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Preface
Graph Machine Learning provides a new set of tools for processing network data and 
leveraging the power of the relationship between entities that can be used for predictive, 
modeling, and analytics tasks. 

You will start with a brief introduction to graph theory and Graph Machine Learning, 
learning to understand their potential. As you proceed, you will become well versed with 
the main machine learning models for graph representation learning: their purpose, 
how they work, and how they can be implemented in a wide range of supervised and 
unsupervised learning applications. You'll then build a complete machine learning 
pipeline, including data processing, model training, and prediction, in order to exploit 
the full potential of graph data. Moving on, you will cover real-world scenarios, such as 
extracting data from social networks, text analytics, and natural language processing using 
graphs and financial transaction systems on graphs. Finally, you will learn how to build 
and scale out data-driven applications for graph analytics to store, query, and process 
network information, before progressing to explore the latest trends on graphs. 

By the end of this machine learning book, you will have learned the essential concepts 
of graph theory and all the algorithms and techniques used to build successful machine 
learning applications.

Who this book is for
This book is for data analysts, graph developers, graph analysts, and graph professionals 
who want to leverage the information embedded in the connections and relations between 
data points, unravel hidden structures, and exploit topological information to boost their 
analysis and models' performance. The book will also be useful for data scientists and 
machine learning developers who want to build machine learning-driven graph databases. 
A beginner-level understanding of graph databases and graph data is required. An 
intermediate-level working knowledge of Python programming and machine learning is 
also expected to make the most out of this book.
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What this book covers
Chapter 1, Getting Started with Graphs, introduces the basic concepts of graph theory 
using the NetworkX Python library.

Chapter 2, Graph Machine Learning, introduces the main concepts of graph machine 
learning and graph embedding techniques.

Chapter 3, Unsupervised Graph Learning, covers recent unsupervised graph embedding 
methods.

Chapter 4, Supervised Graph Learning, covers recent supervised graph embedding 
methods.

Chapter 5, Problems with Machine Learning on Graphs, introduces the most common 
machine learning tasks on graphs.

Chapter 6, Social Network Analysis, shows an application of machine learning algorithms 
on social network data.

Chapter 7, Text Analytics and Natural Language Processing Using Graphs, shows the 
application of machine learning algorithms to natural language processing tasks.

Chapter 8, Graph Analysis for Credit Card Transactions, shows the application of machine 
learning algorithms to credit card fraud detection.

Chapter 9, Building a Data-Driven Graph-Powered Application, introduces some 
technologies and techniques that are useful for dealing with large graphs.

Chapter 10, Novel Trends on Graphs, introduces some novel trends (algorithms and 
applications) in graph machine learning.

To get the most out of this book
A Jupyter or a Google Colab notebook is sufficient to cover all the examples. For some 
chapters, Neo4j and Gephi are also required.
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If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Graph-Machine-Learning. In case there's an 
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800204492_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as 
another disk in your system."

A block of code is set as follows:

html, body, #map {

 height: 100%; 

 margin: 0;

 padding: 0

}

https://github.com/PacktPublishing/Graph-Machine-Learning
https://github.com/PacktPublishing/Graph-Machine-Learning
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800204492_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800204492_ColorImages.pdf
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When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

Jupyter==1.0.0

networkx==2.5

matplotlib==3.2.2

node2vec==0.3.3

karateclub==1.0.19

scipy==1.6.2

Any command-line input or output is written as follows:

$ mkdir css

$ cd css

Bold: Indicates a new term, an important word, or words that you see on screen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"Select System info from the Administration panel."

Tips or important notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in, 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
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Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com




Section 1 – 
Introduction to 
Graph Machine 

Learning

In this section, the reader will get a brief introduction to graph machine learning, showing 
the potential of graphs combined with the right machine learning algorithms. Moreover, 
a general overview of graph theory and Python libraries is provided in order to allow the 
reader to deal with (that is, create, modify, and plot) graph data structures.

This section comprises the following chapters:

• Chapter 1, Getting Started with Graphs

• Chapter 2, Graph Machine Learning





1
Getting Started with 

Graphs
Graphs are mathematical structures that are used for describing relations between entities 
and are used almost everywhere. For example, social networks are graphs, where users 
are connected depending on whether one user "follows" the updates of another user. They 
can be used for representing maps, where cities are linked through streets. Graphs can 
describe biological structures, web pages, and even the progression of neurodegenerative 
diseases.

Graph theory, the study of graphs, has received major interest for years, leading people 
to develop algorithms, identify properties, and define mathematical models to better 
understand complex behaviors.

This chapter will review some of the concepts behind graph-structured data. Theoretical 
notions will be presented, together with examples to help you understand some of the 
more general concepts and put them into practice. In this chapter, we will introduce and 
use some of the most widely used libraries for the creation, manipulation, and study of the 
structure dynamics and functions of complex networks, specifically looking at the Python 
networkx library.
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The following topics will be covered in this chapter:

• Introduction to graphs with networkx

• Plotting graphs

• Graph properties

• Benchmarks and repositories

• Dealing with large graphs

Technical requirements
We will be using Jupyter Notebooks with Python 3.8 for all of our exercises. In the 
following code snippet, we show a list of Python libraries that will be installed for 
this chapter using pip (for example, run pip install networkx==2.5 on the 
command line, and so on):

Jupyter==1.0.0

networkx==2.5

snap-stanford==5.0.0

matplotlib==3.2.2

pandas==1.1.3

scipy==1.6.2

In this book, the following Python commands will be referred to:

• import networkx as nx

• import pandas as pd

• import numpy as np

For more complex data visualization tasks, Gephi (https://gephi.org/) is also 
required. The installation manual is available here: https://gephi.org/users/
install/. All code files relevant to this chapter are available at https://github.
com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter01.

https://gephi.org/
https://gephi.org/users/install/
https://gephi.org/users/install/
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter01
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter01
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Introduction to graphs with networkx
In this section, we will give a general introduction to graph theory. Moreover, in order 
to merge theoretical concepts with their practical implementation, we will enrich our 
explanation with code snippets in Python, using networkx. 

A simple undirected graph (or simply, a graph) G is defined as a couple G=(V,E) , where 
V={v1 , .., vn  } is a set of nodes (also called vertices) and E={{vk  ,vw }  .., {vi  ,vj}} is a set 
of two-sets (set of two elements) of edges (also called links), representing the connection 
between two nodes belonging to V. 

It is important to underline that since each element of E is a two-set, there is no order 
between each edge. To provide more detail, {vk  ,vw }   and {vw  ,vk}   represent the same 
edge.

We now provide definitions for some basic properties of graphs and nodes, as follows:

• The order of a graph is the number of its vertices |V|. The size of a graph is the 
number of its edges |E|.

• The degree of a vertex is the number of edges that are adjacent to it. The neighbors of 
a vertex v in a graph G is a subset of vertex V′ induced by all vertices adjacent to v.

• The neighborhood graph (also known as an ego graph) of a vertex v in a graph G 
is a subgraph of G, composed of the vertices adjacent to v and all edges connecting 
vertices adjacent to v.

An example of what a graph looks like can be seen in the following screenshot:

Figure 1.1 – Example of a graph
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According to this representation, since there is no direction, an edge from Milan to Paris 
is equal to an edge from Paris to Milan. Thus, it is possible to move in the two directions 
without any constraint. If we analyze the properties of the graph depicted in Figure 1.1, 
we can see that it has order and size equal to 4 (there are, in total, four vertices and four 
edges). The Paris and Dublin vertices have degree 2, Milan has degree 3, and Rome has 
degree 1. The neighbors for each node are shown in the following list:

• Paris = {Milan, Dublin} 

• Milan = {Paris, Dublin, Rome}

• Dublin = {Paris, Milan}  

• Rome = {Milan}

The same graph can be represented in networkx, as follows:

import networkx as nx

G = nx.Graph()

V = {'Dublin', 'Paris', 'Milan', 'Rome'}

E = [('Milan','Dublin'), ('Milan','Paris'), ('Paris','Dublin'), 
('Milan','Rome')]

G.add_nodes_from(V)

G.add_edges_from(E)

Since by default, the nx.Graph() command generates an undirected graph, we do not 
need to specify both directions of each edge. In networkx, nodes can be any hashable 
object: strings, classes, or even other networkx graphs. Let's now compute some 
properties of the graph we previously generated.

All the nodes and edges of the graph can be obtained by running the following code:

print(f"V = {G.nodes}")

print(f"E = {G.edges}")

Here is the output of the previous commands: 

V = ['Rome', 'Dublin', 'Milan', 'Paris']

E = [('Rome', 'Milan'), ('Dublin', 'Milan'), ('Dublin', 
'Paris'), ('Milan', 'Paris')]
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We can also compute the graph order, the graph size, and the degree and neighbors for 
each of the nodes, using the following commands:

print(f"Graph Order: {G.number_of_nodes()}")

print(f"Graph Size: {G.number_of_edges()}")

print(f"Degree for nodes: { {v: G.degree(v) for v in G.nodes} 
}")

print(f"Neighbors for nodes: { {v: list(G.neighbors(v)) for v 
in G.nodes} }") 

The result will be the following:

Graph Order: 4

Graph Size: 4

Degree for nodes: {'Rome': 1, 'Paris': 2, 'Dublin':2, 'Milan': 
3}

Neighbors for nodes: {'Rome': ['Milan'], 'Paris': ['Milan', 
'Dublin'], 'Dublin': ['Milan', 'Paris'], 'Milan': ['Dublin', 
'Paris', 'Rome']}

Finally, we can also compute an ego graph of a specific node for the graph G, as follows:

ego_graph_milan = nx.ego_graph(G, "Milan")

print(f"Nodes: {ego_graph_milan.nodes}")

print(f"Edges: {ego_graph_milan.edges}")

The result will be the following:

Nodes: ['Paris', 'Milan', 'Dublin', 'Rome']

Edges: [('Paris', 'Milan'), ('Paris', 'Dublin'), ('Milan', 
'Dublin'), ('Milan', 'Rome')]

The original graph can be also modified by adding new nodes and/or edges, as follows:

#Add new nodes and edges

new_nodes = {'London', 'Madrid'}

new_edges = [('London','Rome'), ('Madrid','Paris')]

G.add_nodes_from(new_nodes)

G.add_edges_from(new_edges)

print(f"V = {G.nodes}")

print(f"E = {G.edges}")
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This would output the following lines:

V = ['Rome', 'Dublin', 'Milan', 'Paris', 'London', 'Madrid']

E = [('Rome', 'Milan'), ('Rome', 'London'), ('Dublin', 
'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Paris', 
'Madrid')]

Removal of nodes can be done by running the following code:

node_remove = {'London', 'Madrid'}

G.remove_nodes_from(node_remove)

print(f"V = {G.nodes}")

print(f"E = {G.edges}")

This is the result of the preceding commands:

V = ['Rome', 'Dublin', 'Milan', 'Paris']

E = [('Rome', 'Milan'), ('Dublin', 'Milan'), ('Dublin', 
'Paris'), ('Milan', 'Paris')]

As expected, all the edges that contain the removed nodes are automatically deleted from 
the edge list.

Also, edges can be removed by running the following code:

node_edges = [('Milan','Dublin'), ('Milan','Paris')]

G.remove_edges_from(node_edges)

print(f"V = {G.nodes}")

print(f"E = {G.edges}")

The final result will be as follows:

V = ['Dublin', 'Paris', 'Milan', 'Rome']

E = [('Dublin', 'Paris'), ('Milan', 'Rome')]

The networkx library also allows us to remove a single node or a single edge from 
a graph G by using the following commands: G. remove_node('Dublin') and 
G.remove_edge('Dublin', 'Paris').
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Types of graphs
In the previous section, we described how to create and modify simple undirected graphs. 
Here, we will show how we can extend this basic data structure in order to encapsulate 
more information, thanks to the introduction of directed graphs (digraphs), weighted 
graphs, and multigraphs.

Digraphs
A digraph G is defined as a couple G=(V, E), where V={v1 , .., vn  } is a set of nodes and 
E={(vk  ,vw )  .., (vi  ,vj  )} is a set of ordered couples representing the connection between 
two nodes belonging to V. 

Since each element of E is an ordered couple, it enforces the direction of the connection. 
The edge (vk  ,vw )  means the node vk   goes into vw  . This is different from (vw  ,vk)  
since it means the node vw   goes to vk .The starting node vw   is called the head, while the 
ending node is called the tail.

Due to the presence of edge direction, the definition of node degree needs to be extended.

Indegree and outdegree
For a vertex v, the number of head ends adjacent to v is called the indegree 
(indicated by −( )  of v, while the number of tail ends adjacent to v is its 
outdegree (indicated by +( ) ).

An example of what a digraph looks like is available in the following screenshot: 

Figure 1.2 – Example of a digraph



10     Getting Started with Graphs

The direction of the edge is visible from the arrow—for example, Milan -> Dublin means 
from Milan to Dublin. Dublin has −( )  = 2 and +( )  = 0, Paris has −( )  = 
0 and +( )  = 2, Milan has −( )  = 1 and +( )  = 2, and Rome has −( )  = 1 
and +( )  = 0.

The same graph can be represented in networkx, as follows:

G = nx.DiGraph()

V = {'Dublin', 'Paris', 'Milan', 'Rome'}

E = [('Milan','Dublin'), ('Paris','Milan'), ('Paris','Dublin'), 
('Milan','Rome')]

G.add_nodes_from(V)

G.add_edges_from(E)

The definition is the same as that used for simple undirected graphs; the only difference 
is in the networkx classes that are used to instantiate the object. For digraphs, the 
nx.DiGraph()class is used.

Indegree and Outdegree can be computed using the following commands:

print(f"Indegree for nodes: { {v: G.in_degree(v) for v in 
G.nodes} }")

print(f"Outdegree for nodes: { {v: G.out_degree(v) for v in 
G.nodes} }")

The results will be as follows:

Indegree for nodes: {'Rome': 1, 'Paris': 0, 'Dublin': 2, 
'Milan': 1}

Outdegree for nodes: {'Rome': 0, 'Paris': 2, 'Dublin': 0, 
'Milan': 2}

As for the undirected graphs, G.add_nodes_from(), G.add_edges_from(), 
G.remove_nodes_from(), and G.remove_edges_from() functions can be used 
to modify a given graph G.

Multigraph
We will now introduce the multigraph object, which is a generalization of the graph 
definition that allows multiple edges to have the same pair of start and end nodes.

A multigraph G is defined as G=(V, E), where V is a set of nodes and E is a multi-set (a set 
allowing multiple instances for each of its elements) of edges.
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A multigraph is called a directed multigraph if E is a multi-set of ordered couples; 
otherwise, if E is a multi-set of two-sets, then it is called an undirected multigraph.

An example of a directed multigraph is available in the following screenshot:

Figure 1.3 – Example of a multigraph

In the following code snippet, we show how to use networkx in order to create a 
directed or an undirected multigraph:

directed_multi_graph = nx.MultiDiGraph()

undirected_multi_graph = nx.MultiGraph()

V = {'Dublin', 'Paris', 'Milan', 'Rome'}

E = [('Milan','Dublin'), ('Milan','Dublin'), ('Paris','Milan'), 
('Paris','Dublin'), ('Milan','Rome'), ('Milan','Rome')]

directed_multi_graph.add_nodes_from(V)

undirected_multi_graph.add_nodes_from(V)

directed_multi_graph.add_edges_from(E)

undirected_multi_graph.add_edges_from(E)

The only difference between a directed and an undirected multigraph is in the first 
two lines, where two different objects are created: nx.MultiDiGraph() is used to 
create a directed multigraph, while nx.MultiGraph() is used to build an undirected 
multigraph. The function used to add nodes and edges is the same for both objects.
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Weighted graphs
We will now introduce directed, undirected, and multi-weighted graphs. 

An edge-weighted graph (or simply, a weighted graph) G is defined as G=(V, E ,w) where 
V is a set of nodes, E is a set of edges, and w: E → ℝ  is the weighted function that assigns 
at each edge e ∈ E  a weight expressed as a real number.

A node-weighted graph G is defined as G=(V, E ,w) ,where V is a set of nodes, E is a set of 
edges, and w: V → ℝ  is the weighted function that assigns at each node v ∈ V  a weight 
expressed as a real number.

Please keep the following points in mind:

• If E is a set of ordered couples, then we call it a directed weighted graph.

• If E is a set of two-sets, then we call it an undirected weighted graph. 

• If E is a multi-set, we will call it a weighted multigraph (directed weighted 
multigraph).  

• If E is a multi-set of ordered couples, it is an undirected weighted multigraph.

An example of a directed edge-weighted graph is available in the following screenshot:

Figure 1.4 – Example of a directed edge-weighted graph

From Figure 1.4, it is easy to see how the presence of weights on graphs helps to add useful 
information to the data structures. Indeed, we can imagine the edge weight as a "cost" to 
reach a node from another node. For example, reaching Dublin from Milan has a "cost" 
of 19, while reaching Dublin from Paris has a "cost" of 11.
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In networkx, a directed weighted graph can be generated as follows:

G = nx.DiGraph()

V = {'Dublin', 'Paris', 'Milan', 'Rome'}

E = [('Milan','Dublin', 19), ('Paris','Milan', 8), 
('Paris','Dublin', 11), ('Milan','Rome', 5)]

G.add_nodes_from(V)

G.add_weighted_edges_from(E)

Bipartite graphs
We will now introduce another type of graph that will be used in this section: multipartite 
graphs. Bi- and tripartite graphs—and, more generally, kth-partite graphs—are graphs 
whose vertices can be partitioned in two, three, or more k-th sets of nodes, respectively. 
Edges are only allowed across different sets and are not allowed within nodes belonging 
to the same set. In most cases, nodes belonging to different sets are also characterized by 
particular node types. In Chapters 7, Text Analytics and Natural Language Processing Using 
Graphs, and Chapter 8, Graphs Analysis for Credit Cards Transaction, we will deal with 
some practical examples of graph-based applications and you will see how multipartite 
graphs can indeed arise in several contexts—for example, in the following scenarios: 

• When processing documents and structuring the information in a bipartite graph of 
documents and entities that appear in the documents

• When dealing with transactional data, in order to encode the relations between the 
buyers and the merchants

A bipartite graph can be easily created in networkx with the following code:

import pandas as pd

import numpy as np

n_nodes = 10

n_edges = 12

bottom_nodes = [ith for ith in range(n_nodes) if ith % 2 ==0]

 top_nodes = [ith for ith in range(n_nodes) if ith % 2 ==1]

iter_edges = zip(

    np.random.choice(bottom_nodes, n_edges),  

    np.random.choice(top_nodes, n_edges))

edges = pd.DataFrame([

    {"source": a, "target": b} for a, b in iter_edges])

B = nx.Graph()
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B.add_nodes_from(bottom_nodes, bipartite=0)

 B.add_nodes_from(top_nodes, bipartite=1)

 B.add_edges_from([tuple(x) for x in edges.values])

The network can also be conveniently plotted using the bipartite_layout utility 
function of networkx, as illustrated in the following code snippet: 

from networkx.drawing.layout import bipartite_layout

pos = bipartite_layout(B, bottom_nodes)

 nx.draw_networkx(B, pos=pos)

The bipatite_layout function produces a graph, as shown in the following 
screenshot: 

Figure 1.5 – Example of a bipartite graph

Graph representations
As described in the previous sections, with networkx, we can actually define and 
manipulate a graph by using node and edge objects. In different use cases, such a 
representation would not be as easy to handle. In this section, we will show two ways to 
perform a compact representation of a graph data structure—namely, an adjacency matrix 
and an edge list.
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Adjacency matrix
The adjacency matrix M of a graph G=(V,E) is a square matrix (|V| × |V|) matrix such that 
its element   is 1 when there is an edge from node i to node j, and 0 when there is no 
edge. In the following screenshot, we show a simple example where the adjacency matrix 
of different types of graphs is displayed:

Figure 1.6 – Adjacency matrix for an undirected graph, a digraph, a multigraph, and a weighted graph
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It is easy to see that adjacency matrices for undirected graphs are always symmetric, 
since no direction is defined for the edge. The symmetry instead is not guaranteed for the 
adjacency matrix of a digraph due to the presence of constraints in the direction of the 
edges. For a multigraph, we can instead have values greater than 1 since multiple edges 
can be used to connect the same couple of nodes. For a weighted graph, the value in a 
specific cell is equal to the weight of the edge connecting the two nodes.

In networkx, the adjacency matrix for a given graph can be computed in two different 
ways. If G is the networkx of Figure 1.6, we can compute its adjacency matrix as follows:

nx.to_pandas_adjacency(G) #adjacency matrix as pd DataFrame

nt.to_numpy_matrix(G) #adjacency matrix as numpy matrix

For the first and second line, we get the following results respectively:

          Rome  Dublin  Milan  Paris

Rome     0.0     0.0    0.0    0.0

Dublin   0.0     0.0    0.0    0.0

Milan    1.0     1.0    0.0    0.0

Paris    0.0     1.0    1.0    0.0

[[0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [1. 1. 0. 0.]

 [0. 1. 1. 0.]]

Since a numpy matrix cannot represent the name of the nodes, the order of the element in 
the adjacency matrix is the one defined in the G.nodes list.

Edge list
As well as an adjacency matrix, an edge list is another compact way to represent graphs. 
The idea behind this format is to represent a graph as a list of edges.

The edge list L of a graph G=(V,E) is a list of size |E| matrix such that its element   is a 
couple representing the tail and the end node of the edge i. An example of the edge list for 
each type of graph is available in the following screenshot: 
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Figure 1.7 – Edge list for an undirected graph, a digraph, a multigraph, and a weighted graph

In the following code snippet, we show how to compute in networkx the edge list of the 
simple undirected graph G available in Figure 1.7:

print(nx.to_pandas_edgelist(G))
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By running the preceding command, we get the following result:

  source  target

0  Milan  Dublin

1  Milan    Rome

2  Paris   Milan

3  Paris  Dublin

Other representation methods, which we will not discuss in detail, are also available in 
networkx. Some examples are nx.to_dict_of_dicts(G) and nx.to_numpy_
array(G), among others.

Plotting graphs
As we have seen in previous sections, graphs are intuitive data structures represented 
graphically. Nodes can be plotted as simple circles, while edges are lines connecting two 
nodes. 

Despite their simplicity, it could be quite difficult to make a clear representation when the 
number of edges and nodes increases. The source of this complexity is mainly related to 
the position (space/Cartesian coordinates) to assign to each node in the final plot. Indeed, 
it could be unfeasible to manually assign to a graph with hundreds of nodes the specific 
position of each node in the final plot.

In this section, we will see how we can plot graphs without specifying coordinates for each 
node. We will exploit two different solutions: networkx and Gephi.

networkx
networkx offers a simple interface to plot graph objects through the nx.draw library. In 
the following code snippet, we show how to use the library in order to plot graphs:

def draw_graph(G, nodes_position, weight):

      nx.draw(G, pos_ position, with_labels=True, font_size=15, 
node_size=400, edge_color='gray', arrowsize=30)

             if plot_weight:

             edge_labels=nx.get_edge_attributes(G,'weight')

         nx.draw_networkx_edge_labels(G, pos_ position, edge_
labels=edge_labels)
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Here, nodes_position is a dictionary where the keys are the nodes and the value 
assigned to each key is an array of length 2, with the Cartesian coordinate used for 
plotting the specific node. 

The nx.draw function will plot the whole graph by putting its nodes in the given 
positions. The with_labels option will plot its name on top of each node with the 
specific font_size value. node_size and edge_color will respectively specify the 
size of the circle, representing the node and the color of the edges. Finally, arrowsize 
will define the size of the arrow for directed edges. This option will be used when the 
graph to be plotted is a digraph.

In the following code example, we show how to use the draw_graph function previously 
defined in order to plot a graph:

G = nx.Graph()

V = {'Paris', 'Dublin','Milan', 'Rome'}

E = [('Paris','Dublin', 11), ('Paris','Milan', 8),

     ('Milan','Rome', 5), ('Milan','Dublin', 19)]

G.add_nodes_from(V)

G.add_weighted_edges_from(E)

node_position = {"Paris": [0,0], "Dublin": [0,1], "Milan": 
[1,0], "Rome": [1,1]}

draw_graph(G, node_position, True)

The result of the plot is available to view in the following screenshot:

Figure 1.8 – Result of the plotting function
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The method previously described is simple but unfeasible to use in a real scenario since 
the node_position value could be difficult to decide. In order to solve this issue, 
networkx offers a different function to automatically compute the position of each node 
according to different layouts. In Figure 1.9, we show a series of plots of an undirected 
graph, obtained using the different layouts available in networkx. In order to use them 
in the function we proposed, we simply need to assign node_position to the result 
of the layout we want to use—for example, node_position = nx.circular_
layout(G). The plots can be seen in the following screenshot:

Figure 1.9 – Plots of the same undirected graph with different layouts

networkx is a great tool for easily manipulating and analyzing graphs, but it does 
not offer good functionalities in order to perform complex and good-looking plots of 
graphs. In the next section, we will investigate another tool to perform complex graph 
visualization: Gephi.
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Gephi
In this section, we will show how Gephi (an open source network analysis and 
visualization software) can be used for performing complex, fancy plots of graphs. For all 
the examples showed in this section, we will use the Les Miserables.gexf sample 
(a weighted undirected graph), which can be selected in the Welcome window when the 
application starts.

The main interface of Gephi is shown in Figure 1.10. It can be divided into four main 
areas, as follows:

1. Graph: This section shows the final plot of the graph. The image is automatically 
updated each time a filter or a specific layout is applied.

2. Appearance: Here, it is possible to specify the appearance of nodes and edges.

3. Layout: In this section, it is possible to select the layout (as in networkx) to 
adjust the node position in the graph. Different algorithms, from a simple random 
position generator to a more complex Yifan Hu algorithm, are available.

4. Filters & Statistics: In this set area, two main functions are available, outlined as 
follows:

a. Filters: In this tab, it is possible to filter and visualize specific subregions of the 
graph according to a set property computed using the Statistics tab.

b. Statistics: This tab contains a list of available graph metrics that can be computed 
on the graph using the Run button. Once metrics are computed, they can be used as 
properties to specify the edges' and nodes' appearance (such as node and edge size 
and color) or to filter a specific subregion of the graph.
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You can see the main interface of Gephi in the following screenshot: 

Figure 1.10 – Gephi main window

Our exploration of Gephi starts with the application of different layouts to the graph. As 
previously described, in networkx the layouts allow us to assign to each node a specific 
position in the final plot. In Gephi 1.2, different layouts are available. In order to apply a 
specific layout, we have to select from the Layout area one of the available layouts, and 
then click on the Run button that appears after the selection. 

The graph representation, visible in the Graph area, will be automatically updated 
according to the new coordinates defined by the layout. It should be noted that some 
layouts are parametric, hence the final graph plot can significantly change according to 
the parameters used. In the following screenshot, we propose several examples for the 
application of three different layouts:
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Figure 1.11 – Plot of the same graph with different layout

We will now introduce the available options in the Appearance menu visible in Figure 
1.10. In this section, it is possible to specify the style to be applied to edges and nodes. The 
style to be applied can be static or can be dynamically defined by specific properties of the 
nodes/edges. We can change the color and the size of the nodes by selecting the Nodes 
option in the menu. 

In order to change the color, we have to select the color palette icon and decide, using 
the specific button, if we want to assign a Unique color, a Partition (discrete values), or 
a Ranking (range of values) of colors. For Partition and Ranking, it is possible to select 
from the drop-down menu a specific Graph property to use as reference for the color 
range. Only the properties computed by clicking Run in the Statistics area are available 
in the drop-down menu. The same procedure can be used in order to set the size of the 
nodes. By selecting the concentric circles icon, it is possible to set a Unique size to all the 
nodes or to specify a Ranking of size according to a specific property.

As for the nodes, it is also possible to change the style of the edges by selecting the Edges 
option in the menu. We can then select to assign a Unique color, a Partition (discrete 
values), or a Ranking (range of values) of colors. For Partition and Ranking, the 
reference value to build the color scale is defined by a specific Graph property that can be 
selected from the drop-down menu. 
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It is important to remember that in order to apply a specific style to the graph, the Apply 
button should be clicked. As a result, the graph plot will be updated according to the style 
defined. In the following screenshot, we show an example where the color of the nodes is 
given by the Modularity Class value and the size of each node is given by its degree, while 
the color of each edge is defined by the edge weight:

Figure 1.12 – Example of graph plot changing nodes' and edges' appearance

Another important section that needs to be described is Filters & Statistics. In this menu, 
it is possible to compute some statistics based on graph metrics. 

Finally, we conclude our discussion on Gephi by introducing the functionalities available 
in the Statistics menu, visible in the right panel in Figure 1.10. Through this menu, it is 
possible to compute different statistics on the input graph. Those statistics can be easily 
used to set some properties of the final plot, such as nodes'/edges' color and size, or to 
filter the original graph to plot just a specific subset of it. In order to compute a specific 
statistic, the user then needs to explicitly select one of the metrics available in the menu 
and click on the Run button (Figure 1.10, right panel).
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Moreover, the user can select a subregion of the graph, using the options available in the 
Filters tab of the Statistics menu, visible in the right panel in Figure 1.10. An example of 
filtering a graph can be seen in Figure 1.13. To provide more details of this, we build and 
apply to the graph a filter, using the Degree property. The result of the filters is a subset 
of the original graph, where only the nodes (and their edges) having the specific range of 
values for the degree property are visible.

This is illustrated in the following screenshot:

Figure 1.13 – Example of a graph filtered according to a range of values for Degree

Of course, Gephi allows us to perform more complex visualization tasks and contains a lot 
of functionalities that cannot be fully covered in this book. Some good references to better 
investigate all the features available in Gephi are the official Gephi guide (https://
gephi.org/users/) or the Gephi Cookbook book by Packt Publishing.

https://gephi.org/users/
https://gephi.org/users/
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Graph properties
As we have already learned, a graph is a mathematical model that is used for describing 
relations between entities. However, each complex network presents intrinsic properties. 
Such properties can be measured by particular metrics, and each measure may 
characterize one or several local and global aspects of the graph.

In a graph for a social network such as Twitter, for example, users (represented by the 
nodes of the graph) are connected to each other. However, there are users that are more 
connected than others (influencers). On the Reddit social graph, users with similar 
characteristics tend to group into communities.

We have already mentioned some of the basic features of graphs, such as the number of 
nodes and edges in a graph, which constitute the size of the graph itself. Those properties 
already provide a good description of the structure of a network. Think about the 
Facebook graph, for example: it can be described in terms of the number of nodes and 
edges. Such numbers easily allow it to be distinguished from a much smaller network (for 
example, the social structure of an office) but fail to characterize more complex dynamics 
(for example, how similar nodes are connected). To this end, more advanced graph-
derived metrics can be considered, which can be grouped into four main categories, 
outlined as follows:

• Integration metrics: These measure how nodes tend to be interconnected with each 
other.

• Segregation metrics: These quantify the presence of groups of interconnected 
nodes, known as communities or modules, within a network.

• Centrality metrics: These assess the importance of individual nodes inside a 
network.

• Resilience metrics: These can be thought of as a measure of how much a network 
is able to maintain and adapt its operational performance when facing failures or 
other adverse conditions.

Those metrics are defined as global when expressing a measure of an overall network. On 
the other hand, local metrics measure values of individual network elements (nodes or 
edges). In weighted graphs, each property may or may not account for the edge weights, 
leading to weighted and unweighted metrics.

In the following section, we describe some of the most commonly used metrics that 
measure global and local properties. For simplicity, unless specified differently in the text, 
we illustrate the global unweighted version of the metric. In several cases, this is obtained 
by averaging the local unweighted properties of the node.
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Integration metrics
In this section, some of the most frequently used integration metrics will be described.

Distance, path, and shortest path
The concept of distance in a graph is often related to the number of edges to traverse in 
order to reach a target node from a given source node. 

In particular, consider a source node   and a target node  . The set of edges connecting 
node   to node   is called a path. When studying complex networks, we are often 
interested in finding the shortest path between two nodes. A shortest path between a 
source node   and a target node   is the path having the lowest number of edges compared 
to all the possible paths between   and  . The diameter of a network is the number of 
edges contained in the longest shortest path among all possible shortest paths.

Take a look at the following screenshot. There are different paths to reach Tokyo from 
Dublin. However, one of them is the shortest (the edges on the shortest path are 
highlighted):

Figure 1.14 – The shortest path between two nodes



28     Getting Started with Graphs

The shortest_path function of the networkx Python library enables users to quickly 
compute the shortest path between two nodes in a graph. Consider the following code, in 
which a seven-node graph is created by using networkx:

G = nx.Graph()

nodes = {1:'Dublin',2:'Paris',3:'Milan',4:'Rome',5:'Naples',

         6:'Moscow',7:'Tokyo'}

G.add_nodes_from(nodes.keys())

G.add_edges_from([(1,2),(1,3),(2,3),(3,4),(4,5),(5,6),(6,7),(7
,5)])

The shortest path between a source node (for example, 'Dublin', identified by the key 
1) and a target node (for example, 'Tokyo', identified by the key 7) can be obtained as 
follows:

path = nx.shortest_path(G,source=1,target=7)

This should output the following:

[1,3,4,5,6]

Here, [1,3,4,5,7] are the nodes contained in the shortest path between 'Tokyo' 
and 'Dublin'.

Characteristic path length
The characteristic path length is defined as the average of all the shortest path lengths 
between all possible pair of nodes. If   is the average path length between the node   and 
all the other nodes, the characteristic path length is computed as follows:

Here,   is the set of nodes in the graph and =  | |  represents its order. This is one 
of the most commonly used measures of how efficiently information is spread across a 
network. Networks having shorter characteristic path lengths promote the quick transfer 
of information and reduce costs. Characteristic path length can be computed through 
networkx using the following function:

nx.average_shortest_path_length(G)

1
( − 1)

 ∑
 ∈
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This should give us the following:

2.1904761904761907

However, this metric cannot be always defined since it is not possible to compute a path 
among all the nodes in disconnected graphs. For this reason, network efficiency is also 
widely used.

Global�and�local�efficiency
Global efficiency is the average of the inverse shortest path length for all pairs of nodes. 
Such a metric can be seen as a measure of how efficiently information is exchanged 
across a network. Consider that   is the shortest path between a node   and a node  . The 
network efficiency is defined as follows:

Efficiency is at a maximum when a graph is fully connected, while it is minimal for 
completely disconnected graphs. Intuitively, the shorter the path, the lower the measure.

The local efficiency of a node can be computed by considering only the neighborhood 
of the node in the calculation, without the node itself. Global efficiency is computed in 
networkx using the following command:

nx.global_efficiency(G)

The output should be as follows:

0.6111111111111109

Average local efficiency is computed in networkx using the following command:

nx.local_efficiency(G)

The output should be as follows:

0.6666666666666667

1
( − 1)

∑
1

 ∈
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In the following screenshot, two examples of graphs are depicted. As observed, a fully 
connected graph on the left presents a higher level of efficiency compared to a circular 
graph on the right. In a fully connected graph, each node can be reached from any other 
node in the graph, and information is exchanged rapidly across the network. However, 
in a circular graph, several nodes should instead be traversed to reach the target node, 
making it less efficient:

Figure 1.15 – Global efficiency of a fully connected graph (left) and a circular graph (right)

Integration metrics well describe the connection among nodes. However, more 
information about the presence of groups can be extracted by considering segregation 
metrics.

Segregation metrics
In this section, some of the most common segregation metrics will be described.

Clustering�coefficient
The clustering coefficient is a measure of how much nodes cluster together. It is defined 
as the fraction of triangles (complete subgraph of three nodes and three edges) around 
a node and is equivalent to the fraction of the node's neighbors that are neighbors of 
each other. A global clustering coefficient is computed in networkx using the following 
command:

nx.average_clustering(G)

This should output the following:

0.6666666666666667
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The local clustering coefficient is computed in networkx using the following command:

nx.clustering(G)

This should output the following:

{1: 1.0,

 2: 1.0,

 3: 0.3333333333333333,

 4: 0,

 5: 0.3333333333333333,

 6: 1.0,

 7: 1.0}

The output is a Python dictionary containing, for each node (identified by the respective 
key), the corresponding value. In the graph represented in Figure 1.16, two clusters of 
nodes can be easily identified. By computing the clustering coefficient for each single 
node, it can be observed that Rome has the lowest value. Tokyo and Moscow, as well as 
Paris and Dublin, are instead very well connected within their respective groups (notice 
the size of each node is drawn proportionally to each node's clustering coefficient). The 
graph can be seen in the following screenshot:

Figure 1.16 – Local clustering coefficient representation
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Transitivity
A common variant of the clustering coefficient is known as transitivity. This can simply 
be defined as the ratio between the observed number of closed triplets (complete 
subgraph with three nodes and two edges) and the maximum possible number of closed 
triplets in the graph. Transitivity can be computed using networkx, as follows:

nx.transitivity(G)

The output should be as follows:

0.5454545454545454

Modularity
Modularity was designed to quantify the division of a network in aggregated sets of 
highly interconnected nodes, commonly known as modules, communities, groups, 
or clusters. The main idea is that networks having high modularity will show dense 
connections within the module and sparse connections between modules. 

Consider a social network such as Reddit: members of communities related to video 
games tend to interact much more with other users in the same community, talking about 
recent news, favorite consoles, and so on. However, they will probably interact less with 
users talking about fashion. Differently from many other graph metrics, modularity is 
often computed by means of optimization algorithms.

Modularity in networkx is computed using the modularity function of the 
networkx.algorithms.community module, as follows:

import networkx.algorithms.community as nx_comm

nx_comm.modularity(G, communities=[{1,2,3}, {4,5,6,7}])

Here, the second argument—communities—is a list of sets, each representing a 
partition of the graph. The output should be as follows:

0.3671875

Segregation metrics help to understand the presence of groups. However, each node in a 
graph has its own importance. To quantify it, we can use centrality metrics.

Centrality metrics
In this section, some of the most common centrality metrics will be described.
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Degree centrality
One of the most common and simple centrality metrics is the degree centrality metric. 
This is directly connected with the degree of a node, measuring the number of incident 
edges on a certain node  . 
Intuitively, the more a node is connected to an other node, the more its degree centrality 
will assume high values. Note that, if a graph is directed, the in-degree centrality and 
out-degree centrality will be considered for each node, related to the number of incoming 
and outcoming edges, respectively. Degree centrality is computed in networkx by using 
the following command:

nx.degree_centrality(G)

The output should be as follows:

{1: 0.3333333333333333, 2: 0.3333333333333333, 3: 0.5, 
4: 0.3333333333333333, 5: 0.5, 6: 0.3333333333333333, 7: 
0.3333333333333333}

Closeness centrality
The closeness centrality metric attempts to quantify how much a node is close (well 
connected) to other nodes. More formally, it refers to the average distance of a node   to 
all other nodes in the network. If   is the shortest path between node   and node  , the 
closeness centrality is defined as follows:

Here, V is the set of nodes in the graph. Closeness centrality can be computed in 
networkx using the following command:

nx.closeness_centrality(G)

The output should be as follows:

{1: 0.4, 2: 0.4, 3: 0.5454545454545454, 4: 0.6, 5: 
0.5454545454545454, 6: 0.4, 7: 0.4}

1
∑  ∈ , !=
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Betweenness centrality
The betweenness centrality metric evaluates how much a node acts as a bridge between 
other nodes. Even if poorly connected, a node can be strategically connected, helping to 
keep the whole network connected.

If   is the total number of shortest paths between node   and node   and ( )  is 
the total number of shortest paths between   and   passing through node  , then the 
betweenness centrality is defined as follows:

If we observe the formula, we can notice that the higher the number of shortest paths 
passing through node  , the higher the value of the betweenness centrality. Betweenness 
centrality is computed in networkx by using the following command:

nx.betweenness_centrality(G)

The output should be as follows:

{1: 0.0, 2: 0.0, 3: 0.5333333333333333, 4: 0.6, 5: 
0.5333333333333333, 6: 0.0, 7: 0.0}

In Figure 1.17, we illustrate the difference between degree centrality, closeness centrality, 
and betweenness centrality. Milan and Naples have the highest degree centrality. Rome 
has the highest closeness centrality since it is the closest to any other node. It also shows 
the highest betweenness centrality because of its crucial role in connecting the two visible 
clusters and keeping the whole network connected. 

You can see the differences here:

Figure 1.17 – Degree centrality (left), closeness centrality (center), and betweenness centrality (right)
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Centrality metrics allow us to measure the importance of a node inside the network. 
Finally, we will mention resilience metrics, which enable us to measure the vulnerability of 
a graph.

Resilience metrics
There are several metrics that measure a network's resilience. Assortativity is one of the 
most used.

Assortativity�coefficient
Assortativity is used to quantify the tendency of nodes being connected to similar nodes. 
There are several ways to measure such correlations. One of the most commonly used 
methods is the Pearson correlation coefficient between the degrees of directly connected 
nodes (nodes on two opposite ends of a link). The coefficient assumes positive values 
when there is a correlation between nodes of a similar degree, while it assumes negative 
values when there is a correlation between nodes of a different degree. Assortativity using 
the Pearson correlation coefficient is computed in networkx by using the following 
command:

nx.degree_pearson_correlation_coefficient(G)

The output should be as follows:

-0.6

Social networks are mostly assortative. However, the so-called influencers (famous 
singers, football players, fashion bloggers) tend to be followed (incoming edges) by 
several standard users, while tending to be connected with each other and showing a 
disassortative behavior.

It is important to remark that the previously presented properties are a subset of all the 
possible metrics used to describe graphs. A wider set of metrics and algorithms can be 
found at https://networkx.org/documentation/stable/reference/
algorithms/.

https://networkx.org/documentation/stable/reference/algorithms/
https://networkx.org/documentation/stable/reference/algorithms/
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Benchmarks and repositories
Now that we have understood the basic concepts and notions about graphs and network 
analysis, it is now time to dive into some practical examples that will help us to start 
to put into practice the general concepts we have learned so far. In this section, we will 
present some examples and toy problems that are generally used to study the properties of 
networks, as well as benchmark performances and effectiveness of networks' algorithms. 
We will also provide some useful links of repositories where network datasets can be 
found and downloaded, together with some tips on how to parse and process them.

Examples of simple graphs
We start by looking at some very simple examples of networks. Fortunately, networkx 
already comes with a number of graphs already implemented, ready to be used and played 
with. Let's start by creating a fully connected undirected graph, as follows:

complete = nx.complete_graph(n=7)

This has 
∙ ( − 1)

2
= 21  edges and a clustering coefficient C=1. Although fully connected 

graphs are not very interesting on their own, they represent a fundamental building block 
that may arise within larger graphs. A fully connected subgraph of n nodes within a larger 
graph is generally referred to as a clique of size n. 

Definition  
A clique, C, in an undirected graph is defined a subset of its vertices, C 

 V, such that every two distinct vertices in the subset are adjacent. This is 
equivalent to the condition that the induced subgraph of G induced by C is 
a fully connected graph. 

Cliques represent one of the basic concepts in graph theory and are often also used in 
mathematical problems where relations need to be encoded. Besides, they also represent 
the simplest unit when constructing more complex graphs. On the other hand, the task of 
finding cliques of a given size n in larger graphs (clique problem) is of great interest and 
it can be shown that it is a nondeterministic polynomial-time complete (NP-complete) 
problem often studied in computer science.  

Some simple examples of networkx graphs can be seen in the following screenshot:
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Figure 1.18 – Simple examples of graphs with networkx: (left) fully connected graph; (center) lollipop 
graph; (right) barbell graph

In Figure 1.18, we showed a complete graph along with two other simple examples 
containing cliques that can be easily generated with networkx, outlined as follows:

• A lollipop graph formed by a clique of size n and a branch of m nodes, as shown in 
the following code snippet:

lollipop = nx.lollipop_graph(m=7, n=3)

• A barbell graph formed by two cliques of size m1 and m2 joined by a branch 
of nodes, which resembles the sample graph we used previously to characterize 
some of the global and local properties. The code to generate this is shown in the 
following snippet:

barbell = nx.barbell_graph(m1=7, m2=4)

Such simple graphs are basic building blocks that can be used to generate more complex 
networks by combining them. Merging subgraphs is very easy with networkx and can 
be done with just a few lines of code, as shown in the following code snippet, where the 
three graphs are merged together into a single graph and some random edges are placed 
to connect them:

def get_random_node(graph):

    return np.random.choice(graph.nodes)

allGraphs = nx.compose_all([complete, barbell, lollipop])

allGraphs.add_edge(get_random_node(lollipop), get_random_
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node(lollipop))

allGraphs.add_edge(get_random_node(complete), get_random_
node(barbell))

Other very simple graphs (that can then be merged and played around with) can be 
found at https://networkx.org/documentation/stable/reference/
generators.html#module-networkx.generators.classic.

Generative graph models 
Although creating simple subgraphs and merging them is a way to generate new graphs of 
increasing complexity, networks may also be generated by means of probabilistic models 
and/or generative models that let a graph grow by itself. Such graphs usually share 
interesting properties with real networks and have long been used to create benchmarks 
and synthetic graphs, especially in times when the amount of data available was not as 
overwhelming as today. Here, we present some examples of random generated graphs, 
briefly describing the models that underlie them.

Watts and Strogatz (1998)
This model was used by the authors to study the behavior of small-world networks—
that is to say, networks that resemble, to some extent, common social networks. The 
graph is generated by first displacing n nodes in a ring and connecting each node with 
its k neighbors. Each edge of such a graph then has a probability p of being rewired to a 
randomly chosen node. By ranging p, the Watts and Strogatz model allows a shift from a 
regular network (p=0) to a completely random network (p=1). In between, graphs exhibit 
small-world features; that is, they tend to bring this model closer to social network graphs. 
These kinds of graphs can be easily created with the following command: 

graph = nx.watts_strogatz_graph(n=20, k=5, p=0.2)

Barabási-Albert (1999)
The model proposed by Albert and Barabási is based on a generative model that allows the 
creation of random scale-free networks by using a preferential attachment schema, where 
a network is created by progressively adding new nodes and attaching them to already 
existing nodes, with a preference for nodes that have more neighbors. Mathematically 
speaking, the underlying idea of this model is that the probability for a new node to be 
attached to an existing node i depends on the degree of the i-th node, according to the 
following formula:

https://networkx.org/documentation/stable/reference/generators.html#module-networkx.generators.classic
https://networkx.org/documentation/stable/reference/generators.html#module-networkx.generators.classic
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Thus, nodes with a large number of edges (hubs) tend to develop even more edges, 
whereas nodes with few links will not develop other links (periphery). Networks 
generated by this model exhibit a power-law distribution for the connectivity (that is, 
degree) between nodes. Such a behavior is also found in real networks (for example, the 
World Wide Web (WWW) network and the actor collaboration network), interestingly 
showing that it is the popularity of a node (how many edges it already has) rather than 
its intrinsic node properties that influences the creation of new connections. The initial 
model has then been extended (and this is the version that is available on networkx) to 
also allow the preferential attachment of new edges or rewiring of existing edges.

The Barabási-Albert model is illustrated in the following screenshot:

Figure 1.19 – Barabási-Albert model (left) with 20 nodes (right) distribution of connectivity with 
n=100.000 nodes, showing the scale-free power law distribution

In Figure 1.19, we showed an example of the Barabasi-Albert model for a small network, 
where you can already observe the emergence of hubs (on the left), as well as the 
probability distribution of the degree of the nodes, which exhibits a scale-free power-law 
behavior (on the right). The preceding distribution can easily be replicated in networkx, 
as follows:

ba_model = nx.extended_barabasi_albert_graph(n,m=1,p=0,q=0)

degree = dict(nx.degree(ba_model)).values()

=  ∑  
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bins = np.round(np.logspace(np.log10(min(degree)), 
np.log10(max(degree)), 10))

cnt = Counter(np.digitize(np.array(list(degree)), bins))

Benchmarks
Digitalization has profoundly changed our lives, and today, any activity, person, or process 
generates data, providing a huge amount of information to be drilled, analyzed, and used 
to promote data-driven decision making. A few decades ago, it was hard to find datasets 
ready to be used to develop or test new algorithms. On the other hand, there exist today 
plenty of repositories that provide us with datasets, even of fairly large dimensions, to 
be downloaded and analyzed. These repositories, where people can share datasets, also 
provide a benchmark where algorithms can be applied, validated, and compared with each 
other. 

In this section, we will briefly go through some of the main repositories and file formats 
used in network science, in order to provide you with all the tools needed to import 
datasets—of different sizes—to analyze and play around with. 

In such repositories, you will find network datasets coming from some of the common 
areas of network science, such as social networks, biochemistry, dynamic networks, 
documents, co-authoring and citations networks, and networks arising from financial 
transactions. In Part 3, Advanced Applications of Graph Machine Learning, we will discuss 
some of the most common type of networks (social networks, graphs arising when 
processing corpus documents, and financial networks) and analyze them more thoroughly 
by applying the techniques and algorithms described in Part 2, Machine Learning on 
Graphs. 

Also, networkx already comes with some basic (and very small) networks that 
are generally used to explain algorithms and basic measures, which can be found 
at https://networkx.org/documentation/stable/reference/
generators.html#module-networkx.generators.social. These datasets 
are, however, generally quite small. For larger datasets, refer to the repositories we present 
next.

https://networkx.org/documentation/stable/reference/generators.html#module-networkx.generators.social
https://networkx.org/documentation/stable/reference/generators.html#module-networkx.generators.social
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Network Data Repository
The Network Data Repository is surely one of the largest repositories of network data 
(http://networkrepository.com/) with several thousand different networks, 
featuring users and donations from all over the world and top-tier academic institutions. 
If a network dataset is freely available, chances are that you will find it there. Datasets are 
classified in about 30 domains, including biology, economics, citations, social network 
data, industrial applications (energy, road), and many others. Besides providing the data, 
the website also provides a tool for interactive visualization, exploration, and comparison 
of datasets, and we suggest you check it out and explore it. 

The data in the Network Data Repository is generally available under the Matrix Market 
Exchange Format (MTX) file format. The MTX file format is basically a file format for 
specifying dense or sparse matrices, real or complex, via readable text files (American 
Standard Code for Information Interchange, or ASCII). For more details, please refer to 
http://math.nist.gov/MatrixMarket/formats.html#MMformat.

A file in MTX format can be easily read in Python using scipy. Some of the files we 
downloaded from the Network Data Repository seemed slightly corrupted and required 
a minimal fix on a 10.15.2 OSX system. In order to fix them, just make sure the header of 
the file is compliant with the format specifications; that is, with a double % and no spaces 
at the beginning of the line, as in the following line:

%%MatrixMarket matrix coordinate pattern symmetric 

Matrices should be in coordinate format. In this case, the specification points also to an 
unweighted, undirected graph (as understood by pattern and symmetric). Some of 
the files have some comments after the first header line, which are preceded by a single %.

As an example, we consider the Astro Physics (ASTRO-PH) collaboration network. 
The graph is generated using all the scientific papers available from the e-print arXiv 
repository published in the Astrophysics category in the period from January 1993 to 
April 2003. The network is built by connecting (via undirected edges) all the authors that 
co-authored a publication, thus resulting in a clique that includes all authors of a given 
paper. The code to generate the graph can be seen here:

from scipy.io import mmread

adj_matrix = mmread("ca-AstroPh.mtx")

graph = nx.from_scipy_sparse_matrix(adj_matrix)

http://networkrepository.com/
http://math.nist.gov/MatrixMarket/formats.html#MMformat
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The dataset has 17,903 nodes, connected by 196,072 edges. Visualizing so many nodes 
cannot be done easily, and even if we were to do it, it might not be very informative, 
as understanding the underlying structure would not be very easy with so much 
information. However, we can get some insights by looking at specific subgraphs, as we 
will do next. 

First, we can start by computing some basic properties we described earlier and put them 
into a pandas DataFrame for our convenience to later use, sort, and analyze. The code to 
accomplish this is illustrated in the following snippet: 

stats = pd.DataFrame({

    "centrality": nx.centrality.betweenness_centrality(graph), 

    "C_i": nx.clustering(graph), 

    "degree": nx.degree(graph)

})

We can easily find out that the node with the largest degree centrality is the one with 
ID 6933, which has 503 neighbors (surely a very popular and important scientist in 
astrophysics!), as illustrated in the following code snippet:

neighbors = [n for n in nx.neighbors(graph, 6933)]

Of course, also plotting its ego network (the node with all its neighbors) would still 
be a bit messy. One way to produce some subgraphs that can be plotted is by sampling 
(for example, with a 0.1 ratio) its neighbors in three different ways: random (sorting 
by index is a sort of random sorting), selecting the most central neighbors, or selecting 
the neighbors with the largest C_i values. The code to accomplish this is shown in the 
following code snippet:

nTop = round(len(neighbors)*sampling)

idx = {

    "random": stats.loc[neighbors].sort_index().index[:nTop], 

    "centrality": stats.loc[neighbors]\

         .sort_values("centrality", ascending=False)\

         .index[:nTop],

    "C_i": stats.loc[neighbors]\

         .sort_values("C_i", ascending=False)\

         .index[:nTop]

}
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We can then define a simple function for extracting and plotting a subgraph that includes 
only the nodes related to certain indices, as shown in the following code snippet: 

def plotSubgraph(graph, indices, center = 6933):

    nx.draw_kamada_kawai(

        nx.subgraph(graph, list(indices) + [center])

    )

Using the preceding function, we can plot the different subgraphs, obtained by filtering 
the ego network using the three different criteria, based on random sampling, centrality, 
and the clustering coefficient we presented previously. An example is provided here:

plotSubgraph(graph, idx["random"]) 

In Figure 1.20, we compare these results where the other networks have been obtained 
by changing the key value to centrality and C_i. The random representation seems 
to show some emerging structure with separated communities. The graph with the most 
central nodes clearly shows an almost fully connected network, possibly made up of all 
full professors and influential figures in astrophysics science, publishing on multiple topics 
and collaborating frequently with each other. Finally, the last representation, on the other 
hand, highlights some specific communities, possibly connected with a specific topic, by 
selecting the nodes that have a higher clustering coefficient. These nodes might not have a 
large degree of centrality, but they very well represent specific topics. You can see examples 
of the ego subgraph here:

Figure 1.20 – Examples of the ego subgraph for the node that has largest degree in the ASTRO-PH 
dataset. Neighbors are sampled with a ratio=0.1. (left) random sampling; (center) nodes with largest 

betweenness centrality; (right) nodes with largest clustering coefficient
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Another option to visualize this in networkx could also be to use the Gephi software 
that allows for fast filtering and visualizations of graphs. In order to do so, we need to first 
export the data as Graph Exchange XML Format (GEXF) (which is a file format that can 
be imported in Gephi), as follows:

nx.write_gext(graph, "ca-AstroPh.gext")

Once data is imported in Gephi, with few filters (by centrality or degree) and some 
computations (modularity), you can easily do plots as nice as the one shown in Figure 
1.21, where nodes have been colored using modularity in order to highlight clusters. 
Coloring also allows us to easily spot nodes that connect the different communities and 
that therefore have large betweenness. 

Some of the datasets in the Network Data Repository may also be available in the EDGE 
file format (for instance, the citations networks). The EDGE file format slightly differs 
from the MTX file format, although it represents the same information. Probably the 
easiest way to import such files into networkx is to convert them by simply rewriting 
its header. Take, for instance, the Digital Bibliography and Library (DBLP) citation 
network. 

A sample plot can be seen in the following screenshot:

Figure 1.21 – Example of the visualization ASTRO-PH dataset with Gephi. Nodes are filtered by degree 
centrality and colored by modularity class; node sizes are proportional to the value of the degree

Here is the code for the header of the file: 

% asym unweighted

% 49743 12591 12591 
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This can be easily converted to comply with the MTX file format by replacing these lines 
with the following code:

%%MatrixMarket matrix coordinate pattern general

12591 12591 49743 

Then, you can use the import functions described previously. 

Stanford Large Network Dataset Collection
Another valuable source of network datasets is the website of the Stanford Network 
Analysis Platform (SNAP) (https://snap.stanford.edu/index.html), which 
is a general-purpose network analysis library that was written in order to handle even 
fairly large graphs, with hundreds of millions of nodes and billions of edges. It is written in 
C++ to achieve top computational performance, but it also features interfaces with Python 
in order to be imported and used in native Python applications. 

Although networkx is currently the main library to study networkx, SNAP or other 
libraries (more on this shortly) can be orders of magnitude faster than networkx, and 
they may be used in place of networkx for tasks that require higher performance. In 
the SNAP website, you will find a specific web page for Biomedical Network Datasets 
(https://snap.stanford.edu/biodata/index.html), besides other more 
general networks (https://snap.stanford.edu/data/index.html), covering 
similar domains and datasets as the Network Data Repository described previously. 

Data is generally provided in a text file format containing a list of edges. Reading such 
files can be done with networkx in one code line, using the following command:

g = nx.read_edgelist("amazon0302.txt")

Some graphs might have extra information, other than about edges. Extra information 
is included in the archive of the dataset as a separated file—for example, where some 
metadata of the nodes is provided and is related to the graph via the id node. 

Graphs can also be read directly using the SNAP library and its interface via Python. If 
you have a working version of SNAP on your local machine, you can easily read the data 
as follows:

from snap import LoadEdgeList, PNGraph

graph = LoadEdgeList(PNGraph, "amazon0302.txt", 0, 1, '\t')

https://snap.stanford.edu/index.html
https://snap.stanford.edu/biodata/index.html
https://snap.stanford.edu/data/index.html
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Keep in mind that at this point, you will have an instance of a PNGraph object of the 
SNAP library, and you can't directly use networkx functionalities on this object. If you 
want to use some networkx functions, you first need to convert the PNGraph object to 
a networkx object. To make this process simpler, in the supplementary material for this 
book (available at https://github.com/PacktPublishing/Graph-Machine-
Learning), we have written some functions that will allow you to seamlessly swap back 
and forth between networkx and SNAP, as illustrated in the following code snippet:

networkx_graph = snap2networkx(snap_graph)

snap_graph = networkx2snap(networkx_graph) 

Open Graph Benchmark
This is the most recent update (dated May 2020) in the graph benchmark landscape, and 
this repository is expected to gain increasing importance and support in the coming years. 
The Open Graph Benchmark (OGB) has been created to address one specific issue: 
current benchmarks are actually too small compared to real applications to be useful for 
machine learning (ML) advances. On one hand, some of the models developed on small 
datasets turn out to not be able to scale to large datasets, proving them unsuitable in real-
world applications. On the other hand, large datasets also allow us to increase the capacity 
(complexity) of the models used in ML tasks and explore new algorithmic solutions (such 
as neural networks) that can benefit from a large sample size to be efficiently trained, 
allowing us to achieve very high performance. The datasets belong to diverse domains and 
they have been ranked on three different dataset sizes (small, medium, and large) where 
the small-size graphs, despite their name, already have more than 100,000 nodes and/or 
more than 1 million edges. On the other hand, large graphs feature networks with more 
than 100 million nodes and more than 1 billion edges, facilitating the development of 
scalable models. 

Beside the datasets, the OGB also provides, in a Kaggle fashion, an end-to-end ML 
pipeline that standardizes the data loading, experimental setup, and model evaluation. 
OGB creates a platform to compare and evaluate models against each other, publishing 
a leaderboard that allows tracking of the performance evolution and advancements 
on specific tasks of node, edge, and graph property prediction. For more details 
on the datasets and on the OGB project, please refer to https://arxiv.org/
pdf/2005.00687.pdf.

https://github.com/PacktPublishing/Graph-Machine-Learning
https://github.com/PacktPublishing/Graph-Machine-Learning
https://arxiv.org/pdf/2005.00687.pdf
https://arxiv.org/pdf/2005.00687.pdf
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Dealing with large graphs
When approaching a use case or an analysis, it is very important to understand how large 
the data we focus on is or will be in the future, as the dimension of the datasets may very 
well impact both the technologies we use and the analysis that we can do. As already 
mentioned, some of the approaches that have been developed on small datasets hardly 
scale to real-world applications and larger datasets, making them useless in practice. 

When dealing with (possibly) large graphs, it is crucial to understand potential 
bottlenecks and limitation of the tools, technologies, and/or algorithms we use, assessing 
which part of our application/analysis may not scale when increasing the number of 
nodes or edges. Even more importantly, it is crucial to structure a data-driven application, 
however simple or at early proof of concept (POC) stages, in a way that would allow its 
scaling out in the future when data/users would increase, without rewriting the whole 
application. 

Creating a data-driven application that resorts to graphical representation/modeling is a 
challenging task that requires a design and implementation that is a lot more complicated 
than simply importing networkx. In particular, it is often useful to decouple the 
component that processes the graph—named graph processing engine—from the one 
that allows querying and traversing the graph—the graph storage layer. We will further 
discuss these concepts in Chapter 9, Building a Data-Driven Draft-Powered Application. 
Nevertheless, given the focus of the book on ML and analytical techniques, it makes sense 
to focus more on graph processing engines than on graph storage layers. We therefore 
find it useful to provide you already at this stage with some of the technologies that are 
used for graph processing engines to deal with large graphs, crucial when scaling out an 
application. 

In this respect, it is important to classify graph processing engines into two categories 
(that impact the tools/libraries/algorithms to be used), depending whether the graph 
can fit a shared memory machine or requires distributed architectures to be processed and 
analyzed.

Note that there is no absolute definition of large and small graphs, but it also depends 
on the chosen architecture. Nowadays, thanks to the vertical scaling of infrastructures, 
you can find servers with random-access memory (RAM) larger than 1 terabyte (TB) 
(usually called fat nodes), and with tens of thousands of central processing units (CPUs) 
for multithreading in most cloud-provider offerings, although these infrastructures might 
not be economically viable. Even without scaling out to such extreme architectures, graphs 
with millions of nodes and tens of millions of edges can nevertheless be easily handled in 
single servers with ~100 gigabytes (GB) of RAM and ~50 CPUs. 
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Although networkx is a very popular, user-friendly, and intuitive library, when 
scaling out to such reasonably large graphs it may not be the best available choice. 
networkx, being natively written in pure Python, which is an interpreted language, 
can be substantially outperformed by other graph engines fully or partly written in 
more performant programming languages (such as C++ and Julia) and that make use of 
multithreading, such as the following: 

• SNAP (http://snap.stanford.edu/), which we have already seen in the 
previous section, is a graph engine developed at Stanford and is written in C++ with 
available bindings in Python.

• igraph (https://igraph.org/) is a C library and features bindings in Python, 
R, and Mathematica.

• graph-tool (https://graph-tool.skewed.de/), despite being a Python 
module, has core algorithms and data-structures written in C++ and uses OpenMP 
parallelization to scale on multi-core architectures.

• NetworKit (https://networkit.github.io/) is also written in C++ with 
OpenMP boost for parallelization for its core functionalities, integrated in a Python 
module.

• LightGraphs (https://juliagraphs.org/LightGraphs.jl/latest/) is 
a library written in Julia that aims to mirroring networkx functionalities in a more 
performant and robust library.

All the preceding libraries are valid alternatives to networkx when achieving better 
performance becomes an issue. Improvements can be very substantial, with speed-ups 
varying from 30 to 300 times faster, with the best performance generally achieved by 
LightGraphs. 

In the forthcoming chapters, we will mostly focus on networkx in order to provide a 
consistent presentation and provide the user with basic concepts on network analysis. We 
want you to be aware that other options are available, as this becomes extremely relevant 
when pushing the edge from a performance standpoint.  

Summary 
In this chapter, we refreshed concepts such as graphs, nodes, and edges. We reviewed 
graph representation methods and explored how to visualize graphs. We also defined 
properties that are used to characterize networks, or parts of them.

We went through a well-known Python library to deal with graphs, networkx, and 
learned how to use it to apply theoretical concepts in practice.

http://snap.stanford.edu/
https://igraph.org/
https://graph-tool.skewed.de/
https://networkit.github.io/
https://juliagraphs.org/LightGraphs.jl/latest/
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We then ran examples and toy problems that are generally used to study the properties of 
networks, as well as benchmark performance and effectiveness of network algorithms. We 
also provided you with some useful links of repositories where network datasets can be 
found and downloaded, together with some tips on how to parse and process them.

In the next chapter, we will go beyond defining notions of ML on graphs. We will learn 
how more advanced and latent properties can be automatically found by specific ML 
algorithms.





2
Graph Machine 

Learning
Machine learning is a subset of artificial intelligence that aims to provide systems with the 
ability to learn and improve from data. It has achieved impressive results in many different 
applications, especially where it is difficult or unfeasible to explicitly define rules to solve 
a specific task. For instance, we can train algorithms to recognize spam emails, translate 
sentences into other languages, recognize objects in an image, and so on.

In recent years, there has been an increasing interest in applying machine learning to 
graph-structured data. Here, the primary objective is to automatically learn suitable 
representations to make predictions, discover new patterns, and understand complex 
dynamics in a better manner with respect to "traditional" machine learning approaches.

This chapter will first review some of the basic machine learning concepts. Then, an 
introduction to graph machine learning will be provided, with a particular focus on 
representation learning. We will then analyze a practical example to guide you through 
the comprehension of the theoretical concepts.

The following topics will be covered in this chapter:

• A refresher on machine learning

• What is machine learning on graphs and why is it important?

• A general taxonomy to navigate among graph machine learning algorithms
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Technical requirements
We will be using Jupyter notebooks with Python 3.8 for all of our exercises. The following 
is a list of the Python libraries that need to be installed for this chapter using pip. For 
example, run pip install networkx==2.5 on the command line, and so on:

Jupyter==1.0.0

networkx==2.5

matplotlib==3.2.2

node2vec==0.3.3

karateclub==1.0.19

scipy==1.6.2

All the code files relevant to this chapter are available at https://github.com/
PacktPublishing/Graph-Machine-Learning/tree/main/Chapter02.

Understanding machine learning on graphs
Of the branches of artificial intelligence, machine learning is one that has attracted 
the most attention in recent years. It refers to a class of computer algorithms that 
automatically learn and improve their skills through experience without being explicitly 
programmed. Such an approach takes inspiration from nature. Imagine an athlete who 
faces a novel movement for the first time: they start slowly, carefully imitating the gesture 
of a coach, trying, making mistakes, and trying again. Eventually, they will improve, 
becoming more and more confident.

Now, how does this concept translate to machines? It is essentially an optimization 
problem. The goal is to find a mathematical model that is able to achieve the best 
possible performance on a particular task. Performance can be measured using a specific 
performance metric (also known as a loss function or cost function). In a common 
learning task, the algorithm is provided with data, possibly lots of it. The algorithm uses 
this data to iteratively make decisions or predictions for the specific task. At each iteration, 
decisions are evaluated using the loss function. The resulting error is used to update the 
model parameters in a way that, hopefully, means the model will perform better. This 
process is commonly called training. 

More formally, let's consider a particular task, T, and a performance metric, P, which 
allows us to quantify how good an algorithm is performing on T. According to Mitchell 
(Mitchell et al., 1997), an algorithm is said to learn from experience, E, if its performance 
at task T, measured by P, improves with experience E.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter02
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter02
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Basic principles of machine learning
Machine learning algorithms fall into three main categories, known as supervised, 
unsupervised, and semi-supervised learning. These learning paradigms depend on the way 
data is provided to the algorithm and how performance is evaluated.

Supervised learning is the learning paradigm used when we know the answer to the 
problem. In this scenario, the dataset is composed of samples of pairs of the form <x,y>, 
where x is the input (for example, an image or a voice signal) and y is the corresponding 
desired output (for example, what the image represents or what the voice is saying). The 
input variables are also known as features, while the output is usually referred to as labels, 
targets, and annotations. In supervised settings, performance is often evaluated using 
a distance function. This function measures the differences between the prediction and 
the expected output. According to the type of labels, supervised learning can be further 
divided into the following:

• Classification: Here, the labels are discrete and refer to the "class" the input belongs 
to. Examples of classification are determining the object in a photo or predicting 
whether an email is spam or not.

• Regression: The target is continuous. Examples of regression problems are 
predicting the temperature in a building or predicting the selling price of any 
particular product.

Unsupervised learning differs from supervised learning since the answer to the 
problem is not known. In this context, we do not have any labels and only the inputs, 
<x>, are provided. The goal is thus deducing structures and patterns, attempting to find 
similarities. 

Discovering groups of similar examples (clustering) is one of these problems, as well as 
giving new representations of the data in a high-dimensional space. 

In semi-supervised learning, the algorithm is trained using a combination of labeled and 
unlabeled data. Usually, to direct the research of structures present in the unlabeled input 
data, a limited amount of labeled data is used.

It is also worth mentioning that reinforcement learning is used for training machine 
learning models to make a sequence of decisions. The artificial intelligence algorithm 
faces a game-like situation, getting penalties or rewards based on the actions performed. 
The role of the algorithm is to understand how to act in order to maximize rewards and 
minimize penalties.
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Minimizing the error on the training data is not enough. The keyword in machine 
learning is learning. It means that algorithms must be able to achieve the same level of 
performance even on unseen data. The most common way of evaluating the generalization 
capabilities of machine learning algorithms is to divide the dataset into two parts: the 
training set and the test set. The model is trained on the training set, where the loss 
function is computed and used to update the parameters. After training, the model's 
performance is evaluated on the test set. Moreover, when more data is available, the test 
set can be further divided into validation and test sets. The validation set is commonly 
used for assessing the model's performance during training.

When training a machine learning algorithm, three situations can be observed:

• In the first situation, the model reaches a low level of performance over the training 
set. This situation is commonly known as underfitting, meaning that the model is 
not powerful enough to address the task. 

• In the second situation, the model achieves a high level of performance over the 
training set but struggles at generalizing over testing data. This situation is known as 
overfitting. In this case, the model is simply memorizing the training data, without 
actually understanding the true relations among them. 

• Finally, the ideal situation is when the model is able to achieve (possibly) the highest 
level of performance over both training and testing data. 

An example of overfitting and underfitting is given by the risk curve shown in Figure 2.1. 
From the figure, it is possible to see how the performances on the training and test sets 
change according to the complexity of the model (the number of parameters to be fitted):

Figure 2.1 – Risk curve describing the prediction error on training and test set error in the function of 
the model complexity (number of parameters of the model)
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Overfitting is one of the main problems that affect machine learning practitioners. It can 
occur due to several reasons. Some of the reasons can be as follows:

• The dataset can be ill-defined or not sufficiently representative of the task. In this 
case, adding more data could help to mitigate the problem. 

• The mathematical model used for addressing the problem is too powerful for the 
task. In this case, proper constraints can be added to the loss function in order to 
reduce the model's "power." Such constraints are called regularization terms.

Machine learning has achieved impressive results in many fields, becoming one of the 
most diffused and effective approaches in computer vision, pattern recognition, and 
natural language processing, among others. 

The�benefit�of�machine�learning�on�graphs
Several machine learning algorithms have been developed, each with its own advantages 
and limitations. Among those, it is worth mentioning regression algorithms (for example, 
linear and logistic regression), instance-based algorithms (for example, k-nearest neighbor 
or support vector machines), decision tree algorithms, Bayesian algorithms (for example, 
naïve Bayes), clustering algorithms (for example, k-means), and artificial neural networks.

But what is the key to all of this success? 

Essentially, one thing: machine learning can automatically address tasks that are easy for 
humans to do. These tasks can be too complex to describe using traditional computer 
algorithms and, in some cases, they have shown even better capabilities than human 
beings. This is especially true when dealing with graphs—they can differ in several 
more ways than an image or audio signal because of their complex structure. By using 
graph machine learning, we can create algorithms to automatically detect and interpret 
recurring latent patterns.

For these reasons, there has been an increasing interest in learning representations for 
graph-structured data and many machine learning algorithms have been developed for 
handling graphs. For example, we might be interested in determining the role of a protein 
in a biological interaction graph, predicting the evolution of a collaboration network, 
recommending new products to a user in a social network, and many more (we will 
discuss these and more applications in Chapter 10, The Future of Graphs). 
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Due to their nature, graphs can be analyzed at different levels of granularity: at the node, 
edge, and graph level (the whole graph), as depicted in Figure 2.2. For each of those levels, 
different problems could be faced and, as a consequence, specific algorithms should be used:

Figure 2.2 – Visual representation of the three different levels of granularity in graphs

In the following bullet points, we will give some examples of machine learning problems 
that could be faced for each of those levels:

• Node level: Given a (possibly large) graph, = ( , ) , the goal is to classify each 
vertex,  ∈  , into the right class. In this setting, the dataset includes G and a list 
of pairs, < vi,yi >, where vi is a node of graph G and yi is the class to which the node 
belongs.

• Edge level: Given a (possibly large) graph, = ( , ) , the goal is to classify each 
edge,  ∈  , into the right class. In this setting, the dataset includes G and a list of 
pairs, < ei,yi >, where ei is an edge of graph G and yi is the class to which the edge 
belongs. Another typical task for this level of granularity is link prediction, the 
problem of predicting the existence of a link between two existing nodes in a graph.

• Graph level: Given a dataset with m different graphs, the task is to build a machine 
learning algorithm capable of classifying a graph into the right class. We can then 
see this problem as a classification problem, where the dataset is defined by a list of 
pairs, <Gi,yi>, where Gi is a graph and yi is the class the graph belongs to.

In this section, we discussed some basic concepts of machine learning. Moreover, we have 
enriched our description by introducing some of the common machine learning problems 
when dealing with graphs. Having those theoretical principles as a basis, we will now 
introduce some more complex concepts relating to graph machine learning.
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The generalized graph embedding problem
In classical machine learning applications, a common way to process the input data is to 
build from a set of features, in a process called feature engineering, which is capable of 
giving a compact and meaningful representation of each instance present in the dataset. 

The dataset obtained from the feature engineering step will be then used as input for 
the machine learning algorithm. If this process usually works well for a large range 
of problems, it may not be the optimal solution when we are dealing with graphs. 
Indeed, due to their well-defined structure, finding a suitable representation capable of 
incorporating all the useful information might not be an easy task. 

The first, and most straightforward, way of creating features capable of representing 
structural information from graphs is the extraction of certain statistics. For instance, a 
graph could be represented by its degree distribution, efficiency, and all the metrics we 
described in the previous chapter. 

A more complex procedure consists of applying specific kernel functions or, in other 
cases, engineering-specific features that are capable of incorporating the desired 
properties into the final machine learning model. However, as you can imagine, this 
process could be really time-consuming and, in certain cases, the features used in the 
model could represent just a subset of the information that is really needed to get the best 
performance for the final model. 

In the last decade, a lot of work has been done in order to define new approaches for 
creating meaningful and compact representations of graphs. The general idea behind all 
these approaches is to create algorithms capable of learning a good representation of the 
original dataset such that geometric relationships in the new space reflect the structure of 
the original graph. We usually call the process of learning a good representation of a given 
graph representation learning or network embedding. We will provide a more formal 
definition as follows.

Representation learning (network embedding) is the task that aims to learn a mapping 
function, :  → ℝ  , from a discrete graph to a continuous domain. Function   will be 
capable of performing a low-dimensional vector representation such that the properties 
(local and global) of graph   are preserved.
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Once mapping   is learned, it could be applied to the graph and the resulting mapping 
could be used as a feature set for a machine learning algorithm. A graphical example of 
this process is visible in Figure 2.3:

Figure 2.3 – Example of a workflow for a network embedding algorithm

Mapping function   can also be applied in order to learn the vector representation for 
nodes and edges. As we already mentioned, machine learning problems on graphs could 
occur at different levels of granularity. As a consequence, different embedding algorithms 
have been developed in order to learn functions to generate the vectorial representation of 
nodes ( :  → ℝ )  (also known as node embedding) or edges ( :  → ℝ  ) (also known 
as edge embedding). Those mapping functions try to build a vector space such that 
the geometric relationships in the new space reflect the structure of the original graph, 
node, or edges. As a result, we will see that graphs, nodes, or edges that are similar in the 
original space will also be similar in the new space.

In other words, in the space generated by the embedding function, similar structures will 
have a small Euclidean distance, while dissimilar structures will have a large Euclidean 
distance. It is important to highlight that while most embedding algorithms generate a 
mapping in Euclidean vector spaces, there has recently been an interest in non-Euclidean 
mapping functions.
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Let's now see a practical example of what an embedding space looks like, and how 
similarity can be seen in the new space. In the following code block, we show an example 
using a particular embedding algorithm known as Node to Vector (Node2Vec). We 
will describe how it works in the next chapter. At the moment, we will just say that the 
algorithm will map each node of graph G in a vector:

import networkx as nx

from node2vec import Node2Vec

import matplotlib.pyplot as plt

G = nx.barbell_graph(m1=7, m2=4)

node2vec = Node2Vec(G, dimensions=2)

model = node2vec.fit(window=10)

fig, ax = plt.subplots()

for x in G.nodes():

    v = model.wv.get_vector(str(x))

    ax.scatter(v[0],v[1], s=1000)

    ax.annotate(str(x), (v[0],v[1]), fontsize=12)

In the preceding code, we have done the following:

1. We generated a barbell graph (described in the previous chapter).

2. The Node2Vec embedding algorithm is then used in order to map each node of the 
graph in a vector of two dimensions. 

3. Finally, the two-dimensional vectors generated by the embedding algorithm, 
representing the nodes of the original graph, are plotted. 
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The result is shown in Figure 2.4:

Figure 2.4 – Application of the Node2Vec algorithm to a graph (left) to generate the embedding vector 
of its nodes (right)

From Figure 2.4, it is easy to see that nodes that have a similar structure are close to each 
other and are distant from nodes that have dissimilar structures. It is also interesting 
to observe how good Node2Vec is at discriminating group 1 from group 3. Since the 
algorithm uses neighboring information of each node to generate the representation, the 
clear discrimination of those two groups is possible. 

Another example on the same graph can be performed using the Edge to Vector 
(Edge2Vec) algorithm in order to generate a mapping for the edges for the same graph, G:

from node2vec.edges import HadamardEmbedder

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

fig, ax = plt.subplots()

for x in G.edges():

    v = edges_embs[(str(x[0]), str(x[1]))]

    ax.scatter(v[0],v[1], s=1000)

    ax.annotate(str(x), (v[0],v[1]), fontsize=12)
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In the preceding code, we have done the following:

1. We generated a barbell graph (described in the previous chapter).

2. The HadamardEmbedder embedding algorithm is applied to the result of the 
Node2Vec algorithm (keyed_vectors=model.wv) used in order to map each 
edge of the graph in a vector of two dimensions. 

3. Finally, the two-dimensional vectors generated by the embedding algorithm, 
representing the nodes of the original graph, are plotted. 

The results are shown in Figure 2.5:

Figure 2.5 – Application of the Hadamard algorithm to a graph (left) to generate the embedding vector 
of its edges (right)

As for node embedding, in Figure 2.5, we reported the results of the edge embedding 
algorithm. From the figure, it is easy to see that the edge embedding algorithm clearly 
identifies similar edges. As expected, edges belonging to groups 1, 2, and 3 are clustered in 
well-defined and well-grouped regions. Moreover, the (6,7) and (10,11) edges, belonging 
to groups 4 and 5, respectively, are well clustered in specific groups.



62     Graph Machine Learning

Finally, we will provide an example of a Graph to Vector (Grap2Vec) embedding 
algorithm. This algorithm maps a single graph in a vector. As for another example, we 
will discuss this algorithm in more detail in the next chapter. In the following code block, 
we provide a Python example showing how to use the Graph2Vec algorithm in order to 
generate the embedding representation on a set of graphs:

import random

import matplotlib.pyplot as plt

from karateclub import Graph2Vec

n_graphs = 20

def generate_random():

    n = random.randint(5, 20)

    k = random.randint(5, n)

    p = random.uniform(0, 1)

    return nx.watts_strogatz_graph(n,k,p)

Gs = [generate_random() for x in range(n_graphs)]

model = Graph2Vec(dimensions=2)

model.fit(Gs)

embeddings = model.get_embedding()

fig, ax = plt.subplots(figsize=(10,10))

for i,vec in enumerate(embeddings):

    ax.scatter(vec[0],vec[1], s=1000)

    ax.annotate(str(i), (vec[0],vec[1]), fontsize=16)

In this example, the following has been done:

1. 20 Watts-Strogatz graphs (described in the previous chapter) have been generated 
with random parameters. 

2. We have then executed the graph embedding algorithm in order to generate a 
two-dimensional vector representation of each graph. 

3. Finally, the generated vectors are plotted in their Euclidean space. 

The results of this example are shown in Figure 2.6:
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Figure 2.6 – Plot of two embedding vectors generated by the Graph2Vec algorithm applied to 20 
randomly generated Watts-Strogatz graphs (left). Extraction of two graphs with a large Euclidean 

distance (Graph 12 and Graph 8 at the top right) and two graphs with a low Euclidean distance (Graph 
14 and Graph 4 at the bottom right) is shown

As we can see from Figure 2.6, graphs with a large Euclidean distance, such as graph 12 
and graph 8, have a different structure. The former is generated with the nx.watts_
strogatz_graph(20,20,0.2857) parameter and the latter with the nx.watts_
strogatz_graph(13,6,0.8621) parameter. In contrast, a graph with a low 
Euclidean distance, such as graph 14 and graph 8, has a similar structure. Graph 14 is 
generated with the nx.watts_strogatz_graph(9,9,0.5091) command, while 
graph 4 is generated with nx.watts_strogatz_graph(10,5,0.5659).

In the scientific literature, a plethora of embedding methods has been developed. We will 
describe in detail and use some of them in the next section of this book. These methods 
are usually classified into two main types: transductive and inductive, depending on the 
update procedure of the function when new samples are added. If new nodes are provided, 
transductive methods update the model (for example, re-train) to infer information about 
the nodes, while in inductive methods, models are expected to generalize to new nodes, 
edges, or graphs that were not observed during training.
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The taxonomy of graph embedding machine 
learning algorithms
A wide variety of methods to generate a compact space for graph representation have been 
developed. In recent years, a trend has been observed of researchers and machine learning 
practitioners converging toward a unified notation to provide a common definition to 
describe such algorithms. In this section, we will be introduced to a simplified version 
of the taxonomy defined in the paper Machine Learning on Graphs: A Model and 
Comprehensive Taxonomy (https://arxiv.org/abs/2005.03675).

In this formal representation, every graph, node, or edge embedding method can be 
described by two fundamental components, named the encoder and the decoder. The 
encoder (ENC) maps the input into the embedding space, while the decoder (DEC) 
decodes structural information about the graph from the learned embedding (Figure 2.7). 

The framework described in the paper follows an intuitive idea: if we are able to encode 
a graph such that the decoder is able to retrieve all the necessary information, then the 
embedding must contain a compressed version of all this information and can be used to 
downstream machine learning tasks:

Figure 2.7 – Generalized encoder (ENC) and decoder (DEC) architecture for embedding algorithms

In many graph-based machine learning algorithms for representation learning, the 
decoder is usually designed to map pairs of node embeddings to a real value, usually 
representing the proximity (distance) of the nodes in the original graphs. For example, it is 
possible to implement the decoder such that, given the embedding representation of two 
nodes, = ( )  and = ( ) , ( , ) = 1  if in the input graph an edge 
connecting the two nodes, ,  , exists. In practice, more effective proximity functions can 
be used to measure the similarity between nodes.

https://arxiv.org/abs/2005.03675
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The categorization of embedding algorithms
Inspired by the general framework depicted in Figure 2.7, we will now provide a 
categorization of the various embedding algorithms into four main groups. Moreover, 
in order to help you to better understand this categorization, we shall provide simple 
code snapshots in pseudo-code. In our pseudo-code formalism, we denote G as a generic 
networkx graph, with graphs_list as a list of networkx graphs and model as a 
generic embedding algorithm:

• Shallow embedding methods: These methods are able to learn and return only the 
embedding values for the learned input data. Node2Vec, Edge2Vec, and Graph2Vec, 
which we previously discussed, are examples of shallow embedding methods. 
Indeed, they can only return a vectorial representation of the data they learned 
during the fit procedure. It is not possible to obtain the embedding vector for 
unseen data. A typical way to use these methods is as follows:

model.fit(graphs_list)

embedding = model.get_embedding()[i]

In the code, a generic shallow embedding method is trained on a list of graphs 
(line 1). Once the model is fitted, we can only get the embedding vector of the ith 
graph belonging to graphs_list (line 2). Unsupervised and supervised shallow 
embedding methods will be described, respectively, in Chapter 3, Unsupervised 
Graph Learning, and Chapter 4, Supervised Graph Learning.

• Graph autoencoding methods: These methods do not simply learn how to map the 
input graphs in vectors; they learn a more general mapping function, ( ) , capable 
of also generating the embedding vector for unseen instances. A typical way to use 
them is as follows:

model.fit(graphs_list)

embedding = model.get_embedding(G)

The model is trained on graphs_list (line 1). Once the model is fitted on the 
input training set, it is possible to use it to generate the embedding vector of a new 
unseen graph, G. Graph autoencoding methods will be described in Chapter 3, 
Unsupervised Graph Learning.

• Neighborhood aggregation methods: These algorithms can be used to extract 
embeddings at the graph level, where nodes are labeled with some properties. 
Moreover, as for the graph autoencoding methods, the algorithms belonging to this 
class are able to learn a general mapping function, ( ) , also capable of generating 
the embedding vector for unseen instances.
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A nice property of those algorithms is the possibility to build an embedding space 
where not only the internal structure of the graph is taken into account but also 
some external information, defined as properties of its nodes. For instance, with 
this method, we can have an embedding space capable of identifying, at the same 
time, graphs with similar structures and different properties on nodes. Unsupervised 
and supervised neighborhood aggregation methods will be described in Chapter 3, 
Unsupervised Graph Learning, and Chapter 4, Supervised Graph Learning, respectively.

• Graph regularization methods: Methods based on graph regularization are slightly 
different from the ones listed in the preceding points. Here, we do not have a graph 
as input. Instead, the objective is to learn from a set of features by exploiting their 
"interaction" to regularize the process. In more detail, a graph can be constructed 
from the features by considering feature similarities. The main idea is based on 
the assumption that nearby nodes in a graph are likely to have the same labels. 
Therefore, the loss function is designed to constrain the labels to be consistent with 
the graph structure. For example, regularization might constrain neighboring nodes 
to share similar embeddings, in terms of their distance in the L2 norm. For this 
reason, the encoder only uses X node features as input.

The algorithms belonging to this family learn a function, ( ) , that maps a specific 
set of features (  ) to an embedding vector. As for the graph autoencoding and 
neighborhood aggregation methods, this algorithm is also able to apply the learned 
function to new, unseen features. Graph regularization methods will be described in 
Chapter 4, Supervised Graph Learning.

For algorithms belonging to the group of shallow embedding methods and neighborhood 
aggregation methods, it is possible to define an unsupervised and supervised version. The 
ones belonging to graph autoencoding methods are suitable in unsupervised tasks, while 
the algorithms belonging to graph regularization methods are used in semi-supervised/
supervised settings. 
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For unsupervised algorithms, the embedding of a specific dataset is performed only 
using the information contained in the input dataset, such as nodes, edges, or graphs. 
For the supervised setting, external information is used to guide the embedding process. 
That information is usually classed as a label, such as a pair, <Gi,yi>, that assigns to each 
graph a specific class. This process is more complex than the unsupervised one since the 
model tries to find the best vectorial representation in order to find the best assignment 
of a label to an instance. In order to clarify this concept, we can think, for instance, of 
the convolutional neural networks for image classification. During their training process, 
neural networks try to classify each image into the right class by performing the fitting 
of various convolutional filters at the same time. The goal of those convolutional filters 
is to find a compact representation of the input data in order to maximize the prediction 
performances. The same concept is also valid for supervised graph embedding, where 
the algorithm tries to find the best graph representation in order to maximize the 
performance of a class assignment task.

From a more mathematical perspective, all these models are trained with a proper loss 
function. This function can be generalized using two terms: 

• The first is used in supervised settings to minimize the difference between the 
prediction and the target.

• The second is used to evaluate the similarity between the input graph and the one 
reconstructed after the ENC + DEC steps (which is the structure reconstruction 
error).

 Formally, it can be defined as follows:

Here, ( , ̂ )  is the loss function in the supervised settings. The model is optimized  
to minimize, for each instance, the error between the right (  ) and the predicted class 
( ̂  ). ( , ̂ )  is the loss function representing the reconstruction error between 
the input graph (  ) and the one obtained after the ENC + DEC process ( ̂  ). For 
unsupervised settings, we have the same loss but = 0 , since we do not have a target 
variable to use.

It is important to highlight the main role that these algorithms play when we try to solve  
a machine learning problem on a graph. They can be used passively in order to transform 
a graph into a feature vector suitable for a classical machine learning algorithm or for  
data visualization tasks. But they can also be used actively during the learning process, 
where the machine learning algorithm finds a compact and meaningful solution to a 
specific problem.

=  ( , ̂ ) + ( , ̂ ) 
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Summary 
In this chapter, we refreshed some basic machine learning concepts and discovered how 
they can be applied to graphs. We defined basic graph machine learning terminology 
with a particular focus on graph representation learning. A taxonomy of the main graph 
machine learning algorithms was presented in order to clarify what differentiates the 
various ranges of solutions developed over the years. Finally, practical examples were 
provided to begin understanding how the theory can be applied to practical problems.

In the next chapter, we will revise the main graph-based machine learning algorithms.  
We will analyze their behavior and see how they can be used in practice.



Section 2 –  
Machine Learning 

on Graphs

In this section, the reader will become aware of the main existing machine learning 
models for graph representation learning: their purpose, how they work, and how they 
can be implemented.

This section comprises the following chapters:

• Chapter 3, Unsupervised Graph Learning

• Chapter 4, Supervised Graph Learning

• Chapter 5, Problems with Machine Learning on Graphs





3
Unsupervised Graph 

Learning
Unsupervised machine learning refers to the subset of machine learning algorithms that 
do not exploit any target information during training. Instead, they work on their own 
to find clusters, discover patterns, detect anomalies, and solve many other problems for 
which there is no teacher and no correct answer known a priori.

As per many other machine learning algorithms, unsupervised models have found large 
applications in the graph representation learning domain. Indeed, they represent an 
extremely useful tool for solving various downstream tasks, such as node classification 
and community detection, among others.

In this chapter, an overview of recent unsupervised graph embedding methods will be 
provided. Given a graph, the goal of these techniques is to automatically learn a latent 
representation of it, in which the key structural components are somehow preserved.

The following topics will be covered in this chapter:

• The unsupervised graph embedding roadmap 

• Shallow embedding methods 

• Autoencoders

• Graph neural networks
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Technical requirements
We will be using Jupyter notebooks with Python 3.9 for all of our exercises. The following 
is a list of the Python libraries that need to be installed for this chapter using pip. For 
example, run pip install networkx==2.5 on the command line, and so on:

Jupyter==1.0.0

networkx==2.5

matplotlib==3.2.2

karateclub==1.0.19

node2vec==0.3.3

tensorflow==2.4.0

scikit-learn==0.24.0

git+https://github.com/palash1992/GEM.git

git+https://github.com/stellargraph/stellargraph.git

In the rest of this book, if not clearly stated, we will refer to the Python commands 
import networkx as nx.

All the code files relevant to this chapter are available at https://github.com/
PacktPublishing/Graph-Machine-Learning/tree/main/Chapter03.

The unsupervised graph embedding roadmap
Graphs are complex mathematical structures defined in a non-Euclidean space. Roughly 
speaking, this means that it is not always easy to define what is close to what; it might also 
be hard to say what close even means. Imagine a social network graph: two users can be 
respectively connected and yet share very different features—one might be interested in 
fashion and clothes, while the other might be interested in sports and videogames. Can we 
consider them as "close"?

For this reason, unsupervised machine learning algorithms have found large applications 
in graph analysis. Unsupervised machine learning is the class of machine learning 
algorithms that can be trained without the need for manually annotated data. Most of 
those models indeed make use of only information in the adjacency matrix and the node 
features, without any knowledge of the downstream machine learning task.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter03
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter03
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How is this possible? One of the most used solutions is to learn embeddings that preserve 
the graph structure. The learned representation is usually optimized so that it can be used 
to reconstruct the pair-wise node similarity, for example, the adjacency matrix. These 
techniques bring an important feature: the learned representation can encode latent 
relationships among nodes or graphs, allowing us to discover hidden and complex novel 
patterns. 

Many algorithms have been developed in relation to unsupervised graph machine 
learning techniques. However, as previously reported by different scientific papers 
(https://arxiv.org/abs/2005.03675), those algorithms can be grouped into 
macro-groups: shallow embedding methods, autoencoders, and Graph Neural Networks 
(GNNs), as graphically described in the following chart:

Figure 3.1 – The hierarchical structure of the different unsupervised embedding algorithms described in 
this book

In the following sections, you will learn the main principles behind each group of 
algorithms. We will try to provide the idea behind the most well-known algorithms in the 
field as well as how they can be used for solving real problems.

https://arxiv.org/abs/2005.03675
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Shallow embedding methods
As already introduced in Chapter 2, Graph Machine Learning, with shallow embedding 
methods, we identify a set of algorithms that are able to learn and return only the 
embedding values for the learned input data. 

In this section, we will explain in detail some of those algorithms. Moreover, we will 
enrich the descriptions by providing several examples of how to use those algorithms in 
Python. For all the algorithms described in this section, we will use the implementation 
provided in the following libraries: Graph Embedding Methods (GEM), Node to Vector 
(Node2Vec), and Karate Club.

Matrix factorization
Matrix factorization is a general decomposition technique widely used in different 
domains. A consistent number of graph embedding algorithms use this technique in order 
to compute the node embedding of a graph. 

We will start by providing a general introduction to the matrix factorization problem. 
After the introduction of the basic principles, we will describe two algorithms, namely 
Graph Factorization (GF) and Higher-Order Proximity Preserved Embedding 
(HOPE), which use matrix factorization to build the node embedding of a graph.

Let ∈ ℝ ×   be the input data. Matrix factorization decomposes ≈ ×   with 
∈ ℝ ×   and ∈ ℝ ×   called the source and abundance matrix, respectively, and   

is the number of dimensions of the generated embedding space. The matrix factorization 
algorithm learns the V and H matrices by minimizing a loss function that can change 
according to the specific problem we want to solve. In its general formulation, the loss 
function is defined by computing the reconstruction error using the Frobenius norm as 
‖ −  ×  ‖2  .

Generally speaking, all the unsupervised embedding algorithms based on matrix 
factorization use the same principle. They all factorize an input graph expressed as a 
matrix in different components. The main difference between each method lies in the 
loss function used during the optimization process. Indeed, different loss functions allow 
creating an embedding space that emphasizes specific properties of the input graph.

Graph factorization
The GF algorithm was one of the first models to reach good computational performance 
in order to perform the node embedding of a given graph. By following the principle 
of matrix factorization that we previously described, the GF algorithm factorizes the 
adjacency matrix of a given graph. 
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Formally, let = ( , )  be the graph we want to compute the node embedding with 
and let ∈ ℝ| |×| |  be its adjacency matrix. The loss function (L) used in this matrix 
factorization problem is as follows:

In the preceding equation, ( , ) ∈   represents one of the edges in G while ∈ ℝ| |×   is 
the matrix containing the d-dimensional embedding. Each row of the matrix represents 
the embedding of a given node. Moreover, a regularization term (  ) of the embedding 
matrix is used to ensure that the problem remains well-posed even in the absence of 
sufficient data. 

The loss function used in this method was mainly designed to improve GF performances 
and scalability. Indeed, the solution generated by this method could be noisy. Moreover, 
it should be noted, by looking at its matrix factorization formulation, that GF performs 
a strong symmetric factorization. This property is particularly suitable for undirected 
graphs, where the adjacency matrix is symmetric, but could be a potential limitation for 
undirected graphs.

In the following code, we will show how to perform the node embedding of a given 
networkx graph using Python and the GEM library:

import networkx as nx

from gem.embedding.gf import GraphFactorization

G = nx.barbell_graph(m1=10, m2=4)

gf = GraphFactorization(d=2, data_set=None, max_iter=10000, 
eta=1*10**-4, regu=1.0)

gf.learn_embedding(G)

embeddings = gf.get_embedding()

In the preceding example, the following have been done:

1. networkx is used to generate a barbell graph (G) used as input for the GF 
factorization algorithm.

2. The GraphFactorization class is used to generate a d=2-dimensional 
embedding space.

3. The computation of the node embeddings of the input graph is performed using 
gf.learn_embedding(G).

4. The computed embeddings are extracted by calling the gf.get_embedding() 
method. 

=  
1
2

 ∑ ( , − ,: ,: )2 +
2
∑ ‖ ,:‖

2

( , )∈
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The results of the previous code are shown in the following graph:

Figure 3.2 – Application of the GF algorithm to a graph (left) to generate the embedding vector of its 
nodes (right)

From Figure 3.2, it is possible to see how nodes belonging to groups 1 and 3 are mapped 
together in the same region of space. Those points are separated by the nodes belonging 
to group 2. This mapping allows us to well separate groups 1 and 3 from group 2. 
Unfortunately, there is no clear separation between groups 1 and 3.

Higher-order proximity preserved embedding
HOPE is another graph embedding technique based on the matrix factorization principle. 
This method allows preserving higher-order proximity and does not force its embeddings 
to have any symmetric properties. Before starting to describe the method, let's understand 
what first-order proximity and high-order proximity mean:

• First-order proximity: Given a graph, = ( , ) , where the edges have a weight, 
 , for each vertex pair ( , ) , we say they have a first-order proximity equal to 
  if the edge ( , )  ∈  . Otherwise, the first-order proximity between the two 

nodes is 0.

• Second- and high-order proximity: With the second-order proximity, we can 
capture the two-step relations between each pair of vertices. For each vertex pair 
( , ) , we can see the second-order proximity as a two-step transition from   to 

 . High-order proximity generalizes this concept and allows us to capture a more 
global structure. As a consequence, high-order proximity can be viewed as a k-step 
(k ≥ 3) transition from   to  .
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Given the definition of proximity, we can now describe the HOPE method. Formally, let 
= ( , )  be the graph we want to compute the embedding for and let ∈ ℝ| |×| |  be 

its adjacency matrix. The loss function (L) used by this problem is as follows:

In the preceding equation,  ∈ ℝ| |×| |  is a similarity matrix generated from graph   and 
∈ ℝ| |×   and ∈ ℝ| |×   are two embedding matrices representing a d-dimensional 

embedding space. In more detail,   represents the source embedding and   represents 
the target embedding. 

HOPE uses those two matrices in order to capture asymmetric proximity in directed 
networks where the direction from a source node and a target node is present. The final 
embedding matrix,  , is obtained by simply concatenating, column-wise, the   and   
matrices. Due to this operation, the final embedding space generated by HOPE will have 
2 ∗   dimensions. 

As we already stated, the   matrix is a similarity matrix obtained from the original graph, 
G. The goal of   is to obtain high-order proximity information. Formally, it is computed 
as =  ∙  , where   and   are both polynomials of matrices. 

In its original formulation, the authors of HOPE suggested different ways to compute   
and  . Here we report a common and easy method to compute those matrices, Adamic-
Adar (AA). In this formulation, =  (the identity matrix) while = ∙ ∙  , 

where   is a diagonal matrix computed as = 1 (∑ ( + ))⁄  . Other formulations 
to compute  and   are the Katz Index, Rooted PageRank (RPR), and Common 
Neighbors (CN).

In the following code, we will show how to perform the node embedding of a given 
networkx graph using Python and the GEM library:

import networkx as nx

from gem.embedding.hope import HOPE

G = nx.barbell_graph(m1=10, m2=4)

gf = HOPE(d=4, beta=0.01)

gf.learn_embedding(G)

embeddings = gf.get_embedding()

=  ‖ −  × ‖
2
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The preceding code is similar to the one used for GF. The only difference is in the class 
initialization since here we use HOPE. According to the implementation provided by 
GEM, the d parameter, representing the dimension of the embedding space, will define 
the number of columns of the final embedding matrix,  , obtained after the column-wise 
concatenation of   and  . 

As a consequence, the number of columns of   and   is defined by the floor division (the 
// operator in Python) of the value assigned to d. The results of the code are shown in the 
following graph:

Figure 3.3 – Application of the HOPE algorithm to a graph (left) to generate the embedding vector of its 
nodes (right)

In this case, the graph is undirected and thus there is no difference between the source 
and target nodes. Figure 3.3 shows the first two dimensions of the embeddings matrix 
representing  . It is possible to see how the embedding space generated by HOPE 
provides, in this case, a better separation of the different nodes.

Graph representation with global structure information
Graph representation with global structure information (GraphRep), such as HOPE, 
allows us to preserve higher-order proximity without forcing its embeddings to have 
symmetric properties. Formally, let = ( , )  be the graph we want to compute the node 
embeddings for and let ∈ ℝ| |×| |  be its adjacency matrix. The loss function (L) used by 
this problem is as follows:

 =  ‖ −  × ‖
2

 1 ≤ ≤  
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In the preceding equation, ∈ ℝ| |×| |  is a matrix generated from graph G in order to 
get the kth order of proximity between nodes. 

∈ ℝ| |×   and ∈ ℝ| |×   are two embedding matrices representing a d-dimensional 
embedding space of the kth order of proximity for the source and target nodes, 
respectively. 

The   matrix is computed according to the following equation: 
= ∏ ( −1 ) 

. 
Here,   is a diagonal matrix known as the degree matrix computed using the following 
equation: 

  

 1 = −1   represents the (one-step) probability transition matrix, where 1   is the 
probability of a transition from  to vertex   within one step. In general, for a generic 
value of k,   represents the probability of a transition from  to vertex   within k steps.

For each order of proximity, k, an independent optimization problem is fitted. All the k 
embedding matrices generated are then column-wise concatenated to get the final source 
embedding matrices. 

In the following code, we will show how to perform the node embedding of a given 
networkx graph using Python and the karateclub library: 

import networkx as nx

from karateclub.node_embedding.neighbourhood.grarep import 
GraRep

G = nx.barbell_graph(m1=10, m2=4)

gr = GraRep(dimensions=2, order=3)

gr.fit(G)

embeddings = gr.get_embedding()

We initialize the GraRep class from the karateclub library. In this implementation, 
the dimension parameter represents the dimension of the embedding space, while the 
order parameter defines the maximum number of orders of proximity between nodes. 
The number of columns of the final embedding matrix (stored, in the example, in the 
embeddings variable) is dimension*order, since, as we said, for each proximity 
order an embedding is computed and concatenated in the final embedding matrix. 

= {
∑ , =

0, ≠
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To specify, since two dimensions are computed in the example, embeddings[:,:2] 
represents the embedding obtained for k=1, embeddings[:,2:4] for k=2, and 
embeddings[:,4:] for k=3. The results of the code are shown in the following graph:

.f

Figure 3.4 – Application of the GraphRep algorithm to a graph (top) to generate the embedding vector 
of its nodes (bottom) for different values of k

From the preceding graph, it is easy to see how different orders of proximity allow us 
to get different embeddings. Since the input graph is quite simple, in this case, already 
with k=1, a well-separated embedding space is obtained. To specify, the nodes belonging 
to groups 1 and 3 in all the proximity orders have the same embedding values (they are 
overlapping in the scatter plot). 

In this section, we described some matrix factorization methods for unsupervised graph 
embedding. In the next section, we will introduce a different way to perform unsupervised 
graph embedding using skip-gram models.
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Skip-gram
In this section, we will provide a quick description of the skip-gram model. Since it is 
widely used by different embedding algorithms, a high-level description is needed to 
better understand the different methods. Before going deep into a detailed description, we 
will first give a brief overview. 

The skip-gram model is a simple neural network with one hidden layer trained in order to 
predict the probability of a given word being present when an input word is present. The 
neural network is trained by building the training data using a text corpus as a reference. 
This process is described in the following chart:

Figure 3.5 – Example of the generation of training data from a given corpus. In the filled boxes, the 
target word. In the dash boxes, the context words identified by a window size of length 2

The example described in Figure 3.5 shows how the algorithm to generate the training 
data works. A target word is selected and a rolling window of fixed size w is built around 
that word. The words inside the rolling windows are known as context words. Multiple 
pairs of (target word, context word) are then built according to the words inside the rolling 
window. 

Once the training data is generated from the whole corpus, the skip-gram model is trained 
to predict the probability of a word being a context word for the given target. During its 
training, the neural network learns a compact representation of the input words. This is 
why the skip-gram model is also known as Word to Vector (Word2Vec).
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The structure of the neural network representing the skip-gram model is described in the 
following chart:

Figure 3.6 – Structure of the neural network of the skip-gram model. The number of d neurons in the 
hidden layer represents the final size of the embedding space

The input of the neural network is a binary vector of size m. Each element of the vector 
represents a word in the dictionary of the language we want to embed the words in. When, 
during the training process, a (target word, context word) pair is given, the input array 
will have 0 in all its entries with the exception of the entry representing the "target" word, 
which will be equal to 1. The hidden layer has d neurons. The hidden layer will learn the 
embedding representation of each word, creating a d-dimensional embedding space. 

Finally, the output layer of the neural network is a dense layer of m neurons (the same size 
as the input vector) with a softmax activation function. Each neuron represents a word 
of the dictionary. The value assigned by the neuron corresponds to the probability of that 
word being "related" to the input word. Since softmax can be hard to compute when the 
size of m increases, a hierarchical softmax approach is always used.

The final goal of the skip-gram model is not to actually learn the task we previously 
described but to build a compact d-dimensional representation of the input words. Thanks 
to this representation, it is possible to easily extract an embedding space for the words 
using the weight of the hidden layer. Another common approach to creating a skip-gram 
model, which will be not described here, is context-based: Continuous Bag-of-Words 
(CBOW).

Since the basic concepts behind the skip-gram model have been introduced, we can start 
to describe a series of unsupervised graph embedding algorithms built upon this model. 
Generally speaking, all the unsupervised embedding algorithms based on the skip-gram 
model use the same principle. 
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Starting from an input graph, they extract from it a set of walks. Those walks can be seen 
as a text corpus where each node represents a word. Two words (representing nodes) are 
near each other in the text if they are connected by an edge in a walk. The main difference 
between each method lies in the way those walks are computed. Indeed, as we will see, 
different walk generation algorithms can emphasize particular local or global structures of 
the graph.

DeepWalk
The DeepWalk algorithm generates the node embedding of a given graph using the skip-
gram model. In order to provide a better explanation of this model, we need to introduce 
the concept of random walks. 

Formally, let   be a graph and let   be a vertex selected as the starting point. We select 
a neighbor of   at random and we move toward it. From this point, we randomly select 
another point to move. This process is repeated   times. The random sequence of   
vertices selected in this way is a random walk of length  . It is worth mentioning that the 
algorithm used to generate the random walks does not impose any constraint on how they 
are built. As a consequence, there is no guarantee that the local neighborhood of the node 
is well preserved.

Using the notion of random walk, the DeepWalk algorithm generates a random walk 
of a size of at most t for each node. Those random walks will be given as input to the 
skip-gram model. The embedding generated using skip-gram will be used as the final 
node embedding. In the following figure (Figure 3.7), we can see a step-by-step graphical 
representation of the algorithm:

Figure 3.7 – All the steps used by the DeepWalk algorithm to generate the node embedding of a given 
graph
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Here is a step-by-step explanation of the algorithm graphically described in the preceding 
chart:

1. Random Walk Generation: For each node of input graph G, a set of  random 
walks with a fixed maximum length (t) is computed. It should be noted that the 
length t is an upper bound. There are no constraints forcing all the paths to have the 
same length. 

2. Skip-Gram Training: Using all the random walks generated in the previous step, 
a skip-gram model is trained. As we described earlier, the skip-gram model works 
on words and sentences. When a graph is given as input to the skip-gram model, as 
visible in Figure 3.7, a graph can be seen as an input text corpus, while a single node 
of the graph can be seen as a word of the corpus. 

A random walk can be seen as a sequence of words (a sentence). The skip-gram is 
then trained using the "fake" sentences generated by the nodes in the random walk. 
The parameters for the skip-gram model previously described (window size, w, and 
embed size, d) are used in this step.

3. Embedding Generation: The information contained in the hidden layers of the 
trained skip-gram model is used in order to extract the embedding of each node.

In the following code, we will show how to perform the node embedding of a given 
networkx graph using Python and the karateclub library:

import networkx as nx

from karateclub.node_embedding.neighbourhood.deepwalk import 
DeepWalk

G = nx.barbell_graph(m1=10, m2=4)

dw = DeepWalk(dimensions=2)

dw.fit(G)

embeddings = dw.get_embedding()

The code is quite simple. We initialize the DeepWalk class from the karateclub 
library. In this implementation, the dimensions parameter represents the dimension 
of the embedding space. Other parameters worth mentioning that the DeepWalk class 
accepts are as follows: 

• walk_number: The number of random walks to generate for each node

• walk_length: The length of the generated random walks

• window_size: The window size parameter of the skip-gram model
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Finally, the model is fitted on graph G using dw.fit(G) and the embeddings are 
extracted using dw.get_embedding().

The results of the code are shown in the following figure:

Figure 3.8 – Application of the DeepWalk algorithm to a graph (left) to generate the embedding vector 
of its nodes (right)

From the previous graph, we can see how DeepWalk is able to separate region 1 from 
region 3. Those two groups are contaminated by the nodes belonging to region 2. Indeed, 
for those nodes, a clear distinction is not visible in the embedding space.

Node2Vec
The Node2Vec algorithm can be seen as an extension of DeepWalk. Indeed, as with 
DeepWalk, Node2Vec also generates a set of random walks used as input to a skip-gram 
model. Once trained, the hidden layers of the skip-gram model are used to generate the 
embedding of the node in the graph. The main difference between the two algorithms lies 
in the way the random walks are generated. 

Indeed, if DeepWalk generates random walks without using any bias, in Node2Vec a new 
technique to generate biased random walks on the graph is introduced. The algorithm to 
generate the random walks combines graph exploration by merging Breadth-First Search 
(BFS) and Depth-First Search (DFS). The way those two algorithms are combined in 
the random walk's generation is regularized by two parameters,   and  .   defines the 
probability of a random walk getting back to the previous node, while   defines the 
probability that a random walk can pass through a previously unseen part of the graph. 
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Due to this combination, Node2Vec can preserve high-order proximities by preserving 
local structures in the graph as well as global community structures. This new method of 
random walk generation allows solving the limitation of DeepWalk preserving the local 
neighborhood properties of the node.

In the following code, we will show how to perform the node embedding of a given 
networkx graph using Python and the node2vec library:

import networkx as nx

from node2vec import Node2Vec

G = nx.barbell_graph(m1=10, m2=4)

draw_graph(G)

node2vec = Node2Vec(G, dimensions=2)

model = node2vec.fit(window=10)

embeddings = model.wv

Also, for Node2Vec, the code is straightforward. We initialize the Node2Vec class from 
the node2vec library. In this implementation, the dimensions parameter represents 
the dimension of the embedding space. The model is then fitted using node2vec.
fit(window=10). Finally, the embeddings are obtained using model.wv. 

It should be noted that model.wv is an object of the Word2VecKeyedVectors class. 
In order to get the embedding vector of a specific node with nodeid as the ID, we can 
use the trained model, as follows: model.wv[str(nodeId)]. Other parameters worth 
mentioning that the Node2Vec class accepts are as follows: 

• num_walks: The number of random walks to generate for each node

• walk_length: The length of the generated random walks

• p, q: The p and q parameters of the random walk's generation algorithm

The results of the code are shown in Figure 3.9:
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Figure 3.9 – Application of the Node2Vec algorithm to a graph (left) to generate the embedding vector 
of its nodes (right)

As is visible from Figure 3.9, Node2Vec allows us to obtain a better separation between 
nodes in the embedding space compared to DeepWalk. To specify, regions 1 and 3 are well 
clustered in two regions of space. Region 2 instead is well placed in the middle of the two 
groups without any overlap.

Edge2Vec
Contrary to the other embedding function, the Edge to Vector (Edge2Vec) algorithm 
generates the embedding space on edges, instead of nodes. This algorithm is a simple side 
effect of the embedding generated by using Node2Vec. The main idea is to use the node 
embedding of two adjacent nodes to perform some basic mathematical operations in 
order to extract the embedding of the edge connecting them. 

Formally, let   and   be two adjacent nodes and let ( )  and ( )  be their 
embeddings computed with Node2Vec. The operators described in Table 3.1 can be used 
in order to compute the embedding of their edge:

Table 3.1 – Edge embedding operators with their equation and class name in the Node2Vec library
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In the following code, we will show how to perform the node embedding of a given 
networkx graph using Python and the Node2Vec library:

from node2vec.edges import HadamardEmbedder

embedding = HadamardEmbedder(keyed_vectors=model.wv)

The code is quite simple. The HadamardEmbedder class is instantiated with only the 
keyed_vectors parameter. The value of this parameter is the embedding model 
generated by Node2Vec. In order to use other techniques to generate the edge embedding, 
we just need to change the class and select one from the ones listed in Table 3.1. An 
example of the application of this algorithm is shown in the following figure:

Figure 3.11 – Application of the Edge2Vec algorithm to a graph (top) to generate the embedding vector 
of its nodes (bottom) using different methods

From Figure 3.11, we can see how different embedding methods generate completely 
different embedding spaces. AverageEmbedder and HadamardEmbedder, in this 
example, generate well-separated embeddings for regions 1, 2, and 3. 

For WeightedL1Embedder and WeightedL2Embedder, however, the embedding 
space is not well separated since the edge embeddings are concentrated in a single region 
without showing clear clusters.
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Graph2Vec
The methods we previously described generated the embedding space for each node 
or edge on a given graph. Graph to Vector (Graph2Vec) generalizes this concept and 
generates embeddings for the whole graph. 

To specify, given a set of graphs, the Graph2Vec algorithms generate an embedding space 
where each point represents a graph. This algorithm generates its embedding using an 
evolution of the Word2Vec skip-gram model known as Document to Vector (Doc2Vec). 
We can graphically see a simplification of this model in Figure 3.12: 

Figure 3.12 – Simplified graphical representation of the Doc2Vec skip-gram model. The number of d 
neurons in the hidden layer represents the final size of the embedding space

Compared to the simple Word2Vec, Doc2Vec also accepts another binary array 
representing the document containing the input word. Given a "target" document and 
a "target" word, the model then tries to predict the most probable "context" word with 
respect to the input "target" word and document.

With the introduction of the Doc2Vec model, we can now describe the Graph2Vec 
algorithm. The main idea behind this method is to view an entire graph as a document 
and each of its subgraphs, generated as an ego graph (see Chapter 1, Getting Started with 
Graphs) of each node, as words that comprise the document. 
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In other words, a graph is composed of subgraphs as a document is composed of 
sentences. According to this description, the algorithm can be summarized into the 
following steps:

1. Subgraph generation: A set of rooted subgraphs is generated around every node.

2. Doc2Vec training: The Doc2Vec skip-gram is trained using the subgraphs 
generated by the previous step. 

3. Embedding generation: The information contained in the hidden layers of the 
trained Doc2Vec model is used in order to extract the embedding of each node.

In the following code, as we already did in Chapter 2, Graph Machine Learning, we will 
show how to perform the node embedding of a set of networkx graphs using Python 
and the karateclub library:

import matplotlib.pyplot as plt

from karateclub import Graph2Vec

n_graphs = 20

def generate_random():

    n = random.randint(5, 20)

    k = random.randint(5, n)

    p = random.uniform(0, 1)

    return nx.watts_strogatz_graph(n,k,p)

Gs = [generate_random() for x in range(n_graphs)]

model = Graph2Vec(dimensions=2)

model.fit(Gs)

embeddings = model.get_embedding()

In this example, the following have been done:

1. 20 Watts-Strogatz graphs have been generated with random parameters. 

2. We then initialize the Graph2Vec class from the karateclub library with two 
dimensions. In this implementation, the dimensions parameter represents the 
dimension of the embedding space.

3. The model is then fitted on the input data using model.fit(Gs). 
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4. The vector containing the embeddings is extracted using model.get_
embedding(). 

The results of the code are shown in the following figure:

Figure 3.13 – Application of the Graph2Vec algorithm to a graph (left) to generate the embedding vector 
of its nodes (right) using different methods

From Figure 3.13, it is possible to see the embedding space generated for the different 
graphs. 

In this section, we described different shallow embedding methods based on matrix 
factorization and the skip-gram model. However, in the scientific literature, a lot of 
unsupervised embedding algorithms exist, such as Laplacian methods. We refer those of 
you who are interested in exploring those methods to look at the paper Machine Learning 
on Graphs: A Model and Comprehensive Taxonomy available at https://arxiv.org/
pdf/2005.03675.pdf.

We will continue our description of the unsupervised graph embedding method in the 
next sections. We will describe more complex graph embedding algorithms based on 
autoencoders.

https://arxiv.org/pdf/2005.03675.pdf
https://arxiv.org/pdf/2005.03675.pdf
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Autoencoders
Autoencoders are an extremely powerful tool that can effectively help data scientists to 
deal with high-dimensional datasets. Although first presented around 30 years ago, in 
recent years, autoencoders have become more and more widespread in conjunction with 
the general rise of neural network-based algorithms. Besides allowing us to compact 
sparse representations, they can also be at the base of generative models, representing the 
first inception of the famous Generative Adversarial Network (GAN), which is, using the 
words of Geoffrey Hinton:

 "The most interesting idea in the last 10 years in machine learning"
An autoencoder is a neural network where the inputs and outputs are basically the same, 
but that is characterized by a small number of units in the hidden layer. Loosely speaking, 
it is a neural network that is trained to reconstruct its inputs using a significantly lower 
number of variables and/or degree of freedom. 

Since an autoencoder does not need a labeled dataset, it can be seen as an example of 
unsupervised learning and a dimensionality-reduction technique. However, different from 
other techniques such as Principal Component Analysis (PCA) and matrix factorization, 
autoencoders can learn non-linear transformation thanks to the non-linear activation 
functions of their neurons:

Figure 3.14 – Diagram of the autoencoder structure. The colors in the input and output layers represent 
the fact that the values should be as similar as possible. In fact, the training of the network is done in 

order to match these values and minimize the reconstruction error 
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Figure 3.14 shows a simple example of an autoencoder. You can see how the autoencoder 
can generally be seen as composed of two parts: 

• An encoder network that processes the input through one or more units and maps 
it into an encoded representation that reduces the dimension of the inputs (under-
complete autoencoders) and/or constrains its sparsity (over-complete regularized 
autoencoders)

• A decoder network that reconstructs the input signal from the encoded 
representation of the middle layer 

The encoder-decoder structure is then trained to minimize the ability of the full network 
to reconstruct the input. In order to completely specify an autoencoder, we need a loss 
function. The error between the inputs and the outputs can be computed using different 
metrics and indeed the choice of the correct form for the "reconstruction" error is a 
critical point when building an autoencoder. 

Some common choices for the loss functions that measure the reconstruction error are 
mean square error, mean absolute error, cross-entropy, and KL divergence. 

In the following sections, we will show you how to build an autoencoder starting with 
some basic concepts and then applying those concepts to graph structures. But before 
diving in, we feel compelled to give you a very brief introduction to the frameworks that 
will allow us to do this: TensorFlow and Keras. 

TensorFlow and Keras – a powerful combination
Released as open source by Google in 2017, TensorFlow is now the standard, de facto 
framework that allows symbolic computations and differential programming. It basically 
allows you to build a symbolic structure that describes how inputs are combined in order 
to produce the outputs, defining what is generally called a computational graph or a 
stateful dataflow graph. In this graph, nodes are the variable (scalar, arrays, tensors) and 
edges represent operations connecting the inputs (edge source) to the output (edge target) 
of a single operation. 

In TensorFlow, such a graph is static (this is indeed one of the main differences with 
respect to another very popular framework in this context: torch) and can be executed 
by feeding data into it, as inputs, clearing the "dataflow" attribute mentioned previously. 

By abstracting the computation, TensorFlow is a very general tool that can run on 
multiple backends: on machines powered by CPUs, GPUs, or even ad hoc, specifically 
designed processing units such as TPUs. Besides, TensorFlow-powered applications can 
also be deployed on different devices, ranging from single and distributed servers to 
mobile devices.
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Besides abstracting computation, TensorFlow also allows you to symbolically differentiate 
your computational graph with respect to any of its variables, resulting in a new 
computational graph that can also be differentiated to produce higher-order derivatives. 
This approach is generally referred to as symbol-to-symbol derivative and it is indeed 
extremely powerful, especially in the context of the optimization of the generic loss 
function, which requires gradient estimations (such as gradient descent techniques). 

As you might know, the problem of optimizing a loss function with respect to many 
parameters is central in the training of any neural network via backpropagation. This is 
surely the main reason why TensorFlow has become very popular in the past few years 
and why it was designed and produced in the first place by Google. 

Diving in depth into the usage of TensorFlow is beyond the scope of this book and indeed 
you can find out more through the description given in dedicated books. In the following 
sections, we will use some of its main functionalities and provide you with the basic tools 
for building neural networks. 

Since its last major release, 2.x, the standard way of building a model with TensorFlow is 
using the Keras API. Keras was natively a side external project with respect to TensorFlow, 
aimed at providing a common and simple API to use several differential programming 
frameworks, such as TensorFlow, Teano, and CNTK, for implementing a neural network 
model. It generally abstracts the low-level implementation of the computation graph 
and provides you with the most common layers used when building neural networks 
(although custom layers can also be easily implemented), such as the following:

• Convolutional layers

• Recurrent layers

• Regularization layers

• Loss functions

Keras also exposes APIs that are very similar to scikit-learn, the most popular library for 
machine learning in the Python ecosystem, making it very easy for data scientists to build, 
train, and integrate neural network-based models in their applications. 

In the next section, we will show you how to build and train an autoencoder using Keras. 
We'll start applying these techniques to images in order to progressively apply the key 
concepts to graph structures.
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Our�first�autoencoder
We'll start by implementing an autoencoder in its simplest form, that is, a simple feed-
forward network trained to reconstruct its input. We'll apply this to the Fashion-MNIST 
dataset, which is a dataset similar to the famous MNIST dataset that features hand-written 
numbers on a black and white image. 

MNIST has 10 categories and consists of 60k + 10k (train dataset + test dataset) 
28x28 pixel grayscale images that represent a piece of clothing (T-shirt, Trouser, 
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot). 
The Fashion-MNIST dataset is a harder task than the original MNIST dataset and it is 
generally used for benchmarking algorithms. 

The dataset is already integrated in the Keras library and can be easily imported using the 
following code: 

from tensorflow.keras.datasets import fashion_mnist

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_
data() 

It is usually good practice to rescale the inputs with an order of magnitude of around 1 
(for which activation functions are most efficient) and make sure that the numerical data 
is in single-precision (32 bits) instead of double-precision (64 bits). This is due to the 
fact that it is generally desirable to promote speed rather than precision when training 
a neural network, which is a computationally expensive process. In certain cases, the 
precision could even be lowered to half-precision (16 bits). We transform the input with 
the following:

x_train = x_train.astype('float32') / 255.

x_test = x_test.astype('float32') / 255.

We can grasp the type of inputs we are dealing with by plotting some of the samples from 
the training set using the following code: 

n = 10

plt.figure(figsize=(20, 4))

for i in range(n):

    ax = plt.subplot(1, n, i + 1)

    plt.imshow(x_train[i])

    plt.title(classes[y_train[i]])

    plt.gray()

    ax.get_xaxis().set_visible(False)
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    ax.get_yaxis().set_visible(False)

plt.show()

In the preceding code, classes represents the mapping between integers and class 
names, for example, T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, 
Sneaker, Bag, and Ankle boot:

Figure 3.15 – Some samples taken from the training set of the Fashion-MNIST dataset

Now that we have imported the inputs, we can build our autoencoder network by creating 
the encoder and the decoder. We will be doing this using the Keras functional API, which 
provides more generality and flexibility compared to the so-called Sequential API. We 
start by defining the encoder network:

from tensorflow.keras.layers import Conv2D, Dropout, 
MaxPooling2D, UpSampling2D, Input

input_img = Input(shape=(28, 28, 1))

x = Conv2D(16, (3, 3), activation='relu', padding='same')
(input_img)

x = MaxPooling2D((2, 2), padding='same')(x)

x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)

x = MaxPooling2D((2, 2), padding='same')(x)

x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)

encoded = MaxPooling2D((2, 2), padding='same')(x)

Our network is composed of a stack of three levels of the same pattern composed of the 
same two-layer building block:

• Conv2D, a two-dimensional convolutional kernel that is applied to the input and 
effectively corresponds to having weights shared across all the input neurons. 
After applying the convolutional kernel, the output is transformed using the ReLU 
activation function. This structure is replicated for n hidden planes, with n being 16 
in the first stacked layer and 8 in the second and third stacked layers.

• MaxPooling2D, which down-samples the inputs by taking the maximum value 
over the specified window (2x2 in this case).
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Using the Keras API, we can also have an overview of how the layers transformed the 
inputs using the Model class, which converts the tensors into a user-friendly model ready 
to be used and explored:

Model(input_img, encoded).summary()

This provides a summary of the encoder network visible in Figure 3.16:

Figure 3.16 – Overview of the encoder network

As can be seen, at the end of the encoding phase, we have a (4, 4, 8) tensor, which is 
more than six times smaller than our original initial inputs (28x28). We can now build 
the decoder network. Note that the encoder and decoder do not need to have the same 
structure and/or shared weights: 

x = Conv2D(8, (3, 3), activation='relu', padding='same')
(encoded)

x = UpSampling2D((2, 2))(x)

x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)

x = UpSampling2D((2, 2))(x)

x = Conv2D(16, (3, 3), activation='relu')(x)

x = UpSampling2D((2, 2))(x)
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decoded = Conv2D(1, (3, 3), activation='sigmoid', 
padding='same')(x) 

In this case, the decoder network resembles the encoder structure where the down-
sampling of the input achieved using the MaxPooling2D layer has been replaced by the 
UpSampling2D layer, which basically repeats the input over a specified window (2x2 in 
this case, effectively doubling the tensor in each direction).

We have now fully defined the network structure with the encoder and decoder layers. 
In order to completely specify our autoencoder, we also need to specify a loss function. 
Moreover, to build the computational graph, Keras also needs to know which algorithms 
should be used in order to optimize the network weights. Both bits of information, the 
loss function and optimizer to be used, are generally provided to Keras when compiling 
the model:

autoencoder = Model(input_img, decoded)

autoencoder.compile(optimizer='adam', loss='binary_
crossentropy')

We can now finally train our autoencoder. Keras Model classes provide APIs that are 
similar to scikit-learn, with a fit method to be used to train the neural network. Note 
that, owing to the nature of the autoencoder, we are using the same information as the 
input and output of our network:

autoencoder.fit(x_train, x_train,

                epochs=50,

                batch_size=128,

                shuffle=True,

                validation_data=(x_test, x_test))

Once the training is finished, we can examine the ability of the network to reconstruct the 
inputs by comparing input images with their reconstructed version, which can be easily 
computed using the predict method of the Keras Model class as follows:

decoded_imgs = autoencoder.predict(x_test)

In Figure 3.17, we show the reconstructed images. As you can see, the network is quite 
good at reconstructing unseen images, especially when considering the large-scale 
features. Details might have been lost in the compression (see, for instance, the logo on the 
t-shirts) but the overall relevant information has indeed been captured by our network: 
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Figure 3.17 – Examples of the reconstruction done on the test set by the trained autoencoder

It can also be very interesting to represent the encoded version of the images in a 
two-dimensional plane using T-SNE:

from tensorflow.keras.layers import Flatten

embed_layer = Flatten()(encoded)

embeddings = Model(input_img, embed_layer).predict(x_test)

tsne = TSNE(n_components=2)

emb2d = tsne.fit_transform(embeddings)

x, y = np.squeeze(emb2d[:, 0]), np.squeeze(emb2d[:, 1])

The coordinates provided by T-SNE are shown in Figure 3.18, colored by the class the 
sample belongs to. The clustering of the different clothing can clearly be seen, particularly 
for some classes that are very well separated from the rest:

Figure 3.18 – T-SNE transformation of the embeddings extracted from the test set, colored by the class 
that the sample belongs to
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Autoencoders are, however, rather prone to overfitting, as they tend to re-create exactly 
the images of the training and not generalize well. In the following subsection, we will 
see how overfitting can be prevented in order to build more robust and reliable dense 
representations. 

Denoising autoencoders
Besides allowing us to compress a sparse representation into a denser vector, autoencoders 
are also widely used to process a signal in order to filter out noise and extract only a 
relevant (characteristic) signal. This can be very useful in many applications, especially 
when identifying anomalies and outliers. 

Denoising autoencoders are a small variation of what has been implemented. As described 
in the previous section, basic autoencoders are trained using the same image as input and 
output. Denoising autoencoders corrupt the input using some noise of various intensity, 
while keeping the same noise-free target. This could be achieved by simply adding some 
Gaussian noise to the inputs:

noise_factor = 0.1

x_train_noisy = x_train + noise_factor * np.random.
normal(loc=0.0, scale=1.0, size=x_train.shape) 

x_test_noisy = x_test + noise_factor * np.random.
normal(loc=0.0, scale=1.0, size=x_test.shape) 

x_train_noisy = np.clip(x_train_noisy, 0., 1.)

x_test_noisy = np.clip(x_test_noisy, 0., 1.)

The network can then be trained using the corrupted input, while for the output the noise-
free image is used:

noisy_autoencoder.fit(x_train_noisy, x_train,

                epochs=50,

                batch_size=128,

                shuffle=True,

                validation_data=(x_test_noisy, x_test))
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Such an approach is generally valid when datasets are large and when the risk of 
overfitting the noise is rather limited. When datasets are smaller, an alternative to 
avoid the network "learning" the noise as well (thus learning the mapping between a 
static noisy image to its noise-free version) is to add training stochastic noise using a 
GaussianNoise layer. 

Note that in this way, the noise may change between epochs and prevent the network from 
learning a static corruption superimposed to our training set. In order to do so, we change 
the first layers of our network in the following way:

input_img = Input(shape=(28, 28, 1))

noisy_input = GaussianNoise(0.1)(input_img)

x = Conv2D(16, (3, 3), activation='relu', padding='same')
(noisy_input)

The difference is that instead of having statically corrupted samples (that do not change 
in time), the noisy inputs now keep changing between epochs, thus avoiding the network 
learning the noise as well. 

The GaussianNoise layer is an example of a regularization layer, that is, a layer that 
helps reduce overfitting of a neural network by inserting a random part in the network. 
GaussianNoise layers make models more robust and able to generalize better, avoiding 
autoencoders learning the identity function.

Another common example of a regularization layer is the dropout layers that effectively 
set to 0 some of the inputs (at random with a probability, 0 ) and rescale the other inputs 

by a 
1

1 − 0
⁄

  factor in order to (statistically) keep the sum over all the units constant, 
with and without dropout. 

Dropout corresponds to randomly killing some of the connections between layers in 
order to reduce output dependence to specific neurons. You need to keep in mind that 
regularization layers are only active at training, while at test time they simply correspond 
to identity layers. 
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In Figure 3.19, we compare the network reconstruction of a noisy input (input) for the 
previous unregularized trained network and the network with a GaussianNoise 
layer. As can be seen (compare, for instance, the images of trousers), the model with 
regularization tends to develop stronger robustness and reconstructs the noise-free 
outputs:

Figure 3.19 – Comparison with reconstruction for noisy samples. Top row: noisy input; middle row: 
reconstructed output using a vanilla autoencoder; bottom row: reconstructed output using a denoising 

autoencoder

Regularization layers are often used when dealing with deep neural networks that tend 
to overfit and are able to learn identity functions for autoencoders. Often, dropout 
or GaussianNoise layers are introduced, repeating a similar pattern composed of 
regularization and learnable layers that we usually refer to as stacked denoising layers.

Graph autoencoders
Once the basic concepts of autoencoders are understood, we can now turn to apply this 
framework to graph structures. If on one hand the network structure, decomposed into 
an encoder-decoder structure with a low-dimensional representation in between, still 
applies, the definition of the loss function to be optimized needs a bit of caution when 
dealing with networks. First, we need to adapt the reconstruction error to a meaningful 
formulation that can adapt to the peculiarities of graph structures. But to do so, let's first 
introduce the concepts of first- and higher-order proximity.
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When applying autoencoders to graph structures, the input and output of the 
network should be a graph representation, as, for instance, the adjacency matrix. The 
reconstruction loss could then be defined as the Frobenius norm of the difference between 
the input and output matrices. However, when applying autoencoders to such graph 
structures and adjacency matrices, two critical issues arise:

• Whereas the presence of links indicates a relation or similarity between two vertices, 
their absence does not generally indicate a dissimilarity between vertices.

• The adjacency matrix is extremely sparse and therefore the model will naturally 
tend to predict a 0 rather than a positive value.

To address such peculiarities of graph structures, when defining the reconstruction loss, 
we need to penalize more errors done for the non-zero elements rather than that for zero 
elements. This can be done using the following loss function:

Here, ⊙  is the Hadamard element-wise product, where = > 1  if there is an edge 
between nodes   and  , and 0 otherwise. The preceding loss guarantees that vertices that 
share a neighborhood (that is, their adjacency vectors are similar) will also be close in the 
embedding space. Thus, the preceding formulation will naturally preserve second-order 
proximity for the reconstructed graph. 

On the other hand, you can also promote first-order proximity in the reconstructed graph, 
thus enforcing connected nodes to be close in the embedding space. This condition can be 
enforced by using the following loss:

Here,   and   are the two representation of nodes   and   in the embedding space. This 
loss function forces neighboring nodes to be close in the embedding space. In fact, if two 
nodes are tightly connected,   will be large. As a consequence, their difference in the 
embedding space, ‖ − ‖

2
2
 , should be limited (indicating the two nodes are close in the 

embedding space) to keep the loss function small. The two losses can also be combined 
into a single loss function, where, in order to prevent overfitting, a regularization loss can 
be added that is proportional to the norm of the weight coefficients:

ℒ2 = ∑ ‖( ̃ − ) ⊙ ‖
=1

 

ℒ1 ℎ = ∑
, =1

‖ − ‖
2
2
 

ℒ = ℒ2 +  ∙ ℒ + ∙ ℒ = ℒ2 +  ∙ ℒ + ∙ ‖ ‖2  
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In the preceding equation, W represents all the weights used across the network. The 
preceding formulation was proposed in 2016 by Wang et al., and it is now known as 
Structural Deep Network Embedding (SDNE). 

Although the preceding loss could also be directly implemented with TensorFlow and 
Keras, you can already find this network integrated in the GEM package we referred to 
previously. As before, extracting the node embedding can be done similarly in a few lines 
of code, as follows:

G=nx.karate_club_graph()

sdne=SDNE(d=2, beta=5, alpha=1e-5, nu1=1e-6, nu2=1e-6,

          K=3,n_units=[50, 15,], rho=0.3, n_iter=10, 

          xeta=0.01,n_batch=100,

          modelfile=['enc_model.json','dec_model.json'],

          weightfile=['enc_weights.hdf5','dec_weights.hdf5'])

sdne.learn_embedding(G)

embeddings = m1.get_embedding()

Although very powerful, these graph autoencoders encounter some issues when 
dealing with large graphs. For these cases, the input of our autoencoder is one row of 
the adjacency matrix that has as many elements as the nodes in the network. In large 
networks, this size can easily be of the order of millions or tens of millions. 

In the next section, we describe a different strategy for encoding the network information 
that in some cases may iteratively aggregate embeddings only over local neighborhoods, 
making it scalable to large graphs.

Graph neural networks
GNNs are deep learning methods that work on graph-structured data. This family of 
methods is also known as geometric deep learning and is gaining increasing interest in a 
variety of applications, including social network analysis and computer graphics.

According to the taxonomy defined in Chapter 2, Graph Machine Learning, the encoder 
part takes as input both the graph structure and the node features. Those algorithms 
can be trained either with or without supervision. In this chapter, we will focus on 
unsupervised training, while the supervised setting will be explored in Chapter 4, 
Supervised Graph Learning. 
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If you are familiar with the concept of a Convolutional Neural Network (CNN), you 
might already know that they are able to achieve impressive results when dealing with 
regular Euclidean spaces, such as text (one-dimensional), images (two-dimensional), and 
videos (three-dimensional). A classic CNN consists of a sequence of layers and each layer 
extracts multi-scale localized spatial features. Those features are exploited by deeper layers 
to construct more complex and highly expressive representations.

In recent years, it has been observed that concepts such as multi-layer and locality 
are also useful for processing graph-structured data. However, graphs are defined 
over a non-Euclidean space, and finding a generalization of a CNN for graphs is not 
straightforward, as described in Figure 3.20:

Figure 3.20 – Visual difference between Euclidean and non-Euclidean neighborhoods

The original formulation of GNN was proposed by Scarselli et al. back in 2009. It relies on 
the fact that each node can be described by its features and its neighborhood. Information 
coming from the neighborhood (which represents the concept of locality in the graph 
domain) can be aggregated and used to compute more complex and high-level features. 
Let's understand in more detail how it can be done.

At the beginning, each node,  , is associated with a state. Let's start with a random 
embedding, ℎ   (ignoring node attributes for simplicity). At each iteration of the algorithm, 
nodes accumulate input from their neighbors using a simple neural network layer:

Here,  ∈  ℝ ×   and  ∈  ℝ   are trainable parameters (where d is the dimension of the 
embedding),   is a non-linear function, and t represents the tth iteration of the algorithm. 
The equation is applied recursively until a particular objective is reached. Notice that, at 
each iteration, the previous state (the state computed at the previous iteration) is exploited 
in order to compute that the new state has happened with recurrent neural networks.

ℎ =  ∑
∈ ( )

( ℎ −1 +  ) 
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Variants of GNNs
Starting from this first idea, several attempts have been made in recent years to re-address 
the problem of learning from graph data. In particular, variants of the previously 
described GNN have been proposed, with the aim of improving its representation 
learning capability. Some of them are specifically designed to process specific types of 
graphs (direct, indirect, weighted, unweighted, static, dynamic, and so on). 

Also, several modifications have been proposed for the propagation step (convolution, 
gate mechanisms, attention mechanisms, and skip connections, among others), with the 
aim of improving representation at different levels. Also, different training methods have 
been proposed to improve learning.

When dealing with unsupervised representation learning, one of the most common 
approaches is to use an encoder to embed the graph (the encoder is formulated as one of 
the GNN variants) and then use a simple decoder to reconstruct the adjacency matrix. 
The loss function is usually formulated as the similarity between the original adjacency 
matrix and the reconstructed one. Formally, it can be defined as follows:

Here,  ∈  ℝ ×   is the adjacency matrix representation and  ∈  ℝ ×   is the matrix of 
node attributes. Another common variant of this approach, especially used when dealing 
with graph classification/representation learning, is to train against a target distance. The 
idea is to embed two pairs of graphs simultaneously obtaining a combined representation. 
The model is then trained such that this representation matches the distance. A similar 
strategy can be also adopted when dealing with node classification/representation learning 
by using a node similarity function.

Graph Convolutional Neural Network (GCN)-based encoders are one of the most 
diffused variants of GNN for unsupervised learning. GCNs are GNN models inspired 
by many of the basic ideas behind CNN. Filter parameters are typically shared over all 
locations in the graph and several layers are concatenated to form a deep network. 

There are essentially two types of convolutional operations for graph data, namely spectral 
approaches and non-spectral (spatial) approaches. The first, as the name suggests, 
defines convolution in the spectral domain (that is, decomposing graphs in a combination 
of simpler elements). Spatial convolution formulates the convolution as aggregating 
feature information from neighbors. 

= ( , )
̂ =   
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Spectral graph convolution
Spectral approaches are related to spectral graph theory, the study of the characteristics 
of a graph in relation to the characteristic polynomial, eigenvalues, and eigenvectors 
of the matrices associated with the graph. The convolution operation is defined as the 
multiplication of a signal (node features) by a kernel. In more detail, it is defined in the 
Fourier domain by determining the eigendecomposition of the graph Laplacian (think 
about the graph Laplacian as an adjacency matrix normalized in a special way).

While this definition of spectral convolution has a strong mathematical foundation, the 
operation is computationally expensive. For this reason, several works have been done to 
approximate it in an efficient way. ChebNet by Defferrard et al., for instance, is one of the 
first seminal works on spectral graph convolution. Here, the operation is approximated by 
using the concept of the Chebyshev polynomial of order K (a special kind of polynomial 
used to efficiently approximate functions).

Here, K is a very useful parameter because it determines the locality of the filter. 
Intuitively, for K=1, only the node features are fed into the network. With K=2, we average 
over two-hop neighbors (neighbors of neighbors) and so on.

Let  ∈  ℝ ×   be the matrix of node features. In classical neural network processing, this 
signal would be composed of layers of the following form:

Here,  ∈  ℝ ×   is the layer weights and   represents some non-linear activation 
function. The drawback of this operation is that it processes each node signal 
independently without taking into account connections between nodes. To overcome this 
limitation, a simple (yet effective) modification can be done, as follows:

By introducing the adjacency matrix,  ∈  ℝ ×  , a new linear combination between 
each node and its corresponding neighbors is added. This way, the information depends 
only on the neighborhood and parameters are applied on all the nodes, simultaneously.

 It is worth noting that this operation can be repeated in sequence several times, thus 
creating a deep network. At each layer, the node descriptors, X, will be replaced with the 
output of the previous layer, −1.

The preceding presented equation, however, has some limitations and cannot be applied as 
it stands. The first limitation is that by multiplying by A, we consider all the neighbors of 
the node but not the node itself. This problem can be easily overcome by adding self-loops 
in the graph, that is, adding the ̂ = +   identity matrix.

=  ( ) 

=  ( ) 
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The second limitation is related to the adjacency matrix itself. Since it is typically not 
normalized, we will observe large values in the feature representation of high-degree 
nodes and small values in the feature representation of low-degree nodes. This will lead 
to several problems during training since optimization algorithms are often sensitive to 
feature scale. Several methods have been proposed for normalizing A. 

In Kipf and Welling, 2017 (one of the well-known GCN models), for example, the 
normalization is performed by multiplying A by the diagonal node degree matrix D, such 
that all the rows sum to 1: −1  . More specifically, they used symmetric normalization 
( −1/2 −1/2) , such that the proposed propagation rule becomes as follows:

Here, ̂   is the diagonal node degree matrix of ̂ .

In the following example, we will create a GCN as defined in Kipf and Welling and we will 
apply this propagation rule for embedding a well-known network: a Zachary's karate club 
graph:

1. To begin, it is necessary to import all the Python modules. We will use networkx 
to load the barbell graph:

import networkx as nx

import numpy as np

G = nx.barbell_graph(m1=10,m2=4)

2. To implement the GC propagation rule, we need an adjacency matrix representing 
G. Since this network does not have node features, we will use the  ∈  ℝ ×   
identity matrix as the node descriptor:

A = nx.to_numpy_matrix(G)

 I = np.eye(G.number_of_nodes())

3. We now add the self-loop and prepare the diagonal node degree matrix:

from scipy.linalg import sqrtm

A_hat = A + I

D_hat = np.array(np.sum(A_hat, axis=0))[0]

 D_hat = np.array(np.diag(D_hat))

 D_hat = np.linalg.inv(sqrtm(D_hat))

 A_norm = D_hat @ A_hat @ D_hat

=  ( ̂ −
1
2 ̂ ̂ −

1
2 ) 
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4. Our GCN will be composed of two layers. Let's define the layers' weights and 
the propagation rule. Layer weights, W, will be initialized using Glorot uniform 
initialization (even if other initialization methods can be also used, for example, by 
sampling from a Gaussian or uniform distribution):

def glorot_init(nin, nout):

     sd = np.sqrt(6.0 / (nin + nout))

     return np.random.uniform(-sd, sd, size=(nin, nout))

class GCNLayer():

  def __init__(self, n_inputs, n_outputs):

      self.n_inputs = n_inputs

      self.n_outputs = n_outputs

      self.W = glorot_init(self.n_outputs, self.n_inputs)

      self.activation = np.tanh

  def forward(self, A, X):

      self._X = (A @ X).T

      H = self.W @ self._X 

      H = self.activation(H)

      return H.T # (n_outputs, N)

5. Finally, let's create our network and compute the forward pass, that is, propagate the 
signal through the network:

gcn1 = GCNLayer(G.number_of_nodes(), 8)

 gcn2 = GCNLayer(8, 4)

 gcn3 = GCNLayer(4, 2)

H1 = gcn1.forward(A_norm, I)

 H2 = gcn2.forward(A_norm, H1)

H3 = gcn3.forward(A_norm, H2)
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H3 now contains the embedding computed using the GCN propagation rule. Notice that 
we chose 2 as the number of outputs, meaning that the embedding is bi-dimensional and 
can be easily visualized. In Figure 3.21, you can see the output:

Figure 3.21 – Application of the graph convolutional layer to a graph (left) to generate the embedding 
vector of its nodes (right)

You can observe the presence of two quite well-separated communities. This is a nice 
result, considering that we have not trained the network yet!

Spectral graph convolution methods have achieved noteworthy results in many domains. 
However, they present some drawbacks. Consider, for example, a very big graph with 
billions of nodes: a spectral approach requires the graph to be processed simultaneously, 
which can be impractical from a computational point of view. 

Furthermore, spectral convolution often assumes a fixed graph, leading to poor 
generalization capabilities on new, different graphs. To overcome these issues, spatial 
graph convolution represents an interesting alternative.

Spatial graph convolution
Spatial graph convolutional networks perform the operations directly on the graph by 
aggregating information from spatially close neighbors. Spatial convolution has many 
advantages: weights can be easily shared across a different location of the graph, leading 
to a good generalization capability on different graphs. Furthermore, the computation can 
be done by considering subsets of nodes instead of the entire graph, potentially improving 
computational efficiency.
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GraphSAGE is one of the algorithms that implement spatial convolution. One of the 
main characteristics is its ability to scale over various types of networks. We can think of 
GraphSAGE as composed of three steps:

1. Neighborhood sampling: For each node in a graph, the first step is to find its 
k-neighborhood, where k is defined by the user for determining how many hops to 
consider (neighbors of neighbors).

2. Aggregation: The second step is to aggregate, for each node, the node features 
describing the respective neighborhood. Various types of aggregation can be 
performed, including average, pooling (for example, taking the best feature 
according to certain criteria), or an even more complicated operation, such as using 
recurrent units (such as LSTM).

3. Prediction: Each node is equipped with a simple neural network that learns how to 
perform predictions based on the aggregated features from the neighbors.

GraphSAGE is often used in supervised settings, as we will see in Chapter 4, Supervised 
Graph Learning. However, by adopting strategies such as using a similarity function as 
the target distance, it can also be effective for learning embedding without explicitly 
supervising the task.

Graph convolution in practice
In practice, GNNs have been implemented in many machine learning and deep learning 
frameworks, including TensorFlow, Keras, and PyTorch. For the next example, we will be 
using StellarGraph, the Python library for machine learning on graphs.

In the following example, we will learn about embedding vectors in an unsupervised 
manner, without a target variable. The method is inspired by Bai et al. 2019 and is based 
on the simultaneous embedding of pairs of graphs. This embedding should match a 
ground-truth distance between graphs:

1. First, let's load the required Python modules:

import numpy as np

import stellargraph as sg

from stellargraph.mapper import FullBatchNodeGenerator

from stellargraph.layer import GCN

import tensorflow as tf

from tensorflow.keras import layers, optimizers, losses, 
metrics, Model
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2. We will be using the PROTEINS dataset for this example, which is available in 
StellarGraph and consists of 1,114 graphs with 39 nodes and 73 edges on average 
for each graph. Each node is described by four attributes and belongs to one of two 
classes:

dataset = sg.datasets.PROTEINS()

graphs, graph_labels = dataset.load()

3. The next step is to create the model. It will be composed of two GC layers with 64 
and 32 output dimensions followed by ReLU activation, respectively. The output will 
be computed as the Euclidean distance of the two embeddings:

generator = sg.mapper.PaddedGraphGenerator(graphs)

 

# define a GCN model containing 2 layers of size 64 and 
32, respectively. 

# ReLU activation function is used to add non-linearity 
between layers

gc_model = sg.layer.GCNSupervisedGraphClassification(

 [64, 32], ["relu", "relu"], generator, pool_all_
layers=True)

# retrieve the input and the output tensor of the GC 
layer such that they can be connected to the next layer

inp1, out1 = gc_model.in_out_tensors()

inp2, out2 = gc_model.in_out_tensors()

vec_distance = tf.norm(out1 - out2, axis=1)

 

# create the model. It is also useful to create a 
specular model in order to easily retrieve the embeddings

pair_model = Model(inp1 + inp2, vec_distance)

 embedding_model = Model(inp1, out1)

4. It is now time to prepare the dataset for training. To each pair of input graphs, we 
will assign a similarity score. Notice that any notion of graph similarity can be used 
in this case, including graph edit distances. For simplicity, we will be using the 
distance between the spectrum of the Laplacian of the graphs:

def graph_distance(graph1, graph2):

   spec1 = nx.laplacian_spectrum(graph1.to_
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networkx(feature_attr=None))

   spec2 = nx.laplacian_spectrum(graph2.to_
networkx(feature_attr=None))

   k = min(len(spec1), len(spec2))

   return np.linalg.norm(spec1[:k] - spec2[:k])

graph_idx = np.random.RandomState(0).randint(len(graphs), 
size=(100, 2))

targets = [graph_distance(graphs[left], graphs[right]) 
for left, right in graph_idx]

train_gen = generator.flow(graph_idx, batch_size=10, 
targets=targets)

5. Finally, let's compile and train the model. We will be using an adaptive moment 
estimation optimizer (Adam) with the learning rate parameter set to 1e-2. The 
loss function we will be using is defined as the minimum squared error between the 
prediction and the ground-truth distance computed as previously. The model will 
be trained for 500 epochs:

pair_model.compile(optimizers.Adam(1e-2), loss="mse")

pair_model.fit(train_gen, epochs=500, verbose=0)

6. After training, we are now ready to inspect and visualize the learned representation. 
Since the output is 32-dimensional, we need a way to qualitatively evaluate the 
embeddings, for example, by plotting them in a bi-dimensional space. We will use 
T-SNE for this purpose:

# retrieve the embeddings

embeddings = embedding_model.predict(generator.
flow(graphs))

# TSNE is used for dimensionality reduction

from sklearn.manifold import TSNE

tsne = TSNE(2)

 two_d = tsne.fit_transform(embeddings)
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Let's plot the embeddings. In the plot, each point (embedded graph) is colored according 
to the corresponding label (blue=0, red=1). The results are visible in Figure 3.22:

Figure 3.22 – The PROTEINS dataset embedding using GCNs

This is just one of the possible methods for learning embeddings for graphs. More 
advanced solutions can be experimented with to better fit the problem of interest.

Summary 
In this chapter, we have learned how unsupervised machine learning can be effectively 
applied to graphs to solve real problems, such as node and graph representation learning.

In particular, we first analyzed shallow embedding methods, a set of algorithms that are 
able to learn and return only the embedding values for the learned input data.

We then learned how autoencoder algorithms can be used to encode the input by 
preserving important information in a lower-dimensional space. We have also seen 
how this idea can be adapted to graphs, by learning about embeddings that allow us to 
reconstruct the pair-wise node/graph similarity.

Finally, we introduced the main concepts behind GNNs. We have seen how well-known 
concepts, such as convolution, can be applied to graphs.

In the next chapter, we will revise these concepts in a supervised setting. There, a target 
label is provided and the objective is to learn a mapping between the input and the output.



4
Supervised  

Graph Learning
Supervised learning (SL) most probably represents the majority of practical machine 
learning (ML) tasks. Thanks to more and more active and effective data collection 
activities, it is very common nowadays to deal with labeled datasets.

This is also true for graph data, where labels can be assigned to nodes, communities, or 
even to an entire structure. The task, then, is to learn a mapping function between the 
input and the label (also known as a target or an annotation).

For example, given a graph representing a social network, we might be asked to guess 
which user (node) will close their account. We can learn this predictive function by 
training graph ML on retrospective data, where each user is labeled as "faithful" or 
"quitter" based on whether they closed their account after a few months.

In this chapter, we will explore the concept of SL and how it can be applied on graphs. 
Therefore, we will also be providing an overview of the main supervised graph embedding 
methods. The following topics will be covered:

• The supervised graph embedding roadmap

• Feature-based methods

• Shallow embedding methods
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• Graph regularization methods

• Graph convolutional neural networks (CNNs) 

Technical requirements
We will be using Jupyter Notebooks with Python 3.8 for all of our exercises. In the 
following code block, you can see a list of the Python libraries that will be installed for 
this chapter using pip (for example, run pip install networkx==2.5 on the 
command line):

Jupyter==1.0.0

networkx==2.5

matplotlib==3.2.2

node2vec==0.3.3

karateclub==1.0.19

scikit-learn==0.24.0

pandas==1.1.3

numpy==1.19.2

tensorflow==2.4.1

neural-structured-learning==1.3.1

stellargraph==1.2.1

In the rest of this book, if not clearly stated, we will refer to nx as the result of the import 
networkx as nx Python command.

All code files relevant to this chapter are available at https://github.com/
PacktPublishing/Graph-Machine-Learning/tree/main/Chapter04.

The supervised graph embedding roadmap 
In SL, a training set consists of a sequence of ordered pairs (x, y), where x is a set of input 
features (often signals defined on graphs) and y is the output label assigned to it. The goal 
of the ML models, then, is to learn the function mapping each x value to each y value. 
Common supervised tasks include predicting user properties in a large social network or 
predicting molecules' attributes, where each molecule is a graph.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter04
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter04
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Sometimes, however, not all instances can be provided with a label. In this scenario, a 
typical dataset consists of a small set of labeled instances and a larger set of unlabeled 
instances. For such situations, semi-SL (SSL) is proposed, whereby algorithms aim to 
exploit label dependency information reflected by available label information in order to 
learn the predicting function for the unlabeled samples.

With regard to supervised graph ML techniques, many algorithms have been developed. 
However as previously reported by different scientific papers (https://arxiv.org/
abs/2005.03675), they can be grouped into macro-groups such as feature-based 
methods, shallow embedding methods, regularization methods, and graph neural 
networks (GNNs), as graphically depicted in the following diagram:

Figure 4.1 – Hierarchical structure of the different supervised embedding algorithms described in this 
book 

In the following sections, you will learn the main principles behind each group of 
algorithms. We will try to provide insight into the most well-known algorithms in the 
field as well, as these can be used to solve real-world problems.

Feature-based methods 
One very simple (yet powerful) method for applying ML on graphs is to consider the 
encoding function as a simple embedding lookup. When dealing with supervised tasks, 
one simple way of doing this is to exploit graph properties. In Chapter 1, Getting Started 
with Graphs, we have learned how graphs (or nodes in a graph) can be described by means 
of structural properties, each "encoding" important information from the graph itself.

https://arxiv.org/abs/2005.03675
https://arxiv.org/abs/2005.03675
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Let's forget graph ML for a moment: in classical supervised ML, the task is to find a 
function that maps a set of (descriptive) features of an instance to a particular output. 
Such features should be carefully engineered so that they are sufficiently representative to 
learn that concept. Therefore, as the number of petals and the sepal length might be good 
descriptors for a flower, when describing a graph we might rely on its average degree, its 
global efficiency, and its characteristic path length.

This shallow approach acts in two steps, outlined as follows:

1. Select a set of good descriptive graph properties.

2. Use such properties as input for a traditional ML algorithm.

Unfortunately, there is no general definition of good descriptive properties, and 
their choice strictly depends on the specific problem to solve. However, you can still 
compute a wide variety of graph properties and then perform feature selection to 
select the most informative ones. Feature selection is a widely studied topic in ML, 
but providing details about the various methods is outside the scope of this book. 
However, we refer you to the book Machine Learning Algorithms – Second Edition 
(https://subscription.packtpub.com/book/big_data_and_business_
intelligence/9781789347999), published by Packt Publishing, for further reading 
on this subject.

Let's now see a practical example of how such a basic method can be applied. We will 
be performing a supervised graph classification task by using a PROTEINS dataset. The 
PROTEINS dataset contains several graphs representing protein structures. Each graph is 
labeled, defining whether the protein is an enzyme or not. We will follow these next steps:

1. First, let's load the dataset through the stellargraph Python library, as follows:

from stellargraph import datasets

from IPython.display import display, HTML

dataset = datasets.PROTEINS()

graphs, graph_labels = dataset.load()

https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781789347999
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781789347999
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2. For computing graph properties, we will be using networkx, as described in 
Chapter 1, Getting Started with Graphs. To that end, we need to convert graphs from 
the stellargraph format to the networkx format. This can be done in two 
steps: first, convert the graphs from the stellargraph representation to numpy 
adjacency matrices. Then, use the adjacency matrices to retrieve the networkx 
representation. In addition, we also transform the labels (which are stored as a 
pandas Series) to a numpy array, which can be better exploited by the evaluation 
functions, as we will see in the next steps. The code is illustrated in the following 
snippet:

# convert from StellarGraph format to numpy adj matrices

adjs = [graph.to_adjacency_matrix().A for graph in 
graphs]

# convert labels from Pandas.Series to numpy array

labels = graph_labels.to_numpy(dtype=int)

3. Then, for each graph, we compute global metrics to describe it. For this example, 
we have chosen the number of edges, the average cluster coefficient, and the global 
efficiency. However, we suggest you compute several other properties you may find 
worth exploring. We can extract the graph metrics using networkx, as follows:

import numpy as np

import networkx as nx

metrics = []

for adj in adjs:

  G = nx.from_numpy_matrix(adj)

  # basic properties

  num_edges = G.number_of_edges()

  # clustering measures

  cc = nx.average_clustering(G)

  # measure of efficiency

  eff = nx.global_efficiency(G)

  metrics.append([num_edges, cc, eff]) 
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4. We can now exploit scikit-learn utilities to create train and test sets. In 
our experiments, we will be using 70% of the dataset as the training set and the 
remainder as the test set. We can do that by using the train_test_split 
function provided by scikit-learn, as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_
split(metrics, labels, test_size=0.3, random_state=42)

5. It's now time for training a proper ML algorithm. We chose a support vector 
machine (SVM) for this task. More precisely, the SVM is trained to minimize the 
difference between the predicted labels and the actual labels (the ground truth). We 
can do this by using the SVC module of scikit-learn, as follows:

from sklearn import svm

from sklearn.metrics import accuracy_score, precision_
score, recall_score, f1_score

clf = svm.SVC()

clf.fit(X_train, y_train)

 y_pred = clf.predict(X_test)

print('Accuracy', accuracy_score(y_test,y_pred))

 print('Precision', precision_score(y_test,y_pred))

 print('Recall', recall_score(y_test,y_pred))

 print('F1-score', f1_score(y_test,y_pred))

This should be the output of the previous snippet of code: 
Accuracy 0.7455

Precision 0.7709

Recall 0.8413

F1-score 0.8045
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We used Accuracy, Precision, Recall, and F1-score to evaluate how well the 
algorithm is performing on the test set. We achieved about 80% for the F1 score, which is 
already quite good for such a naïve task.

Shallow embedding methods 
As we already described in Chapter 3, Unsupervised Graph Learning, shallow embedding 
methods are a subset of graph embedding methods that learn node, edge, or graph 
representation for only a finite set of input data. They cannot be applied to other instances 
different from the ones used to train the model. Before starting our discussion, it is 
important to define how supervised and unsupervised shallow embedding algorithms 
differ. 

The main difference between unsupervised and supervised embedding methods 
essentially lies in the task they attempt to solve. Indeed, if unsupervised shallow 
embedding algorithms try to learn a good graph, node, or edge representation in order 
to build well-defined clusters, the supervised algorithms try to find the best solution for a 
prediction task such as node, label, or graph classification.

In this section, we will explain in detail some of those supervised shallow embedding 
algorithms. Moreover, we will enrich our description by providing several examples of 
how to use those algorithms in Python. For all the algorithms described in this section, 
we will present a custom implementation using the base classes available in the scikit-
learn library. 

Label propagation algorithm
The label propagation algorithm is a well-known semi-supervised algorithm widely 
applied in data science and used to solve the node classification task. More precisely, the 
algorithm propagates the label of a given node to its neighbors or to nodes having a high 
probability of being reached from that node. 
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The general idea behind this approach is quite simple: given a graph with a set of labeled 
and unlabeled nodes, the labeled nodes propagate their label to the nodes having the 
highest probability of being reached. In the following diagram, we can see an example of a 
graph having labeled and unlabeled nodes: 

Figure 4.2 – Example of a graph with two labeled nodes (class 0 in red and class 1 in green) and six 
unlabeled nodes

According to Figure 4.2, using the information of the labeled nodes (node 0 and 6), the 
algorithm will calculate the probability of moving to another unlabeled node. The nodes 
having the highest probability from a labeled node will get the label of that node.

Formally, let = ( , )  be a graph and let = { 1, … , }  be a set of labels. Since the 
algorithm is semi-supervised, just a subset of nodes will have an assigned label. Moreover, 
let ∈ ℝ| |×| |  be the adjacency matrix of the input graph G and ∈ ℝ| |×| |  be the 
diagonal degree matrix where each element ∈   is defined as follows:

In other words, the only nonzero elements of the degree matrix are the diagonal elements 
whose values   are given by the degree of the node represented by the row. In the following 
figure, we can see the diagonal degree matrix of the graph represented in Figure 4.2:

= {
0  ≠

deg( )  =  
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Figure 4.3 – Diagonal degree matrix for the graph in Figure 4.2

From Figure 4.3, it is possible to see how only the diagonal elements of the matrix contain 
nonzero values, and those values represent the degree of the specific node. We also need 
to introduce the transition matrix = −1  . This matrix defines the probability of a node 
being reached from another node. More precisely, ∈   is the probability of reaching 
node   from node  . The following figure shows the transition matrix   for the graph 
depicted in Figure 4.2:

Figure 4.4 – Transition matrix for the graph in Figure 4.2

In Figure 4.4, the matrix shows the probability of reaching an end node given a start node. 
For instance, from the first row of the matrix, we can see how from node 0 it is possible to 
reach, with equal probability of 0.5, only nodes 1 and 2. If we defined with 0  the initial 
label assignment, the probability of label assignment for each node obtained using the   
matrix can be computed as 1 = 0 . The 1  matrix computed for the graph in Figure 4.2 
is shown in the following figure:

Figure 4.5 – Solution obtained using the matrix for the graph in Figure 4.2
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From Figure 4.5, we can see that using the transition matrix, node 1 and node 2 have a 
probability of being assigned to the [1 0]  label of 0.5 and 0.33 respectively, while node 
5 and node 6 have a probability of being assigned to the [0 1]  label of 0.33 and 0.5, 
respectively. 

Moreover, if we better analyze Figure 4.5, we can see two main problems, as follows: 

• With this solution, it is possible to assign only to nodes [1 2] and [5 7] a probability 
associated with a label.

• The initial labels of nodes 0 and 6 are different from the one defined in 0 . 

In order to solve the first point, the algorithm will perform   different iterations; at each 
iteration  , the algorithm will compute the solution for that iteration, as follows:

The algorithm stops its iteration when a certain condition is met. The second problem is 
solved by the label propagation algorithm by imposing, in the solution of a given iteration 
 , the labeled nodes to have the initial class values. For example, after computing the result 

visible in Figure 4.5, the algorithm will force the first line of the result matrix to be [1 0]  
and the seventh line of the matrix to be [0 1] .

Here, we propose a modified version of the LabelPropagation class available in the 
scikit-learn library. The main reason behind this choice is given by the fact that the 
LabelPropagation class takes as input a matrix representing a dataset. Each row of 
the matrix represents a sample, and each column represents a feature. 

Before performing a fit operation, the LabelPropagation class internally executes 
the _build_graph function. This function will build, using a parametric kernel 
(k-nearest neighbors (kNN) and radial basis functions are available for use inside the 
_get_kernel function), a graph describing the input dataset. As a result, the original 
dataset is transformed into a graph (in its adjacency matrix representation) where each 
node is a sample (a row of the input dataset) and each edge is an interaction between the 
samples. 

= −1 
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In our specific case, the input dataset is already a graph, so we need to define a new 
class capable of dealing with a networkx graph and performing the computation 
operation on the original graph. The goal is achieved by creating a new class—
namely, GraphLabelPropagation—by extending the ClassifierMixin, 
BaseEstimator, and ABCMeta base classes. The algorithm proposed here is mainly 
used in order to help you understand the concept behind the algorithm. The whole 
algorithm is provided in the 04_supervised_graph_machine_learning/02_
Shallow_embeddings.ipynb notebook available in the GitHub repository of this 
book. In order to describe the algorithm, we will use only the fit(X,y) function as a 
reference. The code is illustrated in the following snippet:

class GraphLabelPropagation(ClassifierMixin, BaseEstimator, 
metaclass=ABCMeta):

 

     def fit(self, X, y):

        X, y = self._validate_data(X, y)

        self.X_ = X

        check_classification_targets(y)

        D = [X.degree(n) for n in X.nodes()]

        D = np.diag(D)

        # label construction

        # construct a categorical distribution for 
classification only

       unlabeled_index = np.where(y==-1)[0]

       labeled_index = np.where(y!=-1)[0]

       unique_classes = np.unique(y[labeled_index])

       self.classes_ = unique_classes

       Y0 = np.array([self.build_label(y[x], len(unique_
classes)) if x in labeled_index else np.zeros(len(unique_
classes)) for x in range(len(y))])

 

       A = inv(D)*nx.to_numpy_matrix(G)

       Y_prev = Y0

       it = 0

       c_tool = 10
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       while it < self.max_iter & c_tool > self.tol:

           Y = A*Y_prev

           #force labeled nodes

           Y[labeled_index] = Y0[labeled_index]

           it +=1

           c_tol = np.sum(np.abs(Y-Y_prev))

           Y_prev = Y

       self.label_distributions_ = Y

       return self

The fit(X,y) function takes as input a networkx graph   and an array   representing 
the labels assigned to each node. Nodes without labels should have a representative 
value of -1. The while loop performs the real computation. More precisely, it computes 
the   value at each iteration and forces the labeled nodes in the solution to be equal to 
their original input value. The algorithm performs the computation until the two stop 
conditions are satisfied. In this implementation, the following two criteria have been used:

• Number of iterations: The algorithm runs the computation until a given number of 
iterations has been performed.

• Solution tolerance error: The algorithm runs the computation until the absolute 
difference of the solution obtained in two consecutive iterations, −1  and  , is 
lower than a given threshold value.

The algorithm can be applied to the example graph depicted in Figure 4.2 using the 
following code:

glp = GraphLabelPropagation()

y = np.array([-1 for x in range(len(G.nodes()))])

y[0] = 0

y[6] = 1

glp.fit(G,y)

 glp.predict_proba(G)

The result obtained by the algorithm is shown in the following diagram:
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Figure 4.6 – Result of the label propagation algorithm on the graph of Figure 4.2: on the left, the final 
labeled graph; on the right, the final probability assignment matrix

In Figure 4.6, we can see the results of the algorithm applied to the example shown in 
Figure 4.2. From the final probability assignment matrix, it is possible to see how the 
probability of the initial labeled nodes is 1 due to the constraints of the algorithm and how 
nodes that are "near" to labeled nodes get their label.

Label spreading algorithm
The label spreading algorithm is another semi-supervised shallow embedding algorithm. 
It was built in order to overcome one big limitation of the label propagation method: 
the initial labeling. Indeed, according to the label propagation algorithm, the initial 
labels cannot be modified in the training process and, in each iteration, they are forced 
to be equal to their original value. This constraint could generate incorrect results when 
the initial labeling is affected by errors or noise. As a consequence, the error will be 
propagated in all nodes of the input graph. 

In order to solve this limitation, the label spreading algorithm tries to relax the constraint 
of the original labeled data, allowing the labeled input nodes to change their label during 
the training process. 

Formally, let = ( , )  be a graph and let = { 1, … , }  be a set of labels (since the 
algorithm is semi-supervised, just a subset of nodes will have an assigned label), and let 
∈ ℝ| |×| |  and ∈ ℝ| |×| |  be the adjacency matrix diagonal degree matrix of graph 

G, respectively. Instead of computing the probability transition matrix, the label spreading 
algorithm uses the normalized graph Laplacian matrix, defined as follows:

ℒ = −1 2⁄ −1 2⁄  
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As with label propagation, this matrix can be seen as a sort of compact low-dimensional 
representation of the connections defined in the whole graph. This matrix can be easily 
computed using networkx with the following code:

from scipy.linalg import fractional_matrix_power

D_inv = fractional_matrix_power(D, -0.5)

 L = D_inv*nx.to_numpy_matrix(G)*D_inv

As a result, we get the following:

Figure 4.7 – The normalized graph Laplacian matrix

The most important difference between the label spreading and label propagation 
algorithms is related to the function used to extract the labels. If we defined with 0  the 
initial label assignment, the probability of a label assignment for each node obtained using 
the ℒ  matrix can be computed as follows:

As with label propagation, label spreading has an iterative process to compute the final 
solution. The algorithm will perform   different iterations; in each iteration  , the 
algorithm will compute the solution for that iteration, as follows:

The algorithm stops its iteration when a certain condition is met. It is important to 
underline the term (1− ) 0  of the equation. Indeed, as we said, label spreading does 
not force the labeled element of the solution to be equal to its original value. Instead, the 
algorithm uses a regularization parameter [0,1)  to weight the influence of the original 
solution at each iteration. This allows us to explicitly impose the "quality" of the original 
solution and its influence in the final solution.

1 = ℒ 0 + (1− ) 0 

= ℒ −1 + (1 − ) 0 
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As with the label propagation algorithm, in the following code snippet, we propose a 
modified version of the LabelSpreading class available in the scikit-learn library 
due to the motivations we already mentioned in the previous section. We propose the 
GraphLabelSpreading class by extending our GraphLabelPropagation class, 
since the only difference will be in the fit() method of the class. The whole algorithm 
is provided in the 04_supervised_graph_machine_learning/02_Shallow_
embeddings.ipynb notebook available in the GitHub repository of this book:

class GraphLabelSpreading(GraphLabelPropagation):

    def fit(self, X, y):

        X, y = self._validate_data(X, y)

        self.X_ = X

        check_classification_targets(y)

        D = [X.degree(n) for n in X.nodes()]

        D = np.diag(D)

        D_inv = np.matrix(fractional_matrix_power(D,-0.5))

        L = D_inv*nx.to_numpy_matrix(G)*D_inv

        # label construction

        # construct a categorical distribution for 
classification only

        labeled_index = np.where(y!=-1)[0]

        unique_classes = np.unique(y[labeled_index])

        self.classes_ = unique_classes

         Y0 = np.array([self.build_label(y[x], len(unique_
classes)) if x in labeled_index else np.zeros(len(unique_
classes)) for x in range(len(y))])

 

        Y_prev = Y0

        it = 0

        c_tool = 10

        while it < self.max_iter & c_tool > self.tol:

           Y = (self.alpha*(L*Y_prev))+((1-self.alpha)*Y0)

            it +=1

            c_tol = np.sum(np.abs(Y-Y_prev))

            Y_prev = Y
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        self.label_distributions_ = Y

        return self

Also in this class, the fit() function is the focal point. The function takes as input a 
networkx graph   and an array   representing the labels assigned to each node. Nodes 
without labels should have a representative value of -1. The while loop computes the   
value at each iteration, weighting the influence of the initial labeling via the parameter 

 . Also, for this algorithm, the number of iterations and the difference between two 
consecutive solutions are used as stop criteria.

The algorithm can be applied to the example graph depicted in Figure 4.2 using the 
following code:

gls = GraphLabelSpreading()

y = np.array([-1 for x in range(len(G.nodes()))])

y[0] = 0

y[6] = 1

gls.fit(G,y)

 gls.predict_proba(G)

In the following diagram, the result obtained by the algorithm is shown:

Figure 4.8 – Result of the label propagation algorithm on graph in Figure 4.2: on the left, the final labeled 
graph; on the right, the final probability assignment matrix
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The result visible in the diagram shown in Figure 4.8 looks similar to the one obtained 
using the label propagation algorithm. The main difference is related to the probability 
of label assignment. Indeed, in this case, it is possible to see how nodes 0 and 6 (the 
ones having an initial labeling) have a probability of 0.5, which is significantly lower 
compared to the probability of 1 obtained using the label propagation algorithm. This 
behavior is expected since the influence of the initial label assignment is weighted by the 
regularization parameter  . 

In the next section, we will continue our description of supervised graph embedding 
methods. We will describe how network-based information helps regularize the training 
and create more robust models.

Graph regularization methods
Shallow embedding methods described in the previous section show how topological 
information and relations between data points can be encoded and leveraged in order to 
build more robust classifiers and address semi-supervised tasks. In general terms, network 
information can be extremely useful in constraining models and enforcing the output to 
be smooth within neighboring nodes. As we have already seen in previous sections, this 
idea can be efficiently used in semi-supervised tasks, when propagating the information 
on neighbor unlabeled nodes. 

On the other hand, this can also be used to regularize the learning phase in order to 
create more robust models that tend to better generalize to unseen examples. Both the 
label propagation and the label spreading algorithms we have seen previously can be 
implemented as a cost function to be minimized when we add an additional regularization 
term. Generally, in supervised tasks, we can write the cost function to be minimized in the 
following form:

Here,   and   represent the labeled and unlabeled samples, and the second term acts as a 
regularization term that depends on the topological information of the graph  .

In this section, we will further describe such an idea and see how this can be very 
powerful, especially when regularizing the training of neural networks, which—as you 
might know—naturally tend to overfit and/or need large amounts of data to be trained 
efficiently. 

ℒ( ) = ∑ ℒ ( , ( )) 
 ∈ 

+ ∑ ℒ ( ( ), ( ), ) 
,  ∈ ,
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Manifold regularization and semi-supervised 
embedding 
Manifold regularization (Belkin et al., 2006) extends the label propagation framework by 
parametrizing the model function in the reproducing kernel Hilbert space (RKHS) and 
using as a supervised loss function (first term in the previous equation) the mean square 
error (MSE) or the hinge loss. In other words, when training an SVM or a least squares fit, 
they apply a graph regularization term based on the Laplacian matrix L, as follows:

For this reason, these methods are generally labeled as Laplacian regularization, 
and such a formulation leads to Laplacian regularized least squares (LapRLS) and 
LapSVM classifications. Label propagation and label spreading can be seen as a special 
case of manifold regularization. Besides, these algorithms can also be used in the case 
of no-labeled data (first term in the equation disappearing) reducing to Laplacian 
eigenmaps. 

On the other hand, they can also be used in the case of a fully labeled dataset, in which 
case the preceding terms constrain the training phase to regularize the training and 
achieve more robust models. Moreover, being the classifier parametrized in the RKHS, the 
model can be used on unobserved samples and does not require test samples to belong to 
the input graph. In this sense, it is therefore an inductive model. 

Manifold learning still represents a form of shallow learning, whereby the parametrized 
function does not leverage on any form of intermediate embeddings. Semi-supervised 
embedding (Weston et al., 2012) extends the concepts of graph regularization to 
deeper architectures by imposing the constraint and the smoothness of the function on 
intermediate layers of a neural network. Let's define ℎ   as the intermediate output of the 
kth hidden layer. The regularization term proposed in the semi-supervised embedding 
framework reads as follows:

∑ ‖ ( )− ( )‖
2
2 

,  ∈ ,

=   

ℒℎ = ∑ ℒ( , ℎ ( ), ℎ ( )) 
,  ∈ ,
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Depending on where the regularization is imposed, three different configurations (shown 
in Figure 4.9) can be achieved, as follows:

• Regularization is applied to the final output of the network. This corresponds to a 
generalization of the manifold learning technique to multilayer neural networks.

• Regularization is applied to an intermediate layer of the network, thus regularizing 
the embedding representation.

• Regularization is applied to an auxiliary network that shares the first k-1 layers. 
This basically corresponds to training an unsupervised embedding network 
while simultaneously training a supervised network. This technique basically 
imposes a derived regularization on the first k-1 layers that are constrained by the 
unsupervised network as well and simultaneously promotes an embedding of the 
network nodes.

The following diagram shows an illustration of the three different configurations—
with their similarities and differences—that can be achieved using a semi-supervised 
embedding framework: 

Figure 4.9 – Semi-supervised embedding regularization configurations: graph regularization, indicated 
by the cross, can be applied to the output (left), to an intermediate layer (center), or to an auxiliary 

network (right)

In its original formulation, the loss function used for the embeddings is the one derived 
from the Siamese network formulation, shown as follows:

( , ℎ
( ), ℎ

( )) =  {
‖ ℎ

( ) − ℎ
( )‖

2
  = 1

max (0, −  ‖ ℎ
( ) − ℎ

( )‖
2

)  = 0
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As can be seen by this equation, the loss function ensures the embeddings of neighboring 
nodes stay close. On the other hand, non-neighbors are instead pulled apart to a distance 
(at least) specified by the threshold  . As compared to the regularization based on the 
Laplacian   (although for neighboring points, the penalization factor is effectively 
recovered), the one shown here is generally easier to be optimized by gradient descent. 

The best choice among the three configurations presented in Figure 4.9 is largely 
influenced by the data at your disposal as well as on your specific use case—that is, 
whether you need a regularized model output or to learn a high-level data representation. 
However, you should always keep in mind that when using softmax layers (usually done at 
the output layer), the regularization based on the hinge loss may not be very appropriate 
or suited for log probabilities. In such cases, regularized embeddings and relative loss 
should instead be introduced at intermediate layers. However, be aware that embeddings 
lying in deeper layers are generally harder to be trained and require a careful tuning of 
learning rate and margins to be used. 

Neural Graph Learning
Neural graph learning (NGL) basically generalizes the previous formulations and, as 
we will see, makes it possible to seamlessly apply graph regularization to any form of a 
neural network, including CNNs and recurrent neural networks (RNNs). In particular, 
there exists an extremely powerful framework named Neural Structured Learning (NSL) 
that allows us to extend in a very few lines of code a neural network implemented in 
TensorFlow with graph regularization. The networks can be of any kind: natural  
or synthetic. 

When synthetic, graphs can be generated in different ways, using—for instance—
embeddings learned in an unsupervised manner and/or by using a similarity/distance 
metric between samples using their features. You can also generate synthetic graphs using 
adversarial examples. Adversarial examples are artificially generated samples obtained by 
perturbing actual (real) examples in such a way that we confound the network, trying to 
force a prediction error. These very carefully designed samples (obtained by perturbing 
a given sample in the gradient-descent direction in order to maximize errors) can be 
connected to their related samples, thus generating a graph. These connections can then 
be used to train a graph-regularized version of the network, allowing us to obtain models 
that are more robust against adversarially generated examples.
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NGL extends the regularization by augmenting the tuning parameters for graph 
regularization in neural networks, decomposing the contribution of labeled-labeled, 
labeled-unlabeled, and unlabeled-unlabeled relations using three parameters, 1 , 2 , and 

3 , respectively, as follows:

ℒ = ℒ +  1 ∑ ( ℎ
( ), ℎ

( ))
,  ∈ 

+ 2 ∑ ( ℎ
( ), ℎ

( ))
,  ∈ 

+  3 ∑ ( ℎ
( ), ℎ

( ))
,  ∈ 

 

The function   represents a generic distance between two vectors—for instance, the L2 
norm ‖∙‖2 . By varying the coefficients and the definition of ℎ

.  , we can arrive at the 
different algorithms seen previously as limiting behavior, as follows: 

• When i = 0  ∀i we retrieve the non-regularized version of a neural network.

• When only 1 ≠ 0 , we recover a fully supervised formulation where relationships 
between nodes act to regularize the training.

• When we substitute ℎ
.   (which are parametrized by a set of alpha coefficients) 

with a set of values 
∗  (to be learned) that map each sample to its instance class, we 

recover the label propagation formulation.

Loosely speaking, the NGL formulations can be seen as a non-linear version of the label 
propagation and label spreading algorithms, or as a form of a graph-regularized neural 
network for which the manifold learning or semi-supervising embedding can be obtained. 

We will now apply NGL to a practical example, where you will learn how to use graph 
regularization in neural networks. To do so, we will use the NLS framework (https://
github.com/tensorflow/neural-structured-learning), which is a library 
built on top of TensorFlow that makes it possible to implement graph regularization with 
only a few lines of codes on top of standard neural networks. 

For our example, we will be using the Cora dataset, which is a labeled dataset that 
consists of 2,708 scientific papers in computer science that have been classified into seven 
classes. Each paper represents a node that is connected to other nodes based on citations. 
In total, there are 5,429 links in the network. 

Moreover, each node is further described by a 1,433-long vector of binary values (0 or 1) 
that represent a dichotomic bag-of-words (BOW) representation of the paper: a one-hot 
encoding algorithm indicating the presence/absence of a word in a given vocabulary 
made up of 1,433 terms. The Cora dataset can be downloaded directly from the 
stellargraph library with a few lines of code, as follows:

from stellargraph import datasets

dataset = datasets.Cora()

https://github.com/tensorflow/neural-structured-learning
https://github.com/tensorflow/neural-structured-learning
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dataset.download()

G, labels = dataset.load()

This returns two outputs, outlined as follows:

• G, which is the citation network containing the network nodes, edges, and the 
features describing the BOW representation.

• labels, which is a pandas Series that provides the mapping between the paper 
ID and one of the classes, as follows: 

['Neural_Networks', 'Rule_Learning', 'Reinforcement_
Learning', 

'Probabilistic_Methods', 'Theory', 'Genetic_Algorithms', 
'Case_Based']

Starting from this information, we create a training set and a validation set. In the training 
samples, we will include information relating to neighbors (which may or may not belong 
to the training set and therefore have a label), and this will be used to regularize the 
training. 

Validation samples, on the other hand, will not have neighbor information and the 
predicted label will only depend on the node features—namely, the BOW representation. 
Therefore, we will leverage both labeled and unlabeled samples (semi-supervised task) in 
order to produce an inductive model that can also be used against unobserved samples. 

To start with, we conveniently structure the node features as a DataFrame, whereas we 
store the graph as an adjacency matrix, as follows:

adjMatrix = pd.DataFrame.sparse.from_spmatrix(

        G.to_adjacency_matrix(), 

        index=G.nodes(), columns=G.nodes()

)

features = pd.DataFrame(G.node_features(), index=G.nodes())

Using adjMatrix, we implement a helper function that is able to retrieve the closest 
topn neighbors of a node, returning the node ID and the edge weight, as illustrated in the 
following code snippet:

def getNeighbors(idx, adjMatrix, topn=5):

    weights = adjMatrix.loc[idx]

    neighbors = weights[weights>0]\

         .sort_values(ascending=False)\
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         .head(topn)

    return [(k, v) for k, v in neighbors.iteritems()]

Using the preceding information together with the helper function, we can merge the 
information into a single DataFrame, as follows:

dataset = {

    index: {

        "id": index,

        "words": [float(x) 

                  for x in features.loc[index].values], 

        "label": label_index[label],

        "neighbors": getNeighbors(index, adjMatrix, topn)

    }

    for index, label in labels.items()

}

df = pd.DataFrame.from_dict(dataset, orient="index")

This DataFrame represents the node-centric feature space. This would suffice if we were to 
use a regular classifier that does not exploit the information of the relationships between 
nodes. However, in order to allow the computation of the graph-regularization term, we 
need to join the preceding DataFrame with information relating to the neighborhood 
of each node. We then define a function able to retrieve and join the neighborhood 
information, as follows:

def getFeatureOrDefault(ith, row):

    try:

        nodeId, value = row["neighbors"][ith]

        return {

            f"{GRAPH_PREFIX}_{ith}_weight": value,

            f"{GRAPH_PREFIX}_{ith}_words": df.loc[nodeId]
["words"]

        } 

     except:

        return {

            f"{GRAPH_PREFIX}_{ith}_weight": 0.0,

            f"{GRAPH_PREFIX}_{ith}_words": [float(x) for x in 
np.zeros(1433)]

        } 
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def neighborsFeatures(row):

    featureList = [getFeatureOrDefault(ith, row) for ith in 
range(topn)]

    return pd.Series(

        {k: v 

         for feat in featureList for k, v in feat.items()}

    )

As shown in the preceding code snippet, when the neighbors are less than topn, we set 
the weight and the one-hot encoding of the words to 0. The GRAPH_PREFIX constant is 
a prefix that is to be prepended to all features that will later be used by the nsl library to 
regularize the training. Although it can be changed, in the following code snippet we will 
keep its value equal to the default value: "NL_nbr".

This function can be applied to the DataFrame in order to compute the full feature space, 
as follows:

neighbors = df.apply(neighborsFeatures, axis=1)

allFeatures = pd.concat([df, neighbors], axis=1)

We now have in allFeatures all the ingredients we need to implement our graph-
regularized model. 

We start by splitting our dataset into a training set and a validation set, as follows:

n = int(np.round(len(labels)*ratio))  

labelled, unlabelled = model_selection.train_test_split(

    allFeatures, train_size=n, test_size=None, stratify=labels

)

By changing the ratio, we can change the amount of labeled versus unlabeled data 
points. As the ratio decreases, we expect the performance of standard non-regularized 
classifiers to reduce. However, such a reduction can be compensated by leveraging 
network information provided by unlabeled data. We thus expect graph-regularized 
neural networks to provide better performance thanks to the augmented information they 
leverage. For the following code snippet, we will assume a ratio value equal to 0.2.
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Before feeding this data into our neural network, we convert the DataFrame into a 
TensorFlow tensor and dataset, which is a convenient representation that will allow the 
model to refer to feature names in its input layers. 

Since the input features have different data types, it is best to handle the dataset creation 
separately for weights, words, and labels values, as follows:

train_base = {

    "words": tf.constant([

         tuple(x) for x in labelled["words"].values

    ]),

    "label": tf.constant([

         x for x in labelled["label"].values

    ])

 }

train_neighbor_words = {

    k: tf.constant([tuple(x) for x in labelled[k].values])

    for k in neighbors if "words" in k

}

train_neighbor_weights = {

^    k: tf.constant([tuple([x]) for x in labelled[k].values])

    for k in neighbors if "weight" in k

} 

Now that we have the tensor, we can merge all this information into a TensorFlow dataset, 
as follows:

trainSet = tf.data.Dataset.from_tensor_slices({

    k: v

    for feature in [train_base, train_neighbor_words,

                    train_neighbor_weights]

    for k, v in feature.items()

})

We can similarly create a validation set. As mentioned previously, since we want to 
design an inductive algorithm, the validation dataset does not need any neighborhood 
information. The code is illustrated in the following snippet:

validSet = tf.data.Dataset.from_tensor_slices({

    "words": tf.constant([
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       tuple(x) for x in unlabelled["words"].values

    ]),

    "label": tf.constant([

       x for x in unlabelled["label"].values

    ])

 })

Before feeding the dataset into the model, we split the features from the labels, as follows:

def split(features):

    labels=features.pop("label")

    return features, labels

trainSet = trainSet.map(f)

 validSet = validSet.map(f)

That's it! We have generated the inputs to our model. We could also inspect one sample 
batch of our dataset by printing the values of features and labels, as shown in the following 
code block: 

for features, labels in trainSet.batch(2).take(1):

    print(features)

    print(labels)

It is now time to create our first model. To do this, we start from a simple architecture 
that takes as input the one-hot representation and has two hidden layers, composed of a 
Dense layer plus a Dropout layer with 50 units each, as follows:

inputs = tf.keras.Input(

    shape=(vocabularySize,), dtype='float32', name='words'

)

cur_layer = inputs

for num_units in [50, 50]:

    cur_layer = tf.keras.layers.Dense(

        num_units, activation='relu'

    )(cur_layer)

    cur_layer = tf.keras.layers.Dropout(0.8)(cur_layer)

outputs = tf.keras.layers.Dense(

    len(label_index), activation='softmax',

    name="label"
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)(cur_layer)

model = tf.keras.Model(inputs, outputs=outputs)

Indeed, we could also train this model without graph regularization by simply compiling 
the model to create a computational graph, as follows:

model.compile(

    optimizer='adam',

    loss='sparse_categorical_crossentropy',

    metrics=['accuracy']

)

And then, we could run it as usual, also allowing the history file to be written to disk in 
order to be monitored using TensorBoard, as illustrated in the following code snippet:

from tensorflow.keras.callbacks import TensorBoard

model.fit(

    trainSet.batch(128), epochs=200, verbose=1,

    validation_data=validSet.batch(128),

    callbacks=[TensorBoard(log_dir='/tmp/base)]

)

At the end of the process, we should have something similar to the following output:

Epoch 200/200

loss: 0.7798 – accuracy: 06795 – val_loss: 1.5948 – val_
accuracy: 0.5873

With a top performance around 0.6 in accuracy, we now need to create a graph-
regularized version of the preceding model. First of all, we need to recreate our model 
from scratch. This is important when comparing the results. If we were to use layers 
already initialized and used in the previous model, the layer weights would not be random 
but would be used with the ones already optimized in the preceding run. Once a new 
model has been created, adding a graph regularization technique to be used at training 
time can be done in just a few lines of code, as follows:

import neural_structured_learning as nsl

graph_reg_config = nsl.configs.make_graph_reg_config(

    max_neighbors=2,

    multiplier=0.1,

    distance_type=nsl.configs.DistanceType.L2,
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    sum_over_axis=-1)

graph_reg= nsl.keras.GraphRegularization(

     model, graph_reg_config)

Let's analyze the different hyperparameters of the regularization, as follows:

• max_neighbors tunes the number of neighbors that ought to be used for 
computing the regularization loss for each node.

• multiplier corresponds to the coefficients that tune the importance of the 
regularization loss. Since we only consider labeled-labeled and labeled-unlabeled, 
this effectively corresponds to 1  and 2 .

• distance_type represents the pairwise distance   to be used.

• sum_over_axis sets whether the weighted average sum should be calculated with 
respect to features (when set to None) or to samples (when set to -1).

The graph-regularized model can be compiled and run in the same way as before with the 
following commands:

graph_reg.compile(

    optimizer='adam',

    loss='sparse_categorical_crossentropy',    
metrics=['accuracy']

)

model.fit(

    trainSet.batch(128), epochs=200, verbose=1,

    validation_data=validSet.batch(128),

    callbacks=[TensorBoard(log_dir='/tmp/nsl)]

)

Note that the loss function now also accounts for the graph-regularization term, 
as defined previously. Therefore, we now also introduce information coming from 
neighboring nodes that regularizes the training of our neural network. The preceding 
code, after about 200 iterations, provides the following output:

Epoch 200/200

loss: 0.9136 – accuracy: 06405 – scaled_graph_loss: 0.0328 - 
val_loss: 1.2526 – val_accuracy: 0.6320
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As you can see, graph regularization, when compared to the vanilla version, has allowed 
us to boost the performance in terms of accuracy by about 5%. Not bad at all!

You can perform several experiments, changing the ratio of labeled/unlabeled samples, 
the number of neighbors to be used, the regularization coefficient, the distance, and more. 
We encourage you to play around with the notebook that is provided with this book to 
explore the effect of different parameters yourself. 

In the right panel of the following screenshot, we show the dependence of the 
performance measured by the accuracy as the supervised ratio increases. As expected, 
performance increases as the ratio increases. On the left panel, we show the accuracy 
increments on the validation set for various configuration of neighbors and supervised 
ratio, defined by

:

Figure 4.10 – (Left) Accuracy on the validation set for the graph-regularized neural networks with 
neighbors = 2 and various supervised ratios; (Right) accuracy increments on the validation set for the 

graph-regularized neural networks compared to the vanilla version

As can be seen in Figure 4.10, almost all graph-regularized versions outperform the vanilla 
models. The only exceptions are configuration neighbors = 2 and ratio = 0.5, for which 
the two models perform very similarly. However, the curve has a clear positive trend and 
we reasonably expect the graph-regularized version to outperform the vanilla model for a 
larger number of epochs. 

Note that in the notebook, we also use another interesting feature of TensorFlow for 
creating the datasets. Instead of using a pandas DataFrame, as we did previously, we 
will create a dataset using the TensorFlow Example, Features, and Feature classes, 
which, besides providing a high-level description of samples, also allow us to serialize 
the input data (using protobuf) to make them compatible across platforms and 
programming languages. 

∆ = −   
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If you are interested in further using TensorFlow both for prototyping models and 
deploying them into production via data-driven applications (maybe written in other 
languages), we strongly advise you to dig further into these concepts. 

Planetoid
The methods discussed so far provide graph regularization that is based on the Laplacian 
matrix. As we have seen in previous chapters, enforcing constraints based on   
ensures that first-order proximity is preserved. Yang et al. (2016) proposed a method to 
extend graph regularization in order to also account for higher-order proximities. Their 
approach, which they named Planetoid (short for Predicting Labels And Neighbors with 
Embeddings Transductively Or Inductively from Data), extends skip-gram methods 
used for computing node embeddings to incorporate node-label information. 

As we have seen in the previous chapter, skip-gram methods are based on generating 
random walks through a graph and then using the generated sequences to learn 
embeddings via a skip-gram model. The following diagram shows how the unsupervised 
version is modified to account for the supervised loss: 

Figure 4.11 – Sketch of the Planetoid architecture: the dashed line represents a parametrized function 
that allows the method to extend from transductive to inductive

As shown in Figure 4.11, embeddings are fed to both of the following:

• A softmax layer to predict the graph context of the sampled random-walk sequences

• A set of hidden layers that combine together with the hidden layers derived from 
the node features in order to predict the class labels
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The cost function to be minimized to train the combined network is composed of a 
supervised and an unsupervised loss—ℒ   and ℒ  , respectively. The unsupervised loss is 
analogous to the one used with skip-gram with negative sampling, whereas the supervised 
loss minimizes the conditional probability and can be written as follows:

The preceding formulation is transductive as it requires samples to belong to the graph 
in order to be applied. In a semi-supervised task, this method can be efficiently used 
to predict labels for unlabeled examples. However, it cannot be used for unobserved 
samples. As shown by the dashed line in Figure 4.11, an inductive version of the Planetoid 
algorithm can be obtained by parametrizing the embeddings as a function of the node 
features, via dedicated connected layers. 

Graph CNNs
In Chapter 3, Unsupervised Graph Learning, we have learned the main concepts behind 
GNNs and graph convolutional networks (GCNs). We have also learned the difference 
between spectral graph convolution and spatial graph convolution. More precisely, 
we have further seen that GCN layers can be used to encode graphs or nodes under 
unsupervised settings by learning how to preserve graph properties such as node 
similarity.

In this chapter, we will explore such methods under supervised settings. This time, our 
goal is to learn graphs or node representations that can accurately predict node or graph 
labels. It is indeed worth noting that the encoding function remains the same. What will 
change is the objective!

Graph�classification�using�GCNs
Let's consider again our PROTEINS dataset. Let's load the dataset as follows:

import pandas as pd

from stellargraph import datasets

dataset = datasets.PROTEINS()

graphs, graph_labels = dataset.load()

# necessary for converting default string labels to int

labels = pd.get_dummies(graph_labels, drop_first=True)

ℒ = −∑ log ( | , )
 ∈ 
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In the following example, we are going to use (and compare) one of the most widely used 
GCN algorithms for graph classification: GCN by Kipf and Welling:

1. stellargraph, which we are using for building the model, uses tf.Keras as 
the backend. According to its specific criteria, we need a data generator to feed the 
model. More precisely, since we are addressing a supervised graph classification 
problem, we can use an instance of the PaddedGraphGenerator class of 
stellargraph, which automatically resolves differences in the number of nodes 
by using padding. Here is the code required for this step:

from stellargraph.mapper import PaddedGraphGenerator

generator = PaddedGraphGenerator(graphs=graphs)

2. We are now ready to actually create our first model. We will create and stack 
together four GCN layers through the utility function of stellargraph, as 
follows:

from stellargraph.layer import DeepGraphCNN

from tensorflow.keras import Model

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.layers import Dense, Conv1D, 
MaxPool1D, Dropout, Flatten

from tensorflow.keras.losses import binary_crossentropy

import tensorflow as tf

nrows = 35  # the number of rows for the output tensor

layer_dims = [32, 32, 32, 1]

# backbone part of the model (Encoder)

 dgcnn_model = DeepGraphCNN(

    layer_sizes=layer_dims,

    activations=["tanh", "tanh", "tanh", "tanh"],

    k=nrows,

    bias=False,

    generator=generator,

)

3. This backbone will be concatenated to one-dimensional (1D) convolutional layers 
and fully connected layers using tf.Keras, as follows:

# necessary for connecting the backbone to the head

gnn_inp, gnn_out = dgcnn_model.in_out_tensors()
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# head part of the model (classification)

 x_out = Conv1D(filters=16, kernel_size=sum(layer_dims), 
strides=sum(layer_dims))(gnn_out)

x_out = MaxPool1D(pool_size=2)(x_out)

 x_out = Conv1D(filters=32, kernel_size=5, strides=1)(x_
out)

x_out = Flatten()(x_out)

 x_out = Dense(units=128, activation="relu")(x_out)

 x_out = Dropout(rate=0.5)(x_out)

predictions = Dense(units=1, activation="sigmoid")(x_out)

4. Let's create and compile a model using tf.Keras utilities. We will train the model 
with a binary_crossentropy loss function (to measure the difference between 
predicted labels and ground truth) with the Adam optimizer and a learning rate 
of 0.0001. We will also monitor the accuracy metric while training. The code is 
illustrated in the following snippet:

model = Model(inputs=gnn_inp, outputs=predictions)

model.compile(optimizer=Adam(lr=0.0001), loss=binary_
crossentropy, metrics=["acc"])

5. We can now exploit scikit-learn utilities to create train and test sets. In our 
experiments, we will be using 70% of the dataset as a training set and the remainder 
as a test set. In addition, we need to use the flow method of the generator to supply 
them to the model. The code to achieve this is shown in the following snippet:

from sklearn.model_selection import train_test_split

train_graphs, test_graphs = train_test_split(

graph_labels, test_size=.3, stratify=labels,)

gen = PaddedGraphGenerator(graphs=graphs)

train_gen = gen.flow(

    list(train_graphs.index - 1),

    targets=train_graphs.values,

    symmetric_normalization=False,

    batch_size=50,

)

test_gen = gen.flow(

    list(test_graphs.index - 1),
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    targets=test_graphs.values,

    symmetric_normalization=False,

    batch_size=1,

)

6. It's now time for training. We train the model for 100 epochs. However, feel free to 
play with the hyperparameters to gain better performance. Here is the code for this:

epochs = 100

history = model.fit(train_gen, epochs=epochs, verbose=1,

 validation_data=test_gen, shuffle=True,)

After 100 epochs, this should be the output:
Epoch 100/100

loss: 0.5121 – acc: 0.7636 – val_loss: 0.5636 – val_acc: 
0.7305

Here, we are achieving about 76% accuracy on the training set and about 73% accuracy on 
the test set.

Node�classification�using�GraphSAGE
In the next example, we will train GraphSAGE to classify nodes of the Cora dataset.

 Let's first load the dataset using stellargraph utilities, as follows:

dataset = datasets.Cora()

G, nodes = dataset.load()

Follow this list of steps to train GraphSAGE to classify nodes of the Cora dataset:

1. As in the previous example, the first step is to split the dataset. We will be using 90% 
of the dataset as a training set and the remainder for testing. Here is the code for 
this step:

train_nodes, test_nodes = train_test_split(nodes, train_
size=0.1,test_size=None, stratify=nodes)
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2. This time, we will convert labels using one-hot representation. This representation 
is often used for classification tasks and usually leads to better performance. 
Specifically, let c be the number of possible targets (seven, in the case of the 
Cora dataset), and each label will be converted in a vector of size c, where all the 
elements are 0 except for the one corresponding to the target class. The code is 
illustrated in the following snippet:

from sklearn import preprocessing

label_encoding = preprocessing.LabelBinarizer()

train_labels = label_encoding.fit_transform(train_nodes)

 test_labels = label_encoding.transform(test_nodes)

3. Let's create a generator to feed the data into the model. We will be using an instance 
of the GraphSAGENodeGenerator class of stellargraph. We will use the 
flow method to feed the model with the train and test sets, as follows:

from stellargraph.mapper import GraphSAGENodeGenerator

batchsize = 50

n_samples = [10, 5, 7]

 generator = GraphSAGENodeGenerator(G, batchsize, n_
samples)

train_gen = generator.flow(train_nodes.index, train_
labels, shuffle=True)

 test_gen = generator.flow(test_labels.index, test_
labels)

4. Finally, let's create the model and compile it. For this exercise, we will be using a 
GraphSAGE encoder with three layers of 32, 32, and 16 dimensions, respectively. 
The encoder will then be connected to a dense layer with softmax activation to 
perform the classification. We will use an Adam optimizer with a learning rate 
of 0.03 and categorical_crossentropy as the loss function. The code is 
illustrated in the following snippet:

from stellargraph.layer import GraphSAGE

from tensorflow.keras.losses import categorical_
crossentropy

graphsage_model = GraphSAGE(layer_sizes=[32, 32, 16], 
generator=generator, bias=True, dropout=0.6,)

gnn_inp, gnn_out = graphsage_model.in_out_tensors()

outputs = Dense(units=train_labels.shape[1], 
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activation="softmax")(gnn_out)

# create the model and compile

model = Model(inputs=gnn_inp, outputs=outputs)

model.compile(optimizer=Adam(lr=0.003), loss=categorical_
crossentropy, metrics=["acc"],)

5. It's now time to train the model. We will train the model for 20 epochs, as follows: 

model.fit(train_gen, epochs=20, validation_data=test_gen, 
verbose=2, shuffle=False)

6. This should be the output:

Epoch 20/20

loss: 0.8252 – acc: 0.8889 – val_loss: 0.9070 – val_acc: 
0.8011

We achieved about 89% accuracy over the training set and about 80% accuracy over the 
test set.

Summary 
In this chapter, we have learned how supervised ML can be effectively applied on graphs 
to solve real problems such as node and graph classification. 

In particular, we first analyzed how graph and node properties can be directly used 
as features to train classic ML algorithms. We have seen shallow methods and simple 
approaches to learning node, edge, or graph representations for only a finite set of input 
data.

We have than learned how regularization techniques can be used during the learning 
phase in order to create more robust models that tend to generalize better.

Finally, we have seen how GNNs can be applied to solve supervised ML problems on 
graphs. 

But what can those algorithms be useful for? In the next chapter, we will explore common 
problems on graphs that need to be solved through ML techniques.



5
Problems with 

Machine Learning 
on Graphs

Graph machine learning (ML) approaches can be useful for a wide range of tasks, with 
applications ranging from drug design to recommender systems in social networks. 
Furthermore, given the fact that such methods are general by design (meaning that they 
are not tailored to a specific problem), the same algorithm can be used to solve different 
problems.

There are common problems that can be solved using graph-based learning techniques. In 
this chapter, we will mention some of the most well studied of these by providing details 
about how a specific algorithm, among the ones we have already learned about in Chapter 
3, Unsupervised Graph Learning, and Chapter 4, Supervised Graph Learning, can be used to 
solve a task. After reading this chapter, you will be aware of the formal definition of many 
common problems you may encounter when dealing with graphs. In addition, you will 
learn useful ML pipelines that you can reuse on future real-world problems you will deal 
with.
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More precisely, the following topics will be covered in this chapter:

• Predicting missing links in a graph 

• Detecting meaningful structures such as communities 

• Detecting graph similarities and graph matching

Technical requirements
We will be using Jupyter Notebooks with Python 3.8 for all of our exercises. In the 
following code block, you can see a list of the Python libraries that will be installed for 
this chapter using pip (for example, run pip install networkx==2.5 on the 
command line):

Jupyter==1.0.0

networkx==2.5

karateclub==1.0.19

scikit-learn==0.24.0

pandas==1.1.3

node2vec==0.3.3

numpy==1.19.2

tensorflow==2.4.1

stellargraph==1.2.1

communities==2.2.0

git+https://github.com/palash1992/GEM.git 

All code files relevant to this chapter are available at https://github.com/
PacktPublishing/Graph-Machine-Learning/tree/main/Chapter05.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter05
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter05


Predicting missing links in a graph     153

Predicting missing links in a graph
Link prediction, also known as graph completion, is a common problem when dealing 
with graphs. More precisely, from a partially observed graph—a graph where for a certain 
pair of nodes it is not possible to exactly know if there is (or there is not) an edge between 
them—we want to predict whether or not edges exist for the unknown status node pairs, 
as seen in Figure 5.1. Formally, let = ( , )  be a graph where   is its set of nodes and 

= ∪   is its set of edges. The set of edges   are known as observed links, while the 
set of edges   are known as unknown links. The goal of the link prediction problem is to 
exploit the information of   and   to estimate  . This problem is also common when 
dealing with temporal graph data. In this setting, let   be a graph observed at a given 
timepoint  , where we want to predict the edges of this graph at a given timepoint + 1 . 
The partially observed graph can be seen here:

Figure 5.1 – Partially observed graph with observed link   (solid lines) and unknown link   (dashed 
lines)

The link prediction problem is widely used in different domains, such as a recommender 
system in order to propose friendships in social networks or items to purchase on 
e-commerce websites. It is also used in criminal network investigations in order to 
find hidden connections between criminal clusters, as well as in bioinformatics for the 
analysis of protein-protein interactions. In the next sections, we will discuss two families 
of approaches to solve the link prediction problem—namely, similarity-based and 
embedding-based methods.
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Similarity-based methods
In this subsection, we show several simple algorithms to solve the label prediction 
problem. The main shared idea behind all these algorithms is to estimate a similarity 
function between each couple of nodes in a graph. If, according to the function, the 
nodes look similar, they will have a high probability of being connected by an edge. We 
will divide these algorithms into two sub-families: index-based and community-based 
methods. The former contains all the methods through a simple calculation of an index 
based on the neighbors of a given couple of nodes. The latter contains more sophisticated 
algorithms, whereby the index is computed using information about the community 
to which a given couple of nodes belong. In order to give a practical example of these 
algorithms, we will use the standard implementation available in the networkx library in 
the networkx.algorithms.link_prediction package. 

Index-based methods
In this section, we will show some algorithms available in networkx to compute the 
probability of an edge between two disconnected nodes. These algorithms are based 
on the calculation of a simple index through information obtained by analyzing the 
neighbors of the two disconnected nodes.

Resource allocation index
The resource allocation index method estimates the probability that two nodes   and   are 
connected by estimating the resource allocation index for all node pairs according to the 
following formula:

In the given formula, the ( )  function computes the neighbors of the   nodes and, as 
visible in the formula,   is a node who is a neighbor of both   and  . This index can be 
computed in networkx using the following code:

import networkx as nx

edges = [[1,3],[2,3],[2,4],[4,5],[5,6],[5,7]]

 G = nx.from_edgelist(edges)

 preds = nx.resource_allocation_index(G,[(1,2),(2,5),(3,4)])

The first parameter for the resource_allocation_index function is an input graph, 
while the second parameter is a list of possible edges. We want to compute the probability 
of a connection. As a result, we get the following output:

[(1, 2, 0.5), (2, 5, 0.5), (3, 4, 0.5)]

  ( , )  = ∑
1

| ( )|
∈ ( )∩ ( )
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The output is a list containing couples of nodes such as (1,2), (2,5), and (3,4), 
which form the resource allocation index. According to this output, the probability of 
having an edge between those couples of nodes is 0.5.

Jaccard�coefficient
The algorithm computes the probability of a connection between two nodes   and  , 
according to the Jaccard coefficient, computed as follows:

Here, N( )  is used to compute the neighbors of the   node. The function can be used in 
networkx using the following code:

import networkx as nx

edges = [[1,3],[2,3],[2,4],[4,5],[5,6],[5,7]]

 G = nx.from_edgelist(edges)

 preds = nx.resource_allocation_index(G,[(1,2),(2,5),(3,4)])

The resource_allocation_index function has the same parameters as the previous 
function. The result of the code is shown here:

[(1, 2, 0.5), (2, 5, 0.25), (3, 4, 0.3333333333333333)]

According to this output, the probability of having an edge between nodes (1,2) is 0.5, 
while between nodes (2,5) this is 0.25, and between nodes (3,4) this is 0.333.

In networkx, other methods to compute the probability of a connection between 
two nodes based on their similarity score are nx.adamic_adar_index and 
nx.preferential_attachment, based on Adamic/Adar index and preferential 
attachment index calculations respectively. Those functions have the same parameters as 
the others, and accept a graph and a list of a couple of nodes where we want to compute 
the score. In the next section, we will show another family of algorithms based on 
community detection.

 ( , ) =
|N( ) ∩ N( )|
|N( ) ∪ N( )| 
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Community-based methods
As with index-based methods, the algorithms belonging to this family also compute an 
index representing the probability of the disconnected nodes being connected. The main 
difference between index-based and community-based methods is related to the logic 
behind them. Indeed, community-based methods, before generating the index, need to 
compute information about the community belonging to those nodes. In this subsection, 
we will show—also providing several examples—some common community-based 
methods.

Community common neighbor
In order to estimate the probability of two nodes being connected, this algorithm 
computes the number of common neighbors and adds to this value the number of 
common neighbors belonging to the same community. Formally, for two nodes   and  , 
the community common neighbor value is computed as follows:

In this formula, N( )  is used to compute the neighbors of node  , while ( ) = 1  if 
  belongs to the same community of   and  ; otherwise, this is 0. The function can be 

computed in networkx using the following code:

import networkx as nx

edges = [[1,3],[2,3],[2,4],[4,5],[5,6],[5,7]]

 G = nx.from_edgelist(edges)

 

G.nodes[1]["community"] = 0

G.nodes[2]["community"] = 0

G.nodes[3]["community"] = 0

G.nodes[4]["community"] = 1

G.nodes[5]["community"] = 1

G.nodes[6]["community"] = 1

G.nodes[7]["community"] = 1

preds = nx.cn_soundarajan_hopcroft(G,[(1,2),(2,5),(3,4)])

  ℎ ( , ) =  | ( ) ∪ ( )| + ∑ ( )
( )∩ ( )
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From the preceding code snippet, it is possible to see how we need to assign the 
community property to each node of the graph. This property is used to identify 
nodes belonging to the same community when computing the function ( )  defined 
in the previous equation. The community value, as we will see in the next section, can 
also be automatically computed using specific algorithms. As we already saw, the cn_
soundarajan_hopcroft function takes the input graph and a couple of nodes for 
which we want to compute the score. As a result, we get the following output:

[(1, 2, 2), (2, 5, 1), (3, 4, 1)]

The main difference from the previous function is in the index value. Indeed, we can easily 
see that the output is not in the range (0,1).

Community resource allocation
As with the previous method, the community resource allocation algorithm merges 
information obtained from the neighbors of the nodes with the community, as shown in 
the following formula: 

Here, N( )  is used to compute the neighbors of node  , while ( ) = 1  if   belongs to 
the same community of   and  ; otherwise, this is 0. The function can be computed in 
networkx using the following code:

import networkx as nx

edges = [[1,3],[2,3],[2,4],[4,5],[5,6],[5,7]]

 G = nx.from_edgelist(edges)

 

G.nodes[1]["community"] = 0

G.nodes[2]["community"] = 0

G.nodes[3]["community"] = 0

G.nodes[4]["community"] = 1

G.nodes[5]["community"] = 1

G.nodes[6]["community"] = 1

G.nodes[7]["community"] = 1

preds = nx. ra_index_soundarajan_
hopcroft(G,[(1,2),(2,5),(3,4)])

  ( , ) = ∑
( )

| ( )|
( )∩ ( )
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From the preceding code snippet, it is possible to see how we need to assign the 
community property to each node of the graph. This property is used to identify nodes 
belonging to the same community when computing the function ( )  defined in the 
previous equation. The community value, as we will see in the next section, can also be 
automatically computed using specific algorithms. As we already saw, the ra_index_
soundarajan_hopcroft function takes the input graph and a couple of nodes for 
which we want to compute the score. As a result, we get the following output:

[(1, 2, 0.5), (2, 5, 0), (3, 4, 0)]

From the preceding output, it is possible to see the influence of the community in the 
computation of the index. Since nodes 1 and 2 belong to the same community, they have 
a higher value in the index. On the contrary, edges (2,5) and (3,4) have a value of 0 
since they belong to a different community from each other. 

In networkx, two other methods to compute the probability of a connection between 
two nodes based on their similarity score merged with community information are nx.a 
within_inter_cluster and nx.common_neighbor_centrality.

In the next section, we will describe a more complex technique based on ML plus edge 
embedding to perform prediction of unknown edges.

Embedding-based methods
In this section, we describe a more advanced way to perform link prediction. The idea 
behind this approach is to solve the link prediction problem as a supervised classification 
task. More precisely, for a given graph, each couple of nodes is represented with a feature 
vector (  ), and a class label (  ) is assigned to each of those node couples. Formally, let 

= ( , )  be a graph, and for each couple of nodes ,  , we build the following formula:

Here, ∈    is the feature vector representing the couple of nodes ,  , and , ∈   is 
their label. The value for ,   is defined as follows: , = 1  if, in the graph G, the edge 
connecting node ,   exists; otherwise, , = 0 . Using the feature vector and the labels, we 
can then train an ML algorithm in order to predict if a given couple of nodes constitute a 
plausible edge for the given graph.

= [ 0,0, … , , , . . , , ]     = [ 0,0, … , , , … , , ] 
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If it is easy to build the label vector for each couple of nodes, it is not so straightforward 
to build the feature space. In order to generate the feature vector for each couple of nodes, 
we will use some embedding techniques, such as node2vec and edge2vec, already 
discussed in Chapter 3, Unsupervised Graph Learning. Using those embedding algorithms, 
the generation of the feature space will be greatly simplified. Indeed, the whole process 
can be summarized in two main steps, outlined as follows:

1. For each node of the graph G, its embedding vector is computed using a node2vec 
algorithm.

2. For all the possible couple of nodes in the graph, the embedding is computed using 
an edge2vec algorithm.

We can apply now a generic ML algorithm to the generated feature vector in order to solve 
the classification problem.

In order to give you a practical explanation of this procedure, we will provide an example 
in the following code snippet. More precisely, we will describe the whole pipeline (from 
graph to link prediction) using the networkx, stellargraph, and node2vec 
libraries. We will split the whole process into different steps in order to simplify our 
understanding of the different parts. The link prediction problem was applied to the 
citation network dataset described in Chapter 1, Getting Started with Graphs in Python, 
available at the following link: https://linqs-data.soe.ucsc.edu/public/
lbc/cora.tgz.

As a first step, we will build a networkx graph using the citation dataset, as follows:

import networkx as nx

import pandas as pd

edgelist = pd.read_csv("cora.cites", sep='\t', header=None, 
names=["target", "source"])

G = nx.from_pandas_edgelist(edgelist)

Since the dataset is represented as an edge list (see Chapter 1, Getting Started with Graphs 
in Python), we used the from_pandas_edgelist function to build the graph.

https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
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As a second step, we need to create, from the graph G, training and test sets. More 
precisely, our training and test sets should contain not only a subset of real edges of the 
graph G but also couples of nodes that do not represent a real edge in G. The couples 
representing real edges will be positive instances (class label 1), while the couples that do 
not represent real edges will be negative instances (class label 0). This process can be easily 
performed as follows:

from stellargraph.data import EdgeSplitter

edgeSplitter = EdgeSplitter(G)

 graph_test, samples_test, labels_test = edgeSplitter.train_
test_split(p=0.1, method="global")

We used the EdgeSplitter class available in stellargraph. The main constructor 
parameter of the EdgeSplitter class is the graph (G) we want to use to perform our 
split. The real splitting is performed using the train_test_split function that will 
generate the following outputs:

• graph_test is a subset of the original graph   containing all the nodes but just a 
selected subset of edges.

• samples_test is a vector containing in each position a couple of nodes. This 
vector will contain couples of nodes representing real edges (positive instance) but 
also couples of nodes that do not represent real edges (negative instance).

• labels_test is a vector having the same length as samples_test. It contains 
only 0 or 1. The value of 0 is present in the position representing a negative instance 
in the samples_test vector, while the value of 1 is present in the position 
representing a positive instance in samples_test.

By following the same procedure used to generate the test set, it is possible to generate the 
training set, as illustrated in the following code snippet:

edgeSplitter = EdgeSplitter(graph_test, G)

 graph_train, samples_train, labels_train = edgeSplitter.train_
test_split(p=0.1, method="global")

The main difference in this part of code is related to the initialization of EdgeSplitter. 
In this case, we also provide graph_test in order to not repeat positive and negative 
instances generated for the test set.
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At this point, we have our training and testing datasets with negative and positive 
instances. For each of those instances, we now need to generate their feature vector. In 
this example, we used the node2vec library to generate the node embedding. In general, 
every node embedding algorithm can be used to perform this task. For the training set, we 
can thus generate the feature vector with the following code:

from node2vec import Node2Vec

from node2vec.edges import HadamardEmbedder

node2vec = Node2Vec(graph_train)

 model = node2vec.fit()

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

 train_embeddings = [edges_embs[str(x[0]),str(x[1])] for x in 
samples_train]

From the previous code snippet, it is possible to see the following:

• We generate the embedding for each node in the training graph using the 
node2vec library.

• We use the HadamardEmbedder class to generate the embedding of each couple 
of nodes contained in the training set. Those values will be used as feature vectors to 
perform the training of our model. 

In this example, we used the HadamardEmbedder algorithm, but in general, other 
embedding algorithms can be used, such as the ones described in Chapter 3, Unsupervised 
Graph Learning.

The previous step needs to also be performed for the test set, with the following code:

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

 test_embeddings = [edges_embs[str(x[0]),str(x[1])] for x in 
samples_test]

The only difference here is given by the samples_test array used to compute the edge 
embeddings. Indeed, in this case, we use the data generated for the test set. Moreover, 
it should be noted that the node2vec algorithm was not recomputed for the test set. 
Indeed, given the stochastic nature of node2vec, it is not possible to ensure that the two 
learned embeddings are "comparable" and therefore node2vec embeddings will change 
between runs.
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Everything is set now. We can finally train—using the train_embeddings feature 
space and the train_labels label assignment—an ML algorithm to solve the label 
prediction problem, as follows:

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=1000)

 rf.fit(train_embeddings, labels_train);

In this example, we used a simple RandomForestClassifier class, but every ML 
algorithm can be used to solve this task. We can then apply the trained model on the 
test_embeddings feature space in order to quantify the quality of the classification, as 
shown in the following code block:

from sklearn import metrics

y_pred = rf.predict(test_embeddings)

 print('Precision:', metrics.precision_score(labels_test, y_
pred))

 print('Recall:', metrics.recall_score(labels_test, y_pred))

 print('F1-Score:', metrics.f1_score(labels_test, y_pred))

As a result, we get the following output:

Precision: 0.8557114228456913

Recall: 0.8102466793168881

F1-Score: 0.8323586744639375

As we already mentioned, the methods we just described are just a general schema; each 
piece of the pipeline—such as the train/test split, the node/edge embedding, and the ML 
algorithm—can be changed according to the specific problem we are facing.

This method is particularly useful when dealing with link prediction in temporal graphs. 
In this case, information relating to an edge obtained at timepoint   used to train a model 
can be applied in order to predict edges at timepoint + 1 . 
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In this section, we introduced the label prediction problem. We enriched our explanation 
by providing a description, with several examples, of different techniques used to find 
a solution to the link prediction problem. We showed that different ways to tackle the 
problem are available, from simple index-based techniques to more complex embedding-
based techniques. However, the scientific literature is full of algorithms to solve the link 
prediction task, and there are different algorithms to solve this problem. In the paper 
Review on Learning and Extracting Graph Features for Link Prediction (https://
arxiv.org/pdf/1901.03425.pdf), a good overview of different techniques used to 
solve the link prediction problem is available. In the next section, we will investigate the 
community detection problem.

Detecting meaningful structures such as 
communities 
One common problem data scientists face when dealing with networks is how to identify 
clusters and communities within a graph. This often arises when graphs are derived from 
social networks and communities are known to exist. However, the underlying algorithms 
and methods can also be used in other contexts, representing another option to perform 
clustering and segmentation. For example, these methods can effectively be used in text 
mining to identify emerging topics and to cluster documents that refer to single events/
topics. A community detection task consists of partitioning a graph such that nodes 
belonging to the same community are tightly connected with each other and are weakly 
connected with nodes from other communities. There exist several strategies to identify 
communities. In general, we can define them as belonging to one of two categories, 
outlined as follows:

• Non-overlapping community detection algorithms that provide a one-to-one 
association between nodes and communities, thus with no overlapping nodes 
between communities

• Overlapping community detection algorithms that allow a node to be included 
in more than one community—for instance, reflecting the natural tendencies of 
social networks to develop overlapping communities (for example, friends from 
school, neighbors, playmates, people being in the same football team, and so on), 
or in biology, where a single protein can be involved in more than one process and 
bioreaction 

In the following section, we will review some of the most used techniques in the context of 
community detection.  

https://arxiv.org/pdf/1901.03425.pdf
https://arxiv.org/pdf/1901.03425.pdf
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Embedding-based community detection 
One first class of methods that allow us to partition nodes into communities can be simply 
obtained by applying standard shallow clustering techniques on the node embeddings, 
computed using the methods described in Chapter 3, Unsupervised Graph Learning. 
The embedding methods in fact allow us to project nodes into a vector space where a 
distance measure that represents a similarity between nodes can be defined. As we have 
shown in Chapter 3, Unsupervised Graph Learning, embedding algorithms are very 
effective in separating nodes with similar neighborhood and/or connectivity properties. 
Then, standard clustering techniques can be used, such as distance-based clustering 
(K-means), connectivity clustering (hierarchical clustering), distribution clustering 
(Gaussian mixture), and density-based clustering (Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN)). Depending on the algorithm, these techniques 
may both provide a single-association community detection or a soft cluster assignment. 
We will showcase how they would work on a simple barbell graph. We start by creating a 
simple barbell graph using the networkx utility function, as follows:

import networkx as nx 

G = nx.barbell_graph(m1=10, m2=4) 

We can then first get the reduced dense node representation using one of the embedding 
algorithms we have seen previously (for instance, HOPE), shown as follows:

from gem.embedding.hope import HOPE 

gf = HOPE(d=4, beta=0.01) 

gf.learn_embedding(G) 

 embeddings = gf.get_embedding() 

We can finally run a clustering algorithm on the resulting vector representation provided 
by the node embeddings, like this:

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3, random_state=0)

 labels = gm.fit_predict(embeddings)

We can plot the network with the computed communities highlighted in different colors, 
like this:

colors = ["blue", "green", "red"]

nx.draw_spring(G, node_color=[colors[label] for label in 
labels])
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By doing so, you should obtain the output shown in the following screenshot: 

Figure 5.2 – Barbell graph where the community detection algorithm has been applied using 
embedding-based methods 

The two clusters, as well as the connecting nodes, have been correctly grouped into three 
different communities, reflecting the internal structure of the graph. 

Spectral methods and matrix factorization
Another way to achieve a graph partition is to process the adjacency matrix or the 
Laplacian matrix that represents the connectivity properties of the graph. For instance, 
spectral clustering can be obtained by applying standard clustering algorithms on the 
eigenvectors of the Laplacian matrix. In some sense, spectral clustering can also be 
seen as a special case of an embedding-based community detection algorithm where 
the embedding technique is so-called spectral embedding, obtained by considering 
the first k-eigenvectors of the Laplacian matrix. By considering different definitions 
of the Laplacian as well as different similarity matrices, variations to this method can 
be obtained. A convenient implementation of this method can be found within the 
communities Python library and can be used on the adjacency matrix representation 
easily obtained from a networkx graph, as illustrated in the following code snippet: 

from communities.algorithms import spectral_clustering

adj=np.array(nx.adjacency_matrix(G).todense())

communities = spectral_clustering(adj, k=2)



166     Problems with Machine Learning on Graphs

Moreover, the adjacency matrix (or the Laplacian) can also be decomposed using 
matrix factorization techniques other than the singular value decomposition (SVD) 
technique—such as non-negative matrix factorization (NMF)—that allow similar 
descriptions, as illustrated in the following code snippet:

from sklearn.decomposition import NMF

nmf = NMF(n_components=2)

 score = nmf.fit_transform(adj)

communities = [set(np.where(score [:,ith]>0)[0])

               for ith in range(2)]

The threshold for belonging to the community was set in this example to 0, although other 
values can also be used to retain only the community cores. Note that these methods are 
overlapping community detection algorithms, and nodes might belong to more than one 
community. 

Probability models
Community detection methods can also be derived from fitting the parameters of 
generative probabilistic graph models. Examples of generative models were already 
described in Chapter 1, Getting Started with Graphs in Python. However, they did not 
assume the presence of any underlying community, unlike the so-called stochastic 
block model (SBM). In fact, this model is based on the assumption that nodes can be 
partitioned into K disjoint communities and each community has a defined probability of 
being connected to another. For a network of n nodes and K communities, the generative 
model is thus parametrized by the following:

• Membership matrix: M, which is a n x K matrix and represents the probability a 
given node belongs to a certain class k 

• Probability matrix: B, which is K x K matrix and represents the edge probability 
between a node belonging to community i and one node belonging to community j

The adjacency matrix is then generated by the following formula:

Here,   and   represent the community, and they can be obtained by sampling from a 
multinomial distribution of probabilities   and  .
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In the SBM, we can basically invert the formulation and reduce the community detection 
problem to posterior estimation of the membership matrix M from the matrix A, via 
maximum likelihood estimation. A version of this approach has recently been used 
together with randomized spectral clustering in order to perform community detection in 
very large graphs. Note that the SBM model in the limit of the constant probability matrix 
(that is, =  ) corresponds to the Erdős-Rényi model. These models have the advantage 
of also describing a relation between communities, identifying community-community 
relationships.

Cost function minimization
Another possible way to detect communities within a graph is to optimize a given cost 
function that represents a graph structure and penalizes edges across communities versus 
edges within communities. This basically consists of building a measure for the quality 
of a community (as we will see shortly, its modularity) and then optimizing the node 
association to communities in order to maximize the overall quality of the partitioning. 

In the context of a binary associative community structure, the community association 
can be described by a dichotomic variable   with values -1 or 1, depending on whether 
the node belongs to one of the two communities. In this setting, we can define the 
following quantity that can indeed be used to effectively represent the cost associated with 
having a link between two nodes of different communities: 

Indeed, when two connected nodes, > 0  belong to a different community = −1 , 
the contribution provided by the edge is positive. On the other hand, the contribution is 0, 
both when two nodes are not connected ( = 0 ) and when two connected nodes belong 
to the same community ( = 0 ). Therefore, the problem is to find the best community 
assignment (   and  ) in order to minimize the preceding function. This method, 
however, applies only to binary community detection and is therefore rather limited in its 
application. 

Another very popular algorithm belonging to this class is the Louvain method, which 
takes its name from the university where it was invented. This algorithm aims to maximize 
the modularity, defined as follows:
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Here,   represents the number of edges,   and   represent the degree of the i-th and 
j-th node respectively, and ( , )  is the Kronecker delta function, which is 1 when 

  and   have the same value and 0 otherwise. The modularity basically represents a 
measure of how much better the community identification performs as compared to 
randomly rewiring the nodes and thus creating a random network that has the same 
number of edges and degree distribution. 

To maximize this modularity efficiently, the Louvain methods iteratively compute the 
following steps:

1. Modularity optimization: Nodes are swept iteratively, and for each node we 
compute the change of modularity Q there would be if the node were to be assigned 
to each community of its neighbors. Once all the ∆   values are computed, the 
node is assigned to the community that provides the largest increase. If there is no 
increase obtained by placing the node in any other community than the one it is in, 
the node remains in its original community. This optimization process continues 
until no changes are induced. 

2. Node aggregation: In the second step, we build a new network by grouping all 
the nodes in the same community and connecting the communities using edges 
that result from the sum of all edges across the two communities. Edges within 
communities are accounted for as well by means of self-loops that have weights 
resulting from the sum of all edge weights belonging to the community. 

A Louvain implementation can already be found in the communities library, as can be 
seen in the following code snippet: 

from communities.algorithms import louvain_method

communities = louvain_method(adj) 

Another method to maximize the modularity is the Girvan-Newman algorithm, which 
is based on iteratively removing edges that have the highest betweenness centrality (and 
thus connect two separate clusters of nodes) to create connected component communities. 
Here is the code related to this:

from communities.algorithms import girvan_newman

communities = girvan_newman(adj, n=2)
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Note 
The latter algorithm needs to compute the betweenness centrality of all edges 
to remove the edges. Such computations may be very expensive in large graphs. 
The Girvan-Newman algorithm in fact scales as ∙ 2 , where   is the 
number of edges and   is the number of nodes, and should not be used when 
dealing with large datasets. 

Detecting graph similarities and graph 
matching
Learning a quantitative measure of the similarity among graphs is considered a key 
problem. Indeed, it is a critical step for network analysis and can also facilitate many ML 
problems, such as classification, clustering, and ranking. Many clustering algorithms, for 
example, use the concept of similarity for determining if an object should or should not be 
a member of a group. 

In the graph domain, finding an effective similarity measure constitutes a crucial 
problem for many applications. Consider, for instance, the role of a node inside a graph. 
This node might be very important for spreading information across a network or 
guaranteeing network robustness: for example, it could be the center of a star graph 
or it could be a member of a clique. In this scenario, it would be very useful to have a 
powerful method for comparing nodes according to their roles. For example, you might 
be interested in searching for individuals showing similar roles or presenting similar 
unusual and anomalous behaviors. You might also use it for searching similar subgraphs 
or to determine network compatibility for knowledge transfer. For example, if you find a 
method for increasing the robustness of a network and you know that such a network is 
very similar to another one, you may apply the same solution that worked well for the first 
network directly to the second one:

Figure 5.3 – Example of differences between two graphs
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Several metrics can be used for measuring the similarity (distance) between two objects. 
Some examples include the Euclidean distance, Manhattan distance, cosine similarity, 
and so on. However, these metrics might fail to capture the specific characteristics of the 
data being studied, especially on non-Euclidean structures such as graphs. Take a look at 
Figure 5.3: how "distant" are G1 and G2? They look pretty similar. But what if the missing 
connection in the red community of G2 causes a severe loss of information? Do they still 
look similar?

Several algorithmic approaches and heuristics have been proposed, based on 
mathematical concepts such as graph isomorphisms, edit distance, and common subgraphs 
(we suggest reading https://link.springer.com/article/10.1007/
s10044-012-0284-8 for a detailed review). Many of these approaches are currently 
used in practical applications, even if they often require exponentially high computational 
time to provide a solution to NP-complete problems in general (where NP stands for 
nondeterministic polynomial time). Therefore, it is essential to find or learn a metric 
for measuring the similarity of data points involved in the specific task. Here is where ML 
comes to our aid.

Many algorithms among the ones we have already seen in Chapter 3, Unsupervised 
Graph Learning, and Chapter 4, Supervised Graph Learning might be useful for learning 
an effective similarity metric. According to the way they are used, a precise taxonomy 
can be defined. Here, we provide a simple overview of graph similarity techniques. A 
more comprehensive list can be found in the paper Deep Graph Similarity Learning: A 
Survey (https://arxiv.org/pdf/1912.11615.pdf). They can be essentially 
divided into three main categories, even if sophisticated combinations can also be 
developed. Graph embedding-based methods use embedding techniques to obtain an 
embedded representation of the graphs and exploit such a representation to learn the 
similarity function; graph kernel-based methods define the similarity between graphs 
by measuring the similarity of their constituting substructures; graph neural network-
based methods use graph neural networks (GNNs) to jointly learn an embedded 
representation and a similarity function. Let's see all of them in more detail.

https://link.springer.com/article/10.1007/s10044-012-0284-8
https://link.springer.com/article/10.1007/s10044-012-0284-8
https://arxiv.org/pdf/1912.11615.pdf
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Graph embedding-based methods
Such techniques seek to apply graph embedding techniques to obtain node-level or 
graph-level representations and further use the representations for similarity learning. 
For example, DeepWalk and Node2Vec can be used to extract meaningful embedding 
that can then be used to define a similarity function or to predict similarity scores. For 
example, in Tixier et al. (2015), node2vec was used for encoding node embeddings. 
Then, two-dimensional (2D) histograms obtained from those node embeddings were 
passed to a classical 2D convolutional neural network (CNN) architecture designed for 
images. Such a simple yet powerful approach enabled good results to be derived from 
many benchmark datasets.

Graph kernel-based methods
Graph kernel-based methods have generated a lot of interest in terms of capturing the 
similarity between graphs. These approaches compute the similarity between two graphs 
as a function of the similarities between some of their substructures. Different graph 
kernels exist based on the substructures they use, which include random walks, shortest 
paths, and subgraphs. As an example, a method called Deep Graph Kernels (DGK) 
(Yanardag et al., 2015) decomposes graphs into substructures that are viewed as "words". 
Then, natural language processing (NLP) approaches such as continuous bag of words 
(CBOW) and skip-gram are used to learn latent representations of the substructures. This 
way, the kernel between two graphs is defined based on the similarity of the substructure 
space.

GNN-based methods
With the emergence of deep learning (DL) techniques, GNNs have become a powerful 
new tool for learning representations on graphs. Such powerful models can be easily 
adapted to various tasks, including graph similarity learning. Furthermore, they present 
a key advantage with respect to other traditional graph embedding approaches. Indeed, 
while the latter generally learn the representation in an isolated stage, in this kind of 
approach, the representation learning and the target learning task are conducted jointly. 
Therefore, the GNN deep models can better leverage the graph features for the specific 
learning task. We have already seen an example of similarity learning using GNNs in 
Chapter 3, Unsupervised Graph Learning, where a two-branch network was trained to 
estimate the proximity distance between two graphs.
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Applications
Similarity learning on graphs has already achieved promising results in many domains. 
Important applications may be found in chemistry and bioinformatics—for example, for 
finding the chemical compounds that are most similar to a query compound, as illustrated 
on the left-hand side of the following diagram. In neuroscience, similarity learning 
methods have started to be applied to measure the similarity of brain networks among 
multiple subjects, allowing the novel clinical investigation of brain diseases:

Figure 5.4 – Example of how graphs can be useful for representing various objects: (a) differences 
between two chemical compounds; (b) differences between two human poses

Graph similarity learning has also been explored in computer security, where novel 
approaches have been proposed for the detection of vulnerabilities in software systems 
as well as hardware security problems. Recently, a trend for applying such solutions to 
solve computer vision problems has been observed. Once the challenging problem of 
converting images into graph data has been solved, interesting solutions can indeed be 
proposed for human action recognition in video sequences and object matching in scenes, 
among other areas (as shown on the right-hand side of Figure 5.4).
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Summary 
In this chapter, we have learned how graph-based ML techniques can be used to solve 
many different problems.  

In particular, we have seen that the same algorithm (or a slightly modified version of it) 
can be adapted to solve apparently very different tasks such as link prediction, community 
detection, and graph similarity learning. We have also seen that each problem has its 
own peculiarities, which have been exploited by researchers in order to design more 
sophisticated solutions.

In the next chapter, we will explore real-life problems that have been solved using ML.





Section 3 –  
Advanced 

Applications of 
Graph Machine 

Learning
In this section, the reader will acquire a more practical knowledge of the methods 
outlined in the previous chapters by applying them to real-world use cases and learn how 
to scale out the approaches to structured and unstructured datasets.

This section comprises the following chapters:

• Chapter 6, Social Network Graphs

• Chapter 7, Text Analytics and Natural Language Processing Using Graphs

• Chapter 8, Graphs Analysis for Credit Card Transactions

• Chapter 9, Building a Data-Driven Graph-Powered Application

• Chapter 10, Novel Trends on Graphs





6
Social Network 

Graphs
The growth of social networking sites has been one of the most active trends in digital 
media over the years. Since the late 1990s, when the first social applications were 
published, they have attracted billions of active users worldwide, many of whom have 
integrated digital social interactions into their daily lives. New ways of communication are 
being driven by social networks such as Facebook, Twitter, and Instagram, among others. 
Users can share ideas, post updates and feedback, or engage in activities and events while 
sharing their broader interests on social networking sites.

Besides, social networks constitute a huge source of information for studying user 
behaviors, interpreting interaction among people, and predicting their interests. 
Structuring them as graphs, where a vertex corresponds to a person and an edge represents 
the connection between them, enables a powerful tool to extract useful knowledge.

However, understanding the dynamics that drive the evolution of a social network is  
a complex problem due to a large number of variable parameters.

In this chapter, we will talk about how we can analyze the Facebook social network  
using graph theory and how we can solve useful problems such as link prediction  
and community detection using machine learning.
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The following topics will be covered in this chapter:

• Overview of the dataset

• Network topology and community detection 

• Embedding for supervised and unsupervised tasks

Technical requirements
We will be using Jupyter notebooks with Python 3.8 for all of our exercises. The following 
is a list of the Python libraries that need to be installed for this chapter using pip. For 
example, run pip install networkx==2.5 on the command line:

Jupyter==1.0.0

networkx==2.5

scikit-learn==0.24.0 

numpy==1.19.2 

node2vec==0.3.3 

tensorflow==2.4.1 

stellargraph==1.2.1

communities==2.2.0 

git+https://github.com/palash1992/GEM.git

In the rest of this chapter, if not clearly stated, we will refer to nx, pd, and np as results  
of the following Python commands: import networkx as nx, import pandas as 
pd, and import numpy as np.

All code files relevant to this chapter are available at https://github.com/
PacktPublishing/Graph-Machine-Learning/tree/main/Chapter06.

Overview of the dataset
We will be using the Social circles SNAP Facebook public dataset, from Stanford 
University (https://snap.stanford.edu/data/ego-Facebook.html).

The dataset was created by collecting Facebook user information from survey participants. 
Ego networks were created from 10 users. Each user was asked to identify all the circles 
(list of friends) to which their friends belong. On average, each user identified 19 circles  
in their ego networks, where each circle has on average 22 friends.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter06
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter06
https://snap.stanford.edu/data/ego-Facebook.html
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For each user, the following information was collected:

• Edges: An edge exists if two users are friends on Facebook.

• Node features: Features we labeled 1 if the user has this property in their profile 
and 0 otherwise. Features have been anonymized since the names of the features 
would reveal private data.

The 10 ego networks were then unified in a single graph that we are going to study.

Dataset download
The dataset can be retrieved using the following URL: https://snap.stanford.
edu/data/ego-Facebook.html. In particular, three files can be downloaded: 
facebook.tar.gz, facebook_combined.txt.gz, and readme-Ego.txt.  
Let's inspect each file separately:

• facebook.tar.gz: This is an archive containing four files for each ego user  
(40 files in total). Each file is named nodeId.extension where nodeId is 
the node ID of the ego user and extension is either edges, circles, feat, 
egofeat, or featnames. The following provides more details:

a. nodeId.edges: This contains a list of edges for the network of the  
nodeId node.

b. nodeId.circles: This contains several lines (one for each circle). Each line 
consists of a name (the circle name) followed by a series of node IDs.

c. nodeId.feat: This contains the features (0 if nodeId has the feature, 1 
otherwise) for each node in the ego network.

d. nodeId.egofeat: This contains the features for the ego user.

e. nodeId.featname: This contains the names of the features.
• facebook_combined.txt.gz: This is an archive containing a single  

file, facebook_combined.txt, which is a list of edges from all the ego  
networks combined.

• readme-Ego.txt: This contains a description for the previously mentioned files.

Take a look at those files by yourself. It is strongly suggested to explore and become as 
comfortable as possible with the dataset before starting any machine learning task.

https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
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Loading the dataset using networkx
The first step of our analysis will be loading the aggregated ego networks using 
networkx. As we have seen in previous chapters, networkx is powerful for graph 
analysis and, given the size of the datasets, will be the perfect tool for the analysis that we 
will be doing in this chapter. However, for larger social network graphs with billions of 
nodes and edges, more specific tools might be required for loading and processing them. 
We will cover the tools and technologies used for scaling out the analysis in Chapter 9, 
Building a Data-Driven Graph-Powered Application.

As we have seen, the combined ego network is represented as a list of edges. We can create 
an undirected graph from a list of edges using networkx as follows:

G = nx.read_edgelist("facebook_combined.txt", create_using=nx.
Graph(), nodetype=int)

Let's print some basic information about the graph:

print(nx.info(G))

The output should be as follows:

Name: 

Type: Graph

Number of nodes: 4039

Number of edges: 88234

Average degree:  43.6910

As we can see, the aggregated network contains 4039 nodes and 88234 edges. This is 
a fairly connected network with a number of edges more than 20 times the number of 
nodes. Indeed, several clusters should be present in the aggregated networks (likely the 
small worlds of each ego user).

Drawing the network will also help in better understanding what we are going to analyze. 
We can draw the graph using networkx as follows:

nx.draw_networkx(G, pos=spring_pos, with_labels=False, node_
size=35)
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The output should be as follows:

Figure 6.1 – The aggregated Facebook ego network

We can observe the presence of highly interconnected hubs. This is interesting from a 
social network analysis point of view since they might be the result of underlying social 
mechanisms that can be further investigated for better understanding the structure of  
an individual's relationships with respect to their world.

Before continuing our analysis, let's save the IDs of the ego user nodes inside the network. 
We can retrieve them from the files contained in the facebook.tar.gz archive.

First, unpack the archive. The extracted folder will be named facebook. Let's run the 
following Python code for retrieving the IDs by taking the first part of each filename:

ego_nodes = set([int(name.split('.')[0]) for name in 
os.listdir("facebook/")])

We are now ready for analyzing the graph. In particular, in the next section, we will better 
understand the structure of the graph by inspecting its properties. This will help us to have 
a clearer idea of its topology and its relevant characteristics.

Network topology and community detection
Understanding the topology of the network as well as the role of its nodes is a crucial step 
in the analysis of a social network. It is important to keep in mind that, in this context, 
nodes are actually users, each with their own interests, habits, and behaviors. Such 
knowledge will be extremely useful when performing predictions and/or finding insights.
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We will be using networkx to compute most of the useful metrics we have seen in 
Chapter 1, Getting Started with Graphs. We will try to give them an interpretation to 
collect insight into the graph. Let's begin as usual, by importing the required libraries  
and defining some variables that we will use throughout the code:

import os

import math

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt

default_edge_color = 'gray'

default_node_color = '#407cc9'

enhanced_node_color = '#f5b042'

enhanced_edge_color = '#cc2f04'

We can now proceed to the analysis.

Topology overview
As we have already seen before, our combined network has 4,039 nodes and more than 
80,000 edges. The next metric we will compute is assortativity. It will reveal information 
about the tendency of users to be connected with users with a similar degree. We can do 
that as follows:

assortativity = nx.degree_pearson_correlation_coefficient(G)

The output should be as follows:

0.06357722918564912

Here we can observe a positive assortativity, likely showing that well-connected 
individuals associate with other well-connected individuals (as we have seen in Chapter 1, 
Getting Started with Graphs). This is expected since inside each circle users might tend to 
be highly connected to each other.

Transitivity could also help at better understanding how individuals are connected. Recall 
transitivity indicates the mean probability that two people with a common friend are 
themselves friends:

t = nx.transitivity(G)
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The output should be as follows:

0.5191742775433075

Here we have the probability of around 50% that two friends can or cannot have common friends.

The observation is also confirmed by computing the average clustering coefficient. Indeed, 
it can be considered as an alternative definition of transitivity:

aC = nx.average_clustering(G)

The output should be as follows:

0.6055467186200876

Notice that the clustering coefficient tends to be higher than transitivity. Indeed, by 
definition, it puts more weight on vertices with a low degree, since they have a limited 
number of possible pairs of neighbors (the denominator of the local clustering coefficient).

Node centrality
Once we have a clearer idea of what the overall topology looks like, we can proceed by 
investigating the importance of each individual inside the network. As we have seen in 
Chapter 1, Getting Started with Graphs, the first definition of importance can be given  
by means of the betweenness centrality metric. It measures how many shortest paths  
pass through a given node, giving an idea of how central that node is for the spreading  
of information inside the network. We can compute it using the following:

bC = nx.betweenness_centrality(G)

 np.mean(list(bC.values()))

The output should be as follows:

0.0006669573568730229

The average betweenness centrality is pretty low, which is understandable given the  
large amount of non-bridging nodes inside the network. However, we could collect better 
insight by visual inspection of the graph. In particular, we will draw the combined ego 
network by enhancing nodes with the highest betweenness centrality. Let's define a proper 
function for this:

def draw_metric(G, dct, spring_pos):

  top = 10

  max_nodes =  sorted(dct.items(), key=lambda v: -v[1])[:top]
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  max_keys = [key for key,_ in max_nodes]

  max_vals = [val*300 for _, val in max_nodes]

  plt.axis("off")

  nx.draw_networkx(G,

                   pos=spring_pos,

                   cmap='Blues',

                   edge_color=default_edge_color,

                   node_color=default_node_color,

                   node_size=3,

                   alpha=0.4,

                   with_labels=False)

  nx.draw_networkx_nodes(G,

                         pos=spring_pos,

                         nodelist=max_keys,

                         node_color=enhanced_edge_color,

                         node_size=max_vals)

Now let's invoke it as follows:

draw_metric(G,bC,spring_pos)

The output should be as follows:

Figure 6.2 – Betweenness centrality
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Let's also inspect the degree centrality of each node. Since this metric is related to the 
number of neighbors of a node, we will have a clearer idea of how well the nodes are 
connected to each other:

deg_C = nx.degree_centrality(G)

 np.mean(list(deg_C.values()))

draw_metric(G,deg_C,spring_pos)

The output should be as follows:

0.010819963503439287

Here is a representation of the degree centrality:

Figure 6.3 – Degree centrality

Finally, let's also have a look at the closeness centrality. This will help us understand how 
close nodes are to each other in terms of the shortest path:

clos_C = nx.closeness_centrality(G)

 np.mean(list(clos_C.values()))

draw_metric(G,clos_C,spring_pos)

The output should be as follows:

0.2761677635668376
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Here is a representation of the closeness centrality:

Figure 6.4 – Closeness centrality

From the centrality analysis, it is interesting to observe that each central node seems to be 
part of a sort of community (this is reasonable, since the central nodes might correspond 
to the ego nodes of the network). It is also interesting to notice the presence of a bunch of 
highly interconnected nodes (especially from the closeness centrality analysis). Let's thus 
identify these communities in the next part of our analysis.

Community detection
Since we are performing social network analysis, it is worth exploring one of the most 
interesting graph structures for social networks: communities. If you use Facebook, 
it is very likely that your friends reflect different aspects of your life: friends from an 
educational environment (high school, college, and so on), friends from your weekly 
football match, friends you have met at parties, and so on.

An interesting aspect of social network analysis is to automatically identify such groups. 
This can be done automatically, inferring them from topological properties, or semi-
automatically, exploiting some prior insight.

One good criterion is to try to minimize intra-community edges (edges connecting 
members of different communities) while maximizing inter-community edges 
(connecting members within the same community).

We can do that in networkx as follows:

import community

parts = community.best_partition(G)

 values = [parts.get(node) for node in G.nodes()]

n_sizes = [5]*len(G.nodes())
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plt.axis("off")

nx.draw_networkx(G, pos=spring_pos, cmap=plt.get_cmap("Blues"), 
edge_color=default_edge_color, node_color=values, node_size=n_
sizes, with_labels=False)

The output should be as follows:

Figure 6.5 – Detected communities using networkx

In this context, it is also interesting to investigate whether the ego users occupy some roles 
inside the detected communities. Let's enhance the size and color of the ego user nodes  
as follows:

for node in ego_nodes:

   n_sizes[node] = 250

nodes = nx.draw_networkx_nodes(G,spring_pos,ego_nodes,node_
color=[parts.get(node) for node in ego_nodes])

 nodes.set_edgecolor(enhanced_node_color)

The output should be as follows:

Figure 6.6 – Detected communities using networkx with the ego users node size enhanced
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It is interesting to notice that some ego users belong to the same community. It is possible 
that ego users are actual friends on Facebook, and therefore their ego networks are 
partially shared.

We have now completed our basic understanding of the graph structure. We now know 
that some important nodes can be identified inside the network. We have also seen the 
presence of well-defined communities to which those nodes belong. Keep in mind these 
observations while performing the next part of the analysis, which is applying machine 
learning methods for supervised and unsupervised tasks.

Embedding for supervised and unsupervised 
tasks
Social media represents, nowadays, one of the most interesting and rich sources of 
information. Every day, thousands of new connections arise, new users join communities, 
and billions of posts are shared. Graphs mathematically represent all those interactions, 
helping to make order of all such spontaneous and unstructured traffic.

When dealing with social graphs, there are many interesting problems that can be 
addressed using machine learning. Under the correct settings, it is possible to extract 
useful insights from this huge amount of data, for improving your marketing strategy, 
identifying users with dangerous behaviors (for example, terrorist networks), and 
predicting the likelihood that a user will read your new post.

Specifically, link prediction is one of the most interesting and important research topics in 
this field. Depending on what a connection in your social graph represents, by predicting 
future edges, you will be able to predict your next suggested friend, the next suggested 
movie, and which product you are likely to buy.

As we have already seen in Chapter 5, Problems with Machine Learning on Graphs, the 
link prediction task aims at forecasting the likelihood of a future connection between two 
nodes and it can be solved using several machine learning algorithms.

In the next examples, we will be applying supervised and unsupervised machine learning 
graph embedding algorithms for predicting future connections on the SNAP Facebook 
social graph. Furthermore, we will evaluate the contribution of node features in the 
prediction task.
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Task preparation
In order to perform the link prediction task, it is necessary to prepare our dataset. The 
problem will be treated as a supervised task. Pairs of nodes will be provided to each 
algorithm as input, while the target will be binary, that is, connected if the two nodes  
are actually connected in the network, and not connected otherwise.

Since we aim to cast this problem as a supervised learning task, we need to create a 
training and testing dataset. We will therefore create two new subgraphs with the same 
numbers of nodes but different numbers of edges (as some edges will be removed and 
treated as positive samples for training/testing the algorithm).

The stellargraph library provides a useful tool for splitting the data and creating 
training and test reduced subgraphs. This process is similar to the one we have already 
seen in Chapter 5, Problems with Machine Learning on Graphs:

from sklearn.model_selection import train_test_split

from stellargraph.data import EdgeSplitter

from stellargraph import StellarGraph

edgeSplitter = EdgeSplitter(G) 

graph_test, samples_test, labels_test = edgeSplitter.train_
test_split(p=0.1, method="global", seed=24)

edgeSplitter = EdgeSplitter(graph_test, G)

 graph_train, samples_train, labels_train = edgeSplitter.train_
test_split(p=0.1, method="global", seed=24)

We are using the EdgeSplitter class to extract a fraction (p=10%) of all the edges 
in G, as well as the same number of negative edges, in order to obtain a reduced graph, 
graph_test. The train_test_split method also returns a list of node pairs, 
samples_test (where each pair corresponds to an existing or not existing edge in the 
graph), and a list of binary targets (labels_test) of the same length of the samples_
test list. Then, from such a reduced graph, we are repeating the operation to obtain 
another reduced graph, graph_train, as well as the corresponding samples_train 
and labels_train lists.

We will be comparing three different methods for predicting missing edges:

• Method 1: node2vec will be used to learn a node embedding without supervision. 
The learned embedding will be used as input for a supervised classification 
algorithm to determine whether the input pair is actually connected.
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• Method 2: The graph neural network-based algorithm GraphSAGE will be used  
to jointly learn the embedding and perform the classification task.

• Method 3: Hand-crafted features will be extracted from the graph and used as 
inputs for a supervised classifier, together with the nodes' IDs.

Let's analyze them in more detail.

node2vec-based link prediction
The herein proposed method is carried out in several steps:

1. We use node2vec to generate node embeddings without supervision from the 
training graph. This can be done using the node2vec Python implementation, as 
we have already seen in Chapter 5, Problems with Machine Learning on Graphs:

from node2vec import Node2Vec

node2vec = Node2Vec(graph_train) 

model = node2vec.fit()

2. Then, we use HadamardEmbedder for generating an embedding for each pair of 
embedded nodes. Such feature vectors will be used as input to train the classifier:

from node2vec.edges import HadamardEmbedder

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

 train_embeddings = [edges_embs[str(x[0]),str(x[1])] for 
x in samples_train]

3. It's time for training our supervised classifier. We will be using the RandomForest 
classifier, a powerful decision tree-based ensemble algorithm:

from sklearn.ensemble import RandomForestClassifier 

from sklearn import metrics 

rf = RandomForestClassifier(n_estimators=10)

 rf.fit(train_embeddings, labels_train);

4. Finally, let's apply the trained model for creating the embedding of the test set:

edges_embs = HadamardEmbedder(keyed_vectors=model.wv) 
test_embeddings = [edges_embs[str(x[0]),str(x[1])] for x 
in samples_test]
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5. Now we are ready to perform the prediction on the test set using our trained model:

y_pred = rf.predict(test_embeddings) 

print('Precision:', metrics.precision_score(labels_test, 
y_pred)) 

print('Recall:', metrics.recall_score(labels_test, y_
pred)) 

print('F1-Score:', metrics.f1_score(labels_test, y_pred)) 

6. The output should be as follows:

Precision: 0.9701333333333333

Recall: 0.9162573983125551

F1-Score: 0.9424260086781945

Not bad at all! We can observe that the node2vec-based embedding already provides  
a powerful representation for actually predicting links on the combined Facebook  
ego network.

GraphSAGE-based link prediction
Next, we will use GraphSAGE for learning node embeddings and classifying edges. We 
will build a two-layer GraphSAGE architecture that, given labeled pairs of nodes, outputs 
a pair of node embeddings. Then, a fully connected neural network will be used to process 
these embeddings and produce link predictions. Notice that the GraphSAGE model  
and the fully connected network will be concatenated and trained end to end so that  
the embeddings learning stage is influenced by the predictions.

Featureless approach
Before starting, we may recall from Chapters 4, Supervised Graph Learning, and Chapter 
5, Problems with Machine Learning on Graphs, that GraphSAGE needs node descriptors 
(features). Such features may or may not be available in your dataset. Let's begin our 
analysis by not considering available node features. In this case, a common approach is  
to assign to each node a one-hot feature vector of length |V| (the number of nodes in  
the graph), where only the cell corresponding to the given node is 1, while the remaining 
cells are 0.
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This can be done in Python and networkx as follows:

eye = np.eye(graph_train.number_of_nodes())

fake_features = {n:eye[n] for n in G.nodes()}

nx.set_node_attributes(graph_train, fake_features, "fake")

eye = np.eye(graph_test.number_of_nodes())

fake_features = {n:eye[n] for n in G.nodes()}

nx.set_node_attributes(graph_test, fake_features, "fake")

In the preceding code snippet, we did the following:

1. We created an identity matrix of size |V|. Each row of the matrix is the one-hot 
vector we need for each node in the graph.

2. Then, we created a Python dictionary where, for each nodeID (used as the key),  
we assign the corresponding row of the previously created identity matrix.

3. Finally, the dictionary was passed to the networkx set_node_attributes 
function to assign the "fake" features to each node in the networkx graph.

Notice that the process is repeated for both the training and test graph.

The next step will be defining the generator that will be used to feed the model. We will 
be using the stellargraph GraphSAGELinkGenerator for this, which essentially 
provides the model with pairs of nodes as input:

from stellargraph.mapper import GraphSAGELinkGenerator

batch_size = 64

num_samples = [4, 4]

# convert graph_train and graph_test for stellargraph

sg_graph_train = StellarGraph.from_networkx(graph_train, node_
features="fake")

sg_graph_test = StellarGraph.from_networkx(graph_test, node_
features="fake")

train_gen = GraphSAGELinkGenerator(sg_graph_train, batch_size, 
num_samples)

 train_flow = train_gen.flow(samples_train, labels_train, 
shuffle=True, seed=24)

test_gen = GraphSAGELinkGenerator(sg_graph_test, batch_size, 
num_samples)

 test_flow = test_gen.flow(samples_test, labels_test, seed=24)
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Note that we also need to define batch_size (number of inputs per minibatch) and the 
number of first- and second-hop neighbor samples that GraphSAGE should consider.

Finally, we are ready to create the model:

from stellargraph.layer import GraphSAGE, link_classification

from tensorflow import keras

layer_sizes = [20, 20]

graphsage = GraphSAGE(layer_sizes=layer_sizes, generator=train_
gen, bias=True, dropout=0.3)

x_inp, x_out = graphsage.in_out_tensors()

# define the link classifier

prediction = link_classification(output_dim=1, output_
act="sigmoid", edge_embedding_method="ip")(x_out)

model = keras.Model(inputs=x_inp, outputs=prediction)

model.compile(

    optimizer=keras.optimizers.Adam(lr=1e-3),

    loss=keras.losses.mse,

    metrics=["acc"],

)

In the preceding snippet, we are creating a GraphSAGE model with two hidden layers 
of size 20, each with a bias term and a dropout layer for reducing overfitting. Then, 
the output of the GraphSAGE part of the module is concatenated with a link_
classification layer that takes pairs of node embeddings (output of GraphSAGE), 
uses binary operators (inner product; ip in our case) to produce edge embeddings, and 
finally passes them through a fully connected neural network for classification.

The model is optimized via the Adam optimizer (learning rate = 1e-3) using the mean 
squared error as a loss function.

Let's train the model for 10 epochs:

epochs = 10

history = model.fit(train_flow, epochs=epochs, validation_
data=test_flow)
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The output should be as follows:

Epoch 18/20

loss: 0.4921 - acc: 0.8476 - val_loss: 0.5251 - val_acc: 0.7884

Epoch 19/20

loss: 0.4935 - acc: 0.8446 - val_loss: 0.5247 - val_acc: 0.7922

Epoch 20/20

loss: 0.4922 - acc: 0.8476 - val_loss: 0.5242 - val_acc: 0.7913

Once trained, let's compute the performance metrics over the test set:

from sklearn import metrics 

y_pred = np.round(model.predict(train_flow)).flatten()

print('Precision:', metrics.precision_score(labels_train, y_
pred)) 

print('Recall:', metrics.recall_score(labels_train, y_pred))  
print('F1-Score:', metrics.f1_score(labels_train, y_pred)) 

The output should be as follows:

Precision: 0.7156476303969199

Recall: 0.983125550938169

F1-Score: 0.8283289124668435

As we can observe, performances are lower than the ones obtained in the node2vec-based 
approach. However, we are not considering real node features yet, which could represent  
a great source of information. Let's do that in the following test.

Introducing node features
The process of extracting node features for the combined ego network is quite verbose. 
This is because, as we have explained in the first part of the chapter, each ego network is 
described using several files, as well as all the feature names and values. We have written 
useful functions for parsing all the ego network in order to extract the node features. You 
can find their implementation in the Python notebook provided in the GitHub repository. 
Here, let's just briefly summarize how they work:

• The load_features function parses each ego network and creates two dictionaries:

a. feature_index, which maps numeric indices to feature names

b. inverted_feature_indexes, which maps names to numeric indices
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• The parse_nodes function receives the combined ego network G and the ego 
nodes' IDs. Then, each ego node in the network is assigned with the corresponding 
features previously loaded using the load_features function.

Let's invoke them in order to load a feature vector for each node in the combined  
ego network:

load_features()

parse_nodes(G, ego_nodes)

We can easily check the result by printing the information of one node in the network (for 
example, the node with ID 0):

print(G.nodes[0])

The output should be as follows:

{'features': array([1., 1., 1., ..., 0., 0., 0.])}

As we can observe, the node has a dictionary containing a key named features. The 
corresponding value is the feature vector assigned to this node.

We are now ready to repeat the same steps used before for training the GraphSAGE 
model, this time using features as the key when converting the networkx graph  
to the StellarGraph format:

sg_graph_train = StellarGraph.from_networkx(graph_train, node_
features="features")

sg_graph_test = StellarGraph.from_networkx(graph_test, node_
features="features")

Finally, as we have done before, we create the generators, compile the model, and train it 
for 10 epochs:

train_gen = GraphSAGELinkGenerator(sg_graph_train, batch_size, 
num_samples)

train_flow = train_gen.flow(samples_train, labels_train, 
shuffle=True, seed=24)

test_gen = GraphSAGELinkGenerator(sg_graph_test, batch_size, 
num_samples)

test_flow = test_gen.flow(samples_test, labels_test, seed=24)

layer_sizes = [20, 20]
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graphsage = GraphSAGE(layer_sizes=layer_sizes, generator=train_
gen, bias=True, dropout=0.3)

x_inp, x_out = graphsage.in_out_tensors()

prediction = link_classification(output_dim=1, output_
act="sigmoid", edge_embedding_method="ip")(x_out)

model = keras.Model(inputs=x_inp, outputs=prediction)

model.compile(

    optimizer=keras.optimizers.Adam(lr=1e-3),

    loss=keras.losses.mse,

    metrics=["acc"],

)

epochs = 10

history = model.fit(train_flow, epochs=epochs, validation_
data=test_flow)

Notice that we are using the same hyperparameters (including the number of layers, batch 
size, and learning rate) as well as the random seed, to ensure a fair comparison between 
the models.

The output should be as follows:

Epoch 18/20

loss: 0.1337 - acc: 0.9564 - val_loss: 0.1872 - val_acc: 0.9387

Epoch 19/20

loss: 0.1324 - acc: 0.9560 - val_loss: 0.1880 - val_acc: 0.9340

Epoch 20/20

loss: 0.1310 - acc: 0.9585 - val_loss: 0.1869 - val_acc: 0.9365

Let's evaluate the model performance:

from sklearn import metrics 

y_pred = np.round(model.predict(train_flow)).flatten()

print('Precision:', metrics.precision_score(labels_train, y_
pred)) 

print('Recall:', metrics.recall_score(labels_train, y_pred)) 

print('F1-Score:', metrics.f1_score(labels_train, y_pred))
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We can check the output:

Precision: 0.7895418326693228

Recall: 0.9982369978592117

F1-Score: 0.8817084700517213

As we can see, the introduction of real node features has brought a good improvement, 
even if the best performances are still the ones achieved using the node2vec approach.

Finally, we will evaluate a shallow embedding approach where hand-crafted features will 
be used for training a supervised classifier.

Hand-crafted features for link prediction
As we have already seen in Chapter 4, Supervised Graph Learning, shallow embedding 
methods represent a simple yet powerful approach for dealing with supervised tasks. 
Basically, for each input edge, we will compute a set of metrics that will be given as input 
to a classifier.

In this example, for each input edge represented as a pair of nodes (u,v), four metrics will 
be considered, namely the following:

• Shortest path: The length of the shortest path between u and v. If u and v are 
directly connected through an edge, this edge will be removed before computing the 
shortest path. The value 0 will be used if u is not reachable from v.

• The Jaccard coefficient: Given a pair of nodes (u,v), it is defined as the intersection 
over a union of the set of neighbors of u and v. Formally, let ( )  be the set of 
neighbors of the node u and ( )  be the set of neighbors of the node v:

• The u centrality: The degree centrality computed for node v.

• The v centrality: The degree centrality computed for node u.

• The u community: The community ID assigned to node u using the Louvain 
heuristic.

• The v community: The community ID assigned to node v using the Louvain heuristic.

We have written a useful function for computing these metrics using Python and 
networkx. You can find the implementation in the Python notebook provided in the 
GitHub repository.

( , ) =  
( )  ∩ ( )
( )  ∪ ( )
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Let's compute the features for each edge in the training and the test set:

feat_train = get_hc_features(graph_train, samples_train, 
labels_train)

feat_test = get_hc_features(graph_test, samples_test, labels_
test)

In the proposed shallow approach, these features will be directly used as input for a 
Random Forest classifier. We will use its scikit-learn implementation as follows:

from sklearn.ensemble import RandomForestClassifier 

from sklearn import metrics 

rf = RandomForestClassifier(n_estimators=10) 

rf.fit(feat_train, labels_train); 

The preceding lines automatically instantiate and train a RandomForest classifier using the 
edge features we have computed before. We are now ready to compute the performance  
as follows:

y_pred = rf.predict(feat_test)

print('Precision:', metrics.precision_score(labels_test, y_
pred))

 print('Recall:', metrics.recall_score(labels_test, y_pred)) 
print('F1-Score:', metrics.f1_score(labels_test, y_pred)) 

The output will be as follows:

Precision: 0.9636952636282395

Recall: 0.9777853337866939

F1-Score: 0.9706891701828411

Surprisingly, the shallow method based on hand-crafted features performs better than  
the others.
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Summary of results
In the preceding examples, we have trained three algorithms on learning, with and 
without supervision, useful embeddings for link prediction. In the following table, we 
summarize the results:

Table 6.1 – Summary of the results achieved for the link prediction task

As shown in Table 6.1, the node2vec-based method is already able to achieve a high 
level of performance without supervision and per-node information. Such high results 
might be related to the particular structure of the combined ego network. Due to the 
high sub-modularity of the network (since it is composed of several ego networks), 
predicting whether two users will be connected or not might be highly related to the way 
the two candidate nodes are connected inside the network. For example, there might be 
a systematic situation in which two users, both connected to several users in the same 
ego network, have a high chance of being connected as well. On the other hand, two 
users belonging to different ego networks, or very far from each other, are likely to not be 
connected, making the prediction task easier. This is also confirmed by the high results 
achieved using the shallow method.

Such a situation might be confusing, instead, for more complicated algorithms like 
GraphSAGE, especially when node features are involved. For example, two users might 
share similar interests, making them very similar. However, they might belong to different 
ego networks, where the corresponding ego users live in two very different parts of the 
world. So, similar users, which in principle should be connected, are not. However, it is 
also possible that such algorithms are predicting something further in the future. Recall 
that the combined ego network is a timestamp of a particular situation in a given period 
of time. Who knows how it might have evolved right now!
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Interpreting machine learning algorithms is probably the most interesting challenge of 
machine learning itself. For this reason, we should always interpret results with care. Our 
suggestion is always to dig into the dataset and try to give an explanation of your results.

Finally, it is important to remark that each of the algorithms was not tuned for the 
purpose of this demonstration. Different results can be obtained by properly tuning  
each hyperparameter and we highly suggest you try to do this.

Summary
In this chapter, we have seen how machine learning can be useful for solving practical 
machine learning tasks on social network graphs. Furthermore, we have seen how future 
connections can be predicted on the SNAP Facebook combined ego network.

We reviewed graph analysis concepts and used graph-derived metrics to collect insight on 
the social graph. Then, we benchmarked several machine learning algorithms on the link 
prediction task, evaluating their performance and trying to give them interpretations.

In the next chapter, we will focus on how similar approaches can be used to analyze  
a corpus of documents using text analytics and natural language processing.



7
Text Analytics  

and Natural 
Language Processing 

Using Graphs
Nowadays, a vast amount of information is available in the form of text in terms of natural 
written language. The very same book you are reading right now is one such example. The 
news you read every morning, the tweets or the Facebook posts you sent/read earlier, the 
reports you write for a school assignment, the emails we write continuously – these are all 
examples of information we exchange via written documents and text. It is undoubtedly 
the most common way of indirect interaction, as opposed to direct interaction such 
as talking or gesticulating. It is, therefore, crucial to be able to leverage such kinds of 
information and extract insights from documents and texts.

The vast amount of information present nowadays in this form has determined the great 
development and recent advances in the field of natural language processing (NLP).
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In this chapter, we will show you how to process natural language texts and review some 
basic models that allow us to structure text information. Using the information that's been 
extracted from a corpus of documents, we will show you how to create networks that can 
be analyzed using some of the techniques we have seen in previous chapters. In particular, 
using a tagged corpus we will show you how to develop both supervised (classification 
models to classify documents in pre-determined topics) and unsupervised (community 
detection to discover new topics) algorithms.

The chapter covers the following topics:

• Providing a quick overview of a dataset 

• Understanding the main concepts and tools used in NLP

• Creating graphs from a corpus of documents

• Building a document topic classifier

Technical requirements
We will be using Python 3.8 for all our exercises. The following is a list of Python libraries 
that you must install for this chapter using pip. To do this, run, for example, pip 
install networkx==2.4 on the command line and so on:

networkx==2.4 

scikit-learn==0.24.0

stellargraph==1.2.1

spacy==3.0.3

pandas==1.1.3

numpy==1.19.2

node2vec==0.3.3

Keras==2.0.2

tensorflow==2.4.1

communities==2.2.0

gensim==3.8.3

matplotlib==3.3.4

nltk==3.5

fasttext==0.9.2

All the code files relevant to this chapter are available at https://github.com/
PacktPublishing/Graph-Machine-Learning/tree/main/Chapter07.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter07
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter07
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Providing a quick overview of a dataset 
To show you how to process a corpus of documents with the aim of extracting relevant 
information, we will be using a dataset derived from a well-known benchmark in the 
field of NLP: the so-called Reuters-21578. The original dataset includes a set of 21,578 
news articles that were published in the financial Reuters newswire in 1987, which were 
assembled and indexed in categories. The original dataset has a very skewed distribution, 
with some categories appearing only in the training set or in the test set. For this reason, 
we will use a modified version, known as ApteMod, also referred to as Reuters-21578 
Distribution 1.0, that has a smaller skew distribution and consistent labels between the 
training and test datasets.

Even though these articles are a bit outdated, the dataset has been used in a plethora 
of papers on NLP and still represents a dataset that's often used for benchmarking 
algorithms.

Indeed, Reuters-21578 contains enough documents for interesting post-processing and 
insights. A corpus with a larger number of documents can easily be found nowadays (see, 
for instance, https://github.com/niderhoff/nlp-datasets for an overview 
of the most common ones), but they may require larger storage and computational power 
so that they can be processed. In Chapter 9, Building a Data-Driven, Graph-Powered 
Application, we will show you some of the tools and libraries that can be used to scale out 
your application and analysis.

Each document of the Reuters-21578 dataset is provided with a set of labels that 
represent its content. This makes it a perfect benchmark for testing both supervised and 
unsupervised algorithms. The Reuters-21578 dataset can easily be downloaded using the 
nltk library (which is a very useful library for post-processing documents):

from nltk.corpus import reuters

corpus = pd.DataFrame([

    {"id": _id,

     "text": reuters.raw(_id).replace("\n", ""), 

     "label": reuters.categories(_id)}

    for _id in reuters.fileids()

])

https://github.com/niderhoff/nlp-datasets
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As you will see from inspecting the corpus DataFrame, the IDs are in the form 
training/{ID} and test/{ID}, which makes it clear which documents should 
be used for training and for testing. To start, let's list all the topics and see how many 
documents there are per topic using the following code:

from collections import Counter

Counter([label for document_labels in corpus["label"] for label 
in document_labels]).most_common()

The Reuters-21578 dataset includes 90 different topics with a significant degree of 
unbalance between classes, with almost 37% of the documents in the most common 
category and only 0.01% in each of the five least common categories. As you can see from 
inspecting the text, some of the documents have some newline characters embedded, 
which can easily be removed in the first text cleaning stage:

corpus["clean_text"] = corpus["text"].apply(

    lambda x: x.replace("\n", "")

)

Now that we have loaded the data in memory, we can start analyzing it. In the next 
subsection, we will show you some of the main tools that can be used for dealing with 
unstructured text data. They will help you extract structured information so that it can be 
used with ease.

Understanding the main concepts and tools 
used in NLP
When processing documents, the first analytical step is certainly to infer the document 
language. Most analytical engines that are used in NLP tasks are, in fact, trained on 
documents in a specific language and should only be used for such a language. Some 
attempts to build cross-language models (see, for instance, multi-lingual embeddings such 
as https://fasttext.cc/docs/en/aligned-vectors.html and https://
github.com/google-research/bert/blob/master/multilingual.md) 
have recently gained increasing popularity, although they still represent a small portion of 
NLP models. Therefore, it is very common to first infer the language so that you can use 
the correct downstream analytical NLP pipeline.

https://fasttext.cc/docs/en/aligned-vectors.html
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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You can use different methods to infer the language. One very simple yet effective 
approach relies on looking for the most common words of a language (the so-called 
stopwords, such as the, and, be, to, of, and so on) and building a score based on 
their frequencies. Its precision, however, tends to be limited to short text and does not 
make use of the word's positioning and context. On the other hand, Python has many 
libraries that use more elaborated logic, allowing us to infer the language in a more precise 
manner. Some such libraries are fasttext, polyglot, and langdetect, to name just 
a few. 

As an example, we will use fasttext in the following code, which can be integrated 
with very few lines and provides support for more than 150 languages. The language can 
be inferred for all documents using the following snippet:

from langdetect import detect

import numpy as np

def getLanguage(text: str):

    try:

        return langdetect.detect(text)

    except:

        return np.nan

corpus["language"] = corpus["text"].apply(langdetect.detect)

As you will see in the output, there seem to be documents in languages other than English. 
Indeed, these documents are often either very short or have a strange structure, which 
means they're not actual news articles. When documents represent text that a human 
would read and label as news, the model is generally rather precise and accurate.

Now that we have inferred the language, we can continue with the language-dependent 
steps of the analytical pipeline. For the following tasks, we will be using spaCy, which is 
an extremely powerful library that allows us to embed state-of-the-art NLP models with 
very few lines of code. After installing the library with pip install spaCy, language-
specific models can be integrated by simply installing them using the spaCy download 
utility. For instance, the following command can be used to download and install the 
English model:

python -m spacy download en_core_web_sm
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Now, we should have the language models for English ready to use. Let's see which 
information it can provide. Using spaCy is extremely simple and, using just one line of 
code, can embed the computation as a very rich set of information. Let's start by applying 
the model to one of the documents in the Reuters corpus:

SUBROTO SAYS INDONESIA SUPPORTS TIN PACT EXTENSION
Mines and Energy Minister Subroto confirmed Indonesian support for an 
extension of the sixth International Tin Agreement (ITA), but said a new 
pact was not necessary. Asked by Reuters to clarify his statement on Monday 
in which he said the pact should be allowed to lapse, Subroto said Indonesia 
was ready to back extension of the ITA. "We can support extension of the 
sixth agreement," he said. "But a seventh accord we believe to be unnecessary." 
The sixth ITA will expire at the end of June unless a two-thirds majority of 
members vote for an extension.

spacy can easily be applied just by loading the model and applying it to the text:

nlp = spacy.load('en_core_web_md')

parsed = nlp(text)

The parsed object, which is returned by spacy, has several fields due to many models 
being combined into a single pipeline. These provide a different level of text structuring. 
Let's examine them one by one:

• Text segmentation and tokenization: This is a process that aims to split a 
document into its periods, sentences, and single words (or tokens). This step 
is generally very important for all subsequent analyses and usually leverages 
punctuation, black spaces, and newlines characters to infer the best document 
segmentation. The segmentation engine provided in spacy generally works fairly 
well. However, please note that, depending on the context, a bit of model tuning 
or rule modification might be necessary. For instance, when you're dealing with 
short texts that contain slang, emoticons, links, and hashtags, a better choice for 
text segmentation and tokenization may be TweetTokenizer, which is included 
in the nltk library. Depending on the context, we encourage you to explore other 
possible segmentations.
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In the document returned by spacy, the sentence segmentation can be found in 
the sents attribute of the parsed object. Each sentence can be iterated over its 
token by simply using the following code:

for sent in parsed.sents:

    for token in sent:

        print(token)

Each token is a spaCy Span object that has attributes that specify the type of token 
and further characterization that's introduced by the other models.

• Part-of-Speech Tagger: Once the text has been divided into its single words (also 
referred to as tokens), the next step is to associate each token with a Part-of-Speech 
(PoS) tag; that is, its grammatical type. The inferred tags are usually nouns, verbs, 
auxiliary verbs, adjectives, and so on. The engines that are used for PoS tagging are 
usually models that have been trained to classify tokens based on a large, labeled 
corpus, where each token has an associated PoS tag. Being trained on actual data, 
they learn to recognize the common pattern within a language; for instance, the 
word "the" (which is a determinative article, DET) is usually followed by a noun, and 
so on. When using spaCy, the information about PoS tagging is usually stored in 
the label_ attribute of the Span object. The types of tags that are available can be 
found at https://spacy.io/models/en. Conversely, you can get a human-
readable value for a given type using the spacy.explain function.

• Named Entity Recognition (NER): This analytical step is generally a statistical 
model that is trained to recognize the type of nouns that appear within the text. 
Some common examples of entities are Organization, Person, Geographic Location 
and Addresses, Products, Numbers, and Currencies. Given the context (the 
surrounding words), as well as the prepositions that are used, the model infers the 
most probable type of the entity, if any. As in other steps of the NLP pipeline, these 
models are also usually trained using a large, tagged dataset that they learn common 
patterns and structures from. In spaCy, the information about the document entities 
is usually stored in the ents attribute of the parsed object. spaCy also provides 
some utilities to nicely visualize the entities in a text using the displacy module: 

displacy.render(parsed, style='ent', jupyter=True)

https://spacy.io/models/en
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This results in the following output:

Figure 7.1 – Example of the spaCy output for the NER engine

• Dependency parser: The dependency parser is an extremely powerful engine that 
infers the relationships between tokens within a sentence. It basically allows you to 
build a syntactic tree of how words are related to each other. The root token (the one 
all the other tokens depend on) is usually the main verb of the sentence, that relates 
the subject and the object. Subjects and objects can in turn relate to other syntactic 
tokens, such as possessive pronouns, adjectives and/or articles. Besides, verbs can 
relate, beside subject and object, also to propositions, as well as other subordinate 
predicates. Let's look at a simple example that's been taken from the spaCy website: 
Autonomous cars shift insurance liability towards manufacturers.

The following diagram shows the dependency tree for this example. Here, we can 
see that the main verb (or root), "shift," is related, via the subject-object relationship, 
to "cars" (subject) and "liability" (object). It also sustains the "towards" preposition. 
In the same way, the remaining nouns/adjectives ("Autonomous," "insurance," and 
"manufacturers") are related to either the subject, the object, or the preposition. 
Thus, spacy can be used to build a syntactic tree that can be navigated to identify 
relationships between the tokens. As we will see shortly, this information can be 
crucial when building knowledge graphs: 

Figure 7.2 – Example of a syntactic dependency tree provided by spaCy
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• Lemmatizer: Finally, the very last step of the analytical pipeline is the so-called 
lemmatizer, which allows us to reduce words to a common root to provide a cleaner 
version of it, thus reducing the morphological variation of words. Take, for instance, 
the verb to be. It can have many morphological variations, such as "is," "are," and 
"was," all of which are different, valid forms. Now, consider the difference between 
"car" and "cars." In most cases, we are not interested in these small differences 
that are introduced by morphology. The lemmatizer helps reduce tokens to their 
common, stable forms so that they can be processed easily. Usually, the lemmatizer 
is based on a set of rules that associate particular words (along with conjugations, 
plurals, inflections) with a common root form. More elaborated implementations 
may also use the context and the PoS tagging information to be more robust against 
homonyms. Stemmers are sometimes used in place of the lemmatizer. Instead of 
associating words with a common root form, stemmers usually removed the last 
part of the word to deal with inflectional and derivational variance. Stemmers are 
usually a bit simpler and are generally based on a set of rules that remove a certain 
pattern, rather than considering lexica and syntactic information. In spaCy, the 
lemmatized version of a token can be found in the Span object via the lemma_ 
attribute.

As shown in the preceding diagram, spaCy pipelines can be easily integrated to 
process the entire corpus and store the results in our corpus DataFrame:

nlp = spacy.load('en_core_web_md')

sample_corpus["parsed"] = sample_corpus["clean_text"]\

    .apply(nlp)

This DataFrame represents the structured information of the documents. This will be the 
base of all our subsequent analysis. In the next section, we will show you how to build 
graphs while using such information.

Creating graphs from a corpus of documents
In this section, we will use the information we extracted in the previous section using the 
different text engines to build networks that relate the different information. In particular, 
we will focus on two kinds of graphs:

• Knowledge-based graphs, where we will use the semantic meaning of sentences to 
infer relationships between the different entities.

• Bipartite graphs, where we will be connecting the documents to the entities that 
appear in the text. We will then project the bipartite graph into a homogeneous 
graph, which will be made up of either document or entity nodes only. 
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Knowledge graphs
Knowledge graphs are very interesting as they not only relate entities but also provide a 
direction and a meaning to the relationship. For instance, let's take a look at the following 
relationship:

                                                                     I (->) buy (->) a book

This is substantially different from the following relationship:

                                                                       I (->) sell (->) a book

Besides the kind of relationship (buying or selling), it is also important to have a direction, 
where the subject and object are not treated symmetrically, but where there is a difference 
between who is performing the action and who is the target of such an action. 

So, to create a knowledge graph, we need a function that can identify the Subject-
Verb-Object (SVO) triplet for each sentence. This function can then be applied to 
all the sentences in the corpus; then, all the triplets can be aggregated to generate the 
corresponding graph.

The SVO extractor can be implemented on top of the enrichment provided by spaCy 
models. Indeed, the tagging provided by the dependency tree parser can be very helpful 
for separating main sentences and their subordinates, as well as identifying the SOV 
triplets. The business logic may need to consider a few special cases (such as conjunctions, 
negations, and preposition handling), but this can be encoded with a set of rules. 
Moreover, these rules may also change, depending on the specific use case, with slight 
variations to be tuned by the user. A base implementation of such rules can be found 
at https://github.com/NSchrading/intro-spacy-nlp/blob/master/
subject_object_extraction.py. These have been slightly adopted for our scope 
and are included in the GitHub repository provided with this book. Using this helper 
function, we can compute all the triplets in the corpus and store them in our corpus 
DataFrame:

from subject_object_extraction import findSVOs

corpus["triplets"] = corpus["parsed"].apply(

    lambda x: findSVOs(x, output="obj")

)

edge_list = pd.DataFrame([

    {

        "id": _id,

        "source": source.lemma_.lower(),

        "target": target.lemma_.lower(),

https://github.com/NSchrading/intro-spacy-nlp/blob/master/subject_object_extraction.py
https://github.com/NSchrading/intro-spacy-nlp/blob/master/subject_object_extraction.py
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        "edge": edge.lemma_.lower()

    }

    for _id, triplets in corpus["triplets"].iteritems()

    for (source, (edge, neg), target) in triplets

])

The type of the connection (determined by the sentence's main predicate) is stored in the 
edge column. The first 10 most common relationships can be shown using the following 
command:

edges["edge"].value_counts().head(10)

The most common edge types correspond to very basic predicates. Indeed, together with 
very general verbs (such as be, have, tell, and give), we can also find predicates that are 
more related to a financial context (such as buy, sell, and make). Using all these edges, we 
can now create our knowledge-based graph using the networkx utility function:

G = nx.from_pandas_edgelist(

    edges, "source", "target", 

    edge_attr=True, create_using=nx.MultiDiGraph()

)

By filtering the edge DataFrame and creating a subnetwork using this information, we can 
analyze specific relationship types, such as the lend edge:

G=nx.from_pandas_edgelist(

    edges[edges["edge"]=="lend"], "source", "target",

    edge_attr=True, create_using=nx.MultiDiGraph()

)
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The following diagram shows the subgraph based on the lend relationships. As we can see, 
it already provides interesting economical insights, such as the economic relationships 
between countries, such as Venezuela-Ecuador and US-Sudan: 

Figure 7.3 – Example of a portion of the knowledge graph for the edges related the lending relationships

You can play around with the preceding code by filtering the graph based on other 
relationships. We definitely encourage you to do so, in order to unveil further interesting 
insights from the knowledge graphs we just created. In the next section, we will show you 
another method that allows us to encode the information that's been extracted from the 
text into a graph structure. In doing so, we will also make use of a particular type of graph 
that we introduced in Chapter 1, Bipartite Graphs. 

Bipartite document/entity graphs
Knowledge graphs can unveil and query aggregated information over entities. However, 
other graph representations are also possible and can be useful in other situations. For 
example, when you want to cluster documents semantically, the knowledge graph may not 
be the best data structure to use and analyze. Knowledge graphs are also not very effective 
at finding indirect relationships, such as identifying competitors, similar products, and 
so on, that do not often occur in the same sentence, but that often occur in the same 
document. 
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To address these limitations, we will encode the information present in the document 
in the form of a bipartite graph. For each document, we will extract the entities that 
are most relevant and connect a node, representing the document, with all the nodes 
representing the relevant entities in such a document. Each node may have multiple 
relationships: by definition, each document connects multiple entities. By contract, an 
entity can be referenced in multiple documents. As we will see, cross-referencing can be 
used to create a measure of similarity between entities and documents. This similarity can 
also be used for projecting the bipartite graph into one particular set of nodes – either the 
document nodes or the entity nodes.

To this aim, to build our bipartite graph, we need to extract the relevant entities of a 
document. The term relevant entity is clearly fuzzy and broad. In the current context, 
we will consider a relevant entity to be either a named entity (such as an organization, 
person, or location recognized by the NER engine) or a keyword; that is, a word (or 
a composition of words) that identifies and generally describes the document and its 
content. For instance, the suitable keywords for this book may be "graph," "network," 
"machine learning," "supervised model," and "unsupervised model." Many algorithms 
exist that extract keywords from a document. One very simple way to do this is based on 
the so-called TF-IDF score, which is based on building a score for each token (or group of 
tokens, often referred to as grams) that is proportional to the word count in the document 
(the Term Frequency, or TF) and to the inverse of the frequency of that word in a given 
corpus (the Inverse Document Frequency, or IDF):

Here, ,   represents the count of word   in document  ,   represents the number of 
documents in the corpus, and   is the document where the word   appears. Therefore, the 
TF-IDF score promotes words that are repeated many times in the document, penalizing 
words that are common and therefore might not be very representative for a document. 
There are also more sophisticated algorithms. 

,

∑ ,
∙
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One method that is quite powerful and worth mentioning in the context of this book 
is indeed TextRank, since it is also based on a graph representation of the document. 
TextRank creates a network where the nodes are the single token and where the edges 
between them are created when tokens are within a certain window. After creating such 
a network, PageRank is used to compute the centrality for each token, which it does 
by providing a score that allows ranking within the document based on the centrality 
score. The most central nodes (up to a certain ratio, generally between 5% and 20% of 
the document size) are identified as candidate keywords. When two candidate keywords 
occur close to each other, they get aggregated into composite keywords, made up of 
multiple tokens. Implementations of TextRank are available in many NLP packages. One 
such package is gensim, which can be used in a straightforward manner:

from gensim.summarization import keywords

text = corpus["clean_text"][0]

 keywords(text, words=10, split=True, scores=True,

         pos_filter=('NN', 'JJ'), lemmatize=True)

This produces the following output:

[('trading', 0.4615130639538529),

 ('said', 0.3159855693494515),

 ('export', 0.2691553824958079),

 ('import', 0.17462010006456888),

 ('japanese electronics', 0.1360932626379031),

 ('industry', 0.1286043740379779),

 ('minister', 0.12229815662000462),

 ('japan', 0.11434500812642447),

 ('year', 0.10483992409352465)]

Here, the score represents the centrality, which represents the importance of a given 
token. As you can see, some composite tokens may also occur, such as japanese 
electronics. Keyword extraction can be implemented to compute the keywords for 
the entire corpus, thus storing the information in our corpus DataFrame:

corpus["keywords"] = corpus["clean_text"].apply(

    lambda text: keywords(

       text, words=10, split=True, scores=True,

       pos_filter=('NN', 'JJ'), lemmatize=True)

)
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Besides the keywords, to build the bipartite graph, we also need to parse the named 
entities that were extracted by the NER engine, and then encode the information in a 
similar data format as the one that was used for the keywords. This can be done using a 
few utility functions:

def extractEntities(ents, minValue=1, 

                    typeFilters=["GPE", "ORG", "PERSON"]):

    entities = pd.DataFrame([

       {

          "lemma": e.lemma_, 

          "lower": e.lemma_.lower(),

          "type": e.label_

       } for e in ents if hasattr(e, "label_")

    ])

    if len(entities)==0:

        return pd.DataFrame()

    g = entities.groupby(["type", "lower"])

    summary = pd.concat({

        "alias": g.apply(lambda x: x["lemma"].unique()),

        "count": g["lower"].count()

    }, axis=1)

    return summary[summary["count"]>1]\

             .loc[pd.IndexSlice[typeFilters, :, :]]

 

def getOrEmpty(parsed, _type):

    try:  

        return list(parsed.loc[_type]["count"]\

           .sort_values(ascending=False).to_dict().items())

    except:

        return []

def toField(ents):

    typeFilters=["GPE", "ORG", "PERSON"]

    parsed = extractEntities(ents, 1, typeFilters)

    return pd.Series({_type: getOrEmpty(parsed, _type)

                      for _type in typeFilters})
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With these functions, parsing the spacy tags can be done with the following code:

entities = corpus["parsed"].apply(lambda x: toField(x.ents))

The entities DataFrame can easily be merged with the corpus DataFrame using the 
pd.concat function, thus placing all the information in a single data structure:

merged = pd.concat([corpus, entities], axis=1)

Now that we have all the ingredients for our bipartite graph, we can create the edge list by 
looping over all the documents-entity or document-keyword pairs:

edges = pd.DataFrame([

    {"source": _id, "target": keyword, "weight": score, "type": 
_type}

    for _id, row in merged.iterrows()

    for _type in ["keywords", "GPE", "ORG", "PERSON"] 

    for (keyword, score) in row[_type]

])

Once the edge list has been created, we can produce the bipartite graph using networkx 
APIs: 

G = nx.Graph()

G.add_nodes_from(edges["source"].unique(), bipartite=0)

 G.add_nodes_from(edges["target"].unique(), bipartite=1)

 G.add_edges_from([

    (row["source"], row["target"])

    for _, row in edges.iterrows()

])

Now, we can look at an overview of our graph by using nx.info:

Type: Graph

Number of nodes: 25752

Number of edges: 100311

Average degree:   7.7905
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In the next subsection, we will project the bipartite graph in either of the two sets of 
nodes: entities or documents. This will allow us to explore the difference between the two 
graphs and cluster both the terms and documents using the unsupervised techniques 
described in Chapter 4, Supervised Graph Learning. Then, we will return to the bipartite 
graph to show an example of supervised classification, which we'll do by leveraging the 
network information of the bipartite graphs. 

Entity-entity graph
We will start by projecting our graph into the set of entity nodes. networkx provides 
a special submodule for dealing with bipartite graphs, networkx.algorithms.
bipartite, where a number of algorithms have already been implemented. In 
particular, the networkx.algorithms.bipartite.projection submodule 
provides a number of utility functions to project bipartite graphs on a subset of nodes. 
Before performing projection, we must extract the nodes relative to a particular set (either 
documents or entities) using the "bipartite" property we created when we generated the 
graph:

document_nodes = {n 

                  for n, d in G.nodes(data=True)

                  if d["bipartite"] == 0}

entity_nodes = {n 

                for n, d in G.nodes(data=True)

                if d["bipartite"] == 1}

The graph projection basically creates a new graph with the set of selected nodes. Edges 
are places between the nodes based on whether two nodes have neighbors in common. 
The basic projected_graph function creates such a network with unweighted edges. 
However, it is usually more informative to have edges weighted based on the number of 
common neighbors. The projection module provides different functions based on 
how the weights are computed. In the next section, we will use overlap_weighted_
projected_graph, where the edge weight is computed using the Jaccard similarity 
based on common neighbors. However, we encourage you to also explore the other 
options that, depending on your use case and context, may best suit your aims.
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Be�aware�of�dimensions�–�filtering�the�graph
There is another point of caution you should be aware of when dealing with projections: 
the dimension of the projected graph. In certain cases, like the one we are considering 
here, projection may create an extremely large number of edges, which makes the graph 
hard to analyze. In our use case, following the logic we used to create our network, a 
document node is connected to at least 10 keywords, plus a few entities. In the resulting 
entity-entity graph, all these entities will be connected to each other as they share at least 
one common neighbor (the document that contains them). Therefore, we will only be 
generating around 15 ∙ 14

2⁄ ≈ 100  edges for one document. If we multiply this number for 
the number of documents, ~ 105 , we will end up with several edges that, despite the small 
use case, already become almost intractable, since there's a few million edges. Although 
this surely represents a conservative upper bound (as some of the co-occurrence between 
entities will be common in many documents and therefore not repeated), it provides an 
order of magnitude of the complexity that you might expect. Therefore, we encourage 
you to proceed with caution before projecting your bipartite graph, depending on the 
topology of the underlying network and the size of your graph. One trick to reduce this 
complexity and make the projection feasible is to only consider entity nodes that have 
a certain degree. Most of the complexity arises from the presence of entities that appear 
only once or a few times, but still generate cliques within the graph. Such entities are not 
very informative for capturing patterns and providing insights. Besides, they are possibly 
strongly affected by statistical variability. On the other hand, we should focus on strong 
correlations that are supported by larger occurrences and provide more reliable statistical 
results. 

Therefore, we will only consider entity nodes with a certain degree. To this aim, we will 
generate the filtered bipartite subgraph, which excludes nodes with low degree values, 
namely smaller than 5:

nodes_with_low_degree = {n 

    for n, d in nx.degree(G, nbunch=entity_nodes) if d<5}

subGraph = G.subgraph(set(G.nodes) - nodes_with_low_degree)

This subgraph can now be projected without generating a graph with an excessive number 
of edges:

entityGraph = overlap_weighted_projected_graph(

    subGraph,

    {n for n in subGraph.nodes() if n in entity_nodes}

)
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We can check the dimension of the graph with the networkx function of nx.info:

Number of nodes: 2386

Number of edges: 120198

Average degree: 100.7527

Despite the filters we've applied, the number of edges and the average node degree are 
still quite large. The following graph shows the distribution of the degree and of the edge 
weights, where we can observe one peak in the degree distribution at fairly low values, 
with a fat tail toward large degree values. Also, the edge weight shows a similar behavior, 
with a peak at rather low values and fat right tails. These distributions suggest the presence 
of several small communities, namely cliques, which are connected to each other via some 
central nodes:

Figure 7.4 – Degree and weight distribution for the entity-entity network

The distribution of the edge weights also suggests that a second filter could be applied. 
The filter on the entity degree that we applied previously on the bipartite graph allowed 
us to filter out rare entities that only appeared in a few documents. However, the resulting 
graph could also be affected by the opposite problem: popular entities may be connected 
just because they tend to appear often in documents, even if there is not an interesting 
causal connection between them. Consider the US and Microsoft. They are almost surely 
connected, as it is extremely likely that there will be at least one or a few documents 
where they both appear. However, if there is not a strong and causal connection between 
them, it is very unlikely that the Jaccard similarity will be large. Considering only the 
edges with the largest weights allows you to focus on the most relevant and possibly stable 
relationships. The edge weight distribution shown in the preceding graph suggests that a 
suitable threshold could be 0.05:

filteredEntityGraph = entityGraph.edge_subgraph(

    [edge 

     for edge in entityGraph.edges
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     if entityGraph.edges[edge]["weight"]>0.05])

Such a threshold reduces the number of edges significantly, making it feasible to analyze 
the network:

Number of nodes: 2265

Number of edges: 8082

Average degree:   7.1364   

 

Figure 7.5 – Degree Distribution (Left) and Edge Weight Distribution (Right) for the resulting graph, 
after filtering based on the edge weight

The preceding diagram shows the distribution of the node degree and edge weights for 
the filtered graph. The distribution for the edge weights corresponds to the right tail of the 
distribution shown in Figure 7.4. The relationship that the degree distribution has with 
Figure 7.4 is less obvious, and it shows the peak for the nodes that have a degree around 
10, as opposed to the peak shown in Figure 7.4, which was observed in the low range, at 
around 100.

Analyzing the graph
Using Gephi we can provide an overview of the overall network, which is shown in Figure 
7.6. 

The graph is as follows:
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Figure 7.6 – Entity-entity network highlighting the presence of multiple small subcommunities

To obtain some further insights on the topology of the network, we will also compute 
some global measures, such as the average shortest path, clustering coefficient, and global 
efficiency. Although the graph has five different connected components, the largest one 
almost entirely accounts for the whole graph, including 2,254 out of 2,265 nodes:

components = nx.connected_components(filteredEntityGraph)

 pd.Series([len(c) for c in components])

The global properties of the largest components can be found with the following code:

comp = components[0] 

global_metrics = pd.Series({

    "shortest_path": nx.average_shortest_path_length(comp),

    "clustering_coefficient": nx.average_clustering(comp),

    "global_efficiency": nx.global_efficiency(comp)

 })
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The shortest path and global efficiency may require a few minutes of computation. This 
results in the following output:

{

    'shortest_path': 4.715073779178782,

    'clustering_coefficient': 0.21156314975836915,

    'global_efficiency': 0.22735551077454275

}

Based on the magnitude of these metrics (with a shortest path of about 5 and a clustering 
coefficient around 0.2), together with the degree distribution shown previously, we can 
see that the network has multiple communities of a limited size. Other interesting local 
properties, such as degree, page rank, and betweenness centralities distributions, are 
shown in the following graph, which shows how all these measures tend to correlate and 
connect to each other:

Figure 7.7 – Relationships and distribution between the degree, page rank, and betweenness centrality 
measures
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After providing a description in terms of loca;/global measures, as well as a general 
visualization of the network, we will apply some of the techniques we have seen in the 
previous chapters to identify some insights and information within the network. We 
will do this using the unsupervised techniques described in Chapter 4, Supervised Graph 
Learning. 

We will start by using the Louvain community detection algorithms, which, by optimizing 
their modularity, aim to identify the best partitions of the nodes in disjoint communities:

import community

communities = community.best_partition(filteredEntityGraph)

Note that the results might vary between runs because of random seeds. However, a 
similar partition, with a distribution of cluster memberships similar to the one shown in 
the following graph, should emerge. We generally observe about 30 communities, with the 
larger ones containing around 130-150 documents. 

Figure 7.8 – Distribution of the size of the detected communities
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Figure 7.9 shows a close-up of one of the communities, where we can identify a particular 
topic/argument. On the left, beside the entity nodes, we can also see the document nodes, 
thus uncovering the structure of the related bipartite graph:

Figure 7.9 – Close-up for one of the communities we've identified

As shown in Chapter 4, Supervised Graph Learning, we can extract insightful information 
about the topology and similarity between entities by using node embeddings. In 
particular, we can use Node2Vec, which, by feeding a randomly generated walk to a skip-
gram model, can project the nodes into a vector space, where close-by nodes are mapped 
to nearby points: 

from node2vec import Node2Vec

node2vec = Node2Vec(filteredEntityGraph, dimensions=5) 

model = node2vec.fit(window=10) 

embeddings = model.wv

In the vector space of embeddings, we can apply traditional clustering algorithms, 
such as GaussianMixture, K-means, and DB-scan. As we did in the previous chapters, 
we can also project the embeddings into a 2D plane using t-SNE to visualize clusters 
and communities. Besides giving us another option to identify clusters/communities 
within the graph, Node2Vec can also be used to provide similarity between words, as 
traditionally done by Word2Vec. For instance, we can query the Node2Vec embedding 
model and find the word that's most similar "turkey," which provides semantically 
similar words:

[('turkish', 0.9975333213806152),
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 ('lira', 0.9903393983840942),

 ('rubber', 0.9884852170944214),

 ('statoil', 0.9871745109558105),

 ('greek', 0.9846569299697876),

 ('xuto', 0.9830175042152405),

 ('stanley', 0.9809650182723999),

 ('conference', 0.9799597263336182),

 ('released', 0.9793018102645874),

 ('inra', 0.9775203466415405)]

Although these two approaches, Node2Vec and Word2Vec, share some methodological 
similarities, the two embedding schemes come from different types of information: 
Word2Vec is built directly from the text and encloses relationships at the sentence level, 
while Node2Vec encodes a description that acts more at the document level, since it 
comes from the bipartite entity-document graph. 

Document-document graph
Now, let's project the bipartite graph into the set of document nodes to create a document-
document network we can analyze. In a similar way to when we created an entity-entity 
network, we will use the overlap_weighted_projected_graph function to obtain 
a weighted graph that can be filtered to reduce the number of significant edges. Indeed, 
the topology of the network and the business logic used to build the bipartite graph do 
not favor clique creation, as we saw for the entity-entity graph: two nodes will only be 
connected when they share at least one keyword, organization, location, or person. This is 
certainly possible, but not extremely likely, within groups of 10-15 nodes, as observed for 
the entities.

As we did previously, we can easily build our network with the following lines:

documentGraph = overlap_weighted_projected_graph(

    G,

    document_nodes

)
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The following graph shows the distribution of the degree and the edge weight. This can 
help us decide on the value of the threshold to be used to filter out the edges. Interestingly, 
the node degree distribution shows a clear peak toward large values compared to the 
degree distribution observed for the entity-entity graph. This suggests the presence of a 
number of supernodes (that is, nodes with rather large degrees) that are highly connected. 
Also, the edge weight distribution shows the Jaccard index's tendency to attain values 
close to 1, which are much larger than the ones we observed in the entity-entity graph. 
These two observations highlight a profound difference between the two networks: 
whereas the entity-entity graph is characterized by many tightly connected communities 
(namely cliques), the document-document graph is characterized by a rather tight 
connection among nodes with a large degree (which constitutes the core) versus a 
periphery of weakly connected or disconnected nodes: 

Figure 7.10 – Degree Distribution and Edge Weight Distribution for the projection of the bipartite graph 
into the document-document network

It can be convenient to store all the edges in a DataFrame so that we can plot them and 
then use them to filter and, thus, create a subgraph:

allEdgesWeights = pd.Series({

    (d[0], d[1]): d[2]["weight"] 

    for d in documentGraph.edges(data=True)

})
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By looking at the preceding diagram, it seems reasonable to set a threshold value of 0.6 
for the edge weight, thus allowing us to generate a more tractable network using the 
edge_subgraph function of networkx:

filteredDocumentGraph = documentGraph.edge_subgraph(

    allEdgesWeights[(allEdgesWeights>0.6)].index.tolist()

)

The following graph shows the resulting distribution for the degree and for the edge 
weight for the reduced graph:

Figure 7.11 – Degree Distribution and Edge Weight Distribution for the document-document filtered 
network
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The substantial difference in topology of the document-document graph with respect to 
the entity-entity graph can also be clearly seen in the following diagram, which shows a 
full network visualization. As anticipated by the distributions, the document-document 
network is characterized by a core network and several weekly connected satellites. These 
satellites represent all the documents that share none or a few keywords or entity common 
occurrences. The number of disconnected documents is quite large and accounts for 
almost 50% of the total:

Figure 7.12 – (Left) Representation of the document-document filtered network, highlighting the 
presence of a core and a periphery. (Right) Close-up of the core, with some subcommunities embedded. 

The node size is proportional to the node degree

It may be worthwhile extracting the connected components for this network using the 
following commands:

components = pd.Series({

    ith: component 

    for ith, component in enumerate(

        nx.connected_components(filteredDocumentGraph)

    )

})
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In the following graph, we can see the distribution for the connected component sizes. 
Here, we can clearly see the presence of a few very large clusters (the cores), together with 
a large number of disconnected or very small components (the periphery or satellites). 
This structure is strikingly different from the one we observed for the entity-entity graph, 
where all the nodes were generated by a very large, connected cluster:

Figure 7.13 – Distribution of the connected component sizes, highlighting the presence of many small-
sized communities (representing the periphery) and a few large communities (representing the core)

It can be interesting to investigate the structure of the core components further. We can 
extract the subgraph composed of the largest components of the network from the full 
graph with the following code:

coreDocumentGraph = nx.subgraph(

    filteredDocumentGraph,

    [node 

     for nodes in components[components.apply(len)>8].values

     for node in nodes]

)

We can inspect the properties of the core network using nx.info:

Type: Graph

Number of nodes: 1050

Number of edges: 7112

Average degree:  13.5467
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The left panel in Figure 7.12 shows a Gephi visualization of the core. As we can see, 
the core is composed of a few communities, along with nodes with fairly large degrees 
strongly connected to each other. 

As we did for the entity-entity network, we can process the network to identify 
communities embedded in the graph. However, different from what we did previously, 
the document-document graph now provides a mean for judging the clustering using the 
document labels. Indeed, we expect documents belonging to the same topic to be close 
and connected to each other. Moreover, as we will see shortly, this will also allow us to 
identify similarities among topics. 

First, let's start by extracting the candidate communities:

import community

communities = pd.Series(

    community.best_partition(filteredDocumentGraph)

)

Then, we will extract the topic mixture within each community to see whether there is a 
homogeneity (all the documents belonging to the same class) or some correlation between 
topics:

from collections import Counter

def getTopicRatio(df):

    return Counter([label 

                    for labels in df["label"] 

                    for label in labels])

 

communityTopics = pd.DataFrame.from_dict({

    cid: getTopicRatio(corpus.loc[comm.index])

    for cid, comm in communities.groupby(communities)

 }, orient="index")

normalizedCommunityTopics = (

    communityTopics.T / communityTopics.sum(axis=1)

).T



Creating graphs from a corpus of documents     231

normalizedCommunityTopics is a DataFrame that, for each community (row in 
the DataFrame), provides the topic mixture (in percentage) of the different topics (along 
the column axis). To quantify the heterogeneity of the topic mixture within the clusters/
communities, we must compute the Shannon entropy of each community:

Here,   represents the entropy of the cluster,  , and   corresponds to the percentage 
of topic   in community  . We must compute the empirical Shannon entropy for all 
communities:

normalizedCommunityTopics.apply(

    lambda x: np.sum(-np.log(x)), axis=1)

The following graph shows the entropy distribution across all communities. Most 
communities have zero or very low entropy, thus suggesting that the documents that 
belong to the same class (label) tend to cluster together:

Figure 7.14 – Entropy distribution of the topic mixture in each community

Even if most of the communities show zero or low variability around topics, it 
is interesting to investigate whether there is a relationship between topics, when 
communities show some heterogeneity. Namely, we compute the correlation between 
topic distributions:

topicsCorrelation = normalizedCommunityTopics.corr().fillna(0)

= −∑ log  
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These can then be represented and visualized using a topic-topic network:

topicsCorrelation[topicsCorrelation<0.8]=0

topicsGraph = nx.from_pandas_adjacency(topicsCorrelation)

The left-hand side of the following diagram shows the full graph representation for 
the topics network. As observed for the document-document network, the topic-topic 
graph shows a structure organized in a periphery of disconnected nodes and a strongly 
connected core. The right-hand side of the following diagram shows a close-up of the core 
network. This indicates a correlation that is supported by a semantic meaning, with the 
topics related to commodities tightly connected to each other:

Figure 7.15 – (Left) Topic-topic correlation graph, organized with a periphery-core structure. (Right) 
Close-up of the core of the network

In this section, we analyzed the different types of networks that arise when analyzing 
documents and, more generally, text sources. To do so, we used global and local properties 
to statistically describe the networks, as well as some unsupervised algorithms, which 
allowed us to unveil some structure within the graph. In the next section, we will show 
you how to leverage these graph structures when building a machine learning model. 
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Building a document topic classifier
To show you how to leverage a graph structure, we will focus on using the topological 
information and the connections between the entities provided by the bipartite entity-
document graph to train multi-label classifiers. This will help us predict the document 
topics. To do this, we will analyze two different approaches:

• A shallow machine-learning approach, where we will use the embeddings we 
extracted from the bipartite network to train traditional classifiers, such as a 
RandomForest classifier.

• A more integrated and differentiable approach based on using a graphical neural 
network that's been applied to heterogeneous graphs (such as the bipartite graph).

Let's consider the first 10 topics, which we have enough documentation on to train and 
evaluate our models:

from collections import Counter

topics = Counter(

    [label 

     for document_labels in corpus["label"] 

     for label in document_labels]

).most_common(10)

The preceding code block produces the following output. This shows the names of the 
topics, all of which we will focus on in the following analysis:

[('earn', 3964), ('acq', 2369), ('money-fx', 717), 

('grain', 582), ('crude', 578), ('trade', 485), 

('interest', 478), ('ship', 286), ('wheat', 283), 

('corn', 237)]

When training topic classifiers, we must restrict our focus to only those documents that 
belong to such labels. The filtered corpus can easily be obtained by using the following 
code block:

topicsList = [topic[0] for topic in topics]

 topicsSet = set(topicsList)

dataset = corpus[corpus["label"].apply(

    lambda x: len(topicsSet.intersection(x))>0

)]
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Now that we have extracted and structured the dataset, we are ready to start training 
our topic models and evaluating their performance. In the next section, we will start 
by creating a simple model using shallow learning methods so that we can increase the 
complexity of the model by using graph neural networks.

Shallow learning methods
We will start by implementing a shallow approach for the topic classification tasks by 
leveraging the network's information. We will show you how to do this so that you can 
customize even further, depending on your use case:

1. First, we will compute the embeddings by using Node2Vec on the bipartite graph. 
Filtered document-document networks are characterized by a periphery with 
many nodes that are disconnected, so they would not benefit from topological 
information. On the other hand, the unfiltered document-document network will 
have many edges, which makes the scalability of the approach an issue. Therefore, 
using the bipartite graph is crucial in order to efficiently leverage the topological 
information and the connection between entities and documents:

from node2vec import Node2Vec

node2vec = Node2Vec(G, dimensions=10) 

model = node2vec.fit(window=20) 

embeddings = model.wv 

Here, the dimension embedding, as well as our window, which is used for 
generating the walks, are hyperparameters that must be optimized via cross-
validation. 

2. To make this computationally efficient, a set of embeddings can be computed 
beforehand, saved to disk, and then be used in the optimization process. This 
would work based on the assumption that we are in a semi-supervised setting or in 
a transductive task, where we have connection information about the entire dataset, 
apart from their labels, at training time. Later in this chapter, we will outline another 
approach, based on graph neural networks, that provides an inductive framework 
for integrating topology when training classifiers. Let's store the embeddings in a 
file:

pd.DataFrame(embeddings.vectors,

             index=embeddings.index2word

).to_pickle(f"graphEmbeddings_{dimension}_{window}.p")
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Here, we can choose and loop different values for dimension and window. Some 
possible choices are 10, 20, and 30 for both variables. 

3. These embeddings can be integrated into a scikit-learn transformer so that they 
can be used in a grid search cross-validation process:

from sklearn.base import BaseEstimator

class EmbeddingsTransformer(BaseEstimator):

    def __init__(self, embeddings_file):

        self.embeddings_file = embeddings_file        

    def fit(self, *args, **kwargs):

        self.embeddings = pd.read_pickle(

            self.embeddings_file)

        return self        

    def transform(self, X):

        return self.embeddings.loc[X.index]    

    def fit_transform(self, X, y):

        return self.fit().transform(X)

4. To build a modeling training pipeline, we will split our corpus into training and test 
sets:

def train_test_split(corpus):

    indices = [index for index in corpus.index]

    train_idx = [idx 

                 for idx in indices 

                 if "training/" in idx]

    test_idx = [idx 

                for idx in indices 

                if "test/" in idx]

    return corpus.loc[train_idx], corpus.loc[test_idx]

train, test = train_test_split(dataset)
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We will also build functions to conveniently extract features and labels:
def get_features(corpus):

    return corpus["parsed"]

def get_labels(corpus, topicsList=topicsList):

    return corpus["label"].apply(

        lambda labels: pd.Series(

           {label: 1 for label in labels}

        ).reindex(topicsList).fillna(0)

    )[topicsList]

def get_features_and_labels(corpus):

    return get_features(corpus), get_labels(corpus)

features, labels = get_features_and_labels(train)

5. Now, we can instantiate the modeling pipeline:

from sklearn.pipeline import Pipeline

from sklearn.ensemble import RandomForestClassifier 

from sklearn.multioutput import MultiOutputClassifier

pipeline = Pipeline([

    ("embeddings", EmbeddingsTransformer(

        "my-place-holder")

    ),

    ("model", MultiOutputClassifier(

        RandomForestClassifier())

    )

])
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6. Let's define the parameter space, as well as the configuration, for the cross-validated 
grid search:

from glob import glob

param_grid = {

    "embeddings__embeddings_file": 
glob("graphEmbeddings_*"),

    "model__estimator__n_estimators": [50, 100],

    "model__estimator__max_features": [0.2,0.3, "auto"], 

}

grid_search = GridSearchCV(

    pipeline, param_grid=param_grid, cv=5, n_jobs=-1)

7. Finally, let's train our topic model by using the fit method of the sklearn API:

model = grid_search.fit(features, labels)

Great! You have just created your topic model, which leverages the graph's information. 
Once the best model has been identified, we can use this model on the test dataset to 
evaluate its performance. To do so, we must define the following helper function, which 
allows us to obtain a set of predictions: 

def get_predictions(model, features):

    return pd.DataFrame(

        model.predict(features),

        columns=topicsList, index=features.index)

preds = get_predictions(model, get_features(test))

 labels = get_labels(test)

Using sklearn functionalities, we can promptly look at the performance of the trained 
classifier:

from sklearn.metrics import classification_report

print(classification_report(labels, preds))

This provides the following output, which shows the overall performance measure that's 
received by the F1-score. This is around 0.6 – 0.8, depending on how unbalanced classes 
are accounted for:

              precision    recall  f1-score   support

           0       0.97      0.94      0.95      1087
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           1       0.93      0.74      0.83       719

           2       0.79      0.45      0.57       179

           3       0.96      0.64      0.77       149

           4       0.95      0.59      0.73       189

           5       0.95      0.45      0.61       117

           6       0.87      0.41      0.56       131

           7       0.83      0.21      0.34        89

           8       0.69      0.34      0.45        71

           9       0.61      0.25      0.35        56

   micro avg       0.94      0.72      0.81      2787

   macro avg       0.85      0.50      0.62      2787

weighted avg       0.92      0.72      0.79      2787

 samples avg       0.76      0.75      0.75      2787

You can play around with the types and hyperparameters of the analytical pipeline, vary 
the models, and experiment with different values when you're encoding the embeddings. 
As we mentioned previously, the preceding approach is clearly transductive since it uses 
an embedding that's been trained on the entire dataset. This is a common situation in 
semi-supervised tasks, where the labeled information is only present in a small subset 
of points, and the task is to infer the labels for all the unknown samples. In the next 
subsection, we will outline how to build an inductive classifier using graph neural 
networks. These can be used when the test samples are not known at training time.

Graph neural networks
Now, let's describe a neural network-based approach that natively integrates and makes 
use of the graph structure. Graph neural networks were introduced in Chapter 3, 
Unsupervised Graph Learning, and Chapter 4, Supervised Graph Learning. However, here, 
we will show you how to apply this framework to heterogeneous graphs; that is, graphs 
where there is more than one type of node. Each node type might have a different set of 
features and the training might target only one specific node type over the other. 
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The approach we will show here will make use of stellargraph and the GraphSAGE 
algorithms, which we described previously. These methods also support the use of features 
for each node, instead of just relying on the topology of the graph. If you do not have 
any node features, the one-hot node representation can be used in its place, as shown in 
Chapter 6, Social Network Graphs. However, here, to make things more general, we will 
produce a set of node features based on the TF-IDF score (which we saw earlier) for each 
entity and keyword. Here, we will show you a step-by-step guide that will help you train 
and evaluate a model, based on graph neural networks, for predicting document topic 
classification:

1. Let's start by computing the TF-IDF score for each document. sklearn already 
provides some functionalities that allow us to easily compute the TF-IDF scores 
from a corpus of documents. The TfidfVectorizer sklearn class already 
comes with a tokenizer embedded. However, since we already have a tokenized 
and lemmatized version that we extracted with spacy, we can also provide an 
implementation of a custom tokenizer that leverages on spaCy processing:

def my_spacy_tokenizer(pos_filter=["NOUN", "VERB", 
"PROPN"]):

    def tokenizer(doc):

        return [token.lemma_ 

                for token in doc 

                if (pos_filter is None) or 

                   (token.pos_ in pos_filter)] 

    return tokenizer 

This can be used in TfidfVectorizer:
cntVectorizer = TfidfVectorizer(

    analyzer=my_spacy_tokenizer(),

    max_df = 0.25, min_df = 2, max_features = 10000

)

To make the approach truly inductive, we will only train the TF-IDF for the training 
set. This will only be applied to the test set:

trainFeatures, trainLabels = get_features_and_
labels(train)

testFeatures, testLabels = get_features_and_labels(test)

trainedIDF = cntVectorizer.fit_transform(trainFeatures)

testIDF = cntVectorizer.transform(testFeatures)
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For our convenience, the two TF-IDF representations (for the training and test sets) 
can now be stacked together into a single data structure representing the features for 
the document nodes for the whole graph:

documentFeatures = pd.concat([trainedIDF, testIDF])

2. Beside the feature information for document nodes, we will also build a simple 
feature vector for entities, based on the one-hot encoding representation of the 
entity type:

entityTypes = {

    entity: ith 

    for ith, entity in enumerate(edges["type"].unique())

}

entities = edges\

    .groupby(["target", "type"])["source"]\

    .count()\

    .groupby(level=0).apply(

        lambda s: s.droplevel(0)\

                   .reindex(entityTypes.keys())\

                   .fillna(0))\

    .unstack(level=1)

entityFeatures = (entities.T / entities.sum(axis=1))

3. We now have all the information we need to create an instance of a 
StellarGraph. We will do this by merging the information of the node features, 
both for documents and for entities, with the connections provided by the edges 
DataFrame. We should only filter out some of the edges/nodes so that we only 
include the documents that belong to the targeted topics:

from stellargraph import StellarGraph

_edges = edges[edges["source"].isin(documentFeatures.
index)]

nodes = {«entity»: entityFeatures, 

         «document»: documentFeatures}

stellarGraph = StellarGraph(

    nodes, _edges,

    target_column=»target», edge_type_column=»type»

)
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With that, we have created our StellarGraph. We can inspect the network, 
similar to what we did for networkx, with the following command:

print(stellarGraph.info())

This produces the following overview:
StellarGraph: Undirected multigraph

 Nodes: 23998, Edges: 86849

Node types:

  entity: [14964]

    Features: float32 vector, length 6

    Edge types: entity-GPE->document, entity-ORG-
>document, entity-PERSON->document, entity-keywords-
>document

  document: [9034]

    Features: float32 vector, length 10000

    Edge types: document-GPE->entity, document-ORG-
>entity,

 document-PERSON->entity, document-keywords->entity

Edge types:

    document-keywords->entity: [78838]

        Weights: range=[0.0827011, 1], mean=0.258464,

 std=0.0898612

        Features: none

    document-ORG->entity: [4129]

        Weights: range=[2, 22], mean=3.24122, std=2.30508

        Features: none

    document-GPE->entity: [2943]

        Weights: range=[2, 25], mean=3.25926, std=2.07008

        Features: none

    document-PERSON->entity: [939]

        Weights: range=[2, 14], mean=2.97444, std=1.65956

        Features: none
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The StellarGraph description is actually very informative. Besides, 
StellarGraph also natively handles different types of nodes and edges and 
provides out-of-the-box segmented statistics for each node/edge type.

4. You may have noted that the graph we just created includes both training and test 
data. To truly test the performance of an inductive approach and avoid information 
from being linked between the train and test sets, we need to create a subgraph that 
only contains the data available at training time:

targets = labels.reindex(documentFeatures.index).
fillna(0)

 sampled, hold_out = train_test_split(targets)

allNeighbors = np.unique([n 

    for node in sampled.index 

    for n in stellarGraph.neighbors(node)

])

subgraph = stellarGraph.subgraph(

    set(sampled.index).union(allNeighbors)

)

The considered subgraph contains 16,927 nodes and 62,454 edges, compared to the 
23,998 nodes and 86,849 edges in the entire graph. 

5. Now that we only have the data and the network available at training time, we can 
build our machine learning model on top of it. To do so, we will split the data into 
train, validation, and test data. For training, we will only use 10% of the data, which 
resembles a semi-supervised task:

from sklearn.model_selection import train_test_split

train, leftOut = train_test_split(

    sampled,

    train_size=0.1,

    test_size=None,

    random_state=42

)

validation, test = train_test_split(

    leftOut, train_size=0.2, test_size=None, random_
state=100,

) 
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6. Now, we can start to build our graph neural network model using stellargraph 
and the keras API. First, we will create a generator able to produce the 
samples that will feed the neural network. Note that, since we are dealing 
with a heterogeneous graph, we need a generator that will sample examples 
from nodes that only belong to specific class. Here, we will be using the 
HinSAGENodeGenerator class, which generalizes the node generator we used 
for the homogeneous graph into heterogeneous graphs, allowing us to specify the 
node type we want to target:

from stellargraph.mapper import HinSAGENodeGenerator

batch_size = 50

num_samples = [10, 5]

generator = HinSAGENodeGenerator(

    subgraph, batch_size, num_samples,

    head_node_type="document"

)

Using this object, we can create a generator for the train and validation datasets:
train_gen = generator.flow(train.index, train, 
shuffle=True)

 val_gen = generator.flow(validation.index, validation)

7. Now, we can create our GraphSAGE model. As we did for the generator, we need to 
use a model that can handle heterogenous graphs. Here, HinSAGE will be used in 
place of GraphSAGE:

from stellargraph.layer import HinSAGE

from tensorflow.keras import layers

graphsage_model = HinSAGE(

    layer_sizes=[32, 32], generator=generator,

    bias=True, dropout=0.5

)

x_inp, x_out = graphsage_model.in_out_tensors()

prediction = layers.Dense(

    units=train.shape[1], activation="sigmoid"

)(x_out)
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Note that in the final dense layer, we use a sigmoid activation function instead of 
a softmax activation function, since the problem at hand is a multi-class, multi-
label task. Thus, a document may belong to more than one class, and the sigmoid 
activation function seems a more sensible choice in this context. As usual, we will 
compile our Keras model:

from tensorflow.keras import optimizers, losses, Model

model = Model(inputs=x_inp, outputs=prediction)

model.compile(

    optimizer=optimizers.Adam(lr=0.005),

    loss=losses.binary_crossentropy,

    metrics=["acc"]

)

8. Finally, we will train the neural network model:

history = model.fit(

    train_gen, epochs=50, validation_data=val_gen,

    verbose=1, shuffle=False

)

This results in the following output:
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Figure.7.16 – (Top) Train and validation accuracy versus the number of epochs. (Bottom) Binary cross-
entropy loss for the training and validation dataset versus the number of epochs

The preceding graph shows the plots of the evolution of the train and validation 
losses and accuracy versus the number of epochs. As we can see, the train and 
validation accuracy increase consistently, up to around 30 epochs. Here, the 
accuracy of the validation set settle to a plateau, whereas the training accuracy 
continues to increase, indicating a tendency for overfitting. Thus, stopping training 
at around 50 seems a rather legitimate choice. 
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9. Once the model has been trained, we can test its performance on the test set:

test_gen = generator.flow(test.index, test)

 test_metrics = model.evaluate(test_gen)

This should provide the following values:
loss: 0.0933

accuracy: 0.8795

Note that because of the unbalanced label distribution, accuracy may not be the 
best choice for assessing performances. Besides, a value of 0.5 is generally used for 
thresholding, so providing label assignment may also be sub-optimal in unbalanced 
settings.

10. To identify the best threshold to be used to classify the documents, we will compute 
the prediction over all the test samples:

test_predictions = pd.DataFrame(

    model.predict(test_gen), index=test.index,

    columns=test.columns)

test_results = pd.concat({

    "target": test,

    "preds": test_predictions

}, axis=1)

Then, we will compute the F1-score with a macro average (where the F1-score for 
the single classes are averaged) for different threshold choices: 

thresholds = [0.01,0.05,0.1,0.2,0.3,0.4,0.5] 

f1s = {}

for th in thresholds:

    y_true = test_results["target"]

    y_pred = 1.0*(test_results["preds"]>th)

    f1s[th] = f1_score(y_true, y_pred, average="macro")    

pd.Series(f1s).plot()

As shown in the following graph, a threshold value of 0.2 seems to be the best 
choice as it achieves the best performance:
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Figure 7.17 – Macro-averaged F1-score versus the threshold used for labeling

11. Using a threshold value of 0.2, we can extract the classification report for the test set:

print(classification_report(

    test_results["target"], 1.0*(test_
results["preds"]>0.2))

)

This gives us the following output:
              precision    recall  f1-score   support

           0       0.92      0.97      0.94      2075

           1       0.85      0.96      0.90      1200

           2       0.65      0.90      0.75       364

           3       0.83      0.95      0.89       305

           4       0.86      0.68      0.76       296

           5       0.74      0.56      0.63       269

           6       0.60      0.80      0.69       245

           7       0.62      0.10      0.17       150

           8       0.49      0.95      0.65       149

           9       0.44      0.88      0.58       129

   micro avg       0.80      0.89      0.84      5182

   macro avg       0.70      0.78      0.70      5182

weighted avg       0.82      0.89      0.84      5182

 samples avg       0.83      0.90      0.85      5182
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12. At this point, we have trained a graph neural network model and assessed its 
performance. Now, let's apply this model to a set of unobserved data – the data that 
we left out at the very beginning – and represent the true test data in an inductive 
setting. To do this, we need to instantiate a new generator:

generator = HinSAGENodeGenerator(

    stellarGraph, batch_size, num_samples,

    head_node_type="document")

Note that the graph we've taken as an input from HinSAGENodeGenerator 
is now the entire graph (in place of the filtered one we used previously), which 
contains both training and test documents. Using this class, we can create a 
generator that only samples from the test nodes, filtering out the ones that do not 
belong to one of our main selected topics:

hold_out = hold_out[hold_out.sum(axis=1) > 0]

hold_out_gen = generator.flow(hold_out.index, hold_out)

13. The model can then be evaluated over these samples, and the labels are predicted 
using the threshold we identified earlier; that is, 0.2:

hold_out_predictions = model.predict(hold_out_gen)

preds = pd.DataFrame(1.0*(hold_out_predictions > 0.2),

                     index = hold_out.index,

                     columns = hold_out.columns)

results = pd.concat(

    {"target": hold_out,"preds": preds}, axis=1

)

Finally, we can extract the performance of the inductive test dataset:
print(classification_report(

    results["target"], results["preds"])

)

This produces the following table:
              precision    recall  f1-score   support

           0       0.93      0.99      0.96      1087

           1       0.90      0.97      0.93       719

           2       0.64      0.92      0.76       179

           3       0.82      0.95      0.88       149

           4       0.85      0.62      0.72       189
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           5       0.74      0.50      0.59       117

           6       0.60      0.79      0.68       131

           7       0.43      0.03      0.06        89

           8       0.50      0.96      0.66        71

           9       0.39      0.86      0.54        56

   micro avg       0.82      0.89      0.85      2787

   macro avg       0.68      0.76      0.68      2787

weighted avg       0.83      0.89      0.84      2787

samples avg       0.84      0.90      0.86      2787

Compared to the shallow learning method, we can see that we have achieved a substantial 
improvement in performance that's between 5-10%.

Summary
In this chapter, you learned how to process unstructured information and how to 
represent such information by using graphs. Starting from a well-known benchmark 
dataset, the Reuters-21578 dataset, we applied standard NLP engines to tag and structure 
textual information. Then, we used these high-level features to create different types of 
networks: knowledge-based networks, bipartite networks, and projections for a subset of 
nodes, as well as a network relating the dataset topics. These different graphs have also 
allowed us to use the tools we presented in previous chapters to extract insights from the 
network representation.

We used local and global properties to show you how these quantities can represent and 
describe structurally different types of networks. We then used unsupervised techniques 
to identify semantic communities and cluster documents that belong to similar subjects/
topics. Finally, we used the labeled information provided in a dataset to train supervised 
multi-class multi-label classifiers, which also leveraged the topology of the network.

Then, we applied supervised techniques to a heterogeneous graph, where two different 
node types are present: documents and entities. In this setting, we showed you how to 
implement both transductive and inductive approaches by using shallow learning and 
graph neural networks, respectively.

In the next chapter, we will look at another domain where graph analytics can be 
efficiently used to extract insights and/or create machine learning models that leverage 
network topology: transactional data. The next use case will also allow you to generalize 
the bipartite graph concepts that were introduced in this chapter to another level: 
tripartite graphs.





8
Graph Analysis 
for Credit Card 

Transactions
Analysis of financial data is one of the most common and important domains in big 
data and data analysis. Indeed, due to the increasing number of mobile devices and the 
introduction of a standard platform for online payment, the amount of transactional data 
that banks are producing and consuming is increasing exponentially.

As a consequence, new tools and techniques are needed to exploit as much as we can 
from this huge amount of information in order to better understand customers' behavior 
and support data-driven decisions in business processes. Data can also be used to build 
better mechanisms to improve security in the online payment process. Indeed, as online 
payment systems are becoming increasingly popular due to e-commerce platforms, at 
the same time, cases of fraud are also increasing. An example of a fraudulent transaction 
is a transaction performed with a stolen credit card. Indeed, in this case, the fraudulent 
transactions will be different from the transactions made by the original owner of the 
credit card.

However, building automatic procedures to detect fraudulent transactions could be a 
complex problem due to the large number of variables involved.
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In this chapter, we will describe how we can represent credit card transaction data as a 
graph in order to automatically detect fraudulent transactions using machine learning 
algorithms. We will start processing the dataset by applying some of the techniques and 
algorithms we described in previous chapters to build a fraud detection algorithm.

The following topics will be covered in this chapter:

• Generating a graph from credit card transactions

• Extraction of properties and communities from the graph

• Application of supervised and unsupervised machine learning algorithms to fraud 
classification

Technical requirements
We will be using Jupyter notebooks with Python 3.8 for all of our exercises. The following 
is a list of Python libraries that will be installed for this chapter using pip. For example, 
run pip install networkx==2.5 on the command line:

Jupyter==1.0.0

networkx==2.5

scikit-learn==0.24.0

pandas==1.1.3

node2vec==0.3.3

numpy==1.19.2

communities==2.2.0

In the rest of this book, unless clearly stated to the contrary, we will refer to nx as the 
results of the Python import networkx as nx command.

All code files relevant to this chapter are available at https://github.com/
PacktPublishing/Graph-Machine-Learning/tree/main/Chapter08.

Overview of the dataset
The dataset used in this chapter is the Credit Card Transactions Fraud Detection Dataset 
available on Kaggle at the following URL: https://www.kaggle.com/kartik2112/
fraud-detection?select=fraudTrain.csv.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter08
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter08
https://www.kaggle.com/kartik2112/fraud-detection?select=fraudTrain.csv
https://www.kaggle.com/kartik2112/fraud-detection?select=fraudTrain.csv
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The dataset is made up of simulated credit card transactions containing legitimate and 
fraudulent transactions for the period January 1, 2019 – December 31, 2020. It includes 
the credit cards of 1,000 customers performing transactions with a pool of 800 merchants. 
The dataset was generated using Sparkov Data Generation. More information about 
the generation algorithm is available at the following URL: https://github.com/
namebrandon/Sparkov_Data_Generation.

For each transaction, the dataset contains 23 different features. In the following table, we 
will show only the information that will be used in this chapter:

Table 8.1 – List of variables used in the dataset

For the purposes of our analysis, we will use the fraudTrain.csv file. As already 
suggested, take a look at the dataset by yourself. It is strongly suggested to explore and 
become as comfortable as possible with the dataset before starting any machine learning 
task. We also suggest that you investigate two other datasets that will not be covered 
in this chapter. The first one is the Czech Bank's Financial Analysis dataset, available 
at https://github.com/Kusainov/czech-banking-fin-analysis. This 
dataset came from an actual Czech bank in 1999, for the period covering 1993 – 1998. The 
data pertaining to clients and their accounts consists of directed relations. Unfortunately, 
there are no labels on the transactions, making it impossible to train a fraud detection 
engine using machine learning techniques. The second dataset is the paysim1 dataset, 
available at https://www.kaggle.com/ntnu-testimon/paysim1. This dataset 
comprises simulated mobile money transactions based on a sample of real transactions 
extracted from one month of financial logs from a mobile money service implemented in 
an African country. The original logs were provided by a multinational company, which 
is the provider of the mobile financial service and is currently running in more than 
14 countries across the globe. This dataset also contains labels on fraudulent/genuine 
transactions.

https://github.com/namebrandon/Sparkov_Data_Generation
https://github.com/namebrandon/Sparkov_Data_Generation
https://www.kaggle.com/ntnu-testimon/paysim1
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Loading the dataset and graph building using 
networkx
The first step of our analysis will be to load the dataset and build a graph. Since the dataset 
represents a simple list of transactions, we need to perform several operations to build the 
final credit card transaction graph. The dataset is a simple CSV file; we can use pandas to 
load the data as follows:

import pandas as pd

df = df[df["is_fraud"]==0].sample(frac=0.20, random_state=42).
append(df[df["is_fraud"] == 1])

In order to help the reader deal with the dataset, we selected 20% of the genuine 
transactions and all of the fraudulent transactions. As a result, from a total of 1,296,675 
transactions, we will only use 265,342 transactions. Moreover, we can also investigate the 
number of fraudulent and genuine transactions in our dataset as follows:

df["is_fraud"].value_counts()

By way of a result, we get the following:

0    257834

1      7506

In other words, from a total of 265,342 transactions, only 7506 (2.83 %) are fraudulent 
transactions, while the others are genuine.

The dataset can be represented as a graph using the networkx library. Before starting 
with the technical description, we will start by specifying how the graph is built from 
the data. We used two different approaches to build the graph, namely, the bipartite and 
tripartite approaches, as described in the paper APATE: A Novel Approach for Automated 
Credit Card Transaction Fraud Detection Using Network-Based Extensions, available at 
https://www.scinapse.io/papers/614715210.
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For the bipartite approach, we build a weighted bipartite graph = ( , , )  where 
= ∪  , where each node ∈   represents a customer, and each node ∈   

represents a merchant. An edge ( , )  is created if a transaction exists from the 
customer,  , to the merchant,  . Finally, to each edge of the graph, we assign an  
(always positive) weight representing the amount (in US dollars) of the transaction.  
In our formalization, we allow both directed and undirected graphs.

Since the dataset represents temporal transactions, multiple interactions can happen 
between a customer and a merchant. In both our formalizations, we decided to collapse 
all that information in a single graph. In other words, if multiple transactions are present 
between a customer and a merchant, we will build a single edge between the two nodes 
with its weight given by the sum of all the transaction amounts. A graphical representation 
of the direct bipartite graph is visible in Figure 8.1:

Figure 8.1 – Bipartite graph generated from the input dataset

The bipartite graph we defined can be built using the following code:

def build_graph_bipartite(df_input, graph_type=nx.Graph()):

    df = df_input.copy()

    mapping = {x:node_id for node_id,x in enumerate(set(df["cc_
num"].values.tolist() + df["merchant"].values.tolist()))}

    df["from"] = df["cc_num"].apply(lambda x: mapping[x])

    df["to"] = df["merchant"].apply(lambda x: mapping[x])

    df = df[['from', 'to', "amt", "is_fraud"]].groupby(['from', 
'to']).agg({"is_fraud": "sum", "amt": "sum"}).reset_index()

    df["is_fraud"] = df["is_fraud"].apply(lambda x: 1 if x>0 
else 0)

    G = nx.from_edgelist(df[["from", "to"]].values, create_
using=graph_type)

    nx.set_edge_attributes(G, {(int(x["from"]), 
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int(x["to"])):x["is_fraud"] for idx, x in df[["from","to","is_
fraud"]].iterrows()}, "label")

    nx.set_edge_attributes(G,{(int(x["from"]), 
int(x["to"])):x["amt"] for idx, x in df[["from","to","amt"]].
iterrows()}, "weight")

    return G

The code is quite simple. To build the bipartite credit card transaction graph, we use 
different networkx functions. To go more in depth, the operations we performed in the 
code are as follows:

1. We built a map to assign a node_id to each merchant or customer.

2. Multiple transactions are aggregated in a single transaction.

3. The networkx function, nx.from_edgelist, is used to build the networkx 
graph.

4. Two attributes, namely, weight and label, are assigned to each edge. The former 
represents the total number of transactions between the two nodes, whereas the 
latter indicates whether the transaction is genuine or fraudulent. 

As we can also see from the code, we can select whether we want to build a directed or an 
undirected graph. We can build an undirected graph by calling the following function:

G_bu = build_graph_bipartite(df, nx.Graph(name="Bipartite 
Undirect"))))

We can instead build a direct graph by calling the following function:

G_bd = build_graph_bipartite(df, nx.DiGraph(name="Bipartite 
Direct"))))

The only difference is given by the second parameter we pass in the constructor.



Overview of the dataset     257

The tripartite approach is an extension of the previous one, also allowing the transactions 
to be represented as a vertex. If, on the one hand, this approach drastically increases 
network complexity, on the other hand, it allows extra node embeddings to be built for 
merchants and cardholders and every transaction. Formally for this approach, we build 
a weighted tripartite graph, = ( , , ) , where = ∪ ∪  , where each node 
∈   represents a customer, each node ∈   represents a merchant, and each node 
∈   is a transaction. Two edges ( , )  and ( , )  are created for each transaction,  
 , from customer   to the merchant  . 

Finally, to each edge of the graph, we assign an (always positive) weight representing 
the amount (in US dollars) of the transaction. Since, in this case, we create a node for 
each transaction, we do not need to aggregate multiple transactions from a customer to 
a merchant. Moreover, as for the other approach, in our formalization, we allow both 
directed and undirected graphs. A graphical representation of the direct bipartite graph is 
visible in Figure 8.2:

Figure 8.2 – Tripartite graph generated from the input dataset
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The tripartite graph we defined can be built using the following code:

def build_graph_tripartite(df_input, graph_type=nx.Graph()):

    df = df_input.copy()

    mapping = {x:node_id for node_id,x in enumerate(set(df.
index.values.tolist() + df["cc_num"].values.tolist() + 
df["merchant"].values.tolist()))}

    df["in_node"] = df["cc_num"].apply(lambda x: mapping[x])

    df["out_node"] = df["merchant"].apply(lambda x: mapping[x])

    G = nx.from_edgelist([(x["in_node"], mapping[idx]) for idx, 
x in df.iterrows()] + [(x["out_node"], mapping[idx]) for idx, x 
in df.iterrows()], create_using=graph_type)

    nx.set_edge_attributes(G,{(x["in_node"], 
mapping[idx]):x["is_fraud"] for idx, x in df.iterrows()}, 
"label")

    nx.set_edge_attributes(G,{(x["out_node"], 
mapping[idx]):x["is_fraud"] for idx, x in df.iterrows()}, 
"label")

    nx.set_edge_attributes(G,{(x["in_node"], 
mapping[idx]):x["amt"] for idx, x in df.iterrows()}, "weight")

    nx.set_edge_attributes(G,{(x["out_node"], 
mapping[idx]):x["amt"] for idx, x in df.iterrows()}, "weight")

    return G

The code is quite simple. To build the tripartite credit card transaction graph, we use 
different networkx functions. To go more in depth, the operations we performed in the 
code are as follows:

1. We built a map to assign a node_id to each merchant, customer, and transaction.

2. The networkx function, nx.from_edgelist, is used to build the networkx 
graph,

3. Two attributes, namely, weight and label, are assigned to each edge. The former 
represents the total number of transactions between the two nodes, whereas the 
latter indicates whether the transaction is genuine or fraudulent. 

As we can also see from the code, we can select whether we want to build a directed or an 
undirected graph. We can build an undirected graph by calling the following function:

G_tu = build_graph_tripartite(df, nx.Graph(name="Tripartite 
Undirect"))
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We can instead build a direct graph by calling the following function:

G_td = build_graph_tripartite(df, nx.DiGraph(name="Tripartite 
Direct"))

The only difference is given by the second parameter we pass in the constructor. 

In the formalized graph representation that we introduced, the real transactions are 
represented as edges. According to this structure for both bipartite and tripartite 
graphs, the classification of fraudulent/genuine transactions is described as an edge 
classification task. In this task, the goal is to assign to a given edge a label (0 for genuine, 
1 for fraudulent) describing whether the transaction the edge represents is fraudulent or 
genuine.

In the rest of this chapter, we use for our analysis both bipartite and tripartite undirected 
graphs, denoted by the Python variables G_bu and G_tu, respectively. We will leave it to 
you, as an exercise, an extension of the analyses proposed in this chapter to direct graphs.

We begin our analysis with a simple check to validate whether our graph is a real bipartite 
graph using the following line:

from networkx.algorithms import bipartite

all([bipartite.is_bipartite(G) for G in [G_bu,G_tu]]

As result, we get True. This check gives us the certainty that the two graphs are actually 
bipartite/tripartite graphs.

Moreover, using the following command, we can get some basic statistics:

for G in [G_bu, G_tu]:

 print(nx.info(G))

By way of a result, we get the following:

Name: Bipartite Undirect

Type: Graph

Number of nodes: 1676

Number of edges: 201725

Average degree: 240.7220

Name: Tripartite Undirect

Type: Graph
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Number of nodes: 267016

Number of edges: 530680

Average degree:   3.9749

As we can see, the two graphs differ in both, the number of nodes and the number of 
edges. The bipartite undirected graph has 1,676, equal to the number of customers plus 
the number of merchants with a high number of edges (201,725). The tripartite undirected 
graph has 267,016, equal to the number of customers plus the number of merchants plus 
all the transactions.

In this graph, the number of nodes, as expected, is higher (530,680) compared to the 
bipartite graph. The interesting difference in this comparison is given by the average 
degree of the two graphs. Indeed, the average degree of the bipartite graph is higher 
compared to the tripartite graph, as expected. Indeed, since, in the tripartite graph, the 
connections are "split" by the presence of the transaction nodes, the average degree is 
lower.

In the next section, we will describe how we can now use the transaction graphs generated 
to perform a more complete statistical analysis.

Network topology and community detection
In this section, we are going to analyze some graph metrics to have a clear picture of the 
general structure of the graph. We will be using networkx to compute most of the useful 
metrics we have seen in Chapter 1, Getting Started with Graphs. We will try to interpret 
the metrics to gain insights into the graph.

Network topology
A good starting point for our analysis is the extraction of simple graph metrics to have 
a general understanding of the main properties of bipartite and tripartite transaction 
graphs.

We start by looking at the distribution of the degree for both bipartite and tripartite 
graphs using the following code:

for G in [G_bu, G_tu]:

  plt.figure(figsize=(10,10))

  degrees = pd.Series({k: v for k, v in nx.degree(G)})

  degrees.plot.hist()

  plt.yscale("log")
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By way of a result, we get the plot in the following diagram:

Figure 8.3 – Degree distribution for bipartite (left) and tripartite (right) graphs

From Figure 8.3, it is possible to see how the distribution of nodes reflects the average 
degree we previously saw. In greater detail, the bipartite graph has a more variegate 
distribution, with a peak of around 300. For the tripartite graph, the distribution has a 
big peak for degree 2, while the other part of the tripartite degree distribution is similar 
to the bipartite distribution. These distributions completely reflect the differences in how 
the two graphs were defined. Indeed, if bipartite graphs are made by connections from 
the customer to the merchant, in the tripartite graph, all the connections pass through the 
transaction nodes. Those nodes are the majority in the graph, and they all have a degree of 
2 (an edge from a custom and an edge to a merchant). As a consequence, the frequency in 
the bin representing degree 2 is equal to the number of transaction nodes.

We will continue our investigation by analyzing the edges weight distribution:

1. We begin by computing the quantile distribution:

for G in [G_bu, G_tu]:

  allEdgesWeights = pd.Series({(d[0], d[1]): d[2]
["weight"] for d in G.edges(data=True)})

  np.quantile(allEdgesWeights.values,[0.10,0.50,0.70,0.9])
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2. By way of a result, we get the following:

array([  5.03 ,  58.25 ,  98.44 , 215.656])

 array([  4.21,  48.51,  76.4 , 147.1 ])

3. Using the same command as before, we can also plot (in log scale) the distribution 
of edges weight, cut to the 90th percentile. The result is visible in the following 
diagram:

Figure 8.4 – Edge weight distribution for bipartite (left) and tripartite (right) graphs
We can see how, due to the aggregation of the transaction having the same customer 
and merchant, the distribution of the bipartite graph is shifted to the right (high 
values) compared to the tripartite graph, where edge weights were not computed, 
aggregating multiple transactions.

4. We will now investigate the betweenness centrality metric. It measures how 
many shortest paths pass through a given node, giving an idea of how central that 
node is for the spreading of information inside the network. We can compute the 
distribution of node centrality by using the following command:

for G in [G_bu, G_tu]:

  plt.figure(figsize=(10,10))

  bc_distr = pd.Series(nx.betweenness_centrality(G))
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  bc_distr.plot.hist()

  plt.yscale("log")

5. As result, we get the following distributions:

Figure 8.5 – Betweenness centrality distribution for bipartite (left) and tripartite (right) graphs
As expected, for both graphs, the betweenness centrality is low. This can be 
understood due to the large number of non-bridging nodes inside the network. 
Similar to what we saw for the degree distribution, the distribution of betweenness 
centrality values is different in the two graphs. Indeed, if the bipartite graph has 
a more variegate distribution with a mean of 0.00072, in the tripartite graph, the 
transaction nodes are the ones that mainly move the distribution values and lower 
the mean to 1.38e-05. Also, in this case, we can see that the distribution for the 
tripartite graph has a big peak, representing the transaction nodes, and the rest of 
the distribution is quite similar to the bipartite distribution.

6. We can finally compute the assortativity of the two graphs using the following code:

for G in [G_bu, G_tu]:

   print(nx.degree_pearson_correlation_coefficient(G)) 

7. By way of a result, we get the following:

-0.1377432041049189

-0.8079472914876812
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Here, we can observe how both graphs have a negative assortativity, likely showing that 
well-connected individuals associate with poor-connected individuals. For the bipartite 
graph, the value is low (-0.14), since customers who have a low degree are only connected 
with merchants who have high degrees due to the high number of incoming transactions. 
The assortativity is even lower (-0.81) for the tripartite graph. This behavior is expected 
due to the presence of the transaction nodes. Indeed, those nodes always have a degree 
of 2, and they are linked to customers and merchants represented by highly connected 
nodes.

Community detection
Another interesting analysis we can perform is community detection. This analysis can 
help to identify specific fraudulent patterns:

1. The code to perform community extraction is as follows:

import community

for G in [G_bu, G_tu]:

   parts = community.best_partition(G, random_state=42, 
weight='weight')

   communities = pd.Series(parts)   print(communities.
value_counts().sort_values(ascending=False))

In this code, we simply use the community library to extract the communities in 
the input graph. We then print the communities detected by the algorithms, sorted 
according to the number of nodes contained.

2. For the bipartite graph, we obtain the following output:

5     546

0     335

7     139

2     136

4     123

3     111
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8      83

9      59

10     57

6      48

11     26

1      13

3. For the tripartite graph, we obtain the following output:

11     4828

3      4493

26     4313

94     4115

8      4036

    ... 47     1160

103    1132

95      954

85      845

102     561

4. Due to a large number of nodes in the tripartite graph, we found 106 communities 
(we reported just a subset of them), while, for the bipartite graph, only 12 
communities were found. As consequence, to have a clear picture, for the tripartite 
graph, it is better to plot the distribution of the nodes contained in the different 
communities using the following command:

communities.value_counts().plot.hist(bins=20)
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5. By way of a result, we get the following:

Figure 8.6 – Distribution of communities' node size
From the diagram, it is possible to see how the peak is reached around 2,500. This 
means that more than 30 large communities have more than 2,000 nodes. From the 
plot, it is also possible to see that a few communities have fewer than 1,000 nodes 
and more than 3,000 nodes.

6. For each set of communities detected by the algorithm, we can compute the 
percentage of fraudulent transactions. The goal of this analysis is to identify specific 
sub-graphs where there is a high concentration of fraudulent transactions:

graphs = []

d = {}

for x in communities.unique():
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    tmp = nx.subgraph(G, communities[communities==x].
index)

    fraud_edges = sum(nx.get_edge_attributes(tmp, 
"label").values())

    ratio = 0 if fraud_edges == 0 else (fraud_edges/tmp.
number_of_edges())*100

    d[x] = ratio

    graphs += [tmp]

print(pd.Series(d).sort_values(ascending=False))

7. The code simply generates a node-induced subgraph by using the nodes contained 
in a specific community. The graph is used to compute the percentage of fraudulent 
transactions as a ratio of the number of fraudulent edges over the number of all 
the edges in the graph. We can also plot a node-induced subgraph detected by the 
community detection algorithm by using the following code:

gId = 10

spring_pos = nx.spring_layout(graphs[gId])

 edge_colors = ["r" if x == 1 else "g" for x in nx.get_
edge_attributes(graphs[gId], 'label').values()]

nx.draw_networkx(graphs[gId], pos=spring_pos, node_
color=default_node_color, edge_color=edge_colors, with_
labels=False, node_size=15)

Given a particular community index, gId, the code extracts the node-induced 
subgraph, using the node available in the gId community index, and plots the 
graph obtained.

8. By running the two algorithms on the bipartite graph, we will obtain the following:

9     26.905830

10    25.482625

6     22.751323

2     21.993834

11    21.333333

3     20.470263

8     18.072289

4     16.218905

7      6.588580

0      4.963345
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5      1.304983

1      0.000000

9. For each community, we have the percentage of its fraudulent edges. To have a 
better description of the subgraph, we can plot community 10 by executing the 
previous line of code using gId=10. As a result, we get the following:

Figure 8.7 – Induced subgraph of community 10 for the bipartite graph

10. The image of the induced subgraph allows us to better understand whether specific 
patterns are visible in the data. Running the same algorithms on the tripartite graph, 
we obtain the following output:

6      6.857728

94     6.551151

8      5.966981

1      5.870918

89     5.760271

      ...   

102    0.889680

72     0.836013
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85     0.708383

60     0.503461

46     0.205170

11. Due to the large number of communities, we can plot the distribution of the 
fraudulent over genuine ratio with the following command:

pd.Series(d).plot.hist(bins=20)

12. By way of a result, we get the following:

Figure 8.8 – Distribution of communities' fraudulent/genuine edge ratio
From the diagram, we can observe that a large part of the distribution is around 
communities having a ratio of between 2 and 4. There are a few communities with a 
low ratio (<1) and with a high ratio (>5).
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13. Also, for the tripartite graph, we can plot community 6 (with a ratio of 6.86), made 
by 1,935 nodes, by executing the previous line of code using gId=6:

Figure 8.9 – Induced subgraph of community 6 for the tripartite graph

As for the bipartite use case, in this image, we can see an interesting pattern that could be 
used to perform a deeper exploration of some important graph sub-regions.

In this section, we perform some explorative tasks to better understand the graphs 
and their properties. We also gave an example describing how a community detection 
algorithm can be used to spot patterns in the data. In the next section, we will describe 
how machine learning can be used to automatically detect fraudulent transactions.

Embedding for supervised and unsupervised 
fraud detection
In this section, we will describe how the bipartite and tripartite graphs described 
previously can be used by graph machine learning algorithms to build automatic 
procedures for fraud detection using supervised and unsupervised approaches. As we 
already discussed at the beginning of this chapter, transactions are represented by edges, 
and we then want to classify each edge in the correct class: fraudulent or genuine.
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The pipeline we will use to perform the classification task is the following:

• A sampling procedure for the imbalanced task

• The use of an unsupervised embedding algorithm to create a feature vector for each 
edge

• The application of supervised and unsupervised machine learning algorithms to the 
feature space defined in the previous point

Supervised approach to fraudulent transaction 
identification
Since our dataset is strongly imbalanced, with fraudulent transactions representing 2.83% 
of total transactions, we need to apply some techniques to deal with unbalanced data. In 
this use case, we will apply a simple random undersampling strategy. Going into more 
depth, we will take a subsample of the majority class (genuine transactions) to match 
the number of samples of the minority class (fraudulent transactions). This is just one 
of the many techniques available in literature. It is also possible to use outlier detection 
algorithms, such as isolation forest, to detect fraudulent transactions as outliers in the 
data. We leave it to you, as an exercise, to extend the analyses using other techniques to 
deal with imbalanced data, such as random oversampling or using cost-sensitive classifiers 
for the classification task. Specific techniques for node and edge sampling that can be 
directly applied to the graph will be described in Chapter 10, Novel Trends on Graphs:

1. The code we use for random undersampling is as follows:

from sklearn.utils import resample

df_majority = df[df.is_fraud==0]

 df_minority = df[df.is_fraud==1]

df_maj_dowsampled = resample(df_majority, n_
samples=len(df_minority), random_state=42)

df_downsampled = pd.concat([df_minority, df_maj_
dowsampled])

 G_down = build_graph_bipartite(df_downsampled, 
nx.Graph())
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2. The code is straightforward. We applied the resample function of the sklearn 
package to filter the downsample function of the original data frame. We then 
build a graph using the function defined at the beginning of the chapter. To create 
the tripartite graph, the build_graph_tripartite function should be used. As 
the next step, we split the dataset into training and validation with a ratio of 80/20:

from sklearn.model_selection import train_test_split

train_edges, val_edges, train_labels, val_labels = train_
test_split(list(range(len(G_down.edges))), list(nx.
get_edge_attributes(G_down, "label").values()), test_
size=0.20, random_state=42)

 edgs = list(G_down.edges)

train_graph = G_down.edge_subgraph([edgs[x] for x in 
train_edges]).copy()

train_graph.add_nodes_from(list(set(G_down.nodes) - 
set(train_graph.nodes)))

As before, also in this case, the code is straightforward since we simply apply the 
train_test_split function of the sklearn package.

3. We can now build the feature space using the Node2Vec algorithm as follows:

from node2vec import Node2Vec

node2vec = Node2Vec(train_graph, weight_key='weight')

 model = node2vec_train.fit(window=10)

The node2vec results are used to build, as described in Chapter 3, Unsupervised 
Graph Learning, the edge embedding that will generate the final feature space used 
by the classifier.

4. The code to perform this task is the following:

from sklearn import metrics

from sklearn.ensemble import RandomForestClassifier 

from node2vec.edges import HadamardEmbedder, 
AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder

classes = [HadamardEmbedder, AverageEmbedder, 
WeightedL1Embedder, WeightedL2Embedder]

for cl in classes:

    embeddings = cl(keyed_vectors=model.wv)

    train_embeddings = [embeddings[str(edgs[x][0]), 
str(edgs[x][1])] for x in train_edges]



Embedding for supervised and unsupervised fraud detection     273

    val_embeddings = [embeddings[str(edgs[x][0]), 
str(edgs[x][1])] for x in val_edges]

    rf = RandomForestClassifier(n_estimators=1000, 
random_state=42)

    rf.fit(train_embeddings, train_labels)

    y_pred = rf.predict(val_embeddings)

    print(cl)

    print('Precision:', metrics.precision_score(val_
labels, y_pred))

    print('Recall:', metrics.recall_score(val_labels, y_
pred))

    print('F1-Score:', metrics.f1_score(val_labels, y_
pred))

Different steps are performed compared to the previous code:

1. For each Edge2Vec algorithm, the previously computed Node2Vec algorithm is 
used to generate the feature space.

2. A RandomForestClassifier from the sklearn Python library is trained on 
the feature set generated in the previous step.

3. Different performance metrics, namely, precision, recall, and F1-score, are 
computed on the validation test.

We can apply the code we previously described to both bipartite and tripartite graphs to 
solve the fraud detection task. In the following table, we report the performances for the 
bipartite graph:

Table 8.2 – Supervised fraud edge classification performances for a bipartite graph
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In the following table, we report the performances for the tripartite graph:

Table 8.3 – Supervised fraud edge classification performances for a tripartite graph

In Table 8.2 and Table 8.3, we reported the classification performances obtained using 
bipartite and tripartite graphs. As we can see from the results, the two methods, in terms 
of F1-score, precision, and recall, show significant differences. Since, for both graph types, 
Hadamard and average edge embedding algorithms give the most interesting results, we 
are going to focus our attention on those two. Going into more detail, the tripartite graph 
has a better precision compared to the bipartite graph (0.89 and 0.74 for the tripartite 
graph versus 0.73 and 0.71 for the bipartite graph).

In contrast, the bipartite graph has a better recall compared to the tripartite graph (0.76 
and 0.79 for the bipartite graph versus 0.29 and 0.45 for the tripartite graph). We can 
therefore conclude that in this specific case, the use of a bipartite graph could be a better 
choice since it achieves high performances in terms of F1 with a smaller graph (in terms 
of nodes and edges) compared to the tripartite graph.

Unsupervised approach to fraudulent transaction 
identification
The same approach can also be applied in unsupervised tasks using k-means. The main 
difference is that the generated feature space will not undergo a train-validation split. 
Indeed, in the following code, we will compute the Node2Vec algorithm on the entire 
graph generated following the downsampling procedure:

nod2vec_unsup = Node2Vec(G_down, weight_key='weight')

 unsup_vals = nod2vec_unsup.fit(window=10)
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As previously defined for the supervised analysis, when building the node feature vectors, 
we can use different Egde2Vec algorithms to run the k-means algorithm as follows:

from sklearn.cluster import KMeans

classes = [HadamardEmbedder, AverageEmbedder, 
WeightedL1Embedder, WeightedL2Embedder]

 true_labels = [x for x in nx.get_edge_attributes(G_down, 
"label").values()]

for cl in classes:

    embedding_edge = cl(keyed_vectors=unsup_vals.wv)

    embedding = [embedding_edge[str(x[0]), str(x[1])] for x in 
G_down.edges()]

    kmeans = KMeans(2, random_state=42).fit(embedding)

    nmi = metrics.adjusted_mutual_info_score(true_labels, 
kmeans.labels_)

    ho = metrics.homogeneity_score(true_labels, kmeans.labels_)

    co = metrics.completeness_score(true_labels, kmeans.labels_

    vmeasure = metrics.v_measure_score(true_labels, kmeans.
labels_)

    print(cl)

    print('NMI:', nmi)

    print('Homogeneity:', ho)

    print('Completeness:', co)

    print('V-Measure:', vmeasure)

Different steps are performed in the previous code:

1. For each Edge2Vec algorithm, the previously computed Node2Vec algorithm on 
train and validation sets is used to generate the feature space.

2. A KMeans clustering algorithm from the sklearn Python library is fitted on the 
feature set generated in the previous step.

3. Different performance metrics, namely, adjusted mutual information (MNI), 
homogeneity, completeness, and v-measure scores.
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We can apply the code described previously to both bipartite and tripartite graphs to solve 
the fraud detection task using the unsupervised algorithm. In the following table, we 
report the performances for the bipartite graph:

Table 8.4 – Unsupervised fraud edge classification performances for the bipartite graph

In the following table, we report the performances for the tripartite graph:

Table 8.5 – Unsupervised fraud edge classification performances for the tripartite graph

In Table 8.4 and Table 8.5, we reported the classification performances obtained using 
bipartite and tripartite graphs with the application of an unsupervised algorithm. As we 
can see from the results, the two methods show significant differences. It is also worth 
noticing that, in this case, the performances obtained with the Hadamard embedding 
algorithm clearly outperform all other approaches.

As shown by Table 8.4 and Table 8.5, also for this task, the performances obtained with the 
tripartite graph outstrip those obtained with the bipartite graph. In the unsupervised case, 
we can see how the introduction of the transaction nodes improves overall performance. 
We can assert, that, in the unsupervised setting, for this specific use case and using as a 
reference the results obtained in Table 8.4 and Table 8.5, use of the tripartite graph could 
be a better choice since it enables the attainment of superior performances compared with 
the bipartite graph.
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Summary
In this chapter, we described how a classical fraud detection task can be described as a 
graph problem and how the techniques described in the previous chapter can be used 
to tackle the problem. Going into more detail, we introduced the dataset we used and 
described the procedure to transform the transactional data into two types of graph, 
namely, bipartite and tripartite undirected graphs. We then computed local (along with 
their distributions) and global metrics for both graphs, comparing the results.

Moreover, a community detection algorithm was applied to the graphs in order to 
spot and plot specific regions of the transaction graph where the density of fraudulent 
transactions is higher compared to the other communities.

Finally, we solved the fraud detection problem using supervised and unsupervised 
algorithms, comparing the performances of the bipartite and tripartite graphs. As the first 
step, since the problem was unbalanced with a higher presence of genuine transactions, 
we performed simple downsampling. We then applied different Edge2Vec algorithms 
in combination with a random forest, for the supervised task, and k-means for an 
unsupervised task, achieving good classification performances.

This chapter concludes the series of examples that are used to show how graph machine 
learning algorithms can be applied to problems belonging to different domains, such as 
social network analysis, text analytics, and credit card transaction analysis. 

In the next chapter, we will describe some practical uses for graph databases and graph 
processing engines that are useful for scaling out the analysis to large graphs.
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Building a  

Data-Driven  
Graph-Powered 

Application
So far, we have provided you with both theoretical and practical ideas to allow you to 
design and implement machine learning models that leverage graph structures. Besides 
designing the algorithm, it is often very important to embed the modeling/analytical 
pipeline into a robust and reliable end-to-end application. This is especially true in 
industrial applications, where the end goal is usually to design and implement production 
systems that support data-driven decisions and/or provide users with timely information. 
However, creating a data-driven application that resorts to graph representation/modeling 
is indeed a challenging task that requires a proper design that is a lot more complicated 
than simply importing networkx. This chapter aims to provide you with a general 
overview of the key concepts and frameworks that are used when building graph-based, 
scalable, data-driven applications.
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We will start by providing an overview of the so-called Lambda architectures, which 
provide a framework to structure scalable applications that require large-scale processing 
and real-time updates. We will then continue by applying this framework in the context 
of graph-powered applications, that is, applications that leverage graph structures using 
techniques such as the ones described in this book. We will describe their two main 
analytical components: graph processing engines and graph querying engines. We'll 
present some of the technologies used, both in shared memory machines and distributed 
memory machines, outlining similarities and differences. The following topics will be 
covered in this chapter:

• Overview of Lambda architectures

• Lambda architectures for graph-powered applications

• Technologies and examples of graph processing engines

• Graph querying engines and graph databases

Technical requirements
We will be using Python 3.8 for all of our exercises. In the following code block, you can 
find a list of the Python libraries that need to be installed for this chapter using pip. For 
example, run pip install networkx==2.5 on the command line, and so on:

networkx==2.5 

neo4j==4.2.0 

gremlinpython==3.4.6

All the code files relevant to this chapter are available at https://github.com/
PacktPublishing/Graph-Machine-Learning/tree/main/Chapter09.

Overview of Lambda architectures
In recent years, great focus has been given to designing scalable architectures that 
will allow, on the one hand, the processing of a large amount of data, and, on the other, 
providing answers/alerts/actions in real time, using the latest available information.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter09
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter09
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Besides, these systems need to also be able to scale out seamlessly to a larger number 
of users or a larger amount of data by increasing resources horizontally (adding more 
servers) or vertically (using servers that are more powerful). Lambda architecture is a 
particular data-processing architecture that is designed to process massive quantities of 
data and ensure large throughput in a very efficient manner, preserving reduced latency 
and ensuring fault tolerance and negligible errors.

The Lambda architecture is composed of three different layers:

• The batch layer: This layer sits on top of the (possibly distributed and scalable) 
storage system, and can handle and store all historical data, as well as performing 
Online Analytical Processing (OLAP) computation on the entire dataset. New 
data is continuously ingested and stored, as it would be traditionally done in data 
warehouse systems. Large-scale processing is generally achieved via massively 
parallel jobs, which aim at producing aggregation, structuring, and computation of 
relevant information. In the context of machine learning, model training that relies 
on historic information is generally done in this layer, thus producing a trained 
model to be used either in a batch prediction job or in real-time execution. 

• The speed layer: This is a low-latency layer that allows the real-time processing 
of the information to provide timely updates and information. It is generally fed 
by a streaming process, usually involving fast computation that does not require 
long computational time or load. It produces an output that is integrated with the 
data generated by the batch layer in (near) real time, providing support for Online 
Transaction Processing (OLTP) operations. The speed layer might also very well 
use some outputs of the OLAP computations, such as a trained model. Oftentimes, 
applications that use machine learning modeling in real time (for example, fraud 
detection engines used in credit card transactions) embed in their speed layers 
trained models that provide prompt predictions and trigger real-time alerts of 
potential fraud. Libraries may operate at an event level (such as Apache Storm) or 
over mini-batches (such as Spark Streaming), providing, depending on the use case, 
slightly different requirements for latency, fault tolerance, and computational speed. 
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• The serving layer: The serving layer has the duty of organizing, structuring, and 
indexing information in order to allow the fast retrieval of data coming from the batch 
and speed layers. The serving layer thus integrates the outputs of the batch layer with 
the most updated and real-time information of the speed layer in order to deliver to 
the user a unified and coherent view of the data. A serving layer can be composed of a 
persistence layer that integrates both historical aggregation and real-time updates. This 
component may be based on some kind of database, which can be relational or not, 
conveniently indexed in order to reduce latency and allow the fast retrieval of relevant 
data. The information is generally exposed to the user via either a direct connection to 
the database and is accessible using a specific domain query language, such as SQL, or 
also via dedicated services, such as RESTful API servers (which in Python can be easily 
implemented using several frameworks, such as flask, fastapi, or turbogear), 
which provide the data via specifically designed endpoints:

Figure 9.1 – Functional diagram for an application based on Lambda architecture

Lambda architectures have several benefits that have motivated and promoted their use, 
especially in the context of big data applications. In the following bullet points, we list 
some of the main pros of Lambda architectures:

• No server management: As the Lambda architectural design pattern typically 
abstracts the functional layers and does not require installing, maintaining, or 
administering any software/infrastructure
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• Flexible scaling: As the application can be either automatically scaled or scaled by 
controlling the number of processing units that are used in batch layers (for example, 
computing nodes) and/or in speed layers (for example, Kafka brokers) separately

• Automated high availability: Due to the fact that it represents a serverless design 
for which we already have built-in availability and fault tolerance

• Business agility: Reacts in real time to changing business/market scenarios

Although very powerful and flexible, Lambda architectures come with some limitations 
mainly due to the presence of two interconnected processing flows: the batch layer and 
the speed layer. This may require developers to build and maintain separate code bases 
for batch and stream processes, resulting in more complexity and code overhead, which 
may lead to harder debugging, possible misalignment, and bug promotion. 

Here, we have provided a short overview of Lambda architectures and their basic building 
blocks. For more details on how to design scalable architectures and the most commonly 
used architectural patterns, please refer to the book Data Lake for Enterprises, 2017, by 
Tomcy John and Pankaj Misra.

In the next section, we will show you how to implement a Lambda architecture for graph-
powered applications. In particular, we will describe the main components and review the 
most common technologies.

Lambda architectures for graph-powered 
applications
When dealing with scalable, graph-powered, data-driven applications, the design of 
Lambda architectures is also reflected in the separation of functionalities between two 
crucial components of the analytical pipeline, as shown in Figure 9.2: 

• The graph processing engine executes computations on the graph structure 
in order to extract features (such as embeddings), compute statistics (such as 
degree distributions, the number of edges, and cliques), compute metrics and 
Key Performance Indicators (KPIs) (such as centrality measures and clustering 
coefficients), and identify relevant subgraphs (for example, communities) that often 
require OLAP.
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• The graph querying engine allows us to persist network data (usually done via a 
graph database) and provides fast information retrieval and efficient querying and 
graph traversal (usually via graph querying languages). All of the information is 
already persisted in some data storage (that may or may not be in memory) and no 
further computation is required apart from (possibly) some final aggregation results, 
for which indexing is crucial to achieving high performance and low latency:

Figure 9.2 – Graph-based architecture, with the main components  
also reflected in a Lambda architectural pattern

Graph processing engines sit on top of batch layers and produce outputs that may be 
stored and indexed in appropriate graph databases. These databases are the backend 
of graph querying engines, which allow relevant information to be easily and quickly 
retrieved, representing the operational views used by the serving layer. Depending on 
the use cases and/or the size of the graph, it often makes sense to run both the graph 
processing engine and the graph query engine on top of the same infrastructure.

Instead of storing the graph on a low-level storage layer (for example, the filesystem, 
HDFS, or S3), there are graph database options that could support both OLAP and OLTP. 
These provide, at the same time, a backend persistence layer where historical information 
processed by batch layers, together with real-time updates from the speed layer, is stored, 
and information to be queried efficiently by the serving layer.
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As compared to other use cases, this condition is indeed quite peculiar for graph-powered, 
data-driven applications. Historical data often provides a topology on top of which new, 
real-time updates and OLAP outputs (KPIs, data aggregations, embeddings, communities, 
and so on) can be stored. This data structure also represents the information that is later 
queried by the serving layer that traverses the enriched graph.

Graph processing engines
To select the right technology for a graph processing engine, it is crucial to estimate the 
size in memory of the network compared to the capacity of the target architecture. You 
can start by using simpler frameworks that allow fast prototyping during the first phases 
of a project when the goal is to quickly build a Minimum Viable Product (MVP).

Such frameworks can then be substituted by more advanced tools later on when 
performance and scalability become more crucial. A microservice modular approach and 
proper structuring of these components will allow the switching of technologies/libraries 
independently from the rest of the application to target specific issues, which will also 
guide the choice of the backend stack.

Graph processing engines require information on the whole graphs to be accessed quickly, 
that is, having all of the graph in memory, and depending on the context, you might or 
might not need distributed architectures. As we saw in Chapter 1, Getting Started with 
Graphs, networkx is a great example of a library to build a graph processing engine 
when dealing with reasonably small datasets. When datasets get larger, but they can 
still fit in single servers or shared memory machines, other libraries may help to reduce 
computational time. As seen in Chapter 1, Getting Started with Graphs, using libraries 
other than networkx where graph algorithms are implemented in more performant 
languages,  
such as C++ or Julia, may dramatically speed up the computation by more than two 
orders of magnitude.
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However, there are cases where datasets grow so much that it is no longer technologically 
or economically viable to use shared memory machines of increasing capacity (fat nodes). 
In such cases, it is rather necessary to distribute the data on clusters of tens or hundreds of 
computing nodes, allowing horizontal scaling. The two most popular frameworks that can 
support a graph processing engine in these cases are the following:

• Apache Spark GraphX, which is the module of the Spark library that deals with 
graph structures (https://spark.apache.org/graphx). It involves a 
distributed representation of the graph using Resilient Distributed Datasets 
(RDDs) for both vertices and edges. The graph repartition throughout the 
computing nodes can be done either with an edge-cut strategy, which logically 
corresponds to dividing the nodes among multiple machines, or a vertex-cut 
strategy, which logically corresponds to assigning edges to different machines and 
allowing vertices to span multiple machines. Although written in Scala, GraphX 
features wrappers with both R and Python. GraphX already comes with some 
algorithms implemented, such as PageRank, connected components, and triangle 
counting. There are also other libraries that can be used on top of GraphX for other 
algorithms, such as SparklingGraph, which implements more centrality measures.

• Apache Giraph, which is an iterative graph processing system built for high 
scalability (https://giraph.apache.org/). It was developed, and is 
currently used, by Facebook to analyze the social graph formed by users and 
their connections and is built on top of the Hadoop ecosystem for unleashing the 
potential of structured datasets at a massive scale. Giraph is natively written in Java 
and, similarly to GraphX, also provides a scalable implementation for some basic 
graph algorithms, such as PageRank and shortest path.

When we consider scale-out to a distributed ecosystem, we should always keep in mind 
that the available choice for algorithms is significantly smaller than in a shared machine 
context. This is generally due to two reasons:

• First, implementing algorithms in a distributed way is a lot more complex than in 
a shared machine due to communication among nodes, which also reduces the 
overall efficiency.

• Secondly, and more importantly, one fundamental mantra of big data analytics 
is that only algorithms that (nearly) scale linearly with the number of data points 
should be implemented in order to ensure horizontal scalability of the solution, by 
increasing the computational nodes as the dataset increases.

https://spark.apache.org/graphx
https://giraph.apache.org/
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In this respect, both Giraph and GraphX allow you to define scalable, vertex-centric, 
iterative algorithms using standard interfaces based on Pregel, which can be seen as a sort 
of equivalent of iterative map-reduce operations for graphs (actually, iterative map-reduce 
operations applied to triplet node-edge-node instances). A Pregel computation is 
composed of a sequence of iterations, each called a superstep, each involving a node and 
its neighbors.

During the superstep, S, a user-defined function is applied for each vertex, V. This 
function takes the messages sent to V in superstep S – 1 as input and modifies the state of 
V and its outgoing edges. This function represents the mapping stage, which can be easily 
parallelized. Besides computing the new states of V, the function also sends messages 
to other vertices connected to V, which will receive this information at superstep S + 1. 
Messages are typically sent along outgoing edges, but a message may be sent to any vertex 
whose identifier is known. In Figure 9.3, we show a sketch of what a Pregel algorithm 
would look like when computing the maximum value over a network. For further details 
on this algorithm, please refer to the original paper, Pregel: A System for Large-Scale Graph 
Processing, written by Malewicz et al. in 2010:

Figure 9.3 – Example of calculating a maximum value over a node property using Pregel 

By using Pregel, you can easily implement other algorithms, such as PageRank or 
connected components, in a very efficient and general way, or even implement node 
embeddings' parallel variants (for an example, see Distributed-Memory Vertex-Centric 
Network Embedding for Large-Scale Graphs, Riazi and Norris, 2020).
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Graph querying layer
In the last decade, due to the large diffusion of non-structured data, NoSQL databases 
have started to gain considerable attention and importance. Among them, graph 
databases are indeed extremely powerful to store information based on a relation between 
entities. Indeed, in many applications, data can naturally be seen as entities, associated 
with metadata in the form of node properties, connected by edges that also have 
properties that further describe the relationship between entities.

Examples of graph databases are libraries or tools such as Neo4j, OrientDB, ArangoDB, 
Amazon Neptune, Cassandra, and JanusGraph (previously named TitanDB). In the 
following sections, we will briefly describe some of them, together with the languages  
that allow us to query and traverse the underlying graphs, which are called graph 
querying languages.

Neo4j
At the time of writing, Neo4J (https://neo4j.com/) is surely the most common 
graph database around, with a large community supporting its use and adoption. It 
features two editions:

• Community Edition, released under a GPL v3 license, which allows users/developers 
to openly include Neo4j in their applications

• Enterprise Edition, designed for commercial deployments where scale and 
availability are crucial

Neo4j can scale out to fairly large datasets via sharding, that is, distributing data over 
multiple nodes and parallelizing queries and aggregation over multiple instances of the 
database. Besides, the Neo4j federation also allows querying smaller separated graphs 
(sometimes even with a different schema) as if they were one large graph.

Some of Neo4j's strong points are its flexibility (which allows the schema to be evolved) 
and its user-friendliness. In particular, many operations in Neo4j can be done through its 
query language, which is very intuitive and easy to learn: Cypher. Cypher  
can just be seen as the counterpart of SQL for graph databases.

Testing out Neo4j and Cypher is extremely easy. You could install the Community 
Edition (via Docker; see the next section) or play around with an online sandbox version 
(https://neo4j.com/sandbox/).

https://neo4j.com/
https://neo4j.com/sandbox/
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By using the latter, you can import some built-in datasets, such as the Movie dataset, 
and start querying it using the Cypher query language. The Movie dataset is made up of 
38 movies and 133 people that acted in, directed, wrote, reviewed, and produced them. 
Both the on-premises version and the online version are equipped with a user-friendly UI 
that allows the user to query and visualize the data (see Figure 9.4). We start by listing 10 
actors in the Movie dataset, by simply querying the following:

MATCH (p: Person) RETURN p LIMIT 10

But let's now leverage the information about relations between data points. We see that 
one of the actors that appears in the database is Keanu Reeves. We may wonder who all 
the actors that he has acted with in the listed movies are. This information can be easily 
retrieved using the following query:

MATCH (k: Person {name:"Keanu Reeves"})-[:ACTED_IN]-(m: Movie)-
[:ACTED_IN]-(a: Person) RETURN k, m, a

As shown in the following figure, the query intuitively and graphically indicates in its 
syntax how to traverse the graph by declaring the path we are interested in: 

Figure 9.4 – Example of the Neo4j UI with the Cypher query to retrieve the co-actors of  
Keanu Reeves in the Movie dataset
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Besides Cypher, data can also be queried using Gremlin. This will be described shortly as a 
common interface for graph databases.

Neo4j also provides bindings with several programming languages, such as Python, 
JavaScript, Java, Go, Spring, and .NET. For Python in particular, there are several libraries 
that implement connections with Neo4j, such as neo4j, py2neo, and neomodel, of 
which neo4j is the official and supported one and provides direct connections to the 
database via a binary protocol. Creating a connection to the database and running a query 
is just a matter of a few lines of code:

from neo4j import GraphDatabase

driver = GraphDatabase("bolt://localhost:7687", "my-user", "my-
password")

def run_query(tx, query):

    return tx.run(query)

with driver.session() as session:

    session.write_transaction(run_query, query)

A query could be any Cypher query, for instance, the one written previously to retrieve the 
co-actors of Keanu Reeves.

JanusGraph – a graph database to scale out to very large datasets
Neo4j is an extremely great piece of software, unbeatable when you want to get things 
done quickly, thanks to its intuitive interface and query language. Neo4j is indeed a graph 
database suitable for production, but especially good in MVPs when agility is crucial. 
However, as data increases, its scalability based on sharding and breaking down large 
graphs into smaller subgraphs may not be the best option.

When the volume of the data increases substantially, you should probably start to consider 
other graph database options. Once again, this should be done only when the use case 
requirements start to hit the scalability limitation of Neo4j, as needs evolve from the MVP 
initial requirements.

In such cases, there are several options. Some of them are commercial products, such 
as Amazon Neptune or Cassandra. However, open source options are also available. 
Among them, we believe it is worth mentioning JanusGraph (https://janusgraph.
org/), which is a particularly interesting piece of software. JanusGraph is the evolution 
of a previously open source project that was called TitanDB and is now an official 
project under the Linux Foundation, also featuring support from top players in the tech 
landscape, such as IBM, Google, Hortonworks, Amazon, Expero, and Grakn Labs.

https://janusgraph.org/
https://janusgraph.org/
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JanusGraph is a scalable graph database designed for storing and querying graphs 
distributed across a multi-machine cluster with hundreds of billions of vertices and  
edges. As a matter of fact, JanusGraph does not have a storage layer on its own, but it is 
rather a component, written in Java, that sits on top of other data storage layers, such as 
the following:

• Google Cloud Bigtable (https://cloud.google.com/bigtable), which 
is the cloud version of the proprietary data storage system built on Google File 
System, designed to scale a massive amount of data distributed across data centers 
(Bigtable: A Distributed Storage System for Structured Data, Fay Chang et al., 2006).

• Apache HBase (https://hbase.apache.org/), which is a non-relational 
database that features Bigtable capabilities on top of Hadoop and HDFS, thus 
ensuring similar scalability and fault tolerance.

• Apache Cassandra (https://cassandra.apache.org/), which is an open 
source distributed NoSQL database that allows handling a large amount of data, 
spanning multiple data centers.

• ScyllaDB (https://www.scylladb.com/), which is specifically designed 
for real-time applications, is compatible with Apache Cassandra while achieving 
significantly higher throughputs and lower latencies.

Thus, JanusGraph inherits all the good features, such as scalability, high availability, and 
fault tolerance, from scalable solutions, abstracting a graph view on top of them.

With its integration with ScyllaDB, JanusGraph handles extremely fast, scalable, and 
high-throughput applications. Besides, JanusGraph also integrates indexing layers that can 
be based on Apache Lucene, Apache Solr, and Elasticsearch in order to allow even faster 
information retrieval and search functionalities within the graph.

The usage of highly distributed backends together with indexing layers allows JanusGraph 
to scale to enormous graphs, with hundreds of billions of nodes and edges, efficiently 
handling the so-called supernodes—in other words, nodes that have an extremely large 
degree, which often arise in real-world applications (remember that a very famous model 
for real networks is the Barabasi-Albert model, based on preferential attachments, which 
makes hubs naturally emerge within the graph).

In large graphs, supernodes are often potential bottlenecks of the application, especially 
when the business logic requires traversing the graph passing through them. Having 
properties that can help with rapidly filtering only the relevant edges during a graph 
traversal can dramatically speed up the process and achieve better performance.

https://cloud.google.com/bigtable
https://hbase.apache.org/
https://cassandra.apache.org/
https://www.scylladb.com/
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JanusGraph exposes a standard API to query and traverse the graph via the Apache 
TinkerPop library (https://tinkerpop.apache.org/), which is an open source, 
vendor-agnostic graph computing framework. TinkerPop provides a standard interface 
for querying and analyzing the underlying graph using the Gremlin graph traversal 
language. All TinkerPop-compatible graph database systems can therefore integrate 
seamlessly with one another. TinkerPop thus allows you to build "standard" serving layers 
that do not depend on the backend technology, giving you the freedom to choose/change 
the appropriate graph technology for your application depending on your actual needs. 
As a matter of fact, most of the graph databases (even Neo4j as we have seen previously) 
nowadays feature integration with TinkerPop, making switching between backend graph 
databases seamless and avoiding any vendor lock-in. 

Besides Java connectors, Gremlin also has direct Python bindings thanks to the 
gremlinpython library, which allows Python applications to connect to and traverse 
graphs. In order to query the graph structure, we first need to connect to the database, 
using the following:

from gremlin_python.driver.driver_remote_connection import 
DriverRemoteConnection

connection = DriverRemoteConnection(

    'ws://localhost:8182/gremlin', 'g'

)

Once the connection is created, we can then instantiate GraphTraversalSource, 
which is the basis for all Gremlin traversals, and bind it to the connection we just created:

from gremlin_python.structure.graph import Graph

from gremlin_python.process.graph_traversal import __ 

graph = Graph()

g = graph.traversal().withRemote(connection)

Once GraphTraversalSource is instantiated, we can reuse it across the application 
to query the graph database. Imagine that we have imported the Movie graph database 
we described previously into JanusGraph; we can re-write the Cypher query we used 
previously to find all the co-actors of Keanu Reeves using Gremlin:

co_actors = g.V().has('Person', 'name', 'Keanu Reeves').
out("ACTED_IN").in("ACTED_IN").values("name")

As can be seen from the preceding code lines, Gremlin is a functional language whereby 
operators are grouped together to form path-like expressions.

https://tinkerpop.apache.org/
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Selecting between Neo4j and GraphX
Neo4j or GraphX? This is a question that often gets asked. However, as we have described 
briefly, the two pieces of software are not really competitors, but they rather target 
different needs. Neo4j allows us to store information in a graph-like structure and query 
the data, whereas GraphX makes it possible to analytically process a graph (especially for 
large graph dimensions). Although you could also use Neo4j as a processing engine (and 
indeed the Neo4j ecosystem features a Graph Data Science library, which is an actual 
processing engine) and GraphX could also be used as an in-memory stored graph, such 
approaches should be discouraged.

Graph processing engines usually compute KPIs that get stored in the graph database 
layers (potentially indexed such that querying and sorting become efficient) for later use. 
Thus, technologies such as GraphX are not competing with graph databases such as Neo4j, 
and they can very well co-exist within the same application to serve different purposes. 
As we stressed in the introduction, even in MVPs and at early stages, it is best to separate 
the two components, the graph processing engine and the graph querying engine, and use 
appropriate technologies for each of them.

Simple and easy-to-use libraries and tools do exist in both cases and we strongly 
encourage you to use them wisely in order to build a solid and reliable application that  
can be scaled out seamlessly.

Summary
In this section, we have provided you with the basic concepts of how to design, 
implement, and deploy data-driven applications that resort to graph modeling and 
leverage graph structures. We have highlighted the importance of a modular approach, 
which is usually the key to seamlessly scaling any data-driven use case from early-
stage MVPs to production systems that can handle a large amount of data and large 
computational performances.

We have outlined the main architectural pattern, which should provide you with a 
guide when designing the backbone structure of your data-driven applications. We 
then continued by describing the main components that are the basis of graph-powered 
applications: graph processing engines, graph databases, and graph querying languages. For 
each component, we have provided an overview of the most common tools and libraries, 
with practical examples that will help you to build and implement your solutions. You 
should thus have by now a good overview of what the main technologies out there are and 
what they should be used for.
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In the next chapter, we will turn to some recent developments and the latest research that 
trends in machine learning that has been applied to graphs. In particular, we will describe 
some of the latest techniques (such as generative neural networks) and applications (such 
as graph theory applied in neuroscience) available in the scientific literature, providing 
some practical examples and possible applications.



10
Novel Trends  

on Graphs
In the previous chapters, we described different supervised and unsupervised algorithms 
that can be used in a wide range of problems concerning graph data structures. However, 
the scientific literature on graph machine learning is vast and constantly evolving and 
every month, new algorithms are published. In this chapter, we will provide a high-level 
description of some new techniques and applications concerning graph machine learning. 

This chapter will be divided into two main parts – advanced algorithms and applications. 
The first part is mainly devoted to describing some interesting new techniques in the 
graph machine learning domain. You will learn about some data sampling and data 
augmentation techniques for graphs based on random walk and generative neural 
networks. Then, you will learn about topological data analysis, a relatively novel tool 
for analyzing high-dimensional data. In the second part, we will provide you with some 
interesting applications of graph machine learning in different domains, ranging from 
biology to geometrical analysis. After reading this chapter, you will be aware of how 
looking at the relationships between data opened the door to novel intriguing solutions.
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Specifically, we will cover the following topics in this chapter:

• Learning about data augmentation for graphs

• Learning about topological data analysis

• Applying graph theory in new domains

Before we get started, let's ensure we have the prerequisites mentioned in the following 
section. 

Technical requirements 
We will be using Python 3.6.9 for all our exercises. The following is the list of Python 
libraries that you must install for this chapter using pip. For example, you can run pip 
install networkx==2.5 on the command line, and so on:

networkx==2.5 

littleballoffur==2.1.8

All the code files relevant to this chapter are available at URL TO BE DECIDED.

Learning about data augmentation for graphs
In Chapter 8, Graph Analysis for Credit Card Transactions, we described how graph 
machine learning can be used to study and automatically detect fraudulent credit card 
transactions. While describing the use case, we faced two main obstacles:

• There were too many nodes in the original dataset to handle. As a consequence, the 
computational cost was too high to be computed. This is why we selected only 20% 
of the dataset.

• From the original dataset, we saw that less than 1% of the data had been labeled 
as fraudulent transactions, while the other 99% of the dataset contained genuine 
transactions. This is why, during the edge classification task, we randomly 
subsampled the dataset. 
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The techniques we used to solve these two obstacles, in general, are not optimal. For graph 
data, more complex and innovative techniques are needed to solve the task. Moreover, 
when datasets are highly unbalanced, as we mentioned in Chapter 8, Graph Analysis for 
Credit Card Transactions, we can solve this using anomaly detection algorithms.

In this section, we will provide a description of some techniques and algorithms we can 
use to solve the aforementioned problems. We will start by describing the graph sampling 
problem and we will finish by describing some graph data augmentation techniques. We 
will share some useful references and Python libraries for both of these.

Sampling strategies
In Chapter 8, Graph Analysis for Credit Card Transactions, to perform the edge 
classification task, we started our analysis by sampling only 20% of the whole dataset. 
Unfortunately, this strategy, in general, it is not an optimal one. Indeed, the subset of 
nodes that are selected with this simple strategy could generate a subgraph that is not 
representative of the topology of the whole graph. Due to this, we need to define a 
strategy for building a subgraph of a given graph by sampling the right nodes. The process 
of building a (small) subgraph from a given (large) graph by minimizing the loss of 
topological information is known as graph sampling. 

A good starting point so that we have a full overview of the graph sampling algorithm is 
available in the paper Little Ball of Fur: A Python Library for Graph Sampling, which can 
be downloaded from the following URL: https://arxiv.org/pdf/2006.04311.
pdf. Their Python implementation of using the networkx library is available 
at the following URL: https://github.com/benedekrozemberczki/
littleballoffur. The algorithms that are available in this library can be divided into 
nodes and edges sampling algorithms. These algorithms sample the nodes and edges in 
the graph bundling, respectively. As a result, we get a node- or edge-induced subgraph 
from the original graph. We will leave you to perform the analysis proposed in Chapter 8, 
Graph Analysis for Credit Card Transactions, using the different graph sampling strategies 
available in the littleballoffur Python package.

https://arxiv.org/pdf/2006.04311.pdf
https://arxiv.org/pdf/2006.04311.pdf
https://github.com/benedekrozemberczki/littleballoffur
https://github.com/benedekrozemberczki/littleballoffur
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Exploring data augmentation techniques
Data augmentation is a common technique when we're dealing with unbalanced data. In 
unbalanced problems, we usually have labeled data from two or more classes. Only a few 
samples are available for one or more classes in the dataset. A class that contains a few 
samples is also known as a minority class, while a class that contains a large number of 
samples is known as a majority class. For instance, in the use case described in Chapter 
8, Graph Analysis for Credit Card Transactions, we had a clear example of an unbalanced 
dataset. In the input dataset, only 1% of all the available transactions were marked as 
fraudulent (the minority class), while the other 99% were genuine transactions (the 
majority class). When dealing with classical datasets, the problem is usually solved using 
random down or up sampling or using data generation algorithms such as SMOTE. 
However, for graph data, this process may not be as easy since generating new nodes or 
graphs is not a straightforward process. This is due to the presence of complex topological 
relations. In the last decade, a large range of data augmentation graph algorithms have 
been made. Here, we will introduce two of the latest available algorithms, namely GAug 
and GRAN. 

The GAug algorithm is a node-based data augmentation algorithm. It is described in the 
paper Data Augmentation for Graph Neural Networks, which is available at the following 
URL: https://arxiv.org/pdf/2006.06830.pdf. The Python code for this 
library is available at the following URL: https://github.com/zhao-tong/GAug. 
This algorithm can be useful for use cases where edge or node classification is needed, as 
in the use case provided in Chapter 8, Graph Analysis for Credit Card Transactions, where 
the nodes belonging to the minority class can be augmented using the algorithm. As an 
exercise, you can extend on the analysis we proposed in Chapter 8, Graph Analysis for 
Credit Card Transactions, using the GAug algorithm.

The GRAN algorithm is a graph-based data augmentation algorithm. It is described in 
the paper Efficient Graph Generation with Graph Recurrent Attention Networks, which 
is available at the following URL: https://arxiv.org/pdf/1910.00760.pdf. 
The Python code for the library is available at the following URL: https://github.
com/lrjconan/GRAN. This algorithm is useful for generating new graphs when we're 
dealing with graph classification/clustering problems. For example, if we're dealing with 
an unbalanced graph classification problem, it could be useful to create a balance step for 
the dataset using the GRAN algorithm and then perform the classification task. 

https://arxiv.org/pdf/2006.06830.pdf
https://github.com/zhao-tong/GAug
https://arxiv.org/pdf/1910.00760.pdf
https://github.com/lrjconan/GRAN
https://github.com/lrjconan/GRAN
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Learning about topological data analysis
Topological Data Analysis (TDA) is a rather novel technique that's used to extract 
features that quantify the shape of the data. The idea of this approach is that by observing 
how datapoints are organized in a certain space, we can reveal some important 
information about the process that generated it.

The main tool for applying TDA is persistent homology. The math behind this method 
is quite advanced, so let's introduce this concept through an example. Suppose you have a 
set of data points distributed on a space, and let's suppose you are "observing" them over 
time. Points are static (they do not move across the space); thus, you will observe those 
independent points forever. However, let's imagine we can create associations between 
these data points by connecting them together through some well-defined rules. In 
particular, let's imagine a sphere expanding from these points through time. Each point 
will have its own expanding sphere and, once two spheres collide, an "edge" can be placed 
by these two points. This can be exemplified with the following diagram:

Figure 10.1 – Example of how relationships between points can be created

The more spheres that collide, the more associations that will be created, and the more 
edges that will be placed. This happens when multiple spheres intersect more complex 
geometrical structures such as triangles, tetrahedrons, and so on appear:

Figure 10.2 – Example of how connections among points generate geometrical structures

When a new geometrical structure appears, we can note its "birth" time. On the other 
hand, when an existing geometrical structure disappears (for example, it becomes part of 
a more complex geometrical structure), we can note its "death" time. The survival time 
(time between birth and death) of each geometrical structure that's observed during the 
simulation can be used as a new feature for analyzing the original dataset.
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We can also define the so-called persistent diagram by placing each structure's 
corresponding pair (birth, death) on a two-axis system. Points closer to the diagonal 
normally reflect noise, whereas points distant from the diagonal represent persisting 
features. An example of a persistence diagram is as follows. Notice that we described the 
whole process by using expanding "spheres" as an example. In practice, we can change the 
dimension of this expanding shape (for instance, using 2D circles), thus producing a set of 
features for each dimension (commonly indicated using the letter H):

Figure 10.3 – Example of a 2D point cloud (right) and its corresponding persistence diagram (left)

A good Python library for performing topological data analysis is giotto-tda, which is 
available at the following URL: https://github.com/giotto-ai/giotto-tda. 
Using the giotto-tda library, it is easy to build the simplicial complex and its relative 
persistence diagram, as shown in the preceding image.

Topological machine learning
Now that we know the fundamentals behind TDA, let's see how it can be used for 
machine learning. By providing machine learning algorithms with topological data (such 
as persistent features), we can capture patterns that might be missed by other traditional 
approaches.

In the previous section, we saw that persistence diagrams are useful for describing data. 
Nevertheless, using them to feed machine learning algorithms (such as RandomForest) 
is not a good choice. For instance, different persistent diagrams may have different 
numbers of points, and basic algebraic operations would not be well defined.

https://github.com/giotto-ai/giotto-tda
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One common way to overcome such a limitation is to transform diagrams into more 
suitable representations. Embeddings or kernel methods can be used to obtain a 
"vectorized" representation of the diagrams. Moreover, advanced representation methods 
such as persistence images, persistence landscapes, and Betti curves, among others, have 
been shown to be very useful in practical applications. Persistent images (Figure 10.4), for 
instance, are bi-dimensional representations of persistence diagrams that can easily be fed 
into convolutional neural networks.

Several possibilities arise out of this theory, and there is still a connection between the 
findings and deep learning. Several new ideas are being proposed, making the subject 
both hot and fascinating:

Figure 10.4 – Example of a persistent images

Topological data analysis is a rapidly growing field, especially since it can be combined 
with machine learning techniques. Several scientific papers are published on this topic 
every year and we expect novel exciting applications in the near future.
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Applying graph theory in new domains
In recent years, due to there being a more solid theoretical understanding of graph 
machine learning, as well as an increase in available storage space and computational 
power, we can identify a number of domains in which such learning theories are 
spreading. With a bit of imagination, you can start looking at the surrounding world as a 
set of "nodes" and "links." Our work or study place, the technological devices we use every 
day, and even our brain can be represented as networks. In this section, we will look at 
some examples of how graph theory (and graph machine learning) has been applied to, 
apparently, unrelated domains.

Graph machine learning and neuroscience
The study of the brain by means of graph theory is a prosperous and expanding field. 
Several ways of representing the brain as a network have been investigated, with the aim 
of understanding how different parts of the brain (nodes) are functionally or structurally 
connected to each other.

By means of medical techniques such as Magnetic Resonance Imaging (MRI), a three-
dimensional representation of the brain can be obtained. Such an image can be processed 
by different kinds of algorithms to obtain distinct partitions of the brain (parcellation).  

There are different ways we can define connections between those regions, depending on 
whether we are interested in analyzing their functional or structural connectivity:

• Functional Magnetic Resonance Imaging (fMRI) is a technique that's used to 
measure whether a part of the brain is "active" or not. Specifically, it measures 
the blood-oxygen-level-dependent (BOLD) signal of each region (a signal 
indicating the variation of the level of blood and oxygen at a certain time). Then, 
the Pearson correlation between the BOLD series of two brain regions of interest 
can be computed. High correlation means that the two parts are "functionally 
connected," and an edge can be placed between them. An interesting paper on 
graphically analyzing fMRI data is Graph-based network analysis of resting-state 
functional MRI, which is available at https://www.frontiersin.org/
articles/10.3389/fnsys.2010.00016/full.

https://www.frontiersin.org/articles/10.3389/fnsys.2010.00016/full
https://www.frontiersin.org/articles/10.3389/fnsys.2010.00016/full
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• On the other hand, by using advanced MRI techniques such as Diffusion Tensor 
Imaging (DTI), we can also measure the strength of the white matter fiber bundles 
physically connecting two brain regions of interest. Thus, we can obtain a graph 
representing the structural connectivity of the brain. A paper where graphs neural 
networks are used in combination with graphs generated from DTI data is called 
Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks and 
is available at https://www.frontiersin.org/articles/10.3389/
fnins.2019.00594/full.

• Functional and structural connectivity can be analyzed using graph theory. There 
are several studies that enhance significant alterations of such networks related to 
neurodegenerative diseases, such as Alzheimer's, multiple sclerosis, and Parkinson's, 
among others.

The final result is a graph describing the connection between the different brain regions, 
as shown here:

Figure 10.5 – Connection between brain regions as a graph

Here, we can see how different brain regions can be seen as nodes of a graph, while the 
connections between those regions are edges.

Graph machine learning has been shown to be very useful for this kind of analysis. 
Different studies have been conducted to automatically diagnose a particular pathology 
based on the brain network, thus predicting the evolution of the network (for example, 
identifying potentially vulnerable regions that are likely to be affected by the pathology in 
the future).

Network neuroscience is a promising field, and, in the future, more and more insight will 
be collected from those networks so that we can understand pathological alterations and 
predict a disease's evolution.

https://www.frontiersin.org/articles/10.3389/fnins.2019.00594/full
https://www.frontiersin.org/articles/10.3389/fnins.2019.00594/full
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Graph theory and chemistry and biology
Graph machine learning can be applied to chemistry. For example, graphs provide a 
natural method for describing molecular structures by treating atoms as the nodes of 
a graph and bonds as their connections. Such methods have been used to investigate 
different aspects of chemical systems, including representing reactions, and learning 
chemical fingerprints (indicating the presence or absence of chemical features or 
substructures), among others.

Several applications can be also found in biology, where many different elements can be 
represented as a graph. Protein-protein interactions (PPI), for example, is one of the 
most widely studied topics. Here, a graph is constructed, where nodes represent protein 
and edges represent their interaction. Such a method allows us to exploit the structural 
information of PPI networks, which has proved to be informative in PPI prediction.

Graph machine learning and computer vision
The rise of deep learning, especially convolutional neural network (CNN) techniques, 
has achieved amazing results in computer vision research. For a wide range of tasks, 
such as image classification, object detection, and semantic segmentation, CNNs can be 
considered as the state-of-the-art. However, recently, central challenges in computer vision 
have started to be addressed using graph machine learning techniques – geometric deep 
learning in particular. As we have learned throughout this book, there are fundamental 
differences between the 2D Euclidean domain in which images are represented and more 
complex objects such as 3D shapes and point clouds. Restoring the world's 3D geometry 
from 2D and 3D visual data, scene understanding, stereo matching, and depth estimation 
are only a few examples of what can be done.

Image�classification�and�scene�understanding
Image classification, one of the most widely studied tasks in computer vision, nowadays 
dominated by CNN-based algorithms, has started to be addressed from a different 
perspective. Graph neural network models have shown attractive results, especially when 
huge amounts of labeled data is not available. In particular, there is a trend in combining 
these models with zero-shot and few-shot learning techniques. Here, the goal is to classify 
classes that the model has never seen during training. For instance, this can be achieved 
by exploiting the knowledge of how the unseen object is "semantically" related to the seen 
ones.

Similar approaches have been also used for scene understanding. Using a relational graph 
between detected objects in a scene provides an interpretable structured representation of 
the image. This can be used to support high-level reasoning for various tasks, including 
captioning and visual question answering, among others.
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Shape analysis
Differently from images, which are represented by a bi-dimensional grid of pixels, there 
are several methods for representing 3D shapes, such as multi-view images, depth maps, 
voxels, point clouds, meshes, and implicit surfaces, among others. Nevertheless, when 
applying machine and deep learning algorithms, such representations can be exploited to 
learn specific geometric features, which can be useful for designing a better analysis.

In this context, geometric deep learning techniques have shown promising results. For 
instance, GNN techniques have been successfully applied for finding correspondence 
between deformable shapes, a classical problem that leads to several applications, 
including texture animation and mapping, as well as scene understanding. For those of 
you who are interested, some good resources to help you understand this application of 
graph machine learning are available at https://arxiv.org/pdf/1611.08097.
pdf and http://geometricdeeplearning.com/.

Recommendation systems
Another interesting application of graph machine learning is in recommendation systems, 
which we can use to predict the "rating" or the "preference" that a user would assign to an 
item. In Chapter 6, Social Network Graphs, we provided an example of how link prediction 
can be used to build automatic algorithms that provide recommendations to a given user 
and/or customer. In the paper Graph Neural Networks in Recommender Systems: A Survey, 
available at https://arxiv.org/pdf/2011.02260.pdf, the authors provide an 
extensive survey of graph machine learning that's been applied to build recommendation 
systems. More specifically, the authors describe different graph machine learning 
algorithms and their applications.

Summary
In this chapter, we provided a high-level overview of some emerging graph machine 
learning algorithms and their applications for new domains. At the beginning of this 
chapter, we described, using the example provided in Chapter 8, Graph Analysis for Credit 
Card Transactions, some sampling and augmentation algorithms for graph data. We 
provided some Python libraries that can be used to deal with graph sampling and graph 
data augmentation tasks.

We continued by providing a general description of topological data analysis and how this 
technique has recently been used in different domains.

https://arxiv.org/pdf/1611.08097.pdf
https://arxiv.org/pdf/1611.08097.pdf
http://geometricdeeplearning.com/
https://arxiv.org/pdf/2011.02260.pdf
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Finally, we provided several descriptions of new application domains, such as 
neuroscience chemistry, and biology. We also described how machine learning algorithms 
can also be used to solve other tasks, such as image classification, shape analysis, and 
recommendation systems.

This is it! In this book, we provided an overview of the most important graph machine 
learning techniques and algorithms. You should now be able to deal with graph data and 
build machine learning algorithms. We hope that you are now in possession of more tools 
in your toolkit and that you will use them to develop exciting applications. We also invite 
you to check the references we provided in this book and to address the challenges we 
proposed in the different chapters.

The world of graph machine learning is fascinating and rapidly evolving. New research 
papers are published every day with incredible findings. As usual, a continuous review of 
the scientific literature is the best way to discover new algorithms, and arXiv (https://
arxiv.org/) is the best place to search for freely available scientific papers.

https://arxiv.org/
https://arxiv.org/
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