, new state

The preceding method is used to obtain the next transition from the environment.
We sample a random action from the action space and return the tuple of the old
state, action taken, reward obtained, and the new state. The tuple will be used in
the training loop later.

def best value and action(self, state):
best value, best action = None, None
for action in range(self.env.action space.n):
action value = self.values|[(state, action)]
if best value is None or best value < action value:
best value = action value
best action = action
return best value, best action

The next method receives the state of the environment and finds the best action to
take from this state by taking the action with the largest value that we have in the
table. If we don't have the value associated with the state and action pair, then we
take it as zero. This method will be used two times: first, in the test method that
plays one episode using our current values table (to evaluate our policy's quality),
and second, in the method that performs the value update to get the value of the
next state.

def value update(self, s, a, r, next s):
best v, _ = self.best value_and action(next_s)
new v = r + GAMMA * best v
old v = self.values[(s, a)l
self.values([(s, a)] = old v * (1-ALPHA) + new v * ALPHA

Here, we update our values table using one step from the environment. To do this,
we calculate the Bellman approximation for our state, s, and action, a, by summing
the immediate reward with the discounted value of the next state. Then we obtain
the previous value of the state and action pair, and blend these values together
using the learning rate. The result is the new approximation for the value of state s
and action a, which is stored in our table.

def play episode(self, env):
total reward = 0.0
state = env.reset ()
while True:
_, action = self.best value and action(state)
new_state, reward, is_done, _ = env.step(action)
total reward += reward
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if is _done:
break
state = new_state
return total reward

The last method in our Agent class plays one full episode using the provided test
environment. The action on every step is taken using our current value table of
Q-values. This method is used to evaluate our current policy to check the progress
of learning. Note that this method doesn't alter our value table: it only uses it to
find the best action to take.

The rest of the example is the training loop, which is very similar to examples from
Chapter 5, Tabular Learning and the Bellman Equation: we create a test environment,
agent, and summary writer, and then, in the loop, we do one step in the environment
and perform a value update using the obtained data. Next, we test our current policy
by playing several test episodes. If a good reward is obtained, then we stop training.

if name == " main ":
test env = gym.make (ENV_NAME)
agent = Agent ()
writer = SummaryWriter (comment="-g-learning")

iter no = 0

best reward = 0.0

while True:
iter no += 1
s, a, r, next s = agent.sample env ()
agent.value update(s, a, r, next s)

reward = 0.0
for _ in range (TEST EPISODES) :
reward += agent.play episode(test env)
reward /= TEST EPISODES
writer.add scalar ("reward", reward, iter no)
if reward > best reward:
print ("Best reward updated %.3f -> $.3f" & (
best reward, reward))
best reward = reward
if reward > 0.80:
print ("Solved in %d iterations!" % iter no)
break

writer.close ()

The result of the example is shown here:
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rl book samples/Chapter06$./01 frozenlake g learning.py
Best reward updated 0.000 -> 0.150
Best reward updated 0.150 -> 0.250
Best reward updated 0.250 -> 0.300
Best reward updated 0.300 -> 0.350
Best reward updated 0.350 -> 0.400
Best reward updated 0.400 -> 0.450
Best reward updated 0.450 -> 0.550
Best reward updated 0.550 -> 0.600
Best reward updated 0.600 -> 0.650
Best reward updated 0.650 -> 0.700
Best reward updated 0.700 -> 0.750
Best reward updated 0.750 -> 0.800
Best reward updated 0.800 -> 0.850

Solved in 5738 iterations!

You may have noticed that this version used more iterations to solve the problem
compared to the value iteration method from the previous chapter. The reason

for that is that we are no longer using the experience obtained during testing. (In
example Chapter05/02_frozenlake g iteration.py, periodical tests caused an
update of Q-table statistics. Here, we don't touch Q-values during the test, which
causes more iterations before the environment gets solved.) Overall, the total number
of samples required from the environment is almost the same. The reward chart in
TensorBoard also shows good training dynamics, which are very similar to the value
iteration method.

Train steps
1,000 2.00K 3.00K 4.00K 5.00K

0.8 1

Reward

0.2 1 H

0.0 1 |

Seconds

Figure 6.1: Reward dynamics of FrozenLake
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Deep Q-learning

The Q-learning method that we have just covered solves the issue of iteration over
the full set of states, but still can struggle with situations when the count of the
observable set of states is very large. For example, Atari games can have a large
variety of different screens, so if we decide to use raw pixels as individual states,
we will quickly realize that we have too many states to track and approximate
values for.

In some environments, the count of different observable states could be almost
infinite. For example, in CartPole, the environment gives us a state that is four
floating point numbers. The number of value combinations is finite (they're
represented as bits), but this number is extremely large. We could create some bins
to discretize those values, but this often creates more problems than it solves: we
would need to decide what ranges of parameters are important to distinguish as
different states and what ranges could be clustered together.

In the case of Atari, one single pixel change doesn't make much difference, so it's
efficient to treat both images as a single state. However, we still need to distinguish
some of the states.

The following image shows two different situations in a game of Pong. We're
playing against the artificial intelligence (Al) opponent by controlling a paddle
(our paddle is on the right, whereas our opponent's is on the left). The objective of
the game is to get the bouncing ball past our opponent's paddle, while preventing
the ball from getting past our paddle. We can consider the two situations to be
completely different: in the right-hand situation, the ball is close to the opponent,
so we can relax and watch. However, the situation on the left is more demanding;:
assuming that the ball is moving from left to right, the ball is moving toward our
side, so we need to move our paddle quickly to avoid losing a point. The situations
in Figure 6.2 are just two from the 107%% possible situations, but we want our agent
to act on them differently.

Figure 6.2: The ambiguity of observations in Pong. In the left image, the ball is moving to the right toward our
paddle, and on the right, its direction is opposite
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As a solution to this problem, we can use a nonlinear representation that maps both
the state and action onto a value. In machine learning, this is called a "regression
problem." The concrete way to represent and train such a representation can vary,
but as you may have already guessed from this section's title, using a deep NN

is one of the most popular options, especially when dealing with observations
represented as screen images. With this in mind, let's make modifications to the
Q-learning algorithm:

1. Initialize Q(s, a) with some initial approximation.
2. By interacting with the environment, obtain the tuple (s, 4, 1, s').
3. Calculate loss: £ = (Q(s, a) — r)? if the episode has ended, or

2
L= (Q(S, a) - (T +y max st,af)) otherwise.

4. Update Q(s, a) using the stochastic gradient descent (SGD) algorithm, by
minimizing the loss with respect to the model parameters.

5. Repeat from step 2 until converged.

The preceding algorithm looks simple, but, unfortunately, it won't work very well.
Let's discuss what could go wrong,.

Interaction with the environment

First of all, we need to interact with the environment somehow to receive data to
train on. In simple environments, such as FrozenLake, we can act randomly, but

is this the best strategy to use? Imagine the game of Pong. What's the probability

of winning a single point by randomly moving the paddle? It's not zero, but it's
extremely small, which just means that we will need to wait for a very long time for
such a rare situation. As an alternative, we can use our Q-function approximation
as a source of behavior (as we did before in the value iteration method, when we
remembered our experience during testing).

If our representation of Q is good, then the experience that we get from the
environment will show the agent relevant data to train on. However, we're in
trouble when our approximation is not perfect (at the beginning of the training, for
example). In such a case, our agent can be stuck with bad actions for some states
without ever trying to behave differently. This is the exploration versus exploitation
dilemma mentioned briefly in Chapter 1, What Is Reinforcement Learning?, and earlier
in this chapter. On the one hand, our agent needs to explore the environment to
build a complete picture of transitions and action outcomes. On the other hand, we
should use interaction with the environment efficiently: we shouldn't waste time by
randomly trying actions that we have already tried and have learned outcomes for.
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As you can see, random behavior is better at the beginning of the training when

our Q approximation is bad, as it gives us more uniformly distributed information
about the environment states. As our training progresses, random behavior becomes
inefficient, and we want to fall back to our Q approximation to decide how to act.

A method that performs such a mix of two extreme behaviors is known as an
epsilon-greedy method, which just means switching between random and Q policy
using the probability hyperparameter €. By varying &, we can select the ratio of
random actions. The usual practice is to start with € = 1.0 (100% random actions)
and slowly decrease it to some small value, such as 5% or 2% random actions.
Using an epsilon-greedy method helps us both to explore the environment in

the beginning and stick to good policy at the end of the training. There are other
solutions to the exploration versus exploitation problem, and we will discuss some
of them in the third part of the book. This problem is one of the fundamental open
questions in RL and an active area of research that is not even close to being resolved
completely.

SGD optimization

The core of our Q-learning procedure is borrowed from supervised learning. Indeed,
we are trying to approximate a complex, nonlinear function, Q(s, a), with an NN. To
do this, we must calculate targets for this function using the Bellman equation and
then pretend that we have a supervised learning problem at hand. That's okay, but
one of the fundamental requirements for SGD optimization is that the training data
is independent and identically distributed (frequently abbreviated as i.i.d.).

In our case, data that we are going to use for the SGD update doesn't fulfill these
criteria:

1. Our samples are not independent. Even if we accumulate a large batch of
data samples, they will all be very close to each other, as they will belong to
the same episode.

2. Distribution of our training data won't be identical to samples provided
by the optimal policy that we want to learn. Data that we have will be a
result of some other policy (our current policy, random, or both in the case
of epsilon-greedy), but we don't want to learn how to play randomly: we
want an optimal policy with the best reward.

To deal with this nuisance, we usually need to use a large buffer of our past
experience and sample training data from it, instead of using our latest experience.
This technique is called replay buffer. The simplest implementation is a buffer of
fixed size, with new data added to the end of the buffer so that it pushes the oldest
experience out of it.
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Replay buffer allows us to train on more-or-less independent data, but the data will
still be fresh enough to train on samples generated by our recent policy. In the next
chapter, we will check another kind of replay buffer: prioritized, which provides a
more sophisticated sampling approach.

Correlation between steps

Another practical issue with the default training procedure is also related to the lack
of i.i.d data, but in a slightly different manner. The Bellman equation provides us
with the value of Q(s, a) via Q(s', a') (this process is called bootstrapping). However,
both the states s and s' have only one step between them. This makes them very
similar, and it's very hard for NNs to distinguish between them. When we perform
an update of our NN's parameters to make Q(s, a) closer to the desired result, we
can indirectly alter the value produced for Q(s', a') and other states nearby. This can
make our training very unstable, like chasing our own tail: when we update Q for
state s, then on subsequent states we will discover that Q(s', a') becomes worse, but
attempts to update it can spoil our Q(s, a) approximation, and so on.

To make training more stable, there is a trick, called target network, by which we
keep a copy of our network and use it for the Q(s', a') value in the Bellman equation.
This network is synchronized with our main network only periodically, for example,
once in N steps (where N is usually quite a large hyperparameter, such as 1k or 10k
training iterations).

The Markov property

Our RL methods use Markov decision process (MDP) formalism as their basis,
which assumes that the environment obeys the Markov property: observations
from the environment are all that we need to act optimally. (In other words, our
observations allow us to distinguish states from one another.)

As you saw from the preceding Pong screenshot, one single image from the Atari
game is not enough to capture all the important information (using only one
image, we have no idea about the speed and direction of objects, like the ball and
our opponent's paddle). This obviously violates the Markov property and moves
our single-frame Pong environment into the area of partially observable MDPs
(POMDPs). A POMDP is basically MDP without the Markov property, and it is
very important in practice. For example, for most card games in which you don't
see your opponents' cards, game observations are POMDPs, because the current
observation (your cards and cards on the table) could correspond to different cards
in your opponents' hands.
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We won't discuss POMDDPs in detail in this book, but we will use a small technique
to push our environment back into the MDP domain. The solution is maintaining
several observations from the past and using them as a state. In the case of Atari
games, we usually stack k subsequent frames together and use them as the
observation at every state. This allows our agent to deduct the dynamics of the
current state, for instance, to get the speed of the ball and its direction. The usual
"classical" number of k for Atari is four. Of course, it's just a hack, as there can be
longer dependencies in the environment, but for most of the games, it works well.

The final form of DQN training

There are many more tips and tricks that researchers have discovered to make
DQN training more stable and efficient, and we will cover the best of them in the
next chapter. However, epsilon-greedy, replay buffer, and target network form the
basis that has allowed the Al company DeepMind to successfully train a DQN on a
set of 49 Atari games and demonstrate the efficiency of this approach when applied
to complicated environments.

The original paper (without target network) was published at the end of 2013
(Playing Atari with Deep Reinforcement Learning, 1312.5602v1, Mnih and others) and
used seven games for testing. Later, at the beginning of 2015, a revised version of
the article, with 49 different games, was published in Nature (Human-Level Control
Through Deep Reinforcement Learning, doi:10.1038 /nature14236, Mnih and others).

The algorithm for DQN from the preceding papers has the following steps:
1. Initialize the parameters for Q(s, a) and Q (s, @) with random weights, & « 1.0,
and empty the replay buffer.
With probability ¢, select a random action, 4; otherwise, a = arg max, Q(s, a).

Execute action 4 in an emulator and observe the reward, r, and the next state,

SI

Store transition (s, a, r, s') in the replay buffer.

Sample a random mini-batch of transitions from the replay buffer.

For every transition in the buffer, calculate target y = r if the episode has
ended at this step,or y =7 +y max Q(s’,a") otherwise.

Calculate loss: £ = (Q(s,a) — y)?.

Update Q(s, a) using the SGD algorithm by minimizing the loss in respect to
the model parameters.

9. Every N steps, copy weights from Q to Q.

10. Repeat from step 2 until converged.
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Let's implement it now and try to beat some of the Atari games!

DQN on Pong

Before we jump into the code, some introduction is needed. Our examples are
becoming increasingly challenging and complex, which is not surprising, as
the complexity of the problems that we are trying to tackle is also growing. The
examples are as simple and concise as possible, but some of the code may be
difficult to understand at first.

Another thing to note is performance. Our previous examples for FrozenLake, or
CartPole, were not demanding from a performance perspective, as observations
were small, NN parameters were tiny, and shaving off extra milliseconds in the
training loop wasn't important. However, from now on, that's not the case. One
single observation from the Atari environment is 100k values, which have to be
rescaled, converted to floats, and stored in the replay buffer. One extra copy of
this data array can cost you training speed, which will not be seconds and minutes
anymore, but could be hours on even the fastest graphics processing unit (GPU)
available.

The NN training loop could also be a bottleneck. Of course, RL models are not
as huge monsters as state-of-the-art ImageNet models, but even the DQN model
from 2015 has more than 1.5M parameters, which is a lot for a GPU to crunch.
So, to make a long story short, performance matters, especially when you are
experimenting with hyperparameters and need to wait not for a single model to
train, but for dozens of them.

PyTorch is quite expressive, so more-or-less efficient processing code could look
much less cryptic than optimized TensorFlow graphs, but there is still a significant
opportunity for doing things slowly and making mistakes. For example, a naive
version of DQN loss computation, which loops over every batch sample, is about two
times slower than a parallel version. However, a single extra copy of the data batch
could make the speed of the same code 13 times slower, which is quite significant.

This example has been split into three modules due to its length, logical structure,
and reusability. The modules are as follows:

* Chapter06/lib/wrappers.py: These are Atari environment wrappers,
mostly taken from the OpenAl Baselines project.

* Chapter06/1ib/dgn_model.py: This is the DQON NN layer, with the same
architecture as the DeepMind DQN from the Nature paper.

* Chapter06/02_dgn_pong.py: This is the main module, with the training
loop, loss function calculation, and experience replay buffer.
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Wrappers

Tackling Atari games with RL is quite demanding from a resource perspective.

To make things faster, several transformations are applied to the Atari platform
interaction, which are described in DeepMind's paper. Some of these transformations
influence only performance, but some address Atari platform features that make
learning long and unstable. Transformations are usually implemented as OpenAl
Gym wrappers of various kinds. The full list is quite lengthy and there are several
implementations of the same wrappers in various sources. My personal favorite is
in the OpenAl Baselines repository, which is a set of RL methods and algorithms
implemented in TensorFlow and applied to popular benchmarks to establish the
common ground for comparing methods. The repository is available from https://
github.com/openai/baselines, and wrappers are available in this file: https://
github.com/openai/baselines/blob/master/baselines/common/atari

Wrappers.py.

The list of the most popular Atari transformations used by RL researchers includes:

*  Converting individual lives in the game into separate episodes. In general,
an episode contains all the steps from the beginning of the game until
the "Game over" screen appears, which can last for thousands of game
steps (observations and actions). Usually, in arcade games, the player
is given several lives, which provide several attempts in the game. This
transformation splits a full episode into individual small episodes for every
life that a player has. Not all games support this feature (for example, Pong
doesn't), but for the supported environments, it usually helps to speed up
convergence, as our episodes become shorter.

* At the beginning of the game, performing a random amount (up to 30) of no-op
actions. This skips intro screens in some Atari games, which are not relevant
for the gameplay.

*  Making an action decision every K steps, where K is usually 4 or 3. On
intermediate frames, the chosen action is simply repeated. This allows
training to speed up significantly, as processing every frame with an NN is
quite a demanding operation, but the difference between consequent frames
is usually minor.

*  Taking the maximum of every pixel in the last two frames and using it as an
observation. Some Atari games have a flickering effect, which is due to the
platform's limitation. (Atari has a limited number of sprites that can be
shown on a single frame.) For the human eye, such quick changes are not
visible, but they can confuse NNs.
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Pressing FIRE at the beginning of the game. Some games (including Pong and
Breakout) require a user to press the FIRE button to start the game. Without
this, the environment becomes a POMDP, as from observation, an agent
cannot tell whether FIRE was already pressed.

Scaling every frame down from 210%160, with three color frames, to a single-color
84x84 image. Different approaches are possible. For example, the DeepMind
paper describes this transformation as taking the Y-color channel from the
YCbCr color space and then rescaling the full image to an 84x84 resolution.
Some other researchers do grayscale transformation, cropping non-relevant
parts of the image and then scaling down. In the Baselines repository (and in
the following example code), the latter approach is used.

Stacking several (usually four) subsequent frames together to give the network
information about the dynamics of the game's objects. This approach was already
discussed as a quick solution to the lack of game dynamics in a single game
frame.

Clipping the reward to -1, 0, and 1 values. The obtained score can vary wildly
among the games. For example, in Pong you get a score of 1 for every ball
that your opponent passes behind you. However, in some games, like
KungFuMaster, you get a reward of 100 for every enemy killed. This spread
in reward values makes our loss have completely different scales between
the games, which makes it harder to find common hyperparameters for a set
of games. To fix this, the reward just gets clipped to the range [-1...1].

Converting observations from unsigned bytes to £1oat32 values. The screen
obtained from the emulator is encoded as a tensor of bytes with values from
0 to 255, which is not the best representation for an NN. So, we need to
convert the image into floats and rescale the values to the range [0.0...1.0].

In our Pong example, we don't need some of these wrappers, such as converting
lives into separate episodes and reward clipping, so those wrappers aren't included
in the example code. However, you should be aware of them, just in case you decide
to experiment with other games. Sometimes, when the DQN is not converging, the
problem is not in the code but in the wrongly wrapped environment. I've spent
several days debugging convergence issues caused by missing the FIRE button press
at the beginning of a game!

Let's take a look at the implementation of individual wrappers from Chaptero6/

lib/wrappers.py:

import
import
import
import
import

cv2

gym
gym.spaces
numpy as np
collections
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class FireResetEnv (gym.Wrapper) :

def init (self, env=None):
super (FireResetEnv, self). init (env)
assert env.unwrapped.get action meanings() [1] == 'FIRE'
assert len(env.unwrapped.get action meanings()) >= 3

def step(self, action):
return self.env.step(action)

def reset (self):
self.env.reset ()
obs, , done, _ = self.env.step(1l)
if done:
self.env.reset ()
obs, , done, _ = self.env.step(2)
if done:
self.env.reset ()
return obs

The preceding wrapper presses the FIRE button in environments that require that
for the game to start. In addition to pressing FIRE, this wrapper checks for several
corner cases that are present in some games.

class MaxAndSkipEnv (gym.Wrapper) :
def init (self, env=None, skip=4):
super (MaxAndSkipEnv, self). init (env)
self. obs buffer = collections.deque (maxlen=2)
self. skip = skip

def step(self, action):
total reward = 0.0
done = None
for in range(self. skip):
obs, reward, done, info = self.env.step(action)
self. obs buffer.append (obs)
total reward += reward
if done:
break
max_ frame = np.max(np.stack(self. obs buffer), axis=0)
return max frame, total reward, done, info

def reset (self):
self. obs buffer.clear()
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obs = self.env.reset ()
self. obs buffer.append (obs)
return obs

This wrapper combines the repetition of actions during K frames and pixels from
two consecutive frames.

class ProcessFrame84 (gym.ObservationWrapper) :
def init (self, env=None):
super (ProcessFrame84, self). init (env)
self.observation space = gym.spaces.Box(
low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)

def observation(self, obs):
return ProcessFrame84.process (obs)

@staticmethod
def process (frame) :
if frame.size == 210 * 160 * 3:
img = np.reshape (frame, [210, 160, 3]).astype(
np.float32)
elif frame.size == 250 * 160 * 3:
img = np.reshape (frame, [250, 160, 3]) .astype(
np.float32)
else:

assert False, "Unknown resolution."
img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + \
imgl[:, :, 2] * 0.114
resized screen = cv2.resize(
img, (84, 110), interpolation=cv2.INTER AREA)
resized screen[18:102, :]
np.reshape(x_t, [84, 84, 1])
return x t.astype(np.uint8)

x t
x t

The goal of this wrapper is to convert input observations from the emulator, which
normally has a resolution of 210x160 pixels with RGB color channels, to a grayscale
84x84 image. It does this using a colorimetric grayscale conversion (which is closer
to human color perception than a simple averaging of color channels), resizing the
image, and cropping the top and bottom parts of the result.

class BufferWrapper (gym.ObservationWrapper) :
def init (self, env, n steps, dtype=np.float32):
super (BufferWrapper, self). init (env)
self.dtype = dtype
old space = env.observation space
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self.observation space = gym.spaces.Box(
old space.low.repeat (n_steps, axis=0),
old space.high.repeat (n steps, axis=0), dtype=dtype)

def reset (self):
self .buffer = np.zeros like(
self.observation space.low, dtype=self.dtype)
return self.observation(self.env.reset())

def observation(self, observation) :
self.buffer([:-1] = self.buffer[l:]
self.buffer[-1] = observation
return self.buffer

This class creates a stack of subsequent frames along the first dimension and returns
them as an observation. The purpose is to give the network an idea about the
dynamics of the objects, such as the speed and direction of the ball in Pong or how
enemies are moving. This is very important information, which it is not possible to
obtain from a single image.

class ImageToPyTorch (gym.ObservationWrapper) :
def init (self, env):
super (ImageToPyTorch, self). init (env)
old shape = self.observation space.shape
new_shape = (old shape[-1], old shape[0], old shapell])
self.observation space = gym.spaces.Box(
low=0.0, high=1.0, shape=new shape, dtype=np.float32)

def observation(self, observation):
return np.moveaxis (observation, 2, 0)

This simple wrapper changes the shape of the observation from HWC (height, width,
channel) to the CHW (channel, height, width) format required by PyTorch. The
input shape of the tensor has a color channel as the last dimension, but PyTorch's
convolution layers assume the color channel to be the first dimension.

class ScaledFloatFrame (gym.ObservationWrapper) :
def observation(self, obs):
return np.array (obs) .astype (np.float32) / 255.0

The final wrapper we have in the library converts observation data from bytes to
floats, and scales every pixel's value to the range [0.0...1.0].

def make_env(env_name) :
env = gym.make (env_name)
env = MaxAndSkipEnv (env)
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env = FireResetEnv (env)

env = ProcessFrame84 (env)
env = ImageToPyTorch (env)
env = BufferWrapper (env, 4)
return ScaledFloatFrame (env)

At the end of the file is a simple function that creates an environment by its name
and applies all the required wrappers to it. That's it for wrappers, so let's look at our
model.

The DQN model

The model published in Nature has three convolution layers followed by two

fully connected layers. All layers are separated by rectified linear unit (ReLU)
nonlinearities. The output of the model is Q-values for every action available in

the environment, without nonlinearity applied (as Q-values can have any value).
The approach of having all Q-values calculated with one pass through the network
helps us to increase speed significantly in comparison to treating Q(s, a) literally and
feeding observations and actions to the network to obtain the value of the action.

The code of the model is in Chapter06/1ib/dgn model.py:

import torch
import torch.nn as nn
import numpy as np

class DQON (nn.Module) :
def _ init_ (self, input_ shape, n_actions):
super (DQN, self). init ()

self.conv = nn.Sequential (
nn.Conv2d (input shape[0], 32, kernel size=8, stride=4),

nn.ReLU(),
nn.Conv2d (32, 64, kernel size=4, stride=2),
nn.ReLU(),
nn.Conv2d (64, 64, kernel size=3, stride=1),
nn.ReLU()

)

conv_out_size = self. get conv_out (input_shape)

self.fc = nn.Sequential (
nn.Linear (conv_out size, 512),
nn.ReLU(),
nn.Linear (512, n _actions)
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To be able to write our network in the generic way, it was implemented in two
parts: convolution and sequential. PyTorch doesn't have a "flatter" layer that could
transform a 3D tensor into a 1D vector of numbers, with the requirement of feeding
convolution output to the fully connected layer. This problem is solved in the
forward () function, where we can reshape our batch of 3D tensors into a batch of
1D vectors.

Another small problem is that we don't know the exact number of values in the
output from the convolution layer produced with the input of the given shape.
However, we need to pass this number to the first fully connected layer constructor.
One possible solution would be to hard-code this number, which is a function of
input shape (for 84x84 input, the output from the convolution layer will have 3136
values); however, it's not the best way, as our code will become less robust to input
shape change. The better solution would be to have a simple function, get_conv_
out (), that accepts the input shape and applies the convolution layer to a fake
tensor of such a shape. The result of the function would be equal to the number of
parameters returned by this application. It would be fast, as this call would be done
once on model creation, but also, it would allow us to have generic code.

def get conv out (self, shape):

o = self.conv(torch.zeros(1l, *shape))
return int (np.prod(o.size()))
def forward(self, x):
conv_out = self.conv(x).view(x.size() [0], -1)

return self.fc(conv_out)

The final piece of the model is the forward () function, which accepts the 4D input
tensor. (The first dimension is batch size and the second is the color channel, which
is our stack of subsequent frames; the third and fourth are image dimensions.)

The application of transformations is done in two steps: first we apply the
convolution layer to the input, and then we obtain a 4D tensor on output. This

result is flattened to have two dimensions: a batch size and all the parameters
returned by the convolution for this batch entry as one long vector of numbers.

This is done by the view () function of the tensors, which lets one single dimension
be a -1 argument as a wildcard for the rest of the parameters. For example, if we
have a tensor, T, of shape (2, 3, 4), which is a 3D tensor of 24 elements, we can
reshape it into a 2D tensor with six rows and four columns using T.view (6, 4). This
operation doesn't create a new memory object or move the data in memory; it just
changes the higher-level shape of the tensor. The same result could be obtained by
T.view(-1, 4) or T.view(6, -1), which is very convenient when your tensor has a
batch size in the first dimension. Finally, we pass this flattened 2D tensor to our fully
connected layers to obtain Q-values for every batch input.

[146]



Chapter 6

Training

The third module contains the experience replay buffer, the agent, the loss function
calculation, and the training loop itself. Before going into the code, something needs
to be said about the training hyperparameters. DeepMind's Nature paper contained
a table with all the details about hyperparameters used to train its model on all 49
Atari games used for evaluation. DeepMind kept all those parameters the same for
all games (but trained individual models for every game), and it was the team's
intention to show that the method is robust enough to solve lots of games with
varying complexity, action space, reward structure, and other details using one
single model architecture and hyperparameters. However, our goal here is much
more modest: we want to solve just the Pong game.

Pong is quite simple and straightforward in comparison to other games in the Atari
test set, so the hyperparameters in the paper are overkill for our task. For example,
to get the best result on all 49 games, DeepMind used a million-observations replay
buffer, which requires approximately 20 GB of RAM to keep and lots of samples
from the environment to populate.

The epsilon decay schedule that was used is also not the best for a single Pong game.
In the training, DeepMind linearly decayed epsilon from 1.0 to 0.1 during the first
million frames obtained from the environment. However, my own experiments
have shown that for Pong, it's enough to decay epsilon over the first 150k frames
and then keep it stable. The replay buffer also can be much smaller: 10k transitions
will be enough.

In the following example, I've used my parameters. These differ from the parameters
in the paper but will allow us to solve Pong about 10 times faster. On a GeForce GTX
1080 Ti, the following version converges to a mean score of 19.0 in one to two hours,
but with DeepMind's hyperparameters, it will require at least a day.

This speedup, of course, is fine-tuning for one particular environment and can break
convergence on other games. You are free to play with the options and other games
from the Atari set.

from 1lib import wrappers
from lib import dgn model

import argparse
import time

import numpy as np
import collections

import torch
import torch.nn as nn
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import torch.optim as optim

from tensorboardX import SummaryWriter

First, we import required modules and define the hyperparameters.

DEFAULT ENV_NAME = "PongNoFrameskip-v4"
MEAN REWARD BOUND = 19.0

These two values set the default environment to train on and the reward boundary
for the last 100 episodes to stop training. If you want, you can redefine the
environment name using the command line.

GAMMA = 0.99

BATCH_SIZE = 32

REPLAY SIZE = 10000
REPLAY START SIZE = 10000
LEARNING_RATE = le-4
SYNC_TARGET FRAMES = 1000

These parameters define the following;:

*  Our gamma value used for Bellman approximation (GAMMA)
* The batch size sampled from the replay buffer (BATCH_SIZE)
* The maximum capacity of the buffer (REPLAY SIZE)

* The count of frames we wait for before starting training to populate the
replay buffer (REPLAY START SIZE)

* The learning rate used in the Adam optimizer, which is used in this example
(LEARNING RATE)

* How frequently we sync model weights from the training model to the
target model, which is used to get the value of the next state in the Bellman
approximation (SYNC_TARGET_FRAMES)

EPSILON_DECAY LAST FRAME = 150000
EPSILON_START = 1.0
EPSILON_FINAL = 0.01

The last batch of hyperparameters is related to the epsilon decay schedule. To
achieve proper exploration, we start with epsilon = 1.0 at the early stages of training,
which causes all actions to be selected randomly. Then, during the first 150,000
frames, epsilon is linearly decayed to 0.01, which corresponds to the random action
taken in 1% of steps. A similar scheme was used in the original DeepMind paper,
but the duration of decay was almost 10 times longer (so, epsilon = 0.01 was reached
after a million frames).
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The next chunk of code defines our experience replay buffer, the purpose of which
is to keep the transitions obtained from the environment (tuples of the observation,
action, reward, done flag, and the next state). Each time we do a step in the
environment, we push the transition into the buffer, keeping only a fixed number of
steps (in our case, 10k transitions). For training, we randomly sample the batch of
transitions from the replay buffer, which allows us to break the correlation between
subsequent steps in the environment.

Experience = collections.namedtuple (
'Experience', field names=['state', 'action', 'reward',
'done', 'new state'])

class ExperienceBuffer:
def init (self, capacity):
self.buffer = collections.deque (maxlen=capacity)

def len (self):

return len(self.buffer)

def append(self, experience):
self .buffer.append (experience)

def sample(self, batch size):
indices = np.random.choice(len(self.buffer), batch size,
replace=False)
states, actions, rewards, dones, next states = \
zip(* [self.buffer[idx] for idx in indices])

return np.array(states), np.array(actions), \
np.array (rewards, dtype=np.float32), \
np.array (dones, dtype=np.uint8), \
np.array (next states)

Most of the experience replay buffer code is quite straightforward: it basically
exploits the capability of the deque class to maintain the given number of entries

in the buffer. In the sample () method, we create a list of random indices and then
repack the sampled entries into NumPy arrays for more convenient loss calculation.

The next class we need to have is an Agent, which interacts with the environment
and saves the result of the interaction into the experience replay buffer that you
have just seen:

class Agent:
def  init (self, env, exp buffer):
self.env = env

self.exp buffer = exp buffer
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self. reset()

def reset(self):
self.state = env.reset()
self.total reward = 0.0

During the agent's initialization, we need to store references to the environment
and experience replay buffer, tracking the current observation and the total reward
accumulated so far.

@torch.no _grad()
def play step(self, net, epsilon=0.0, device="cpu"):
done_reward = None

if np.random.random() < epsilon:
action = env.action space.sample ()

else:
state_a

np.array([self.state], copy=False)

state v = torch.tensor (state_a) .to(device)
g_vals_v = net(state_v)

_, act_v = torch.max(qg vals v, dim=1)
action = int(act _v.item())

The main method of the agent is to perform a step in the environment and store its
result in the buffer. To do this, we need to select the action first. With the probability
epsilon (passed as an argument), we take the random action; otherwise, we use the
past model to obtain the Q-values for all possible actions and choose the best.

new_state, reward, is_done, _ = self.env.step(action)
self.total reward += reward

exp = Experience(self.state, action, reward,
is_done, new_state)
self.exp buffer.append (exp)
self.state = new_state
if is_done:
done_reward = self.total_reward
self. reset()
return done_reward

As the action has been chosen, we pass it to the environment to get the next
observation and reward, store the data in the experience buffer, and then handle
the end-of-episode situation. The result of the function is the total accumulated
reward if we have reached the end of the episode with this step, or None if not.
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Now it is time for the last function in the training module, which calculates the loss
for the sampled batch. This function is written in a form to maximally exploit GPU
parallelism by processing all batch samples with vector operations, which makes

it harder to understand when compared with a naive loop over the batch. Yet this
optimization pays off: the parallel version is more than two times faster than an
explicit loop over the batch.

As a reminder, here is the loss expression we need to calculate:
2
L= (Q(s, a) — (r +vy max Q(s', a’))) for steps that aren't at the end of the episode,
a'e

or L = (Q(s,a) — r)? for final steps.

def calc_loss(batch, net, tgt net, device="cpu"):
states, actions, rewards, dones, next states = batch

In arguments, we pass our batch as a tuple of arrays (repacked by the sample ()
method in the experience buffer), our network that we are training, and the target
network, which is periodically synced with the trained one.

The first model (passed as the argument network) is used to calculate gradients;

the second model in the tgt_net argument is used to calculate values for the next
states, and this calculation shouldn't affect gradients. To achieve this, we use the
detach () function of the PyTorch tensor to prevent gradients from flowing into the
target network's graph. This function was described in Chapter 3, Deep Learning with
PyTorch.

states v = torch.tensor (np.array(

states, copy=False)) .to(device)
next states v = torch.tensor (np.array (

next states, copy=False)) .to(device)
actions v = torch.tensor (actions) .to(device)
rewards v = torch.tensor (rewards) .to(device)
done mask = torch.BoolTensor (dones) .to(device)

The preceding code is simple and straightforward: we wrap individual NumPy
arrays with batch data in PyTorch tensors and copy them to GPU if the CUDA device
was specified in arguments.

state_action values = net(states_v) .gather(
1, actions_v.unsqueeze(-1)) .squeeze(-1)

In the preceding line, we pass observations to the first model and extract the
specific Q-values for the taken actions using the gather () tensor operation. The
first argument to the gather () call is a dimension index that we want to perform
gathering on (in our case, it is equal to 1, which corresponds to actions).
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The second argument is a tensor of indices of elements to be chosen. Extra
unsqueeze () and squeeze () calls are required to compute the index argument

for the gather functions, and to get rid of the extra dimensions that we created,
respectively. (The index should have the same number of dimensions as the data we
are processing.) In Figure 6.3, you can see an illustration of what gather () does on
the example case, with a batch of six entries and four actions:

actions
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Output Actions Selected Result
of model taken 9-values of gather

Figure 6.3: Transformation of tensors during a DQN loss calculation

Keep in mind that the result of gather () applied to tensors is a differentiable
operation that will keep all gradients with respect to the final loss value.

next state values = tgt net (next states v) .max(1l) [0]

In the preceding line, we apply the target network to our next state observations
and calculate the maximum Q-value along the same action dimension, 1. Function
max () returns both maximum values and indices of those values (so it calculates
both max and argmax), which is very convenient. However, in this case, we are
interested only in values, so we take the first entry of the result.

next state values[done mask] = 0.0

Here we make one simple, but very important, point: if transition in the batch

is from the last step in the episode, then our value of the action doesn't have a
discounted reward of the next state, as there is no next state from which to gather
the reward. This may look minor, but it is very important in practice: without this,
training will not converge.

next state values = next state values.detach()

In this line, we detach the value from its computation graph to prevent gradients
from flowing into the NN used to calculate Q approximation for the next states.
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This is important, as without this, our backpropagation of the loss will start to affect
both predictions for the current state and the next state. However, we don't want

to touch predictions for the next state, as they are used in the Bellman equation

to calculate reference Q-values. To block gradients from flowing into this branch

of the graph, we are using the detach () method of the tensor, which returns the
tensor without connection to its calculation history.

expected state action values = next state values * GAMMA + \
rewards_v
return nn.MSELoss () (state_action values,
expected state action values)

Finally, we calculate the Bellman approximation value and the mean squared error
loss. This ends our loss function calculation, and the rest of the code is our training
loop.

if name == " main ":

parser = argparse.ArgumentParser ()

parser.add argument ("--cuda", default=False,
action="store true", help="Enable cuda")

parser.add argument ("--env", default=DEFAULT ENV_NAME,
help="Name of the environment, default=" +

DEFAULT ENV_NAME)
args = parser.parse_args ()
device = torch.device("cuda" if args.cuda else "cpu")

To begin with, we create a parser of command-line arguments. Our script allows
us to enable CUDA and train on environments that are different from the default.

env

wrappers.make env(args.env)

dgn_model .DQN (env.observation space.shape,
env.action space.n) .to(device)

tgt _net = dgn model.DQON (env.observation space.shape,

env.action space.n) .to(device)

net

Here, we create our environment with all required wrappers applied, the NN that
we are going to train, and our target network with the same architecture. In the
beginning, they will be initialized with different random weights, but it doesn't
matter much, as we will sync them every 1k frames, which roughly corresponds to
one episode of Pong.

writer = SummaryWriter (comment="-" + args.env)
print (net)

buffer = ExperienceBuffer (REPLAY SIZE)
agent = Agent (env, buffer)
epsilon = EPSILON_START
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Then we create our experience replay buffer of the required size and pass it to the
agent. Epsilon is initially initialized to 1.0, but will be decreased every iteration.

optimizer = optim.Adam(net.parameters(), lr=LEARNING RATE)
total rewards = []

frame idx = 0

ts_frame = 0

ts = time.time ()

best m reward = None

The last things we do before the training loop are to create an optimizer, a buffer for
full episode rewards, a counter of frames and several variables to track our speed,
and the best mean reward reached. Every time our mean reward beats the record,
we will save the model in the file.

while True:
frame idx += 1
epsilon = maX(EPSILON_FINAL, EPSILON_ START -
frame idx / EPSILON DECAY LAST FRAME)

At the beginning of the training loop, we count the number of iterations completed
and decrease epsilon according to our schedule. Epsilon will drop linearly during
the given number of frames (EPSILON_DECAY LAST_FRAME=150k) and then be kept
on the same level of EPSILON FINAL=0.01.

reward = agent.play step(net, epsilon, device=device)
if reward is not None:

total rewards.append (reward)

speed = (frame idx - ts_frame) / (time.time() - ts)
ts_frame = frame idx
tes = time.time ()

m _reward = np.mean(total rewards[-100:])
L3, 0"
(

frame idx, len(total rewards), m reward, epsilon,

print ("%d: done %d games, reward %
% %

"eps %.2f, speed %.2f f/s"

speed
))
writer.add scalar("epsilon", epsilon, frame idx)
writer.add scalar ("speed", speed, frame idx)
writer.add scalar("reward 100", m_reward, frame_ idx)

writer.add scalar ("reward", reward, frame idx)

In this block of code, we ask our agent to make a single step in the environment
(using our current network and value for epsilon). This function returns a non-None
result only if this step is the final step in the episode.
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In that case, we report our progress. Specifically, we calculate and show, both in the
console and in TensorBoard, these values:

* Speed as a count of frames processed per second
* Count of episodes played

* Mean reward for the last 100 episodes

* Current value for epsilon

if best m reward is None or best m reward < m reward:
torch.save (net.state dict(), args.env +
"-best %.0f.dat" % m reward)
if best_m reward is not None:
print ("Best reward updated %.3f -> %.3f" & (
)

best m reward, m reward))

best m reward = m reward

if m reward > MEAN REWARD BOUND:
print ("Solved in %d frames!" % frame idx)
break

Every time our mean reward for t