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Foreword
Over the last decade, Data Science has become a household term - data is the new oil, 
and machine learning is the new electricity. Virtually, every industry has grown leaps and 
bounds as the information age has transitioned into the data age. Academic departments 
all over the globe have sprung into action, applying and developing the techniques and 
discoveries for and from the data science playbook. In light of all of this development, 
there is a growing need for books (and authors) like this one.

More than just a moneymaker, machine learning shows great promise as a problem solver 
and a crucial tool in managing global crises. 2020 has been a year full of challenges, 
imploring machine learning to come to the aid of humanity. In California alone, over 
4 million acres have burned from wildfires this year. Not to mention the COVID-19 
pandemic, which to date has resulted in over 36 million cases and 1 million deaths 
worldwide (WorldMeter.info).

This book provides readers with practical training in one of the most exciting developments 
in machine learning: gradient boosting. Gradient boosting was the elegant answer to the 
foibles of the already magnanimous Random Forest algorithm and has proven to be a 
formidable asset in the Predictive Analytics toolbox. Moreover, Wade has chosen to focus on 
XGBoost, an extremely flexible and successful implementation thereof. In fact, in addition to 
having a serious presence in both industry and academia, XGBoost has consistently ranked 
as a top (quite possibly THE top) performing algorithm in data competitions based on 
structured tabular data containing numerical and categorical features.

As Hands-On Gradient Boosting with XGBoost and scikit-learn goes to print, author 
Corey Wade and his family are standing at ground zero, challenged by the acrid smokey 
breeze in the San Francisco Bay Area while practicing social distancing to avoid the novel 
coronavirus, COVID-19. This may be the perfect setting, albeit morbidly so, for motivating 
Wade to guide the next wave of problem solvers. He has put his heart and soul, as well as 
his intellect and grit, into researching and presenting what is quite likely the most complete 
source of information regarding the XGBoost implementation of Gradient Boosting.

Readers should know that they are benefitting not only from a great analyst and data 
scientist but also from an experienced and genuine teacher in Corey Wade. He has 
the bug, as we say in education: a passion to give, to help, and to disseminate critical 
knowledge to thirsting intellects.

Kevin Glynn

Data Scientist & Educator
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Preface
XGBoost is an industry-proven, open-source software library that provides a gradient 
boosting framework for scaling billions of data points quickly and efficiently.

The book introduces machine learning and XGBoost in scikit-learn before building up to 
the theory behind gradient boosting. You’ll cover decision trees and analyze bagging in 
the machine learning context, learning hyperparameters that extend to XGBoost along the 
way. You’ll build gradient boosting models from scratch and extend gradient boosting to 
big data while recognizing speed limitations using timers. Details in XGBoost are explored 
with a focus on speed enhancements and deriving parameters mathematically. With the 
help of detailed case studies, you’ll practice building and fine-tuning XGBoost classifiers 
and regressors using scikit-learn and the original Python API. You'll leverage XGBoost 
hyperparameters to improve scores, correct missing values, scale imbalanced datasets, and 
fine-tune alternative base learners. Finally, you'll apply advanced XGBoost techniques like 
building non-correlated ensembles, stacking models, and preparing models for industry 
deployment using sparse matrices, customized transformers, and pipelines.

By the end of the book, you’ll be able to build high-performing machine learning models 
using XGBoost with minimal errors and maximum speed.

Who this book is for
This book is for data science professionals and enthusiasts, data analysts, and developers 
who want to build fast and accurate machine learning models that scale with big data. 
Proficiency in Python along with a basic understanding of linear algebra will help you to 
get the most out of this book.
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What this book covers
Chapter 1, Machine Learning Landscape, presents XGBoost within the general context of 
machine learning by introducing linear regression and logistic regression before comparing 
results with XGBoost. pandas is introduced to preprocess raw data for machine learning 
by converting categorical columns and clearing null values in a variety of ways.

Chapter 2, Decision Trees in Depth, presents a detailed examination of decision tree 
hyperparameters that are used by XGBoost, along with a graphical and statistical analysis 
of variance and bias that highlights the importance of overfitting, a theme touched on 
throughout the book.

Chapter 3, Bagging with Random Forests, presents a general survey of random forests as 
an XGBoost competitor with a focus on bagging. Additional XGBoost hyperparameters 
shared with random forests such as n_esimtators and subsample are thoroughly 
covered.

Chapter 4, From Gradient Boosting to XGBoost, covers boosting fundamentals, building 
a booster from scratch in scikit-learn, fine-tuning new XGBoost hyperparameters 
such as eta, and comparing runtimes between gradient boosting and XGBoost to 
highlight XGBoost's impressive speed.

Chapter 5, XGBoost Unveiled, analyzes the mathematical derivations of XGBoost 
algorithms and features a historically relevant case study featuring XGBoost's role as the 
winning model in the Higgs Boson Kaggle Competition. Standard XGBoost parameters 
are discussed, base models are built, and the original Python API is covered.

Chapter 6, XGBoost Hyperparameters, covers all essential XGBoost hyperparameters, 
summarizes previous tree ensemble hyperparameters, and uses original grid search 
functions to fine-tune XGBoost models to optimize scores.

Chapter 7, Discovering Exoplanets with XGBoost, gives you the opportunity to discover 
exoplanets with XGBoost in a top-to-bottom case study. The pitfalls of imbalanced datasets 
are analyzed with the confusion matrix and classification report leading to different scoring 
metrics and the important XGBoost hyperparameter scale_pos_weight.

Chapter 8, XGBoost Alternative Base Learners, covers the full range of XGBoost boosters 
including gbtree, dart, and gblinear for regression and classification. Random 
forests are presented as base learners, and as XGBoost alternative models with the new 
XGBRFRegressor and XGBRFClassifier classes.
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Chapter 9, XGBoost Kaggle Masters, presents tips and tricks that XGBoost Kaggle 
winners have used to win competitions such as advanced feature engineering, building 
non-correlated machine ensembles, and stacking.

Chapter 10, XGBoost Model Deployment, transforms raw data into XGBoost machine 
learning predictions through the use of customized transformers to handle mixed data 
and machine learning pipelines to make predictions on incoming data with a fine-tuned 
XGBoost model.

To get the most out of this book
Readers should be proficient in Python at the level of slicing lists, writing your own 
functions, and using dot-notation. General familiarity with linear algebra at the level of 
accessing rows and columns in matrices will be sufficient. A background in pandas and 
machine learning is helpful but not required as all code and concepts are explained along 
the way.

This book uses the latest versions of Python in Jupyter Notebook with the Anaconda 
distribution. Anaconda is highly recommended since all major data science libraries are 
included. It's worth updating Anaconda before getting started. The following section 
provides detailed instructions to set up your coding environment like ours.

Setting up your coding environment
The following table summarizes the essential software used in this book.

Here are instructions for uploading this software to your system.

Anaconda
The data science libraries that you will need in this book along with Jupyter Notebooks, 
scikit-learn (sklearn), and Python may be installed together using Anaconda, which is 
recommended.
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Here are the steps to install Anaconda on your computer as of 2020:

1. Go to https://www.anaconda.com/products/individual.

2. Click Download on the following screen, which does not yet start the download, 
but presents you with a variety of options (see step 3):

Figure 0.1 – Preparing to download Anaconda

3. Select your installer. The 64-Bit Graphical Installer is recommended for Windows 
and Mac. Make sure that you select from the top two rows under Python 3.7 since 
Python 3.7 is used throughout this book:

Figure 0.2 – Anaconda Installers

https://www.anaconda.com/products/individual
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4. After your download begins, continue with the prompts on your computer to 
complete the installation:

Warning for Mac users 
If you run into the error You cannot install Anaconda3 in this location, 
do not panic. Just click on the highlighted row Install for me only and the 
Continue button will present as an option.

Figure 0.3 – Warning for Mac Users – Just click Install for me only then Continue
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Using Jupyter notebooks
Now that you have Anaconda installed, you may open a Jupyter notebook to use Python 
3.7. Here are the steps to open a Jupyter notebook:

1. Click on Anaconda-Navigator on your computer.

2. Click Launch under Jupyter Notebook as shown in the following screenshot:

Figure 0.4 – Anaconda home screen
This should open a Jupyter notebook in a browser window. While Jupyter notebooks 
appear in web browsers for convenience, they are run on your personal computer, 
not online. Google Colab notebooks are an acceptable online alternative, but in this 
book, Jupyter notebooks are used exclusively.

3. Select Python 3 from the New tab present on the right side of your Jupyter 
notebook as shown in the following screenshot:
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Figure 0.5 – Jupyter notebook home screen
This should bring you to the following screen:

Figure 0.6 – Inside a Jupyter notebook

Congratulations! You are now ready to run Python code! Just type anything in the cell, 
such as print('hello xgboost!'), and press Shift + Enter to run the code.

Troubleshooting Jupyter notebooks
If you have trouble running or installing Jupyter notebooks, please visit 
Jupyter's official troubleshooting guide: https://jupyter-notebook.
readthedocs.io/en/stable/troubleshooting.html.

XGBoost
At the time of writing, XGBoost is not yet included in Anaconda so it must be installed 
separately.

https://jupyter-notebook.readthedocs.io/en/stable/troubleshooting.html
https://jupyter-notebook.readthedocs.io/en/stable/troubleshooting.html
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Here are the steps for installing XGBoost on your computer:

1. Go to https://anaconda.org/conda-forge/xgboost. Here is what you 
should see:

Figure 0.7 – Anaconda recommendations to install XGBoost

2. Copy the first line of code in the preceding screenshot, as shown here:

Figure 0.8 – Package installation

3. Open the Terminal on your computer.

If you do not know where your Terminal is located, search Terminal for Mac and 
Windows Terminal for Windows. 

4. Paste the following code into your Terminal, press Enter, and follow any prompts: 

conda install -c conda-forge xgboost

5. Verify that the installation has worked by opening a new Jupyter notebook as 
outlined in the previous section. Then enter import xgboost and press  
Shift + Enter. You should see the following:

https://anaconda.org/conda-forge/xgboost


Preface     xv

Figure 0.9 – Successful import of XGBoost in a Jupyter notebook

If you got no errors, congratulations! You now have all the necessary technical 
requirements to run code in this book.

Tip
If you received errors trying to set up your coding environment, please go 
back through the previous steps, or consider reviewing the Anaconda error 
documentation presented here: https://docs.anaconda.com/
anaconda/user-guide/troubleshooting/. Previous users of 
Anaconda should update Anaconda by entering conda update conda 
in the Terminal. If you have trouble uploading XGBoost, see the official 
documentation at https://xgboost.readthedocs.io/en/
latest/build.html.

Versions
Here is code that you may run in a Jupyter notebook to see what versions of the following 
software you are using:

import platform; print(platform.platform())

import sys; print("Python", sys.version)

import numpy; print("NumPy", numpy.__version__)

import scipy; print("SciPy", scipy.__version__)

import sklearn; print("Scikit-Learn", sklearn.__version__)

import xgboost; print("XGBoost", xgboost.__version__)

https://docs.anaconda.com/anaconda/user-guide/troubleshooting/
https://docs.anaconda.com/anaconda/user-guide/troubleshooting/
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html


xvi     Preface

Here are the versions used to generate code in this book:

Darwin-19.6.0-x86_64-i386-64bit

Python 3.7.7 (default, Mar 26 2020, 10:32:53) 

[Clang 4.0.1 (tags/RELEASE_401/final)]

NumPy 1.19.1

SciPy 1.5.2

Scikit-Learn 0.23.2

XGBoost 1.2.0

It's okay if you have different versions than ours. Software is updated all the time, and you 
may obtain better results by using newer versions when released. If you are using older 
versions, however, it's recommended that you update using Anaconda by running conda 
update conda in the terminal. You may also run conda update xgboost if you 
installed an older version of XGBoost previously and forged it with Anaconda as outlined 
in the previous section.

Accessing code files
If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-
Scikit-learn. In case there's an update to the code, it will be updated on the existing 
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this 
book. You can download it here:

https://static.packt-cdn.com/downloads/9781839218354_
ColorImages.pdf.

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839218354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839218354_ColorImages.pdf
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "The AdaBoostRegressor and AdaBoostClassifier 
algorithms may be downloaded from the sklearn.ensemble library and fit to any 
training set."

A block of code is set as follows:

X_bikes = df_bikes.iloc[:,:-1]

y_bikes = df_bikes.iloc[:,-1]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_bikes, 
y_bikes, random_state=2)

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

Stopping. Best iteration:

[1] validation_0-error:0.118421

Accuracy: 88.16%

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
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Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com


An XGBoost model using scikit-learn defaults opens the book after preprocessing data 
with pandas and building standard regression and classification models. The practical 
theory behind XGBoost is explored by advancing through decision trees (XGBoost base 
learners), random forests (bagging), and gradient boosting to compare scores and fine-
tune ensemble and tree-based hyperparameters.

This section comprises the following chapters:

• Chapter 1, Machine Learning Landscape

• Chapter 2, Decision Trees in Depth 

• Chapter 3, Bagging with Random Forests

• Chapter 4, From Gradient Boosting to XGBoost

Section 1:  
Bagging and 

Boosting





1
Machine Learning 

Landscape
Welcome to Hands-On Gradient Boosting with XGBoost and Scikit-Learn, a book that 
will teach you the foundations, tips, and tricks of XGBoost, the best machine learning 
algorithm for making predictions from tabular data.

The focus of this book is XGBoost, also known as Extreme Gradient Boosting. The 
structure, function, and raw power of XGBoost will be fleshed out in increasing detail in 
each chapter. The chapters unfold to tell an incredible story: the story of XGBoost. By the 
end of this book, you will be an expert in leveraging XGBoost to make predictions from 
real data.

In the first chapter, XGBoost is presented in a sneak preview. It makes a guest appearance 
in the larger context of machine learning regression and classification to set the stage for 
what's to come. 

This chapter focuses on preparing data for machine learning, a process also known as data 
wrangling. In addition to building machine learning models, you will learn about using 
efficient Python code to load data, describe data, handle null values, transform data into 
numerical columns, split data into training and test sets, build machine learning models, 
and implement cross-validation, as well as comparing linear regression and logistic 
regression models with XGBoost.
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The concepts and libraries presented in this chapter are used throughout the book.

This chapter consists of the following topics:

• Previewing XGBoost

• Wrangling data

• Predicting regression

• Predicting classification

Previewing XGBoost
Machine learning gained recognition with the first neural network in the 1940s, followed 
by the first machine learning checker champion in the 1950s. After some quiet decades, 
the field of machine learning took off when Deep Blue famously beat world chess 
champion Gary Kasparov in the 1990s. With a surge in computational power, the 1990s 
and early 2000s produced a plethora of academic papers revealing new machine learning 
algorithms such as random forests and AdaBoost. 

The general idea behind boosting is to transform weak learners into strong learners 
by iteratively improving upon errors. The key idea behind gradient boosting is to use 
gradient descent to minimize the errors of the residuals. This evolutionary strand, from 
standard machine learning algorithms to gradient boosting, is the focus of the first four 
chapters of this book.

XGBoost is short for Extreme Gradient Boosting. The Extreme part refers to pushing 
the limits of computation to achieve gains in accuracy and speed. XGBoost's surging 
popularity is largely due to its unparalleled success in Kaggle competitions. In Kaggle 
competitions, competitors build machine learning models in attempts to make the best 
predictions and win lucrative cash prizes. In comparison to other models, XGBoost has 
been crushing the competition.

Understanding the details of XGBoost requires understanding the landscape of machine 
learning within the context of gradient boosting. In order to paint a full picture, we start at 
the beginning, with the basics of machine learning.



Data wrangling     5

What is machine learning?
Machine learning is the ability of computers to learn from data. In 2020, machine 
learning predicts human behavior, recommends products, identifies faces, outperforms 
poker professionals, discovers exoplanets, identifies diseases, operates self-driving cars, 
personalizes the internet, and communicates directly with humans. Machine learning is 
leading the artificial intelligence revolution and affecting the bottom line of nearly every 
major corporation.

In practice, machine learning means implementing computer algorithms whose weights 
are adjusted when new data comes in. Machine learning algorithms learn from datasets to 
make predictions about species classification, the stock market, company profits, human 
decisions, subatomic particles, optimal traffic routes, and more.

Machine learning is the best tool at our disposal for transforming big data into accurate, 
actionable predictions. Machine learning, however, does not occur in a vacuum. Machine 
learning requires rows and columns of data.

Data wrangling
Data wrangling is a comprehensive term that encompasses the various stages of data 
preprocessing before machine learning can begin. Data loading, data cleaning, data 
analysis, and data manipulation are all included within the sphere of data wrangling.

This first chapter presents data wrangling in detail. The examples are meant to cover 
standard data wrangling challenges that can be swiftly handled by pandas, Python's 
special library for handling data analytics. Although no experience with pandas 
is required, basic knowledge of pandas will be beneficial. All code is explained so 
that readers new to pandas may follow along.

Dataset 1 – Bike rentals
The bike rentals dataset is our first dataset. The data source is the UCI Machine Learning 
Repository (https://archive.ics.uci.edu/ml/index.php), a world-famous 
data warehouse that is free to the public. Our bike rentals dataset has been adjusted 
from the original dataset (https://archive.ics.uci.edu/ml/datasets/
bike+sharing+dataset) by sprinkling in null values so that you can gain practice in 
correcting them.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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Accessing the data
The first step in data wrangling is to access the data. This may be achieved with the 
following steps:

1. Download the data. All files for this book have been stored on GitHub. You may 
download all files to your local computer by pressing the Clone button. Here is  
a visual:

Figure 1.1 – Accessing data
After downloading the data, move it to a convenient location, such as a Data folder 
on your desktop.

2. Open a Jupyter Notebook. You will find the link to download Jupyter Notebooks 
in the preface. Click on Anaconda, and then click on Jupyter Notebooks. 
Alternatively, type jupyter notebook in the terminal. After the web browser 
opens, you should see a list of folders and files. Go to the same folder as the bike 
rentals dataset and select New: Notebook: Python 3. Here is a visual guide:

Figure 1.2 – Visual guide to accessing the Jupyter Notebook

Tip
If you are having difficulties opening a Jupyter Notebook, see Jupyter's 
official trouble-shooting guide: https://jupyter-notebook.
readthedocs.io/en/stable/troubleshooting.html.

3. Enter the following code in the first cell of your Jupyter Notebook: 

import pandas as pd 

https://jupyter-notebook.readthedocs.io/en/stable/troubleshooting.html
https://jupyter-notebook.readthedocs.io/en/stable/troubleshooting.html
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Press Shift + Enter to run the cell. Now you may access the pandas library when 
you write pd. 

4. Load the data using pd.read_csv. Loading data requires a read method. 
The read method stores the data as a DataFrame, a pandas object for viewing, 
analyzing, and manipulating data. When loading the data, place the filename in 
quotation marks, and then run the cell:

df_bikes = pd.read_csv('bike_rentals.csv')

If your data file is in a different location than your Jupyter Notebook, you must 
provide a file directory, such as Downloads/bike_rental.csv. 

Now the data has been properly stored in a DataFrame called df_bikes.

Tip
Tab completion: When coding in Jupyter Notebooks, after typing a few 
characters, press the Tab button. For CSV files, you should see the filename 
appear. Highlight the name with your cursor and press Enter. If the filename is 
the only available option, you may press Enter. Tab completion will make your 
coding experience faster and more reliable.

5. Display the data using .head(). The final step is to view the data to ensure that it 
has loaded correctly. .head() is a DataFrame method that displays the first five 
rows of the DataFrame. You may place any positive integer in parentheses to view 
any number of rows. Enter the following code and press Shift + Enter:

df_bikes.head()

Here is a screenshot of the first few lines along with the expected output:

Figure 1.3 –The bike_rental.csv output
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Now that we have access to the data, let's take a look at three methods to understand  
the data.

Understanding the data
Now that the data has been loaded, it's time to make sense of the data. Understanding 
the data is essential to making informed decisions down the road. Here are three great 
methods for making sense of the data. 

.head()
You have already seen .head(), a widely used method to interpret column names 
and numbers. As the preceding output reveals, dteday is a date, while instant is an 
ordered index.

 .describe()
Numerical statistics may be viewed by using .describe() as follows:

df_bikes.describe()

Here is the expected output:

Figure 1.4 – The .describe() output

You may need to scroll to the right to see all of the columns.

Comparing the mean and median (50%) gives an indication of skewness. As you can see, 
mean and median are close to one another, so the data is roughly symmetrical. The max 
and min values of each column, along with the quartiles and standard deviation (std), 
are also presented.
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.info()
Another great method is .info(), which displays general information about the 
columns and rows:

df_bikes.info()

Here is the expected output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 731 entries, 0 to 730

Data columns (total 16 columns):

 #   Column      Non-Null Count  Dtype  

---  ------      --------------  -----  

 0   instant     731 non-null    int64  

 1   dteday      731 non-null    object 

 2   season      731 non-null    float64

 3   yr          730 non-null    float64

 4   mnth        730 non-null    float64

 5   holiday     731 non-null    float64

 6   weekday     731 non-null    float64

 7   workingday  731 non-null    float64

 8   weathersit  731 non-null    int64  

 9   temp        730 non-null    float64

 10  atemp       730 non-null    float64

 11  hum         728 non-null    float64

 12  windspeed   726 non-null    float64

 13  casual      731 non-null    int64  

 14  registered  731 non-null    int64  

 15  cnt         731 non-null    int64  

dtypes: float64(10), int64(5), object(1)

memory usage: 91.5+ KB

As you can see, .info() gives the number of rows, number of columns, column types, 
and non-null values. Since the number of non-null values differs between columns, null 
values must be present.
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Correcting null values
If null values are not corrected, unexpected errors may arise down the road. In this 
subsection, we present a variety of methods that may be used to correct null values. Our 
examples are designed not only to handle null values but also to highlight the breadth and 
depth of pandas.

The following methods may be used to correct null values.

Finding the number of null values
The following code displays the total number of null values:

df_bikes.isna().sum().sum()

Here is the outcome:

12

Note that two .sum() methods are required. The first method sums the null values of 
each column, while the second method sums the column counts.

Displaying null values
You can display all rows containing null values with the following code:

 df_bikes[df_bikes.isna().any(axis=1)]

This code may be broken down as follows: df_bikes[conditional] is a subset of 
df_bikes that meets the condition in brackets. .df_bikes.isna().any gathers any 
and all null values while (axis=1) specifies values in the columns. In pandas, rows are 
axis 0 and columns are axis 1. 

Here is the expected output:

Figure 1.5 – Bike Rentals dataset null values
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As you can see from the output, there are null values in the windspeed, humidity, and 
temperature columns along with the last row.

Tip
If this is your first time working with pandas, it may take time to get used 
to the notation. Check out Packt's Hands-On Data Analysis with Pandas for 
a great introduction: https://subscription.packtpub.com/
book/data/9781789615326.

Correcting null values
Correcting null values depends on the column and dataset. Let's go over some strategies.

Replacing with the median/mean
One common strategy is to replace null values with the median or mean. The idea here is 
to replace null values with the average column value. 

For the 'windspeed' column, the null values may be replaced with the median value 
as follows:

df_bikes['windspeed'].fillna((df_bikes['windspeed'].median()), 
inplace=True)

df_bikes['windspeed'].fillna means that the null values of the 'windspeed' 
column will be filled. df_bikes['windspeed'].median() is the median of 
the 'windspeed' column. Finally, inplace=True ensures that the changes are 
permanent.

Tip
The median is often a better choice than the mean. The median guarantees 
that half the data is greater than the given value and half the data is lower. The 
mean, by contrast, is vulnerable to outliers.

In the previous cell, df_bikes[df_bikes.isna().any(axis=1)] revealed rows 
56 and 81 with null values for windspeed. These rows may be displayed using .iloc, 
short for index location: 

df_bikes.iloc[[56, 81]]

https://subscription.packtpub.com/book/data/9781789615326
https://subscription.packtpub.com/book/data/9781789615326
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Here is the expected output:

Figure 1.6 – Rows 56 and 81

As expected, the null values have been replaced with the windspeed median. 

Tip
It's common for users to make mistakes with single or double brackets when 
using pandas. .iloc uses single brackets for one index as follows: df_
bikes.iloc[56]. Now, df_bikes also accepts a list inside brackets to 
allow multiple indices. Multiple indices require double brackets as follows: df_
bikes.iloc[[56, 81]]. Please see https://pandas.pydata.
org/pandas-docs/stable/reference/api/pandas.
DataFrame.iloc.html for further documentation.

Groupby with the median/mean
It's possible to get more nuanced when correcting null values by using a groupby. 

A groupby organizes rows by shared values. Since there are four shared seasons spread 
out among the rows, a groupby of seasons results in a total of four rows, one for each 
season. But each season comes from many different rows with different values. We need 
a way to combine, or aggregate, the values. Choices for the aggregate include .sum(), .
count(), .mean(), and .median(). We use .median().

Grouping df_bikes by season with the .median() aggregate is achieved as follows: 

df_bikes.groupby(['season']).median()

Here is the expected output:

Figure 1.7 – The output of grouping df_bikes by season

As you can see, the column values are the medians.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
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To correct the null values in the hum column, short for humidity, we can take the median 
humidity by season.

The code for correcting null values in the hum column is df_bikes['hum'] = df_
bikes['hum'].fillna().

The code that goes inside fillna is the desired values. The values obtained from 
groupby require the transform method as follows: 

df_bikes.groupby('season')['hum'].transform('median')

Here is the combined code in one long step:

df_bikes['hum'] = df_bikes['hum'].fillna(df_bikes.
groupby('season')['hum'].transform('median'))

You may verify the transformation by checking df_bikes.iloc[[129, 213, 
388]].

Obtaining the median/mean from specific rows
In some cases, it may be advantageous to replace null values with data from specific rows.

When correcting temperature, aside from consulting historical records, taking the mean 
temperature of the day before and the day after should give a good estimate. 

To find null values of the 'temp' column, enter the following code:

df_bikes[df_bikes['temp'].isna()]

Here is the expected output:

Figure 1.8 – The output of the 'temp' column

As you can see, index 701 contains null values.
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To find the mean temperature of the day before and the day after the 701 index, complete 
the following steps:

1. Sum the temperatures in rows 700 and 702 and divide by 2. Do this for the 
'temp' and 'atemp' columns: 

mean_temp = (df_bikes.iloc[700]['temp'] + df_bikes.
iloc[702]['temp'])/2

mean_atemp = (df_bikes.iloc[700]['atemp'] + df_bikes.
iloc[702]['atemp'])/2

2. Replace the null values: 

df_bikes['temp'].fillna((mean_temp), inplace=True)

df_bikes['atemp'].fillna((mean_atemp), inplace=True) 

You may verify on your own that the null values have been filled as expected.

Extrapolate dates
Our final strategy to correct null values involves dates. When real dates are provided, date 
values may be extrapolated.

df_bikes['dteday'] is a date column; however, the type of column revealed 
by df_bikes.info() is an object, commonly represented as a string. Date 
objects such as years and months must be extrapolated from datetime types. df_
bikes['dteday'] may be converted to a 'datetime' type using the to_datetime 
method, as follows:

df_bikes['dteday'] = pd.to_datetime(df_bikes['dteday'],infer_
datetime_format=True)

infer_datetime_format=True allows pandas to decide the kind of datetime object 
to store, a safe option in most cases.

To extrapolate individual columns, first import the datetime library:

import datetime as dt
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We can now extrapolate dates for the null values using some different approaches. A 
standard approach is convert the 'mnth' column to the correct months extrapolated from 
the 'dteday' column. This has the advantage of correcting any additional errors that may 
have surfaced in conversions, assuming of course that the 'dteday' column is correct.

The code is as follows:

ddf_bikes['mnth'] = df_bikes['dteday'].dt.month

It's important to verify the changes. Since the null date values were in the last row,  
we can use .tail(), a DataFrame method similar to .head(), that shows the last  
five rows:

df_bikes.tail()

Here is the expected output:

Figure 1.9 – The output of the extrapolated date values

As you can see, the month values are all correct, but the year value needs to be changed.

The years of the last five rows in the 'dteday' column are all 2012, but the corresponding 
year provided by the 'yr' column is 1.0. Why?

The data is normalized, meaning it's converted to values between 0 and 1.

Normalized data is often more efficient because machine learning weights do not have to 
adjust for different ranges.

You can use the .loc method to fill in the correct value. The .loc method is used to locate 
entries by row and column as follows:

df_bikes.loc[730, 'yr'] = 1.0

Now that you have practiced correcting null values and have gained significant experience 
with pandas, it's time to address non-numerical columns.
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Deleting non-numerical columns
For machine learning, all data columns should be numerical. According to df.info(), 
the only column that is not numerical is df_bikes['dteday']. Furthermore, it's 
redundant since all date information exists in other columns.

The column may be deleted as follows:

df_bikes = df_bikes.drop('dteday', axis=1)

Now that we have all numerical columns and no null values, we are ready for machine 
learning.

Predicting regression
Machine learning algorithms aim to predict the values of one output column using 
data from one or more input columns. The predictions rely on mathematical equations 
determined by the general class of machine learning problems being addressed. Most 
supervised learning problems are classified as regression or classification. In this section, 
machine learning is introduced in the context of regression.

Predicting bike rentals
In the bike rentals dataset, df_bikes['cnt'] is the number of bike rentals in a 
given day. Predicting this column would be of great use to a bike rental company. Our 
problem is to predict the correct number of bike rentals on a given day based on data 
such as whether this day is a holiday or working day, forecasted temperature, humidity, 
windspeed, and so on.

According to the dataset, df_bikes['cnt'] is the sum of df_bikes['casual'] 
and df_bikes['registered']. If df_bikes['registered'] and df_
bikes['casual'] were included as input columns, predictions would always be 100% 
accurate since these columns would always sum to the correct result. Although perfect 
predictions are ideal in theory, it makes no sense to include input columns that would be 
unknown in reality.

All current columns may be used to predict df_bikes['cnt'] except for 'casual' 
and 'registered', as explained previously. Drop the 'casual' and 'registered' 
columns using the .drop method as follows:

df_bikes = df_bikes.drop(['casual', 'registered'], axis=1)

The dataset is now ready.
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Saving data for future use
The bike rentals dataset will be used multiple times in this book. Instead of running this 
notebook each time to perform data wrangling, you can export the clean dataset to a CSV 
file for future use: 

df_bikes.to_csv('bike_rentals_cleaned.csv', index=False)

The index=False parameter prevents an additional column from being created by  
the index.

Declaring predictor and target columns
Machine learning works by performing mathematical operations on each of the predictor 
columns (input columns) to determine the target column (output column).

It's standard to group the predictor columns with a capital X, and the target column as  
a lowercase y. Since our target column is the last column, splitting the data into predictor 
and target columns may be done via slicing using index notation:

X = df_bikes.iloc[:,:-1] 
y = df_bikes.iloc[:,-1]

The comma separates columns from rows. The first colon, :, means that all rows are 
included. After the comma, :-1 means start at the first column and go all the way to the 
last column without including it. The second -1 takes the last column only. 

Understanding regression
Predicting the number of bike rentals, in reality, could result in any non-negative integer. 
When the target column includes a range of unlimited values, the machine learning 
problem is classified as regression.

The most common regression algorithm is linear regression. Linear regression takes each 
predictor column as a polynomial variable and multiplies the values by coefficients (also 
called weights) to predict the target column. Gradient descent works under the hood to 
minimize the error. The predictions of linear regression could be any real number.

Before running linear regression, we must split the data into a training set and a test set. 
The training set fits the data to the algorithm, using the target column to minimize the 
error. After a model is built, it's scored against the test data. 
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The importance of holding out a test set to score the model cannot be overstated. In the 
world of big data, it's common to overfit the data to the training set because there are so 
many data points to train on. Overfitting is generally bad because the model adjusts itself 
too closely to outliers, unusual instances, and temporary trends. Strong machine learning 
models strike a nice balance between generalizing well to new data and accurately picking 
up on the nuances of the data at hand, a concept explored in detail in Chapter 2, Decision 
Trees in Depth.

Accessing scikit-learn
All machine learning libraries will be handled through scikit-learn. Scikit-learn's range, 
ease of use, and computational power place it among the most widespread machine 
learning libraries in the world.

Import train_test_split and LinearRegression from scikit-learn as follows:

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

Next, split the data into the training set and test set: 

X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

Note the random_state=2 parameter. Whenever you see random_state=2, this 
means that you are choosing the seed of a pseudo-random number generator to ensure 
reproducible results.

Silencing warnings
Before building your first machine learning model, silence all warnings. Scikit-learn 
includes warnings to notify users of future changes. In general, it's not advisable to silence 
warnings, but since our code has been tested, it's recommended to save space in your 
Jupyter Notebook.

Warnings may be silenced as follows:

import warnings

warnings.filterwarnings('ignore')

It's time to build your first model.



Predicting regression     19

Modeling linear regression
A linear regression model may be built with the following steps:

1. Initialize a machine learning model:

lin_reg = LinearRegression()

2. Fit the model on the training set. This is where the machine learning model is built. 
Note that X_train is the predictor column and y_train is the target column.

lin_reg.fit(X_train, y_train)

3. Make predictions for the test set. The predictions of X_test, the predictor columns 
in the test set, are stored as y_pred using the .predict method on lin_reg:

y_pred = lin_reg.predict(X_test)

4. Compare the predictions with the test set. Scoring the model requires a basis of 
comparison. The standard for linear regression is the root mean squared error 
(RMSE). The RMSE requires two pieces: mean_squared_error, the sum of the 
squares of differences between predicted and actual values, and the square root,  
to keep the units the same. mean_squared_error may be imported, and the 
square root may be taken with Numerical Python, popularly known as NumPy,  
a blazingly fast library designed to work with pandas. 

5. Import mean_squared_error and NumPy, and then compute the mean squared 
error and take the square root:

from sklearn.metrics import mean_squared_error

import numpy as np

mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)

6. Print your results:

print("RMSE: %0.2f" % (rmse))

The outcome is as follows:
RMSE: 898.21
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Here is a screenshot of all the code to build your first machine learning model:

Figure 1.10 – Code to build your machine learning model

It's hard to know whether an error of 898 rentals is good or bad without knowing the 
expected range of rentals per day.

The .describe() method may be used on the df_bikes['cnt'] column to obtain 
the range and more:

df_bikes['cnt'].describe()

Here is the output:

count     731.000000

mean     4504.348837

std      1937.211452

min        22.000000

25%      3152.000000

50%      4548.000000

75%      5956.000000

max      8714.000000

Name: cnt, dtype: float64

With a range of 22 to 8714, a mean of 4504, and a standard deviation of 1937, an 
RMSE of 898 isn't bad, but it's not great either.
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XGBoost
Linear regression is one of many algorithms that may be used to solve regression 
problems. It's possible that other regression algorithms will produce better results. The 
general strategy is to experiment with different regressors to compare scores. Throughout 
this book, you will experiment with a wide range of regressors, including decision trees, 
random forests, gradient boosting, and the focus of this book, XGBoost.

A comprehensive introduction to XGBoost will be provided later in this book. For now, 
note that XGBoost includes a regressor, called XGBRegressor, that may be used on 
any regression dataset, including the bike rentals dataset that has just been scored. Let's 
now use the XGBRegressor to compare results on the bike rentals dataset with linear 
regression.

You should have already installed XGBoost in the preface. If you have not done so, install 
XGBoost now.

XGBRegressor
After XGBoost has been installed, the XGBoost regressor may be imported as follows:

from xgboost import XGBRegressor

The general steps for building XGBRegressor are the same as with 
LinearRegression. The only difference is to initialize XGBRegressor instead  
of LinearRegression:

1. Initialize a machine learning model:

xg_reg = XGBRegressor()

2. Fit the model on the training set. If you get some warnings from XGBoost here, 
don't worry:

xg_reg.fit(X_train, y_train)

3. Make predictions for the test set:

y_pred = xg_reg.predict(X_test)

4. Compare the predictions with the test set:

mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)
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5. Print your results:

print("RMSE: %0.2f" % (rmse))

The output is as follows:
RMSE: 705.11

XGBRegressor performs substantially better! 

The reason why XGBoost often performs better than others will be explored in  
Chapter 5, XGBoost Unveiled.

Cross-validation
One test score is not reliable because splitting the data into different training and test sets 
would give different results. In effect, splitting the data into a training set and a test set is 
arbitrary, and a different random_state will give a different RMSE.

One way to address the score discrepancies between different splits is k-fold cross-
validation. The idea is to split the data multiple times into different training sets and test 
sets, and then to take the mean of the scores. The number of splits, called folds, is denoted 
by k. It's standard to use k = 3, 4, 5, or 10 splits.

Here is a visual description of cross-validation:

Figure 1.11 – Cross-validation
(Redrawn from https://commons.wikimedia.org/wiki/File:K-fold_cross_

validation_EN.svg)

https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.svg
https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.svg
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Cross-validation works by fitting a machine learning model on the first training set and 
scoring it against the first test set. A different training set and test set are provided for the 
second split, resulting in a new machine learning model with its own score. A third split 
results in a new model and scores it against another test set.

There is going to be overlap in the training sets, but not the test sets.

Choosing the number of folds is flexible and depends on the data. Five folds is standard 
because 20% of the test set is held back each time. With 10 folds, only 10% of the data 
is held back; however, 90% of the data is available for training and the mean is less 
vulnerable to outliers. For a smaller datatset, three folds may work better. 

At the end, there will be k different scores evaluating the model against k different test 
sets. Taking the mean score of the k folds gives a more reliable score than any single fold.

cross_val_score is a convenient way to implement cross-validation. cross_val_
score takes a machine learning algorithm as input, along with the predictor and target 
columns, with optional additional parameters that include a scoring metric and the 
desired number of folds.

Cross-validation with linear regression
Let's use cross-validation with LinearRegression. 

First, import cross_val_score from the cross_val_score library:

from sklearn.model_selection import cross_val_score

Now use cross-validation to build and score a machine learning model in the  
following steps:

1. Initialize a machine learning model:

model = LinearRegression()

2. Implement cross_val_score with the model, X, y, scoring='neg_mean_
squared_error', and the number of folds, cv=10, as input:

scores = cross_val_score(model, X, y, scoring='neg_mean_
squared_error', cv=10)
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Tip
Why scoring='neg_mean_squared_error'? Scikit-learn is 
designed to select the highest score when training models. This works well 
for accuracy, but not for errors when the lowest is best. By taking the negative 
of each mean squared error, the lowest ends up being the highest. This is 
compensated for later with rmse = np.sqrt(-scores), so the final 
results are positive.

3. Find the RMSE by taking the square root of the negative scores:

rmse = np.sqrt(-scores)

4. Display the results:

print('Reg rmse:', np.round(rmse, 2))

print('RMSE mean: %0.2f' % (rmse.mean()))

The output is as follows:
Reg rmse: [ 504.01  840.55 1140.88  728.39  640.2   
969.95 

1133.45 1252.85 1084.64  1425.33]

RMSE mean: 972.02

Linear regression has a mean error of 972.06. This is slightly better than the 980.38 
obtained before. The point here is not whether the score is better or worse. The point is 
that it's a better estimation of how linear regression will perform on unseen data.

Using cross-validation is always recommended for a better estimate of the score.

About the print function
When running your own machine learning code, the global print function is 
often not necessary, but it is helpful if you want to print out multiple lines and 
format the output as shown here.

Cross-validation with XGBoost
Now let's use cross-validation with XGBRegressor. The steps are the same, except for 
initializing the model:

1. Initialize a machine learning model:

model = XGBRegressor()
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2. Implement cross_val_score with the model, X, y, scoring, and the number of 
folds, cv, as input:

scores = cross_val_score(model, X, y, scoring='neg_mean_
squared_error', cv=10)

3. Find the RMSE by taking the square root of the negative scores:

rmse = np.sqrt(-scores)

4. Print the results:

print('Reg rmse:', np.round(rmse, 2))

print('RMSE mean: %0.2f' % (rmse.mean()))

The output is as follows:
Reg rmse: [ 717.65  692.8   520.7   737.68  835.96 
1006.24  991.34  747.61  891.99 1731.13]

RMSE mean: 887.31

XGBRegressor wins again, besting linear regression by about 10%.

Predicting classification
You learned that XGBoost may have an edge in regression, but what about classification? 
XGBoost has a classification model, but will it perform as accurately as well tested 
classification models such as logistic regression? Let's find out.

What is classification?
Unlike with regression, when predicting target columns with a limited number of outputs, 
a machine learning algorithm is categorized as a classification algorithm. The possible 
outputs may include the following:

• Yes, No

• Spam, Not Spam

• 0, 1

• Red, Blue, Green, Yellow, Orange
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Dataset 2 – The census
We will move a little more swiftly through the second dataset, the Census Income Data Set 
(https://archive.ics.uci.edu/ml/datasets/Census+Income), to predict 
personal income.

Data wrangling
Before implementing machine learning, the dataset must be preprocessed. When testing 
new algorithms, it's essential to have all numerical columns with no null values.

Data loading
Since this dataset is hosted directly on the UCI Machine Learning website, it can be 
downloaded directly from the internet using pd.read_csv:

df_census = pd.read_csv('https://archive.ics.uci.edu/ml/
machine-learning-databases/adult/adult.data')

df_census.head()

Here is the expected output:

Figure 1.12 – The Census Income DataFrame

The output reveals that the column headings represent the entries of the first row. When 
this happens, the data may be reloaded with the header=None parameter:

df_census = pd.read_csv('https://archive.ics.uci.edu/ml/
machine-learning-databases/adult/adult.data', header=None)

df_census.head()

Here is the expected output without the header:

Figure 1.13 – The header=None parameter output

https://archive.ics.uci.edu/ml/datasets/Census+Income
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As you can see, the column names are still missing. They are listed on the Census 
Income Data Set website (https://archive.ics.uci.edu/ml/datasets/
Census+Income) under Attribute Information.

Column names may be changed as follows:

df_census.columns=['age', 'workclass', 'fnlwgt', 'education', 
'education-num', 'marital-status', 'occupation', 
'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 
'hours-per-week', 'native-country', 'income']

df_census.head()

Here is the expected output with column names:

Figure 1.14 – Expected column names

As you can see, the column names have been restored.

Null values
A great way to check null values is to look at the DataFrame .info() method:

df_census.info()

The output is as follows:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 32561 entries, 0 to 32560

Data columns (total 15 columns):

 #   Column          Non-Null Count  Dtype 

---  ------          --------------  ----- 

 0   age             32561 non-null  int64 

 1   workclass       32561 non-null  object

 2   fnlwgt          32561 non-null  int64 

 3   education       32561 non-null  object

https://archive.ics.uci.edu/ml/datasets/Census+Income
https://archive.ics.uci.edu/ml/datasets/Census+Income
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 4   education-num   32561 non-null  int64 

 5   marital-status  32561 non-null  object

 6   occupation      32561 non-null  object

 7   relationship    32561 non-null  object

 8   race            32561 non-null  object

 9   sex             32561 non-null  object

 10  capital-gain    32561 non-null  int64 

 11  capital-loss    32561 non-null  int64 

 12  hours-per-week  32561 non-null  int64 

 13  native-country  32561 non-null  object

 14  income          32561 non-null  object

dtypes: int64(6), object(9)

memory usage: 3.7+ MB

Since all columns have the same number of non-null rows, we can infer that there are no 
null values. 

Non-numerical columns
All columns of the dtype object must be transformed into numerical columns. A 
pandas get_dummies method takes the non-numerical unique values of every column 
and converts them into their own column, with 1 indicating presence and 0 indicating 
absence. For instance, if the column values of a DataFrame called "Book Types" were 
"hardback," "paperback," or "ebook," pd.get_dummies would create three new columns 
called "hardback," "paperback," and "ebook" replacing the "Book Types" column.

Here is a "Book Types" DataFrame:

 

Figure 1.15 – A "Book Types" DataFrame
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Here is the same DataFrame after pd.get_dummies:

Figure 1.16 – The new DataFrame

pd.get_dummies will create many new columns, so it's worth checking to see whether 
any columns may be eliminated. A quick review of the df_census data reveals an 
'education' column and an education_num column. The education_num 
column is a numerical conversion of 'education'. Since the information is the same, 
the 'education' column may be deleted:

df_census = df_census.drop(['education'], axis=1)

Now use pd.get_dummies to transform the non-numerical columns into numerical 
columns:

df_census = pd.get_dummies(df_census)

df_census.head()

Here is the expected output:

Figure 1.17 – pd.get_dummies – non-numerical to numerical columns

As you can see, new columns are created using a column_value syntax referencing the 
original column. For example, native-country is an original column, and Taiwan is 
one of many values. The new native-country_Taiwan column has a value of 1 if the 
person is from Taiwan and 0 otherwise.
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Tip
Using pd.get_dummies may increase memory usage, as can be verified 
using the .info() method on the DataFrame in question and checking the 
last line. Sparse matrices may be used to save memory where only values of 
1 are stored and values of 0 are not stored. For more information on sparse 
matrices, see Chapter 10, XGBoost Model Deployment, or visit SciPy's official 
documentation at https://docs.scipy.org/doc/scipy/
reference/.

Target and predictor columns
Since all columns are numerical with no null values, it's time to split the data into target 
and predictor columns.

The target column is whether or not someone makes 50K. After pd.get_dummies, two 
columns, df_census['income_<=50K'] and df_census['income_>50K'], are 
used to determine whether someone makes 50K. Since either column will work, we delete 
df_census['income_ <=50K']:

df_census = df_census.drop('income_ <=50K', axis=1)

Now split the data into X (predictor columns) and y (target column). Note that -1 is used 
for indexing since the last column is the target column:

X = df_census.iloc[:,:-1] 
y = df_census.iloc[:,-1]

It's time to build machine learning classifiers!

Logistic regression
Logistic regression is the most fundamental classification algorithm. Mathematically, 
logistic regression works in a manner similar to linear regression. For each column, 
logistic regression finds an appropriate weight, or coefficient, that maximizes model 
accuracy. The primary difference is that instead of summing each term, as in linear 
regression, logistic regression uses the sigmoid function.

https://docs.scipy.org/doc/scipy/reference/
https://docs.scipy.org/doc/scipy/reference/
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Here is the sigmoid function and the corresponding graph:

Figure 1.18 – Sigmoid function graph

The sigmoid is commonly used for classification. All values greater than 0.5 are matched 
to 1, and all values less than 0.5 are matched to 0.

Implementing logistic regression with scikit-learn is nearly the same as implementing 
linear regression. The main differences are that the predictor column should fit into 
categories, and the error should be in terms of accuracy. As a bonus, the error is in terms 
of accuracy by default, so explicit scoring parameters are not required.

You may import logistic regression as follows:

from sklearn.linear_model import LogisticRegression

The cross-validation function
Let's use cross-validation on logistic regression to predict whether someone makes over 
50K.

Instead of copying and pasting, let's build a cross-validation classification function that 
takes a machine learning algorithm as input and has the accuracy score as output using 
cross_val_score:

def cross_val(classifier, num_splits=10): 
    model = classifier 
    scores = cross_val_score(model, X, y, cv=num_splits) 
    print('Accuracy:', np.round(scores, 2)) 
    print('Accuracy mean: %0.2f' % (scores.mean()))
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Now call the function with logistic regression:

cross_val(LogisticRegression())

The output is as follows:

Accuracy: [0.8  0.8  0.79 0.8  0.79 0.81 0.79 0.79 0.8  0.8 ]

Accuracy mean: 0.80

80% accuracy isn't bad out of the box. 

Let's see whether XGBoost can do better.

Tip
Any time you find yourself copying and pasting code, look for a better way! 
One aim of computer science is to avoid repetition. Writing your own data 
analysis and machine learning functions will make your life easier and your 
work more efficient in the long run.

The XGBoost classifier
XGBoost has a regressor and a classifier. To use the classifier, import the following 
algorithm:

from xgboost import XGBClassifier

Now run the classifier in the cross_val function with one important addition. Since 
there are 94 columns, and XGBoost is an ensemble method, meaning that it combines 
many models for each run, each of which includes 10 splits, we are going to limit n_
estimators, the number of models, to 5. Normally, XGBoost is very fast. In fact, it has 
a reputation for being the fastest boosting ensemble method out there, a reputation that 
we will check in this book! For our initial purposes, however, 5 estimators, though not as 
robust as the default of 100, is sufficient. Details on choosing n_estimators will be a 
focal point of Chapter 4, From Gradient Boosting to XGBoost:

cross_val(XGBClassifier(n_estimators=5))

The output is as follows:

Accuracy: [0.85 0.86 0.87 0.85 0.86 0.86 0.86 0.87 0.86 0.86]

Accuracy mean: 0.86

As you can see, XGBoost scores higher than logistic regression out of the box.
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Summary
Your journey through XGBoost has officially begun! You started this chapter by learning 
the fundamentals of data wrangling and pandas, essential skills for all machine learning 
practitioners, with a focus on correcting null values. Next, you learned how to build 
machine learning models in scikit-learn by comparing linear regression with XGBoost. 
Then, you prepared a dataset for classification and compared logistic regression with 
XGBoost. In both cases, XGBoost was the clear winner.

Congratulations on building your first XGBoost models! Your initiation into data 
wrangling and machine learning using the pandas, NumPy, and scikit-learn libraries is 
complete.

In Chapter 2, Decision Trees in Depth, you will improve your machine learning skills by 
building decision trees, the base learners of XGBoost machine learning models, and fine-
tuning hyperparameters to improve results. 





2
Decision Trees in 

Depth
In this chapter, you will gain proficiency with decision trees, the primary machine 
learning algorithm from which XGBoost models are built. You will also gain first-hand 
experience in the science and art of hyperparameter fine-tuning. Since decision trees are 
the foundation of XGBoost models, the skills that you learn in this chapter are essential to 
building robust XGBoost models going forward.

In this chapter, you will build and evaluate decision tree classifiers and decision tree 
regressors, visualize and analyze decision trees in terms of variance and bias, and  
fine-tune decision tree hyperparameters. In addition, you will apply decision trees to  
a case study that predicts heart disease in patients.

This chapter covers the following main topics:

• Introducing decision trees with XGBoost

• Exploring decision trees

• Contrasting variance and bias

• Tuning decision tree hyperparameters

• Predicting heart disease – a case study
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Introducing decision trees with XGBoost
XGBoost is an ensemble method, meaning that it is composed of different machine 
learning models that combine to work together. The individual models that make up the 
ensemble in XGBoost are called base learners.

Decision trees, the most commonly used XGBoost base learners, are unique in the 
machine learning landscape. Instead of multiplying column values by numeric weights, 
as in linear regression and logistic regression (Chapter 1, Machine Learning Landscape), 
decision trees split the data by asking questions about the columns. In fact, building 
decision trees is like playing a game of 20 Questions.

For instance, a decision tree may have a temperature column, and that column could 
branch into two groups, one with temperatures above 70 degrees, and one with 
temperatures below 70 degrees. The next split could be based on the seasons, following 
one branch if it's summer and another branch otherwise. Now the data has been split 
into four separate groups. This process of splitting data into new groups via branching 
continues until the algorithm reaches a desired level of accuracy.

A decision tree can create thousands of branches until it uniquely maps each sample to the 
correct target in the training set. This means that the training set can have 100% accuracy. 
Such a model, however, will not generalize well to new data.

Decision trees are prone to overfitting the data. In other words, decision trees can map too 
closely to the training data, a problem explored later in this chapter in terms of variance 
and bias. Hyperparameter fine-tuning is one solution to prevent overfitting. Another 
solution is to aggregate the predictions of many trees, a strategy that Random Forests and 
XGBoost employ.

While Random Forests and XGBoost will be the focus of subsequent chapters, we now 
take a deep look inside decision trees.

Exploring decision trees
Decision Trees work by splitting the data into branches. The branches are followed down 
to leaves where predictions are made. Understanding how branches and leaves are created 
is much easier with a practical example. Before going into further detail, let's build our 
first decision tree model.
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First decision tree model
We start by building a decision tree to predict whether someone makes over 50K US 
dollars using the Census dataset from Chapter 1, Machine Learning Landscape:

1. First, open a new Jupyter Notebook and start with the following imports:

import pandas as pd

import numpy as np

import warnings

warnings.filterwarnings('ignore')

2. Next, open the file 'census_cleaned.csv' that has been uploaded for you 
at https://github.com/PacktPublishing/Hands-On-Gradient-
Boosting-with-XGBoost-and-Scikit-learn/tree/master/
Chapter02. If you downloaded all files for this book from the Packt GitHub 
page, as recommended in the preface, you can navigate to Chapter 2, Decision 
Trees in Depth, after launching Anaconda in the same way that you navigate to 
other chapters. Otherwise, go our GitHub page and clone the files now:

df_census = pd.read_csv('census_cleaned.csv')

3. After uploading the data into a DataFrame, declare your predictor and target 
columns, X and y, as follows:

X = df_census.iloc[:,:-1]

y = df_census.iloc[:,-1]

4. Next, import train_test_split to split the data into training and tests set with 
random_state=2 to ensure consistent results:

from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

As with other machine learning classifiers, when using decision trees, we initialize 
the model, fit it on the training set, and test it using accuracy_score. 

The accuracy_score determines the number of correct predictions divided by the 
total number of predictions. If 19 of 20 predictions are correct, the accuracy_score  
is 95%.

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter02
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First, import the DecisionTreeClassifier and accuracy_score:

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

Next, we build a decision tree classifier with the standard steps:

1. Initialize a machine learning model with random_state=2 to ensure consistent 
results:

clf = DecisionTreeClassifier(random_state=2)

2. Fit the model on the training set:

clf.fit(X_train, y_train)

3. Make predictions for the test set:

y_pred = clf.predict(X_test)

4. Compare predictions with the test set:

accuracy_score(y_pred, y_test) 

The accuracy_score is as follows:
0.8131679154894976

An accuracy of 81% is comparable to the accuracy of Logistic Regression from the same 
dataset in Chapter 1, Machine Learning Landscape. 

Now that you have seen how to build a decision tree, let's take a look inside.

Inside a decision tree
Decision Trees come with nice visuals that reveal their inner workings. 

Here is a decision tree from the Census dataset with only two splits:
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Figure 2.1 – Census dataset decision tree

The top of the tree is the root, the True/False arrows are branches, and the data points are 
nodes. At the end of the tree, the nodes are classified as leaves. Let's study the preceding 
diagram in depth.

Root
The root of the tree is at the top. The first line reads marital-status_Married-civ-spouse 
<=5. marital-status is a binary column, so all values are 0 (negative) or 1 (positive). The 
first split is based on whether someone is married or not. The left side of the tree is the 
True branch, meaning the user is unmarried, and the right side is the False branch, 
meaning the user is married.

Gini criterion
The second line of the root reads gini=0.364. This is the error method the decision tree 
uses to decide how splits should be made. The goal is to find a split that leads to the lowest 
error. A Gini index of 0 means 0 errors. A gini index of 1 means all errors. A gini index 
of 0.5, which shows an equal distribution of elements, means the predictions are no better 
than random guessing. The closer to 0, the lower the error. At the root, a gini of 0.364 
means the training set is imbalanced with 36.4 percent of class 1.
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The equation for the gini index is as follows:

Figure 2.2 – gini index equation
pi is the probability that the split results in the correct value, and c is the total number of 
classes: 2 in the preceding example. Another way of looking at this is that pi  is the fraction 
of items in the set with the correct output label.

Samples, values, class
The root of the tree states that there are 24,420 samples. This is the total number of 
samples in the training set. The following line reads [18575 , 5845]. The ordering is 0  
then 1, so 18,575 samples have a value of 0 (they make less than 50K) and 5,845 have  
a value of 1 (they make more than 50K). 

True/false nodes
Following the first branch, you see True on the left side, and False on the right. The 
pattern of True – left and False – right continues throughout the tree. 

In the left node in the second row, the split capital_gain <= 7073.5 is applied to 
subsequent nodes. The remaining information comes from the split above the previous 
branch. Of the 13,160 unmarried people, 12,311 have an income of less than 50K, while 
849 have an income of more than 50K. The gini index, 0.121, is a very good score. 

Stumps
It's possible to have a tree with only one split. Such a tree is called a stump. Although 
stumps are not powerful predictors in themselves, stumps can become powerful when 
used as boosters, as covered in Chapter 4, From Gradient Boosting to XGBoost.

Leaves
The nodes at the end of the tree are leaves. The leaves contain all final predictions.

= 1–∑ ( )2

=1
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The far-left leaf has a gini index of 0.093, correctly predicting 12,304 of 12,938 cases, 
which is 95%. We are 95% confident that unmarried users with capital gains of less than 
7,073.50 do not make more than 50K.

Other leaves may be interpreted similarly.

Now let's see where these predictions go wrong.

Contrasting variance and bias
Imagine that you have the data points displayed in the following graph. Your task is to fit  
a line or curve that will allow you to make predictions for new points. 

Here is a graph of random points:

Figure 2.3 – Graph of random points
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One idea is to use Linear Regression, which minimizes the square of the distance between 
each point and the line, as shown in the following graph:

Figure 2.4 – Minimizing distance using Linear Regression

A straight line generally has high bias. In machine learning bias is a mathematical term 
that comes from estimating the error when applying the model to a real-life problem.  
The bias of the straight line is high because the predictions are restricted to the line and 
fail to account for changes in the data.

In many cases, a straight line is not complex enough to make accurate predictions. When 
this happens, we say that the machine learning model has underfit the data with high bias. 

A second option is to fit the points with an eight-degree polynomial. Since there are only 
nine points, an eight-degree polynomial will fit the data perfectly, as you can see in the 
following graph:
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Figure 2.5 – Eight-degree poynomial

This model has high variance. In machine learning, variance is a mathematical term 
indicating how much a model will change given a different set of training data. Formally, 
variance is the measure of the squared deviation between a random variable and its mean. 
Given nine different data points in the training set, the eighth-degree polynomial will be 
completely different, resulting in high variance.

Models with high variance often overfit the data. These models do not generalize well to 
new data points because they have fit the training data too closely.

In the world of big data, overfitting is a big problem. More data results in larger training 
sets, and machine learning models like decision trees fit the training data too well. 
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As a final option, consider a third-degree polynomial that fits the data points as shown in 
the following graph:

Figure 2.6 – Third-degree polynomial

This third-degree polynomial provides a nice balance between variance and bias, 
following the curve generally, yet adapting to the variation. Low variance means that  
a different training set will not result in a curve that differs by a significant amount. Low 
bias indicates that the error when applying this model to a real-world situation will not be 
too high. In machine learning, the combination of low variance and low bias is ideal. 

One of the best machine learning strategies to strike a nice balance between variance and 
bias is to fine-tune hyperparameters.

Tuning decision tree hyperparameters
Hyperparameters are not the same as parameters.

In machine learning, parameters are adjusted when the model is being tuned. The weights 
in linear and Logistic Regression, for example, are parameters adjusted during the build 
phase to minimize errors. Hyperparameters, by contrast, are chosen in advance of the 
build phase. If no hyperparameters are selected, default values are used.
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Decision Tree regressor
The best way to learn about hyperparameters is through experimentation. Although there 
are theories behind the range of hyperparameters chosen, results trump theory. Different 
datasets see improvements with different hyperparameter values.

Before selecting hyperparameters, let's start by finding a baseline score using a 
DecisionTreeRegressor and cross_val_score with the following steps:

1. Download the 'bike_rentals_cleaned' dataset and split it into X_bikes 
(predictor columns) and y_bikes (training columns):

df_bikes = pd.read_csv('bike_rentals_cleaned.csv') 
X_bikes = df_bikes.iloc[:,:-1] 
y_bikes = df_bikes.iloc[:,-1]

2. Import the DecisionTreeRegressor and cross_val_score:

from sklearn.tree import DecisionTreeRegressor 
from sklearn.model_selection import cross_val_score

3. Initialize DecisionTreeRegressor and fit the model in cross_val_score:

reg = DecisionTreeRegressor(random_state=2)

scores = cross_val_score(reg, X_bikes, y_bikes, 
scoring='neg_mean_squared_error', cv=5)

4. Compute the root mean squared error (RMSE) and print the results:

rmse = np.sqrt(-scores)

print('RMSE mean: %0.2f' % (rmse.mean()))

The result is as follows:
RMSE mean: 1233.36

The RMSE is 1233.36. This is worse than the 972.06 obtained from Linear 
Regression in Chapter 1, Machine Learning Landscape, and from the 887.31 
obtained by XGBoost.

Is the model overfitting the data because the variance is too high? 
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This question may be answered by seeing how well the decision tree makes predictions 
on the training set alone. The following code checks the error of the training set, before it 
makes predictions on the test set:

reg = DecisionTreeRegressor() 
reg.fit(X_train, y_train) 
y_pred = reg.predict(X_train)

from sklearn.metrics import mean_squared_error 
reg_mse = mean_squared_error(y_train, y_pred) 
reg_rmse = np.sqrt(reg_mse) 
reg_rmse

The result is as follows:

0.0

A RMSE of 0.0 means that the model has perfectly fit every data point! This perfect 
score combined with a cross-validation error of 1233.36 is proof that the decision tree is 
overfitting the data with high variance. The training set fit perfectly, but the test set missed 
badly.

Hyperparameters may rectify the situation.

Hyperparameters in general
Hyperparameter details for all scikit-learn models may be viewed on scikit-learn's official 
documentation pages.

Here is an excerpt from the DecisionTreeRegressor website (https://
scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeRegressor.html). 

Note
sklearn is short for scikit-learn.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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Figure 2.7. Excerpt of DecisionTreeRegressor official documentation page

The official documentation explains the meaning behind the hyperparameters. Note that 
Parameters here is short for hyperparameters. When working on your own, checking the 
official documentation is your most reliable resource.

Let's go over the hyperparameters one at a time.

max_depth
max_depth defines the depth of the tree, determined by the number of times splits are 
made. By default, there is no limit to max_depth, so there may be hundreds or thousands 
of splits that result in overfitting. By limiting max_depth to smaller numbers, variance is 
reduced, and the model generalizes better to new data.

How can you choose the best number for max_depth?

You can always try max_depth=1, then max_depth=2, then max_depth=3, and so 
on, but this process would be exhausting. Instead, you may use a wonderful tool called 
GridSearchCV.
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GridSearchCV
GridSearchCV searches a grid of hyperparameters using cross-validation to deliver the 
best results.

GridSearchCV functions as any machine learning algorithm, meaning that it's fit on 
a training set, and scored on a test set. The primary difference is that GridSearchCV 
checks all hyperparameters before finalizing a model.

The key with GridSearchCV is to establish a dictionary of hyperparameter values. There 
is no correct set of values to try. One strategy is to select a smallest and largest value with 
evenly spaced numbers in between. Since we are trying to reduce overfitting, the general 
idea is to try more values on the lower side for max_depth.

Import GridSearchCV and define a list of hyperparameters for max_depth as follows:

from sklearn.model_selection import GridSearchCV 
params = {'max_depth':[None,2,3,4,6,8,10,20]}

The params dictionary contains one key, 'max_depth', written as a string, and one 
value, a list of numbers that we have chosen. Note that None is the default, meaning that 
there is no limit to max_depth.

Tip
Generally speaking, decreasing max hyperparameters and increasing min 
hyperparameters will reduce variation and prevent overfitting.

Next, initialize a DecisionTreeRegressor, and place it inside of GridSearchCV 
along with params and the scoring metric:

reg = DecisionTreeRegressor(random_state=2) 
grid_reg = GridSearchCV(reg, params, scoring='neg_mean_squared_
error', cv=5, n_jobs=-1) 
grid_reg.fit(X_train, y_train)

Now that GridSearchCV has been fit on the data, you can view the best 
hyperparameters as follows:

best_params = grid_reg.best_params_ 
print("Best params:", best_params)

The result is as follows:

Best params: {'max_depth': 6}
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As you can see, a max_depth value of 6 resulted in the best cross-validation score in the 
training set.

The training score may be displayed using the best_score attribute:

best_score = np.sqrt(-grid_reg.best_score_) 
print("Training score: {:.3f}".format(best_score))

The score is as follows:

Training score: 951.938

The test score may be displayed as follows:

best_model = grid_reg.best_estimator_

y_pred = best_model.predict(X_test) 

rmse_test = mean_squared_error(y_test, y_pred)**0.5

print('Test score: {:.3f}'.format(rmse_test))

The score is as follows:

Test score: 864.670

Variance has been substantially reduced.

min_samples_leaf
min_samples_leaf provides a restriction by increasing the number of samples that 
a leaf may have. As with max_depth, min_samples_leaf is designed to reduce 
overfitting.

When there are no restrictions, min_samples_leaf=1 is the default, meaning that 
leaves may consist of unique samples (prone to overfitting). Increasing min_samples_
leaf reduces variance. If min_samples_leaf=8, all leaves must contain eight or  
more samples.

Testing a range of values for min_samples_leaf requires going through the same 
process as before. Instead of copying and pasting, we write a function that displays 
the best parameters, training score, and test score using GridSearchCV with 
DecisionTreeRegressor(random_state=2) assigned to reg as a default 
parameter:

def grid_search(params, reg=DecisionTreeRegressor(random_
state=2)):
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    grid_reg = GridSearchCV(reg, params,   

    scoring='neg_mean_squared_error', cv=5, n_jobs=-1):

    grid_reg.fit(X_train, y_train)

    
    best_params = grid_reg.best_params_ 
    print("Best params:", best_params) 
 
    best_score = np.sqrt(-grid_reg.best_score_) 
    print("Training score: {:.3f}".format(best_score))

    y_pred = grid_reg.predict(X_test) 
    rmse_test = mean_squared_error(y_test, y_pred)**0.5

    print('Test score: {:.3f}'.format(rmse_test))

Tip
When writing your own functions, it's advantageous to include default 
keyword arguments. A default keyword argument is a named parameter with 
a default value that may be changed for later use and testing. Default keyword 
arguments greatly enhance the capabilities of Python.

When choosing the range of hyperparameters, it's helpful to know the size of the training 
set on which the model is built. Pandas comes with a nice method, .shape, that returns 
the rows and columns of the data:

X_train.shape

The rows and columns of data are as follows:

(548, 12)

Since the training set has 548 rows, this helps determine reasonable values for  
min_samples_leaf. Let's try [1, 2, 4, 6, 8, 10, 20, 30] as the input  
of our grid_search:

grid_search(params={'min_samples_leaf':[1, 2, 4, 6, 8, 10, 20, 
30]})

The score is as follows:

Best params: {'min_samples_leaf': 8}

Training score: 896.083

Test score: 855.620
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Since the test score is better than the training score, variance has been reduced.

What happens when we put min_samples_leaf and max_depth together? Let's see:

grid_search(params={'max_depth':[None,2,3,4,6,8,10,20],'min_
samples_leaf':[1,2,4,6,8,10,20,30]})

The score is as follows:

Best params: {'max_depth': 6, 'min_samples_leaf': 2}

Training score: 870.396

Test score: 913.000

The result may be a surprise. Even though the training score has improved, the test 
score has not. min_samples_leaf has decreased from 8 to 2, while max_depth has 
remained the same.

Tip
This is a valuable lesson in hyperparameter tuning: Hyperparameters should 
not be chosen in isolation.

As for reducing variance in the preceding example, limiting min_samples_leaf to 
values greater than three may help:

grid_search(params={'max_depth':[6,7,8,9,10],'min_samples_
leaf':[3,5,7,9]})

The score is as follows:

Best params: {'max_depth': 9, 'min_samples_leaf': 7}

Training score: 888.905

Test score: 878.538

As you can see, the test score has improved.

We will now explore the remaining decision tree hyperparameters without individual 
testing.

max_leaf_nodes
max_leaf_nodes is similar to min_samples_leaf. Instead of specifying the number 
of samples per leaf, it specifies the total number of leaves. So, max_leaf_nodes=10 
means that the model cannot have more than 10 leaves. It could have fewer.
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max_features
max_features is an effective hyperparameter for reducing variance. Instead of 
considering every possible feature for a split, it chooses from a select number of features 
each round.

It's standard to see max_features with the following options:

• 'auto' is the default, which provides no limitations.

• 'sqrt' is the square root of the total number of features.

• 'log2' is the log of the total number of features in base 2. 32 columns resolves  
to 5 since 2 ^5 = 32.

min_samples_split
Another splitting technique is min_samples_split. As the name indicates,  
min_samples_split provides a limit to the number of samples required before  
a split can be made. The default is 2, since two samples may be split into one sample each, 
ending as single leaves. If the limit is increased to 5, no further splits are permitted for 
nodes with five samples or fewer.

splitter
There are two options for splitter, 'random' and 'best'. Splitter tells the model 
how to select the feature to split each branch. The 'best' option, the default, selects the 
feature that results in the greatest gain of information. The 'random' option, by contrast, 
selects the split randomly.

Changing splitter to 'random' is a great way to prevent overfitting and diversify 
trees.

criterion
The criterion for splitting decision tree regressors and classifiers are different. 
The criterion provides the method the machine learning model uses to determine 
how splits should be made. It's the scoring method for splits. For each possible split, 
the criterion calculates a number for a possible split and compares it to other options. 
The split with the best score wins.

The options for decision tree regressors are mse (mean squared error), friedman_mse, 
(which includes Friedman's adjustment), and mae (mean absolute error). The default  
is mse.  
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For classifiers, gini, which was described earlier, and entropy usually give similar 
results.

min_impurity_decrease
Previously known as min_impurity_split, min_impurity_decrease results in  
a split when the impurity is greater than or equal to this value.

Impurity is a measure of how pure the predictions are for every node. A tree with 100% 
accuracy would have an impurity of 0.0. A tree with 80% accuracy would have an impurity 
of 0.20.

Impurity is an important idea in Decision Trees. Throughout the tree-building process, 
impurity should continually decrease. Splits that result in the greatest decrease of impurity 
are chosen for each node.

The default value is 0.0. This number can be increased so that trees stop building when  
a certain threshold is reached.

min_weight_fraction_leaf
min_weight_fraction_leaf is the minimum weighted fraction of the total weights 
required to be a leaf. According to the documentation, Samples have equal weight when 
sample_weight is not provided.

For practical purposes, min_weight_fraction_leaf is another hyperparameter  
that reduces variance and prevents overfitting. The default is 0.0. Assuming equal weights, 
a restriction of 1%, 0.01, would require at least 5 of the 500 samples to be a leaf. 

ccp_alpha
The ccp_alpha hyperparameter will not be discussed here, as it is designed for 
pruning after the tree has been built. For a full discussion, check out minimal cost 
complexity pruning: https://scikit-learn.org/stable/modules/tree.
html#minimal-cost-complexity-pruning.

Putting it all together
When fine-tuning hyperparameters, several factors come into play:

• The amount of time allotted

• The number of hyperparameters

• The number of decimal places of accuracy desired

https://scikit-learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning
https://scikit-learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning
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The time spent, number of hyperparameters fine-tuned, and accuracy desired depend on 
you, the dataset, and the project at hand. Since hyperparameters are interrelated, it's not 
required to modify them all. Fine-tuning a smaller range may lead to better results.

Now that you understand the fundamentals of decision trees and decision tree 
hyperparameters, it's time to apply what you have learned.

Tip
There are too many decision tree hyperparameters to consistently use them 
all. In my experience, max_depth, max_features, min_samples_
leaf, max_leaf_nodes, min_impurity_decrease, and min_
samples_split are often sufficient.

Predicting heart disease – a case study
You have been asked by a hospital to use machine learning to predict heart disease. Your 
job is to develop a model and highlight two to three important features that doctors and 
nurses can focus on to improve patient health.

You decide to use a decision tree classifier with fine-tuned hyperparameters. After the 
model has been built, you will interpret results using feature_importances_, an 
attribute that determines the most important features in predicting heart disease.

Heart Disease dataset
The Heart Disease dataset has been uploaded to GitHub as heart_disease.csv. This 
is a slight modification to the original Heart Disease dataset (https://archive.ics.
uci.edu/ml/datasets/Heart+Disease) provided by the UCI Machine Learning 
Repository (https://archive.ics.uci.edu/ml/index.php) with null values 
cleaned up for your convenience.

Upload the file and display the first five rows as follows:

df_heart = pd.read_csv('heart_disease.csv') 
df_heart.head()

The preceding code produces the following table:

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/index.php
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Figure 2.8 – heart_disease.csv output

The target column, conveniently labeled 'target' is binary, with 1 indicating that the 
patient has heart disease and 0 indicating that they do not.

Here are the meanings of the predictor columns, taken from the data source linked 
previously:

• age: Age in years

• sex: Sex (1 = male; 0 = female)

• cp: Chest pain type (1 = typical angina, 2 = atypical angina, 3 = non-anginal pain, 
4 = asymptomatic)

• trestbps: Resting blood pressure (in mm Hg on admission to the hospital)

• chol: Serum cholesterol in mg/dl 6 fbs: (fasting blood sugar > 120 mg/dl) (1 = 
true; 0 = false)

• fbs: Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)

• restecg: Resting electrocardiographic results (0 = normal, 1 = having ST-T wave 
abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), 2 
= showing probable or definite left ventricular hypertrophy by Estes' criteria)

• thalach: Maximum heart rate achieved

• exang: Exercise induced angina (1 = yes; 0 = no)

• oldpeak: ST depression induced by exercise relative to rest

• slope: The slope of the peak exercise ST segment (1 = upsloping, 2 = flat, 3 = 
downsloping)

• ca: Number of major vessels (0-3) colored by fluoroscopy

• thal: 3 = normal; 6 = fixed defect; 7 = reversible defect
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Split the data into training and test sets in preparation for machine learning:

X = df_heart.iloc[:,:-1] 
y = df_heart.iloc[:,-1] 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

You are now ready to make predictions.

Decision Tree classifier
Before implementing hyperparameters, it's helpful to have a baseline model for 
comparison.

Use cross_val_score with a DecisionTreeClassifier as follows:

model = DecisionTreeClassifier(random_state=2)

scores = cross_val_score(model, X, y, cv=5)

print('Accuracy:', np.round(scores, 2))

print('Accuracy mean: %0.2f' % (scores.mean()))

Accuracy: [0.74 0.85 0.77 0.73 0.7 ]

The result is as follows:

Accuracy mean: 0.76

The initial accuracy is 76%. Let's see what gains can be made with hyperparameter  
fine-tuning.

RandomizedSearch CLF function
When fine-tuning many hyperparameters, GridSearchCV can take too much time. 
The scikit-learn library provides RandomizedSearchCV as a wonderful alternative. 
RandomizedSearchCV works in the same way as GridSearchCV, but instead of 
trying all hyperparameters, it tries a random number of combinations. It's not meant to be 
exhaustive. It's meant to find the best combinations in limited time.

Here's a function that uses RandomizedSearchCV to return the best model along 
with the scores. The inputs are params (a dictionary of hyperparameters to test), runs 
(number of hyperparameter combinations to check), and DecisionTreeClassifier:

def randomized_search_clf(params, runs=20, 
clf=DecisionTreeClassifier(random_state=2)): 
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    rand_clf = RandomizedSearchCV(clf, params, n_iter=runs, 
    cv=5, n_jobs=-1, random_state=2) 
    rand_clf.fit(X_train, y_train)

    best_model = rand_clf.best_estimator_

    best_score = rand_clf.best_score_  

    print("Training score: {:.3f}".format(best_score))

    y_pred = best_model.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print('Test score: {:.3f}'.format(accuracy))

    return best_model

Now, let's pick a range of hyperparameters. 

Choosing hyperparameters
There is no single correct approach for choosing hyperparameters. Experimentation is the 
name of the game. Here is an initial list, placed inside the randomized_search_clf  
function. These numbers have been chosen with the aim of reducing variance and trying 
an expansive range:

randomized_search_clf(params={'criterion':['entropy', 
'gini'],'splitter':['random', 'best'], 'min_weight_fraction_
leaf':[0.0, 0.0025, 0.005, 0.0075, 0.01],'min_samples_
split':[2, 3, 4, 5, 6, 8, 10], 
'min_samples_leaf':[1, 0.01, 0.02, 0.03, 0.04], 
'min_impurity_decrease':[0.0, 0.0005, 0.005, 0.05, 0.10, 0.15, 
0.2],'max_leaf_nodes':[10, 15, 20, 25, 30, 35, 40, 45, 50, 
None],'max_features':['auto', 0.95, 0.90, 0.85, 0.80, 0.75, 
0.70],'max_depth':[None, 2,4,6,8], 
'min_weight_fraction_leaf':[0.0, 0.0025, 0.005, 0.0075, 0.01, 
0.05]})

Training score: 0.798

Test score: 0.855

DecisionTreeClassifier(class_weight=None, criterion='entropy', 
max_depth=8, max_features=0.8, max_leaf_nodes=45, min_
impurity_decrease=0.0, min_impurity_split=None, min_samples_
leaf=0.04, min_samples_split=10,min_weight_fraction_leaf=0.05, 
presort=False, random_state=2, splitter='best')
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This is a definite improvement, and the model generalizes well on the test set. Let's see if 
we can do better by narrowing the range.

Narrowing the range
Narrowing the range is one strategy to improve hyperparameters. 

As an example, using a baseline of max_depth=8 chosen from the best model, we may 
narrow the range to from 7 to 9.

Another strategy is to stop checking hyperparameters whose defaults are working fine. 
entropy, for instance, is not recommended over 'gini' as the differences are very 
slight. min_impurity_split and min_impurity_decrease may also be left at 
their defaults.

Here is a new hyperparameter range with an increase of 100 runs:

randomized_search_clf(params={'max_depth':[None, 6, 7], 
'max_features':['auto', 0.78], 'max_leaf_nodes':[45, None], 
'min_samples_leaf':[1, 0.035, 0.04, 0.045, 0.05], 
'min_samples_split':[2, 9, 10], 
'min_weight_fraction_leaf': [0.0, 0.05, 0.06, 0.07], 
}, runs=100) 

Training score: 0.802

Test score: 0.868

DecisionTreeClassifier(class_weight=None, criterion='gini', 
max_depth=7,max_features=0.78, max_leaf_nodes=45, min_
impurity_decrease=0.0, min_impurity_split=None, min_samples_
leaf=0.045, min_samples_split=9, min_weight_fraction_leaf=0.06, 
presort=False, random_state=2, splitter='best')

This model is more accurate in the training and test score. 

For a proper baseline of comparison, however, it's essential to put the new model 
into cross_val_clf. This may be achieved by copying and pasting the preceding 
model:

model = DecisionTreeClassifier(class_weight=None, 
criterion='gini', max_depth=7, max_features=0.78, max_
leaf_nodes=45, min_impurity_decrease=0.0, min_impurity_
split=None, min_samples_leaf=0.045, min_samples_split=9, 
min_weight_fraction_leaf=0.06, presort=False, random_state=2, 
splitter='best')
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scores = cross_val_score(model, X, y, cv=5)

print('Accuracy:', np.round(scores, 2))

print('Accuracy mean: %0.2f' % (scores.mean()))

Accuracy: [0.82 0.9  0.8  0.8  0.78]

The result is as follows:

Accuracy mean: 0.82

This is six percentage points higher than the default model. When it comes to predicting 
heart disease, more accuracy can save lives.

feature_importances_
The final piece of the puzzle is to communicate the most important features of the 
machine learning model. Decision trees come with a nice attribute, feature_
importances_, that does exactly this.

First, we need to finalize the best model. Our function returned the best model, but it has 
not been saved.

When testing, it's important not to mix and match training and test sets. After a final 
model has been selected, however, fitting the model on the entire dataset can be beneficial. 
Why? Because the goal is to test the model on data that has never been seen and fitting the 
model on the entire dataset may lead to additional gains in accuracy.

Let's define the model using the best hyperparameters and fit it on the entire dataset:

best_clf = DecisionTreeClassifier(class_weight=None, 
criterion='gini', max_depth=9, 
max_features=0.8, max_leaf_nodes=47, 
min_impurity_decrease=0.0, min_impurity_split=None, 
min_samples_leaf=1, min_samples_split=8, 
min_weight_fraction_leaf=0.05, presort=False, 
random_state=2, splitter='best')

best_clf.fit(X, y)

In order to determine the most important features, we can run the feature_
importances_ attribute on best_clf:

best_clf.feature_importances_

array([0.04826754, 0.04081653, 0.48409586, 0.00568635, 
0.        , 0., 0., 0.00859483, 0., 0.02690379, 0., 0.18069065, 
0.20494446])
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It's not easy to interpret these results. The following code zips the columns along with  
the most important features into a dictionary before displaying them in reverse order for  
a clean output that is easy to interpret:

feature_dict = dict(zip(X.columns, best_clf.feature_
importances_))

# Import operator 
import operator

Sort dict by values (as list of tuples) 
sorted(feature_dict.items(), key=operator.itemgetter(1), 
reverse=True)[0:3]

[('cp', 0.4840958610240171),

 ('thal', 0.20494445570568706),

 ('ca', 0.18069065321397942)]

The three most important features are as follows: 

• 'cp': Chest pain type (1 = typical angina, 2 = atypical angina, 3 = non-anginal 
pain, 4 = asymptomatic)

• 'thalach': Maximum heart rate achieved

• 'ca': Number of major vessels (0-3) colored by fluoroscopy

These numbers may be interpreted as their explanation of variance, so 'cp' accounts for 
48% of the variance, which is more than 'thal' and 'ca' combined.

You can tell the doctors and nurses that your model predicts if the patient has a heart 
disease with 82% accuracy using chest pain, maximum heart rate, and fluoroscopy as the 
three most important characteristics.
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Summary
In this chapter, you have taken a big leap toward mastering XGBoost by examining 
decision trees, the primary XGBoost base learners. You built decision tree 
regressors and classifiers by fine-tuning hyperparameters with GridSearchCV and 
RandomizedSearchCV. You visualized decision trees and analyzed their errors and 
accuracy in terms of variance and bias. Furthermore, you learned about an indispensable 
tool, feature_importances_, which is used to communicate the most important 
features of your model that is also an attribute of XGBoost.

In the next chapter, you will learn how to build Random Forests, our first ensemble 
method and a rival of XGBoost. The applications of Random Forests are important 
for comprehending the difference between bagging and boosting, generating machine 
learning models comparable to XGBoost, and learning about the limitations of Random 
Forests that facilitated the development of XGBoost in the first place.
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Bagging with 

Random Forests
In this chapter, you will gain proficiency in building random forests, a leading competitor 
to XGBoost. Like XGBoost, random forests are ensembles of decision trees. The 
difference is that random forests combine trees via bagging, while XGBoost combines 
trees via boosting. Random forests are a viable alternative to XGBoost with advantages 
and limitations that are highlighted in this chapter. Learning about random forests 
is important because they provide valuable insights into the structure of tree-based 
ensembles (XGBoost), and they allow a deeper understanding of boosting in comparison 
and contrast with their own method of bagging.

In this chapter, you will build and evaluate random forest classifiers and random forest 
regressors, gain mastery of random forest hyperparameters, learn about bagging in the 
machine learning landscape, and explore a case study that highlights some random forest 
limitations that spurred the development of gradient boosting (XGBoost).

This chapter covers the following main topics:

• Bagging ensembles

• Exploring random forests 

• Tuning random forest hyperparameters

• Pushing random forest boundaries – case study
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Technical requirements
The code for this chapter is available at https://github.com/PacktPublishing/
Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/
master/Chapter03

Bagging ensembles
In this section, you will learn why ensemble methods are usually superior to individual 
machine learning models. Furthermore, you will learn about the technique of bagging. 
Both are essential features of random forests.

Ensemble methods
In machine learning, an ensemble method is a machine learning model that aggregates the 
predictions of individual models. Since ensemble methods combine the results of multiple 
models, they are less prone to error, and therefore tend to perform better.

Imagine your goal is to determine whether a house will sell within the first month of being 
on the market. You run several machine learning algorithms and find that logistic regression 
gives 80% accuracy, decision trees 75% accuracy, and k-nearest neighbors 77% accuracy.

One option is to use logistic regression, the most accurate model, as your final model. A 
more compelling option is to combine the predictions of each individual model.

For classifiers, the standard option is to take the majority vote. If at least two of three models 
predict that a house will sell within the first month, the prediction is YES. Otherwise, it's NO.

Overall accuracy is usually higher with ensemble methods. For a prediction to be wrong, 
it's not enough for one model to get it wrong; the majority of classifiers must get it wrong.

Ensemble methods are generally classified into two types. The first type combines different 
machine learning models, such as scikit-learn's VotingClassifier, as chosen by the 
user. The second type of ensemble method combines many versions of the same model, as 
is the case with XGBoost and random forests.

Random forests are among the most popular and widespread of all ensemble methods. 
The individual models of random forests are decision trees, the focus of the previous 
chapter, Chapter 2, Decision Trees in Depth. A random forest may consist of hundreds or 
thousands of decision trees whose predictions are combined for the final result.

Although random forests use majority rules for classifiers, and the average of all models 
for regressors, they also use a special method called bagging, short for bootstrap 
aggregation, to select individual trees.

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter03
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Bootstrap aggregation
Bootstrapping means sampling with replacement.

Imagine you have a bag of 20 shaded marbles. You are going to select 10 marbles, one 
at a time. Each time you select a marble, you put it back in the bag. This means that it's 
possible, though extremely unlikely, that you could pick the same marble 10 times.

It's more likely that you will pick some marbles more than once, and some not at all.

Here is a visual of the marbles:

Figure 3.1 – Visual demonstration of bagging (Redrawn from: Siakorn, Wikimedia Commons, 
https://commons.wikimedia.org/wiki/File:Ensemble_Bagging.svg)

As you can see from the preceding diagram, bootstrap samples are achieved by sampling 
with replacement. If the marbles were not replaced, it would be impossible to obtain a 
sample with more black (blue in the original diagram) marbles than the original bag, as in 
the far-right box.

When it comes to random forests, bootstrapping works under the hood. The 
bootstrapping occurs when each decision tree is made. If the decision trees all consisted 
of the same samples, the trees would give similar predictions making the aggregate 
result similar to the individual tree. Instead, with random forests, the trees are built 
using bootstrapping, usually with the same number of samples as in the original dataset. 
Mathematical estimations are that two-thirds of the samples for each tree are unique, and 
one-third include duplicates.

https://commons.wikimedia.org/wiki/File:Ensemble_Bagging.svg
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After the bootstrapping phase of the model-build, each decision tree makes its own 
individual predictions. The result is a forest of trees whose predictions are aggregated into 
one final prediction using majority rules for classifiers and the average for regressors.

In summary, a random forest aggregates the predictions of bootstrapped decision trees. 
This general ensemble method is known in machine learning as bagging.

Exploring random forests
To get a better sense of how random forests work, let's build one using scikit-learn. 

Random forest classifiers
Let's use a random forest classifier to predict whether a user makes more or less than USD 
50,000 using the census dataset we cleaned and scored in Chapter 1, Machine Learning 
Landscape, and revisited in Chapter 2, Decision Trees in Depth. We are going to use 
cross_val_score to ensure that our test results generalize well:

The following steps build and score a random forest classifier using the census dataset:

1. Import pandas, numpy, RandomForestClassifier, and cross_val_
score before silencing warnings:

import pandas as pd

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import cross_val_score

import warnings

warnings.filterwarnings('ignore')

2. Load the dataset census_cleaned.csv and split it into X (a predictor column) 
and y (a target column):

df_census = pd.read_csv('census_cleaned.csv')

X_census = df_census.iloc[:,:-1]

y_census = df_census.iloc[:,-1]

With our imports and data ready to go, it's time to build a model.

3. Next, we initialize the random forest classifier. In practice, ensemble algorithms 
work just like any other machine learning algorithm. A model is initialized, fit to the 
training data, and scored against the test data.
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We initialize a random forest by setting the following hyperparameters in advance:

a) random_state=2 to ensure that your results are consistent with ours.

b) n_jobs=-1 to speed up computations by taking advantage of parallel 
processing. 

c) n_estimators=10, a previous scikit-learn default sufficient to speed up 
computations and avoid ambiguity; new defaults have set n_estimators=100. 
n_esmitators will be explored in further detail in the next section:

rf = RandomForestClassifier(n_estimators=10, random_
state=2, n_jobs=-1)

4. Now we'll use cross_val_score. Cross_val_score requires a model, 
predictor columns, and a target column as inputs. Recall that cross_val_score 
splits, fits, and scores the data:

scores = cross_val_score(rf, X_census, y_census, cv=5)

5. Display the results:

print('Accuracy:', np.round(scores, 3))

print('Accuracy mean: %0.3f' % (scores.mean()))

Accuracy: [0.851 0.844 0.851 0.852 0.851]

Accuracy mean: 0.850

The default random forest classifier provides a better score for the census dataset than 
the decision tree in Chapter 2, Decision Trees in Depth (81%), but not quite as good as 
XGBoost in Chapter 1, Machine Learning Landscape (86%). Why does it perform better 
than individual decision trees?

The improved performance is likely on account of the bagging method described in the 
previous section. With 10 trees in this forest (since n_estimators=10), each prediction 
is based on 10 decision trees instead of 1. The trees are bootstrapped, which increases 
diversity, and aggregated, which reduces variance.

By default, random forest classifiers select from the square root of the total number of 
features when looking for a split. So, if there are 100 features (columns), each decision tree 
will only consider 10 features when choosing a split. Thus two trees with duplicate samples 
may give very different predictions due to the different splits. This is another way that 
random forests reduce variance.

In addition to classification, random forests also work with regression.
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Random forest regressors 
In a random forest regressor, the samples are bootstrapped, as with the random forest 
Classifier, but the max number of features is the total number of features instead of the 
square root. This change is due to experimental results (see https://orbi.uliege.
be/bitstream/2268/9357/1/geurts-mlj-advance.pdf).

Furthermore, the final prediction is made by taking the average of the predictions of all 
the trees, instead of a majority rules vote.

To see a random forest regressor in action, complete the following steps:

1. Upload the bike rental dataset from Chapter 2, Decision Trees in Depth, and pull up 
the first five rows for a refresher:

df_bikes = pd.read_csv('bike_rentals_cleaned.csv')

df_bikes.head()

The preceding code should result in the following output:

Figure 3.2 – Bike rentals dataset – cleaned

2. Split the data into X and y, the predictive and target columns:

X_bikes = df_bikes.iloc[:,:-1]

y_bikes = df_bikes.iloc[:,-1]

3. Import the regressor, then initialize it using the same default hyperparameters, n_
estimators=10, random_state=2, and n_jobs=-1:

from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(n_estimators=10, random_
state=2, n_jobs=-1)

https://orbi.uliege.be/bitstream/2268/9357/1/geurts-mlj-advance.pdf
https://orbi.uliege.be/bitstream/2268/9357/1/geurts-mlj-advance.pdf
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4. Now we need to use cross_val_score. Place the regressor, rf, along with 
predictor and target columns inside cross_val_score. Note that the negative 
mean squared error ('neg_mean_squared_error') should be defined as the 
scoring parameter. Select 10 folds (cv=10):

scores = cross_val_score(rf, X_bikes, y_bikes, 
scoring='neg_mean_squared_error', cv=10)

5. Find and display the root mean squared error (RMSE):

rmse = np.sqrt(-scores)

print('RMSE:', np.round(rmse, 3))

print('RMSE mean: %0.3f' % (rmse.mean()))

The output is as follows:
RMSE: [ 801.486  579.987  551.347  846.698  895.05  
1097.522  893.738  809.284  833.488 2145.046]

RMSE mean: 945.365

The random forest performs respectably, though not as well as other models that we have 
seen. We will further examine the bike rentals dataset in the case study later in this chapter 
to see why.

Next, let's examine random forest hyperparameters in detail.

Random forest hyperparameters
The range of random forest hyperparameters is large, unless one already has a working 
knowledge of decision tree hyperparameters, as covered in Chapter 2, Decision Trees in 
Depth.

In this section, we will go over additional random forest hyperparameters before grouping 
the hyperparameters that you have already seen. Many of these hyperparameters will be 
used by XGBoost. 

oob_score
Our first hyperparameter, and perhaps the most intriguing, is oob_score.

Random forests select decision trees via bagging, meaning that samples are selected with 
replacement. After all of the samples have been chosen, some samples should remain that 
have not been chosen.
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It's possible to hold back these samples as the test set. After the model is fit on one tree, 
the model can immediately be scored against this test set. When the hyperparameter is set 
to oob_score=True, this is exactly what happens.

In other words, oob_score provides a shortcut to get a test score. oob_score may be 
printed out immediately after the model has been fit. 

Let's use oob_score on the census dataset to see how it works in practice. Since we are 
using oob_score to test the model, it's not necessary to split the data into a training set 
and test set.

The random forest may be initialized as usual with oob_score=True:

rf = RandomForestClassifier(oob_score=True, n_estimators=10, 
random_state=2, n_jobs=-1)

Next, rf may be fit on the data:

rf.fit(X_census, y_census)

Since oob_score=True, the score is available after the model has been fit. It may be 
accessed using the model attribute .oob_score_ as follows (note the underscore  
after score):

rf.oob_score_

The score is as follows:

0.8343109855348423

As described previously, oob_score is created by scoring samples on individual trees 
excluded during the training phase. When the number of trees in the forest is small, as is 
the case with 10 estimators, there may not be enough test samples to maximize accuracy. 

More trees mean more samples, and often greater accuracy.

n_estimators
Random forests are powerful when there are many trees in the forest. How many is 
enough? Recently, scikit-learn defaults changed from 10 to 100. While 100 trees may be 
enough to cut down on variance and obtain good scores, for larger datasets, 500 or more 
trees may be required.
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Let's start with n_estimators=50 to see how oob_score changes:

rf = RandomForestClassifier(n_estimators=50, oob_score=True, 
random_state=2, n_jobs=-1)

rf.fit(X_census, y_census)

rf.oob_score_

The score is as follows:

0.8518780135745216

A definite improvement. What about 100 trees?

rf = RandomForestClassifier(n_estimators=100, oob_score=True, 
random_state=2, n_jobs=-1)

rf.fit(X_census, y_census)

rf.oob_score_

The score is as follows:

0.8551334418476091

The gain is smaller. As n_estimators continues to rise, scores will eventually level off. 

warm_start
The warm_start hyperparameter is great for determining the number of trees in the forest 
(n_estimators). When warm_start=True, adding more trees does not require starting 
over from scratch. If you change n_estimators from 100 to 200, it may take twice as long 
to build the forest with 200 trees. When warm_start=True, the random forest with 200 
trees does not start from scratch, but rather starts where the previous model stopped.

warm_start may be used to plot various scores with a range of n_estimators. 

As an example, the following code takes increments of 50 trees, starting with 50 and 
ending at 500, to display a range of scores. This code may take time to run as it is building 
10 random forests by adding 50 new trees each round! The code is broken down in the 
following steps:

1. Import matplotlib and seaborn, then set the seaborn dark grid with sns.set():

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()



72     Bagging with Random Forests

2. Initialize an empty list of scores and initialize a random forest classifier with 50 
estimators, making sure that warm_start=True and oob_score=True:

oob_scores = []

rf = RandomForestClassifier(n_estimators=50, warm_
start=True, oob_score=True, n_jobs=-1, random_state=2)

3. Fit rf to the dataset, then append oob_score to the oob_scores list:

rf.fit(X_census, y_census)

oob_scores.append(rf.oob_score_)

4. Prepare a list of estimators that contains the number of trees starting with 50:

est = 50

estimators=[est]

5. Write a for loop that adds 50 trees each round. For each round, add 50 to est, 
append est to the estimators list, change n_estimators with rf.set_
params(n_estimators=est), fit the random forest on the data, then append 
the new oob_score_:

for i in range(9):

    est += 50

    estimators.append(est)

    rf.set_params(n_estimators=est)

    rf.fit(X_census, y_census)

    oob_scores.append(rf.oob_score_)

6. For a nice display, show a larger graph, then plot the estimators and oob_scores. 
Add the appropriate labels, then save and show the graph:

plt.figure(figsize=(15,7))

plt.plot(estimators, oob_scores)

plt.xlabel('Number of Trees')

plt.ylabel('oob_score_')

plt.title('Random Forest Warm Start', fontsize=15)

plt.savefig('Random_Forest_Warm_Start', dpi=325)

plt.show()
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This generates the following graph:

Figure 3.3 – Random forest Warm Start – oob_score per number of trees

As you can see, the number of trees tends to peak at around 300. It's more costly and time-
consuming to use more trees than 300, and the gains are minimal at best.

bootstrap
Although random forests are traditionally bootstrapped, the bootstrap hyperparameter 
may be set to False. If bootstrap=False, oob_score cannot be included since 
oob_score is only possible when samples have been left out.

We will not pursue this option, although it makes sense if underfitting occurs.

Verbose
The verbose hyperparameter may be changed to a higher number to display more 
information when building a model. You may try it on your own for experimentation. 
When building large models, verbose=1 may provide helpful information along the way.

Decision Tree hyperparameters
The remaining hyperparameters all come from decision trees. It turns out that decision 
tree hyperparameters are not as significant within random forests since random forests cut 
down on variance by design.
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Here are decision tree hyperparameters grouped according to category for you to review.

Depth
The hyperparameters that fall under this category are:

• max_depth: Always good to tune. Determines the number of times splits occur. 
Known as the length of the tree. A great way to reduce variance.

Splits
The hyperparameters that fall under this category are:

• max_features: Limits the number of features to choose from when making splits.

• min_samples_split: Increases the number of samples required for new splits.

• min_impurity_decrease: Limits splits to decrease impurity greater than the 
set threshold.

Leaves
The hyperparameters that fall under this category are:

• min_samples_leaf: Increases the minimum number of samples required for a 
node to be a leaf. 

• min_weight_fraction_leaf: The fraction of the total weights required to be  
a leaf. 

For more information on the preceding hyperparameters, check out the official random 
forest regressor documentation: https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.html

Pushing random forest boundaries – case 
study
Imagine you work for a bike rental company and your goal is to predict the number of 
bike rentals per day depending upon the weather, the time of day, the time of year, and the 
growth of the company.

Earlier in this chapter, you implemented a random forest regressor with cross-validation 
to obtain an RMSE of 945 bikes. Your goal is to modify the random forest to obtain the 
lowest error score possible.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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Preparing the dataset
Earlier in this chapter, you downloaded the dataset df_bikes and split it into X_bikes 
and y_bikes. Now that you are doing some serious testing, you decide to split X_bikes 
and y_bikes into training sets and test sets as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_bikes, 
y_bikes, random_state=2)

n_estimators
Start by choosing a reasonable value for n_estimators. Recall that n_estimators 
can be increased to improve accuracy at the cost of computational resources and time.

The following is a graph of RMSE using the warm_start method for a variety of  
n_estimators using the same general code provided previously under the  
warm_start heading:

Figure 3.4 – Random forest Bike Rentals – RMSE per number of trees

This graph is very interesting. The random forest provides the best score with 50 
estimators. After 100 estimators, the error gradually starts to go up, a concept that will be 
revisited later.

For now, it's sensible to use n_estimators=50 as the starting point.
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cross_val_score
With errors ranging from 620 to 690 bike rentals according to the preceding graph, it's 
time to see how the dataset performs with cross-validation using cross_val_score. 
Recall that in cross-validation the purpose is to divide the samples into k different folds, 
and to use all samples as test sets over the different folds. Since all samples are used to test 
the model, oob_score will  
not work.

The following code contains the same steps that you used earlier in the chapter:

1. Initialize the model.

2. Score the model, using cross_val_score with the model, predictor columns, 
target column, scoring, and the number of folds as parameters.

3. Compute the RMSE.

4. Display the cross-validation scores and the mean.

Here is the code:

rf = RandomForestRegressor(n_estimators=50, warm_start=True, 
n_jobs=-1, random_state=2)

scores = cross_val_score(rf, X_bikes, y_bikes, scoring='neg_
mean_squared_error', cv=10)

rmse = np.sqrt(-scores)

print('RMSE:', np.round(rmse, 3))

print('RMSE mean: %0.3f' % (rmse.mean()))

The output is as follows:

RMSE: [ 836.482  541.898  533.086  812.782  894.877  881.117  
794.103  828.968  772.517 2128.148]

RMSE mean: 902.398

This score is better than earlier in the chapter. Notice that the error in the last fold is much 
higher according to the last entry in the RMSE array. This could be due to errors within 
the data or outliers.
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Fine-tuning hyperparameters
It's time to create a grid of hyperparameters to fine-tune our model using 
RandomizedSearchCV. Here is a function that uses RandomizedSearchCV to 
display the RMSEs along with the mean score and best hyperparameters:

from sklearn.model_selection import RandomizedSearchCV

def randomized_search_reg(params, runs=16, 
reg=RandomForestRegressor(random_state=2, n_jobs=-1)):

    rand_reg = RandomizedSearchCV(reg, params, n_iter=runs, 
scoring='neg_mean_squared_error', cv=10, n_jobs=-1, random_
state=2)

    rand_reg.fit(X_train, y_train)

    best_model = rand_reg.best_estimator_

    best_params = rand_reg.best_params_

    print("Best params:", best_params)

    best_score = np.sqrt(-rand_reg.best_score_)

    print("Training score: {:.3f}".format(best_score))

    y_pred = best_model.predict(X_test)

    from sklearn.metrics import mean_squared_error as MSE

    rmse_test = MSE(y_test, y_pred)**0.5

    print('Test set score: {:.3f}'.format(rmse_test))

Here is a starter's grid of hyperparameters placed inside the new randomized_
search_reg function to obtain the first results:

randomized_search_reg(params={'min_weight_fraction_leaf':[0.0, 
0.0025, 0.005, 0.0075, 0.01, 0.05],'min_samples_split':[2, 
0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1],'min_samples_
leaf':[1,2,4,6,8,10,20,30],'min_impurity_decrease':[0.0, 0.01, 
0.05, 0.10, 0.15, 0.2],'max_leaf_nodes':[10, 15, 20, 25, 30, 
35, 40, 45, 50, None], 'max_features':['auto', 0.8, 0.7, 0.6, 
0.5, 0.4],'max_depth':[None,2,4,6,8,10,20]})

The output is as follows:

Best params: {'min_weight_fraction_leaf': 0.0, 'min_samples_
split': 0.03, 'min_samples_leaf': 6, 'min_impurity_decrease': 
0.05, 'max_leaf_nodes': 25, 'max_features': 0.7, 'max_depth': 
None}

Training score: 759.076

Test set score: 701.802
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This is a major improvement. Let's see if we can do better by narrowing the range:

randomized_search_reg(params={'min_samples_leaf': 
[1,2,4,6,8,10,20,30], 'min_impurity_decrease':[0.0, 0.01, 0.05, 
0.10, 0.15, 0.2],'max_features':['auto', 0.8, 0.7, 0.6, 0.5, 
0.4], 'max_depth':[None,2,4,6,8,10,20]})

The output is as follows:

Best params: {'min_samples_leaf': 1, 'min_impurity_decrease': 
0.1, 'max_features': 0.6, 'max_depth': 10}

Training score: 679.052

Test set score: 626.541

The score has improved yet again. 

Now let's increase the number of runs, and give more options for max_depth:

randomized_search_reg(params={'min_samples_
leaf':[1,2,4,6,8,10,20,30],'min_impurity_decrease':[0.0, 0.01, 
0.05, 0.10, 0.15, 0.2],'max_features':['auto', 0.8, 0.7, 0.6, 
0.5, 0.4],'max_depth':[None,4,6,8,10,12,15,20]}, runs=20)

The output is as follows:

Best params: {'min_samples_leaf': 1, 'min_impurity_decrease': 
0.1, 'max_features': 0.6, 'max_depth': 12}

Training score: 675.128

Test set score: 619.014

The score keeps getting better. At this point, it may be worth narrowing the ranges further, 
based upon the previous results:

randomized_search_reg(params={'min_samples_leaf':[1,2,3,4,5,6], 
'min_impurity_decrease':[0.0, 0.01, 0.05, 0.08, 0.10, 0.12, 
0.15], 'max_features':['auto', 0.8, 0.7, 0.6, 0.5, 0.4],'max_de
pth':[None,8,10,12,14,16,18,20]})

The output is as follows:

Best params: {'min_samples_leaf': 1, 'min_impurity_decrease': 
0.05, 'max_features': 0.7, 'max_depth': 18}

Training score: 679.595

Test set score: 630.954
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The test score has gone back up. Increasing n_estimators at this point could be a good 
idea. The more trees in the forest, the more potential there may be to realize small gains.

We can also increase the number of runs to 20 to look for better hyperparameter 
combinations. Keep in mind that results are based on a randomized search, not a full  
grid search:

randomized_search_reg(params={'min_samples_
leaf':[1,2,4,6,8,10,20,30], 'min_impurity_decrease':[0.0, 
0.01, 0.05, 0.10, 0.15, 0.2], 'max_features':['auto', 0.8, 
0.7, 0.6, 0.5, 0.4],'max_depth':[None,4,6,8,10,12,15,20],'n_
estimators':[100]}, runs=20)

The output is as follows: 

Best params: {'n_estimators': 100, 'min_samples_leaf': 1, 'min_
impurity_decrease': 0.1, 'max_features': 0.6, 'max_depth': 12}

Training score: 675.128

Test set score: 619.014

This matches the best score achieved thus far. We could keep tinkering. It's possible with 
enough experimentation that the test score may drop to under 600 bikes. But we also seem 
to be peaking around the low 600 mark.

Finally, let's place our best model in cross_val_score to see how the result compares 
with the original:

rf = RandomForestRegressor(n_estimators=100,  min_impurity_
decrease=0.1, max_features=0.6, max_depth=12, warm_start=True, 
n_jobs=-1, random_state=2)

scores = cross_val_score(rf, X_bikes, y_bikes, scoring='neg_
mean_squared_error', cv=10)

rmse = np.sqrt(-scores)

print('RMSE:', np.round(rmse, 3))

print('RMSE mean: %0.3f' % (rmse.mean()))

The output is as follows:

RMSE: [ 818.354  514.173  547.392  814.059  769.54   730.025  
831.376  794.634  756.83  1595.237]

RMSE mean: 817.162
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The RMSE goes back up to 817. The score is much better than 903, but it's considerably 
worse than 619. What's going on here?

There may be an issue with the last split in cross_val_score since its score is twice 
as bad as the others. Let's see if shuffling the data does the trick. Scikit-learn has a shuffle 
module that may be imported from sklearn.utils as follows:

from sklearn.utils import shuffle

Now we can shuffle the data as follows:

df_shuffle_bikes = shuffle(df_bikes, random_state=2)

Now split the data into a new X and y and run RandomForestRegressor with 
cross_val_score again:

X_shuffle_bikes = df_shuffle_bikes.iloc[:,:-1]

y_shuffle_bikes = df_shuffle_bikes.iloc[:,-1]

rf = RandomForestRegressor(n_estimators=100,  min_impurity_
decrease=0.1, max_features=0.6, max_depth=12, n_jobs=-1, 
random_state=2)

scores = cross_val_score(rf, X_shuffle_bikes, y_shuffle_bikes, 
scoring='neg_mean_squared_error', cv=10)

rmse = np.sqrt(-scores)

print('RMSE:', np.round(rmse, 3))

print('RMSE mean: %0.3f' % (rmse.mean()))

The output is as follows:

RMSE: [630.093 686.673 468.159 526.676 593.033 724.575 774.402 
672.63  760.253  616.797]

RMSE mean: 645.329

In the shuffled data, there is no issue with the last split, and the score is much higher,  
as expected.
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Random forest drawbacks
At the end of the day, the random forest is limited by its individual trees. If all trees 
make the same mistake, the random forest makes this mistake. There are scenarios, as is 
revealed in this case study before the data was shuffled, where random forests are unable 
to significantly improve upon errors due to challenges within the data that individual trees 
are unable to address.

An ensemble method capable of improving upon initial shortcomings, an ensemble 
method that will learn from the mistakes of trees in future rounds, could be advantageous. 
Boosting was designed to learn from the mistakes of trees in early rounds. Boosting, in 
particular gradient boosting – the focus of the next chapter – addresses this topic. 

In closure, the following graph displays the results of the tuned random forest regressor 
and the default XGBoost regressor when increasing the number of trees in the bike rentals 
dataset if the data is not shuffled:

Figure 3.5 – Comparing the XGBoost default model with a tuned random forest

As you can see, XGBoost does a much better job of learning as the number of trees 
increases. And the XGBoost model has not even been tuned!
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Summary
In this chapter, you learned about the importance of ensemble methods. In particular, you 
learned about bagging, the combination of bootstrapping, sampling with replacement, 
and aggregation, combining many models into one. You built random forest classifiers 
and regressors. You adjusted n_estimators with the warm_start hyperparameter 
and used oob_score_ to find errors. Then you modified random forest hyperparameters 
to fine-tune models. Finally, you examined a case study where shuffling the data gave 
excellent results but adding more trees to the random forest did not result in any gains 
with the unshuffled data, as contrasted with XGBoost.

In the next chapter, you will learn the fundamentals of boosting, an ensemble method 
that learns from its mistakes to improve upon accuracy as more trees are added. You will 
implement gradient boosting to make predictions, thereby setting the stage for Extreme 
gradient boosting, better known as XGBoost.



4
From Gradient 

Boosting to XGBoost
XGBoost is a unique form of gradient boosting with several distinct advantages, which 
will be explained in Chapter 5, XGBoost Unveiled. In order to understand the advantages 
of XGBoost over traditional gradient boosting, you must first learn how traditional 
gradient boosting works. The general structure and hyperparameters of traditional 
gradient boosting are incorporated by XGBoost. In this chapter, you will discover the 
power behind gradient boosting, which is at the core of XGBoost.

In this chapter, you will build gradient boosting models from scratch before comparing 
gradient boosting models and errors with previous results. In particular, you will focus on 
the learning rate hyperparameter to build powerful gradient boosting models that include 
XGBoost. Finally, you will preview a case study on exoplanets highlighting the need for 
faster algorithms, a critical need in the world of big data that is satisfied by XGBoost.

In this chapter, we will be covering the following main topics:

• From bagging to boosting

• How gradient boosting works

• Modifying gradient boosting hyperparameters

• Approaching big data – gradient boosting versus XGBoost
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Technical requirements
The code for this chapter is available at https://github.com/PacktPublishing/
Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/
master/Chapter04.

From bagging to boosting
In Chapter 3, Bagging with Random Forests, you learned why ensemble machine learning 
algorithms such as random forests make better predictions by combining many machine 
learning models into one. Random forests are classified as bagging algorithms because 
they take the aggregates of bootstrapped samples (decision trees).

Boosting, by contrast, learns from the mistakes of individual trees. The general idea is to 
adjust new trees based on the errors of previous trees.

In boosting, correcting errors for each new tree is a distinct approach from bagging. In 
a bagging model, new trees pay no attention to previous trees. Also, new trees are built 
from scratch using bootstrapping, and the final model aggregates all individual trees. In 
boosting, however, each new tree is built from the previous tree. The trees do not operate 
in isolation; instead, they are built on top of one another.

Introducing AdaBoost
AdaBoost is one of the earliest and most popular boosting models. In AdaBoost, each 
new tree adjusts its weights based on the errors of the previous trees. More attention is 
paid to predictions that went wrong by adjusting weights that affect those samples at a 
higher percentage. By learning from its mistakes, AdaBoost can transform weak learners 
into strong learners. A weak learner is a machine learning algorithm that barely performs 
better than chance. By contrast, a stronger learner has learned a considerable amount 
from data and performs quite well.

The general idea behind boosting algorithms is to transform weak learners into strong 
learners. A weak learner is hardly better than random guessing. But there is a purpose 
behind the weak start. Building on this general idea, boosting works by focusing on 
iterative error correction, not by establishing a strong baseline model. If the base model is 
too strong, the learning process is necessarily limited, thereby undermining the general 
strategy behind boosting models.

Weak learners are transformed into strong learners through hundreds of iterations.  
In this sense, a small edge goes a long way. In fact, boosting has been one of the best 
general machine learning strategies in terms of producing optimal results for the past 
couple of decades.

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter04


From bagging to boosting     85

A detailed study of AdaBoost is beyond the scope of this book. Like many  
scikit-learn models, it's straightforward to implement AdaBoost in practice. The 
AdaBoostRegressor and AdaBoostClassifier algorithms may be downloaded 
from the sklearn.ensemble library and fit to any training set. The most important 
AdaBoost hyperparameter is n_estimators, the number of trees (iterations) required 
to create a strong learner.

Note
For further information on AdaBoost, check out the official documentation at 
https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.AdaBoostClassifier.html for classifiers 
and https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.AdaBoostRegressor.html 
for regressors.

We will now move on to gradient boosting, a strong alternative to AdaBoost with a slight 
edge in performance.

Distinguishing gradient boosting
Gradient boosting uses a different approach than AdaBoost. While gradient boosting 
also adjusts based on incorrect predictions, it takes this idea one step further: gradient 
boosting fits each new tree entirely based on the errors of the previous tree's predictions. 
That is, for each new tree, gradient boosting looks at the mistakes and then builds a new 
tree completely around these mistakes. The new tree doesn't care about the predictions 
that are already correct.

Building a machine learning algorithm that solely focuses on the errors requires a 
comprehensive method that sums errors to make accurate final predictions. This method 
leverages residuals, the difference between the model's predictions and actual values. Here 
is the general idea:

Gradient boosting computes the residuals of each tree's predictions and sums all the residuals 
to score the model.

It's essential to understand computing and summing residuals as this idea is at the core 
of XGBoost, an advanced version of gradient boosting. When you build your own version 
of gradient boosting, the process of computing and summing residuals will become clear. 
In the next section, you will build your own version of a gradient boosting model. First, 
let's learn in detail how gradient boosting works.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
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How gradient boosting works
In this section, we will look under the hood of gradient boosting and build a gradient 
boosting model from scratch by training new trees on the errors of the previous trees. 
The key mathematical idea here is the residual. Next, we will obtain the same results using 
scikit-learn's gradient boosting algorithm.

Residuals
The residuals are the difference between the errors and the predictions of a given model. 
In statistics, residuals are commonly analyzed to determine how good a given linear 
regression model fits the data.

Consider the following examples:

1. Bike rentals

a) Prediction: 759

b) Result: 799

c) Residual: 799 - 759 = 40

2. Income

a) Prediction: 100,000

b) Result: 88,000

c) Residual: 88,000 –100,000 = -12,000
As you can see, residuals tell you how far the model's predictions are from reality, and they 
may be positive or negative.

Here is a visual example displaying the residuals of a linear regression line:

Figure 4.1 – Residuals of a linear regression line
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The goal of linear regression is to minimize the square of the residuals. As the graph 
reveals, a visual of the residuals indicates how well the line fits the data. In statistics, linear 
regression analysis is often performed by graphing the residuals to gain deeper insight into 
the data.

In order to build a gradient boosting algorithm from scratch, we will compute the 
residuals of each tree and fit a new model to the residuals. Let's do this now.

Learning how to build gradient boosting models from 
scratch
Building a gradient boosting model from scratch will provide you with a deeper 
understanding of how gradient boosting works in code. Before building a model, we need 
to access data and prepare it for machine learning.

Processing the bike rentals dataset
We continue with the bike rentals dataset to compare new models with the previous 
models:

1. We will start by importing pandas and numpy. We will also add a line to silence 
any warnings:

import pandas as pd

import numpy as np

import warnings

warnings.filterwarnings('ignore')

2. Now, load the bike_rentals_cleaned dataset and view the first five rows:

df_bikes = pd.read_csv('bike_rentals_cleaned.csv')

df_bikes.head()

Your output should look like this:

Figure 4.2 – First five rows of Bike Rental Dataset
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3. Now, split the data into X and y. Then, split X and y into training and test sets:

X_bikes = df_bikes.iloc[:,:-1]

y_bikes = df_bikes.iloc[:,-1]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_
bikes, y_bikes, random_state=2)

It's time to build a gradient boosting model from scratch!

Building a gradient boosting model from scratch
Here are the steps for building a gradient boosting machine learning model from scratch:

1. Fit the data to the decision tree: You may use a decision tree stump, which has  
a max_depth value of 1, or a decision tree with a max_depth value of 2 or 3.  
The initial decision tree, called a base learner, should not be fine-tuned for 
accuracy. We want a model that focuses on learning from errors, not a model that 
relies heavily on the base learner.

Initialize a decision tree with max_depth=2 and fit it on the training set as 
tree_1, since it's the first tree in our ensemble:

from sklearn.tree import DecisionTreeRegressor

tree_1 = DecisionTreeRegressor(max_depth=2, random_
state=2)

tree_1.fit(X_train, y_train)

2. Make predictions with the training set: Instead of making predictions with the test 
set, predictions in gradient boosting are initially made with the training set. Why? 
To compute the residuals, we need to compare the predictions while still in the 
training phase. The test phase of the model build comes at the end, after all the trees 
have been constructed. The predictions of the training set for the first round are 
obtained by adding the predict method to tree_1 with X_train as the input:

y_train_pred = tree_1.predict(X_train)

3. Compute the residuals: The residuals are the differences between the predictions 
and the target column. The predictions of X_train, defined here as y_train_
pred, are subtracted from y_train, the target column, to compute the residuals:

y2_train = y_train - y_train_pred
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Note 
The residuals are defined as y2_train because they are the new target 
column for the next tree.

4. Fit the new tree on the residuals: Fitting a new tree on the residuals is different than 
fitting a model on the training set. The primary difference is in the predictions. 
In the bike rentals dataset, when fitting a new tree on the residuals, we should 
progressively get smaller numbers.

Initialize a new tree and fit it on X_train and the residuals, y2_train:
tree_2 = DecisionTreeRegressor(max_depth=2, random_
state=2)

tree_2.fit(X_train, y2_train)

5. Repeat steps 2-4: As the process continues, the residuals should gradually approach 
0 from the positive and negative direction. The iterations continue for the number 
of estimators, n_estimators.

Let's repeat the process for a third tree as follows:
y2_train_pred = tree_2.predict(X_train)

y3_train = y2_train - y2_train_pred

tree_3 = DecisionTreeRegressor(max_depth=2, random_
state=2)

tree_3.fit(X_train, y3_train)

This process may continue for dozens, hundreds, or thousands of trees. Under 
normal circumstances, you would certainly keep going. It will take more than  
a few trees to transform a weak learner into a strong learner. Since our goal is to 
understand how gradient boosting works behind the scenes, however, we will move 
on now that the general idea has been covered.

6. Sum the results: Summing the results requires making predictions for each tree with 
the test set as follows:

y1_pred = tree_1.predict(X_test)

y2_pred = tree_2.predict(X_test)

y3_pred = tree_3.predict(X_test)

Since the predictions are positive and negative differences, summing the predictions 
should result in predictions that are closer to the target column as follows:

y_pred = y1_pred + y2_pred + y3_pred
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7. Lastly, let's compute the mean squared error (MSE) to obtain the results as follows:

from sklearn.metrics import mean_squared_error as MSE

MSE(y_test, y_pred)**0.5

Here is the expected output:
911.0479538776444

Not bad for a weak learner that isn't yet strong! Now let's try to obtain the same result 
using scikit-learn.

Building a gradient boosting model in scikit-learn
Let's see whether we can obtain the same result as in the previous section using 
scikit-learn's GradientBoostingRegressor. This may be done through a few 
hyperparameter adjustments. The advantage of using GradientBoostingRegressor 
is that it's much faster to build and easier to implement:

1. First, import the regressor from the sklearn.ensemble library:

from sklearn.ensemble import GradientBoostingRegressor

2. When initializing GradientBoostingRegressor, there are several important 
hyperparameters. To obtain the same results, it's essential to match max_depth=2 
and random_state=2. Furthermore, since there are only three trees, we must 
have n_estimators=3. Finally, we must set the learning_rate=1.0 
hyperparameter. We will have much to say about learning_rate shortly:

gbr = GradientBoostingRegressor(max_depth=2, n_
estimators=3, random_state=2, learning_rate=1.0)

3. Now that the model has been initialized, it can be fit on the training data and scored 
against the test data:

gbr.fit(X_train, y_train)

y_pred = gbr.predict(X_test)

MSE(y_test, y_pred)**0.5

The result is as follows:
911.0479538776439

The result is the same to 11 decimal places!
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Recall that the point of gradient boosting is to build a model with enough trees  
to transform a weak learner into a strong learner. This is easily done by changing 
n_estimators, the number of iterations, to a much larger number.

4. Let's build and score a gradient boosting regressor with 30 estimators:

gbr = GradientBoostingRegressor(max_depth=2, n_
estimators=30, random_state=2, learning_rate=1.0)

gbr.fit(X_train, y_train)

y_pred = gbr.predict(X_test)

MSE(y_test, y_pred)**0.5

The result is as follows:
857.1072323426944

The score is an improvement. Now let's look at 300 estimators:
gbr = GradientBoostingRegressor(max_depth=2, n_
estimators=300, random_state=2, learning_rate=1.0)

gbr.fit(X_train, y_train)

y_pred = gbr.predict(X_test)

MSE(y_test, y_pred)**0.5

The result is this:
936.3617413678853

This is a surprise! The score has gotten worse! Have we been misled? Is gradient boosting 
not all that it's cracked up to be?

Whenever you get a surprise result, it's worth double-checking the code. Now, we 
changed learning_rate without saying much about it. So, what happens if we remove 
learning_rate=1.0 and use the scikit-learn defaults?

Let's find out:

gbr = GradientBoostingRegressor(max_depth=2, n_estimators=300, 
random_state=2)

gbr.fit(X_train, y_train)

y_pred = gbr.predict(X_test)

MSE(y_test, y_pred)**0.5

The result is this:

653.7456840231495
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Incredible! By using the scikit-learn default for the learning_rate hyperparameter, 
the score has changed from 936 to 654.

In the next section, we will learn more about the different gradient boosting 
hyperparameters with a focus on the learning_rate hyperparameter. 

Modifying gradient boosting hyperparameters
In this section, we will focus on the learning_rate, the most important gradient 
boosting hyperparameter, with the possible exception of n_estimators, the number 
of iterations or trees in the model. We will also survey some tree hyperparameters, and 
subsample, which results in stochastic gradient boosting. In addition, we will use 
RandomizedSearchCV and compare results with XGBoost.

learning_rate
In the last section, changing the learning_rate value of 
GradientBoostingRegressor from 1.0 to scikit-learn's default, which is 0.1, 
resulted in enormous gains.

learning_rate, also known as the shrinkage, shrinks the contribution of individual 
trees so that no tree has too much influence when building the model. If an entire 
ensemble is built from the errors of one base learner, without careful adjustment of 
hyperparameters, early trees in the model can have too much influence on subsequent 
development. learning_rate limits the influence of individual trees. Generally 
speaking, as n_estimators, the number of trees, goes up, learning_rate should  
go down.

Determining an optimal learning_rate value requires varying n_estimators. 
First, let's hold n_estimators constant and see what learning_rate does on its 
own. learning_rate ranges from 0 to 1. A learning_rate value of 1 means that 
no adjustments are made. The default value of 0.1 means that the tree's influence is 
weighted at 10%.

Here is a reasonable range to start with:

learning_rate_values = [0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 
0.3, 0.5, 1.0]

Next, we will loop through the values by building and scoring a new 
GradientBoostingRegressor to see how the scores compare:

for value in learning_rate_values:

    gbr = GradientBoostingRegressor(max_depth=2,   n_
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estimators=300, random_state=2, learning_rate=value)

    gbr.fit(X_train, y_train)

    y_pred = gbr.predict(X_test)

    rmse = MSE(y_test, y_pred)**0.5

    print('Learning Rate:', value, ', Score:', rmse)

The learning rate values and scores are as follows:

Learning Rate: 0.001 , Score: 1633.0261400367258

Learning Rate: 0.01 , Score: 831.5430182728547

Learning Rate: 0.05 , Score: 685.0192988749717

Learning Rate: 0.1 , Score: 653.7456840231495

Learning Rate: 0.15 , Score: 687.666134269379

Learning Rate: 0.2 , Score: 664.312804425697

Learning Rate: 0.3 , Score: 689.4190385930236

Learning Rate: 0.5 , Score: 693.8856905068778

Learning Rate: 1.0 , Score: 936.3617413678853

As you can see from the output, the default learning_rate value of 0.1 gives the best 
score for 300 trees.

Now let's vary n_estimators. Using the preceding code, we can generate  
learning_rate plots with n_estimators of 30, 300, and 3,000 trees, as shown  
in the following figure:

Figure 4.3 – learning_rate plot for 30 trees
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As you can see, with 30 trees, the learning_rate value peaks at around 0.3.

Now, let's take a look at the learning_rate plot for 3,000 trees:

Fig 4.4 -- learning_rate plot for 3,000 trees

With 3,000 trees, the learning_rate value peaks at the second value, which is given  
as 0.05.

These graphs highlight the importance of tuning learning_rate and n_estimators 
together.

Base learner
The initial decision tree in the gradient boosting regressor is called the base learner 
because it's at the base of the ensemble. It's the first learner in the process. The term 
learner here is indicative of a weak learner transforming into a strong learner.

Although base learners need not be fine-tuned for accuracy, as covered in Chapter 2, 
Decision Trees in Depth, it's certainly possible to tune base learners for gains in accuracy.

For instance, we can select a max_depth value of 1, 2, 3, or 4 and compare results  
as follows:

depths = [None, 1, 2, 3, 4]

for depth in depths:

    gbr = GradientBoostingRegressor(max_depth=depth, n_
estimators=300, random_state=2)
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    gbr.fit(X_train, y_train)

    y_pred = gbr.predict(X_test)

    rmse = MSE(y_test, y_pred)**0.5

    print('Max Depth:', depth, ', Score:', rmse) 

The result is as follows:

Max Depth: None , Score: 867.9366621617327

Max Depth: 1 , Score: 707.8261886858736

Max Depth: 2 , Score: 653.7456840231495

Max Depth: 3 , Score: 646.4045923317708

Max Depth: 4 , Score: 663.048387855927

A max_depth value of 3 gives the best results.

Other base learner hyperparameters, as covered in Chapter 2, Decision Trees in Depth, may 
be tuned in a similar manner.

subsample
subsample is a subset of samples. Since samples are the rows, a subset of rows means 
that all rows may not be included when building each tree. By changing subsample 
from 1.0 to a smaller decimal, trees only select that percentage of samples during the 
build phase. For example, subsample=0.8 would select 80% of samples for each tree.

Continuing with max_depth=3, we try a range of subsample percentages to improve 
results:

samples = [1, 0.9, 0.8, 0.7, 0.6, 0.5]

for sample in samples:

    gbr = GradientBoostingRegressor(max_depth=3, n_
estimators=300, subsample=sample, random_state=2)

    gbr.fit(X_train, y_train)

    y_pred = gbr.predict(X_test)

    rmse = MSE(y_test, y_pred)**0.5

    print('Subsample:', sample, ', Score:', rmse)
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The result is as follows:

Subsample: 1 , Score: 646.4045923317708

Subsample: 0.9 , Score: 620.1819001443569

Subsample: 0.8 , Score: 617.2355650565677

Subsample: 0.7 , Score: 612.9879156983139

Subsample: 0.6 , Score: 622.6385116402317

Subsample: 0.5 , Score: 626.9974073227554

A subsample value of 0.7 with 300 trees and max_depth of 3 produces the best  
score yet.

When subsample is not equal to 1.0, the model is classified as stochastic gradient 
descent, where stochastic indicates that some randomness is inherent in the model.

RandomizedSearchCV
We have a good working model, but we have not yet performed a grid search, as covered 
in Chapter 2, Decision Trees in Depth. Our preliminary analysis indicates that a grid  
search centered around max_depth=3, subsample=0.7, n_estimators=300,  
and learning_rate = 0.1 is a good place to start. We have already shown that as 
n_estimators goes up, learning_rate should go down:

1. Here is a possible starting point:

params={'subsample':[0.65, 0.7, 0.75],

        'n_estimators':[300, 500, 1000],

         'learning_rate':[0.05, 0.075, 0.1]}

Since n_estimators is going up from the starting value of 300, learning_
rate is going down from the starting value of 0.1. Let's keep max_depth=3 to 
limit the variance.

With 27 possible combinations of hyperparameters, we use 
RandomizedSearchCV to try 10 of these combinations in the hopes of finding  
a good model.

Note 
While 27 combinations are feasible with GridSearchCV, at some point you 
will end up with too many possibilities and RandomizedSearchCV will 
become essential. We use RandomizedSearchCV here for practice and to 
speed up computations.
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2. Let's import RandomizedSearchCV and initialize a gradient boosting model:

from sklearn.model_selection import RandomizedSearchCV

gbr = GradientBoostingRegressor(max_depth=3, random_
state=2)

3. Next, initialize RandomizedSearchCV with gbr and params as inputs in 
addition to the number of iterations, the scoring, and the number of folds. Recall 
that n_jobs=-1 may speed up computations and random_state=2 ensures the 
consistency of results:

rand_reg = RandomizedSearchCV(gbr, params, n_iter=10, 
scoring='neg_mean_squared_error', cv=5, n_jobs=-1, 
random_state=2)

4. Now fit the model on the training set and obtain the best parameters and scores:

rand_reg.fit(X_train, y_train)

best_model = rand_reg.best_estimator_

best_params = rand_reg.best_params_

print("Best params:", best_params)

best_score = np.sqrt(-rand_reg.best_score_)

print("Training score: {:.3f}".format(best_score))

y_pred = best_model.predict(X_test)

rmse_test = MSE(y_test, y_pred)**0.5

print('Test set score: {:.3f}'.format(rmse_test))

The result is as follows:
Best params: {'learning_rate': 0.05, 'n_estimators': 300, 
'subsample': 0.65}

Training score: 636.200

Test set score: 625.985

From here, it's worth experimenting by changing parameters individually or 
in pairs. Even though the best model currently has n_estimators=300, it's 
certainly possible that raising this hyperparameter will obtain better results 
with careful adjustment of the learning_rate value. subsample may be 
experimented with as well.
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5. After a few rounds of experimentation, we obtained the following model:

gbr = GradientBoostingRegressor(max_depth=3, n_
estimators=1600, subsample=0.75, learning_rate=0.02, 
random_state=2)

gbr.fit(X_train, y_train)

y_pred = gbr.predict(X_test)

MSE(y_test, y_pred)**0.5 

The result is the following:
596.9544588974487

With a larger value for n_estimators at 1600, a smaller learning_rate value at 
0.02, a comparable subsample value of 0.75, and the same max_depth value of 3, 
we obtained the best Root Mean Square Error (RMSE) yet at 597.

It may be possible to do better. We encourage you to try!

Now, let's see how XGBoost differs from gradient boosting using the same 
hyperparameters covered thus far.

XGBoost
XGBoost is an advanced version of gradient boosting with the same general structure, 
meaning that it transforms weak learners into strong learners by summing the residuals  
of trees.

The only difference in hyperparameters from the last section is that XGBoost refers to 
learning_rate as eta.

Let's build an XGBoost regressor with the same hyperparameters to compare the results.

Import XGBRegressor from xgboost, and then initialize and score the model as 
follows:

from xgboost import XGBRegressor

xg_reg = XGBRegressor(max_depth=3, n_estimators=1600, eta=0.02, 
subsample=0.75, random_state=2)

xg_reg.fit(X_train, y_train)

y_pred = xg_reg.predict(X_test)

MSE(y_test, y_pred)**0.5
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The result is this:

584.339544309016

The score is better. The reason as to why the score is better will be revealed in the next 
chapter, Chapter 5, XGBoost Unveiled.

Accuracy and speed are the two most important concepts when building machine 
learning models, and we have shown multiple times that XGBoost is very accurate. 
XGBoost is preferred over gradient boosting in general because it consistently delivers 
better results, and because it's faster, as demonstrated by the following case study.

Approaching big data – gradient boosting 
versus XGBoost
In the real world, datasets can be enormous, with trillions of data points. Limiting work to 
one computer can be disadvantageous due to the limited resources of one machine. When 
working with big data, the cloud is often used to take advantage of parallel computers.

Datasets are big when they push the limits of computation. So far in this book, by limiting 
datasets to tens of thousands of rows with a hundred or fewer columns, there should have 
been no significant time delays, unless you ran into errors (happens to everyone).

In this section, we examine exoplanets over time. The dataset has 5,087 rows and 3,189 
columns that record light flux at different times of a star's life cycle. Multiplying columns 
and rows together results in 1.5 million data points. Using a baseline of 100 trees, we need 
150 million data points to build a model.

In this section, my 2013 MacBook Air had wait times of about 5 minutes. New computers 
should be faster. I have chosen the exoplanet dataset so that wait times play a significant 
role without tying up your computer for a very long time.

Introducing the exoplanet dataset
The exoplanet dataset is taken from Kaggle and dates from around 2017: https://www.
kaggle.com/keplersmachines/kepler-labelled-time-series-data. 
The dataset contains information about the light of stars. Each row is an individual star 
and the columns reveal different light patterns over time. In addition to light patterns, an 
exoplanet column is labeled 2 if the star hosts an exoplanet; otherwise, it is labeled 1.

https://www.kaggle.com/keplersmachines/kepler-labelled-time-series-data
https://www.kaggle.com/keplersmachines/kepler-labelled-time-series-data
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The dataset records the light flux from thousands of stars. Light flux, often referred to as 
luminous flux, is the perceived brightness of a star.

Note 
The perceived brightness is different than actual brightness. For instance, an 
incredibly bright star very far away may have a small luminous flux (looks 
dim), while a moderately bright star that is very close, like the sun, may have a 
large luminous flux (looks bright).

When the light flux of an individual star changes periodically, it is possible that the star is 
being orbited by an exoplanet. The assumption is that when an exoplanet orbits in front 
of a star, it blocks a small fraction of the light, reducing the perceived brightness by a very 
slight amount.

Tip
Finding exoplanets is rare. The predictive column, on whether a star hosts 
an exoplanet or not, has very few positive cases, resulting in an imbalanced 
dataset. Imbalanced datasets require extra precautions. We will cover 
imbalanced datasets in Chapter 7, Discovering Exoplanets with XGBoost, where 
we go into further detail with this dataset.

Next, let's access the exoplanet dataset and prepare it for machine learning.

Preprocessing the exoplanet dataset
The exoplanet dataset has been uploaded to our GitHub page at https://github.
com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-
and-Scikit-learn/tree/master/Chapter04.

Here are the steps to load and preprocess the exoplanet dataset for machine learning:

1. Download exoplanets.csv in the same folder as your Jupyter Notebook. Then, 
open the file and take a look:

df = pd.read_csv('exoplanets.csv')

df.head() 

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter04
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The DataFrame will look as shown in the following figure:

Fig 4.5 – Exoplanet DataFrame
Not all columns are shown due to space limitations. The flux columns are floats, 
while the Label column is 2 for an exoplanet star and 1 for a non-exoplanet star.

2. Let's' confirm that all columns are numerical with df.info():

df.info()

The result is as follows:
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 5087 entries, 0 to 5086

Columns: 3198 entries, LABEL to FLUX.3197

dtypes: float64(3197), int64(1)

memory usage: 124.1 MB

As you can see from the output, 3197 columns are floats and 1 column is an int, 
so all columns are numerical.

3. Now, let's confirm the number of null values with the following code:

df.isnull().sum().sum()

The output is as follows:
0

The output reveals that there are no null values.

4. Since all columns are numerical with no null values, we may split the data into 
training and test sets. Note that the 0th column is the target column, y, and all other 
columns are the predictor columns, X:

X = df.iloc[:,1:]

y = df.iloc[:,0]
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X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

It's time to build a gradient boosting classifier to predict whether stars host exoplanets.

Building gradient boosting classifiers
Gradient boosting classifiers work in the same manner as gradient boosting regressors. 
The difference is primarily in the scoring.

Let's start by importing GradientBoostingClassifer and XGBClassifier in 
addition to accuracy_score so that we may compare both models:

from sklearn.ensemble import GradientBoostingClassifier

from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score

Next, we need a way to compare models using a timer.

Timing models
Python comes with a time library that can be used to mark time. The general idea is to 
mark the time before and after a computation. The difference between these times tells us 
how long the computation took.

The time library is imported as follows:

import time

Within the time library, the .time() method marks time in seconds.

As an example, see how long it takes to run df.info() by assigning start and end times 
before and after the computation using time.time():

start = time.time()

df.info()

end = time.time()

elapsed = end - start

print('\nRun Time: ' + str(elapsed) + ' seconds.')
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The output is as follows:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 5087 entries, 0 to 5086

Columns: 3198 entries, LABEL to FLUX.3197

dtypes: float64(3197), int64(1)

memory usage: 124.1 MB

The runtime is as follows:

Run Time: 0.0525362491607666 seconds.

Your results will differ from ours, but hopefully it's in the same ballpark.

Let's now compare GradientBoostingClassifier and XGBoostClassifier 
with the exoplanet dataset for its speed using the preceding code to mark time.

Tip
Jupyter Notebooks come with magic functions, denoted by the % sign before a 
command. %timeit is one such magic function. Instead of computing how 
long it takes to run the code once, %timeit computes how long it takes to run 
code over multiple runs. See ipython.readthedocs.io/en/stable/
interactive/magics.html for more information on magic functions.

Comparing speed
It's time to race GradientBoostingClassifier and XGBoostClassifier with 
the exoplanet dataset. We have set max_depth=2 and n_estimators=100 to limit the 
size of the model. Let's start with GradientBoostingClassifier:

1. First, we will mark the start time. After building and scoring the model, we 
will mark the end time. The following code may take around 5 minutes to run 
depending on the speed of your computer:

start = time.time()

gbr = GradientBoostingClassifier(n_estimators=100, max_
depth=2, random_state=2)

gbr.fit(X_train, y_train)

y_pred = gbr.predict(X_test)

score = accuracy_score(y_pred, y_test)

print('Score: ' + str(score))

http://ipython.readthedocs.io/en/stable/interactive/magics.html
http://ipython.readthedocs.io/en/stable/interactive/magics.html


104     From Gradient Boosting to XGBoost

end = time.time()

elapsed = end - start

print('\nRun Time: ' + str(elapsed) + ' seconds')

The result is this:
Score: 0.9874213836477987

Run Time: 317.6318619251251 seconds

GradientBoostingRegressor took over 5 minutes to run on my 2013 
MacBook Air. Not bad for 150 million data points on an older computer. 

Note 
While a score of 98.7% percent is usually outstanding for accuracy, this is not 
the case with imbalanced datasets, as you will see in Chapter 7, Discovering 
Exoplanets with XGBoost.

2. Next, we will build an XGBClassifier model with the same hyperparameters 
and mark the time in the same manner:

start = time.time()

xg_reg = XGBClassifier(n_estimators=100, max_depth=2, 
random_state=2)

xg_reg.fit(X_train, y_train)

y_pred = xg_reg.predict(X_test)

score = accuracy_score(y_pred, y_test)

print('Score: ' + str(score))

end = time.time()

elapsed = end - start

print('Run Time: ' + str(elapsed) + ' seconds')

The result is as follows:
Score: 0.9913522012578616

Run Time: 118.90568995475769 seconds

On my 2013 MacBook Air, XGBoost took under 2 minutes, making it more than twice as 
fast. It's also more accurate by half a percentage point.

When it comes to big data, an algorithm twice as fast can save weeks or months of 
computational time and resources. This advantage is huge in the world of big data.

In the world of boosting, XGBoost is the model of choice due to its unparalleled speed and 
impressive accuracy.
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As for the exoplanet dataset, it will be revisited in Chapter 7, Discovering Exoplanets 
with XGBoost, in an important case study that reveals the challenges of working with 
imbalanced datasets along with a variety of potential solutions to those challenges.

Note
I recently purchased a 2020 MacBook Pro and updated all software. The 
difference in time using the same code is staggering:

Gradient Boosting Run Time: 197.38 seconds

XGBoost Run Time: 8.66 seconds

More than a 10-fold difference!

Summary
In this chapter, you learned the difference between bagging and boosting. You 
learned how gradient boosting works by building a gradient boosting regressor from 
scratch. You implemented a variety of gradient boosting hyperparameters, including 
learning_rate, n_estimators, max_depth, and subsample, which results 
in stochastic gradient boosting. Finally, you used big data to predict whether stars 
have exoplanets by comparing the times of GradientBoostingClassifier and 
XGBoostClassifier, with XGBoostClassifier emerging as twice to over ten 
times as fast and more accurate.

The advantage of learning these skills is that you now understand when to apply XGBoost 
rather than similar machine learning algorithms such as gradient boosting. You can now 
build stronger XGBoost and gradient boosting models by properly taking advantage of 
core hyperparameters, including n_estimators and learning_rate. Furthermore, 
you have developed the capacity to time all computations instead of relying on intuition.

Congratulations! You have completed all of the preliminary XGBoost chapters. Until now, 
the purpose has been to introduce you to machine learning and data analytics within the 
larger XGBoost narrative. The aim has been to show how the need for XGBoost emerged 
from ensemble methods, boosting, gradient boosting, and big data.

The next chapter starts a new leg on our journey with an advanced introduction to 
XGBoost, where you will learn the mathematical details behind the XGBoost algorithm 
in addition to hardware modifications that XGBoost makes to improve speed. You'll also 
be building XGBoost models using the original Python API in a historically relevant case 
study on the discovery of the Higgs boson. The chapters that follow highlight exciting 
details, advantages, nuances, and tricks and tips to build swift, efficient, powerful, and 
industry-ready XGBoost models that you can use for years to come.





XGBoost is reintroduced and examined in depth by looking at the general framework, 
including base models, speed enhancements, mathematical derivations, and the  
original Python API. XGBoost hyperparameters are analyzed, summarized, and  
fine-tuned in detail. Scientifically relevant case studies provide ample practice in  
building and fine-tuning powerful XGBoost models to correct weight imbalances  
and insufficient scores.

This section comprises the following chapters:

• Chapter 5, XGBoost Unveiled

• Chapter 6, XGBoost Hyperparameters

• Chapter 7, Discovering Exoplanets with XGBoost

Section 2:  
XGBoost





5
XGBoost Unveiled

In this chapter, you will finally see Extreme Gradient Boosting, or XGBoost, as it is. 
XGBoost is presented in the context of the machine learning narrative that we have 
built up, from decision trees to gradient boosting. The first half of the chapter focuses 
on the theory behind the distinct advancements that XGBoost brings to tree ensemble 
algorithms. The second half focuses on building XGBoost models within the Higgs Boson 
Kaggle Competition, which unveiled XGBoost to the world.

Specifically, you will identify speed enhancements that make XGBoost faster, discover 
how XGBoost handles missing values, and learn the mathematical derivation behind 
XGBoost's regularized parameter selection. You will establish model templates for 
building XGBoost classifiers and regressors. Finally, you will look at the Large Hadron 
Collider, where the Higgs boson was discovered, where you will weigh data and make 
predictions using the original XGBoost Python API.

This chapter covers the following main topics:

• Designing XGBoost

• Analyzing XGBoost parameters

• Building XGBoost models

• Finding the Higgs boson – case study
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Designing XGBoost
XGBoost is a significant upgrade from gradient boosting. In this section, you will identify 
the key features of XGBoost that distinguish it from gradient boosting and other tree 
ensemble algorithms.

Historical narrative
With the acceleration of big data, the quest to find awesome machine learning algorithms 
to produce accurate, optimal predictions began. Decision trees produced machine 
learning models that were too accurate and failed to generalize well to new data. Ensemble 
methods proved more effective by combining many decision trees via bagging and 
boosting. A leading algorithm that emerged from the tree ensemble trajectory was 
gradient boosting.

The consistency, power, and outstanding results of gradient boosting convinced Tianqi 
Chen from the University of Washington to enhance its capabilities. He called the new 
algorithm XGBoost, short for Extreme Gradient Boosting. Chen's new form of gradient 
boosting included built-in regularization and impressive gains in speed.

After finding initial success in Kaggle competitions, in 2016, Tianqi Chen and Carlos 
Guestrin authored XGBoost: A Scalable Tree Boosting System to present their algorithm 
to the larger machine learning community. You can check out the original paper at 
https://arxiv.org/pdf/1603.02754.pdf. The key points are summarized in 
the following section.

Design features
As indicated in Chapter 4, From Gradient Boosting to XGBoost, the need for faster 
algorithms is evident when dealing with big data. The Extreme in Extreme Gradient 
Boosting means pushing computational limits to the extreme. Pushing computational 
limits requires knowledge not just of model-building but also of disk-reading, 
compression, cache, and cores.

Although the focus of this book remains on building XGBoost models, we will take a 
glance under the hood of the XGBoost algorithm to distinguish key advancements, such 
as handling missing values, speed gains, and accuracy gains that make XGBoost faster, 
more accurate, and more desirable. Let's look at these key advancements next.

Handling missing values
You spent significant time in Chapter 1, Machine Learning Landscape, practicing different 
ways to correct null values. This is an essential skill for all machine learning practitioners.

https://arxiv.org/pdf/1603.02754.pdf
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XGBoost, however, is capable of handling missing values for you. There is a missing 
hyperparameter that can be set to any value. When given a missing data point, XGBoost 
scores different split options and chooses the one with the best results.

Gaining speed
XGBoost was specifically designed for speed. Speed gains allow machine learning models 
to build more quickly which is especially important when dealing with millions, billions, 
or trillions of rows of data. This is not uncommon in the world of big data, where each 
day, industry and science accumulate more data than ever before. The following new 
design features give XGBoost a big edge in speed over comparable ensemble algorithms:

• Approximate split-finding algorithm

• Sparsity aware split-finding

• Parallel computing

• Cache-aware access

• Block compression and sharding

Let's learn about these features in a bit more detail.

Approximate split-finding algorithm
Decision trees need optimal splits to produce optimal results. A greedy algorithm selects 
the best split at each step and does not backtrack to look at previous branches. Note that 
decision tree splitting is usually performed in a greedy manner.

XGBoost presents an exact greedy algorithm in addition to a new approximate split-finding 
algorithm. The split-finding algorithm uses quantiles, percentages that split data, to propose 
candidate splits. In a global proposal, the same quantiles are used throughout the entire 
training, and in a local proposal, new quantiles are provided for each round of splitting.

A previously known algorithm, quantile sketch, works well with equally weighted 
datasets. XGBoost presents a novel weighted quantile sketch based on merging and 
pruning with a theoretical guarantee. Although the mathematical details of this algorithm 
are beyond the scope of this book, you are encouraged to check out the appendix of the 
original XGBoost paper at https://arxiv.org/pdf/1603.02754.pdf.

https://arxiv.org/pdf/1603.02754.pdf
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Sparsity-aware split finding
Sparse data occurs when the majority of entries are 0 or null. This may occur when datasets 
consist primarily of null values or when they have been one-hot encoded. In Chapter 
1, Machine Learning Landscape, you used pd.get_dummies to transform categorical 
columns into numerical columns. This resulted in a larger dataset with many values of 0. 
This method of converting categorical columns into numerical columns, where 1 indicates 
presence and 0 indicates absence, is generally referred to as one-hot encoding. You will gain 
practice with one-hot-encoding in Chapter 10, XGBoost Model Deployment.

Sparse matrices are designed to only store data points with non-zero and non-null values. 
This saves valuable space. A sparsity-aware split indicates that when looking for splits, 
XGBoost is faster because its matrices are sparse.

According to the original paper, XGBoost: A Scalable Tree Boosting System, the sparsity-
aware split-finding algorithm performed 50 times faster than the standard approach on 
the All-State-10K dataset.

Parallel computing
Boosting is not ideal for parallel computing since each tree depends on the results of the 
previous tree. There are opportunities, however, where parallelization may take place.

Parallel computing occurs when multiple computational units are working together on the 
same problem at the same time. XGBoost sorts and compresses the data into blocks. These 
blocks may be distributed to multiple machines, or to external memory (out of core).

Sorting the data is faster with blocks. The split-finding algorithm takes advantage of 
blocks and the search for quantiles is faster due to blocks. In each of these cases, XGBoost 
provides parallel computing to expedite the model-building process.

Cache-aware access
The data on your computer is separated into cache and main memory. The cache, 
what you use most often, is reserved for high-speed memory. The data that you use 
less often is held back for lower-speed memory. Different cache levels have different 
orders of magnitude of latency, as outlined here: https://gist.github.com/
jboner/2841832.

When it comes to gradient statistics, XGBoost uses cache-aware prefetching. XGBoost 
allocates an internal buffer, fetches the gradient statistics, and performs accumulation 
with mini batches. According to XGBoost: A Scalable Tree Boosting System, prefetching 
lengthens read/write dependency and reduces runtimes by approximately 50% for datasets 
with a large number of rows.

https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
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Block compression and sharding
XGBoost delivers additional speed gains through block compression and block sharding.

Block compression helps with computationally expensive disk reading by compressing 
columns. Block sharding decreases read times by sharding the data into multiple disks that 
alternate when reading the data.

Accuracy gains 
XGBoost adds built-in regularization to achieve accuracy gains beyond gradient  
boosting. Regularization is the process of adding information to reduce variance and 
prevent overfitting.

Although data may be regularized through hyperparameter fine-tuning, regularized 
algorithms may also be attempted. For example, Ridge and Lasso are regularized 
machine learning alternatives to LinearRegression.

XGBoost includes regularization as part of the learning objective, as contrasted with 
gradient boosting and random forests. The regularized parameters penalize complexity 
and smooth out the final weights to prevent overfitting. XGBoost is a regularized version 
of gradient boosting.

In the next section, you will meet the math behind the learning objective of XGBoost, 
which combines regularization with the loss function. While you don't need to know 
the math to use XGBoost effectively, mathematical knowledge may provide a deeper 
understanding. You can skip the next section if desired.

Analyzing XGBoost parameters
In this section, we will analyze the parameters that XGBoost uses to create state-of-the-art 
machine learning models with a mathematical derivation.

We will maintain the distinction between parameters and hyperparameters as presented 
in Chapter 2, Decision Trees in Depth. Hyperparameters are chosen before the model is 
trained, whereas parameters are chosen while the model is being trained. In other words, 
the parameters are what the model learns from the data.

The derivation that follows is taken from the XGBoost official documentation, 
Introduction to Boosted Trees, at https://xgboost.readthedocs.io/en/
latest/tutorials/model.html.

https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
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Learning objective
The learning objective of a machine learning model determines how well the model fits 
the data. In the case of XGBoost, the learning objective consists of two parts: the loss 
function and the regularization term.

Mathematically, XGBoost's learning objective may be defined as follows:

Here, 𝑙𝑙(𝜃𝜃)  is the loss function, which is the Mean Squared Error (MSE) for regression, 
or the log loss for classification, and Ω(𝜃𝜃)  is the regularization function, a penalty term 
to prevent over-fitting. Including a regularization term as part of the objective function 
distinguishes XGBoost from most tree ensembles.

Let's look at the objective function in more detail, by considering the MSE for regression.

Loss function
The loss function, defined as the MSE for regression, can be written in summation 
notation, as follows:

Here, 𝑦𝑦𝑖𝑖  is the target value for the 𝑖𝑖 th row and 𝑦𝑦�̂�𝑖  is the value predicted by the machine 
learning model for the 𝑖𝑖 th row. The summation symbol, Σ , indicates that all rows are 
summed starting with 𝑖𝑖 = 1  and ending with 𝑖𝑖 = 𝑛𝑛 , the number of rows.

The prediction, �̂�𝑦𝑖𝑖 , for a given tree requires a function that starts at the tree root and ends 
at a leaf. Mathematically, this can be expressed as follows:

Here, xi is a vector whose entries are the columns of the 𝑖𝑖 th row and 𝑓𝑓 ∈ 𝐹𝐹  means that the 
function 𝑓𝑓  is a member of 𝐹𝐹 , the set of all possible CART functions. CART is an acronym 
for Classification And Regression Trees. CART provides a real value for all leaves, even 
for classification algorithms.

In gradient boosting, the function that determines the prediction for the 𝑖𝑖 th row includes 
the sum of all previous functions, as outlined in Chapter 4, From Gradient Boosting to 
XGBoost. Therefore, it's possible to write the following:

𝑜𝑜𝑜𝑜𝑜𝑜(𝜃𝜃) = 𝑙𝑙(𝜃𝜃) + Ω(𝜃𝜃) 

𝑙𝑙(𝜃𝜃) =∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖)2
𝑛𝑛

𝑖𝑖=1
 

�̂�𝑦𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑓𝑓 ∈ 𝐹𝐹 

�̂�𝑦𝑖𝑖 = ∑𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖), 𝑓𝑓𝑡𝑡 ∈ 𝐹𝐹
𝑇𝑇

𝑡𝑡=1
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Here, T is the number of boosted trees. In other words, to obtain the prediction for the 𝑖𝑖 th tree, 
sum the predictions of the previous trees in addition to the prediction for the new tree. The 
notation 𝑓𝑓𝑡𝑡 ∈ 𝐹𝐹  insists that the functions belong to 𝐹𝐹 , the set of all possible CART functions.

The learning objective for the 𝑡𝑡 th boosted tree can now be rewritten as follows:

Here, 𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦�̂�𝑖𝑡𝑡)  is the general loss function of the 𝑡𝑡 th boosted tree and Ω(𝑓𝑓𝑡𝑡)  is the 
regularization term.

Since boosted trees sum the predictions of previous trees, in addition to the prediction  
of the new tree, it must be the case that 𝑦𝑦�̂�𝑖𝑡𝑡 = 𝑦𝑦�̂�𝑖𝑡𝑡−1 + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) . This is the idea behind 
additive training.

By substituting this into the preceding learning objective, we obtain the following:

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) =∑𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦�̂�𝑖𝑡𝑡−1 + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
+ Ω(𝑓𝑓𝑡𝑡) 

This can be rewritten as follows for the least square regression case:

Multiplying the polynomial out, we obtain the following:

Here, 𝐶𝐶  is a constant term that does not depend on 𝑡𝑡 . In terms of polynomials, this is a 
quadratic equation with the variable 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) . Recall that the goal is to find an optimal value 
of 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) , the optimal function mapping the roots (samples) to the leaves (predictions).

Any sufficiently smooth function, such as second-degree polynomial (quadratic),  
can be approximated by a Taylor polynomial. XGBoost uses Newton's method with a 
second-degree Taylor polynomial to obtain the following:

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) =∑𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦�̂�𝑖𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
+∑Ω(𝑓𝑓𝑡𝑡)

𝑡𝑡

𝑖𝑖=1
 

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = ∑  
𝑛𝑛

𝑖𝑖=1
(𝑦𝑦𝑖𝑖 − (𝑦𝑦�̂�𝑖

𝑡𝑡−1 + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖))
2

+ Ω(𝑓𝑓𝑡𝑡) 

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = ∑  
𝑛𝑛

𝑖𝑖=1
2(𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖

𝑡𝑡−1)𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)2 + Ω(𝑓𝑓𝑡𝑡) + 𝐶𝐶 

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = ∑  
𝑛𝑛

𝑖𝑖=1
𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1

2 ℎ𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)2 + Ω(𝑓𝑓𝑡𝑡) 



116     XGBoost Unveiled

Here, 𝑔𝑔𝑖𝑖  and ℎ𝑖𝑖  can be written as the following partial derivatives:

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝑦𝑦�̂�𝑖
𝑡𝑡−1 𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦�̂�𝑖

𝑡𝑡−1) 

ℎ𝑖𝑖 = 𝜕𝜕𝑦𝑦�̂�𝑖
𝑡𝑡−1

2  𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦�̂�𝑖
𝑡𝑡−1) 

For a general discussion of how XGBoost uses the Taylor expansion, check out 
https://stats.stackexchange.com/questions/202858/xgboost-loss-
function-approximation-with-taylor-expansion.

XGBoost implements this learning objective function by taking a solver that uses only 𝑔𝑔𝑖𝑖  
and ℎ𝑖𝑖  as input. Since the loss function is general, the same inputs can be used for 
regression and classification.

This leaves the regularization function, Ω(𝑓𝑓𝑡𝑡) .

Regularization function
Let 𝑤𝑤  be the vector space of leaves. Then, 𝑓𝑓 , the function mapping the tree root to the 
leaves, can be recast in terms of 𝑤𝑤 , as follows:

𝑓𝑓𝑡𝑡(𝑥𝑥) = 𝑤𝑤𝑞𝑞(𝑥𝑥), 𝑤𝑤 ∈ 𝑅𝑅𝑇𝑇, 𝑞𝑞: 𝑅𝑅𝑑𝑑 → {1,2,… , 𝑇𝑇} 

Here, q is the function assigning data points to leaves and T is the number of leaves.

After practice and experimentation, XGBoost settled on the following as the 
regularization function where 𝛾𝛾  and 𝜆𝜆  are penalty constants to reduce overfitting:

Ω(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝑤𝑤𝑗𝑗

2 
𝑇𝑇

𝑗𝑗=1
 

Objective function
Combining the loss function with the regularization function, the learning objective 
function becomes the following:

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = ∑  𝑔𝑔𝑖𝑖𝑤𝑤𝑞𝑞(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
+ 1

2 ℎ𝑖𝑖𝑤𝑤𝑞𝑞(𝑥𝑥𝑖𝑖)
2  +  𝛾𝛾𝛾𝛾 + 1

2 𝜆𝜆 ∑ 𝑤𝑤𝑗𝑗
2 

𝑇𝑇

𝑗𝑗=1
 

We can define the set of indices of data points assigned to the 𝑗𝑗 th leaf as follows:

𝐼𝐼𝑗𝑗 = {𝑖𝑖 ∣ 𝑞𝑞(𝑥𝑥𝑖𝑖) = 𝑗𝑗} 

https://stats.stackexchange.com/questions/202858/xgboost-loss-function-approximation-with-taylor-expansion
https://stats.stackexchange.com/questions/202858/xgboost-loss-function-approximation-with-taylor-expansion


Building XGBoost models     117

The objective function can then be written as follows:

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑤𝑤𝑗𝑗
𝑖𝑖∈𝐼𝐼𝑗𝑗

+ 1
2 ∑ ℎ𝑖𝑖𝑤𝑤𝑗𝑗

2

𝑖𝑖∈𝐼𝐼𝑗𝑗

 +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝑤𝑤𝑗𝑗

2 
𝑇𝑇

𝑗𝑗=1
 

Finally, setting the 𝐺𝐺𝑗𝑗 =∑𝑔𝑔𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑗𝑗

  and 𝐻𝐻𝑗𝑗 =∑ℎ𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑗𝑗

 , after rearranging the indices and combining like 

terms, we obtain the final form of the objective function, which is the following:

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = ∑[𝐺𝐺𝑗𝑗𝑤𝑤𝑗𝑗

𝑇𝑇

𝑗𝑗=1
+ 1

2 (𝐻𝐻𝑗𝑗 + 𝜆𝜆)𝑤𝑤𝑗𝑗
2 +  𝛾𝛾𝑇𝑇] 

Minimizing the objective function by taking the derivative with respect to 𝑤𝑤𝑗𝑗  and setting 
the left side equal to zero, we obtain the following:

𝑤𝑤𝑗𝑗 = −
𝐺𝐺𝑗𝑗

𝐻𝐻𝑗𝑗 + 𝜆𝜆
 

This can be substituted back into the objection function to give the following:

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = − 1
2 ∑

𝐺𝐺𝑗𝑗
2

𝐻𝐻𝑗𝑗 + 𝜆𝜆 
𝑇𝑇

𝑗𝑗=1
+  𝛾𝛾𝛾𝛾 

This is the result XGBoost uses to determine how well the model fits the data.

Congratulations on making it through a long and challenging derivation!

Building XGBoost models
In the first two sections, you learned how XGBoost works under the hood with parameter 
derivations, regularization, speed enhancements, and new features such as the missing 
parameter to compensate for null values.

In this book, we primarily build XGBoost models with scikit-learn. The scikit-learn 
XGBoost wrapper was released in 2019. Before full immersion with scikit-learn, building 
XGBoost models required a steeper learning curve. Converting NumPy arrays to 
dmatrices, for instance, was mandatory to take advantage of the XGBoost framework.
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In scikit-learn, however, these conversions happen behind the scenes. Building  
XGBoost models in scikit-learn is very similar to building other machine learning  
models in scikit-learn, as you have experienced throughout this book. All standard  
scikit-learn methods, such as .fit, and .predict, are available, in addition to  
essential tools such as train_test_split, cross_val_score, GridSearchCV, 
and RandomizedSearchCV.

In this section, you will develop templates for building XGBoost models. Going forward, 
these templates can be referenced as starting points for building XGBoost classifiers  
and regressors.

We will build templates for two classic datasets: the Iris dataset for classification and 
the Diabetes dataset for regression. Both datasets are small, built into scikit-learn, and 
have been tested frequently throughout the machine learning community. As part of 
the model-building process, you will explicitly define default hyperparameters that give 
XGBoost great scores. These hyperparameters are explicitly defined so that you can learn 
what they are in preparation for adjusting them going forward.

The Iris dataset
The Iris dataset, a staple of the machine learning community, was introduced by 
statistician Robert Fischer in 1936. Its easy accessibility, small size, clean data, and 
symmetry of values have made it a popular choice for testing classification algorithms.

We will introduce the Iris dataset by downloading it directly from scikit-learn using the 
datasets library with the load_iris() method, as follows:

import pandas as pd

import numpy as np

from sklearn import datasets

iris = datasets.load_iris()

Scikit-learn datasets are stored as NumPy arrays, the array storage method of choice 
for machine learning algorithms. pandas DataFrames are used more for data analysis 
and data visualization. Viewing NumPy arrays as DataFrames requires the pandas 
DataFrame method. This scikit-learn dataset is split into predictor and target columns in 
advance. Bringing them together requires concatenating the NumPy arrays with the code 
np.c_ before conversion. Column names are also added, as follows:

df = pd.DataFrame(data= np.c_[iris['data'], 
iris['target']],columns= iris['feature_names'] + ['target'])
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You can view the first five rows of the DataFrame using df.head():

df.head()

The resulting DataFrame will look like this:

Figure 5.1 – The Iris dataset

The predictor columns are self-explanatory, measuring sepal and petal length and width. 
The target column, according to the scikit-learn documentation, https://scikit-
learn.org/stable/auto_examples/datasets/plot_iris_dataset.html, 
consists of three different iris flowers, setosa, versicolor, and virginica. There are 150 rows.

To prepare the data for machine learning, import train_test_split, then split 
the data accordingly. You can use the original NumPy arrays, iris['data'] and 
iris['target'], as inputs for train_test_split:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_
split(iris['data'], iris['target'], random_state=2)

Now that we have split the data, let's build the classification template.

XGBoost classification template
The following template is for building an XGBoost classifier, assuming the dataset has 
already been split into X_train, X_test, y_train, and y_test sets:

1. Import XGBClassifier from the xgboost library:

from xgboost import XGBClassifier

https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
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2. Import a classification scoring method as needed.

While accuracy_score is standard, other scoring methods, such as auc  
(Area Under Curve), will be discussed later:

from sklearn.metrics import accuracy_score

3. Initialize the XGBoost classifier with hyperparameters.

Fine-tuning hyperparameters is the focus of Chapter 6, XGBoost Hyperparameters. In 
this chapter, the most important default hyperparameters are explicitly stated ahead: 

xgb = XGBClassifier(booster='gbtree', 
objective='multi:softprob', max_depth=6, learning_
rate=0.1, n_estimators=100, random_state=2, n_jobs=-1)

The brief descriptions of the preceding hyperparameters are as follows:

a) booster='gbtree': The booster is the base learner. It's the machine learning 
model that is constructed during every round of boosting. You may have guessed 
that 'gbtree' stands for gradient boosted tree, the XGBoost default base learner. 
It's uncommon but possible to work with other base learners, a strategy we employ 
in Chapter 8, XGBoost Alternative Base Learners.

b) objective='multi:softprob': Standard options for the objective 
can be viewed in the XGBoost official documentation, https://xgboost.
readthedocs.io/en/latest/parameter.html, under Learning Task 
Parameters. The multi:softprob objective is a standard alternative to 
binary:logistic when the dataset includes multiple classes. It computes the 
probabilities of classification and chooses the highest one. If not explicitly stated, 
XGBoost will often find the right objective for you.

c) max_depth=6: The max_depth of a tree determines the number of branches 
each tree has. It's one of the most important hyperparameters in making balanced 
predictions. XGBoost uses a default of 6, unlike random forests, which don't 
provide a value unless explicitly programmed.

d) learning_rate=0.1: Within XGBoost, this hyperparameter is often referred 
to as eta. This hyperparameter limits the variance by reducing the weight of each 
tree to the given percentage. The learning_rate hyperparameter was explored 
in detail in Chapter 4, From Gradient Boosting to XGBoost.

e) n_estimators=100: Popular among ensemble methods, n_estimators is 
the number of boosted trees in the model. Increasing this number while decreasing 
learning_rate can lead to more robust results.

https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
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4. Fit the classifier to the data.

This is where the magic happens. The entire XGBoost system, the details explored 
in the previous two sections, the selection of optimal parameters, including 
regularization constraints, and speed enhancements, such as the approximate  
split-finding algorithm, and blocking and sharding all occur during this one 
powerful line of scikit-learn code:

xgb.fit(X_train, y_train)

5. Predict the y values as y_pred:

y_pred = xgb.predict(X_test)

6. Score the model by comparing y_pred against y_test:

score = accuracy_score(y_pred, y_test)

7. Display your results:

print('Score: ' + str(score))

Score: 0.9736842105263158

Unfortunately, there is no official list of Iris dataset scores. There are too many to 
compile in one place. An initial score of 97.4 percent on the Iris dataset using default 
hyperparameters is very good (see https://www.kaggle.com/c/serpro-iris/
leaderboard).

The XGBoost classifier template provided in the preceding paragraphs is not meant to be 
definitive, but rather a starting point going forward.

The Diabetes dataset
Now that you are becoming familiar with scikit-learn and XGBoost, you are developing 
the ability to build and score XGBoost models fairly quickly. In this section, an  
XGBoost regressor template is provided using cross_val_score with scikit-learn's 
Diabetes dataset.

Before building the template, import the predictor columns as X and the target columns as 
y, as follows:

X,y = datasets.load_diabetes(return_X_y=True)

Now that we have imported the predictor and target columns, let's start building  
the template.

https://www.kaggle.com/c/serpro-iris/leaderboard
https://www.kaggle.com/c/serpro-iris/leaderboard
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The XGBoost regressor template (cross-validation)
Here are the essential steps to build an XGBoost regression model in scikit-learn using 
cross-validation, assuming that the predictor columns, X, and the target column, y, have 
been defined:

1. Import XGBRegressor and cross_val_score:

from sklearn.model_selection import cross_val_score

from xgboost import XGBRegressor

2. Initialize XGBRegressor.

Here, we initialize XGBRegressor with objective='reg:squarederror', 
the MSE. The most important hyperparameter defaults are explicitly given:

xgb = XGBRegressor(booster='gbtree', 
objective='reg:squarederror', max_depth=6, learning_
rate=0.1, n_estimators=100, random_state=2, n_jobs=-1)

3. Fit and score the regressor with cross_val_score.

With cross_val_score, fitting and scoring are done in one step using the 
model, the predictor columns, the target column, and the scoring as inputs:

scores = cross_val_score(xgb, X, y, scoring='neg_mean_
squared_error', cv=5)

4. Display the results.

Scores for regression are commonly displayed as the Root Mean Squared Error 
(RMSE) to keep the units the same:

rmse = np.sqrt(-scores)

print('RMSE:', np.round(rmse, 3))

print('RMSE mean: %0.3f' % (rmse.mean()))

The result is as follows:
RMSE: [63.033 59.689 64.538 63.699 64.661]

RMSE mean: 63.124

Without a baseline of comparison, we have no idea what that score means. Converting the 
target column, y, into a pandas DataFrame with the .describe() method will give 
the quartiles and the general statistics of the predictor column, as follows:

pd.DataFrame(y).describe()



Finding the Higgs boson – case study     123

Here is the expected output:

Figure 5.2 – Describing the statistics of y, the Diabetes target column

A score of 63.124 is less than 1 standard deviation, a respectable result.

You now have XGBoost classifier and regressor templates that can be used for building 
models going forward.

Now that you are accustomed to building XGBoost models in scikit-learn, it's time for a 
deep dive into high energy physics.

Finding the Higgs boson – case study
In this section, we will review the Higgs Boson Kaggle Competition, which brought 
XGBoost into the machine learning spotlight. In order to set the stage, the historical 
background is given before moving on to model development. The models that we 
build include a default model provided by XGBoost at the time of the competition and 
a reference to the winning solution provided by Gabor Melis. Kaggle accounts are not 
required for this text, so we will not take the time to show you how to make submissions. 
We have provided guidelines if you are interested.

Physics background
In popular culture, the Higgs boson is known as the God particle. Theorized by Peter 
Higgs in 1964, the Higgs boson was introduced to explain why particles have mass.

The search to find the Higgs boson culminated in its discovery in 2012 in the Large 
Hadron Collider at CERN (Geneva, Switzerland). Nobel Prizes were awarded and the 
Standard Model of physics, the model that accounts for every force known to physics 
except for gravity, stood taller than ever before.
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The Higgs boson was discovered by smashing protons into each other at extremely 
high speeds and observing the results. Observations came from the ATLAS detector, 
which records data resulting from hundreds of millions of proton-proton collisions per 
second, according to the competition's technical documentation, Learning to discover: 
the Higgs boson machine learning challenge, https://higgsml.lal.in2p3.fr/
files/2014/04/documentation_v1.8.pdf.

After discovering the Higgs boson, the next step was to precisely measure the 
characteristics of its decay. The ATLAS experiment found the Higgs boson decaying into 
two tau particles from data wrapped in background noise. To better understand the data, 
ATLAS called upon the machine learning community.

Kaggle competitions
The Kaggle competition is a machine learning competition designed to solve a particular 
problem. Machine learning competitions became famous in 2006 when Netflix offered 
1 million dollars to anyone who could improve upon their movie recommendations by 
10%. In 2009, the 1 million dollar prize was awarded to BellKor's Pragmatic Chaos team 
(https://www.wired.com/2009/09/bellkors-pragmatic-chaos-wins-1-
million-netflix-prize/).

Many businesses, computer scientists, mathematicians, and students became aware of the 
increasing value that machine learning held in society. Machine learning competitions 
became hot, with mutual benefits going to company hosts and machine learning 
practitioners. Starting in 2010, many early adopters went to Kaggle to try their hand at 
machine learning competitions.

In 2014, Kaggle announced the Higgs Boson Machine Learning Challenge with ATLAS 
(https://www.kaggle.com/c/higgs-boson). With a $13,000 prize pool, 1,875 
teams entered the competition.

In Kaggle competitions, training data is provided, along with a required scoring method. 
Teams build machine learning models on the training data before submitting their results. 
The target column of the test data is not provided. Multiple submissions are permitted, 
however, and scores are returned so that competitors can improve upon their models 
before the final date.

Kaggle competitions are fertile ground for testing machine learning algorithms. Unlike 
in industry, Kaggle competitions draw thousands of competitors, making the machine 
learning models that win prizes very well tested.

https://higgsml.lal.in2p3.fr/files/2014/04/documentation_v1.8.pdf
https://higgsml.lal.in2p3.fr/files/2014/04/documentation_v1.8.pdf
https://www.wired.com/2009/09/bellkors-pragmatic-chaos-wins-1-million-netflix-prize/
https://www.wired.com/2009/09/bellkors-pragmatic-chaos-wins-1-million-netflix-prize/
https://www.kaggle.com/c/higgs-boson
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XGBoost and the Higgs challenge
XGBoost was released to the general public on March 27, 2014, 6 months before the Higgs 
challenge. In the competition, XGBoost soared, helping competitors climb the Kaggle 
leaderboard while saving valuable time.

Let's access the data to see what the competitors were working with.

Data
Instead of using the data provided by Kaggle, we use the original data provided by 
the CERN open data portal where it originated: http://opendata.cern.ch/
record/328. The difference between the CERN data and the Kaggle data is that the 
CERN dataset is significantly larger. We will select the first 250,000 rows and make some 
modifications to match the Kaggle data.

You can download the CERN Higgs boson dataset directly from https://github.
com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-
and-Scikit-learn/tree/master/Chapter05.

Read the atlas-higgs-challenge-2014-v2.csv.gz file into a pandas 
DataFrame. Please note that we are selecting the first 250,000 rows only, and the 
compression=gzip parameter is used since the dataset is zipped as a csv.gz file. 
After accessing the data, view the first five rows, as follows:

df = pd.read_csv('atlas-higgs-challenge-2014-v2.csv.gz', 
nrows=250000, compression='gzip')

df.head()

The far-right columns of the output should be as shown in the following screenshot:

Figure 5.3 – CERN Higgs boson data – Kaggle columns included

http://opendata.cern.ch/record/328
http://opendata.cern.ch/record/328
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter05
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Notice the Kaggleset and KaggleWeight columns. Since the Kaggle dataset was 
smaller, Kaggle used a different number for their weight column which is denoted in the 
preceding diagram as KaggleWeight. The t value under Kaggleset indicates that 
it's part of the training set for the Kaggle dataset. In other words, these two columns, 
Kaggleset and KaggleWeight, are columns in the CERN dataset designed to include 
information that will be used for the Kaggle dataset. In this chapter, we will restrict our 
subset of the CERN data to the Kaggle training set.

To match the Kaggle training data, let's delete the Kaggleset and Weight columns, 
convert KaggleWeight into 'Weight', and move the 'Label' column to the last 
column, as follows:

del df[‹Weight›]

del df[‹KaggleSet›]

df = df.rename(columns={«KaggleWeight»: «Weight»})

One way to move the Label column is to store it as a variable, delete the column, and 
add a new column by assigning it to the new variable. Whenever assigning a new column 
to a DataFrame, the new column appears at the end:

label_col = df['Label']

del df['Label']

df['Label'] = label_col

Now that all changes have been made, the CERN data matches the Kaggle data. Go ahead 
and view the first five rows:

df.head()

Here is the left side of the expected output:

Figure 5.4 – CERN Higgs boson data – physics columns

Many columns are not shown, and an unusual value of -999.00 occurs in multiple places.
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The columns beyond EventId include variables prefixed with PRI, which stands for 
primitives, which are values directly measured by the detector during collisions. By 
contrast, columns labeled DER are numerical derivations from these measurements.

All column names and types are revealed by df.info():

df.info()

Here is a sample of the output, with the middle columns truncated to save space:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 250000 entries, 0 to 249999

Data columns (total 33 columns):

 #   Column                       Non-Null Count   Dtype  

---  ------                       --------------   -----  

 0   EventId                      250000 non-null  int64  

 1   DER_mass_MMC                 250000 non-null  float64

 2   DER_mass_transverse_met_lep  250000 non-null  float64

 3   DER_mass_vis                 250000 non-null  float64

 4   DER_pt_h                     250000 non-null  float64

…

 28  PRI_jet_subleading_eta       250000 non-null  float64

 29  PRI_jet_subleading_phi       250000 non-null  float64

 30  PRI_jet_all_pt               250000 non-null  float64

 31  Weight                       250000 non-null  float64

 32  Label                        250000 non-null  object  

dtypes: float64(30), int64(3)

memory usage: 62.9 MB

All columns have non-null values, and only the final column, Label, is non-numerical. 
The columns can be grouped as follows:

• Column 0 : EventId – irrelevant for the machine learning model.

• Columns 1-30: Physics columns derived from LHC collisions. Details for these 
columns can be found in the link to the technical documentation at http://
higgsml.lal.in2p3.fr/documentation. These are the machine learning 
predictor columns.

http://higgsml.lal.in2p3.fr/documentation
http://higgsml.lal.in2p3.fr/documentation
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• Column 31 : Weight – this column is used to scale the data. The issue here is that 
Higgs boson events are very rare, so a machine learning model with 99.9 percent 
accuracy may not be able to find them. Weights compensate for this imbalance, but 
weights are not available for the test data. Strategies for dealing with weights will be 
discussed later in this chapter, and in Chapter 7, Discovering Exoplanets with XGBoost.

• Column 32: Label – this is the target column, labeled s for signal and b for 
background. The training data has been simulated from real data, so there are many 
more signals than otherwise would be found. The signal is the occurrence of the 
Higgs boson decay.

The only issue with the data is that the target column, Label, is not numerical. Convert 
the Label column into a numerical column by replacing the s values with 1 and the b 
values with 0, as follows:

df['Label'].replace(('s', 'b'), (1, 0), inplace=True)

Now that all columns are numerical with non-null values, you can split the data into 
predictor and target columns. Recall that the predictor columns are indexed 1–30 and 
the target column is the last column, indexed 32 (or -1). Note that the Weight column 
should not be included because it's not available for the test data:

X = df.iloc[:,1:31]

y = df.iloc[:,-1]

Scoring
The Higgs Challenge is not your average Kaggle competition. In addition to the difficulty 
of understanding high energy physics for feature engineering (a route we will not 
pursue), the scoring method is not standard. The Higgs Challenge requires optimizing the 
Approximate Median Significance (AMS).

The AMS is defined as follows:

√2((𝑠𝑠 + 𝑏𝑏 + 𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙(1 +
𝑠𝑠

𝑏𝑏 + 𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟
− 𝑠𝑠) 

Here, 𝑠𝑠  is the true positive rate, 𝑏𝑏  is the false positive rate, and 𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟  is a constant 
regularization term given as 10.



Finding the Higgs boson – case study     129

Fortunately, XGBoost provided an AMS scoring method for the competition, so it does 
not need to be formally defined. A high AMS results from many true positives and few 
false negatives. Justification for the AMS instead of other scoring methods is given in the 
technical documentation at http://higgsml.lal.in2p3.fr/documentation.

Tip
It's possible to build your own scoring methods, but it's not usually needed. In 
the rare event that you need to build your own scoring method, you can check 
out https://scikit-learn.org/stable/modules/model_
evaluation.html for more information.

Weights
Before building a machine learning model for the Higgs boson, it's important to 
understand and utilize weights.

In machine learning, weights can be used to improve the accuracy of imbalanced datasets. 
Consider the s (signal) and b (background) columns in the Higgs challenge. In reality, 
s << b, so signals are very rare among the background noise. Let's say, for example, that 
signals are 1,000 times rarer than background noise. You can create a weight column 
where b = 1 and s = 1/1000 to compensate for this imbalance.

According to the technical documentation of the competition, the weight column is a 
scale factor that, when summed, gives the expected number of signal and background 
events during the time of data collection in 2012. This means that weights are required 
for the predictions to represent reality. Otherwise, the model will predict way too many s 
(signal) events. 

The weights should first be scaled to match the test data since the test data provides the 
expected number of signal and background events generated by the test set. The test data 
has 550,000 rows, more than twice the 250,000 rows (len(y)) provided by the training 
data. Scaling weights to match the test data can be achieved by multiplying the weight 
column by the percentage of increase, as follows:

df['test_Weight'] = df['Weight'] * 550000 / len(y)

http://higgsml.lal.in2p3.fr/documentation
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
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Next, XGBoost provides a hyperparameter, scale_pos_weight, which takes the 
scaling factor into account. The scaling factor is the sum of the weights of the background 
noises divided by the sum of the weight of the signal. The scaling factor can be computed 
using pandas conditional notation, as follows:

s = np.sum(df[df['Label']==1]['test_Weight'])

b = np.sum(df[df['Label']==0]['test_Weight'])

In the preceding code, df[df['Label']==1] narrows the DataFrame down to rows 
where the Label column equals 1, then np.sum adds the values of these rows using the 
test_Weight column.

Finally, to see the actual rate, divide b by s:

b/s

593.9401931492318

In summary, the weights represent the expected number of signal and background events 
generated by the data. We scale the weights to match the size of the test data, then divide 
the sum of the background weights by the sum of the signal weights to establish the 
scale_pos_weight=b/s hyperparameter.

Tip
For a more detailed discussion on weights, check out the excellent introduction 
from KDnuggets at https://www.kdnuggets.com/2019/11/
machine-learning-what-why-how-weighting.html.

The model
It's time to build an XGBoost model to predict the signal – that is, the simulated 
occurrences of the Higgs boson decay.

At the time of the competition, XGBoost was new, and the scikit-learn wrapper was not 
yet available. Even today (2020), the majority of information online about implementing 
XGBoost in Python is pre-scikit-learn. Since you are likely to encounter the pre-scikit-
learn XGBoost Python API online, and this is what all competitors used in the Higgs 
Challenge, we present code using the original Python API in this chapter only.

Here are the steps to build an XGBoost model for the Higgs Challenge:

1. Import xgboost as xgb:

import xgboost as xgb

https://www.kdnuggets.com/2019/11/machine-learning-what-why-how-weighting.html
https://www.kdnuggets.com/2019/11/machine-learning-what-why-how-weighting.html
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2. Initialize the XGBoost model as a DMatrix with the missing values and weights  
filled in.

All XGBoost models were initialized as a DMatrix before scikit-learn. The  
scikit-learn wrapper automatically converts the data into a DMatrix for you.  
The sparse matrices that XGBoost optimizes for speed are DMatrices.

According to the documentation, all values set to -999.0 are unknown values. 
Instead of converting these values into the median, mean, mode, or other 
null replacement, in XGBoost, unknown values can be set to the missing 
hyperparameter. During the model build phase, XGBoost automatically chooses the 
value leading to the best split.

3. The weight hyperparameter can equal the new column, df['test_Weight'], 
as defined in the weight section:

xgb_clf = xgb.DMatrix(X, y, missing=-999.0, 
weight=df['test_Weight'])

4. Set additional hyperparameters.

The hyperparameters that follow are defaults provided by XGBoost for the 
competition:

a) Initialize a blank dictionary called param:
param = {}

b) Define the objective as 'binary:logitraw'.

This means a binary model is created from logistic regression probabilities. This 
objective defines the model as a classifier and allows a ranking of the target column, 
which is required of submissions for this particular Kaggle competition:

param['objective'] = 'binary:logitraw'

c) Scale the positive examples using the background weights divided by the signal 
weights. This will help the model perform better on the test set:

param['scale_pos_weight'] = b/s

d) The learning rate, eta, is given as 0.1:
param['eta'] = 0.1

e) max_depth is given as 6:
param['max_depth'] = 6
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f) Set the scoring method as 'auc' for display purposes:
param['eval_metric'] = 'auc'

Although the AMS score will be printed, the evaluation metric is given as auc, 
which stands for Area Under Curve. auc is the true positive versus false positive 
curve that is perfect when it equals 1. Similar to accuracy, auc is a standard scoring 
metric for classification, although it's often superior to accuracy since accuracy is 
limited for imbalanced datasets, as discussed in Chapter 7, Discovering Exoplanets 
with XGBoost.

5. Create a list of parameters that includes the preceding items, along with the 
evaluation metric (auc) and ams@0.15, XGBoost's implementation of the AMS 
score using a 15% threshold:

plst = list(param.items())+[('eval_metric', 'ams@0.15')]

6. Create a watchlist that includes the initialized classifier and 'train' so that you 
can view scores as the trees continue to boost:

watchlist = [ (xg_clf, 'train') ]

7. Set the number of boosting rounds to 120:

num_round = 120

8. Train and save the model. Train the model by placing the parameter list, the 
classifier, the number of rounds, and the watchlist as inputs. Save the model using 
the save_model method so that you do not have to go through a time-consuming 
training process a second time. Then, run the code and watch how the scores 
improve as the trees are boosted:

print ('loading data end, start to boost trees')

bst = xgb.train( plst, xgmat, num_round, watchlist )

bst.save_model('higgs.model')

print ('finish training')

The end of your results should have the following output:
[110] train-auc:0.94505 train-ams@0.15:5.84830

[111] train-auc:0.94507 train-ams@0.15:5.85186

[112] train-auc:0.94519 train-ams@0.15:5.84451

[113] train-auc:0.94523 train-ams@0.15:5.84007

[114] train-auc:0.94532 train-ams@0.15:5.85800
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[115] train-auc:0.94536 train-ams@0.15:5.86228

[116] train-auc:0.94550 train-ams@0.15:5.91160

[117] train-auc:0.94554 train-ams@0.15:5.91842

[118] train-auc:0.94565 train-ams@0.15:5.93729

[119] train-auc:0.94580 train-ams@0.15:5.93562

finish training

Congratulations on building an XGBoost classifier that can predict Higgs boson decay!

The model performs with 94.58 percent auc, and an AMS of 5.9. As far as the AMS 
is concerned, the top values of the competition were in the upper threes. This model 
achieves an AMS of around 3.6 when submitted with the test data.

The model that you just built was provided as a baseline by Tanqi Chen for XGBoost users 
during the competition. The winner of the competition, Gabor Melis, used this baseline 
to build his model. As can be seen from viewing the winning solution at https://
github.com/melisgl/higgsml and clicking on xgboost-scripts, changes made 
to the baseline model are not significant. Melis, like most Kaggle competitors, also 
performed feature engineering to add more relevant columns to the data, a practice we 
will address in Chapter 9, XGBoost Kaggle Masters. 

It is possible to build and train your own model after the deadline and submit it through 
Kaggle. For Kaggle competitions, submissions must be ranked, properly indexed, and 
delivered with the Kaggle API topics that require further explanation. If you want to 
submit models for the actual competition, the XGBoost ranking code, which you may 
find helpful, is available at https://github.com/dmlc/xgboost/blob/master/
demo/kaggle-higgs/higgs-pred.py.

Summary
In this chapter, you learned how XGBoost was designed to improve the accuracy and 
speed of gradient boosting with missing values, sparse matrices, parallel computing, 
sharding, and blocking. You learned the mathematical derivation behind the XGBoost 
objective function that determines the parameters for gradient descent and regularization. 
You built XGBClassifier and XGBRegressor templates from classic scikit-learn 
datasets, obtaining very good scores. Finally, you built the baseline model provided by 
XGBoost for the Higgs Challenge that led to the winning solution and lifted XGBoost into 
the spotlight.

Now that you have a solid understanding of the overall narrative, design, parameter 
selection, and model-building templates of XGBoost, in the next chapter, you will fine-
tune XGBoost's hyperparameters to achieve optimal scores.

https://github.com/melisgl/higgsml
https://github.com/melisgl/higgsml
https://github.com/dmlc/xgboost/blob/master/demo/kaggle-higgs/higgs-pred.py
https://github.com/dmlc/xgboost/blob/master/demo/kaggle-higgs/higgs-pred.py
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Hyperparameters
XGBoost has many hyperparameters. XGBoost base learner hyperparameters 
incorporate all decision tree hyperparameters as a starting point. There are gradient 
boosting hyperparameters, since XGBoost is an enhanced version of gradient boosting. 
Hyperparameters unique to XGBoost are designed to improve upon accuracy and speed. 
However, trying to tackle all XGBoost hyperparameters at once can be dizzying.

In Chapter 2, Decision Trees in Depth, we reviewed and applied base learner 
hyperparameters such as max_depth, while in Chapter 4, From Gradient Boosting to 
XGBoost, we applied important XGBoost hyperparameters, including n_estimators 
and learning_rate. We will revisit these hyperparameters in this chapter in 
the context of XGBoost. Additionally, we will also learn about novel XGBoost 
hyperparameters such as gamma and a technique called early stopping.

In this chapter, to gain proficiency in fine-tuning XGBoost hyperparameters, we will cover 
the following main topics:

• Preparing data and base models

• Tuning core XGBoost hyperparameters

• Applying early stopping

• Putting it all together
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Technical requirements
The code for this chapter can be found at https://github.com/
PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-
Scikit-learn/tree/master/Chapter06.

Preparing data and base models
Before introducing and applying XGBoost hyperparameters, let's prepare by doing the 
following:

• Getting the heart disease dataset 

• Building an XGBClassifier model

• Implementing StratifiedKFold

• Scoring a baseline XGBoost model

• Combining GridSearchCV with RandomizedSearchCV to form one powerful 
function

Good preparation is essential for gaining accuracy, consistency, and speed when  
fine-tuning hyperparameters. 

The heart disease dataset
The dataset used throughout this chapter is the heart disease dataset originally presented 
in Chapter 2, Decision Trees in Depth. We have chosen the same dataset to maximize the 
time spent doing hyperparameter fine-tuning, and to minimize the time spent on data 
analysis. Let's begin the process:

1. Go to https://github.com/PacktPublishing/Hands-On-Gradient-
Boosting-with-XGBoost-and-Scikit-learn/tree/master/
Chapter06 to load heart_disease.csv into a DataFrame and display the first 
five rows. Here is the code:

import pandas as pd

df = pd.read_csv('heart_disease.csv')

df.head()

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter06
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The result should look as follows:

Figure 6.1 – The first five rows
The last column, target, is the target column, where 1 indicates presence, meaning 
the patient has a heart disease, and 2 indicates absence. For detailed information on 
the other columns, visit https://archive.ics.uci.edu/ml/datasets/
Heart+Disease at the UCI Machine Learning Repository, or see Chapter 2, 
Decision Trees in Depth.

2. Now, check df.info() to ensure that the data is all numerical with no null values:

df.info()

Here is the output:
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 303 entries, 0 to 302

Data columns (total 14 columns):

 #   Column    Non-Null Count  Dtype  

---  ------    --------------  -----  

 0   age       303 non-null    int64  

 1   sex       303 non-null    int64  

 2   cp        303 non-null    int64  

 3   trestbps  303 non-null    int64  

 4   chol      303 non-null    int64  

 5   fbs       303 non-null    int64  

 6   restecg   303 non-null    int64  

 7   thalach   303 non-null    int64  

 8   exang     303 non-null    int64  

 9   oldpeak   303 non-null    float64

 10  slope     303 non-null    int64  

 11  ca        303 non-null    int64  

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
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 12  thal      303 non-null    int64  

 13  target    303 non-null    int64  

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

Since all data points are non-null and numerical, the data is machine learning-ready. It's 
time to build a classifier.

XGBClassifier
Before tuning hyperparameters, let's build a classifier so that we can obtain a baseline 
score as a starting point. 

To build an XGBoost classifier, follow these steps:

1. Download XGBClassifier and accuracy_score from their respective 
libraries. The code is as follows: 

from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score

2. Declare X as the predictor columns and y as the target column, where the last row is 
the target column:

X = df.iloc[:, :-1]

y = df.iloc[:, -1]

3. Initialize XGBClassifier with the booster='gbtree' and 
objective='binary:logistic' defaults along with random_state=2:

model = XGBClassifier(booster='gbtree', 
objective='binary:logistic', random_state=2)

The 'gbtree' booster, the base learner, is a gradient boosted tree. The 
'binary:logistic' objective is standard for binary classification in 
determining the loss function. Although XGBClassifier includes these values by 
default, we include them here to gain familiarity in preparation of modifying them 
in later chapters.
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4. To score the baseline model, import cross_val_score and numpy to fit, score, 
and display results:

from sklearn.model_selection import cross_val_score

import numpy as np

scores = cross_val_score(model, X, y, cv=5)

print('Accuracy:', np.round(scores, 2))

print('Accuracy mean: %0.2f' % (scores.mean()))

The accuracy score is as follows:
Accuracy: [0.85 0.85 0.77 0.78 0.77]

Accuracy mean: 0.81

An accuracy score of 81% is an excellent starting point, considerably higher than the  
76% cross-validation obtained by DecisionTreeClassifier in Chapter 2, Decision 
Trees in Depth.

We used cross_val_score here, and we will use GridSearchCV to tune 
hyperparameters. Next, let's find a way to ensure that the test folds are the same using 
StratifiedKFold.

StratifiedKFold
When fine-tuning hyperparameters, GridSearchCV and RandomizedSearchCV are the 
standard options. An issue from Chapter 2, Decision Trees in Depth, is that cross_val_
score and GridSearchCV/RandomizedSearchCV do not split data the same way.

One solution is to use StratifiedKFold whenever cross-validation is used.

A stratified fold includes the same percentage of target values in each fold. If a dataset 
contains 60% 1s and 40% 0s in the target column, each stratified test set contains 60% 1s 
and 40% 0s. When folds are random, it's possible that one test set contains a 70-30 split 
while another contains a 50-50 split of target values.

Tip
When using train_test_split, the shuffle and stratify parameters use 
defaults to stratify the data for you. See https://scikit-learn.org/
stable/modules/generated/sklearn.model_selection.
train_test_split.html for general information.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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To use StratifiedKFold, do the following:

1. Implement StratifiedKFold from sklearn.model_selection:

from sklearn.model_selection import StratifiedKFold

2. Next, define the number of folds as kfold by selecting n_splits=5, 
shuffle=True, and random_state=2 as the StratifiedKFold parameters. 
Note that random_state provides a consistent ordering of indices, while 
shuffle=True allows rows to be initially shuffled:

kfold = StratifiedKFold(n_splits=5, shuffle=True, random_
state=2)

The kfold variable can now be used inside cross_val_score, GridSeachCV, 
and RandomizedSearchCV to ensure consistent results.

Now, let's return to cross_val_score using kfold so that we have an appropriate 
baseline for comparison.

Baseline model
Now that we have a method for obtaining consistent folds, it's time to score an official 
baseline model using cv=kfold inside cross_val_score. The code is as follows:

scores = cross_val_score(model, X, y, cv=kfold)

print('Accuracy:', np.round(scores, 2))

print('Accuracy mean: %0.2f' % (scores.mean()))

The accuracy score is as follows:

Accuracy: [0.72 0.82 0.75 0.8 0.82]

Accuracy mean: 0.78

The score has gone down. What does this mean?
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It's important not to become too invested in obtaining the highest possible score. In 
this case, we trained the same XGBClassifier model on different folds and obtained 
different scores. This shows the importance of being consistent with test folds when 
training models, and why the score is not necessarily the most important thing. Although 
when choosing between models, obtaining the best possible score is an optimal strategy, 
the difference in scores here reveals that the model is not necessarily better. In this case, 
the two models have the same hyperparameters, and the difference in scores is attributed 
to the different folds.

The point here is to use the same folds to obtain new scores when fine-tuning 
hyperparameters with GridSearchCV and RandomizedSearchCV so that the 
comparison of scores is fair.

Combining GridSearchCV and RandomizedSearchCV
GridSearchCV searches all possible combinations in a hyperparameter grid to find the 
best results. RandomizedSearchCV selects 10 random hyperparameter combinations 
by default. RandomizedSearchCV is typically used when GridSearchCV becomes 
unwieldy because there are too many hyperparameter combinations to exhaustively check 
each one.

Instead of writing two separate functions for GridSearchCV and 
RandomizedSearchCV, we will combine them into one streamlined function with the 
following steps:

1. Import GridSearchCV and RandomizedSearchCV from sklearn.model_
selection:

from sklearn.model_selection import GridSearchCV, 
RandomizedSearchCV

2. Define a grid_search function with the params dictionary as input, along with 
random=False:

def grid_search(params, random=False): 

3. Initialize an XGBoost classifier using the standard defaults:

xgb = XGBClassifier(booster='gbtree', 
objective='binary:logistic', random_state=2)
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4. If random=True, initialize RandomizedSearchCV with xgb and the params 
dictionary. Set n_iter=20 to allow 20 random combinations instead of 10. 
Otherwise, initialize GridSearchCV with the same inputs. Make sure to set 
cv=kfold for consistent results:

    if random:

        grid = RandomizedSearchCV(xgb, params, cv=kfold, 
n_iter=20, n_jobs=-1)

    else:

        grid = GridSearchCV(xgb, params, cv=kfold, n_
jobs=-1)

5. Fit X and y to the grid model:

grid.fit(X, y)

6. Obtain and print best_params_:

best_params = grid.best_params_

print("Best params:", best_params)

7. Obtain and print best_score_:

best_score = grid.best_score_

print("Training score: {:.3f}".format(best_score))

The grid_search function can now be used to fine-tune all hyperparameters.

Tuning XGBoost hyperparameters
There are many XGBoost hyperparameters, some of which have been introduced in 
previous chapters. The following table summarizes key XGBoost hyperparameters, most 
of which we cover in this book.

Note
The XGBoost hyperparameters presented here are not meant to be 
exhaustive, but they are meant to be comprehensive. For a complete list of 
hyperparameters, read the official documentation, XGBoost Parameters, 
at https://xgboost.readthedocs.io/en/latest/
parameter.html.

https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
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Following the table, further explanations and examples are provided:

Figure 6.2 – XGBoost hyperparameter table

Now that the key XGBoost hyperparameters have been presented, let's get to know them 
better by tuning them one at a time.
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Applying XGBoost hyperparameters
The XGBoost hyperparameters presented in this section are frequently fine-tuned by 
machine learning practitioners. After a brief explanation of each hyperparameter, we 
will test standard variations using the grid_search function defined in the previous 
section.

n_estimators
Recall that n_estimators provides the number of trees in the ensemble. In the case of 
XGBoost, n_estimators is the number of trees trained on the residuals.

Initialize a grid search of n_estimators with the default of 100, then double the 
number of trees through 800 as follows:

grid_search(params={'n_estimators':[100, 200, 400, 800]})

The output is as follows:

Best params: {'n_estimators': 100}

Best score: 0.78235

Since our dataset is small, increasing n_estimators did not produce better results. One 
strategy for finding an ideal value of n_estimators is discussed in the Applying early 
stopping section in this chapter. 

learning_rate
learning_rate shrinks the weights of trees for each round of boosting. By lowering 
learning_rate, more trees are required to produce better scores. Lowering 
learning_rate prevents overfitting because the size of the weights carried forward  
is smaller.

A default value of 0.3 is used, though previous versions of scikit-learn have used 0.1. 
Here is a starting range for learning_rate as placed inside our grid_search 
function:

grid_search(params={'learning_rate':[0.01, 0.05, 0.1, 0.2, 0.3, 
0.4, 0.5]})

The output is as follows:

Best params: {'learning_rate': 0.05}

Best score: 0.79585
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Changing the learning rate has resulted in a slight increase. As described in Chapter 4, 
From Gradient Boosting to XGBoost, lowering learning_rate may be advantageous 
when n_estimators goes up.

max_depth
max_depth determines the length of the tree, equivalent to the number of rounds of 
splitting. Limiting max_depth prevents overfitting because the individual trees can only 
grow as far as max_depth allows. XGBoost provides a default max_depth value of six:

grid_search(params={'max_depth':[2, 3, 5, 6, 8]})

The output is as follows:

Best params: {'max_depth': 2}

Best score: 0.79902

Changing max_depth from 6 to 2 gave a better score. The lower value for max_depth 
means variance has been reduced.

gamma
Known as a Lagrange multiplier, gamma provides a threshold that nodes must surpass 
before making further splits according to the loss function. There is no upper limit to the 
value of gamma. The default is 0, and anything over 10 is considered very high. Increasing 
gamma results in a more conservative model:

grid_search(params={'gamma':[0, 0.1, 0.5, 1, 2, 5]})

The output is as follows:

Best params: {'gamma': 0.5}

Best score: 0.79574

Changing gamma from 0 to 0.5 has resulted in a slight improvement. 

min_child_weight
min_child_weight refers to the minimum sum of weights required for a node to split 
into a child. If the sum of the weights is less than the value of min_child_weight, no 
further splits are made. min_child_weight reduces overfitting by increasing its value:

grid_search(params={'min_child_weight':[1, 2, 3, 4, 5]})
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The output is as follows:

Best params: {'min_child_weight': 5}

Best score: 0.81219

A slight adjustment to min_child_weight gives the best results yet.

subsample
The subsample hyperparameter limits the percentage of training instances (rows) for 
each boosting round. Decreasing subsample from 100% reduces overfitting:

grid_search(params={'subsample':[0.5, 0.7, 0.8, 0.9, 1]})

The output is as follows:

Best params: {'subsample': 0.8}

Best score: 0.79579

The score has improved by a slight amount once again, indicating a small presence of 
overfitting.

colsample_bytree
Similar to subsample, colsample_bytree randomly selects particular columns 
according to the given percentage. colsample_bytree is useful for limiting the 
influence of columns and reducing variance. Note that colsample_bytree takes a 
percentage as input, not the number of columns:

grid_search(params={'colsample_bytree':[0.5, 0.7, 0.8, 0.9, 
1]})

The output is as follows:

Best params: {'colsample_bytree': 0.7}

Best score: 0.79902

Gains here are minimal at best. You are encouraged to try colsample_bylevel 
and colsample_bynode on your own. colsample_bylevel randomly selects 
columns for each tree depth, and colsample_bynode randomly selects columns when 
evaluating each tree split.
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Fine-tuning hyperparameters is an art and a science. As with both disciplines, varied 
approaches work. Next, we will look into early stopping as a specific strategy for fine-
tuning n_estimators.

Applying early stopping
Early stopping is a general method to limit the number of training rounds in iterative 
machine learning algorithms. In this section, we look at eval_set, eval_metric, and 
early_stopping_rounds to apply early stopping.

What is early stopping?
Early stopping provides a limit to the number of rounds that iterative machine learning 
algorithms train on. Instead of predefining the number of training rounds, early stopping 
allows training to continue until n consecutive rounds fail to produce any gains, where n is 
a number decided by the user.

It doesn't make sense to only choose multiples of 100 when looking for n_estimators. 
It's possible that the best value is 737 instead of 700. Finding a value this precise manually 
can be tiring, especially when hyperparameter adjustments may require changes down  
the road.

With XGBoost, a score may be determined after each boosting round. Although scores go 
up and down, eventually scores will level off or move in the wrong direction.

A peak score is reached when all subsequent scores fail to provide any gains. You 
determine the peak after 10, 20, or 100 training rounds fail to improve upon the score. You 
choose the number of rounds.

In early stopping, it's important to give the model sufficient time to fail. If the model 
stops too early, say, after five rounds of no improvement, the model may miss general 
patterns that it could pick up on later. As with deep learning, where early stopping is used 
frequently, gradient boosting needs sufficient time to find intricate patterns within data.

For XGBoost, early_stopping_rounds is the key parameter for applying early 
stopping. If early_stopping_rounds=10, the model will stop training after 10 
consecutive training rounds fail to improve the model. Similarly, if early_stopping_
rounds=100, training continues until 100 consecutive rounds fail to improve the model.

Now that you understand what early stopping is, let's take a look at eval_set and 
eval_metric.
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eval_set and eval_metric
early_stopping_rounds is not a hyperparameter, but a strategy for optimizing the 
n_estimators hyperparameter.

Normally when choosing hyperparameters, a test score is given after all boosting rounds 
are complete. To use early stopping, we need a test score after each round.

eval_metric and eval_set may be used as parameters for .fit to generate test 
scores for each training round. eval_metric provides the scoring method, commonly 
'error' for classification, and 'rmse' for regression. eval_set provides the test to 
be evaluated, commonly X_test and y_test.

The following six steps display an evaluation metric for each round of training with the 
default n_estimators=100:

1. Split the data into training and test sets:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

2. Initialize the model:

model = XGBClassifier(booster='gbtree', 
objective='binary:logistic', random_state=2)

3. Declare eval_set:

eval_set = [(X_test, y_test)]

4. Declare eval_metric:

eval_metric = 'error'

5. Fit the model with eval_metric and eval_set:

model.fit(X_train, y_train, eval_metric=eval_metric, 
eval_set=eval_set)

6. Check the final score:

y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy: %.2f%%" % (accuracy * 100.0))
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Here is the truncated output:
[0] validation_0-error:0.15790

[1] validation_0-error:0.10526

[2] validation_0-error:0.11842

[3] validation_0-error:0.13158

[4] validation_0-error:0.11842

…

[96] validation_0-error:0.17105

[97] validation_0-error:0.17105

[98] validation_0-error:0.17105

[99] validation_0-error:0.17105

Accuracy: 82.89%

Do not get too excited about the score as we have not used cross-validation. In fact,  
we know that StratifiedKFold cross-validation gives a mean accuracy of 78% when 
n_estimators=100. The disparity in scores comes from the difference in test sets. 

early_stopping_rounds
early_stopping_rounds is an optional parameter to include with eval_metric 
and eval_set when fitting a model.

Let's try early_stopping_rounds=10.

The previous code is repeated with early_stopping_rounds=10 added in:

model = XGBClassifier(booster='gbtree', 
objective='binary:logistic', random_state=2)

eval_set = [(X_test, y_test)]

eval_metric='error'

model.fit(X_train, y_train, eval_metric="error", eval_set=eval_
set, early_stopping_rounds=10, verbose=True)

y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

The output is as follows:

[0] validation_0-error:0.15790

Will train until validation_0-error hasn't improved in 10 
rounds.
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[1] validation_0-error:0.10526

[2] validation_0-error:0.11842

[3] validation_0-error:0.13158

[4] validation_0-error:0.11842

[5] validation_0-error:0.14474

[6] validation_0-error:0.14474

[7] validation_0-error:0.14474

[8] validation_0-error:0.14474

[9] validation_0-error:0.14474

[10] validation_0-error:0.14474

[11] validation_0-error:0.15790

Stopping. Best iteration:

[1] validation_0-error:0.10526

Accuracy: 89.47%

The result may come as a surprise. Early stopping reveals that n_estimators=2 gives 
the best result, which may be an account of the test fold.

Why only two trees? By only giving the model 10 rounds to improve upon accuracy, it's 
possible that patterns within the data have not yet been discovered. However, the dataset 
is very small, so it's possible that two boosting rounds gives the best possible result.

A more thorough approach is to use larger values, say, n_estimators = 5000 and 
early_stopping_rounds=100.

By setting early_stopping_rounds=100, you are guaranteed to reach the default  
of 100 boosted trees presented by XGBoost.

Here is the code that gives a maximum of 5,000 trees and that will stop after 100 
consecutive rounds fail to find any improvement:

model = XGBClassifier(random_state=2, n_estimators=5000)

eval_set = [(X_test, y_test)]

eval_metric="error"

model.fit(X_train, y_train, eval_metric=eval_metric, eval_
set=eval_set, early_stopping_rounds=100)

y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy: %.2f%%" % (accuracy * 100.0))
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Here is the truncated output:

[0] validation_0-error:0.15790

Will train until validation_0-error hasn't improved in 100 
rounds.

[1] validation_0-error:0.10526

[2] validation_0-error:0.11842

[3] validation_0-error:0.13158

[4] validation_0-error:0.11842

...

[98] validation_0-error:0.17105

[99] validation_0-error:0.17105

[100] validation_0-error:0.17105

[101] validation_0-error:0.17105

Stopping. Best iteration:

[1] validation_0-error:0.10526

Accuracy: 89.47%

After 100 rounds of boosting, the score provided by two trees remains the best.

As a final note, consider that early stopping is particularly useful for large datasets when 
it's unclear how high you should aim.

Now, let's use the results from early stopping with all the hyperparameters previously 
tuned to generate the best possible model.

Combining hyperparameters
It's time to combine all the components of this chapter to improve upon the 78% score 
obtained through cross-validation. 

As you know, there is no one-size-fits-all approach to hyperparameter fine-tuning. One 
approach is to input all hyperparameter ranges with RandomizedSearchCV. A more 
systematic approach is to tackle hyperparameters one at a time, using the best results 
for subsequent iterations. All approaches have advantages and limitations. Regardless 
of strategy, it's essential to try multiple variations and make adjustments when the data 
comes in.
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One hyperparameter at a time
Using a systematic approach, we add one hyperparameter at a time, aggregating results 
along the way.

n_estimators
Even though the n_estimators value of 2 gave the best result, it's worth trying a range 
on the grid_search function, which uses cross-validation:

grid_search(params={'n_estimators':[2, 25, 50, 75, 100]})

The output is as follows:

Best params: {'n_estimators': 50}

Best score: 0.78907

It's no surprise that n_estimators=50, between the previous best value of 2, and the 
default of 100, gives the best result. Since cross-validation was not used in early stopping, 
the results here are different.

max_depth
The max_depth hyperparameter determines the length of each tree. Here is a nice range:

grid_search(params={'max_depth':[1, 2, 3, 4, 5, 6, 7, 8], 'n_
estimators':[50]})

The output is as follows:

Best params: {'max_depth': 1, 'n_estimators': 50}

Best score: 0.83869

This is a very substanial gain. A tree with a depth of 1 is called a decision tree stump. 
We have gained four percentage points from our baseline model by adjusting just two 
hyperparameters.

A limitation with the approach of keeping the top values is that we may miss out on better 
combinations. Perhaps n_estimators=2 or n_esimtators=100 gives better results 
in conjunction with max_depth. Let's find out:

grid_search(params={'max_depth':[1, 2, 3, 4, 6, 7, 8], 'n_
estimators':[2, 50, 100]})



Combining hyperparameters     153

The output is as follows:

Best params: {'max_depth': 1, 'n_estimators': 50}

Best score: 0.83869

n_estimators=50 and max_depth=1 still give the best results, so we will use them 
going forward, returning to our early stopping analysis later.

learning_rate
Since n_esimtators is reasonably low, adjusting learning_rate may improve 
results. Here is a standard range:

grid_search(params={'learning_rate':[0.01, 0.05, 0.1, 0.2, 0.3, 
0.4, 0.5], 'max_depth':[1], 'n_estimators':[50]})

The output is as follows:

Best params: {'learning_rate': 0.3, 'max_depth': 1, 'n_
estimators': 50}

Best score: 0.83869

This is the same score as previously obtained. Note that a learning_rate value of 0.3 is 
the default value provided by XGBoost.

min_child_weight
Let's see whether adjusting the sum of weights required to split into child nodes increases 
the score:

grid_search(params={'min_child_weight':[1, 2, 3, 4, 5], 'max_
depth':[1], 'n_estimators':[50]})

The output is as follows:

Best params: {'max_depth': 1, 'min_child_weight': 1, 'n_
estimators': 50}

Best score: 0.83869

In this case, the best score is the same. Note that 1 is the default for min_child_
weight.
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subsample
If reducing variance is beneficial, subsample may work by limiting the percentage of 
samples. In this case, however, there are only 303 samples to begin with, and a small 
number of samples makes it difficult to adjust hyperparameters to improve scores. Here is 
the code:

grid_search(params={'subsample':[0.5, 0.6, 0.7, 0.8, 0.9, 1], 
'max_depth':[1], 'n_estimators':[50]})

The output is as follows:

Best params: {'max_depth': 1, 'n_estimators': 50, 'subsample': 
1}

Best score: 0.83869

Still no gains. At this point, you may be wondering whether new gains would have 
continued with n_esimtators=2. 

Let's find out by using a comprehensive grid search of the values used thus far.

grid_search(params={'subsample':[0.5, 0.6, 0.7, 0.8, 0.9, 1], 

                    'min_child_weight':[1, 2, 3, 4, 5], 

                    'learning_rate':[0.1, 0.2, 0.3, 0.4, 0.5], 

                    'max_depth':[1, 2, 3, 4, 5],

                    'n_estimators':[2]})

The output is as follows:

Best params: {'learning_rate': 0.5, 'max_depth': 2, 'min_child_
weight': 4, 'n_estimators': 2, 'subsample': 0.9}

Best score: 0.81224

It's not surprising that a classifier with only two trees performs worse. Even though the 
initial scores were better, it does not go through enough iterations for the hyperparameters 
to make significant adjustments.

Hyperparameter adjustments
When shifting directions with hyperparameters, RandomizedSearchCV is useful due to 
the extensive range of inputs.
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Here is a range of hyperparameter values combining new inputs with previous knowledge. 
Limiting ranges with RandomizedSearchCV increases the odds of finding the best 
combination. Recall that RandomizedSearchCV is useful when the total number 
of combinations is too time-consuming for a grid search. There are 4,500 possible 
combinations with the following options:

grid_search(params={'subsample':[0.5, 0.6, 0.7, 0.8, 0.9, 1], 

                    'min_child_weight':[1, 2, 3, 4, 5], 

                    'learning_rate':[0.1, 0.2, 0.3, 0.4, 0.5], 

                    'max_depth':[1, 2, 3, 4, 5, None], 

                    'n_estimators':[2, 25, 50, 75, 100]},

                    random=True)

The output is as follows:

Best params: {'subsample': 0.6, 'n_estimators': 25, 'min_child_
weight': 4, 'max_depth': 4, 'learning_rate': 0.5}

Best score: 0.82208

This is interesting. Different values are obtaining good results.

We use the hyperparameters from the best score going forward. 

Colsample
Now, let's try colsample_bytree, colsample_bylevel, and colsample_
bynode, in that order.

colsample_bytree
Let's start with colsample_bytree:

grid_search(params={'colsample_bytree':[0.5, 0.6, 0.7, 0.8, 
0.9, 1], 'max_depth':[1], 'n_estimators':[50]})

The output is as follows:

Best params: {'colsample_bytree': 1, 'max_depth': 1, 'n_
estimators': 50}

Best score: 0.83869

The score has not improved. Next, try colsample_bylevel.
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colsample_bylevel
Use the following code to try out colsample_bylevel:

grid_search(params={'colsample_bylevel':[0.5, 0.6, 0.7, 0.8, 
0.9, 1],'max_depth':[1], 'n_estimators':[50]})

The output is as follows:

Best params: {'colsample_bylevel': 1, 'max_depth': 1, 'n_
estimators': 50}

Best score: 0.83869

Still no gain.

It seems that we are peaking out with the shallow dataset. Let's try a different approach. 
Instead of using colsample_bynode alone, let's tune all colsamples together.

colsample_bynode
Try the following code:

grid_search(params={'colsample_bynode':[0.5, 0.6, 0.7, 0.8, 
0.9, 1], 'colsample_bylevel':[0.5, 0.6, 0.7, 0.8, 0.9, 
1], 'colsample_bytree':[0.5, 0.6, 0.7, 0.8, 0.9, 1], 'max_
depth':[1], 'n_estimators':[50]})

The output is as follows:

Best params: {'colsample_bylevel': 0.9, 'colsample_bynode': 
0.5, 'colsample_bytree': 0.8, 'max_depth': 1, 'n_estimators': 
50}

Best score: 0.84852

Outstanding. Working together, the colsamples have combined to deliver the highest score 
yet, 5 percentage points higher than the original.

gamma
The last hyperparameter that we will attempt to fine-tune is gamma. Here is a range of 
gamma values designed to reduce overfitting:

grid_search(params={'gamma':[0, 0.01, 0.05, 0.1, 0.5, 
1, 2, 3], 'colsample_bylevel':[0.9], 'colsample_
bytree':[0.8], 'colsample_bynode':[0.5], 'max_depth':[1], 'n_
estimators':[50]})
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The output is as follows:

Best params: {'colsample_bylevel': 0.9, 'colsample_bynode': 
0.5, 'colsample_bytree': 0.8, 'gamma': 0, 'max_depth': 1, 'n_
estimators': 50}

Best score: 0.84852

gamma remains at the default value of 0.

Since our best score is over five percentage points higher than the original, no small feat 
with XGBoost, we will stop here.

Summary
In this chapter, you prepared for hyperparameter fine-tuning by establishing a baseline 
XGBoost model using StratifiedKFold. Then, you combined GridSearchCV 
and RandomizedSearchCV to form one powerful function. You learned the standard 
definitions, ranges, and applications of key XGBoost hyperparameters, in addition to a 
new technique called early stopping. You synthesized all functions, hyperparameters, and 
techniques to fine-tune the heart disease dataset, gaining an impressive five percentage 
points from the default XGBoost classifier.

XGBoost hyperparameter fine-tuning takes time to master, and you are well on your way. 
Fine-tuning hyperparameters is a key skill that separates machine learning experts from 
machine learning novices. Knowledge of XGBoost hyperparameters is not just useful, it's 
essential to get the most out of the machine learning models that you build.

Congratulations on completing this important chapter.

Next, we present a case study of XGBoost regression from beginning to end, highlighting 
the power, range, and applications of XGBClassifier.





7
Discovering 

Exoplanets with 
XGBoost

In this chapter, you will journey through the stars in an attempt to discover exoplanets 
with XGBClassifier as your guide.

The reason for this chapter is twofold. The first is that it's important to gain practice in  
a top-to-bottom study using XGBoost since for all practical purposes, that is what you 
will normally do with XGBoost. Although you may not discover exoplanets with XGBoost 
on your own, the strategies that you implement here, which include choosing the correct 
scoring metric and carefully fine-tuning hyperparameters with that scoring metric in mind, 
apply to any practical use of XGBoost. The second reason for this particular case study 
is that it's essential for all machine learning practitioners to be proficient at competently 
handling imbalanced datasets, which is the key theme of this particular chapter.



160     Discovering Exoplanets with XGBoost

Specifically, you will gain new skills in using the confusion matrix and the classification 
report, understanding precision versus recall, resampling data, applying scale_pos_
weight, and more. Getting the best results from XGBClassifier will require careful 
analysis of the imbalanced data and clear expectations of the goal at hand. In this chapter, 
XGBClassifier is the centerpiece of a top-to-bottom study analyzing light data to 
predict exoplanets in the universe.

In this chapter, we cover the following main topics:

• Searching for exoplanets

• Analyzing the confusion matrix

• Resampling imbalanced data 

• Tuning and scaling XGBClassifier

Technical requirements
The code for this chapter may be found at https://github.com/
PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-
Scikit-learn/tree/master/Chapter07.

Searching for exoplanets
In this section, we'll begin the search for exoplanets by analyzing the Exoplanets dataset. 
We'll provide historical context for the discovery of exoplanets before attempting to detect 
them via plotting and observing light graphs. Plotting time series is a valuable machine 
learning skill that may be used to gain insights into any time series datasets. Finally, we'll 
make initial predictions using machine learning before revealing a glaring shortcoming.

Historical background
Astronomers have been gathering information from light since antiquity. With the advent 
of the telescope, astronomical knowledge surged in the 17th century. The combination 
of telescopes and mathematical models empowered 18th-century astronomers to predict 
planetary locations and eclipses within our own solar system with great precision.

In the 20th century, astronomical research continued with more advanced technology and 
more complex mathematics. Planets revolving around other stars, called exoplanets, were 
discovered in the habitable zone. A planet in the habitable zone means that the exoplanet's 
location and size are comparable to Earth, and therefore it's a candidate for harboring 
liquid water and life.

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter07
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These exoplanets are not viewed directly via telescopes, rather they are inferred through 
periodic changes in starlight. An object that periodically revolves around a star that 
is large enough to block a detectable fraction of starlight is by definition a planet. 
Discovering exoplanets from starlight requires measuring light fluctuations over extended 
intervals of time. Since the change in light is often very minute, it's not easy to determine 
whether an exoplanet is actually present.

In this chapter, we are going to predict whether stars have exoplanets with XGBoost.

The Exoplanet dataset
You previewed the Exoplanet dataset in Chapter 4, From Gradient Boosting to XGBoost, 
to uncover the time advantage that XGBoost has over comparable ensemble methods for 
large datasets. In this chapter, we will take a deeper look at the Exoplanet dataset.

This Exoplanet dataset is taken from NASA Kepler Space Telescope, Campaign 3, Summer 
2016. Information about the data source is available on Kaggle at https://www.
kaggle.com/keplersmachines/kepler-labelled-time-series-data. Of 
all the stars in the dataset, 5,050 do not have exoplanets, while 37 have exoplanets.

The 300+ columns and 5,000+ rows equal 1.5 million plus entries. When multiplied by 
100 XGBoost trees, this is 150 million plus data points. To expedite matters, we start with 
a subset of the data. Starting with a subset is a common practice when dealing with large 
datasets, to save time.

pd.read_csv contains an nrows parameter, used to limit the number of rows. Note 
that nrows=n selects the first n rows of the dataset. Depending on the data structure, 
additional code may be required to ensure that the subset is representative of the whole. 
Let's get started.

Import pandas, then load exoplanets.csv with nrows=400. Then view the data:

import pandas as pd

df = pd.read_csv('exoplanets.csv', nrows=400)

df.head()

https://www.kaggle.com/keplersmachines/kepler-labelled-time-series-data
https://www.kaggle.com/keplersmachines/kepler-labelled-time-series-data
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The output should appear as follows:

Figure 7.1 – Exoplanet DataFrame

The large number of columns (3198) listed underneath the DataFrame makes sense. 
When looking for periodic changes in light, you need enough data points to find 
periodicity. The revolutions of planets within our own solar system range from 88 days 
(Mercury) to 165 years (Neptune). If exoplanets are to be detected, data points must be 
examined frequently enough so as not to miss the transit of the planet when the planet 
orbits in front of the star.

Since there are only 37 exoplanet stars, it's important to know how many exoplanet stars 
are contained in the subset.

The .value_counts() method determines the number of each value in a particular 
column. Since we are interested in the LABEL column, the number of exoplanet stars may 
be found using the following code:

df['LABEL'].value_counts()

The output is as follows:

1    363 
2     37 
Name: LABEL, dtype: int64

All exoplanet stars are included in our subset. As .head() reveals, the exoplanet stars are 
at the beginning.

Graphing the data
The expectation is that when an exoplanet blocks light from a star, the light flux goes 
down. If drops in flux occur periodically, an exoplanet is likely the reason since, by 
definition, a planet is a large object orbiting a star.
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Let's visualize the data by graphing:

1. Import matplotlib, numpy, and seaborn, then set seaborn to the dark grid 
as follows:

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

sns.set()

When plotting light fluctuations, the LABEL column is not of interest. The LABEL 
column will be our target column for machine learning. 

Tip
seaborn is recommended to improve your matplotlib graphs. The 
sns.set() default provides a nice light-gray background with a white 
grid. Furthermore, many standard graphs, such as plt.hist(), look more 
aesthetically pleasing with this Seaborn default in place. For more information 
on Seaborn, check out https://seaborn.pydata.org/.

2. Now, let's split the data into X, the predictor columns (which we will graph), and y, 
the target column. Note that for the Exoplanet dataset, the target column is the first 
column, not the last:

X = df.iloc[:,1:]

y = df.iloc[:,0]

3. Now write a function called light_plot, which takes as input the index of the 
data (the row) that plots all data points as y coordinates (the light flux), and the 
number of observations as x coordinates. Use appropriate labels for the graph  
as follows:

def light_plot(index):

    y_vals = X.iloc[index]

    x_vals = np.arange(len(y_vals))

    plt.figure(figsize=(15,8))

    plt.xlabel('Number of Observations')

    plt.ylabel('Light Flux')

    plt.title('Light Plot ' + str(index), size=15)

    plt.plot(x_vals, y_vals)

    plt.show()

https://seaborn.pydata.org/
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4. Now, call the function to plot the first index. This star has been classified as an 
exoplanet star:

light_plot(0)

Here is the expected graph for our first light plot:

Figure 7.2 – Light plot 0. Periodic drops in light are present
There are clear drops in the data that occur periodically. However, concluding that 
an exoplanet is present is not obvious from this graph alone.

5. By comparison, contrast this plot with the 37th index, the first non-exoplanet star in 
the dataset:

light_plot(37)
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Here is the expected graph for the 37th index:

Figure 7.3 – Light plot 37
Increases and decreases in light are present, but not over the entire range.

There are clear drops in the data, but they are not periodic throughout the graph. 
The frequency of the drops does not recur consistently. Based on this evidence 
alone, it's not enough to determine the presence of an exoplanet.

6. Here is the second light plot of an exoplanet star:

light_plot(1)
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Here is the expected graph for the first index:

Figure 7.4 – Clear periodic drops indicate the presence of an exoplanet

The plot shows clear periodicity with large drops in light flux making an exoplanet 
extremely likely! If all the plots were this clear, machine learning would be unnecessary. 
As the other plots reveal, concluding that an exoplanet is present is usually not this clear.

The purpose here is to highlight the data and the difficulty of classifying exoplanets based 
on visual graphs alone. Astronomers use different methods to classify exoplanets, and 
machine learning is one such method. 

Although this dataset is a time series, the goal is not to predict light flux for the next 
unit of time, but rather to classify the star based on all the data. In this respect, machine 
learning classifiers may be used to predict whether a given star hosts an exoplanet. The 
idea is to train the classifier on the provided data, which may in turn be used to predict 
exoplanets on new data. In this chapter, we attempt to classify the exoplanets within 
the data using XGBClassifier. Before we move on to classify the data, we must first 
prepare the data.
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Preparing data
We witnessed in the previous section that not all graphs are clear enough to determine  
the existence of an exoplanet. This is where machine learning may be of great benefit.  
To begin, let's prepare the data for machine learning:

1. First, we need the dataset to be numerical with no null values. Check the data types 
and null values using df.info():

df.info()

Here is the expected output:
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 400 entries, 0 to 399

Columns: 3198 entries, LABEL to FLUX.3197

dtypes: float64(3197), int64(1)

memory usage: 9.8 MB

The subset contains 3,197 floats, and 1 int, so all columns are numerical. No 
information is provided about null values due to the large number of columns. 

2. We can use the .sum() method twice on .null() to sum all null values, once  
to sum the null values in each column, and the second time to sum all columns:

df.isnull().sum().sum()

The expected output is as follows:
0

Since there are no null values and the data is numerical, we will proceed with machine 
learning.

Initial XGBClassifier
To start building an initial XGBClassifier, take the following steps:

1. Import XGBClassifier and accuracy_score:

from xgboost import XGBClassifier 
from sklearn.metrics import accuracy_score
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2. Split the model into a training and test set:

from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

3. Build and score the model using booster='gbtree', 
objective='binary:logistic', and random_state=2 as parameters:

model = XGBClassifier(booster='gbtree', 
objective='binary:logistic', random_state=2) 
model.fit(X_train, y_train) 
y_pred = model.predict(X_test) 
score = accuracy_score(y_pred, y_test) 
print('Score: ' + str(score))

The score is as follows:
Score: 0.89

Correctly classifying 89% of stars seems like a good starting point, but there is one  
glaring issue.

Can you figure it out?

Imagine that you present your model to your astronomy professor. Assuming your 
professor is well-trained in data analysis, your professor would respond, "I see that you 
obtained 89% accuracy, but exoplanets represent 10% of the data, so how do you know 
your results aren't better than a model that predicts no exoplanets 100% of the time?"

Therein lies the issue. If the model determines that no stars contain exoplanets, its 
accuracy will be approximately 90% since 9 out of 10 stars do not contain exoplanets.

With imbalanced data, accuracy isn't enough.

Analyzing the confusion matrix
A confusion matrix is a table that summarizes the correct and incorrect predictions of  
a classification model. The confusion matrix is ideal for analyzing imbalanced data 
because it provides more information on which predictions are correct, and which 
predictions are wrong.
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For the Exoplanet subset, here is the expected output for a perfect confusion matrix:

array([[88, 0],

       [ 0,  12]])

When all positive entries are on the left diagonal, the model has 100% accuracy. A perfect 
confusion matrix here predicts 88 non-exoplanet stars and 12 exoplanet stars. Notice that 
the confusion matrix does not provide labels, but in this case, labels may be inferred based 
on the size.

Before getting into further detail, let's see the actual confusion matrix using scikit-learn.

confusion_matrix 
Import confusion_matrix from sklearn.metrics as follows:

from sklearn.metrics import confusion_matrix

Run confusion_matrix with y_test and y_pred as inputs (variables obtained in 
the previous section), making sure to put y_test first:

confusion_matrix(y_test, y_pred)

The output is as follows:

array([[86, 2],

       [9,  3]])

The numbers on the diagonals of the confusion matrix reveal 86 correct non-exoplanet-
star predictions and only 3 correct exoplanet star predictions.

In the upper-right corner of the matrix, the number 2 reveals that two non-exoplanet-
stars were misclassified as exoplanet stars. Similarly, in the bottom-left corner of the 
matrix, the number 9 reveals that 9 exoplanet stars were misclassified as non-exoplanet-
stars.

When analyzed horizontally, 86 of 88 non-exoplanet stars were correctly classified, while 
only 3 of 12 exoplanet stars were correctly classified.

As you can see, the confusion matrix reveals important details of the model's predictions 
that an accuracy score is unable to pick up on.
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classification_report
The various percentages from the numbers revealed in the confusion matrix in the 
previous section are contained within a classification report. Let's view the classification 
report:

1. Import classification_report from sklearn.metrics:

from sklearn.metrics import classification_report

2. Place y_test and y_pred inside clasification_report, making sure to 
put y_test first. Then place classification_report inside the global print 
function to keep the output aligned and easy to read:

print(classification_report(y_test, y_pred))

Here is the expected output: 
              precision    recall  f1-score   support

           1       0.91      0.98      0.94        88

           2       0.60      0.25      0.35        12

    accuracy                           0.89       100

   macro avg       0.75      0.61      0.65       100

weighted avg       0.87      0.89      0.87       100

It's important to understand what the preceding scores mean, so let's review them one  
at a time.

Precision
Precision gives the predictions of the positive cases (2s) that are actually correct. It's 
technically defined in terms of true positives and false positives.

True positives 
Here are a definition and example of true positives:

• Definition – Number of labels correctly predicted as positive. 

• Example – 2s are correctly predicted as 2s.
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False positives
Here are a definition and example of false positives:

• Definition – Number of positive labels incorrectly predicted as negative.

• Example – For exoplanet stars, 2s are incorrectly predicted as 1s.

The definition of precision is most often referred to in its mathematical form as follows:

Here TP stands for true positive and FP stands for false positive.

In the Exoplanet dataset, we have the following two mathematical forms:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜 𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝 = 3
3 + 2 = 0.6 

and

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜 𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝 = 86
86 + 9 = 0.91. 

Precision gives the percentage of correct predictions for each target class. Now let's review 
other key scoring metrics that the classification report reveals.

Recall
Recall gives you the percentage of positive cases that your predictions uncovered. Recall is 
the number of true positives divided by the true positives plus false negatives. 

False negatives
Here are a definition and example of false negatives:

• Definition – Number of labels incorrectly predicted as negative.

• Example – For exoplanet star predictions, 2s are incorrectly predicted as 1s.

In mathematical form, this looks as follows:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = TP
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

Here TP stands for true positive and FN stands for false negative.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = TP
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 



172     Discovering Exoplanets with XGBoost

In the Exoplanet dataset, we have the following:

and 

Recall tells you how many of the positive cases were found. In the exoplanet case, only 
25% of exoplanets have been found.

F1 score
The F1 score is the harmonic mean between precision and recall. The harmonic mean is 
used because precision and recall are based on different denominators and the harmonic 
mean evens them out. When precision and recall are equally important, the F1 score is 
best. Note that the F1 score ranges from 0 to 1 with 1 being the highest.

Alternative scoring methods
Precision, recall, and the F1 score are alternative scoring methods provided by scikit-
learn. A list of standard scoring methods may be found in the official documentation at 
https://scikit-learn.org/stable/modules/model_evaluation.html.

Tip
Accuracy is often not the best choice for classification datasets. Another 
popular scoring method is roc_auc_score, the area under the curve of the 
receiving operator characteristic. As with most classification scoring methods, 
the closer to 1, the better the results. See https://scikit-learn.
org/stable/modules/generated/sklearn.metrics.roc_
auc_score.html#sklearn.metrics.roc_auc_score for more 
information.

When choosing a scoring method, it's critical to understand the goal. The goal in the 
Exoplanet dataset is to find exoplanets. This is obvious. What is not obvious is how to 
select the best scoring method to achieve the desired results.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑟𝑟𝑒𝑒𝑜𝑜𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟𝑠𝑠 = 3
3 + 9 = 0.25 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑛𝑛𝑟𝑟𝑛𝑛𝑜𝑜𝑛𝑛𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑛𝑛 𝑠𝑠𝑛𝑛𝑟𝑟𝑟𝑟𝑠𝑠 = 86
86 + 2 = 0.98 

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
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Imagine two different scenarios:

• Scenario 1: Of the 4 exoplanet stars the machine learning model predicts, 3 are 
actually exoplanet stars: 3/4 = 75% precision.

• Scenario 2: Of the 12 exoplanet stars, the model correctly predicts 8 exoplanet stars 
(8/12 = 66% recall).

Which is more desirable? 

The answer is that it depends. Recall is ideal for flagging potential positive cases 
(exoplanets) with the goal of finding them all. Precision is ideal for ensuring that the 
predictions (exoplanets) are indeed positive.

Astronomers are unlikely to announce that an exoplanet has been discovered just because 
a machine learning model says so. They are more likely to carefully examine potential 
exoplanet stars before confirming or refuting the claim based on additional evidence.

Assuming that the goal of the machine learning model is to find as many exoplanets  
as possible, recall is an excellent choice. Why? Recall tells us how many of the 12 exoplanet 
stars have been found (2/12, 5/12, 12/12). Let's try to find them all.

Precision note
A higher percentage of precision does not indicate more exoplanet stars. For 
instance, a recall of 1/1 is 100%, but it only finds one exoplanet.

recall_score
As indicated in the previous section, we will proceed with recall as the scoring method for 
the Exoplanet dataset to find as many exoplanets as possible. Let's begin:

1. Import recall_score from sklearn.metrics:

from sklearn.metrics import recall_score

By default, recall_score reports the recall score of the positive class, typically 
labeled 1. It is unusual for the positive class to be labeled 2 and for the negative class 
to be labeled 1 as is the case with the Exoplanet dataset.

2. To obtain the recall_score value of exoplanet stars, input y_test and y_pred 
as parameters for recall_score along with pos_label=2:

recall_score(y_test, y_pred, pos_label=2)



174     Discovering Exoplanets with XGBoost

The score of exoplanet stars is as follows:
0.25

This is the same percentage given by the classification report under the recall score of 2, 
which is the exoplanet stars. Going forward, instead of using accuracy_score, we will 
use recall_score with the preceding parameters as our scoring metric.

Next, let's learn about resampling, an important strategy for improving the scores of 
imbalanced datasets.

Resampling imbalanced data
Now that we have an appropriate scoring method to discover exoplanets, it's time to 
explore strategies such as resampling, undersampling, and oversampling for correcting the 
imbalanced data causing the low recall score.

Resampling
One strategy to counteract imbalanced data is to resample the data. It's possible to 
undersample the data by reducing rows of the majority class and to oversample the data  
by repeating rows of the minority class.

Undersampling
Our exploration began by selecting 400 rows from 5,087. This is an example of 
undersampling since the subset contains fewer rows than the original.

Let's write a function that allows us to undersample the data by any number of rows. This 
function should return the recall score so that we can see how undersampling changes the 
results. We will begin with the scoring function.

The scoring function
The following function takes XGBClassifier and the number of rows as input and produces 
the confusion matrix, classification report, and recall score of exoplanet stars as output.

Here are the steps:

1. Define a function, xgb_clf, that takes model, the machine learning model, and 
nrows, the number of rows, as input:

def xgb_clf(model, nrows):
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2. Load the DataFrame with nrows, then split the data into X and y and training and 
test sets:  

    df = pd.read_csv('exoplanets.csv', nrows=nrows)

    X = df.iloc[:,1:]

    y = df.iloc[:,0]

    X_train, X_test, y_train, y_test = train_test_
split(X, y, random_state=2)

3. Initialize the model, fit the model to the training set, and score it with the test set 
using y_test, y_pred, and pos_label=2 for recall_score as input:

    model.fit(X_train, y_train)

    y_pred = xg_clf.predict(X_test)

    score = recall_score(y_test, y_pred, pos_label=2)

4. Print the confusion matrix and classification report, and return the score:

    print(confusion_matrix(y_test, y_pred))

    print(classification_report(y_test, y_pred))

    return score

Now, we can undersample the number of rows and see how the scores change.

Undersampling nrows
Let's start by doubling nrows to 800. This is still undersampling since the original dataset 
has 5087 rows:

xgb_clf(XGBClassifier(random_state=2), nrows=800)

This is the expected output:

[[189   1]

 [  9   1]]

              precision    recall  f1-score   support

           1       0.95      0.99      0.97       190

           2       0.50      0.10      0.17        10

    accuracy                           0.95       200

   macro avg       0.73      0.55      0.57       200



176     Discovering Exoplanets with XGBoost

weighted avg       0.93      0.95      0.93       200

0.1

Despite the near-perfect recall for non-exoplanet stars, the confusion matrix reveals that 
only 1 of 10 exoplanet stars have been recalled. 

Next, decrease nrows from 400 to 200:

xgb_clf(XGBClassifier(random_state=2), nrows=200)

This is the expected output:

[[37  0]

 [ 8  5]]

              precision    recall  f1-score   support

           1       0.82      1.00      0.90        37

           2       1.00      0.38      0.56        13

    accuracy                           0.84        50

   macro avg       0.91      0.69      0.73        50

weighted avg       0.87      0.84      0.81        50

This is a little better. By decreasing n_rows the recall has gone up.

Let's see what happens if we balance the classes precisely. Since there are 37 exoplanet-
stars, 37 non-exoplanet stars balance the data.

Run the xgb_clf function with nrows=74:

xgb_clf(XGBClassifier(random_state=2), nrows=74)

This is the expected output:

[[6 2]

 [5 6]]

              precision    recall  f1-score   support

           1       0.55      0.75      0.63         8

           2       0.75      0.55      0.63        11
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    accuracy                           0.63        19

   macro avg       0.65      0.65      0.63        19

weighted avg       0.66      0.63      0.63        19

0.5454545454545454

These results are respectable, even though the subset is much smaller.

Next, let's see what happens when we apply the strategy of oversampling.

Oversampling
Another resampling technique is oversampling. Instead of eliminating rows, oversampling 
adds rows by copying and redistributing the positive cases.

Although the original dataset has over 5,000 rows, we continue to use nrows=400 as our 
starting point to expedite the process.

When nrows=400, the ratio of positive to negative cases is 10 to 1. We need 10 times as 
many positive cases to obtain a balance.

Our strategy is as follows:

• Create a new DataFrame that copies the positive cases nine times. 

• Concatenate a new DataFrame with the original to obtain a 10-10 ratio.

Before proceeding, a warning is in order. If the data is resampled before splitting it into 
training and test sets, the recall score will be inflated. Can you see why?

When resampling, nine copies will be made of the positive cases. After splitting this data 
into training and test sets, copies are likely contained in both sets. So, the test set will 
contain most of the same data points as the training set.

The appropriate strategy is to split the data into a training and test set first and then to 
resample the data. As done previously, we can use X_train, X_test, y_train, and 
y_test. Let's start:

1. Merge X_train and y_train on the left and right index with pd.merge as 
follows:

df_train = pd.merge(y_train, X_train, left_index=True, 
right_index=True)



178     Discovering Exoplanets with XGBoost

2. Create a DataFrame, new_df, using np.repeat that includes the following:

a)  The values of the positive cases: df_train[df_train['LABEL']==2.
values.

b) The number of copies – in this case, 9

c) The axis=0 parameter to specify that we are working with columns:
new_df = pd.DataFrame(np.repeat(df_train[df_
train['LABEL']==2].values,9,axis=0))

3. Copy the column names:

new_df.columns = df_train.columns

4. Concatenate the DataFrames:

df_train_resample = pd.concat([df_train, new_df])

5. Verify that value_counts is as expected:

df_train_resample['LABEL'].value_counts()

The expected output is as follows:
1.0    275

2.0    250

Name: LABEL, dtype: int64

6. Split X and y using the resampled DataFrame:

X_train_resample = df_train_resample.iloc[:,1:]

y_train_resample = df_train_resample.iloc[:,0]

7. Fit the model on the resampled training set:

model = XGBClassifier(random_state=2)

model.fit(X_train_resample, y_train_resample)

8. Score the model with X_test and y_test. Include the confusion matrix and 
classification report in your result:

y_pred = model.predict(X_test)

score = recall_score(y_test, y_pred, pos_label=2)

print(confusion_matrix(y_test, y_pred))
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print(classification_report(y_test, y_pred))

print(score)

The score is as follows:
[[86  2]

 [ 8  4]]

              precision    recall  f1-score   support

           1       0.91      0.98      0.95        88

           2       0.67      0.33      0.44        12

    accuracy                           0.90       100

   macro avg       0.79      0.66      0.69       100

weighted avg       0.89      0.90      0.88       100

0.3333333333333333

By appropriately holding out a test set to begin with, oversampling achieves 33.3% recall,  
a score that is twice as strong as the 17% obtained earlier, although still much too low.

Tip
SMOTE is a popular resampling library that may be imported from 
imblearn, which must be downloaded to use. I achieved the same results  
as SMOTE using the preceding resampling code. 

Since resampling has produced modest gains at best, it's time to adjust the 
hyperparameters of XGBoost.

Tuning and scaling XGBClassifier
In this section, we will fine-tune and scale XGBClassifier to obtain the best possible 
recall_score value for the Exoplanets dataset. First, you will adjust weights using 
scale_pos_weight, then you will run grid searches to find the best combination 
of hyperparameters. In addition, you will score models for different subsets of the data 
before consolidating and analyzing the results.
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Adjusting weights
In Chapter 5, XGBoost Unveiled, you used the scale_pos_weight hyperparameter 
to counteract imbalances in the Higgs boson dataset. Scale_pos_weight is a 
hyperparameter used to scale the positive weight. The emphasis here on positive is 
important because XGBoost assumes that a target value of 1 is positive and a target value 
of 0 is negative.

In the Exoplanet dataset, we have been using the default 1 as negative and 2 as positive  
as provided by the dataset. We will now switch to 0 as negative and 1 as positive using the 
.replace() method.

replace
The .replace() method may be used to reassign values. The following code replaces  
1 with 0 and 2 with 1 in the LABEL column:

df['LABEL'] = df['LABEL'].replace(1, 0)

df['LABEL'] = df['LABEL'].replace(2, 1)

If the two lines of code were reversed, all column values would end up as 0 since all 2s 
would become 1s, and then all 1s would become 0s. In programming, order matters!

Verify the counts using the value_counts method:

df['LABEL'].value_counts()

Here is the expected output:

0    363

1     37

Name: LABEL, dtype: int64

The positive cases are now labeled 1 and the negative cases are labeled 0. 

scale_pos_weight
It's time to build a new XGBClassifier with scale_pos_weight=10 to account for 
the imbalance in the data: 

1. Split the new DataFrame into X, the predictor columns, and y, the target columns:

X = df.iloc[:,1:]

y = df.iloc[:,0]
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2. Split the data into training and test sets:

X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

3. Build, fit, predict, and score XGBClassifier with scale_pos_weight=10. 
Print out the confusion matrix and the classification report to view the complete 
results:

model = XGBClassifier(scale_pos_weight=10, random_
state=2)

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

score = recall_score(y_test, y_pred)

print(confusion_matrix(y_test, y_pred))

print(classification_report(y_test, y_pred))

print(score)

Here is the expected output:
[[86  2]

 [ 8  4]]

              precision    recall  f1-score   support

           0       0.91      0.98      0.95        88

           1       0.67      0.33      0.44        12

    accuracy                           0.90       100

   macro avg       0.79      0.66      0.69       100

weighted avg       0.89      0.90      0.88       100

0.3333333333333333

The results are the same as our resampling method from the previous section.

The oversampling method that we implemented from scratch gives the same predictions 
as XGBClassifier with scale_pos_weight.

Tuning XGBClassifier
It's time to see whether hyperparameter fine-tuning can increase precision.
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It's standard to use GridSearchCV and RandomizedSearchCV when fine-tuning 
hyperparameters. Both require cross-validation of two or more folds. We have yet 
to implement cross-validation since our initial models did not perform well and it's 
computationally expensive to test multiple folds on large datasets.

A balanced approach is to use GridSearchCV and RandomizedSearchCV with two 
folds to save time. To ensure consistent results, StratifiedKFold (Chapter 6, XGBoost 
Hyperparameters) is recommended. We will begin with the baseline model.

The baseline model
Here are the steps to build a baseline model that implements the same k-fold  
cross-validation as grid searches: 

1. Import GridSearchCV, RandomizedSearchCV, StratifiedKFold, and 
cross_val_score: 

from sklearn.model_selection import GridSearchCV, 
RandomizedSearchCV, StratifiedKFold, cross_val_score

2. Intialize StratifiedKFold as kfold with n_splits=2 and shuffle=True:

kfold = StratifiedKFold(n_splits=2, shuffle=True, random_
state=2)

3. Initialize XGBClassifier with scale_pos_weight=10 since there are 10 
times as many negative cases as positive cases:

model = XGBClassifier(scale_pos_weight=10, random_
state=2)

4. Score the model using cross_val_score with cv=kfold and 
score='recall' as parameters, then display the scores:

scores = cross_val_score(model, X, y, cv=kfold, 
scoring='recall')

print('Recall: ', scores)

print('Recall mean: ', scores.mean())

The scores are as follows:
Recall:  [0.10526316 0.27777778]

Recall mean:  0.1915204678362573
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The scores are a little worse with cross-validation. When there are very few positive 
cases, it makes a difference which rows end up in the training and test sets. Different 
implementations of StratifiedKFold and train_test_split may lead to 
different results.

grid_search
We'll now implement a variation of the grid_search function from Chapter 6, XGBoost 
Hyperparameters, to fine-tune hyperparameters: 

1. The new function takes the same dictionary of parameters as input, along with 
a random option that uses RandomizedSearchCV. In addition, X and y are 
provided as default parameters for use with other subsets and the scoring method is 
recall as follows:

def grid_search(params, random=False, X=X, y=y, 
model=XGBClassifier(random_state=2)): 

    xgb = model

    if random:

        grid = RandomizedSearchCV(xgb, params, cv=kfold, 
n_jobs=-1, random_state=2, scoring='recall')

    else:

        grid = GridSearchCV(xgb, params, cv=kfold, n_
jobs=-1, scoring='recall')

    grid.fit(X, y)

    best_params = grid.best_params_

    print("Best params:", best_params)

    best_score = grid.best_score_

    print("Best score: {:.5f}".format(best_score))

2. Let's run the grid searches excluding defaults to try and improve scores. Here are 
some initial grid searches along with their results:

a) Grid search 1:
grid_search(params={'n_estimators':[50, 200, 400, 800]})

Results:
Best params: {'n_estimators': 50} 
Best score: 0.19152
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b) Grid search 2:
grid_search(params={'learning_rate':[0.01, 0.05, 0.2, 
0.3]})

Results:
Best params: {'learning_rate': 0.01}

Best score: 0.40351

c) Grid search 3:
grid_search(params={'max_depth':[1, 2, 4, 8]})

Results:
Best params: {'max_depth': 2}

Best score: 0.24415

d) Grid search 4:
grid_search(params={'subsample':[0.3, 0.5, 0.7, 0.9]})

Results:
Best params: {'subsample': 0.5}

Best score: 0.21637

e) Grid search 5:
grid_search(params={'gamma':[0.05, 0.1, 0.5, 1]})

Results:
Best params: {'gamma': 0.05}

Best score: 0.24415

3. Changing learning_rate , max_depth, and gamma has resulted in gains. Let's 
try to combine them by narrowing the range:

grid_search(params={'learning_rate':[0.001, 0.01, 0.03], 
'max_depth':[1, 2], 'gamma':[0.025, 0.05, 0.5]})

The score is as follows:
Best params: {'gamma': 0.025, 'learning_rate': 0.001, 
'max_depth': 2}

Best score: 0.53509
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4. It's also worth trying max_delta_step, which XGBoost only recommends for 
imbalanced datasets. The default is 0 and increasing the steps results in a more 
conservative model:

grid_search(params={'max_delta_step':[1, 3, 5, 7]})

The score is as follows:
Best params: {'max_delta_step': 1}

Best score: 0.24415

5. As a final strategy, we combine subsample with all the column samples in a 
random search:

grid_search(params={'subsample':[0.3, 0.5, 0.7, 0.9, 1], 

'colsample_bylevel':[0.3, 0.5, 0.7, 0.9, 1], 

'colsample_bynode':[0.3, 0.5, 0.7, 0.9, 1], 

'colsample_bytree':[0.3, 0.5, 0.7, 0.9, 1]}, random=True)

The score is as follows:
Best params: {'subsample': 0.3, 'colsample_bytree': 0.7, 
'colsample_bynode': 0.7, 'colsample_bylevel': 1}

Best score: 0.35380

Instead of continuing with this subset of data that contains 400 rows, let's switch to the 
balanced subset (undersampled) that contains 74 rows to compare results.

The balanced subset
The balanced subset of 74 rows has the least amount of data points. It's also the fastest  
to test.

X and y need to be explicitly defined since they were last used for the balanced subset 
inside a function. The new definitions for X_short and y_short are given as follows:

X_short = X.iloc[:74, :]

y_short = y.iloc[:74]

After a few grid searches, combining max_depth and colsample_bynode gave the 
following results:

grid_search(params={'max_depth':[1, 2, 3], 'colsample_
bynode':[0.5, 0.75, 1]}, X=X_short, y=y_short, 
model=XGBClassifier(random_state=2)) 
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The score is as follows:

Best params: {'colsample_bynode': 0.5, 'max_depth': 2}

Best score: 0.65058

This is an improvement.

It's time to try hyperparameter fine-tuning on all the data.

Fine-tuning all the data
The issue with implementing the grid_search function on all the data is time. Now 
that we are at the end, it's time to run the code and take breaks as the computer sweats:

1. Read all the data into a new DataFrame, df_all:

df_all = pd.read_csv('exoplanets.csv')

2. Replace the 1s with 0s and the 2s with 1s:

df_all['LABEL'] = df_all['LABEL'].replace(1, 0) 
df_all['LABEL'] = df_all['LABEL'].replace(2, 1)

3. Split the data into X and y:

X_all = df_all.iloc[:,1:] 
y_all = df_all.iloc[:,0]

4. Verify value_counts of the 'LABEL' column:

df_all['LABEL'].value_counts()

The output is as follows:
0    5050 
1      37 
Name: LABEL, dtype: int64

5. Scale the weights by dividing the negative class by the positive class:

weight = int(5050/37)

6. Score a baseline model for all the data with XGBClassifier and scale_pos_
weight=weight:

model = XGBClassifier(scale_pos_weight=weight, random_
state=2)
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scores = cross_val_score(model, X_all, y_all, cv=kfold, 
scoring='recall')

print('Recall:', scores)

print('Recall mean:', scores.mean())

The output is as follows:
Recall: [0.10526316 0.        ]

Recall mean: 0.05263157894736842

This score is awful. Presumably, the classifier is scoring a high percentage of 
accuracy, despite the low recall. 

7. Let's try optimizing hyperparameters based on the most successful results thus far: 

grid_search(params={'learning_rate':[0.001, 0.01]}, 
X=X_all, y=y_all, model=XGBClassifier(scale_pos_
weight=weight, random_state=2)) 

The score is as follows:
Best params: {'learning_rate': 0.001}

Best score: 0.26316

This is much better than the initial score with all the data.

Let's try combining hyperparameters:
grid_search(params={'max_depth':[1, 
2],'learning_rate':[0.001]}, X=X_all, y=y_all, 
model=XGBClassifier(scale_pos_weight=weight, random_
state=2)) 

The score is as follows:
Best params: {'learning_rate': 0.001, 'max_depth': 2}

Best score: 0.53509

This is better, though not as strong as the undersampled dataset scored earlier. 

With the score on all the data starting lower and taking more time, a question  
naturally arises. Are the machine learning models better on the smaller subsets for the 
Exoplanet dataset?

Let's find out.
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Consolidating results
It's tricky to consolidate results with different datasets. We have been working with the 
following subsets:

• 5,050 rows – approx. 54% recall

• 400 rows – approx. 54% recall

• 74 rows – approx. 68% recall

The best results obtained have included learning_rate=0.001,  max_depth=2, and 
colsample_bynode=0.5.

Let's train a model on all 37 exoplanet stars. This means the test results will come from 
data points that the model has already trained on. Normally, this is not a good idea. In 
this case, however, the positive cases are very few and it may be instructive to see how the 
smaller subsets test on the positive cases it has not seen before.

The following function takes X, y, and the machine learning model as input. The model 
is fit on the data provided, then predictions are made on the entire dataset. Finally, 
recall_score, confusion matrix, and classification report are  
all printed:

def final_model(X, y, model):

    model.fit(X, y)

    y_pred = model.predict(X_all)

    score = recall_score(y_all, y_pred,)

    print(score)

    print(confusion_matrix(y_all, y_pred,))

    print(classification_report(y_all, y_pred))

Let's run the function for each of our three subsets. Of the three strongest 
hyperparameters, it turns out that colsample_bynode and max_depth give the  
best results.

Let's start with the smallest number of rows, where the number of exoplanet stars and 
non-exoplanet stars match.

74 rows
Let's begin with 74 rows:

final_model(X_short, y_short, XGBClassifier(max_depth=2, 
colsample_by_node=0.5, random_state=2))
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The output is as follows:

1.0

[[3588 1462]

 [   0   37]]

              precision    recall  f1-score   support

           0       1.00      0.71      0.83      5050

           1       0.02      1.00      0.05        37

    accuracy                           0.71      5087

   macro avg       0.51      0.86      0.44      5087

weighted avg       0.99      0.71      0.83      5087

All 37 exoplanet stars were correctly identified, but 1,462 non-exoplanet stars were 
misclassified! Despite 100% recall, the precision is 2%, and the F1 score is 5%. Low 
precision and a low F1 score are a risk when tuning for recall only. In practice, an 
astronomer would have to sort through 1,462 potential exoplanet stars to find 37. This is 
unacceptable.

Now let's see what happens when we train on 400 rows.

400 rows
In the case of 400 rows, we use the scale_pos_weight=10 hyperparameter to balance 
the data:

final_model(X, y, XGBClassifier(max_depth=2, colsample_
bynode=0.5, scale_pos_weight=10, random_state=2))

The output is as follows:

1.0

[[4901  149]

 [   0   37]]

              precision    recall  f1-score   support

           0       1.00      0.97      0.99      5050

           1       0.20      1.00      0.33        37
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    accuracy                           0.97      5087

   macro avg       0.60      0.99      0.66      5087

weighted avg       0.99      0.97      0.98      5087

Again, all 37 exoplanet stars were correctly classified for 100% recall, but 149 
non-exoplanet stars were incorrectly classified, for a precision of 20%. In this case, an 
astronomer would need to sort through 186 stars to find the 37 exoplanet stars. 

Finally, let's train on all the data.

5,050 rows
In the case of all the data, set scale_pos_weight equal to the weight variable, as 
previously defined:

final_model(X_all, y_all, XGBClassifier(max_depth=2, colsample_
bynode=0.5, scale_pos_weight=weight, random_state=2))

The output is as follows:

1.0

[[5050    0]

 [   0   37]]

              precision    recall  f1-score   support

           0       1.00      1.00      1.00      5050

           1       1.00      1.00      1.00        37

    accuracy                           1.00      5087

   macro avg       1.00      1.00      1.00      5087

weighted avg       1.00      1.00      1.00      5087

Amazing. All predictions, recall and precision, are 100% perfect. In this highly desirable 
case, an astronomer would find all of the exoplanet stars without having to sift through 
any bad data.

Keep in mind, however, that these scores are based on the training data, not on unseen 
test data, which is mandatory to build a strong model. In other words, although the model 
fits the training data perfectly, it's unlikely to generalize this well to new data. These 
numbers, however, are valuable.
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Based on this result, since the machine learning model performs impressively on 
the training set and modestly at best on the test set, the variance is likely too high. 
Additionally, more trees and more rounds of fine-tuning may be required to pick up on 
nuanced patterns within the data.

Analyzing results
When scored on the training set, the tuned models delivered perfect recall but varied 
considerably on the precision. Here are the takeaways: 

• Using precision without recall or the F1 score can result in suboptimal models.  
By using the classification report, more details are revealed.

• Over-emphasizing high scores from small subsets is not advised.

• When test scores are low, but training scores are high on imbalanced datasets, 
deeper models with extensive hyperparameter fine-tuning is advised.

A survey of kernels, publicly displayed notebooks put forward by Kaggle users, at 
https://www.kaggle.com/keplersmachines/kepler-labelled-time-
series-data/kernels for the Exoplanet dataset reveals the following:

• Many users fail to understand that a high accuracy score is easy to obtain and 
virtually meaningless with highly imbalanced data.

• Users posting precision are generally posting from 50 to 70 percent, and users 
posting recall are posting 60 to 100 percent (a user with 100% recall has 55% 
precision), indicating the challenges and limitations of this dataset. 

When you present your results to your astronomy professor, wiser to the limitations of 
imbalanced data, you conclude that your model performs with 70% recall at best, and that 
37 exoplanet stars are not enough to build a robust machine learning model to find life on 
other planets. Your XGBClassifier, however, will allow astronomers and others trained in 
data analysis to use machine learning to decide which stars to focus on in the universe to 
discover the next exoplanets in orbit.

https://www.kaggle.com/keplersmachines/kepler-labelled-time-series-data/kernels
https://www.kaggle.com/keplersmachines/kepler-labelled-time-series-data/kernels
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Summary
In this chapter, you surveyed the universe with the Exoplanet dataset to discover new 
planets, and potentially new life. You built multiple XGBClassifiers to predict when 
exoplanet stars are the result of periodic changes in light. With only 37 exoplanet stars 
and 5,050 non-exoplanet stars, you corrected the imbalanced data by undersampling, 
oversampling, and tuning XGBoost hyperparameters including scale_pos_weight.

You analyzed results using the confusion matrix and the classification report. You learned 
key differences between various classification scoring metrics, and why for the Exoplanet 
dataset accuracy is virtually worthless, while a high recall is ideal, especially when 
combined with high precision for a good F1 score. Finally, you realized the limitations of 
machine learning models when the data is extremely varied and imbalanced.

After this case study, you have the necessary background and skills to fully analyze 
imbalanced datasets with XGBoost using scale_pos_weight, hyperparameter  
fine-tuning, and alternative classification scoring metrics.

In the next chapter, you will greatly expand your range of XGBoost by applying alternative 
XGBoost base learners beyond gradient boosted trees. Although gradient boosted trees 
are often the best option, XGBoost comes equipped with linear base learners, dart base 
learners, and even random forests, all coming next!



Building advanced XGBoost models takes practice, analysis, and experimentation. In 
this section, you will experiment with and fine-tune alternative base learners, learn 
innovative tips and tricks from Kaggle masters—including stacking and advanced feature 
engineering—and practice building robust models ready for industry deployment using 
sparse matrices, customized transformers, and pipelines.

This section comprises the following chapters:

• Chapter 8, XGBoost Alternative Base Learners

• Chapter 9, XGBoost Kaggle Masters

• Chapter 10, XGBoost Model Deployment

Section 3:  
Advanced XGBoost





8
XGBoost Alternative 

Base Learners
In this chapter, you will analyze and apply different base learners in XGBoost. In 
XGBoost, base learners are the individual models, most commonly trees, that are iterated 
upon for each boosting round. Along with the default decision tree, which XGBoost 
defines as gbtree, additional options for base learners include gblinear and dart. 
Furthermore, XGBoost has its own implementations of random forests as base learners 
and as tree ensemble algorithms that you will experiment with in this chapter.

By learning how to apply alternative base learners, you will greatly extend your range 
with XGBoost. You will have the capacity to build many more models and you will learn 
new approaches to developing linear, tree-based, and random forest machine learning 
algorithms. The goal of the chapter is to give you proficiency in building XGBoost models 
with alternative base learners so that you can leverage advanced XGBoost options to find 
the best possible model for a range of situations.

In this chapter, we cover the following main topics:

• Exploring alternative base learners

• Applying gblinear

• Comparing dart 

• Finding XGBoost random forests
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Technical requirements
The code and datasets for this chapter may be found at https://github.com/
PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-
Scikit-learn/tree/master/Chapter08.

Exploring alternative base learners
The base learner is the machine learning model that XGBoost uses to build the first model 
in its ensemble. The word base is used because it's the model that comes first, and the 
word learner is used because the model iterates upon itself after learning from the errors.

Decision trees have emerged as the preferred base learners for XGBoost on account of 
the excellent scores that boosted trees consistently produce. The popularity of decision 
trees extends beyond XGBoost to other ensemble algorithms such as random forests and 
extremely randomized trees, which you can preview in the scikit-learn documentation 
under ExtraTreesClassifier and ExtraTreesRegressor (https://
scikit-learn.org/stable/modules/ensemble.html).

In XGBoost, the default base learner, known as gbtree, is one of several base learners. 
There is also gblinear, a gradient boosted linear model, and dart, a variation of 
decision trees that includes a dropout technique based on neural networks. Furthermore, 
there are XGBoost random forests. In the next section, we will explore the differences 
between these base learners before applying them in subsequent sections.

gblinear
Decision trees are optimal for non-linear data as they can easily access points by splitting 
the data as many times as needed. Decision trees are often preferable as base learners 
because real data is usually non-linear.

There may be cases, however, where a linear model is ideal. If the real data has a linear 
relationship, a decision tree is probably not the best option. For this scenario, XGBoost 
provides gblinear as an option for a linear base learner.

The general idea behind boosted linear models is the same as boosted tree models. A base 
model is built, and each subsequent model is trained upon the residuals. At the end, the 
individual models are summed for the final result. The primary distinction with linear 
base learners is that each model in the ensemble is linear.

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter08
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
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Like Lasso and Ridge, variations of linear regression that add regularization terms  
(see Chapter 1, Machine Learning Landscape), gblinear also adds regularization terms 
to linear regression. Tianqi Chin, the founder and developer of XGBoost commented on 
GitHub that multiple rounds of boosting gblinear may be used to get back a single lasso 
regression (https://github.com/dmlc/xgboost/issues/332).

gblinear may also be used for classification problems via logistic regression. This 
works because logistic regression is also built by finding optimal coefficients (weighted 
inputs), as in linear regression, and summed via the sigmoid equation (see Chapter 1, 
Machine Learning Landscape).

We will explore the details and applications of gblinear in the Applying gblinear section 
in this chapter. For now, let's learn about dart.

DART
Dropouts meet Multiple Additive Regression Trees, simply known as DART, was 
introduced in 2015 by K. V. Rashmi from UC Berkeley and Ran Gilad-Bachrach from 
Microsoft in the following paper: http://proceedings.mlr.press/v38/
korlakaivinayak15.pdf.

Rashmi and Gilad-Bachrach highlight Multiple Additive Regression Trees (MART) 
as a successful model that suffers from too much dependency on earlier trees. Instead 
of focusing on shrinkage, a standard penalization term, they use the dropout 
technique from neural networks. Simply put, the dropout technique eliminates nodes 
(mathematical points) from each layer of learning in a neural network, thereby reducing 
overfitting. In other words, the dropout technique slows down the learning process by 
eliminating information from each round.

In DART, in each new round of boosting, instead of summing the residuals from all 
previous trees to build a new model, DART selects a random sample of previous trees and 
normalizes the leaves by a scaling factor 1/𝑘𝑘  where 𝑘𝑘  is the number of trees dropped.

DART is a variation of decision trees. The XGBoost implementation of DART is similar to 
gbtree with additional hyperparameters to accommodate dropouts.

For the mathematical details of DART, reference the original paper highlighted in the first 
paragraph of this section.

You will practice building machine learning models with DART base learners in the 
Comparing dart section later in this chapter.

https://github.com/dmlc/xgboost/issues/332
http://proceedings.mlr.press/v38/korlakaivinayak15.pdf
http://proceedings.mlr.press/v38/korlakaivinayak15.pdf
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XGBoost random forests
The final option that we'll explore in this section is XGBoost random forests. Random 
forests may be implemented as base learners by setting num_parallel_trees 
equal to an integer greater than 1, and as class options within XGBoost defined as 
XGBRFRegressor and XGBRFClassifier.

Keep in mind that gradient boosting was designed to improve upon the errors of relatively 
weak base learners, not strong base learners like random forests. Nevertheless, there may 
be fringe cases where random forest base learners can be advantageous so it's a nice option 
to have.

As an additional bonus, XGBoost provides XGBRFRegressor and XGBRFClassifier 
as random forest machine learning algorithms that are not base learners, but algorithms 
in their own right. These algorithms work in a similar manner as scikit-learn's random 
forests (see Chapter 3, Bagging with Random Forests). The primary difference is that 
XGBoost includes default hyperparameters to counteract overfitting and their own 
methods for building individual trees. XGBoost random forests have been in the 
experimental stage, but they are starting to outperform scikit-learn's random forests as of 
late 2020 as you willwill see in this chapter.

In the final section of this chapter, we will experiment with XGBoost's random forests, 
both as base learners and as models in their own right.

Now that you have an overview of XGBoost base learners, let's apply them one at a time.

Applying gblinear
It's challenging to find real-world datasets that work best with linear models. It's often the 
case that real data is messy and more complex models like tree ensembles produce better 
scores. In other cases, linear models may generalize better.

The success of machine learning algorithms depends on how they perform with  
real-world data. In the next section, we will apply gblinear to the Diabetes dataset  
first and then to a linear dataset by construction.

Applying gblinear to the Diabetes dataset
The Diabetes dataset is a regression dataset of 442 diabetes patients provided by scikit-
learn. The prediction columns include age, sex, BMI (body mass index), BP (blood 
pressure), and five serum measurements. The target column is the progression of the 
disease after 1 year. You can read about the dataset in the original paper here: http://
web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf.

http://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf
http://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf
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Scikit-learn's datasets are already split into predictor and target columns for you. They 
are preprocessed for machine learning with X, the predictor columns, and y, the target 
column, loaded separately. 

Here is the full list of imports that you will need to work with this dataset and the rest of 
this chapter:

import pandas as pd

import numpy as np

from sklearn.datasets import load_diabetes

from sklearn.model_selection import cross_val_score

from xgboost import XGBRegressor, XGBClassifier, 
XGBRFRegressor, XGBRFClassifier

from sklearn.ensemble import RandomForestRegressor, 
RandomForestClassifier

from sklearn.linear_model import LinearRegression, 
LogisticRegression

from sklearn.linear_model import Lasso, Ridge

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import KFold

from sklearn.metrics import mean_squared_error as MSE

Let's begin! To use the Diabetes dataset, do the following:

1. You first need to define X and y using load_diabetes with the return_X_y 
parameter set equal to True:

X, y = load_diabetes(return_X_y=True)

The plan is to use cross_val_score and GridSearchCV, so let's create folds 
in advance to obtain consistent scores. In Chapter 6, XGBoost Hyperparameters, we 
used StratifiedKFold, which stratifies the target column, ensuring that each 
test set includes the same number of classes. 

This approach works for classification, but not for regression, where the target 
column takes on continuous values and classes are not involved. KFold achieves a 
similar goal without stratification by creating consistent splits in the data.

2. Now, shuffle the data and use 5 splits with KFold using the following parameters: 

kfold = KFold(n_splits=5, shuffle=True, random_state=2)  
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3. Build a function with cross_val_score that takes a machine learning model 
as input and returns the mean score of 5 folds as the output, making sure to set 
cv=kfold:

def regression_model(model):

    scores = cross_val_score(model, X, y, scoring='neg_
mean_squared_error', cv=kfold)

    rmse = (-scores)**0.5

    return rmse.mean()

4. To use gblinear as the base model, just set booster='gblinear' for 
XGBRegressor inside the regression function: 

regression_model(XGBRegressor(booster='gblinear'))

The score is as follows:
55.4968907398679

5. Let's check this score against other linear models including LinearRegression, 
Lasso, which uses L1 or absolute value regularization, and Ridge, which uses L2 
or Euclidean distance regularization:

a) LinearRegression is as follows:
regression_model(LinearRegression())

The score is as follows:
55.50927267834351

b) Lasso is as follows:
regression_model(Lasso())

The score is as follows:
62.64900771743497

c) Ridge is as follows:
regression_model(Ridge())

The score is as follows:
58.83525077919004

As you can see, XGBRegressor with gblinear as the base learner performs the 
best, along with LinearRegression.
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6. Now place booster='gbtree' inside XGBRegressor, which is the default  
base learner:

regression_model(XGBRegressor(booster='gbtree'))

The score is as follows:
65.96608419624594

As you can see, the gbtree base learner does not perform nearly as well as the 
gblinear base learner in this case indicating that a linear model is ideal.

Let's see if we can modify hyperparameters to make some gains with gblinear as the 
base learner.

gblinear hyperparameters
It's important to understand the differences between gblinear and gbtree when 
adjusting hyperparameters. Many of the XGBoost hyperparameters presented in Chapter 6,  
XGBoost Hyperparameters, are tree hyperparameters and do not apply to gblinear. 
For instance, max_depth and min_child_weight are hyperparameters specifically 
designed for trees.

The following list is a summary of XGBoost gblinear hyperparameters that are 
designed for linear models. 

reg_lambda
Scikit-learn uses reg_lambda instead of lambda, which is a reserved keyword for 
lambda functions in Python. This is the standard L2 regularization used by Ridge.  
Values close to 0 tend to work best:

• Default: 0

• Range: [0, inf)

• Increasing prevents overfitting

• Alias: lambda

reg_alpha
Scikit-learn accepts both reg_alpha and alpha. This is the standard L1 regularization 
used by Lasso. Values close to 0 tend to work best:

• Default: 0

• Range: [0, inf)
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• Increasing prevents overfitting

• Alias: alpha

updater
This is the algorithm that XGBoost uses to build the linear model during each round of 
boosting. shotgun uses hogwild parallelism with coordinate descent to produce a 
non-deterministic solution. By contrast, coord_descent is ordinary coordinate descent 
with a deterministic solution:

• Default: shotgun

• Range: shotgun, coord_descent

Note 
Coordinate descent is a machine learning term defined as minimizing the error 
by finding the gradient one coordinate at a time.

feature_selector
feature_selector determines how the weights are selected with the  
following options:

a) cyclic – cycles through features iteratively

b) shuffle – cyclic with random feature-shuffling in each round

c) random – the coordinate selector during coordinate descent is random

d) greedy – time-consuming; selects the coordinate with the greatest gradient 
magnitude

e) thrifty – approximately greedy, reorders features according to weight changes
• Default: cyclic

• Range must be used in conjunction with updater as follows: 

a) shotgun: cyclic, shuffle

b) coord_descent: random, greedy, thrifty

Note 
greedy will be computationally expensive for large datasets, but the number 
of features that greedy considers may be reduced by changing the parameter 
top_k (see the following).
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top_k
top_k is the number of features that greedy and thrifty select from during  
coordinate descent: 

• Default: 0 (all features)

• Range: [0, max number of features]

Note
For more information on XGBoost gblinear hyperparameters consult 
the official XGBoost documentation page at https://xgboost.
readthedocs.io/en/latest/parameter.html#parameters-
for-linear-booster-booster-gblinear.

gblinear grid search
Now that you are familiar with the range of hyperparameters that gblinear may use, 
let's use GridSearchCV in a customized grid_search function to find the best ones:

1. Here is a version of our grid_search function from Chapter 6, XGBoost 
Hyperparameters:

def grid_search(params, 
reg=XGBRegressor(booster='gblinear')):

    grid_reg = GridSearchCV(reg, params, scoring='neg_
mean_squared_error', cv=kfold)

    grid_reg.fit(X, y)

    best_params = grid_reg.best_params_

    print("Best params:", best_params)

    best_score = np.sqrt(-grid_reg.best_score_)

    print("Best score:", best_score)

2. Let's start by modifying alpha with a standard range:

grid_search(params={'reg_alpha':[0.001, 0.01, 0.1, 0.5, 
1, 5]})

The output is as follows:
Best params: {'reg_alpha': 0.01}

Best score: 55.485310447306425

The score is about the same, with a very slight improvement.

https://xgboost.readthedocs.io/en/latest/parameter.html#parameters-for-linear-booster-booster-gblinear
https://xgboost.readthedocs.io/en/latest/parameter.html#parameters-for-linear-booster-booster-gblinear
https://xgboost.readthedocs.io/en/latest/parameter.html#parameters-for-linear-booster-booster-gblinear
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3. Next, let's modify reg_lambda with the same range:

grid_search(params={'reg_lambda':[0.001, 0.01, 0.1, 0.5, 
1, 5]})

The output is as follows:
Best params: {'reg_lambda': 0.001}

Best score: 56.17163554152289

This score here is very similar but slightly worse.

4. Now let's use feature_selector in tandem with updater. By default, 
updater=shotgun and feature_selector=cyclic. When 
updater=shotgun, the only other option for feature_selector is shuffle. 

Let's see if shuffle can perform better than cyclic:
grid_search(params={'feature_selector':['shuffle']})

The output is as follows:
Best params: {'feature_selector': 'shuffle'}

Best score: 55.531684115240594

In this case, shuffle does not perform better.

5. Now let's change updater to coord_descent. As a result, feature_
selector may take on random, greedy, or thrifty. Try all feature_
selector alternatives in grid_search by entering the following code:

grid_search(params={'feature_selector':['random', 
'greedy', 'thrifty'], 'updater':['coord_descent'] })

The output is as follows:
Best params: {'feature_selector': 'thrifty', 'updater': 
'coord_descent'}

Best score: 55.48798105805444

This is a slight improvement from the base score.

The final hyperparameter to check is top_k, which defines the number of features 
that greedy and thrifty check during coordinate descent. A range from 2 to 9 
is acceptable since there are 10 features in total.
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6. Enter a range for top_k inside grid_search for greedy and thrifty to find 
the best option:

grid_search(params={'feature_selector':['greedy', 
'thrifty'], 'updater':['coord_descent'], 'top_k':[3, 5, 
7, 9]})

The output is as follows:
Best params: {'feature_selector': 'thrifty', 'top_k': 3, 
'updater': 'coord_descent'}

Best score: 55.478623763746256

This is the best score yet.

Before moving on, note that additional hyperparameters that are not limited to trees, such 
as n_estimators and learning_rate, may be used as well.

Now let's see how gblinear works on a dataset that is linear by construction.

Linear datasets
One way to ensure that a dataset is linear is by construction. We can choose a range of X 
values, say 1 to 99, and multiply them by a scaling factor with some randomness involved. 

Here are the steps to construct a linear dataset:

1. Set the range of X values from 1 to 100:

X = np.arange(1,100)

2. Declare a random seed using NumPy to ensure the consistency of the results:

np.random.seed(2) 

3. Create an empty list defined as y:

y = []

4. Loop through X, multiplying each entry by a random number from -0.2 to 0.2:

for i in X:

       y.append(i * np.random.uniform(-0.2, 0.2))
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5. Transform y to a numpy array for machine learning:

y = np.array(y)

6. Reshape X and y so that they contain as many rows as members in the array and 
one column since columns are expected as machine learning inputs with scikit-
learn:

X = X.reshape(X.shape[0], 1)

y = y.reshape(y.shape[0], 1)

We now have a linear dataset that includes randomness in terms of X and y.
Let's run the regression_model function again with gblinear as the base learner: 

regression_model(XGBRegressor(booster='gblinear', 
objective='reg:squarederror'))

The score is as follows:

6.214946302686011

Now run the regression_model function with gbtree as the base learner:

regression_model(XGBRegressor(booster='gbtree', 
objective='reg:squarederror'))

The score is as follows:

9.37235946501318

As you can see, gblinear performs much better in our constructed linear dataset.

For good measure, let's try LinearRegression on the same dataset:

regression_model(LinearRegression())

The score is as follows:

6.214962315808842

In this case, gblinear performs slightly better, perhaps negligibly, scoring 0.00002 
points lower than LinearRegression.
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Analyzing gblinear
gblinear is a compelling option, but it should only be used when you have reason to 
believe that a linear model may perform better than a tree-based model. gblinear did 
outperform LinearRegression in the real and constructed datasets by a very slight 
margin. Within XGBoost, gblinear is a strong option for a base learner when datasets 
are large and linear. gblinear is an option for classification datasets as well, an option 
that you will apply in the next section.

Comparing dart
The base learner dart is similar to gbtree in the sense that both are gradient boosted 
trees. The primary difference is that dart removes trees (called dropout) during each 
round of boosting.

In this section, we will apply and compare the base learner dart to other base learners in 
regression and classification problems.

DART with XGBRegressor
Let's see how dart performs on the Diabetes dataset: 

1. First, redefine X and y using load_diabetes as before:

X, y = load_diabetes(return_X_y=True)

2. To use dart as the XGBoost base learner, set the XGBRegressor parameter 
booster='dart' inside the regression_model function:

regression_model(XGBRegressor(booster='dart', 
objective='reg:squarederror'))

The score is as follows:
65.96444746130739

The dart base learner gives the same result as the gbtree base learner down to two 
decimal places. The similarity of results is on account of the small dataset and the success 
of the gbtree default hyperparameters to prevent overfitting without requiring the 
dropout technique.

Let's see how dart performs compared to gbtree on a larger dataset with classification.
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dart with XGBClassifier
You have used the Census dataset in multiple chapters throughout this book. A clean 
version of the dataset that we modified in Chapter 1, Machine Learning Landscape, has 
been pre-loaded for you along with the code for Chapter 8, XGBoost Alternative Base 
Learners, at https://github.com/PacktPublishing/Hands-On-Gradient-
Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter08. 
Let's now begin to test how dart performs on a larger dataset:

1. Load the Census dataset into a DataFrame and split the predictor and target 
columns into X and y using the last index (-1) as the target column:

df_census = pd.read_csv('census_cleaned.csv')

X_census = df_census.iloc[:, :-1]

y_census = df_census.iloc[:, -1]

2. Define a new classification function that uses cross_val_score with the 
machine learning model as input and the mean score as output similar to the 
regression function defined earlier in this chapter:

def classification_model(model):

    scores = cross_val_score(model, X_census, y_census, 
scoring='accuracy', cv=kfold)

    return scores.mean()

3. Now call the function twice using XGBClassifier with booster='gbtree' 
and booster='dart' to compare results. Note that the run time will be longer 
since the dataset is larger:

a) Let's first call XGBClassifier with booster='gbtree':
classification_model(XGBClassifier(booster='gbtree'))

The score is as follows:
0.8701208195968675

b) Now, let's call XGBClassifier with booster='dart':
classification_model(XGBClassifier(booster='dart')

The score is as follows:
0.8701208195968675

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter08
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This is surprising. dart gives the exact same result as gbtree for all 16 decimal places! 
It's unclear whether trees have been dropped or the dropping of trees has had zero effect. 

We can adjust hyperparameters to ensure that trees are dropped, but first, let's see how 
dart compares to gblinear. Recall that gblinear also works for classification by 
using the sigmoid function to scale weights as with logistic regression:

1. Call the classification_model function with XGBClassifier and set 
booster='gblinear':

classification_model(XGBClassifier(booster='gblinear'))

The score is as follows:
0.8501275704120015

This linear base learner does not perform as well as the tree base learners. 

2. Let's see how gblinear compares with logistic regression. Since the dataset is 
large, it's best to adjust logistic regression's max_iter hyperparameter from 100 
to 1000 to allow more time for convergence and to silence warnings. Note that 
increasing max_iter increases the accuracy in this case: 

classification_model(LogisticRegression(max_iter=1000))

The score is as follows:
0.8008968643699182

gblinear maintains a clear edge over logistic regression in this case. It's worth 
underscoring that XGBoost's gblinear option in classification provides a viable 
alternative to logistic regression.

Now that you have seen how dart compares with gbtree and gblinear as a base 
learner, let's modify dart's hyperparameters.

DART hyperparameters
dart includes all gbtree hyperparameters along with its own set of additional 
hyperparameters designed to adjust the percentage, frequency, and probability of dropout 
trees. See the XGBoost documentation at https://xgboost.readthedocs.
io/en/latest/parameter.html#additional-parameters-for-dart-
booster-booster-dart for detailed information.

The following sections are a summary of XGBoost hyperparameters that are unique to 
dart.

https://xgboost.readthedocs.io/en/latest/parameter.html#additional-parameters-for-dart-booster-booster-dart
https://xgboost.readthedocs.io/en/latest/parameter.html#additional-parameters-for-dart-booster-booster-dart
https://xgboost.readthedocs.io/en/latest/parameter.html#additional-parameters-for-dart-booster-booster-dart
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sample_type
The options for sample_type include uniform, which drops trees uniformly, and 
weighted, which drops trees in proportion to their weights:

• Default: "uniform"

• Range: ["uniform", "weighted"]

• Determines how dropped trees are selected

normalize_type
The options for normalize_type include tree, where new trees have the same weight 
as dropped trees, and forest, where new trees have the same weight as the sum of 
dropped trees:

• Default: "tree"

• Range: ["tree", "forest"]

• Calculates weights of trees in terms of dropped trees

rate_drop
rate_drop allows the user to set exactly how many trees are dropped percentage-wise:

• Default: 0.0

• Range: [0.0, 1.0]

• Percentage of trees that are dropped

one_drop
When set to 1, one_drop ensures that at least one tree is always dropped during the 
boosting round:

• Default: 0

• Range: [0, 1]

• Used to ensure drops
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skip_drop
skip_drop gives the probability of skipping the dropout entirely. In the official 
documentation, XGBoost says that skip_drop has a higher priority than rate_drop 
or one_drop. By default, each tree is dropped with the same probability so there is a 
probability that no trees are dropped for a given boosting round. skip_drop allows this 
probability to be updated to control the number of dropout rounds:

• Default: 0.0

• Range: [0.0, 1.0]

• Probability of skipping the dropout

Now let's modify dart hyperparameters to differentiate scores.

Modifying dart hyperparameters
To ensure that at least one tree in each boosting round is dropped, we can set  
one_drop=1. Do this with the Census dataset via the classification_model 
function now:

classification_model(XGBClassifier(booster='dart', one_drop=1))

The result is as follows:

0.8718714338474818

This is an improvement by a tenth of a percentage point, indicating that dropping at least 
one tree per boosting round can be advantageous.

Now that we are dropping trees to change scores, let's return to the smaller and faster 
Diabetes dataset to modify the remaining hyperparameters:

1. Using the regression_model function, change sample_type from uniform 
to weighted:

regression_model(XGBRegressor(booster='dart', 
objective='reg:squarederror', sample_type='weighted'))

The score is as follows:
65.96444746130739

This is 0.002 points better than the gbtree model scored earlier.
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2. Change normalize_type to forest to include the sum of trees when  
updating weights:

regression_model(XGBRegressor(booster='dart', 
objective='reg:squarederror', normalize_type='forest'))

The score is as follows:
65.96444746130739

There is no change in the score, which may happen with a shallow dataset.

3. Change one_drop to 1 guaranteeing that at least one tree is dropped each  
boosting round:

regression_model(XGBRegressor(booster='dart', 
objective='reg:squarederror', one_drop=1))

The score is as follows:
61.81275131335009

This is a clear improvement, gaining four full points.
When it comes to rate_drop, the percentage of trees that will be dropped, a range of 
percentages may be used with the grid_search function as follows:

grid_search(params={'rate_drop':[0.01, 0.1, 0.2, 0.4]}, 
reg=XGBRegressor(booster='dart', objective='reg:squarederror', 
one_drop=1))

The results are as follows:

Best params: {'rate_drop': 0.2}

Best score: 61.07249602732062

This is the best result yet.

We can implement a similar range with skip_drop, which gives the probability that a 
given tree is not dropped:

grid_search(params={'skip_drop':[0.01, 0.1, 0.2, 0.4]}, 
reg=XGBRegressor(booster='dart', objective='reg:squarederror'))

The results are as follows:

Best params: {'skip_drop': 0.1}

Best score: 62.879753748627635
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This is a good score, but skip_drop has resulted in no substantial gains.

Now that you see how dart works in action, let's analyze the results.

Analyzing dart
dart provides a compelling option within the XGBoost framework. Since dart accepts 
all gbtree hyperparameters, it's easy to change the base learner from gbtree to dart 
when modifying hyperparameters. In effect, the advantage is that you can experiment 
with new hyperparameters including one_drop, rate_drop, normalize, and others 
to see if you can make additional gains. dart is definitely worth trying as a base learner in 
your research and model-building with XGBoost.

Now that you have a good understanding of dart, it's time to move on to random forests.

Finding XGBoost random forests
There are two strategies to implement random forests within XGBoost. The first is to use 
random forests as the base learner, the second is to use XGBoost's original random forests, 
XGBRFRegressor and XGBRFClassifier. We start with our original theme, random 
forests as alternative base learners.

Random forests as base learners
There is not an option to set the booster hyperparameter to a random forest. Instead, the 
hyperparameter num_parallel_tree may be increased from its default value of 1 to 
transform gbtree (or dart) into a boosted random forest. The idea here is that each 
boosting round will no longer consist of one tree, but a number of parallel trees, which in 
turn make up a forest.

The following is a quick summary of the XGBoost hyperparameter num_parallel_tree.

num_parallel_tree
num_parallel_tree gives the number of trees, potentially more than 1, that are built 
during each boosting round: 

• Default: 1

• Range: [1, inf)

• Gives number of trees boosted in parallel

• Value greater than 1 turns booster into random forest
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By including multiple trees per round, the base learner is no longer a tree, but a forest. 
Since XGBoost includes the same hyperparameters as random forests, the base learner is 
appropriately classified as a random forest when num_parallel_tree exceeds 1.

Let's see how XGBoost random forest base learners work in practice:

1. Call regression_model with XGBRegressor and set booster='gbtree'. 
Additionally, set num_parallel_tree=25 meaning that each boosted round 
consists of a forest of 25 trees:

regression_model(XGBRegressor(booster='gbtree', 
objective='reg:squarederror', num_parallel_tree=25))

The score is as follows:
65.96604877151103

The score is respectable, and in this case, it's nearly the same as boosting a single 
gbtree. The reason is that gradient boosting is designed to learn from the mistakes 
of the previous trees. By starting with a robust random forest, there is little to be 
learned and the gains are minimal at best.

Understanding the fundamental point that gradient boosting's strength as an 
algorithm comes from the learning process is essential. It makes sense, therefore, to 
try a much smaller value for num_parallel_tree, such as 5.

2. Set num_parallel_tree=5 inside the same regression model:

regression_model(XGBRegressor(booster='gbtree', 
objective='reg:squarederror', num_parallel_tree=5))

The score is as follows:
65.96445649315855

Technically, this score is 0.002 points better than the score produced by a forest of 
25 trees. Although the improvement is not much, generally speaking, when building 
XGBoost random forests, low values of num_parallel_tree are better.

Now that you have seen how random forests may be implemented as base learners within 
XGBoost, it's time to build random forests as original XGBoost models.

Random forests as XGBoost models
In addition to XGBRegressor and XGBClassifier, XGBoost also comes with 
XGBRFRegressor and XGBRFClassifier to build random forests.
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According to the official XGBoost documentation at https://xgboost.
readthedocs.io/en/latest/tutorials/rf.html, the random forest  
scikit-learn wrapper is still in the experimentation stage and the defaults may be changed 
at any time. At the time of writing, in 2020, the following XGBRFRegressor and 
XGBRFClassifier defaults are included.

n_estimators
Use n_estimators and not num_parallel_tree when using XGBRFRegressor 
or XGBRFClassifier to build a random forest. Keep in mind that when using 
XGBRFRegressor and XGBRFClassifier, you are not gradient boosting but bagging 
trees in one round only as is the case with a traditional random forest:

• Default: 100

• Range: [1, inf)

• Automatically converted to num_parallel_tree for random forests

learning_rate
learning_rate is generally designed for models that learn, including boosters, not 
XGBRFRegressor or XGBRFClassifier since they consist of one round of trees. 
Nevertheless, changing learning_rate from 1 will change the scores, so modifying 
this hyperparameter is generally not advised:

• Default: 1

• Range: [0, 1]

subsample, colsample_by_node
Scikit-learn's random forest keeps these defaults at 1, making the default 
XGBRFRegressor and XGBRFClassifier less prone to overfitting. This is the 
primary difference between the XGBoost and scikit-learn random forest default 
implementations:

• Defaults: 0.8

• Range: [0, 1]

• Decreasing helps prevent overfitting

https://xgboost.readthedocs.io/en/latest/tutorials/rf.html
https://xgboost.readthedocs.io/en/latest/tutorials/rf.html
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Now, let's see how XGBoost's random forests work in practice:

1. First, place XGBRFRegressor inside of the regression_model function:

regression_
model(XGBRFRegressor(objective='reg:squarederror'))

The score is as follows:
59.447250741400595

This score is a little better than the gbtree model presented earlier, and a little 
worse than the best linear models presented in this chapter.

2. As a comparison, let's see how RandomForestRegressor performs by placing it 
inside the same function:

regression_model(RandomForestRegressor())

The score is as follows:
59.46563031802505

This score is slightly worse than XGBRFRegressor.
Now let's compare the XGBoost random forest with scikit-learn's standard random forest 
using the larger Census dataset for classification:

1. Place XGBRFClassifier inside of the classification_model function to 
see how well it predicts user income:

classification_model(XGBRFClassifier())

The score is as follows:
0.856085650471878

This is a good score, a little off the mark from gbtree, which previously gave 87%.

2. Now place RandomForestClassifier inside the same function to  
compare results:

classification_model(RandomForestClassifier())

The score is as follows:
0.8555328202034789

This is slightly worse than XGBoost's implementation.
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Since XGBoost's random forests are still in the developmental stage, we'll stop here and 
analyze the results.

Analyzing XGBoost random forests
You can try a random forest as your XGBoost base learner anytime by increasing 
num_parallel_tree to a value greater than 1. Although, as you have seen in this 
section, boosting is designed to learn from weak models, not strong models, so values for 
num_parallel_tree should remain close to 1. Trying random forests as base learners 
should be used sparingly. If boosting single trees fails to produce optimal scores, random 
forest base learners are an option.

Alternatively, the XGBoost random forest's XGBRFRegressor and XGBRFClassifier 
may be implemented as alternatives to scikit-learn's random forests. XGBoost's 
new XGBRFRegressor and XGBRFClassifier outperformed scikit-learn's 
RandomForestRegressor and RandomForestClassifier, although the 
comparison was very close. Given the overall success of XGBoost in the machine learning 
community, it's definitely worth using XGBRFRegressor and XGBRFClassifier as 
viable options going forward.

Summary
In this chapter, you greatly extended your range of XGBoost by applying all XGBoost 
base learners, including gbtree, dart, gblinear, and random forests, to regression 
and classification datasets. You previewed, applied, and tuned hyperparameters unique to 
base learners to improve scores. Furthermore, you experimented with gblinear using 
a linearly constructed dataset and with XGBRFRegressor and XGBRFClassifier 
to build XGBoost random forests without any boosting whatsoever. Now that you have 
worked with all base learners, your comprehension of the range of XGBoost is at an 
advanced level.

In the next chapter, you will analyze tips and tricks from Kaggle masters to advance your 
XGBoost skills even further!
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Masters
In this chapter, you will learn valuable tips and tricks from Kaggle Masters who used 
XGBoost to win Kaggle competitions. Although we will not enter a Kaggle competition 
here, the skills that you will gain can apply to building stronger machine learning 
models in general. Specifically, you will learn why an extra hold-out set is critical, how 
to feature engineer new columns of data with mean encoding, how to implement 
VotingClassifier and VotingRegressor to build non-correlated machine 
learning ensembles, and the advantages of stacking a final model.

In this chapter, we will cover the following main topics:

• Exploring Kaggle competitions

• Engineering new columns of data

• Building non-correlated ensembles

• Stacking final models
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Technical requirements
The code for this chapter can be found at https://github.com/
PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-
Scikit-learn/tree/master/Chapter09.

Exploring Kaggle competitions
"I used only XGBoost (tried others but none of them performed well enough 

to end up in my ensemble)."
– Qingchen Wang, Kaggle Winner 

(https://www.cnblogs.com/yymn/p/4847130.html)

In this section, we will investigate Kaggle competitions by looking at a brief history of 
Kaggle competitions, how they are structured, and the importance of a hold-out/test set  
as distinguished from a validation/test set.

XGBoost in Kaggle competitions
XGBoost built its reputation as the leading machine learning algorithm on account 
of its unparalleled success in winning Kaggle competitions. XGBoost often appeared 
in winning ensembles along with deep learning models such as neural networks, in 
addition to winning outright. A sample list of XGBoost Kaggle competition winners 
appears on the Distributed (Deep) Machine Learning Community web page at https://
github.com/dmlc/xgboost/tree/master/demo#machine-learning-
challenge-winning-solutions. For a list of more XGBoost Kaggle competition 
winners, it's possible to sort through Winning solutions of Kaggle competitions (https://
www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-
competitions) to research the winning models. 

Note
While XGBoost is regularly featured among the winners, other machine 
learning models make appearances as well.

As mentioned in Chapter 5, XGBoost Unveiled, Kaggle competitions are machine learning 
competitions where machine learning practitioners compete against one another to obtain 
the best possible score and win cash prizes. When XGBoost exploded onto the scene in 
2014 during the Higgs Boson Machine Learning Challenge, it immediately jumped the 
leaderboard and became one of the most preferred machine learning algorithms in Kaggle 
competitions.

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter09
https://www.cnblogs.com/yymn/p/4847130.html
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions
https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions
https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions
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Between 2014 and 2018, XGBoost consistently outperformed the competition on tabular 
data—data organized in rows and columns as contrasted with unstructured data such as 
images or text, where neural networks had an edge. With the emergence of LightGBM in 
2017, a lightning-fast Microsoft version of gradient boosting, XGBoost finally had some 
real competition with tabular data.

The following introductory paper, LightGBM: A Highly Efficient Gradient Boosting 
Decision Tree, written by eight authors, is recommended for an introduction to LightGBM: 
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-
gradient-boosting-decision-tree.pdf.

Implementing a great machine algorithm such as XGBoost or LightGBM in Kaggle 
competitions isn't enough. Similarly, fine-tuning a model's hyperparameters often isn't 
enough. While individual model predictions are important, it's equally important to 
engineer new data and to combine optimal models to attain higher scores.

The structure of Kaggle competitions
It's worth understanding the structure of Kaggle competitions to gain insights into why 
techniques such as non-correlated ensemble building and stacking are widespread. 
Furthermore, exploring the structure of Kaggle competitions will give you confidence in 
entering Kaggle competitions down the road if you choose to pursue that route.

Tip
Kaggle recommends Housing Prices: Advanced Regression Techniques, 
https://www.kaggle.com/c/house-prices-advanced-
regression-techniques, for machine learning students looking to 
transition beyond the basics to advanced competitions. This is one of many 
knowledge-based competitions that do not offer cash prizes.

Kaggle competitions exist on the Kaggle website. Here is the website from Avito Context 
Ad Clicks from 2015 won by XGBoost user Owen Zhang: https://www.kaggle.
com/c/avito-context-ad-clicks/overview. Several XGBoost Kaggle 
competition winners, Owen Zhang included, are from 2015, indicating XGBoost's 
circulation before Tianqi Chin's landmark paper, XGBoost: A Scalable Tree Boosting System 
published in 2016: https://arxiv.org/pdf/1603.02754.pdf.

https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/avito-context-ad-clicks/overview
https://www.kaggle.com/c/avito-context-ad-clicks/overview
https://arxiv.org/pdf/1603.02754.pdf
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Here is the top of the Avito Context Ad Clicks website:

Figure 9.1 – Avito Context Ad Clicks Kaggle competition website

This overview page explains the competition as follows:

• Additional links next to Overview (highlighted in blue) include Data, where you 
access data for the competition.

• Notebooks, where Kagglers post solutions and starter notebooks.

• Discussion, where Kagglers post and answer questions.

• Leaderboard, where the top scores are displayed.

• Rules, which explains how the competition works.

• Additionally, note the Late Submission link on the far-right side, which indicates 
that submissions are still acceptable even though the competition is over, a general 
Kaggle policy.

To download the data, you need to enter the competition by signing up for a free account. 
The data is typically split into two datasets, training.csv, the training set used to build 
a model, and test.csv, the test set used to score the model. After submitting a model, 
you earn a score on the public leaderboard. At the competition's end, a final model is 
submitted against a private test set to determine the winning solution.
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Hold-out sets
It's important to make the distinction between building machine learning models for 
Kaggle competitions and building them on your own. Up to this point, we have split 
datasets into training and test sets to ensure that our models generalize well. In Kaggle 
competitions, however, models must be tested in a competitive environment. For that 
reason, data from the test set remains hidden.

Here are the differences between Kaggle's training set and test set:

• training.csv: This is where you train and score models on your own.  
This training set should be split into its own training and test sets using  
train_test_split or cross_val_score to build models that generalize  
well to new data. The test sets used during training are often referred to as 
validation sets since they validate the models.

• test.csv: This is a separate hold-out set. You don't use the test set until you 
have a final model ready to test on data it has never seen before. The purpose of 
the hidden test set is to maintain the integrity of the competition. The test data is 
hidden from participants and the results are only revealed after participants submit 
a model. 

It's always good practice to keep a test set aside when building a model for research or 
industry. When a model is tested using data it has already seen, the model risks overfitting 
the test set, a possibility that often arises in Kaggle competitions when competitors obsess 
over improving their position in the public leaderboard by few thousandths of a percent. 

Kaggle competitions intersect with the real world regarding this hold-out set. The purpose 
of building machine learning models is to make accurate predictions using unknown 
data. For example, if a model gives 100% accuracy on the training set, but only gives 50% 
accuracy on unknown data, the model is basically worthless.

This distinction, between validating models on test sets and testing models on hold-out 
sets, is very important. 

Here is a general approach for validating and testing machine learning models on  
your own:

1. Split data into a training set and a hold-out set: Keep the hold-out set away and 
resist the temptation to look at it.

2. Split the training set into a training and test set or use cross-validation: Fit  
new models on the training set and validate the model, going back and forth to 
improve scores.
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3. After obtaining a final model, test it on the hold-out set: This is the real test of the 
model. If the score is below expectations, return to step 2 and repeat. Do not—and 
this is important—use the hold-out set as the new validation set, going back and 
forth adjusting hyperparameters. When this happens, the model is adjusting itself to 
match the hold-out set, which defeats the purpose of a hold-out set in the first place.

In Kaggle competitions, adjusting the machine learning model too closely to the test set will 
not work. Kaggle often splits test sets into an additional public and private component. The 
public test set gives participants a chance to score their models and work on improvements, 
adjusting and resubmitting along the way. The private test set is not revealed until the last 
day of the competition. Although rankings are displayed for the public test set, competition 
winners are announced based on the results of the unseen test set.

Winning a Kaggle competition requires getting the best possible score on the private test 
set. In Kaggle competitions, every percentage point matters. The need for this kind of 
precision, sometimes scoffed at by the industry, has led to innovative machine learning 
practices to improve scores. Understanding these techniques, as presented in this chapter, 
can lead to stronger models and a deeper understanding of machine learning overall.

Engineering new columns
"Almost always I can find open source code for what I want to do, and my 

time is much better spent doing research and feature engineering."
– Owen Zhang, Kaggle Winner

(https://medium.com/kaggle-blog/profiling-top-kagglers-owen-
zhang-currently-1-in-the-world-805b941dbb13)

Many Kagglers and data scientists have confessed to spending considerable time on 
research and feature engineering. In this section, we will use pandas to engineer new 
columns of data.

What is feature engineering?
Machine learning models are as good as the data that they train on. When data is 
insufficient, building a robust machine learning model is impossible.

A more revealing question is whether the data can be improved. When new data is 
extracted from other columns, these new columns of data are said to be engineered.

Feature engineering is the process of developing new columns of data from the original 
columns. The question is not whether you should implement feature engineering, but how 
much feature engineering you should implement.

https://medium.com/kaggle-blog/profiling-top-kagglers-owen-zhang-currently-1-in-the-world-805b941dbb13
https://medium.com/kaggle-blog/profiling-top-kagglers-owen-zhang-currently-1-in-the-world-805b941dbb13
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Let's practice feature engineering on a dataset predicting the cab fare of Uber and  
Lyft rides.

Uber and Lyft data
In addition to hosting competitions, Kaggle hosts a large number of datasets that include 
public datasets such as the following one, which predicts Uber and Lyft cab prices: 
https://www.kaggle.com/ravi72munde/uber-lyft-cab-prices:

1. To get started, first import all the libraries and modules needed for this section and 
silence the warnings:

import pandas as pd

import numpy as np

from sklearn.model_selection import cross_val_score

from xgboost import XGBClassifier, XGBRFClassifier

from sklearn.ensemble import RandomForestClassifier, 
StackingClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split, 
StratifiedKFold

from sklearn.metrics import accuracy_score

from sklearn.ensemble import VotingClassifier

import warnings

warnings.filterwarnings('ignore')

2. Next, load the 'cab_rides.csv' CSV file and view the first five rows. Limit 
nrows to 10000 to expedite computations. There are 600,000+ rows in total:

df = pd.read_csv('cab_rides.csv', nrows=10000)

df.head()

Here is the expected output:

Figure 9.2 – Cab rides dataset

https://www.kaggle.com/ravi72munde/uber-lyft-cab-prices
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This display reveals a wide range of columns, including categorical features and a timestamp.

Null values
As always, check for null values before making any computations:

1. Recall that df.info() also provides information about column types:

df.info()

The output is as follows:
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10000 entries, 0 to 9999

Data columns (total 10 columns):

 #   Column            Non-Null Count  Dtype  

---  ------            --------------  -----  

 0   distance          10000 non-null  float64

 1   cab_type          10000 non-null  object 

 2   time_stamp        10000 non-null  int64  

 3   destination       10000 non-null  object 

 4   source            10000 non-null  object 

 5   price             9227 non-null   float64

 6   surge_multiplier  10000 non-null  float64

 7   id                10000 non-null  object 

 8   product_id        10000 non-null  object 

 9   name              10000 non-null  object 

dtypes: float64(3), int64(1), object(6)

memory usage: 781.4+ KB

As you can see from the output, null values exist in the price column since there 
are less than 10,000 non-null floats.

2. It's worth checking the null values to see whether more information can be gained 
about the data:

df[df.isna().any(axis=1)]

Here are the first five rows of the output:
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Figure 9.3 – Null values in the cab rides dataset
As you can see, there is nothing particularly glaring about these rows. It could be 
that the price of the ride was never recorded.

3. Since price is the target column, these rows can be deleted with dropna using the 
inplace=True parameter to ensure that drops occur within the DataFrame:

df.dropna(inplace=True)

You can verify that no null values are present by using df.na() or df.info() one 
more time.

Feature engineering time columns
Timestamp columns often represent Unix time, which is the number of milliseconds since 
January 1st, 1970. Specific time data can be extracted from the timestamp column that may 
help predict cab fares, such as the month, hour of the day, whether it is rush hour, and so on:

1. First, convert the timestamp column into a time object using pd.to_datetime, 
and then view the first five rows:

df['date'] = pd.to_datetime(df['time_stamp'])

df.head()

Here is the expected output:

Figure 9.4 – The cab rides dataset after time_stamp conversion
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Something is wrong with this data. It doesn't take much domain expertise to know 
that Lyft and Uber were not around in 1970. The extra decimal places are a clue that 
the conversion is incorrect.

2. After trying several multipliers to make an appropriate conversion, I discovered that 
10**6 gives the appropriate results:

df['date'] = pd.to_datetime(df['time_stamp']*(10**6))

df.head()

Here is the expected output:

Figure 9.5 – The cab rides dataset after 'date' conversion

3. With a datetime column, you can extract new columns, such as month, hour, and 
day of week, after importing datetime, as follows:

import datetime as dt

df['month'] = df['date'].dt.month

df['hour'] = df['date'].dt.hour

df['dayofweek'] = df['date'].dt.dayofweek

Now, you can use these columns to feature engineer more columns, such as whether 
it's the weekend or rush hour. 

4. The following function determines whether a day of the week is a weekend 
by checking whether 'dayofweek' is equivalent to 5 or 6, which represent 
Saturday or Sunday, according to the official documentation: https://pandas.
pydata.org/pandas-docs/stable/reference/api/pandas.Series.
dt.weekday.html:

def weekend(row):

    if row['dayofweek'] in [5,6]:

        return 1

    else:

        return 0

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dt.weekday.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dt.weekday.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dt.weekday.html
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5. Next, apply the function to the DataFrame as a new column, df['weekend'],  
as follows:

df['weekend'] = df.apply(weekend, axis=1)

6. The same strategy can be implemented to create a rush hour column by seeing 
whether the hour is between 6–10 AM (hours 6–10) and 3–7 PM (hours 15–19):

def rush_hour(row):

    if (row['hour'] in [6,7,8,9,15,16,17,18]) & 

        (row['weekend'] == 0):

        return 1

    else:

        return 0

7. Now, apply the function to a new 'rush_hour' column:

df['rush_hour'] = df.apply(rush_hour, axis=1)

8. The last five rows show variation in the new columns, as df.tail() reveals:

df.tail()

Here is an excerpt from the output revealing the new columns:

Figure 9.6 – The last five rows of the cab rides dataset after feature engineering

The process of extracting and engineering new time columns can continue. 
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Note
When engineering a lot of new columns, it's worth checking to see whether 
new features are strongly correlated. The correlation of data will be explored 
later in this chapter.

Now that you understand the practice of feature engineering time columns, let's feature 
engineer categorical columns.

Feature engineering categorical columns
Previously, we used pd.get_dummies to convert categorical columns into numerical 
columns. Scikit-learn's OneHotEncoder feature is another option designed to transform 
categorical data into 0s and 1s using sparse matrices, a technique that you will apply in 
Chapter 10, XGBoost Model Deployment. While converting categorical data into numerical 
data using either of these options is standard, alternatives exist.

Although 0s and 1s make sense as numerical values for categorical columns, since 0 
indicates absence and 1 indicates presence, it's possible that other values may deliver 
better results.

One strategy would be to convert categorical columns into their frequencies, which 
equates to the percentage of times each category appears within the given column. So, 
instead of a column of categories, each category is converted into its percentage within  
the column.

Let's view the steps to convert categorical values into numerical values next.

Engineering frequency columns
To engineer a categorical column, such as 'cab_type', first view the number of values 
for each category:

1.  Use the .value_counts() method to see the frequency of types:

df['cab_type'].value_counts()

The result is as follows:
Uber    4654

Lyft    4573

Name: cab_type, dtype: int64
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2. Use groupby to place the counts in a new column. df.groupby(column_
name) is groupby, while [column_name].transform specifies the column to 
be transformed followed by the aggregate in parentheses:

df['cab_freq'] = df.groupby('cab_type')['cab_type'].
transform('count')

3. Divide the new column by the total number of rows to obtain the frequency:

df['cab_freq'] = df['cab_freq']/len(df)

4. Verify that changes have been made as expected:

df.tail()

Here is an excerpt from the output showing the new columns:

Figure 9.7 – The cab rides dataset after engineering the frequency of cabs

The cab frequency now displays the expected output.

Kaggle tip – mean encoding
We will conclude this section with a competition-tested approach to feature engineering 
called mean encoding or target encoding.

Mean encoding transforms categorical columns into numerical columns based on the 
mean target variable. For instance, if the color orange led to seven target values of 1 and 
three target values of 0, the mean encoded column would be 7/10 = 0.7. Since there is data 
leakage while using the target values, additional regularization techniques are required. 
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Data leakage occurs when information between training and test sets, or predictor and 
target columns, are shared. The risk here is that the target column is being directly used 
to influence the predictor columns, which is generally a bad idea in machine learning. 
Nevertheless, mean encoding has been shown to produce outstanding results. It can work 
when datasets are deep, and the distribution of mean values are approximately the same 
for incoming data. Regularization is an extra precaution taken to reduce the possibility  
of overfitting.

Fortunately, scikit-learn provides TargetEncoder to handle mean conversions for you:

1. First, import TargetEndoder from category_encoders. If this does not 
work, install category_encoders using the following code:

pip install --upgrade category_encoders

from category_encoders.target_encoder import 
TargetEncoder

2. Next, initialize encoder, as follows:

encoder = TargetEncoder()

3. Finally, introduce a new column and apply mean encoding using the fit_
transform method on the encoder. Include the column that is being changed and 
the target column as parameters:

df['cab_type_mean'] = encoder.fit_transform(df['cab_
type'], df['price'])

4. Now, verify that the changes are as expected:

df.tail()

Here is an excerpt of the output with the new column in view:
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Figure 9.8 – The cab rides dataset after mean encoding

The far-right column, cab_type_mean, is as expected.

For more information on mean encoding, refer to this Kaggle study: https://
www.kaggle.com/vprokopev/mean-likelihood-encodings-a-
comprehensive-study.

The idea here is not to say that mean encoding is better than one-hot encoding, but rather 
that mean encoding is a proven technique that has done well in Kaggle competitions and 
may be worth implementing to try and improve scores. 

More feature engineering
There is no reason to stop here. More feature engineering may include statistical measures 
on other columns using groupby and additional encoders. Other categorical columns, 
such as the destination and arrival columns, may be converted to latitude and longitude 
and then to new measures of distance, such as the taxicab distance or the Vincenty 
distance, which takes spherical geometry into account.

In Kaggle competitions, participants may engineer thousands of new columns hoping 
to gain a few extra decimal places of accuracy. If you have a high number of engineered 
columns, you can select the most significant ones using .feature_importances_, as 
outlined in Chapter 2, Decision Trees in Depth. You can also eliminate highly correlated 
columns (explained in the next section, Building non-correlated ensembles).

For this particular cab rides dataset, there is an additional CSV file that includes the 
weather. But what if there wasn't a weather file? You could always research the weather 
data from the provided dates and include the weather data on your own.

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study
https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study
https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study
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Feature engineering is an essential skill for any data scientist to build robust models. The 
strategies covered here are only a fraction of the options that exist. Feature engineering 
involves research, experimentation, domain expertise, standardizing columns, feedback 
on the machine learning performance of new columns, and narrowing down the final 
columns at the end.

Now that you understand the various strategies for feature engineering, let's move on to 
building non-correlated ensembles.

Building non-correlated ensembles
"In our final model, we had XGBoost as an ensemble model, which included 
20 XGBoost models, 5 random forests, 6 randomized decision tree models, 
3 regularized greedy forests, 3 logistic regression models, 5 ANN models, 3 

elastic net models and 1 SVM model."
– Song, Kaggle Winner

(https://hunch243.rssing.com/chan-68612493/all_p1.html)

The winning models of Kaggle competitions are rarely individual models; they are 
almost always ensembles. By ensembles, I do not mean boosting or bagging models, such 
as random forests or XGBoost, but pure ensembles that include any distinct models, 
including XGBoost, random forests, and others.

In this section, we will combine machine learning models into non-correlated ensembles 
to gain accuracy and reduce overfitting.

Range of models
The Wisconsin Breast Cancer dataset, used to predict whether a patient has breast cancer, 
has 569 rows and 30 columns, and can be viewed at https://scikit-learn.org/
stable/modules/generated/sklearn.datasets.load_breast_cancer.
html?highlight=load_breast_cancer.

Here are the steps to prepare and score the dataset using several classifiers:

1. Import the load_breast_cancer dataset from scikit-learn so that we can 
quickly start building models:

from sklearn.datasets import load_breast_cancer

https://hunch243.rssing.com/chan-68612493/all_p1.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html?highlight=load_breast_cancer
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html?highlight=load_breast_cancer
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html?highlight=load_breast_cancer
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2. Assign the predictor columns to X and the target column to y by setting the 
return_X_y=True parameter:

X, y = load_breast_cancer(return_X_y=True)

3. Prepare 5-fold cross-validation using StratifiedKFold for consistency:

kfold = StratifiedKFold(n_splits=5)

4. Now, build a simple classification function that takes a model as input and returns 
the mean cross-validation score as output:

def classification_model(model):

    scores = cross_val_score(model, X, y, cv=kfold)

    return scores.mean()

5. Get the scores of several default classifiers, including XGBoost, along with its 
alternative base learners, a random forest, and logistic regression:

a) Score with XGBoost:
classification_model(XGBClassifier())

The score is as follows:
0.9771619313771154

b) Score with gblinear:
classification_model(XGBClassifier(booster='gblinear'))

The score is as follows:
0.5782952957615277

c) Score with dart:
classification_model(XGBClassifier(booster='dart', one_
drop=True))

The score is as follows:
0.9736376339077782

Note that for the dart booster, we set one_drop=True to ensure that trees are 
actually dropped.

d) Score with RandomForestClassifier:
classification_model(RandomForestClassifier(random_
state=2))
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The score is as follows:
0.9666356155876418

e) Score with LogisticRegression:
classification_model(LogisticRegression(max_iter=10000))

The score is as follows:
0.9490451793199813

Most models perform respectably, with the XGBoost classifier obtaining the highest score. 
The gblinear base learner did not perform particularly well, however, so we will not use 
it going forward.

In practice, each of these models should be tuned. Since we have already covered 
hyperparameter tuning in multiple chapters, that option is not pursued here. Nevertheless, 
knowledge of hyperparameters can give confidence in trying a quick model with some 
adjusted values. For instance, as done in the following code, lowering max_depth to 2, 
increasing n_estimators to 500, and making sure that learning_rate is set to 0.1 
may be attempted on XGBoost:

classification_model(XGBClassifier(max_depth=2, n_
estimators=500, learning_rate=0.1))

The score is as follows:

0.9701133364384411

This is a very good score. Although it's not the highest, it may be of value in our ensemble.

Now that we have a variety of models, let's learn about the correlations between them.

Correlation
The purpose of this section is not to select all models for the ensemble, but rather to select 
the non-correlated models.

First, let's understand what correlation represents.

Correlation is a statistical measure between -1 and 1 that indicates the strength of the 
linear relationship between two sets of points. A correlation of 1 is a perfectly straight line, 
while a correlation of 0 shows no linear relationship whatsoever.
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Some visuals on correlation should make things clear. The following visuals are taken 
from Wikipedia's Correlation and Dependence page at https://en.wikipedia.org/
wiki/Correlation_and_dependence:

• Scatter plots with listed correlations look as follows:

Figure 9.9 – Listed Correlations

License information
By DenisBoigelot, the original uploader was Imagecreator – own work, 
CC0, https://commons.wikimedia.org/w/index.
php?curid=15165296.

• Anscombe's quartet – four scatter plots with a correlation of 0.816 – looks  
as follows:

Figure 9.10 – Correlation of 0.816

https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://commons.wikimedia.org/w/index.php?curid=15165296
https://commons.wikimedia.org/w/index.php?curid=15165296


238     XGBoost Kaggle Masters

License information
By Anscombe.svg: Schutz (label using subscripts): Avenue – Anscombe.svg, 
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.
php?curid=9838454

The first example shows that the higher the correlation, the closer the dots generally are 
to a straight line. The second example shows that data points of the same correlation can 
differ widely. In other words, correlation provides valuable information, but it doesn't tell 
the whole story.

Now that you understand what correlation means, let's apply correlation to building 
machine learning ensembles.

Correlation in machine learning ensembles
Now we choose which models to include in our ensemble.

A high correlation between machine learning models is undesirable in an ensemble. 
But why?

Consider the case of two classifiers with 1,000 predictions each. If these classifiers all make 
the same predictions, no new information is gained from the second classifier, making it 
superfluous. 

Using a majority rules implementation, a prediction is only wrong if the majority 
of classifiers get it wrong. It's desirable, therefore, to have a diversity of models that 
score well but give different predictions. If most models give the same predictions, the 
correlation is high, and there is little value in adding the new model to the ensemble. 
Finding differences in predictions where a strong model may be wrong gives the ensemble 
the chance to produce better results. Predictions will be different when the models are 
non-correlated.

To compute correlations between machine learning models, we first need data points 
to compare. The different data points that machine learning models produce are their 
predictions. After obtaining predictions, we concatenate them into a DataFrame, and then 
apply the .corr method to obtain all correlations at once.

Here are the steps to find correlations between machine learning models:

1. Define a function that returns predictions for each machine learning model:

def y_pred(model):

    model.fit(X_train, y_train)

    y_pred = model.predict(X_test)

https://commons.wikimedia.org/w/index.php?curid=9838454
https://commons.wikimedia.org/w/index.php?curid=9838454
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    score = accuracy_score(y_pred, y_test)

    print(score)

    return y_pred

2. Prepare the data for one-fold predictions using train_test_split:

X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

3. Obtain the predictions of all classifier candidates using the previously defined 
function:

a) XGBClassifier uses the following:
y_pred_gbtree = y_pred(XGBClassifier())

The accuracy score is as follows:
0.951048951048951

b) XGBClassifier with dart uses the following: 
y_pred_dart = y_pred(XGBClassifier(booster='dart', one_
drop=True))

The accuracy score is as follows:
0.951048951048951

c) RandomForestClassifier uses the following:
y_pred_forest = y_pred(RandomForestClassifier())

The accuracy score is as follows:
0.9370629370629371

d) LogisticRegression uses the following:
y_pred_logistic = y_pred(LogisticRegression(max_
iter=10000))

The accuracy score is as follows:
0.9370629370629371

Note 
max_iter is increased in LogisticRegression to prevent warnings 
(and potentially gain accuracy).



240     XGBoost Kaggle Masters

e) Tuned XGBClassifier uses the following:
y_pred_xgb = y_pred(XGBClassifier(max_depth=2, n_
estimators=500, learning_rate=0.1))

The accuracy score is as follows:
0.965034965034965

4. Concatenate the predictions into a new DataFrame using np.c (the c is short for 
concatenation):

df_pred = pd.DataFrame(data= np.c_[y_pred_gbtree, y_
pred_dart, y_pred_forest, y_pred_logistic, y_pred_xgb], 
columns=['gbtree', 'dart','forest', 'logistic', 'xgb'])

5. Run correlations on the DataFrame using the .corr() method:

df_pred.corr()

You should see the following output:

Figure 9.11 – Correlations between various machine learning models

As you can see, all correlations on the diagonal are 1.0 because the correlation between 
the model and itself must be perfectly linear. All other values are reasonably high.

There is no clear cut-off to obtain a non-correlated threshold. It ultimately depends on 
the values of correlation and the number of models to choose from. For this example, we 
could pick the next two least correlated models with our best model, xgb, which are the 
random forest and logistic regression.

Now that we have chosen our models, we will combine them into a single ensemble using 
the VotingClassifier ensemble, introduced next.
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The VotingClassifier ensemble
Scikit-learn's VotingClassifier ensemble is designed to combine multiple 
classification models and select the output for each prediction using majority rules. 
Note that scikit-learn also comes with VotingRegressor, which combines multiple 
regression models by taking the average of each one.

Here are the steps to create an ensemble in scikit-learn:

1. Initialize an empty list:

estimators = []

2. Initialize the first model:

logistic_model = LogisticRegression(max_iter=10000)

3. Append the model to the list as a tuple in the form (model_name, model):

estimators.append(('logistic', logistic_model))

4. Repeat steps 2 and 3 as many times as desired:

xgb_model = XGBClassifier(max_depth=2, n_estimators=500, 
learning_rate=0.1)

estimators.append(('xgb', xgb_model))

rf_model = RandomForestClassifier(random_state=2)

estimators.append(('rf', rf_model))

5. Initialize VotingClassifier (or VotingRegressor) using the list of models 
as input:

ensemble = VotingClassifier(estimators)

6. Score the classifier using cross_val_score:

scores = cross_val_score(ensemble, X, y, cv=kfold)

print(scores.mean())

The score is as follows:
0.9754075454122031

As you can see, the score has improved.
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Now that you understand the purpose and technique of building non-correlated machine 
learning ensembles, let's move on to a similar but potentially advantageous technique 
called stacking.

Stacking models
"For stacking and boosting I use xgboost, again primarily due to familiarity 

and its proven results."
– David Austin, Kaggle Winner

(https://www.pyimagesearch.com/2018/03/26/interview-david-
austin-1st-place-25000-kaggles-popular-competition/)

In this final section, we will examine one of the most powerful tricks frequently used by 
Kaggle winners, called stacking.

What is stacking?
Stacking combines machine learning models at two different levels: the base level, whose 
models make predictions on all the data, and the meta level, which takes the predictions 
of the base models as input and uses them to generate final predictions.

In other words, the final model in stacking does not take the original data as input, but 
rather takes the predictions of the base machine learning models as input.

Stacked models have found huge success in Kaggle competitions. Most Kaggle 
competitions have merger deadlines, where individuals and teams can join together.  
These mergers can lead to greater success as teams rather than individuals because 
competitors can build larger ensembles and stack their models together.

Note that stacking is distinct from a standard ensemble on account of the meta-model 
that combines predictions at the end. Since the meta-model takes predictive values as 
the input, it's generally advised to use a simple meta-model, such as linear regression for 
regression and logistic regression for classification.

Now that you have an idea of what stacking is, let's apply stacking with scikit-learn.

Stacking in scikit-learn
Fortunately, scikit-learn comes with a stacking regressor and classifier that makes the 
process fairly straightforward. The general idea is very similar to the ensemble model in 
the last section. A variety of base models are chosen, and then linear regression or logistic 
regression is chosen for the meta-model.

https://www.pyimagesearch.com/2018/03/26/interview-david-austin-1st-place-25000-kaggles-popular-competition/
https://www.pyimagesearch.com/2018/03/26/interview-david-austin-1st-place-25000-kaggles-popular-competition/
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Here are the steps to use stacking with scikit-learn:

1. Create an empty list of base models:

base_models = []

2. Append all base models to the base model list as tuples using the syntax (name, 
model):

base_models.append(('lr', LogisticRegression()))

base_models.append(('xgb', XGBClassifier()))

base_models.append(('rf', RandomForestClassifier(random_
state=2)))

More models may be chosen when stacking since there are no majority rules 
limitations and linear weights adjust more easily to new data. An optimal approach 
is to use non-correlation as loose a guideline and to experiment with different 
combinations.

3. Choose a meta model, preferably linear regression for regression and logistic 
regression for classification:

meta_model = LogisticRegression()

4. Initialize StackingClassifier (or StackingRegressor) using base_
models for estimators and meta_model for final_estimator:

clf = StackingClassifier(estimators=base_models, final_
estimator=meta_model)

5. Validate the stacked model using cross_val_score or any other scoring 
method:

scores = cross_val_score(clf, X, y, cv=kfold)

print(scores.mean())

The score is as follows:
0.9789318428815401

This is the strongest result yet.

As you can see, stacking is an incredibly powerful method and outperformed the 
non-correlated ensemble from the previous section.
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Summary
In this chapter, you learned some of the well-tested tips and tricks from the winners of 
Kaggle competitions. In addition to exploring Kaggle competitions and understanding 
the importance of a hold-out set, you gained essential practice in feature engineering 
time columns, feature engineering categorical columns, mean encoding, building 
non-correlated ensembles, and stacking. These advanced techniques are widespread 
among elite Kagglers, and they can give you an edge when developing machine learning 
models for research, competition, and industry.

In the next and final chapter, we will shift gears from the competitive world to the tech 
world, where we will build an XGBoost model from beginning to end using transformers 
and pipelines to complete a model ready for industry deployment.
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Deployment
In this final chapter on XGBoost, you will put everything together and develop 
new techniques to build a robust machine learning model that is industry ready. 
Deploying models for industry is a little different than building models for research and 
competitions. In industry, automation is important since new data arrives frequently. 
More emphasis is placed on procedure, and less emphasis is placed on gaining minute 
percentage points by tweaking machine learning models.

Specifically, in this chapter, you will gain significant experience with one-hot encoding 
and sparse matrices. In addition, you will implement and customize scikit-learn 
transformers to automate a machine learning pipeline to make predictions on data that is 
mixed with categorical and numerical columns. At the end of this chapter, your machine 
learning pipeline will be ready for any incoming data.

In this chapter, we cover the following topics:

• Encoding mixed data

• Customizing scikit-learn transformers

• Finalizing an XGBoost model

• Building a machine learning pipeline
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Technical requirements
The code for this chapter may be found at https://github.com/
PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-
Scikit-learn/tree/master/Chapter10.

Encoding mixed data
Imagine that you are working for an EdTech company and your job is to predict student 
grades to target services aimed at bridging the tech skills gap. Your first step is to load data 
that contains student grades into pandas.

Loading data
The Student Performance dataset, provided by your company, may be accessed by loading 
the student-por.csv file that has been imported for you.

Start by importing pandas and silencing warnings. Then, download the dataset and view 
the first five rows:

import pandas as pd

import warnings

warnings.filterwarnings('ignore')

df = pd.read_csv('student-por.csv')

df.head()

Here is the expected output:

Figure 10.1 – The Student Performance dataset as is

Welcome to the world of industry, where data does not always appear as expected.

A recommended option is to view the CSV file. This can be done in Jupyter Notebooks by 
locating the folder for this chapter and clicking on the student-por.csv file. 

https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn/tree/master/Chapter10
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You should see the following:

Figure 10.2 – The Student Performance CSV file

As you can see in the preceding figure, the data is separated by semi-colons. CSV stands 
for Comma-Separated Values, not Semi-Colon-Separated Values. Fortunately, pandas 
comes with a sep parameter, which stands for separator, that may be set to the semi-
colon, (;), as follows:

df = pd.read_csv('student-por.csv', sep=';')

df.head()

Here is the expected output:

Figure 10.3 – The Student Performance dataset 

Now that the DataFrame looks as expected, with a mix of categorical and numerical 
values, we must clean up the null values.
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Clearing null values
You can view all columns of null values by calling the .sum() method on 
df.insull(). Here is an excerpt of the results:

df.isnull().sum()

school        0

sex           1

age           1

address       0

…

health        0

absences      0

G1            0

G2            0

G3            0

dtype: int64

You can view the rows of these columns using conditional notation by placing 
df.isna().any(axis=1) inside of brackets with df:

df[df.isna().any(axis=1)]

Here is the expected output:

Figure 10.4 – The Student Performance null data

It's preferable to see the null columns in the middle, which Jupyter removes by default on 
account of the number of columns. This is easily corrected by setting max columns to 
None as follows:

pd.options.display.max_columns = None

Now, running the code again shows all the columns:

df[df.isna().any(axis=1)]
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Here is an excerpt of the expected output:

Figure 10.5 – Null data from all rows of the Student Performance dataset

As you can see, all columns including the hidden null values under 'guardian' are  
now displayed.

Numerical null values may be set to -999.0, or some other value, and XGBoost will  
find the best replacement for you using the missing hyperparameter as introduced in 
Chapter 5, XGBoost Unveiled.

Here is the code to fill the 'age' column with -999.0:

df['age'].fillna(-999.0)

Next, categorical columns may be filled by the mode. The mode is the most common 
occurrence in a column. Filling categorical columns with the mode may distort the resulting 
distribution, however, only if the number of null values is large. There are only two null 
values present, so our distribution will not be affected. Another option includes replacing 
categorical null values with the 'unknown' string, which may become its own column 
after one-hot encoding. Note that XGBoost requires numerical input, so the missing 
hyperparameter cannot be directly applied to categorical columns as of 2020.

The following code converts the 'sex' and 'guardian' categorical columns to mode:

df['sex'] = df['sex'].fillna(df['sex'].mode())

df['guardian'] = df['guardian'].fillna(df['guardian'].mode())

Since our null values were in the first two rows, we can reveal that they have been changed 
using df.head():

df.head()

Here is the expected output:

Figure 10.6 – The Student Performance dataset with the null values removed (first five rows only)
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The null values have all been cleared as expected.

Next, we will convert all categorical columns to numerical columns using one-hot 
encoding.

One-hot encoding
Previously, we used pd.get_dummies to transform all categorical variables to numerical 
values of 0 and 1, with 0 indicating absence and 1 indicating presence. While acceptable, 
this approach has some shortcomings.

The first shortcoming is that pd.get_dummies can be computationally expensive, 
as you may have found when waiting for code to run in previous chapters. The second 
shortcoming is that pd.get_dummies does not translate particularly well to scikit-
learn's pipelines, a concept that we will explore in the next section.

A nice alternative to pd.get_dummies is scikit-learn's OneHotEncoder. Like 
pd.get_dummies, one-hot encoding transforms all categorical values to 0 and 1, with 
0 indicating absence and 1 indicating presence, but unlike pd.get_dummies, it is not 
computationally expensive. OneHotEncoder uses a sparse matrix instead of a dense 
matrix to save space and time.

Sparse matrices save space by only storing data with values that do not include 0. The 
same amount of information is conserved by using fewer bits.

In addition, OneHotEncoder is a scikit-learn transformer, which means that it's 
specifically designed to work in machine learning pipelines.

In past versions of scikit-learn, OneHotEncoder only accepted numerical input. When 
that was the case, an intermediate step was taken with LabelEncoder to first convert all 
categorical columns into numerical columns.

To use OneHotEncoder on specific columns, you may use the following steps:

1. Convert all categorical columns of the dtype object into a list:

categorical_columns = df.columns[df.dtypes==object].
tolist()

2. Import and initialize OneHotEncoder:

from sklearn.preprocessing import OneHotEncoder

ohe = OneHotEncoder()
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3. Use the fit_transform method on the columns:

hot = ohe.fit_transform(df[categorical_columns])

4. Optional: convert the one-hot encoded sparse matrix into a standard array and 
convert it into a DataFrame for viewing:

hot_df = pd.DataFrame(hot.toarray())

hot_df.head() 

Here is the expected output:

Figure 10.7 – DataFrame of a one-hot encoded matrix
This looks as expected, with all the values being 0 or 1.

5. If you want to see what the hot sparse matrix actually looks like, you can print it 
out as follows:

print(hot)

Here is an excerpt of the results:
  (0, 0)  1.0

  (0, 2)  1.0

  (0, 5)  1.0

  (0, 6)  1.0

  (0, 8)  1.0

…  

  (648, 33) 1.0

  (648, 35) 1.0

  (648, 38) 1.0

  (648, 40) 1.0

  (648, 41) 1.0

As you can see, only the values of 0 have been skipped. For instance, the 0th row 
and the 1st column, denoted by (0, 1), has a value of 0.0 in the dense matrix, but 
it's skipped over in the one-hot matrix.
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If you want more information about the sparse matrix, just enter the following variable:

hot

The result is as follows:

<649x43 sparse matrix of type '<class 'numpy.float64'>'

 with 11033 stored elements in Compressed Sparse Row 
format>

This tells us that the matrix is 649 by 43, but only 11033 values have been stored, saving 
a significant amount of space. Note that for text data, which has many zeros, sparse 
matrices are very common.

Combining a one-hot encoded matrix and numerical 
columns
Now that we have a one-hot encoded sparse matrix, we must combine it with the 
numerical columns of the original DataFrame.

First, let's isolate the numerical columns. This may be done with the 
exclude=["object"] parameter as input for df.select_dtypes,  
which selects columns of certain types as follows:

cold_df = df.select_dtypes(exclude=["object"])

cold_df.head()

Here is the expected output:

Figure 10.8 – The Student Performance dataset's numerical columns

These are the columns we are looking for.
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For data of this size, we have a choice of converting the sparse matrix to a regular 
DataFame, as seen in the preceding screenshot, or converting this DataFrame into a 
sparse matrix. Let's pursue the latter, considering that DataFrames in industry can become 
enormous and saving space can be advantageous:

1. To convert the cold_df DataFrame to a compressed sparse matrix, import  
csr_matrix from scipy.sparse and place the DataFrame inside, as follows:

from scipy.sparse import csr_matrix

cold = csr_matrix(cold_df)

2. Finally, stack both matrices, hot and cold, by importing and using hstack, which 
combines sparse matrices horizontally:

from scipy.sparse import hstack

final_sparse_matrix = hstack((hot, cold))

3. Verify that final_sparse_matrix works as expected by converting the sparse 
matrix into a dense matrix and by displaying the DataFrame as usual:

final_df = pd.DataFrame(final_sparse_matrix.toarray())

final_df.head()

Here is the expected output:

Figure 10.9 – The DataFrame of the final sparse matrix

The output is shifted to the right to show the one-hot encoded and numerical  
columns together.

Now that the data is ready for machine learning, let's automate the process using 
transformers and pipelines.

Customizing scikit-learn transformers
Now that we have a process for transforming the DataFrame into a machine learning-ready 
sparse matrix, it would be advantageous to generalize the process with transformers so that 
it can easily be repeated for new data coming in.
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Scikit-learn transformers work with machine learning algorithms by using a fit 
method, which finds model parameters, and a transform method, which applies these 
parameters to data. These methods may be combined into a single fit_transform 
method that fits and transforms data in one line of code. 

When used together, various transformers, including machine learning algorithms, may 
work together in the same pipeline for ease of use. Data is then placed in the pipeline that 
is fit and transformed to achieve the desired output.

Scikit-learn comes with many great transformers, such as StandardScaler and 
Normalizer to standardize and normalize data, respectively, and SimpleImputer 
to convert null values. You have to be careful, however, when data contains a mix of 
categorical and numerical columns, as is the case here. In some cases, the scikit-learn 
options may not be the best options for automation. In this case, it's worth creating your 
own transformers to do exactly what you want.

Customizing transformers
The key to creating your own transformers is to use scikit-learn's TransformerMixin 
as your superclass.

Here is a general code outline to create a customized transformer in scikit-learn:

class YourClass(TransformerMixin):

    def __init__(self):

        None

    def fit(self, X, y=None):

        return self

    def transform(self, X, y=None):

        # insert code to transform X

        return X

As you can see, you don't have to initialize anything, and fit can always return  
self. Simply put, you may place all your code for transforming the data under the 
transform method.

Now that you see how customization works generally, let's create a customized 
transformer to handle different kinds of null values.
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Customizing a mixed null value imputer
Let's see how this works by creating a customized mixed null value imputer. Here, 
the reason for the customization is to handle different types of columns with different 
approaches to correcting null values. 

Here are the steps:

1. Import TransformerMixin and define a new class with TransformerMixin 
as the superclass:

from sklearn.base import TransformerMixin 

class NullValueImputer(TransformerMixin):

2. Initialize the class with self as input. It's okay if this does nothing:

def __init__(self):

None

3. Create a fit method that takes self and X as input, with y=None, and  
returns self:

def fit(self, X, y=None):

return self

4. Create a transform method that takes self and X as input, with y=None, and 
transforms the data by returning a new X, as follows:

def transform(self, X, y=None):

We need to handle null values separately depending on the columns. 

Here are the steps to convert null values to the mode or -999.0, depending upon 
the column type:

a) Loop through the columns by converting them to a list:
for column in X.columns.tolist():

b) Within the loop, access the columns that are strings by checking which columns 
are of the object dtype:

    if column in X.columns[X.dtypes==object].tolist():

c) Convert the null values of the string (object) columns to the mode:
        X[column] = X[column].fillna(X[column].mode())
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d) Otherwise, fill the columns with -999.0:
    else:

        X[column]=X[column].fillna(-999.0)

      return X

In the preceding code, you may have wondered why y=None is used. The reason is that y 
will be needed as an input when including a machine learning algorithm in the pipeline. 
By setting y to None, changes will only be made to the predictor columns as expected.

Now that the customized imputer has been defined, it may be used by calling the fit_
transform method on the data. 

Let's reset the data by establishing a new DataFrame from the CSV file and transform the 
null values in one line of code using the customized NullValueImputer:

df = pd.read_csv('student-por.csv', sep=';')

nvi = NullValueImputer().fit_transform(df)

nvi.head()

Here is the expected output:

Figure 10.10 – The Student Performance DataFrame after NullValueImputer()

As you can see, all null values have been cleared.

Next, let's transform the data into a one-hot encoded sparse matrix as before.

One-hot encoding mixed data
We will apply similar steps here to those from the previous section by creating a 
customized transformer to one-hot encode the categorical columns before joining them 
with the numerical columns as a sparse matrix (a dense matrix is also okay for a dataset of 
this size):

1. Define a new class with TransformerMixin as the superclass:

class SparseMatrix(TransformerMixin):
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2. Initialize the class with self as input. It's okay if this does nothing:

def __init__(self):

      None

3. Create a fit method that takes self and X as input and returns self:

def fit(self, X, y=None):

      return self

4. Create a transform method that takes self and X as input, transforms the data, 
and returns a new X:

def transform(self, X, y=None):

Here are the steps to complete the transformation; start by accessing only the 
categorical columns, which are of the object type, as follows:

a) Put the categorical columns in a list:
      categorical_columns= X.columns[X.
dtypes==object].tolist()

b) Initialize OneHotEncoder:
      ohe = OneHotEncoder() 

c) Transform the categorical columns with OneHotEncoder:
hot = ohe.fit_transform(X[categorical_columns])

d) Create a DataFrame of numerical columns only by excluding strings:
cold_df = X.select_dtypes(exclude=["object"])

e) Convert the numerical DataFrame into a sparse matrix:
         cold = csr_matrix(cold_df)

f) Combine both sparse matrices into one:
         final_sparse_matrix = hstack((hot, cold))

g) Convert this into a Compressed Sparse Row (CSR) matrix to limit errors. Note 
that XGBoost requires CSR matrices, and this conversion may happen automatically 
depending on your version of XGBoost:

         final_csr_matrix = final_sparse_matrix.tocsr()

         return final_csr_matrix
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5. Now we can transform the nvi data with no null values by using the powerful 
fit_transform method on SparseMatrix:

sm = SparseMatrix().fit_transform(nvi)

print(sm)

The expected output, given here, is truncated to save space:
  (0, 0) 1.0

  (0, 2) 1.0

  (0, 5) 1.0

  (0, 6) 1.0

  (0, 8) 1.0

  (0, 10) 1.0

  : :

  (648, 53) 4.0

  (648, 54) 5.0

  (648, 55) 4.0

  (648, 56) 10.0

  (648, 57) 11.0

  (648, 58) 11.0

6. You can verify that the data looks as expected by converting the sparse matrix back 
into a dense matrix as follows:

sm_df = pd.DataFrame(sm.toarray())

sm_df.head()

Here is the expected dense output:

Figure 10.11 – The sparse matrix converted into a dense matrix

This appears correct. The figure shows a value of 0.0 for the 27th column and a value of 
1.0 for the 28th column. The preceding one-hot encoded output excludes (0,27) and 
shows a value of 1.0 for (0,28), matching the dense output.

Now that the data has been transformed, let's combine both preprocessing steps into a 
single pipeline.
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Preprocessing pipeline
When building machine learning models, it's standard to start by separating the data into X 
and y. When thinking about a pipeline, it makes sense to transform X, the predictor columns, 
and not y, the target column. Furthermore, it's important to hold out a test set for later.

Before placing data into the machine learning pipeline, let's split the data into training and 
test sets and leave the test set behind. We start from the top as follows:

1. First, read the CSV file as a DataFrame:

df = pd.read_csv('student-por.csv', sep=';')

When choosing X and y for the Student Performance dataset, it's important to note 
that the last three columns all include student grades. Two potential studies are of 
value here: 

a) Including previous grades as predictor columns 

b) Not including previous grades as predictor columns

Assume that your EdTech company wants to make predictions based on 
socioeconomic variables, not on previous grades earned, so ignore the first two 
grade columns indexed as -2 and -3.

2. Select the last column as y, and all columns except for the last three as X:

y = df.iloc[:, -1]

X = df.iloc[:, :-3]

3. Now import train_test_split and split X and y into a training and a test set:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, 
random_state=2)

Now let's build the pipeline using the following steps:

1. First import Pipeline from sklearn.pipeline:

from sklearn.pipeline import Pipeline

2. Next, assign tuples using the syntax (name, transformer) as parameters of 
Pipeline in sequence:

data_pipeline = Pipeline([('null_imputer', 
NullValueImputer()), ('sparse', SparseMatrix())])
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3. Finally, transform X_train, our predictor columns, by placing X_train inside 
the fit_transform method of data_pipeline:

X_train_transformed = data_pipeline.fit_transform(X_
train)

Now you have a numerical, sparse matrix with no null values that can be used as the 
predictor column for machine learning.

Furthermore, you have a pipeline that may be used to transform any incoming data in one 
line of code! Let's now finalize an XGBoost model to make predictions.

Finalizing an XGBoost model
It's time to build a robust XGBoost model to add to the pipeline. Go ahead and import 
XGBRegressor, numpy, GridSearchCV, cross_val_score, KFold, and mean_
squared_error as follows:

import numpy as np

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import cross_val_score, KFold

from sklearn.metrics import mean_squared_error as MSE

from xgboost import XGBRegressor

Now let's build the model.

First XGBoost model
This Student Performance dataset has an interesting range of values for the predictor 
column, y_train, which can be shown as follows:

y_train.value_counts()

The result is this:

11    82

10    75

13    58

12    53

14    42
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15    36

9     29

16    27

8     26

17    24

18    14

0     10

7      7

19     1

6      1

5      1

As you can see, the values range from 5-19 with 0 included. 

Since the target column is ordinal, meaning the values are numerically ordered, regression 
is preferable to classification even though the outputs are limited. After training a model 
via regression, the final results may be rounded to give the final predictions.

Here are the steps to score XGBRegressor with this dataset:

1. Start by setting up cross-validation using KFold:

kfold = KFold(n_splits=5, shuffle=True, random_state=2)

2. Now define a cross-validation function that returns the root mean squared error 
using cross_val_score:

def cross_val(model):

    scores = cross_val_score(model, X_train_transformed, 
y_train, scoring='neg_root_mean_squared_error', cv=kfold)

    rmse = (-scores.mean())

    return rmse

3. Establish a base score by calling cross_val with the XGBRegressor as input 
with missing=-999.0 so that XGBoost can find the best replacement:

cross_val(XGBRegressor(missing=-999.0))

The score is this:
2.9702248207546296
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This is a respectable starting score. A root mean squared error of 2.97 out of 19 
possibilities indicates that the grades are within a couple of points of accuracy. This is 
almost 15%, which is accurate within one letter grade using the American A-B-C-D-F 
system. In industry, you may even include a confidence interval using statistics to deliver a 
prediction interval, a recommended strategy that is outside the scope of this book.

Now that you have a baseline score, let's fine-tune the hyperparameters to improve  
the model.

Fine-tuning the XGBoost hyperparameters
Let's start by checking n_estimators with early stopping. Recall that to use early 
stopping, we may check one test fold. Creating the test fold requires splitting X_train 
and y_train further:

1. Here is a second train_test_split that may be used to create a test set for 
validation purposes, making sure to keep the real test set hidden for later:

X_train_2, X_test_2, y_train_2, y_test_2 = train_test_
split(X_train_transformed, y_train, random_state=2)

2. Now define a function that uses early stopping to return the optimal number of 
estimators for the regressor (see Chapter 6, XGBoost Hyperparameters):

def n_estimators(model):

    eval_set = [(X_test_2, y_test_2)]

    eval_metric="rmse"

    model.fit(X_train_2, y_train_2, eval_metric=eval_
metric, eval_set=eval_set, early_stopping_rounds=100)

    y_pred = model.predict(X_test_2)

    rmse = MSE(y_test_2, y_pred)**0.5

    return rmse  

3. Now run the n_estimators function, setting to 5000 as a maximum:

n_estimators(XGBRegressor(n_estimators=5000, missing=-
999.0))

Here are the last five rows of the output:
[128] validation_0-rmse:3.10450

[129] validation_0-rmse:3.10450

[130] validation_0-rmse:3.10450
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[131] validation_0-rmse:3.10450

Stopping. Best iteration:

[31] validation_0-rmse:3.09336

The score is as follows:
3.0933612343143153

Using our default model, 31 estimators currently gives the best estimate. That will be our 
starting point.

Next, here is a grid_search function, which we have used multiple times, that searches 
a grid of hyperparameters and displays the best parameters and best score:

def grid_search(params, reg=XGBRegressor(missing=-999.0)):

    grid_reg = GridSearchCV(reg, params, scoring='neg_mean_
squared_error', cv=kfold)

    grid_reg.fit(X_train_transformed, y_train)

    best_params = grid_reg.best_params_

    print("Best params:", best_params)

    best_score = np.sqrt(-grid_reg.best_score_)

    print("Best score:", best_score)

Here are a few recommended steps for fine-tuning the model:

1. Start with max_depth ranging from 1 to 8 while setting n_estimators to 31:

grid_search(params={'max_depth':[1, 2, 3, 4, 6, 7, 8], 

                    'n_estimators':[31]})

The result is this:
Best params: {'max_depth': 1, 'n_estimators': 31}

Best score: 2.6634430373079425

2. Narrow max_depth from 1 to 3 while ranging min_child_weight from 1 to 5 
and holding n_esimtators at 31: 

grid_search(params={'max_depth':[1, 2, 3], 

                    'min_child_weight':[1,2,3,4,5], 

                    'n_estimators':[31]})
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The result is this:
Best params: {'max_depth': 1, 'min_child_weight': 1, 'n_
estimators': 31}

Best score: 2.6634430373079425

There is no improvement. 

3. You may guarantee some changes by forcing min_child_weight to take 
on a value of 2 or 3 while including a range of subsample from 0.5 to 0.9. 
Furthermore, increasing n_estimators may help by giving the model more time 
to learn:

grid_search(params={'max_depth':[2],

                    'min_child_weight':[2,3],

                    'subsample':[0.5, 0.6, 0.7, 0.8, 
0.9],

                   'n_estimators':[31, 50]})

The result is as follows:
Best params: {'max_depth': 1, 'min_child_weight': 2, 'n_
estimators': 50, 'subsample': 0.9}

Best score: 2.665209161229433

The score is nearly the same, but slightly worse.

4. Narrow min_child_weight and subsample while using a range of 0.5 to 0.9 
for colsample_bytree:

grid_search(params={'max_depth':[1],

                    'min_child_weight':[1, 2, 3], 

                    'subsample':[0.6, 0.7, 0.8], 

                    'colsample_bytree':[0.5, 0.6, 0.7, 
0.8, 0.9, 1],

                   'n_estimators':[50]})

The result is this:
Best params: {'colsample_bytree': 0.9, 'max_depth': 1, 
'min_child_weight': 3, 'n_estimators': 50, 'subsample': 
0.8}

Best score: 2.659649642579931

This is the best score so far.
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5. Holding the best current values, try ranges from 0.6 to 1.0 with colsample_
bynode and colsample_bylevel:

 grid_search(params={'max_depth':[1],

                    'min_child_weight':[3], 

                    'subsample':[.8], 

                    'colsample_bytree':[0.9],

                    'colsample_bylevel':[0.6, 0.7, 0.8, 
0.9, 1],

                    'colsample_bynode':[0.6, 0.7, 0.8, 
0.9, 1],

                    'n_estimators':[50]})

The result is given here:
Best params: {'colsample_bylevel': 0.9, 'colsample_
bynode': 0.8, 'colsample_bytree': 0.9, 'max_depth': 1, 
'min_child_weight': 3, 'n_estimators': 50, 'subsample': 
0.8}

Best score: 2.64172735526102

The score has improved again.
Further experimentation with the base learner to dart and gamma resulted in no  
new gains.

Depending on the time and the scope of the project, it could be worth tuning 
hyperparameters further, and even trying them all together in RandomizedSearch. 
In industry, there is a good chance that you will have access to cloud computing, where 
inexpensive, preemptible Virtual Machines (VMs) will allow more hyperparameter 
searches to find even better results. Just note that scikit-learn currently does not offer a way 
to stop time-consuming searches to save the best parameters before the code completes.

Now that we have a robust model, we can move forward and test the model.

Testing model
Now that you have a potential final model, it's important to test it against the test set.

Recall that the test set was not transformed in our pipeline. Fortunately, at this point, it 
only takes one line of code to transform it:

X_test_transformed = data_pipeline.fit_transform(X_test)
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Now we can initialize a model with the best-tuned hyperparameters selected in the 
previous section, fit it on the training set, and test it against the test set that was held back:

model = XGBRegressor(max_depth=2, min_child_weight=3, 
subsample=0.9, colsample_bytree=0.8, gamma=2, missing=-999.0)

model.fit(X_train_transformed, y_train)

y_pred = model.predict(X_test_transformed)

rmse = MSE(y_pred, y_test)**0.5

rmse

The score is as follows:

2.7908972630881435

The score is a little higher, although this could be on account of the fold.

If not, our model has fit the validation set a little too closely, which can happen when  
fine-tuning hyperparameters and adjusting them closely to improve the validation set.  
The model generalizes fairly well, but it could generalize better.

For the next steps, when considering whether the score can be improved upon, the 
following options are available:

• Return to hyperparameter fine-tuning.

• Keep the model as is.

• Make a quick adjustment based on hyperparameter knowledge.

Quickly adjusting hyperparameters is viable since the model could be overfitting. For 
instance, increasing min_child_weight and lowering subsample should help the 
model to generalize better.

Let's make that final adjustment for a final model:

model = XGBRegressor(max_depth=1,

                       min_child_weight=5,

                       subsample=0.6, 

                       colsample_bytree=0.9, 

                       colsample_bylevel=0.9,

                       colsample_bynode=0.8,

                     n_estimators=50,
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                       missing=-999.0)

model.fit(X_train_transformed, y_train)

y_pred = model.predict(X_test_transformed)

rmse = MSE(y_pred, y_test)**0.5

rmse

The result is as follows: 

2.730601403138633

Note that the score has improved.

Also, you should absolutely not go back and forth trying to improve the hold-out test 
score. It is acceptable to make a few adjustments after receiving the test score, however; 
otherwise, you could never improve upon the first result.

Now all that remains is to complete the pipeline.

Building a machine learning pipeline
Completing the machine learning pipeline requires adding the machine learning model to 
the previous pipeline. You need a machine learning tuple after NullValueImputer and 
SparseMatrix as follows:

full_pipeline = Pipeline([('null_imputer', 
NullValueImputer()),  ('sparse', SparseMatrix()), 

('xgb', XGBRegressor(max_depth=1, min_child_weight=5, 
subsample=0.6, colsample_bytree=0.9, colsample_bylevel=0.9, 
colsample_bynode=0.8, missing=-999.0))]) 

This pipeline is now complete with a machine learning model, and it can be fit on any X, y 
combination, as follows:

full_pipeline.fit(X, y)

Now you can make predictions on any data whose target column is unknown:

new_data = X_test

full_pipeline.predict(new_data)
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Here are the first few rows of the expected output:

array([13.55908  ,  8.314051 , 11.078157 , 14.114085 , 
12.2938385, 11.374797 , 13.9611025, 12.025812 , 10.80344  , 
13.479145 , 13.02319  ,  9.428679 , 12.57761  , 12.405045 , 
14.284043 , 8.549758 , 10.158956 ,  9.972576 , 15.502667 , 
10.280028 , ...

To get realistic predictions, the data may be rounded as follows:

np.round(full_pipeline.predict(new_data))

The expected output is given here:

array([14.,  8., 11., 14., 12., 11., 14., 12., 11., 13., 13.,  
9., 13., 12., 14.,  9., 10., 10., 16., 10., 13., 13.,  7., 12.,  
7.,  8., 10., 13., 14., 12., 11., 12., 15.,  9., 11., 13., 12., 
11.,  8.,

...

11., 13., 12., 13.,  9., 13., 10., 14., 12., 15., 15., 11., 
14., 10., 14.,  9.,  9., 12., 13.,  9., 11., 14., 13., 11., 
13., 13., 13., 13., 11., 13., 14., 15., 13.,  9., 10., 
13.,  8.,  8., 12., 15., 14., 13., 10., 12., 13.,  9.], 
dtype=float32)

Finally, if new data comes through, it can be concatenated with the previous data and 
placed through the same pipeline for a stronger model, since the new model may be fit on 
more data as follows:

new_df = pd.read_csv('student-por.csv')

new_X = df.iloc[:, :-3]

new_y = df.iloc[:, -1]

new_model = full_pipeline.fit(new_X, new_y)

Now, this model may be used to make predictions on new data, as shown in the  
following code:

more_new_data = X_test[:25]

np.round(new_model.predict(more_new_data))
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The expected output is as follows:

array([14.,  8., 11., 14., 12., 11., 14., 12., 11., 13., 13.,  
9., 13., 12., 14.,  9., 10., 10., 16., 10., 13., 13.,  7., 12.,  
7.],

      dtype=float32)

There is one small catch.

What if you want to make a prediction on only one row of data? If you run a single row 
through the pipeline, the resulting sparse matrix will not have the correct number of 
columns, since it will only one-hot encode categories that are present in the single row. 
This will result in a mismatch error in the data, since the machine learning model has  
been fit to a sparse matrix that requires more rows of data.

A simple solution is to concatenate the new row of data with enough rows of data to 
guarantee that the full sparse matrix is present with all possible categorical columns 
transformed. We have seen that this works with 25 rows from X_test since there were 
no errors. Using 20 or fewer rows from X_test will result in a mismatch error in this 
particular case.

So, if you want to make a prediction with a single row of data, concatenate the single row 
with the first 25 rows of X_test and make a prediction as follows:

single_row = X_test[:1]

single_row_plus = pd.concat([single_row, X_test[:25]])

print(np.round(new_model.predict(single_row_plus))[:1])

The result is this:

[14.]

You now know how machine learning models may be included in pipelines to transform 
and make predictions on new data.

Summary
Congratulations on making it to the end of the book! This has been an extraordinary journey 
that began with basic machine learning and pandas and ended with building your own 
customized transformers, pipelines, and functions to deploy robust, fine-tuned XGBoost 
models in industry scenarios with sparse matrices to make predictions on new data.
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Along the way, you have learned the story of XGBoost, from the first decision trees 
through random forests and gradient boosting, before discovering the mathematical 
details and sophistication that has made XGBoost so special. You saw time and time again 
that XGBoost outperforms other machine learning algorithms, and you gained essential 
practice in tuning XGBoost's wide-ranging hyperparameters, including n_estimators, 
max_depth, gamma, colsample_bylevel, missing, and scale_pos_weight.

You learned how physicists and astronomers obtained knowledge about our universe 
in historically important case studies, and you learned about the extensive range of 
XGBoost through imbalanced datasets and the application of alternative base learners. 
You even learned tricks of the trade from Kaggle competitions through advanced feature 
engineering, non-correlated ensembles, and stacking. Finally, you learned advanced 
automation processes for industry.

At this point, your knowledge of XGBoost is at an advanced level. You can now use 
XGBoost efficiently, swiftly, and powerfully to tackle the machine learning problems 
that will come your way. Of course, XGBoost is not perfect. If you are dealing with 
unstructured data such as images or text, neural networks might serve you better. For 
most machine learning tasks, especially those with tabular data, XGBoost will usually give 
you an advantage.

If you are interested in pursuing further studies with XGBoost, my personal 
recommendation is to enter Kaggle competitions. The reason is that Kaggle competitions 
consist of seasoned machine learning practitioners and competing against them will make 
you better. Furthermore, Kaggle competitions provide a structured machine learning 
environment consisting of many practitioners working on the same problem, which 
results in shared notebooks and forum discussions that can further boost the educational 
process. It's also where XGBoost first developed its extraordinary reputation with the 
Higgs boson competition, as outlined in this book.

You may now go confidently forward into the world of big data with XGBoost to advance 
research, enter competitions, and build machine learning models ready for production.
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decision tree stump  152
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Regression Trees (dart)
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analyzing  213
versus XGBClassifier  208, 209
versus XGBRegressor  207

E
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applying  147
early_stopping_rounds  149-151
eval_metric  148, 149
eval_set  148, 149

early_stopping_rounds  149-151
ensemble methods  64
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eval_metric  148, 149
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about  99, 100, 160-162
data, graphing  162-166
data, preparing  167
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preprocessing 100, 101
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Extreme Gradient Boosting (XGBoost)
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cross-validation with 24, 25
designing  110
previewing  4
using, in Kaggle competitions 220, 221
with decision trees 36

F
feature engineering  224
final models

stacking  242
folds  22

G
gamma  145, 156
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analyzing  207
applying  198
applying, to Diabetes dataset  198-200
applying, to linear datasets  205, 206

gblinear grid search  203-205
gblinear hyperparameters
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reg_alpha  201
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God particle  123
gradient boosting

distinguishing  85
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gradient boosting classifiers
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gradient boosting hyperparameters
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modifying  92
RandomizedSearchCV  96-98
subsample  95, 96
XGBoost  98

gradient boosting models
bike rentals dataset, processing  87
building  87-90
building, in scikit-learn  90, 91

GridSearchCV
about  48, 49
combining, with 

RandomizedSearchCV  141, 142

H
heart disease dataset

about  54, 55, 136-138
predicting, case study  54

Higgs boson
data  125-128
finding  123
physics background  123
weights, utilizing  129, 130
XGBoost models, building  130-132

Higgs Challenge
scoring  128, 129
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learning_rate  153
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min_child_weight  153
n_estimators  152
subsample  154
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colsample_bynode  156
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I
imbalanced data

resampling  174
initial XGBClassifier

building  167

K
Kaggle competitions
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exploring  220
hold-out sets  223, 224
structure  221, 222
training set, versus test set  223
XGBoost, using  220, 221

Kaggle, data source
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L
Lagrange multiplier  145
learning_rate  92-94, 144, 145, 153
light flux  100
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modeling  19, 20

logistic regression  30, 31
luminous flux  100

M
machine learning  5
machine learning ensembles

correlation  238-240
VotingClassifier ensemble  241, 242

machine learning pipeline
building  267-269

max_depth  47, 145, 152
max_features  52
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mean encoding
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Mean Squared Error (MSE)  114
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min_samples_leaf  49-51
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mixed data
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customizing  255, 256
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engineering  224
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correlation  236-238
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null values
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null values, strategies
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specific rows  13, 14
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Numerical Python (NumPy)  19
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one-hot encoded sparse matrix
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one-hot encoding

about  250-252
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columns  252, 253
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P
parallel computing  112
pipeline

preprocessing  259, 260
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Q
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R
random forest boundaries
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case study  74
cross_val_score, using  76
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fine-tuning hyperparameters  77-80
n_estimators, value selecting for  75

random forest classifiers  66, 67
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hyperparameters
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random forest hyperparameters
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random forest regressors  68, 69
random forests
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exploring  66

RandomizedSearchCV
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with   141, 142
regression
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bike rentals dataset, predicting  16
data, saving for future use  17
predicting  16
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XGBRegressor  21, 22
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root mean squared error  
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scikit-learn
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gradient boosting models, 
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separator  247
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sigmoid function  30
sparse matrices  112
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stacking
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using, with scikit-learn  242, 243
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subsample  95, 146, 154
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categorical columns, feature 

engineering  230
frequency columns, feature 

engineering  230, 231
mean encoding  231-233
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URL  225
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Virtual Machines (VMs)  265

W
weights  17

X
XGBClassifier
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tuning  179
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XGBClassifier, results
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XGBClassifier, results consolidation
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XGBClassifier, tuning
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XGBoost documentation
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