Page 2, Tabular Q-Learning

1
2
3

W

. Start with empty table mapping states to values of actions,

. By interacting with the environment, obtain tuple (s, a, r, 8’).

. Update Q(s, a) value using Bellman approximation: Qs q <= r+ymaxgca Qs o’
. Repeat step 2.

..using learning rate a with value from 0 to 1:

Qs < (1- Oz)Qs,a +a(r+ 'yg}giQs/7a/)

The final version of the algorithm is here:

1

w

. Start with empty table for Q(s, a).
. Obtain (s, a, r, 8’) from the environment.
. Make Bellman update: Qs + (1 — a)Qs,q + a(r +ymaxyeca Qs o)

. Check convergence conditions, if not met, repeat from step 2.

Page 6, Deep Q-learning

—

5.

. Initialize Q(s, a) with some initial approximation,
By interacting with the environment, obtain tuple (s, a, r, s).

Calculate loss: £ = (Qs,, — r)? if episode has ended or £ = (Qs. — (r +
ymaxgea Qs or))? otherwise.

Update Q(s, a) using SGD algorithm by minimizing the loss in respect to
model parameters.

Repeat step 2 until converged.

Page 8, Final form of DQN training

1.

S A o

Initialize parameters for Q(s, a) and Q(s, a) with random weights, € < 1.0,
and empty replay buffer

With probability € select a random action a, otherwise a = argmax, Qs 4
Execute action a in emulator and observe reward r and next state s’.
Store transition (s, a, r, s’) in the replay buffer.

Sample random minibatch of transitions from replay buffer.

For every transition in the buffer calculate target y = r if episode has
ended at this step or y = 7 +ymaxgca Qs o’



7. Calculate loss: £ = (Qs.q — )2

8. Update Q(s, a) using SGD algorithm by minimizing the loss in respect to
model parameters.

9. Every N steps copy weights from Q to Q
10. Repeat step 2 until converged.

Page 18
As a reminder, there is the loss expression we need to calculate: £ = (Qs,q —

(r + ymax, e Qo or))? for steps which wasn‘t at the end of the episode or
L =(Qsq —1)?* for final steps.



