
Page 1, Variance reduction

Var[x] = E[(x− E[x])2]

On the plot below there is a normal (Gaussian) distribution with the same
value of mean µ = 10

Now lets return to our policy gradients. It has already been said in the
previous chapter, the method idea is to increase the probability of good actions
and decrease the chance for bad actions. In math notation our policy gradient
was written as ∇J ≈ E[Q(s, a)∇ log π(a|s)]

Page 5, Actor-Critic

1. Initialize network parameters θ with random values

2. Play N steps in the environment using the current policy πθ, saving state
st, action at, reward rt

3. R = 0 if the end of the episode is reached or Vθ(st)

4. For i = t− 1 . . . tstart

(a) R← ri + γR

(b) Accumulate the policy gradients ∂θπ ← ∂θπ + ∇θ log πθ(ai|si)(R −
Vθ(si))

(c) Accumulate the value gradients ∂θv ← ∂θv +
∂(R−Vθ(si))2

∂θv

5. Update network parameters using the accumulated gradients, moving in
the direction of policy gradients ∂θπ and in the opposite direction of the
value gradients ∂θv.

6. Repeat from step 2 until convergence

Entropy bonus is usually added to improve exploration. Its usually written
as an entropy value added to the loss function: LH = β

∑
i πθ(si) log πθ(si).
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Forward pass through the network returns tuple of two tensors: policy and

value. Now we have large and important function which takes the batch of
environment transitions and returns three tensors: batch of states, batch of
actions taken and batch of Q-values calculated using the formula Q(s, a) =∑N−1
i=0 γiri + γNV (sN )
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The last piece of our loss function is entropy loss which equals to the scaled

entropy of our policy taken with the opposite sign (entropy is calculated as
H(π) = −

∑
π log π)
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