
Page 4
As a quick refresher, Actor-Critics idea is to estimate the gradient of our

policy as a ∇J = ∇θ log πθ(a|s)(R − Vθ(s)). The policy πθ is supposed to
provide us the probability distribution of actions given the observed state. The
quantity Vθ(s) called a critic and equals to the value of the state and is trained
using the mean square loss between the critic return and the value estimated
by the Bellman equation. To improve exploration, the entropy bonus LH =
πθ(s) log πθ(s) is usually added to the loss.

For N actions, it will be two vectors of size N, the first is the mean values µ
and the second vector will contain variances σ2.

By definition, the probability density function of the Gaussian distribu-

tion is f(x|µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 . We could directly use this formula to

get the probabilities, but to improve numerical stability it worth to do some
math and simplify the expression for log πθ(a|s). The final result will be:

log πθ(a|s) = − (x−µ)2
2σ2 − log

√
2πσ2. The entropy of the Gaussian distribution

could be obtained using the differential entropy definition and will be ln
√

2πeσ2.
Now we have everything we need to implement the Actor-Critic method. Lets
do it.

Page 9
We have two functions, one is actor, lets call it µ(s)which converts the state

into the action and another is critic, by the state and the action giving us the
Q-value: Q(s, a). We can substitute the actor function into the critic and get
the expression with only one input parameter of our state: Q(s, µ(s)). At the
end, neural networks are just functions.

Now, the next step. The output of the critic gives us the approximation of
the thing were interested to maximize in the first place – the discounted total
reward. This value depends not only on the input state, but also on parameters
of the actor θµ and the critic networks θQ. At every step of our optimisation
we want to change the actors weights to improve the total reward we want to
get. In mathematical terms, we want the gradient of our policy.

In his Deterministic Policy Gradient theorem, David Silver has proved that
stochastic policy gradient is equivalent to the deterministic policy gradient,
in other words, to improve the policy, we just need to calculate the gradient
of the function Q(s, µ(s)). By applying the chain rule, we get the gradient:
∇aQ(s, a)∇θµµ(s).

Page 10
The price we have to pay for all this goodness is that our policy is now

deterministic, so, we have to explore the environment somehow. The answer
will be to add the noise to the actions returned by the actor before we pass
them to the environment. There are several options here. The simplest method
is just to add the random noise to the actions µ(s) + εN . Well use this way
of exploration in the next method well consider in the chapter. More fancy
approach to the exploration will be to use the stochastical model, very popular in
financial world and other domains dealing with stochastic processes: Ornstein-
Uhlenbeck processes.

1



This process models the velocity of the massive Brownian particle under the
influence of the friction and is defined by this stochastic differential equation:
∂xt = θ(µ−xt)∂t+σ∂W , where θ, µ, σ are parameters of the process and Wt is
the Wiener process. In discrete-time case, the Ornstein-Uhlenbeck process could
be written as xt+1 = xt+θ(µ−x)+σN . This equation expresses the next value
generated by the process via the previous value of the noise, adding normal noise
N . In our exploration, well add the value of the Ornstein-Uhlenbeck process to
the action returned by the actor.

Page 19

The Bellman operator has a form of Z(x, a)
D
= R(x, a) + γZ(x′, a′), and

supposed to transform the probability distribution as shown on the image

2


