
Page 1, section “Value, state and optimality”
We defined value as an expected total reward obtainable from the state. In

formal way, value of the state is: V (s) = E[
∑∞

t=0 rtγ
t], where rt is the local

reward obtained at the step t of the episode.
Page 2, section “Bellman equation of optimality”
Lets start with deterministic case, when all our actions have 100% guaran-

teed outcome. Imagine our agent observes state s0 and has N available actions.
Every action leads to another state s1 . . . sN with respective reward r1 . . . rN .
Also assume that we know the values Vi of all states connected to the state s0.

If we fix the action and calculate the value given to this action, the value
will be V0(a = ai) = ri + Vi. So, to choose the best possible action, the agent
needs to calculate resulting values for every action and choose the maximum
possible outcome. In other words: V0 = maxa∈1...N (ra + Va). If were using
discount factor γ, we need to multiply value of the next state by gamma: V0 =
maxa∈1...N (ra + γVa).

Page 3
Its not very complicated to extend it for a stochastic case, when our actions

can have chance to end up in different states. What we need to do is to calculate
the expected value for every action instead of just taking the value of the next
state. To illustrate this, lets consider one single action available from state s0
with three possible outcomes.

Here we have one action available from the state s0, which can lead to three
different states with different probabilities: with probability p1 it can end up in
state s1, p2 in state s2 and p3 in state s3 (p1 + p2 + p3 = 1, of course). Every
target state has its own reward r1, r2 or r3. To calculate the expected value
after issuing action 1, we need to sum all values multiplied by their probabilities:

V0(a = 1) = p1(r1 + γV1) + p2(r2 + γV2) + p3(r3 + γV3)

or, more formal

V0(a) = Es∼S [rs,a + γVs] =
∑
s∈S

pa,0→s(rs,a + γVs)

By combining the Bellman equation for a deterministic case with value for
stochastic actions, we get Bellman equation for general case:

V0 = max
a∈A

Es∼S [rs,a + γVs] = max
a∈A

∑
s∈S

pa,0→s(rs,a + γVs)

(Notation pa,i→j means probability of action a issued in state i to end up in
state j)

Page 4, Value of action
To make our life slightly easier, we can define different quantity in addition

to value of state Vs: value of action Qs,a. Basically, it equals total reward we
can get by executing action a in state s, and could be defined via Vs. Being
much less fundamental entity than Vs, this quantity gave a name to the whole
family of methods Q-learning, because it is slightly more convenient in practice.

1



In those methods, our primary objective is to get values of Q for every pair of
state and action.

Qs,a = Es′∼S [rs,a + γVs′ ] =
∑
s′∈S

pa,s→s′(rs,a + γVs′)

Which means: Q for this state s and action a equals the expected immediate
reward plus discounted long-term reward of destination state. We also can define
Vs via Qs,a:

Vs = max
a∈A

Qs,a

And, finally, we can express Q(s, a) via itself, which will be used in the next
chapters topic of Q-learning:

Q(s, a) = rs,a + γmax
a′∈A

Q(s′, a′)

To give you a concrete example, lets consider a simple environment which
is similar to FrozenLake, but has much simpler structure: we have one initial
state s0 surrounded by four target states s1, s2, s3, s4 with different rewards.

Lets calculate the values of actions to begin with. Terminal states s1 . . . s4
have no outbound connections, so Q for those states is zero for all actions.
Due to this, the values of the Terminal states are equal to their immediate
reward (once we get there, our episode ends without any subsequent states):
V1 = 1, V2 = 2, V3 = 3, V4 = 4. The values of actions for state 0 are a bit more
complicated. Lets start with the up action. Its value, according to the definition,
is equal to the expected sum of the immediate reward plus long-term value for
subsequent steps. We have no subsequent steps for any possible transition for
the up action, so

Q(s0, up) = 0.33 · V1 + 0.33 · V2 + 0.33 · V4 = 0.33 · 1 + 0.33 · 2 + 0.33 · 4 = 2.31

.
Repeating this for the rest of s0 actions results in the following:

Q(s0, left) = 0.33 · V1 + 0.33 · V2 + 0.33 · V3 = 1.98

Q(s0, right) = 0.33 · V4 + 0.33 · V1 + 0.33 · V3 = 2.64

Q(s0, down) = 0.33 · V3 + 0.33 · V2 + 0.33 · V4 = 2.97

The final value for state s0 is the maximum of those actions values, which is
2.97.

Page 6, Value iteration method
We start from state s1 and the only action we can do leads us to state s2.

We get reward r=1 and the only transition from s2 is an action which brings
us back to the s1. So, the life of our agent is an infinite sequence of states [
s1, s2, s1, s2, s1, s2, s1, s2, . . .]. To deal with this infinity, we can use a discount
factor γ = 0.9. Now, the question: whats the values for both states?

2



The answer is not very complicated, though. Every transition from s1 to s2
gives us reward of 1 and every back transition gives us 2. So, our sequence of
rewards will be [1, 2, 1, 2, 1, 2, 1, 2, .]. As there is only one action available in
every state, our agent has no choice, so, we can omit max operation in formulas
(there is only one alternative). Value for every state will be equal to the infinite
sum:

V (s1) = 1 + γ(2 + γ(1 + γ(2 + . . .))) =

∞∑
i=0

1γ2i + 2γ2i+1

V (s2) = 2 + γ(1 + γ(2 + γ(1 + . . .))) =

∞∑
i=0

2γ2i + 1γ2i+1

Strictly speaking, we cannot calculate the exact values for our states, but
with γ = 0.9, contribution of every transition quickly decreases over time. For
example, after 10 steps, γ10 = 0.910 = 0.349, but after 100 steps it becomes
just 0.0000266. Due to this, we can stop after 50 iterations and still get quite
precise estimation.

1. Initialize values of all states Vi to some initial value, usually zero.

2. For every state s in the MDP perform Bellman update: Vs ← maxa

∑
s′ pa,s→s′(rs,a+

γVs′)

3. Repeat step 2 for some large amount of steps or until changes become too
small.

Only minor modifications to the above procedure are required in case of
action values (i.e. Q):

1. Initialize all Qs,a to zero

2. For every state s and every action a in this state perform update: Qs,a ←∑
s′ pa,s→s′(rs,a + γmaxa′ Qs′,a′)

3. Repeat step 2

The second practical problem arises from the fact that we rarely know the
transition probability for the actions and rewards matrix. Remember what
interface provides Gym to the agents writer: we observe the state, decide on
an action and only then do we get the next observation and reward for the
transition. We dont know (without peeking into Gyms environment code) what
the probability is to get into state s1 from state s0 by issuing action a0. What
we do have is just the history from the agents interaction with the environment.
However, in Bellmans update, we need both a reward for every transition and
the probability of this transition. So, the obvious answer to this issue is to use
our agents experience as an estimation for both unknowns. Rewards could be
used as they are. We just need to remember what reward weve got on transition
from s0 to s1, using action a, but to estimate probabilities we need to maintain
counters for every tuple (s0, s1, a) and normalize them.

3


