
Page 2, Tabular Q-Learning

1. Start with empty table mapping states to values of actions,

2. By interacting with the environment, obtain tuple (s, a, r, s’).

3. Update Q(s, a) value using Bellman approximation: Qs,a ← r+γmaxa′∈AQs′,a′

4. Repeat step 2.

...using learning rate α with value from 0 to 1:

Qs,a ← (1− α)Qs,a + α(r + γmax
a′∈A

Qs′,a′)

The final version of the algorithm is here:

1. Start with empty table for Q(s, a).

2. Obtain (s, a, r, s’) from the environment.

3. Make Bellman update: Qs,a ← (1− α)Qs,a + α(r + γmaxa′∈AQs′,a′)

4. Check convergence conditions, if not met, repeat from step 2.

Page 6, Deep Q-learning

1. Initialize Q(s, a) with some initial approximation,

2. By interacting with the environment, obtain tuple (s, a, r, s’).

3. Calculate loss: L = (Qs,a − r)2 if episode has ended or L = (Qs,a − (r +
γmaxa′∈AQs′,a′))2 otherwise.

4. Update Q(s, a) using SGD algorithm by minimizing the loss in respect to
model parameters.

5. Repeat step 2 until converged.

Page 8, Final form of DQN training

1. Initialize parameters for Q(s, a) and Q̂(s, a) with random weights, ε← 1.0,
and empty replay buffer

2. With probability ε select a random action a, otherwise a = arg maxaQs,a

3. Execute action a in emulator and observe reward r and next state s’.

4. Store transition (s, a, r, s’) in the replay buffer.

5. Sample random minibatch of transitions from replay buffer.

6. For every transition in the buffer calculate target y = r if episode has
ended at this step or y = r + γmaxa′∈A Q̂s′,a′

1



7. Calculate loss: L = (Qs,a − y)2

8. Update Q(s, a) using SGD algorithm by minimizing the loss in respect to
model parameters.

9. Every N steps copy weights from Q to Q̂

10. Repeat step 2 until converged.

Page 18
As a reminder, there is the loss expression we need to calculate: L = (Qs,a−

(r + γmaxa′∈A Q̂s′,a′))2 for steps which wasn‘t at the end of the episode or
L = (Qs,a − r)2 for final steps.

2


