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Preface
Data scientists and machine learning engineers throughout the 2010s have primarily 
produced static analyses. We create documents to inform decisions, filled with plots 
and metrics about our findings, or about the models we create. Creating complete web 
applications that allow users to interact with analyses is cumbersome, to say the least! 
Enter Streamlit, a Python library for creating web applications built with data folks in 
mind at every step. 

Streamlit shortens the development time for the creation of data-focused web applications, 
allowing data scientists to create web app prototypes in Python in hours instead of days.

This book takes a hands-on approach to help you learn the tips and tricks that will have 
you up and running with Streamlit in no time. You'll start with the fundamentals of 
Streamlit by creating a basic app and gradually build on this foundation by producing 
high-quality graphics with data visualization and testing machine learning models.  
As you advance through the chapters, you'll walk through practical examples of both 
personal and work-related data-focused web applications, and will learn about more 
complicated topics such as using Streamlit Components, beautifying your apps, and the 
quick deployment of your new apps.

Who this book is for
This book is for data scientists and machine learning engineers or enthusiasts who want to 
create web apps using Streamlit. Whether you're a junior data scientist looking to deploy 
your first machine learning project in Python to improve your resume or a senior data 
scientist working full time trying to convince your colleagues with a dynamic analysis,  
this book is for you!
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What this book covers
Chapter 1, An Introduction to Streamlit, teaches the very basics of Streamlit by creating  
your first app.

Chapter 2, Uploading, Downloading, and Manipulating Data, looks at data;  
data apps need data! We'll learn how to use data efficiently and effectively in  
production applications.

Chapter 3, Data Visualization, teaches how to use all your favorite Python visualization 
libraries in Streamlit apps. There's no need to learn new visualization frameworks!

Chapter 4, Using Machine Learning with Streamlit, covers machine learning. Ever wanted 
to deploy your new fancy machine learning model in a user-facing app in hours? Start 
here for in-depth examples and tips. 

Chapter 5, Deploying Streamlit with Streamlit Sharing, looks at the one-click deploy  
feature that Streamlit comes with. We'll learn how to remove friction in the deployment 
process here! 

Chapter 6, Beautifying Streamlit Apps, looks at the features that Streamlit is chock-full  
of to make gorgeous web apps. We'll learn all the tips and tricks in this chapter. 

Chapter 7, Exploring Streamlit Components, teaches how to leverage the thriving 
developer ecosystem around Streamlit through open source integrations called Streamlit 
Components. Just like LEGO, only better. 

Chapter 8, Deploying Streamlit Apps with Heroku and AWS, teaches how to deploy your 
Streamlit applications using AWS and Heroku as an alternative to Streamlit Sharing. 

Chapter 9, Improving Job Applications with Streamlit, will help you to prove your data 
science chops to employers using Streamlit apps through everything from apps for resume 
building to apps for take-home sections of interviews.

Chapter 10, The Data Project – Prototyping Projects in Streamlit, covers making apps 
for the Streamlit community and others, which is both fun and educational. We'll walk 
through some examples of projects and you'll learn how to start your own. 

Chapter 11, Using Streamlit for Teams, teaches how to deploy private Streamlit repositories 
and enforce user authentication using the Streamlit product Streamlit for Teams.

Chapter 12, Streamlit Power Users, provides more information on Streamlit, which  
is already extensively used for such a young library. Learn from the best with in-depth 
interviews with the Streamlit founder, data scientists, analysts, and engineers.
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To get the most out of this book
This book assumes that you are at least a Python novice, which means you are comfortable 
with basic Python syntax and have taken tutorials or classes before in Python. It is also 
written for users interested in data science, which includes topics such as statistics and 
machine learning, but does not require a data science background. If you know how to 
make lists and define variables and have written a for loop before, you have enough 
Python knowledge to get started!

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/tylerjrichards/Getting-Started-with-Streamlit-
for-Data-Science or through Packt's GitHub at https://github.com/
PacktPublishing/Getting-Started-with-Streamlit-for-Data-
Science. If there's an update to the code, it will be updated in these GitHub repositories.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800565500_ColorImages.pdf.

https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/PacktPublishing/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/PacktPublishing/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/PacktPublishing/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800565500_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800565500_ColorImages.pdf
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: Which will be in the format ec2-10-857-84-485.compute-1.
amazonaws.com. I made up those numbers, but yours should be close to this.

A block of code is set as follows:

import pandas as pd 

penguin_df = pd.read_csv('penguins.csv')

print(penguin_df.head())

Any command-line input or output is written as follows:

git add .

git commit -m 'added heroku files'

git push

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: We are 
going to be using Amazon Elastic Compute Cloud, or Amazon EC2 for short.

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of  
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata and fill in  
the form.

https://customercare@packtpub.com
https://www.packtpub.com/support/errata


Preface     xv

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Getting Started with Streamlit for Data Science, we'd love to hear your 
thoughts! Please click here to go straight to the Amazon review page for this book and 
share your feedback.

Your review is important to us and the tech community and will help us make sure  
we're delivering excellent quality content..

https://copyright@packt.com
https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-800-56550-X




Section 1:  
Creating Basic 

Streamlit 
Applications

This section will introduce you to the basics of Streamlit applications, data  
visualization in Streamlit, how to deploy applications, and how to implement models  
in a Streamlit application.

The following chapters are covered in this section:

•	 Chapter 1, An Introduction to Streamlit

•	 Chapter 2, Uploading, Downloading, and Manipulating Data

•	 Chapter 3, Data Visualization

•	 Chapter 4, Using Machine Learning with Streamlit

•	 Chapter 5, Deploying Streamlit with Streamlit Sharing





1
An Introduction  

to Streamlit
Streamlit is a web application framework that helps you build and develop Python-based 
web applications that can be used to share analytics results, build complex interactive 
experiences, and illustrate new machine learning models. On top of that, developing 
and deploying Streamlit apps is incredibly fast and flexible, often turning application 
development time from days into hours. 

In this chapter, we start out with the Streamlit basics. We will learn how to download 
and run demo Streamlit apps, how to edit demo apps using our own text editor, how to 
organize our Streamlit apps, and finally, how to make our very own. Then, we will explore 
the basics of data visualization in Streamlit. We will learn how to accept some initial user 
input, and then add some finishing touches to our own apps with text. At the end of this 
chapter, you should be comfortable starting to make your own Streamlit applications!

In particular, we will cover the following topics:

•	 Why Streamlit?

•	 Installing Streamlit

•	 Organizing Streamlit apps

•	 Streamlit plotting demo

•	 Making an app from scratch
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Before we begin, we will start with the technical requirements to make sure we have 
everything we need to get started. 

Technical requirements
Here are the installations and setup required for this chapter:

•	 The requirements for this book are to have Python 3.7 (or later) downloaded 
(https://www.python.org/downloads/), and have a text editor to 
edit Python files in. Any text editor will do. I use Sublime (https://www.
sublimetext.com/3). 

•	 Some sections of this book use GitHub, and a GitHub account is recommended 
(https://github.com/join). Understanding how to use Git is not necessary 
for this book but is always useful. If you want to get started, this link has a useful 
tutorial: https://guides.github.com/activities/hello-world/.

•	 A basic understanding of Python is also very useful for this book. If you are not 
there yet, feel free to spend some time getting to know Python better using this 
tutorial (https://docs.python.org/3/tutorial/) or any other of the 
freely and readily available tutorials out there, and come back here when you are 
ready. We also need to have the Streamlit library installed, which we will do and test 
in a later section called Installing Streamlit.

Why Streamlit?
Data scientists have become an increasingly valuable resource for companies and 
nonprofits over the course of the past decade. They help make data-driven decisions, 
make processes more efficient, and implement machine learning models to improve these 
decisions at a repeatable scale. One pain point for data scientists is in the process just 
after they have found a new insight or made a new model. What is the best way to show 
a dynamic result, a new model, or a complicated piece of analytics to a data scientist's 
colleagues? They can send a static visualization, which works in some cases but fails for 
complicated analyses that build on each other or on anything that requires user input. 
They can create a Word document (or export their Jupyter notebook as a document) that 
combines text and visualizations, which also doesn't work for user input and is harder to 
reproduce. Another option is to build out an entire web application from scratch using 
a framework such as Flask or Django, and then figure out how to deploy the entire app 
in AWS or another cloud provider. None of these options really work that well. Many are 
slow, don't take user input, or are suboptimal for informing the decision-making process 
so fundamental to data science. 

https://www.python.org/downloads/
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://github.com/join
https://guides.github.com/activities/hello-world/
https://docs.python.org/3/tutorial/
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Enter Streamlit. Streamlit is all about speed and interaction. It is a web application 
framework that helps you build and develop Python web applications. It has built-in 
and convenient methods for taking in user input, graphing using the most popular and 
powerful Python graphing libraries, and quickly deploying graphs to a web application. 

I have spent the past year building Streamlit apps of all different flavors, from data projects 
for my personal portfolio to building quick applications for data science take-home 
problems, to even building mini-apps for repeatable analysis at work. I truly believe that 
Streamlit could be as valuable to you and your work as it has been to mine and wrote 
this to bring you quickly up to speed so you can accelerate your learning curve and get 
to building web applications in minutes and hours instead of days. If this is for you, read 
on! We will work in three sections, starting with an introduction to Streamlit, and ramp 
you up to building your own basic Streamlit applications. In part two, we'll extend this 
knowledge to more advanced topics such as production deployment methods and using 
components created by the Streamlit community for increasingly beautiful and usable 
Streamlit apps. And in the last part, we'll focus heavily on interviews with power users 
who use Streamlit at work, in academia, and for learning data science techniques. Before 
we begin, we need to get Streamlit set up and discuss how the rest of this book's examples 
will be structured. 

Installing Streamlit
In order to run any Streamlit apps, you must first install Streamlit. I've used a package 
manager called pip to do this, but you can install it using any package manager you choose 
(for example, brew). This book uses Streamlit version 0.81, and Python 3.7, but it should 
work on newer versions as well.

Throughout this book, we'll be using a mix of both terminal commands and code written 
in Python scripts. We will signpost in which location to run the code to make this as clear 
as possible. To install Streamlit, run the following code in a terminal:

pip install streamlit

Now that we have Streamlit downloaded, we can call it directly from our command line 
using the preceding code to kick off Streamlit's demo.streamlit hello.

Take some time to explore Streamlit's demo and take a glance at any code that you find 
interesting! We're going to borrow and edit the code behind the plotting demo, which 
illustrates a combination of plotting and animation with Streamlit. Before we dive in,  
let's take a second and talk about how to organize Streamlit apps.
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Organizing Streamlit apps
Each Streamlit app we create in this book should be contained in its own folder. It is 
tempting to create new files for each Streamlit app, but this promotes a bad habit that will 
bite us later when we talk about deploying Streamlit apps and deal with permissions and 
data for Streamlit.

For this book, I would recommend that you have a dedicated individual folder that will 
house all the apps you'll create throughout this book. I have named mine streamlit_
apps. The following command will make a new folder called streamlit_apps and 
make it our current working directory: 

mkdir streamlit_apps

cd streamlit_apps

All the code for this book is housed at https://github.com/tylerjrichards/
Getting-Started-with-Streamlit-for-Data-Science, but I would highly 
recommend coding these by hand for practice.

Streamlit plotting demo
First, we're going to start to learn how to make Streamlit apps by reproducing the plotting 
demo we saw before in the Streamlit demo, with a Python file that we've made ourselves. 
In order to do that, we will do the following:

1.	 Make a Python file where we will house all our Streamlit code.

2.	 Use the plotting code given in the demo.

3.	 Make small edits for practice.

4.	 Run our file locally.

Our first step is to create a folder called plotting_app, which will house our first 
example. The following code makes this folder when run in the terminal, changes our 
working directory to plotting_app, and creates an empty Python file we'll call plot_
demo.py:

mkdir plotting_app

cd plotting_app

touch plot_demo.py

https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
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Now that we've made a file called plot_demo.py, open it with any text editor (if you 
don't have one already, I'm partial to Sublime (https://www.sublimetext.com/). 
When you open it up, copy and paste the following code to your plot_demo.py file:

import streamlit as st

import time

import numpy as np

progress_bar = st.sidebar.progress(0)

status_text = st.sidebar.empty()

last_rows = np.random.randn(1, 1)

chart = st.line_chart(last_rows)

for i in range(1, 101):

    new_rows = last_rows[-1, :] + np.random.randn(5, 
1).cumsum(axis=0)

    status_text.text("%i%% Complete" % i)

    chart.add_rows(new_rows)

    progress_bar.progress(i)

    last_rows = new_rows

    time.sleep(0.05)

progress_bar.empty()

# Streamlit widgets automatically run the script from top to 
bottom. Since

# this button is not connected to any other logic, it just 
causes a plain

# rerun.

st.button("Re-run")

This code does a few things. First, it imports all the libraries needed and creates a line 
chart in Streamlit's native graphing framework that starts at a random number sampled 
from a normal distribution with mean 0 and variance 1. And then it runs a for loop 
that keeps sampling new random numbers in bunches of 5 and adding that to the sum 
we had before while waiting for a twentieth of a second so we can see the graph change, 
simulating an animation.

https://www.sublimetext.com/


8     An Introduction to Streamlit 

By the end of this book, you will be able to make apps like this extremely quickly. But for 
now, let's run this locally by typing the following code in our terminal:

streamlit run plot_demo.py

This should open a new tab with your app in your default web browser. We should see our 
app run as shown in the following figure:

Figure 1.1 – Plotting demo output

This is how we will run every Streamlit app, by first calling streamlit run and then 
pointing Streamlit toward the Python script that houses our app's code. Now let's change 
something small within the app so we better understand how Streamlit works. The 
following code changes how many random numbers we plot on our graph, but feel free 
to make any changes you'd like. Make your changes using the following code, save your 
changes in your text editor of choice, and run the file again: 

import streamlit as st

import time

import numpy as np

progress_bar = st.sidebar.progress(0)

status_text = st.sidebar.empty()

last_rows = np.random.randn(1, 1)

chart = st.line_chart(last_rows)

for i in range(1, 101):

    new_rows = last_rows[-1, :] + np.random.randn(50, 
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1).cumsum(axis=0)

    status_text.text("%i%% Complete" % i)

    chart.add_rows(new_rows)

    progress_bar.progress(i)

    last_rows = new_rows

    time.sleep(0.05)

progress_bar.empty()

# Streamlit widgets automatically run the script from top to 
bottom. Since

# this button is not connected to any other logic, it just 
causes a plain

# rerun.

st.button("Re-run")

You should notice that Streamlit detected a change to the source file and is prompting you 
to rerun the file if you'd like. Click Rerun (or Always rerun if you want this behavior to be 
the default, which I almost always do), and watch your app change. 

Feel free to try making some other changes to the plotting app to get the hang of it! Once 
you are ready, let's move on to making our own apps.

Making an app from scratch
Now that we've tried out the apps others have made, let's make our own! This app is going 
to focus on using the central limit theorem, which is a fundamental theorem of statistics 
that says that if we randomly sample with replacement enough from any distribution, then 
the distribution of the mean of our samples will approximate the normal distribution.

We are not going to prove this with our app, but instead, let's try to generate a few graphs 
that help explain the power of the central limit theorem. First, let's make sure that we're in 
the correct directory (we called it streamlit_apps earlier), make a new folder called 
clt_app, and toss in a new file.

The following code makes a new folder called clt_app, and again creates an empty 
Python file, this time called clt_demo.py: 

mkdir clt_app

cd clt_app

touch clt_demo.py
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Whenever we start a new Streamlit app, we want to make sure to import Streamlit (often 
aliased in this book and elsewhere as st). Streamlit has unique functions for each type  
of content (text, graphs, pictures, and other media) that we can use as building blocks  
for all of our apps. The first one we'll use is st.write(), which is a function that takes  
a string (and as we'll see later, almost any Pythonic objects, such as dictionaries) and 
writes it directly into our web app in the order that it is called. As we are calling a Python 
script, Streamlit sequentially looks through the file and, every time it sees one of the 
functions, designates a sequential slot for that piece of content. This makes it very easy to 
use, as you can write all the Python you'd like, and when you want something to appear 
on the app you've made, you can simply use st.write() and you're all set.

In our clt_demo.py file, we can start with the basic 'Hello World' output using 
st.write(), using the following code: 

import streamlit as st

st.write('Hello World')

Now we can test this by running the following code in the terminal:

streamlit run clt_demo.py

We should see the string 'Hello World' printed on our app, so all is good so far.  
The following figure is a screenshot of our app in Safari:

Figure 1.2 – Hello World app

There are three items to note in this screenshot. First, we see the string as we wrote it, 
which is great. Next, we see that the URL points to localhost:8501, which is just telling 
us that we're hosting this locally (that is, it's not on the internet anywhere) through port 
8501. We don't need to understand almost anything about the port system on computers, 
or the Transmission Control Protocol (TCP). The important thing here is that this app is 
local to your computer. The third important item to note is the hamburger icon at the top 
right. The following screenshot shows us what happens when we click the icon: 
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Figure 1.3 – Icon options

This is the default options panel for Streamlit apps. Throughout this book, we'll discuss 
each of these options in depth, especially the non-self-explanatory ones such as Clear 
cache. All we have to know for now is that if we want to rerun the app or find settings  
or the documentation, we can use this icon to find almost whatever we need.

When we host applications so that others can use them, they'll see this same icon but have 
some different options (for example, they will not be able to clear the cache). We'll discuss 
this in greater detail later as well. Now back to our central limit theorem app!

The next step is going to be generating a distribution that we want to sample from 
with replacement. I'm choosing the binomial here. We can read the following code as 
simulating 1,000 coin flips using the Python package numpy, and printing out the mean 
number of heads from those 1,000 coin flips:

import streamlit as st 

import numpy as np 

binom_dist = np.random.binomial(1, .5, 100)

st.write(np.mean(binom_dist))
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Now, given what we know about the central limit theorem, we would expect that  
if we sampled from binom_dist enough times, the mean of those samples would 
approximate the normal distribution.

We've already discussed the st.write() function. Our next foray into writing content 
to the Streamlit app is through graphs. st.pyplot() is a function that lets us use all 
the power of the popular matplotlib library and push our matplotlib graph to 
Streamlit. Once we create a figure in matplotlib, we can explicitly tell Streamlit to write 
that to our app with the st.pyplot() function.

So, all together now! This app simulates 1,000 coin flips and stores those values in  
a list we call binom_dist. We then sample (with replacement) 100 from that list,  
take the mean, and store that mean in the cleverly named variable list_of_means.  
We do that 1,000 times (it's overkill – we could do this even with dozens of samples), and 
then plot the histogram. After we do this, the result of the following code should show  
a bell-shaped distribution: 

import streamlit as st 

import numpy as np 

import matplotlib.pyplot as plt

binom_dist = np.random.binomial(1, .5, 1000)

list_of_means = []

for i in range(0, 1000):

     list_of_means.append(np.random.choice(binom_dist, 100, 
replace=True).mean())

fig, ax = plt.subplots()

ax = plt.hist(list_of_means)

st.pyplot(fig)

Each run of this app will create a new bell curve. When I ran it, my bell curve looked  
like the following figure. If your graph isn't exactly what you see in the next figure,  
that's totally fine because of the random sampling used in our code:
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Figure 1.4 – Bell curve

As you probably noticed, we first created an empty figure and empty axes for that figure 
by calling plt.subplots(), and then assigned the histogram we created to the ax 
variable. Because of this, we were able to explicitly tell Streamlit to show the figure on  
our Streamlit app.

This is an important step, as in Streamlit versions, we can also skip this step, and not 
assign our histogram to any variable, and then call st.pyplot() directly afterward.  
The following code takes this approach:

import streamlit as st 

import numpy as np 

import matplotlib.pyplot as plt

binom_dist = np.random.binomial(1, .5, 1000)

list_of_means = []

for i in range(0, 1000):

     list_of_means.append(np.random.choice(binom_dist, 100, 
replace=True).mean())

plt.hist(list_of_means)

st.pyplot()
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I don't recommend this method, as it can give you some unexpected results. Take this 
example, where we want to first make our histogram of means, and then make another 
histogram of a new list filled only with the number 1.

Take a second and guess what the following code would do. How many graphs would  
we get? What would the output be?

import streamlit as st 

import numpy as np 

import matplotlib.pyplot as plt

binom_dist = np.random.binomial(1, .5, 1000)

list_of_means = []

for i in range(0, 1000):

     list_of_means.append(np.random.choice(binom_dist, 100, 
replace=True).mean())

plt.hist(list_of_means)

st.pyplot()

plt.hist([1,1,1,1])

st.pyplot()

I would expect this to show two histograms, the first one of list_of_means, and the 
second one of the lists of 1s:
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Figure 1.5 – A tale of two histograms 

What we actually get is different! The second histogram has data from the first and 
the second list! When we call plt.hist() without assigning the output to anything, 
matplotlib tacks the new histogram onto the old graph that is stored globally, and 
Streamlit pushes that new one to our app.
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Here's a solution to this issue. If we instead explicitly created two graphs, we could call 
the st.pyplot() function wherever we liked after the graph was generated, and have 
greater control over where exactly our graphs were placed. The following code separates 
the two graphs explicitly: 

import streamlit as st 

import numpy as np 

import matplotlib.pyplot as plt

binom_dist = np.random.binomial(1, .5, 1000)

list_of_means = []

for i in range(0, 1000):

     list_of_means.append(np.random.choice(binom_dist, 100, 
replace=True).mean())

fig1, ax1 = plt.subplots()

ax1 = plt.hist(list_of_means)

st.pyplot(fig1)

fig2, ax2 = plt.subplots()

ax2 = plt.hist([1,1,1,1])

st.pyplot(fig2)

The preceding code plots both histograms separately by first defining separate variables 
for each figure and axis using plt.subplots() and then assigning the histogram to 
the appropriate axis. After this, we can call st.pyplot() using the created figure, which 
produces the following app: 
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Figure 1.6 – Fixed histograms

We can clearly see in the preceding figure that the two histograms are now separated, 
which is the desired behavior. We will very often plot multiple visualizations in Streamlit 
and will use this method for the rest of the book. Now, on to accepting user input!

Using user input in Streamlit apps
As of now, our app is just a fancy way to show our visualizations. But most web apps 
take some user input or are dynamic, not static visualizations. Luckily for us, Streamlit 
has many functions to accept inputs from users, all differentiated by the object that we 
want to input. There are freeform text inputs with st.text_input(); radio buttons, 
st.radio(); numeric inputs with st.number_input(); and a dozen more that 
are extremely helpful for making Streamlit apps. We will explore most of them in detail 
throughout this book, but we'll start with the numeric input.
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From the previous example, we assumed that the coins we were flipping were fair 
coins and had a 50/50 chance of being heads or tails. Let's let the user decide what 
the percentage chance of heads is, assign that to a variable, and use that as an input in 
our binomial distribution. The number input function takes a label, a minimum and 
maximum value, and a default value, which I have filled in the following code: 

import streamlit as st 

import numpy as np 

import matplotlib.pyplot as plt

perc_heads = st.number_input(label = 'Chance of Coins Landing 
on Heads', min_value = 0.0, max_value = 1.0, value = .5)

binom_dist = np.random.binomial(1, perc_heads, 1000)

list_of_means = []

for i in range(0, 1000):

     list_of_means.append(np.random.choice(binom_dist, 100, 
replace=True).mean())

fig, ax = plt.subplots()

ax = plt.hist(list_of_means, range=[0,1])

st.pyplot(fig)

The preceding code uses the st.number_input() function to collect our percentage, 
assigns the user input to a variable (perc_heads), then uses that variable to change 
the inputs to our binomial distribution function that we used before. It also sets our 
histogram's x axis to always be between 0 and 1, so we can better notice changes as our 
input changes. Try and play around with this app for a bit; change the number input and 
notice how the app responds whenever a user input is changed. For example, here is  
a result from when we set the numeric input to .25: 
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Figure 1.7 - An example of a result from when we set the numeric input to .25

As you probably noticed, every time that we changed the input of our script, Streamlit 
re-ran the entire application. This is the default behavior and is very important to 
understanding Streamlit performance; we will explore a few ways that allow us to change 
this default later in the book, such as adding caching or forms! We can also accept text 
input in Streamlit using the st.text_input() function, just as we did with the 
numeric input. The next bit of code takes a text input and assigns it to the title of  
our graph: 

import streamlit as st  

import numpy as np  

import matplotlib.pyplot as plt 

perc_heads = st.number_input(label='Chance of Coins Landing on 
Heads', min_value=0.0,  max_value=1.0, value=.5) 

graph_title = st.text_input(label='Graph Title')

binom_dist = np.random.binomial(1, perc_heads, 1000) 
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list_of_means = [] 

for i in range(0, 1000): 

list_of_means.append(np.random.choice(binom_dist, 100, 
replace=True).mean()) 

 

fig, ax = plt.subplots() 

plt.hist(list_of_means, range=[0,1])

plt.title(graph_title)

st.pyplot(fig)

This creates a Streamlit app with two inputs, both a numeric input and a text input, and 
uses them both to change our Streamlit app. Finally, this results in a Streamlit app that 
looks like the next figure, with dynamic titles and probabilities: 

Figure 1.8 – A Streamlit app with dynamic titles and probabilities

Now that we have worked a bit with user input, let's talk about text and Streamlit apps 
more deeply. 
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Finishing touches – adding text to Streamlit
Our app is functional, but it is missing a lot of nice touches. We talked earlier about the 
st.write() function, which the Streamlit docs call the Swiss Army knife of Streamlit 
commands. Almost whatever we wrap st.write() around will work by default and  
it should be our go-to function if we're not sure of the best path forward.

Other than st.write(), we also can utilize other built-in functions that format 
our text for us, such as st.title(), st.header(), st.markdown(), and 
st.subheader(). Using these five functions helps to format text in our Streamlit apps 
easily and keeps sizing consistent for bigger apps. 

More specifically, st.title() will place a large block of text in our app, st.header() 
uses a slightly smaller font than st.title(), and st.subheader() uses an even 
smaller one. Other than those three, st.markdown() will allow anyone already familiar 
with Markdown to use the popular markup language in our Streamlit apps. Let's try  
a couple of them in the following code:

import streamlit as st

import numpy as np

import matplotlib.pyplot as plt

st.title('Illustrating the Central Limit Theorem with 
Streamlit')

st.subheader('An App by Tyler Richards')

st.write(('This app simulates a thousand coin flips using the 
chance of heads input below,' 

     'and then samples with replacement from that population 
and plots the histogram of the'

     ' means of the samples, in order to illustrate the Central 
Limit Theorem!'))

perc_heads = st.number_input(

    label='Chance of Coins Landing on Heads', min_value=0.0, 
max_value=1.0, value=.5)

binom_dist = np.random.binomial(1, perc_heads, 1000)

list_of_means = []

for i in range(0, 1000):

    list_of_means.append(np.random.choice(
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        binom_dist, 100, replace=True).mean())

fig, ax = plt.subplots()

ax = plt.hist(list_of_means)

st.pyplot(fig)

This preceding code adds a large title (st.title()), adds a smaller subheader below 
(st.subheader()), and then adds some even smaller text below the subheader (st.
write()). We also separated the long string of text in the preceding code block into 
three smaller strings for readability and to make it easier to edit in our text editor. It 
should look like the following screenshot. Note that because we are using randomly 
generated data for this histogram, it is OK (and expected!) if your histogram looks  
slightly different:

Figure 1.9 – Central Limit Theorem application
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One other option Streamlit has for writing out text is st.markdown(), which interprets 
and writes Markdown-style text into your Streamlit app. If you already have familiarity 
with Markdown, this is a great option to test out instead of st.write(). 

Summary
In this chapter, we started by learning how to organize our files and folders for the 
remainder of this book and quickly moved on to instructions for downloading Streamlit. 
We then built our first Streamlit application, Hello World, and learned how to run 
our Streamlit applications locally. Then we started building out a more complicated 
application to show the implications of the central limit theorem from the ground up, 
going from a simple histogram to accepting user input and formatting different types of 
text around our app for clarity and beautification. 

By now, you should be comfortable with subjects such as basic data visualization, editing 
Streamlit apps in a text editor, and locally running Streamlit apps. We're going to dive 
more deeply into data manipulation in our next chapter.





2
Uploading, 

Downloading, and 
Manipulating Data

So far in this book, we have exclusively used simulated data in our Streamlit apps. This 
was useful for getting a good background in some of the basics of Streamlit, but most 
data science is not done on simulated data, but on real-world datasets that data scientists 
already have, or on datasets provided by users. 

This chapter will focus on the world of data in Streamlit apps, covering everything you will 
need to know to bring datasets to life using Streamlit. We will cover data manipulation, 
using user imported data, flow control, debugging Streamlit apps, and speeding up our 
data applications using caching through an example dataset called Palmer's Penguins.

In particular, we will cover the following topics:

•	 The setup – Palmer's Penguins

•	 Debugging Streamlit apps

•	 Data manipulation in Streamlit
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Technical requirements
For this chapter, we will need to download the Palmer's Penguins dataset, which can be 
found at https://github.com/tylerjrichards/streamlit_apps/blob/
main/penguin_app/penguins.csv. The setup for this chapter, along with an 
explanation of the dataset, can be found in the following section. 

The setup – Palmer's Penguins
For this chapter, we'll be using a delightful dataset about Arctic penguins that comes 
from the work of Dr. Kristen Gorman (https://www.uaf.edu/cfos/people/
faculty/detail/kristen-gorman.php) and the Palmer Station, Antarctica LTER 
(https://pal.lternet.edu/). 

Dataset acknowledgment
Data from the Palmer LTER data repository was supported by the Office of 
Polar Programs, NSF Grants OPP-9011927, OPP-9632763, and OPP-0217282.

This data is a common alternative to the famous Iris datasets and includes data on 344 
individual penguins with 3 species represented. The data can be found in the GitHub 
repository for this book (https://github.com/tylerjrichards/streamlit_
apps), in the penguin_app folder entitled penguins.csv. 

As we've discussed before, Streamlit apps run from inside our Python script. This sets the 
base directory to the location of the Python file with our Streamlit app, which means  
we can access any other files that we put in our app directory.

First, let's create a folder for our new app in our existing streamlit_apps folder using 
the following code block:

mkdir penguin_app

cd penguin_app

touch penguins.py

https://github.com/tylerjrichards/streamlit_apps/blob/main/penguin_app/penguins.csv
https://github.com/tylerjrichards/streamlit_apps/blob/main/penguin_app/penguins.csv
https://www.uaf.edu/cfos/people/faculty/detail/kristen-gorman.php
https://www.uaf.edu/cfos/people/faculty/detail/kristen-gorman.php
https://pal.lternet.edu/
https://github.com/tylerjrichards/streamlit_apps
https://github.com/tylerjrichards/streamlit_apps
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After this, download the data and put the resulting CSV file (named penguins.csv in 
the example) in the penguin_app folder. Now, our folder should have the penguins.
py file and our penguins.csv file. For our first go around, we're just going to print out 
the first five rows of our DataFrame using the st.write() function we learned earlier 
using the following code:

import streamlit as st

import pandas as pd

st.title("Palmer's Penguins")

#import our data

penguins_df = pd.read_csv('penguins.csv')

 st.write(penguins_df.head())

The preceding code will produce the following Streamlit app when we run streamlit 
run penguins.py in the terminal:

Figure 2.1 – The first five penguins

Now that we have a good idea of what the data looks like, we will explore the dataset a bit 
more and then begin adding to our app. 
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Exploring Palmer's Penguins
Before we begin working with this dataset, we should make some visualizations to better 
understand the data. As we saw before, we have many columns in this data, from the 
bill length to the flipper length, to the island the penguin lives on, to even the species of 
penguin. For our first visualization, we can see the flipper length by body mass for the 
three species:

Figure 2.2 – Flippers and weight

As we can see, the Gentoo species has a high flipper length and body mass, and it appears 
that flipper length is correlated with body mass for all species. Next, let's look at the 
relationship between bill length and flipper length: 
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Figure 2.3 – Flippers and bills

From this graph, we can see that the Chinstrap species seem to have a longer bill than the 
Adelie species. There are many more combinations of variables that we could plot on  
a scatterplot, but could we instead make a data explorer Streamlit app do this for us?

The final goal of this mini-app is going to be to ask the user to specify one of the species of 
penguins and to then also choose two other variables to use for a scatterplot. We'll start by 
learning how to take those inputs, and then create a dynamic visualization.

The last user input that we learned about was the number input function, which won't 
help us here. Streamlit has a select box function (st.selectbox()) that allows us to 
ask the user to select one option from multiple options (in our case, three options), and 
the function returns whatever the user selects. We will use this to get the three inputs for 
our scatterplot:

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

st.title("Palmer's Penguins")

st.markdown('Use this Streamlit app to make your own 



30     Uploading, Downloading, and Manipulating Data

scatterplot about penguins!')

 selected_species = st.selectbox('What species would you like 
to visualize?',

     ['Adelie', 'Gentoo', 'Chinstrap'])

 selected_x_var = st.selectbox('What do want the x variable to 
be?',

     ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g'])

 selected_y_var = st.selectbox('What about the y?',

     ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g'])

This code creates three new variables from three new select boxes that the user can  
input in our Streamlit app. The following screenshot shows the Streamlit app from the 
preceding code: 

Figure 2.4 – User input on penguins
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Now that we have the selected_species variable, we can filter our DataFrame and 
make a quick scatterplot using the selected x and y variables, as in this next block of code:

Import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

st.title("Palmer's Penguins")

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!')

 selected_species = st.selectbox('What species would you like 
to visualize?',

     ['Adelie', 'Gentoo', 'Chinstrap'])

 selected_x_var = st.selectbox('What do want the x variable to 
be?',

     ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g'])

 selected_y_var = st.selectbox('What about the y?',

     ['bill_depth_mm', 'bill_length_mm', 'flipper_length_mm', 
'body_mass_g'])

 

penguins_df = pd.read_csv('penguins.csv')

 penguins_df = penguins_df[penguins_df['species'] == selected_
species]

 

fig, ax = plt.subplots()

ax = sns.scatterplot(x = penguins_df[selected_x_var],

     y = penguins_df[selected_y_var])

 plt.xlabel(selected_x_var)

 plt.ylabel(selected_y_var)

 st.pyplot(fig)
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This bit of preceding code adds to the previous example by loading our DataFrame, 
filtering by species, and then plotting in the same method from the previous chapter, 
which will result in the same app as before but with a scatterplot attached as well, as 
shown in the following screenshot:

Figure 2.5 – First penguins scatterplot
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Try to play around with this app and make sure that all the inputs and outputs are working 
correctly. Also notice that we've used the input variables to set out x axis and y axis labels, 
which means that those will update automatically when we make any new selections. 
Our graph doesn't explicitly show what species is being graphed, so let's practice making 
dynamic text. The following adds dynamic text to our Streamlit app's graph title with the 
format() function native to Python:

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

st.title("Palmer's Penguins")

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!')

 selected_species = st.selectbox('What species would you like 
to visualize?',

     ['Adelie', 'Gentoo', 'Chinstrap'])

 selected_x_var = st.selectbox('What do want the x variable to 
be?',

     ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g'])

 selected_y_var = st.selectbox('What about the y?',

     ['bill_depth_mm', 'bill_length_mm', 'flipper_length_mm', 
'body_mass_g'])

 

penguins_df = pd.read_csv('penguins.csv')

 penguins_df = penguins_df[penguins_df['species'] == selected_
species]

 

fig, ax = plt.subplots()

ax = sns.scatterplot(x = penguins_df[selected_x_var],

     y = penguins_df[selected_y_var])

 plt.xlabel(selected_x_var)

 plt.ylabel(selected_y_var)

 plt.title('Scatterplot of {} Penguins'.format(selected_
species))

 st.pyplot(fig)
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The preceding code adds the species to our scatterplot and results in the following 
Streamlit app:

Figure 2.6 – Dynamic graph titles
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This looks great! We can also graph each species by hue and shape, as we did in the 
introductory graphs earlier in this book. The following code does this, and also uses the 
Seaborn dark grid theme to stand out against Streamlit's white background a bit better:

import streamlit as st 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

st.title("Palmer's Penguins") 

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!')  

selected_x_var = st.selectbox('What do want the x variable to 
be?', 

  ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g']) 

selected_y_var = st.selectbox('What about the y?', 

  ['bill_depth_mm', 'bill_length_mm', 'flipper_length_mm', 
'body_mass_g']) 

 

penguins_df = pd.read_csv('penguins.csv') 

 

sns.set_style('darkgrid')

markers = {"Adelie": "X", "Gentoo": "s", "Chinstrap":'o'}

fig, ax = plt.subplots() 

ax = sns.scatterplot(data = penguins_df, x = selected_x_var, 

  y = selected_y_var, hue = 'species', markers = markers,

  style = 'species') 

plt.xlabel(selected_x_var) 

plt.ylabel(selected_y_var) 

plt.title("Scatterplot of Palmer's Penguins") 

st.pyplot(fig)

*** Note: The code above is not in the correct format, please 
fix **
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The following screenshot shows our new and improved Palmer's Penguins app, which 
allows us to select x and y axes and plots a scatterplot for us with the species in a different 
hue and shape:

Figure 2.7 – Screenshot with shapes
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Note
You are likely looking at this application through a black and white screenshot, 
which will only show the shape difference.

The last step for this app is to allow the user to upload their own data. What if we wanted 
the research team at any point to be able to upload their data to this app and see the 
graphed results? Or what if there were three research groups, all with their own unique 
data with different column names, that wanted to use a method that we created? We'll 
approach this problem one aspect at a time. First, how do we accept data from users?

Streamlit has a function called file_uploader() that allows users of the app to upload 
data up to 200 MB in size (as a default). It works just like the other interactive widgets 
we've used before, with one exception. Our default in an interactive widget-like select box 
is just the first value in our list, but it does not make sense to have a default uploaded file 
before the user actually interacts with the app! The default user uploaded file has a value  
of None.

This begins to cover a very important concept in Streamlit development, which is flow 
control. Flow control can be understood as thinking carefully through all the steps of your 
application because Streamlit will try to run the entire app at once if we're not explicit 
about things, such as wanting to wait until the user has uploaded a file to attempt to create 
a graphic or manipulate a DataFrame.

Flow control in Streamlit
As we talked about before, there are two solutions to this data upload default problem.  
We can provide a default file to use until the user interacts with the application, or we can 
stop the app until a file is uploaded. Let's start with the first option. The following code 
uses the st.file_uploader() function from within an if statement. If the user 
uploads a file, then the app uses that; if they do not, then we default to the file we have 
used before: 

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

st.title("Palmer's Penguins")

st.markdown('Use this Streamlit app to make your own 
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scatterplot about penguins!')

 

penguin_file = st.file_uploader('Select Your Local Penguins CSV 
(default provided)')

 if penguin_file is not None:

     penguins_df = pd.read_csv(penguin_file)

 else:

     penguins_df= pd.read_csv('penguins.csv')

 

selected_x_var = st.selectbox('What do want the x variable to 
be?',

     ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g'])

 selected_y_var = st.selectbox('What about the y?',

     ['bill_depth_mm', 'bill_length_mm', 'flipper_length_mm', 
'body_mass_g'])

 

fig, ax = plt.subplots()

ax = sns.scatterplot(x = penguins_df[selected_x_var],

     y = penguins_df[selected_y_var], hue = penguins_
df['species'])

 plt.xlabel(selected_x_var) plt.ylabel(selected_y_var)

 plt.title("Scatterplot of Palmer's Penguins")

st.pyplot(fig)

When we run the preceding code in our terminal, we see our three user inputs (the x axis, 
the y axis, and the dataset), and also the graph even if we have yet to upload a file. The 
following screenshot shows this app:
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Figure 2.8 – File input

The clear advantage of this approach is that there are always results shown in this 
application, but the results may not be useful to the user! For larger applications, this  
is a subpar solution as well because any data stored inside the app, regardless of use, is 
going to slow the application down. Later, in Chapter 7, Exploring Streamlit Components,  
we'll discuss all of our options for deployment, including a built-in deployment option 
called Streamlit Sharing.
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Our second option is to stop the application entirely unless the user has uploaded  
a file. For that option, we're going to use a new Streamlit function called stop(), which 
(predictably) stops the flow whenever it is called. It is best practice to use this to find 
errors in the app and to encourage the user to make some change or describe the error 
that is happening. This is not necessary for us but is a good thing to know for future 
applications. The following code uses an if-else statement with st.stop() in the 
else statement to prevent the entire app from running when st.file_uploader()  
is unused:

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

st.title("Palmer's Penguins")

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!')

 

selected_x_var = st.selectbox('What do want the x variable to 
be?',

     ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g'])

 selected_y_var = st.selectbox('What about the y?',

     ['bill_depth_mm', 'bill_length_mm', 'flipper_length_mm', 
'body_mass_g'])

penguin_file = st.file_uploader('Select Your Local Penguins 
CSV')

 if penguin_file is not None:

     penguins_df = pd.read_csv(penguin_file)

 else:

     st.stop()

sns.set_style('darkgrid')

markers = {"Adelie": "X", "Gentoo": "s", "Chinstrap":'o'}

fig, ax = plt.subplots() 

ax = sns.scatterplot(data = penguins_df, x = selected_x_var, 

  y = selected_y_var, hue = 'species', markers = markers,

  style = 'species') 

plt.xlabel(selected_x_var) 
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plt.ylabel(selected_y_var) 

plt.title("Scatterplot of Palmer's Penguins") 

st.pyplot(fig)

As we can see with the following screenshot, until we upload our own data, we will not see 
a scatterplot, and the application stops. The Streamlit app simply waits to run fully until 
the user has uploaded their file instead of throwing an error:

Figure 2.9 – Streamlit stop

Before we move on to data manipulation and create more complicated Streamlit apps,  
we should touch on some best practices for debugging Streamlit apps. 

Debugging Streamlit apps
We broadly have two options for Streamlit development.

•	 Develop in Streamlit and st.write() as a debugger.

•	 Explore in Jupyter and then copy to Streamlit.
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Developing in Streamlit
In the first option, we write our code directly in Streamlit as we're experimenting and 
exploring exactly what our application will do. We've basically been taking this option 
already, which works very well if we have less exploration work and more implementation 
work to do. 

Pros:

•	 What you see is what you get

•	 No need to maintain both IPython and Python versions of the same app

•	 Better experience for learning how to write production code

Cons:

•	 A slower feedback loop (the entire app must run before feedback)

•	 A potentially unfamiliar development environment

Exploring in Jupyter and then copying to Streamlit
Another option is to utilize the extremely popular Jupyter data science product to 
write and test out the Streamlit app's code before placing it in the necessary script and 
formatting it correctly. This can be useful for exploring new methods that will live in the 
Streamlit app, but it has serious downsides.

Pros:

•	 The lightning-fast feedback loop makes it easier to experiment.

•	 Users may be more familiar with Jupyter.

•	 The full app does not have to be run to get results.

Cons:

•	 Jupyter may provide deceptive results if run out of order.

•	 'Copying' code over from Jupyter is time-consuming.

•	 Python versioning may be different between Jupyter and Streamlit.

My recommendation here is to develop Streamlit apps inside the environment where 
they are going to be run (that is, a Python file). For debugging, heavily utilize the 
st.write() function, which can print out nearly any Python object (dictionary, 
DataFrame, list, string, number, graph, and so on) that you may need. Try to only use 
another development environment such as Jupyter as a last resort!
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Data manipulation in Streamlit
Streamlit runs our Python file from the top down as a script, and so we can perform data 
manipulation with powerful libraries such as pandas in the same way that we might in  
a Jupyter notebook or a regular Python script. As we've discussed before, we can do all our 
regular data manipulation as normal. For our Palmer's Penguins app, what if we wanted 
the user to be able to filter out penguins based on their gender? The following code filters 
our DataFrame using pandas: 

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

st.title("Palmer's Penguins")

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!')

 

penguin_file = st.file_uploader(

    'Select Your Local Penguins CSV (default provided)')

 if penguin_file is not None:

    penguins_df = pd.read_csv(penguin_file)

 else:

    penguins_df = pd.read_csv('penguins.csv')

 

selected_x_var = st.selectbox('What do want the x variable to 
be?',

                              ['bill_length_mm', 'bill_depth_
mm', 'flipper_length_mm', 'body_mass_g'])

 selected_y_var = st.selectbox('What about the y?',

                              ['bill_depth_mm', 'bill_length_
mm', 'flipper_length_mm', 'body_mass_g'])

 selected_gender = st.selectbox('What gender do you want to 
filter for?',

                               ['all penguins', 'male 
penguins', 'female penguins'])

 if selected_gender == 'male penguins':

    penguins_df = penguins_df[penguins_df['sex'] == 'male']

 elif selected_gender == 'female penguins':
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    penguins_df = penguins_df[penguins_df['sex'] == 'female']

 else:

    pass

fig, ax = plt.subplots()

ax = sns.scatterplot(x=penguins_df[selected_x_var],

                     y=penguins_df[selected_y_var], 
hue=penguins_df['species'])

 plt.xlabel(selected_x_var)

 plt.ylabel(selected_y_var)

 plt.title("Scatterplot of Palmer's Penguins: {}".
format(selected_gender))

 st.pyplot(fig)

A couple of things to note here. First, we've added another selectbox plugin, with male, 
female, and all options. We could have done this by asking for a text input, but for data 
manipulation, we want to restrict user action as much as possible. We also made sure to 
dynamically change the title, which is recommended for clarity as we want to show the 
user that the data has been filtered by their input directly in the graph.

An introduction to caching
As we create more computationally intensive Streamlit apps and begin to use and upload 
larger datasets, we should start worrying about the runtime of these apps and work to 
increase our efficiency whenever possible. The easiest way to make a Streamlit app more 
efficient is through caching, which is storing some results in memory so that the app does 
not repeat the same work whenever possible.

A good analogy to an app's cache is a human's short-term memory, where we keep bits  
of information close at hand that we think might be useful. When something is in our 
short-term memory, we don't have to think very hard to get access to that piece of 
information. In the same way, when we cache a piece of information in Streamlit, we are 
making a bet that we'll use that information often.

The way Streamlit caching works more specifically is by storing the results of a function in 
our app, and if that function is called with the same parameters by another user (or by us 
if we rerun the app), Streamlit does not run the same function but instead loads the result 
of the function from memory.
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Let's prove to ourselves that this works! First, we'll create a function for our data upload 
part of the Penguins app, and then use the time library to artificially make the function 
take much longer than it would normally and see whether we can make our app faster 
using st.cache().

As you can see in the following code, we first made a new function called load_file(), 
which waits 3 seconds, and then loads the file that we need. Normally we would not 
intentionally slow down our app, but we want to know whether caching works:

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import time

st.title("Palmer's Penguins")

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!')

 

penguin_file = st.file_uploader(

    'Select Your Local Penguins CSV (default provided)')

 

def load_file(penguin_file):

    time.sleep(3)

    if penguin_file is not None:

        df = pd.read_csv(penguin_file)

    else:

        df = pd.read_csv('penguins.csv')

    return(df)

 penguins_df = load_file(penguin_file)

 

selected_x_var = st.selectbox('What do want the x variable to 
be?',

                              ['bill_length_mm', 'bill_depth_
mm', 'flipper_length_mm', 'body_mass_g'])

 selected_y_var = st.selectbox('What about the y?',

                              ['bill_depth_mm', 'bill_length_
mm', 'flipper_length_mm', 'body_mass_g'])

 selected_gender = st.selectbox('What gender do you want to 
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filter for?',

                               ['all penguins', 'male 
penguins', 'female penguins'])

 if selected_gender == 'male penguins':

    penguins_df = penguins_df[penguins_df['sex'] == 'male']

 elif selected_gender == 'female penguins':

    penguins_df = penguins_df[penguins_df['sex'] == 'female']

 else:

    pass

fig, ax = plt.subplots()

ax = sns.scatterplot(x=penguins_df[selected_x_var],

                     y=penguins_df[selected_y_var], 
hue=penguins_df['species'])

 plt.xlabel(selected_x_var)

 plt.ylabel(selected_y_var)

 plt.title("Scatterplot of Palmer's Penguins: {}".
format(selected_gender))

 st.pyplot(fig)

Now, let's run this app and then select the hamburger icon in the top right and press the 
rerun button (we can also just press the R key to rerun).

We notice that each time we rerun the app, it takes at least 3 seconds. Now, let's add our 
cache decorator on top of the load_file function and run our app again:

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

mport seaborn as sns

import time

st.title("Palmer's Penguins")

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!')

 

penguin_file = st.file_uploader(

    'Select Your Local Penguins CSV (default provided)')

 @st.cache()

def load_file(penguin_file):
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    time.sleep(3)

    if penguin_file is not None:

        df = pd.read_csv(penguin_file)

    else:

        df = pd.read_csv('penguins.csv')

    return(df)

 penguins_df = load_file(penguin_file)

 

selected_x_var = st.selectbox('What do want the x variable to 
be?',

                              ['bill_length_mm', 'bill_depth_
mm', 'flipper_length_mm', 'body_mass_g'])

 selected_y_var = st.selectbox('What about the y?',

                              ['bill_depth_mm', 'bill_length_
mm', 'flipper_length_mm', 'body_mass_g'])

 selected_gender = st.selectbox('What gender do you want to 
filter for?',

                               ['all penguins', 'male 
penguins', 'female penguins'])

 if selected_gender == 'male penguins':

    penguins_df = penguins_df[penguins_df['sex'] == 'male']

 elif selected_gender == 'female penguins':

    penguins_df = penguins_df[penguins_df['sex'] == 'female']

 else:

    pass

fig, ax = plt.subplots()

ax = sns.scatterplot(x=penguins_df[selected_x_var],

                     y=penguins_df[selected_y_var], 
hue=penguins_df['species'])

 plt.xlabel(selected_x_var)

 plt.ylabel(selected_y_var)

 plt.title("Scatterplot of Palmer's Penguins: {}".
format(selected_gender))

 st.pyplot(fig)
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As we run the app a few times, we can notice that it is much faster! When we rerun the 
app, two things happen. First, Streamlit checks the cache to ascertain whether that same 
function with the same inputs has been run before and returns the Penguins data from 
memory, and second, it does not run the load_file function at all, meaning we never 
run the time.sleep(3) command and also never spend the time required to load the 
data into Streamlit. We'll explore this caching function in more detail, but this method will 
get us the majority of the efficiency gains. 

Summary
This chapter was full of fundamental building blocks that we will use vigorously 
throughout the remainder of this book, and that you will use to develop your own 
Streamlit applications. 

On data, we covered how to bring our own DataFrames into Streamlit and how to accept 
user input in the form of a data file that brings us past only being able to simulate data. 
On other skillsets, we learned how to use our cache to make our data apps faster, how 
to control the flow of our Streamlit apps, and how to debug our Streamlit apps using 
st.write(). That's it for this chapter. Next, we'll move on to data visualization!



3
Data Visualization

Visualization is fundamental to the modern data scientist. It is often the central lens 
used to understand items such as statistical models (for example, via an AUC chart), the 
distribution of a crucial variable (via a histogram), or even important business metrics. 

In the last two chapters, we used the most popular Python graphing libraries (Matplotlib 
and Seaborn) in our examples. This chapter will focus on extending that ability to a broad 
range of Python graphing libraries, along with including some graphing functions native 
to Streamlit. 

By the end of this chapter, you should feel comfortable with using Streamlit's native 
graphing functions, and also using Streamlit's visualization functions to place graphs 
made from major Python visualization libraries in your own Streamlit app. 

In this chapter, we will cover the following topics: 

•	 San Francisco Trees – A new dataset

•	 Streamlit's built-in graphing functions

•	 Streamlit's built-in visualization options
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•	 Importing Python visualization libraries into Streamlit. In this section, we will cover 
the following libraries: 

(a) Plotly (for interactive visualizations)

(b) Seaborn+Matplotlib (for classic statistical visualizations)

(c) Bokeh (for interactive visualization in web browsers)

(d) Altair (for declarative, interactive visualizations)

(e) PyDeck (for interactive map-based visualizations)

Technical requirements
For this chapter, we will be working with a new dataset that can be found at https://
github.com/tylerjrichards/streamlit_apps/blob/main/trees_app/
trees.csv. A further explanation of the dataset can be found in the following section. 

San Francisco Trees – A new dataset
We're going to be working with all sorts of graphs in this chapter, so we're going to need 
a new dataset that has much more info, especially dates and locations. Enter SF Trees. 
The department of public works in San Francisco has a dataset (cleaned by the wonderful 
folks in the R community who run Tidy Tuesday, a weekly event where people publish 
interesting visualizations of new data each week) of every tree planted and maintained in 
the city of San Francisco. They cleverly call this dataset EveryTreeSF – Urban Forest map, 
and update this dataset every day. I have selected a random 10,000 trees with complete 
info and placed this data in the main GitHub repository under the trees folder  
(I'm not as clever as the data engineer in SF's DPW, I know). The GitHub repo can be 
found at https://github.com/tylerjrichards/streamlit_apps. If you 
would like to download the full dataset, the link is here: https://data.sfgov.org/
City-Infrastructure/Street-Tree-List/tkzw-k3nq. 

https://github.com/tylerjrichards/streamlit_apps/blob/main/trees_app/trees.csv
https://github.com/tylerjrichards/streamlit_apps/blob/main/trees_app/trees.csv
https://github.com/tylerjrichards/streamlit_apps/blob/main/trees_app/trees.csv
https://github.com/tylerjrichards/streamlit_apps
https://data.sfgov.org/City-Infrastructure/Street-Tree-List/tkzw-k3nq
https://data.sfgov.org/City-Infrastructure/Street-Tree-List/tkzw-k3nq
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From the main streamlit_apps folder we've been using throughout this book, start by 
making a new folder, making a new Python file, and then downloading our data into the 
folder, the same thing as we did in Chapter 2, Uploading, Downloading, and Manipulating 
Data, but just adding some new data! You can run the following code in your terminal to 
set this up:

mkdir trees_app

cd trees_app

touch trees.py

curl https://raw.githubusercontent.com/tylerjrichards/
streamlit_apps/main/trees_app/trees.csv > trees.csv

I'll note here that if this does not work, or if you are on an operating system without these 
commands (such as Windows, for example), you can always go and download the CSV file 
directly by going to the GitHub repo mentioned in the preceding paragraph (https://
github.com/tylerjrichards/streamlit_apps).  

Now that we have our setup, our next step is to open our trees.py file in our favorite 
editor and get to making our Streamlit app. 

Note
We will follow these exact same steps at the beginning of the rest of the 
chapters, so in the future, we will not cover these explicitly.

Let's start by titling our app and printing out some example rows using the following code: 

import streamlit as st

import pandas as pd

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 trees_df = pd.read_csv('trees.csv')

 st.write(trees_df.head())

https://github.com/tylerjrichards/streamlit_apps
https://github.com/tylerjrichards/streamlit_apps
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We can then run the following command in our terminal and see the resulting Streamlit 
app in our browser:

streamlit run trees.py

Note that this is neither the easiest nor the best way to see the first few rows of a dataset, 
but we can do this purely because we already know that we're going to build a Streamlit 
app using this data. The general workflow usually begins with some data exploration 
outside of Streamlit (in Jupyter notebooks, through SQL queries, or whatever the 
preferred workflow is for you as a data scientist or analyst). That said, let's continue 
looking at our dataset by looking at the output of the preceding code in the new Streamlit 
app in our browser:

Figure 3.1 – The first few rows of trees

This dataset contains a huge amount of info about the trees in SF, from their width (dbh) 
to the longitude and latitude points, the species, their address, and even the date they were 
planted. Before we get started with graphing, let's talk a bit about the visualization options 
in front of us. 

Streamlit visualization use cases
Some Streamlit users are relatively experienced Python developers with well-tested 
workflows in visualization libraries of their choice. For these users, the best path forward 
is the one we've taken so far, which is to create our graphs in our library of choice 
(Seaborn, Matplotlib, Bokeh, and so on) and then use the appropriate Streamlit function 
to write this to the app. 
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Other Streamlit users will have less experience in Pythonic graphing, and especially for 
these users, Streamlit offers a few built-in functions. We'll start with built-in libraries  
and move on to learning how to import the most popular and powerful libraries for  
our Streamlit apps. 

Streamlit's built-in graphing functions
There are three built-in functions for graphing – st.line_chart(), st.bar_
chart(), and st.area_chart(). They all work similarly by trying to figure out what 
variables you're already trying to graph, and then put them into a line, bar, or area chart, 
respectively. In our dataset, we have a variable called dbh, which is the width of the tree 
at chest height. First, we can group our DataFrame by dbh, and then push that directly to 
the line chart, bar chart, and area chart. The following code should group our dataset by 
width, count the unique trees of each width, and then make a line, bar, and area chart  
of each:

import streamlit as st

import pandas as pd

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 trees_df = pd.read_csv('trees.csv')

 df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).
count()['tree_id'])

 df_dbh_grouped.columns = ['tree_count']

 st.line_chart(df_dbh_grouped)

 st.bar_chart(df_dbh_grouped)

 st.area_chart(df_dbh_grouped)
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The preceding code should show our three graphs right after one another, as is shown in 
the following screenshot:

Figure 3.2 – Lines, bars, area, and tree height
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We gave the function nothing except for the DataFrame, and it was able to guess correctly 
which items should be on the x and y axes and plot those to our Streamlit chart. Each 
of these charts is interactive by default! We can zoom in or out, roll out the mouse over 
points/bars/lines to see each data point, and even view fullscreen out of the box. These 
Streamlit functions are actually calling another popular graphing library called Altair, 
which we will learn how to use in more depth later in this chapter. 

Now that we see the basics of the built-in (it's clear that the term built-in is fairly loose 
here, as Streamlit is built to be a great and convenient web application library, not a great 
visualization library) functions, let's push these functions to see how they handle more 
data. First, we're going to make a new column of random numbers between -500 and 500 
in our df_dbh_grouped DataFrame using the numpy library and use the same plotting 
code that we used before. The following code plots two line charts, one before we added 
the new column, and one after: 

import streamlit as st

import pandas as pd

import numpy as np

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 trees_df = pd.read_csv('trees.csv')

 df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).
count()['tree_id'])

 df_dbh_grouped.columns = ['tree_count']

st.line_chart(df_dbh_grouped)

 df_dbh_grouped['new_col'] = np.random.randn(len(df_dbh_
grouped)) * 500

st.line_chart(df_dbh_grouped)
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This code should produce an app that looks like the following screenshot:

Figure 3.3 – Two sequential line charts



Streamlit's built-in graphing functions     57

Again, these functions put whatever is on the index as the x axis and use all the columns 
they can as variables on the y axis. These built-in functions are very useful if we have an 
incredibly straightforward graphing problem in front of us (as in the example). However, 
these visualization functions are, overall, less flexible in comparison to libraries with the 
sole purpose of visualization and it may be difficult to debug the behavior behind these 
functions. The recommendation here is that if you are working with data that is easy to 
massage into a format where the index of the DataFrame belongs on the x axis, and the 
rest of the columns are plotted on the y axis, these functions will work well. For more 
complicated tasks, we should use other graphing libraries. 

There is one more built-in Streamlit graphing function that we should discuss here, 
st.map(). Just like the preceding functions, this wraps around another Python graphing 
library, this time PyDeck instead of Altair, and finds columns that it thinks are longitude 
and latitude points by searching the DataFrame for columns with titles such as longitude, 
long, latitude, or lat. Then, it plots each row as its own point on a map, auto-zooms  
and focuses the map, and writes it to our Streamlit app. We should note that visualizing 
detailed maps is much more computationally intensive in comparison to the other forms  
of visualization that we have used so far, so we are going to sample 1,000 random rows 
from our DataFrame, remove null values, and try out st.map() using the following code: 

import streamlit as st

import pandas as pd

import numpy as np

t.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 trees_df = pd.read_csv('trees.csv')

 trees_df = trees_df.dropna(subset=['longitude', 'latitude'])

 trees_df = trees_df.sample(n = 1000)

 st.map(trees_df)
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This works perfectly well, right out of the box! We get a beautiful interactive map of the 
trees in San Francisco, as we can see in the following screenshot:

Figure 3.4 – Default SF map of trees

As with the other functions, we don't have many options for customization here other 
than an optional zoom parameter, but this works very well for a quick visualization. 

As we've seen, these built-in functions can be useful for making Streamlit apps quickly, 
but we trade off speed for customizability. In practice, I rarely use these functions when 
I produce Streamlit apps, but often use these when doing quick visualizations of data 
already in Streamlit. In production, more powerful libraries, such as Matplotlib, Seaborn, 
and PyDdeck, give us the flexibility and customizability we want. The rest of this chapter 
will walk through six different popular Python visualization libraries.
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Streamlit's built-in visualization options
For the rest of this chapter, we're going to run through the rest of the Streamlit 
visualization options, which are Plotly, Matplotlib, Seaborn, Bokeh, Altair, and PyDeck. 

Plotly
Plotly is an interactive visualization library that many data scientists use for visualizing 
data in Jupyter, in the browser locally, or even hosting these graphs to be viewed on  
a platform for visualizations and dashboards created by the Plotly team called Dash.  
This library is very similar to Streamlit in its intent and is primarily used for internal  
or external dashboards (hence, the name Dash). 

Streamlit allows us to call plotly graphs from within Streamlit apps using the 
st.plotly_chart() function, which makes it a breeze to port any Plotly or Dash 
dashboards. We'll test this out by making a histogram of the height of the trees in SF, 
essentially the same graph that we've made before. The following code makes our  
Plotly histogram:

import streamlit as st

import pandas as pd

import plotly.express as px

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 st.subheader('Plotly Chart')

 trees_df = pd.read_csv('trees.csv')

 

fig = px.histogram(trees_df['dbh'])

 st.plotly_chart(fig)
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As we'll notice, all the interactivity native to Plotly works by default in Streamlit. The user 
can scroll over the histogram bars and get the exact info about each one. There are a few 
other useful built-in features to Plotly that port over to Streamlit, such as the ability to 
zoom in and out, download the plot as a png, and select a group of data points/bars/lines. 
The full features can be seen in the following screenshot:

Figure 3.5 – First Plotly chart 

Now that we're comfortable with Plotly, we can move on to other popular visualization 
libraries, Matplotlib and Seaborn. 
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Matplotlib and Seaborn
Earlier in this book, we learned how to use the Matplotlib and Seaborn visualization 
libraries inside Streamlit, so we will just go over them briefly here. There is a column 
called date in the trees dataset that corresponds to the date that the tree was planted. 
We can use the datetime library to figure out the age of each tree in days, and plot that 
histogram using Seaborn and Matplotlib, respectively. The following code creates a new 
column called age, which is the difference in days between the tree planting date and 
today, and then graphs the histogram of the age using both Seaborn and Matplotlib:

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import datetime as dt

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

trees_df = pd.read_csv('trees.csv')

trees_df['age'] = (pd.to_datetime('today') -

                   pd.to_datetime(trees_df['date'])).dt.days

st.subheader('Seaborn Chart')

fig_sb, ax_sb = plt.subplots()

ax_sb = sns.histplot(trees_df['age'])

plt.xlabel('Age (Days)')

st.pyplot(fig_sb)

st.subheader('Matploblib Chart')

fig_mpl, ax_mpl = plt.subplots()

ax_mpl = plt.hist(trees_df['age'])

plt.xlabel('Age (Days)')

st.pyplot(fig_mpl)
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In the preceding code, we defined unique subplots for each graph, created a Seaborn  
or Matplotlib graph for each, and then used the st.pyplot() function to insert each 
graph in order onto our Streamlit app. The preceding code should show an app similar to 
the following screenshot (I say similar because, depending on when you run this, the age 
of the trees will be different as pd.to_datetime ('today') will return your current date:

Figure 3.6 – Seaborn and Matplotlib histograms
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Whether you use Seaborn or Matplotlib, you'll use the st.pyplot() function in the 
same way. Now that we're more comfortable with these libraries, we should learn about 
another interactive visualization library – Bokeh. 

Bokeh
Bokeh is another web-based interactive visualization library that also has dashboarding 
products built on top of it. It is a direct competitor to Plotly, but is more focused on the 
Python ecosystem, whereas Plotly is built on top of Plotly.js. Either way, Bokeh 
is an extremely popular Python visualization package that Python users may be very 
comfortable using. 

We can call Bokeh graphs using the same format as Plotly. First, we create the Bokeh 
graph, and then we use the st.bokeh_chart() function to write the app to Streamlit. 
In Bokeh, we have to first instantiate a Bokeh figure object, and then change aspects of 
that figure before we plot it out. The important lesson here is that if we change an aspect 
of the Bokeh figure object after we call the st.bokeh_chart() function, we will not 
change the graph shown on the Streamlit app. For example, when we run the following 
code, we will not see a new x axis title at all:

import streamlit as st

import pandas as pd

from bokeh.plotting import figure

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 st.subheader('Bokeh Chart')

 trees_df = pd.read_csv('trees.csv')

 

scatterplot = figure(title = 'Bokeh Scatterplot')

 scatterplot.scatter(trees_df['dbh'], trees_df['site_order'])

 st.bokeh_chart(scatterplot)

 scatterplot.xaxis.axis_label = "dbh"
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Instead, we'll have to switch the order of the last two lines, which will now show up on  
our app. We'll add a y axis for good measure as well. 

import streamlit as st

import pandas as pd

from bokeh.plotting import figure

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 st.subheader('Bokeh Chart')

 trees_df = pd.read_csv('trees.csv')

 

scatterplot = figure(title = 'Bokeh Scatterplot')

 scatterplot.scatter(trees_df['dbh'], trees_df['site_order'])

 scatterplot.yaxis.axis_label = "site_order"

scatterplot.xaxis.axis_label = "dbh"

st.bokeh_chart(scatterplot)

The preceding code will create a Bokeh chart of dbh versus site_order, as shown in 
the following screenshot:
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Figure 3.7 – Bokeh scatterplot

Now, onto our next visualization library – Altair!
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Altair
We've already used Altair in this chapter through Streamlit functions such as st.line_
chart() or st.map(), but now we'll explore how to use Altair directly. Altair is  
a declarative visualization library, which loosely means that instead of explicitly writing 
out each feature in a graph (such as naming x axes), we pass the relationships between the 
columns as desired, and Altair takes care of the rest. 

We've made quite a few graphs with this dataset already, but why don't we explore  
a new column, the caretaker column? This bit of data defines who is in charge of the  
tree (public or private) and if public, what government organization is responsible for 
upkeep. Thrilling!

The following code groups our DataFrame by caretaker, and then uses that grouped 
DataFrame within Altair:

import streamlit as st

import pandas as pd

import altair as alt

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 trees_df = pd.read_csv('trees.csv')

 df_caretaker = trees_df.groupby(['caretaker']).count()['tree_
id'].reset_index()

df_caretaker.columns = ['caretaker', 'tree_count']

 fig = alt.Chart(df_caretaker).mark_bar().encode(x = 
'caretaker', y = 'tree_count')

 st.altair_chart(fig)

Altair also allows us to summarize our data directly within the y value of mark_bar(), 
so we can simplify this by instead using the following code:

import streamlit as st

import pandas as pd

import altair as alt

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')
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 trees_df = pd.read_csv('trees.csv')

 fig = alt.Chart(trees_df).mark_bar().encode(x = 'caretaker', y 
= 'count(*):Q')

 st.altair_chart(fig)

The preceding code will create a Streamlit app showing the count of trees by caretaker in 
SF, shown in the following screenshot: 

Figure 3.8 – Altair bar chart

This should be it for traditional visualization libraries, but Streamlit also allows us to use 
more complex visualization libraries such as PyDeck for geographic mapping. We have 
already used PyDeck through the native st.map() function and will explore this in 
more depth in the following section. 

PyDeck
PyDeck is a visualization library that plots visualizations as layers on top of Mapbox  
(a mapping company with a truly exceptional free tier) maps. Both Streamlit and PyDeck 
have a base set of limited features available without signing up for a Mapbox account, but 
greatly expand their free features when we get a Mapbox token, which we will do in this 
next section. 
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Configuration options
In order to set up your own Mapbox token, which is optional, first go to www.Mapbox.
com and sign up for an account. Once you have verified your account, you can find 
your token at https://www.Mapbox.com/install/. We will not pass our token 
directly to Streamlit because otherwise, we might accidentally push it to a public GitHub 
repository. Instead, Streamlit has a global configuration file called config.toml. To 
view our current settings, we can run the following command anywhere in the terminal: 

streamlit config show

There are four methods that Streamlit offers for changing our default configuration 
settings, I'll show you my recommended option and one of the other options, which 
should provide you with the majority of the use cases. If you find these options 
insufficient, the Streamlit documentation (https://docs.streamlit.io/) goes 
over all four options in great detail.

The first option is to set global configuration options by directly editing the config.
toml file. We can edit the file directly by opening it in our text editor. The following 
command will open the file in sublime. For other text editors (such as Vim and Atom), 
replace 'sublime' with the appropriate command or open the file directly from the  
text editor:

sublime ~/.streamlit/config.toml

If this fails, it likely means that we do not have the file generated already. We can 
either copy and paste the output of streamlit config show to a file at the location 
~/.streamlit/config.toml, or we can run the following shortcut for Mac/Linux:

streamlit config show > ~/.streamlit/config.toml

Now that we have the file opened in sublime, we can view and edit any of the options 
directly. This option is great for a config option such as a Mapbox token, as I will never 
have multiple Mapbox accounts with multiple tokens. However, some Streamlit apps may 
want to use, for example, different ports than the default 8501 serverPort. It would 
not make sense to change a global option for a project-specific change, which leads us to 
the second option. 

The second option is to create and edit a project-specific config.toml file. Our 
previous config sets our default config options, while this option is specific per Streamlit 
app. Here is where our individual project folders within the streamlit_apps folder 
come in handy! 

http://www.Mapbox.com
http://www.Mapbox.com
https://www.Mapbox.com/install/
https://docs.streamlit.io/
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Broadly speaking, we will do the following:

1.	 Check our current working directory.

2.	 Make a config file for our project.

3.	 Use the config file within PyDeck.

Our first step is to make sure our current working directory is the trees_app folder 
by running the pwd command in your terminal, which will show our current working 
directory and should end with trees_app' (for example, mine looks like Users/
tyler/Documents/streamlit_apps/trees_app). 

Now, we need to make a config file just for our project. First, we will make a folder called 
.streamlit, and then we will repeat the Mac/Linux shortcut we used above:

mkdir .streamlit

streamlit config show > .streamlit/config.toml 

We can then edit our config options just as we did before, but this will only be applicable 
to our Streamlit apps when we run Streamlit from that directory. 

Now, finally, we can go back to PyDeck graphing. Our first effort is going to be to get 
a base map of San Francisco, which has a city center of 37.77, -122.4. We can do 
this using the following code, which first defines the initial state (where we want to start 
viewing the map), and then calls st.pydeck_chart() using that initial state:

import streamlit as st

import pandas as pd

import pydeck as pdk 

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

trees_df = pd.read_csv('trees.csv')

sf_initial_view = pdk.ViewState(

     latitude=37.77,

     longitude=-122.4

     )
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st.pydeck_chart(pdk.Deck(

     initial_view_state=sf_initial_view

     ))

This code will produce a map of San Francisco, which we can use to layer on data points. 
We notice a couple of things here. First, that the black default map may be difficult to 
see, and second, that we need to spend time zooming in to San Francisco to get the view 
that we need. We can fix both these items by using the defaults suggested in the Streamlit 
documentation (https://docs.streamlit.io/), as seen in the following code:

import streamlit as st

import pandas as pd

import pydeck as pdk 

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 trees_df = pd.read_csv('trees.csv')

 

sf_initial_view = pdk.ViewState(

     latitude=37.77,

     longitude=-122.4,

     zoom=9

     )

 

st.pydeck_chart(pdk.Deck(

     map_style='mapbox://styles/mapbox/light-v9',

     initial_view_state=sf_initial_view,

     ))

The preceding code should create a map that looks like the following screenshot:

https://docs.streamlit.io/
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Figure 3.9 – PyDeck mapping: SF base map

This is exactly what we want! We can see the entire SF Bay Area, and now we need to add 
our layer of trees. The PyDeck library has tooltips for interactivity, which do not deal well 
with null values in our dataset, so we will remove null values before we map these points 
in the following code. We'll also increase the zoom value to 11 so we can see each  
point better: 

import streamlit as st

import pandas as pd

import pydeck as pdk 

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')
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 trees_df = pd.read_csv('trees.csv')

 trees_df.dropna(how='any', inplace=True)

 

sf_initial_view = pdk.ViewState(

     latitude=37.77,

     longitude=-122.4,

     zoom=11

     )

 

sp_layer = pdk.Layer(

     'ScatterplotLayer',

     data = trees_df,

     get_position = ['longitude', 'latitude'],

     get_radius=30) 

st.pydeck_chart(pdk.Deck(

     map_style='mapbox://styles/mapbox/light-v9',

     initial_view_state=sf_initial_view,

     layers = [sp_layer]

     ))

The best values for both the zoom and radius parameters are dependent on your 
visualization preferences. Try a few options out to see what looks the best. The preceding 
code will make the following map: 
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Figure 3.10 – Mapping SF trees 

As with previous maps, this is interactive by default, so we can zoom into different parts 
of San Francisco to see where the places with the highest tree density are. For our next 
change to this map, we are going to add another layer, this time of hexagons, which will  
be colored based on the density of the trees in SF. We can use the same code as above,  
but change the scatterplot layer to a hexagon layer. We also will include the option to  
have the hexagon extrude vertically, which isn't necessary, but it is certainly a fun 
visualization style. 
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Our last change is to change the pitch or the angle at which we are viewing the map.  
The default pitch, as we can see, is nearly directly down at the city, which will not work  
if we are trying to view vertical hexagons on our map. The following code implements 
each one of these changes: 

import streamlit as st

import pandas as pd

import pydeck as pdk 

st.title('SF Trees')

 st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

 trees_df = pd.read_csv('trees.csv')

 trees_df.dropna(how='any', inplace=True)

 

sf_initial_view = pdk.ViewState(

     latitude=37.77,

     longitude=-122.4,

     zoom=11,

     pitch=30

     )

 

hx_layer = pdk.Layer(

     'HexagonLayer',

     data = trees_df,

     get_position = ['longitude', 'latitude'],

     radius=100,

     extruded=True)

 

st.pydeck_chart(pdk.Deck(

     map_style='mapbox://styles/mapbox/light-v9',

     initial_view_state=sf_initial_view,

     layers = [hx_layer]

     ))
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As with the previous map, the optimal radius and pitch parameters will change based on 
your visualizations. Try changing each one of these around a few times to see whether  
you can get the hang of it! The preceding code will produce the following app:

Figure 3.11 – Final San Francisco Trees map

From this screenshot, we can see that PyDeck creates darker circles where there exists  
a higher density of trees in SF. We can observe from this many interesting details, such as 
the fact that the dataset seems to be missing trees from the famous Golden Gate Park on 
the west side of the city, and that the area around the Golden Gate Bridge also seems to 
have very few trees in the dataset.
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Summary
After this chapter, you hopefully have a solid understanding of how to leverage the 
incredible open source Python visualization libraries to make web apps in Streamlit. 

First, we learned how to use the default visualization options, such as st.line_
chart() and st.map(), and then we dove into interactive libraries such as Plotly, 
mapping libraries such as PyDeck, and everything in between.

In our next chapter, we will cover how to use machine learning in Streamlit. 



4
Using Machine 
Learning with 

Streamlit 
A very common situation data scientists find themselves in is at the end of the model 
creation process, not knowing exactly how to convince non-data scientists that their 
model is worthwhile. They might have performance metrics from their model or some 
static visualizations but have no easy way to allow others to interact with their model. 

Before Streamlit, there were a couple of other options, the most popular being creating a full-
fledged app in Flask or Django or turning their model into an Application Programming 
Interface (API) and pointing developers toward it. These are great options but tend to be 
time-consuming and suboptimal for valuable use cases such as prototyping an app. 

The incentives on teams are a little misaligned here. A data scientist wants to create the best 
models for their teams, but if they need to take a day or two (or, if they have experience,  
a few hours) of work to turn their model into a Flask or Django app, it doesn't make much 
sense to build this out until they think they are nearly complete with the modeling process. 
The benefit of Streamlit is that it helps us turn this arduous process into a frictionless app 
creation experience. In this chapter, we'll go over how to create Machine Learning (ML) 
prototypes in Streamlit, how to add user interaction to your ML apps, and also how to 
understand the ML results. 
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Specifically, the following topics are covered in this chapter:

•	 The standard ML workflow

•	 Predicting penguin species

•	 Utilizing a pre-trained ML model in Streamlit

•	 Training models inside Streamlit apps

•	 Understanding ML results

The standard ML workflow
The first step to creating an app that uses ML is the ML model itself. There are dozens of 
popular workflows for creating your own ML models. It's likely you might have your own 
already! There are two parts of this process to consider:

•	 The generation of the ML model

•	 The use of the ML model in production 

If the plan is to train a model once and then use this model in our Streamlit app, the best 
method is to create this model outside of Streamlit (for example, in a Jupyter notebook  
or in a standard Python file) first, and then use this model within the app. 

If the plan is to use the user input to train the model inside our app, then we can no longer 
create the model outside of Streamlit and instead will need to run the model training 
within the Streamlit app. 

We will start by building our ML models outside of Streamlit and move on to training  
our models inside of Streamlit apps after. 

Predicting penguin species
The dataset that we will primarily use in this chapter is the same Palmer's Penguins dataset 
that we used in Chapter 1, An Introduction to Streamlit. As is typical, we will create a new 
folder that will house our new Streamlit app and accompanying code. The following code 
creates this new folder within our streamlit_apps folder and copies the data from 
our penguin_app folder. If you haven't downloaded the Palmer's Penguins data yet, 
please follow the instructions in the The Setup: Palmer's Penguins section in Chapter 2, 
Uploading, Downloading, and Manipulating Data:

mkdir penguin_ml

cp penguin_app/penguins.csv penguin_ml 
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cd penguin_ml 

touch penguins_ml.py

touch penguins_streamlit.py

As you may have noticed in the preceding code, there are two Python files here, one  
to create the ML model (penguins_ml.py) and the second to create the Streamlit  
app (penguins_streamlit.py). We will start with the penguins_ml.py file, and  
once we have a model we are happy with, we will move on to the penguins_streamlit.
py file. 

Note
You can also opt to create the model in a Jupyter notebook, which is less 
reproducible by design (as cells can be run out of order) but is still  
incredibly popular. 

Let's get re-familiarized with the penguins.csv dataset. The following code will read 
the dataset and print out the first five rows: 

import pandas as pd 

penguin_df = pd.read_csv('penguins.csv')

print(penguin_df.head())

The output of the preceding code, when we run our Python file penguins_ml.py in the 
terminal, will look something like the following screenshot:  

 

Figure 4.1 – First five penguins

For this app, we are going to attempt to create an app that will help researchers in the wild 
know what species of penguin they are looking at. It will predict the species of the penguin 
given some measurements of the bill, flippers, and body mass, and knowledge about the 
sex and location of the penguin. 
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This next section is not an attempt to make the best ML model possible, but just to create 
something as a quick prototype for our Streamlit app that we can iterate off of. So in that 
light, we are going to drop our few rows with null values, and not use the year variable 
in our features as it does not fit with our use case. We will need to define our features 
and output variables, and do one-hot-encoding (or as pandas calls it, creating dummy 
variables for our text columns) on our features, and factorize our output variable (turn  
it from a string into a number). The following code should get our dataset in a better spot 
to run through a classification algorithm:

import pandas as pd 

penguin_df = pd.read_csv('penguins.csv')

 penguin_df.dropna(inplace=True)

 output = penguin_df['species']

 features = penguin_df[['island', 'bill_length_mm', 'bill_
depth_mm',

       'flipper_length_mm', 'body_mass_g', 'sex']]

 features = pd.get_dummies(features)

 print('Here are our output variables')

 print(output.head())

print('Here are our feature variables')

print(features.head())

Now when we run our Python file penguins_ml.py again, we see the output and 
feature variables separated, as shown in the following screenshot: 

Figure 4.2 – Output variables
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Now, we want to create a classification model using a subset (in this case, 80%) of our 
data, and get the accuracy of said model. The following code runs through those steps 
using a random forest model, but you can use other classification algorithms if you would 
like. Again, the point here is to get a quick prototype to show to the penguin researchers 
for feedback! 

import pandas as pd

from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

penguin_df = pd.read_csv('penguins.csv')

penguin_df.dropna(inplace=True)

output = penguin_df['species']

features = penguin_df[['island', 'bill_length_mm', 'bill_depth_
mm',

                       'flipper_length_mm', 'body_mass_g', 
'sex']]

features = pd.get_dummies(features)

output, uniques = pd.factorize(output)

x_train, x_test, y_train, y_test = train_test_split(

    features, output, test_size=.8)

rfc = RandomForestClassifier(random_state=15)

rfc.fit(x_train, y_train)

y_pred = rfc.predict(x_test)

score = accuracy_score(y_pred, y_test)

print('Our accuracy score for this model is {}'.format(score))
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We now have a pretty good model for predicting the species of penguins! Our last step in 
the model generating process is to save the two parts of this model that we need the most 
– the model itself and the uniques variable, which maps the factorized output variable 
to the species name that we recognize. To the previous code, we will add a few lines that 
will save these objects as pickle files (files that turn a Python object into something we can 
save directly and import easily from another Python file such as our Streamlit app). More 
specifically, the open() function creates two pickle files, the pickle.dump() function 
writes our Python files to said files, and the close() function closes the files. The wb in 
the open() function stands for write bytes, which tells Python that we want to write, not 
read, to this file:

import pandas as pd

from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

import pickle

penguin_df = pd.read_csv('penguins.csv')

penguin_df.dropna(inplace=True)

output = penguin_df['species']

features = penguin_df[['island', 'bill_length_mm', 'bill_depth_
mm',

                       'flipper_length_mm', 'body_mass_g', 
'sex']]

features = pd.get_dummies(features)

output, uniques = pd.factorize(output)

x_train, x_test, y_train, y_test = train_test_split(

    features, output, test_size=.8)

rfc = RandomForestClassifier(random_state=15)

rfc.fit(x_train, y_train)

y_pred = rfc.predict(x_test)

score = accuracy_score(y_pred, y_test)

print('Our accuracy score for this model is {}'.format(score))
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rf_pickle = open('random_forest_penguin.pickle', 'wb')

pickle.dump(rfc, rf_pickle)

rf_pickle.close()

output_pickle = open('output_penguin.pickle', 'wb')

pickle.dump(uniques, output_pickle)

output_pickle.close() 

We now have two more files in our penguin_ml folder, a file called random_forest_
penguin.pickle, which contains our model, and output_penguin_.pickle, 
which has the mapping between penguin species and the output of our model. This is it 
for the penguins_ml.py function! We can move on to our Streamlit app. 

Utilizing a pre-trained ML model in Streamlit
Now that we have our model, we want to load it (along with our mapping function as 
well) into Streamlit. In our file, penguins_streamlit.py, that we created before,  
we will again use the pickle library to load our files using the following code. We use 
the same functions as before, but instead of wb, we use the rb parameter, which stands for 
read bytes. To make sure these are the same Python objects that we used before, we will 
use the st.write() function that we are so familiar with already to check: 

import streamlit as st

import pickle

rf_pickle = open('random_forest_penguin.pickle', 'rb')

map_pickle = open('output_penguin.pickle', 'rb')

rfc = pickle.load(rf_pickle)

unique_penguin_mapping = pickle.load(map_pickle)

st.write(rfc)

st.write(unique_penguin_mapping)

As with our previous Streamlit apps, we run the following code in the terminal to run  
our app: 

streamlit run penguins_streamlit.py
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We now have our random forest classifier, along with the penguin mapping! Our next step 
is to add Streamlit functions to get the user input. In our app, we used island, bill length, 
bill depth, flipper length, body mass, and sex to predict the penguin species, so we will 
need to get each of these from our user. For island and sex, we know which options were 
in our dataset already and want to avoid having to parse through user text, so we will 
use selectbox. For the other data, we just need to make sure that the user has input 
a positive number, so we will use the st.number_input() function and make the 
minimum value 0. The following code takes these inputs in and prints them out on our 
Streamlit app: 

import streamlit as st

import pickle

rf_pickle = open('random_forest_penguin.pickle', 'rb')

map_pickle = open('output_penguin.pickle', 'rb')

rfc = pickle.load(rf_pickle)

unique_penguin_mapping = pickle.load(map_pickle)

rf_pickle.close()

map_pickle.close()

island = st.selectbox('Penguin Island', options=[

                      'Biscoe', 'Dream', 'Torgerson'])

sex = st.selectbox('Sex', options=['Female', 'Male'])

bill_length = st.number_input('Bill Length (mm)', min_value=0)

bill_depth = st.number_input('Bill Depth (mm)', min_value=0)

flipper_length = st.number_input('Flipper Length (mm)', min_
value=0)

body_mass = st.number_input('Body Mass (g)', min_value=0)

st.write('the user inputs are {}'.format(

    [island, sex, bill_length,

         bill_depth, flipper_length, body_mass]))
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The preceding code should make the following app. Try it out and see if it works by 
changing the values and seeing if the output changes as well. Streamlit is designed so  
that, by default, each time a value is changed, the entire app reruns. The following 
screenshot shows the app live, with some values that I've changed. We can either change 
numeric values with the (+ and -) buttons on the right-hand side, or we can just enter the 
values manually:

Figure 4.3 – Model inputs
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Now we have all our inputs, and we also have our model. The next step is to format the 
data into the same format as our preprocessed data, for example, our model does not have 
one variable called sex but instead has two variables called sex_female and sex_
male. Once our data is in the right shape, we can call the predict function and map 
the prediction to our original species list to see how our model functions. The following 
code does exactly this, and also adds some basic titles and instructions to the app to make 
it more usable. This app is rather long, so I will break it up into multiple sections for 
readability, starting with adding instructions and a title to our app: 

import streamlit as st

import pickle

st.title('Penguin Classifier')

st.write("This app uses 6 inputs to predict the species of 
penguin using"

         "a model built on the Palmer's Penguin's dataset. Use 
the form below"

         " to get started!")

rf_pickle = open('random_forest_penguin.pickle', 'rb')

map_pickle = open('output_penguin.pickle', 'rb')

rfc = pickle.load(rf_pickle)

unique_penguin_mapping = pickle.load(map_pickle)

rf_pickle.close()

map_pickle.close()

We now have an app with our title and instructions for the user. The next step is to get the 
user inputs as we did before. We also need to put our sex and island variables into the 
correct format, as discussed before: 

island = st.selectbox('Penguin Island', options=[

                      'Biscoe', 'Dream', 'Torgerson'])

sex = st.selectbox('Sex', options=['Female', 'Male'])

bill_length = st.number_input('Bill Length (mm)', min_value=0)

bill_depth = st.number_input('Bill Depth (mm)', min_value=0)

flipper_length = st.number_input('Flipper Length (mm)', min_
value=0)
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body_mass = st.number_input('Body Mass (g)', min_value=0)

island_biscoe, island_dream, island_torgerson = 0, 0, 0

if island == 'Biscoe':

    island_biscoe = 1

elif island == 'Dream':

    island_dream = 1

elif island == 'Torgerson':

    island_torgerson = 1

sex_female, sex_male = 0, 0

if sex == 'Female':

    sex_female = 1

elif sex == 'Male':

    sex_male = 1

All of our data is in the correct format! The last step here is using the predict() 
function on our model with our new data, which this final section takes care of: 

new_prediction = rfc.predict([[bill_length, bill_depth, 
flipper_length,

                               body_mass, island_biscoe, 
island_dream,

                               island_torgerson, sex_female, 
sex_male]])

prediction_species = unique_penguin_mapping[new_prediction][0]

st.write('We predict your penguin is of the {} species'.
format(prediction_species))
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Now our app should look like the following screenshot. I have added some example values 
to the inputs, but you should play around with changing the data to see if you can make 
the species change!

Figure 4.4 – Full Streamlit prediction

We now have a full Streamlit app that utilizes our pre-trained ML model, takes user input, 
and outputs the prediction. Next, we will discuss how to train models directly within 
Streamlit apps!
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Training models inside Streamlit apps
Often, we may want to have the user input change how our model is trained. We may  
want to accept data from the user or ask the user what features they would like to use,  
or even allow the user to pick the type of machine learning algorithm they would like 
to use. All of these options are feasible in Streamlit, and in this section, we will cover 
the basics around using user input to affect the training process. As we discussed in the 
section above, if a model is going to be trained only once, it is probably best to train 
the model outside of Streamlit and import the model into Streamlit. But what if, in our 
example, the penguin researchers have the data stored locally, or do not know how to 
retrain the model but have the data in the correct format already? In cases like these, 
we can add the st.file_uploader() option and include a method for these users 
to input their own data, and get a custom model deployed for them without having to 
write any code. The following code will add a user option to accept data and will use the 
preprocessing/training code that we originally had in penguins_ml.py to make  
a unique model for this user. It is important to note here that this will only work if the 
user has data in the exact same format and style that we used, which may be unlikely. One 
other potential add-on here is to show the user what format the data needs to be in for this 
app to correctly train a model as expected! 
import streamlit as st

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

import pickle

from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

st.title('Penguin Classifier')

st.write("This app uses 6 inputs to predict the species of 
penguin using "

         "a model built on the Palmer's Penguin's dataset. Use 
the form below"

         " to get started!")

penguin_file = st.file_uploader('Upload your own penguin data')
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This first section imports the libraries that we need, adds the title – as we have used before, 
and adds the file_uploader() function. What happens, however, when the user has 
yet to upload a file? We can set the default to load our random forest model if there is no 
penguin file, as shown in the next section of code: 

if penguin_file is None:

    rf_pickle = open('random_forest_penguin.pickle', 'rb')

    map_pickle = open('output_penguin.pickle', 'rb')

    rfc = pickle.load(rf_pickle)

    unique_penguin_mapping = pickle.load(map_pickle)

    rf_pickle.close()

    map_pickle.close()

The next problem we need to solve is how to take in the user's data, clean it, and train  
a model based on it. Luckily, we can reuse the model training code that we have already 
created and put it within our else statement in the next code block:
else:

    penguin_df = pd.read_csv(penguin_file)

    penguin_df = penguin_df.dropna()

    output = penguin_df['species']

    features = penguin_df[['island', 'bill_length_mm', 'bill_
depth_mm',

                           'flipper_length_mm', 'body_mass_g', 
'sex']]

    features = pd.get_dummies(features)

    output, unique_penguin_mapping = pd.factorize(output)

    x_train, x_test, y_train, y_test = train_test_split(

        features, output, test_size=.8)

    rfc = RandomForestClassifier(random_state=15)

    rfc.fit(x_train, y_train)

    y_pred = rfc.predict(x_test)

    score = round(accuracy_score(y_pred, y_test), 2)

    st.write('We trained a Random Forest model on these data,'

             ' it has a score of {}! Use the '

             'inputs below to try out the 
model.'.format(score))
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We have now created our model within the app and need to get the inputs from the user 
for our prediction. This time, however, we can make an improvement on what we have 
done before. As of now, each time a user changes an input in our app, the entire Streamlit 
app will rerun. We can use the st.form() and st.submit_form_button() 
functions to wrap the rest of our user inputs in and allow the user to change all of the 
inputs and submit the entire form at once instead of multiple times: 

with st.form('user_inputs'):

island = st.selectbox('Penguin Island', options=[

                      'Biscoe', 'Dream', 'Torgerson'])

sex = st.selectbox('Sex', options=['Female', 'Male'])

bill_length = st.number_input('Bill Length (mm)', min_value=0)

bill_depth = st.number_input('Bill Depth (mm)', min_value=0)

flipper_length = st.number_input('Flipper Length (mm)', min_
value=0)

body_mass = st.number_input('Body Mass (g)', min_value=0)

st.form_submit_button()

island_biscoe, island_dream, island_torgerson = 0, 0, 0

if island == 'Biscoe':

    island_biscoe = 1

elif island == 'Dream':

    island_dream = 1

elif island == 'Torgerson':

    island_torgerson = 1

sex_female, sex_male = 0, 0

if sex == 'Female':

    sex_female = 1

elif sex == 'Male':

    sex_male = 1

Now that we have the inputs with our new form, we need to create our prediction and 
write the prediction to the user, as shown in the next block: 

new_prediction = rfc.predict([[bill_length, bill_depth, 
flipper_length,

                               body_mass, island_biscoe, 
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island_dream,

                               island_torgerson, sex_female, 
sex_male]])

prediction_species = unique_penguin_mapping[new_prediction][0]

st.write('We predict your penguin is of the {} species'.
format(prediction_species))

And there we go! We now have a Streamlit app that allows the user to input their own 
data and trains a model based on their data and outputs the results, as shown in the next 
screenshot:

Figure 4.5 – Penguin classifier predictions
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There are potential improvements here, such as through using caching functions (explored 
in Chapter 2, Uploading, Downloading, and Manipulating Data), as one example. Apps 
like these where users bring their own data are significantly harder to build, especially 
without a universal data format. It is more common as of this writing to see Streamlit 
apps that show off impressive ML models and use cases rather than apps that build them 
directly in-app (especially with more computationally expensive model training). As 
we mentioned before, Streamlit developers often will provide references to the required 
data format before asking for user input in the form of a dataset. However, this option of 
allowing users to bring their own data is available and practical, especially to allow for 
quick iterations on model building.  

Understanding ML results
So far, our app might be useful, but often just showing a result is not good enough for  
a data app. We also should show some explanation as to why they got the result that they 
did! In order to do this, we can include in the output of the app that we have already made 
a section that helps users understand the model better. 

To start, random forest models already have a built-in feature importance method derived 
from the set of individual decision trees that make up the random forest. We can edit our 
penguins_ml.py file to graph this importance, and then call that image from within 
our Streamlit app. We could also graph this directly from within our Streamlit app, but  
it is more efficient to make this graph once in penguins_ml.py instead of every time 
our Streamlit app reloads (which is every time a user changes a user input!). The following 
code edits our penguins_ml.py file and adds the feature importance graph, saving it 
to our folder. We also call the tight_layout() feature, which helps format our graph 
better and makes sure we avoid any labels getting cut off. This set of code is long, and the 
top half of the file remains unchanged, so only the section on library importing and data 
cleaning has been omitted: 

x_train, x_test, y_train, y_test = train_test_split(

    features, output, test_size=.8)

rfc = RandomForestClassifier(random_state=15)

rfc.fit(x_train, y_train)

y_pred = rfc.predict(x_test)

score = accuracy_score(y_pred, y_test)

print('Our accuracy score for this model is {}'.format(score))

rf_pickle = open('random_forest_penguin.pickle', 'wb')
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pickle.dump(rfc, rf_pickle)

rf_pickle.close()

output_pickle = open('output_penguin.pickle', 'wb')

pickle.dump(uniques, output_pickle)

output_pickle.close()

fig, ax = plt.subplots()

ax = sns.barplot(rfc.feature_importances_, features.columns)

plt.title('Which features are the most important for species 
prediction?')

plt.xlabel('Importance')

plt.ylabel('Feature')

plt.tight_layout()

fig.savefig('feature_importance.png')

Now when we rerun pengiuns_ml.py, we should see a file called feature_
importance.png, which we can call from our Streamlit app. Let's do that now! We can 
use the st.image() function to load an image from our png and print it to our penguin 
app. The following code adds our image to the Streamlit app and also improves our 
explanations around the prediction we made. Because of the length of this code block,  
we will just show the new code from the point where we start to predict using the  
user's data: 

new_prediction = rfc.predict([[bill_length, bill_depth, 
flipper_length,

                               body_mass, island_biscoe, 
island_dream,

                               island_torgerson, sex_female, 
sex_male]])

prediction_species = unique_penguin_mapping[new_prediction][0]

st.subheader("Predicting Your Penguin's Species:")

st.write('We predict your penguin is of the {} species'

         .format(prediction_species))

st.write('We used a machine learning (Random Forest) model to '

         'predict the species, the features used in this 
prediction '

         ' are ranked by relative importance below.')

st.image('feature_importance.png')
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Now, the bottom of your Streamlit app should look like the following screenshot (note: 
your string might be slightly different based on your inputs). 

Figure 4.6 – Feature importance screenshot
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As we can see, bill length, bill depth, and flipper length are the most important variables 
according to our random forest model. A final option for explaining how our model works 
is to plot the distributions of each of these variables by species, and also plot some vertical 
lines representing the user input. Ideally, the user can begin to understand the underlying 
data holistically, and therefore will understand the predictions that come from the model 
as well. To do this, we will need to actually import the data into our Streamlit app, which 
we have not done previously. The following code imports the penguin data we used to 
build the model, and plots three histograms (for bill length, bill depth, and flipper length) 
along with the user input as a vertical line, starting from the model explanation section:

st.subheader("Predicting Your Penguin's Species:")

st.write('We predict your penguin is of the {} species'

         .format(prediction_species))

st.write('We used a machine learning (Random Forest) model to '

         'predict the species, the features used in this 
prediction '

         ' are ranked by relative importance below.')

st.image('feature_importance.png')

st.write('Below are the histograms for each continuous variable 
'

         'separated by penguin species. The vertical line '

         'represents your the inputted value.')

Now that we have set up our app for the histograms, we can use the displot()  
function in the Seaborn visualization library to create our three histograms for our most 
important variables: 

fig, ax = plt.subplots()

ax = sns.displot(x=penguin_df['bill_length_mm'],

                 hue=penguin_df['species'])

plt.axvline(bill_length)

plt.title('Bill Length by Species')

st.pyplot(ax)

fig, ax = plt.subplots()

ax = sns.displot(x=penguin_df['bill_depth_mm'],
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                 hue=penguin_df['species'])

plt.axvline(bill_depth)

plt.title('Bill Depth by Species')

st.pyplot(ax)

fig, ax = plt.subplots()

ax = sns.displot(x=penguin_df['flipper_length_mm'],

                 hue=penguin_df['species'])

plt.axvline(flipper_length)

plt.title('Flipper Length by Species')

st.pyplot(ax)

The preceding code should create the app shown in the following figure, which is our app 
in its final form. For viewing ease, we will just show the first histogram:

Figure 4.6 – Bill Length by Species
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As always, the completed and final code can be found at https://github.com/
tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science. 
That completes this section. We have now created a fully formed Streamlit app that takes 
a pre-built model and user input and outputs both the result of the prediction and an 
explanation of the output as well.

Summary
In this chapter, we learned some ML basics: how to take a pre-built ML model and use 
it within Streamlit, how to create our own models from within Streamlit, and also how 
to use user input to understand and iterate on ML models. Hopefully, at the end of this 
chapter, you feel comfortable with each of these. We will dive into the world of deploying 
Streamlit using Streamlit sharing next! 

https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science


5
Deploying Streamlit 

with Streamlit 
Sharing

So far in this book, we have focused on Streamlit app development, from creating complex 
visualizations to deploying and creating machine learning (ML) models. In this chapter, 
we will learn how to deploy these applications so they can be shared with anyone with 
internet access. This is a crucial part of Streamlit apps, as, without the ability to deploy  
a Streamlit app, the friction still exists for users or consumers of your work. If we believe 
that Streamlit removes the friction between creating data science analysis/products/
models and sharing them with others, then we must also believe that the ability to widely 
share apps is just as crucial as the ease of development. 

There are three main ways to deploy Streamlit apps: through a product created by Streamlit 
called Streamlit Sharing, through a cloud provider such as Amazon Web Services or Heroku, 
or through another product created by Streamlit called Streamlit for Teams. All three of 
these options are paid, but Streamlit Sharing has a free tier and Amazon Web Services 
regularly gives away free credit to students, first-time users, and start-ups, and Heroku has 
a free tier as well. The easiest and preferred method for most Streamlit users is Streamlit 
Sharing, so we will cover that directly here, and will cover Amazon Web Services, Heroku, 
and Streamlit for Teams later in this book, in Chapter 8, Deploying Streamlit Apps with 
Heroku and AWS, and Chapter 10, The Data Project – Prototyping Projects in Streamlit.
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In this chapter, we will cover the following topics:

•	 Getting started with Streamlit Sharing

•	 A quick primer on GitHub

•	 Deploying with Streamlit Sharing

•	 Debugging Streamlit Sharing

Technical requirements
This chapter requires access to Streamlit Sharing, which as of this writing is in beta. 
You can request Streamlit Sharing access at https://streamlit.io/sharing-
sign-up. They send out new admissions each week! If you are still waiting for Streamlit 
Sharing access and want to deploy an app immediately, feel free to move on to Chapter 8, 
Deploying Streamlit Apps with Heroku and AWS, where we deploy on AWS and Heroku. 

This chapter also requires a free GitHub account, which can be attained at https://
www.github.com. A full Primer on GitHub, along with detailed setup instructions, can 
be found in the section A quick primer on GitHub later in this chapter.

The code for this chapter can be found in the following GitHub repository:

https://github.com/PacktPublishing/Getting-started-with-
Streamlit-for-Data-Science

Getting started with Streamlit Sharing
Streamlit Sharing is Streamlit's answer to a fast deployment process and is certainly my 
first recommendation for deploying your Streamlit applications. I remember the first time 
I deployed an app on Streamlit Sharing, I thought that there was no way that it was all 
that simple. We only need to push our code to a Github repository, point Streamlit to said 
repository, and it takes care of the rest. There are times when we care about "the rest," such 
as when we want to configure the amount of storage space or memory available, but often, 
letting Streamlit Sharing handle deployment, resourcing, and link creation makes our 
development significantly easier.

The goal here will be to take the Palmer's penguins ML app we have already created and 
deploy it using Streamlit Sharing. Before we get started, Streamlit Sharing runs using 
GitHub. If you are already familiar with Git and GitHub, feel free to skip over this section 
and make a GitHub repository with our penguins_ml folder. 

https://streamlit.io/sharing-sign-up
https://streamlit.io/sharing-sign-up
https://www.github.com
https://www.github.com
https://github.com/PacktPublishing/Getting-started-with-Streamlit-for-Data-Science

https://github.com/PacktPublishing/Getting-started-with-Streamlit-for-Data-Science
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A quick primer on GitHub
GitHub, and the language Git, are collaboration tools for software engineers and data 
scientists that provide a framework for version control. We do not need to know 
everything about how they work to use Streamlit Sharing, but we do need to be able to 
create our own repositories (which act like shared folders) and update them as we update 
our applications. There are two options for dealing with Git and GitHub, via the command 
line and via a product called GitHub Desktop. Primarily in this book, so far, we have 
stayed on the command line, and this tutorial will stick there. However, if you would like 
to use GitHub Desktop instead, head over to https://desktop.github.com and 
follow along with the instructions provided there. 

Now, use the following steps to get started with Git and GitHub on the command line: 

1.	 First, go to https://www.github.com and make a free account there. 

2.	 Then, we need to download the language Git onto our own computer and  
connect to our GitHub account with Git. We can do this on a Mac using brew in 
our terminal: 

brew install git

3.	 We are also going to want to set a global username and email in Git (if we haven't 
already), which is recommended by GitHub. The following code sets these globally: 

git config --global user.name "My Name"

git config --global user.email myemail@email.com

Now that we have our GitHub account, and we also have Git installed locally, we need  
to create our first repository! We already have our folder with the files that we need inside 
it, called penguin_ml, so we should make sure that is the working directory we are 
working in (if you aren't sure, the command pwd will return our working directory).  
We are going to work with the final version of the penguins_streamlit.py app, 
which is shown with brief explanations for some context in the following code: 

import streamlit as st

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

import pickle

st.title('Penguin Classifier')

st.write("This app uses 6 inputs to predict the species of 

https://desktop.github.com
https://www.github.com
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penguin using "

         "a model built on the Palmer's Penguin's dataset. Use 
the form below"

         " to get started!")

penguin_df = pd.read_csv('penguins.csv')

rf_pickle = open('random_forest_penguin.pickle', 'rb')

map_pickle = open('output_penguin.pickle', 'rb')

rfc = pickle.load(rf_pickle)

unique_penguin_mapping = pickle.load(map_pickle)

rf_pickle.close()

map_pickle.close()

This first section imports our libraries, sets up the titles for our app, and loads the model 
that we created using the penguins_ml.py file. This section will fail if we do not have 
the random_forest_penguin.pickle and output_penguin.pickle files.  
You can either go to Chapter 4, Using Machine Learning with Streamlit, to create these  
files or head over to https://github.com/tylerjrichards/Getting-
Started-with-Streamlit-for-Data-Science/tree/main/penguin_ml  
to find them directly: 

with st.form('user_input'):

island = st.selectbox('Penguin Island', options=[

                      'Biscoe', 'Dream', 'Torgerson'])

sex = st.selectbox('Sex', options=['Female', 'Male'])

bill_length = st.number_input('Bill Length (mm)', min_value=0)

bill_depth = st.number_input('Bill Depth (mm)', min_value=0)

flipper_length = st.number_input('Flipper Length (mm)', min_
value=0)

body_mass = st.number_input('Body Mass (g)', min_value=0)

st.form_submit_button()

island_biscoe, island_dream, island_torgerson = 0, 0, 0

if island == 'Biscoe':

    island_biscoe = 1

elif island == 'Dream':

    island_dream = 1

https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science/tree/main/penguin_ml
https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science/tree/main/penguin_ml
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elif island == 'Torgerson':

    island_torgerson = 1

sex_female, sex_male = 0, 0

if sex == 'Female':

    sex_female = 1

elif sex == 'Male':

    sex_male = 1

new_prediction = rfc.predict([[bill_length, bill_depth, 
flipper_length,

                               body_mass, island_biscoe, 
island_dream,

                               island_torgerson, sex_female, 
sex_male]])

prediction_species = unique_penguin_mapping[new_prediction][0]

This next section grabs all the user input we need for our prediction, from the island the 
researcher is on to the sex of the penguin, to the penguin's bill and flipper measurements, 
which prepares us for the predicting of the penguin species in the following code:

st.subheader("Predicting Your Penguin's Species:")

st.write('We predict your penguin is of the {} species'

         .format(prediction_species))

st.write('We used a machine learning (Random Forest) model to '

         'predict the species, the features used in this 
prediction '

         ' are ranked by relative importance below.')

st.image('feature_importance.png')
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And now this final section creates multiple histograms to explain the prediction by the 
model, showing the bill length/bill depth/flipper length separated by the species in hue. 
We use those three variables because our feature importance graph told us those were the 
best predictors of species in Chapter 4, Using Machine Learning with Streamlit: 

st.write('Below are the histograms for each continuous variable 
'

         'separated by penguin species. The vertical line '

         'represents your the inputted value.')

fig, ax = plt.subplots()

ax = sns.displot(x=penguin_df['bill_length_mm'],

                 hue=penguin_df['species'])

plt.axvline(bill_length)

plt.title('Bill Length by Species')

st.pyplot(ax)

fig, ax = plt.subplots()

ax = sns.displot(x=penguin_df['bill_depth_mm'],

                 hue=penguin_df['species'])

plt.axvline(bill_depth)

plt.title('Bill Depth by Species')

st.pyplot(ax)

fig, ax = plt.subplots()

ax = sns.displot(x=penguin_df['flipper_length_mm'],

                 hue=penguin_df['species'])

plt.axvline(flipper_length)

plt.title('Flipper Length by Species')

st.pyplot(ax)

Now that we are in the correct folder with the right files, we will use the following code to 
initialize our first repository, and to add and then commit all our files to the repository: 

git init 

git add .

git commit -m 'our first repo commit'
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Our next step is to connect the Git repository on our local device to our GitHub account: 

1.	 First, we need to set up a new repository by going back to the GitHub website and 
clicking the New repository button as shown in the following screenshot: 

Figure 5.1 – Setting up a new repository

2.	 We can then fill out our repository name (penguin_ml), and click  
Create repository:

Figure 5.2 – Repo creation 
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3.	 Now that we have a new repository on GitHub, and also a repository locally,  
we need to connect the two. The following code connects the two repositories  
and pushes our code to the GitHub repo, GitHub also suggests how to connect  
two repositories after you click Create repository:

git branch -M main

git remote add origin https://github.com/{insert_
username}/penguin_ml.git

git push -u origin main

We should now see our penguin_ml files in our GitHub! If and when we have new 
code to push to our repository, we can follow the general format of using git add 
. to add the file changes, git commit –m "commit message", and then 
finally git push to push the changes to our repository. 

We can now move on to the deployment process on the Streamlit side. 

Deploying with Streamlit Sharing
Now that all our necessary files are in the GitHub repository, we have almost all that  
we need to deploy our application. You can use the following list of steps to deploy  
our application:

1.	 When we deploy to Streamlit Sharing, Streamlit uses its own servers to host the  
app. Because of this, we need to explicitly tell Streamlit which Python libraries  
are required for our app to run. The following code installs a very helpful library 
called pipreqs and creates a requirements.txt file in the format we need  
for Streamlit: 

pip install pipreqs

pipreqs .

2.	 When we look at our requirements.txt file, we can see that pipreqs looked 
through all of our Python files and checked what we imported and used, and 
created a file that Streamlit can use to install the exact same versions of our libraries 
to prevent errors: 
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Figure 5.3 – Requirements.txt

3.	 We have a new file, so we need to also add it to our GitHub repository. The 
following code adds requirements.txt to our repository: 

git add requirements.txt

git commit -m 'add requirements file'

git push

4.	 Now, our last step is to sign up for Streamlit Sharing (share.streamlit.io) 
and click the New App button. After that, we can point Streamlit Sharing directly to 
our Python file that hosts our app's code, which in our case is called penguins_
streamlit.py. You should also change the username from my personal GitHub 
username (tylerjrichards) to your own: 

Figure 5.4 – Adding URLs

http://share.streamlit.io
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After the app builds, we have a fully deployed Streamlit app. Whenever we make 
changes to the GitHub repository, we will see our changes. For example, the 
following code makes a change to the title of our app (for brevity, we will only show 
enough code to illustrate the change):

import streamlit as st

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

import pickle

st.title('Penguin Classifier: A Machine Learning App')

st.write("This app uses 6 inputs to predict the species 
of penguin using "

         "a model built on the Palmer's Penguin's 
dataset. Use the form below"

         " to get started!")

penguin_df = pd.read_csv('penguins.csv')

rf_pickle = open('random_forest_penguin.pickle', 'rb')

map_pickle = open('output_penguin.pickle', 'rb')

rfc = pickle.load(rf_pickle)

unique_penguin_mapping = pickle.load(map_pickle)

rf_pickle.close()

map_pickle.close()

5.	 Now, to push the change, we need to update our GitHub repository. We will do that 
using the following code: 

git add .

git commit -m 'changed our title'

git push



Debugging Streamlit Sharing     109

When we go back to our app, your app will have its own unique URL. If you ever cannot 
find your Streamlit apps, you can always find them at share.streamlit.io. Now the 
top of our app should look like the following screenshot: 

Figure 5.5 – Our deployed Streamlit app

Note
It may take a couple of minutes for the app to reload! 

Now we have a fully deployed Streamlit app! We can share this link with friends,  
with colleagues, or on social media sites such as Twitter (if you make an interesting 
Streamlit app with the help of this book, please tweet it at me @tylerjrichards, I would  
love to see it!). Now, to learn how to debug our Streamlit apps. 

Debugging Streamlit Sharing
Streamlit Sharing also gives us access to the logs of our apps themselves, which will show 
up on our terminal if we are deploying our apps locally. At the bottom right, whenever  
we are viewing our own applications, there is a Manage Application button, which allows 
us to access our logs. From this menu of options, we can reboot, delete, or download logs 
from our app, along with viewing our other available apps and logging out from Streamlit. 

http://share.streamlit.io
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Streamlit Secrets
When creating and deploying Streamlit apps, you may want to use some information 
that is not viewable by the user of your app. The default in Streamlit Sharing is for public 
GitHub repositories with entirely public code, data, and models. But if, say, you want to 
use a private API key as many APIs (for example, Twitter's scraping API, or the Google 
Maps API) require, or want to programmatically access data stored in a password 
protected database, or even if you would like to password protect your Streamlit app, you 
need a way to expose a bit of data to Streamlit that is private. Streamlit's answer to this is 
Streamlit Secrets, which lets us set hidden and private "secrets" in each app. Let's start with 
password protecting our Streamlit applications, specifically our existing penguin app. 

To start out, we can edit the top of our app to require the user to enter a password before 
the rest of the application loads. We can use the st.stop() function to stop the app 
from running if the password is incorrect using the following code:

import streamlit as st

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

import pickle

from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

 

st.title('Penguin Classifier')

st.write("This app uses 6 inputs to predict the species of 
penguin using "

         "a model built on the Palmer's Penguin's dataset. Use 
the form below"

         " to get started!")

 

password_guess = st.text_input('What is the Password?')

if password_guess != 'streamlit_password':

  st.stop()

penguin_file = st.file_uploader('Upload your own penguin data')



Debugging Streamlit Sharing     111

This code will result in the next screenshot, and the rest will only load if the user inputs 
the string streamlit_password in the text input box:

Figure 5.6 – Password checker

To create a Streamlit Secret, we just need to head over to our Streamlit Sharing main page 
at https://share.streamlit.io/, and click the Edit secrets option, as shown in 
the next screenshot:

Figure 5.7 – Secrets

Once we click the Edit secrets button, we can add new Streamlit Secrets to our app: 

Figure 5.8 – Our first Streamlit Secret

https://share.streamlit.io/
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Our last step is to read Streamlit Secrets from our deployed app within our code, which 
we can do by calling st.secrets and calling the variable we created in Secrets. The 
following code replaces our hardcoded password with the Streamlit Secret:

st.title('Penguin Classifier')

st.write("This app uses 6 inputs to predict the species of 
penguin using "

         "a model built on the Palmer's Penguin's dataset. Use 
the form below"

         " to get started!")

 

password_guess = st.text_input('What is the Password?')

if password_guess != st.secrets["password"]:

  st.stop()

 

penguin_file = st.file_uploader('Upload your own penguin data')

This code will create the following Streamlit app, password protected with the Streamlit 
Secret that we set: 

Figure 5.9 – Deployed password

When we push this code to our GitHub repository and reboot our Streamlit app, we will 
then have a password-protected Streamlit app deployed on Streamlit Sharing! We can use 
this same method for private API keys, or any other use case where we need to hide data 
from the user of the app. 



Summary     113

Summary
In this chapter, we've learned how to get started with Git and GitHub on the command 
line, how to debug apps on Streamlit Sharing, how to use Streamlit Secrets to use private 
data on public apps, and how to deploy our apps quickly using Streamlit Sharing. This 
completes part one of this book! Congratulations for making it to this point. The next 
section will use all of part one as a building block for more advanced topics such as more 
complicated formatting and beautification of our Streamlit apps and using valuable open 
source community-built add-ons called Streamlit components. 

In the next chapter, we will cover beautifying Streamlit apps through themes, columns, 
and many more features. 





Section 2:  
Advanced Streamlit 

Applications

This section covers the basics of Streamlit and will show you how to create your first app. 
Section 2 explores Streamlit through complex applications and use cases and intends to 
make you an expert Streamlit user. 

The following chapters are covered in this section:

•	 Chapter 6,  Beautifying Streamlit Apps

•	 Chapter 7, Streamlit Components

•	 Chapter 8, Deploying Streamlit Apps with Heroku and AWS





6
Beautifying 

Streamlit Apps
Welcome to Section 2 of the book! In Section 1, Creating Basic Streamlit Applications,  
we focused on the basics – visualization, deployment, and data munging, all the topics 
that are crucial to getting started with Streamlit. In this part of the book, the purpose is 
to explore Streamlit through more complex applications and use cases, with the intent of 
turning you into an expert Streamlit user. 

Throughout this chapter, we'll work with elements including sidebars, columns, colors, 
and themes to extend our ability to make beautiful Streamlit applications. By the end of 
this chapter, you should feel much more comfortable creating applications that are better 
than the average Minimum Viable Product (MVP). We'll start by learning about columns 
and move on to the rest of the elements discussed, weaving each into the main Streamlit 
app for the chapter. 

Specifically, in this chapter, we will cover the following topics:

•	 Setting up the SF (San Francisco) Trees dataset

•	 Working with columns in Streamlit

•	 Exploring page configuration

•	 Using the Streamlit sidebar
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•	 Picking colors with Color Picker

•	 Utilizing Streamlit themes

Technical requirements
This chapter requires a free GitHub account, which can be obtained at https://www.
github.com. A full primer on GitHub, along with detailed setup instructions, can 
be found in the A quick primer on GitHub section in the previous chapter, Chapter 5, 
Deploying Streamlit with Streamlit Sharing.

Setting up the SF Trees dataset
For this chapter, we will be working with the SF Trees dataset again, the same dataset that 
we used in Chapter 3, Data Visualization. As we did in the previous chapters, we need to 
follow this list of steps for the setup:

1.	 Create a new folder for the chapter.

2.	 Add our data to the folder.

3.	 Create a Python file for our app.

Let's see each of these steps in detail.

In our main streamlit_apps folder, run the following code in your terminal to make 
a new folder cleverly called pretty_trees. You can also create a new folder manually 
outside the terminal:

mkdir pretty_trees

Now, we need to move our data from Chapter 3, Data Visualization, into our folder for 
this chapter. The following code copies the data into the correct folder: 

cp trees_app/trees.csv pretty_trees

If you do not have the trees_app folder and have not yet completed Chapter 3, Data 
Visualization, you can also download the necessary data from https://github.com/
tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science 
within the folder entitled trees_app. 

Now that we have our data ready, we need to create a Python file to host our Streamlit 
app's code; the following code does precisely this:

touch pretty_trees.py

https://www.github.com
https://www.github.com
https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
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The pretty_trees file will hold our Python code, so go ahead and open it up in the 
text editor of your choice and the chapter can officially begin with us learning how to 
work with columns in Streamlit!

Working with columns in Streamlit
In all of our apps prior to this point, we have viewed each Streamlit task as a top-down 
experience. We output text as our title, collect some user input below, and then put our 
visualizations below that. However, Streamlit allows us to format our app into dynamic 
columns using the st.beta_columns() feature. As of now, the columns feature is in 
beta (hence the beta_ in the function name), but the feature should be out of beta  
at some point in 2021, where it will be called st.columns(). 

We can divide our Streamlit app into multiple columns of variable lengths, and then  
treat each column as its own unique space in our app to include text, graphs, images,  
or anything else we would like. 

The syntax for columns in Streamlit uses with notation, which you may already be 
familiar with for use cases such as resource management and dealing with opening and 
writing to files in Python. The easiest way to think about with notation in Streamlit 
columns is that they are self-contained blocks of code that tell Streamlit exactly where 
to place items in our apps. Let's check out an example to see how it works. The following 
code imports our SF Trees dataset and creates three columns of equal length within it, 
writing text into each one: 

import streamlit as st

import pandas as pd

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

trees_df = pd.read_csv('trees.csv')

col1, col2, col3 = st.beta_columns((1,1,1))

with col1:

     st.write('First column')

with col2:
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     st.write('Second column')

with col3:

     st.write('Third column')

The preceding code will create the app shown in the following screenshot:

Figure 6.1 – First three columns

As we can see, st.beta_columns() defines three columns of equal length, and we use 
the with notation to print some text in each. We can also call the st.write() function 
(or any other Streamlit function that writes content to our Streamlit app) directly on our 
predefined columns for the same outcome, as shown in the following code. The following 
code will have the exact same output as the preceding code block:

import streamlit as st

import pandas as pd

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

trees_df = pd.read_csv('trees.csv')

col1, col2, col3 = st.beta_columns((1,1,1))

col1.write('First column')

col2.write('Second column')

col3.write('Third column')

As we write more complex Streamlit apps with more content in each column, with 
statements tend to make for cleaner apps that are easier to understand and debug. The 
majority of this book will use with statements whenever possible. 
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In Streamlit, the column width is relative to the size of the other defined columns. Because 
of this, if we scale up the width of each column to 10 instead of 1, our app will not change 
at all. Additionally, we can also pass a single number into st.beta_columns(),  
and st.beta_columns() will return that number of columns of equal width. The 
following code block shows three options for column width that all result in the same 
column widths: 

#option 1

col1, col2, col3 = st.beta_columns((1,1,1))

#option 2

col1, col2, col3 = st.beta_columns((10,10,10))

#option 3

col1, col2, col3 = st.beta_columns(3)

As a final example, the following code block allows the user input to determine the width 
of each column. Go ahead and play around with the resulting app to better understand 
how we can use columns to change the format behind our Streamlit apps: 

import streamlit as st

import pandas as pd

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

trees_df = pd.read_csv('trees.csv')

first_width = st.number_input('First Width', min_value=1, 
value=1)

second_width = st.number_input('Second Width', min_value=1, 
value=1)

third_width = st.number_input('Third Width', min_value=1, 
value=1)

col1, col2, col3 = st.beta_columns(

      (first_width,second_width,third_width))

with col1:

     st.write('First column')
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with col2:

     st.write('Second column')

with col3:

     st.write('Third column')

In Chapter 3, Data Visualization, we used the following code to show the difference 
between the built-in Streamlit functions st.line_chart(), st.bar_chart(),  
and st.area_chart(): 

import streamlit as st

import pandas as pd

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

trees_df = pd.read_csv('trees.csv')

df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).count()
['tree_id'])

df_dbh_grouped.columns = ['tree_count']

st.line_chart(df_dbh_grouped)

st.bar_chart(df_dbh_grouped)

st.area_chart(df_dbh_grouped)

The preceding code block creates the following Streamlit app, with three graphs of San 
Francisco trees grouped by their width placed one right after the other (only the two 
graphs are shown for brevity):
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Figure 6.2 – SF line and bar charts

The point of this exercise was to better understand the three Streamlit functions, but how 
can we do that if we need to scroll to see them all? Let's improve on this by putting our 
three graphs side by side using three columns. The following code predefines three equally 
wide columns and places one graph in each: 

import streamlit as st

import pandas as pd

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'
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         ' a dataset kindly provided by SF DPW')

trees_df = pd.read_csv('trees.csv')

df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).count()
['tree_id'])

df_dbh_grouped.columns = ['tree_count']

col1, col2, col3 = st.beta_columns(3)

with col1:

     st.line_chart(df_dbh_grouped)

with col2:

     st.bar_chart(df_dbh_grouped)

with col3:

     st.area_chart(df_dbh_grouped)

When we run the preceding code, we get a strange result shown in the  
following screenshot:

Figure 6.3 – Skinny graphs

This is most certainly not what we wanted! Each graph is far too narrow. Luckily for us, 
this brings us to our next mini-topic, page configuration in Streamlit.
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Exploring page configuration 
Streamlit allows us to configure a few essential page-specific features at the top of each 
Streamlit app. So far, we have been using the Streamlit defaults, but at the top of our 
Streamlit app, we can manually configure everything, from the page title shown on the 
web browser used to open our Streamlit apps, to the page layout, to the sidebar default 
state (we will cover the sidebar in the Using the Streamlit sidebar section!). 

The default for Streamlit apps is to have a centered page layout, which is why there is 
copious white space on the edges of our apps. The following code sets up our Streamlit 
app in a wide format instead of our default centered one:

import streamlit as st

import pandas as pd

st.set_page_config(layout='wide')

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW')

trees_df = pd.read_csv('trees.csv')

df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).count()
['tree_id'])

df_dbh_grouped.columns = ['tree_count']

col1, col2, col3 = st.beta_columns(3)

with col1:

     st.line_chart(df_dbh_grouped)

with col2:

     st.bar_chart(df_dbh_grouped)

with col3:

     st.area_chart(df_dbh_grouped)
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When we run the preceding code, we now see that our three graphs are well spaced and 
we can easily compare between the three. The following screenshot shows the Streamlit 
app in a wide format: 

Figure 6.4 – Wide-format graphs

This concludes our exploration of using columns in Streamlit, and also concludes our first 
look at page configuration defaults. We will increasingly use both of these skills in the 
remainder of the book. Our next topic is to introduce the Streamlit sidebar. 

Using the Streamlit sidebar
As we have already seen in Streamlit, when we start to both accept large amounts of user 
input and also start to develop longer Streamlit apps, we often lose the ability for the 
user to see both their input and the output on the same screen. In other cases, we may 
want to put all the user input into its own section to clearly separate input and output in 
our Streamlit app. For both of these use cases, we can use the Streamlit sidebar, which 
allows us to place a minimizable sidebar on the left side of the Streamlit app and add any 
Streamlit component to it. 

To begin with, we can make a basic example that takes one of the graphs from our 
preceding app and filter the data behind it based on the user's input. In this case, 
we can ask the user to specify the type of tree owner (for example, a private owner, 
or the Department of Public Works), and filter on those conditions using the 
st.multiselect() function, which allows the user to select multiple options  
from a list: 
import streamlit as st

import pandas as pd

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW. The '

         'histogram below is filtered by tree owner.')
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trees_df = pd.read_csv('trees.csv')

owners = st.sidebar.multiselect(

     'Tree Owner Filter', trees_df['caretaker'].unique())

if owners:

     trees_df = trees_df[trees_df['caretaker'].isin(owners)] 

df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).count()
['tree_id'])

df_dbh_grouped.columns = ['tree_count']

st.line_chart(df_dbh_grouped)

The preceding code will create the following Streamlit app. As we have done before,  
we hide the owners variable within an if statement, as we would like the app to run 
with the entire dataset if the user has yet to select from the options. The sidebar allows  
the user to easily see both the options they selected and the output to our app:

Figure 6.5 – First sidebar

Our next step for this app is going to be to add a few more visualizations, starting with the 
tree map we created in Chapter 3, Data Visualization, and then combine the sidebar with 
what we have already learned about columns in this chapter. 

The following code places the map of trees throughout San Francisco, filtered by  
our multi-select box, below the histogram: 

import streamlit as st

import pandas as pd

trees_df = pd.read_csv('trees.csv')

owners = st.sidebar.multiselect(
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     'Tree Owner Filter', trees_df['caretaker'].unique())

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW. The '

         'histogram below is filtered by tree owner.')

st.write('The current analysis is of trees owned by {}'.
format(owners))

if owners:

     trees_df = trees_df[trees_df['caretaker'].isin(owners)] 

df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).count()
['tree_id'])

df_dbh_grouped.columns = ['tree_count']

st.line_chart(df_dbh_grouped)

trees_df = trees_df.dropna(subset=['longitude', 'latitude'])

trees_df = trees_df.sample(n = 1000, replace=True)

st.map(trees_df)

The following screenshot shows the Streamlit app from the preceding code, with the line 
chart just above the new map of the trees in SF, filtered by tree owner: 

Figure 6.6 – Filtered map with sidebar
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Our next step for this application is going to be to combine what we learned about 
columns with the sidebar by adding another graph on top of the geographic map. In 
Chapter 3, Data Visualization, we created a histogram of the age of the trees. We can use 
that as our third graph in this Streamlit app. The following code block does this, and also 
switches the line graph into the same library (seaborn) as our tree age graph: 

import streamlit as st

import pandas as pd

import seaborn as sns

import datetime as dt

import matplotlib.pyplot as plt

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW. The '

         'histogram below is filtered by tree owner.')

trees_df = pd.read_csv('trees.csv')

trees_df['age'] = (pd.to_datetime('today') -

                   pd.to_datetime(trees_df['date'])).dt.days

owners = st.sidebar.multiselect(

     'Tree Owner Filter', trees_df['caretaker'].unique())

if owners:

     trees_df = trees_df[trees_df['caretaker'].isin(owners)] 

df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).count()
['tree_id'])

df_dbh_grouped.columns = ['tree_count']

This first section does the following:

1.	 It loads the trees dataset.

2.	 It adds an age column based on the date column in our dataset.

3.	 It creates a multi-select widget on the sidebar.

4.	 It filters based on the sidebar.
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Our next step is to create our three graphs: 

#define multiple columns, add two graphs

col1, col2 = st.beta_columns(2)

with col1:

     st.write('Trees by Width')

     fig_1, ax_1 = plt.subplots()

     ax_1 = sns.histplot(trees_df['dbh'])

     plt.xlabel('Tree Width')

     st.pyplot(fig_1)

with col2:

     st.write('Trees by Age')

     fig_2, ax_2 = plt.subplots()

     ax_2 = sns.histplot(trees_df['age'])

     plt.xlabel('Age (Days)')

     st.pyplot(fig_2)

st.write('Trees by Location')

trees_df = trees_df.dropna(subset=['longitude', 'latitude'])

trees_df = trees_df.sample(n = 1000, replace=True)

st.map(trees_df)

As we have already discussed in Chapter 3, Data Visualization, built-in Streamlit functions 
such as st.map() and st.line_chart() are useful for quick visualizations but 
lack some configurability options, such as proper titles or axis renaming. The following 
screenshot shows our Streamlit application with a few tree owner filters pre-set: 
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Figure 6.7 – Three filtered graphs

Our next feature to discuss in this chapter is how to get and use user input on color,  
which will be covered in the next section. 

Picking colors with Color Picker
Colors are very difficult to take in as user input in applications. If a user wants red, do they 
want light red or dark red? Maroon or a pinkish red? Streamlit's approach to this problem 
is st.color_picker(), which lets the user pick a color, and returns that color in  
a hex string (which is a unique string that defines very specific color shades used by most 
graphing libraries as input). The following code adds this color picker to our previous app 
and changes the color of the Seaborn graphs to be based on the color that the user selects: 

import streamlit as st

import pandas as pd

import seaborn as sns

import datetime as dt

import matplotlib.pyplot as plt

st.title('SF Trees')

st.write('This app analyses trees in San Francisco using'

         ' a dataset kindly provided by SF DPW. The '
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         'histogram below is filtered by tree owner.')

#load trees dataset, add age column in days

trees_df = pd.read_csv('trees.csv')

trees_df['age'] = (pd.to_datetime('today') -

                   pd.to_datetime(trees_df['date'])).dt.days

#add tree owner filter to sidebar, then filter, get color 

owners = st.sidebar.multiselect(

     'Tree Owner Filter', trees_df['caretaker'].unique())

graph_color = st.sidebar.color_picker('Graph Colors')

if owners:

     trees_df = trees_df[trees_df['caretaker'].isin(owners)] 

#group by dbh for leftmost graph

df_dbh_grouped = pd.DataFrame(trees_df.groupby(['dbh']).count()
['tree_id'])

df_dbh_grouped.columns = ['tree_count']

The change here from our previous app is to add the graph_color variable, which is  
a result of the st.color_picker() function. We added a name to this color picker 
and placed the color picker in the sidebar right under the owner's multi-select widget. 
Now that we have the color input from the user, we can use this to change the colors in 
our graphs, as shown in the following code:

#define multiple columns, add two graphs

col1, col2 = st.beta_columns(2)

with col1:

     st.write('Trees by Width')

     fig_1, ax_1 = plt.subplots()

     ax_1 = sns.histplot(trees_df['dbh'], 

          color=graph_color)

     plt.xlabel('Tree Width')

     st.pyplot(fig_1)

with col2:

     st.write('Trees by Age')

     fig_2, ax_2 = plt.subplots()

     ax_2 = sns.histplot(trees_df['age'],
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          color=graph_color)

     plt.xlabel('Age (Days)')

     st.pyplot(fig_2)

st.write('Trees by Location')

trees_df = trees_df.dropna(subset=['longitude', 'latitude'])

trees_df = trees_df.sample(n = 1000, replace=True)

st.map(trees_df)

When you run this Streamlit app, you can see exactly how the color picker works (this 
book is published in grayscale, so is not visible in the hard copy). It has a default color  
(in our case, black) that you can change by selecting the component and then clicking on 
your color of choice. The following screenshot shows both the component when clicked 
on and the result in our SF Trees app: 

Figure 6.8 – Color picker

Now that we know how to change the colors of visualizations in Streamlit, how can  
we change the entire format and color scheme of Streamlit apps themselves? The next 
chapter explores Streamlit themes, and how to set up different themes to beautify 
Streamlit apps. 
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Utilizing Streamlit themes
So far, our applications have all had the exact same background and color scheme, 
apart from the previous section on the color picker. Streamlit allows us to update our 
applications and change the color of the background and the various components in our 
app as a customization feature. Using this, we can create Streamlit apps that default to 
dark mode, or that have the perfect colors for our app, or even create themes that ensure 
that people affected by color-blindness can see all of our visualizations. 

There are two ways to edit the theme of an app – through the UI or through the same 
config.toml setup we used in Chapter 3, Data Visualization. When we run our 
Streamlit apps, in the top-right corner, there is a little hamburger icon. When we click that 
icon and then click Settings, we will see the following options pop up in the middle of  
our screen:

Figure 6.9 – Theme edits

Using the preceding menu, we can switch between Light and Dark themes, and when  
we click on Edit active theme, we can see all of our theme editing options as 
demonstrated in the following screenshot: 
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Figure 6.10 – Editing active themes

From the preceding screenshot, we can observe that the following can be switched:

•	 Primary color: For interactive colors 

•	 Background color: Background of the app

•	 Secondary background color: Background within components 

•	 Text color/font: The color and font of the app text 

Feel free to click on them and change the colors and see how this affects your Streamlit 
app. Once you have found a few colors that you like for our SF Trees app, you can add 
them to the theme section of your .streamlit/config.toml file as the instructions 
in Settings tell you to, and this will change the theme whenever you open the app. The 
following code block is added to the config.toml file and shows the colors I have 
selected for my theme: 

[theme]

# Primary accent color for interactive elements.
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primaryColor = "#de8ba1"

# Background color for the main content area.

backgroundColor = "#f4f1ea"

# Background color used for the sidebar and most interactive 
widgets.

secondaryBackgroundColor = "#9fe4cc"

# Color used for almost all text.

textColor = "#262730"

When we save this file and rerun our application, we will see in the next screenshot that 
our app now has a custom theme, as expected:

Figure 6.11 – Custom theme output

The easiest way I have found to make your Streamlit themes look great is to edit in the 
in-browser editor live, and then copy and paste your results to the Streamlit configuration 
file, as we just did in this example. But, as with all things, have fun with it! Try new 
combinations and make your Streamlit apps as beautiful as they can be. 
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Summary
This concludes our adventures with the SF Trees dataset, and with learning about 
the various ways to make our Streamlit apps more aesthetically pleasing. We covered 
separating our apps into columns and page configuration, along with gathering user input 
in the sidebar, getting specific colors in user input through the st.color_picker() 
feature, and finally learning how to use Streamlit themes. 

In the next chapter, we will learn about the open source community around Streamlit,  
by understanding how to download and use Streamlit components built by users. 





7
Exploring Streamlit 

Components
Streamlit has a full-time team of developers working on new features but also thrives 
because it is open to community-driven development. Undoubtedly, there will be 
community members who want a specific feature that did not make it onto the roadmap 
of priorities. Streamlit Components allow them the flexibility to go out and make  
it themselves, and immediately use their idea in their own Streamlit apps. 

Our priority in this chapter is to learn how to find and use community-made Streamlit 
Components. For that, we will run through three excellent Streamlit apps, one to learn 
how to embed code into our Streamlit apps, another for adding beautiful animations  
to them, and a third to embed easy automated exploratory data analysis (EDA) to 
Streamlit apps.

In this chapter, we will cover the following topics:

•	 Using Streamlit Components: streamlit-embedcode

•	 Using Streamlit Components: streamlit-lottie

•	 Using Streamlit Components: streamlit-pandas-profiling

•	 Finding more components
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Let's look at the technical requirements in the next section. 

Technical requirements
Before we can work with new Streamlit Components, we need to download them first.  
We can download each using pip (or any other package manager), just as we did  
with Streamlit in Chapter 1, An Introduction to Streamlit. These are the components  
to be downloaded:

•	 streamlit-embedcode: To download this library, run the following code in 
your terminal: 

pip install streamlit-embedcode

streamlit-embedcode makes it easy to import code blocks from other 
locations (such as a GitHub gist) and show them directly in your apps, and was 
created by Randy Zwitch, a Streamlit employee. 

•	 streamlit-lottie: To download this library, run the following code in  
your terminal:

pip install streamlit-lottie

streamlit-lottie uses the lottie open source library to allow us to add 
web-native animations (such as a Graphics Interchange Format (GIF) file) into our 
Streamlit apps. It is frankly a wonderful library for beautifying Streamlit apps and 
was created by Andy Fanilo, a prolific Streamlit app creator. 

•	 streamlit-pandas-profiling: To download this library, run the following 
code in your terminal: 

pip install streamlit-pandas-profiling

The popular pandas Python library is the standard Python data analysis library and often 
tops the list of the most popular and useful Python libraries for data scientists. pandas-
profiling creates an automatically generated EDA on top of any DataFrame we create 
and shows us everything, from descriptive statistics to how many duplicate rows we have. 
It was created by a Streamlit user who goes by the name of Okld on GitHub (https://
github.com/okld). 

Now that we have the three libraries installed, we can move on to learning about the first 
one: streamlit-embedcode. 

https://github.com/okld
https://github.com/okld
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Using Streamlit Components –  
streamlit-embedcode
If we want to display code on Streamlit, we can easily just treat the code as text and use 
the familiar st.write(), which takes text as input, or st.markdown(), which takes 
markdown as input. This might work well for small snippets but will be a struggle to 
format easily, and may not look good for the average user or longer bits of code.  
As a result, streamlit-embedcode was created to help solve this problem. 

Showing snippets of code to others is a commonly solved problem; a few solutions that 
are out there include sharing snippets with GitHub gists (which are like mini GitHub 
repositories with only one text file) with GitLab snippets (which are the same as gists but 
for GitLab) and using Pastebin, which is a shared text/code snippets freeway outside of 
GitHub/GitLab. Now, we can make a Python file with some example Streamlit code, put  
it in a GitHub gist, and call it from a new Streamlit app. To do so, we'll follow these steps:

1.	 For each of these options, we will start by making a quick Streamlit app that just 
exists to show users the code behind the Palmer's Penguins Streamlit app.  
We can house this app in its own component_example folder using the following 
code from our streamlit_apps folder:

mkdir component_example 

cd component_example 

touch gist_example.py

2.	 Next, we need to navigate to https://gist.github.com/ to create our very 
own gist. After we sign in to GitHub, we need to title the gist and then paste our 
code from Palmer's Penguins to copy it to the following code block (which 
includes a brief explanation in the middle of it):

import streamlit as st 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

st.title("Palmer's Penguins") 

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!') 

 

selected_x_var = st.selectbox('What do want the x 
variable to be?', 

https://gist.github.com/
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  ['bill_length_mm', 'bill_depth_mm', 'flipper_length_
mm', 'body_mass_g']) 

selected_y_var = st.selectbox('What about the y?', 

  ['bill_depth_mm', 'bill_length_mm', 'flipper_length_
mm', 'body_mass_g']) 

 

penguin_file = st.file_uploader('Select Your Local 
Penguins CSV') 

if penguin_file is not None: 

     penguins_df = pd.read_csv(penguin_file) 

else: 

     st.stop()

This first section imports our libraries, adds some text for a title, gathers some 
inputs from the user, and downloads the right dataset. Now, we would just like to 
make a scatterplot graph, and then that will conclude the code that goes into our 
gist. Again, the exact code here does not actually matter because it does not execute 
within a gist—it is instead a prettier way to send code to others. The following code 
snippet illustrates the process:

sns.set_style('darkgrid')

markers = {"Adelie": "X", "Gentoo": "s", "Chinstrap":'o'}

fig, ax = plt.subplots() 

ax = sns.scatterplot(data = penguins_df, x = selected_x_
var, 

  y = selected_y_var, hue = 'species', markers = markers,

  style = 'species') 

plt.xlabel(selected_x_var) 

plt.ylabel(selected_y_var) 

plt.title("Scatterplot of Palmer's Penguins") 

st.pyplot(fig)
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Now, we should have a GitHub gist that looks like this: 

Figure 7.1 – GitHub gist example

3.	 When we save our GitHub gist, we can link directly to it from within our Streamlit 
apps. In the gist_example.py Python file, we need to import the github_
gist() function from our new library and use it on the GitHub gist we just 
created. The following code does this for my own gist, but you should replace the 
gist link with your own:

import streamlit as st 

from streamlit_embedcode import github_gist

st.title("Github Gist Example") 

st.write("Code from Palmer's Penguin Streamlit app.")

github_gist('https://gist.github.com/
tylerjrichards/9dcf6df0c17ccb7b91baafbe3cdf7654')
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Now, if we ever need to edit the code in the gist, we can instead edit the underlying 
gist and the Streamlit apps will update automatically. When we start up our 
Streamlit apps held in gist_example.py, we will get the following Streamlit app:

Figure 7.2 – Streamlit apps with GitHub gist
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Note
For any public Streamlit apps, we can always simply access the source code for 
the app in the Settings tab. So, this method is not very useful for showing the 
code behind the Streamlit apps as this is already built-in, but is more useful  
for showing often-used code blocks such as a generic bit of code to make  
a machine learning (ML) model or a more generic Structured Query 
Language (SQL) query that users may learn from. 

Now, let's switch over to learning about how to add beautiful animations to our app using 
streamlit-lottie!

Using Streamlit Components – streamlit-lottie
As we talked about at the beginning of this chapter, lottie is a web-native, open source 
library created by Airbnb to make putting animations on your website just as easy as 
putting static images on it. It is very common for large, profitable tech companies to put 
out open source software as a way of giving back to the developer community (or, more 
likely, to recruit developers who think their software is cool), and this is no exception. In 
this case, streamlit-lottie wraps around lottie files and places them directly into 
our Streamlit apps. 

To do this, we first need to import the streamlit-lottie library, and then point 
the st_lottie() function to our lottie file. We can either import a local lottie 
file or, more likely, we can find a useful animation file on the free site (https://
lottiefiles.com/) and load it from there into our app. 

To test this out, we can add a cute penguin animation (https://lottiefiles.
com/39646-cute-penguin) to the top of the Penguins app we created earlier in 
Chapter 4, Using Machine Learning with Streamlit. In our new components_example 
folder, we can add a new penguin_animated.py file using the following code: 

touch penguin_animated.py

Then, in this new file, we can make this new app. The following code block makes  
a function, as shown in the example from the streamlit-lottie library (https://
github.com/andfanilo/streamlit-lottie), that allows us to load lottie files 
from the URL and then loads this animation at the top of the application: 

import streamlit as st 

from streamlit_lottie import st_lottie

import requests

import pandas as pd 

https://lottiefiles.com/
https://lottiefiles.com/
https://lottiefiles.com/39646-cute-penguin
https://lottiefiles.com/39646-cute-penguin
https://github.com/andfanilo/streamlit-lottie
https://github.com/andfanilo/streamlit-lottie


146     Exploring Streamlit Components

import matplotlib.pyplot as plt 

import seaborn as sns 

def load_lottieurl(url: str):

    r = requests.get(url)

    if r.status_code != 200:

        return None

    return r.json()

lottie_penguin = load_lottieurl('https://assets9.lottiefiles.
com/private_files/lf30_lntyk83o.json')

st_lottie(lottie_penguin, height=200)

The previous section of code uses the requests library to define a function that we can 
use to load lottie files from a link. In this case, I have pre-filled a link that takes us to  
a cute penguin animation. We can then load our file using our new function, and call that 
file using the st_lottie() function we imported from our streamlit-lottie 
library. Next, we can finish out the app with our previously defined user inputs and 
scatterplot. The code is illustrated in the following snippet:

 

st.title("Palmer's Penguins") 

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!') 

 

selected_x_var = st.selectbox('What do want the x variable to 
be?', 

  ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g']) 

selected_y_var = st.selectbox('What about the y?', 

  ['bill_depth_mm', 'bill_length_mm', 'flipper_length_mm', 
'body_mass_g']) 

 

penguin_file = st.file_uploader('Select Your Local Penguins 
CSV') 

if penguin_file is not None: 

     penguins_df = pd.read_csv(penguin_file) 

else:
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     penguins_df = pd.read_csv('penguins.csv')

sns.set_style('darkgrid')

markers = {"Adelie": "X", "Gentoo": "s", "Chinstrap":'o'}

fig, ax = plt.subplots() 

ax = sns.scatterplot(data = penguins_df, x = selected_x_var, 

  y = selected_y_var, hue = 'species', markers = markers,

  style = 'species') 

plt.xlabel(selected_x_var) 

plt.ylabel(selected_y_var) 

plt.title("Scatterplot of Palmer's Penguins") 

st.pyplot(fig)

This code block will create the following app, which is simply our Palmer's Penguins app 
with the cute penguin animation on top (the app has been cropped for brevity):

Figure 7.3 – Adorable penguin animation 
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streamlit-lottie also allows us to change the animation speed, width, and height 
through the speed, width, and height parameters respectively. If the animation goes 
too slowly for your taste, increase the speed to a number such as 1.5 or 2, which will 
increase the speed by 50% or 100%. The height and width parameters, however, are 
the pixel height/width of the animation and default to the native size of the animation 
(the penguin animation is ~700 pixels by ~400 pixels, for example). In the following code 
block, we change the speed, width, and height of our animation: 

import streamlit as st 

from streamlit_lottie import st_lottie

import requests

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

def load_lottieurl(url: str):

    r = requests.get(url)

    if r.status_code != 200:

        return None

    return r.json()

lottie_penguin = load_lottieurl('https://assets9.lottiefiles.
com/private_files/lf30_lntyk83o.json')

st_lottie(lottie_penguin, speed=1.5, width=800, height=400)

The following code block is the same as for the other app but instead, we have changed the 
speed, width, and height of our animation to 1.5, 800, and 400. It takes a while to get 
used to how these inputs interact, as animations can have different sizes and speeds!  
You can see the different settings being applied here:

 

st.title("Palmer's Penguins") 

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!') 

 

selected_x_var = st.selectbox('What do want the x variable to 
be?', 

  ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g']) 
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selected_y_var = st.selectbox('What about the y?', 

  ['bill_depth_mm', 'bill_length_mm', 'flipper_length_mm', 
'body_mass_g']) 

 

penguin_file = st.file_uploader('Select Your Local Penguins 
CSV') 

if penguin_file is not None: 

     penguins_df = pd.read_csv(penguin_file) 

else:

     penguins_df = pd.read_csv('penguins.csv')

sns.set_style('darkgrid')

markers = {"Adelie": "X", "Gentoo": "s", "Chinstrap":'o'}

fig, ax = plt.subplots() 

ax = sns.scatterplot(data = penguins_df, x = selected_x_var, 

  y = selected_y_var, hue = 'species', markers = markers,

  style = 'species') 

plt.xlabel(selected_x_var) 

plt.ylabel(selected_y_var) 

plt.title("Scatterplot of Palmer's Penguins") 

st.pyplot(fig)



150     Exploring Streamlit Components

When we make the penguin animation much larger by increasing the width and height 
in comparison to the previous version, we see the impact on the animation size, as 
illustrated in the following screenshot. When you run this yourself, you will also notice 
the animation speed increase as well. I would strongly encourage running this app, as the 
penguin animation is really quite adorable:

Figure 7.4 – Final penguin animation app
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And that completes our tour of streamlit-lottie! I have started getting into the 
habit of putting a nice animation at the top of each and every Streamlit apps I create—it 
creates a sense of design that makes Streamlit apps feel more purposeful, and immediately 
alerts the user to the fact that this is not a static document but instead a dynamic and 
interactive application. Now, let's move on to pandas-profiling!

Using Streamlit Components –  
streamlit-pandas-profiling
pandas-profiling is a very powerful Python library that automates some of the 
EDA that is often the first step in any data analysis, modeling, or even data engineering 
task. Before a data scientist begins almost any data work, they want to start with a good 
understanding of the distributions of their underlying data, the number of missing 
rows, correlations between variables, and many other basic pieces of information. As 
we mentioned before, this library automates the process and then places this interactive 
analytics document into a Streamlit app for the user. 

Behind the Streamlit component called pandas-profiling, there is a full Python 
library with the same name that the component imports its functions from. The Streamlit 
component here actually renders the output from the pandas-profiling Python 
library in a way that becomes very easy to integrate. For this segment, we will first learn 
how to implement the library, and then explore the generated output. 

For our example, we will actually continue with our code from the previous section on 
Palmer's Penguins and add our automatically generated profile to the bottom of the app. 
The code for this is only a few lines—we need to generate a report for our dataset and 
then use the Streamlit component to add it to our app. The next code block imports 
the necessary libraries, and then creates and adds to our app a profile based on the 
penguins_df variable we have defined:

import streamlit as st 

from streamlit_lottie import st_lottie

import requests

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from pandas_profiling import ProfileReport

from streamlit_pandas_profiling import st_profile_report

def load_lottieurl(url: str):
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    r = requests.get(url)

    if r.status_code != 200:

        return None

    return r.json()

lottie_penguin = load_lottieurl('https://assets9.lottiefiles.
com/private_files/lf30_lntyk83o.json')

st_lottie(lottie_penguin, speed=1.5, width = 800, height = 400)

 

st.title("Palmer's Penguins") 

st.markdown('Use this Streamlit app to make your own 
scatterplot about penguins!') 

 

selected_x_var = st.selectbox('What do want the x variable to 
be?', 

  ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g']) 

selected_y_var = st.selectbox('What about the y?', 

  ['bill_depth_mm', 'bill_length_mm', 'flipper_length_mm', 
'body_mass_g']) 

This section uses the same streamlit-lottie library but also loads the pandas_
profiling and streamlit-pandas-profiling library for our use. This is a good 
lesson—we can treat Streamlit Components as unique Lego blocks, combining them at 
will to create new and interesting Streamlit applications. The following section reads in 
our DataFrame and adds a pandas profile to our dataset! Here's the code:

penguin_file = st.file_uploader('Select Your Local Penguins 
CSV') 

if penguin_file is not None: 

     penguins_df = pd.read_csv(penguin_file) 

else:

     penguins_df = pd.read_csv('penguins.csv')

sns.set_style('darkgrid')

markers = {"Adelie": "X", "Gentoo": "s", "Chinstrap":'o'}

fig, ax = plt.subplots() 

ax = sns.scatterplot(data = penguins_df, x = selected_x_var, 
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  y = selected_y_var, hue = 'species', markers = markers,

  style = 'species') 

plt.xlabel(selected_x_var) 

plt.ylabel(selected_y_var) 

plt.title("Scatterplot of Palmer's Penguins") 

st.pyplot(fig) 

st.title('Pandas Profiling of Penguin Dataset')

penguin_profile = ProfileReport(penguins_df, explorative=True)

st_profile_report(penguin_profile)

The resulting app contains this profile, which starts with an overview that contains 
information on the number of variables, any warnings about the dataset (for example,  
we are warned that some rows are missing gender information for our penguin dataset), 
and other base information. The following screenshot shows the top section of the profile: 

 

Figure 7.5 – pandas profile
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I would strongly encourage you to try out this component yourself and see the massive 
amount of information generated from these couple of lines of code. It includes 
histograms and basic statistics about each variable, sample rows from the beginning and 
end of the dataset, and even a correlation matrix with an explanation of a few different 
correlation variables. The following screenshot shows the correlation section output for 
our penguin dataset—we can immediately see that body mass is positively correlated with 
the flipper length of our penguins:

Figure 7.6 – Pearson's correlation coefficient
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Note
Try this out yourself to see the full spectrum of colors.  

Hopefully, you now have a solid understanding of how to use this component to add  
EDA, which should help if you are inviting users to bring their own dataset, as in the 
penguin example. 

Finding more components
These three components are a tiny percentage of all the components the community has 
created, and by the time you may be reading this, I am sure the number of components 
out there will be dramatically higher. The best place to find new and interesting 
components is on either the Streamlit website at https://streamlit.io/
gallery?type=components&category=featured or the discussion forums at 
https://discuss.streamlit.io/tag/custom-components. When you find 
a component that you think is interesting, try it out by downloading it with pip as we did 
earlier, and read enough documentation to get started!

Summary 
At this point, I hope you feel very comfortable downloading and using Streamlit 
Components, which you have learned about here, as well as comfortable with finding new 
Streamlit components created by the community. You should also understand how to add 
GitHub gist examples, Lottie animations, and automatic pandas-profiling features to 
the apps you build. 

In the next chapter, we will dive more deeply into deploying your own Streamlit apps with 
a cloud provider such as Amazon Web Services (AWS). 

https://streamlit.io/gallery?type=components&category=featured
https://streamlit.io/gallery?type=components&category=featured
https://discuss.streamlit.io/tag/custom-components
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Deploying Streamlit 

Apps with Heroku 
and AWS

In Chapter 5, Deploying Streamlit with Streamlit Sharing, we learned how to deploy our 
Streamlit applications with Streamlit Sharing. Streamlit Sharing is quick, easy, and very 
effective for most applications but has a few downsides, mainly that we are limited by 
only being able to host three free applications at once and that we also are limited in the 
computational power at hand. The following excerpt is from the Streamlit Sharing page: 

Apps get up to 1 CPU, 800 MB of RAM, and 800 MB of dedicated storage 
in a shared execution environment.

If you are in a situation where you want to deploy more than three applications at a time, 
or you want more compute as you run, for example, more complex ML models that would 
benefit from a GPU or more RAM, then this chapter is for you! We will cover how to set up 
accounts with AWS and Heroku and how to fully deploy your Streamlit applications there. 
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In this chapter, we will cover the following topics:

•	 Choosing between AWS, Streamlit Sharing, and Heroku

•	 Deploying Streamlit with Heroku

•	 Deploying Streamlit with AWS

Technical requirements
Here is a list of installments required for this chapter:

•	 Heroku account: Heroku is a popular platform that data scientists and 
software engineers use to host their applications, models, and APIs (application 
programming interfaces), and is owned by Salesforce. To get a Heroku account, 
please head over to https://signup.heroku.com to make your free account. 

•	 Heroku Command-Line Interface (CLI): To use Heroku effectively, we will need 
to download the Heroku CLI, which will allow us to run Heroku commands. To 
download this, please follow the instructions listed here: https://devcenter.
heroku.com/articles/heroku-cli. 

•	 Amazon Web Services (AWS) account: Before we can use AWS, we first need 
to sign up for our own Amazon account, which you can do at https://aws.
amazon.com/free. Thankfully, there is a generous free tier available for 
students with .edu accounts, for start-up founders and entrepreneurs, and also for 
non-profits. Once you do this, I would strongly recommend setting billing alerts 
on your account (see https://console.aws.amazon.com/billing/
home?#preferences for more details) to make sure that you do not overshoot 
your free tier, and when you have deployed your own app, to make sure you are not 
spending more than desired. 

•	 PuTTy (Windows only): If you are using Windows, you will need to download and 
install the PuTTY program, which allows Windows OSes to use a protocol called 
Secure Shell (SSH). To download PuTTY, head over to https://www.putty.
org/ and follow the installation instructions. Then, wherever we are using SSH in 
this chapter, open PuTTY and follow the directions as normal! 

Now that we have the requirements, let's begin!

https://signup.heroku.com
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://aws.amazon.com/free
https://aws.amazon.com/free
https://console.aws.amazon.com/billing/home?#preferences
https://console.aws.amazon.com/billing/home?#preferences
https://www.putty.org/
https://www.putty.org/
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Choosing between AWS, Streamlit Sharing, 
and Heroku
At a high level, whenever we are trying to deploy our Streamlit application such that users 
on the internet can see our applications, what we are really doing is renting a computer 
owned by someone else (such as Amazon) and giving that computer a set of instructions 
to start up our application. Choosing which platform to use is difficult to know how to do 
without either having a background in deploying systems or without trying each option 
out first, but there are a few heuristics that should help you out. The two most important 
factors for this decision are the flexibility of the system and the time it takes to get up and 
running. Note that these two factors directly trade off with one another. If you are using 
Streamlit Sharing, you cannot say "I want this to run on a macOS, and I want to add two 
GPUs to this app," and so on, but in return, you get a wildly simple process where you can 
simply point Streamlit Sharing to your GitHub repository, and it will take care of all the 
other little decisions that need to be made. 

On the other hand, AWS and Heroku give you much more flexibility but take time to 
set up (as you will find out!). The biggest difference between the two is that Heroku is 
a Platform as a Service product, while Amazon is an Infrastructure as a Service product, 
which means, in practical terms, that Heroku gives you more flexibility than Streamlit 
Sharing by allowing you to do things such as provide more computational resources,  
and is faster to deploy than AWS, as you can see in the following graphic:

Figure 8.1 – Heroku versus AWS versus Sharing
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The AWS advantage, however, is in its extreme flexibility. AWS will let you choose between 
Ubuntu, macOS, Windows, and Red Hat Linux, between dozens of different database 
types, and is seemingly infinitely customizable. When you are making your Streamlit 
applications, if you want to get out a quick prototype to test out an idea, Streamlit Sharing 
is perfect for you. For full-fledged public applications that need more compute, Heroku 
might be the best call. And if you require ultimate flexibility for a complex ML application, 
or if you are running a business entirely on Streamlit, then AWS might be the best call. 
Throughout the rest of this chapter, we will dive into how to deploy your own app on both 
AWS and Heroku, as we have covered Streamlit Sharing directly in Chapter 5, Deploying 
Streamlit with Streamlit Sharing. Let's get started with Heroku!

Deploying Streamlit with Heroku
Heroku is slightly faster and simpler than AWS, and more cumbersome than Streamlit 
Sharing. But if you have run out of your Streamlit Sharing repositories, or need some 
more compute than Sharing has to offer but require fewer configuration options than the 
infinite ones provided by AWS, then Heroku is the place for you. One other win is that 
you can get custom URLs for your apps with Heroku, which Streamlit Sharing does not 
support (yet!). To deploy our Streamlit apps on Heroku, we need to do the following:

1.	 Set up and log in to Heroku.

2.	 Clone and configure our local repository.

3.	 Deploy to Heroku.

Let's look at each of these steps in detail!

Setting up and logging in to Heroku
In the Technical requirements section of this chapter, we covered how to download Heroku 
and create an account. Now, we need to log in to our Heroku from our command line by 
running the following command and logging in when prompted:

heroku login

This will take us to the Heroku page, and once we log in, we will be good to go. This 
command will keep you logged in on your machine indefinitely unless your password 
changes or you purposely log out of Heroku. 
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Cloning and configuring our local repository
Next, we need to change our directory to where the penguin machine learning app is 
located. My app folder is inside my Documents folder, so the following command takes 
me there, but your folder might be different: 

cd ~/Documents/penguin_ml

If you do not already have the repository downloaded locally with a corresponding 
repository on GitHub, go ahead and stop by Chapter 5, Deploying Streamlit with Streamlit 
Sharing, to see how to get started with GitHub. Instead, you can also run the following 
command to download the repository locally from my personal GitHub, just as we did 
with deploying from AWS: 

git clone https://github.com/tylerjrichards/penguin_ml.git

It is highly encouraged that you practice with your own GitHub repository, as this is much 
better practice than cloning an app from me to use to deploy to Heroku. 

Now we need to create a Heroku app with a unique name for our app with the next 
command (the app will be deployed as this name with .heroku.com appended to the end 
of it). Mine will be penguin-machine-learning, but go ahead and pick your own! 

heroku create penguin-machine-learning

Once we have this, we need to explicitly make the connection between our Git repository 
and the Heroku app we have just created, which can be done with the following command:

heroku git:remote -a penguin-machine-learning

And finally, we are going to add two files to our repository that are needed to start up 
with Heroku, the Procfile file and the streamlit_setup.sh file. Heroku uses 
something called a Procfile as a way to declare which commands the app should perform 
when starting up, and also to tell Heroku what type of application this is. For our Heroku 
apps, we also need this Procfile to configure some setup for our app specific to Streamlit 
apps (such as the port configuration), and then also to run the streamlit run 
command to launch our app. Let's start by creating the streamlit_setup.sh file 
using the following command:

touch streamlit_setup.sh
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We can open this file with our text editor and put the following lines inside it, which 
creates our familiar config.toml file in the base directory:

mkdir -p ~/.streamlit

echo "[server]

headless = true

port = $PORT

enableCORS = false

" > ~/.streamlit/config.toml

Once we save this file, we need to create a Procfile that runs this streamlit_setup.sh 
file and then also runs our Streamlit app:

touch Procfile

Within the Procfile file we just created, we will next add the following line:

web: sh streamlit_setup.sh && streamlit run penguins_streamlit.
py

Now that we have our Streamlit app all set up, our final step is to deploy to Heroku!

Deploying to Heroku
Before we deploy, we have a couple of new files on our app, so we need to add those to our 
Git repository using the following commands:

git add .

git commit -m 'added heroku files'

git push

And now, our final step in this chapter is to push to Heroku, which we can do with this 
next command: 

git push heroku main
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This will kick off the Heroku build, and soon enough we will see our Penguin app 
deployed to Heroku for anyone to go and view. The app we have been working on and 
just deployed can be found at the following link (with a screenshot attached!), https://
penguin-machine-learning.herokuapp.com/, and the GitHub repository for 
this app can be found at https://github.com/tylerjrichards/penguin_ml.  
It is the same as the app we deployed on AWS earlier in the chapter, shown in the 
following screenshot: 

Figure 8.2 – Heroku App deployment

https://penguin-machine-learning.herokuapp.com/
https://penguin-machine-learning.herokuapp.com/
https://github.com/tylerjrichards/penguin_ml
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We have now successfully deployed one of our Streamlit apps on the Heroku platform, but 
if we need more control over the types of servers behind our app, we need to build directly 
on AWS, as demonstrated in the next section!

Deploying Streamlit with AWS
In comparison to deploying with Heroku, deploying apps on AWS is significantly more 
cumbersome but has seemingly infinite options. There are a few steps to deploying your 
own apps with AWS, and these include the following:

1.	 Selecting and launching a virtual machine
2.	 Installing the necessary software
3.	 Cloning and running your app
4.	 Long-term AWS deployment

We will run through these sequentially!

Selecting and launching a virtual machine
AWS has literally hundreds of service options for everything from deploying ML models 
to compute resources to everything in between. In this book so far, we have referred to the 
services listed in the following screenshot under the central name AWS, but to be more 
precise, we are going to be using Amazon Elastic Compute Cloud, or Amazon EC2 
for short. This next screenshot shows the breadth of services available just for compute 
resources, which does not include any of the services available for machine learning, 
business applications, or storage:

Figure 8.3 – AWS Compute
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Amazon EC2 is a dynamic, pay-as-you-go service that will scale automatically based on 
use. If there are 10, 100, or 10,000 concurrent users of your Streamlit app, EC2 will change 
the compute resources given to your application to accommodate the users. You pay for 
what you use!

To get started, head over to https://console.aws.amazon.com/ec2/v2/home 
and click the button that says Launch instance, as shown in the following screenshot. 
Your default region may be different than mine, which is totally fine! AWS regions allow 
you to select where you want the compute to be physically located, in case your app needs 
low latency, or there are regulatory reasons for where your data is hosted (for example, 
because of General Data Privacy Regulation (GDPR), in the European Union). The 
overwhelming majority of the time, the default region AWS puts you in is perfectly fine: 

Figure 8.4 – EC2 launch

Once you launch your instance, there are seven tabs: 

•	 Choose AMI (Amazon Machine Image) or the OS used by your virtual machine

•	 Choose Instance Type (choosing the compute/memory/storage of your  
virtual machine)

•	 Configure Instance

•	 Add Storage

•	 Add Tags

•	 Configure Security Group

•	 Review 

https://console.aws.amazon.com/ec2/v2/home
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You might be starting to understand what I was talking about earlier when I mentioned 
flexibility versus speed! Luckily, we only really need to start with a few of these, starting 
with choosing our AMI from a list of options. When we click the Launch instance button, 
we will see options including, but not limited to, the following:

•	 Amazon Linux 2 AMI

This option is Amazon's own option, is free tier-eligible, and is designed to work 
well with EC2. 

•	 Red Hat Enterprise Linux

This option is an enterprise version of Linux created by the Red Hat foundation, 
which creates open source enterprise solutions (https://www.redhat.com/
en). There are a variety of options depending on versions and volume type. 

•	 Ubuntu Server 
Ubuntu is another open source OS built on Linux similar to Red Hat. They also 
have a variety of free and paid options, the same as Red Hat. 

I would recommend selecting the OS that you are most comfortable with already. If you 
have already used Ubuntu servers, try the newest Ubuntu option, which is, in this case, 
Ubuntu Server 20.04. The most commonly used AMI options are all based on Linux, 
which is an open source OS with many flavors, including Red Hat, Debian, and Ubuntu. 
To follow along with this chapter, select the default Amazon option, Amazon Linux 2. 
When you check this option and are taken to the Choose Instance Type page, select any 
type that is free tier-eligible, as shown in the following screenshot. Of course, if you would 
like to pay for more memory or vCPUs you absolutely can, but they are not necessary at 
this time: 

Figure 8.5 – AWS AMI options

Next, we can skip past the next few options until you get to the sixth tab entitled 
Configure Security Group. There are a few edits that we need to make here:

•	 TCP Rule

We need to set our Security settings in a way to allow other users online to interact 
with our web app by adding a new Transmission Control Protocol (TCP) rule by 
clicking Add Rule and setting the Port Range column to 8501, the custom  
Streamlit port. 

https://www.redhat.com/en
https://www.redhat.com/en
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•	 Access Source

We also need to allow anyone to access our app, so we will also set the source to 
Anywhere, as shown in the following screenshot:

Figure 8.6 – Security settings 

Now, we are ready to launch! Head over to the seventh tab, Review, and click the Launch 
button if everything looks correct. What will pop up next is a way to create a public and 
private key, one held by AWS and the other held by you, to allow you to access this new 
virtual computer from your command line, as shown in the following screenshot: 

 Figure 8.7 – Key-value pairs
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Think of it like a unique password that is downloaded as its own file. You can keep this 
file wherever is easiest and most secure for you, but make sure to never upload this file to 
a public location, such as a GitHub repository, otherwise, others could come and access 
your virtual machine! Now that we have launched our EC2 instance, we can access it from 
our command line and download our app. 

Installing the necessary software 
For this example, we are going to try and deploy the penguin ML app that we created in 
Chapter 4, Using Machine Learning with Streamlit, and deployed in Chapter 5, Deploying 
Streamlit with Streamlit Sharing, on Streamlit Sharing. Now that we have our virtual 
machine and our objective, we need to access our virtual machine from our command 
line. To begin, we need to first find out the AWS instance's public DNS. Locate your 
AWS instance using this link, https://console.aws.amazon.com/ec2/v2/
home#Instances, and look for Public DNS, which will be in the format ec2-10-
857-84-485.compute-1.amazonaws.com. I made up those numbers, but yours 
should be close to this. 

Now, we can access our virtual machine using SSH, which is the Secure Shell Protocol, 
using the following command, which combines our password and our public DNS:

ssh -i "path_to_private_key.pem" ec2-user@<insert_Public_DNS>

Often, AWS commands feel like magic incantations, especially when you are first getting 
started. After some experience, you will certainly get more comfortable with this. At 
this point, AWS may ask you some questions on the command line about allowing 
certain types of access depending on how your security settings are set up on your local 
machine, and after you confirm that you would like to connect, you will know that you are 
connected if you see something similar to the following screenshot:

Figure 8.8 – AWS login 

https://console.aws.amazon.com/ec2/v2/home#Instances
https://console.aws.amazon.com/ec2/v2/home#Instances
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This is your own new virtual computer! There are no programs, folders, or really almost 
anything else on this computer; it is brand new right out of the Amazon box. Each 
computer that we rent out using ec2 starts out with next to nothing, so we have to 
download all that we need for this project. There are a good number of ways in which to 
do this. We can do the following:

•	 Install everything manually.

•	 Install a prepackaged installer such as Anaconda or Miniconda.

•	 Use Docker to create a set of installation instructions.

I would advise going with the second option for most use cases, as Anaconda or 
Miniconda are designed to handle all the difficulties that come with installing Python, 
dealing with our path, and also with installing various Python and R packages. Anaconda, 
and its bootstrapped (that is, smaller) version, Miniconda, are notorious for making 
installation difficult outside of their environment on your computer. If you require other 
installations of Python on your virtual or local machine, I would advocate either option 1 
or option 3. 

For installing and setting up Miniconda on our virtual machine, we can run the 
following commands, which use wget to download Miniconda to the file location, ~/
miniconda.sh, then run the installation file using bash, and then change our path so 
that we can use conda more easily to download packages: 

wget https://repo.continuum.io/miniconda/Miniconda3-latest-
Linux-x86_64.sh -O ~/miniconda.sh

bash ~/miniconda.sh -b -p ~/miniconda

export PATH="$HOME/miniconda/bin":$PATH

Great! Now we have the latest versions of python, pip, and a whole host of Python 
packages. Miniconda does not come with Streamlit, however, so we will use the next 
command to download, install, and test the installation of Streamlit by launching the 
Streamlit demo app:

pip install Streamlit

streamlit hello
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When we run this command, we should see the following in our terminal (albeit with 
different network and external URLs):

Figure 8.9 – First Streamlit command

When you head over to the external URL from any browser, you will see the Streamlit 
demo app, as shown in the following screenshot:

Figure 8.10 – Streamlit demo
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We have now deployed our very first Streamlit app from AWS. Now, to deploy a Streamlit 
app that we have built. 

Cloning and running your app
We now have a virtual machine that can run Streamlit, and our next step is to download our 
own app onto our machine. The most straightforward method for doing this is by using Git 
and cloning the repository where your penguin machine learning app is held. If you have 
not already done this in Chapter 5, Deploying Streamlit with Streamlit Sharing, feel free to 
use my GitHub repository at https://github.com/tylerjrichards/penguin_
ml.git. The following code downloads git and then downloads our app from GitHub: 

conda install git

git clone https://github.com/tylerjrichards/penguin_ml.git

This will make a new folder in our current directory called penguin_ml, which  
contains all the files for the Streamlit app. This app requires a few more libraries than 
come from Miniconda, such as Seaborn and scikit-learn, so we need to download them 
before we run our app. We have already placed the names of these libraries into a file 
called requirements.txt, so we need to point pip to the file using the next set  
of commands: 

cd penguin_ml

pip install -r penguin_ml/requirements.txt

Now, our final step is to run our Streamlit app:

streamlit run penguins_streamlit.py

https://github.com/tylerjrichards/penguin_ml.git
https://github.com/tylerjrichards/penguin_ml.git


172     Deploying Streamlit Apps with Heroku and AWS

When we go to the external URL in our AWS terminal, we will see our Streamlit app fully 
functioning there, as shown in the following screenshot:

Figure 8.11 – AWS Penguin app 
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And there we go! We now have our app running on AWS, visible to the entire world. From 
this point, we can link to our app from a personal website you may already have or send  
it to others who may be interested in classifying their own set of penguins. 

Long-term AWS deployment
Our final problem is that the SSH session we have running to connect our local machine 
to AWS needs to be running in order for the Streamlit app to stay up. For most use cases, 
this will not work as you will ideally want the user to interact with your Streamlit app 
if your local computer disconnects from AWS. Enter tmux, or the terminal mutiplexer, 
which can keep a terminal session going regardless of our local connection to it. To 
download tmux, we can run the following command while connected to our AWS  
virtual machine: 

sudo yum install tmux

And now, we can begin a new tmux session and kick off our Streamlit app by running 
these next commands:

tmux 

streamlit run penguins_streamlit.py

If our connection to AWS gets disconnected, tmux will keep our app running. We can 
leave the tmux session at any time by pressing Ctrl + D and can re-enter the session by 
running tmux attach. 

And that covers deploying Streamlit with AWS! As you can see, Streamlit Sharing handles 
the majority of these difficulties out of the box, so I would make an effort to make 
Streamlit Sharing work whenever possible. However, this session should have given you 
an appreciation for the true breadth of options and configuration controls in front of us 
when we use AWS, which may come in handy in the future.
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Summary 
This has been by far the most technical of our chapters so far, so congratulations on 
making it through! Deploying applications is notoriously difficult and time-consuming, 
and requires skills from software engineering and DevOps, along with often requiring 
experience with version control software (such as Git) and Unix-style commands and 
systems. This is part of the reason why Streamlit Sharing is such a crucial innovation, but 
in this chapter, we have learned how to push the edge of Streamlit deployment through 
renting our own virtual machines and deploying these on AWS and Heroku. We have also 
learned how to figure out what the right deployment strategy is before starting out, which 
will save hours or days of work (nothing is worse than finishing the deployment of an app 
and finding out you need to use another platform!). 

Next, we'll be moving on to the third and final section of this book, which will focus 
on the various applications of Streamlit, starting with improving job applications with 
Streamlit. This next chapter will focus on impressing hiring managers and recruiters with 
Streamlit applications, on using Streamlit apps within actual job application sections, such 
as the infamous take-home portion of many interviews, and also on proof-of-skill data 
projects for improving on the data science résumé. 



Section 3:  
Streamlit Use Cases

Now that we understand how to create and deploy Streamlit apps, this section will focus 
on the various use cases of Streamlit. We'll go through practical examples of complicated 
projects and interview power users to find out everything that they can do using Streamlit.  

The following chapters are covered in this section:

•	 Chapter 9, Improving Job Applications with Streamlit

•	 Chapter 10, The Data Project – Prototyping Projects in Streamlit

•	 Chapter 11, Using Streamlit for Teams

•	 Chapter 12, Interviews with Power Users





9
Improving Job 

Applications with 
Streamlit

At this point in this book, you should already be an experienced Streamlit user. You have 
a good grasp of everything – from Streamlit design to deployment, to data visualization, 
and everything in between. This chapter is designed to be application-focused; it will show 
you some great use cases for Streamlit applications so that you can be inspired to create 
your own! We will start by demonstrating how to use Streamlit for Proof Of Skill Data 
Projects. Then, we will then move on to discuss how to use Streamlit in the Take Home 
sections of job applications.

In this chapter, we will cover the following topics:

•	 Using Streamlit for proof of skill data projects

•	 Improving job applications in Streamlit
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Technical requirements
The following is a list of software and hardware installations that are required for  
this chapter:

•	 streamlit-lottie: To download this library, run the following code in  
your Terminal:

pip install streamlit-lottie

Interestingly, streamlit-lottie uses the lottie open source library, which 
allows us to add web-native animations (such as a GIF) to our Streamlit apps. 
Frankly, it is a wonderful library that you can use to beautify Streamlit apps and was 
created by Andy Fanilo, a prolific Streamlit app creator. 

•	 The job application example folder: The central repository for this book can be 
found at https://github.com/tylerjrichards/Getting-Started-
with-Streamlit-for-Data-Science. Within this repository, the job_
application_example folder will contain some of the files that you will need 
for the second section of the chapter, covering job applications. If you do not have 
this main repository downloaded already, use the following code in your Terminal 
to clone it:

git clone https://github.com/tylerjrichards/Getting-
Started-with-Streamlit-for-Data-Science

Now that we have everything set up, let's begin!

Using Streamlit for proof of skill data projects
Proving to others that you are a skilled data scientist is notoriously difficult. Anyone can 
put Python or machine learning on their résumé or even work in a research group at  
a university that might do some machine learning. But often, recruiters, professors you 
want to work with, and data science managers rely on things on your résumé that are 
proxies for competence, such as having attended the "right" university or already having  
a fancy data science internship or job. 

https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science
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Prior to Streamlit, there were not many effective solutions to this problem. If you put 
a Python file or Jupyter Notebook on your GitHub profile, the time it would take for 
someone to understand whether the work was impressive or not was too much of a risk to 
take. If the recruiter has to click on the right repository in your GitHub profile and then 
click through numerous files until they find the Jupyter notebook with unreadable code 
(without comments), you've already lost them. If the recruiter sees "machine learning" 
on your résumé, but it takes five clicks to see any machine learning product or code that 
you've written, you've already lost them. Most interested parties will spend a very small 
amount of time on your résumé; on average, visitors to my personal portfolio site (www.
tylerjrichards.com) spend around 2 minutes on the site before  
moving elsewhere.

One solution to this issue is to try creating and sharing Streamlit apps that are specific  
to the skills that you would like to showcase the most broadly. For instance, if you have  
a lot of experience in fundamental statistics, you might create a Streamlit app that proves, 
or illustrates, a fundamental statistical theorem such as the central limit theorem – just as 
we did earlier in this book. If instead, you have experience in natural language processing, 
you could create an app that shows off a new text-generating neural network that you have 
created. The point here is to minimize the number of clicks someone would need to make 
until they get proof of your competence within a desired area.

Many of the Streamlit apps that we have created already do serve this purpose. Let's run 
through a few examples. 

Machine learning – the Penguins app
In Chapter 4, Using Machine Learning with Streamlit, we created a random forest model 
that was trained on our Palmer's Penguin dataset to predict the species of penguin 
according to features such as weight, island of habitation, and bill length. Then, we saved 
that model so that we could use it in our Streamlit app.
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To produce our Streamlit app, we need (in the first iteration) to run the following code. 
This will create the model to be deployed:

import pandas as pd

from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

import pickle

penguin_df = pd.read_csv('penguins.csv')

penguin_df.dropna(inplace=True)

output = penguin_df['species']

features = penguin_df[['island', 'bill_length_mm', 'bill_depth_
mm',

                       'flipper_length_mm', 'body_mass_g', 
'sex']]

features = pd.get_dummies(features)

output, uniques = pd.factorize(output)

x_train, x_test, y_train, y_test = train_test_split(

    features, output, test_size=.8)

rfc = RandomForestClassifier(random_state=15)

rfc.fit(x_train, y_train)

y_pred = rfc.predict(x_test)

score = accuracy_score(y_pred, y_test)

print('Our accuracy score for this model is {}'.format(score))

In this first section, we import our libraries, load our data, and train/evaluate our model 
while printing out the evaluation results. Then, we save the model results to the pickle 
files using the following code:

rf_pickle = open('random_forest_penguin.pickle', 'wb')

pickle.dump(rfc, rf_pickle)

rf_pickle.close()

output_pickle = open('output_penguin.pickle', 'wb')

pickle.dump(uniques, output_pickle)

output_pickle.close()
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Recall that at the end of the chapter, we added a new feature so that if a user uploaded 
their own dataset, they could use our model training script to train a model entirely on 
their data (provided it was in the same format; it came with some preconditions). 

This app, in its final form, shows that we have, at least, some knowledge about data 
cleaning, how to do one-hot encoding on our variables, how we think about evaluating 
our models on test data, and finally, how to deploy our pre-trained models in an 
application. That alone is going to look much better than just putting "machine learning" 
on our résumé, and it shows evidence of some of the skills that we have. Without this 
proof of skill, the recruiter or hiring manager who is looking at our application will 
have to either trust that we are being entirely honest on our résumé (and from reading 
hundreds of résumés over the years, that is a bad assumption to make) or use a proxy for 
confidence such as a university degree (this is also a bad proxy for assessing competence). 

In addition to this, when we deployed this app to Streamlit Sharing in Chapter 5, 
Deploying Streamlit with Streamlit Sharing, we discussed an automatic feature that comes 
free with Streamlit Sharing: the View app source button. As you can see in the following 
screenshot, when we deploy our apps, Streamlit adds a button to the user's Settings  
drop-down menu that allows them to view the source code behind the app:

 

Figure 9.1 – The View app source option

In this way, users can always check to make sure malicious code (for example, whether 
a researcher's Penguin data is not being stored by the app) is not being deployed by 
Streamlit Sharing. As a secondary feature, the user can also view the code that you wrote 
to built the app, which improves the ability for us to use Streamlit as a Proof of Skill tool.
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Visualization – the Pretty Trees app
In Chapter 6, Beautifying Streamlit Apps, we worked on a Streamlit application that could 
create beautiful and dynamic visualizations of trees in San Francisco, which resulted in the 
following app:

Figure 9.2 – Mapping a web app

Within this app, we had to create multiple different visualizations (that is, two histograms 
and one map) that dynamically updated based on the user inputs on the right-hand  
side. With an app like this, we were able to show off our data manipulation skills,  
our familiarity with the pandas, Matplotlib, and Seaborn libraries, and even that  
we understood how to deal with datetimes in Python. Let's take a look at the section  
of the app's code that focuses on visualization: 

#define multiple columns, add two graphs

col1, col2 = st.beta_columns(2)

with col1:

     st.write('Trees by Width')

     fig_1, ax_1 = plt.subplots()

     ax_1 = sns.histplot(trees_df['dbh'], 

          color=graph_color)

     plt.xlabel('Tree Width')

     st.pyplot(fig_1)

with col2:
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     st.write('Trees by Age')

     fig_2, ax_2 = plt.subplots()

     ax_2 = sns.histplot(trees_df['age'],

          color=graph_color)

     plt.xlabel('Age (Days)')

     st.pyplot(fig_2)

st.write('Trees by Location')

trees_df = trees_df.dropna(subset=['longitude', 'latitude'])

trees_df = trees_df.sample(n = 1000, replace=True)

st.map(trees_df)

This code is fairly easy to read for anyone who is familiar with Python or other scripting 
languages, and it is a heck of a lot better than simply putting "data visualization"  
or "pandas" on a résumé. 

At this point, I hope you are convinced. Streamlit apps are an excellent way to showcase 
your work to recruiters, potential hiring managers, or anyone to whom you need to prove 
your set of skills. In the next section, we will cover this process in a little more detail and 
demonstrate how to use Streamlit to bolster your applications to companies that you 
might want to work for. 

Improving job applications in Streamlit
Often, data science and machine learning job applications rely on take-home data science 
challenges to judge candidates. Frankly, this is a brutal and annoying experience that 
companies can demand because of the dynamic between the applicant and the employer. 
For instance, it could take a candidate 5–10 hours to fully complete a data science 
challenge, but it might only take the employer 10 minutes to evaluate it. Additionally, an 
individual virtual or telephone interview might take 30–45 minutes for the employer, plus 
an extra 15 minutes to write up feedback, compared to the same 30–45 minutes for the 
applicant. Because getting 5–10 hours of work gives them a very high signal per minute  
of employee time, employers have trended toward including these challenges within their  
job applications. 

You can use the opportunity here to use Streamlit to stand out from the crowd by creating 
a fully functioning application instead of sending the company a Jupyter Notebook, Word 
document, or PowerPoint deck. 
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Questions
Let's walk through a fictional example about a job applicant who is in the middle of 
applying to a major US airline. They are given two main questions to solve – one has  
a dataset included:

•	 Question 1: Airport distance

The first exercise asks, "Given the included dataset of airports and locations  
(in latitude and longitude), write a function that takes an airport code as input and 
returns the airports listed from nearest to furthest from the input airport."

•	 Question 2: Representation

The second question asks, "How would you transform a collection of searches into  
a numeric vector representing a trip? Assume that we have hundreds of thousands 
of users and we want to represent all of their trips this way. Ideally, we want this 
to be a general representation that we could use in multiple different modeling 
projects, but we definitely care about finding similar trips. How, precisely, would you 
compare two trips to see how similar they are? What information do you feel might 
be missing from the preceding data that would help improve your representation?"

Note
Don't worry about writing code in this section; you can simply describe any 
transformations of data that you would perform. Your description should be 
clear enough so that a data scientist reading it would know how to implement 
your solution if necessary.

Now that we have the required questions, we can get a new Streamlit app started.  
To do this, I went through the same process that we have used in each chapter thus far. 
We create a new folder for our app within our central folder (streamlit_apps), called 
job_application_example. Within this folder, we can create a Python file, called 
job_streamlit.py, in our Terminal, using the following command: 

touch job_streamlit.py

Answering Question 1
It is not hugely important for you to understand exactly how to answer the problem at 
hand, but the overall framework is quite important. The Streamlit app we create should 
read like an incredibly dynamic document that answers the question in a unique way, 
depending on the ability of Streamlit to make an application that could not easily be 
replicated by an applicant with a Word document. 
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To begin, we can create a title that introduces us and kicks off the format for the whole 
application. One improvement here is to add an optional animation at the top of the 
application using the streamlit-lottie library that we learned about in Chapter 7, 
Exploring Streamlit Components, as shown in the following code: 

import streamlit as st

from streamlit_lottie import st_lottie

import pandas as pd

import requests

def load_lottieurl(url: str):

    r = requests.get(url)

    if r.status_code != 200:

        return None

    return r.json()

lottie_airplane = load_lottieurl('https://assets4.lottiefiles.
com/packages/lf20_jhu1lqdz.json')

st_lottie(lottie_airplane, speed=1, height=200, key="initial")

st.title('Major US Airline Job Application')

st.write('by Tyler Richards')

st.subheader('Question 1: Airport Distance')

The preceding code will create an application with a beautiful airplane animation at the 
top, as presented in the following screenshot:

 

Figure 9.3 – An airplane GIF 
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Next, we need to copy and paste the question below our subheader. Streamlit has many 
options for putting text into applications. One option that we have not used yet is to wrap 
our text inside three apostrophe signs, which tells Streamlit to write this text using the 
markdown language. This is useful for large blocks of text, such as the following one, 
which begins to answer the first question:

'''

The first exercise asks us 'Given the table of airports and 

locations (in latitude and longitude) below, 

write a function that takes an airport code as input and 

returns the airports listed from nearest to furthest from 

the input airport.' There are three steps here:

1. Load Data

2. Implement Distance Algorithm

3. Apply distance formula across all airports other than the 
input

4. Return sorted list of airports Distance

'''

As mentioned in the Technical requirements section of this chapter, two files are needed 
to complete this application. The first is the dataset of the airport locations (called 
airport_location.csv), and the second is a picture that shows the Haversine 
distance (that is, the distance between two points on a sphere; the file is appropriately 
named haversine.png). Please copy those files into the same folder as the Streamlit 
application Python file.

Now, we need to complete the first step: loading the data. We need to both complete this 
step in Streamlit and also show the code to the user. This is different from other Streamlit 
applications, where the code is hidden in the background. However, because the user 
definitely wants to see our code, as they will be assessing us on it, we need to do both.  
We can use the st.echo() function, which we used previously, to print out the code 
block to our app. We can do this with the following code:

airport_distance_df = pd.read_csv('airport_location.csv')

with st.echo():

     #load necessary data

     airport_distance_df = pd.read_csv('airport_location.csv')
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I would like to note here that we have placed a comment at the top of this code. This is not 
for the purpose of annotating code for you, the reader, but for the application reader. It is 
good practice to occasionally comment on the purpose of the code that you are writing 
both within the code and in the blocks of text before and after; this is so that the reader 
understands the approach you are trying to take. This is especially important in a job 
application but is good practice for collaborative Streamlit apps, too.

Our next step is to explain the Haversine formula and show the image in our Streamlit 
application, which we have done in the following code block. It is totally acceptable to take 
a narrative format in your blocks of text. Simply imagine what you would like to read as  
a hiring manager and try to replicate that as well as you can:

'''

From some quick googling, I found that the haversine distance 
is 

a good approximation for distance. At least good enough to get 
the 

distance between airports! Haversine distances can be off by up 
to .5%, 

because the earth is not actually a sphere. It looks like the 
latitudes 

and longitudes are in degrees, so I'll make sure to have a way 
to account 

for that as well. The haversine distance formula is labeled 
below, 

followed by an implementation in python

'''

st.image('haversine.png')
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Now, our application should look similar to the following screenshot:

Figure 9.4 – Loading the data for Question 1

We have our list of items to address, the animation, the Haversine distance formula, and 
the basic code to read in the data. At this point, we need to implement the Haversine 
distance formula in Python and also show our implementation:

with st.echo():

     from math import radians, sin, cos, atan2, sqrt

     def haversine_distance(long1, lat1, long2, lat2, 
degrees=False):

         #degrees vs radians

         if degrees == True:

             long1 = radians(long1)
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             lat1 = radians(lat1)

             long2 = radians(long2)

             lat2 = radians(lat2)

         

         #implementing haversine

         a = sin((lat2-lat1) / 2)**2 + cos(lat1) * cos(lat2) * 
sin((long2-long1) / 2)**2

         c = 2*atan2(sqrt(a), sqrt(1-a))

         distance = 6371 * c #radius of earth in kilometers

         return(distance)

The first section of our code does not create our function but instead, prints out 
the function that we will create to the Streamlit app. This is so that the reader of the 
application can view both pieces of important code that we have written and interact 
with the code itself. If we just created a function to implement the Haversine distance, the 
reader of our application would not really know how we solved the problem at hand! The 
following code block creates this function:

#execute haversine function definition

from math import radians, sin, cos, atan2, sqrt

def haversine_distance(long1, lat1, long2, lat2, 
degrees=False):

    #degrees vs radians

    if degrees == True:

        long1 = radians(long1)

        lat1 = radians(lat1)

        long2 = radians(long2)

        lat2 = radians(lat2)

    

    #implementing haversine

    a = sin((lat2-lat1) / 2)**2 + cos(lat1) * cos(lat2) * 
sin((long2-long1) / 2)**2

    c = 2*atan2(sqrt(a), sqrt(1-a))

    distance = 6371 * c #radius of earth in kilometers

    return(distance)
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We have completed our Haversine implementation! Whenever we want to find the 
distance between two locations, we can call our formula, input the longitude and latitude, 
and get the distance in kilometers. This app is useful; however, at the moment, it is not 
much better than a Word document. Our next step is to allow the user to input their own 
points to check and see whether the Haversine distance is working. Almost no one knows 
how many kilometers apart two points on the globe are, so I have included default points 
and checked the real distance between them:

'''

Now, we need to test out our function! The 

distance between the default points is 

18,986 kilometers, but feel free to try out

your own points of interest. 

'''

long1 = st.number_input('Longitude 1', value = 2.55)

long2 = st.number_input('Longitude 2', value = 172.00)

lat1 = st.number_input('Latitude 1', value = 49.01)

lat2 = st.number_input('Latitude 2', value = -43.48)

test_distance = haversine_distance(long1 = long1, long2 = 
long2,

          lat1 = lat1, lat2 = lat2, degrees=True)

st.write('Your distance is: {} kilometers'.format(int(test_
distance)))

When we put in our default values, the app returns a distance that is approximately 2 
kilometers off, as shown in the following screenshot:
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Figure 9.5 – Implementing the Haversine distance 

At this point, our next step is to combine all of the pieces by using the implemented Haversine 
distance calculator on our given dataset. This is briefly shown in the following screenshot:

Figure 9.6 – The airport distances that have been given
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This dataset has airport codes and their corresponding lat and long values. The 
following code block introduces a solution that combines the two distances and leaves  
out the full get_distance_list function, as it is simply a copy of the function that  
we have implemented twice already: 

'''

We have the Haversine distance implemented, and we also have

proven to ourselves that it works reasonably well.

Our next step is to implement this in a function!

'''

def get_distance_list(airport_dataframe, airport_code):

    df = airport_dataframe.copy() 

    row = df[df.loc[:,'Airport Code'] == airport_code] 

    lat = row['Lat'] 

    long = row['Long'] 

    df = df[df['Airport Code'] != airport_code] 

    df['Distance'] = df.apply(lambda x: haversine_
distance(lat1=lat, long1=long, 

         lat2 = x.Lat, long2 = x.Long, degrees=True), axis=1)

    return(df.sort_values(by='Distance').reset_index()['Airport 
Code']) 

with st.echo():

     def get_distance_list(airport_dataframe, airport_code):

          *copy of function above with comments*

Finally, we can implement this distance formula on the dataframe we have been given.  
We can allow the user to input their own airport code from the options that we have data 
on and return the correct values:

'''

To use this function, select an airport from the airports 
provided in the dataframe

and this application will find the distance between each one, 
and 

return a list of the airports closest to furthest.
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'''

selected_airport = st.selectbox('Airport Code', airport_
distance_df['Airport Code'])

distance_airports = get_distance_list(

     airport_dataframe=airport_distance_df, airport_
code=selected_airport)

st.write('Your closest airports in order are {}'.
format(list(distance_airports)))

This is the end of our first question. We can add an optional section at the end about 
how we would change our implementation if we had more time to work on this problem. 
This is always a good idea if you know you only want to spend a few hours on the total 
application, but you also want to demonstrate that you know how to improve it if you had 
more time. An example of this is shown in the following code block, to be placed directly 
after the preceding code block: 

'''

This all seems to work just fine! There are a few ways I would 
improve this if I was working on 

this for a longer period of time.  

1. I would implement the [Vincenty Distance](https://
en.wikipedia.org/wiki/Vincenty%27s_formulae) 

instead of the Haversine distance, which is much more accurate 
but cumbersome to implement.  

2. I would vectorize this function and make it more efficient 
overall. 

Because this dataset is only 7 rows long, it wasn't 
particularly important, 

but if this was a crucial function that was run in production 
we would want to vectorize it for speed. 

'''
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Alternatively, you could always just end with a statement about the preceding code and 
move on to the second question. At this point, our answer to Question 1 is complete and 
should look similar to the following screenshot:

Figure 9.7 – Taking user input 

We have now successfully answered Question 1! We can always check the distances 
between these airports by hand to obtain the same result. But let's move on to the second 
question in our application. 

Answering Question 2
The second question is far more straightforward and only asks for text responses. Here, 
the trick is to try to add some lists or Python objects in order to break up large paragraphs 
of text. To begin, we will explain our attempt at answering the question and then 
demonstrate how it might look inside a dataframe:

'''

For this transformation, there are a few things 

that I would start with. First, I would have to define 

what a unique trip actually was. In order to do this, I would 

group by the origin, the destination, and the departure date 

(for the departure date, often customers will change around 
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this departure date, so we should group by the date plus or 

minus at least 1 buffer day to capture all the correct dates).   

Additionally, we can see that often users search from an entire 
city, 

and then shrink that down into a specific airport. So we should 
also 

consider a group of individual queries from cities and airpots 
in the 

same city, as the same search, and do the same for destination.    

From that point, we should add these important columns to each 
unique search.

'''

Now, we can think of some columns that would be useful for when we are making  
a representation of when a user is searching for flights on this major US airline. We can 
put them into an example dataframe, as follows: 

example_df = pd.DataFrame(columns=['userid', 'number_
of_queries', 'round_trip', 'distance', 'number_unique_
destinations',

                     'number_unique_origins', 'datetime_first_
searched','average_length_of_stay',

                     'length_of_search'])

example_row = {'userid':98593, 'number_of_queries':5, 'round_
trip':1,

                   'distance':893, 'number_unique_
destinations':5,

                     'number_unique_origins':1, 'datetime_
first_searched':'2015-01-09',

                   'average_length_of_stay':5, 'length_of_
search':4}

st.write(example_df.append(example_row, ignore_index=True))

For the remainder of the question, we can add a bit of knowledge regarding how to find 
the distance between two points using different methods and then call it a day: 

'''

For answering the second part of the question, we should take 
the euclidian distance 

on two normalized vectors. There are two solid options for 
comparing two 
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entirely numeric rows, the euclidian distance (which is just 
the straight line 

difference between two values), and the manhattan distance 
(think of this as the 

distance traveled if you had to use city blocks to travel 
diagonally across manhattan). 

Because we have normalized data, and the data is not high 
dimensional or sparse, I 

would recommend using the euclidian distance to start off. This 
distance would tell 

us how similar two trips were.

'''

The second question's answer should be similar to the following screenshot:

Figure 9.8 – Answering Question 2
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As you can see, this example demonstrates how to approach take-home data assignments 
with the help of the Streamlit library to make more impressive applications. The final step 
of this work is to deploy this Streamlit app and share the link with the recruiter. I would 
strongly advise you to deploy this on Heroku to guarantee that no one else can view the 
questions or the data that has been provided by the company. You can also take further 
precautions, such as putting a textbox at the beginning of the application that functions  
as a hacky password protector for the application, as shown in the following code block:

password_attempt = st.text_input('Please Enter The Password')

if password_attempt != 'example_password':

     st.write('Incorrect Password!')

     st.stop()

Now, the entire application will not run unless the user inputs example_password into 
the textbox. This is certainly not secure, but it is useful for relatively unimportant (at least, 
in terms of secrecy) applications such as a take-home application:

Figure 9.9 – Entering the password

As you can see, the only way for this application to load is if the correct password has 
been entered. Otherwise, the user will see a blank page. Alternatively, you can also set 
the password in Streamlit Sharing using Streamlit secrets, which is currently a feature in 
Streamlit for Teams and will be covered in Chapter 11, Using Streamlit for Teams. 
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Summary
This chapter is the most application-focused chapter we have created so far. We have 
focused heavily on job applications and the application cycle for data science and 
machine learning interviews. Additionally, we have learned how to password protect our 
applications, how to create applications that prove to recruiters and data science hiring 
managers that we are the skilled data scientists that we know we are, and how to stand 
out in take-home data science interviews by creating Streamlit apps. The next chapter 
will focus on Streamlit as a toy, and you will learn how to create public-facing Streamlit 
projects for the community. 



10 
The Data Project – 

Prototyping Projects 
in Streamlit

In the previous chapter, we discussed how to create Streamlit applications that are specific 
to job applications. Another fun application of Streamlit is to try out new and interesting 
data science ideas and create interactive apps for others. Some examples of this include 
applying a new machine learning model to an existing dataset, carrying out an analysis  
on some data uploaded by users, or creating an interactive analysis on a private dataset. 
There are numerous reasons for making a project like this, such as personal education  
or community contribution. 

In terms of personal education, often, the best way to learn a new topic is to observe how 
it actually works by applying it to the world around you or a dataset that you know closely. 
For instance, if you are trying to learn how Principal Component Analysis works, you can 
always learn about it in a textbook or watch someone else apply it to a dataset. However,  
I have found that my comprehension of a topic goes through the roof when I actually 
apply it myself in practice. Streamlit is perfect for this. It allows you to give new ideas  
a shot in a responsive, fun environment that can be easily shared with others. Learning 
data science can be collaborative, which leads me to the next reason for creating data 
projects in Streamlit.
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In terms of community contribution, one of the best parts of Streamlit – and, frankly, data 
science – is the growing community around the tools and toys we routinely play with. 
By learning with others and sharing Streamlit apps on Twitter (https://twitter.
com/tylerjrichards), LinkedIn, and the Streamlit forums (https://discuss.
streamlit.io/), we can turn away from the zero-sum experience that is taught in 
most schools and universities (where if your classmate gets a good grade, that usually 
comparatively hurts you) and toward a positive-sum experience, where you directly 
benefit from the lessons learned by others. To use the previous example, if you create 
an app that helped you understand the statistics behind principal component analysis, 
sharing that with others will probably teach them something, too. 

In this chapter, we will run through one thorough data project from end to end, starting with 
an idea and ending with the final product. Specifically, we will cover the following topics:

•	 Data science ideation

•	 Collecting and cleaning data

•	 Making a Minimum Viable Product (MVP)

•	 Iterative improvement

•	 Hosting and promotion

Technical requirements
In this section, we will utilize the website Goodreads.com, which is a popular website owned 
by Amazon, that is used to track everything about a user's reading habits, from when they 
started and finished books to what they would like to read next. It is recommended that 
you first head over to https://www.goodreads.com/, sign up for an account, and 
explore around a little (perhaps you can even add your own book lists!). 

Data science ideation
Often, coming up with a new idea for a data science project is the most daunting part. You 
might have numerous doubts. What if I start a project that no one likes? What if my data 
actually doesn't work out well? What if I can't think of anything? The good news is that if 
you are creating projects that you actually do care about and would use, then the worst-case 
scenario is that you have an audience of one! And if you send me (tylerjrichards@gmail.com) 
your project, I promise to read it. So that makes it an audience of two at the very least. 

https://twitter.com/tylerjrichards
https://twitter.com/tylerjrichards
https://discuss.streamlit.io/
https://discuss.streamlit.io/
https://www.goodreads.com/
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Some examples I have either created or observed in the wild include the following:

•	 Recording ping-pong games for a semester to determine the best player with an Elo 
model (http://www.tylerjrichards.com/Ping_pong.html)

•	 Using natural language processing to determine the quality of Wi-Fi in hostels 
(https://www.racketracer.com/2015/11/18/practical-natural-
language-processing-for-determing-wifi-quality-in-hostels/)

•	 Analyzing thousands of pizza reviews to find the best NYC pizza near you 
(https://towardsdatascience.com/adventures-in-barstools-
pizza-data-9b8ae6bb6cd1)

•	 Analyzing your reading habits with Goodreads data (http://www.
tylerjrichards.com/books_reco.html)

Only one of these data projects uses Streamlit, as the rest came out before the library was 
released. However, all of these could have been improved by deploying them on Streamlit 
rather than just uploading them to a Jupyter Notebook (project #1) or a Word document/
HTML file (projects #2 and #3). 

There are many different methods that you can use to come up with your own idea for  
a data project, but the most popular methods generally fall into three categories:

•	 Finding data that only you could gather (for example, your friend's ping-pong games)

•	 Finding data that you care about (for example, Goodreads' reading data)

•	 Thinking of an analysis/app you wish existed to solve a problem you have and 
executing it (for example, hostel Wi-Fi analysis or finding the best pizza near  
you in NYC). 

You can try one of these or start with another idea that you have already. The best method 
is the one that works best for you! For this chapter, we will walk through and recreate the 
Goodreads Streamlit app, in depth, as an example of a data project. You can access it again 
at http://www.tylerjrichards.com/books_reco.html. 

http://www.tylerjrichards.com/Ping_pong.html
https://www.racketracer.com/2015/11/18/practical-natural-language-processing-for-determing-wifi-quality-in-hostels/
https://www.racketracer.com/2015/11/18/practical-natural-language-processing-for-determing-wifi-quality-in-hostels/
https://towardsdatascience.com/adventures-in-barstools-pizza-data-9b8ae6bb6cd1
https://towardsdatascience.com/adventures-in-barstools-pizza-data-9b8ae6bb6cd1
http://www.tylerjrichards.com/books_reco.html
http://www.tylerjrichards.com/books_reco.html
http://www.tylerjrichards.com/books_reco.html
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This app is designed to scrape a user's Goodreads history and create a set of graphs to 
inform them about their reading habits since they started using Goodreads. The sets of 
graphs should be similar to the following screenshot:

 Figure 10.1 – Examples of Goodreads' graphs

I came up with this idea by doing a personal analysis of my book history, and then 
thinking to myself that others might also be interested in this analysis! There really was no 
better reason than that, and often, the most fun projects start out that way. To begin,  
we will work on collecting and cleaning the user data that exists on Goodreads. 

Collecting and cleaning data
There are two ways in which to get data from Goodreads: through their Application 
Programming Interface (API), which allows developers to programmatically access 
data about books, and through their manual exporting function. Sadly, Goodreads is 
deprecating their API in the near future and, as of December 2020, are not giving access  
to more developers. 

The original Goodreads app uses the API, but our version will rely on the manual 
exporting function that the Goodreads website has instead. To get your data, head over to 
https://www.goodreads.com/review/import and download your own data. If 
you do not have a Goodreads account, feel free to use my personal data for this, which can 
be found at https://github.com/tylerjrichards/goodreads_book_demo. 
I have saved my Goodreads data in a file, called goodreads_history.csv, in a new 
folder, called streamlit_goodreads_book. To make your own folder with the 
appropriate setup, run the following in your Terminal:

mkdir streamlit_goodreads_book

cd streamlit_goodreads_book

touch goodreads_app.py

https://www.goodreads.com/review/import
https://github.com/tylerjrichards/goodreads_book_demo
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Now we are ready to get started. We really have no idea what this data looks like or what is 
in this dataset, so our first steps are to do the following:

•	 Put titles and an explanation at the top of our app.

•	 Allow the user to upload their own data with ours as the default if they have no data 
of their own.

•	 Write the first few rows of data to the app so that we can take a look at it.

The following code block does all of this. Feel free to change the text so that your app  
has your name, and also add links to a profile of you that people can view! As of now, 
around 10 percent of the traffic to my personal website comes from the Streamlit apps  
I have produced:

import streamlit as st

import pandas as pd

st.title('Analyzing Your Goodreads Reading Habits')

st.subheader('A Web App by [Tyler Richards](http://www.
tylerjrichards.com)')

'''

Hey there! Welcome to Tyler's Goodreads Analysis App. This app 
analyzes (and never stores!) 

the books you've read using the popular service Goodreads, 
including looking at the distribution 

of the age and length of books you've read. Give it a go by 
uploading your data below!

'''

goodreads_file = st.file_uploader('Please Import Your Goodreads 
Data')

if goodreads_file is None:

     books_df = pd.read_csv('goodreads_history.csv')

     st.write("Analyzing Tyler's Goodreads history")

else:

     books_df = pd.read_csv(goodreads_file)

     st.write('Analyzing your Goodreads history')

st.write(books_df.head())
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Now, when we run this Streamlit app, we should get an app that looks similar to the 
following screenshot:

Figure 10.2 – The first five rows

As you can see, we get a dataset where each book is a unique row. Additionally, we get  
a ton of data about each book, including the title and author, the average rating of the 
book, your rating of the book, the number of pages, and even if you have read the book, 
are planning to read the book, or are in the middle of reading the book. The data looks 
mostly clean but with some weirdness; for instance, the data having both a publication 
year and an original publication year, and the fact that the ISBN (International Standard 
Book Number) comes in the format of ="1400067820", which is just odd. Now that  
we know more about the data at hand, we can switch over to try to build some interesting 
graphs for users. 

Making an MVP
Looking at our data, we can start by asking a basic question: what are the most interesting 
questions I can answer with this data? After looking at the data and thinking about what 
information I would want from my Goodreads reading history, here are a few questions 
that I have thought of:

•	 How many books do I read each year?

•	 How long does it take for me to finish a book that I have started?

•	 How long are the books that I have read?

•	 How old are the books that I have read? 

•	 How do I rate books compared to other Goodreads users?

We can take these questions, figure out how to modify our data to visualize them well,  
and then make the first go at our product by printing out all of the graphs. 
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How many books do I read each year?
For the first question about books read per year, we have the Date Read column with the 
data presented in the format of yyyy/mm/dd. The following code block will do the following:

•	 Convert our column into datetime format.

•	 Extract the year from the Date Read column.

•	 Group the books by this column and make a count for books per year.

•	 Graph this using Plotly.

The following code block does this, starting with the datetime conversion. It is important 
to note here that as with all things, I didn't get this right on the very first try. In fact,  
it took me some time to figure out exactly how I needed to manage and convert this data. 
When you are creating projects of your own, do not feel bad if you find that data cleaning 
and converting are taking a long time! Very often, it is the hardest step:

     goodreads_file = st.file_uploader('Please Import Your 
Goodreads Data')

if goodreads_file is None:

     books_df = pd.read_csv('goodreads_history.csv')

     st.write("Analyzing Tyler's Goodreads history")

else:

     books_df = pd.read_csv(goodreads_file)

     st.write('Analyzing your Goodreads history')

books_df['Year Finished'] = pd.to_datetime(books_df['Date 
Read']).dt.year 

books_per_year = books_df.groupby('Year Finished')['Book Id'].
count().reset_index()

books_per_year.columns = ['Year Finished', 'Count']

fig_year_finished = px.bar(books_per_year, x='Year Finished', 
y='Count', title='Books Finished per Year')

st.plotly_chart(fig_year_finished)
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The preceding code block will create the following graph:

Figure 10.3 – Year Finished bar plot

We actually made an assumption here, that is, we assumed the year in the Date Read 
column represents when we read the book. But what if we start a book in the middle of 
December and finish it on January 2? Or, what if we start a book in 2019 but only get  
a few pages into it, and then pick it back up during 2021? We know this will not be  
a perfect approximation of the number of books read per year, but it will be better to 
express this as the number of books finished per year. 

How long does it take for me to finish a book that  
I have started?
Our next question is about the time it takes for us to finish a book once we have started 
it. To answer this, we need to find the difference between two columns: the Date Read 
column and the Date Added column. Again, this is going to be an approximation, as we 
do not have the date of when the user started reading the book but only when they added 
the book to Goodreads. Given this, our next steps include the following:

•	 Convert the two columns into datetime format.

•	 Find the difference between the two columns in days.

•	 Plot this difference in a histogram.
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The following code block starts with the conversion, as we have done previously, and then 
moves through our list of tasks:

books_df['days_to_finish'] = (pd.to_datetime(

            books_df['Date Read']) - pd.to_datetime(books_
df['Date Added'])).dt.days

fig_days_finished = px.histogram(books_df, x='days_to_finish')

st.plotly_chart(fig_days_finished)

The previous code block can be added to the bottom of your current Streamlit app, which, 
when run, should show a new graph: 

Figure 10.4 – The days to finish graph
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This is not the most helpful graph for my data. It looks as though, at some point, I added 
books that I had read in the past to Goodreads, which show up in this chart. We also have 
a set of books that have not been finished yet or are on the to-read bookshelf, which exist 
as null values in this dataset. We can do a few things here, such as filtering the dataset 
to just include books where the number of days is positive and filtering the data to only 
finished books, which the following code block does:

books_df['days_to_finish'] = (pd.to_datetime(

            books_df['Date Read']) - pd.to_datetime(books_
df['Date Added'])).dt.days

books_finished_filtered = books_df[(books_df['Exclusive Shelf'] 
== 'read') & (books_df['days_to_finish'] >= 0)]

fig_days_finished = px.histogram(books_finished_filtered, 

 x='days_to_finish', title='Time Between Date Added And Date 
Finished',

     labels={'days_to_finish':'days'})

st.plotly_chart(fig_days_finished)

This change in our code makes the graph significantly better. It makes some assumptions, 
but it also provides a more accurate analysis. The finished graph can be viewed in the 
following screenshot: 

Figure 10.5 – The improved days to finish graph
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This looks much better! Now, let's move on to the next question. 

How long are the books that I have read?
The data for this question is already in a fairly good state. We have a single column called 
Number of Pages, which, you guessed it, has the number of pages in each book.  
We just need to pass that column to another histogram, and we will be good to go:

fig_num_pages = px.histogram(books_df, x='Number of Pages', 
title='Book Length Histogram')

st.plotly_chart(fig_num_pages)

This code will produce something similar to the following screenshot, showing  
a histogram of book length as measured in pages:

Figure 10.6 – The Number of Pages histogram

This makes sense to me; a ton of books are in the 300–400 page range, with a few giant 
books that have 1,000+ pages. Now, let's move on to the age of these books! 
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How old are the books that I have read? 
Our next graph should be straightforward. How do we figure out how old the books 
that we read are? Are our tendencies to go for the newest set of books that are published 
or to shoot toward reading classics? There are two columns that we can get this 
information from, the publication year and the original publication year. There is very 
little documentation on this dataset, but I think we can safely assume that the original 
publication year is what we are looking for, and the publication year exists for when  
a publisher republishes a book. The following code block checks this assumption  
by printing out all the books where the original publication year is later than the 
publication year:

st.write('Assumption check')

st.write(len(books_df[books_df['Original Publication Year'] > 
books_df['Year Published']]))

When we run this, the app should return zero books with the original publication year  
as greater than the year published. Now that we have checked this assumption, we can do 
the following:

1.	 Group the books by the original publication year.

2.	 Plot this on a bar chart.

The following code block takes two steps:

books_publication_year = books_df.groupby('Original Publication 
Year')['Book Id'].count().reset_index()

books_publication_year.columns = ['Year Published', 'Count']

fig_year_published = px.bar(books_publication_year, x='Year 
Published', y='Count', title='Book Age Plot')

st.plotly_chart(fig_year_published)
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When we run this app, we should get the following graph:

Figure 10.7 – Book Age Plot

At first glance, this graph does not appear to be incredibly useful, as there are quite a few 
books written so far back in history (for example, Plato's writings in -375 BCE) that the 
entire graph is hard to read. However, Plotly is interactive by default, and it allows us 
to zoom into sections of history that we care about more than others. For example, the 
following screenshot shows us what happens when we zoom into the period of 1850 to the 
present, where most of the books that I've read happen to be in:

Figure 10.8 – Zooming in on Year Published
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This is a much better graph! There are a couple of options going forward. We can start with 
the graph that is not as useful and tell users to zoom in, we can filter our dataset for only 
younger books (which would defeat the main purpose of the graph), or we can set a default 
zoom state for the graph and also alert users at the bottom that they can zoom in as they'd 
like. I think the third option is the best one. The following code implements this option:

Books_publication_year = books_df.groupby('Original Publication 
Year')['Book Id'].count().reset_index()

books_publication_year.columns = ['Year Published', 'Count']

st.write(books_df.sort_values(by='Original Publication Year').
head())

fig_year_published = px.bar(books_publication_year, x='Year 
Published', y='Count', title='Book Age Plot')

fig_year_published.update_xaxes(range=[1850, 2021])

st.plotly_chart(fig_year_published)

st.write('This chart is zoomed into the period of 1850-
2021, but is interactive so try zooming in/out on interesting 
periods!')

When we run this code, we should get our final plot:

Figure 10.9 – A default zoom with helpful text
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Four questions down, we have one to go!

How do I rate books compared to other Goodreads 
users?
For this final question, we really need two separate graphs. First, we need to plot how  
we have rated the books. Then, second, we need to plot how other users have rated the 
books that we also rated. This isn't a perfect analysis, because Goodreads just shows  
us the average rating of the books – we have not read the distribution. For example,  
if we had read The Snowball, a biography of Warren Buffett, and rated it 3 stars, and half 
of Goodreads' readers rated it a 1 star while the other half rated it 5 stars, we would have 
rated it exactly the same as the average rating, but we would not have rated it the same  
as any individual rater! However, we do what we can with the data we have. So, we can do 
the following:

•	 Filter the books according to the ones we have rated (and, therefore, read).

•	 Create a histogram of the average rating per book for our first graph.

•	 Create another histogram for your own ratings.

This next code block does exactly that:

books_rated = books_df[books_df['My Rating'] != 0]

fig_my_rating = px.histogram(books_rated, x='My Rating', 
title='User Rating')

st.plotly_chart(fig_my_rating)

fig_avg_rating = px.histogram(books_rated, x='Average Rating', 
title='Average Goodreads Rating')

st.plotly_chart(fig_avg_rating)
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As you can see in the following screenshot, the first graph with the user rating distribution 
looks great. It looks as though I mainly rate books either 4 or 5 stars, which are, overall, 
pretty lenient ratings:

 

Figure 10.10 – The User Rating distribution

When we also look at the second graph, we see a fairly clean distribution. However,  
we run into the problem that we have addressed before – all the rating averages are more 
tightly bundled than the user ratings:

Figure 10.11 – Average Goodreads Ratings
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We can always set the x-axis range to 1–5 for both graphs, but this will not help our actual 
problem. Instead, we can leave both of the graphs but also calculate whether, on average, 
we rate books higher or lower than the Goodreads average. The following code block will 
calculate this and add it underneath the average Goodreads rating graph:

Fig_avg_rating = px.histogram(books_rated, x='Average Rating', 
title='Average Goodreads Rating')

st.plotly_chart(fig_avg_rating)

import numpy as np

avg_difference = np.round(np.mean(books_rated['My Rating'] – 
books_rated['Average Rating']), 2)

if avg_difference >= 0:

     sign = 'higher'

else:

     sign = 'lower'

st.write(f"You rate books {sign} than the average Goodreads 
user by {abs(avg_difference)}!")

This code block makes our average and creates a dynamic string that will either say that 
the Goodreads user rates books higher or lower than the average Goodreads user. The 
result for my data is as follows:

Figure 10.12 – Adding an average difference
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This is better and completes our MVP. Our app is in a decent state, and the difficult 
manipulation and visualization steps are pretty much complete. However, our app 
certainly doesn't look great and is just a bunch of graphs that appear in a row. This might 
be good for an MVP, but we need to add some styling to really improve our state. That 
leads us to our next section: iterating on this idea to make it even better. 

Iterative improvement
So far, we have been almost purely in production mode with this app. Iterative 
improvement is all about editing the work we have already done and organizing it in 
a way that makes the app more usable and, frankly, nicer to look at. There are a few 
improvements that we can shoot for here:

•	 Beautification via animation

•	 Organization using columns and width

•	 Narrative building through text and additional statistics

Let's start by using animations to make our apps a bit prettier!

Beautification via animation
In Chapter 7, Exploring Streamlit Components, we explored the use of various Streamlit 
components: one of these was a component called streamlit-lottie, which gives us 
the ability to add animation to our Streamlit applications. We can improve our current app 
by adding an animation to the top of our current Streamlit app using the following code.  
If you want to learn more about Streamlit components, please head back over to Chapter 
7, Exploring Streamlit Components:

import streamlit as st

import pandas as pd

import plotly.express as px

import numpy as np

from streamlit_lottie import st_lottie

import requests

def load_lottieurl(url: str):

    r = requests.get(url)

    if r.status_code != 200:

        return None
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    return r.json()

file_url = 'https://assets4.lottiefiles.com/temp/lf20_aKAfIn.
json'
lottie_book = load_lottieurl(file_url)

st_lottie(lottie_book, speed=1, height=200, key="initial")

This Lottie file is an animation of a book flipping its pages, as shown in the following 
screenshot. These animations are always a nice touch for longer Streamlit apps:

Figure 12.13 – Goodreads animation

Now that we have added our animation, we can move on to how to organize our app a  
bit better.

Organization using columns and width
As we discussed earlier, our app does not look very good with each graph appearing one 
after the other. Another improvement we can make is to allow our app to be in wide, 
rather than narrow, format, and then put our apps side by side in each column. 

To begin, at the top of our app, we need the first Streamlit call to be the one that sets the 
configuration of our Streamlit app to wide rather than narrow, as shown in the following 
code block:
import requests

st.set_page_config(layout="wide")

def load_lottieurl(url: str):

    r = requests.get(url)

    if r.status_code != 200:

        return None

    return r.json()
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This will set our Streamlit to our wide format. So far, in our app, we have called each graph 
a unique name (such as fig_year_finished) to make this next step easier. We can 
now remove all of our st.plotly_chart() calls, and create a set of two columns and 
three rows where we can place our six graphs. The following code creates each of these. 
We name each space first, and then fill them with one of our graphs:

row1_col1, row1_col2 = st.beta_columns(2)

row2_col1, row2_col2 = st.beta_columns(2)

row3_col1, row3_col2 = st.beta_columns(2)

with row1_col1:

     st.plotly_chart(fig_year_finished)

with row1_col2:

     st.plotly_chart(fig_days_finished)

with row2_col1:

     st.plotly_chart(fig_num_pages)

with row2_col2:

     st.plotly_chart(fig_year_published)

     st.write('This chart is zoomed into the period of 1850-
2021, but is interactive so try zooming in/out on interesting 
periods!')

with row3_col1:

     st.plotly_chart(fig_my_rating)

with row3_col2:

     st.plotly_chart(fig_avg_rating)

     st.write(f"You rate books {sign} than the average 
Goodreads user by {abs(avg_difference)}!")
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This code will create the app that appears in the following screenshot, which has been 
cropped to the top two graphs for brevity:

Figure 12.14 – The wide format example

This makes our graphs much easier to read and easily allows us to compare them. We have 
intentionally paired our two graphs according to ratings, and the rest also appear to fit 
quite well next to each other. Our final step is to add a bit more text to make the entire app 
easier to read. 

Narrative building through text and additional 
statistics
These graphs are already quite helpful for understanding how the user reads, but we can 
bolster the readability of this app by adding some useful statistics and text underneath 
each graph and at the beginning of the app. 



220     The Data Project – Prototyping Projects in Streamlit

Right above where we start to define our columns, we can add an initial section that shows 
the unique number of books that we have read, the unique authors, and our favorite 
author, all in one. We can use these basic statistics to kick off the app and tell the user that 
each graph is also interactive:

if goodreads_file is None:

     st.subheader("Tyler's Analysis Results:")

else:

     st.subheader('Your Analysis Results:')

books_finished = books_df[books_df['Exclusive Shelf'] == 
'read']

u_books = len(books_finished['Book Id'].unique())

u_authors = len(books_finished['Author'].unique())

mode_author = books_finished['Author'].mode()[0] 

st.write(f'It looks like you have finished {u_books} books with 
a total of {u_authors} unique authors. Your most read author is 
{mode_author}!')

st.write(f'Your app results can be found below, we have 
analyzed everything from your book length distribution to 
how you rate books. Take a look around, all the graphs are 
interactive!')

row1_col1, row1_col2 = st.beta_columns(2)

Now we need to add four new text sections below the four graphs that do not have any 
annotated text as of yet. For the first three graphs, the following code will add some 
statistics and text to each:

row1_col1, row1_col2 = st.beta_columns(2)

row2_col1, row2_col2 = st.beta_columns(2)

row3_col1, row3_col2 = st.beta_columns(2)

with row1_col1:

     mode_year_finished = int(books_df['Year Finished'].mode()
[0])

     st.plotly_chart(fig_year_finished)

     st.write(f'You finished the most books in {mode_year_
finished}. Awesome job!')

with row1_col2:

     st.plotly_chart(fig_days_finished)
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     mean_days_to_finish = int(books_finished_filtered['days_
to_finish'].mean())

     st.write(f'It took you an average of {mean_days_to_finish} 
days between when the book was added to Goodreads and when you 
finished the book. This is not a perfect metric, as you may 
have added this book to a to-read list!')

with row2_col1:

     st.plotly_chart(fig_num_pages)

     avg_pages = int(books_df['Number of Pages'].mean())

     st.write(f'Your books are an average of {avg_pages} pages 
long, check out the distribution above!')

One example graph here is the histogram on book length. The preceding code adds an 
average length and some text below the graph, as shown in the following screenshot: 

Figure 10.15 – The average number of pages text

For the final set of graphs, we can add text to the ones without context:

with row2_col2:

     st.plotly_chart(fig_year_published)

     st.write('This chart is zoomed into the period of 1850-
2021, but is interactive so try zooming in/out on interesting 
periods!')
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with row3_col1:

     st.plotly_chart(fig_my_rating)

     avg_my_rating = round(books_rated['My Rating'].mean(), 2)

     st.write(f'You rate books an average of {avg_my_rating} 
stars on Goodreads.')

with row3_col2:

     st.plotly_chart(fig_avg_rating)

     st.write(f"You rate books {sign} than the average 
Goodreads user by {abs(avg_difference)}!")

This completes our section on adding text and additional statistics! Now, our final step is 
to deploy this on Streamlit Sharing. 

Hosting and promotion
Our final step is to host this app on Streamlit Sharing. To do this, we need to perform the 
following steps:

1.	 Create a GitHub repository for this work.

2.	 Add a requirements.txt file.

3.	 Use 1-click deployment on Streamlit Sharing to deploy.

We already covered this extensively in Chapter 5, Deploying Streamlit with Streamlit 
Sharing, so give it a shot now without instruction. If you get stuck, head over to Chapter 5, 
Deploying Streamlit with Streamlit Sharing, to find the exact instructions.

Summary
What a fun chapter! We have learned so much here – from how to come up with data 
science projects of our own to how to create initial MVPs, to the iterative improvement of 
our apps. We have done this all through the lens of our Goodreads dataset, and we have 
taken this app from just an idea to a fully functioning app hosted on Streamlit Sharing. 
I look forward to seeing all the different types of Streamlit apps that you create. Please 
create something fun and send it to me on Twitter at @tylerjrichards. In the next chapter, 
we will focus on learning how to use Streamlit at work with the new Streamlit product,  
Streamlit for Teams. See you there!
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Using Streamlit  

for Teams
Throughout the past two chapters, we have deeply explored how to use Streamlit for 
things such as personal data projects, projects for resume building, and even for creating 
apps for take-home job applications. In this chapter, we will focus on using Streamlit  
at your place of work, as a data scientist, machine learning engineer, or data analyst.  
We already know that Streamlit can be used as a convincing tool to influence those around 
us through thoughtful and interactive analyses, and we will work on applying that to the 
work data scientists actually do. 

Streamlit is both a company and an open source library and makes revenue by being such 
an excellent tool in a data science toolkit that companies are convinced to pay for special 
features and customizations that increase the productivity of their own data scientists.  
The best part about this is that the company is directly incentivized to make the 
experience of using the tool as useful and valuable as possible; if you're a better data 
scientist because of Streamlit, your company is more likely to pay more for access. 

Additionally, Streamlit is already designed to be collaborative. If another developer has 
access to a GitHub repository that is being used for a Streamlit app, then any edits they 
make will pop up on the deployed app automatically. Because of this, Streamlit is a natural 
collaborative fit for both individual data scientists and groups of data science teams 
working on similar analyses or applications. 
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In this chapter, we will discuss the following:

•	 Analyzing hypothetical survey costs using Streamlit for Teams

•	 Creating and deploying apps from private repositories 

•	 User authentication with Streamlit

To kick us off for this chapter, we will start with an example of when we would use 
Streamlit for Teams instead of static analysis at work.

Analyzing hypothetical survey costs using 
Streamlit for Teams 
Imagine you are a data scientist for Big Internet Company (BIC). BIC sells budgeting 
software to users, and you are responsible for surveying the users of your app to see where 
the app could be improved. You work with a fairly typical team made up of a product 
manager, two software engineers, three project managers, two user experience researchers, 
and yourself, the lone data scientist. One day, your product manager messages you on 
Slack and asks you to figure out the right sample of users between the ages of 16 and 24,  
a crucial segment of the business, to take a 10-question survey about the software.  
In a brainstorming session, your researchers have found some evidence that giving people 
a 10% chance at winning a $500 gift card is more effective than giving people $50 for the 
response rates in your survey, and want you to incorporate that into your analysis. 

There are many factors that you need to consider here: how much does the team want 
to spend? How many samples should we choose? The hardest part here is the trade-off 
between cost and the representativeness of the sample. We have a few options. We could 
recommend a sample size without really informing the team why we are recommending 
a sample size. We could also give the team a few options on costs, describing some of the 
pros and cons in a list. A better option than any of these is to create a short Streamlit app 
that will help us make this decision as a team to understand all the trade-offs. 
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Let's say that we want to do the latter! Our general steps here are going to be to do  
the following:

1.	 Setting up a new Streamlit app folder

2.	 Illustrating the representativeness of the sample

3.	 Calculating the cost of the sample

4.	 Using interaction to show trade-offs 

Now we need to start with the first option, setting up our folder.

Setting up a new Streamlit app folder
We have taken this step quite a few times in this book before. Go ahead and set up a folder 
called random_survey_app and place within it a file called app.py, where we will put 
our new Streamlit app. Now on to the central problem at hand!

Illustrating the representativeness of the sample
If we are the data scientist for BIC, we know a lot of data about the user population 
in question. We want to make sure that the sample we grab is representative of the 
population as a whole, especially in reference to one or more key variables of the business. 
For this example, we can assume that the most important metric to the business is user 
time spent on our app. We already know the distribution of user time spent and can 
represent that within our app using the following code: 

import streamlit as st

import numpy as np

st.title('Deciding Survey Sample Size')

np.random.seed(1)

user_time_spent = np.random.normal(50.5, 10, 1000)
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We are using the np.random.seed(1) line so that you will see the same sample  
as the figures in this book, but when developing a user-facing app, I would recommend 
leaving this out, otherwise clever users will be more suspicious about your random 
selection methods! Setting a seed in numpy allows reproducible results with randomly 
selected data. 

Now that we know the distribution of the user time spent on the app, we can show 
the user how representative different-sized sub-samples will be by drawing the two 
distributions of user time spent next to each other. While this is not the best method for 
determining representativeness, it is going to be useful to prove the general point to your 
audience. The next code block sub-samples 100 from the set of 1,000 samples, and plots 
each in a histogram: 

import streamlit as st

import numpy as np

import plotly.express as px

st.title('Deciding Survey Sample Size')

np.random.seed(1)

user_time_spent = np.random.normal(50.5, 10, 1000)

my_sample = np.random.choice(user_time_spent, 100)

fig = px.histogram(user_time_spent, title='Total Time Spent')

fig.update_traces(xbins=dict(start=0,end=100, size=5))

st.plotly_chart(fig)

fig = px.histogram(my_sample, title='Sample Time Spent')

fig.update_traces(xbins=dict(start=0,end=100, size=5))

st.plotly_chart(fig)

This code block will produce the following app, showing that at 100 users, it looks fairly 
representative of the total time spent: 
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Figure 11.1 – Survey sample size
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Now we need to figure out the trade-off – how to determine the cost of a set sample  
of users.

Calculating the cost of the sample
As we discussed before, we can calculate the cost of the sample by looking at the number 
of survey respondents multiplied by the cost of each one. The cost of any individual survey 
respondent is a 10% chance at a $500 gift card, so we should show the expected value as 
10% times $500, which is $50 on average. We should also be able to say, what percent of the 
time does the cost of the experiment fall below some dollar amount? dynamically, to assure 
the group of the costing risks associated with the randomness. 

We can calculate and print out the expected cost using the following code: 

np.random.seed(1)

num_surveys = 100

user_time_spent = np.random.normal(50.5, 10, 1000)

my_sample = np.random.choice(user_time_spent, num_surveys)

expected_cost = 50 * num_surveys

st.write(f'The expected cost of this sample is {expected_
cost}')

Once we have this, we can simulate this survey running 10,000 times and count how often 
the cost of the experiment goes over a certain value, which we call max_cost in the next 
code block. We use the numpy library again to sample from the binomial distribution, 
which is the number of successes given a set of independent events with the same 
probability (for example, if you flipped a coin 10 times, how many times it would land  
on heads): 

np.random.seed(1)

num_surveys = 100

user_time_spent = np.random.normal(50.5, 10, 1000)

my_sample = np.random.choice(user_time_spent, num_surveys)

#costing section

expected_cost = 50 * num_surveys

max_amount = 5000

percent_change_over = 100 * sum(np.random.binomial(num_surveys, 
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0.1, 10000) > max_amount/500)/10000

st.write(f'The expected cost of this sample is {expected_
cost}')

st.write(f'The percent chance the cost goes over {max_amount} 
is {percent_change_over}')

For our survey size of 100 and a max cost of $5,000, the expected cost is $5,000 and the 
cost goes over our limit ~41% of the time: 

Figure 11.2 – Expected cost of survey

Now that we have all the set pieces, we need to actually make this interactive with 
Streamlit features. 



230     Using Streamlit for Teams 

Using interaction to show trade-offs 
In order to make this app better than a static analysis, we need to let the user interact with 
our app. We can do this in two ways, first by allowing the user to change the number of 
people surveyed, and second by changing the max cost variable we assigned. We can do 
both of those things using the following code block: 

st.title('Deciding Survey Sample Size')

np.random.seed(1)

num_surveys = 100

num_surveys = st.slider(label='Number of Surveys Sent', 

     min_value=5, max_value=150, value=50)

max_amount = st.number_input(label='What is the max you want to 
spend?', 

     value=num_surveys*50, step=500)

user_time_spent = np.random.normal(50.5, 10, 1000)

my_sample = np.random.choice(user_time_spent, num_surveys)

In this block, we set a minimum and maximum value for the Streamlit slider, and also  
set the default value for the maximum amount to be the expected value to make it easier 
for the user as they change the number of surveys. We should also add some text above 
this to instruct the user how to interact with our app, as shown in the following addition 
to the app: 

st.title('Deciding Survey Sample Size')

'''

Please use the following app to see how 

representative and expensive a set sample

is for our survey design. 

'''

np.random.seed(1)

num_surveys = 100

These two additions to our app produce the following screenshot: 
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Figure 11.3 – Streamlit sliders with costing

So far, this works perfectly fine. However, because you are working for a company,  
you want to make sure that none of this information in the app is released to the public 
or any competitors. Because of this, deploying this app publicly is not an option, and 
we need to figure out how to privately deploy the application. In Chapter 9, Improving 
Job Applications with Streamlit, we discussed how to make our applications private with 
password protection, but Streamlit for Teams also allows us to deploy from private GitHub 
repositories, which is the topic of our next section. 

Creating and deploying apps from private 
repositories
One great feature of the Streamlit for Teams product is the ability to use Streamlit Sharing 
from private GitHub repositories. This works exactly the same as how we learned in 
Chapter 5, Deploying Streamlit with Streamlit Sharing, but from a private rather than  
a public repository. To make this change, you will need to have access to Streamlit Teams 
or get access from the Streamlit team (they might just let you try it out if you ask nicely!). 
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To create a private GitHub repo, head over to https://github.com/new and make 
sure to click the Private rather than Public option, as shown in the next screenshot: 

Figure 11.4 – Private repository on GitHub

And after we add our current code to our GitHub repository, we can deploy on Streamlit 
Sharing just as we normally would, by going over to https://share.streamlit.
io and following the directions for one-click deployment. I have deployed this Streamlit 
app using my own private repo, and the Streamlit app can be found at https://share.
streamlit.io/tylerjrichards/random_survey_app/main/app.py. Our 
next problem to work on is finding alternatives to the password method that we have 
already explored, with user-specific authentication with Streamlit. 

User authentication with Streamlit
One feature currently in beta on Streamlit for Teams but with an expected release date 
of late 2021 is Google-based single sign-on (SSO) authentication for our applications. 
This will allow us to make our app totally private, only viewable by users that we put on 
an allow list. The first step we need to take is to link our own Google account, by heading 
over to https://share.streamlit.io and clicking on Settings in the top-right 
corner. Once we are there, we will see the screen shown in the next screenshot:  

https://github.com/new
https://share.streamlit.io
https://share.streamlit.io
https://share.streamlit.io/tylerjrichards/random_survey_app/main/app.py
https://share.streamlit.io/tylerjrichards/random_survey_app/main/app.py
https://share.streamlit.io
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Figure 11.5 – Linking Google accounts

We can now click the blue Connect button and then sign in to our Google account. 
Once that is finished, we need to head over to our main page at https://share.
streamlit.io and figure out which app we want to restrict traffic to: 

Figure 11.6 – Streamlit sharing options

In this case, I want to limit the reach of the second app, so I will go to the settings of this 
app by clicking the icon on the far-right side of the page and selecting Settings, as we have 
done before. 

https://share.streamlit.io
https://share.streamlit.io
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Before we connected our Google account, we only had the option to edit the Secrets 
sections of our apps, but now we have this entirely new section called Viewers, as shown 
in the next screenshot: 

Figure 11.7 – Viewers auth

We can set our app to private with the checkbox and add people with their email to this 
list. If they are not on the list, they will get a 404 error when trying to reach the app! This 
works extraordinarily well for a smaller number of users but does not work as well if you 
are trying to reach hundreds or thousands of users, especially those who do not have 
Google-related email accounts. 

Summary
In this chapter, we explored an example costing analysis, which showed us a job-specific 
use case for Streamlit. In this example, we discussed how to use interactive Streamlit 
applications to help improve and inform the data-based decision making of teams. 
After that, we also learned how to deploy Streamlit applications from private GitHub 
repositories, and we learned about multiple methods to make our Streamlit applications 
only available to a private audience with password protection and Google SSO. This 
concludes the chapter. 

In the next chapter, we will focus on interviews with power Streamlit users and creators to 
learn tips and tricks, why they use Streamlit so extensively, and also where they think the 
library will go from here. See you there!



12
Streamlit Power 

Users
Welcome to the final chapter of this book! In this chapter, we will learn from the best, 
from Streamlit creators with experience creating dozens of apps and components, 
Streamlit power users turned Streamlit employees, and even the founder of the Streamlit 
library who now runs the fledgling company supporting the library's development.  
We sat down and interviewed four different users and learned about their backgrounds, 
their experience with Streamlit, and what tips they have for users of all experience levels. 
From these interviews, we will learn how they use Streamlit on a day-to-day basis at work, 
for teaching, and also about where Streamlit is going from here.

This chapter is grouped into four interviews:

•	 Fanilo Andrianasolo, Streamlit creator and tech lead at Worldline

•	 Johannes Rieke, Streamlit creator turned engineer

•	 Adrien Treuille, Streamlit founder and CEO

•	 Charly Wargnier, Streamlit creator and SEO consultant 

First, let's start with Fanilo! 
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Interview #1 – Fanilo Andrianasolo 
(Tyler) Hey, Fanilo! Before we get started, do you want to introduce yourself to the 
readers? What's your background? What do you spend your time doing, and who do  
you work for?

(Fanilo) Hello, everybody! My name is Fanilo Andrianasolo, I'm from Madagascar, and  
I work at Worldline, which is one of the leading European companies in digital payments 
and transactional services. I work there as a data science and business intelligence 
advocate and tech lead, where I help internal product and development teams to prototype 
new data science use cases, architect those use cases, and then put them into production. 
So, most of my work is focused on integrating data analytics inside Worldline, which is  
a huge task because it covers multiple industries from finance, for example, fraud 
detection, retail, and customer analysis. And I'm also a data science advocate, so I build 
and present multiple talks internally or to prospective customers where I can show them, 
"This is data science, don't worry, it's not that hard" or "This is a random forest, don't 
worry, it's not as complex as what you may think." And on the side, I am a university 
lecturer in big data and NoSQL in Lyon where I teach about 50 hours a year. It's an 
amazing opportunity to be able to talk to students and watch them grow into amazing 
software engineers and data scientists!

(Tyler) That sounds awesome! You basically have, the way that I see it, two very interesting 
roles where you have to explain data science concepts to others, one at work and then 
another at university. Do you use Streamlit in both situations?

(Fanilo) Yes, I do! When I discovered Streamlit, it was for internal work. At first, I was 
working on tracking some metrics from different machines and wanted to showcase them 
without using Jupyter Notebook, because I didn't want to click and run each cell every 
time. And I tried Streamlit and I was really hooked by how fast and easy it was to use it to 
build something. 

For my university lectures where I'm doing mostly PySpark, MongoDB, and Elasticsearch 
lectures, I demo those through their Python plugins. I would show a Streamlit app with 
the code on the side, I would change the code in front of my students, and all the Python 
variables would update on the app in real time. When you write this code that builds some 
MapReduce job, for example, in PySpark, it's easy to show them the code live and even do 
some coding exercises together. To show how the code works, I just put a function inside 
the code and the result is directly on the right in the Streamlit app. It's really dynamic and 
is a really easy way for me to show and tell the code. 

(Tyler) Is there a difference in how you develop Streamlit apps for the two groups? I feel 
like there's a lot of similarities there but what are the differences?
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(Fanilo) For students, it's going to be a single script that is going to run from the top to 
the bottom so it's easy to follow; it's like a live demo for them. Whereas when I'm at my 
company, I'm going to integrate Streamlit into bigger projects so there is usually already 
a project structure with a folder dedicated to UI work. For work projects, Streamlit apps 
are going to use functions from multiple libraries and multiple modules so it's a little 
bit different. The way we distribute and use the Streamlit app at work is also a little bit 
different because at university, I can just do anything on my machine. When I'm at work, 
I have to worry about more, like can I put this into the cache? Can I rewrite a colleague's 
function because it cannot go into Streamlit hashing? Constraints in my professional work 
make it a little bit more complex to write Streamlit apps.

(Tyler) I'm curious how you do your deployment at work. Do you do it on Heroku servers 
to use Streamlit for Teams? Or do you do it all locally?

(Fanilo) We have two servers internally on-prem where I deploy my Streamlit apps.  
There are not a lot of people using Streamlit inside the company, so I can just host the  
app on a server temporarily so marketing can play with the app. And the more techy 
people that don't know Python, I just send them the scripts and tell them how to run  
it with Anaconda.

(Tyler) So you talked a bit about your first time using Streamlit. Did you find out about  
it on Twitter, or from a forum somewhere? What got you started? What was your original 
use case?

(Fanilo) I think I heard about it from Twitter. At first, I dismissed it thinking, "Oh,  
it's just another Python library, I'll just put it in my to-do list to try one day." And I tried 
it 2 months later when I was working on a real-time data science demo for a prospective 
customer. They wanted to track visit metrics from different websites and visualize them. 
Actually, a good proportion of our customers just ask us for some data analysis. They have 
not thought of KPIs, analytics business use cases, or business questions to answer through 
data. Those are always hard to start and I usually build them a small interactive demo to 
help them understand the data science process. And that's where I thought, "Oh, I should 
give Streamlit a try." 
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Before this, I actually did a demonstration for another customer using Jupyter Notebook 
and the customer was not interested because they saw it as too technical; they didn't like 
seeing code. And so, I thought for this customer maybe I should try Streamlit to showcase 
a grid of plots, using sliders just to decide how much of the data you want to visualize. For 
this problem, we wanted to do windowing over a set of dates to answer what the mean 
number of visits on those websites is, and wanted to be able to decide on the size of the 
window. We could just put that in the sidebar in Streamlit, which was a good opportunity 
to show the customer the results in real time. So we added this slider to the Streamlit app 
and gave it to the customer, and you can see when there's a spike that you can analyze 
further. And yeah, that's how I got to know more about Streamlit, just through demoing 
data science internally and externally.

(Tyler) That's happened to me so often, where the client doesn't exactly know what they'd 
like when they come with a request. What a great use case! One of the things I wanted 
to talk to you about is the Streamlit community of which you've become a pretty strong 
member over the course of the past year. What about Streamlit convinces you to continue 
investing in the ecosystem? 

(Fanilo) For me, the thing that hooked me into Streamlit really was the feedback loop 
that I missed from when I was doing frontend engineering. I could write some code, and 
I would see the results on my screen immediately. I could just edit the color in the CSS 
and see the change. And the fact that this feedback loop is so short in Streamlit, combined 
with the simplicity of the API, which makes building a basic app really easy, is what really 
hooked me into the framework. I also had this conversation with Adrian (Streamlit's 
founder) where I told him the feedback loop really reminded me of the web ecosystem 
and that for me was Streamlit's secret sauce. 

Another thing is the fact that now we can easily integrate web components into  
Streamlit, which makes it really easy for us to build more diverse web interactive apps 
for data scientists. I've always got this impression from talking with my students, or 
other coworkers, or people in meetups that they always struggle to build interactive 
apps where they can just select something or draw something and use this drawing as an 
input for their machine learning model. To do this, they needed to pre-draw, and then 
load the image into a Jupyter notebook, which takes too much time, but there are HTML 
components to draw on. Streamlit acting as a bridge between Python and the web  
through components is what gets us as creators hooked into pulling the web ecosystem 
into Streamlit.
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(Tyler) So speaking of web-based platforms, you've spent a lot of time building 
components like streamlit-lottie (https://github.com/andfanilo/streamlit-
lottie), which we talked about earlier in the book, streamlit-drawable-canvas 
(https://github.com/andfanilo/streamlit-drawable-canvas), and even 
streamlit-echarts (https://github.com/andfanilo/streamlit-echarts). 
Can you talk to us a bit about how you come up with ideas for components?

(Fanilo) So for those three components, I've got two different stories. I'm going to start 
with streamlit-lottie; the idea popped into my head on a Saturday night of boredom and 
scrolling Twitter. I saw nice animations using Lottie files and I thought to myself, "Oh, 
that's nice, I'd like to have some cool animations like this in Streamlit," so I just built it. 
And that's really it, wanting to bring more web components to Streamlit. 

For streamlit-echarts and streamlit-drawable-canvas, there was a bigger use case. I was 
on a tight deadline for a demo using TensorFlow.js years ago. I wanted to do training and 
inference on drawings and I spent 5 days creating the demo in the JavaScript ecosystem, 
mixing Fabric.js for drawing on a canvas and Echarts to show the results. It was very tough 
especially because it was my first real step into the frontend engineering world. And then 
when Streamlit came out, I wanted to see if other users could build this demo in hours 
instead of days if the Fabric.js and Echarts components already existed, so I extracted the 
code of this demo into external libraries and voilà! 

The thought process I have is always, what kind of new inputs and outputs can we bring 
to Streamlit? For example, can we bring real-time music input to Streamlit? Everybody in 
deep learning today talks about image and sound, so that would be a great component. 
And as an output, there are so many popular JavaScript libraries to display data in an 
interactive way that would be helpful for analysis. My goal is always, what kind of input 
and output that the web enables can I add to Streamlit? Hopefully web developers will 
want to build more things into Streamlit!

(Tyler) You've probably seen a ton of Streamlit apps that use components of yours.  
I would imagine that you get really excited by some clever use of streamlit-lottie  
or streamlit-echarts. Are you just pumped when you see that sort of stuff? Do you have 
some specific apps that you really enjoy that are built off of some of the components that 
you have made?

(Fanilo) Those are my first real open source projects, where I've put some effort into 
building and promoting them. I love that these tools are so flexible and can be used for  
so many use cases I would have never imagined, especially for streamlit-drawable-canvas. 
I saw there was a user who would display a side view of a soccer field in Streamlit, then 
he would draw the limits of the terrain inside the canvas over the field image, and then do 
some 3D remapping to transform it to a top view and be able to analyze the position of the 
players. I was like, wow, who does that? 

https://github.com/andfanilo/streamlit-lottie
https://github.com/andfanilo/streamlit-lottie
https://github.com/andfanilo/streamlit-drawable-canvas
https://github.com/andfanilo/streamlit-echarts
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There are people using Streamlit for medical purposes. For example, they want to draw 
on every slice of a stack of images the position of some molecules so they can draw 
a kind of 3D version of this molecule. I've even seen an app from Jina AI where they 
built a Pokémon recognizer (https://github.com/jina-ai/integration-
streamlit-pokemon)! So you would draw a Pokémon, and it would inject the drawing 
into a neural network to recognize the Pokémon that you wanted to draw. Never would've 
predicted that, you know? Yeah, it's amazing.

(Tyler) That sounds amazing. Do you have any tips for beginners getting started in 
Streamlit? Do you have anything that you wish you would have known, like when you first 
got started?

(Fanilo) For me, it's consistent experimentation on new libraries. If there is a new Python 
library, I often just want to understand how it works. What happens if I change this 
argument, how does each parameter affect the output? So, I just bootstrap a new Streamlit 
script and import the library. And then for each parameter that you have, you can build  
a slider, a number input, a date input, and then you begin to build a demo of this 
unknown library, and Streamlit is only there to help you explore it to the fullest. Then  
you wonder how you can lay it out better, how to preserve some state for the app, and 
that's where you begin to dig deep into Streamlit. We talked a lot about the web ecosystem 
for Streamlit components. But I also think Streamlit is one of the best ways to showcase 
any Python library, anything from the Python ecosystem. 

Other than that, I'd say engage with the community online. The Streamlit community was 
really my first time interacting with an online community, with people who I didn't know 
nor meet at all. I don't remember the very first post or topic that I wrote, but I remember 
putting so much effort into writing it. I know it takes courage to ask questions in public, 
and I would say: dare to write a new post on the forum. If you're struggling with Streamlit 
or with Python, it's a good experience to try and post something in the community 
forums (https://discuss.streamlit.io/) because people there are really nice; 
there are always people willing to help. I would encourage people to play with Streamlit 
and innovate, and then go on the forums and ask about what they can't figure out. There 
are a lot of very hidden features that are only available inside the forums, which is why  
I encourage people to go on the forums.

(Tyler) Yeah, definitely. It's a very interesting case of accumulated knowledge sitting in 
small places on the internet. It's terrifying to ask because you're always like, "Oh, what if 
they think I'm really dumb?" That's often the first concern, signaling to others that you 
know what you're doing. But everyone seems incredibly nice in the Streamlit community, 
which is, frankly, a big change on the internet. 

https://github.com/jina-ai/integration-streamlit-pokemon
https://github.com/jina-ai/integration-streamlit-pokemon
https://discuss.streamlit.io/
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(Fanilo) Yeah, maybe I'm so used to interacting with students that it helps me understand 
the fear of asking your very first online question to a "stranger." The worst thing that 
happened to one of my students is they wanted to clone a Git repo and the log showed that 
this folder already existed on their machine, so they could not clone over it. The answer  
is easy, in front of our very eyes written on the log, at least it's easy for us to interpret, 
right? But when it's your very first time coding, you have no idea what this log means,  
or that you should even check the log. So, I try to answer questions like I would answer 
my students coding for the first time and set this as a bar for our community, so everyone 
realizes we were all beginners at some point and that we should guide them into the 
gigantic Python/Streamlit world and not respond with "Go read the manual." 

One year ago, I was not into online communities at all. I was also scared of doing this. 
And now here I am, a forum moderator and Streamlit creator. One year ago, I would 
never have dreamed of doing this. So, ask questions, people! 

(Tyler) Thank you so much for your time, Fanilo! For anyone reading who wants to learn 
more, you can find Fanilo's GitHub at https://github.com/andfanilo and his 
tutorial for building Streamlit components at https://streamlit-components-
tutorial.netlify.app/.

Interview #2 – Johannes Rieke
(Tyler) Hey, Johannes! Before we get started, do you want to give us a quick intro to 
yourself? Where have you worked in the past, what do you do, what is your background?

(Johannes) Hello! I'm from Germany, and currently living in Berlin. Well, as you 
know, I'm currently working at Streamlit and have been for the past 2 months but my 
background actually is in physics. So I did physics in my undergrad and I somehow 
got into neuroscience. I took a couple courses, did a few projects, and really loved it, 
especially the combination with computer science, doing simulations of nerve cells, the 
brain, all that kind of stuff. I got super interested in that. I decided to do my master's 
in computational neuroscience, which is kind of a combination of neuroscience on the 
one hand, but also machine learning on the other. In that program, I did a lot of stuff in 
all kinds of different areas of machine learning, like medical imaging, natural language 
processing, graph networks, all kinds of things. After I graduated from my master's 
program, I got into a couple open source projects. Well actually, I wanted to go traveling 
for a longer time but Covid came, and I had to get back to Germany earlier than  
I expected. And then I got into open source projects and started doing a lot with  
Streamlit, which is where I am today, working as a product engineer at Streamlit. 

(Tyler) Very interesting! When did you get started with the Python ecosystem? Was that 
back in your physics days? 

https://github.com/andfanilo
https://streamlit-components-tutorial.netlify.app/
https://streamlit-components-tutorial.netlify.app/
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(Johannes) Yeah, that was long ago, basically at the start of my bachelor's or the first year 
of my bachelor's. I had already done programming since high school. Started out with 
Java, and then in 2013, during my bachelor's, I got into Python and really fell in love with 
it. Because for the stuff I was doing, starting with computations and simulations, and later 
machine learning, Python is just awesome.

(Tyler) Did you do any machine learning in Java? I haven't seen a lot of ML engineers  
who work in Java or need to write anything in Java.

(Johannes) I definitely worked in Python. Before I studied for my master's, I actually 
worked at a research lab in a gap year, and I did some computational stuff with C++ in 
that time but that was just horrible. If I had known about Python back then, I would have 
probably done everything in Python, and would have finished in a tenth of the time.

(Tyler) I know a lot of people that will do most of their work in Python and then if they 
have some strong need to make an algorithm much faster, they'll switch to a lower-level 
language, which is excessive in the best way. So at that point, you were really involved with 
Python and had been coding in Python for a while, and then you kind of started making 
these machine learning projects in Streamlit, like your Traingenerator app (https://
traingenerator.jrieke.com/), which is a multi-purpose app to write machine 
learning code for you. What was your motivation for creating some of these? To give  
back to the community, showcase your work, create a personal portfolio, or something 
totally different?

Figure 12.1 – Traingenerator app

https://traingenerator.jrieke.com/
https://traingenerator.jrieke.com/
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(Johannes) Yeah, it's a combination of most of those points. I started using Streamlit in 
spring last year after I graduated. I had gone traveling after graduation, but with Covid, 
I had to come back to Germany and had obviously a lot of free time. Some of my friends 
and former colleagues had started working on an open source project, which was in 
the area of Covid tracing, and so I joined them. And as part of that, we needed a small 
dashboard and a friend had told me about Streamlit, and I tried it out and thought it was 
super cool. 

But that's basically how I started using Streamlit for fun. The Traingenerator app that  
I built actually had more business or start-up intentions. I thought, let's try my own 
project. And I realized I really liked the idea of training a machine learning model with  
a single line of code, like FastAI and PyTorch Lightning are doing. PyTorch Lightning  
is a library in the same area. I have worked a lot in machine learning, and often I've 
worked with very standard and basic models and just applied them to new datasets  
or new areas. One thing that has always annoyed me was that you're taking a super 
standard approach, but you have to write all this code to implement a model, or even  
if you have an implemented model, you have to test it and tweak it; you have to transform 
your data to work with that model. And you have to write code to track your metrics and 
experiments, all that kind of stuff. So my idea was more: could I build something that 
simplifies this process, maybe also with the prospect of becoming a viable product,  
a viable business? 

I had worked on that for a while, and then the idea for Traingenerator came up when  
I talked about this project with a friend and how a Python library to simplify this 
process is great, but it reaches its limits as soon as you want to build something more 
sophisticated; obviously, because you cannot easily go in and tweak stuff. We thought that 
it works great for prototypes, but as soon as you want to get a model into production, you 
have to start all over again. 

And then we had this idea of building a web app where you could put in what you want 
to train and which framework you want to use, and then it generates the code for you. 
And you can either use that code to train models directly, or you can modify it as you like, 
which is what Traingenerator does. 

The other things I built after that, like the GitHub 2020 app (http://gh2020.
jrieke.com/), also the best-of-streamlit list, those were more like ideas just for fun, 
personal projects, certainly also for my portfolio. 

(Tyler) All of that is very interesting. I've used Traingenerator a few times and love it.  
At the time you developed it, which was before Streamlit Sharing was released, you 
deployed the app with Heroku. I'm curious if you would still do the same thing; what  
is your decision-making process for where to deploy your apps? 

http://gh2020.jrieke.com/
http://gh2020.jrieke.com/
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(Johannes) The reason back then was simply that I wanted to have a custom URL that was 
short; I didn't want it to be a long, non-understandable URL. But I've actually moved it to 
Streamlit Sharing now! It's just a way better developer experience than Heroku, because 
the app updates within a second of pushing to GitHub, without rebooting or anything like 
that. Sharing doesn't support custom URLs by default yet, but there's a hack on the forum, 
which I'm using for now. And I've already annoyed our product managers quite a bit with 
this feature request, so I hope it shouldn't take too long!

(Tyler) One other app you created was an app to dynamically create and share a user's 
GitHub stats called Year on GitHub (http://gh2020.jrieke.com/). It became  
quite popular; I saw it all over the internet fairly consistently. Can you talk us through  
that story? 

Figure 12.2 – GitHub stats app

(Johannes) For sure. So the reason or the idea behind it is actually a super random idea, 
I have no clue how I got it. There's no big story behind that. I had built Traingenerator 
already and it was incredibly well received. I did some more stuff with Streamlit, and then 
a couple days before Christmas, I got the idea to build an app where you just put in your 
GitHub username and it would show you some stats about what you've done on GitHub in 
2020. And then you can tweet it. So it's similar to Spotify Wrapped that they do at the end 
of every year.

http://gh2020.jrieke.com/
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A couple days after I had that idea, literally, a new Python library for GitHub came  
out actually for the GitHub API, which was super cool. And then I thought, obviously  
it doesn't make any sense to release something like this in March or April, which means 
I would need to build it in the next 2 weeks, and release it soon. So I worked on this all 
throughout my Christmas holidays and it was super, super cool. 

I think there were four or five hundred tweets generated with it. The creators of the Julia 
programming language used it. It was really nice to see and also the Streamlit employees 
saw all of the tweets, so I think that probably brought me half of my job.

(Tyler) I have this theory that if you really want a job somewhere, you should make  
a Streamlit app for them that solves a problem of theirs or makes them notice you. And  
if you do that, you're just way more likely to actually get hired there. I've tried this a couple 
times and it usually turned into an offer down the line. 

(Johannes) It actually wasn't even intended at all. At that time, I hadn't even thought 
about applying to Streamlit, but it worked pretty well. In retrospect, I think they all loved 
it internally because it brought a huge spike to the Twitter numbers on the Streamlit 
account, and was super cool to see all the tweets about this new app. 

(Tyler) All of that makes sense to me! So after working on Streamlit for 8 or 9 months,  
you decided this is where you want to work, applied to a job there, and then got the job. 
First of all, congratulations. Second of all, what about the library makes you think that  
it's going to be like a big thing in the data science and machine learning community going 
forward? I have enough conviction about Streamlit to write a book on it so I clearly agree 
with you, but can you talk a bit about your conviction for the company in this space?

(Johannes) So in my eyes, what is great about Streamlit is the developer experience and 
the simplicity of it. In my current job as a product engineer, I also look at lots of other 
web frameworks and solutions in that space, and I have to play around with them. And 
there are certainly other tools that have some cool functions that allow you to do more 
complex things than Streamlit because Streamlit is fairly young, but in terms of developer 
experience, how simple it is to start something and how fun it is to make apps, none of 
these tools even comes close to Streamlit. And I think that there are lots of pieces playing 
into that. 

On the simplicity aspect, you can just whip up an app in basically 5 minutes with a few 
lines of code. And it's just your normal Python script that you're writing anyway; you 
don't have to learn about other classes or anything about frontend development. It's very 
intuitive for newcomers. 
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Then there's the live coding model of Streamlit, which allows you to code your app and 
Streamlit will rerun your app at the same time. And it's very intelligent about what it 
reruns, especially if you use the cache. I think that is what makes Streamlit so fun and 
addictive to work with, because you're getting this super instant feedback by instantly 
seeing the result. 

The other aspect is the community; the Streamlit community is just amazing. I mean,  
we have so many developers now who really like working with Streamlit. The forums are 
such a cool place to exchange ideas and to get tips, and there are so many people who are 
super dedicated, who are just answering questions in their free time for hours each week. 

We actually have like three, four, or five people within Streamlit who are working full time 
on the forum interacting with developers, sending swag to people who build Streamlit 
apps, which I think for a company that just has about 25 employees is very unique. 

(Tyler) I think of that dynamic a lot. When I started out, it felt like Streamlit was just  
a really good tool. And then I started playing around with it more. And then I realized 
that it might be closer to a toy, where I just have this constant iteration and feedback loop. 
And whenever you have something that is both a tool and a toy, it has worked out pretty 
well in the end.

(Johannes) Yeah, definitely. I think one big aspect of why Streamlit is cool and why I think 
it's going to become even cooler at some point in the future is that there's a lot of parts 
to it, too. It's not just the open source library but it's also Streamlit Sharing, which if you 
want to deploy your model is super nice and easy to use. It's also, as I said, the forums 
where if you have a problem, you can certainly get help there. I think in the future, there 
will be lots more parts coming into the equation.

(Tyler) You're about 9 months into your Streamlit developing experience. Do you have any 
tips for beginners getting started? Things that you wish you would have known?

(Johannes) I actually think that there are not so many tips you can give to beginners, other 
than just try it out. Because that's the cool thing about Streamlit; if you start with it, you 
can basically get how it works after around 10 minutes. And it's just super easy to start.  
I also have a couple friends who I recommended Streamlit to and I didn't have to do a lot 
of convincing. I just told them about it, and a day later, they came back and knew how to 
use it. The only tip is to sign up on the forums, and if you have any questions, just ask  
or reach out to us in any way. There are lots of helpful people on the forums. There are,  
as I said, lots of people within Streamlit whose job is to interact with developers. 

The more complicated stuff, like cache and state, is not easy to get for beginners and needs 
some explanation, which we are also working a lot on right now. 
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(Tyler) Thanks, Johannes, for coming and talking to us; I'm sure people got a lot out  
of this. Johannes's personal site can be found at https://www.jrieke.com/.

Interview #3 – Adrien Treuille
(Tyler) Hey, Adrien! Thanks for being willing to be interviewed for this. Before we really 
get started, do you want to tell me a little bit about yourself? I know you were a professor 
at Carnegie Mellon, and before that you were working with protein folding. You've 
also worked on self-driving cars, and now are the founder of Streamlit. So how do you 
introduce yourself?

(Adrien) First of all, when I was a professor, this whole Python data stack was kind of 
new. NumPy was certainly pre 1.0, and there was kind of this revelation that there was this 
amazing library called NumPy, all of a sudden, that made Python as good as MATLAB, 
and then after a while, way was better than MATLAB. That was the beginning of Python 
becoming the dominant language of numerical computation, and then ultimately machine 
learning. Python was a scripting language, a sysadmin language, or maybe a CS 101 
language. All of a sudden it had this massive, new, super important industrial application. 
It started off with a bunch of nerds and professors using it in research, and they found that 
it was actually very useful, and much easier than writing our own machine learning code 
or numerical code in C. 

The other thing I was doing was creating computer games that allowed people to develop 
scientific problems, and eventually, millions of people played them. Fast forward a bit, and 
I went to work at Google. I had a really interesting, cool career at the intersection of tech 
and machine learning.

Then I started Streamlit. We're building tools that are grounded in that numerical Python 
stack we were using 15 years ago (before it was cool). The other part of Streamlit is 
building a community. I think that aspect of Streamlit is very special. These two themes 
from my research have come full circle: the numerical Python world and the building of 
online communities. 

(Tyler) In the original documentation from October 2019 and the Medium posts 
thereafter, Streamlit was originally pitched as a tool for machine learning engineers. Now, 
you see all different types of people using it. I'm not an ML engineer, but I use it all the 
time. How has the idea of Streamlit changed over time?

(Adrien) At a meta level, I'll say very genuinely that it's very cool for you to observe that. 
For us inside Streamlit, there are little, subtle shifts in how we talk about our targer user 
profile. But it doesn't necessarily feel like anyone else is paying attention to these subtle 
shifts. It's kind of cool to see someone else notice it!

https://www.jrieke.com/
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There are a couple of ways to answer this. Streamlit is more fundamental to Python 
programming than it is to machine learning or data science. It fulfills a need in Python 
programming that didn't exist in any other tool. You could write command-line scripts. 
There are also Python GUI frameworks, but those are quite intricate to use because GUI 
app development is a totally different style of programming than data work. You could go 
into a Jupyter notebook, but then it was, again, a totally different style of programming.

Streamlit is a mashup of GUI programming and scripting. To me, that's a very useful 
thing. It actually transcends machine learning, as such. So part of the potential for 
Streamlit, for example, is to play a role in CS 101. One of the cool things about Streamlit 
is that there's this idea of the technology, and then there's the idea of how we are 
applying that to different problems and spaces. How do we prioritize applications for the 
community's benefit and also to create a sustainable company?

(Tyler) I want to talk a bit more about the community you just mentioned, because you 
have built a ton of online games before, like FoldIt (https://fold.it/), which has 
a strong crowdsourcing function to it. There are two sides to Streamlit in my mind. One 
side is very community-focused. It's an open source language on top of which anyone can 
build, and there are Streamlit components that can be made and added easily. The other 
side is the company Streamlit, which obviously exists to eventually turn a profit. How do 
you manage those two sides?

(Adrien) I don't feel like we have to choose. When two things are aligned in their interests, 
everybody wins. From a business model standpoint, we are trying to put this software out 
into the world which has lots of use cases in data science. For example, I wrote a computer 
game for my son's class in Streamlit to help them understand multiplication. It also has  
a bunch of industrial applications. These two groups are aligned: the more people who are 
in the community and are contributing to Streamlit, the more our addressable user base 
grows for those industrial applications.

It's a funnel. Data scientists funnel into Streamlit's open source community, which then 
flows into our customer base. We try to grow at every stage of the funnel, which is good 
both for the business model and the community.  

(Tyler) What did you learn from your decade building online crowdsource games that 
you've brought into the Streamlit world? Because the community feels like a meta-game 
where people are trying to create cool Streamlit apps for other people. How do you 
nurture that? Is that intentional, or just a function of it being a cool tool?

https://fold.it/
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(Adrien) One interesting similarity between FoldIt and Streamlit is that they're both 
designed to be toy-like. A "toy" – which is a technical term in game design – is a game 
without rules that you just want to play with. There's no instruction manual for a GI Joe. 
It's just something you play by making it do stuff. You can add rules too, but you don't 
have to. 

Here's another game-like aspect of Streamlit: people building Streamlit apps and put them 
online to communicate ideas, and show off work, and gain praise. That helps others learn 
about Streamlit who then build more apps and further grow the community. We realized, 
"Wow, this cycle of publishing and praise is an amazing growth vector for us." We have 
made some effort to support the people who are putting their work out there, but I don't 
think we've really explored most of what's possible with this aspect of Streamlit. We just 
haven't had time to execute on it, because there are so many important things to do.

(Tyler) If we're talking about company prioritization, how do you think about the priority 
of the company right now? You talked about the funnel, so then there are three main 
sections, the data scientists, the data scientists who use Streamlit, and then the data 
scientists who use Streamlit inside their company. Where's the focus of Streamlit at  
the moment?

(Adrien) There is actually one more stage, which is how many people are viewing the apps 
created inside those companies, because our present pricing plan is based on viewership, 
not the number of developers. It's some number of dollars per viewer per month. 

So the way we prioritize focuses on another level of that pipeline. 

We called the first year after launch "the year of the developer," and it was about growing 
the open-source community. Going through exponential growth lead to discontinuous 
changes in operations. We weren't prepared for that. We put the entire engineering 
team on rotation answering questions in the community forums. They gave super well-
informed answers, but the engineering team literally ground to a halt for three months. 
Then we realized, oh shoot, we can't hire engineers to solve our community problems.

The second year, which we're in now, is "the year of the customer." This is all about 
building that initial monetization engine and creating a self-serve mechanism so that you 
can basically be a Streamlit user, click a button, and have Streamlit for Teams. We're not 
there yet, but all the pieces are coming together! 

(Tyler) A lot of people who are going to be reading this are going to be just starting out 
with their Python development, or they might be in the beginner/intermediate stage of 
learning Python and data science. They have quite a few other options to choose from, 
from Django or Flask to no-code tools, to other dashboarding frameworks. They could 
even switch over to R's Shiny app development. What is your pithy pitch to new users? 
Why Streamlit?



250     Streamlit Power Users

(Adrien) I'd say you should just try it. There's a lot of sentiment on Twitter around how 
"cool" Streamlit is. I think it is powerful and cool. Streamlit is grounded in this idea of 
scripting, which is a very natural and simple paradigm for thinking about dataflow. I don't 
think anyone else really does that. It should feel kind of magical; coding isn't actually 
magic, but it's very fun. Super highly educated and incredibly well-paid people make apps 
just because it's fun, so we enjoy coming at it with that perspective. You should feel like 
you're getting more back than you spent typing each function call, and if that's the kind  
of emotional thing you get, then it's exciting to go through this. 

(Tyler) In my view, I started because it's easy, and then stayed because it's the best,  
you know?

(Adrien) I think something that's true (and maybe I'm wrong about this) is that there's 
a lot in this visualization/dashboarding app/development space, where the more you 
know how they work and the deeper you get into them, the more disappointed you are. 
The demos you see look customizable and seem great, but when you actually go through 
the experience of building or trying to replicate the demo, it's very, very hard to actually 
achieve this thing that they're promising on their websites. 

That's just not true of Streamlit. When you look at all of the demo apps in the gallery 
(https://streamlit.io/gallery), they're really quite accessible. We're not trying 
to compete in the "Let's build a massive, perfect app" space.

(Tyler) Thanks for coming and talking to us! The main thing that we should point to is 
obviously the central Streamlit website (https://streamlit.io/). You can find 
Adrien's writing at https://medium.com/@adrien.g.treuille and you can find 
him on Twitter at https://twitter.com/myelbows.

Interview #4 – Charly Wargnier
(Tyler) Hey, Charly! Thanks so much for coming and talking to us. To start off, can you 
introduce yourself to the readers?

(Charly) Hey there! I'm French and have been living in the UK for about 13 years now. 
And I've been doing mainly digital marketing, business intelligence, and SEO (Search 
Engine Optimization) consulting here in the UK. In the last few years, I have pivoted 
toward data engineering and data science. Also, I've worked both in-house and on 
the agency side, and for large companies in retail fashion and at a large range of small 
businesses as well. But since 2014, it has mainly been enterprises, and the time between 
2008 and 2014 was with small businesses. 

https://streamlit.io/gallery
https://streamlit.io/
https://medium.com/@adrien.g.treuille
https://twitter.com/myelbows
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(Tyler) Let's back up for a half-second; what is it like working in SEO? What does that 
actually look like?

(Charly) My core skill set is mainly technical SEO. SEO is a vast territory, as you may 
imagine, and my core skill is with anything regarding the technicalities of a website, the 
way it has been coded, or the way it is being crawled or being passed by web crawlers. 
To make sure that Google and Bing can actually crawl these large websites accurately. 
Obviously, there's a lot of things involved in that, like making sure that paid search is in 
synergy with SEO. 

It's a very versatile kind of job where you have to liaise with not only the SEO people, but 
also the people developing the website, and even the PR, content, and product people as 
well. In terms of interactions, that's one of the most versatile jobs around.

(Tyler) Got it, that all makes sense. Another thing we haven't mentioned yet is Streamlit. 
You use Streamlit quite a bit and are a prolific creator. What is it about Streamlit that 
makes it so valuable of a tool for you?

(Charly) I used to work a lot providing some Python scripts to people via Google Colab 
or Jupyter Notebook. And since I've been using Streamlit, I no longer have to send over 
scripts; I can just literally send those apps! And I can show them some SEO apps  
or functionality that they wouldn't have been able to use unless they were a developer. 
It really widens the scope and the user adoption. And in the few companies I've worked 
with in the last few months, I've been able to bring way more people to start using the SEO 
apps that I have been designing. There has been a big, big shift. 

(Tyler) How interesting! The other option for you in Python is to make Flask for Django 
applications; did you ever think about doing something like that for SEO apps? 

(Charly) Yeah, I did develop some Flask applications back in the day, but it was  
quite cumbersome for me to develop that because it requires a lot of skills in HTML  
or JavaScript. But with Streamlit, it has really enabled me to create something very quickly 
and to share that with people. So no Flask, and I have tried a bit of Django but the learning 
curve is actually quite steep. It usually takes me ages to design anything in Django.  
So yeah, there's literally no comparison; I've left Flask and Django aside for now and  
I'm really prioritizing Streamlit. 

(Tyler) Totally agree, I've made a bunch of different data science projects pre-Streamlit 
and my two options always were to put it in a Jupyter notebook or blog post or make  
a fully fledged app in Flask. The issue for me used to be that the difference in time and 
effort to make an entire app, before Streamlit, was way too high. It would double the time 
on the project! And with Streamlit, it is just a little bit more difficult than making a Jupyter 
notebook but the output is so much better. 
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(Charly) I'm trying to learn React at the moment, so I can make something a bit more 
integrated and polished and use Streamlit as an MVP. So I have used some other web 
frameworks, but you're right. With regards to quickness, nothing to this day beats 
Streamlit. I think the closest one is Panel (https://panel.holoviz.org/), which 
is flexible and pretty straightforward, but I think that the big difference between Streamlit 
and Panel is the community. The Streamlit community has been so welcoming, including 
yourself and other people too. Even a few years ago, I was barely coding anything in 
Python and Streamlit is really the application that I've embraced. I think the community  
is really key.

(Tyler) Speaking of community, you have been really involved with both the SEO 
and the Streamlit communities. You've created apps like StreamEA (https://www.
charlywargnier.com/post/streamea-entity-analyzer), which extracts 
and analyzes entities from web pages; how do you come up with apps like these? Are you 
solving your own problems and then turning that into an app, or taking older Python 
scripts from older clients and turning those into apps?

(Charly) So it's really a mix of different things. You've quoted quite a few there. First of 
all, I'm solving issues I'm having myself, as I've been doing SEO for years so I've regularly 
bumped into SEO issues and the idea is to solve these by creating an app so others can 
use the solution as well. I've always been fascinated by web applications; I remember as 
far back as 2013 where I had a bit of a geeky dream to develop web apps! The other thing 
that you're right about is that I have a lot of Jupyter notebooks and scripts that I have been 
using for years, and speaking of user adoption, I wanted to make sure anyone could try 
them out. 

I usually also collect feedback within my companies or from the clients that I've worked 
for, so I get a lot of user feedback. And sometimes also it is just stumbling upon some 
new libraries online that I am curious about, just like yourself. The final thing is the paid 
aspect; there are a lot of SEO options on the market that can be pretty expensive. And 
I think one of my secret desires, if I may say, is to be able to kind of make those apps 
available for free. It's my guilty pleasure to take an application that people would pay 
hundreds or thousands of pounds a month for and recreate it with Python for free.  
It's a nice satisfaction to have! 

(Tyler) I'd love to talk about StreamEA a little bit more, can you talk a bit about any 
developmental difficulties you had with creating that app? What was that process like? 

https://panel.holoviz.org/
https://www.charlywargnier.com/post/streamea-entity-analyzer
https://www.charlywargnier.com/post/streamea-entity-analyzer
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Figure 12.3 – StreamEA

(Charly) Well, entity analysis is a hot topic in the SEO world. Google has been  
shifting from pure keywords to different kinds of semantic advancements, like, for 
example, entities. As Google is putting some ranking value or some weight toward those 
entities, you want to make sure that your pages or your websites are targeting those 
entities accurately. 

In terms of challenges, there's quite a bit of code, but it wasn't necessarily too challenging. 
The Google Natural Language API is pretty straightforward. So the way the app is built, 
you get two main parts, the scraping bits with BeautifulSoup and the entity analysis bits 
with the API. The difficulty here is that by default, the Natural Language API retrieves 
some data and you need to create some function that would convert back and forth 
between dictionaries and data frames, which was a bit of a challenge because when  
I started last August, my Python knowledge wasn't necessarily great. And I remember 
struggling with that a lot, to be able to take the API from Google in a way that worked 
with my data frame. Now, it would be a piece of cake, but I remember it was a bit of  
a bottleneck and a learning experience for me. 

And then you've got a little budget estimator, because the Google NLP API can be pricey  
if left untamed! A lot of people are scraping Wikipedia, which can have very long pages, 
so I thought that having this kind of little budget estimator, which estimates the cost for 
using StreamEA (StreamEA has you upload your own Google API credentials), would  
be useful. 
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Recently, I have open sourced another application, which does entity relationship retrieval 
from Wikipedia URLs. I haven't put any budget estimates on it yet, and people have been  
a bit grumpy with me, which is why I put a warning on it. It not only scrapes the 
Wikipedia URLs you input, but it also scrapes any children pages, which can go crazy 
without limits. The other day, some people were pushing the application to the max with 
scripting, for example, 100 children from the master page, which was fantastically long. 
And they were charged hundreds of pounds from Google!

(Tyler) That's the one thing that I've recommended to people at the very beginning when 
you're setting up your AWS or GCP accounts, that you should absolutely set the budget 
limit to what you can afford so they turn your services off before you spend anywhere 
close to that amount of money.  

So you kind of got started in Python and Streamlit around the same time, do you have any 
tips for beginners getting started in Streamlit? Are there things that you kind of wish  
you would have known when you first started? 

(Charly) I started with Python in 2016 or 2017, where I was literally going to GitHub, 
taking some scripts, and not doing anything to them. Just using Python without 
necessarily understanding what the stuff was about. And then I started learning online 
with Jupyter Notebook, and eventually I had this opportunity to start building some  
web apps. 

But to come back to your question, my advice that I would give to new users is to lean on 
the community. With Streamlit, I think that sets us apart. I would say don't be too shy! 
People are so helpful there, they will certainly try to help out. And also don't be scared to 
share anything; embrace Twitter for sharing information with others. Don't be afraid to 
share your projects and your progress, not just the end product; there is no such thing as 
an end product anyway. I really have worked in a vacuum, working for myself, and if you 
don't share your work, then you don't get this good emotional push from the feedback 
from the community. 

It will never be perfect; you will never be ready. So just release it early; release it often!  
If there are a few issues with the app, don't worry about it. Just caveat it in your tweet  
or your post, and people will understand that. I mean, besides, your tool is a free tool.  
So people can't be too demanding.

(Tyler) When I first started developing and doing data science work in school, I would 
never share anything because I was so nervous that it wouldn't be good enough compared 
to all the professionals out there. So I would make all this stuff and never show it to 
anyone because I didn't feel like it was good enough. And then once I figured out that 
wasn't going to work and I started to share more of my projects, it was just so much better, 
so much more fun. 
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(Charly) You've released a lot of projects over the years, it's really great.  
It's pretty impressive.

(Tyler) Thank you! Do you have any other things you would like to plug that  
you're working on?

(Charly) Oh, yeah, as you can imagine there are many things on the grill right now. I kind 
of started some of them around 2 years ago but as a script or a notebook, and I'm slowly 
converting them to Streamlit apps. I want to turn StreamEA into a paid app that is way 
more useful for SEO. I also have some machine learning apps in the pipeline, which  
I'm hopefully planning to release soon.

(Tyler) Thank you so much for coming and talking to us! You can find Charly on Twitter 
at https://twitter.com/DataChaz.

Summary
This concludes Chapter 12, Streamlit Power Users, and also the book! We covered so 
much deep content in this chapter, from talking about the importance of community 
development with Fanilo to some practical examples of popular applications with 
Johannes, and even discussing the toy-like features of Streamlit and where Streamlit is 
heading next with Adrien. We got a brief history lesson of where Streamlit has come 
from over the past couple of years (2019 and 2020), heard about the SEO ecosystem from 
Charly, and learned tips and tricks along the way. Some of my favorite tips are to join and 
post on the forums from Fanilo, to put Streamlit apps online that you think would be 
interesting from Johannes, and to lean in to the toy-like aspects of Streamlit from Adrien. 

I just want to say thank you for reading this book; it has been a labor of love for me and 
I would like nothing better than for you to reach out to me and let me know how it has 
affected your Streamlit developer experience. You can find me on Twitter at https://
twitter.com/tylerjrichards, and I hope you have had as good of a time reading 
this book as I have writing it. Thank you and go make some awesome Streamlit apps!

https://twitter.com/DataChaz
https://twitter.com/tylerjrichards
https://twitter.com/tylerjrichards
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