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Each search starts from the root state following the most promising actions,

selected using the utility value U(s, a), proportional to Q(s, a) + P (s,a)
1+N(s,a) .
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Once the self-play game has been finished and the final outcome has become
known, every step of the game is added to the training dataset, which is a list
of tuples (st, πt, rt), where st is the game state, πt is the action probabilities
calculated from MCTS search sampling and rt is the games outcome from the
perspective of the player at step t.

With this at hand, our training is simple: we sample minibatches from replay
buffer of training examples and minimizing the MSE between the value head
prediction and actual position value and cross-entropy loss between predicted
probabilities and sampled probabilities π.
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The final function in the class returns the probability of actions and the action
values for game state using the gathered statistics during the MCTS searches.
There are two modes of probability calculation, specified by the parameter τ .
If it equals to zero, the selection becomes deterministic, as we select the most

frequently visited action. In other cases, the distribution given by N(s,a)
1
τ∑

k N(s,k)
1
τ

is used, which, again, improves exploration.
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The function accepts lots of parameters, including MCTS class instance (one
or two, as we potentially want to use separate MCTS statistics for different
neural networks), optional replay buffer, networks to be used during the game,
amount of game steps need to be taken before the τ parameter used for the
action probability calculatation will be changed from 1 to 0. Other options are
amount of MCTS searchers to perform and other flags.
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