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Foreword

I had a background in econometrics but became interested in machine learning techniques, ini-

tially as an alternative approach to solving forecasting problems. As I started discovering my 

interest, I found the field intimidating to enter: I didn’t know the techniques, the terminology, 

and didn’t have the credentials that would allow me to break in.

It was always my dream that Kaggle would allow people like me the opportunity to break into 

this powerful new field. Perhaps the thing I’m proudest of is the extent to which Kaggle has made 

data science and machine learning more accessible. We’ve had many Kagglers go from newbies 

to top machine learners, being hired at places like NVIDIA, Google, and OpenAI, and starting 

companies like DataRobot.

Luca and Konrad’s book helps make Kaggle even more accessible. It offers a guide to both how 

Kaggle works, as well as many of the key learnings that they have taken out of their time on the 

site. Collectively, they’ve been members of Kaggle for over 20 years, entered 330 competitions, 

made over 2,000 posts to Kaggle forums, and shared over 100 notebooks and 50 datasets. They 

are both top-ranked users and well-respected members of the Kaggle community.

Those who complete this book should expect to be able to engage confidently on Kaggle – and 

engaging confidently on Kaggle has many rewards.

Firstly, it’s a powerful way to stay on top of the most pragmatic developments in machine learn-

ing. Machine learning is moving very quickly. In 2019, over 300 peer reviewed machine learning 

papers were published per day. This volume of publishing makes it impossible to be on top of 

the literature. Kaggle ends up being a very valuable way to filter what developments matter on 

real-world problems – and Kaggle is useful for more than keeping up with the academic litera-

ture. Many of the tools that have become standard in the industry have spread via Kaggle. For 

example, XGBoost in 2014 and Keras in 2015 both spread through the community before making 

their way into industry.



Secondly, Kaggle offers users a way to “learn by doing.” I’ve heard active Kagglers talk about com-

peting regularly as “weight training” for machine learning. The variety of use cases and problems 

they tackle on Kaggle makes them well prepared when they encounter similar problems in indus-

try. And because of competition deadlines, Kaggle trains the muscle of iterating quickly. There’s 

probably no better way to learn than to attempt a problem and then see how top performers 

tackled the same problem (it’s typical for winners to share their approaches after the competition).

So, for those of you who are reading this book and are new to Kaggle, I hope it helps make Kaggle 

less intimidating. And for those who have been on Kaggle for a while and are looking to level up, 

I hope this book from two of Kaggle’s strongest and most respected members helps you get more 

out of your time on the site.

Anthony Goldbloom

Kaggle Founder and CEO
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Preface

Having competed on Kaggle for over ten years, both of us have experienced highs and lows over 

many competitions. We often found ourselves refocusing our efforts on different activities relating 

to Kaggle. Over time, we devoted ourselves not just to competitions but also to creating content 

and code based on the demands of the data science market and our own professional aspirations. 

At this point in our journey, we felt that our combined experience and still-burning passion for 

competitions could really help other participants who have just started, or who would like to get 

inspired, to get hold of the essential expertise they need, so they can start their own journey in 

data science competitions.

We then decided to work on this book with a purpose:

• To offer, in a single place, the best tips for being competitive and approaching most of 

the problems you may find when participating on Kaggle and also other data science 

competitions.

• To offer enough suggestions to allow anyone to reach at least the Expert level in any Kaggle 

discipline: Competitions, Datasets, Notebooks, or Discussions.

• To provide tips on how to learn the most from Kaggle and leverage this experience for 

professional growth in data science.

• To gather in a single source the largest number of perspectives on the experience of partic-

ipating in competitions, by interviewing Kaggle Masters and Grandmasters and listening 

to their stories.

In short, we have written a book that demonstrates how to participate in competitions success-

fully and make the most of all the opportunities that Kaggle offers. The book is also intended as a 

practical reference that saves you time and effort, through its selection of many competition tips 

and tricks that are hard to learn about and find on the internet or on Kaggle forums. Nevertheless, 

the book doesn’t limit itself to providing practical help; it also aspires to help you figure out how 

to boost your career in data science by participating in competitions.
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Please be aware: this book doesn’t teach you data science from the basics. We don’t explain in 

detail how linear regression or random forests or gradient boosting work, but how to use them 

in the best way and obtain the best results from them in a data problem. We expect solid foun-

dations and at least a basic proficiency in data science topics and Python usage from our readers. 

If you are still a data science beginner, you need to supplement this book with other books on 

data science, machine learning, and deep learning, and train up on online courses, such as those 

offered by Kaggle itself or by MOOCs such as edX or Coursera.

If you want to start learning data science in a practical way, if you want to challenge yourself 

with tricky and intriguing data problems and simultaneously build a network of great fellow 

data scientists as passionate about their work in data as you are, this is indeed the book for you. 

Let’s get started!

Who this book is for
At the time of completion of this book, there are 96,190 Kaggle novices (users who have just reg-

istered on the website) and 67,666 Kaggle contributors (users who have just filled in their profile) 

enlisted in Kaggle competitions. This book has been written for all of them and for anyone else 

wanting to break the ice and start taking part in competitions on Kaggle and learning from them.

What this book covers
Part 1: Introduction to Competitions
Chapter 1, Introducing Kaggle and Other Data Science Competitions, discusses how competitive 

programming evolved into data science competitions. It explains why the Kaggle platform is 

the most popular site for these competitions and provides you with an idea about how it works.

Chapter 2, Organizing Data with Datasets, introduces you to Kaggle Datasets, the standard method 

of data storage on the platform. We discuss setup, gathering data, and utilizing it in your work 

on Kaggle.

Chapter 3, Working and Learning with Kaggle Notebooks, discusses Kaggle Notebooks, the baseline 

coding environment. We talk about the basics of Notebook usage, as well as how to leverage the 

GCP environment, and using them to build up your data science portfolio.

Chapter 4, Leveraging Discussion Forums, allows you to familiarize yourself with discussion forums, 

the primary manner of communication and idea exchange on Kaggle.
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Part 2: Sharpening Your Skills for Competitions
Chapter 5, Competition Tasks and Metrics, details how evaluation metrics for certain kinds of prob-

lems strongly influence the way you can operate when building your model solution in a data 

science competition. The chapter also addresses the large variety of metrics available in Kaggle 

competitions.

Chapter 6, Designing Good Validation, will introduce you to the importance of validation in data 

competitions, discussing overfitting, shake-ups, leakage, adversarial validation, different kinds 

of validation strategies, and strategies for your final submissions.

Chapter 7, Modeling for Tabular Competitions, discusses tabular competitions, mostly focusing on 

the more recent reality of Kaggle, the Tabular Playground Series. Tabular problems are standard 

practice for the majority of data scientists around and there is a lot to learn from Kaggle.

Chapter 8, Hyperparameter Optimization, explores how to extend the cross-validation approach 

to find the best hyperparameters for your models – in other words, those that can generalize in 

the best way on the private leaderboard – under the pressure and scarcity of time and resources 

that you experience in Kaggle competitions.

Chapter 9, Ensembling with Blending and Stacking Solutions, explains ensembling techniques for 

multiple models such as averaging, blending, and stacking. We will provide you with some the-

ory, some practice, and some code examples you can use as templates when building your own 

solutions on Kaggle.

Chapter 10, Modeling for Computer Vision, we discuss problems related to computer vision, one of the 

most popular topics in AI in general, and on Kaggle specifically. We demonstrate full pipelines for 

building solutions to challenges in image classification, object detection, and image segmentation.

Chapter 11, Modeling for NLP, focuses on the frequently encountered types of Kaggle challenges 

related to natural language processing. We demonstrate how to build an end-to-end solution for 

popular problems like open domain question answering.

Chapter 12, Simulation and Optimization Competitions, provides an overview of simulation compe-

titions, a new class of contests gaining popularity on Kaggle over the last few years.

Part 3: Leveraging Competitions for Your Career
Chapter 13, Creating Your Portfolio of Projects and Ideas, explores ways you can stand out by show-

casing your work on Kaggle itself and other sites in an appropriate way.
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Chapter 14, Finding New Professional Opportunities, concludes the overview of how Kaggle can 

positively affect your career by discussing the best ways to leverage all your Kaggle experience 

in order to find new professional opportunities.

To get the most out of this book
The Python code in this book has been designed to be run on a Kaggle Notebook, without any 

installation on a local computer. Therefore, don’t worry about what machine you have available 

or what version of Python packages you should install. 

All you need is a computer with access to the internet and a free Kaggle account. In fact, to run 

the code on a Kaggle Notebook (you will find instructions about the procedure in Chapter 3), you 

first need to open an account on Kaggle. If you don’t have one yet, just go to www.kaggle.com and 

follow the instructions on the website.

We link out to many different resources throughout the book that we think you will find useful. 

When referred to a link, explore it: you will find code available on public Kaggle Notebooks that you 

can reuse, or further materials to illustrate concepts and ideas that we have discussed in the book.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

The-Kaggle-Book. We also have other code bundles from our rich catalog of books and videos 

available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://static.packt-cdn.com/downloads/9781801817479_

ColorImages.pdf.

Conventions used
There are a few text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file ex-

tensions, pathnames, dummy URLs, user input, and Twitter handles. For example; “ The dataset 

will be downloaded to the Kaggle folder as a .zip archive – unpack it and you are good to go.”

www.kaggle.com
https://github.com/PacktPublishing/The-Kaggle-Book
https://github.com/PacktPublishing/The-Kaggle-Book
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801817479_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801817479_ColorImages.pdf
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A block of code is set as follows:

from google.colab import drive

drive.mount('/content/gdrive')

Any command-line input or output is written as follows:

I genuinely have no idea what the output of this sequence of words will be 
- it will be interesting to find out what nlpaug can do with this!

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, 

in menus or dialog boxes. For example: “ The specific limits at the time of writing are 100 GB per 

private dataset and a 100 GB total quota.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you would report this 

to us. Please visit http://www.packtpub.com/submit-errata, selecting your book, clicking on 

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

Further notes, references, and links to useful places appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
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Share your thoughts
Once you’ve read The Kaggle Book, we’d love to hear your thoughts! Please click here to go 

straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

https://packt.link/r/1-801-81747-2
https://packt.link/r/1-801-81747-2
http://authors.packtpub.com
http://authors.packtpub.com


Part I
Introduction to 
Competitions





1
Introducing Kaggle and Other 
Data Science Competitions

Data science competitions have long been around and they have experienced growing success 

over time, starting from a niche community of passionate competitors, drawing more and more 

attention, and reaching a much larger audience of millions of data scientists. As longtime com-

petitors on the most popular data science competition platform, Kaggle, we have witnessed and 

directly experienced all these changes through the years.

At the moment, if you look for information about Kaggle and other competition platforms, you 

can easily find a large number of meetups, discussion panels, podcasts, interviews, and even 

online courses explaining how to win in such competitions (usually telling you to use a variable 

mixture of grit, computational resources, and time invested). However, apart from the book that 

you are reading now, you won’t find any structured guides about how to navigate so many data 

science competitions and how to get the most out of them – not just in terms of score or ranking, 

but also professional experience.

In this book, instead of just packaging up a few hints about how to win or score highly on Kaggle 

and other data science competitions, our intention is to present you with a guide on how to com-

pete better on Kaggle and get back the maximum possible from your competition experiences, 

particularly from the perspective of your professional life. Also accompanying the contents of the 

book are interviews with Kaggle Masters and Grandmasters. We hope they will offer you some 

different perspectives and insights on specific aspects of competing on Kaggle, and inspire the 

way you will test yourself and learn doing competitive data science. 
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By the end of this book, you’ll have absorbed the knowledge we drew directly from our own ex-

periences, resources, and learnings from competitions, and everything you need to pave a way 

for yourself to learn and grow, competition after competition.

As a starting point, in this chapter, we will explore how competitive programming evolved into 

data science competitions, why the Kaggle platform is the most popular site for such competi-

tions, and how it works.

We will cover the following topics:

• The rise of data science competition platforms

• The Common Task Framework paradigm 

• The Kaggle platform and some other alternatives

• How a Kaggle competition works: stages, competition types, submission and leaderboard 

dynamics, computational resources, networking, and more

The rise of data science competition platforms
Competitive programming has a long history, starting in the 1970s with the first iterations of the 

ICPC, the International Collegiate Programming Contest. In the original ICPC, small teams 

from universities and companies participated in a competition that required solving a series of 

problems using a computer program (at the beginning, participants coded in FORTRAN). In order 

to achieve a good final rank, teams had to display good skills in team working, problem solving, 

and programming.

The experience of participating in the heat of such a competition and the opportunity to stand in 

a spotlight for recruiting companies provided the students with ample motivation and it made 

the competition popular for many years. Among ICPC finalists, a few have become renowned: 

there is Adam D’Angelo, the former CTO of Facebook and founder of Quora, Nikolai Durov, the 

co-founder of Telegram Messenger, and Matei Zaharia, the creator of Apache Spark. Together 

with many other professionals, they all share the same experience: having taken part in an ICPC.

After the ICPC, programming competitions flourished, especially after 2000 when remote par-

ticipation became more feasible, allowing international competitions to run more easily and at a 

lower cost. The format is similar for most of these competitions: there is a series of problems and 

you have to code a solution to solve them. The winners are given a prize, but also make themselves 

known to recruiting companies or simply become famous.
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Typically, problems in competitive programming range from combinatorics and number theory 

to graph theory, algorithmic game theory, computational geometry, string analysis, and data 

structures. Recently, problems relating to artificial intelligence have successfully emerged, in 

particular after the launch of the KDD Cup, a contest in knowledge discovery and data mining, 

held by the Association for Computing Machinery’s (ACM’s) Special Interest Group (SIG) 

during its annual conference (https://kdd.org/conferences).

The first KDD Cup, held in 1997, involved a problem about direct marketing for lift curve optimi-

zation and it started a long series of competitions that continues today. You can find the archives 

containing datasets, instructions, and winners at https://www.kdd.org/kdd-cup. Here is the lat-

est available at the time of writing: https://ogb.stanford.edu/kddcup2021/. KDD Cups proved 

quite effective in establishing best practices, with many published papers describing solutions, 

techniques, and competition dataset sharing, which have been useful for many practitioners for 

experimentation, education, and benchmarking.

The successful examples of both competitive programming events and the KDD Cup inspired 

companies (such as Netflix) and entrepreneurs (such as Anthony Goldbloom, the founder of Kaggle) 

to create the first data science competition platforms, where companies can host data science 

challenges that are hard to solve and might benefit from crowdsourcing. In fact, given that there 

is no golden approach that works for all the problems in data science, many problems require a 

time-consuming approach that can be summed up as try all that you can try.

In fact, in the long run, no algorithm can beat all the others on all problems, as 

stated by the No Free Lunch theorem by David Wolpert and William Macready. 

The theorem tells you that each machine learning algorithm performs if and only 

if its hypothesis space comprises the solution. Consequently, as you cannot know 

beforehand if a machine learning algorithm can best tackle your problem, you have 

to try it, testing it directly on your problem before being assured that you are doing 

the right thing. There are no theoretical shortcuts or other holy grails of machine 

learning – only empirical experimentation can tell you what works.

For more details, you can look up the No Free Lunch theorem for a theoretical expla-

nation of this practical truth. Here is a complete article from Analytics India Magazine 

on the topic: https://analyticsindiamag.com/what-are-the-no-free-lunch-

theorems-in-data-science/.

https://kdd.org/conferences
https://www.kdd.org/kdd-cup
https://ogb.stanford.edu/kddcup2021/
https://analyticsindiamag.com/what-are-the-no-free-lunch-theorems-in-data-science/
https://analyticsindiamag.com/what-are-the-no-free-lunch-theorems-in-data-science/
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Crowdsourcing proves ideal in such conditions where you need to test algorithms and data trans-

formations extensively to find the best possible combinations, but you lack the manpower and 

computer power for it. That’s why, for instance, governments and companies resort to competi-

tions in order to advance in certain fields:

• On the government side, we can quote DARPA and its many competitions surrounding 

self-driving cars, robotic operations, machine translation, speaker identification, finger-

print recognition, information retrieval, OCR, automatic target recognition, and many 

others.

• On the business side, we can quote a company such as Netflix, which entrusted the out-

come of a competition to improve its algorithm for predicting user movie selection.

The Netflix competition was based on the idea of improving existing collaborative filtering. The 

purpose of this was simply to predict the potential rating a user would give a film, solely based 

on the ratings that they gave other films, without knowing specifically who the user was or what 

the films were. Since no user description or movie title or description were available (all being 

replaced with identity codes), the competition required entrants to develop smart ways to use the 

past ratings available. The grand prize of US $1,000,000 was to be awarded only if the solution 

could improve the existing Netflix algorithm, Cinematch, above a certain threshold.

The competition ran from 2006 to 2009 and saw victory for a team made up of the fusion of 

many previous competition teams: a team from Commendo Research & Consulting GmbH, An-

dreas Töscher and Michael Jahrer, quite renowned also in Kaggle competitions; two researchers 

from AT&T Labs; and two others from Yahoo!. In the end, winning the competition required so 

much computational power and the ensembling of different solutions that teams were forced to 

merge in order to keep pace. This situation was also reflected in the actual usage of the solution 

by Netflix, who preferred not to implement it, but simply took the most interesting insight from 

it in order to improve its existing Cinematch algorithm. You can read more about it in this Wired 

article: https://www.wired.com/2012/04/netflix-prize-costs/.

At the end of the Netflix competition, what mattered was not the solution per se, which was 

quickly superseded by the change in business focus of Netflix from DVDs to online movies. The 

real benefit for both the participants, who gained a huge reputation in collaborative filtering, and 

the company, who could transfer its improved recommendation knowledge to its new business, 

were the insights that were gained from the competition.

https://www.wired.com/2012/04/netflix-prize-costs/
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The Kaggle competition platform
Companies other than Netflix have also benefitted from data science competitions. The list is 

long, but we can quote a few examples where the company running the competition reported a 

clear benefit from it. For instance:

• The insurance company Allstate was able to improve its actuarial models built by their 

own experts, thanks to a competition involving hundreds of data scientists (https://www.

kaggle.com/c/ClaimPredictionChallenge)

• As another well-documented example, General Electric was able to improve by 40% on 

the industry-standard performance (measured by the root mean squared error metric) 

for predicting arrival times of airline flights, thanks to a similar competition (https://

www.kaggle.com/c/flight)

The Kaggle competition platform has to this day held hundreds of competitions, and these two 

are just a couple of examples of companies that used them successfully. Let’s take a step back from 

specific competitions for a moment and talk about the Kaggle company, which is the common 

thread through this book.

A history of Kaggle
Kaggle took its first steps in February 2010, thanks to Anthony Goldbloom, an Australian trained 

economist with a degree in Economics and Econometrics. After working at Australia’s Depart-

ment of the Treasury and the Research department at the Reserve Bank of Australia, Goldbloom 

interned in London at The Economist, the international weekly newspaper on current affairs, 

international business, politics, and technology. At The Economist, he had occasion to write an 

article about big data, which inspired his idea to build a competition platform that could crowd-

source the best analytical experts to solve interesting machine learning problems (https://www.
smh.com.au/technology/from-bondi-to-the-big-bucks-the-28yearold-whos-making-data-
science-a-sport-20111104-1myq1.html). Since the crowdsourcing dynamics played a relevant 

part in the business idea for this platform, he derived the name Kaggle, which recalls by rhyme 

the term gaggle, a flock of geese, the goose also being the symbol of the platform.

After moving to Silicon Valley in the USA, his Kaggle start-up received $11.25 million in Series A 

funding from a round led by Khosla Ventures and Index Ventures, two renowned venture capital 

firms. The first competitions were rolled out, the community grew, and some of the initial com-

petitors came to be quite prominent, such as Jeremy Howard, the Australian data scientist and 

entrepreneur, who, after winning a couple of competitions on Kaggle, became the President and 

Chief Scientist of the company. 

https://www.kaggle.com/c/ClaimPredictionChallenge
https://www.kaggle.com/c/ClaimPredictionChallenge
https://www.kaggle.com/c/flight
https://www.kaggle.com/c/flight
https://www.smh.com.au/technology/from-bondi-to-the-big-bucks-the-28yearold-whos-making-data-science-a-sport-20111104-1myq1.html
https://www.smh.com.au/technology/from-bondi-to-the-big-bucks-the-28yearold-whos-making-data-science-a-sport-20111104-1myq1.html
https://www.smh.com.au/technology/from-bondi-to-the-big-bucks-the-28yearold-whos-making-data-science-a-sport-20111104-1myq1.html
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Jeremy Howard left his position as President in December 2013 and established a new start-up, 

fast.ai (www.fast.ai), offering machine learning courses and a deep learning library for coders.

At the time, there were some other prominent Kagglers (the name indicating frequent partici-

pants of competitions held by Kaggle) such as Jeremy Achin and Thomas de Godoy. After reaching 

the top 20 global rankings on the platform, they promptly decided to retire and to found their 

own company, DataRobot. Soon after, they started hiring their employees from among the best 

participants in the Kaggle competitions in order to instill the best machine learning knowledge 

and practices into the software they were developing. Today, DataRobot is one of the leading 

companies in developing AutoML solutions (software for automatic machine learning).

The Kaggle competitions claimed more and more attention from a growing audience. Even Geoffrey 

Hinton, the “godfather” of deep learning, participated in (and won) a Kaggle competition hosted 

by Merck in 2012 (https://www.kaggle.com/c/MerckActivity/overview/winners). Kaggle was 

also the platform where François Chollet launched his deep learning package Keras during the 

Otto Group Product Classification Challenge (https://www.kaggle.com/c/otto-group-product-

classification-challenge/discussion/13632) and Tianqi Chen launched XGBoost, a speedier 

and more accurate version of gradient boosting machines, in the Higgs Boson Machine Learning 

Challenge (https://www.kaggle.com/c/higgs-boson/discussion/10335).

Competition after competition, the community revolving around Kaggle grew to touch one mil-

lion in 2017, the same year as, during her keynote at Google Next, Fei-Fei Li, Chief Scientist at 

Google, announced that Google Alphabet was going to acquire Kaggle. Since then, Kaggle has 

been part of Google.

Besides Keras, François Chollet has also provided the most useful and insightful 

perspective on how to win a Kaggle competition in an answer of his on the Quo-

ra website: https://www.quora.com/Why-has-Keras-been-so-successful-

lately-at-Kaggle-competitions.

Fast iterations of multiple attempts, guided by empirical (more than theoretical) 

evidence, are actually all that you need. We don’t think that there are many more 

secrets to winning a Kaggle competition than the ones he pointed out in his answer. 

Notably, François Chollet also hosted his own competition on Kaggle (https://

www.kaggle.com/c/abstraction-and-reasoning-challenge/), which is widely 

recognized as being the first general AI competition in the world.

www.fast.ai
https://www.kaggle.com/c/MerckActivity/overview/winners
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/13632
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/13632
https://www.kaggle.com/c/higgs-boson/discussion/10335
https://www.quora.com/Why-has-Keras-been-so-successful-lately-at-Kaggle-competitions
https://www.quora.com/Why-has-Keras-been-so-successful-lately-at-Kaggle-competitions
https://www.kaggle.com/c/abstraction-and-reasoning-challenge/
https://www.kaggle.com/c/abstraction-and-reasoning-challenge/
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Today, the Kaggle community is still active and growing. In a tweet of his (https://twitter.

com/antgoldbloom/status/1400119591246852096), Anthony Goldbloom reported that most of 

its users, other than participating in a competition, have downloaded public data (Kaggle has 

become an important data hub), created a public Notebook in Python or R, or learned something 

new in one of the courses offered:

Figure 1.1: A bar chart showing how users used Kaggle in 2020, 2019, and 2018

Through the years, Kaggle has offered many of its participants even more opportunities, such as:

• Creating their own company

• Launching machine learning software and packages

• Getting interviews in magazines (https://www.wired.com/story/solve-these-tough-

data-problems-and-watch-job-offers-roll-in/)

• Writing machine learning books (https://twitter.com/antgoldbloom/status 

/745662719588589568)

• Finding their dream job

And, most importantly, learning more about the skills and technicalities involved in data science.

https://twitter.com/antgoldbloom/status/1400119591246852096
https://twitter.com/antgoldbloom/status/1400119591246852096
https://www.wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in/
https://www.wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in/
https://twitter.com/antgoldbloom/status/745662719588589568
https://twitter.com/antgoldbloom/status/745662719588589568
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Other competition platforms
Though this book focuses on competitions on Kaggle, we cannot forget that many data compe-

titions are held on private platforms or on other competition platforms. In truth, most of the 

information you will find in this book will also hold for other competitions, since they essentially 

all operate under similar principles and the benefits for the participants are more or less the same.

Although many other platforms are localized in specific countries or are specialized only for 

certain kinds of competitions, for completeness we will briefly introduce some of them, at least 

those we have some experience and knowledge of:

• DrivenData (https://www.drivendata.org/competitions/) is a crowdsourcing com-

petition platform devoted to social challenges (see https://www.drivendata.co/blog/

intro-to-machine-learning-social-impact/). The company itself is a social enterprise 

whose aim is to bring data science solutions to organizations tackling the world’s biggest 

challenges, thanks to data scientists building algorithms for social good. For instance, as 

you can read in this article, https://www.engadget.com/facebook-ai-hate-speech-

covid-19-160037191.html, Facebook has chosen DrivenData for its competition on build-

ing models against hate speech and misinformation.

• Numerai (https://numer.ai/) is an AI-powered, crowdsourced hedge fund based in 

San Francisco. It hosts a weekly tournament in which you can submit your predictions 

on hedge fund obfuscated data and earn your prizes in the company’s cryptocurrency, 

Numeraire.

• CrowdANALYTIX (https://www.crowdanalytix.com/community) is a bit less active now, 

but this platform used to host quite a few challenging competitions a short while ago, as 

you can read from this blog post: https://towardsdatascience.com/how-i-won-top-

five-in-a-deep-learning-competition-753c788cade1. The community blog is quite 

interesting for getting an idea of what challenges you can find on this platform: https://

www.crowdanalytix.com/jq/communityBlog/listBlog.html.

• Signate (https://signate.jp/competitions) is a Japanese data science competition 

platform. It is quite rich in contests and it offers a ranking system similar to Kaggle’s 

(https://signate.jp/users/rankings).

• Zindi (https://zindi.africa/competitions) is a data science competition platform from 

Africa. It hosts competitions focused on solving Africa’s most pressing social, economic, 

and environmental problems.

https://www.drivendata.org/competitions/
https://www.drivendata.co/blog/intro-to-machine-learning-social-impact/
https://www.drivendata.co/blog/intro-to-machine-learning-social-impact/
https://www.engadget.com/facebook-ai-hate-speech-covid-19-160037191.html
https://www.engadget.com/facebook-ai-hate-speech-covid-19-160037191.html
https://numer.ai/
https://www.crowdanalytix.com/community
https://towardsdatascience.com/how-i-won-top-five-in-a-deep-learning-competition-753c788cade1
https://towardsdatascience.com/how-i-won-top-five-in-a-deep-learning-competition-753c788cade1
https://www.crowdanalytix.com/jq/communityBlog/listBlog.html
https://www.crowdanalytix.com/jq/communityBlog/listBlog.html
https://signate.jp/competitions
https://signate.jp/users/rankings
https://zindi.africa/competitions
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• Alibaba Cloud (https://www.alibabacloud.com/campaign/tianchi-competitions) 

is a Chinese cloud computer and AI provider that has launched the Tianchi Academic 

competitions, partnering with academic conferences such as SIGKDD, IJCAI-PRICAI, and 

CVPR and featuring challenges such as image-based 3D shape retrieval, 3D object recon-

struction, and instance segmentation.

• Analytics Vidhya (https://datahack.analyticsvidhya.com/) is the largest Indian com-

munity for data science, offering a platform for data science hackathons.

• CodaLab (https://codalab.lri.fr/) is a French-based data science competition plat-

form, created as a joint venture between Microsoft and Stanford University in 2013. They 

feature a free cloud-based notebook called Worksheets (https://worksheets.codalab.

org/) for knowledge sharing and reproducible modeling.

Other minor platforms are CrowdAI (https://www.crowdai.org/) from École Polytechnique 

Fédérale de Lausanne in Switzerland, InnoCentive (https://www.innocentive.com/), Grand-Chal-

lenge (https://grand-challenge.org/) for biomedical imaging, DataFountain (https://www.

datafountain.cn/business?lang=en-US), OpenML (https://www.openml.org/), and the list 

could go on. You can always find a large list of ongoing major competitions at the Russian com-

munity Open Data Science (https://ods.ai/competitions) and even discover new competition 

platforms from time to time.

Kaggle is always the best platform where you can find the most interesting competitions and ob-

tain the widest recognition for your competition efforts. However, picking up a challenge outside 

of it makes sense, and we recommend it as a strategy, when you find a competition matching 

your personal and professional interests. As you can see, there are quite a lot of alternatives and 

opportunities besides Kaggle, which means that if you consider more competition platforms 

alongside Kaggle, you can more easily find a competition that might interest you because of its 

specialization or data.

In addition, you can expect less competitive pressure during these challenges (and consequently 

a better ranking or even winning something), since they are less known and advertised. Just ex-

pect less sharing among participants, since no other competition platform has reached the same 

richness of sharing and networking opportunities as Kaggle.

You can see an overview of running competitions on the mlcontests.com website, 

along with the current costs for renting GPUs. The website is often updated and it 

is an easy way to get a glance at what’s going on with data science competitions 

across different platforms.

https://www.alibabacloud.com/campaign/tianchi-competitions
https://datahack.analyticsvidhya.com/
https://codalab.lri.fr/
https://worksheets.codalab.org/
https://worksheets.codalab.org/
https://www.crowdai.org/
https://www.innocentive.com/
https://grand-challenge.org/
https://www.datafountain.cn/business?lang=en-US
https://www.datafountain.cn/business?lang=en-US
https://www.openml.org/
https://ods.ai/competitions
mlcontests.com
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Introducing Kaggle
At this  point, we need to delve more deeply into how Kaggle in particular works. In the following 

paragraphs, we will discuss the various aspects of the Kaggle platform and its competitions, and 

you’ll get a flavor of what it means to be in a competition on Kaggle. Afterward, we’ll come back 

to discuss many of these topics in much more detail, with more suggestions and strategies in the 

remaining chapters of the book.

Stages of a competition
A competition on Kaggle is arranged into different steps. By having a look at each of them, you can 

get a better understanding of how a data science competition works and what to expect from it.

When a competition is launched, there are usually some posts on social media, for instance on 

the Kaggle Twitter profile, https://twitter.com/kaggle, that announce it, and a new tab will 

appear in the Kaggle section about Active Competitions on the Competitions page (https://

www.kaggle.com/competitions). If you click on a particular competition’s tab, you’ll be taken 

to its page. At a glance, you can check if the competition will have prizes (and if it awards points 

and medals, a secondary consequence of participating in a competition), how many teams are 

currently involved, and how much time is still left for you to work on a solution:

https://twitter.com/kaggle
https://www.kaggle.com/competitions
https://www.kaggle.com/competitions
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Figure 1.2: A competition’s page on Kaggle
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There, you can explore the Overview menu first, which provides information about:

• The topic of the competition

• Its evaluation metric (that your models will be evaluated against)

• The timeline of the competition

• The prizes

• The legal or competition requirements

Usually the timeline is a bit overlooked, but it should be one of the first things you check; it 

doesn’t tell you simply when the competition starts and ends, but it will provide you with the 

rule acceptance deadline, which is usually from seven days to two weeks before the competition 

closes. The rule acceptance deadline marks the last day you can join the competition (by accepting 

its rules). There is also the team merger deadline: you can arrange to combine your team with 

another competitor’s one at any point before that deadline, but after that it won’t be possible.

The Rules menu is also quite often overlooked (with people just jumping to Data), but it is im-

portant to check it because it can tell you about the requirements of the competition. Among the 

key information you can get from the rules, there is:

• Your eligibility for a prize

• Whether you can use external data to improve your score

• How many submissions (tests of your solution) a day you get

• How many final solutions you can choose

Once you have accepted the rules, you can download any data from the Data menu or directly start 

working on Kaggle Notebooks (online, cloud-based notebooks) from the Code menu, reusing 

code that others have made available or creating your own code from scratch.

If you decide to download the data, also consider that you have a Kaggle API that can help you to 

run downloads and submissions in an almost automated way. It is an important tool if you are 

running your models on your local computer or on your cloud instance. You can find more details 

about the API at https://www.kaggle.com/docs/api and you can get the code from GitHub at 

https://github.com/Kaggle/kaggle-api. 

https://www.kaggle.com/docs/api
https://github.com/Kaggle/kaggle-api


Chapter 1 15

If you check the Kaggle GitHub repo closely, you can also find all the Docker images they use for 

their online notebooks, Kaggle Notebooks:

Figure 1.3: A Kaggle Notebook ready to be coded

At this point, as you develop your solution, it is our warm suggestion not to continue in solitude, 

but to contact other competitors through the Discussion forum, where you can ask and answer 

questions specific to the competition. Often you will also find useful hints about specific problems 

with the data or even ideas to help improve your own solution. Many successful Kagglers have 

reported finding ideas on the forums that have helped them perform better and, more importantly, 

learn more about modeling in data science.

Once your solution is ready, you can submit it to the Kaggle evaluation engine, in adherence to 

the specifications of the competition. Some competitions will accept a CSV file as a solution, oth-

ers will require you to code and produce results in a Kaggle Notebook. You can keep submitting 

solutions throughout the competition.

Every time you submit a solution, soon after, the leaderboard will provide you with a score and a 

position among the competitors (the wait time varies depending on the computations necessary 

for the score evaluation). That position is only roughly indicative, because it reflects the perfor-

mance of your model on a part of the test set, called the public test set, since your performance 

on it is made public during the competition for everyone to know. 
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Before the competition closes, each competitor can choose a number (usually two) of their solu-

tions for the final evaluation.

Figure 1.4: A diagram demonstrating how data turns into scores for the public and private 
leaderboard

Only when the competition closes, based on the models the contestants have decided to be scored, 

is their score on another part of the test set, called the private test set, revealed. This new leader-

board, the private leaderboard, constitutes the final, effective scores for the competition, but it is 

still not official and definitive in its rankings. In fact, the Kaggle team will take some time to check 

that everything is correct and that all contestants have respected the rules of the competition.

After a while (and sometimes after some changes in the rankings due to disqualifications), the 

private leaderboard will become official and definitive, the winners will be declared, and many par-

ticipants will unveil their strategies, their solutions, and their code on the competition discussion 

forum. At this point, it is up to you to check the other solutions and try to improve your own. We 

strongly recommend that you do so, since this is another important source of learning in Kaggle.
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Types of competitions and examples
Kaggle competitions are categorized based on competition categories, and each category has a 

different implication in terms of how to compete and what to expect. The type of data, difficulty 

of the problem, awarded prizes, and competition dynamics are quite diverse inside the categories, 

therefore it is important to understand beforehand what each implies.

Here are the official categories that you can use to filter out the different competitions:

• Featured

• Masters

• Annuals

• Research

• Recruitment

• Getting Started

• Playground

• Analytics

• Community

Featured are the most common type of competitions, involving a business-related problem from 

a sponsor company and a prize for the top performers. The winners will grant a non-exclusive 

license of their work to the sponsor company; they will have to prepare a detailed report of their 

solution and sometimes even participate in meetings with the sponsor company.

There are examples of Featured competitions every time you visit Kaggle. At the moment, many of 

them are problems relating to the application of deep learning methods to unstructured data like 

text, images, videos, or sound. In the past, tabular data competitions were commonly seen, that 

is, competitions based on problems relating to structured data that can be found in a database. 

First by using random forests, then gradient boosting methods with clever feature engineering, 

tabular data solutions derived from Kaggle could really improve an existing solution. Nowadays, 

these competitions are run much less often, because a crowdsourced solution won’t often be 

much better than what a good team of data scientists or even AutoML software can do. Given 

the spread of better software and good practices, the increase in result quality obtainable from 

competitions is indeed marginal. In the unstructured data world, however, a good deep learning 

solution could still make a big difference. For instance, pre-trained networks such as BERT brought 

about double-digit increases in previous standards for many well-known NLP task benchmarks.
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Masters are less common now, but they are private, invite-only competitions. The purpose was to 

create competitions only for experts (generally competitors ranked as Masters or Grandmasters, 

based on Kaggle medal rankings), based on their rankings on Kaggle.

Annuals are competitions that always appear during a certain period of the year. Among the 

Annuals, we have the Santa Claus competitions (usually based on an algorithmic optimization 

problem) and the March Machine Learning Mania competition, run every year since 2014 during 

the US College Basketball Tournaments.

Research competitions imply a research or science purpose instead of a business one, sometimes 

for serving the public good. That’s why these competitions do not always offer prizes. In addi-

tion, these competitions sometimes require the winning participants to release their solution as 

open-source.

Google has released a few Research competitions in the past, such as Google Landmark Recognition 

2020 (https://www.kaggle.com/c/landmark-recognition-2020), where the goal was to label 

famous (and not-so-famous) landmarks in images.

Sponsors that want to test the ability of potential job candidates hold Recruitment competitions. 

These competitions are limited to teams of one and offer to best-placed competitors an interview 

with the sponsor as a prize. The competitors have to upload their CV at the end of the competition 

if they want to be considered for being contacted.

Examples of Recruitment competitions have been:

• The Facebook Recruiting Competition (https://www.kaggle.com/c/FacebookRecruiting); 

Facebook have held a few of this kind

• The Yelp Recruiting Competition (https://www.kaggle.com/c/yelp-recruiting)

Getting Started competitions do not offer any prizes, but friendly and easy problems for beginners 

to get accustomed to Kaggle principles and dynamics. They are usually semi-permanent com-

petitions whose leaderboards are refreshed from time to time. If you are looking for a tutorial in 

machine learning, these competitions are the right places to start, because you can find a highly 

collaborative environment and there are many Kaggle Notebooks available showing you how to 

process the data and create different types of machine learning models.

Famous ongoing Getting Started competitions are:

• Digit Recognizer (https://www.kaggle.com/c/digit-recognizer)

https://www.kaggle.com/c/landmark-recognition-2020
https://www.kaggle.com/c/FacebookRecruiting
https://www.kaggle.com/c/yelp-recruiting
https://www.kaggle.com/c/digit-recognizer
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• Titanic — Machine Learning from Disaster (https://www.kaggle.com/c/titanic)

• House Prices — Advanced Regression Techniques (https://www.kaggle.com/c/house-

prices-advanced-regression-techniques)

Playground competitions are a little bit more difficult than the Getting Started ones, but they are 

also meant for competitors to learn and test their abilities without the pressure of a fully-fledged 

Featured competition (though in Playground competitions sometimes the heat of the competition 

may also turn quite high). The usual prizes for such competitions are just swag (an acronym for 

“Stuff We All Get,” such as, for instance, a cup, a t-shirt, or socks branded by Kaggle; see https://

www.kaggle.com/general/68961) or a bit of money.

One famous Playground competition is the original Dogs vs. Cats competition (https://www.

kaggle.com/c/dogs-vs-cats), where the task is to create an algorithm to distinguish dogs from 

cats.

Mentions should be given to Analytics competitions, where the evaluation is qualitative and 

participants are required to provide ideas, drafts of solutions, PowerPoint slides, charts, and so 

on; and Community (previously known as InClass) competitions, which are held by academic 

institutions as well as Kagglers. You can read about the launch of the Community competitions 

at https://www.kaggle.com/product-feedback/294337 and you can get tips about running 

one of your own at https://www.kaggle.com/c/about/host and at https://www.kaggle.com/

community-competitions-setup-guide.

Parul Pandey
https://www.kaggle.com/parulpandey

We spoke to Parul Pandey, Kaggle Notebooks Grandmaster, Datasets 

Master, and data scientist at H2O.ai, about her experience with Ana-

lytics competitions and more. 

What’s your favorite kind of competition and why? 
In terms of techniques and solving approaches, what is your specialty 
on Kaggle?
I really enjoy the Data Analytics competitions, which require you to analyze the data and provide a 

comprehensive analysis report at the end. These include the Data Science for Good competitions (DS4G), 

sports analytics competitions (NFL etc.), and the general survey challenges. Unlike the traditional com-

petitions, these competitions don’t have a leaderboard to track your performance compared to others; 

nor do you get any medals or points. 

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/general/68961
https://www.kaggle.com/general/68961
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/product-feedback/294337
https://www.kaggle.com/c/about/host
https://www.kaggle.com/community-competitions-setup-guide
https://www.kaggle.com/community-competitions-setup-guide
https://www.kaggle.com/parulpandey
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On the other hand, these competitions demand end-to-end solutions touching on multi-faceted aspects 

of data science like data cleaning, data mining, visualizations, and conveying insights. Such problems 

provide a way to mimic real-life scenarios and provide your insights and viewpoints. There may not be 

a single best answer to solve the problem, but it gives you a chance to deliberate and weigh up potential 

solutions, and imbibe them into your solution.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work? 
My first step is always to analyze the data as part of EDA (exploratory data analysis). It is something that 

I also follow as part of my work routine. Typically, I explore the data to look for potential red flags like 

inconsistencies in data, missing values, outliers, etc., which might pose problems later. The next step is to 

create a good and reliable cross-validation strategy. Then I read the discussion forums and look at some 

of the Notebooks shared by people. It generally acts as a good starting point, and then I can incorporate 

things in this workflow from my past experiences. It is also essential to track the model performance.

For an Analytics competition, however, I like to break down the problem into multiple steps. For instance, 

the first part could be related to understanding the problem, which may require a few days. After that, I 

like to explore the data, followed by creating a basic baseline solution. Then I continue enhancing this 

solution by adding a piece at a time. It might be akin to adding Lego bricks one part at a time to create 

that final masterpiece.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
As I mentioned, I mostly like to compete in Analytics competitions, even though occasionally I also try 

my hand in the regular ones too. I’d like to point out a very intriguing Data Science for Good competi-

tion titled Environmental Insights Explorer (https://www.kaggle.com/c/ds4g-environmental-insights- 

explorer). The task was to use remote sensing techniques to understand environmental emissions instead 

of calculating emissions factors from current methodologies.

What really struck me was the use case. Our planet is grappling with climate change issues, and this compe-

tition touched on this very aspect. While researching for my competition, I was amazed to find the amount 

of progress being made in this field of satellite imagery and it gave me a chance to understand and dive more 

deeply into the topic. It gave me a chance to understand how satellites like Landsat, Modis, and Sentinel 

worked, and how they make the satellite data available. This was a great competition to learn about a field I 

knew very little about before the competition.
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Cross-sectional to this taxonomy of Kaggle competitions, you also have to consider that competi-

tions may have different formats. The usual format is the so-called Simple format where you pro-

vide a solution and it is evaluated as we previously described. More sophisticated, the two-stage 

competition splits the contest into two parts, and the final dataset is released only after the first 

part has finished and only to the participants of the first part. The two-stage competition format 

has emerged in order to limit the chance of some competitors cheating and infringing the rules, 

since the evaluation is done on a completely untried test set that is available for a short time only. 

Contrary to the original Kaggle competition format, in this case, competitors have a much shorter 

amount of time and much fewer submissions to figure out any useful patterns from the test set. 

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
I will cite some of the mistakes that I made in my initial years on Kaggle. 

Firstly, most of the newbies think of Kaggle as a competitions-only platform. If you love competitions, there are 

plenty here, but Kaggle also has something for people with other specialties. You can write code and share it 

with others, indulge in healthy discussions, and network. Curate and share good datasets with the community. I 

initially only used Kaggle for downloading datasets, and it was only a couple of years ago that I actually became 

active. Now when I look back, I couldn’t have been more wrong. A lot of people get intimidated by competi-

tions. You can first get comfortable with the platform and then slowly start participating in the competitions.

Another important thing that I would like to mention is that many people work in isolation, lose motivation, 

and quit. Teaming up on Kaggle has many unseen advantages. It teaches you to work in a team, learn from 

the experiences, and work towards a common goal in a limited time frame.

Do you use other competition platforms? How do they compare to 
Kaggle?
While most of my current time is spent on Kaggle, in the past I have used Zindi, a data science competition 

platform focused on African use cases. It’s a great place to access datasets focused on Africa. Kaggle is a versa-

tile platform, but there is a shortage of problem statements from different parts of the world. Of late, we have 

seen some diversified problems too, like the recently held chaii competition — an NLP competition focusing on 

Indian languages. I believe similar competitions concentrating on different countries will be helpful for the 

research and the general data science community as well.
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For the same reason, the Code competitions have recently appeared, where all submissions are 

made from a Kaggle Notebook, and any direct upload of submissions is disabled.

For Kagglers at different stages of their competition careers, there are no restrictions at all in 

taking on any kind of competition. However, we have some suggestions against or in favor of 

the format or type of competition depending on your level of experience in data science and your 

computational resources:

• For complete beginners, the Getting Started or the Playground competitions are good 

places to begin, since you can easily get more confident about how Kaggle works with-

out facing high competitive pressure. That being said, many beginners have successfully 

started from Featured and Research competitions, because being under pressure helped 

them to learn faster. Our suggestion is therefore to decide based on your learning style: 

some Kagglers need to learn by exploring and collaborating (and the Getting Started 

or the Playground competitions are ideal for that), others need the heat of a fast-paced 

competition to find their motivation. 

• For Featured and Research competitions, also take into account that these competitions 

are often about fringe applications of AI and machine learning and, consequently, you 

often need a solid background or the willingness to study all the relevant research in the 

field of application of the competition.

Finally, keep in mind that most competitions require you to have access to computational resources 

that are often not available to most data scientists in the workplace. This can turn into growing 

expenses if you use a cloud platform outside the Kaggle one. Code competitions and competitions 

with time or resource limitations might then be the ideal place to spend your efforts, since they 

strive to put all the participants on the same resource level.

Submission and leaderboard dynamics
The way Kaggle works seems simple: the test set is hidden to participants; you fit your model; 

if your model is the best in predicting on the test set, then you score highly and you possibly 

win. Unfortunately, this description renders the inner workings of Kaggle competitions in an 

overly simplistic way. It doesn’t take into account that there are dynamics regarding the direct 

and indirect interactions of competitors, or the nuances of the problem you are facing and of its 

training and test set.
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Explaining the Common Task Framework paradigm
A more comprehensive description of how Kaggle works is actually given by Professor Da-

vid Donoho, professor of statistics at Stanford University (https://web.stanford.edu/dept/

statistics/cgi-bin/donoho/), in his paper 50 Years of Data Science. It first appeared in the Jour-

nal of Computational and Graphical Statistics and was subsequently posted on the MIT Computer 

Science and Artificial Intelligence Laboratory (see http://courses.csail.mit.edu/18.337/2015/

docs/50YearsDataScience.pdf).

Professor Donoho does not refer to Kaggle specifically, but to all data science competition plat-

forms. Quoting computational linguist Mark Liberman, he refers to data science competitions 

and platforms as being part of a Common Task Framework (CTF) paradigm that has been si-

lently and steadily progressing data science in many fields during the last decades. He states 

that a CTF can work incredibly well at improving the solution of a problem in data science from 

an empirical point of view, quoting the Netflix competition and many DARPA competitions as 

successful examples. The CTF paradigm has contributed to reshaping the best-in-class solutions 

for problems in many fields.

A CTF is composed of ingredients and a secret sauce. The ingredients are simply:

1. A publicly available dataset and a related prediction task

2. A set of competitors who share the common task of producing the best prediction for 

the task

3. A system for scoring the predictions by the participants in a fair and objective way, with-

out providing hints about the solution that are too specific (or limiting them, at least)

The system works the best if the task is well defined and the data is of good quality. In the long 

run, the performance of solutions improves by small gains until it reaches an asymptote. The 

process can be sped up by allowing a certain amount of sharing among participants (as happens 

on Kaggle by means of discussions, and sharing Kaggle Notebooks and extra data provided by the 

datasets found in the Datasets section). According to the CTF paradigm, competitive pressure in 

a competition suffices to produce always-improving solutions. When the competitive pressure 

is paired with some degree of sharing among participants, the improvement happens at an even 

faster rate – hence why Kaggle introduced many incentives for sharing.

https://web.stanford.edu/dept/statistics/cgi-bin/donoho/
https://web.stanford.edu/dept/statistics/cgi-bin/donoho/
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf
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This is because the secret sauce in the CTF paradigm is the competition itself, which, within the 

framework of a practical problem whose empirical performance has to be improved, always leads 

to the emergence of new benchmarks, new data and modeling solutions, and in general to an im-

proved application of machine learning to the problem posed by the competition. A competition 

can therefore provide a new way to solve a prediction problem, new ways of feature engineering, 

and new algorithmic or modeling solutions. For instance, deep learning did not simply emerge 

from academic research, but it first gained a great boost because of successful competitions that 

signaled its efficacy (we have already mentioned, for instance, the Merck competition, won by 

Geoffrey Hinton’s team: https://www.kaggle.com/c/MerckActivity/overview/winners).

Coupled with the open software movement, which allows everyone access to powerful analytical 

tools (such as Scikit-learn, TensorFlow, or PyTorch), the CTF paradigm brings about even better 

results because all competitors are on the same level at the start. On the other hand, the reliance 

of a solution to a competition on specialized or improved hardware can limit achievable results, 

because it can prevent competitors without access to such resources from properly participating 

and contributing directly to the solution, or indirectly by exercising competitive pressure on the 

other participants. Understandably, this is the reason why Kaggle started offering cloud services 

free to participants of its competitions, the Kaggle Notebooks we will introduce in the Compu-

tational resources section. It can flatten some differences in hardware-intense competitions (as 

most deep learning ones are) and increase the overall competitive pressure.

Understanding what can go wrong in a competition
Given our previous description of the CTF paradigm, you may be tempted to imagine that all a 

competition needs is to be set up on a proper platform, and good results such as positive involve-

ment for participants and outstanding models for the sponsor company will automatically come 

in. However, there are also things that can go wrong and instead lead to a disappointing result 

in a competition, both for the participants and the institution running it:

• Leakage from the data

• Probing from the leaderboard (the scoring system)

• Overfitting and consequent leaderboard shake-up

• Private sharing

You have leakage from data when part of the solution can be retraced in the data itself. For instance, 

certain variables could be posterior to the target variable, so they reveal something about it. This 

happens in fraud detection when you use variables that are updated after a fraud happens, or in 

sales forecasting when you process information relating to the effective distribution of a product 

(more distribution implies more requests for the product, hence more sales). 

https://www.kaggle.com/c/MerckActivity/overview/winners
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Another issue could be that the training and test examples are ordered in a predictable way or 

that the values of the identifiers of the examples hint at the solution. Examples are, for instance, 

when the identifier is based on the ordering of the target, or the identifier value is correlated with 

the flow of time and time affects the probability of the target.

Such solution leakage, sometimes named golden features by competitors (because getting a hint 

of such nuances in the data can turn into gold prizes for the participants), invariably leads to a 

solution that is not reusable. This also implies a sub-optimal result for the sponsor, but they at 

least are able to learn something about leaking features that can affect solutions to their problem.

Another problem is the possibility of probing a solution from the leaderboard. In this situation, 

you can take advantage of the evaluation metrics shown to you and snoop the solution by repeated 

submission trials on the leaderboard. Again, in this case the solution is completely unusable in 

different circumstances. A clear example of this happened in the competition Don’t Overfit II. The 

winning participant, Zachary Mayers, submitted every individual variable as a single submission, 

gaining information about the possible weight of each variable that allowed him to estimate 

the correct coefficients for his model (you can read Zach’s detailed solution here: https://www.

kaggle.com/c/dont-overfit-ii/discussion/91766). Generally, time series problems, or other 

problems where there are systematic shifts in the test data, may be seriously affected by probing, 

since they can help competitors to successfully define some kind of post-processing (like multiply-

ing their predictions by a constant) that is most suitable for scoring highly on the specific test set.

Another form of leaderboard snooping (that is, getting a hint about the test set and overfitting 

to it) happens when participants rely more on the feedback from the public leaderboard than 

their own tests. Sometimes this turns into a complete failure of the competition, causing a wild 

shake-up – a complete and unpredictable reshuffling of the positions on the final leaderboard. 

The winning solutions, in such a case, may turn out to be not so optimal for the problem or even 

just dictated by chance. This has led to the diffusion of techniques analyzing the potential gap 

between the training set and the public test set. This kind of analysis, called adversarial testing, 

can provide insight about how much to rely on the leaderboard and whether there are features that 

are so different between the training and test set that it would be better to avoid them completely. 

For an example, you can have a look at this Notebook by Bojan Tunguz: https://www.kaggle.

com/tunguz/adversarial-ieee.

https://www.kaggle.com/c/dont-overfit-ii/discussion/91766
https://www.kaggle.com/c/dont-overfit-ii/discussion/91766
https://www.kaggle.com/tunguz/adversarial-ieee
https://www.kaggle.com/tunguz/adversarial-ieee
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Another kind of defense against leaderboard overfitting is choosing safe strategies to avoid submit-

ting solutions that are based too much on the leaderboard results. For instance, since (typically) 

two solutions are allowed to be chosen by each participant for final evaluation, a good strategy is 

to submit the best performing one based on the leaderboard, and the best performing one based 

on your own cross-validation tests.

In order to avoid problems with leaderboard probing and overfitting, Kaggle has recently intro-

duced different innovations based on Code competitions, where the evaluation is split into two 

distinct stages, as we previously discussed, with participants being completely blind to the actual 

test data so they are forced to consider their own local validation tests more.

Finally, another possible distortion of a competition is due to private sharing (sharing ideas 

and solutions in a closed circle of participants) and other illicit moves such as playing through 

multiple accounts or playing in multiple teams and stealing ideas. All such actions create an 

asymmetry of information between participants that can be favorable to a few and detrimental 

to most. Again, the resulting solution may be affected because sharing has been imperfect during 

the competition and fewer teams have been able to exercise full competitive pressure. Moreover, 

if these situations become evident to participants (for instance, see https://www.kaggle.com/c/

ashrae-energy-prediction/discussion/122503), it can lead to distrust and less involvement 

in the competition or subsequent competitions.

Computational resources
Some competitions pose limitations in order to render feasible solutions available to production. 

For instance, the Bosch Production Line Performance competition (https://www.kaggle.com/c/

bosch-production-line-performance) had strict limits on execution time, model file output, and 

memory limit for solutions. Notebook-based (previously known as Kernel-Only) competitions, 

which require both training and inference to be executed on the Kaggle Notebooks, do not pose 

a problem for the resources you have to use. This is because Kaggle will provide you with all the 

resources you need (and this is also intended as a way to put all participants on the same start 

line for a better competition result).

Problems arise when you have competitions that only limit the use of Notebooks to inference 

time. In these cases, you can train your models on your own machine and the only limit is then 

at test time, on the number and complexity of models you produce. Since most competitions at 

the moment require deep learning solutions, you have to be aware that you will need specialized 

hardware, such as GPUs, in order to achieve a competitive result. 

https://www.kaggle.com/c/ashrae-energy-prediction/discussion/122503
https://www.kaggle.com/c/ashrae-energy-prediction/discussion/122503
https://www.kaggle.com/c/bosch-production-line-performance
https://www.kaggle.com/c/bosch-production-line-performance
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Even in some of the now-rare tabular competitions, you’ll soon realize that you need a strong 

machine with quite a number of processors and a lot of memory in order to easily apply feature 

engineering to data, run experiments, and build models quickly.

Standards change rapidly, so it is difficult to specify a standard hardware that you should have 

in order to compete at least in the same league as other teams. We can get hints about the cur-

rent standard by looking at what other competitors are using, either as their own machine or a 

machine on the cloud.

For instance, HP launched a program where it awarded an HP Z4 or Z8 to a few selected Kaggle 

participants in exchange for brand visibility. For instance, a Z8 machine has up to 72 cores, 3 TB 

of memory, 48 TB of storage (a good share by solid storage hard drive standards), and usually 

dual NVIDIA RTX as the GPU. We understand that this may be a bit out of reach for many; even 

renting a similar machine for a short time on a cloud instance such as Google’s GCP or Amazon’s 

AWS is out of the discussion, given the expenses for even moderate usage.

Our suggestion, as you start your journey to climb to the top rankings of Kaggle participants, is 

therefore to go with the machines provided free by Kaggle, Kaggle Notebooks (previously known 

as Kaggle Kernels).

Kaggle Notebooks
Kaggle Notebooks are versioned computational environments, based on Docker containers run-

ning in cloud machines, that allow you to write and execute both scripts and notebooks in the R 

and Python languages. Kaggle Notebooks:

• Are integrated into the Kaggle environment (you can make submissions from them and 

keep track of what submission refers to what Notebook)

• Come with most data science packages pre-installed

• Allow some customization (you can download files and install further packages)

The basic Kaggle Notebook is just CPU-based, but you can have versions boosted by an NVIDIA 

Tesla P100 or a TPU v3-8. TPUs are hardware accelerators specialized for deep learning tasks. 

The cloud costs for each competition naturally depend on the amount of data to 

process and on the number and type of models you build. Free credit giveaways in 

Kaggle competitions for both GCP and AWS cloud platforms usually range from US 

$200 to US $500.
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Though bound by a usage number and time quota limit, Kaggle Notebooks give you access to the 

computational workhorse to build your baseline solutions on Kaggle competitions:

Notebook 

type

CPU 

cores

Memory Number of notebooks that 

can be run at a time

Weekly quota

CPU 4 16 GB 10 Unlimited

GPU 2 13 GB 2 30 hours

TPU 4 16 GB 2 30 hours

Besides the total runtime, CPU and GPU notebooks can run for a maximum of 12 hours per session 

before stopping (TPU notebooks for just 9 hours) meaning you won’t get any results from the 

run apart from what you have saved on disk. You have a 20 GB disk saving allowance to store 

your models and results, plus an additional scratchpad disk that can exceed 20 GB for temporary 

usage during script running.

In certain cases, the GPU-enhanced machine provided by Kaggle Notebooks may not be enough. 

For instance, the recent Deepfake Detection Challenge (https://www.kaggle.com/c/deepfake-

detection-challenge) required the processing of data consisting of around 500 GB of videos. 

That is especially challenging because of the 30-hour time limit of weekly usage, and because of 

the fact that you cannot have more than two machines with GPUs running at the same time. Even 

if you can double your machine time by changing your code to leverage the usage of TPUs instead 

of GPUs (which you can find some guidance for easily achieving here: https://www.kaggle.com/

docs/tpu), that may still not prove enough for fast experimentation in a data-heavy competition 

such as the Deepfake Detection Challenge.

For this reason, in Chapter 3, Working and Learning with Kaggle Notebooks, we are going to provide 

you with tips for successfully coping with these limitations to produce decent results without 

having to buy a heavy-performing machine. We are also going to show you how to integrate 

Kaggle Notebooks with GCP or, alternatively, in Chapter 2, Organizing Data with Datasets, how to 

move all your work into another cloud-based solution, Google Colab.

Teaming and networking
While computational power plays its part, only human expertise and ability can make the real 

difference in a Kaggle competition. For a competition to be handled successfully, it sometimes 

requires the collaborative efforts of a team of contestants. Apart from Recruitment competitions, 

where the sponsor may require individual participants for a better evaluation of their abilities, 

there is typically no restriction against forming teams. Usually, teams can be made up of a max-

imum of five contestants. 

https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/docs/tpu
https://www.kaggle.com/docs/tpu
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Teaming has its own advantages because it can multiply efforts to find a better solution. A team 

can spend more time on the problem together and different skills can be of great help; not all data 

scientists will have the same skills or the same level of skill when it comes to different models 

and data manipulation.

However, teaming is not all positive. Coordinating different individuals and efforts toward a com-

mon goal may prove not so easy, and some suboptimal situations may arise. A common problem 

is when some of the participants are not involved or are simply idle, but no doubt the worst is 

when someone infringes the rules of the competition – to the detriment of everyone, since the 

whole team could be disqualified – or even spies on the team in order to give an advantage to 

another team, as we mentioned earlier.

In spite of any negatives, teaming in a Kaggle competition is a great opportunity to get to know 

other data scientists better, to collaborate for a purpose, and to achieve more, since Kaggle rules 

do reward teams over lonely competitors. In fact, for smaller teams you get a percentage of the 

total that is higher than an equal share. Teaming up is not the only possibility for networking in 

Kaggle, though it is certainly more profitable and interesting for the participants. You can also 

network with others through discussions on the forums, or by sharing Datasets and Notebooks 

during competitions. All these opportunities on the platform can help you get to know other data 

scientists and be recognized in the community.

There are also many occasions to network with other Kagglers outside of the Kaggle platform 

itself. First of all, there are a few Slack channels that can be helpful. For instance, KaggleNoobs 

(https://www.kaggle.com/getting-started/20577) is a channel, opened up in 2016, that fea-

tures many discussions about Kaggle competitions. They have a supportive community that can 

help you if you have some specific problem with code or models.

There are quite a few other channels devoted to exchanging opinions about Kaggle competitions 

and data science-related topics. Some channels are organized on a regional or national basis, for 

instance, the Japanese channel Kaggler-ja (http://kaggler-ja-wiki.herokuapp.com/) or the 

Russian community Open Data Science Network (https://ods.ai/), created in 2015, which 

later opened also to non-Russian speaking participants. The Open Data Science Network doesn’t 

offer simply a Slack channel but also courses on how to win competitions, events, and reporting 

on active competitions taking place on all known data science platforms (see https://ods.ai/

competitions).

https://www.kaggle.com/getting-started/20577
http://kaggler-ja-wiki.herokuapp.com/
https://ods.ai/
https://ods.ai/competitions
https://ods.ai/competitions
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Aside from Slack channels, quite a few local meetups themed around Kaggle in general or around 

specific competitions have sprung up, some just on a temporary basis, others in a more estab-

lished form. A meetup focused on Kaggle competitions, usually built around a presentation from 

a competitor who wants to share their experience or suggestions, is the best way to meet other 

Kagglers in person, to exchange opinions, and to build alliances for participating in data science 

contests together.

In this league, a mention should be given to Kaggle Days (https://kaggledays.com/), built by 

Maria Parysz and Paweł Jankiewicz. The Kaggle Days organization arranged a few events in major 

locations around the world (https://kaggledays.com/about-us/) with the aim of bringing 

together a conference of Kaggle experts. It also created a network of local meetups in different 

countries, which are still quite active (https://kaggledays.com/meetups/).

Paweł Jankiewicz
https://www.kaggle.com/paweljankiewicz

We had the opportunity to catch up with Paweł about his experiences 

with Kaggle. He is a Competitions Grandmaster and a co-founder of 

LogicAI.

What’s your favourite kind of competition and 
why? In terms of techniques and solving approaches, what is your 
specialty on Kaggle?
Code competitions are my favourite type of competition because working in a limited environment forces 

you to think about different kinds of budgets: time, CPU, memory. Too many times in previous compe-

titions I needed to utilize even up to 3-4 strong virtual machines. I didn’t like that in order to win I had 

to utilize such resources, because it makes it a very uneven competition.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I approach every competition a little bit differently. I tend to always build a framework for each compe-

tition that allows me to create as many experiments as possible. For example, in one competition where 

we needed to create a deep learning convolutional neural network, I created a way to configure neural 

networks by specifying them in the format C4-MP4-C3-MP3 (where each letter stands for a different 

layer). It was many years ago, so the configuration of neural networks is probably now done by selecting 

the backbone model. But the rule still applies. You should create a framework that allows you to change 

the most sensitive parts of the pipeline quickly.

https://kaggledays.com/
https://kaggledays.com/about-us/
https://kaggledays.com/meetups/
https://www.kaggle.com/paweljankiewicz
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Day-to-day work has some overlap with Kaggle competitions in terms of modeling approach and proper 

validation. What Kaggle competitions taught me is the importance of validation, data leakage preven-

tion, etc. For example, if data leaks happen in so many competitions, when people who prepare them 

are the best in the field, you can ask yourself what percentage of production models have data leaks in 

training; personally, I think 80%+ of production models are probably not validated correctly, but don’t 

quote me on that.

Another important difference in day-to-day work is that no one really tells you how to define the modeling 

problem. For instance:

1. Should the metric you report or optimize be RMSE, RMSLE, SMAPE, or MAPE? 

2. If the problem is time-based, how can you split the data to evaluate the model as realistically as 

possible? 

And these are not the only important things for the business. You also must be able to communicate your 

choices and why you made them.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
The most challenging and interesting was the Mercari Price Prediction Code competition. It was very 

different from any other competition because it was limited to 1 hour of computation time and only 4 

cores with 16 GB of memory. Overcoming these limitations was the most exciting part of the challenge. 

My takeaway from this competition was to believe more in networks for tabular data. Before merging 

with my teammate Konstantin Lopukhin (https://www.kaggle.com/lopuhin), I had a bunch of 

complicated models including neural networks, but also some other boosting algorithms. After merging, it 

turned out that Konstantin was using only one architecture which was very optimized (number of epochs, 

learning rate). Another aspect of this competition that was quite unique was that it wasn’t enough to just 

average solutions from the team. We had to reorganize our workflow so that we had a single coherent 

solution and not something quickly put together. It took us three weeks to combine our solutions together.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
Software engineering skills are probably underestimated a lot. Every competition and problem is slightly 

different and needs some framework to streamline the solution (look at https://github.com/bestfitting/

instance_level_recognition and how well their code is organized). Good code organization helps you to 

iterate faster and eventually try more things.

https://www.kaggle.com/lopuhin
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Performance tiers and rankings
Apart from monetary prizes and other material items, such as cups, t-shirts, hoodies, and stick-

ers, Kaggle offers many immaterial awards. Kagglers spend a whole lot of time and effort during 

competitions (not to mention in developing the skills they use to compete that are, in truth, 

quite rare in the general population). The monetary prizes usually cover the efforts of the top 

few Kagglers, if not only the one in the top spot, leaving the rest with an astonishing number of 

hours voluntarily spent with little return. In the long term, participating in competitions with 

no tangible results may lead to disaffection and disinterest, lowering the competitive intensity.

Hence, Kaggle has found a way to reward competitors with an honor system based on medals 

and points. The idea is that the more medals and the more points you have, the more relevant 

your skills are, leaving you open for opportunities in your job search or any other relevant activity 

based on your reputation.

First, there is a general leaderboard, that combines all the leaderboards of the individual com-

petitions (https://www.kaggle.com/rankings). Based on the position they attain in each com-

petition, Kagglers are awarded some number of points that, all summed together, provide their 

ranking on the general leaderboard. At first glance, the formula for the scoring of the points in a 

competition may look a bit complex:

[ 100000√𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] ∗ [𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−0.75] ∗ [log10(1 + log10(𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡))] ∗ [𝑒𝑒−𝑡𝑡𝑡500] 
Nevertheless, in reality it is simply based on a few ingredients:

• Your rank in a competition

• Your team size

• The popularity of the competition

• How old the competition is

Intuitively, ranking highly in popular competitions brings many points. Less intuitively, the size 

of your team matters in a non-linear way. That’s due to the inverse square root part of the formula, 

since the proportion of points you have to give up grows with the number of people involved. 

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
The most important thing is to have fun.

https://www.kaggle.com/rankings
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It is still quite favorable if your team is relatively small (2, max 3 people) due to the advantage in 

wits and computational power brought about by collaboration.

Another point to keep in mind is that points decay with time. The decay is not linear, but as a 

rule of thumb keep in mind that, after a year, very little is left of the points you gained. Therefore, 

glory on the general leaderboard of Kaggle is ephemeral unless you keep on participating in 

competitions with similar results to before. As a consolation, on your profile you’ll always keep 

the highest rank you ever reach.

More longer-lasting is the medal system that covers all four aspects of competing in Kaggle. You 

will be awarded medals for Competitions, Notebooks, Discussion, and Datasets based on your 

results. In Competitions, medals are awarded based on your position on the leaderboard. In the 

other three areas, medals are awarded based on the upvotes of other competitors (which can 

actually lead to some sub-optimal situations, since upvotes are a less objective metric and also 

depend on popularity). The more medals you get, the higher the ranks of Kaggle mastery you 

can enter. The ranks are Novice, Contributor, Expert, Master, and Grandmaster. The page at 

https://www.kaggle.com/progression explains everything about how to get medals and how 

many and what kinds are needed to access the different ranks.

Keep in mind that these ranks and honors are always relative and that they do change in time. A 

few years ago, in fact, the scoring system and the ranks were quite different. Most probably in 

the future, the ranks will change again in order to keep the higher ones rarer and more valuable.

Criticism and opportunities
Kaggle has drawn quite a few criticisms since it began. Participation in data science competitions 

is still a subject of debate today, with many different opinions out there, both positive and negative.

On the side of negative criticism:

• Kaggle provides a false perception of what machine learning really is since it is just focused 

on leaderboard dynamics

• Kaggle is just a game of hyperparameter optimization and ensembling many models just 

for scraping a little more accuracy (while in reality overfitting the test set)

• Kaggle is filled with inexperienced enthusiasts who are ready to try anything under the 

sun in order to get a score and a spotlight in hopes of being spotted by recruiters

• As a further consequence, competition solutions are too complicated and often too specific 

to a test set to be implemented

https://www.kaggle.com/progression
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Many perceive Kaggle, like many other data science competition platforms, to be far from what 

data science is in reality. The point the critics raise is that business problems do not come from 

nowhere and you seldom already have a well-prepared dataset to start with, since you usually 

build it along the way based on refining business specifications and the understanding of the 

problem at hand. Moreover, many critics emphasize that Kagglers don’t learn or excel at creating 

production-ready models, since a winning solution cannot be constrained by resource limits or 

considerations about technical debt (though this is not always true for all competitions).

All such criticism is related, in the end, to how Kaggle standings can be compared to other kinds 

of experience in the eyes of an employer, especially relative to data science education and work 

experience. One persistent myth is that Kaggle competitions won’t help to get you a job or a better 

job in data science, and that they do not put you on another plane compared to data scientists 

that do not participate at all.

Our stance on this is that it is a misleading belief that Kaggle rankings do not have an automatic 

value beyond the Kaggle community. For instance, in a job search, Kaggle can provide you with 

some very useful competencies in modeling data and problems and effective model testing. It 

can also expose you to many techniques and different data/business problems, beyond your 

actual experience and comfort zone, but it cannot supplement you with everything you need to 

successfully place yourself as a data scientist in a company.

You can use Kaggle for learning (there is also a section on the website, Courses, devoted to just 

learning) and for differentiating yourself from other candidates in a job search; however, how this 

will be considered varies considerably from company to company. Regardless, what you learn on 

Kaggle will invariably prove useful throughout your career and will provide you a hedge when 

you have to solve complex and unusual problems with data modeling; by participating in Kaggle 

competitions, you build up strong competencies in modeling and validating. You also network 

with other data scientists, which can get you a reference for a job more easily and provide you 

with another way to handle difficult problems beyond your skills, because you will have access 

to other people’s competencies and opinions.

Hence, our opinion is that Kaggle functions in a more indirect way to help you in your career as 

a data scientist, in a variety of different ways. Of course, sometimes Kaggle will help you to be 

contacted directly as a job candidate based on your successes, but more often Kaggle will provide 

you with the intellectual skills and experience you need to succeed, first as a candidate and then 

as a practitioner. 
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In fact, after playing with data and models on Kaggle for a while, you’ll have had the chance to 

see enough different datasets, problems, and ways to deal with them under time pressure that 

when faced with similar problems in real settings you’ll be skilled in finding solutions quickly 

and effectively.

This latter opportunity for a skill upgrade is why we were motivated to write this book in the first 

place, and what this book is actually about. You won’t find a guide purely on how to win or score 

highly in Kaggle competitions, but you absolutely will find a guide about how to compete better 

on Kaggle and how to get the most back from your competition experiences.

Use Kaggle and other competition platforms in a smart way. Kaggle is not a passepartout – being 

first in a competition won’t assure you a highly paid job or glory beyond the Kaggle community. 

However, consistently participating in competitions is a card to be played smartly to show in-

terest and passion in your data science job search, and to improve some specific skills that can 

differentiate you as a data scientist and not make you obsolete in front of AutoML solutions.

If you follow us through this book, we will show you how.

Summary
In this starting chapter, we first discussed how data science competition platforms have risen and 

how they actually work, both for competitors and for the institutions that run them, referring in 

particular to the convincing CTF paradigm as discussed by Professor David Donoho.

We illustrated how Kaggle works, without forgetting to mention other notable competition plat-

forms and how it could be useful for you to take on challenges outside Kaggle as well. With regards 

to Kaggle, we detailed how the different stages of a competition work, how competitions differ 

from each other, and what resources the Kaggle platform can offer you.

In the next few chapters, we will begin to explore Kaggle in more detail, starting with how to 

work with Datasets.
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord


2
Organizing Data with Datasets

In his story The Adventure of the Copper Beeches, Arthur Conan Doyle has Sherlock Holmes shout 

“Data! Data! Data! I cannot make bricks without clay.” This mindset, which served the most famous 

detective in literature so well, should be adopted by every data scientist. For that reason, we begin 

the more technical part of this book with a chapter dedicated to data: specifically, in the Kaggle 

context, leveraging the power of the Kaggle Datasets functionality for our purposes.

In this chapter, we will cover the following topics:

• Setting up a dataset

• Gathering the data

• Working with datasets

• Using Kaggle Datasets in Google Colab

• Legal caveats

Setting up a dataset
In principle, any data you can use you can upload to Kaggle (subject to limitations; see the Legal 

caveats section later on). The specific limits at the time of writing are 100 GB per private dataset 

and a 100 GB total quota. Keep in mind that the size limit per single dataset is calculated un-

compressed; uploading compressed versions speeds up the transfer but does not help against 

the limits. You can check the most recent documentation for the datasets at this link: https://

www.kaggle.com/docs/datasets.

https://www.kaggle.com/docs/datasets
https://www.kaggle.com/docs/datasets
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Kaggle promotes itself as a “home of data science” and the impressive collection of datasets avail-

able from the site certainly lends some credence to that claim. Not only can you find data on topics 

ranging from oil prices to anime recommendations, but it is also impressive how quickly data 

ends up there. When the emails of Anthony Fauci were released under the Freedom of Information 

Act in May 2021 (https://www.washingtonpost.com/politics/interactive/2021/tony-fauci-

emails/), they were uploaded as a Kaggle dataset a mere 48 hours later.

Figure 2.1: Trending and popular datasets on Kaggle

Before uploading the data for your project into a dataset, make sure to check the existing content. 

For several popular applications (image classification, NLP, financial time series), there is a chance 

it has already been stored there.

For the sake of this introduction, let us assume the kind of data you will be using in your project 

is not already there, so you need to create a new dataset. When you head to the menu with three 

lines on the left-hand side and click on Data, you will be redirected to the Datasets page:

https://www.washingtonpost.com/politics/interactive/2021/tony-fauci-emails/
https://www.washingtonpost.com/politics/interactive/2021/tony-fauci-emails/
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Figure 2.2: The Datasets page

When you click on + New Dataset, you will be prompted for the basics: uploading the actual data 

and giving it a title:

Figure 2.3: Entering dataset details
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The icons on the left-hand side correspond to the different sources you can utilize for your dataset. 

We describe them in the order they are shown on the page:

• Upload a file from a local drive (shown in the figure)

• Create from a remote URL

• Import a GitHub repository 

• Use output files from an existing Notebook

• Import a Google Cloud Storage file

An important point about the GitHub option: This feature is particularly handy when it comes 

to experimental libraries. While frequently offering hitherto unavailable functionality, they are 

usually not included in the Kaggle environment, so if you want to use such a library in your code, 

you can import it as a dataset, as demonstrated below:

1. Go to Datasets and click + New Dataset.

2. Select the GitHub icon.

3. Insert the link to the repository, as well as the title for the dataset.

4. Click on Create at the bottom right:

Figure 2.4: Dataset from GitHub repository
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Next to the Create button, there is another one marked Private. By default, any dataset you create 

is private: only you, its creator, can view and edit it. It is probably a good idea to leave this setting 

at default at the dataset creation stage and only at a later stage make it public (available to either 

a select list of contributors, or everyone).

Keep in mind that Kaggle is a popular platform and many people upload their datasets – including 

private ones – so try to think of a non-generic title. This will increase the chance of your dataset 

actually being noticed.

Once you have completed all the steps and clicked Create, voilà! Your first dataset is ready. You 

can then head to the Data tab:

Figure 2.5: The Data tab

The screenshot above demonstrates the different information you can provide about your data-

set; the more you do provide, the higher the usability index. This index is a synthetic measure 

summarizing how well your dataset is described. Datasets with higher usability indexes appear 

higher up in the search results. For each dataset, the usability index is based on several factors, 

including the level of documentation, the availability of related public content like Notebooks 

as references, file types, and coverage of key metadata.

In principle, you do not have to fill out all the fields shown in the image above; your newly created 

dataset is perfectly usable without them (and if it is a private one, you probably do not care; after all, 

you know what is in it). However, community etiquette would suggest filling out the information 

for the datasets you make public: the more you specify, the more usable the data will be to others.
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Gathering the data
Apart from legal aspects, there is no real limit on the kind of content you can store in the datasets: 

tabular data, images, text; if it fits within the size requirements, you can store it. This includes 

data harvested from other sources; tweets by hashtag or topic are among the popular datasets 

at the time of writing:

Figure 2.6: Tweets are among the most popular datasets

Discussion of the different frameworks for harvesting data from social media (Twitter, Reddit, 

and so on) is outside the scope of this book.
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Andrew Maranhão
https://www.kaggle.com/andrewmvd

We spoke to Andrew Maranhão (aka Larxel), Datasets Grandmaster 

(number 1 in Datasets at time of writing) and Senior Data Scientist at the 

Hospital Albert Einstein in São Paulo, about his rise to Datasets success, 

his tips for creating datasets, and his general experiences on Kaggle.

What’s your favourite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
Medical imaging is usually my favourite. It speaks to my purpose and job. Among medical competitions, 

NLP is language-bound, tabular data varies widely among hospitals, but imaging is mostly the same, so 

any advancement in this context can bring about benefits for many countries across the world, and I love 

this impact potential. I also have a liking for NLP and tabular data, but I suppose this is pretty standard.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
In a tuberculosis detection in x-ray images competition, we had around 1,000 images, which is a pretty 

small number for capturing all the manifestations of the disease. I came up with two ideas to offset this:

1.  Pre-train on external data of pneumonia detection (~20k images), as pneumonia can be mis-

taken for tuberculosis.

2.  Pre-train on multilabel classification of lung abnormalities (~600k images) and use grad-CAM 

with a simple SSD to generate bounding box annotations of classification labels.

In the end, a simple blend of these two achieved 22% more compared to the result that the second-place 

team had. It happened at a medical convention, with about 100 teams participating.

https://www.kaggle.com/andrewmvd
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You have become a Dataset Grandmaster and achieved the number 
1 rank in Datasets. How do you choose topics and find, gather, and 
publish data for your datasets on Kaggle?
This is a big question; I’ll try to break it down piece by piece.

1. Set yourself a purpose

The first thing that I have in mind when choosing a topic is the reason I am doing this in the 

first place.

When there is a deeper reason underneath, great datasets just come off as a result, not as a goal 

in itself. Fei Fei Li, the head of the lab that created ImageNet, revealed in a TED talk that she 

wanted to create a world where machines would be able to reason and appreciate the world with 

their vision in the same way her children did.

Having a purpose in mind will make it more likely that you’ll engage and improve over time, and 

will also differentiate you and your datasets. You can certainly live off tabular data on everyday 

topics, though I find that unlikely to leave a lasting impact.

2. A great dataset is the embodiment of a great question

If we look at the greatest datasets in current literature, such as ImageNet and others, we can see 

some common themes:

• It is a daring, relevant question with great potential for all of us (scientific or real-world 

application)

• The data was well collected, controlled for quality, and well documented

• There is an adequate amount of data and diversity for our current hardware

• It has an active community that continuously improves the data and/or builds upon 

that question

As I mentioned before, I feel that asking questions is a primary role of a data scientist and is likely 

to become even more prominent as automated machine and deep learning solutions advance. 

This is where datasets can certainly exercise something unique to your skillset.

3. Create your process for success, rather than only pursuing success for the sake of success

Quality far overshadows quantity; you only need 15 datasets to become a Grandmaster and the 

flagship datasets of AI are few and well made.



Chapter 2 45

I have thrown away as many datasets as I have published. It takes time, and it is not a one and 

done type of thing as many people treat it – datasets have a maintenance and continuous im-

provement side to them.

One thing that is very often overlooked is supporting the community that gathers around your 

data. Notebooks and datasets are mutual efforts, so supporting those who take the time to ana-

lyze your data goes a long way for your dataset too. Analyzing their bottlenecks and choices can 

give directions as to what pre-processing steps could be done and provided, and also the clarity 

of your documentation.

All in all, the process that I recommend starts with setting your purpose, breaking it down into 

objectives and topics, formulating questions to fulfil these topics, surveying possible sources of data, 

selecting and gathering, pre-processing, documenting, publishing, maintaining and supporting, 

and finally, improvement actions.

For instance, let’s say that you would like to increase social welfare; you break it down into an 

objective, say, racial equity. From there, you analyze topics related to the objective and find the 

Black Lives Matter movement. From here, you formulate the question: how can I make sense of 

the millions of voices talking about it?

This narrows down your data type to NLP, which you can gather data for from news articles, 

YouTube comments, and tweets (which you choose, as it seems more representative of your ques-

tion and feasible). You pre-process the data, removing identifiers, and document the collection 

process and dataset purpose.

With that done, you publish it, and a few Kagglers attempt topic modeling but struggle to do so 

because some tweets contain many foreign languages that create encoding problems. You support 

them by giving them advice and highlighting their work, and decide to go back and narrow the 

tweets down to English, to fix this for good.

Their analysis reveals the demands, motivations, and fears relating to the movement. With their 

efforts, it was possible to break down millions of tweets into a set of recommendations that may 

improve racial equity in society. 
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4. Doing a good job is all that is in your control

Ultimately, it is other people that turn you into a Grandmaster, and votes don’t always translate 

into effort or impact. In one of my datasets, about Cyberpunk 2077, I worked on it for about 40 

hours total and, to this day, it is still one of my least upvoted datasets.

But it doesn’t matter. I put in the effort, I tried, and I learned what I could — that’s what is in 

my control, and next week I’ll do it again no matter what. Do your best and keep going.

Are there any particular tools or libraries that you would recommend 
using for data analysis/machine learning?
Strangely enough, I both recommend and unrecommend libraries. LightGBM is a great tabular ML library 

with a fantastic ratio of performance to compute time, CatBoost can sometimes outperform it, but it comes 

at the cost of increased compute time, during which you could be having and testing new ideas. Optuna 

is great for hyperparameter tuning, Streamlit for frontends, Gradio for MVPs, Fast API for microservices, 

Plotly and Plotly Express for charts, PyTorch and its derivatives for deep learning.

While libraries are great, I also suggest that at some point in your career you take the time to implement 

it yourself. I first heard this advice from Andrew Ng and then from many others of equal calibre. Doing 

this creates very in-depth knowledge that sheds new light on what your model does and how it responds 

to tuning, data, noise, and more.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
Over the years, the things I wished I realized sooner the most were:

1.  Absorbing all the knowledge at the end of a competition

2.  Replication of winning solutions in finished competitions

In the pressure of a competition drawing to a close, you can see the leaderboard shaking more than ever 

before. This makes it less likely that you will take risks and take the time to see things in all their detail. 

When a competition is over, you don’t have that rush and can take as long as you need; you can also 

replicate the rationale of the winners who made their solutions known.

If you have the discipline, this will do wonders for your data science skills, so the bottom line is: stop when 

you are done, not when the competition ends. I have also heard this advice from an Andrew Ng keynote, 

where he recommended replicating papers as one of his best ways to develop yourself as an AI practitioner.
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Also, at the end of a competition , you are likely to be exhausted and just want to call it a day. No problem 

there; just keep in mind that the discussion forum after the competition is done is one of the most knowl-

edge-rich places on Planet Earth, primarily because many rationales and code for winning solutions are 

made public there. Take the time to read and study what the winners did; don’t give into the desire to 

move on to something else, as you might miss a great learning opportunity.

Has Kaggle helped you in your career? If so, how?
Kaggle helped my career by providing a wealth of knowledge, experience and also building my portfolio. 

My first job as a data scientist was largely due to Kaggle and DrivenData competitions. All throughout my 

career, I studied competition solutions and participated in a few more. Further engagement on Datasets 

and Notebooks also proved very fruitful in learning new techniques and asking better questions.

In my opinion, asking great questions is the primary challenge faced by a data scientist. Answering them 

is surely great as well, although I believe we are not far from a future where automated solutions will 

be more and more prevalent in modeling. There will always be room for modeling, but I suppose a lot of 

work will be streamlined in that regard. Asking great questions, however, is far harder to automate – if 

the question is not good, even the best solution could be meaningless.

Have you ever used something you have done in Kaggle competitions 
in order to build your portfolio to show to potential employers?
Absolutely. I landed my first job as a data scientist in 2017 using Kaggle as proof of knowledge. To this 

day, it is still a fantastic CV component, as educational backgrounds and degrees are less representative 

of data science knowledge and experience than a portfolio is.

A portfolio with projects with competitions shows not just added experience but also a willingness to going 

above and beyond for development, which is arguably more important for long-term success.

Do you use other competition platforms? How do they compare to 
Kaggle?
I also use DrivenData and AICrowd. The great thing about them is that they allow organizations that 

don’t have the same access to financial resources, such as start-ups and research institutions, to create 

competitions.

Great competitions come from a combination of great questions and great data, and this can happen 

regardless of company size. Kaggle has a bigger and more active community, and the hardware they 

provide, coupled with the data and Notebook capabilities, make it the best option; yet both DrivenData 

and AICrowd introduce just as interesting challenges and allow for more diversity.
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Working with datasets
Once you have created a dataset, you probably want to use it in your analysis. In this section, we 

discuss different methods of going about this.

Very likely, the most important one is starting a Notebook where you use your dataset as a pri-

mary source. You can do this by going to the dataset page and then clicking on New Notebook:

Figure 2.7: Creating a Notebook from the dataset page

Once you have done this, you will be redirected to your Notebook page:

Figure 2.8: Starting a Notebook using your dataset

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Assuming your primary goal is development, my recommendation is that you pick a competition on a 

topic that interests you and a task that you haven’t done before. Critical sense and competence require 

depth and diversity. Focusing and giving your best will guarantee depth, and diversity is achieved by 

doing things you have not done before or have not done in the same way.
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Here are a few pointers around this:

• The alphanumeric title is generated automatically; you can edit it by clicking on it.

• On the right-hand side under Data, you see the list of data sources attached to your Note-

book; the dataset I selected can be accessed under ../input/ or from /kaggle/input/.

• The opening block (with the imported packages, descriptive comments, and printing the 

list of available files) is added automatically to a new Python Notebook.

With this basic setup, you can start to write a Notebook for your analysis and utilize your dataset 

as a data source. We will discuss Notebooks at greater length in Chapter 4, Leveraging Discussion 

Forums.

Using Kaggle Datasets in Google Colab
Kaggle Notebooks are free to use, but not without limits (more on that in Chapter 4), and the 

first one you are likely to hit is the time limit. A popular alternative is to move to Google Colab, 

a free Jupyter Notebook environment that runs entirely in the cloud: https://colab.research.

google.com.

Even once we’ve moved the computations there, we might still want to have access to the Kaggle 

datasets, so importing them into Colab is a rather handy feature. The remainder of this section 

discusses the steps necessary to use Kaggle Datasets through Colab.

The first thing we do, assuming we are already registered on Kaggle, is head to the account page 

to generate the API token (an access token containing security credentials for a login session, 

user identification, privileges, and so on):

1. Go to your account, which can be found at https://www.kaggle.com/USERNAME/account, 

and click on Create New API Token:

Figure 2.9: Creating a new API token

A file named kaggle.json containing your username and token will be created.

https://colab.research.google.com
https://colab.research.google.com
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2. The next step is to create a folder named Kaggle in your Google Drive and upload the 

.json file there:

Figure 2.10: Uploading the .json file into Google Drive

3. Once done, you need to create a new Colab notebook and mount your drive by running 

the following code in the notebook:

from google.colab import drive

drive.mount('/content/gdrive')

4. Get the authorization code from the URL prompt and provide it in the empty box that 

appears, and then execute the following code to provide the path to the .json config:

import os

# content/gdrive/My Drive/Kaggle is the path where kaggle.json is 

# present in the Google Drive

os.environ['KAGGLE_CONFIG_DIR'] = "/content/gdrive/My Drive/Kaggle"

# change the working directory

%cd /content/gdrive/My Drive/Kaggle

# check the present working directory using the pwd command

5. We can download the dataset now. Begin by going to the dataset’s page on Kaggle, clicking 

on the three dots next to New Notebook, and selecting Copy API command:
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Figure 2.11: Copying the API command

6. Run the API command to download the Dataset (readers interested in details of the com-

mands used can consult the official documentation: https://www.kaggle.com/docs/api) :

!kaggle datasets download -d ajaypalsinghlo/world-happiness-
report-2021

7. The dataset will be downloaded to the Kaggle folder as a .zip archive – unpack it and 

you are good to go.

As you can see from the list above, using a Kaggle dataset in Colab is a straightforward process – 

all you need is an API token, and making the switch gives you the possibility of using more GPU 

hours than what is granted by Kaggle.

Legal caveats
Just because you can put some data on Kaggle does not necessarily mean that you should. An 

excellent example would be the People of Tinder dataset. In 2017, a developer used the Tinder 

API to scrape the website for semi-private profiles and uploaded the data on Kaggle. After the 

issue became known, Kaggle ended up taking the dataset down. You can read the full story here: 
https://www.forbes.com/sites/janetwburns/2017/05/02/tinder-profiles-have-been-

looted-again-this-time-for-teaching-ai-to-genderize-faces/?sh=1afb86b25454.

https://www.kaggle.com/docs/api
https://www.forbes.com/sites/janetwburns/2017/05/02/tinder-profiles-have-been-looted-again-this-time-for-teaching-ai-to-genderize-faces/?sh=1afb86b25454
https://www.forbes.com/sites/janetwburns/2017/05/02/tinder-profiles-have-been-looted-again-this-time-for-teaching-ai-to-genderize-faces/?sh=1afb86b25454


Organizing Data with Datasets52

In general, before you upload anything to Kaggle, ask yourself two questions:

1. Is it allowed from a copyright standpoint? Remember to always check the licenses. When 

in doubt, you can always consult https://opendefinition.org/guide/data/ or contact 

Kaggle.

2. Are there privacy risks associated with this dataset? Just because posting certain types 

of information is not, strictly speaking, illegal, doing so might be harmful to another 

person’s privacy. 

The limitations speak to common sense, so they are not too likely to hamper your efforts on Kaggle.

Summary
In this chapter, we introduced Kaggle Datasets, the standardized manner of storing and using 

data in the platform. We discussed dataset creation, ways of working outside of Kaggle, and the 

most important functionality: using a dataset in your Notebook. This provides a good segue to 

our next chapter, where we focus our attention on Kaggle Notebooks.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://opendefinition.org/guide/data/
https://packt.link/KaggleDiscord


3
Working and Learning with 
Kaggle Notebooks

Kaggle Notebooks – which until recently were called Kernels – are Jupyter Notebooks in the 

browser that can run free of charge. This means you can execute your experiments from any 

device with an internet connection, although something bigger than a mobile phone is proba-

bly a good idea. The technical specification of the environment (as of the time of this writing) is 

quoted below from the Kaggle website; the most recent version can be verified at https://www.

kaggle.com/docs/notebooks:

• 12 hours execution time for CPU/GPU, 9 hours for TPU

• 20 gigabytes of auto-saved disk space (/kaggle/working)

• Additional scratchpad disk space (outside /kaggle/working) that will not be saved out-

side of the current session

CPU specifications:

• 4 CPU cores

• 16 gigabytes of RAM

GPU specifications:

• 2 CPU cores

• 13 gigabytes of RAM

TPU specifications:

• 4 CPU cores

• 16 gigabytes of RAM

https://www.kaggle.com/docs/notebooks
https://www.kaggle.com/docs/notebooks
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In this chapter, we will cover the following topics:

• Setting up a Notebook

• Running your Notebook

• Saving Notebooks to GitHub

• Getting the most out of Notebooks

• Kaggle Learn courses

Without further ado, let us jump into it. The first thing we need to do is figure out how to set up 

a Notebook.

Setting up a Notebook
There are two primary methods of creating a Notebook: from the front page or from a Dataset.

To proceed with the first method, go to the Code section of the menu on the left-hand side of the 

landing page at https://www.kaggle.com/ and click the + New Notebook button. This is the 

preferred method if you are planning an experiment that involves uploading your own dataset:

Figure 3.1: Creating a new Notebook from the Code page

https://www.kaggle.com/
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Alternatively, you can go to the page of the Dataset you are interested in and click the New Note-

book button there, as we saw in the previous chapter:

Figure 3.2: Creating a new Notebook from a Dataset page

Whichever method you choose, after clicking New Notebook, you will be taken to your Notebook 

page:

Figure 3.3: The Notebook page



Working and Learning with Kaggle Notebooks56

On the right-hand side of the new Notebook page shown above, we have a number of settings 

that can be adjusted:

Figure 3.4: Notebook options

We will discuss the settings briefly. First, there is the coding Language. As of the time of this 

writing, the Kaggle environment only allows Python and R as available options for coding your 

Notebooks. By default, a new Notebook is initialized with the language set to Python – if you 

want to use R instead, click on the dropdown and select R.

Next comes Environment: this toggle allows you to decide whether to always use the latest 

Docker environment (the risky option; fast to get updates but dependencies might break with 

future updates) or pin the Notebook to the original version of the environment provided by Kaggle 

(the safe choice). The latter option is the default one, and unless you are conducting very active 

development work, there is no real reason to tinker with it.

Accelerator allows a user to choose how to run the code: on CPU (no acceleration), GPU (nec-

essary for pretty much any serious application involving deep learning), or TPU. Keep in mind 

that moving from CPU to (a single) GPU requires only minimal changes to the code and can be 

handled via system device detection. 
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Migrating your code to TPU requires more elaborate rewriting, starting with data processing. An 

important point to keep in mind is that you can switch between CPU/GPU/TPU when you are 

working on your Notebook, but each time you do, the environment is restarted and you will need 

to run all your code from the beginning.

Finally, we have the Internet toggle which enables or disables online access. If you are connected 

and need to, for example, install an extra package, the download and installation of dependencies 

will take place automatically in the background. The most common situation in which you need 

to explicitly disable internet access is for submission to a competition that explicitly prohibits 

online access at submission time.

An important aspect of using Notebooks is that you can always take an existing one (created by 

yourself or another Kaggler) and clone it to modify and adjust to your needs. This can be achieved 

by clicking the Copy and Edit button at the top right of the Notebook page. In Kaggle parlance, 

the process is referred to as forking:

Figure 3.5: Forking an existing Notebook

A Notebook you create is private (only visible to you) by default. If you want to make it available 

to others, you can choose between adding collaborators, so that only the users explicitly added 

to the list will be able to view or edit the content, or making the Notebook public, in which case 

everybody can see it.

A note on etiquette: If you have participated in a Kaggle competition before, you 

will probably have noticed that the leaderboard is flooded with forks of forks of 

well-scoring Notebooks. There is nothing wrong with building on somebody else’s 

work – but if you do, remember to upvote the original author and give explicit credit 

to the creator of the reference work.
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Running your Notebook
All the coding is finished, the Notebook seems to be working fine, and you are ready to execute. 

To do that, go to the upper-right corner of your Notebook page and click Save Version.

Figure 3.6: Saving your script

Save & Run All is usually used to execute the script, but there is also a Quick Save option, which 

can be used to save an intermediate version of the script before it is ready for submission:
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Figure 3.7: Different options for Save Version

Once you have launched your script(s), you can head to the lower-left corner and click on Active 

Events:

Figure 3.8: Monitoring active events
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In this manner, you can monitor the behavior of your Notebooks. Normal execution is associated 

with the message Running; otherwise, it is displayed as Failed. Should you decide that you want 

to kill a running session for whatever reason (for instance, you realize that you forgot to use the 

most recent data), you can do it by clicking on the three dots on the right-hand side of your script 

entry under Active Events and you will receive a pop-up like the one shown in the figure below:

Figure 3.9: Canceling Notebook execution

Saving Notebooks to GitHub
A recently introduced feature (see https://www.kaggle.com/product-feedback/295170) allows 

you to store your code or your Notebook to the version control repository GitHub (https://github.

com/). You can store your work both to public and private repositories, and this will happen au-

tomatically as you save a version of your code. Such a feature could prove quite useful for sharing 

your work with your Kaggle teammates, as well as for showcasing your work to the wider public.

In order to enable this feature, you need to open your Notebook; in the File menu, choose the 

Link to GitHub option.

https://www.kaggle.com/product-feedback/295170
https://github.com/
https://github.com/
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Figure 3.10: Enabling the GitHub feature

After choosing the option, you will have to link your GitHub account to the Notebook. You will 

explicitly be asked for linking permissions the first time you choose to link. For any subsequent 

links to new Notebooks, the operation will be carried out automatically.

Figure 3.11: Linking to GitHub
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Only after linking your Notebook will you be allowed to sync your work to a repository of your 

choice when you save it:

Figure 3.12: Committing your work to GitHub

After deciding on a repository and a branch (thus allowing you to store different development 

stages of your work), you can change the name of the file you are going to push to the repository 

and modify the commit message.

If you decide you no longer want to sync a particular Notebook on GitHub, all you have to do is 

to go back to the File menu and select Unlink from GitHub. Finally, if you want Kaggle to stop 

connecting with your GitHub repository, you can unlink your accounts from either your Kaggle 

account page under My linked accounts or from GitHub’s settings pages (https://github.com/

settings/applications).

https://github.com/settings/applications
https://github.com/settings/applications
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Getting the most out of Notebooks
Kaggle provides a certain amount of resources for free, with the quotas resetting weekly. You get 

a certain number of hours to use with both GPU and TPU; it is 30 hours for TPU, but for GPU the 

numbers can vary from week to week (you can find the official statement describing the “float-

ing” quotas policy here: https://www.kaggle.com/product-feedback/173129). You can always 

monitor your usage in your own profile:

Figure 3.13: Current status for accelerator quotas

While the amounts might seem large at first glance, this initial impression can be deceptive; it is 

actually fairly easy to use your quota very quickly. Some practical suggestions that can help you 

control the usage of the resources:

• The counter for the quota (measuring how long you have been using your chosen accel-

erator, GPU or TPU) starts running the moment you initialize your Notebook.

• This means that you should always start by checking that GPU is disabled under settings 

(see Figure 3.6 above). Write the boilerplate first, check your syntax, and enable/disable 

GPU for when you add the parts of the code that actually depend on GPU initialization. A 

reminder: the Notebook will restart when you change the accelerator.

https://www.kaggle.com/product-feedback/173129
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• It is usually a good idea to run the code end-to-end on a small subset of data to get a feel 

for the execution time. This way, you minimize the risk that your code will crash due to 

exceeding this limit.

Sometimes the resources provided freely by Kaggle are not sufficient for the task at hand, and you 

need to move to a beefier machine. A good example is a recent tumor classification competition: 

https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/data.

If your raw data is over 100GB, you need to either resize/downsample your images (which is 

likely to have an adverse impact on your model performance) or train a model in an environment 

capable of handling high-resolution images. You can set up the whole environment yourself (an 

example of this setup is the section Using Kaggle Datasets in Google Colab in Chapter 2), or you can 

stay within the framework of Notebooks but swap the underlying machine. This is where Google 

Cloud AI Notebooks come in.

Upgrading to Google Cloud Platform (GCP)
The obvious benefit to upgrading to GCP is getting access to more powerful hardware: a Tesla 

P100 GPU (provided free by Kaggle) is decent for many applications, but not top of the line in 

terms of performance, and 16GB RAM can also be quite limiting, especially in resource-intensive 

applications like large NLP models or high-resolution image processing. While the improvement in 

execution time is obvious, leading to faster iteration through the development cycle, it comes at a 

cost: you need to decide how much you are prepared to spend. For a powerful machine crunching 

the numbers, time is quite literally money.

In order to migrate your Notebook to the GCP environment, go to the sideline menu on the right-

hand side and click on Upgrade to Google Cloud AI Notebooks:

https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/data
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Figure 3.14: Upgrading to the Google Cloud AI Notebooks option
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You will be greeted by the following prompt:

Figure 3.15: Upgrade to Google Cloud AI Platform Notebooks prompt

When you click Continue, you will be redirected to the Google Cloud Platform console, where 

you need to configure your billing options. A reminder: GCP is not free. If it is your first time, you 

will need to complete a tutorial guiding you through the necessary steps.

One step beyond
As mentioned earlier in this chapter, Kaggle Notebooks are a fantastic tool for education and 

participating in competitions; but they also serve another extremely useful purpose, namely as 

a component of a portfolio you can use to demonstrate your data science skills.

There are many potential criteria to consider when building your data science portfolio (branding, 

audience reach, enabling a pitch to your potential employer, and so on) but none of them matter 

if nobody can find it. Because Kaggle is part of Google, the Notebooks are indexed by the most 

popular search engine in the world; so if someone is looking for a topic related to your code, it 

will show up in their search results.



Chapter 3 67

Below, I show a personal example: a few years ago, I wrote a Notebook for a competition. The 

problem I wanted to tackle was adversarial validation (for those unfamiliar with the topic: a 

fairly easy way to see if your training and test sets have a similar distribution is to build a binary 

classifier trained to tell them apart; the concept is covered in more detail in Chapter 6, Designing 

Good Validation). When writing this chapter, I tried to search for the Notebook and, lo and behold, 

it shows up high up in the search results (notice the fact that I did not mention Kaggle or any 

personal details like my name in my query):

Figure 3.16: Konrad’s Notebook showing up on Google

Moving on to other benefits of using Notebooks to demonstrate your skillset: just like Compe-

titions, Datasets, and Discussions, Notebooks can be awarded votes/medals and thus position 

you in the progression system and ranking. You can stay away from the competitions track and 

become an Expert, Master, or Grandmaster purely by focusing on high-quality code the com-

munity appreciates. 
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The most up-to-date version of the progression requirements can be found at https://www.

kaggle.com/progression; below we give a snapshot relevant to the Expert and Master tiers:

Figure 3.17: Tier progression requirements

Progressing in the Notebooks category can be a challenging experience; while easier than Com-

petitions, it is definitely harder than Discussions. The most popular Notebooks are those linked 

to a specific competition: exploratory data analysis, end-to-end proof of concept solutions, as 

well as leaderboard chasing; it is an unfortunately common practice that people clone the high-

est-scoring public Notebook, tweak some parameters to boost the score, and release it to wide 

acclaim (if upvotes can be considered a measure of sentiment). This is not meant to discourage the 

reader from publishing quality work on Kaggle – a majority of Kagglers do appreciate novel work 

and quality does prevail in the long term – but a realistic adjustment of expectations is in order.

https://www.kaggle.com/progression
https://www.kaggle.com/progression
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Your Kaggle profile comes with followers and gives you the possibility of linking other profes-

sional networks like LinkedIn or GitHub, so you can leverage the connections you gain inside 

the community:

Figure 3.18: Konrad’s Kaggle profile

In this day and age, it is easy to be skeptical about claims of “community building”, but in the 

case of Kaggle, it happens to actually be true. Their brand recognition in the data science universe 

is second to none, both among practitioners and among recruiters who actually do their home-

work. In practice, this means that a (decent enough) Kaggle profile can get you through the door 

already; which, as we all know, is frequently the hardest step.
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Martin Henze
https://www.kaggle.com/headsortails

We had the pleasure of speaking to Martin Henze, aka Heads or Tails, a 

Kaggle Grandmaster in Notebooks and Discussion and a Data Scientist 

at Edison Software. Martin is also the author of Notebooks of the Week: 

Hidden Gems, a weekly collection of the very best Notebooks that have 

escaped public notice. You can get notifications about new Hidden Gems posts by following his 

Kaggle profile or his accounts on Twitter and LinkedIn.

What’s your favourite kind of competition and why? In terms of 
techniques, solving approaches, what is your specialty on Kaggle?
For a long time, my focus was on EDA (exploratory data analysis) notebooks rather than leaderboard 

predictions themselves. Most of my experience prior to Kaggle had been with tabular data, and the major-

ity of my EDA notebooks deal with extracting intricate insights from newly launched tabular challenges. 

I still consider this my specialty on Kaggle, and I have spent a significant amount of time crafting the 

structure, data visualizations, and storytelling of my notebooks.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
Even as Kaggle has shifted away from tabular competitions, I strongly believe that the data themselves 

are the most important aspect of any challenge. It is easy to focus too early on model architectures and 

hyperparameter tuning. But in many competitions, the key to success remains a data-centric approach 

that is built on detailed knowledge of the dataset and its quirks and peculiarities. This is true for image 

data, NLP, time series, and any other data structures you can think of. Therefore, I always start with an 

extensive EDA before building a simple baseline model, a CV framework, and then slowly iterating the 

complexity of this pipeline. 

The main difference compared to my data science day job is probably that the kind of baseline models that 

most experienced people can build within the first week of a new challenge would be considered sufficient 

to put into production. In many cases, after those first few days we’re more than 80% on the way to the 

ultimate winner’s solution, in terms of scoring metric. Of course, the fun and the challenge of Kaggle are 

to find creative ways to get those last few percent of, say, accuracy. But in an industry job, your time is 

often more efficiently spent in tackling a new project instead.

https://www.kaggle.com/headsortails
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Has Kaggle helped you in your career? If so, how?
Kaggle has shaped and supported my career tremendously. The great experience in the Kaggle community 

motivated me to transition from academia to industry. Today, I’m working as a data scientist in a tech 

startup and I’m continuously growing and honing my skills through Kaggle challenges.

In my case, my focus on constructing extensive Kaggle Notebooks helped me a lot, since I could easily use 

those as my portfolio. I don’t know how often a hiring manager would actually look at those resources, but 

I frequently got the impression that my Grandmaster title might have opened more doors than my PhD 

did. Or maybe it was a combination of the two. In any case, I can much recommend having a portfolio of 

public Notebooks. Moreover, during my job search, I used the strategies I learned on Kaggle for various 

take-home assignments and they served me well.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
I think that we are all constantly growing in experience. And we’re all wiser now than we were ten years, 

five years, or even one year ago. With that out of the way, one crucial aspect that is often overlooked is 

that you want to have a plan for what you’re doing, and to execute and document that plan. And that’s 

an entirely understandable mistake to make for new Kagglers, since everything is novel and complex and 

at least somewhat confusing. I know that Kaggle was confusing for me when I first joined. So many things 

you can do: forums, datasets, challenges, courses. And the competitions can be downright intimidating: 

Neuronal Cell Instance Segmentation; Stock Market Volatility Prediction. What even are those 

things? But the competitions are also the best place to start.

Because when a competition launches, nobody really has a clue about it. Yeah, maybe there is a person 

who has done their PhD on almost the same topic. But those are rare. Everyone else, we’re all pretty much 

starting from zero. Digging into the data, playing with loss functions, running some simple starter models. 

When you join a competition at the beginning, you go through all that learning curve in an accelerated 

way, as a member of a community. And you learn alongside others who will provide you with tons of 

ideas. But you still need a plan.

And that plan is important, because it’s easy to just blindly run some experiments and see all that GPU 

RAM being used and feel good about it. But then you forget which version of your model was doing best, 

and is there a correlation between local validation and leaderboard? Did I already test this combination 

of parameters? So write down what you are going to do and then log the results. There are more and more 

tools that do the logging for you, but this is also easily done through a custom script. 
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Machine learning is still mostly an experimental science, and the key to efficient experiments is to plan 

them well and to write down all of the results so you can compare and analyse them.

What mistakes have you made in competitions in the past?
I have made lots of mistakes and I hope that I managed to learn from them. Not having a robust cross-vali-

dation framework was one of them. Not accounting for differences between train and test. Doing too much 

EDA and neglecting the model building – that one was probably my signature mistake in my first few 

competitions. Doing not enough EDA and missing something important – yep, done that too. Not selecting 

my final two submissions. (Ended up making not much of a difference, but I still won’t forget it again.)

The point about mistakes, though, is similar to my earlier point about experiments and having a plan. 

Mistakes are fine if you learn from them and if they help you grow and evolve. You still want to avoid 

making easy mistakes that could be avoided by foresight. But in machine learning (and science!) failure 

is pretty much part of the process. Not everything will always work. And that’s fine. But you don’t want 

to keep making the same mistakes over and over again. So the only real mistake is not to learn from your 

mistakes. This is true for Kaggle competitions and in life.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
I know that we increasingly live in a Python world, but when it comes to tabular wrangling and data 

visualization I still prefer R and its tidyverse: dplyr, ggplot2, lubridate, etc. The new tidymodels framework 

is a serious contender to sklearn. Even if you’re a die-hard Python aficionado, it pays off to have a look 

beyond pandas and friends every once in a while. Different tools often lead to different viewpoints and 

more creativity. In terms of deep learning, I find PyTorch most intuitive alongside its FastAI interface. 

And, of course, everyone loves huggingface nowadays; and for very good reasons.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
The most important thing is to remember to have fun and to learn something. So much valuable insight 

and wisdom is being shared both during and after a competition that it would be a shame not to take 

it in and grow from it. Even if the only thing you care for is winning, you can only accomplish that by 

learning and experimenting and standing on the shoulders of this community. But there is so much more 

to Kaggle than the leaderboards, and once you start contributing and giving back to the community you 

will grow in a much more holistic way. I guarantee it.
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Kaggle Learn courses
A great many things about Kaggle are about acquiring knowledge. Whether it be the things you 

learn in a competition, datasets you manage to find in the ever-growing repository, or demonstra-

tion of a hitherto unknown model class, there is always something new to find out. The newest 

addition to that collection is the courses gathered under the Kaggle Learn label: https://www.

kaggle.com/learn. These are micro-courses marketed by Kaggle as “the single fastest way to gain 

the skills you’ll need to do independent data science projects,” the core unifying theme being a 

crash course introduction across a variety of topics. Each course is divided into small chapters, 

followed by coding practice questions. The courses are delivered using Notebooks, where portions 

of the necessary theory and exposition are intermingled with the bits you are expected to code 

and implement yourself.

Below, we provide a short overview of the most useful ones:

• Intro to ML/Intermediate ML: https://www.kaggle.com/learn/intro-to-machine-

learning and https://www.kaggle.com/learn/intermediate-machine-learning

These two courses are best viewed as a two-parter: the first one introduces different class-

es of models used in machine learning, followed by a discussion of topics common to 

different models like under/overfitting or model validation. The second one goes deeper 

into feature engineering, dealing with missing values and handling categorical variables. 

Useful for people beginning their ML journey.

• pandas: https://www.kaggle.com/learn/pandas

This course provides a crash-course introduction to one of the most fundamental tools 

used in modern data science. You first learn how to create, read, and write data, and then 

move on to data cleaning (indexing, selecting, combining, grouping, and so on). Useful 

for both beginners (pandas functionality can be overwhelming at times) and practitioners (as 

a refresher/reference) alike.

• Game AI: https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-

learning

This course is a great wrap-up of the tech-focused part of the curriculum introduced 

by Kaggle in the learning modules. You will write a game-playing agent, tinker with its 

performance, and use the minimax algorithm. This one is probably best viewed as a prac-

tice-oriented introduction to reinforcement learning.

https://www.kaggle.com/learn
https://www.kaggle.com/learn
https://www.kaggle.com/learn/intro-to-machine-learning
https://www.kaggle.com/learn/intro-to-machine-learning
https://www.kaggle.com/learn/intermediate-machine-learning
https://www.kaggle.com/learn/pandas
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning


Working and Learning with Kaggle Notebooks74

• Machine Learning Explainability: https://www.kaggle.com/learn/machine-learning-

explainability

Building models is fun, but in the real world not everybody is a data scientist, so you might 

find yourself in a position where you need to explain what you have done to others. This 

is where this mini-course on model explainability comes in: you will learn to assess how 

relevant your features are with three different methods: permutation importance, SHAP, 

and partial dependence plots. Extremely useful to anybody working with ML in a commercial 

setting, where projects live or die on how well the message is conveyed.

• AI Ethics: https://www.kaggle.com/learn/intro-to-ai-ethics

This last course is a very interesting addition to the proposition: it discusses the practical 

tools to guide the moral design of AI systems. You will learn how to identify the bias in 

AI models, examine the concept of AI fairness, and find out how to increase transparency 

by communicating ML model information. Very useful for practitioners, as “responsible AI” 

is a phrase we will be hearing more and more of.

Apart from the original content created by Kaggle, there are other learning opportunities avail-

able on the platform through user-created Notebooks; the reader is encouraged to explore them 

on their own.

Andrada Olteanu
https://www.kaggle.com/andradaolteanu

Andrada Olteanu is one Kaggle Notebooks Grandmaster who very much 

encourages learning from Notebooks. Andrada is a Z by HP Global 

Data Science Ambassador, Data Scientist at Endava, and Dev Expert 

at Weights & Biases. We caught up with Andrada about Notebook com-

petitions, her career, and more.

What’s your favourite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I would say my specialty on Kaggle leans more towards Data Visualization, as it enables me to combine 

art and creativity with data.

I would not say I have a favorite type of competition, but I would rather say I like to switch it up occa-

sionally and choose whatever I feel is interesting. 

https://www.kaggle.com/learn/machine-learning-explainability
https://www.kaggle.com/learn/machine-learning-explainability
https://www.kaggle.com/learn/intro-to-ai-ethics
https://www.kaggle.com/andradaolteanu
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The beauty of Kaggle is that one can learn multiple areas of Data Science (computer vision, NLP, explor-

atory data analysis and statistics, time series, and so on) while also becoming familiar and comfortable 

with many topics (like sports, the medical field, finance and cryptocurrencies, worldwide events, etc.)

Another great thing is that, for example, if one wants to become more proficient in working with text 

data, there is almost always a Kaggle Competition that requires NLP. Or, if one wants to learn how to 

preprocess and model audio files, there are competitions that enable that skill as well.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
The most challenging “competition” I have ever entered was the “Kaggle Data Science and Machine 

Learning Annual Survey”. I know this is not a “real” competition – with a leaderboard and heavy-duty 

machine learning involved – however for me it was one of the competitions I have “sweated” during and 

learned the most.

This is a Notebook competition, where the users have to become creative in order to win one of the 5 prizes 

Kaggle puts on the table. I have participated in it 2 years in a row. In the first year (2020), it challenged 

my more “basic” visualization skills and forced me to think outside the box (I took 3rd place); in the sec-

ond year (2021), I prepared for it for around 4 months by learning D3, in an attempt to get to a whole 

other level on my Data Visualization skills (still in review; so far, I have won the “Early Notebook Award” 

prize). The best insights I can give here are:

• First, do not get lost within the data and try to create graphs that are as accurate as possible; if 

necessary, build double verification methods to be sure that what you are representing is clear 

and concise. Nothing is worse than a beautiful graph that showcases inaccurate insights.

• Try to find inspiration around you: from nature, from movies, from your work. You can draw on 

amazing themes and interesting ways to spruce up your visualization.

Has Kaggle helped you in your career? If so, how?
Yes. Tremendously. I believe I owe a big part of where I am now in my career to Kaggle, and for this I am 

forever grateful. Through Kaggle I have became a Z by HP Ambassador; I have also discovered Weights 

& Biases, which is an amazing machine learning experiment platform and now I am a proud Dev Ex-

pert for them. Last but not least, through this platform I connected with my now Lead Data Scientist at 

Endava, who recruited me, and I have been working with him since. In short, my position at Endava 

and the connection I have with 2 huge companies (HP and Weights & Biases) are a direct result of my 

activity on the Kaggle platform.
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I believe the most overlooked aspect of Kaggle is the community. Kaggle has the biggest pool of people, all 

gathered in one convenient place, from which one could connect, interact, and learn from.

The best way to leverage this is to take, for example, the first 100 people from each Kaggle section (Com-

petitions, Datasets, Notebooks – and if you want, Discussions), and follow on Twitter/LinkedIn everybody 

that has this information shared on their profile. This way, you can start interacting on a regular basis 

with these amazing people, who are so rich in insights and knowledge.

What mistakes have you made in competitions in the past?
The biggest mistake I have made in competitions in the past is to not participate in them. I believe this is 

the biggest, most fundamental mistake beginners make when they enter onto the platform.

Out of fear (and I am talking from personal experience), they believe they are not ready, or they just 

don’t know how to start. Fortunately, if you follow a simple system, it will become very easy to enter any 

competition:

• Enter any competition you like or sounds interesting.

• Explore the description page and the data.

• If you have no idea how to start, no worries! Just enter the “Code” section and look around for 

Notebooks that have a lot of upvotes, or are made by experienced people, like Grandmasters. 

Start doing a “code along” Notebook, where you look at what others have done and “copy” it, 

researching and trying to improve it yourself. This is, in my opinion, the best way to learn – you 

never get stuck, and you learn by doing in a specific project.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
They should keep in mind that it is OK to fail, as usually it is the best way to learn.

What they should also keep in mind is to always learn from the Competition Grandmasters, because 

they are usually the ones who share and explain machine learning techniques that one may never think 

of. The best way of learning something is to look at others that “have already made it,” so your road to 

success will not be as bumpy, but rather much more painless, smooth, and quick. Take 2-3 Grandmasters 

that you really admire and make them your teachers; study their Notebooks, code along, and learn as 

much as possible.

Do you use other competition platforms? How do they compare to 
Kaggle?
I have never used any other competition platform – simply because I feel like Kaggle has it all.
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Summary
In this chapter, we have discussed Kaggle Notebooks, multi-purpose, open coding environments 

that can be used for education and experimentation, as well as for promoting your data science 

project portfolio. You are now in a position to create your own Notebook, efficiently utilize the 

available resources, and use the results for competitions or your individual projects.

In the next chapter, we will introduce discussion forums, the primary form of exchanging ideas 

and opinions on Kaggle.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord




4
Leveraging Discussion Forums

Discussion forums are the primary means of information exchange on Kaggle. Whether it’s dis-

cussing an ongoing competition, engaging in a conversation about a Dataset, or a Notebook 

presenting a novel approach, Kagglers talk about things all the time.

In this chapter, we present the discussion forums: how they are organized, and the code of con-

duct governing the wealth of information therein that can be used. We cover the following topics:

• How forums work

• Discussion approaches for example competitions

• Netiquette

How forums work
You can enter the discussion forum in several ways. The most direct way is by clicking on Dis-

cussions in the left-hand side panel:
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Figure 4.1: Entering the Discussions page from the main menu

The top section contains Forums, which are aggregations of general topics. Perusing those is 

useful whether you are participating in your first competition, have a suggestion to make, or just 

have a general question because you feel lost. 

Below the forums, you can find the combined view of discussions across Kaggle: mostly conver-

sations related to competitions (which form the bulk of activity on Kaggle), but also Notebooks 

or notable datasets. By default, they are sorted by Hotness; in other words, those with the highest 

participation and most activity are shown closer to the top. This section is where you can find 

content more relevant to the dynamic nature of the field: a collection of discussions from different 

subsets of Kaggle, with the ability to filter on specific criteria:
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Figure 4.2: Discussions from across Kaggle

Depending on your interest, you can start personalizing the content by using the filters. Based 

on your preferences, you can filter by:

• RECENCY: Allows you to control the range of information you are catching up on

• MY ACTIVITY: If you need an overview of your comments/publications/views across all 

forums; useful if you are involved in multiple discussions simultaneously 

• ADMIN: Provides a quick overview of announcements from Kaggle admins

• TYPES: Discussions can take place in the general forums, in specific competitions, or 

around datasets
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• TAGS: While not present everywhere, several discussions are tagged, and this functionality 

allows a user to make use of that fact:

Figure 4.3: Available filters for discussions
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The next figure shows a sample output of filtering on discussions on the Beginner tag:

Figure 4.4: Filtering discussions to those tagged “Beginner”

As an alternative, you can also focus on a specific topic; since topics like computer vision attract a 

lot of interest, it is probably useful to sort the topics. You can sort by Hotness, Recent Comments, 

Recently Posted, Most Votes, and Most Comments:
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Figure 4.5: The Computer Vision topics subset of the general discussion forum

People come to Kaggle for diverse reasons but, despite the growth in popularity of Notebooks, 

competitions remain the primary attraction. Each Kaggle competition has its own dedicated dis-

cussion forum, which you can enter by going into the competition page and selecting Discussion:

Figure 4.6: Discussion forum for a competition
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It was not always the case, but these days virtually all competitions have an FAQ topic pinned at 

the top of their dedicated discussion forum. Starting there is a good idea for two main reasons:

• It saves you time; the most popular queries are probably addressed there.

• You avoid asking redundant or duplicate questions in the remainder of the forum, making 

everyone’s experience better.

Like Notebooks, discussion forums have an option for you to bookmark particularly relevant 

topics for later reference:

Figure 4.7: Bookmarking a topic in a discussion forum
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An overview of all your bookmarked topics can be found on your profile page:

Figure 4.8: Bookmarking a topic in a discussion forum

Example discussion approaches
It is a completely normal thing to feel lost in a competition at some point: you came in, tried a 

few ideas, got some traction on the leaderboard, and then you hit the Kaggle version of a runner’s 

wall. This is the moment when discussion forums are the place to consult.

As an example, we will look at the Optiver Realized Volatility Prediction competition (https://www.

kaggle.com/c/optiver-realized-volatility-prediction), characterized by the organizers 

like this:

https://www.kaggle.com/c/optiver-realized-volatility-prediction
https://www.kaggle.com/c/optiver-realized-volatility-prediction
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There is quite a lot to unpack here, so we will walk over the main components of this challenge 

and show how they can be approached via the discussion forums. First, participation in this com-

petition requires some level of financial knowledge; not quite experienced trader level maybe, but 

understanding the different manners of calculating volatility is certainly not trivial for a layman 

(which most Kagglers are in this specific matter). Luckily for the participants, the organizers were 

very active during the competition and provided guidance on resources intended to help new-

comers to the field: https://www.kaggle.com/c/optiver-realized-volatility-prediction/

discussion/273923.

If the entry knowledge still proves insufficient to get started, do not hesitate to figure things out in 

public and ask for help, like here: https://www.kaggle.com/c/optiver-realized-volatility-

prediction/discussion/263039.

Or here: https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/ 

250612.

As the competition went on, people started developing increasingly sophisticated models to 

handle the problem. There is a balance to strike here: on the one hand, you might want to give 

something back if you have learned from veterans sharing their findings before; on the other hand, 

you do not want to give away your (potential) advantage by publishing all your great code as a 

Notebook. A reasonable compromise is discussing, for example, your feature ideas in a post in the 

forum competition, along the lines of this one: https://www.kaggle.com/c/optiver-realized-

volatility-prediction/discussion/273915.

In the first three months of this competition, you’ll build models that predict short-

term volatility for hundreds of stocks across different sectors. You will have hundreds 

of millions of rows of highly granular financial data at your fingertips, with which 

you’ll design your model forecasting volatility over 10-minute periods. Your models 

will be evaluated against real market data collected in the three-month evaluation 

period after training.

https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/273923
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/273923
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/263039
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/263039
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/
250612
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/
250612
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/273915
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/273915
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In recent years, more competitions are moving away from the fixed test dataset format and in-

troduce some sort of variation: sometimes they enforce the usage of the Kaggle API (these com-

petitions require submission from a Notebook), others introduce a special timetable split into a 

training phase and evaluation against live data. This was the case with Optiver:

While straightforward to formulate, this setup generated a few challenges for re-training and 

updating the models. Should you encounter this kind of situation, feel free to inquire, as partic-

ipants did in this competition: https://www.kaggle.com/c/optiver-realized-volatility-

prediction/discussion/249752.

A validation scheme for your trained model is always an important topic in a Kaggle competition, 

usually coupled with the perennial “CV vs LB” (cross-validation versus leaderboard) discussion. 

The Optiver competition was no exception to that rule: https://www.kaggle.com/c/optiver-

realized-volatility-prediction/discussion/250650.

Unless the thread is already present – and it’s always a good idea to check, so that redundancy can 

be minimized – you might want to consider a related type of thread: single-model performance. 

Sooner or later, everybody starts using ensembles of models, but they are not very efficient without 

good single-model components. The collaborative quest for knowledge does not stop there: if 

you think you have found a better way of approaching the problem, it is probably a good idea to 

share it. Either you will have done something useful for others, or you will find out why you were 

wrong (saving you time and effort); either way, a win, as shown, for instance, in this discussion: 

https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/260694.

Apart from the obvious personal benefit (you get a peek into how other competitors are doing), 

such threads allow for information exchange in the community, facilitating the collaborative el-

ement and being helpful for beginners. An example of such a discussion can be found at https://

www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/250695.

Starting after the final submission deadline there will be periodic updates to the 

leaderboard to reflect market data updates that will be run against selected note-

books. Updates will take place roughly every two weeks, with an adjustment to 

avoid the winter holidays.

https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/249752
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/249752
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/250650
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/250650
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/260694
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/250695
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/250695
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If you have gone through the topics such as the ones listed above, there is a possibility you still 

find yourself wondering: am I missing anything important? Kaggle is the kind of place where it is 

perfectly fine to ask: https://www.kaggle.com/c/optiver-realized-volatility-prediction/

discussion/262203.

Let’s broaden our focus out to other competitions to wrap up this section. We mentioned val-

idation above, which always links – at least for a Kaggler – to the topic of information leakage 

and overfitting. Leaks are discussed extensively in Chapter 6, which is dedicated to designing 

validation schemes. Here, we touch briefly on how they are approached via discussions. With 

Kaggle being a community of inquisitive people, if there is suspicion of leakage, somebody is 

likely to raise the topic.

For example, names of the files or IDs of records may contain timestamps, which means they 

can be reverse engineered to effectively peek into the future and produce an unrealistically low 

error metric value. Such a situation took place in the Two Sigma Connect competition (https://

www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/). You can read up on the 

details in Kazanova’s post: https://www.kaggle.com/c/two-sigma-connect-rental-listing-

inquiries/discussion/31870#176513.

Another example is the Airbus Ship Detection Challenge (https://www.kaggle.com/c/airbus-

ship-detection), in which the participants were tasked with locating ships in satellite images. 

It turned out that a significant proportion of test images were (random) crops of the images in 

the training images and matching the two was relatively straightforward: https://www.kaggle.

com/c/airbus-ship-detection/discussion/64355#377037.

A rather infamous series of competitions were the ones sponsored by Santander. Of the three 

instances when the company organized a Kaggle contest, two involved data leakage: https://

www.kaggle.com/c/santander-value-prediction-challenge/discussion/61172.

What happens next varies per competition: there have been instances when Kaggle decided to reset 

the competition with new or cleaned up data, but also when they allowed it to continue (because 

they perceived the impact as minimal). An example of handling such a situation can be found 

in the Predicting Red Hat Business Value competition: https://www.kaggle.com/c/predicting-

red-hat-business-value/discussion/23788.

Although leaks in data can disturb a competition severely, the good news is that over the last 2-3 

years, leakage has all but disappeared from Kaggle – so with any luck, this section will be read 

once but not become a staple of your experience on the platform.

https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/262203
https://www.kaggle.com/c/optiver-realized-volatility-prediction/discussion/262203
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/31870#176513
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/31870#176513
https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection/discussion/64355#377037
https://www.kaggle.com/c/airbus-ship-detection/discussion/64355#377037
https://www.kaggle.com/c/santander-value-prediction-challenge/discussion/61172
https://www.kaggle.com/c/santander-value-prediction-challenge/discussion/61172
https://www.kaggle.com/c/predicting-red-hat-business-value/discussion/23788
https://www.kaggle.com/c/predicting-red-hat-business-value/discussion/23788
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The topic of experience on the platform is an excellent segue into a Grandmaster interview.

Yifan Xie
https://www.kaggle.com/yifanxie

Yifan Xie is a Discussions and Competitions Master, as well as the 

co-founder of Arion.ai. Here’s what he had to say about competing in 

competitions and working with other Kagglers.

What’s your favorite kind of competition and why? 
In terms of techniques and solving approaches, what is your specialty 
on Kaggle?
I don’t really have a favorite type; I like tackling problems of all kinds. In terms of techniques, I have 

built up a solid pipeline of machine learning modules that allow me to quickly apply typical techniques 

and algorithms on most data problems. I would say this is a kind of competitive advantage for me: a 

focus on standardizing, both in terms of work routine and technical artifacts over time. This allows for 

quicker iteration and in turn helps improve efficiency when conducting data experiments, which is a 

core component of Kaggle.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
Over time, I have developed a specific way of managing and gathering information for most of my ma-

jor data endeavors. This is applicable to work, Kaggle competitions, and other side projects. Typically, 

I capture useful information such as bookmarks, data dictionaries, to-do lists, useful commands, and 

experiment results in a standardized format dedicated to each competition, and when competing in a 

team, I will share this info with my teammates.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task?
For me, it has always been useful to understand the wider context of the competition; for instance, what 

are the social/engineering/financial processes that underpin and bring about the data we are working on? 

For competitions in which one can meaningfully observe individual data points, such as the Deepfake 

Detection Challenge, I would build a specific dashboard (usually using Streamlit) that allows me to 

check individual data points (in this case, it was pair of true and fake videos), as well as building simple 

stat gathering into the dashboard to allow me a better feel of the data.

https://www.kaggle.com/yifanxie
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Has Kaggle helped you in your career? If so, how?
I would say Kaggle is the platform that contributed the most to my current career path as a co-owner of 

a data science consultancy firm. It allowed me to build over several years the skillset and methodology to 

tackle data problems in different domains. I have both customers and colleagues who I got to know from 

forming teams on Kaggle competitions, and it has always served me very well as a source of knowledge, 

even though I am less active on it these days.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
For newcomers on Kaggle, the one error I can see is overlooking critical non-technical matters: rules on 

teaming, data usage, sharing of private information, usage of multiple accounts for innocuous reasons, etc. 

These are the types of error that could completely invalidate one’s often multi-month competition efforts.

The one thing I wish I knew at the beginning would be not to worry about the day-to-day position on the 

public leaderboard – it brings unnecessary pressure on oneself, and causes overfitting.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
The usual: Scikit-learn, XGB/LGB, PyTorch, etc. The one tool I would recommend that people learn to 

master beyond basic usage would be NumPy, especially for more advanced ways to sort and subset in-

formation; stuff that a lazy approach via pandas makes easy, but for which a more elaborate equivalent 

version in NumPy would bring much better efficiency.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
There are four reasons to do any data science-related stuff, in my book: for profit, for knowledge, for fun, 

and for good. Kaggle for me is always a great source of knowledge and very often a great memory to 

draw upon, so my recommendation would always be to remind oneself that ranking is temporary, but 

knowledge/memory are permanent :)

Do you use other competition platforms? How do they compare to 
Kaggle?
I am a very active participant on Numerai. For me, based on my four reasons to do data science, it is 

more for profit, as they provide a payout via their cryptocurrency. It is more of a solitary effort, as there 

is not really an advantage to teaming; they don’t encourage or forbid it, but it is just that more human 

resources don’t always equate to better profit on a trading competition platform like Numerai.
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Netiquette
Anybody who has been online for longer than 15 minutes knows this: during a discussion, no 

matter how innocent the topic, there is always a possibility that people will become emotion-

al, and a conversation will leave the civilized parts of the spectrum. Kaggle is no exception to 

the rule, so the community has guidelines for appropriate conduct: https://www.kaggle.com/

community-guidelines.

Those apply not just to discussions, but also to Notebooks and other forms of communication. 

The main points you should keep in mind when interacting on Kaggle are:

• Don’t slip into what Scott Adams calls the mind-reading illusion: Kaggle is an extremely 

diverse community of people from all over the world (for many of them, English is not their 

first language), so maintaining nuance is a massive challenge. Don’t make assumptions 

and try to clarify whenever possible.

• Do not make things personal; Godwin’s law is there for a reason. In particular, references 

to protected immutable characteristics are an absolute no-go area.

• Your mileage might vary, but the fact remains: this is not the Internet Wild West of the 

1990s, when telling somebody online to RTFM was completely normal; putdowns tend 

to alienate people.

• Do not attempt to manipulate the progression system (the basis for awarding Kaggle 

medals): this aspect covers an entire spectrum of platform abuse, from explicitly asking 

for upvotes, to collusion, to outright cheating.

In short, do toward others as you would have them do to you, and things should work out fine.

Numerai for me is a more sustainable activity than Kaggle during busy periods of my working calendar, 

because the training data is usually unchanged at each round, and I can productionize to a high degree 

to automate the prediction and submission once the initial models are built.

The continuity feature of Numerai also makes it better suited for people who want to build dedicated 

machine learning pipelines for tabular datasets.

https://www.kaggle.com/community-guidelines
https://www.kaggle.com/community-guidelines
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Summary
In this chapter, we have talked about discussion forums, the primary manner of communication 

on the Kaggle platform. We demonstrated the forum mechanics, showed you examples of how 

discussions can be leveraged in more advanced competitions, and briefly summarized discussion 

netiquette.

This concludes the first, introductory part of this book. The next chapter marks the start of a more 

in-depth exploration of how to maximize what you get out of Kaggle, and looks at getting to 

grips with the huge variety of different tasks and metrics you must wrestle with in competitions.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord
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5
Competition Tasks and Metrics

In a competition, you start by examining the target metric. Understanding how your model’s 

errors are evaluated is key for scoring highly in every competition. When your predictions are 

submitted to the Kaggle platform, they are compared to a ground truth based on the target metric.

For instance, in the Titanic competition (https://www.kaggle.com/c/titanic/), all your sub-

missions are evaluated based on accuracy, the percentage of surviving passengers you correctly 

predict. The organizers decided upon this metric because the aim of the competition is to find 

a model that estimates the probability of survival of a passenger under similar circumstances. 

In another knowledge competition, House Prices - Advanced Regression Techniques (https://www.

kaggle.com/c/house-prices-advanced-regression-techniques), your work will be evaluated 

based on an average difference between your prediction and the ground truth. This involves com-

puting the logarithm, squaring, and taking the square root, because the model is expected to be 

able to quantify as correctly as possible the order of the price of a house on sale.

In real-world data science, target metrics are also key for the success of your project, though 

there are certainly differences between the real world and a Kaggle competition. We could easily 

summarize by saying that there are more complexities in the real world. In real-world projects, 

you will often have not just one but multiple metrics that your model will be evaluated against. 

Frequently, some of the evaluation metrics won’t even be related to how your predictions perform 

against the ground truth you are using for testing. For instance, the domain of knowledge you are 

working in, the scope of the project, the number of features considered by your model, the overall 

memory usage, any requirement for special hardware (such as a GPU, for instance), the latency 

of the prediction process, the complexity of the predicting model, and many other aspects may 

end up counting more than the mere predictive performance. 

https://www.kaggle.com/c/titanic/
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
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Real-world problems are indeed dominated by business and tech infrastructure concerns much 

more than you may imagine before being involved in any of them.

Yet you cannot escape the fact that the basic principle at the core of both real-world projects and 

Kaggle competitions is the same. Your work will be evaluated according to some criteria, and 

understanding the details of such criteria, optimizing the fit of your model in a smart way, or se-

lecting its parameters according to the criteria will bring you success. If you can learn more about 

how model evaluation occurs in Kaggle, your real-world data science job will also benefit from it.

In this chapter, we are going to detail how evaluation metrics for certain kinds of problems 

strongly influence the way you can operate when building your model solution in a data science 

competition. We also address the variety of metrics available in Kaggle competitions to give you 

an idea of what matters most and, in the margins, we discuss the different effects of metrics on 

predictive performance and how to correctly translate them into your projects. We will cover the 

following topics:

• Evaluation metrics and objective functions

• Basic types of tasks: regression, classification, and ordinal

• The Meta Kaggle dataset

• Handling never-before-seen metrics

• Metrics for regression (standard and ordinal)

• Metrics for binary classification (label prediction and probability)

• Metrics for multi-class classification

• Metrics for object detection problems

• Metrics for multi-label classification and recommendation problems

• Optimizing evaluation metrics

Evaluation metrics and objective functions
In a Kaggle competition, you can find the evaluation metric in the left menu on the Overview 

page of the competition. By selecting the Evaluation tab, you will get details about the evaluation 

metric. Sometimes you will find the metric formula, the code to reproduce it, and some discus-

sion of the metric. On the same page, you will also get an explanation about the submission file 

format, providing you with the header of the file and a few example rows.
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The association between the evaluation metric and the submission file is important, because you 

have to consider that the metric works essentially after you have trained your model and pro-

duced some predictions. Consequently, as a first step, you will have to think about the difference 

between an evaluation metric and an objective function.

Boiling everything down to the basics, an objective function serves your model during training 

because it is involved in the process of error minimization (or score maximization, depending 

on the problem). In contrast, an evaluation metric serves your model after it has been trained by 

providing a score. Therefore, it cannot influence how the model fits the data, but does influence 

it in an indirect way: by helping you to select the most well-performing hyperparameter settings 

within a model, and the best models among competing ones. Before proceeding with the rest of 

the chapter, which will show you how this can affect a Kaggle competition and why the analysis 

of the Kaggle evaluation metric should be your first act in a competition, let’s first discuss some 

terminology that you may encounter in the discussion forums.

You will often hear talk about objective functions, cost functions, and loss functions, sometimes 

interchangeably. They are not exactly the same thing, however, and we explain the distinction here:

• A loss function is a function that is defined on a single data point, and, considering the 

prediction of the model and the ground truth for the data point, computes a penalty.

• A cost function takes into account the whole dataset used for training (or a batch from 

it), computing a sum or average over the loss penalties of its data points. It can comprise 

further constraints, such as the L1 or L2 penalties, for instance. The cost function directly 

affects how the training happens.

• An objective function is the most general (and safe-to-use) term related to the scope 

of optimization during machine learning training: it comprises cost functions, but it is 

not limited to them. An objective function, in fact, can also take into account goals that 

are not related to the target: for instance, requiring sparse coefficients of the estimated 

model or a minimization of the coefficients’ values, such as in L1 and L2 regularizations. 

Moreover, whereas loss and cost functions imply an optimization based on minimization, 

an objective function is neutral and can imply either a maximization or a minimization 

activity performed by the learning algorithm.

Likewise, when it comes to evaluation metrics, you’ll hear about scoring functions and error 

functions. Distinguishing between them is easy: a scoring function suggests better prediction 

results if scores from the function are higher, implying a maximization process. 
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An error function instead suggests better predictions if smaller error quantities are reported by 

the function, implying a minimization process.

Basic types of tasks
Not all objective functions are suitable for all problems. From a general point of view, you’ll find 

two kinds of problems in Kaggle competitions: regression tasks and classification tasks. Recently, 

there have also been reinforcement learning (RL) tasks, but RL doesn’t use metrics for evaluation; 

instead, it relies on a ranking derived from direct match-ups against other competitors whose 

solutions are assumed to be as well-performing as yours (performing better in this match-up than 

your peers will raise your ranking, performing worse will lower it). Since RL doesn’t use metrics, 

we will keep on referring to the regression-classification dichotomy, though ordinal tasks, where 

you predict ordered labels represented by integer numbers, may elude such categorization and 

can be dealt with successfully either using a regression or classification approach.

Regression
Regression requires you to build a model that can predict a real number; often a positive number, 

but there have been examples of negative number prediction too. A classic example of a regression 

problem is House Prices - Advanced Regression Techniques, because you have to guess the value of 

a house. The evaluation of a regression task involves computing a distance between your pre-

dictions and the values of the ground truth. This difference can be evaluated in different ways, 

for instance by squaring it in order to punish larger errors, or by applying a log to it in order to 

penalize predictions of the wrong scale.

Classification
When facing a classification task on Kaggle, there are more nuances to take into account. The 

classification, in fact, could be binary, multi-class, or multi-label.

In binary problems, you have to guess if an example should be classified or not into a specific 

class (usually called the positive class and compared to the negative one). Here, the evaluation 

could involve the straightforward prediction of the class ownership itself, or an estimation of 

the probability of such ownership. A typical example is the Titanic competition, where you have 

to guess a binary outcome: survival or not-survival. In this case, the requirement of the compe-

tition is just the prediction, but in many cases, it is necessary to provide a probability because 

in certain fields, especially for medical applications, it is necessary to rank positive predictions 

across different options and situations in order to make the best decision.
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Though counting the exact number of correct matches in a binary classification may seem a valid 

approach, this won’t actually work well when there is an imbalance, that is, a different number 

of examples, between the positive and the negative class. Classification based on an imbalanced 

distribution of classes requires evaluation metrics that take the imbalance into account, if you 

want to correctly track improvements on your model.

When you have more than two classes, you have a multi-class prediction problem. This also 

requires the use of suitable functions for evaluation, since it is necessary to keep track of the 

overall performance of the model, but also to ensure that the performance across the classes is 

comparable (for instance, your model could underperform with respect to certain classes). Here, 

each case can be in one class exclusively, and not in any others. A good example is Leaf Classifica-

tion (https://www.kaggle.com/c/leaf-classification), where each image of a leaf specimen 

has to be associated with the correct plant species.

Finally, when your class predictions are not exclusive and you can predict multiple class ownership 

for each example, you have a multi-label problem that requires further evaluations in order to 

control whether your model is predicting the correct classes, as well as the correct number and mix 

of classes. For instance, in Greek Media Monitoring Multilabel Classification (WISE 2014) (https://

www.kaggle.com/c/wise-2014), you had to associate each article with all the topics it deals with.

Ordinal
In a problem involving a prediction on an ordinal scale, you have to guess integer numeric labels, 

which are naturally ordered. As an example, the magnitude of an earthquake is on an ordinal scale. 

In addition, data from marketing research questionnaires is often recorded on ordinal scales (for 

instance, consumers’ preferences or opinion agreement). Since an ordinal scale is made of ordered 

values, ordinal tasks can be considered somewhat halfway between regression and classification, 

and you can solve them in both ways.

The most common way is to treat your ordinal task as a multi-class problem. In this case, you will 

get a prediction of an integer value (the class label) but the prediction will not take into account 

that the classes have a certain order. You can get a feeling that there is something wrong with 

approaching the problem as a multi-class problem if you look at the prediction probability for 

the classes. Often, probabilities will be distributed across the entire range of possible values, de-

picting a multi-modal and often asymmetric distribution (whereas you should expect a Gaussian 

distribution around the maximum probability class).

https://www.kaggle.com/c/leaf-classification
https://www.kaggle.com/c/wise-2014
https://www.kaggle.com/c/wise-2014
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The other way to solve the ordinal prediction problem is to treat it as a regression problem and 

then post-process your result. In this way, the order among classes will be taken into consider-

ation, though the prediction output won’t be immediately useful for scoring on the evaluation 

metric. In fact, in a regression you get a float number as an output, not an integer representing 

an ordinal class; moreover, the result will include the full range of values between the integers of 

your ordinal distribution and possibly also values outside of it. Cropping the output values and 

casting them into integers by unit rounding may do the trick, but this might lead to inaccuracies 

requiring some more sophisticated post-processing (we’ll discuss more on this later in the chapter).

Now, you may be wondering what kind of evaluation you should master in order to succeed in 

Kaggle. Clearly, you always have to master the evaluation metric of the competition you have 

taken on. However, some metrics are more common than others, which is information you can 

use to your advantage. What are the most common metrics? How can we figure out where to look 

for insights in competitions that have used similar evaluation metrics? The answer is to consult 

the Meta Kaggle dataset.

The Meta Kaggle dataset
The Meta Kaggle dataset (https://www.kaggle.com/kaggle/meta-kaggle) is a collection of 

rich data about Kaggle’s community and activity, published by Kaggle itself as a public dataset. 

It contains CSV tables filled with public activity from Competitions, Datasets, Notebooks, and 

Discussions. All you have to do is to start a Kaggle Notebook (as you saw in Chapters 2 and 3), add 

to it the Meta Kaggle dataset, and start analyzing the data. The CSV tables are updated daily, so 

you’ll have to refresh your analysis often, but that’s worth it given the insights you can extract.

We will sometimes refer to the Meta Kaggle dataset in this book, both as inspiration for many 

interesting examples of the dynamics in a competition and as a way to pick up useful examples 

for your learning and competition strategies. Here, we are going to use it in order to figure out 

what evaluation metrics have been used most frequently for competitions in the last seven years. 

By looking at the most common ones in this chapter, you’ll be able to start any competition from 

solid ground and then refine your knowledge of the metric, picking up competition-specific nu-

ances using the discussion you find in the forums.

https://www.kaggle.com/kaggle/meta-kaggle
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Below, we introduce the code necessary to produce a data table of metrics and their counts per 

year. It is designed to run directly on the Kaggle platform:

import numpy as np

import pandas as pd

comps = pd.read_csv("/kaggle/input/meta-kaggle/Competitions.csv")

evaluation = ['EvaluationAlgorithmAbbreviation',

              'EvaluationAlgorithmName',

              'EvaluationAlgorithmDescription',]

compt = ['Title', 'EnabledDate', 'HostSegmentTitle']

df = comps[compt + evaluation].copy()

df['year'] = pd.to_datetime(df.EnabledDate).dt.year.values

df['comps'] = 1

time_select = df.year >= 2015

competition_type_select = df.HostSegmentTitle.isin(

      ['Featured', 'Research'])

pd.pivot_table(df[time_select&competition_type_select],

               values='comps',

               index=['EvaluationAlgorithmAbbreviation'],

               columns=['year'],

               fill_value=0.0,

               aggfunc=np.sum,

               margins=True

              ).sort_values(

                by=('All'), ascending=False).iloc[1:,:].head(20)

In this code, we read in the CSV table containing the data relating to the competitions. We focus 

on the columns representing the evaluation and the columns informing us about the competition 

name, start date, and type. We limit the rows to those competitions held since 2015 and that are 

of the Featured or Research type (which are the most common ones). We complete the analysis 

by creating a pandas pivot table, combining the evaluation algorithm with the year, and counting 

the number of competitions using it. We just display the top 20 algorithms.
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Here is the resulting table (at the time of writing):

year
2015 2016 2017 2018 2019 2020 2021 Tot

Evaluation Algorithm

AUC 4 4 1 3 3 2 0 17

LogLoss 2 2 5 2 3 2 0 16

MAP@{K} 1 3 0 4 1 0 1 10

CategorizationAccuracy 1 0 4 0 1 2 0 8

MulticlassLoss 2 3 2 0 1 0 0 8

RMSLE 2 1 3 1 1 0 0 8

QuadraticWeightedKappa 3 0 0 1 2 1 0 7

MeanFScoreBeta 1 0 1 2 1 2 0 7

MeanBestErrorAtK 0 0 2 2 1 1 0 6

MCRMSLE 0 0 1 0 0 5 0 6

MCAUC 1 0 1 0 0 3 0 5

RMSE 1 1 0 3 0 0 0 5

Dice 0 1 1 0 2 1 0 5

GoogleGlobalAP 0 0 1 2 1 1 0 5

MacroFScore 0 0 0 1 0 2 1 4

Score 0 0 3 0 0 0 0 3

CRPS 2 0 0 0 1 0 0 3

OpenImagesObjectDetectionAP 0 0 0 1 1 1 0 3

MeanFScore 0 0 1 0 0 0 2 3

RSNAObjectDetectionAP 0 0 0 1 0 1 0 2

Using the same variables we just instantiated in order to generate the table, you can also check 

the data to find the competitions where the metric of your choice has been adopted:

metric = 'AUC'

metric_select = df['EvaluationAlgorithmAbbreviation']==metric

print(df[time_select&competition_type_select&metric_select]

        [['Title', 'year']])

In the above snippet, we decided to represent the competitions that have been using the AUC 

metric. You just have to change the string representing the chosen metric and the resulting list 

will be updated accordingly.
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Coming back to the table generated, we can examine the most popular evaluation metrics used 

in competitions hosted on Kaggle:

• The two top metrics are closely related to each other and to binary probability classifica-

tion problems. The AUC metric helps to measure if your model’s predicted probabilities 

tend to predict positive cases with high probabilities, and the Log Loss helps to measure 

how far your predicted probabilities are from the ground truth (and as you optimize for 

Log Loss, you also optimize for the AUC metric).

• In 3rd position, we find MAP@{K}, which is a common metric in recommender systems and 

search engines. In Kaggle competitions, this metric has been used mostly for information 

retrieval evaluations, such as in the Humpback Whale Identification competition (https://

www.kaggle.com/c/humpback-whale-identification), where you have to precisely iden-

tify a whale and you have five possible guesses. Another example of MAP@{K} usage is in 

the Quick, Draw! Doodle Recognition Challenge (https://www.kaggle.com/c/quickdraw-

doodle-recognition/), where your goal is to guess the content of a drawn sketch and you 

are allowed three attempts. In essence, when MAP@{K} is the evaluation metric, you can 

score not just if you can guess correctly, but also if your correct guess is among a certain 

number (the “K” in the name of the function) of other incorrect predictions.

• Only in 6th position can we find a regression metric, the RMSLE, or Root Mean Squared 

Logarithmic Error, and in 7th place the Quadratic Weighted Kappa, a metric particularly 

useful for estimating model performance on problems that involve guessing a progressive 

integer number (an ordinal scale problem).

As you skim through the list of top metrics, you will keep on finding metrics that are commonly 

discussed in machine learning textbooks. In the next few sections, after first discussing what to 

do when you meet a never-before-seen metric (something that happens in Kaggle competitions 

more frequently than you may expect), we will revise some of the most common metrics found 

in regression and classification competitions.

Handling never-before-seen metrics
Before proceeding, we have to consider that the top 20 table doesn’t cover all the metrics used 

in competitions. We should be aware that there are metrics that have only been used once in 

recent years. 

https://www.kaggle.com/c/humpback-whale-identification
https://www.kaggle.com/c/humpback-whale-identification
https://www.kaggle.com/c/quickdraw-doodle-recognition/
https://www.kaggle.com/c/quickdraw-doodle-recognition/
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Let’s keep on using the results from the previous code to find out what they are:

counts = (df[time_select&competition_type_select]

          .groupby('EvaluationAlgorithmAbbreviation'))

total_comps_per_year = (df[time_select&competition_type_select]

                        .groupby('year').sum())

single_metrics_per_year = (counts.sum()[counts.sum().comps==1]

                           .groupby('year').sum())

single_metrics_per_year

table = (total_comps_per_year.rename(columns={'comps': 'n_comps'})

         .join(single_metrics_per_year / total_comps_per_year)

         .rename(columns={'comps': 'pct_comps'}))

print(table)

As a result, we get the following table showing, for each year, how many competitions used a 

metric that has never been used afterward (n_comps), and the proportion of these competitions 

per year (pct_comps):

      n_comps pct_comps

year                   

2015       28  0.179

2016       19  0.158

2017       34  0.177

2018       35  0.229

2019       36  0.278

2020       43  0.302

2021        8  0.250

Observing the relative share of competitions with a never-to-be-seen-afterward metric, we im-

mediately notice how it is growing year by year and that it reached the 25%-30% level in recent 

years, implying that typically one competition out of every three or four requires you to study 

and understand a metric from scratch.

You can get the list of such metrics that have occurred in the past with a simple code snippet:

print(counts.sum()[counts.sum().comps==1].index.values)
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By executing the code, you will get a list similar to this one:

['AHD@{Type}' 'CVPRAutoDrivingAveragePrecision' 'CernWeightedAuc'

'FScore_1' 'GroupMeanLogMAE' 'ImageNetObjectLocalization'

'IndoorLocalization'  'IntersectionOverUnionObjectSegmentationBeta'

'IntersectionOverUnionObjectSegmentationWithClassification'

'IntersectionOverUnionObjectSegmentationWithF1' 'Jaccard'

'JaccardDSTLParallel' 'JigsawBiasAUC' 'LaplaceLogLikelihood'

'LevenshteinMean' 'Lyft3DObjectDetectionAP' 'M5_WRMSSE' 'MASpearmanR' 
'MCRMSE' 'MCSpearmanR' 'MWCRMSE' 'MeanColumnwiseLogLoss' 
'MulticlassLossOld' 'NDCG@{K}' 'NQMicroF1' 'NWRMSLE' 'PKUAutoDrivingAP' 
'R2Score' 'RValue' 'RootMeanSquarePercentageError' 'SIIMDice' 'SMAPE' 
'SantaResident' 'SantaRideShare' 'SantaWorkshopSchedule2019' 'TrackML'

 'TravelingSanta2' 'TwoSigmaNews' 'WeightedAUC' 'WeightedMulticlassLoss' 
'WeightedPinballLoss' 'WeightedRowwisePinballLoss' 'YT8M_
MeanAveragePrecisionAtK' 'ZillowMAE' 'football' 'halite' 'mab']

By close inspection, you can find many metrics relating to deep learning and reinforcement learn-

ing competitions.

What do you do when you meet a metric that has never been used before? Of course, you can rely 

on the discussions in the Kaggle discussion forums, where you can always find good inspiration 

and many Kagglers who will help you. However, if you want to build up your own knowledge 

about the metric, aside from Googling it, we advise that you try to experiment with it by coding 

the evaluation function by yourself, even in an imperfect way, and trying to simulate how the 

metric reacts to different types of error produced by the model. You could also directly test how it 

functions on a sample from the competition training data or synthetic data that you have prepared.

We can quote a few examples of this approach as used by Kagglers:

• Carlo Lepelaars with Spearman’s Rho: https://www.kaggle.com/carlolepelaars/

understanding-the-metric-spearman-s-rho

• Carlo Lepelaars with Quadratic Weighted Kappa: https://www.kaggle.com/

carlolepelaars/understanding-the-metric-quadratic-weighted-kappa

• Rohan Rao with Laplace Log Likelihood: https://www.kaggle.com/rohanrao/osic-

understanding-laplace-log-likelihood

This can give you increased insight into the evaluation and an advantage over other competitors 

relying only on answers from Googling and Kaggle forums.

https://www.kaggle.com/carlolepelaars/understanding-the-metric-spearman-s-rho
https://www.kaggle.com/carlolepelaars/understanding-the-metric-spearman-s-rho
https://www.kaggle.com/carlolepelaars/understanding-the-metric-quadratic-weighted-kappa
https://www.kaggle.com/carlolepelaars/understanding-the-metric-quadratic-weighted-kappa
https://www.kaggle.com/rohanrao/osic-understanding-laplace-log-likelihood
https://www.kaggle.com/rohanrao/osic-understanding-laplace-log-likelihood
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Rohan Rao
https://www.kaggle.com/rohanrao

Before we start exploring different metrics, let’s catch up with Rohan 

Rao (aka Vopani) himself, Quadruple Grandmaster and Senior Data 

Scientist at H2O.ai, about his successes on Kaggle and the wisdom he 

has to share with us.

What’s your favourite kind of competition and why? In terms of 
techniques and solving approaches, what is your speciality on Kaggle?
I like to dabble with different types of competitions, but my favorite would certainly be time series ones. I 

don’t quite like the typical approaches to and concepts of time series in the industry, so I tend to innovate 

and think out of the box by building solutions in an unorthodox way, which has ended up being very 

successful for me.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
For any Kaggle competition, my typical workflow would look like this:

• Understand the problem statement and read all the information related to rules, format, timelines, 

datasets, metrics, and deliverables.

• Dive deep into the data. Slice and dice it in every way possible and explore/visualize it to be able 

to answer any question about it.

• Build a simple pipeline with a baseline model and make a submission to confirm the process works.

• Engineer features, tune hyperparameters, and experiment with multiple models to get a sense 

of what’s generally working and what’s not.

• Constantly go back to analyzing the data, reading discussions on the forum, and tweaking the 

features and models to the fullest. Maybe team up at some point.

• Ensemble multiple models and decide which submissions to make as final.

In my day-to-day work in data science, most of this happens too. But there are two crucial elements that 

are additionally required:

• Curating and preparing datasets for the problem statement.

• Deploying the final model or solution into production.

https://www.kaggle.com/rohanrao
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Metrics for regression (standard and ordinal)
When working with regression problems, that is, problems that involve estimating a continuous 

value (that could range from minus infinity to infinity), the most commonly used error measures 

are RMSE (root mean squared error) and MAE (mean absolute error), but you can also find 

slightly different error measures useful, such as RMSLE or MCRMSLE.

Mean squared error (MSE) and R squared
The root mean squared error is the root of the mean squared error (MSE), which is nothing else 

but the mean of the good old sum of squared errors (SSE) that you learned about when you 

studied how a regression works.

The majority of my time has been spent in these two activities for most of the projects I’ve worked on in 

the past.

Has Kaggle helped you in your career? If so, how?
The vast majority of everything I’ve learned in machine learning has come from Kaggle. The community, 

the platform, and the content are pure gold and there is an incredible amount of stuff you can learn.

What has benefitted me the most is the experience of competing in Kaggle competitions; it has given me 

immense confidence in understanding, structuring, and solving problems across domains, which I have 

been able to apply successfully in many of the companies and projects I worked on outside Kaggle.

Many recruiters have contacted me for opportunities looking at my Kaggle achievements, primarily in 

Competitions. It gives a fairly good indication of a candidate’s ability in solving data science problems 

and hence it is a great platform to showcase your skills and build a portfolio.

What mistakes have you made in competitions in the past?
I’ve made some mistake in every competition! That’s how you learn and improve. Sometimes it’s a coding 

bug, sometimes a flawed validation setup, sometimes an incorrect submission selection!

What’s important is to learn from these and ensure you don’t repeat them. Iterating over this process 

automatically helps to improve your overall performance on Kaggle.

Are there any particular tools or libraries that you would recommend 
using for data analysis/machine learning?
I strongly believe in never marrying a technology. Use whatever works best, whatever is most comfortable 

and effective, but constantly be open to learning new tools and libraries.
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Here is the formula for the MSE:

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 1𝑛𝑛 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀  1𝑛𝑛 ∑(𝑦𝑦�̂�𝑖 −  𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖𝑖𝑖  

Let’s start by explaining how the formula works. First of all, n indicates the number of cases,  𝑦𝑦𝑖𝑖  is the ground truth, and 𝑦𝑦�̂�𝑖  the prediction. You first get the difference between your predictions 

and your real values. You square the differences (so they become positive or simply zero), then 

you sum them all, resulting in your SSE. Then you just have to divide this measure by the number 

of predictions to obtain the average value, the MSE. Usually, all regression models minimize the 

SSE, so you won’t have great problems trying to minimize MSE or its direct derivatives such as R 

squared (also called the coefficient of determination), which is given by:

𝑅𝑅2 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑  (𝑦𝑦�̂�𝑖 −  𝑦𝑦𝑖𝑖)2(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦)2𝑛𝑛
𝑖𝑖𝑖𝑖  

Here, SSE (the sum of squared errors) is compared to the sum of squares total (SST), which is 

just the variance of the response. In statistics, in fact, SST is defined as the squared difference 

between your target values and their mean:

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦2𝑛𝑛
𝑖𝑖𝑖𝑖  

To put it another way, R squared compares the squared errors of the model against the squared 

errors from the simplest model possible, the average of the response. Since both SSE and SST 

have the same scale, R squared can help you to determine whether transforming your target is 

helping to obtain better predictions.

Please remember that linear transformations, such as minmax (https://
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html) or standardization (https://scikit-learn.org/stable/ 

modules/generated/sklearn.preprocessing.StandardScaler.html), do not 

change the performance of any regressor, since they are linear transformations of 

the target. Non-linear transformations, such as the square root, the cubic root, the 

logarithm, the exponentiation, and their combinations, should instead definitely 

modify the performance of your regression model on the evaluation metric (hopefully 

for the better, if you decide on the right transformation).

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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MSE is a great instrument for comparing regression models applied to the same problem.  The 

bad news is that the MSE is seldom used in Kaggle competitions, since RMSE is preferred. In fact, 

by taking the root of MSE, its value will resemble the original scale of your target and it will be 

easier at a glance to figure out if your model is doing a good job or not. In addition, if you are con-

sidering the same regression model across different data problems (for instance, across various 

datasets or data competitions), R squared is better because it is perfectly correlated with MSE 

and its values range between 0 and 1, making all comparisons easier.

Root mean squared error (RMSE)
RMSE is just the square root of MSE, but this implies some subtle change. Here is its formula:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅 √∑ (𝑦𝑦𝑦𝑖𝑖 − 𝑅𝑦𝑦𝑖𝑖)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖  

In the above formula, n indicates the number of cases, 𝑦𝑦𝑖𝑖  is the ground truth, and 𝑦𝑦�̂�𝑖  the prediction. 

In MSE, large prediction errors are greatly penalized because of the squaring activity. In RMSE, 

this dominance is lessened because of the root effect (however, you should always pay attention 

to outliers; they can affect your model performance a lot, no matter whether you are evaluating 

based on MSE or RMSE). 

Consequently, depending on the problem, you can get a better fit with an algorithm using MSE as 

an objective function by first applying the square root to your target (if possible, because it requires 

positive values), then squaring the results. Functions such as the TransformedTargetRegressor 

in Scikit-learn help you to appropriately transform your regression target in order to get better-fit-

ting results with respect to your evaluation metric.

Recent competitions where RMSE has been used include:

• Avito Demand Prediction Challenge: https://www.kaggle.com/c/avito-

demand-prediction

• Google Analytics Customer Revenue Prediction: https://www.kaggle.com/c/

ga-customer-revenue-prediction

• Elo Merchant Category Recommendation https://www.kaggle.com/c/elo-
merchant-category-recommendation

https://www.kaggle.com/c/avito-demand-prediction
https://www.kaggle.com/c/avito-demand-prediction
https://www.kaggle.com/c/ga-customer-revenue-prediction
https://www.kaggle.com/c/ga-customer-revenue-prediction
https://www.kaggle.com/c/elo-merchant-category-recommendation
https://www.kaggle.com/c/elo-merchant-category-recommendation
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Root mean squared log error (RMSLE)
Another common transformation of MSE is root mean squared log error (RMSLE). MCRMSLE is 

just a variant made popular by the COVID-19 forecasting competitions, and it is the column-wise 

average of the RMSLE values of each single target when there are multiple ones. Here is the for-

mula for RMSLE:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅 √1𝑛𝑛 ∑(log(𝑦𝑦�̂�𝑖 + 1) − 𝑅log𝑅(𝑦𝑦𝑖𝑖 + 1))2𝑛𝑛
𝑖𝑖𝑖𝑖  

In the formula, n indicates the number of cases, 𝑦𝑦𝑖𝑖  is the ground truth, and 𝑦𝑦�̂�𝑖  the prediction. Since 

you are applying a logarithmic transformation to your predictions and your ground truth before 

all the other squaring, averaging, and rooting operations, you don’t penalize huge differences 

between the predicted and the actual values, especially when both are large numbers. In other 

words, what you care the most about when using RMSLE is the scale of your predictions with respect 

to the scale of the ground truth. As with RMSE, machine learning algorithms for regression can better 

optimize for RMSLE if you apply a logarithmic transformation to the target before fitting it (and 

then reverse the effect using the exponential function).

By far, at the moment, RMSLE is the most used evaluation metric for regression in Kaggle com-

petitions.

Recent competitions using RMSLE as an evaluation metric are:

• ASHRAE - Great Energy Predictor III: https://www.kaggle.com/c/ashrae-

energy-prediction

• Santander Value Prediction Challenge: https://www.kaggle.com/c/

santander-value-prediction-challenge

• Mercari Price Suggestion Challenge: https://www.kaggle.com/c/mercari- 

price-suggestion-challenge

• Sberbank Russian Housing Market: https://www.kaggle.com/ 

olgabelitskaya/sberbank-russian-housing-market

• Recruit Restaurant Visitor Forecasting: https://www.kaggle.com/c/ 
recruit-restaurant-visitor-forecasting

https://www.kaggle.com/c/ashrae-energy-prediction
https://www.kaggle.com/c/ashrae-energy-prediction
https://www.kaggle.com/c/santander-value-prediction-challenge
https://www.kaggle.com/c/santander-value-prediction-challenge
https://www.kaggle.com/c/mercari-price-suggestion-challenge
https://www.kaggle.com/c/mercari-price-suggestion-challenge
https://www.kaggle.com/olgabelitskaya/sberbank-russian-housing-market
https://www.kaggle.com/olgabelitskaya/sberbank-russian-housing-market
https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting
https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting
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Mean absolute error (MAE)
The MAE (mean absolute error) evaluation metric is the absolute value of the difference between 

the predictions and the targets. Here is the formulation of MAE:

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀 1𝑛𝑛 ∑ |𝑦𝑦�̂�𝑖 −𝑀 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖𝑖𝑖  

In the formula, n stands for the number of cases, 𝑦𝑦𝑖𝑖  is the ground truth, and 𝑦𝑦�̂�𝑖  the prediction. MAE 

is not particularly sensitive to outliers (unlike MSE, where errors are squared), hence you may 

find it is an evaluation metric in many competitions whose datasets present outliers. Moreover, 

you can easily work with it since many algorithms can directly use it as an objective function; 

otherwise, you can optimize for it indirectly by just training on the square root of your target and 

then squaring the predictions.

In terms of downside, using MAE as an objective function results in much slower convergence, 

since you are actually optimizing for predicting the median of the target (also called the L1 norm), 

instead of the mean (also called the L2 norm), as occurs by MSE minimization. This results in 

more complex computations for the optimizer, so the training time can even grow exponentially 

based on your number of training cases (see, for instance, this Stack Overflow question: https://
stackoverflow.com/questions/57243267/why-is-training-a-random-forest-regressor-

with-mae-criterion-so-slow-compared-to).

Having mentioned the ASHRAE competition earlier, we should also mention that regression eval-

uation measures are quite relevant to forecasting competitions. For instance, the M5 forecasting 

competition was held recently (https://mofc.unic.ac.cy/m5-competition/) and data from 

all the other M competitions is available too. If you are interested in forecasting competitions, of 

which there are a few on Kaggle, please see https://robjhyndman.com/hyndsight/forecasting-

competitions/ for an overview about M competitions and how valuable Kaggle is for obtaining 

better practical and theoretical results from such competitions. 

Notable recent competitions that used MAE as an evaluation metric are:

• LANL Earthquake Prediction: https://www.kaggle.com/c/LANL- 

Earthquake-Prediction

• How Much Did It Rain? II: https://www.kaggle.com/c/how-much-did-
it-rain-ii

https://stackoverflow.com/questions/57243267/why-is-training-a-random-forest-regressor-with-mae-criterion-so-slow-compared-to
https://stackoverflow.com/questions/57243267/why-is-training-a-random-forest-regressor-with-mae-criterion-so-slow-compared-to
https://stackoverflow.com/questions/57243267/why-is-training-a-random-forest-regressor-with-mae-criterion-so-slow-compared-to
https://mofc.unic.ac.cy/m5-competition/
https://robjhyndman.com/hyndsight/forecasting-competitions/
https://robjhyndman.com/hyndsight/forecasting-competitions/
https://www.kaggle.com/c/LANL-Earthquake-Prediction
https://www.kaggle.com/c/LANL-Earthquake-Prediction
https://www.kaggle.com/c/how-much-did-it-rain-ii
https://www.kaggle.com/c/how-much-did-it-rain-ii
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Essentially, forecasting competitions do not require a very different evaluation to regression 

competitions. When dealing with forecasting tasks, it is true that you can get some unusual eval-

uation metrics such as the Weighted Root Mean Squared Scaled Error (https://www.kaggle.

com/c/m5-forecasting-accuracy/overview/evaluation) or the symmetric mean absolute 

percentage error, better known as sMAPE (https://www.kaggle.com/c/demand-forecasting-

kernels-only/overview/evaluation). However, in the end they are just variations of the usual 

RMSE or MAE that you can handle using the right target transformations.

Metrics for classification (label prediction and 
probability)
Having discussed the metrics for regression problems, we are going now to illustrate the metrics 

for classification problems, starting from the binary classification problems (when you have to 

predict between two classes), moving to the multi-class (when you have more than two classes), 

and then to the multi-label (when the classes overlap).

Accuracy
When analyzing the performance of a binary classifier, the most common and accessible metric 

that is used is accuracy. A misclassification error is when your model predicts the wrong class 

for an example. The accuracy is just the complement of the misclassification error and it can be 

calculated as the ratio between the number of correct numbers divided by the number of answers:𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑡𝑡𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐 𝑐 

As a metric, the accuracy is focused strongly on the effective performance of the model in a real 

setting: it tells you if the model works as expected. However, if your purpose is to evaluate and 

compare and have a clear picture of how effective your approach really is, you have to be cautious 

when using the accuracy because it can lead to wrong conclusions when the classes are imbalanced 

(when they have different frequencies). For instance, if a certain class makes up just 10% of the 

data, a predictor that predicts nothing but the majority class will be 90% accurate, proving itself 

quite useless in spite of the high accuracy.

This metric has been used, for instance, in Cassava Leaf Disease Classification 

(https://www.kaggle.com/c/cassava-leaf-disease-classification) and 

Text Normalization Challenge - English Language (https://www.kaggle.com/c/

text-normalization-challenge-english-language), where you scored a cor-

rect prediction only if your predicted text matched the actual string.

https://www.kaggle.com/c/m5-forecasting-accuracy/overview/evaluation
https://www.kaggle.com/c/m5-forecasting-accuracy/overview/evaluation
https://www.kaggle.com/c/demand-forecasting-kernels-only/overview/evaluation
https://www.kaggle.com/c/demand-forecasting-kernels-only/overview/evaluation
https://www.kaggle.com/c/cassava-leaf-disease-classification
https://www.kaggle.com/c/text-normalization-challenge-english-language
https://www.kaggle.com/c/text-normalization-challenge-english-language
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How can you spot such a problem? You can do this easily by using a confusion matrix. In a con-

fusion matrix, you create a two-way table comparing the actual classes on the rows against the 

predicted classes on the columns. You can create a straightforward one using the Scikit-learn 

confusion_matrix function:

sklearn.metrics.confusion_matrix(

    y_true, y_pred, *, labels=None, sample_weight=None,

    normalize=None

)

Providing the y_true and y_pred vectors will suffice to return you a meaningful table, but you 

can also provide row/column labels and sample weights for the examples in consideration, and 

normalize (set the marginals to sum to 1) over the true examples (the rows), the predicted exam-

ples (the columns), or all the examples. A perfect classifier will have all the cases on the principal 

diagonal of the matrix. Serious problems with the validity of the predictor are highlighted if there 

are few or no cases on one of the cells of the diagonal.

In order to give you a better idea of how it works, you can try the graphical example offered 
by Scikit-learn at https://scikit-learn.org/stable/auto_examples/model_selection/
plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-

matrix-py:

Figure 5.1: Confusion matrix, with each cell normalized to 1.00, to represent the share of 
matches

https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py
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You can attempt to improve the usability of the accuracy by considering the accuracy relative to 

each of the classes and averaging them, but you will find it more useful to rely on other metrics 

such as precision, recall, and the F1-score.

Precision and recall
To obtain the precision and recall metrics, we again start from the confusion matrix. First, we 

have to name each of the cells:

Predicted

Negative Positive

Actual
Negative True Negative False Positive

Positive False Negative True Positive

Table 5.1: Confusion matrix with cell names

Here is how we define the cells:

• TP (true positives): These are located in the upper-left cell, containing examples that 

have correctly been predicted as positive ones.

• FP (false positives): These are located in the upper-right cell, containing examples that 

have been predicted as positive but are actually negative.

• FN (false negatives): These are located in the lower-left cell, containing examples that 

have been predicted as negative but are actually positive.

• TN (true negatives): These are located in the lower-right cell, containing examples that 

have been correctly predicted as negative ones.

Using these cells, you can actually get more precise information about how your classifier works 

and how you can tune your model better. First, we can easily revise the accuracy formula:𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴 (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇) 
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Then, the first informative metric is called precision (or specificity) and it is actually the accuracy 

of the positive cases: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 

In the computation, only the number of true positives and the number of false positives are 

involved. In essence, the metric tells you how often you are correct when you predict a positive.

Clearly, your model could get high scores by predicting positives for only the examples it has high 

confidence in. That is actually the purpose of the measure: to force models to predict a positive 

class only when they are sure and it is safe to do so.

However, if it is in your interest also to predict as many positives as possible, then you’ll also need 

to watch over the recall (or coverage or sensitivity or even true positive rate) metric:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

Here, you will also need to know about false negatives. The interesting thing about these two met-
rics is that, since they are based on examples classification, and a classification is actually based 
on probability (which is usually set between the positive and negative class at the 0.5 threshold), 
you can change the threshold and have one of the two metrics improved at the expense of the other. 

For instance, if you increase the threshold, you will get more precision (the classifier is more 
confident of the prediction) but less recall. If you decrease the threshold, you get less precision 
but more recall. This is also called the precision/recall trade-off.
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The Scikit-learn website offers a simple and practical overview of this trade-off (https://scikit-
learn.org/stable/auto_examples/model_selection/plot_precision_recall.html), helping 
you to trace a precision/recall curve and thus understand how these two measures can be ex-

changed to obtain a result that better fits your needs:

Figure 5.2: A two-class precision-recall curve with its characteristic steps

One metric associated with the precision/recall trade-off is the average precision. Average preci-

sion computes the mean precision for recall values from 0 to 1 (basically, as you vary the threshold 

from 1 to 0). Average precision is very popular for tasks related to object detection, which we 

will discuss a bit later on, but it is also very useful for classification in tabular data. In practice, 

it proves valuable when you want to monitor model performance on a very rare class (when the 

data is extremely imbalanced) in a more precise and exact way, which is often the case with fraud 

detection problems. 

For more specific insights on this, read Gael Varoquaux’s discussion: http://gael-varoquaux.

info/interpreting_ml_tuto/content/01_how_well/01_metrics.html#average-precision.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
http://gael-varoquaux.info/interpreting_ml_tuto/content/01_how_well/01_metrics.html#average-precision
http://gael-varoquaux.info/interpreting_ml_tuto/content/01_how_well/01_metrics.html#average-precision
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The F1 score
At this point, you have probably already figured out that using precision or recall as an evaluation 

metric is not an ideal choice because you can only optimize one at the expense of the other. For 

this reason, there are no Kaggle competitions that use only one of the two metrics. You should 

combine them (as in the average precision). A single metric, the F1 score, which is the harmonic 

mean of precision and recall, is commonly considered to be the best solution:𝐹𝐹𝐹 𝐹 𝐹 𝐹 𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
If you get a high F1 score, it is because your model has improved in precision or recall or in both. 

You can find a fine example of the usage of this metric in the Quora Insincere Questions Classifica-

tion competition (https://www.kaggle.com/c/quora-insincere-questions-classification).

In some competitions, you also get the F-beta score. This is simply the weighted harmonic mean 

between precision and recall, and beta decides the weight of the recall in the combined score:

𝐹𝐹𝛽𝛽 = (1 + 𝛽𝛽2) ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)(𝛽𝛽2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  

Since we have already introduced the concept of threshold and classification probability, we can 

now discuss the log loss and ROC-AUC, both quite common classification metrics.

Log loss and ROC-AUC
Let’s start with the log loss, which is also known as cross-entropy in deep learning models. The 

log loss is the difference between the predicted probability and the ground truth probability:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿 𝐿 𝐿 1𝑛𝑛 ∑[𝑦𝑦𝑖𝑖 log(𝑦𝑦�̂�𝑖) + 𝐿(1 𝐿 𝐿𝑦𝑦𝑖𝑖)log𝐿(1 𝐿 𝐿 𝑦𝑦�̂�𝑖)]𝑛𝑛
𝑖𝑖𝑖𝑖  

In the above formula, n stands for the number of examples, 𝑦𝑦𝑖𝑖  is the ground truth for the ith case, 

and 𝑦𝑦�̂�𝑖  the prediction.

If a competition uses the log loss, it is implied that the objective is to estimate as correctly as 

possible the probability of an example being of a positive class. You can actually find the log loss 

in quite a lot of competitions. 

We suggest you have a look, for instance, at the recent Deepfake Detection Challenge (https://www.

kaggle.com/c/deepfake-detection-challenge) or at the older Quora Question Pairs (https://

www.kaggle.com/c/quora-question-pairs).

https://www.kaggle.com/c/quora-insincere-questions-classification
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
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The ROC curve, or receiver operating characteristic curve, is a graphical chart used to evaluate 

the performance of a binary classifier and to compare multiple classifiers. It is the building block 

of the ROC-AUC metric, because the metric is simply the area delimited under the ROC curve. 

The ROC curve consists of the true positive rate (the recall) plotted against the false positive rate 

(the ratio of negative instances that are incorrectly classified as positive ones). It is equivalent 

to one minus the true negative rate (the ratio of negative examples that are correctly classified). 

Here are a few examples:

Figure 5.3: Different ROC curves and their AUCs

Ideally, a ROC curve of a well-performing classifier should quickly climb up the true positive 

rate (recall) at low values of the false positive rate. A ROC-AUC between 0.9 to 1.0 is considered 

very good. 
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A bad classifier can be spotted by the ROC curve appearing very similar, if not identical, to the 

diagonal of the chart, which represents the performance of a purely random classifier, as in the 

top left of the figure above; ROC-AUC scores near 0.5 are considered to be almost random results. 

If you are comparing different classifiers, and you are using the area under the curve (AUC), the 

classifier with the higher area is the more performant one.

If the classes are balanced, or not too imbalanced, increases in the AUC are proportional to the 

effectiveness of the trained model and they can be intuitively thought of as the ability of the 

model to output higher probabilities for true positives. We also think of it as the ability to order 

the examples more properly from positive to negative. However, when the positive class is rare, 

the AUC starts high and its increments may mean very little in terms of predicting the rare class 

better. As we mentioned before, in such a case, average precision is a more helpful metric.

You can read a detailed treatise in the following paper: Su, W., Yuan, Y., and Zhu, M. A relationship 

between the average precision and the area under the ROC curve. Proceedings of the 2015 International 

Conference on The Theory of Information Retrieval. 2015.

Matthews correlation coefficient (MCC)
We complete our overview of binary classification metrics with the Matthews correlation coeffi-

cient (MCC), which made its appearance in VSB Power Line Fault Detection (https://www.kaggle.

com/c/vsb-power-line-fault-detection) and Bosch Production Line Performance (https://www.

kaggle.com/c/bosch-production-line-performance).

The formula for the MCC is:

𝑀𝑀𝑀𝑀𝑀𝑀 =  (𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇) −  (𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹𝑇𝑇)√(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) ∗ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) ∗ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) ∗ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) 

AUC has recently been used for quite a lot of different competitions. We suggest you 

have a look at these three:

• IEEE-CIS Fraud Detection: https://www.kaggle.com/c/ieee-fraud- 

detection

• Riiid Answer Correctness Prediction: https://www.kaggle.com/c/riiid-

test-answer-prediction

• Jigsaw Multilingual Toxic Comment Classification: https://www.kaggle.
com/c/jigsaw-multilingual-toxic-comment-classification/

https://www.kaggle.com/c/vsb-power-line-fault-detection
https://www.kaggle.com/c/vsb-power-line-fault-detection
https://www.kaggle.com/c/bosch-production-line-performance
https://www.kaggle.com/c/bosch-production-line-performance
https://www.kaggle.com/c/ieee-fraud-detection
https://www.kaggle.com/c/ieee-fraud-detection
https://www.kaggle.com/c/riiid-test-answer-prediction
https://www.kaggle.com/c/riiid-test-answer-prediction
https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification/
https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification/


Competition Tasks and Metrics122

In the above formula, TP stands for true positives, TN for true negatives, FP for false positives, and 

FN for false negatives. It is the same nomenclature as we met when discussing precision and recall.

Behaving as a correlation coefficient, in other words, ranging from +1 (perfect prediction) to -1 

(inverse prediction), this metric can be considered a measure of the quality of the classification 

even when the classes are quite imbalanced.

In spite of its complexity, the formula can be reformulated and simplified, as demonstrated by 

Neuron Engineer (https://www.kaggle.com/ratthachat) in his Notebook: www.kaggle.com/

ratthachat/demythifying-matthew-correlation-coefficients-mcc.

The work done by Neuron Engineer in understanding the ratio of the evaluation metric is indeed 

exemplary. In fact, his reformulated MCC becomes:𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑃𝑃𝑃𝑃𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑁𝑁𝑁𝑁𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1) ∗  𝑃𝑃𝑃𝑃𝑠𝑠𝑁𝑁𝑁𝑁𝑔𝑔𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

Where each element of the formula is:𝑃𝑃𝑃𝑃𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 

𝑁𝑁𝑁𝑁𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑇𝑇𝑁𝑁𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃 √𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁 

The reformulation helps to clarify, in a more intelligible form than the original, that you can get 

higher performance from improving both positive and negative class precision, but that’s not 

enough: you also have to have positive and negative predictions in proportion to the ground truth, 

or your submission will be greatly penalized.

Metrics for multi-class classification
When moving to multi-class classification, you simply use the binary classification metrics that 

we have just seen, applied to each class, and then you summarize them using some of the aver-

aging strategies that are commonly used for multi-class situations.

https://www.kaggle.com/ratthachat
www.kaggle.com/ratthachat/demythifying-matthew-correlation-coefficients-mcc
www.kaggle.com/ratthachat/demythifying-matthew-correlation-coefficients-mcc
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For instance, if you want to evaluate your solution based on the F1 score, you have three possible 

averaging choices:

• Macro averaging: Simply calculate the F1 score for each class and then average all the 

results. In this way, each class will count as much the others, no matter how frequent its 

positive cases are or how important they are for your problem, resulting therefore in equal 

penalizations when the model doesn’t perform well with any class:𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚 𝑚 𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+⋯+𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁  

• Micro averaging: This approach will sum all the contributions from each class to com-

pute an aggregated F1 score. It results in no particular favor to or penalization of any class, 

since all the computations are made regardless of each class, so it can more accurately 

account for class imbalances:𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

• Weighting: As with macro averaging, you first calculate the F1 score for each class, but 

then you make a weighted average mean of all of them using a weight that depends on 

the number of true labels of each class. By using such a set of weights, you can take into 

account the frequency of positive cases from each class or the relevance of that class for 

your problem. This approach clearly favors the majority classes, which will be weighted 

more in the computations:𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡 =  𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗  𝑊𝑊𝑐 + 𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑐 + ⋯ + 𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑛𝑛 𝑊𝑊1 +𝑊𝑊2 +⋯+𝑊𝑊𝑁𝑁 = 1.0 

Common multi-class metrics that you may encounter in Kaggle competitions are:

• Multiclass accuracy (weighted): Bengali.AI Handwritten Grapheme Classification (https://

www.kaggle.com/c/bengaliai-cv19)

• Multiclass log loss (MeanColumnwiseLogLoss): Mechanisms of Action (MoA) Prediction 

(https://www.kaggle.com/c/lish-moa/)

• Macro-F1 and Micro-F1 (NQMicroF1): University of Liverpool - Ion Switching (https://

www.kaggle.com/c/liverpool-ion-switching), Human Protein Atlas Image Classification 

(https://www.kaggle.com/c/human-protein-atlas-image-classification/), Ten-

sorFlow 2.0 Question Answering (https://www.kaggle.com/c/tensorflow2-question-

answering)

https://www.kaggle.com/c/bengaliai-cv19
https://www.kaggle.com/c/bengaliai-cv19
https://www.kaggle.com/c/lish-moa/
https://www.kaggle.com/c/liverpool-ion-switching
https://www.kaggle.com/c/liverpool-ion-switching
https://www.kaggle.com/c/human-protein-atlas-image-classification/
https://www.kaggle.com/c/tensorflow2-question-answering
https://www.kaggle.com/c/tensorflow2-question-answering
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• Mean-F1: Shopee - Price Match Guarantee (https://www.kaggle.com/c/shopee-product-

matching/). Here, the F1 score is calculated for every predicted row, then averaged, whereas 

the Macro-F1 score is defined as the mean of class-wise/label-wise F1 scores.

Then there is also Quadratic Weighted Kappa, which we will explore later on as a smart eval-

uation metric for ordinal prediction problems. In its simplest form, the Cohen Kappa score, it 

just measures the agreement between your predictions and the ground truth. The metric was 

actually created for measuring inter-annotation agreement, but it is really versatile and has 

found even better uses.

What is inter-annotation agreement? Let’s imagine that you have a labeling task: classifying 

some photos based on whether they contain an image of a cat, a dog, or neither. If you ask a set 

of people to do the task for you, you may incur some erroneous labels because someone (called 

the judge in this kind of task) may misinterpret a dog as a cat or vice versa. The smart way to do 

this job correctly is to divide the work among multiple judges labeling the same photos, and then 

measure their level of agreement based on the Cohen Kappa score.

Therefore, the Cohen Kappa is devised as a score expressing the level of agreement between two 

annotators on a labeling (classification) problem:𝑘𝑘 𝑘 𝑘𝑘𝑘0 − 𝑘𝑘𝑒𝑒)/𝑘1 −  𝑘𝑘𝑒𝑒) 

In the formula, p0 is the relative observed agreement among raters, and pe is the hypothetical prob-

ability of chance agreement. Using the confusion matrix nomenclature, this can be rewritten as:

𝑘𝑘 𝑘 𝑘 2 ∗ (𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) ∗ (𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇) + (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) ∗ (𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇) 

The interesting aspect of this formula is that the score takes into account the empirical probability 

that the agreement has happened just by chance, so the measure has a correction for all the most 

probable classifications. The metric ranges from 1, meaning complete agreement, to -1, meaning 

the judges completely oppose each other (total disagreement). 

Values around 0 signify that agreement and disagreement among the judges is happening by 

mere chance. This helps you figure out if the model is really performing better than chance in 

most situations.

https://www.kaggle.com/c/shopee-product-matching/
https://www.kaggle.com/c/shopee-product-matching/
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Andrey Lukyanenko
https://www.kaggle.com/artgor

Our second interview of the chapter is with Andrey Lukyanenko, a Note-

books and Discussions Grandmaster and Competitions Master. In his 

day job, he is a Machine Learning Engineer and TechLead at MTS Group. 

He had many interesting things to say about his Kaggle experiences!

What’s your favourite kind of competition and why? In terms of 
techniques, solving approaches, what is your specialty on Kaggle?
I prefer competitions where solutions can be general enough to be transferable to other datasets/domains. 

I’m interested in trying various neural net architectures, state-of-the-art approaches, and post-processing 

tricks. I don’t favor those competitions that require reverse engineering or creating some “golden features,” 

as these approaches won’t be applicable in other datasets.

While you were competing on Kaggle, you also became a 
Grandmaster in Notebooks (and ranked number one) and Discussions. 
Have you invested in these two objectives?
I have invested a lot of time and effort into writing Notebooks, but the Discussion Grandmaster rank 

happened kind of on its own.

Let’s start with the Notebook ranking.

There was a special competition in 2018 called DonorsChoose.org Application Screening. DonorsChoose 

is a fund that empowers public school teachers from across the country to request much-needed materials 

and experiences for their students. It organized a competition, where the winning solutions were based 

not on the score on the leaderboard, but on the number of the upvotes on the Notebook. This looked inter-

esting and I wrote a Notebook for the competition. Many participants advertised their analysis on social 

media and I did the same. As a result, I reached second place and won a Pixelbook (I’m still using it!).

I was very motivated by this success and continued writing Notebooks. At first, I simply wanted to share 

my analysis and get feedback, because I wanted to try to compare my analytics and visualization skills 

with other people to see what I could do and what people thought of it. People started liking my kernels 

and I wanted to improve my skills even further. Another motivation was a desire to improve my skill at 

making a quick MVP (minimum viable product). When a new competition starts, many people begin 

writing Notebooks, and if you want to be one of the first, you have to be able to do it fast without sacrificing 

quality. This is challenging, but fun and rewarding.

https://www.kaggle.com/artgor
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I was able to get the Notebook Grandmaster rank in the February of 2019; after some time, I reached first 

place and held it for more than a year. Now I write Notebooks less frequently, but I still enjoy doing it.

As for discussions, I think it kind of happened on its own. I answered the comments on my Notebooks, and 

shared and discussed ideas about competitions in which I took part, and my discussion ranking steadily 

increased.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
It was the Predicting Molecular Properties competition. I have written a blog post about it in more detail 

here (https://towardsdatascience.com/a-story-of-my-first-gold-medal-in-one-kaggle-

competition-things-done-and-lessons-learned-c269d9c233d1). It was a domain-specific com-

petition aimed at predicting interactions between atoms in molecules. Nuclear Magnetic Resonance 

(NMR) is a technology that uses principles similar to MRI to understand the structure and dynamics of 

proteins and molecules. Researchers around the world conduct NMR experiments to further understand 

the structure and dynamics of molecules, across areas like environmental science, pharmaceutical science, 

and materials science. In this competition, we tried to predict the magnetic interaction between two atoms 

in a molecule (the scalar coupling constant). State-of-the-art methods from quantum mechanics can 

calculate these coupling constants given only a 3D molecular structure as input. But these calculations 

are very resource-intensive, so can’t be always used. If machine learning approaches could predict these 

values, it would really help medicinal chemists to gain structural insights faster and more cheaply.

I usually write EDA kernels for new Kaggle competitions, and this one was no exception. A common 

approach for tabular data in Kaggle competitions is extensive feature engineering and using gradient 

boosting models. I used LGBM too in my early attempts, but knew that there should be better ways to 

work with graphs. I realized that domain expertise would provide a serious advantage, so I hunted for 

every piece of such information. Of course, I noticed that there were several active experts, who wrote on 

the forum and created kernels, so I read everything from them. And one day I received an e-mail from an 

expert in this domain who thought that our skills could complement each other. Usually, I prefer to work 

on competitions by myself for some time, but in this case, combining forces seemed to be a good idea to 

me. And this decision turned out to be a great one! With time we were able to gather an amazing team.

After some time, we noticed a potential for neural nets in the competition: a well-known Kaggler, Heng, 

posted an example of an MPNN (Message Passing Neural Network) model. After some time, I was even 

able to run it, but the results were worse compared to our models. Nevertheless, our team knew that we 

would need to work with these Neural Nets if we wanted to aim high. It was amazing to see how Christof 

was able to build new neural nets extremely fast. Soon, we focused only on developing those models.

https://towardsdatascience.com/a-story-of-my-first-gold-medal-in-one-kaggle-competition-things-done-and-lessons-learned-c269d9c233d1
https://towardsdatascience.com/a-story-of-my-first-gold-medal-in-one-kaggle-competition-things-done-and-lessons-learned-c269d9c233d1
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After that, my role switched to a support one. I did a lot of experiments with our neural nets: trying various 

hyperparameters, different architectures, various little tweaks to training schedules, and so on. Sometimes 

I did EDA on our predictions to find our interesting or wrong cases, and later we used this information 

to improve our models even further.

We got the 8th place and I learned a lot during this competition.

Has Kaggle helped you in your career? If so, how?
Kaggle definitely helped me a lot, especially with my skills and my personal brand. Writing and publishing 

Kaggle Notebooks taught me not only EDA and ML skills, but it forced me to become adaptable, to be able 

to understand new topics and tasks quickly, to iterate more efficiently between approaches. At the same 

time, it provided a measure of visibility for me, because people appreciated my work.

My first portfolio (https://erlemar.github.io/) had a lot of different Notebooks, and half of them 

were based on old Kaggle competitions. It was definitely helpful in getting my first jobs. My Kaggle 

achievements also helped me attract recruiters from good companies, sometimes even to skip steps of the 

interview process, and even led me to several consulting gigs.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
I think we need to separate inexperienced Kagglers into two groups: those who are inexperienced in data 

science in general and those who are inexperienced on Kaggle.

Those who are inexperienced in general make a number of different mistakes (and it is okay, everyone 

started somewhere):

• One of the most serious problems: lack of critical thinking and not knowing how to do their own 

research;

• Not knowing when and what tools/approaches to use;

• Blindly taking public Notebooks and using them without understanding how they work;

• Fixating on a certain idea and spending too much time pursuing it, even when it doesn’t work;

• Despairing and losing motivation when their experiments fail.

As for those people who have experience in data science but don’t have experience with Kaggle, I’d say 

that the most serious thing they overlook is that they underestimate Kaggle’s difficulty. They don’t expect 

Kaggle to be very competitive, that you need to try many different things to succeed, that there are a lot of 

tricks that work only in competitions, that there are people who professionally participate in competitions.

https://erlemar.github.io/
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Also, people often overestimate domain expertise. I admit that there were a number of competitions 

when the teams with domain experts in them won gold medals and prizes, but in most cases experienced 

Kagglers triumph.

Also, I have seen the following situation many times: some person proclaims that winning Kaggle is easy, 

and that he (or his group of people) will get a gold medal or many gold medals in the recent future. In 

most cases, they silently fail.

What mistakes have you made in competitions in the past?
• Not enough looking in the data. Sometimes I wasn’t able to generate better features or apply 

better postprocessing due to this. And reserve engineering and “golden features” is a whole ad-
ditional topic.

• Spending too much time on a single idea because I hoped it would work. This is called sunk-cost 
fallacy.

• Not enough experiments. The effort pays off – if you don’t spend enough time and resources on 
the competition, you won’t get a high place on a leaderboard.

• Entering “wrong” competitions. There were competitions with leaks, reverse engineering, etc. 
There were competitions with an unreasonable split between public and private test data and a 
shake-up ensured. There were competitions that weren’t interesting enough for me and I shouldn’t 
have started participating in them.

• Teaming up with the wrong people. There were cases when my teammates weren’t as active as I 

expected and it led to a worse team score.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
I think it is important to remember your goal, know what are you ready to invest into this competition, 

and think about the possible outcomes. There are many possible goals that people have while entering 

a competition:

• Winning money or getting a medal;

• Getting new skills or improving existing ones;

• Working with a new task/domain;

• Networking;

• PR;

• etc;

Of course, it is possible to have multiple motivations.
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Metrics for object detection problems
In recent years, deep learning competitions have become more and more common on Kaggle. Most 

of these competitions, focused on image recognition or on natural language processing tasks, have 

not required the use of evaluation metrics much different from the ones we have explored up to 

now. However, a couple of specific problems have required some special metric to be evaluated 

correctly: those relating to object detection and segmentation.

Figure 5.4: Computer vision tasks. (Source: https://cocodataset.org/#explore?id=38282, https://
cocodataset.org/#explore?id=68717)

In object detection, you don’t have to classify an image, but instead find relevant portions of a 

picture and label them accordingly. For instance, in Figure 5.4, an object detection classifier has 

been entrusted to locate within a photo the portions of the picture where either dogs or cats are 

present and classify each of them with a proper label. The example on the left shows the localiza-

tion of a cat using a rectangular box (called a bounding box). The example on the right presents 

how multiple cats and dogs are detected in the picture by bounding boxes and then correctly 

classified (the blue bounding boxes are for dogs, the red ones for cats).

As for what are you ready to invest, it is usually about the amount of time and effort you are ready to 

spend as well as the hardware that you have.

When I speak about the outcomes, I mean what will happen when the competition ends. It is possible that 

you will invest a lot in this competition and win, but you could also lose. Are you ready for this reality? Is 

winning a particular competition critical to you? Maybe you need to be prepared to invest more effort; 

on the other hand, maybe you have long-term goals and one failed competition won’t hurt much.
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In segmentation, you instead have a classification at the pixel level, so if you have a 320x200 

image, you actually have to make 64,000 pixel classifications. Depending on the task, you can 

have a semantic segmentation where you have to classify every pixel in a photo, or an instance 

segmentation where you only have to classify the pixels representing objects of a certain type of 

interest (for instance, a cat as in our example in Figure 5.5 below):

Figure 5.5: Semantic segmentation and instance segmentation on the same image. (Source: 
https://cocodataset.org/#explore?id=338091)

Let’s start with an overview of the specific metrics for these tasks, metrics that can work well for 

both problems, since, in both cases, you are predicting entire areas (rectangular ones in object 

detection, polygonal ones in segmentation) of a picture and you have to compare your predictions 

against a ground truth, which is, again, expressed as areas. On the side of segmentation, the easiest 

metric is the pixel accuracy, which, as the name suggests, is the accuracy on the pixel classification. 

In order to describe the spatial location of an object, in object detection we use 

bounding boxes, which define a rectangular area in which the object lies. A bounding 

box is usually specified using two (x, y) coordinates: the upper-left and lower-right 

corners. In terms of a machine learning algorithm, finding the coordinates of bound-

ing boxes corresponds to applying a regression problem to multiple targets. However, 

you probably won’t frame the problem from scratch but rely on pre-built and often  

pre-trained models such as Mask R-CNN (https://arxiv.org/abs/1703.06870), 

RetinaNet (https://arxiv.org/abs/2106.05624v1), FPN (https://arxiv.org/

abs/1612.03144v2), YOLO (https://arxiv.org/abs/1506.02640v1), Faster 

R-CNN (https://arxiv.org/abs/1506.01497v1), or SDD (https://arxiv.org/

abs/1512.02325).

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/2106.05624v1
https://arxiv.org/abs/1612.03144v2
https://arxiv.org/abs/1612.03144v2
https://arxiv.org/abs/1506.02640v1
https://arxiv.org/abs/1506.01497v1
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
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It is not a great metric because, as happens with accuracy on binary and multi-class problems, 

your score may look great if the relevant pixels do not take up very much of the image (you just 

predict the majority claim, thus you don’t segment).

Therefore, there are two metrics that are used much more, especially in competitions: the inter-

section over union and the dice coefficient.

Intersection over union (IoU)
The intersection over union (IoU) is also known as the Jaccard index. When used in segmentation 

problems, using IoU implies that you have two images to compare: one is your prediction and the 

other is the mask revealing the ground truth, which is usually a binary matrix where the value 1 

stands for the ground truth and 0 otherwise. In the case of multiple objects, you have multiple 

masks, each one labeled with the class of the object.

When used in object detection problems, you have the boundaries of two rectangular areas (those 

of the prediction and the ground truth), expressed by the coordinates of their vertices. For each 

classified class, you compute the area of overlap between your prediction and the ground truth 

mask, and then you divide this by the area of the union between your prediction and the ground 

truth, a sum that takes into account any overlap. In this way, you are proportionally penalized 

both if you predict a larger area than what it should be (the denominator will be larger) or a 

smaller one (the numerator will be smaller):

Figure 5.6: Visual representation of the IoU calculation

In Figure 5.6 you can see a visual representation of the areas involved in the computation. By 

imagining the squares overlapping more, you can figure out how the metric efficiently penalizes 

your solution when your prediction, even if covering the ground truth, exceeds it (the area of 

union becomes larger).
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Dice
The other useful metric is the Dice coefficient, which is the area of overlap between the prediction 

and ground truth doubled and then divided by the sum of the prediction and ground truth areas:

Figure 5.7: Visual representation of the Dice calculation

In this case, with respect to the Jaccard index, you do not take into account the overlap of the 

prediction with the ground truth in the denominator. Here, the expectation is that, as you maxi-

mize the area of overlap, you predict the correct area size. Again, you are penalized if you predict 

areas larger than you should be predicting. In fact, the two metrics are positively correlated and 

they produce almost the same results for a single classification problem.

The differences actually arise when you are working with multiple classes. In fact, both with IoU 

and the Dice coefficient, when you have multiple classes you average the result of all of them. 

However, in doing so, the IoU metric tends to penalize the overall average more if a single class 

prediction is wrong, whereas the Dice coefficient is more lenient and tends to represent the av-

erage performance.

Here are some examples of competitions where IoU has been used:

• TGS Salt Identification Challenge (https://www.kaggle.com/c/tgs-salt-

identification-challenge/) with Intersection Over Union Object Seg-

mentation

• iMaterialist (Fashion) 2019 at FGVC6 (https://www.kaggle.com/c/

imaterialist-fashion-2019-FGVC6) with Intersection Over Union Ob-

ject Segmentation With Classification

• Airbus Ship Detection Challenge (https://www.kaggle.com/c/airbus-

ship-detection) with Intersection Over Union Object Segmentation Beta

https://www.kaggle.com/c/tgs-salt-identification-challenge/
https://www.kaggle.com/c/tgs-salt-identification-challenge/
https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6
https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6
https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection
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IoU and Dice constitute the basis for all the more complex metrics in segmentation and object 

detection. By choosing an appropriate threshold level for IoU or Dice (usually 0.5), you can de-

cide whether or not to confirm a detection, therefore a classification. At this point, you can use 

previously discussed metrics for classification, such as precision, recall, and F1, such as is done in 

popular object detection and segmentation challenges such as Pascal VOC (http://host.robots.

ox.ac.uk/pascal/VOC/voc2012) or COCO (https://cocodataset.org).

Metrics for multi-label classification and 
recommendation problems
Recommender systems are one of the most popular applications of data analysis and machine 

learning, and there are quite a few competitions on Kaggle that have used the recommendation 

approach. For instance, the Quick, Draw! Doodle Recognition Challenge was a prediction evaluated 

as a recommender system. Some other competitions on Kaggle, however, truly strived to build 

effective recommender systems (such as Expedia Hotel Recommendations: https://www.kaggle.

com/c/expedia-hotel-recommendations) and RecSYS, the conference on recommender sys-

tems (https://recsys.acm.org/), even hosted one of its yearly contests on Kaggle (RecSYS 2013: 

https://www.kaggle.com/c/yelp-recsys-2013).

Mean Average Precision at K (MAP@{K}) is typically the metric of choice for evaluating the 

performance of recommender systems, and it is the most common metric you will encounter on 

Kaggle in all the competitions that try to build or approach a problem as a recommender system. 

Examples of Kaggle competitions using the Dice coefficient (it is often encountered 

in competitions with medical purposes, but not necessarily only there, because it 

can also be used for clouds and cars):

• HuBMAP - Hacking the Kidney: https://www.kaggle.com/c/hubmap-

kidney-segmentation

• Ultrasound Nerve Segmentation: https://www.kaggle.com/c/ultrasound-

nerve-segmentation

• Understanding Clouds from Satellite Images: https://www.kaggle.com/c/

understanding_cloud_organization

• Carvana Image Masking Challenge: https://www.kaggle.com/c/carvana-
image-masking-challenge

http://host.robots.ox.ac.uk/pascal/VOC/voc2012
http://host.robots.ox.ac.uk/pascal/VOC/voc2012
https://cocodataset.org
https://www.kaggle.com/c/expedia-hotel-recommendations
https://www.kaggle.com/c/expedia-hotel-recommendations
https://recsys.acm.org/
https://www.kaggle.com/c/yelp-recsys-2013
https://www.kaggle.com/c/hubmap-kidney-segmentation
https://www.kaggle.com/c/hubmap-kidney-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/understanding_cloud_organization
https://www.kaggle.com/c/understanding_cloud_organization
https://www.kaggle.com/c/carvana-image-masking-challenge
https://www.kaggle.com/c/carvana-image-masking-challenge


Competition Tasks and Metrics134

There are also some other metrics, such as the precision at k, or P@K, and the average precision 

at k, or AP@K, which are loss functions, in other words, computed at the level of each single 

prediction. Understanding how they work can help you better understand the MAP@K and how 

it can perform both in recommendations and in multi-label classification.

In fact, analogous to recommender systems, multi-label classifications imply that your model 

outputs a series of class predictions. Such results could be evaluated using some average of some 

binary classification metrics (such as in Greek Media Monitoring Multilabel Classification (WISE 

2014), which used the mean F1 score: https://www.kaggle.com/c/wise-2014) as well as metrics 

that are more typical of recommender systems, such as MAP@K. In the end, you can deal with 

both recommendations and multi-label predictions as ranking tasks, which translates into a set 

of ranked suggestions in a recommender system and into a set of labels (without a precise order) 

in multi-label classification.

MAP@{K}
MAP@K is a complex metric and it derives from many computations. In order to understand 

the MAP@K metric fully, let’s start with its simplest component, the precision at k (P@K). In 

this case, since the prediction for an example is a ranked sequence of predictions (from the most 

probable to the least), the function takes into account only the top k predictions, then it computes 

how many matches it got with respect to the ground truth and divides that number by k. In a few 

words, it is quite similar to an accuracy measure averaged over k predictions.

A bit more complex in terms of computation, but conceptually simple, the average precision at k 

(AP@K) is the average of P@K computed over all the values ranging from 1 to k. In this way, the 

metric evaluates how well the prediction works overall, using the top prediction, then the top 

two predictions, and so on until the top k predictions.

Finally, MAP@K is the mean of the AP@K for the entire predicted sample, and it is a metric be-

cause it comprises all the predictions in its evaluation. Here is the MAP@5 formulation you can 

find in the Expedia Hotel Recommendations competition (https://www.kaggle.com/c/expedia-

hotel-recommendations):

𝑀𝑀𝑀𝑀𝑀𝑀@5 = 1|𝑈𝑈| ∑ ∑ 𝑀𝑀(𝑘𝑘)min(5,𝑛𝑛)
𝑘𝑘𝑘𝑘

|𝑈𝑈|
𝑢𝑢𝑘𝑘  

In the formula, |𝑈𝑈|  is the number of user recommendations, P(k) is the precision at cutoff k, and n is 

the number of predicted hotel clusters (you could predict up to 5 hotels for each recommendation). 

https://www.kaggle.com/c/wise-2014
https://www.kaggle.com/c/expedia-hotel-recommendations
https://www.kaggle.com/c/expedia-hotel-recommendations


Chapter 5 135

It is clearly a bit more daunting than our explanation, but the formula just expresses that the 

MAP@K is the mean of all the AP@K evaluations over all the predictions.

Having completed this overview of specific metrics for different regression and classification 

metrics, let’s discuss how to deal with evaluation metrics in a Kaggle competition.

Optimizing evaluation metrics
Summing up what we have discussed so far, an objective function is a function inside your learning 

algorithm that measures how well the algorithm’s internal model is fitting the provided data. The 

objective function also provides feedback to the algorithm in order for it to improve its fit across 

successive iterations. Clearly, since the entire algorithm’s efforts are recruited to perform well 

based on the objective function, if the Kaggle evaluation metric perfectly matches the objective 

function of your algorithm, you will get the best results.

Unfortunately, this is not frequently the case. Often, the evaluation metric provided can only be 

approximated by existing objective functions. Getting a good approximation, or striving to get 

your predictions performing better with respect to the evaluation criteria, is the secret to perform-

ing well in Kaggle competitions. When your objective function does not match your evaluation 

metric, you have a few alternatives:

1. Modify your learning algorithm and have it incorporate an objective function that matches 

your evaluation metric, though this is not possible for all algorithms (for instance, algo-

rithms such as LightGBM and XGBoost allow you to set custom objective functions, but 

most Scikit-learn models don’t allow this).

2. Tune your model’s hyperparameters, choosing the ones that make the result shine the 

most when using the evaluation metric.

3. Post-process your results so they match the evaluation criteria more closely. For instance, 

you could code an optimizer that performs transformations on your predictions (proba-

bility calibration algorithms are an example, and we will discuss them at the end of the 

chapter).

Having the competition metric incorporated into your machine learning algorithm is really the 

most effective method to achieve better predictions, though only a few algorithms can be hacked 

into using the competition metric as your objective function. The second approach is therefore the 

more common one, and many competitions end up in a struggle to get the best hyperparameters 

for your models to perform on the evaluation metric. 
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If you already have your evaluation function coded, then doing the right cross-validation or choos-

ing the appropriate test set plays the lion share. If you don’t have the coded function at hand, you 

have to first code it in a suitable way, following the formulas provided by Kaggle.

Invariably, doing the following will make the difference:

• Looking for all the relevant information about the evaluation metric and its coded func-

tion on a search engine

• Browsing through the most common packages (such as Scikit-learn: https://scikit-

learn.org/stable/modules/model_evaluation.html#model-evaluation or TensorFlow: 

https://www.tensorflow.org/api_docs/python/tf/keras/losses)

• Browsing GitHub projects (for instance, Ben Hammer’s Metrics project: https://github.

com/benhamner/Metrics)

• Asking or looking around in the forums and available Kaggle Notebooks (both for the 

current competition and for similar competitions)

• In addition, as we mentioned before, querying the Meta Kaggle dataset (https://www.

kaggle.com/kaggle/meta-kaggle) and looking in the Competitions table will help you 

find out which other Kaggle competitions used that same evaluation metric, and imme-

diately provides you with useful code and ideas to try out

Let’s discuss in greater detail the alternatives you have when your evaluation metric doesn’t 

match your algorithm’s objective function. We’ll start by exploring custom metrics.

Custom metrics and custom objective functions
As a first option when your objective function does not match your evaluation metric, we learned 

above that you can solve this by creating your own custom objective function, but that only a few 

algorithms can easily be modified to incorporate a specific objective function.

The good news is that the few algorithms that allow this are among the most effective ones in 

Kaggle competitions and data science projects. Of course, creating your own custom objective 

function may sound a little bit tricky, but it is an incredibly rewarding approach to increasing your 

score in a competition. For instance, there are options to do this when using gradient boosting 

algorithms such as XGBoost, CatBoost, and LightGBM, as well as with all deep learning models 

based on TensorFlow or PyTorch.

You can find great tutorials for custom metrics and objective functions in TensorFlow and Py-

Torch here:

https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation
https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation
https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://github.com/benhamner/Metrics
https://github.com/benhamner/Metrics
https://www.kaggle.com/kaggle/meta-kaggle
https://www.kaggle.com/kaggle/meta-kaggle
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• https://towardsdatascience.com/custom-metrics-in-keras-and-how-simple-they-

are-to-use-in-tensorflow2-2-6d079c2ca279

• https://petamind.com/advanced-keras-custom-loss-functions/

• https://kevinmusgrave.github.io/pytorch-metric-learning/extend/losses/

These will provide you with the basic function templates and some useful suggestions about how 

to code a custom objective or evaluation function.

If you need to create a custom loss in LightGBM, XGBoost, or CatBoost, as indicated in their re-

spective documentation, you have to code a function that takes as inputs the prediction and the 

ground truth, and that returns as outputs the gradient and the hessian.

From a code implementation perspective, all you have to do is to create a function, using closures 

if you need to pass more parameters beyond just the vector of predicted labels and true labels. 

Here is a simple example of a focal loss (a loss that aims to heavily weight the minority class in 

the loss computations as described in Lin, T-Y. et al. Focal loss for dense object detection: https://

arxiv.org/abs/1708.02002) function that you can use as a model for your own custom functions:

from scipy.misc import derivative

import xgboost as xgb

def focal_loss(alpha, gamma):

    def loss_func(y_pred, y_true):

        a, g = alpha, gamma

        def get_loss(y_pred, y_true):

            p = 1 / (1 + np.exp(-y_pred))

If you want just to get straight to the custom objective function you need, you can 

try this Notebook by RNA (https://www.kaggle.com/bigironsphere): https://
www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch/ 

notebook. It contains a large range of custom loss functions for both TensorFlow 

and PyTorch that have appeared in different competitions.

You can consult this post on Stack Overflow for a better understanding of what a gra-

dient and a hessian are: https://stats.stackexchange.com/questions/231220/
how-to-compute-the-gradient-and-hessian-of-logarithmic-loss- 

question-is-based.

https://towardsdatascience.com/custom-metrics-in-keras-and-how-simple-they-are-to-use-in-tensorflow2-2-6d079c2ca279
https://towardsdatascience.com/custom-metrics-in-keras-and-how-simple-they-are-to-use-in-tensorflow2-2-6d079c2ca279
https://petamind.com/advanced-keras-custom-loss-functions/
https://kevinmusgrave.github.io/pytorch-metric-learning/extend/losses/
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://www.kaggle.com/bigironsphere
https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch/notebook
https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch/notebook
https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch/notebook
https://stats.stackexchange.com/questions/231220/how-to-compute-the-gradient-and-hessian-of-logarithmic-loss-question-is-based
https://stats.stackexchange.com/questions/231220/how-to-compute-the-gradient-and-hessian-of-logarithmic-loss-question-is-based
https://stats.stackexchange.com/questions/231220/how-to-compute-the-gradient-and-hessian-of-logarithmic-loss-question-is-based
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            loss = (-(a * y_true + (1 - a)*(1 - y_true)) * 

                    ((1 - (y_true * p + (1 - y_true) * 

                     (1 - p)))**g) * (y_true * np.log(p) + 

                    (1 - y_true) * np.log(1 - p)))

            return loss

        partial_focal = lambda y_pred: get_loss(y_pred, y_true)

        grad = derivative(partial_focal, y_pred, n=1, dx=1e-6)

        hess = derivative(partial_focal, y_pred, n=2, dx=1e-6)

        return grad, hess

    return loss_func

xgb = xgb.XGBClassifier(objective=focal_loss(alpha=0.25, gamma=1))

In the above code snippet, we have defined a new cost function, focal_loss, which is then fed 

into an XGBoost instance’s object parameters. The example is worth showing because the focal 

loss requires the specification of some parameters in order to work properly on your problem 

(alpha and gamma). The more simplistic solution of having their values directly coded into the 

function is not ideal, since you may have to change them systematically as you are tuning your 

model. Instead, in the proposed function, when you input the parameters into the focal_loss 

function, they reside in memory and they are referenced by the loss_func function that is returned 

to XGBoost. The returned cost function, therefore, will work, referring to the alpha and gamma 

values that you have initially instantiated.

Another interesting aspect of the example is that it really makes it easy to compute the gradient 

and the hessian of the cost function by means of the derivative function from SciPy. If your cost 

function is differentiable, you don’t have to worry about doing any calculations by hand. How-

ever, creating a custom objective function requires some mathematical knowledge and quite a 

lot of effort to make sure it works properly for your purposes. You can read about the difficulties 

that Max Halford experienced while implementing a focal loss for the LightGBM algorithm, and 

how he overcame them, here: https://maxhalford.github.io/blog/lightgbm-focal-loss/. 

Despite the difficulty, being able to conjure up a custom loss can really determine your success in 

a Kaggle competition where you have to extract the maximum possible result from your model.

If building your own objective function isn’t working out, you can simply lower your ambitions, 

give up building your function as an objective function used by the optimizer, and instead code it 

as a custom evaluation metric. Though your model won’t be directly optimized to perform against 

this function, you can still improve its predictive performance with hyperparameter optimization 

based on it. This is the second option we talked about in the previous section.

https://maxhalford.github.io/blog/lightgbm-focal-loss/
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Just remember, if you are writing a metric from scratch, sometimes you may need to abide by 

certain code conventions for your function to work properly. For instance, if you use Scikit-learn, 

you have to convert your functions using the make_scorer function. The make_scorer function is 

actually a wrapper that makes your evaluation function suitable for working with the Scikit-learn 

API. It will wrap your function while considering some meta-information, such as whether to use 

probability estimates or predictions, whether you need to specify a threshold for prediction, and, 

last but not least, the directionality of the optimization, that is, whether you want to maximize 

or minimize the score it returns:

from sklearn.metrics import make_scorer

from sklearn.metrics import average_precision_score

scorer = make_scorer(average_precision_score, 

average='weighted', greater_is_better=True, needs_proba=False)

In the above example, you prepare a scorer based on the average precision metric, specifying that 

it should use a weighted computation when dealing with multi-class classification problems.

Post-processing your predictions
Post-processing tuning implies that your predictions are transformed, by means of a function, 

into something else in order to present a better evaluation. After building your custom loss or 

optimizing for your evaluation metric, you can also improve your results by leveraging the char-

acteristics of your evaluation metric using a specific function applied to your predictions. Let’s 

take the Quadratic Weighted Kappa, for instance. We mentioned previously that this metric is 

useful when you have to deal with the prediction of an ordinal value. To recap, the original Kappa 

coefficient is a chance-adjusted index of agreement between the algorithm and the ground truth. 

It is a kind of accuracy measurement corrected by the probability that the match between the 

prediction and the ground truth is due to a fortunate chance.

If you are optimizing for your evaluation metric, you can apply grid search, random 

search, or some more sophisticated optimization such as Bayesian optimization and 

find the set of parameters that makes your algorithm perform optimally for your 

evaluation metric, even if it works with a different cost function. We will explore 

how to best arrange parameter optimization and obtain the best results on Kaggle 

competitions after having discussed model validation, specifically in the chapter 

dealing with tabular data problems.
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Here is the original version of the Kappa coefficient, as seen before:𝑘𝑘 𝑘 𝑘𝑘𝑘0 − 𝑘𝑘𝑒𝑒)/𝑘1 −  𝑘𝑘𝑒𝑒) 

In the formula, p0 is the relative observed agreement among raters, and pe is the hypothetical prob-

ability of chance agreement. Here, you need just two matrices, the one with the observed scores 

and the one with the expected scores based on chance agreement. When the Kappa coefficient 

is weighted, you also consider a weight matrix and the formula turns into this:𝑘𝑘 𝑘 𝑘𝑘𝑘0 − 𝑘𝑘𝑒𝑒)/𝑘1 − 𝑘𝑘𝑝𝑝) 

The matrix pp contains the penalizations to weight errors differently, which is very useful for or-

dinal predictions since this matrix can penalize much more when the predictions deviate further 

from the ground truths. Using the quadratic form, that is, squaring the resulting k, makes the 

penalization even more severe. However, optimizing for such a metric is really not easy, since it 

is very difficult to implement it as a cost function. Post-processing can help you.

An example can be found in the PetFinder.my Adoption Prediction competition (https://www.

kaggle.com/c/petfinder-adoption-prediction). In this competition, given that the results 

could have 5 possible ratings (0, 1, 2, 3, or 4), you could deal with them either using a classification 

or a regression. If you used a regression, a post-processing transformation of the regression output 

could improve the model’s performance against the Quadratic Weighted Kappa metric, outper-

forming the results you could get from a classification directly outputting discrete predictions.

In the case of the PetFinder competition, the post-processing consisted of an optimization process 

that started by transforming the regression results into integers, first using the boundaries [0.5, 

1.5, 2.5, 3.5] as thresholds and, by an iterative fine-tuning, finding a better set of boundaries that 

maximized the performance. The fine-tuning of the boundaries required the computations of an 

optimizer such as SciPy’s optimize.minimize, which is based on the Nelder-Mead algorithm. The 

boundaries found by the optimizer were validated by a cross-validation scheme. You can read 

more details about this post-processing directly from the post made by Abhishek Thakur during the 

competition: https://www.kaggle.com/c/petfinder-adoption-prediction/discussion/76107.

https://www.kaggle.com/c/petfinder-adoption-prediction
https://www.kaggle.com/c/petfinder-adoption-prediction
https://www.kaggle.com/c/petfinder-adoption-prediction/discussion/76107


Chapter 5 141

Unfortunately, post-processing is often very dependent on the metric you are using (understand-

ing the metric is imperative for devising any good post-processing) and often also data-specific, 

for instance, in the case of time series data and leakages. Hence, it is very difficult to generalize any 

procedure for figuring out the right post-processing for any competition. Nevertheless, always be 

aware of this possibility and be on the lookout in a competition for any hint that post-processing 

results is favorable. You can always get hints about post-processing from previous competitions 

that have been similar, and by forum discussion – eventually, someone will raise the topic.

Predicted probability and its adjustment
To complete the above discussion on metrics optimization (post-processing of predictions), we 

will discuss situations where it is paramount to predict correct probabilities, but you are not 

sure if the algorithm you are using is doing a good job. As we detailed previously, classification 

probabilities concern both binary and multiclass classification problems, and they are commonly 

evaluated using the logarithmic loss (aka log loss or logistic loss or cross-entropy loss) in its bi-

nary or multi-class version (for more details, see the previous sections on Metrics for classification 

(label prediction and probability) and Metrics for multi-class classification).

However, evaluating or optimizing for the log loss may not prove enough. The main problems to be 

on the lookout for when striving to achieve correct probabilistic predictions with your model are:

• Models that do not return a truly probabilistic estimate

• Unbalanced distribution of classes in your problem

• Different class distribution between your training data and your test data (on both public 

and private leaderboards)

Aside from the PetFinder competition, many other competitions have demonstrated 

that smart post-processing can lead to improved results and rankings. We’ll point 

out a few examples here:

• https://www.kaggle.com/khoongweihao/post-processing-

technique-c-f-1st-place-jigsaw

• https://www.kaggle.com/tomooinubushi/postprocessing-based-

on-leakage

• https://www.kaggle.com/saitodevel01/indoor-post-processing-
by-cost-minimization

https://www.kaggle.com/khoongweihao/post-processing-technique-c-f-1st-place-jigsaw
https://www.kaggle.com/khoongweihao/post-processing-technique-c-f-1st-place-jigsaw
https://www.kaggle.com/tomooinubushi/postprocessing-based-on-leakage
https://www.kaggle.com/tomooinubushi/postprocessing-based-on-leakage
https://www.kaggle.com/saitodevel01/indoor-post-processing-by-cost-minimization
https://www.kaggle.com/saitodevel01/indoor-post-processing-by-cost-minimization
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The first point alone provides reason to check and verify the quality of classification predictions 

in terms of modeled uncertainty. In fact, even if many algorithms are provided in the Scikit-learn 

package together with a predict_proba method, this is a very weak assurance that they will 

return a true probability.

Let’s take, for instance, decision trees, which are the basis of many effective methods to model 

tabular data. The probability outputted by a classification decision tree (https://scikit-learn.

org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html) is based on 

terminal leaves; that is, it depends on the distribution of classes on the leaf that contains the case 

to be predicted. If the tree is fully grown, it is highly likely that the case is in a small leaf with very 

few other cases, so the predicted probability will be very high. If you change parameters such 

as max_depth, max_leaf_nodes, or min_samples_leaf, the resulting probability will drastically 

change from higher values to lower ones depending on the growth of the tree.

Decision trees are the most common base model for ensembles such as bagging models and 

random forests, as well as boosted models such as gradient boosting (with its high-performing 

implementations XGBoost, LightGBM, and CatBoost). But, for the same reasons – probability 

estimates that are not truly based on solid probabilistic estimations – the problem affects many 

other commonly used models, such as support-vector machines and k-nearest neighbors. Such 

aspects were mostly unknown to Kagglers until the Otto Group Product Classification Challenge 

(https://www.kaggle.com/c/otto-group-product-classification-challenge/overview/), 

when it was raised by Christophe Bourguignat and others during the competition (see https://

www.kaggle.com/cbourguignat/why-calibration-works), and easily solved at the time using 

the calibration functions that had recently been added to Scikit-learn.

Aside from the model you will be using, the presence of imbalance between classes in your problem 

may also result in models that are not at all reliable. Hence, a good approach in the case of unbal-

anced classification problems is to rebalance the classes using undersampling or oversampling 

strategies, or different custom weights for each class to be applied when the loss is computed by 

the algorithm. All these strategies may render your model more performant; however, they will 

surely distort the probability estimates and you may have to adjust them in order to obtain an 

even better model score on the leaderboard.

Finally, a third point of concern is related to how the test set is distributed. This kind of informa-

tion is usually concealed, but there are often ways to estimate it and figure it out (for instance, by 

trial and error based on the public leaderboard results, as we mentioned in Chapter 1, Introducing 

Kaggle and Other Data Science Competitions). 

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://www.kaggle.com/c/otto-group-product-classification-challenge/overview/
https://www.kaggle.com/cbourguignat/why-calibration-works
https://www.kaggle.com/cbourguignat/why-calibration-works
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For instance, this happened in the iMaterialist Furniture Challenge (https://www.kaggle.com/c/

imaterialist-challenge-furniture-2018/) and the more popular Quora Question Pairs 

(https://www.kaggle.com/c/quora-question-pairs). Both competitions gave rise to various 

discussions on how to post-process in order to adjust probabilities to test expectations (see 
https://swarbrickjones.wordpress.com/2017/03/28/cross-entropy-and-training-test-

class-imbalance/ and https://www.kaggle.com/dowakin/probability-calibration-0-005-

to-lb for more details on the method used). From a general point of view, assuming that you 

do not have an idea of the test distribution of classes to be predicted, it is still very beneficial to 

correctly predict probability based on the priors you get from the training data (and until you 

get evidence to the contrary, that is the probability distribution that your model should mimic). 

In fact, it will be much easier to correct your predicted probabilities if your predicted probability 

distribution matches those in the training set.

The solution, when your predicted probabilities are misaligned with the training distribution of 

the target, is to use the calibration function provided by Scikit-learn, CalibratedClassifierCV:

sklearn.calibration.CalibratedClassifierCV(base_estimator=None, *,

    method='sigmoid', cv=None, n_jobs=None, ensemble=True)

The purpose of the calibration function is to apply a post-processing function to your predicted 

probabilities in order to make them adhere more closely to the empirical probabilities seen in the 

ground truth. Provided that your model is a Scikit-learn model or behaves similarly to one, the 

function will act as a wrapper for your model and directly pipe its predictions into a post-pro-

cessing function. You have the choice between using two methods for post-processing. The first is 

the sigmoid method (also called Plat’s scaling), which is nothing more than a logistic regression. 

The second is the isotonic regression, which is a non-parametric regression; beware that it tends 

to overfit if there are few examples.

You also have to choose how to fit this calibrator. Remember that it is a model that is applied 

to the results of your model, so you have to avoid overfitting by systematically reworking pre-

dictions. You could use a cross-validation (more on this in the following chapter on Designing 

Good Validation) and then produce a number of models that, once averaged, will provide your 

predictions (ensemble=True). Otherwise, and this is our usual choice, resort to an out-of-fold 

prediction (more on this in the following chapters) and calibrate on that using all the data avail-

able (ensemble=False).

https://www.kaggle.com/c/imaterialist-challenge-furniture-2018/
https://www.kaggle.com/c/imaterialist-challenge-furniture-2018/
https://www.kaggle.com/c/quora-question-pairs
https://swarbrickjones.wordpress.com/2017/03/28/cross-entropy-and-training-test-class-imbalance/
https://swarbrickjones.wordpress.com/2017/03/28/cross-entropy-and-training-test-class-imbalance/
https://www.kaggle.com/dowakin/probability-calibration-0-005-to-lb
https://www.kaggle.com/dowakin/probability-calibration-0-005-to-lb
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Even if CalibratedClassifierCV can handle most situations, you can also figure out some empir-

ical way to fix probability estimates for the best performance at test time. You can use any trans-

formation function, from a handmade one to a sophisticated one derived by genetic algorithms, 

for instance. Your only limit is simply that you should cross-validate it and possibly have a good 

final result from the public leaderboard (but not necessarily, because you should trust your local 

cross-validation score more, as we are going to discuss in the next chapter). A good example of such 

a strategy is provided by Silogram (https://www.kaggle.com/psilogram), who, in the Microsoft 

Malware Classification Challenge, found out a way to tune the unreliable probabilistic outputs of 

random forests into probabilistic ones simply by raising the output to a power determined by 

grid search (see https://www.kaggle.com/c/malware-classification/discussion/13509).

Sudalai Rajkumar
https://www.kaggle.com/sudalairajkumar

In our final interview of the chapter, we speak to Sudalai Rajkumar, 

SRK, a Grandmaster in Competitions, Datasets, and Notebooks, and a 

Discussion Master. He is ranked #1 in the Analytics Vidhya data science 

platform, and works as an AI/ML advisor for start-ups.

What’s your favourite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
My favorite kinds of competition are ones that involve a good amount of feature engineering. I think 

that is my strength as well. I am generally interested in data exploration to get a deep understanding of 

the data (which you can infer from my series of simple exploration Notebooks (https://www.kaggle.

com/sudalairajkumar/code)) and then creating features based on it.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
The framework for a competition involves data exploration, finding the right validation method, feature 

engineering, model building, and ensembling/stacking. All these are involved in my day job as well. But 

in addition to this, there is a good amount of stakeholder discussion, data collection, data tagging, model 

deployment, model monitoring, and data storytelling that is involved in my daily job.

https://www.kaggle.com/psilogram
https://www.kaggle.com/c/malware-classification/discussion/13509
https://www.kaggle.com/sudalairajkumar
https://www.kaggle.com/sudalairajkumar/code
https://www.kaggle.com/sudalairajkumar/code
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Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
Santander Product Recommendation is a memorable competition that we entered. Rohan & I did a 

lot of feature engineering and built multiple models. When we did final ensembling, we used different 

weights for different products and some of them did not add up to 1. From the data exploration and 

understanding, we hand-picked these weights, which helped us. This made us realise the domain/data 

importance in solving problems and how data science is an art as much as science.

Has Kaggle helped you in your career? If so, how?
Kaggle played a very important role in my career. I was able to secure my last two jobs mainly because 

of Kaggle. Also, the success from Kaggle helps to connect with other stalwarts in the data science field 

easily and learn from them. It also helps a lot in my current role as AI / ML advisor for start-ups, as it 

gives credibility.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
Understanding the data in depth. Often this is overlooked, and people get into model-building right 

away. Exploring the data plays a very important role in the success of any Kaggle competition. This helps 

to create proper cross validation and to create better features and to extract more value from the data.

What mistakes have you made in competitions in the past?
It is a very big list, and I would say that they are learning opportunities. In every competition, out of 20-30 

ideas that I try, only 1 may work. These mistakes/failures give much more learning than the actual success 

or things that worked. For example, I learnt about overfitting the very hard way by falling from top deciles 

to bottom deciles in one of my very first competitions. But that learning stayed with me forever thereafter.

Are there any particular tools or libraries that you would recommend using for data analysis/machine 

learning?

I primarily use XGBoost/LightGBM in the case of tabular data. I also use open source AutoML libraries 

and Driverless AI to get early benchmarks these days. I use Keras, Transformers, and PyTorch for deep 

learning models.
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Summary
In this chapter, we have discussed evaluation metrics in Kaggle competitions. First, we explained 

how an evaluation metric can differ from an objective function. We also remarked on the differ-

ences between regression and classification problems. For each type of problem, we analyzed the 

most common metrics that you can find in a Kaggle competition.

After that, we discussed the metrics that have never previously been seen in a competition and 

that you won’t likely see again. Finally, we explored and studied different common metrics, giving 

examples of where they have been used in previous Kaggle competitions. We then proposed a few 

strategies for optimizing an evaluation metric. In particular, we recommended trying to code your 

own custom cost functions and provided suggestions on possible useful post-processing steps.

You should now have grasped the role of an evaluation metric in a Kaggle competition. You should 

also have a strategy to deal with every common or uncommon metric, by retracing past competi-

tions and by gaining a full understanding of the way a metric works. In the next chapter, we are 

going to discuss how to use evaluation metrics and properly estimate the performance of your 

Kaggle solution by means of a validation strategy.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Consistency is the key. Each competition will have its own ups and downs. There will be multiple days 

without any progress, but we should not give up and keep trying. I think this is applicable for anything 

and not just Kaggle competitions.

Do you use other competition platforms? How do they compare to 
Kaggle?
I have also taken part on other platforms like the Analytics Vidhya DataHack platform, Driven Data, 

CrowdAnalytix etc. They are good too, but Kaggle is more widely adopted and global in nature, so the 

amount of competition on Kaggle is much higher compared to other platforms.
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord




6
Designing Good Validation

In a Kaggle competition, in the heat of modeling and submitting results, it may seem enough to 

take at face value the results you get back from the leaderboard. In the end, you may think that 

what counts in a competition is your ranking. This is a common error that is made repeatedly 

in competitions. In actual fact, you won’t know what the actual leaderboard (the private one) 

looks like until after the competition has closed, and trusting the public part of it is not advisable 

because it is quite often misleading.

In this chapter, we will introduce you to the importance of validation in data competitions. You 

will learn about:

• What overfitting is and how a public leaderboard can be misleading

• The dreadful shake-ups

• The different kinds of validation strategies

• Adversarial validation

• How to spot and leverage leakages

• What your strategies should be when choosing your final submissions

Monitoring your performances when modeling and distinguishing when overfitting happens is a 

key competency not only in data science competitions but in all data science projects. Validating 

your models properly is one of the most important skills that you can learn from a Kaggle com-

petition and that you can resell in the professional world.
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Snooping on the leaderboard
As we previously described, in each competition, Kaggle divides the test set into a public part, 

which is visualized on the ongoing leaderboard, and a private part, which will be used to calcu-

late the final scores. These test parts are usually randomly determined (although in time series 

competitions, they are determined based on time) and the entire test set is released without any 

distinction made between public and private.

Therefore, a submission derived from a model will cover the entire test set, but only the public 

part will immediately be scored, leaving the scoring of the private part until after the competition 

has closed.

Given this, three considerations arise:

• In order for a competition to work properly, training data and test data should be from 

the same distribution. Moreover, the private and public parts of the test data should 

resemble each other in terms of distribution.

• Even if the training and test data are apparently from the same distribution, the lack of 

sufficient examples in either set could make it difficult to obtain aligned results between 

the training data and the public and private test data.

• The public test data should be regarded as a holdout test in a data science project: to be 

used only for final validation. Hence, it should not be queried much in order to avoid what 

is called adaptive overfitting, which implies a model that works well on a specific test 

set but underperforms on others.

Keeping in mind these three considerations is paramount to understanding the dynamics of 

a competition. In most competitions, there are always quite a few questions in the discussion 

forums about how the training, public, and private test data relate to each other, and it is quite 

common to see submissions of hundreds of solutions that have only been evaluated based on 

their efficacy on the public leaderboard.

Recently, in order to avoid the scrutinizing of test data in certain competitions, Kaggle 

has even held back the test data, providing only some examples of it and replacing 

them with the real test set when the submission is made. These are called Code 

competitions because you are not actually providing the predictions themselves, 

but a Notebook containing the code to generate them.
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It is also common to hear discussions about shake-ups that revolutionize the rankings. They 

are, in fact, a rearranging of the final rankings that can disappoint many who previously held 

better positions on the public leaderboard. Anecdotally, shake-ups are commonly attributed to 

differences between the training and test set or between the private and public parts of the test 

data. They are measured ex ante based on how competitors have seen their expected local scores 

correlate with the leaderboard feedback and ex post by a series of analyses based on two figures:

• A general shake-up figure based on mean(abs(private_rank-public_rank)/number_

of_teams)

• A top leaderboard shake-up figure, taking into account only the top 10% of public ranks

However, aside from an ex post evaluation, there are quite a few lessons that we can get from 

previous shake-ups that can help you in your Kaggle competitions. A few researchers from UC 

Berkeley think so too. In their paper presented at NIPS 2019, Roelofs, Fridovich-Keil et al. study 

in detail a few thousand Kaggle competitions to gain insight into the public-private leaderboard 

dynamics in Kaggle competitions. Although they focus on a limited subset of competitions (120, 

above a certain number of participants, focused on binary classification), they obtained some 

interesting findings:

• There is little adaptive overfitting; in other words, public standings usually do hold in the 

unveiled private leaderboard.

These ex post figures were first devised by Steve Donoho (https://www.kaggle.com/

breakfastpirate) who compiled a ranking of the worst Kaggle shake-ups (see 
https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting/

discussion/49106#278831). They are nowadays easily available, recreated by many 

Notebooks based on the Meta Kaggle dataset we discussed in Chapter 5, Competi-

tion Tasks and Metrics (see https://www.kaggle.com/jtrotman/meta-kaggle-

competition-shake-up). For instance, by consulting these figures, you may find 

out how dreadful the RSNA Intracranial Hemorrhage Detection competition was for  

many because of its shake-ups, especially in the top positions.

https://www.kaggle.com/breakfastpirate
https://www.kaggle.com/breakfastpirate
https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting/discussion/49106#278831
https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting/discussion/49106#278831
https://www.kaggle.com/jtrotman/meta-kaggle-competition-shake-up
https://www.kaggle.com/jtrotman/meta-kaggle-competition-shake-up
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• Most shake-ups are due to random fluctuations and overcrowded rankings where com-

petitors are too near to each other, and any slight change in the performance in the private 

test sets causes major changes in the rankings.

• Shake-ups happen when the training set is very small or the training data is not indepen-

dent and identically distributed (i.i.d.).

In our long experience of Kaggle competitions, however, we have seen quite a lot of problems with 

adaptive overfitting since the beginning. For instance, you can read Greg Park’s analysis of one of 

the first competitions we ever took part in: http://gregpark.io/blog/Kaggle-Psychopathy-

Postmortem/. Since this is quite a common and persistent problem for many Kagglers, we suggest 

a strategy that is a bit more sophisticated than simply following what happens on the public 

leaderboard:

• Always build reliable cross-validation systems for local scoring.

• Always try to control non-i.i.d distributions using the best validation scheme dictated 

by the situation. Unless clearly stated in the description of the competition, it is not an 

easy task to spot non-i.i.d. distributions, but you can get hints from discussion or by ex-

perimenting using stratified validation schemes (when stratifying according to a certain 

feature, the results improve decisively, for instance).

• Correlate local scoring with the public leaderboard in order to figure out whether or not 

they go in the same direction.

• Test using adversarial validation, revealing whether or not the test distribution is similar 

to the training data.

• Make your solutions more robust using ensembling, especially if you are working with 

small datasets.

In the following sections, we are going to explore each of these ideas (except for ensembling, 

which is the topic of a future chapter) and provide you with all the best tools and strategies to 

obtain the best results, especially on the private dataset.

The full paper, Roelofs, R., Fridovich-Keil, S. et al. A meta-analysis of overfitting in 

machine learning. Proceedings of the 33rd International Conference on Neural In-

formation Processing Systems. 2019, can be found at this link: https://papers.

nips.cc/paper/2019/file/ee39e503b6bedf0c98c388b7e8589aca-Paper.pdf.

http://gregpark.io/blog/Kaggle-Psychopathy-Postmortem/
http://gregpark.io/blog/Kaggle-Psychopathy-Postmortem/
https://papers.nips.cc/paper/2019/file/ee39e503b6bedf0c98c388b7e8589aca-Paper.pdf
https://papers.nips.cc/paper/2019/file/ee39e503b6bedf0c98c388b7e8589aca-Paper.pdf
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The importance of validation in competitions
If you think about a competition carefully, you can imagine it as a huge system of experiments. 

Whoever can create the most systematic and efficient way to run these experiments wins.

In fact, in spite of all your theoretical knowledge, you will be in competition with the hundreds 

or thousands of data professionals who have more or less the same competencies as you. 

In addition, they will be using exactly the same data as you and roughly the same tools for learn-

ing from the data (TensorFlow, PyTorch, Scikit-learn, and so on). Some will surely have better 

access to computational resources, although the availability of Kaggle Notebooks and generally 

decreasing cloud computing prices mean the gap is no longer so wide. Consequently, if you look 

at differences in knowledge, data, models, and available computers, you won’t find many dis-

criminating factors between you and the other competitors that could explain huge performance 

differences in a competition. Yet, some participants consistently outperform others, implying 

there is some underlying success factor.

In interviews and meet-ups, some Kagglers describe this success factor as “grit,” some others as 

“trying everything,” some others again as a “willingness to put everything you have into a com-

petition.” These may sound a bit obscure and magic. Instead, we call it systematic experimen-

tation. In our opinion, the key to successful participation resides in the number of experiments 

you conduct and the way you run all of them. The more experiments you undertake, the more 

chances you will have to crack the problem better than other participants. This number certainly 

depends on a few factors, such as the time you have available, your computing resources (the 

faster the better, but as we previously mentioned, this is not such a strong differentiator per se), 

your team size, and their involvement in the task. This aligns with the commonly reported grit 

and engagement as keys for success.

However, these are not the only factors affecting the result. You have to take into account that 

the way you run your experiments also has an impact. Fail fast and learn from it is an important 

factor in a competition. Of course, you need to reflect carefully both when you fail and when you 

succeed in order to learn something from your experiences, or your competition will just turn 

into a random sequence of attempts in the hope of picking the right solution.

Therefore, ceteris paribus, having a proper validation strategy is the great discriminator between 

successful Kaggle competitors and those who just overfit the leaderboard and end up in low-

er-than-expected rankings after a competition.
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Generally, the impact of choosing proper validation is too often overlooked in favor of more 

quantitative factors, such as having the latest, most powerful GPU or a larger team producing 

submissions. 

Nevertheless, if you count only on the firepower of experiments and their results on the leader-

board, it will be like “throwing mud at the wall and hoping something will stick” (see http://

gregpark.io/blog/Kaggle-Psychopathy-Postmortem/). Sometimes such a strategy will work, 

but most often it won’t, because you will miss important opportunities to experiment in the 

right direction, and you won’t even be able to see the shining gem you managed to produce in 

the middle of all that mud. For instance, if you concentrate too much on trying your luck on the 

public leaderboard using a random, unsystematic strategy, even if you produce great solutions, 

you may end up not choosing your final submission correctly and missing the best scoring one 

on the private leaderboard.

Having a proper validation strategy can help you decide which of your models should be submitted 

for ranking on the private test set. Though the temptation to submit your top public leaderboard 

models may be high, always consider your own validation scores. For your final submissions, de-

pending on the situation and whether or not you trust the leaderboard, choose your best model 

based on the leaderboard and your best based on your local validation results. If you don’t trust 

the leaderboard (especially when the training sample is small or the examples are non-i.i.d.), 

submit models that have two of the best validation scores, picking two very different models or 

ensembles. In this way, you will reduce the risk of choosing solutions that won’t perform on the 

private test set.

Having pointed out the importance of having a method of experimenting, what is left is all a 

matter of the practicalities of validation. In fact, when you model a solution, you take a series of 

interrelated decisions:

1. How to process your data

2. What model to apply

3. How to change the model’s architecture (especially true for deep learning models)

4. How to set the model’s hyperparameters

5. How to post-process the predictions

Validation is the method you use to correctly evaluate the errors that your model 

produces and to measure how its performance improves or decreases based on your 

experiments.

http://gregpark.io/blog/Kaggle-Psychopathy-Postmortem/
http://gregpark.io/blog/Kaggle-Psychopathy-Postmortem/
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Even if the public leaderboard is perfectly correlated with the private one, the limited number of 

daily submissions (a limitation present in all competitions) prevents you from even scratching 

the surface of possible tests that you could do in all the aforementioned areas. Having a proper 

validation system tells you beforehand if what you are doing could work on the leaderboard.

Dmitry Larko
https://www.kaggle.com/dmitrylarko

Dmitry Larko is a Kaggle Competition Grandmaster and the chief data 

scientist at H2O.ai. He has over a decade of experience in ML and data 

science. He discovered Kaggle in December 2012 and participated in 

his first competition a few months later. He is a strong advocate of 

validation in Kaggle competitions, as he told us in his interview.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I have mostly participated in competitions for tabular datasets but also enjoy competitions for computer 

vision.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I always try to start simple and build a submission pipeline for smaller/simpler models first. A major 

step here is to create a proper validation scheme so you can validate your ideas in a robust way. Also, it is 

always a good idea to spend as much time as you can looking at the data and analyzing it.

In my day-to-day work, I am building an AutoML platform, so a lot of things I try on Kaggle end up 

being implemented as a part of this platform.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
Nothing comes to my mind, and it doesn’t matter, because what is technically challenging for me could 

be a piece of cake for somebody else. Technical challenges are not that important; what’s important is to 

remember that a competition is somewhat like a marathon, not a sprint. Or you can see it as a marathon 

of sprints if you like. So, it is important not to get exhausted, sleep well, exercise, and take a walk in a park 

to regenerate your brain for new ideas. To win a Kaggle competition, you will need all your creativity 

and expertise and sometimes even a bit of luck.

https://www.kaggle.com/dmitrylarko
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Bias and variance
A good validation system helps you with metrics that are more reliable than the error measures 

you get from your training set. In fact, metrics obtained on the training set are affected by the 

capacity and complexity of each model. You can think of the capacity of a model as its memory 

that it can use to learn from data. 

Has Kaggle helped you in your career? If so, how?
I got my current job thanks to the fact I was a Kaggle Competition Grandmaster. For my current employer, 

this fact was evidence enough of my expertise in the field.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
Mostly they overlook the right validation scheme and follow the feedback from the public leaderboard. 

That ends badly in most cases, leading to something known as a “shake-up” on Kaggle.

Also, they rush to skip exploratory data analysis and build models right away, which leads to simplistic 

solutions and mediocre leaderboard scores.

What mistakes have you made in competitions in the past?
My main mistake is really the same that an inexperienced person will make – following the leaderboard 

score and not my internal validation. Every time I decided to do so, it cost me several places on the lea-

derboard.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
That would be the usual suspects. For tabular data: LightGBM, XGBoost, CatBoost; for deep learning: 

PyTorch, PyTorch-Lightning, timm; and Scikit-learn for everyone.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Start simple, always validate; believe in your validation score and not the leaderboard score.
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Each model has a set of internal parameters that help the model to record the patterns taken 

from the data. Every model has its own skills for acquiring patterns, and some models will spot 

certain rules or associations whereas others will spot others. As a model extracts patterns from 

data, it records them in its “memory.”

You also hear about the capacity or expressiveness of a model as a matter of bias and variance. 

In this case, the bias and variance of a model refer to the predictions, but the underlying princi-

ple is strictly related to the expressiveness of a model. Models can be reduced to mathematical 

functions that map an input (the observed data) to a result (the predictions). Some mathematical 

functions are more complex than others, in the number of internal parameters they have and in 

the ways they use them:

• If the mathematical function of a model is not complex or expressive enough to capture 

the complexity of the problem you are trying to solve, we talk of bias, because your pre-

dictions will be limited (“biased”) by the limits of the model itself.

• If the mathematical function at the core of a model is too complex for the problem at 

hand, we have a variance problem, because the model will record more details and noise 

in the training data than needed and its predictions will be deeply influenced by them 

and become erratic.

Nowadays, given the advances in machine learning and the available computation resources, the 

problem is always due to variance, since deep neural networks and gradient boosting, the most 

commonly used solutions, often have a mathematical expressiveness that exceeds what most of 

the problems you will face need in order to be solved.

When all the useful patterns that a certain model can extract have been captured, if the model has 

not exhausted its capacity, it will then start memorizing data characteristics and signals that are 

unrelated to the prediction (usually referred to as noise). While the initially extracted patterns 

will help the model to generalize to a test dataset and predict more correctly, not everything that 

it learns specifically about the training set will help; instead, it may damage its performance. The 

process of learning elements of the training set that have no generalization value is commonly 

called overfitting.

The core purpose of validation is to explicitly define a score or loss value that separates the gen-

eralizable part of that value from that due to overfitting the training set characteristics. 
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This is the validation loss. You can see the situation visualized in the following figure of learning 

curves:

Figure 6.1: Learning more from the training data does not always mean learning to predict

If you graph the loss measure on the y-axis against some measure of learning effort of the model 

(this could be epochs for neural networks, or rounds for gradient boosting) on the x-axis, you 

will notice that learning always seems to happen on the training dataset, but this is not always 

true on other data.

The same thing happens even if you change the hyperparameters, process the data, or decide 

on a different model altogether. The curves will change shape, but you’ll always have a sweet 

point where overfitting starts. That point can be different across models and between the various 

choices that you make in your modeling efforts. If you have properly computed the point when 

overfitting starts thanks to a correct validation strategy, your model’s performance will surely 

correlate with the leaderboard results (both public and private), and your validation metrics will 

provide you with a proxy to evaluate your work without making any submissions.
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You can hear about overfitting at various levels:

• At the level of the training data, when you use a model that is too complex for the problem

• At the level of the validation set itself, when you tune your model too much with respect 

to a specific validation set

• At the level of the public leaderboard, when your results are far from what you would 

expect from your training

• At the level of the private leaderboard, when in spite of the good results on the public 

leaderboard, your private scores will be disappointing

Though slightly different in meaning, they all equally imply that your model is not generalizable, 

as we have described in this section.

Trying different splitting strategies
As previously discussed, the validation loss is based on a data sample that is not part of the training 

set. It is an empirical measure that tells you how good your model is at predicting, and a more 

correct one than the score you get from your training, which will tell you mostly how much your 

model has memorized the training data patterns. Correctly choosing the data sample you use for 

validation constitutes your validation strategy.

To summarize the strategies for validating your model and measuring its performance correctly, 

you have a couple of choices:

• The first choice is to work with a holdout system, incurring the risk of not properly 

choosing a representative sample of the data or overfitting to your validation holdout.

• The second option is to use a probabilistic approach and rely on a series of samples to 

draw your conclusions on your models. Among the probabilistic approaches, you have 

cross-validation, leave-one-out (LOO), and bootstrap. Among the cross-validation strat-

egies, there are different nuances depending on the sampling strategies you take based on 

the characteristic of your data (simple random sampling, stratified sampling, sampling 

by groups, time sampling).

What all these strategies have in common is that they are sampling strategies. It means that they 

help you to infer a general measure (the performance of your model) based on a small part of 

your data, randomly selected. Sampling is at the root of statistics and it is not an exact procedure 

because, based on your sampling method, your available data, and the randomness of picking up 

certain cases as part of your sample, you will experience a certain degree of error. 
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For instance, if you rely on a biased sample, your evaluation metric may be estimated incorrectly 

(over- or under-estimated). However, if properly designed and implemented, sampling strategies 

generally provide you with a good estimate of your general measure.

The other aspect that all these strategies have in common is that they are partitions, which divide 

cases in an exclusive way as either part of the training or part of the validation. In fact, as we dis-

cussed, since most models have a certain memorization capability, using the same cases in both 

training and validation leads to inflated estimates because it allows the model to demonstrate 

its memorization abilities; instead, we want it to be evaluated on its ability to derive patterns 

and functions that work on unseen examples.

The basic train-test split
The first strategy that we will analyze is the train-test split. In this strategy, you sample a portion 

of your training set (also known as the holdout) and you use it as a test set for all the models that 

you train using the remaining part of the data.

The great advantage of this strategy is that it is very simple: you pick up a part of your data and 

you check your work on that part. You usually split the data 80/20 in favor of the training partition. 

In Scikit-learn, it is implemented in the train_test_split function. We’ll draw your attention 

to a couple of aspects of the method:

• When you have large amounts of data, you can expect that the test data you extract is 

similar to (representative of) the original distribution on the entire dataset. However, since 

the extraction process is based on randomness, you always have the chance of extracting 

a non-representative sample. In particular, the chance increases if the training sample 

you start from is small. Comparing the extracted holdout partition using adversarial val-

idation (more about this in a few sections) can help you to make sure you are evaluating 

your efforts in a correct way.

• In addition, to ensure that your test sampling is representative, especially with regard 

to how the training data relates to the target variable, you can use stratification, which 

ensures that the proportions of certain features are respected in the sampled data. You 

can use the stratify parameter in the train_test_split function and provide an array 

containing the class distribution to preserve.

We have to remark that, even if you have a representative holdout available, sometimes a simple 

train-test split is not enough for ensuring a correct tracking of your efforts in a competition. 
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In fact, as you keep checking on this test set, you may drive your choices to some kind of adapta-

tion overfitting (in other words, erroneously picking up the noise of the training set as signals), as 

happens when you frequently evaluate on the public leaderboard. For this reason, a probabilistic 

evaluation, though more computationally expensive, is more suited for a competition.

Probabilistic evaluation methods
Probabilistic evaluation of the performance of a machine learning model is based on the statistical 
properties of a sample from a distribution. By sampling, you create a smaller set of your original 
data that is expected to have the same characteristics. In addition, what is left untouched from 
the sampling constitutes a sample in itself, and it is also expected to have the same characteristics 
as the original data. By training and testing your model on this sampled data and repeating this 
procedure a large number of times, you are basically creating a statistical estimator measuring 
the performance of your model. Every sample may have some “error” in it; that is, it may not be 
fully representative of the true distribution of the original data. However, as you sample more, 
the mean of your estimators on these multiple samples will converge to the true mean of the 
measure you are estimating (this is an observed outcome that, in probability, is explained by a 
theorem called the Law of Large Numbers).

Probabilistic estimators naturally require more computations than a simple train-test split, but 
they offer more confidence that you are correctly estimating the right measure: the general per-

formance of your model.

k-fold cross-validation
The most used probabilistic validation method is k-fold cross-validation, which is recognized 

as having the ability to correctly estimate the performance of your model on unseen test data 

drawn from the same distribution. 

k-fold cross-validation can be successfully used to compare predictive models, as well as when 

selecting the hyperparameters for your model that will perform the best on the test set.

There are quite a few different variations of k-fold cross-validation, but the simplest one, which 
is implemented in the KFold function in Scikit-learn, is based on the splitting of your available 
training data into k partitions. After that, for k iterations, one of the k partitions is taken as a test 
set while the others are used for the training of the model. 

This is clearly explained in the paper Bates, S., Hastie, T., and Tibshirani, R.; Cross-val-

idation: what does it estimate and how well does it do it? arXiv preprint arX iv:2104.00673, 

2021 (https://arxiv.org/pdf/2104.00673.pdf).

https://arxiv.org/pdf/2104.00673.pdf
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The k validation scores are then averaged and that averaged score value is the k-fold validation 

score, which will tell you the estimated average model performance on any unseen data. The 

standard deviation of the scores will inform you about the uncertainty of the estimate. Figure 6.2 

demonstrates how 5-fold cross-validation is structured:

Figure 6.2: How a 5-fold validation scheme is structured

One important aspect of the k-fold cross-validation score you have to keep in mind is that it 

estimates the average score of a model trained on the same quantity of data as k - 1 folds. If, after-

ward, you train your model on all your data, the previous validation estimate no longer holds. As 

k approaches the number n of examples, you have an increasingly correct estimate of the model 

derived on the full training set, yet, due to the growing correlation between the estimates you 

obtain from each fold, you will lose all the probabilistic estimates of the validation. In this case, 

you’ll end up having a number showing you the performance of your model on your training 

data (which is still a useful estimate for comparison reasons, but it won’t help you in correctly 

estimating the generalization power of your model).

When you reach k = n, you have the LOO validation method, which is useful when you have a 

few cases available. The method is mostly an unbiased fitting measure since it uses almost all 

the available data for training and just one example for testing. Yet it is not a good estimate of 

the expected performance on unseen data. Its repeated tests over the whole dataset are highly 

correlated with each other and the resulting LOO metric represents more the performance of 

the model on the dataset itself than the performance the model would have on unknown data.
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The correct k number of partitions to choose is decided based on a few aspects relative to the 

data you have available:

• The smaller the k (the minimum is 2), the smaller each fold will be, and consequently, the 

more bias in learning there will be for a model trained on k - 1 folds: your model validated 

on a smaller k will be less well-performing with respect to a model trained on a larger k.

• The higher the k, the more the data, yet the more correlated your validation estimates: 

you will lose the interesting properties of k-fold cross-validation in estimating the per-

formance on unseen data. 

Commonly, k is set to 5, 7, or 10, more seldom to 20 folds. We usually regard k = 5 or k = 10 as 

a good choice for a competition, with the latter using more data for each training (90% of the 

available data), and hence being more suitable for figuring out the performance of your model 

when you retrain on the full dataset.

When deciding upon what k to choose for a specific dataset in a competition, we find it useful to 

reflect on two perspectives.

Firstly, the choice of the number of folds should reflect your goals:

• If your purpose is performance estimation, you need models with low bias estimates 

(which means no systematic distortion of estimates). You can achieve this by using a 

higher number of folds, usually between 10 and 20.

• If your aim is parameter tuning, you need a mix of bias and variance, so it is advisable to 

use a medium number of folds, usually between 5 and 7.

• Finally, if your purpose is just to apply variable selection and simplify your dataset, you 

need models with low variance estimates (or you will have disagreement). Hence, a lower 

number of folds will suffice, usually between 3 and 5.

When the size of the available data is quite large, you can safely stay on the lower side of the 

suggested bands.

Secondly, if you are just aiming for performance estimation, consider that the more folds you use, 

the fewer cases you will have in your validation set, so the more the estimates of each fold will 

be correlated. Beyond a certain point, increasing k renders your cross-validation estimates less 

predictive of unseen test sets and more representative of an estimate of how well-performing 

your model is on your training set. This also means that, with more folds, you can get the perfect 

out-of-fold prediction for stacking purposes, as we will explain in detail in Chapter 9, Ensembling 

with Blending and Stacking Solutions.
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k-fold variations
Since it is based on random sampling, k-fold can provide unsuitable splits when:

• You have to preserve the proportion of small classes, both at a target level and at the 

level of features. This is typical when your target is highly imbalanced. Typical examples 

are spam datasets (because spam is a small fraction of the normal email volume) or any 

credit risk dataset where you have to predict the not-so-frequent event of a defaulted loan.

• You have to preserve the distribution of a numeric variable, both at a target level and at 

the level of features. This is typical of regression problems where the distribution is quite 

skewed or you have heavy, long tails. A common example is house price prediction, where 

you have a consistent small portion of houses on sale that will cost much more than the 

average house.

• Your cases are non-i.i.d, in particular when dealing with time series forecasting.

In the first two scenarios, the solution is the stratified k-fold, where the sampling is done in a 

controlled way that preserves the distribution you want to preserve. If you need to preserve the 

distribution of a single class, you can use StratifiedKFold from Scikit-learn, using a stratifica-

tion variable, usually your target variable but also any other feature whose distribution you need 

to preserve. The function will produce a set of indexes that will help you to partition your data 

accordingly. You can also obtain the same result with a numeric variable, after having discretized 

it, using pandas.cut or Scikit-learn’s KBinsDiscretizer.

It is a bit more complicated when you have to stratify based on multiple variables or overlapping 

labels, such as in multi-label classification. 

In Kaggle competitions, k-fold cross-validation is often applied not only for validating 

your solution approach and figuring out the performance of your model, but to pro-

duce your prediction. When you cross-validate, you are subsampling, and averaging 

the results of multiple models built on subsamples of the data is an effective strategy 

for fighting against variance, and often more effective than training on all the data 

available (we will discuss this more in Chapter 9). Hence, many Kaggle competitors 

use the models built during cross-validation to provide a series of predictions on 

the test set that, averaged, will provide them with the solution.
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You can find a solution in the Scikit-multilearn package (http://scikit.ml/), in particular, 

the IterativeStratification command that helps you to control the order (the number of 

combined proportions of multiple variables) that you want to preserve (http://scikit.ml/

api/skmultilearn.model_selection.iterative_stratification.html). It implements the 

algorithm explained by the following papers:

• Sechidis, K., Tsoumakas, G., and Vlahavas, I. (2011). On the stratification of multi-label data. 

Machine Learning and Knowledge Discovery in Databases, 145-158. http://lpis.csd.auth.

gr/publications/sechidis-ecmlpkdd-2011.pdf

• Szymański, P. and Kajdanowicz, T.; Proceedings of the First International Workshop on 

Learning with Imbalanced Domains: Theory and Applications, PMLR 74:22-35, 2017. http://

proceedings.mlr.press/v74/szyma%C5%84ski17a.html

You can actually make good use of stratification even when your problem is not a classification, 

but a regression. Using stratification in regression problems helps your regressor to fit during 

cross-validation on a similar distribution of the target (or of the predictors) to the one found in 

the entire sample. In these cases, in order to have StratifiedKFold working correctly, you have 

to use a discrete proxy for your target instead of your continuous target.

The first, simplest way of achieving this is to use the pandas cut function and divide your target 

into a large enough number of bins, such as 10 or 20:

import pandas as pd

y_proxy = pd.cut(y_train, bins=10, labels=False)

In order to determine the number of bins to be used, Abhishek Thakur prefers to use Sturges’ rule 

based on the number of examples available, and provide that number to the pandas cut function 

(see https://www.kaggle.com/abhishek/step-1-create-folds):

import numpy as np

bins = int(np.floor(1 + np.log2(len(X_train))))

An alternative approach is to focus on the distributions of the features in the training set and aim 

to reproduce them. This requires the use of cluster analysis (an unsupervised approach) on the 

features of the training set, thus excluding the target variable and any identifiers, and then using 

the predicted clusters as strata. You can see an example in this Notebook (https://www.kaggle.

com/lucamassaron/are-you-doing-cross-validation-the-best-way), where first a PCA (princi-

pal component analysis) is performed to remove correlations, and then a k-means cluster analysis 

is performed. You can decide on the number of clusters to use by running empirical tests.

http://scikit.ml/
http://scikit.ml/api/skmultilearn.model_selection.iterative_stratification.html
http://scikit.ml/api/skmultilearn.model_selection.iterative_stratification.html
http://lpis.csd.auth.gr/publications/sechidis-ecmlpkdd-2011.pdf
http://lpis.csd.auth.gr/publications/sechidis-ecmlpkdd-2011.pdf
http://proceedings.mlr.press/v74/szyma%C5%84ski17a.html
http://proceedings.mlr.press/v74/szyma%C5%84ski17a.html
https://www.kaggle.com/abhishek/step-1-create-folds
https://www.kaggle.com/lucamassaron/are-you-doing-cross-validation-the-best-way
https://www.kaggle.com/lucamassaron/are-you-doing-cross-validation-the-best-way
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Proceeding with our discussion of the cases where k-fold can provide unsuitable splits, things get 

tricky in the third scenario, when you have non-i.i.d. data, such as in the case of some grouping 

happening among examples. The problem with non-i.i.d. examples is that the features and target 

are correlated between the examples (hence it is easier to predict all the examples if you know 

just one example among them). In fact, if you happen to have the same group divided between 

training and testing, your model may learn to distinguish the groups and not the target itself, 

producing a good validation score but very bad results on the leaderboard. The solution here is 

to use GroupKFold: by providing a grouping variable, you will have the assurance that each group 

will be placed either in the training folds or in the validation ones, but never split between the two.

Time series analysis presents the same problem, and since data is non-i.i.d., you cannot validate 

by random sampling because you will mix different time frames and later time frames could bear 

traces of the previous ones (a characteristic called auto-correlation in statistics). In the most 

basic approach to validation in time series, you can use a training and validation split based on 

time, as illustrated by Figure 6.3:

Figure 6.3: Training and validation splits are based on time

Your validation capabilities will be limited, however, since your validation will be anchored to a 

specific time. For a more complex approach, you can use time split validation, TimeSeriesSplit, 

as provided by the Scikit-learn package (sklearn.model_selection.TimeSeriesSplit). 

TimeSeriesSplit can help you set the timeframe of your training and testing portions of the 

time series. 

Discovering groupings in the data that render your data non-i.i.d. is actually not an 

easy task to accomplish. Unless stated by the competition problem, you will have to 

rely on your ability to investigate the data (using unsupervised learning techniques, 

such as cluster analysis) and the domain of the problem. For instance, if your data 

is about mobile telephone usage, you may realize that some examples are from the 

same user by noticing sequences of similar values in the features.
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In the case of the training timeframe, the TimeSeriesSplit function can help you to set your 

training data so it involves all the past data before the test timeframe, or limit it to a fixed period 

lookback (for instance, always using the data from three months before the test timeframe for 

training).

In Figure 6.4, you can see the structure of a time-based validation strategy involving a growing 

training set and a moving validation set:

Figure 6.4: The training set is growing over time

In Figure 6.5, you can instead see how the strategy changes if you stipulate that the training set 

has a fixed lookback:

Figure 6.5: Training and validation splits are moving over time

In our experience, going by a fixed lookback helps to provide a fairer evaluation of time series 

models since you are always counting on the same training set size. 
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By instead using a growing training set size over time, you confuse the effects of your model 

performance across time slices with the decreasing bias in your model (since more examples 

mean less bias).

Finally, remember that TimeSeriesSplit can be set to keep a pre-defined gap between your 

training and test time. This is extremely useful when you are told that the test set is a certain 

amount of time in the future (for instance, a month after the training data) and you want to test 

if your model is robust enough to predict that far into the future.

Nested cross-validation
At this point, it is important to introduce nested cross-validation. Up to now, we have only 

discussed testing models with respect to their final performance, but often you also need to test 

their intermediate performance when tuning their hyperparameters. In fact, you cannot test how 

certain model parameters work on your test set and then use the same data in order to evaluate 

the final performance. Since you have specifically found the best parameters that work on the 

test set, your evaluation measure on the same test set will be too optimistic; on a different test set, 

you will probably not obtain the exact same result. In this case, you have to distinguish between a 

validation set, which is used to evaluate the performance of various models and hyperparameters, 

and a test set, which will help you to estimate the final performance of the model.

If you are using a test-train split, this is achieved by splitting the test part into two new parts. 

The usual split is 70/20/10 for training, validation, and testing, respectively (but you can decide 

differently). If you are using cross-validation, you need nested cross-validation; that is, you do 

cross-validation based on the split of another cross-validation. Essentially, you run your usual 

cross-validation, but when you have to evaluate different models or different parameters, you 

run cross-validation based on the fold split.

The example in Figure 6.6 demonstrates this internal and external cross-validation structure. 

Within the external part, you determine the portion of the data used to test your evaluation 

metric. Within the internal part, which is fed by the training data from the external part, you 

arrange training/validation splits in order to evaluate and optimize specific model choices, such 

as deciding which model or hyperparameter values to pick:
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Figure 6.6: How nested cross-validation is structured in an external and an internal loop

This approach has the advantage of making your test and parameter search fully reliable, but in 

doing so you incur a couple of problems:

• A reduced training set, since you first split by cross-validation, and then you split again

• More importantly, it requires a huge amount of model building: if you run two nested 

10-fold cross-validations, you’ll need to run 100 models
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Especially for this last reason, some Kagglers tend to ignore nested cross-validation and risk 

some adaptive fitting by using the same cross-validation for both model/parameter search and 

performance evaluation, or using a fixed test sample for the final evaluation. In our experience, 

this approach can work as well, though it may result in overestimating model performance and 

overfitting if you are generating out-of-fold predictions to be used for successive modeling (some-

thing we are going to discuss in the next section). We always suggest you try the most suitable 

methodology for testing your models. If your aim is to correctly estimate your model’s perfor-

mance and reuse its predictions in other models, remember that using nested cross-validation, 

whenever possible, can provide you with a less overfitting solution and could make the difference 

in certain competitions.

Producing out-of-fold predictions (OOF)
An interesting application of cross-validation, besides estimating your evaluation metric perfor-

mance, is producing test predictions and out-of-fold predictions. In fact, as you train on portions 

of your training data and predict on the remaining ones, you can:

• Predict on the test set: The average of all the predictions is often more effective than re-train-

ing the same model on all the data: this is an ensembling technique related to blending, which 

will be dealt with in Chapter 9, Ensembling with Blending and Stacking Solutions.

• Predict on the validation set: In the end, you will have predictions for the entire training 

set and can re-order them in the same order as the original training data. These predictions 

are commonly referred to as out-of-fold (OOF) predictions and they can be extremely 

useful.

The first use of OOF predictions is to estimate your performance since you can compute your 

evaluation metric directly on the OOF predictions. The performance obtained is different from 

the cross-validated estimates (based on sampling); it doesn’t have the same probabilistic char-

acteristics, so it is not a valid way to measure generalization performance, but it can inform you 

about the performance of your model on the specific set you are training on.

A second use is to produce a plot and visualize the predictions against the ground truth values or 

against other predictions obtained from different models. This will help you in understanding 

how each model works and if their predictions are correlated.

The last use is to create meta-features or meta-predictors. This will also be fully explored in Chapter 

9, but it is important to remark on now, as OOF predictions are a byproduct of cross-validation 

and they work because, during cross-validation, your model is always predicting on examples 

that it has not seen during training time. 
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Since every prediction in your OOF predictions has been generated by a model trained on different 

data, these predictions are unbiased and you can use them without any fear of overfitting (though 

there are some caveats that will be discussed in the next chapter).

Generating OOF predictions can be done in two ways:

• By coding a procedure that stores the validation predictions into a prediction vector, tak-

ing care to arrange them in the same index position as the examples in the training data

• By using the Scikit-learn function cross_val_predict, which will automatically generate 

the OOF predictions for you

We will be seeing this second technique in action when we look at adversarial validation later 

in this chapter.

Subsampling
There are other validation strategies aside from k-fold cross-validation, but they do not have 

the same generalization properties. We have already discussed LOO, which is the case when k = 

n (where n is the number of examples). Another choice is subsampling. Subsampling is similar 

to k-fold, but you do not have fixed folds; you use as many as you think are necessary (in other 

words, take an educated guess). You repetitively subsample your data, each time using the data 

that you sampled as training data and the data that has been left unsampled for your validation. 

By averaging the evaluation metrics of all the subsamples, you will get a validation estimate of 

the performances of your model.

Since you are systematically testing all your examples, as in k-fold, you actually need quite a lot of 

trials to have a good chance of testing all of them. For the same reason, some cases may be tested 

more than others if you do not apply enough subsamples. You can run this sort of validation using 

ShuffleSplit from Scikit-learn.

The bootstrap
Finally, another option is to try the bootstrap, which has been devised in statistics to conclude 

the error distribution of an estimate; for the same reasons, it can be used for performance esti-

mation. The bootstrap requires you to draw a sample, with replacement, that is the same size as 

the available data. 
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At this point, you can use the bootstrap in two different ways:

• As in statistics, you can bootstrap multiple times, train your model on the samples, and 

compute your evaluation metric on the training data itself. The average of the bootstraps 

will provide your final evaluation.

• Otherwise, as in subsampling, you can use the bootstrapped sample for your training and 

what is left not sampled from the data as your test set.

In our experience, the first method of calculating the evaluation metric on the bootstrapped train-

ing data, often used in statistics for linear models in order to estimate the value of the model’s 

coefficients and their error distributions, is much less useful in machine learning. This is because 

many machine learning algorithms tend to overfit the training data, hence you can never have 

a valid metric evaluation on your training data, even if you bootstrap it. For this reason, Efron 

and Tibshirani (see Efron, B. and Tibshirani, R. Improvements on cross-validation: the 632+ bootstrap 

method. Journal of the American Statistical Association 92.438 (1997): 548-560.) proposed the 

632+ estimator as a final validation metric.

At first, they proposed a simple version, called the 632 bootstrap:𝐸𝐸𝐸𝐸𝐸𝐸.632 = 0.368 ∗ 𝑒𝑒𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓 + 0.632 ∗ 𝑒𝑒𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 

In this formula, given your evaluation metric err, errfit is your metric computed on the training 

data and errbootstrap is the metric computed on the bootstrapped data. However, in the case of an 

overfitted training model, errfit would tend to zero, rendering the estimator not very useful. There-

fore, they developed a second version of the 632+ bootstrap:𝐸𝐸𝐸𝐸𝐸𝐸.632 + (1 − 𝑤𝑤) ∗ 𝑒𝑒𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑤𝑤 ∗ 𝑒𝑒𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 

Where w is: 𝑤𝑤 𝑤 0.6321 − 0.632𝑅𝑅 

𝑅𝑅 𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑏𝑏𝛾𝛾 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑏𝑏  

Here you have a new parameter, 𝛾𝛾 , which is the no-information error rate, estimated by eval-

uating the prediction model on all possible combinations of targets and predictors. Calculating 𝛾𝛾  is indeed intractable, as discussed by the developers of Scikit-learn (https://github.com/

scikit-learn/scikit-learn/issues/9153).

https://github.com/scikit-learn/scikit-learn/issues/9153
https://github.com/scikit-learn/scikit-learn/issues/9153
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Given the limits and intractability of using the bootstrap as in classical statistics for machine 

learning applications, you can instead use the second method, getting your evaluation from the 

examples left not sampled by the bootstrap. 

In this form, the bootstrap is an alternative to cross-validation, but as with subsampling, it re-

quires building many more models and testing them than for cross-validation. However, it makes 

sense to know about such alternatives in case your cross-validation is showing too high a variance 

in the evaluation metric and you need more intensive checking through testing and re-testing.

Previously, this method has been implemented in Scikit-learn (https://github.com/scikit-

learn/scikit-learn/blob/0.16.X/sklearn/cross_validation.py#L613) but was then re-

moved. Since you cannot find the bootstrap anymore on Scikit-learn and it bootstrapped even 

the test data, you can use our own implementation. Here is our example:

import random

def Bootstrap(n, n_iter=3, random_state=None):

    """

    Random sampling with replacement cross-validation generator.

    For each iter a sample bootstrap of the indexes [0, n) is

    generated and the function returns the obtained sample

    and a list of all the excluded indexes.

    """

    if random_state:

        random.seed(random_state)

    for j in range(n_iter):

        bs = [random.randint(0, n-1) for i in range(n)]

        out_bs = list({i for i in range(n)} - set(bs))

        yield bs, out_bs

In conclusion, the bootstrap is indeed an alternative to cross-validation. It is certainly more widely 

used in statistics and finance. In machine learning, the golden rule is to use the k-fold cross-vali-

dation approach. However, we suggest not forgetting about the bootstrap in all those situations 

where, due to outliers or a few examples that are too heterogeneous, you have a large standard 

error of the evaluation metric in cross-validation. In these cases, the bootstrap will prove much 

more useful in validating your models.

https://github.com/scikit-learn/scikit-learn/blob/0.16.X/sklearn/cross_validation.py#L613
https://github.com/scikit-learn/scikit-learn/blob/0.16.X/sklearn/cross_validation.py#L613
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Ryan Chesler
https://www.kaggle.com/ryches

Our second interview of the chapter is with Ryan Chesler, a Discussions 

Grandmaster and Notebooks and Competitions Master. He is a Data Sci-

entist at H2O.ai and one of the organizers of the San Diego Machine Learn-

ing group on Meetup (https://www.meetup.com/San-Diego-Machine-

Learning/). The importance of validation came up in a few of his answers.

What’s your favourite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I tend to dabble in all kinds of competitions. It is more interesting to sample varied problems than specialize 

in a specific niche like computer vision or natural language processing. The ones I find most interesting 

are the ones where there are deep insights that can be derived from the data and error of predictions. For 

me, error analysis is one of the most illuminating processes; understanding where the model is failing 

and trying to find some way to improve the model or input data representation to address the weakness.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
My approach is similar in both cases. Many people seem to favor exploratory data analysis before any 

modeling efforts, but I find that the process of preparing the data for modeling is usually sufficient. My 

typical approach is to manually view the data and make some preliminary decisions about how I think 

I can best model the data and different options to explore. After this, I build the model and evaluate per-

formance, and then focus on analysing errors and reason about the next modeling steps based on where 

I see the model making errors.

Has Kaggle helped you in your career? If so, how?
Yes, it helped me get my current job. I work at H2O and they greatly value Kaggle achievements. My 

previous job also liked that I performed well in competitions.

You are also the organizer of a meetup in San Diego with over two 
thousand participants. Is this related to your experience with Kaggle?
Yes, it is absolutely related. I started from very little knowledge and tried out a Kaggle competition without 

much success at first. I went to a local meetup and found people to team up with and learn from. At the 

time, I got to work with people of a much higher skill level than me and we did really well in a competi-

tion, 3rd/4500+ teams. 

https://www.kaggle.com/ryches
https://www.meetup.com/San-Diego-Machine-Learning/
https://www.meetup.com/San-Diego-Machine-Learning/
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After this, the group stopped being as consistent and I wanted to keep the community going, so I made 

my own group and started organizing my own events. I’ve been doing that for almost 4 years and I get 

to be on the opposite side of the table teaching people and helping them get started. We originally just 

focused on Kaggle competitions and trying to form teams, but have slowly started branching off to doing 

book clubs and lectures on various topics of interest. I attribute a lot of my success to having this dedicated 

weekly time to study and think about machine learning.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
In my experience, a lot of people overstate the importance of bias-variance trade-off and overfitting. 

This is something I have seen people consistently worry about too much. The focus should not be making 

training and validation performance close, but make validation performance as good as possible.

What mistakes have you made in competitions in the past?
My consistent mistake is not exploring enough. Sometimes I have ideas that I discount too early and turn 

out to be important for improving performance. Very often I can get close to competitive performance 

on the first try, but iterating and continuing to improve as I try new things takes a slightly different skill 

that I am still working on mastering.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
I use a lot of the standard tools: XGBoost, LightGBM, Pytorch, TensorFlow, Scikit-learn. I don’t have any 

strong affinity for a specific tool or library, just whatever is relevant to the problem.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
I think the most important thing people have to keep in mind is good validation. Very often I see people 

fooling themselves thinking their performance is improving but then submitting to the leaderboard and 

realizing it didn’t actually go how they expected. It is an important skill to understand how to match 

assumptions with your new unseen data and build a model that is robust to new conditions.
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Tuning your model validation system
At this point, you should have a complete overview of all possible validation strategies. When 

you approach a competition, you devise your validation strategy and you implement it. Then, you 

test if the strategy you have chosen is correct.

As a golden rule, be guided in devising your validation strategy by the idea that you have to rep-

licate the same approach used by the organizers of the competition to split the data into training, 

private, and public test sets. Ask yourself how the organizers have arranged those splits. Did they 

draw a random sample? Did they try to preserve some specific distribution in the data? Are the 

test sets actually drawn from the same distribution as the training data?

These are not the questions you would ask yourself in a real-world project. Contrary to a real-world 

project where you have to generalize at all costs, a competition has a much narrower focus on 

having a model that performs on the given test set (especially the private one). If you focus on 

this idea from the beginning, you will have more of a chance of finding out the best validation 

strategy, which will help you rank more highly in the competition.

Since this is a trial-and-error process, as you try to find the best validation strategy for the com-

petition, you can systematically apply the following two consistency checks in order to figure 

out if you are on the right path:

1. First, you have to check if your local tests are consistent, that is, that the single cross-val-

idation fold errors are not so different from each other or, when you opt for a simple 

train-test split, that the same results are reproducible using different train-test splits.

2. Then, you have to check if your local validation error is consistent with the results on the 

public leaderboard.

If you’re failing the first check, you have a few options depending on the following possible or-

igins of the problem:

• You don’t have much training data

• The data is too diverse and every training partition is very different from every other (for 

instance, if you have too many high cardinality features, that is, features with too many 

levels – like zip codes – or if you have multivariate outliers)
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In both cases, the point is that you lack data with respect to the model you want to implement. 

Even when the problem just appears to be that the data is too diverse, plotting learning curves 

will make it evident to you that your model needs more data. 

In this case, unless you find out that moving to a simpler algorithm works on the evaluation 

metric (in which case trading variance for bias may worsen your model’s performance, but not 

always), your best choice is to use an extensive validation approach. This can be implemented by:

• Using larger k values (thus approaching LOO where k = n). Your validation results will be 

less about the capability of your model to perform on unseen data, but by using larger 

training portions, you will have the advantage of more stable evaluations.

• Averaging the results of multiple k-fold validations (based on different data partitions 

picked by different random seed initializations).

• Using repetitive bootstrapping.

Keep in mind that when you find unstable local validation results, you won’t be the only one to 

suffer from the problem. Usually, this is a common problem due to the data’s origin and charac-

teristics. By keeping tuned in to the discussion forums, you may get hints at possible solutions. 

For instance, a good solution for high cardinality features is target encoding; stratification can 

help with outliers; and so on.

The situation is different when you’ve passed the first check but failed the second; your local 

cross-validation is consistent but you find that it doesn’t hold on the leaderboard. In order to 

realize this problem exists, you have to keep diligent note of all your experiments, validation test 

types, random seeds used, and leaderboard results if you submitted the resulting predictions. In 

this way, you can draw a simple scatterplot and try fitting a linear regression or, even simpler, 

compute a correlation between your local results and the associated public leaderboard scores. 

It costs some time and patience to annotate and analyze all of these, but it is the most important 

meta-analysis of your competition performances that you can keep track of.

When the mismatch is because your validation score is systematically lower or higher than the 

leaderboard score, you actually have a strong signal that something is missing from your vali-

dation strategy, but this problem does not prevent you from improving your model. In fact, you 

can keep on working on your model and expect improvements to be reflected on the leaderboard, 

though not in a proportional way. However, systematic differences are always a red flag, implying 

something is different between what you are doing and what the organizers have arranged for 

testing the model.
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An even worse scenario occurs when your local cross-validation scores do not correlate at all with 

the leaderboard feedback. This is really a red flag. When you realize this is the case, you should 

immediately run a series of tests and investigations in order to figure out why, because, regard-

less of whether it is a common problem or not, the situation poses a serious threat to your final 

rankings. There are a few possibilities in such a scenario:

• You figure out that the test set is drawn from a different distribution to the training set. 

The adversarial validation test (that we will discuss in the next section) is the method 

that can enlighten you in such a situation.

• The data is non-i.i.d. but this is not explicit. For instance, in The Nature Conservancy Fish-

eries Monitoring competition (https://www.kaggle.com/c/the-nature-conservancy-

fisheries-monitoring), images in the training set were taken from similar situations 

(fishing boats). You had to figure out by yourself how to arrange them in order to avoid 

the model learning to identify the target rather than the context of the images (see, for 

instance, this work by Anokas: https://www.kaggle.com/anokas/finding-boatids).

• The multivariate distribution of the features is the same, but some groups are distributed 

differently in the test set. If you can figure out the differences, you can set your training 

set and your validation accordingly and gain an edge. You need to probe the public lea-

derboard to work this out.

• The test data is drifted or trended, which is usually the case in time series predictions. 

Again, you need to probe the public leaderboard to get some insight about some possible 

post-processing that could help your score, for instance, applying a multiplier to your 

predictions, thus mimicking a decreasing or increasing trend in the test data.

As we’ve discussed before, probing the leaderboard is the act of making specifically devised sub-

missions in order to get insights about the composition of the public test set. It works particularly 

well if the private test set is similar to the public one. There are no general methods for probing, 

so you have to devise a probing methodology according to the type of competition and problem.

For instance, in the paper Climbing the Kaggle Leaderboard by Exploiting the Log-Loss Oracle (https://

export.arxiv.org/pdf/1707.01825), Jacob explains how to get fourth position in a competition 

without even downloading the training data.

With regard to regression problems, in the recent 30 Days of ML organized by Kaggle, Hung Khoi 

explained how probing the leaderboard helped him to understand the differences in the mean 

and standard deviation of the target column between the training dataset and the public test 

data (see: https://www.kaggle.com/c/30-days-of-ml/discussion/269541). 

https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring
https://www.kaggle.com/anokas/finding-boatids
https://export.arxiv.org/pdf/1707.01825
https://export.arxiv.org/pdf/1707.01825
https://www.kaggle.com/c/30-days-of-ml/discussion/269541
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He used the following equation:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 (𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 𝑚 𝑚𝑚𝑚𝑚𝑀𝑀𝑚𝑚𝑚𝑚𝑀𝑀𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)2 

Essentially, you need just two submissions to solve for the mean and variance of the test target, 

since there are two unknown terms – variance and mean.

You can also get some other ideas about leaderboard probing from Chris Deotte (https://

www.kaggle.com/cdeotte) from this post, https://www.kaggle.com/cdeotte/lb-probing-

strategies-0-890-2nd-place, relevant to the Don’t Overfit II competition (https://www.kaggle.

com/c/dont-overfit-ii).

Using adversarial validation
As we have discussed, cross-validation allows you to test your model’s ability to generalize to 

unseen datasets coming from the same distribution as your training data. Hopefully, since in a 

Kaggle competition you are asked to create a model that can predict on the public and private 

datasets, you should expect that such test data is from the same distribution as the training data. 

In reality, this is not always the case.

Even if you do not overfit to the test data because you have based your decision not only on the 

leaderboard results but also considered your cross-validation, you may still be surprised by the 

results. This could happen in the event that the test set is even slightly different from the training 

set on which you have based your model. In fact, the target probability and its distribution, as 

well as how the predictive variables relate to it, inform your model during training about certain 

expectations that cannot be satisfied if the test data is different from the training data.

Hence, it is not enough to avoid overfitting to the leaderboard as we have discussed up to now, but, 

in the first place, it is also advisable to find out if your test data is comparable to the training data. 

Then, if they differ, you have to figure out if there is any chance that you can mitigate the different 

distributions between training and test data and build a model that performs on that test set.

If you want to get a feeling about how probing information from the leaderboard 

is a double-edged sword, you can read about how Zahar Chikishev managed to 

probe information from the LANL Earthquake Prediction competition, ending up 

in 87th place in the private leaderboard after leading in the public one: https:// 
towardsdatascience.com/how-to-lb-probe-on-kaggle-c0aa21458bfe

https://www.kaggle.com/cdeotte
https://www.kaggle.com/cdeotte
https://www.kaggle.com/cdeotte/lb-probing-strategies-0-890-2nd-place
https://www.kaggle.com/cdeotte/lb-probing-strategies-0-890-2nd-place
https://www.kaggle.com/c/dont-overfit-ii
https://www.kaggle.com/c/dont-overfit-ii
https://towardsdatascience.com/how-to-lb-probe-on-kaggle-c0aa21458bfe
https://towardsdatascience.com/how-to-lb-probe-on-kaggle-c0aa21458bfe
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Adversarial validation has been developed just for this purpose. It is a technique allowing 

you to easily estimate the degree of difference between your training and test data. This tech-

nique was long rumored among Kaggle participants and transmitted from team to team until 

it emerged publicly thanks to a post by Zygmunt Zając (https://www.kaggle.com/zygmunt) on 

his FastML blog.

The idea is simple: take your training data, remove the target, assemble your training data to-

gether with your test data, and create a new binary classification target where the positive label 

is assigned to the test data. At this point, run a machine learning classifier and evaluate for the 

ROC-AUC evaluation metric (we discussed this metric in the previous chapter on Detailing Com-

petition Tasks and Metrics).

If your ROC-AUC is around 0.5, it means that the training and test data are not easily distin-

guishable and are apparently from the same distribution. ROC-AUC values higher than 0.5 and 

nearing 1.0 signal that it is easy for the algorithm to figure out what is from the training set and 

what is from the test set: in such a case, don’t expect to be able to easily generalize to the test set 

because it clearly comes from a different distribution.

Since your data may be of different types (numeric or string labels) and you may have missing 

cases, you’ll need some data processing before being able to successfully run the classifier. Our 

suggestion is to use the random forest classifier because:

• It doesn’t output true probabilities but its results are intended as simply ordinal, which 

is a perfect fit for an ROC-AUC score.

• The random forest is a flexible algorithm based on decision trees that can do feature 

selection by itself and operate on different types of features without any pre-processing, 

while rendering all the data numeric. It is also quite robust to overfitting and you don’t 

have to think too much about fixing its hyperparameters.

You can find an example Notebook written for the Sberbank Russian Housing Mar-

ket competition (https://www.kaggle.com/c/sberbank-russian-housing-

market) that demonstrates a practical example of adversarial validation and its 

usage in a competition here: https://www.kaggle.com/konradb/adversarial-

validation-and-other-scary-terms.

https://www.kaggle.com/zygmunt
https://www.kaggle.com/c/sberbank-russian-housing-market
https://www.kaggle.com/c/sberbank-russian-housing-market
https://www.kaggle.com/konradb/adversarial-validation-and-other-scary-terms
https://www.kaggle.com/konradb/adversarial-validation-and-other-scary-terms
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• You don’t need much data processing because of its tree-based nature. For missing data, 

you can simply replace the values with an improbable negative value such as -999, and 

you can deal with string variables by converting their strings into numbers (for instance, 

using the Scikit-learn label encoder, sklearn.preprocessing.LabelEncoder). As a solu-

tion, it performs less well than one-hot encoding, but it is very speedy and it will work 

properly for the problem.

Although building a classification model is the most direct way to adversarially validate your test 

set, you can also use other approaches. One approach is to map both training and test data into a 

lower-dimensional space, as in this post (https://www.kaggle.com/nanomathias/distribution-

of-test-vs-training-data) by NanoMathias (https://www.kaggle.com/nanomathias). Al-

though requiring more tuning work, such an approach based on t-SNE and PCA has the great 

advantage of being graphically representable in an appealing and understandable way. 

Don’t forget that our brains are more adept at spotting patterns in visual representations than 

numeric ones (for an articulate discussion about our visual abilities, see https://onlinelibrary.

wiley.com/doi/full/10.1002/qua.24480).

Example implementation
While you can find examples of adversarial validation in the original article by Zygmunt and the 

Notebook we linked, we have created a fresh example for you, based on the Playground compe-

tition Tabular Playground Series – Jan 2021 (https://www.kaggle.com/c/tabular-playground-

series-jan-2021).

You start by importing some Python packages and getting the training and test data from the 

competition:

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

PCA and t-SNE are not the only tools that can help you to reduce the dimensionality 

of your data and allow you to visualize it. UMAP (https://github.com/lmcinnes/

umap) can often provide a faster low dimensionality solution with clear and distinct 

data clusters. Variational auto-encoders (discussed in Chapter 7, Modeling for Tab-

ular Competitions) can instead deal with non-linear dimensionality reduction and 

offer a more useful representation than PCA; they are more complicated to set up 

and tune, however.

https://www.kaggle.com/nanomathias/distribution-of-test-vs-training-data
https://www.kaggle.com/nanomathias/distribution-of-test-vs-training-data
https://www.kaggle.com/nanomathias
https://onlinelibrary.wiley.com/doi/full/10.1002/qua.24480
https://onlinelibrary.wiley.com/doi/full/10.1002/qua.24480
https://www.kaggle.com/c/tabular-playground-series-jan-2021
https://www.kaggle.com/c/tabular-playground-series-jan-2021
https://github.com/lmcinnes/umap
https://github.com/lmcinnes/umap
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from sklearn.model_selection import cross_val_predict

from sklearn.metrics import roc_auc_score

train = pd.read_csv("../input/tabular-playground-series-jan-2021/train.csv")

test = pd.read_csv("../input/tabular-playground-series-jan-2021/test.csv")

Data preparation is short and to the point. Since all features are numeric, you won’t need any 

label encoding, but you do have to fill any missing values with a negative number (-1 usually 

works fine), and drop the target and also any identifiers; when the identifier is progressive, the 

adversarial validation may return a high ROC-AUC score:

train = train.fillna(-1).drop(["id", "target"], axis=1)

test = test.fillna(-1).drop(["id", axis=1])

X = train.append(test)

y = [0] * len(train) + [1] * len(test)

At this point, you just need to generate RandomForestClassifier predictions for your data using 

the cross_val_predict function, which automatically creates a cross-validation scheme and 

stores the predictions on the validation fold:

model = RandomForestClassifier()

cv_preds = cross_val_predict(model, X, y, cv=5, n_jobs=-1, 
method='predict_proba')

As a result, you obtain predictions that are unbiased (they are not overfit as you did not predict on 

what you trained) and that can be used for error estimation. Please note that cross_val_predict 

won’t fit your instantiated model, so you won’t get any information from it, such as what the 

important features used by the model are. If you need such information, you just need to fit it 

first by calling model.fit(X, y).

Finally, you can query the ROC-AUC score for your predictions:

print(roc_auc_score(y_true=y, y_score=cv_preds[:,1]))

You should obtain a value of around 0.49-0.50 (cross_val_predict won’t be deterministic unless 

you use cross-validation with a fixed random_seed). This means that you cannot easily distinguish 

training from test data. Hence, they come from the same distribution.
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Handling different distributions of training and test data
ROC-AUC scores of 0.8 or more would alert you that the test set is peculiar and quite distinguish-

able from the training data. In these cases, what can you do? You actually have a few strategies 

at hand:

• Suppression

• Training on cases most similar to the test set

• Validating by mimicking the test set

With suppression, you remove the variables that most influence the result in the adversarial test 

set until the distributions are the same again. To do so, you require an iterative approach. This 

time, you fit your model to all your data, and then you check the importance measures (provided, 

for instance, by the feature_importances_ method in the Scikit-learn RandomForest classifier) 

and the ROC-AUC fit score. At this point, you remove the most important variable for the model 

from your data and run everything again. You repeat this cycle where you train, measure the 

ROC-AUC fit, and drop the most important variable from your data until the fitted ROC-AUC 

score decreases to around 0.5. 

The only problem with this method is that you may actually be forced to remove the majority of 

important variables from your data, and any model you then build on such variable censored data 

won’t be able to predict sufficiently correctly due to the lack of informative features.

When you train on the examples most similar to the test set, you instead take a different ap-

proach, focusing not on the variables but on the samples you are using for training. In this case, you 

pick up from the training set only the samples that fit the test distribution. Any trained model 

then suits the testing distribution (but it won’t be generalizable to anything else), which should 

allow you to test the best on the competition problem. The limitation of this approach is that you 

are cutting down the size of your dataset and, depending on the number of samples that fit the 

test distribution, you may suffer from a very biased resulting model due to the lack of training 

examples. In our previous example, picking up just the adversarial predictions on the training 

data that exceed a probability of 0.5 and summing them results in picking only 1,495 cases (the 

number is so small because the test set is not very different from the training set):

print(np.sum(cv_preds[:len(X), 1] > 0.5))

Finally, with the strategy of validating by mimicking the test set, you keep on training on all the 

data, but for validation purposes, you pick your examples only from the adversarial predictions 

on the training set that exceed a probability of 0.5 (or an even higher threshold such as 0.9). 
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Having a validation set tuned to the test set will allow you to pick all the possible hyperparameters 

and model choices that will favor a better result on the leaderboard.

In our example, we can figure out that feature_19 and feature_54 appear the most different 

between the training/test split from the output of the following code:

model.fit(X, y)

ranks = sorted(list(zip(X.columns, model.feature_importances_)), 

               key=lambda x: x[1], reverse=True)

for feature, score in ranks:

    print(f"{feature:10} : {score:0.4f}")

To conclude, we have a few more remarks on adversarial validation. First, using it will generally 

help you to perform better in competitions, but not always. Kaggle’s Code competitions, and 

other competitions where you cannot fully access the test set, cannot be inspected by adversarial 

validation. In addition, adversarial validation can inform you about the test data as a whole, but 

it cannot advise you on the split between the private and the public test data, which is the cause 

of the most common form of public leaderboard overfitting and consequent shake-up.

Finally, adversarial validation, though a very specific method devised for competitions, has quite 

a few practical use cases in the real world: how often have you picked the wrong test set to vali-

date your models? The method we have presented here can enlighten you about whether you are 

using the test data, and any validation data, in your projects properly. Moreover, data changes 

and models in production may be affected by such changes and produce bad predictions if you 

don’t retrain them. This is called concept drift, and by using adversarial validation, you can 

immediately understand if you have to retrain new models to put into production or if you can 

leave the previous ones in operation.

Giuliano Janson
https://www.kaggle.com/adjgiulio

Giuliano Janson is a Competitions Grandmaster and senior applied 

scientist for ML and NLP at Zillow Group. He spoke to us about his 

competition wins, the importance of cross-validation, and data leak-

ages, the subject of the upcoming section.

https://www.kaggle.com/adjgiulio
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What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
My perfect competition is made up of a) an interesting problem to solve, b) a mid-size dataset that is small 

enough to fit in memory but not too small to become an overfitting headache, and c) an opportunity to be 

creative from a feature engineering perspective. The combination of those three dimensions is where I’m 

at my best in competitive ML because I feel I have the means to use rigor and creativity without having 

to worry about engineering constraints.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
A Kaggle competition is a marathon. Going into a competition, I know I can get 90 to 95% of my best 

final score with a couple of days of work. The rest is a slow grind. The only success metric is your score; 

nothing else matters. 

My daily work looks more like a series of sprints. Model performance is only a small portion of what I need 

to consider. A go-live date might be just as important, or other aspects such as interpretability, scalability, 

and maintainability could tip the scale in a totally different direction. After each sprint, priorities are 

reassessed and the end product might look totally different from what was originally envisioned. Also, 

modeling is a small part of my day. I spend far more time talking to people, managing priorities, build-

ing use cases, scrubbing data, and thinking about everything that it takes to make a prototype model a 

successful production solution.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
One of the two competitions I won, the Genentech Cancer competition, was a Masters-only competition. 

The data provided was raw transactional data. There was no nice tabular dataset to start from. This is 

the type of work I love because feature engineering is actually one of my favorite parts of ML. Since I had 

worked in healthcare for a decade at the time of the competition, I had business and clinical insights on 

the data, but most of all, I had engineering insights on the complexity of correctly handling this type of 

data and about all the things that can go wrong when this type of transactional raw data is not handled 

carefully. That turned out to be key to winning, as one of the initial hypotheses regarding a possible 

source of leakage turned out to be true, and provided a “golden feature” that gave the final boost to our 

model. The insight from the competition is to always be extra careful when doing feature engineering 

or setting up validation approaches. Leakage can be very hard to detect and the usual train/validation/

test approach to model validation will provide no help in identifying leakage in most cases, thus putting 

a model at risk of underperforming in production.
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Has Kaggle helped you in your career? If so, how?
Kaggle has helped me in two ways. First, it provided a low barrier entry point to modern ML, a ton of 

exposure to cutting-edge modeling techniques, and forced me to truly understand the art and science of 

professional-grade model validation techniques. Second, Kaggle provided access to some of the brightest 

minds in applied ML. What I learned teaming up with some of the top Kaggle participants are lessons I 

cherish and try to share with my teammates every day.

How have you built up your portfolio thanks to Kaggle?
My professional career hasn’t been directly impacted much by my Kaggle résumé. By that, I mean I haven’t 

got job offers or interviews as a result of my Kaggle standings. I started Kaggle when I was already in a 

senior data science role, albeit with not much of an ML focus. Thanks to what I learned on Kaggle, I was 

able to better advocate a change in my career to move into an ML-focused job.

To this date, many folks I work with enjoy chatting about competitive ML and are curious about tips and 

tricks from my Kaggle experience, but it is also true that a large portion of the ML community might not 

even know what Kaggle is.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
The importance of proper cross-validation is easily overlooked by participants new to competitive ML. A 

solid cross-validation framework allows you to measure improvement reliably and objectively. And in a 

competition that might be as long as six months, the best models do not usually come from those who have 

the best initial ideas, but from those who are willing to iterate and adjust based on empirical feedback 

from the data. A great validation framework is at the foundation of it all.

What mistakes have you made in competitions in the past?
One of the lessons learned that I always share with people new to ML is to “never get over-enamored with 

overly complex ideas.” When facing a new complex problem, it is easy to be tempted to build complex 

solutions. Complex solutions usually require time to develop. But the main issue is that complex solutions 

are often of marginal value, conditional on robust baselines. For example, imagine you want to model 

the outcome of an election and start thinking about a series of features to capture complex conditional 

relationships among observable and latent geographic, socio-economic, and temporal features. You could 

spend weeks developing these features, under the assumption that because they are so well thought out, 

they will be impactful. 
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Handling leakage
A common issue in Kaggle competitions that can affect the outcome of the challenge is data 

leakage. Data leakage, often mentioned simply as leakage or with other fancy names (such as 

golden features), involves information in the training phase that won’t be available at prediction 

time. The presence of such information (leakage) will make your model over-perform in training 

and testing, allowing you to rank highly in the competition, but will render unusable or at best 

suboptimal any solution based on it from the sponsor’s point of view.

Leakage is often found in Kaggle competitions, despite careful checking from both the sponsor 

and the Kaggle team. Such situations are due to the subtle and sneaky nature of leakage, which 

can unexpectedly appear due to the intense searching undertaken by Kagglers, who are always 

looking for any way to score better in a competition.

The mistake is that while often those complex features could be very powerful on their own, conditional 

on a series of simple features and on a model that can already build highly optimized, data-driven deep 

interaction, all of a sudden, the complex features we built with time and effort may lead to little to no 

marginal improvement. My advice is to stick to Occam’s razor and try easy things before being tempted 

by more complex approaches.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
I’m a pandas and Scikit-learn person. I love how pandas enables easy data manipulation and exploration 

and how I can quickly prototype models using Scikit-learn in a matter of minutes. Most of my prototype 

work is done using these two libraries. That said, my final models are often based on XGBoost. For deep 

learning, I love using Keras.

We can define leakage as “when information concerning the ground truth is artifi-

cially and unintentionally introduced within the training feature data, or training 

metadata” as stated by Michael Kim (https://www.kaggle.com/mikeskim) in his 

presentation at Kaggle Days San Francisco in 2019.

https://www.kaggle.com/mikeskim
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Generally speaking, leakage can originate at a feature or example level. Feature leakage is by far 

the most common. It can be caused by the existence of a proxy for the target, or by a feature that 

is posterior to the target itself. A target proxy could be anything derived from processing the label 

itself or from the test split process; for instance, when defining identifiers, specific identifiers (a 

numeration arc, for instance) may be associated with certain target responses, making it easier 

for a model to guess if properly fed with the information processed in the right way. A more 

subtle way in which data processing can cause leakage is when the competition organizers have 

processed the training and test set together before splitting it. Historically, leakages in Kaggle 

competitions have been found in:

1. Mishandled data preparation from organizers, especially when they operate on a com-

bination of training and test data (for example, in Loan Default Prediction (https://www.

kaggle.com/c/loan-default-prediction), organizers initially used features with ag-

gregated historical data that leaked future information).

Don’t confuse data leakage with a leaky validation strategy. In a leaky validation 

strategy, the problem is that you have arranged your validation strategy in a way 

that favors better validation scores because some information leaks from the training 

data. It has nothing to do with the competition itself, but it relates to how you are 

handling your validation. It occurs if you run any pre-processing modifying your 

data (normalization, dimensionality reduction, missing value imputation) before 

separating training and validation or test data.

In order to prevent leaky validation, if you are using Scikit-learn to manipulate and 

process your data, you absolutely have to exclude your validation data from any fit-

ting operation. Fitting operations tend to create leakage if applied to any data you use 

for validation. The best way to avoid this is to use Scikit-learn pipelines (https:// 
scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.

html), which will enclose both your data processing and model together, thereby 

avoiding any risk of inadvertently applying any leaking transformation to your data.

Data leakage instead is therefore something that is not strictly related to validation 

operations, though it affects them deeply. Even though this chapter is principally 

devoted to validation strategies, at this point we consider it necessary to discuss 

data leakage, since this issue can profoundly affect how you evaluate your models 

and their ability to generalize beyond the competition test sets.

https://www.kaggle.com/c/loan-default-prediction
https://www.kaggle.com/c/loan-default-prediction
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
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2. Row order when it is connected to a time index or to specific data groups (for instance, in 

Telstra Network Disruptions (https://www.kaggle.com/c/telstra-recruiting-network), 

the order of records in a feature hinted at proxy information, the location, which was not 

present in the data and which was very predictive).

3. Column order when it is connected to a time index (you get hints by using the columns 

as rows).

4. Feature duplication in consecutive rows because it can hint at examples with correlat-

ed responses, such as in Bosch Production Line Performance (see the first-place solution 

by Beluga at https://www.kaggle.com/c/bosch-production-line-performance/

discussion/25434).

5. Image metadata (as in Two Sigma Connect: Rental Listing Inquiries (https://www.kaggle.

com/c/two-sigma-connect-rental-listing-inquiries)).

6. Hashes or other easily crackable anonymization practices of encodings and identifiers.

The trouble with posterior information originates from the way we deal with information when 

we do not consider the effects of time and of the sequence of cause and effect that spans across 

time. Since we are looking back at the past, we often forget that certain variables that make sense 

at the present moment do not have value in the past. For instance, if you have to calculate a credit 

score for a loan to a new company, knowing that payments of the borrowed money are often 

late is a great indicator of the lower reliability and higher risk represented by the debtor, but you 

cannot know this before you have lent out the money. This is also a problem that you will com-

monly find when analyzing company databases in your projects: your query data will represent 

present situations, not past ones. Reconstructing past information can also be a difficult task if 

you cannot specify that you wish to retrieve only the information that was present at a certain 

time. For this reason, great effort has to be spent on finding these leaking features and excluding 

or adjusting them before building any model.

Similar problems are also common in Kaggle competitions based on the same kind of data (bank-

ing or insurance, for instance), though, since much care is put into the preparation of the data for 

the competition, they appear in more subtle ways and forms. In general, it is easy to spot these 

leaking features since they strongly correlate with the target, and a domain expert can figure out 

why (for instance, knowing at what stage the data is recorded in the databases). Therefore, in 

competitions, you never find such obvious features, but derivatives of them, often transformed 

or processed features that have slipped away from the control of the sponsor. Since the features 

are often anonymized to preserve the sponsor’s business, they end up lurking among the others. 

This has given rise to a series of hunts for the golden/magic features, a search to combine existing 

features in the dataset in order to have the leakage emerge.

https://www.kaggle.com/c/telstra-recruiting-network
https://www.kaggle.com/c/bosch-production-line-performance/discussion/25434
https://www.kaggle.com/c/bosch-production-line-performance/discussion/25434
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries
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The other way in which leakage can occur is by training example leakage. This happens especial-

ly with non-i.i.d. data. This means that some cases correlate between themselves because they 

are from the same period (or from contiguous ones) or the same group. If such cases are not all 

together either in the training or test data, but separated between them, there is a high chance 

that the machine learning algorithm will learn how to spot the cases (and derive the predictions) 

rather than using general rules. An often-cited example of such a situation involves the team of 

Prof. Andrew Ng (see https://twitter.com/nizkroberts/status/931121395748270080). In 2017, 

they wrote a paper using a dataset of 100,000 x-rays from 30,000 patients. They used a random 

split in order to separate training and test data, not realizing that the x-rays of the same patient 

could end up partly in the training set and partly in the test set. Practitioners such as Nick Roberts 

spotted this fact, pointing out a possible leakage that could have inflated the performances of 

the model and that led to a substantial revision of the paper itself.

What happens when there is a data leakage in a Kaggle competition? Kaggle has clear policies 

about it and will either:

• Let the competition continue as is (especially if the leakage only has a small impact)

• Remove the leakage from the set and relaunch the competition

• Generate a new test set that does not have the leakage present

In particular, Kaggle recommends making any leakage found public, though this is not compul-

sory or sanctioned if it doesn’t happen. However, in our experience, if there is any leakage in a 

competition, it will soon become very apparent and the discussion forums will start lighting up 

with a discussion about magic stuff and the like. You will soon know, if you are attentive to what 

is being said in the forums and able to put together all the hints provided by different Kagglers.

You can read an enlightening post by Corey Levison here: https://www.linkedin.
com/pulse/winning-13th-place-kaggles-magic-competition-corey-

levinson/. It tells the story of how the Santander Customer Transaction Prediction 

competition turned into a hunt for magic features for his team.

Another good example is provided by dune_dweller here: https://www.kaggle. 

com/c/telstra-recruiting-network/discussion/19239#109766. By looking at 

how the data was ordered, dune_dweller found out that the data was likely in time 

order. Putting this information in a new feature increased the score.

https://twitter.com/nizkroberts/status/931121395748270080
https://www.linkedin.com/pulse/winning-13th-place-kaggles-magic-competition-corey-levinson/
https://www.linkedin.com/pulse/winning-13th-place-kaggles-magic-competition-corey-levinson/
https://www.linkedin.com/pulse/winning-13th-place-kaggles-magic-competition-corey-levinson/
https://www.kaggle.com/c/telstra-recruiting-network/discussion/19239#109766
https://www.kaggle.com/c/telstra-recruiting-network/discussion/19239#109766


Chapter 6 191

However, please beware that some players may even use discussions about magic features to 

distract other competitors from serious modeling. For instance, in Santander Customer Transaction 

Prediction, there was a famous situation involving some Kagglers who fueled in other partici-

pants an interest in magic features that weren’t actually so magic, directing their efforts in the 

wrong direction (see the discussion here: https://www.kaggle.com/c/santander-customer-

transaction-prediction/discussion/87057#502362).

Our suggestion is to carefully read the discussions around leakage and magic features that arise 

in the competition’s forum, and decide whether to pursue the research and use any leakage found 

based on your own interest and motivations for participating in the competition. 

Not exploiting any leakage may really damage your final rankings, though it will surely spoil your 

learning experience (because leakage is a distortion and you cannot claim anything about the 

models using it). If you are not participating in a competition in order to gain a reputation or to 

later approach the sponsor for an opportunity to be hired, it is perfectly fine to use any leakage 

you come across. Otherwise, just ignore it and keep on working hard on your models (who knows; 

maybe Kaggle will reset or fix the competition by the end, rendering the leakage ineffective to 

the great disappointment of the many who used it).

Leakages are very different from competition to competition. If you want to get an 

idea of a few real leakages that have happened in Kaggle competitions, you can have 

a look at these three memorable ones:

• https://www.kaggle.com/c/predicting-red-hat-business-value/ 

discussion/22807 from Predicting Red Hat Business Value (https://www.

kaggle.com/c/predicting-red-hat-business-value) where the prob-

lem arose because of an imperfect train/test split methodology of the com-

petition.

• https://www.kaggle.com/c/talkingdata-mobile-user-demographics 

/discussion/23403 from TalkingData Mobile User Demographics (https://

www.kaggle.com/c/talkingdata-mobile-user-demographics) where 

a series of problems and non-i.i.d cases affected the correct train/test split 

of the competition.

• https://www.kaggle.com/c/two-sigma-connect-rental-listing-

inquiries/discussion/31870 from Two Sigma Connect: Rental Listing 

Inquiries (https://www.kaggle.com/c/two-sigma-connect-rental-

listing-inquiries) where metadata (the creation time of each folder) 

did the trick.

https://www.kaggle.com/c/santander-customer-transaction-prediction/discussion/87057#502362
https://www.kaggle.com/c/santander-customer-transaction-prediction/discussion/87057#502362
https://www.kaggle.com/c/predicting-red-hat-business-value/discussion/22807
https://www.kaggle.com/c/predicting-red-hat-business-value/discussion/22807
https://www.kaggle.com/c/predicting-red-hat-business-value
https://www.kaggle.com/c/predicting-red-hat-business-value
https://www.kaggle.com/c/talkingdata-mobile-user-demographics/discussion/23403
https://www.kaggle.com/c/talkingdata-mobile-user-demographics/discussion/23403
https://www.kaggle.com/c/talkingdata-mobile-user-demographics
https://www.kaggle.com/c/talkingdata-mobile-user-demographics
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/31870
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/31870
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries
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Summary
Having arrived at the end of the chapter, we will summarize the advice we have discussed along 

the way so you can organize your validation strategy and reach the end of a competition with a 

few suitable models to submit.

In this chapter, we first analyzed the dynamics of the public leaderboard, exploring problems 

such as adaptive overfitting and shake-ups. We then discussed the importance of validation in 

a data science competition, building a reliable system, tuning it to the leaderboard, and then 

keeping track of your efforts.

Having discussed the various validation strategies, we also saw the best way of tuning your hy-

perparameters and checking your test data or validation partitions by using adversarial validation. 

We concluded by discussing some of the various leakages that have been experienced in Kaggle 

competitions and we provided advice about how to deal with them.

Here are our closing suggestions:

• Always spend the first part of the competition building a reliable validation scheme, fa-

voring more a k-fold over a train-test split, given its probabilistic nature and ability to 

generalize to unseen data.

• If your validation scheme is unstable, use more folds or run it multiple times with different 

data partitions. Always check your test set using adversarial validation.

• Keep track of results based on both your validation scheme and the leaderboard. For 

the exploration of possible optimizations and breakthroughs (such as magic features or 

leakages), trust your validation score more.

• As we explained at the beginning of the chapter, use your validation scores when deciding 

your final submissions to the competition. For your final submissions, depending on the 

situation and whether or not you trust the leaderboard, choose among your best local 

cross-validated models and good-scoring submissions on the leaderboard, favoring the 

first over the second.

At this point of our journey, we are ready to discuss how to tackle competitions using tabular 

data, which is numeric or categorical data arranged in matrices (with rows representing the ex-

amples and columns the features). In the next chapter, we discuss the Tabular Playground Series, 

a monthly contest organized by Kaggle using tabular data (organized by Inversion: https://www.

kaggle.com/inversion). 

https://www.kaggle.com/inversion
https://www.kaggle.com/inversion
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In addition, we will introduce you to some specific techniques to help you shine in these compe-

titions, such as feature engineering, target encoding, denoising autoencoders, and some neural 

networks for tabular data, as an alternative to the recognized state-of-the-art learning algo-

rithms in tabular data problems (the gradient boosting algorithms such as XGBoost, LightGBM, 

or CatBoost).

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord
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Until 2017, there was no need to distinguish too much between competition types and, since the 

vast majority of competitions were based on tabular data, you could not even find mention of 

“tabular competitions” on Kaggle forums. Suddenly, something changed. After a relative shortage 

of competitions (see https://www.kaggle.com/general/49904), deep learning competitions 

took the upper hand and tabular competitions became rarer, disappointing many. They became 

so rare that Kaggle recently had to launch a series of tabular competitions based on synthetic 

data. What happened?

By 2017-2018, data science had grown to full maturity and many companies had initiated their 

data journeys. Data science was still a hot topic, but no longer such an uncommon one. Solutions 

to problems similar to those that had populated Kaggle for years at the time had become stan-

dard practice in many companies. Under these circumstances, sponsors were less motivated to 

launch external tabular competitions, since they were already dealing with the same problems 

internally. By contrast, deep learning is still a much-undiscovered domain and will continue to 

be for a long time, so it makes sense to start competitions to challenge the state of the art and 

see if something new emerges.

In this chapter, we will discuss tabular competitions. We will touch on some famous historical 

ones and also focus on the more recent reality of the Tabular Playground Series, because tabular 

problems are standard practice for the majority of data scientists around and there really is a lot 

to learn from Kaggle. We will start by discussing exploratory data analysis (EDA) and feature 

engineering, two common activities in these competitions. 

https://www.kaggle.com/general/49904
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After presenting key strategies for feature engineering, we will expand to many related topics, such 

as categorical encoding, feature selection, target transformations, and pseudo-labeling. We will 

end by touching on deep learning methodologies for tabular data, presenting a few specialized 

deep neural networks such as TabNet and illustrating a denoising autoencoder. We will explain 

why autoencoders have become so relevant for recent Kaggle competitions while still being mar-

ginal in real-world applications.

We will cover:

• The Tabular Playground Series

• Setting a random state for reproducibility

• The importance of EDA

• Reducing the size of your data

• Applying feature engineering

• Pseudo-labeling

• Denoising with autoencoders

• Neural networks for tabular competitions

The chapter won’t cover every topic related to tabular competitions, but you can easily find this in 

many other books since they are at the core of data science. What this chapter will do is present 

a range of special techniques and approaches that characterize tabular competitions on Kaggle 

and that you won’t easily find elsewhere, except on Kaggle forums.

The Tabular Playground Series
Due to the large demand for tabular problems, Kaggle staff started an experiment in 2021, launch-

ing a monthly contest called the Tabular Playground Series. The contests were based on synthetic 

datasets that replicated public data or data from previous competitions. The synthetic data was 

created thanks to a deep learning generative network called CTGAN.

You can find the CTGAN code at https://github.com/sdv-dev/CTGAN. There’s also 

a relevant paper explaining how it works by modeling the probability distribution 

of rows in tabular data and then generating realistic synthetic data (see https://

arxiv.org/pdf/1907.00503v2.pdf).

https://github.com/sdv-dev/CTGAN
https://arxiv.org/pdf/1907.00503v2.pdf
https://arxiv.org/pdf/1907.00503v2.pdf
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Kaggle launched 13 fairly successful competitions in 2021, which have attracted many Kagglers 

despite not offering points, medals, or prizes (only some merchandise). Here is the 2021 list; you 

can use it to locate specific problems by type or metric and look for related resources such as 

focused discussions or Notebooks:

Month Problem Variables Metric Missing data

January 2021 Regression on 

an unspecified 

problem

Numeric RMSE No

February 2021 Regression 

predicting the 

value of an 

insurance claim

Numeric and 

categorical

RMSE No

March 2021 Binary 

classification 

predicting an 

insurance claim

Numeric and 

categorical

AUC No

April 2021 Binary 

classification 

on a replica very 

similar to the 

original Titanic 

dataset

Numeric and 

categorical

Accuracy Yes

Synthetic Data Vault (https://sdv.dev/), an MIT initiative, created the technology 

behind CTGAN and quite a number of tools around it. The result is a set of open-

source software systems built to help enterprises generate synthetic data that mimics 

real data; it can help data scientists to create anonymous datasets based on real ones, 

as well as augment existing ones for modeling purposes.

https://sdv.dev/
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May 2021 Multiclass 

classification 

predicting the 

category on an 

e-commerce 

product 

given various 

attributes about 

the listing

Categorical Multiclass 

LogLoss

No

June 2021 Multiclass 

classification 

predicting the 

category on an 

e-commerce 

product 

given various 

attributes about 

the listing

Numeric and 

categorical

Multiclass 

LogLoss

No

July 2021 Multiple 

regression 

predicting air 

pollution in a 

city via various 

input sensor 

values (for 

example, a time 

series)

Numeric, time RMSLE Yes

August 2021 Regression 

calculating the 

loss associated 

with a loan 

default

Numeric RMSE No

30 Days of ML Regression on 

the value of an 

insurance claim

Numeric and 

categorical

RMSE No
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September 2021 Binary 

classification 

predicting 

whether a claim 

will be made on 

an insurance 

policy

Numeric AUC Yes

October 2021 Binary 

classification 

predicting 

the biological 

response of 

molecules given 

various chemical 

properties

Numeric and 

categorical

AUC No

November 2021 Binary 

classification 

identifying 

spam emails via 

various features 

extracted from 

the email

Numeric AUC No

December 2021 Multiclass 

classification 

based on the 

original Forest 

Cover Type 

Prediction 

competition

Numeric and 

categorical

Multiclass 

classification 

accuracy

No

Table 7.1: Tabular Playground Series competitions in 2021
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The Tabular Playground competitions continued in 2022, with even more sophisticated and 

challenging problems:

January 2022 Forecasting the 

sales of Kaggle 

merchandise 

from two 

fictitious 

independent 

store chains

Dates and 

categorical

Symmetric 

mean absolute 

percentage error 

(SMAPE)

No

February 2022 Classifying 

10 different 

bacteria species 

using data 

from a genomic 

analysis 

technique 

that contains 

some data 

compression 

and data loss

Numeric Categorization 

accuracy

No

Table 7.2: Tabular Playground Series competitions in 2022

Much of this chapter has been written by observing the code and discussion that emerged in these 

competitions, instead of analyzing more glorious competitions from the past. As we mentioned, 

we believe that tabular competitions are indeed gone for good given the changed professional 

landscape, and that you will find it more useful to read suggestions and hints relating to the 

present than the past.

As in other fully fledged competitions with Kaggle points and medals, in tabular competitions 

we recommend you follow a simple, yet very effective, pipeline that we have discussed elsewhere 

in the book:

• Explorative data analysis (EDA)

• Data preparation

• Modeling (using a cross-validation strategy for model validation)
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• Post-processing

• Submission

As a rule, you also have to take care to maintain reproducibility and to save all the models (from 

every fold), the list of the parameters used, all the fold predictions, all the out-of-fold predictions, 

and all predictions from models trained on all the data.

You should save all this information in a way that makes it easy to recover and reconstruct, for 

instance using appropriate labeling, keeping track of MD5 hashing values (you can refer to this 

Stack Overflow answer for details: https://stackoverflow.com/questions/16874598/how-

do-i-calculate-the-md5-checksum-of-a-file-in-python), and tracking the CV scores and 

leaderboard results from each experiment. Most Kagglers do this with simple tools such as .txt 

files or Excel spreadsheets, but there exist ways that are more sophisticated, such as using:

• DVC (https://dvc.org/)

• Weights and Biases (https://wandb.ai/site)

• MLflow (https://mlflow.org/)

• Neptune (https://neptune.ai/experiment-tracking)

In the end, what matters are the results, not the tool you use, so try your best to keep order in 

your experiments and models, even in the heat of a competition.

Before we proceed, consider also thinking about the technology that Kaggle used to generate the 

data for these competitions; if you can properly understand how the data has been generated, 

you get an important advantage. In addition, understanding how synthetic data works can really 

have an impact on the way you do data science in the real world, because it gives you a way to 

easily obtain more varied data for training.

For instance, let’s take the Google Brain – Ventilator Pressure Prediction competition 

(https://www.kaggle.com/c/ventilator-pressure-prediction). In this com-

petition, you had to develop machine learning for mechanical ventilation control. 

Although you could obtain good results by modeling the data provided with deep 

learning, given the synthetic origin of the data, you could also reverse engineer its 

generative process and obtain a top leaderboard result, as Jun Koda (https://www.

kaggle.com/junkoda) did and explains in his post: https://www.kaggle.com/c/

ventilator-pressure-prediction/discussion/285278.

https://stackoverflow.com/questions/16874598/how-do-i-calculate-the-md5-checksum-of-a-file-in-python
https://stackoverflow.com/questions/16874598/how-do-i-calculate-the-md5-checksum-of-a-file-in-python
https://dvc.org/
https://wandb.ai/site
https://mlflow.org/
https://neptune.ai/experiment-tracking
https://www.kaggle.com/c/ventilator-pressure-prediction
https://www.kaggle.com/junkoda
https://www.kaggle.com/junkoda
https://www.kaggle.com/c/ventilator-pressure-prediction/discussion/285278
https://www.kaggle.com/c/ventilator-pressure-prediction/discussion/285278
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Generating artificial data by yourself and understanding synthetic data has never been so easy, 

as you can verify from this Notebook (https://www.kaggle.com/lucamassaron/how-to-use-

ctgan-to-generate-more-data), derived from a Notebook originally coded and tested by Dariush 

Bahrami (https://www.kaggle.com/dariushbahrami).

Setting a random state for reproducibility
Before we start discussing the steps and models you may use in a tabular competition, it will be 

useful to return to the theme of reproducibility we mentioned above.

In most of the commands in the code you see on Kaggle Notebooks, you will find a parameter 

declaring a number, a seed, as the random state. This setting is important for the reproducibility 

of your results. Since many algorithms are not deterministic but are based on randomness, by 

setting a seed you influence the behavior of the random generator, making it predictable in its 

randomness: the same random seed corresponds to the same sequence of random numbers. In 

other words, it allows you to obtain the same results after every run of the same code.

That is why you find a random seed setting parameter in all machine learning algorithms in 

Scikit-learn as well as in all Scikit-learn-compatible models (for instance, XGBoost, LightGBM, 

and CatBoost, to name the most popular ones).

Reproducibility of results is important in real-world projects as well as in Kaggle competitions. 

In the real world, having a reproducible model allows for better tracking of model development 

and consistency. In Kaggle competitions, reproducibility helps in testing hypotheses better be-

cause you are controlling any source of variation in your models. For instance, if you created a 

new feature, putting it into a reproducible pipeline will help you understand if the feature is 

advantageous or not. You will be sure that any improvement or deterioration in the model can 

be attributed only to the feature, and not to the effects of some random process that has changed 

since the last time you ran the model.

Again, reproducibility can be used to your advantage when dealing with public Notebooks. Most 

often, these Notebooks will have a fixed seed that could be 0, 1, or 42. The value 42 is quite popular 

because it is a reference to Douglas Adam’s The Hitchhiker’s Guide to the Galaxy, in which it is the 

“Answer to the Ultimate Question of Life, the Universe, and Everything,” calculated by an enor-

mous supercomputer named Deep Thought over a period of 7.5 million years. Now, if everyone 

in a competition is using the same random seed, it could have a double effect:

• The random seed might be working too well with the public leaderboard, which means 

overfitting

https://www.kaggle.com/lucamassaron/how-to-use-ctgan-to-generate-more-data
https://www.kaggle.com/lucamassaron/how-to-use-ctgan-to-generate-more-data
https://www.kaggle.com/dariushbahrami
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• A lot of Kagglers will produce similar results that will influence their standings in the 

private leaderboard in the same way

By changing the random seed, you are avoiding overfitting and also breaking rank; in other words, 

you are getting different results from everyone else, which could put you at an advantage in the 

end. In addition, if you end up winning a Kaggle competition, you need to demonstrate how 

your models produced the winning submission, so it is paramount that everything is completely 

reproducible if you want to obtain your prize quickly.

TensorFlow and PyTorch models don’t explicitly use a random seed parameter, so it is more 

challenging to ensure their complete reproducibility. The following code snippet, when run, sets 

the same random seed for TensorFlow and PyTorch models:

def seed_everything(seed, 

                    tensorflow_init=True, 

                    pytorch_init=True):

    """

    Seeds basic parameters for reproducibility of results

    """

    random.seed(seed)

    os.environ["PYTHONHASHSEED"] = str(seed)

    np.random.seed(seed)

    if tensorflow_init is True:

        tf.random.set_seed(seed)

    if pytorch_init is True:

        torch.manual_seed(seed)

        torch.cuda.manual_seed(seed)

        torch.backends.cudnn.deterministic = True

        torch.backends.cudnn.benchmark = False  

As for Scikit-learn, it is instead advisable to set the random seed directly – when it is allowed by 

the class or the function – using the random_state parameter.

The importance of EDA
The term EDA comes from the work of John W. Tukey, one of the most prominent exponents of 

modern statistical methodology. In his 1977 book Exploratory Data Analysis (hence the acronym 

EDA), Tukey thinks of EDA as a way to explore data, uncover evidence, and develop hypotheses 

that can later be confirmed by statistical tests. 
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His idea was that how we define statistical hypotheses could be based more on observation and 

reasoning than just sequential tests based on mathematical computations. This idea translates 

well to the world of machine learning because, as we will discuss in the next section, data can 

be improved and pre-digested so that learning algorithms can work better and more efficiently.

In an EDA for a Kaggle competition, you will be looking for:

• Missing values and, most importantly, missing value patterns correlated with the target.

• Skewed numeric variables and their possible transformations.

• Rare categories in categorical variables that can be grouped together.

• Potential outliers, both univariate and multivariate.

• Highly correlated (or even duplicated) features. For categorical variables, focus on cate-

gories that overlap.

• The most predictive features for the problem.

You achieve this by several descriptive analyses, graphs, and charts, first examining each distinct 

feature (univariate analysis, in statistical terms), then matching a couple of variables (bivari-

ate analysis, such as in a scatterplot), and finally considering more features together at once (a 

multivariate approach).

If you are feeling lazy or unsure about how and where to start, relying on automated strategies 

initially can help you. For instance, you may find that AutoViz (https://github.com/AutoViML/

AutoViz), a popular rapid EDA freeware tool, can save you a lot of time. You can install it on your 

Notebook by running the following command:

pip install git+git://github.com/AutoViML/AutoViz.git 

You can obtain a clearer understanding of what AutoViz can do for you by reading 

this Medium article by Dan Roth at https://towardsdatascience.com/autoviz- 

a-new-tool-for-automated-visualization-ec9c1744a6ad or browsing a 

few interesting public Notebooks such as https://www.kaggle.com/gvyshnya/

automating-eda-and-feature-importance-detection by Georgii Vyshnia 

(https://www.kaggle.com/gvyshnya). 

In the latter link, you will also find references to another tool, Sweetviz (https://

github.com/fbdesignpro/sweetviz). Sweetviz has an overview article and tutorial 

based on the Titanic dataset, at https://towardsdatascience.com/powerful-
eda-exploratory-data-analysis-in-just-two-lines-of-code-using-

sweetviz-6c943d32f34.

https://github.com/AutoViML/AutoViz
https://github.com/AutoViML/AutoViz
https://towardsdatascience.com/autoviz-a-new-tool-for-automated-visualization-ec9c1744a6ad
https://towardsdatascience.com/autoviz-a-new-tool-for-automated-visualization-ec9c1744a6ad
https://www.kaggle.com/gvyshnya/automating-eda-and-feature-importance-detection
https://www.kaggle.com/gvyshnya/automating-eda-and-feature-importance-detection
https://www.kaggle.com/gvyshnya
https://github.com/fbdesignpro/sweetviz
https://github.com/fbdesignpro/sweetviz
https://towardsdatascience.com/powerful-eda-exploratory-data-analysis-in-just-two-lines-of-code-using-sweetviz-6c943d32f34
https://towardsdatascience.com/powerful-eda-exploratory-data-analysis-in-just-two-lines-of-code-using-sweetviz-6c943d32f34
https://towardsdatascience.com/powerful-eda-exploratory-data-analysis-in-just-two-lines-of-code-using-sweetviz-6c943d32f34
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Waiting for other Kagglers to publish interesting EDA Notebooks could also be a solution, so al-

ways keep an eye on the Notebooks sections; sometimes, precious hints may appear. This should 

kick-start your modeling phase and help you understand the basic dos and don’ts of the com-

petition. However, remember that EDA stops being a commodity and becomes an asset for the 

competition when it is highly specific to the problem at hand; this is something that you will never 

find from automated solutions and seldom in public Notebooks. You have to do your EDA by 

yourself and gather key, winning insights.

All things considered, our suggestion is to look into the automated tools a bit because they are 

really easy to learn and run. You will save a lot of time that you can instead spend looking at charts 

and reasoning about possible insights, and that will certainly help your competition performance. 

However, after doing that, you need to pick up Matplotlib and Seaborn and try something by 

yourself on not-so-standard plots that depend on the type of data provided and the problem.

Dimensionality reduction with t-SNE and UMAP
There are many possible plots you can create when doing EDA and it is not our intention to list 

them all here, but there are a couple of dimensionality reduction plots that are worth spending 

a few words on because they can provide as much information as very specific and data-tailored 

charts. These are t-SNE (https://lvdmaaten.github.io/tsne/) and UMAP (https://github.

com/lmcinnes/umap).

t-SNE and UMAP are two techniques, often used by data scientists, that allow you to project 

multivariate data into lower dimensions. They are often used to represent complex sets of data 

in two dimensions. 2-D UMAP and t-SNE plots can reveal the presence of outliers and relevant 

clusters for your data problem. 

Another popular tool that you may find useful using is Pandas Profiling (https://

github.com/pandas-profiling/pandas-profiling), which is more reliant on 

classical statistical descriptive statistics and visualization, as explained by this article: 

https://medium.com/analytics-vidhya/pandas-profiling-5ecd0b977ecd.

For example, if you are given a series of measurements performed over time, plotting 

the continuous function based on time is as useful as plotting the single recorded 

points in time, for instance showing different lags between one observation and 

another, a fact that may point to revealing insights for better predictions.

https://lvdmaaten.github.io/tsne/
https://github.com/lmcinnes/umap
https://github.com/lmcinnes/umap
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://medium.com/analytics-vidhya/pandas-profiling-5ecd0b977ecd
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In fact, if you can plot the scatter graph of the resulting 2-D projection and color it by target value, 

the plot may give you hints about possible strategies for dealing with subgroups.

Although it is related to an image competition, a good example of how UMAP and t-SNE can help 

you understand your data better is Chris Deotte’s analysis for the SIIM-ISIC Melanoma Classifi-

cation competition (see https://www.kaggle.com/c/siim-isic-melanoma-classification/

discussion/168028). In this example, Chris has related training and test data on the same low-di-

mensionality projections, highlighting portions where only test examples were present.

As stated by the article How to t-SNE Effectively (https://distill.pub/2016/misread-tsne/), 

you have to use these techniques properly, because it is easy to spot clusters and patterns where 

there are none. The same warning is valid for UMAP, because it can also produce plots that can 

be misread. Guides such as https://pair-code.github.io/understanding-umap/ offer sound 

advice on the performance of both UMAP and t-SNE on real-world data, providing suggestions 

and caveats.

Despite these dangers, in our experience, these approaches are certainly more revealing than the 

classical methods based on variance restructuring by linear combination such as PCA or SVD. 

Compared to these approaches, UMAP and t-SNE manage to reduce the dimensionality extremely, 

allowing visual charting of the results while maintaining the topography of the data. As a side 

effect, they are much slower to fit. However, NVIDIA has released its RAPIDS suite (https://

developer.nvidia.com/rapids) based on CUDA, which, using a GPU-powered Notebook or 

script, returns the results of both UMAP and t-SNE in a very reasonable timeframe, allowing their 

effective use as an EDA tool.

Though UMAP and t-SNE offer invaluable help in discovering patterns in data that 

are hard to find, you still can use them as features in your modeling efforts. An inter-

esting example of this usage was demonstrated in the Otto Group Product Classification 

Challenge, where Mike Kim used t-SNE projections as training features for the com-

petition (https://www.kaggle.com/c/otto-group-product-classification-

challenge/discussion/14295).

You can find a useful example of applying both UMAP and t-SNE with a RAPIDS 

implementation and a GPU for data exploration purposes for the 30 Days of ML 

competition at the following link: https://www.kaggle.com/lucamassaron/

interesting-eda-tsne-umap/.

https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/168028
https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/168028
https://distill.pub/2016/misread-tsne/
https://pair-code.github.io/understanding-umap/
https://developer.nvidia.com/rapids
https://developer.nvidia.com/rapids
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14295
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14295
https://www.kaggle.com/lucamassaron/interesting-eda-tsne-umap/
https://www.kaggle.com/lucamassaron/interesting-eda-tsne-umap/
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In the figure below, which is the output of the example Notebook above, you can see how multiple 

clusters populate the dataset, but none of them could be deemed to reveal a particular relation-

ship with the target:

Figure 7.1: Multiple clusters appearing in a t-SNE plot

In another Notebook (https://www.kaggle.com/lucamassaron/really-not-missing-at-

random), the same techniques are applied to the binary indicators for missing samples instead, 

revealing evocative figures that hint at specific and separate areas dominated by a certain type 

of response. Indeed, in that example, missing samples did not occur at random and they were 

quite predictive:

Figure 7.2: This t-SNE plot easily reveals areas where the positive target is predominant

https://www.kaggle.com/lucamassaron/really-not-missing-at-random
https://www.kaggle.com/lucamassaron/really-not-missing-at-random
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Reducing the size of your data
If you are working directly on Kaggle Notebooks, you will find their limitations quite annoying 

and dealing with them a timesink. One of these limitations is the out-of-memory errors that will 

stop the execution and force you to restart the script from the beginning. This is quite common in 

many competitions. However, unlike deep learning competitions based on text or images where 

you can retrieve the data from disk in small batches and have them processed, most of the algo-

rithms that work with tabular data require handling all the data in memory.

The most common situation is when you have uploaded the data from a CSV file using Pandas’ 

read_csv, but the DataFrame is too large to be handled for feature engineering and machine 

learning in a Kaggle Notebook. The solution is to compress the size of the Pandas DataFrame you 

are using without losing any information (lossless compression). This can easily be achieved 

using the following script derived from the work by Guillaume Martin (you can find the original 

Notebook here: https://www.kaggle.com/gemartin/load-data-reduce-memory-usage).

def reduce_mem_usage(df, verbose=True):

    numerics = ['int16', 'int32', 'int64', 

                'float16', 'float32', 'float64']'

    start_mem = df.memory_usage().sum() / 1024**2    

    for col in df.columns:

        col_type = df[col].dtypes

        if col_type in numerics:

            c_min = df[col].min()

            c_max = df[col].max()

            if str(col_type)[:3] == 'int':

                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.
int8).max:

                    df[col] = df[col].astype(np.int8)

                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.
int16).max:

                    df[col] = df[col].astype(np.int16)

                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.
int32).max:

                    df[col] = df[col].astype(np.int32)

                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.
int64).max:

https://www.kaggle.com/gemartin/load-data-reduce-memory-usage
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                    df[col] = df[col].astype(np.int64)  

            else:

                if c_min > np.finfo(np.float32).min and c_max < np.finfo(np.
float32).max:

                    df[col] = df[col].astype(np.float32)

                else:

                    df[col] = df[col].astype(np.float64)    

    end_mem = df.memory_usage().sum() / 1024**2

    if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% 
reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem))

    return df

This script leverages the fact that all the numeric features in a dataset reside in a specific range of 

values. Since we have different types of integer and floating-point numeric variables in Python, 

based on the number of bytes they occupy in memory, the script compares the range of values 

found in each feature to the maximum and minimum value that each numeric type can accept. 

This is done in order to set the feature to the numeric type that works with its range of values 

and that requires the lowest memory.

The approach works like a breeze on Kaggle Notebooks, but with some caveats. Once you have 

set the best-fitting numeric type for each feature by compression, you cannot apply any feature 

engineering that may result in values exceeding the capacity of the set numeric types, because 

such an operation will produce erroneous results. Our suggestion is to apply it after feature en-

gineering or before major transformations that do not rescale your existing data. Combining it 

with the garbage collection library gc and the gc.collect() method will improve the memory 

situation of your Kaggle Notebook.

Another way to reduce the size of your data (among other things) is to use feature engineering 

(in particular, feature selection and data compression).

Guillaume Martin was not the first to propose an idea like this on Kaggle. The very 

first Kaggler with this idea of compressing a Pandas DataFrame was Arjan Groen, who 

wrote a reducing function during the Zillow competition (https://www.kaggle.

com/arjanso/reducing-dataframe-memory-size-by-65).

https://www.kaggle.com/arjanso/reducing-dataframe-memory-size-by-65
https://www.kaggle.com/arjanso/reducing-dataframe-memory-size-by-65
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Applying feature engineering
In real-world projects, what can make the difference between a successful machine learning model 

and a mediocre one is often the data, not the model. When we talk about data, the differentiator 

between bad, good, and excellent data is not just the lack of missing values and the reliability of 

the values (its “quality”), or the number of available examples (its “quantity”). In our experience, 

the real differentiator is the informational value of the content itself, which is represented by the 

type of features.

The features are the real clay to mold in a data science project, because they contain the information 

that models use to separate the classes or estimate the values. Every model has an expressiveness 

and an ability to transform features into predictions, but if you are lacking on the side of features, 

no model can bootstrap you and offer better predictions. Models only make apparent the value in 

data. They are not magic in themselves.

On Kaggle, apart from the rare competitions where you can look for further data to add, all partic-

ipants have the same data available from the beginning. At that point, how you handle the data 

makes most of the difference. Overlooking the fact that you can improve the data you have is a 

common mistake made by many Kagglers. Feature engineering, a set of techniques for trans-

forming data into more useful information for your models, is invariably the key to performing 

better in competitions. Even the more powerful models you can apply need you to process the 

data and render it into a more understandable form.

Feature engineering is also the way you embed any prior knowledge (usually specialist expertise 

on the problem) into the data: by summing, subtracting, or dividing the existing features, you 

obtain indicators or estimates that you know can better explain the problem you are dealing 

with. There are also other purposes of feature engineering, which are less valuable in a Kaggle 

competition but could prove important in a real-world project. The first is to reduce the size of the 

training data (this could also be useful in a Kaggle competition when working with Notebooks, 

which have limits in memory). The second is to make interpretation of the resulting model easier 

by using features understandable to humans.

Each domain may have encoded specific variable transformations that are not necessarily self-ev-

ident, but well known to experts of the fields. Just think of finance, where you have to separate 

signals from noise for different sets of features representing market and company data, by applying 

specific transformations like Kalman filters or wavelet transformations. Given the large number 

of possible fields and the complexity of many feature engineering procedures, in this section, we 

won’t enter into specific domains of expertise and their particular ways of dealing with features. 
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Instead, we will present you with the most common and most general techniques that you can 

apply in any tabular competition.

Easily derived features
Deriving features with transformations is the simplest approach, but often the most effective. 

For instance, computing feature ratios (dividing one feature by another) can prove quite effective 

because many algorithms cannot mimic divisions (for example, gradient boosting) or can have 

a hard time trying to (for example, deep neural networks). Here are the most common transfor-

mations to try out:

• Time feature processing: Splitting a date into its elements (year, month, day); transform-

ing it into week of the year and weekday; computing differences between dates; computing 

differences with key events (for instance, holidays).

For dates, another common transformation is extracting time elements from a date or a 

time. Cyclic continuous transformations (based on sine and cosine transformations) are 

also useful for representing the continuity of time and creating periodic features:

cycle = 7

df['weekday_sin'] = np.sin(2 * np.pi * df['col1'].dt.dayofweek / 
cycle)

df['weekday_cos'] = np.cos(2 * np.pi * df['col1'].dt.dayofweek / 
cycle)

• Numeric feature transformations: Scaling; normalization; logarithmic or exponential 

transformations; separating the integer and decimal parts; summing, subtracting, multi-

plying, or dividing two numeric features. Scaling obtained by standardization (the z-score 

method used in statistics) or by normalization (also called min-max scaling) of numeric 

features can make sense if you are using algorithms sensitive to the scale of features, such 

as any neural network.

• Binning of numeric features: This is used to transform continuous variables into discrete 

ones by distributing their values into a number of bins. Binning helps remove noise and 

errors in data and it allows easy modeling of non-linear relationships between the binned 

features and the target variable when paired with one-hot encoding (see the Scikit-learn 

implementation, for instance: https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.KBinsDiscretizer.html).

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
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• Categorical feature encoding: One-hot encoding; a categorical data processing that merg-

es two or three categorical features together; or the more sophisticated target encoding 

(more on this in the following sections).

• Splitting and aggregating categorical features based on the levels: For instance, in 

the Titanic competition (https://www.kaggle.com/c/titanic) you can split names and 

surnames, as well their initials, to create new features.

• Polynomial features are created by raising features to an exponent. See, for instance, this 

Scikit-learn function: https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.PolynomialFeatures.html.

While they are not proper feature engineering but more data cleaning techniques, missing data 

and outlier treatments involve making changes to the data that nevertheless transform your 

features, and they can help signals from the data emerge:

• Missing values treatment: Make binary features that point out missing values, because 

sometimes missingness is not random and a missing value could have some important 

reason behind it. Usually, missingness points out something about the way data is recorded, 

acting like a proxy variable for something else. It is just like in census surveys: if someone 

doesn’t tell you their income, it means they are extremely poor or are extremely rich. If 

required by your learning algorithm, replace the missing values with the mean, median, 

or mode (it is seldom necessary to use methods that are more sophisticated).

Just keep in mind that some models can handle missing values by themselves and do so 

fairly better than many standard approaches, because the missing-values handling is part 

of their optimization procedure. The models that can handle missing values by themselves 

are all gradient boosting models:

• XGBoost: https://xgboost.readthedocs.io/en/latest/faq.html

• LightGBM: https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.

html

• CatBoost: https://catboost.ai/docs/concepts/algorithm-missing-values-

processing.html

You can refer to this complete guide written by Parul Pandey (https://www.

kaggle.com/parulpandey) as a reference: https://www.kaggle.com/

parulpandey/a-guide-to-handling-missing-values-in-python.

https://www.kaggle.com/c/titanic
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://xgboost.readthedocs.io/en/latest/faq.html
https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html
https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html
https://catboost.ai/docs/concepts/algorithm-missing-values-processing.html
https://catboost.ai/docs/concepts/algorithm-missing-values-processing.html
https://www.kaggle.com/parulpandey
https://www.kaggle.com/parulpandey
https://www.kaggle.com/parulpandey/a-guide-to-handling-missing-values-in-python
https://www.kaggle.com/parulpandey/a-guide-to-handling-missing-values-in-python
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• Outlier capping or removal: Exclude, cap to a maximum or minimum value, or modi-

fy outlier values in your data. To do so, you can use sophisticated multivariate models, 

such as those present in Scikit-learn (https://scikit-learn.org/stable/modules/

outlier_detection.html). 

Otherwise, you can simply locate the outlying samples in a univariate fashion, basing your 

judgment on how many standard deviations they are from the mean, or their distance from 

the boundaries of the interquartile range (IQR). In this case, you might simply exclude 

any points that are above the value of 1.5 * IQR + Q3 (upper outliers) and any points 

that are below Q1 - 1.5 * IQR (lower outliers). Once you have found the outliers, you 

can also proceed by pointing them out with a binary variable.

All these data transformations can add predictive performance to your models, but they are sel-

dom decisive in a competition. Though it is necessary, you cannot simply rely on basic feature 

engineering. In the following sections, we’ll suggest more complex procedures for extracting 

value from your data.

Meta-features based on rows and columns
In order to perform competitively, you need trickier feature engineering. A good place to start is 

looking at features based on each row, considered separately:

• Compute the mean, median, sum, standard deviation, minimum, or maximum of the 

numeric values (or of a subset of them)

• Count the missing values

• Compute the frequencies of common values found in the rows (for instance, considering 

the binary features and counting the positive values)

• Assign each row to a cluster derived from a cluster analysis such as k-means

These meta-features (called thus because they are features that are representative of a set of 

single features) help to distinguish the different kinds of samples found in your data by pointing 

out specific groups of samples to your algorithm.

Meta-features can also be built based on columns. Aggregation and summarization operations 

on single features instead have the objective of providing further information about the value of 

numeric and categorical features; is this characteristic common or rare? This is information that the 

model cannot grasp because it cannot count categorical instances in a feature.

https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/outlier_detection.html
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As meta-features, you can use any kind of column statistic (such as mode, mean, median, sum, 

standard deviation, min, max, and also skewness and kurtosis for numerical features). For col-

umn-wise meta-features, you can proceed in a few different ways:

• Frequency encoding: Simply count the frequency of the values in a categorical feature and 

then create a new feature where you replace those values with their frequency. You can also 

apply frequency encoding to numeric features when there are frequently recurring values.

• Frequencies and column statistics computed with respect to a relevant group: In this 

case, you can create new features from the values of both numeric and categorical features 

because you are considering distinct groups in the data. A group could be a cluster you 

compute by cluster analysis, or a group you can define using a feature (for instance, age 

may produce age groups, locality may provide areas, and so on). The meta-features de-

scribing each group are then applied to each sample based on its group. For instance, using 

a Pandas groupby function, you can create your meta-features, which are then merged 

with the original data based on the grouping variable. The trickiest part of this feature 

engineering technique is finding meaningful groups in data to compute the features on.

• Further column frequencies and statistics can be derived by combining more groups 

together.

The list is certainly not exhaustive, but it should give you an idea of how to look for new features 

at the feature level and at the row level using frequencies and statistics.

Let’s see a simple example based on the Amazon Employee Access Challenge data. First, we will 

apply a frequency encoding on the ROLE_TITLE feature:

import pandas as pd

train = pd.read_csv("../input/amazon-employee-access-challenge/train.csv")

# Frequency count of a feature

feature_counts = train.groupby('ROLE_TITLE').size()

print(train['ROLE_TITLE'].apply(lambda x: feature_counts[x]))

The result will show that the feature classes have been replaced by their observed frequency.

We now proceed to encode the ROLE_TITLE feature based on the groupings of the ROLE_DEPTNAME, 

because we expect that different titles may be more common in certain departments and rarer 

in others. 
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The result is a new feature composed of both, which we use to count the frequency of its values:

feature_counts = train.groupby(['ROLE_DEPTNAME', 'ROLE_TITLE']).size()

print(train[['ROLE_DEPTNAME', 'ROLE_TITLE']].apply(lambda x: feature_
counts[x[0]][x[1]], axis=1))

Target encoding
Categorical features are usually not a challenge to deal with, thanks to simple functions offered 

by Scikit-learn such as:

• LabelEncoder

• OneHotEncoder

• OrdinalEncoder

These functions can transform categories into numeric features and then into binary features that 

are easily dealt with by machine learning algorithms. However, when the number of categories 

to deal with is too large, the dataset resulting from a one-hot encoding strategy becomes sparse 

(most values in it will be zero values) and cumbersome to handle for the memory and processor 

of your computer or Notebook. In these situations, we talk about a high-cardinality feature, 

which requires special handling.

The idea behind this approach is to transform the many categories of a categorical feature into 

their corresponding expected target value. In the case of a regression, this is the average expect-

ed value for that category; for a binary classification, it is the conditional probability given that 

category; for a multiclass classification, you have instead the conditional probability for each 

possible outcome. 

You can find all the working code and the results in this Kaggle Notebook: https://

www.kaggle.com/lucamassaron/meta-features-and-target-encoding/.

Since early Kaggle competitions, high-cardinality variables have in fact been pro-

cessed using an encoding function that is computed according to Micci-Barreca, D. 

A preprocessing scheme for high-cardinality categorical attributes in classification and 

prediction problems. ACM SIGKDD Explorations Newsletter 3.1 (2001): 27-32.

https://www.kaggle.com/lucamassaron/meta-features-and-target-encoding/
https://www.kaggle.com/lucamassaron/meta-features-and-target-encoding/
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For instance, in the Titanic GettingStarted competition (https://www.kaggle.com/competitions/

titanic), where you have to figure out the survival probability of each passenger, target encoding 

a categorical feature, such as the gender feature, would mean replacing the gender value with its 

average probability of survival.

In this way, the categorical feature is transformed into a numeric one without having to convert 

the data into a larger and sparser dataset. In short, this is target encoding and it is indeed very 

effective in many situations because it resembles a stacked prediction based on the high-cardi-

nality feature. Like stacked predictions, however, where you are essentially using a prediction 

from another model as a feature, target encoding brings about the risk of overfitting. In fact, when 

some categories are too rare, using target encoding is almost equivalent to providing the target 

label. There are ways to avoid this.

Before seeing the implementation you can directly import into your code, let’s see an actual code 

example of target encoding. This code was used for one of the top-scoring submissions of the 

PetFinder.my Adoption Prediction competition:

import numpy as np

import pandas as pd

from sklearn.base import BaseEstimator, TransformerMixin

class TargetEncode(BaseEstimator, TransformerMixin):

    

    def __init__(self, categories='auto', k=1, f=1, 

                 noise_level=0, random_state=None):

        if type(categories)==str and categories!='auto':

            self.categories = [categories]

        else:

            self.categories = categories

        self.k = k

        self.f = f

        self.noise_level = noise_level

        self.encodings = dict()

        self.prior = None

        self.random_state = random_state

        

    def add_noise(self, series, noise_level):

        return series * (1 + noise_level *   

https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/competitions/titanic
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                         np.random.randn(len(series)))

        

    def fit(self, X, y=None):

        if type(self.categories)=='auto':

            self.categories = np.where(X.dtypes == type(object()))[0]

        temp = X.loc[:, self.categories].copy()

        temp['target'] = y

        self.prior = np.mean(y)

        for variable in self.categories:

            avg = (temp.groupby(by=variable)['target']

                       .agg(['mean', 'count']))

            # Compute smoothing 

            smoothing = (1 / (1 + np.exp(-(avg['count'] - self.k) /                 

                         self.f)))

            # The bigger the count the less full_avg is accounted

            self.encodings[variable] = dict(self.prior * (1 -  

                             smoothing) + avg['mean'] * smoothing)

            

        return self

    

    def transform(self, X):

        Xt = X.copy()

        for variable in self.categories:

            Xt[variable].replace(self.encodings[variable], 

                                 inplace=True)

            unknown_value = {value:self.prior for value in 

                             X[variable].unique() 

                             if value not in 

                             self.encodings[variable].keys()}

            if len(unknown_value) > 0:

                Xt[variable].replace(unknown_value, inplace=True)

            Xt[variable] = Xt[variable].astype(float)

            if self.noise_level > 0:

                if self.random_state is not None:

                    np.random.seed(self.random_state)

                Xt[variable] = self.add_noise(Xt[variable], 
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                                              self.noise_level)

        return Xt

    

    def fit_transform(self, X, y=None):

        self.fit(X, y)

        return self.transform(X)

The input parameters of the function are:

• categories: The column names of the features you want to target-encode. You can leave 

'auto' on and the class will pick the object strings.

• k (int): Minimum number of samples to take a category average into account.

• f (int): Smoothing effect to balance the category average versus the prior probability, or 

the mean value relative to all the training examples.

• noise_level: The amount of noise you want to add to the target encoding in order to 

avoid overfitting. Start with very small numbers.

• random_state: The reproducibility seed in order to replicate the same target encoding 

when noise_level > 0.

Notice the presence of the k and the f parameters. In fact, for a level i of a categorical feature, 

we are looking for an approximate value that can help us better predict the target using a single 

encoded variable. Replacing the level with the observed conditional probability could be the 

solution, but doesn’t work well for levels with few observations. The solution is to blend the 

observed posterior probability on that level (the probability of the target given a certain value of 

the encoded feature) with the a priori probability (the probability of the target observed on the 

entire sample) using a lambda factor. This is called the empirical Bayesian approach.

In practical terms, we are using a function to determine if, for a given level of a categorical variable, 

we are going to use the conditional target value, the average target value, or a blend of the two. 

This is dictated by the lambda factor, which, for a fixed k parameter (usually it has a unit value, 

implying a minimum cell frequency of two samples) has different output values depending on 

the f value that we choose.
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Figure 7.3: Plot of lambda values (on the y-axis) depending on f values and sample size of the 
categorical value (on the x-axis)

As shown by the chart, where the x-axis represents the number of cases for a given categorical 

level and the y-axis the weight of the conditional target value, smaller f values tend to switch 

abruptly from using the average target to using the conditional value. Higher values of f tend to 

blend the conditional value with the average unless we are dealing with a categorical level with 

a large sample size.
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Therefore, for a fixed k, higher values of f dictate less trust in the observed empirical frequency 

and more reliance on the empirical probability for all cells. The right value for f is usually a 

matter of testing (supported by cross-validation), since you can consider the f parameter a hy-

perparameter in itself.

After all these explanations, the class is actually quite straightforward to use. Instantiate it with 

the name of the features you want to target-encode and the parameters you want to try and fit 

it on some training data. Then, you can transform any other piece of data, target-encoding only 

the fitted features:

te = TargetEncode(categories='ROLE_TITLE')

te.fit(train, train['ACTION'])

te.transform(train[['ROLE_TITLE']])

The example works on the same Amazon Employee Access Challenge data we used before and it 

target-encodes only the ROLE_TITLE feature.

Using feature importance to evaluate your work
Applying too much feature engineering can have side effects. If you create too many correlated 

features or features that are not important for the problem, models could take too long to complete 

their training and you may get worse results. This may seem like a paradox, but it is explained 

by the fact that every variable carries some noise (a random component due to measurement or 

recording errors) that may be picked by mistake by the model: the more variables you use, the 

higher the chance your model may pick up noise instead of signals. Therefore, you should try to 

keep only the relevant features in the dataset you use for training; consider feature selection as 

a part of your feature engineering process (the pruning phase).

Figuring out the features you need to keep is a hard problem because, as the number of available 

features grows, the number of possible combinations grows too. There are various ways to select 

features, but first it is important to think about the stage in your data preparation pipeline where 

the selection has to happen.

Instead of writing your own code, you can also use the package from https://

github.com/scikit-learn-contrib/category_encoders and its Target Encod-

er (http://contrib.scikit-learn.org/category_encoders/targetencoder.

html). It is an out-of-the-box solution that works exactly like the code in this section.

https://github.com/scikit-learn-contrib/category_encoders
https://github.com/scikit-learn-contrib/category_encoders
http://contrib.scikit-learn.org/category_encoders/targetencoder.html
http://contrib.scikit-learn.org/category_encoders/targetencoder.html
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Based on our experiences, we suggest you consider placing feature selection at the end of your 

data preparation pipeline. Since features share a part of their variance with other features, you 

cannot evaluate their effectiveness by testing them one at a time; you have to consider them all 

at once in order to correctly figure out which you should use.

In addition, you should then test the effectiveness of your selected features using cross-validation. 

Therefore, after you have all the features prepared and you have a consistent pipeline and a work-

ing model (it doesn’t need to be a fully optimized model, but it should work properly and return 

acceptable results for the competition), you are ready to test what features should be retained 

and what could be discarded. At this point, there are various ways to operate feature selection:

• Classical approaches used in statistics resort to forward addition or backward elimination 

by testing each feature entering or leaving the set of predictors. Such an approach can be 

quite time-consuming, though, because it relies on some measure of internal importance 

of variables or on their effect on the performance of the model with respect to a specific 

metric, which you have to recalculate for every feature at every step of the process.

• For regression models, using lasso selection can provide a hint about all the important 

yet correlated features (the procedure may, in fact, retain even highly correlated features), 

by using the stability selection procedure. In stability selection, you test multiple times 

(using a bagging procedure) what features should be retained – considering only the 

features whose coefficients are not zero at each test – and then you apply a voting system 

to keep the ones that are most frequently assigned non-zero coefficients.

• For tree-based models, such as random forests or gradient boosting, a decrease in im-

purity or a gain in the target metric based on splits are common ways to rank features. A 

threshold can cut away the least important ones.

• Always for tree-based models, but easily generalizable to other models, test-based ran-

domization of features (or simple comparisons with random features) helps to distinguish 

features that do help the model to predict correctly from features that are just noise or 

redundant.

You can get more details about the procedure at this repository: https://

github.com/scikit-learn-contrib/stability-selection.

https://github.com/scikit-learn-contrib/stability-selection
https://github.com/scikit-learn-contrib/stability-selection
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An example of how randomizing features helps in selecting important features is proposed in this 

example by Chris Deotte in the Ventilator Pressure Prediction competition: https://www.kaggle.com/

cdeotte/lstm-feature-importance. This Notebook tests the role of features in an LSTM-based 

neural network. First, the model is built and the baseline performance is recorded. Then, one by 

one, features are shuffled and the model is required to predict again. If the resulting prediction 

worsens, it suggests that you shuffled an important feature that shouldn’t be touched. Instead, if 

the prediction performance stays the same or even improves, the shuffled feature is not influential 

or even detrimental to the model.

In another approach based on shuffled features, Boruta (https://github.com/scikit-learn-

contrib/boruta_py) uses random features to test the validity of the model in an iterative fash-

ion. An alternative version of the Boruta selection procedure, BorutaShap (https://github.

com/Ekeany/Boruta-Shap), leverages SHAP values in order to combine feature selection and for 

explainability reasons. The resulting selection is usually more reliable than simple rounds of re-

moval or randomization of features, because features are tested multiple times against random 

features until they can statistically prove their importance. Boruta or BorutaShap may take up 

to 100 iterations and it can only be performed using tree-based machine learning algorithms.

If you are selecting features for a linear model, Boruta may actually overshoot. This is because it 

will consider the features important both for their main effects and their interactions together 

with other features (but in a linear model, you care only about the main effects and a selected 

subset of interactions). You can still effectively use Boruta when selecting for a linear model by 

using a gradient boosting whose max depth is set to one tree, so you are considering only the 

main effects of the features and not their interactions.

You can have a look at how simple and quick it is to set up a BorutaShap feature selection by 

following this tutorial Notebook presented during the 30 Days of ML competition: https://www.

kaggle.com/lucamassaron/tutorial-feature-selection-with-boruta-shap.

There is also No Free Lunch in importance evaluation. Shuffling doesn’t require 

any re-training, which is a great advantage when training a fresh model costs time. 

However, it can fail in certain situations. Shuffling can sometimes create unrealistic 

input combinations that make no sense to evaluate. In other cases, it can be fooled 

by the presence of highly correlated features (incorrectly determining that one is 

important and the other is not). In this case, proceeding by removing the feature 

(instead of shuffling it), retraining the model, and then evaluating its performance 

against the baseline is the best solution.

https://www.kaggle.com/cdeotte/lstm-feature-importance
https://www.kaggle.com/cdeotte/lstm-feature-importance
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/Ekeany/Boruta-Shap
https://github.com/Ekeany/Boruta-Shap
https://www.kaggle.com/lucamassaron/tutorial-feature-selection-with-boruta-shap
https://www.kaggle.com/lucamassaron/tutorial-feature-selection-with-boruta-shap
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Bojan Tunguz
https://www.kaggle.com/tunguz

Bojan Tunguz is one Kaggler who definitely understands the impor-

tance of feature engineering (and is also a great fan of XGBoost ). We 

were keen to speak to him about his experiences as a Machine Learning 

Modeler at NVIDIA and, impressively, a Kaggle Quadruple Grandmaster.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I love any non-code competition. This has changed a lot over the years. I used to be really into the image 

competitions, but the sophistication of the engineering stack required to be competitive in these has in-

creased tremendously over the years. For a while I was really into the NLP competitions, but those have 

always been rare on Kaggle. One constant over the years, though, has been my interest in tabular data 

problems. Those used to be the quintessential Kaggle competition problems but have unfortunately become 

extinct. I am still very interested in that area of ML and have moved into doing some basic research in 

this domain. Compared to the other areas of ML/DL, there has been very little progress on improving 

ML for tabular data, and I believe there is a lot of opportunity here.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I have always taken the game aspect of Kaggle seriously. What that means for me is I usually start new 

Kaggle competitions very playfully – submitting simple solutions, whimsical solutions, modified solutions 

from other players, blends, etc. These help me get a feel for the problem, what sorts of things work, how 

far can I get with a few simple tricks, etc. Some of this is also applicable to my day-to-day modeling, but 

there one important aspect is missing – and that’s the support and feedback from the community and 

the leaderboard. When you are working on your own or with a small team, you never know if what you 

are building is the best that can be done, or if a better solution is possible.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
The most challenging and the most important competition of my Kaggle career was the Home Credit 

Default Risk competition. It is the second biggest Kaggle competition of all time, and it happened during 

a particularly challenging time in my life.

https://www.kaggle.com/tunguz
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Pseudo-labeling
In competitions where the number of examples used for training can make a difference, pseu-

do-labeling can boost your scores by providing further examples taken from the test set. The idea 

is to add examples from the test set whose predictions you are confident about to your training set.

Credit underwriting is a very challenging data science problem and requires a lot of intelligent feature 

engineering and a reliable validation scheme. My own personal insight was to use simple linear modeling 

for feature selection, and it helped our overall model. Our team won that competition, and to this day I 

consider this victory the highlight of my Kaggle career.

Has Kaggle helped you in your career? If so, how?
Kaggle has been the single biggest booster of my ML career. Out of four ML jobs that I have held, three 

have been a direct consequence of my Kaggle success. It is impossible to overstate how important a Kaggle 

credential can be in one’s career.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
There are two aspects of all ML problems, and Kaggle competitions in particular, that I have either un-

derappreciated or not bothered enough with for way too long: feature engineering and a robust validation 

strategy. I love ML libraries and algorithms and have a tendency to start building the ML algorithm as 

soon as I can. But the single biggest impact on your model’s performance will come from very good fea-

tures. Unfortunately, feature engineering is more of an art than a science and is usually very model- and 

dataset-dependent. Most of the more interesting feature engineering tricks and practices are rarely, if 

ever, taught in standard ML courses or resources. Many of them cannot be taught and are dependent on 

some special problem-specific insights. But the mindset of looking into feature engineering as default is 

something that can be cultivated. It will usually take many years of practice to get good at it.

Are there any tools or libraries that you would recommend using for 
Kaggling?
XGBoost is all you need!



Chapter 7 225

First introduced in the Santander Customer Transaction Prediction competition by team Wizard-

ry (read here: https://www.kaggle.com/c/santander-customer-transaction-prediction/

discussion/89003), pseudo-labeling simply helps models to refine their coefficients thanks to 

more data available, but it won’t always work. First of all, it is not necessary in some competitions. 

That is, adding pseudo-labels won’t change the result; it may even worsen it if there is some added 

noise in the pseudo-labeled data.

Second, it is not easy to decide which parts of the test set predictions to add or how to tune the 

entire procedure for the best results. Generally, this is the procedure:

1. Train your model

2. Predict on the test set

3. Establish a confidence measure

4. Select the test set elements to add

5. Build a new model with the combined data

6. Predict using this model and submit

A good example of the complete procedure for obtaining pseudo-labeling is offered by Chris Deotte 

in the Instant Gratification competition: https://www.kaggle.com/cdeotte/pseudo-labeling-

qda-0-969. You don’t need to know more than a few tricks in order to apply it.

There are a few caveats you should consider when trying to apply pseudo-labeling:

• You should have a very good model that produces good predictions for them to be usable 

in training. Otherwise, you will just add more noise.

• Since it is impossible to have entirely perfect predictions in the test set, you need to dis-

tinguish the good ones from the ones you shouldn’t use. If you are predicting using CV 

folds, check the standard deviation of your predictions (this works both with regression 

and classification problems) and pick only the test examples where the standard deviation 

is the lowest. If you are predicting probabilities, use only high-end or low-end predicted 

probabilities (the cases where the model is actually more confident).

Unfortunately, you cannot know for sure beforehand whether or not pseudo-labeling 

will work in a competition (you have to test it empirically), though plotting learning 

curves may provide you with a hint as to whether having more data could be useful 

(see this example provided by Scikit-learn: https://scikit-learn.org/stable/

auto_examples/model_selection/plot_learning_curve.html).

https://www.kaggle.com/c/santander-customer-transaction-prediction/discussion/89003
https://www.kaggle.com/c/santander-customer-transaction-prediction/discussion/89003
https://www.kaggle.com/cdeotte/pseudo-labeling-qda-0-969
https://www.kaggle.com/cdeotte/pseudo-labeling-qda-0-969
https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
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• In the second stage, when you concatenate the training examples with the test ones, do 

not put in more than 50% test examples. Ideally, a share of 70% original training exam-

ples and 30% pseudo-labeled examples is the best. If you put in too many pseudo-labeled 

examples, your new model will risk learning little from the original data and more from 

the easier test examples, resulting in a distilled model that does not perform better than 

the original. In fact, as you are training, your model is also learning how to deal with noise 

in labels, but pseudo-labeled examples do not have this noise.

• If you depend on validation for early stopping, fixing hyperparameters, or simply evalu-

ating your model, do not use pseudo-labels in the validation. They could be highly mis-

leading. Always use the original training cases for the same reasons we quoted above.

• If possible, use a different kind of model when training to estimate the pseudo-labels and 

when training your final model using both the original labels and the pseudo-labels. This 

will ensure you are not simply enforcing the same information your previous model used, 

but you are also extracting new information from the pseudo-labels.

Clearly, pseudo-labeling is more of an art than a science. It can make the difference in certain 

competitions but needs to be executed very well to generate results. Consider it a resource, and 

always try one submission based on pseudo-labels.

Denoising with autoencoders
Autoencoders, initially better known for non-linear data compression (a kind of non-linear PCA) 

and image denoising, started being recognized as an interesting tool for tabular competitions 

after Michael Jahrer (https://www.kaggle.com/mjahrer) successfully used them to win the Porto 

Seguro’s Safe Driver Prediction competition (https://www.kaggle.com/c/porto-seguro-safe-

driver-prediction). Porto Seguro was a popular, insurance-based risk analysis competition 

(more than 5,000 participants) characterized by particularly noisy features. 

Don’t forget that you cannot completely trust your pseudo-labels, so keep in 

mind that you are also partially spoiling your data by using test predictions 

as training examples. The trick works when you get more benefits from doing 

so than negative effects.

https://www.kaggle.com/mjahrer
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction
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Michael Jahrer describes how he found a better representation of the numeric data for subsequent 

neural net supervised learning by using denoising autoencoders (DAEs). A DAE can produce a 

new dataset with a huge number of features based on the activations of the hidden layers at the 

center of the network, as well as the activations of the middle layers encoding the information.

In his famous post (https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/

discussion/44629), Michael Jahrer describes how a DAE can not only remove noise but also au-

tomatically create new features, so the representation of the features is learned in a similar way 

to what happens in image competitions. In the post, he mentions the secret sauce for the DAE 

recipe, which is not simply the layers, but the noise you put into the data in order to augment it. 

He also made clear that the technique requires stacking together training and test data, implying 

that the technique would not have applications beyond winning a Kaggle competition. In fact, 

after this winning exploit, the technique disappeared from the forums and most competitions 

until its recent re-emergence during the Tabular Playground Series.

DAEs are technically composed of an encoding part and a decoding part. The encoding part takes 

the training data as input and is followed by a few dense layers. Ideally, you have a hidden middle 

layer, whose activations just encode all the training information. If the number of nodes in this 

middle layer is smaller than the original input shape, you have a compression and hopefully, in 

statistical terms, you are representing some latent dimensionality that is behind the generative 

process of the input data; otherwise, you are simply eliminating redundancies and separating 

noise from signal (which is not a bad result).

In the second part of the layer, the decoder part, you are enlarging the layers again until they re-

gain the shape of the original input. The output is compared with the input to compute an error 

loss to backpropagate to the network.

From these solutions, you can deduce that there are two types of DAEs:

• In bottleneck DAEs, mimicking the approach used in image processing, you take as new 

features the activations from the middle layer, the one separating the encoding part from 

the decoding part. These architectures have an hourglass shape, first reducing the number 

of neurons layer by layer until the middle bottleneck layer, then enlarging it back in the 

second part. The number of hidden layers is always odd.

https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629
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Figure 7.4: In a bottleneck DAE, you take only the bottleneck layer weights as features

• In deep stack DAEs, you take all the activations from the hidden layers, without distin-

guishing between the encoding, decoding, or middle layer. In these architectures, layers 

are the same size. The number of hidden layers can be even or odd.

Figure 7.5: In a deep stack DAE, you take all the stacked hidden layer weights as 
features

As we mentioned, an important aspect often discussed is adding some random noise to your DAE. 

In order to help train any kind of DAE, you need to inject noise that helps to augment the training 

data and avoid the overparameterized neural network just memorizing inputs (in other words, 

overfitting). In the Porto Seguro competition, Michael Jahrer added noise by using a technique 

called swap noise, which he described as follows:
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What is described is basically an augmentation technique called mixup (which is also used in 

image augmentation: https://arxiv.org/abs/1710.09412). In mixup for tabular data, you 

decide a probability for mixing up. Based on that probability, you change some of the original 

values in a sample, replacing them with values from a more or less similar sample from the same 

training data.

In his walkthrough (https://www.kaggle.com/springmanndaniel/1st-place-turn-your-data-

into-daeta), Danzel describes three approaches to this: column-wise, row-wise, and random:

• In column-wise noise swapping, you swap values in a certain number of columns. The 

proportion of columns whose values are to be swapped is decided based on your mixup 

probability.

• In row-wise noise swapping, you always swap a certain number of the values in each 

row. Essentially, every row contains the same proportion of swapped values, based on 

the mixup probability, but the features swapped change from row to row.

• In random noise swapping, you fix a number of values to be swapped, based on the mixup 

probability, and you randomly pick them up from the entire dataset (this is somewhat 

similar to row-wise swapping in effect).

Like pseudo-labeling, DAE is also more of an art than a science, which is another way to say that 

it is all trial and error. It won’t always work and the details that make it work on one problem 

probably won’t help for another. In order to obtain a good DAE for your competition, you need 

to keep an eye on a series of aspects that need to be tested and tuned:

• Architecture of the DAE (deep stack tends to work better, but you need to determine the 

number of units per layer and the number of layers)

• Learning rate and batch size

• Loss (also distinguishing between the loss of numeric and categorical features helps)

• Stopping point (the lowest loss is not always the best; use validation and early stopping 

if possible)

Here I sample from the feature itself with a certain probability “inputSwapNoise” 

in the table above. 0.15 means 15% of features replaced by values from another row.

https://arxiv.org/abs/1710.09412
https://www.kaggle.com/springmanndaniel/1st-place-turn-your-data-into-daeta
https://www.kaggle.com/springmanndaniel/1st-place-turn-your-data-into-daeta
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Depending on the problem, you should expect to face some difficulties in setting up the right 

architecture and adjusting it to work properly. Your efforts, however, could be rewarded by a top 

result on the final private leaderboard. In fact, in recent tabular competitions, DAE techniques 

appeared as part of the recipe of many winning submissions:

• Danzel (https://www.kaggle.com/springmanndaniel) reported in https://www.kaggle.

com/c/tabular-playground-series-jan-2021/discussion/216037 having used the 

hidden weights of three 1,500-neuron layers, expanding the original data from 14 columns 

to 4,500. This new, processed dataset was used as input in other neural networks and 

gradient boosting models.

• Ren Zhang (https://www.kaggle.com/ryanzhang) discussed his solution (https://www.

kaggle.com/c/tabular-playground-series-feb-2021/discussion/222745) and shared 

his code (https://github.com/ryancheunggit/Denoise-Transformer-AutoEncoder), 

revealing that he used stacked transformer encoders rather than your typical linear and 

ReLU activated hidden layers (and that such an approach can mean it takes up to 20 hours 

to train a proper DAE). In his approach, he also suggested adding some random noise to 

the data (by using a noise mask) to be reconstructed and to compute the loss based not 

only on the error from reconstructing the original data, but also from the noise mask. Using 

this combined loss helps the network to converge better. Studying the code provided in 

the GitHub link and the graph in the Kaggle discussion post will help you to understand 

better and easily replicate this innovative approach.

• JianTT (https://www.kaggle.com/jiangtt) noticed how some techniques key to DAEs, 

in particular creating new observations by adding noise, can be useful for training better 

algorithms without the need of creating a complete DAE: https://www.kaggle.com/c/

tabular-playground-series-apr-2021/discussion/235739.

If you don’t want to spend too much time building your own DAE, but you would like 

to explore whether something like it could work for the competition you are taking 

on, you can test out a couple of pre-prepared solutions. First, you can refer to a Note-

book for a PyTorch network from Hung Khoi (https://www.kaggle.com/hungkhoi/

train-denoise-transformer-autoencoder) and re-adapt it to your needs, or 

you can use the Kaggler library from Jeong-Yoon Lee (https://www.kaggle.com/

jeongyoonlee). In his Notebook, Jeong-Yoon Lee presents how it works on one of 

the Tabular Playground competitions: https://www.kaggle.com/jeongyoonlee/

dae-with-2-lines-of-code-with-kaggler.

https://www.kaggle.com/springmanndaniel
https://www.kaggle.com/c/tabular-playground-series-jan-2021/discussion/216037
https://www.kaggle.com/c/tabular-playground-series-jan-2021/discussion/216037
https://www.kaggle.com/ryanzhang
https://www.kaggle.com/c/tabular-playground-series-feb-2021/discussion/222745
https://www.kaggle.com/c/tabular-playground-series-feb-2021/discussion/222745
https://github.com/ryancheunggit/Denoise-Transformer-AutoEncoder
https://www.kaggle.com/jiangtt
https://www.kaggle.com/c/tabular-playground-series-apr-2021/discussion/235739
https://www.kaggle.com/c/tabular-playground-series-apr-2021/discussion/235739
https://www.kaggle.com/hungkhoi/train-denoise-transformer-autoencoder
https://www.kaggle.com/hungkhoi/train-denoise-transformer-autoencoder
https://www.kaggle.com/jeongyoonlee
https://www.kaggle.com/jeongyoonlee
https://www.kaggle.com/jeongyoonlee/dae-with-2-lines-of-code-with-kaggler
https://www.kaggle.com/jeongyoonlee/dae-with-2-lines-of-code-with-kaggler
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Neural networks for tabular competitions
Having discussed neural networks with DAEs, we have to complete this chapter by discussing 

how neural networks can help you in a tabular competition more generally. Gradient boosting 

solutions still clearly dominate tabular competitions (as well as real-world projects); however, 

sometimes neural networks can catch signals that gradient boosting models cannot get, and can 

be excellent single models or models that shine in an ensemble.

Building a neural network quickly for a tabular competition is no longer a daunting challenge. 

Libraries such as TensorFlow/Keras and PyTorch make things easy, and having some pre-made 

networks such as TabNet already packaged for you into libraries makes them even easier.

To quickly get started with building your own network, you can use various resources. We warmly 

suggest referring to the book we published, Machine Learning Using TensorFlow Cookbook (https://

www.packtpub.com/product/machine-learning-using-tensorflow-cookbook/9781800208865), 

since there is an extensive chapter devoted to building DNNs with TensorFlow for tabular problems 

(Chapter 7, Predicting with Tabular Data). In the book, you can also find many other suggestions 

and recipes for using TensorFlow for Kaggle. 

Otherwise, you can refer to a few online resources introducing you to the topic, as presented 

during the 30 Days of ML competition:

• Watch this video that explains how to use TensorFlow for tabular data: https://www.

youtube.com/watch?v=nQgUt_uADSE

• Use the code from the tutorial on GitHub: https://github.com/lmassaron/deep_

learning_for_tabular_data

• Most importantly, find the tutorial Notebook applied to the competition here: https://

www.kaggle.com/lucamassaron/tutorial-tensorflow-2-x-for-tabular-data

As many Grandmasters of the present and the past often quote, mixing together 

diverse models (such as a neural network and a gradient boosting model) always 

produces better results than single models taken separately in a tabular data problem. 

Owen Zhang, previously number one on Kaggle, discusses at length in the following 

interview how neural networks and GBMs can be blended nicely for better results 

in a competition: https://www.youtube.com/watch?v=LgLcfZjNF44.

https://www.packtpub.com/product/machine-learning-using-tensorflow-cookbook/9781800208865
https://www.packtpub.com/product/machine-learning-using-tensorflow-cookbook/9781800208865
https://www.youtube.com/watch?v=nQgUt_uADSE
https://www.youtube.com/watch?v=nQgUt_uADSE
https://github.com/lmassaron/deep_learning_for_tabular_data
https://github.com/lmassaron/deep_learning_for_tabular_data
https://www.kaggle.com/lucamassaron/tutorial-tensorflow-2-x-for-tabular-data
https://www.kaggle.com/lucamassaron/tutorial-tensorflow-2-x-for-tabular-data
https://www.youtube.com/watch?v=LgLcfZjNF44
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The key things to take into account when building these solutions are:

• Use activations such as GeLU, SeLU, or Mish instead of ReLU; they are quoted in quite 

a few papers as being more suitable for modeling tabular data and our own experience 

confirms that they tend to perform better.

• Experiment with batch size.

• Use augmentation with mixup (discussed in the section on autoencoders).

• Use quantile transformation on numeric features and force, as a result, uniform or Gauss-

ian distributions.

• Leverage embedding layers, but also remember that embeddings do not model everything. 

In fact, they miss interactions between the embedded feature and all the others (so you 

have to force these interactions into the network with direct feature engineering).

In particular, remember that embedding layers are reusable. In fact, they consist only of a matrix 

multiplication that reduces the input (a sparse one-hot encoding of the high cardinality variable) 

to a dense one of lower dimensionality. By recording and storing away the embedding of a trained 

neural network, you can transform the same feature and use the resulting embeddings in many 

other different algorithms, from gradient boosting to linear models.

Refer to the diagram in Figure 7.6 for a clearer understanding of the process involving a categor-

ical variable with 24 levels. In the chart, we demonstrate how a value from a categorical feature 

is transformed from a textual or an integer value into a vector of values that a neural network 

can handle:
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Figure 7.6: How an embedding layer works

Everything starts with knowing how many distinct values the feature has. This constitutes the 

dictionary size and it is an important piece of information. In this example, we considered a feature 

presenting 24 distinct values. This information allows us to create a one-hot-encoded vector of 

size 24 representing each of the possible feature values. The resulting vector is then multiplied 

by a matrix whose row size corresponds to the size of the one-hot-encoded vector and column 

size to the size of the output dimensions. In this way, with a vector-matrix multiplication, the 

input of the categorical variable will be transformed into a multidimensional numeric one. The 

effectiveness of the multiplication is ensured by the backpropagation algorithm of the neural 

network, which will update each value in the matrix so the most predictive result is obtained 

from the multiplication.
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If you don’t want to build your own deep neural network in TensorFlow or PyTorch, you can rely 

on a few out-of-the-box architectural solutions. All these solutions come out of the box because 

they are packaged or because other Kagglers have written them based on the original papers. 

Based on their success in tabular competitions, here are the main ones you can try when taking 

on a tabular competition yourself:

• TabNet is a network devised by Google researchers (Arık, S. O. and Pfister. T. Tabnet: At-

tentive interpretable tabular learning. arXiv 2020. https://www.aaai.org/AAAI21Papers/

AAAI-1063.ArikS.pdf) that promises to help you select and process the relevant features 

and to deal with both categorical and numeric features in a smart way. It doesn’t have 

many hyperparameters to tune, though the results may deeply differ between an untuned 

network and a tuned one (hence the necessity of spending some time to make it work at 

its best). Here you have a few implementations, such as the excellent pytorch-tabnet 

package (https://github.com/dreamquark-ai/tabnet) or the implementations coded 

by Yirun Zhang (https://www.kaggle.com/gogo827jz), found at https://www.kaggle.

com/ludovick/introduction-to-tabnet-kfold-10-training and https://www.kaggle.

com/ludovick/introduction-to-tabnet-kfold-10-inference. Both were devised for 

the Mechanism of Action (MoA) Prediction competition.

• Neural Oblivious Decision Ensembles (NODE) is an architecture that tries to mimic in a 

neural network how a decision tree works (Popov, S., Morozov, S., and Babenko, A. Neural 

oblivious decision ensembles for deep learning on tabular data. arXiv preprint arXiv:1909.06312, 

2019. https://arxiv.org/abs/1909.06312). You can use the implementation offered 

by Yirun Zhang for TensorFlow at https://www.kaggle.com/gogo827jz/moa-neural-

oblivious-decision-ensembles-tf-keras or for PyTorch at https://www.kaggle.com/

gogo827jz/moa-public-pytorch-node.

• You can use a wide range of models, such as Wide & Deep, DeepFM, xDeepFM, AutoInt, 

and many others based on factorization machines and mostly devised for click-through 

rate estimation. You don’t have to build all these neural architectures by yourself; you 

can rely on packages such as DeepCTR (https://github.com/shenweichen/DeepCTR) or 

DeepTables (https://github.com/DataCanvasIO/deeptables) as suggested by Chang-

hao Lee (https://www.kaggle.com/leechh) and Jian Yang (https://www.kaggle.com/

jackguagua), second and first place respectively in the Categorical Feature Encoding Chal-

lenge II competition.

https://www.aaai.org/AAAI21Papers/AAAI-1063.ArikS.pdf
https://www.aaai.org/AAAI21Papers/AAAI-1063.ArikS.pdf
https://github.com/dreamquark-ai/tabnet
https://www.kaggle.com/gogo827jz
https://www.kaggle.com/ludovick/introduction-to-tabnet-kfold-10-training
https://www.kaggle.com/ludovick/introduction-to-tabnet-kfold-10-training
https://www.kaggle.com/ludovick/introduction-to-tabnet-kfold-10-inference
https://www.kaggle.com/ludovick/introduction-to-tabnet-kfold-10-inference
https://arxiv.org/abs/1909.06312
https://www.kaggle.com/gogo827jz/moa-neural-oblivious-decision-ensembles-tf-keras
https://www.kaggle.com/gogo827jz/moa-neural-oblivious-decision-ensembles-tf-keras
https://www.kaggle.com/gogo827jz/moa-public-pytorch-node
https://www.kaggle.com/gogo827jz/moa-public-pytorch-node
https://github.com/shenweichen/DeepCTR
https://github.com/DataCanvasIO/deeptables
https://www.kaggle.com/leechh
https://www.kaggle.com/jackguagua
https://www.kaggle.com/jackguagua


Chapter 7 235

In conclusion, you can build your own neural network for tabular data by mixing together em-

bedding layers for categorical features and dense layers for numeric ones. However, if it doesn’t 

pay off, you can always rely on quite a wide range of good solutions provided by well-written 

packages. Always be on the lookout for a new package appearing: it may help you to perform 

better both in Kaggle competitions and real-world projects. Also, as a piece of advice based on 

our experience, don’t expect a neural network to be the best model in a tabular competition; this 

seldom happens. Instead, blend solutions from classical tabular data models, such as gradient 

boosting models and neural networks, because they tend to pick up different signals from the 

data that you can integrate together in an ensemble.

Jean-François Puget
https://www.kaggle.com/cpmpml

We spoke to Jean-François Puget, aka CPMP, about the importance 

of reproducibility, how to work with data, his best competition, and 

more. As a Kaggle Grandmaster in Competitions and Discussions, and a 

Distinguished Engineer at RAPIDS, NVIDIA, he had many good insights 

to share with us. The editor particularly likes what he has to say about the scientific method.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I like competitions with a scientific background, or a background I can relate to. I dislike anonymous data 

and synthetic data, unless the data is generated via a very precise physics simulation. More generally, I 

like Kaggle competitions on domains I don’t know much about, as this is where I will learn the most. It 

is not the most effective way to get ranking points, but it is the one I entertain most.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I start by looking at data and understanding it as well as possible. I try to find patterns in it, especially 

predictive patterns. What I often do is plot samples using two features or derived features on the x and y 

axis, and a third feature for color coding samples. One of the three features can be the target. I use lots of 

visualization, as I believe that human vision is the best data analysis tool there is.

https://www.kaggle.com/cpmpml
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The second thing I spend time on is how to assess model or pipeline performance. Indeed, it is extremely 

important to be able to evaluate the performance of a model as accurately as possible. There is no surprise 

here; evaluation is often a variant of k-fold cross-validation. But the fold definition can be tailored to the 

competition type (time-based folds for forecasting competitions, group k-fold when samples are linked 

together for some reason, e.g., actions with the same user ID, etc.).

I then create an end-to-end baseline that goes from data to submission, and try it.  If this is a code com-

petition, then testing that you have gotten your pipeline right is key.

Then I try more complex models (if using deep learning models), or more features (if using XGBoost or 

other models from RAPIDS or sklearn). I submit these to see if there is a correlation between my local 

evaluation score and the public test score. If the correlation is good, then I submit less and less.

After a few weeks, I spend time doing hyperparameter tuning. But I do it only once, or maybe twice with 

a last tuning near the end of the competition. Indeed, hyperparameter tuning is one of the best ways to 

overfit, and I fear overfitting a lot.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
One of the competitions I am the most proud of is the TalkingData AdTracking Fraud Detection Chal-

lenge competition, where we had a very large volume of click history and we had to predict which clicks 

led to some app downloads. There were very few features and a large number of rows (like half a billion). 

At the time I only had a 64 GB machine, and I had to implement a very efficient way to create new fea-

tures and evaluate them. I had a few insights in this competition. First, that the click that led to an app 

download was the last click on the app download page for a user. Therefore, the “time to next click from 

the same user on the same app” was the most important feature. A derived insight was this: there were 

quite a number of clicks from the same user and app with the same timestamp. I hypothesized that the 

one with a download, if any, was the last one. A third insight was to use a matrix factorization approach 

to approximate feature value co-occurrences. I implemented a libFM model in Keras at the time, and 

adding the latent vectors as features helped. The only other team doing this was the top team. With this, 

I got a solo 6th place among teams of GMs. I was not a Kaggle GM yet.

Has Kaggle helped you in your career? If so, how?
Kaggle helped me twice. At IBM, Kaggle was a great source of knowledge on SOTA machine learning 

practices. I used that knowledge to inform and guide the development of IBM machine learning tooling 

(IBM Watson Studio and IBM Watson Machine Learning).
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For instance, I managed to have IBM support Python packages in 2016 at a time when IBM was a Java/

Scala powerhouse. Without me, IBM would have bet on Spark and Scala for machine learning, and 

would have missed the Python wave entirely. I also pushed for XGBoost very early, when IBM wanted to 

only support Spark ML or TensorFlow.

The second time Kaggle helped me was for getting my current job. NVIDIA was looking for Kaggle com-

petition GMs with good social presence to help promote the NVIDIA stack, including the RAPIDS GPU 

accelerated ML package.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
The one thing that differentiates Kagglers from other data scientists is the evaluation of model performance. 

Kagglers need to master this, because if they don’t, then they choose submissions that look great on the 

public leaderboard but perform poorly on the private leaderboard. Once a Kaggler knows how to build 

models that perform well on the private leaderboard, then they know how to build models that perform 

well on new data, i.e., models that do not overfit.

The other thing that inexperienced Kagglers do is to ask if method/model X can work in a given com-

petition. My answer to this is always, “Try it and see if it works or not.” People often miss that machine 

learning is an experimental science. In order to build good models, one must follow the scientific method:

• Make a hypothesis (e.g., adding this feature, or adding this NN layer, will improve pipeline 

performance)

• Run an experiment to test the hypothesis (train the modified pipeline)

• Analyze experiment results (is CV score better than before? Where is it better? Where is it worse?)

Each experiment should be done so that it can confirm or reject a hypothesis. For this, an experiment 

should change only one thing at a time. Often, inexperienced people change many things, then cannot 

conclude what worked or not.

Are there any particular tools or libraries that you would recommend 
using for data analysis and machine learning?
I use Matplotlib plots mostly for data exploration. I do data wrangling in Pandas if the dataset is small, or 

in cuDF (from RAPIDS) if the dataset is large. For machine learning, I use cuML from RAPIDS, XGBoost 

with GPU acceleration, and PyTorch. If possible, I will use pretrained models, for instance NLP models 

from Hugging Face, or image classification models from the timm package.
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Summary
In this chapter, we have discussed tabular competitions on Kaggle. Since most of the knowledge 

applicable in a tabular competition overlaps with standard data science knowledge and practices, 

we have focused our attention on techniques more specific to Kaggle.

Starting from the recently introduced Tabular Playground Series, we touched on topics relating 

to reproducibility, EDA, feature engineering, feature selection, target encoding, pseudo-labeling, 

and neural networks applied to tabular datasets.

EDA is a crucial phase if you want to get insights on how to win a competition. It is also quite 

unstructured and heavily dependent on the kind of data you have. Aside from giving you gen-

eral advice on EDA, we brought your attention to techniques such as t-SNE and UMAP that can 

summarize your entire dataset at a glance. The next phase, feature engineering, is also strongly 

dependent on the kind of data you are working on. We therefore provided a series of possible 

feature engineering ideas that you can try applying to your specific case. As for feature selection, 

after a brief overview, we drew your attention to techniques based on feature importance and 

randomization, which can be applied to almost any machine learning algorithm.

After explaining target encoding, which we wanted to point out cannot be dealt with in an auto-

mated way, we moved on to special techniques that you probably won’t apply in your real-world 

projects but that can work very well in Kaggle competitions: pseudo-labeling and denoising au-

toencoders for tabular competitions. Finally, after discussing how categorical features can also 

be dealt with using embedding layers in neural networks, we gave you a quick overview of the 

pre-made neural architectures that could work for tabular data.

In the next chapter, we will complete our overview of all the techniques that you need to take on 

tabular competitions by discussing how best to perform hyperparameter optimization.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Make sure you can spend enough time on it.
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord




8
Hyperparameter Optimization

How a Kaggle solution performs is not simply determined by the type of learning algorithm you 

choose. Aside from the data and the features that you use, it is also strongly determined by the 

algorithm’s hyperparameters, the parameters of the algorithm that have to be fixed prior to 

training, and cannot be learned during the training process. Choosing the right variables/data/

features is most effective in tabular data competitions; however, hyperparameter optimization 

is effective in all competitions, of any kind. In fact, given fixed data and an algorithm, hyperpa-

rameter optimization is the only sure way to enhance the predictive performance of the algorithm 

and climb the leaderboard. It also helps in ensembling, because an ensemble of tuned models 

always performs better than an ensemble of untuned ones.

You may hear that tuning hyperparameters manually is possible if you know and understand the 

effects of your choices on the algorithm. Many Kaggle Grandmasters and Masters have declared 

that they often rely on directly tuning their models in competitions. They operate selectively on 

the most important hyperparameters in a bisection operation style, exploring smaller and smaller 

intervals of a parameter’s values until they find the value that produces the best result. Then, they 

move on to another parameter. This works perfectly well if there is a single minimum for each 

parameter and if the parameters are independent from each other. In this case, the search is mostly 

driven by experience and knowledge of learning algorithms. In our experience, however, that is 

not the case with most tasks you will encounter on Kaggle. The sophistication of the problems 

and the algorithms used requires a systematic approach that only a search algorithm can provide. 

Hence, we decided to write this chapter.
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In this chapter, we will explore how to extend your cross-validation approach to find the best 

hyperparameters that can generalize to your test set. The idea is to deal with the pressure and 

scarcity of time and resources that you experience in competitions. For this reason, we will con-

centrate on Bayesian optimization methods, which are a proven way to optimize for complex 

models and data problems based on the resources you have available. We won’t limit ourselves 

to searching for the best values for pre-defined hyperparameters; we will also delve into the 

problem of neural network architecture.  

We will cover the following topics:

• Basic optimization techniques

• Key parameters and how to use them

• Bayesian optimization

Let’s start!

Basic optimization techniques
The core algorithms for hyperparameter optimization, found in the Scikit-learn package, are grid 

search and random search. Recently, the Scikit-learn contributors have also added the halving 

algorithm to improve the performances of both grid search and random search strategies.

In this section, we will discuss all these basic techniques. By mastering them, not only will you 

have effective optimization tools for some specific problems (for instance, SVMs are usually 

optimized by grid search) but you will also be familiar with the basics of how hyperparameter 

optimization works.

To start with, it is crucial to figure out what the necessary ingredients are:

• A model whose hyperparameters have to be optimized

• A search space containing the boundaries of the values to search between for each hy-

perparameter

• A cross-validation scheme

• An evaluation metric and its score function

All these elements come together in the search method to determine the solution you are looking 

for. Let’s see how it works.
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Grid search
Grid search is a method that searches through the hyperparameters exhaustively, and is not 

feasible in high-dimensional space. For every parameter, you pick a set of values you want to 

test. You then test all the possible combinations in this set. That is why it is exhaustive: you try 

everything. It is a very simple algorithm and it suffers from the curse of dimensionality, but, on 

the positive side, it’s embarrassingly parallel (see https://www.cs.iusb.edu/~danav/teach/b424/

b424_23_embpar.html for a definition of this computer science term). This means you can obtain 

an optimal tuning very quickly, if you have enough processors to run the search on.

As an example, let’s take a classification problem and support-vector machine classification 

(SVC). Support-vector machines (SVMs) for both classification and regression problems are 

probably the machine learning algorithm that you will use grid search for the most. Using the 

make_classification function from Scikit-learn, we can generate a classification dataset quickly:

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

X, y = make_classification(n_samples=300, n_features=50,

                           n_informative=10,

                           n_redundant=25, n_repeated=15,

                           n_clusters_per_class=5,

                           flip_y=0.05, class_sep=0.5,

                           random_state=0)

For our next step, we define a basic SVC algorithm and set the search space. Since the kernel 

function of the SVC (the internal function that transforms the input data in an SVM) determines 

the different hyperparameters to set, we provide a list containing two dictionaries of distinct 

search spaces for parameters to be used depending on the type of kernel chosen. We also set the 

evaluation metric (we use accuracy in this case, since the target is perfectly balanced):

from sklearn import svm

svc = svm.SVC()

svc = svm.SVC(probability=True, random_state=1)

from sklearn import model_selection

search_grid = [

https://www.cs.iusb.edu/~danav/teach/b424/b424_23_embpar.html
https://www.cs.iusb.edu/~danav/teach/b424/b424_23_embpar.html
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               {'C': [1, 10, 100, 1000], 'kernel': ['linear']},

               {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],

               'kernel': ['rbf']}

               ]

               

scorer = 'accuracy'

In our example, a linear kernel doesn’t require the tuning of the gamma parameter, though it is 

very important for a radial basis function kernel. Therefore, we provide two dictionaries: the first 

containing the parameters for the linear kernel, the second containing parameters for a radial 

basis function kernel. Each dictionary only contains a reference to the kernel it is relevant to and 

only the range of parameters that are relevant for that kernel. 

It is important to note that the evaluation metric can be different from the cost function optimized 

by the algorithm. In fact, as discussed in Chapter 5, Competition Tasks and Metrics, you may en-

counter scenarios in which the evaluation metric for the competition is different, but you cannot 

modify the cost function of your algorithm. Under these circumstances, tuning the hyperparam-

eters according to your evaluation metric can still help in obtaining a well-performing model. 

Though built around the algorithm’s cost function, the optimal set of hyperparameters found will 

be the one returning the best evaluation metric under such constraints. It probably won’t be the 

theoretically best result that you could obtain for the problem, but it may often not be far from it.

All the ingredients (model, search space, evaluation metric, cross-validation scheme) are combined 

into the GridSearchCV instance, and then the model is fit to the data: 

search_func = model_selection.GridSearchCV(estimator=svc, 

                                           param_grid=search_grid,

                                           scoring=scorer, 

                                           n_jobs=-1,

                                           cv=5)

search_func.fit(X, y)

print (search_func.best_params_)

print (search_func.best_score_)

After a while, depending on the machine you are running the optimization on, you will obtain 

the best combination based on cross-validated results.
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In conclusion, grid search is a very simple optimization algorithm that can leverage the availability 

of multi-core computers. It can work fine with machine learning algorithms that do not require 

many tunings (such as SVM and the ridge and lasso regressions) but, in all other cases, its appli-

cability is quite narrow. First, it is limited to optimizing hyperparameters by discrete choice (you 

need a limited set of values to cycle through). In addition, you cannot expect it to work effectively 

on algorithms requiring multiple hyperparameters to be tuned. This is because of the exploding 

complexity of the search space, and because most of the computational inefficiency is due to the 

fact that the search is trying parameter values blindly, most of which do not work for the problem.

Random search
Random search, which simply samples the search space randomly, is feasible in high-dimen-

sional spaces and is widely used in practice. The downside of random search, however, is that it 

doesn’t use information from prior experiments to select the next setting (a problem shared by 

grid search, we should note). In addition, to find the best solution as fast as possible, you cannot 

do anything except hope to be lucky you catch the right hyperparameters.

Random search works incredibly well and it is simple to understand. Despite the fact it relies 

on randomness, it isn’t just based on blind luck, though it may initially appear to be. In fact, it 

works like random sampling in statistics: the main point of the technique is that if you do enough 

random tests, you have a good possibility of finding the right parameters without wasting energy 

on testing slightly different combinations of similarly performing combinations.

Many AutoML systems rely on random search when there are too many parameters to set (see 

Golovin, D. et al. Google Vizier: A Service for Black-Box Optimization, 2017). As a rule of thumb, con-

sider looking at random search when the dimensionality of your hyperparameter optimization 

problem is sufficiently high (for example, over 16).

Below, we run the previous example using random search:

import scipy.stats as stats

from sklearn.utils.fixes import loguniform

search_dict = {'kernel': ['linear', 'rbf'], 

               'C': loguniform(1, 1000),

               'gamma': loguniform(0.0001, 0.1)

               }
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scorer = 'accuracy'

search_func = model_selection.RandomizedSearchCV

              (estimator=svc,param_distributions=search_dict, n_iter=6,

              scoring=scorer, n_jobs=-1, cv=5)

search_func.fit(X, y)

print (search_func.best_params_)

print (search_func.best_score_)

Notice that, now, we don’t care about running the search on separate spaces for the different 

kernels. Contrary to grid search, where each parameter, even the ineffective ones, is systemati-

cally tested, which requires computational time, here the efficiency of the search is not affected 

by the set of hyperparameters tested. The search doesn’t depend on irrelevant parameters, but 

is guided by chance; any trial is useful, even if you are testing only one valid parameter among 

many for the chosen kernel.

Halving search
As we mentioned, both grid search and random search work in an uninformed way: if some tests 

find out that certain hyperparameters do not impact the result or that certain value intervals are 

ineffective, the information is not propagated to the following searches. 

For this reason, Scikit-learn has recently introduced the HalvingGridSearchCV and 

HalvingRandomSearchCV estimators, which can be used to search a parameter space using suc-

cessive halving applied to the grid search and random search tuning strategies. 

In halving, a large number of hyperparameter combinations are evaluated in an initial round 

of tests but using a small amount of computational resources. This is achieved by running the 

tests on a subsample of a few cases from your training data. A smaller training set needs fewer 

computations to be tested, so fewer resources (namely time) are used at the cost of more impre-

cise performance estimations. This initial round allows the selection of a subset of candidate 

hyperparameter values, which have performed better on the problem, to be used for the second 

round, when the training set size is increased. 
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The following rounds proceed in a similar way, allocating larger and larger subsets of the training 

set to be searched as the range of tested values is restricted (testing now requires more time to 

execute, but returns a more precise performance estimation), while the number of candidates 

continues to be halved.

Here is an example applied to the previous problem:

from sklearn.experimental import enable_halving_search_cv

from sklearn.model_selection import HalvingRandomSearchCV

search_func = HalvingRandomSearchCV(estimator=svc,

                                    param_distributions=search_dict,

                                    resource='n_samples',

                                    max_resources=100,

                                    aggressive_elimination=True,

                                    scoring=scorer,

                                    n_jobs=-1,

                                    cv=5,

                                    random_state=0)

search_func.fit(X, y)

print (search_func.best_params_)

print (search_func.best_score_)

In this way, halving provides information to the successive optimization steps via the selection of 

the candidates. In the next sections, we will discuss even smarter ways to achieve a more precise 

and efficient search through the space of hyperparameters.

Kazuki Onodera
https://www.kaggle.com/onodera

Let’s pause for an interview with another Kaggler. Kazuki Onodera is 

a Competitions Grandmaster and Discussions Master who has around 

7 years of competition experience. He’s also a Senior Deep Learning 

Data Scientist at NVIDIA and a member of the NVIDIA KGMON (Kaggle 

Grandmasters of NVIDIA) team.

https://www.kaggle.com/onodera
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What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
Instacart Market Basket Analysis. This competition proved quite challenging for the Kaggle commu-

nity because of its use of anonymized data related to customer orders over time in order to predict which 

previously purchased products will be in a user’s next order. The reason why I like it is that I love feature 

engineering and I could come up with a bunch of good and interesting features everyone else couldn’t, 

which allowed me to get second place in the competition.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I try to imagine how a model works, and delve into false negatives and false positives. Same as in my 

daily work.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
Human Protein Atlas - Single Cell Classification. This competition was a kind of instance segmenta-

tion competition, but no masks were provided. So, it turned into being a weakly supervised multi-label 

classification problem. I created a two-stage pipeline for removing label noise.

Has Kaggle helped you in your career? If so, how?
Yes. I’m now working in the NVIDIA KGMON (Kaggle Grandmasters of NVIDIA) team. Kaggle launches 

many different machine learning competitions, different with regards to data type, tabular, image, nat-

ural language, and signal, as well as with regards to sector and domain: industry, finance, astronomy, 

pathology, sports, retail, and so on. I bet nobody can access and have experience with all these kinds of 

data except Kagglers.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
Target analysis. Also, seed averaging is quite overlooked: always simple but powerful.

What mistakes have you made in competitions in the past?
Target analysis. Top teams always analyze the target better than others, so if I couldn’t get a better place 

in a competition, I go and read about the top solutions, because they always describe to me the knowledge 

about the data that I missed during the competition.
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Key parameters and how to use them
The next problem is using the right set of hyperparameters for each kind of model you use. In 

particular, in order to be efficient in your optimization, you need to know the values of each hy-

perparameter that it actually makes sense to test for each distinct algorithm. 

In this section, we will examine the most common models used in Kaggle competitions, especially 

the tabular ones, and discuss the hyperparameters you need to tune in order to obtain the best 

results. We will distinguish between classical machine learning models and gradient boosting 

models (which are much more demanding in terms of their space of parameters) for generic 

tabular data problems. 

As for neural networks, we can give you an idea about specific parameters to tune when we present 

the standard models (for instance, the TabNet neural model has some specific parameters to set 

so that it works properly). However, most of the optimization on deep neural networks in Kaggle 

competitions is not performed on standard models, but on custom ones. Consequently, apart from 

basic learning parameters such as the learning rate and the batch size, optimization in neural 

networks is based on the specific characteristics of the neural architecture of your model. You have 

to deal with the problem in an ad hoc way. Near the end of the chapter, we will discuss an exam-

ple of neural architecture search (NAS) using KerasTuner (https://keras.io/keras_tuner/).

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
Just Python and Jupyter Notebooks.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
If you can learn from a defeat, you haven’t really lost.

Do you use other competition platforms? How do they compare to 
Kaggle?
KDD Cup and RecSys. Both meet the minimum requirements for being interesting and challenging.

https://keras.io/keras_tuner/
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Linear models
The linear models that need to be tuned are usually linear regressions or logistic regressions with 

regularization:

• C: The range you should search is np.logspace(-4, 4, 10); smaller values specify stron-

ger regularization.

• alpha: You should search the range np.logspace(-2, 2, 10); smaller values specify 

stronger regularization, larger values specify stronger regularization. Also take note that 

higher values take more time to process when using lasso.

• l1_ratio: You should pick from the list [.1, .5, .7, .9, .95, .99, 1]; it applies only 

to elastic net.

In Scikit-learn, depending on the algorithm, you find either the hyperparameter C (logistic re-

gression) or alpha (lasso, ridge, elastic net).

Support-vector machines
SVMs are a family of powerful and advanced supervised learning techniques for classification 

and regression that can automatically fit linear and non-linear models. Scikit-learn offers an 

implementation based on LIBSVM, a complete library of SVM classification and regression im-

plementations, and LIBLINEAR, a scalable library for linear classification ideal for large datasets, 

especially sparse text-based ones. In their optimization, SVMs strive to separate target classes in 

classification problems using a decision boundary characterized by the largest possible margin 

between classes.

Though SVMs work fine with default parameters, they are often not optimal, and you need to 

test various value combinations using cross-validation to find the best ones. Listed according to 

their importance, you have to set the following parameters:

• C: The penalty value. Decreasing it makes the margin between classes larger, thus ignoring 

more noise but also making the model more generalizable. A best value can normally be 

found in the range np.logspace(-3, 3, 7).

• kernel: This parameter will determine how non-linearity will be implemented in an SVM 

and it can be set to 'linear', 'poly', 'rbf', 'sigmoid', or a custom kernel. The most 

commonly used value is certainly rbf.

• degree: Works with kernel='poly', signaling the dimensionality of the polynomial ex-

pansion. It is ignored by other kernels. Usually, setting its values to between 2 and 5 

works the best.
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• gamma: A coefficient for 'rbf', 'poly', and 'sigmoid'. High values tend to fit data in a bet-

ter way, but can lead to some overfitting. Intuitively, we can imagine gamma as the influence 

that a single example exercises over the model. Low values make the influence of each 

example reach further. Since many points have to be considered, the SVM curve will tend 

to take a shape less influenced by local points and the result will be a smoother decision 

contour curve. High values of gamma, instead, mean the curve takes into account how points 

are arranged locally more and, as a result, you get a more irregular and wiggly decision 

curve. The suggested grid search range for this hyperparameter is np.logspace(-3, 3, 7).

• nu: For regression and classification with nuSVR and nuSVC, this parameter sets a toler-

ance for the training points that are near to the margin and are not classified correctly. 

It helps in ignoring misclassified points just near or on the margin, hence it can render 

the classification decision curve smoother. It should be in the range [0,1] since it is a 

proportion relative to your training set. Ultimately, it acts like C, with high proportions 

enlarging the margin.

• epsilon: This parameter specifies how much error SVR will accept, by defining an epsilon 

large range where no penalty is associated with an incorrect prediction of the example 

during the training of the algorithm. The suggested search range is np.logspace(-4, 2, 

7).

• penalty, loss, and dual: For LinearSVC, these parameters accept the ('l1', 'squared_

hinge', False), ('l2', 'hinge', True), ('l2', 'squared_hinge', True), and ('l2', 

'squared_hinge', False) combinations. The ('l2', 'hinge', True) combination is 

analogous to the SVC(kernel='linear') learner.

It may appear that an SVM has many hyperparameters to set, but many settings are specific only 

to implementations or to kernels, so you only have to select the relevant parameters.

Random forests and extremely randomized trees
Leo Breiman and Adele Cutler originally devised the idea at the core of the random forest algorithm, 

and the name of the algorithm remains a trademark of theirs today (though the algorithm is 

open source). Random forests are implemented in Scikit-learn as RandomForestClassifier or 

RandomForestRegressor.

A random forest works in a similar way to bagging, also devised by Leo Breiman, but operates only 

using binary split decision trees, which are left to grow to their extremes. Moreover, it samples 

the cases to be used in each of its models using bootstrapping. As the tree is grown, at each split 

of a branch, the set of variables considered for the split is drawn randomly, too. 



Hyperparameter Optimization252

This is the secret at the heart of the algorithm: it ensembles trees that, due to different samples 

and variables considered at the splits, are very different from each other. As they are different, they 

are also uncorrelated. This is beneficial because when the results are ensembled, much variance 

is ruled out, as the extreme values on both sides of a distribution tend to balance out. In other 

words, bagging algorithms guarantee a certain level of diversity in the predictions, allowing them 

to develop rules that a single learner (such as a decision tree) might not come across. All this 

diversity is useful because it helps in building a distribution whose average is a better predictor 

than any of the individual trees in the ensemble.

Extra Trees (also known as extremely randomized trees), represented in Scikit-learn by the 

ExtraTreesClassifier/ExtraTreesRegressor classes, are a more randomized kind of random 

forest that produces a lower variance in the estimates at the cost of greater bias of the estimators. 

However, when it comes to CPU efficiency, Extra Trees can deliver a considerable speed-up com-

pared to random forests, so they can be ideal when you are working with large datasets in terms 

of both examples and features. The reason for the resulting higher bias but better speed is the 

way splits are built in an Extra Tree. Random forests, after drawing a random set of features to 

be considered for splitting a branch of a tree, carefully search among them for the best values to 

assign to each branch. By contrast, in Extra Trees, both the set of candidate features for the split 

and the actual split value are decided completely randomly. So, there’s no need for much com-

putation, though the randomly chosen split may not be the most effective one (hence the bias).

For both algorithms, the key hyperparameters that should be set are as follows:

• max_features: This is the number of sampled features that are present at every split, which 

can determine the performance of the algorithm. The lower the number, the speedier, 

but with higher bias.

• min_samples_leaf: This allows you to determine the depth of the trees. Large numbers 

diminish the variance and increase the bias.

• bootstrap: This is a Boolean that allows bootstrapping.

• n_estimators: This is the number of trees. Remember that the more trees the better, 

though there is a threshold beyond which we get diminishing returns depending on the 

data problem. Also, this comes at a computational cost that you have to take into account 

based on the resources you have available.

Extra Trees are a good alternative to random forests, especially when the data you have is partic-

ularly noisy. Since they trade some variance reduction for more bias given their random choice of 

splits, they tend to overfit less on important yet noisy features that would otherwise dominate 

the splits in a random forest.
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Gradient tree boosting
Gradient tree boosting or gradient boosting decision trees (GBDT) is an improved version of 

boosting (boosting works by fitting a sequence of weak learners on reweighted versions of the 

data). Like AdaBoost, GBDT is based on a gradient descent function. The algorithm has proven to 

be one of the most proficient ones from the family of models that are based on ensembles, though 

it is characterized by an increased variance of estimates, more sensitivity to noise in data (both 

problems can be mitigated by using subsampling), and significant computational costs due to 

non-parallel operations.

Apart from deep learning, gradient boosting is the most developed machine learning algorithm. 

Since AdaBoost and the initial gradient boosting implementation, as developed by Jerome Friedman, 

various other implementations of the algorithms appeared, the most recent ones being XGBoost, 

LightGBM, and CatBoost.

LightGBM
The high-performance LightGBM algorithm (https://github.com/Microsoft/LightGBM) is 

capable of being distributed on multiple computers and handling large amounts of data quickly. 

It was developed by a team at Microsoft as an open-source project on GitHub (there is also an 

academic paper: https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb

6b76fa-Abstract.html).

LightGBM is based on decision trees, like XGBoost, but it follows a different strategy. While XG-

Boost uses decision trees to split on a variable and explore different tree splits at that variable (the 

level-wise tree growth strategy), LightGBM concentrates on one split and goes on splitting from 

there in order to achieve a better fit (the leaf-wise tree growth strategy). This allows LightGBM 

to quickly reach a good fit of the data, and to generate alternative solutions compared to XGBoost 

(which is good, if you expect to blend the two solutions together in order to reduce the variance 

of the estimates). Algorithmically speaking, if we think of the structure of splits operated by a 

decision tree as a graph, XGBoost pursues a breadth-first search (BFS) and LightGBM a depth-first 

search (DFS).

Tuning LightGBM may appear daunting; it has more than a hundred parameters to tune that 

you can explore at this page: https://github.com/Microsoft/LightGBM/blob/master/docs/

Parameters.rst (also here: https://lightgbm.readthedocs.io/en/latest/Parameters.html). 

https://github.com/Microsoft/LightGBM
https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://lightgbm.readthedocs.io/en/latest/Parameters.html
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As a rule of thumb, you should focus on the following hyperparameters, which usually have the 

most impact on the results:

• n_estimators: An integer between 10 and 10,000 that sets the number of iterations.

• learning_rate: A real number between 0.01 and 1.0, usually sampled from a log-uniform 

distribution. It represents the step size of the gradient descent procedure that computes 

the weights for the summed ensemble of all the iterations of the algorithm up to this point.

• max_depth: An integer between 1 and 16, representing the maximum number of splits on 

features. Setting it to a number below 0 allows the maximum possible number of splits, 

usually risking overfitting to data.

• num_leaves: An integer between 2 and 2^max_depth, representing the number of final 

leaves each tree will have at most.

• min_data_in_leaf: An integer between 0 and 300 that determines the minimum number 

of data points in one leaf.

• min_gain_to_split: A float between 0 and 15; it sets the minimum gain of the algorithm 

for tree partitioning. By setting this parameter, you can avoid unnecessary tree splits and 

thus reduce overfitting (it corresponds to the gamma parameter in XGBoost). 

• max_bin: An integer between 32 and 512 that sets the maximum number of bins that 

feature values will be bucketed into. Having this parameter larger than the default value 

of 255 implies more risk of producing overfitting results.

• subsample: A real number between 0.01, and 1.0, representing the portion of the sample 

to be used in training.

• subsample_freq: An integer between 0 and 10 specifying the frequency, in terms of iter-

ations, at which the algorithm will subsample the examples.

• feature_fraction: A real number between 0.1 and 1.0 allowing you to specify the portion 

of features to be subsampled. Subsampling the features is another way to allow more 

randomization to play a role in the training, fighting noise and multicollinearity present 

in the features. 

• subsample_for_bin: An integer between 30 and the number of examples. This sets the 

number of examples that are sampled for the construction of histogram bins.

Note that, if set to zero, the algorithm will ignore any value given to the 

subsample parameter. In addition, it is set to zero by default, therefore just 

setting the subsample parameter won’t work.
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• reg_lambda: A real number between 0 and 100.0 that sets the L2 regularization. Since 

it is more sensitive to the scale than to the exact number of the parameter, it is usually 

sampled from a log-uniform distribution.

• reg_alpha: A real number between 0 and 100.0, usually sampled from a log-uniform 

distribution, which sets the L1 regularization.

• scale_pos_weight: A real number between 1e-6 and 500, better sampled from the log-uni-

form distribution. The parameter weights the positive cases (thus effectively upsampling 

or downsampling) against the negative cases, which are kept to the value of 1.

Although the number of hyperparameters to tune when using LightGBM may appear daunt-

ing, in reality only a few of them matter a lot. Given a fixed number of iterations and learn-

ing rate, just a few are the most impactful (feature_fraction, num_leaves, subsample, reg_

lambda, reg_alpha, min_data_in_leaf), as explained in this blog article by Kohei Ozaki, a Kaggle 

Grandmaster: https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-

hyperparameter-optimization-8b7095e99258. Kohei Ozaki leverages this fact in order to create 

a fast-tuning procedure for Optuna (you’ll find more on the Optuna optimizer at the end of this 

chapter).

XGBoost
XGBoost (https://github.com/dmlc/XGBoost) stands for eXtreme Gradient Boosting. It is an 

open-source project that is not part of Scikit-learn, though it has recently been expanded by a 

Scikit-learn wrapper interface that makes it easier to incorporate XGBoost into a Scikit-learn-

style data pipeline.

The XGBoost algorithm gained momentum and popularity in 2015 data science competitions, 

such as those on Kaggle and the KDD Cup 2015. As the creators (Tianqui Chen, Tong He, and Carlos 

Guestrin) report in papers they wrote on the algorithm, out of 29 challenges held on Kaggle during 

2015, 17 winning solutions used XGBoost as a standalone solution or as part of an ensemble of 

multiple different models. Since then, the algorithm has always retained a strong appeal among 

the community of data scientists, though it struggled to keep pace with the innovation brought 

about by other GBM implementations such as LightGBM and CatBoost.

Aside from good performance both in terms of accuracy and computational efficiency, XGBoost 

is also a scalable solution, using at best multi-core processors as well as distributed machines. 

https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258
https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258
https://github.com/dmlc/XGBoost
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XGBoost represents a new generation of GBM algorithms thanks to important tweaks to the 

initial tree boost GBM algorithm:

• Sparsity-awareness; it can leverage sparse matrices, saving both memory (no need for 

dense matrices) and computation time (zero values are handled in a special way).

• Approximate tree learning (weighted quantile sketch), which produces similar results but 

in much less time compared to the classical complete explorations of possible branch cuts.

• Parallel computing on a single machine (using multi-threading during the search for the 

best split) and, similarly, distributed computations on multiple machines.

• Out-of-core computations on a single machine, leveraging a data storage solution called 

column block. This arranges data on a disk by columns, thus saving time by pulling data 

from the disk in the way the optimization algorithm (which works on column vectors) 

expects it.

XGBoost can also deal with missing data in an effective way. Other tree ensembles based on 

standard decision trees require missing data first to be imputed using an off-scale value, such as 

a negative number, in order to develop an appropriate branching of the tree to deal with missing 

values.

As for XGBoost’s parameters (https://xgboost.readthedocs.io/en/latest/parameter.html), 

we have decided to highlight a few key ones you will find across competitions and projects:

• n_estimators: Usually an integer ranging from 10 to 5,000.

• learning_rate: A real number ranging from 0.01 to 1.0, better sampled from the log-uni-

form distribution.

• min_child_weight: Usually an integer between 1 and 10.

• max_depth: Usually an integer between 1 and 50.

• max_delta_step: Usually an integer sampled between 0 and 20, representing the maxi-

mum delta step we allow for each leaf output.

• subsample: A real number from 0.1 to 1.0 indicating the proportion of examples to be 

subsampled.

• colsample_bytree: A real number from 0.1 to 1.0 indicating the subsample ratio of col-

umns by tree.

• colsample_bylevel: A real number from 0.1 to 1.0 indicating the subsample ratio by level 

in trees.

https://xgboost.readthedocs.io/en/latest/parameter.html
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• reg_lambda: A real number between 1e-9 and 100.0, preferably sampled from the log-uni-

form distribution. This parameter controls the L2 regularization.

• reg_alpha: A real number between 1e-9 and 100.0, preferably sampled from the log-uni-

form distribution. This parameter controls the L1 regularization.

• gamma: Specifying the minimum loss reduction for tree partitioning, this parameter requires 

a real number between 1e-9 and 0.5, preferably sampled from the log-uniform distribution.

• scale_pos_weight: A real number between 1e-6 and 500.0, preferably sampled from the 

log-uniform distribution, which represents a weight for the positive class.

Like LightGBM, XGBoost also has many similar hyperparameters to tune, hence all of the con-

siderations previously made for LightGBM are also valid for XGBoost.

CatBoost
In July 2017, Yandex, the Russian search engine, made another interesting GBM algorithm public, 

CatBoost (https://catboost.ai/), whose name comes from putting together the two words 

“Category” and “Boosting.” In fact, its strong point is its ability to handle categorical variables, 

which make up most of the information in most relational databases, by adopting a mixed strategy 

of one-hot encoding and target encoding. Target encoding is a way to express categorical levels 

by assigning them an appropriate numeric value for the problem at hand; more on this can be 

found in Chapter 7, Modeling for Tabular Competitions.

The idea used by CatBoost to encode categorical variables is not new, but it is a kind of feature 

engineering that has been used before, mostly in data science competitions. Target encoding, 

also known as likelihood encoding, impact coding, or mean encoding, is simply a way to trans-

form your labels into a number based on their association with the target variable. If you have a 

regression, you could transform labels based on the mean target value typical of that level; if it 

is a classification, it is simply the probability of classification of your target given that label (the 

probability of your target conditional on each category value). It may appear a simple and smart 

feature engineering trick but it has side effects, mostly in terms of overfitting, because you are 

taking information from the target into your predictors.

CatBoost has quite a few parameters (see https://catboost.ai/en/docs/references/training-

parameters/). We have limited our discussion to the eight most important ones:

• iterations: Usually an integer between 10 and 1,000, but it can increase based on the 

problem.

https://catboost.ai/
https://catboost.ai/en/docs/references/training-parameters/
https://catboost.ai/en/docs/references/training-parameters/
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• depth: An integer between 1 and 8; usually higher values require longer fitting times and 

do not produce better results.

• learning_rate: A real value between 0.01 and 1.0, better sampled from the log-uniform 

distribution.

• random_strength: A real number log-linearly sampled from the range 1e-9 to 10.0, which 

specifies the randomness level for scoring splits.

• bagging_temperature: A real value between 0.0 and 1.0 that sets the Bayesian bootstrap.

• border_count: An integer between 1 and 255 indicating the splits for numerical features.

• l2_leaf_reg: An integer between 2 and 30; the value for L2 regularization.

• scale_pos_weight: A real number between 0.01 and 10.0 representing the weight for the 

positive class.

Even if CatBoost may appear to be just another GBM implementation, it has quite a few differ-

ences (highlighted also by the different parameters being used) that may provide great help in a 

competition, both as a single-model solution and as a model integrated into a larger ensemble. 

HistGradientBoosting
Recently, Scikit-learn has introduced a new version of gradient boosting inspired by LightGBM’s 

binned data and histograms (see this presentation at EuroPython by Olivier Grisel: https://www.

youtube.com/watch?v=urVUlKbQfQ4). Either as a classifier (HistGradientBoostingClassifi

er) or a regressor (HistGradientBoostingRegressor), it can be used for enriching ensembles 

with different models and it presents a much shorter and essential range of hyperparameters 

to be tuned:

• learning_rate: A real number between 0.01 and 1.0, usually sampled from a log-uniform 

distribution.

• max_iter: An integer that can range from 10 to 10,000.

• max_leaf_nodes: An integer from 2 to 500. It interacts with max_depth; it is advisable to 

set only one of the two and leave the other set to None.

• max_depth: An integer between 2 and 12.

• min_samples_leaf: An integer between 2 and 300.

• l2_regularization: A float between 0.0 and 100.0.

• max_bins: An integer between 32 and 512.

https://www.youtube.com/watch?v=urVUlKbQfQ4
https://www.youtube.com/watch?v=urVUlKbQfQ4
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Even if Scikit-learn’s HistGradientBoosting is nothing too different from LightGBM or XG-

Boost, it does provide a different way to implement GBMs in a competition, and models built 

by HistGradientBoosting may provide a contribution when ensembling multiple predictions, 

such as in blending and stacking.

Having reached the end of this section, you should be more familiar with the most common ma-

chine learning algorithms (only deep learning solutions have not been discussed) and their most 

important hyperparameters to tune, which will help you in building an outstanding solution in a 

Kaggle competition. Knowing the basic optimization strategies, usable algorithms, and their key 

hyperparameters is just a starting point. In the next section, we will begin an in-depth discussion 

about how to tune them more optimally using Bayesian optimization.

Alberto Danese
https://www.kaggle.com/albedan

Our second interview of the chapter is with Alberto Danese, Head of 

Data Science at Nexi, an Italian credit card and digital payments com-

pany. A Competitions Grandmaster who joined the platform in 2015, 

he obtained most of his gold medals as a solo competitor.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I’ve always worked in the Financial Services industry, dealing mostly with structured data, and I do 

prefer competitions that belong to this category. I enjoy being able to have a practical grasp of what the 

data is all about and doing some smart feature engineering in order to squeeze every bit of information 

out of the data.

Technically speaking, I’ve got good experience with classical ML libraries and especially with Gradient 

Boosting Decision Trees: the most common libraries (XGBoost, LightGBM, CatBoost) are always my 

first choice.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I always spend a lot of time just exploring the data and trying to figure out what the problem that the 

sponsor is actually trying to solve with machine learning is. Different from what newbies usually think 

about Kaggle, I don’t spend so much time on all the “tweaking” of the specific ML algorithm – and ap-

parently this approach has paid off!

https://www.kaggle.com/albedan
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In my daily job, understanding the data is also extremely important, but there are some additional phases 

that are completely missing in a Kaggle competition. I’ve got to:

• Define a business problem to be solved with ML (together with colleagues in the business de-

partments)

• Find the data, sometimes also from external data providers

• And when the ML part is done, understand how to put it in production and manage the evolutions

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
I enjoyed the TalkingData AdTracking Fraud Detection Challenge, with which I became a Grandmaster. 

Besides being on an extremely interesting topic (fighting fraud from click-farms), it really pushed me to 

do efficient feature engineering, as the volumes were huge (more than 100M labeled rows) and cutting 

on computation times was key in order to test different approaches. It also forced me to understand how 

to exploit lag/lead features (and other window functions) in the best way, in order to create a sort of time 

series in an otherwise classical ML problem.

Has Kaggle helped you in your career? If so, how?
Definitely! Being able to achieve great objective and verifiable results is no doubt something that makes 

a resume stand out. When I was hired by Cerved (a marketing intelligence service company) in 2016, 

the hiring manager was perfectly aware of what Kaggle was – and having some real-world projects to 

talk about during an interview is something extremely valuable. For sure Kaggle had an important role 

in the evolution of my career.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
I think that everyone just starts coding, maybe forking a public kernel and just changing a few lines or 

parameters. This is perfectly fine at the beginning! But you do have to spend a decent amount of time not 

coding, but studying the data and understanding the problem.

What mistakes have you made in competitions in the past?
Not sure if it counts as a mistake, but I have often preferred to compete solo: on one hand it’s great as it 

forces you to handle every single aspect of a competition, and you’re able to manage your time as you 

wish. But I’ve really enjoyed collaborating with teammates on a couple of competitions as well: I probably 

should consider teaming up more often, as you can learn a lot from collaborating.
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Bayesian optimization
Leaving behind grid search (feasible only when the space of experiments is limited), the usual 

choice for the practitioner is to apply random search optimization or try a Bayesian optimization 

(BO) technique, which requires a more complex setup.

Originally introduced in the paper Practical Bayesian optimization of machine learning algorithms 

by Snoek, J., Larochelle, H., and Adams, R. P. (http://export.arxiv.org/pdf/1206.2944), the 

key idea behind Bayesian optimization is that we optimize a proxy function (also called a sur-

rogate function) rather than the true objective function (which grid search and random search 

both do). We do this if there are no gradients, if testing the true objective function is costly (if it is 

not, then we simply go for random search), and if the search space is noisy and complex enough.

Bayesian search balances exploration with exploitation. At the start, it explores randomly, thus 

training the surrogate function as it goes. Based on that surrogate function, the search exploits 

its initial approximate knowledge of how the predictor works in order to sample more useful 

examples and minimize the cost function. As the Bayesian part of the name suggests, we are 

using priors in order to make smarter decisions about sampling during optimization. This way, 

we reach a minimization more quickly by limiting the number of evaluations we need to make.

Bayesian optimization uses an acquisition function to tell us how promising an observation will 

be. In fact, to manage the tradeoff between exploration and exploitation, the algorithm defines an 

acquisition function that provides a single measure of how useful it would be to try any given point.

Usually, Bayesian optimization is powered by Gaussian processes. Gaussian processes perform bet-

ter when the search space has a smooth and predictable response. An alternative when the search 

space is more complex is using tree algorithms (for instance, random forests), or a completely 

different approach called Tree Parzen Estimators or Tree-structured Parzen Estimators (TPEs). 

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
Besides the usual ones, I’ve always been a great fan of data.table (starting from the R version): I think 

it’s not getting the credit it deserves! It’s really a great package when you want to deal with huge data 

on a local machine.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Understand the problem and the data first: don’t start coding right away!

http://export.arxiv.org/pdf/1206.2944
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Instead of directly building a model that estimates the success of a set of parameters, thus act-

ing like an oracle, TPEs estimate the parameters of a multivariate distribution that define the 

best-performing values of the parameters, based on successive approximations provided by the 

experimentations. In this way, TPEs derive the best set of parameters by sampling them from 

a probabilistic distribution, and not directly from a machine learning model like Gaussian pro-

cesses does. 

We will discuss each of these approaches, first by examining Scikit-optimize and KerasTuner, both 

based on Gaussian processes (Scikit-optimize can also use random forests and KerasTuner can use 

multi-armed bandits), and then Optuna, which is principally based on TPE (though it also offers 

different strategies: https://optuna.readthedocs.io/en/stable/reference/samplers.html).

Using Scikit-optimize
Scikit-optimize (skopt) has been developed using the same API as Scikit-learn, as well as making 

extensive use of NumPy and SciPy functions. In addition, it was created by some of the contrib-

utors to the Scikit-learn project, such as Gilles Louppe.

Based on Gaussian process algorithms, the package is well maintained, though sometimes it has 

to catch up because of improvements on the Scikit-learn, NumPy, or SciPy sides. For instance, 

at the time of writing, in order to run it properly on Kaggle Notebooks you have to roll back to 

older versions of these packages, as explained in a GitHub issue (https://github.com/scikit-

optimize/scikit-optimize/issues/981).

The package has an intuitive API and it is quite easy to hack it and use its functions in custom op-

timization strategies. Scikit-optimize is also renowned for its useful graphical representations. In 

fact, by visualizing the results of an optimization process (using Scikit-optimize’s plot_objective 

function), you can figure out whether you can re-define the search space for the problem and 

formulate an explanation of how optimization works for a problem. 

Though Bayesian optimization is considered the state of the art for hyperparameter 

tuning, always keep in mind that for more complex parameter spaces, using Bayesian 

optimization provides no advantage in terms of time and computation spent over 

a solution simply found by random search. For instance, in Google Cloud Machine 

Learning Engine services, the usage of Bayesian optimization is limited to problems 

involving at most sixteen parameters. For larger numbers of parameters, it resorts 

to random sampling.

https://optuna.readthedocs.io/en/stable/reference/samplers.html
https://github.com/scikit-optimize/scikit-optimize/issues/981
https://github.com/scikit-optimize/scikit-optimize/issues/981
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In our worked example, we will refer to the work that can be found in the following Kaggle 

Notebooks:

• https://www.kaggle.com/lucamassaron/tutorial-bayesian-optimization-with-

lightgbm

• https://www.kaggle.com/lucamassaron/scikit-optimize-for-lightgbm

Our purpose here is to show you how to quickly handle an optimization problem for a competition 

such as 30 Days of ML, a recent competition that involved many Kagglers in learning new skills 

and applying them in a competition lasting 30 days. The goal of this competition is to predict 

the value of an insurance claim, so it is a regression problem. You can find out more about this 

initiative and download the data necessary for the example we are going to present (materials 

are always available to the public), by visiting https://www.kaggle.com/thirty-days-of-ml.

The following code will present how to load the data for this problem and then set up a Bayesian 

optimization process that will improve the performance of a LightGBM model.

We start by loading the packages:

# Importing core libraries

import numpy as np

import pandas as pd

from time import time

import pprint

import joblib

from functools import partial

# Suppressing warnings because of skopt verbosity

import warnings

warnings.filterwarnings("ignore")

# Classifiers

import lightgbm as lgb

# Model selection

If you cannot access the data because you have not taken part in the competi-

tion previously, you can use this Kaggle Dataset: https://www.kaggle.com/

lucamassaron/30-days-of-ml.

https://www.kaggle.com/lucamassaron/tutorial-bayesian-optimization-with-lightgbm
https://www.kaggle.com/lucamassaron/tutorial-bayesian-optimization-with-lightgbm
https://www.kaggle.com/lucamassaron/scikit-optimize-for-lightgbm
https://www.kaggle.com/thirty-days-of-ml
https://www.kaggle.com/lucamassaron/30-days-of-ml
https://www.kaggle.com/lucamassaron/30-days-of-ml
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from sklearn.model_selection import KFold

# Metrics

from sklearn.metrics import mean_squared_error

from sklearn.metrics import make_scorer

# Skopt functions

from skopt import BayesSearchCV

from skopt.callbacks import DeadlineStopper, DeltaYStopper

from skopt.space import Real, Categorical, Integer

As a next step, we load the data. The data doesn’t need much processing, aside from turning some 

categorical features with alphabetical letters as levels into ordered numeric ones:

# Loading data 

X = pd.read_csv("../input/30-days-of-ml/train.csv")

X_test = pd.read_csv("../input/30-days-of-ml/test.csv") 

# Preparing data as a tabular matrix

y = X.target

X = X.set_index('id').drop('target', axis='columns')

X_test = X_test.set_index('id') 

# Dealing with categorical data

categoricals = [item for item in X.columns if 'cat' in item]

cat_values = np.unique(X[categoricals].values)

cat_dict = dict(zip(cat_values, range(len(cat_values))))

X[categoricals] = X[categoricals].replace(cat_dict).astype('category')

X_test[categoricals] = X_test[categoricals].replace(cat_dict).
astype('category')

After making the data available, we define a reporting function that can be used by Scikit-optimize 

for various optimization tasks. The function takes the data and the optimizer as inputs. It can 

also handle callback functions, which are functions that perform actions such as reporting, early 

stopping based on having reached a certain threshold of time spent searching or performance not 

improving (for instance, not seeing improvements for a certain number of iterations), or saving 

the state of the processing after each optimization iteration:
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# Reporting util for different optimizers

def report_perf(optimizer, X, y, title="model", callbacks=None):

    """

    A wrapper for measuring time and performance of optimizers

    optimizer = a sklearn or a skopt optimizer

    X = the training set 

    y = our target

    title = a string label for the experiment

    """

    start = time()

    

    if callbacks is not None:

        optimizer.fit(X, y, callback=callbacks)

    else:

        optimizer.fit(X, y)

        

    d=pd.DataFrame(optimizer.cv_results_)

    best_score = optimizer.best_score_

    best_score_std = d.iloc[optimizer.best_index_].std_test_score

    best_params = optimizer.best_params_

    

    print((title + " took %.2f seconds, candidates checked: %d, best CV  
           score: %.3f" + u" \u00B1"+" %.3f") % 

                             (time() - start,

                             len(optimizer.cv_results_['params']),

                             best_score, 

                             best_score_std))

    print('Best parameters:')

    pprint.pprint(best_params)

    print()

    return best_params

We now have to prepare the scoring function (upon which the evaluation is based), the validation 

strategy (based on cross-validation), the model, and the search space. For the scoring function, 

which should be a root mean squared error metric, we refer to the practices in Scikit-learn where 

you always minimize a function (if you have to maximize, you minimize its negative). 
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The make_scorer wrapper can easily replicate such practices: 

# Setting the scoring function

scoring = make_scorer(partial(mean_squared_error, squared=False),

                      greater_is_better=False)

# Setting the validation strategy

kf = KFold(n_splits=5, shuffle=True, random_state=0)

# Setting the basic regressor

reg = lgb.LGBMRegressor(boosting_type='gbdt',

                        metric='rmse',

                        objective='regression',

                        n_jobs=1, 

                        verbose=-1,

                        random_state=0)

Setting the search space requires the use of different functions from Scikit-optimize, such as Real, 

Integer, or Choice, each one sampling from a different kind of distribution that you define as a 

parameter (usually the uniform distribution, but the log-uniform is also used when you are more 

interested in the scale effect of a parameter than its exact value):

# Setting the search space

search_spaces = {

     

     # Boosting learning rate

    'learning_rate': Real(0.01, 1.0, 'log-uniform'),

     

     # Number of boosted trees to fit

    'n_estimators': Integer(30, 5000),

     

     # Maximum tree leaves for base learners

    'num_leaves': Integer(2, 512),

    

     # Maximum tree depth for base learners

    'max_depth': Integer(-1, 256),

     # Minimal number of data in one leaf

    'min_child_samples': Integer(1, 256),
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     # Max number of bins buckets

    'max_bin': Integer(100, 1000),

     # Subsample ratio of the training instance 

    'subsample': Real(0.01, 1.0, 'uniform'),

     # Frequency of subsample 

    'subsample_freq': Integer(0, 10),

                

     # Subsample ratio of columns

    'colsample_bytree': Real(0.01, 1.0, 'uniform'), 

    

     # Minimum sum of instance weight

    'min_child_weight': Real(0.01, 10.0, 'uniform'),

   

     # L2 regularization

    'reg_lambda': Real(1e-9, 100.0, 'log-uniform'),

         

     # L1 regularization

    'reg_alpha': Real(1e-9, 100.0, 'log-uniform'),

   }

Once you have defined:

• Your cross-validation strategy

• Your evaluation metric

• Your base model

• Your hyperparameter search space

All that is left is just to feed them into your optimization function, BayesSearchCV. Based on the 

CV scheme provided, this function will look for the minimum of your scoring function based 

on values within the search space. You can set a maximum number of iterations performed, the 

kind of surrogate function (Gaussian processes (GP) works on most occasions), and the random 

seed for reproducibility:

# Wrapping everything up into the Bayesian optimizer

opt = BayesSearchCV(estimator=reg,

                    search_spaces=search_spaces,
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                    scoring=scoring,

                    cv=kf,

                    n_iter=60,           # max number of trials

                    n_jobs=-1,           # number of jobs

                    iid=False,         

                    # if not iid it optimizes on the cv score

                    return_train_score=False,

                    refit=False,  

                    # Gaussian Processes (GP) 

                    optimizer_kwargs={'base_estimator': 'GP'},

                    # random state for replicability

                    random_state=0)

At this point, you can start the search using the reporting function we defined previously. After 

a while, the function will return the best parameters for the problem.

# Running the optimizer

overdone_control = DeltaYStopper(delta=0.0001)

# We stop if the gain of the optimization becomes too small

time_limit_control = DeadlineStopper(total_time=60 * 60 * 6)

# We impose a time limit (6 hours)

best_params = report_perf(opt, X, y,'LightGBM_regression', 

                          callbacks=[overdone_control, time_limit_
control])

In the example, we set a limit on operations by specifying a maximum time allowed (6 hours) 

before stopping and reporting the best results. Since the Bayesian optimization approach blends 

together exploration and exploitation of different combinations of hyperparameters, stopping 

at any time will always return the best solution found so far (but not necessarily the best one 

possible). This is because the acquisition function will always give priority of exploration to the 

most promising parts of the search space, based on the estimated performances returned by the 

surrogate function and their uncertainty intervals. 

Customizing a Bayesian optimization search
The BayesSearchCV function offered by Scikit-optimize is certainly convenient, because it wraps 

and arranges all the elements of a hyperparameter search by itself, but it also has limitations. For 

instance, you may find it useful in a competition to:
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• Have more control over each search iteration, for instance mixing random search and 

Bayesian search

• Be able to apply early stopping on algorithms

• Customize your validation strategy more

• Stop experiments that do not work early (for instance, immediately evaluating the per-

formance of the single cross-validation folds when it is available, instead of waiting to 

have all folds averaged at the end)

• Create clusters of hyperparameter sets that perform in a similar way (for instance, in 

order to create multiple models differing only in the hyperparameters used, to be used 

for a blending ensemble)

Each of these tasks would not be too complex if you could modify the BayesSearchCV internal 

procedure. Luckily, Scikit-optimize lets you do just this. In fact, behind BayesSearchCV, as well 

as behind other wrappers from the package, there are specific minimizing functions that you can 

use as standalone parts of your own search function:

• gp_minimize: Bayesian optimization using Gaussian processes

• forest_minimize: Bayesian optimization using random forests or extremely randomized 

trees

• gbrt_minimize: Bayesian optimization using gradient boosting

• dummy_minimize: Just random search

In the following example, we are going to modify the previous search using our own custom search 

function. The new custom function will accept early stopping during training and it will prune 

experiments if one of the fold validation results is not a top-performing one. 

As in the previous example, we start by importing the necessary packages.

# Importing core libraries

import numpy as np

import pandas as pd

from time import time

import pprint

You can find the next example working in a Kaggle Notebook at https://www.

kaggle.com/lucamassaron/hacking-bayesian-optimization.

https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization
https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization
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import joblib

from functools import partial

# Suppressing warnings because of skopt verbosity

import warnings

warnings.filterwarnings("ignore")

# Classifier/Regressor

from xgboost import XGBRegressor

# Model selection

from sklearn.model_selection import KFold, StratifiedKFold

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import train_test_split

# Metrics

from sklearn.metrics import mean_squared_error

from sklearn.metrics import make_scorer

# Skopt functions

from skopt import BayesSearchCV

from skopt.callbacks import DeadlineStopper, DeltaYStopper

from skopt.space import Real, Categorical, Integer

from skopt import gp_minimize, forest_minimize

from skopt import gbrt_minimize, dummy_minimize

# Decorator to convert a list of parameters to named arguments

from skopt.utils import use_named_args 

# Data processing

from sklearn.preprocessing import OrdinalEncoder

In the same way as before, we upload the data from the 30 Days of ML competition:

# Loading data 

X_train = pd.read_csv("../input/30-days-of-ml/train.csv")

X_test = pd.read_csv("../input/30-days-of-ml/test.csv")
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# Preparing data as a tabular matrix

y_train = X_train.target

X_train = X_train.set_index('id').drop('target', axis='columns')

X_test = X_test.set_index('id')

# Pointing out categorical features

categoricals = [item for item in X_train.columns if 'cat' in item]

# Dealing with categorical data using OrdinalEncoder

ordinal_encoder = OrdinalEncoder()

X_train[categoricals] = ordinal_encoder.fit_transform(X_train[categoricals])

X_test[categoricals] = ordinal_encoder.transform(X_test[categoricals])

Now we set all the necessary elements for a hyperparameter search, that is, the scoring function, 

the validation strategy, the search space, and the machine learning model to be optimized. The 

scoring function and the validation strategy will later become the core elements constituting the 

objective function, the function the Bayesian optimization will strive to minimize.

# Setting the scoring function

scoring = partial(mean_squared_error, squared=False)

# Setting the cv strategy

kf = KFold(n_splits=5, shuffle=True, random_state=0)

# Setting the search space

space = [Real(0.01, 1.0, 'uniform', name='learning_rate'),

         Integer(1, 8, name='max_depth'),

         Real(0.1, 1.0, 'uniform', name='subsample'),

         # Subsample ratio of columns by tree

         Real(0.1, 1.0, 'uniform', name='colsample_bytree'),  

         # L2 regularization

         Real(0, 100., 'uniform', name='reg_lambda'),

         # L1 regularization

         Real(0, 100., 'uniform', name='reg_alpha'),

         # minimum sum of instance weight (hessian)  

         Real(1, 30, 'uniform', name='min_child_weight')

         ]

model = XGBRegressor(n_estimators=10_000, 

                     booster='gbtree', random_state=0)
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Notice this time that we have not included the number of estimators (the n_estimators param-

eter) in the search space. Instead, we set it when instantiating the model and we enter a high 

value, since we expect to stop the model early based on a validation set.

As a next step, you now need to create the objective function. The objective function should just 

accept as input the parameters to be optimized and return the resulting score. However, the ob-

jective function also needs to accept the elements necessary for the search you have just prepared. 

Naturally, you could refer to them from inside the function. However, it is a good practice to take 

them into the function itself, in its internal memory space. This has its advantages; for instance, 

you will make the elements immutable and they will be carried along with the objective function 

(by pickling or if you distribute the search task on a multi-processor level). You can obtain this 

second result by creating a make function that takes in the elements, with the modified objective 

function being returned by the make function. With this simple structure, your objective function 

will incorporate all the elements such as the data and the model, and you will only need to pass 

in the parameters to be tested.

Let’s start coding the function. We will stop along the way to discuss some relevant aspects: 

# The objective function to be minimized
def make_objective(model, X, y, space, cv, scoring, validation=0.2):
    # This decorator converts your objective function 
    # with named arguments into one that accepts a list as argument,
    # while doing the conversion automatically.
    @use_named_args(space) 
    def objective(**params):
        model.set_params(**params)
        print("\nTesting: ", params)
        validation_scores = list()
        for k, (train_index, test_index) in enumerate(kf.split(X, y)):
            val_index = list()
            train_examples = int(train_examples * (1 - validation))
            train_index, val_index = (train_index[:train_examples], 
                                      train_index[train_examples:])
            
            start_time = time()
            model.fit(X.iloc[train_index,:], y[train_index],
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                      early_stopping_rounds=50,
                      eval_set=[(X.iloc[val_index,:], y[val_index])], 
                      verbose=0
                    )
            end_time = time()
            
            rounds = model.best_iteration
            
            test_preds = model.predict(X.iloc[test_index,:])
            test_score = scoring(y[test_index], test_preds)
            print(f"CV Fold {k+1} rmse:{test_score:0.5f}-{rounds} 
                  rounds - it took {end_time-start_time:0.0f} secs")
            validation_scores.append(test_score)

In this first part of the function, you simply create an objective function, doing cross-validation and 

fitting the data using early stopping. We have used an aggressive early stopping strategy to save 

time, but you could raise the number of patient rounds if you believe that it might work better for 

your problem. Notice that the validation examples are sequentially taken out from the examples 

in the training folds (see how train_index and val_index are defined in the code), leaving the 

out-of-fold examples (test_index derived from the kf cross-validation splitting) untouched for 

the final validation. This is important if you do not want to incur adaptive overfitting on the data 

you use for early stopping. 

In the next part, before moving on to the cross-validation loop and proceeding to the remaining 

cross-validation folds to be trained and tested, you analyze the result obtained by the fold on 

the out-of-fold set:

            

            if len(history[k]) >= 10:

                threshold = np.percentile(history[k], q=25)

                if test_score > threshold:

                    print(f"Early stopping for under-performing fold: 

                          threshold is {threshold:0.5f}")

                    return np.mean(validation_scores)

                

            history[k].append(test_score)

        return np.mean(validation_scores)

    return objective
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Notice that we are keeping a global dictionary, history, containing the results obtained from 

each fold up to now. We can compare the results across multiple experiments and cross-vali-

dations; the cross-validation is reproducible due to the random seed, so the results of the same 

fold are perfectly comparable. If the result of the present fold is sub-par compared to the pre-

viously obtained folds in other iterations (using the bottom quartile as a reference), the idea is 

to stop and return the average of the folds tested so far. The rationale for this is that if one fold 

doesn’t present acceptable results, then the whole cross-validation probably won’t either. You 

can therefore just quit and move on to another set of more promising parameters. It is a kind of 

early stopping on cross-validation that should speed up your search and allow you to cover more 

experiments in less time.

Next, using our make_objective function, we put together all the elements (model, data, search 

space, validation strategy, and scoring function) into a single function, the objective function. 

As a result, we now have a function that only takes in the parameters to be optimized and re-

turns a score, based on which the minimization engine of the optimization will decide the next 

experiments:

objective = make_objective(model,

                           X_train, y_train,

                           space=space,

                           cv=kf,

                           scoring=scoring)

Since we want to control each step of the optimization and save it for later use, we also prepare 

a callback function that will save a list of the experiments executed and their results, at every 

iteration of the minimization process. Simply by using these two pieces of information, the min-

imization engine can be halted at any time, and it can thereafter resume the optimization from 

the checkpoint:

def onstep(res):

    global counter

    x0 = res.x_iters   # List of input points

    y0 = res.func_vals # Evaluation of input points

    print('Last eval: ', x0[-1], 

          ' - Score ', y0[-1])

    print('Current iter: ', counter, 

          ' - Best Score ', res.fun, 

          ' - Best Args: ', res.x)
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    # Saving a checkpoint to disk

    joblib.dump((x0, y0), 'checkpoint.pkl') 

    counter += 1

At this point, we are ready to start. Bayesian optimization needs some starting points to work 

properly. We create a number of experiments with random search (using the dummy_minimize 

function) and save their results:

counter = 0

history = {i:list() for i in range(5)}

used_time = 0

gp_round = dummy_minimize(func=objective,

                          dimensions=space,

                          n_calls=30,

                          callback=[onstep],

                          random_state=0)

We can then retrieve the saved experiments and print the sequence of sets of hyperparameters 

that the Bayesian optimization has tested, along with their results. In fact, we can find the set of 

parameters and their results contained in the x0 and y0 lists: 

x0, y0 = joblib.load('checkpoint.pkl')

print(len(x0))

At this point, we can even resume the Bayesian optimization with some changes in the search 

space, the acquisition function, the number of calls, or the callbacks: 

x0, y0 = joblib.load('checkpoint.pkl')

gp_round = gp_minimize(func=objective,

                       x0=x0,    # already examined values for x

                       y0=y0,    # observed values for x0

                       dimensions=space,

                       acq_func='gp_hedge',

                       n_calls=30,

                       n_initial_points=0,

                       callback=[onstep],

                       random_state=0)
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Once we are satisfied that we don’t need to continue calling the optimization function, we can 

print both the best score obtained (based on our inputs and validation scheme) and the set of 

best hyperparameters:

x0, y0 = joblib.load('checkpoint.pkl')

print(f"Best score: {gp_round.fun:0.5f}")

print("Best hyperparameters:")

for sp, x in zip(gp_round.space, gp_round.x):

    print(f"{sp.name:25} : {x}")

Based on the best result, we can re-train our model for use in the competition. 

Now we have the set of parameters and their results (the x0 and y0 lists), we could also explore 

the different results and cluster together the ones that are similar in output but different in the 

set of parameters used. This will help us to train a more diverse set of models with similar per-

formances but different optimization strategies. This is the ideal situation for blending, which 

is the averaging of multiple models in order to lower the variance of the estimates and obtain a 

better public and private leaderboard score.

Extending Bayesian optimization to neural architecture 
search
Moving on to deep learning, neural networks also seem to have quite a few hyperparameters to fix:

• Batch size

• Learning rate

• The kind of optimizer and its internal parameters

All these parameters influence how the network learns and they can make a big impact; just a 

slight difference in batch size or learning rate can determine whether a network can reduce its 

error beyond a certain threshold or not. 

That being said, these learning parameters are not the only ones that you can optimize when 

working with deep neural networks (DNNs). How the network is organized in layers and the 

details of its architecture can make even more of a difference. 

Refer to Chapter 9, Ensembling with Blending and Stacking Solutions, for a discussion 

on blending.
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In fact, technically speaking, an architecture implies the representational capacity of the deep 

neural network, which means that, depending on the layers you use, the network will either be 

able to read and process all the information available in the data, or it will not. While you had a 

large but limited set of choices with other machine learning algorithms, with DNNs your choices 

seem unlimited, because the only apparent limit is your knowledge and experience in handling 

parts of neural networks and putting them together.

Common best practices for great deep learning practitioners when assembling well-performing 

DNNs depend mainly on:

• Relying on pre-trained models (so you have to be very knowledgeable about the solutions 

available, such as those found on Hugging Face (https://huggingface.co/models) or 

on GitHub)

• Reading cutting-edge papers

• Copying top Kaggle Notebooks from the same competition or previous ones

• Trial and error

• Ingenuity and luck

In a famous lesson given by Professor Geoffrey Hinton, he states that you can achieve similar and 

often better results using automated methods such as Bayesian optimization. Bayesian optimi-

zation will also avoid you getting stuck because you cannot figure out the best combinations of 

hyperparameters among the many possible ones.

As we mentioned before, even in most sophisticated AutoML systems, when you have too many 

hyperparameters, relying on random optimization may produce better results or the same results 

in the same amount of time as Bayesian optimization. In addition, in this case, you also have to 

fight against an optimization landscape with sharp turns and surfaces; in DNN optimization, 

many of your parameters won’t be continuous but Boolean instead, and just one change could 

unexpectedly transform the performance of your network for the better or for the worse. 

For a recording of Prof. Geoffrey Hinton’s lesson, see https://www.youtube.com/

watch?v=i0cKa0di_lo.

For the slides, see https://www.cs.toronto.edu/~hinton/coursera/lecture16/

lec16.pdf.

https://huggingface.co/models
https://www.youtube.com/watch?v=i0cKa0di_lo
https://www.youtube.com/watch?v=i0cKa0di_lo
https://www.cs.toronto.edu/~hinton/coursera/lecture16/lec16.pdf
https://www.cs.toronto.edu/~hinton/coursera/lecture16/lec16.pdf
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Our experience tells us that random optimization may not be suitable for a Kaggle competition 

because:

• You have limited time and resources

• You can leverage your previous optimization results in order to find better solutions

Bayesian optimization in this scenario is ideal: you can set it to work based on the time and com-

putational resources that you have and do it by stages, refining your settings through multiple 

sessions. Moreover, it is unlikely that you will easily be able to leverage parallelism for tuning 

DNNs, since they use GPUs, unless you have multiple very powerful machines at hand. By working 

sequentially, Bayesian optimization just needs one good machine to perform the task. Finally, 

even if it is hard to find optimal architectures by a search, due to the optimization landscape you 

leverage information from previous experiments, especially at the beginning, totally avoiding 

combinations of parameters that won’t work. With random optimization, unless you change the 

search space along the way, all combinations are always liable to be tested. 

There are also drawbacks, however. Bayesian optimization models the hyperparameter space 

using a surrogate function built from previous trials, which is not an error-free process. It is not 

a remote possibility that the process ends up concentrating only on a part of the search space 

while ignoring other parts (which may instead contain the minimum you are looking for). The 

solution to this is to run a large number of experiments to be safe, or to alternate between random 

search and Bayesian optimization, challenging the Bayesian model with random trials that can 

force it to reshape its search model in a more optimal way.

For our example, we use again the data from the 30 Days of ML initiative by Kaggle, a regression 

task. Our example is based on TensorFlow, but with small modifications it can run on other deep 

learning frameworks such as PyTorch or MXNet. 

Let’s begin:

import tensorflow as tf

After importing the TensorFlow package, we leverage its Dataset function to create an iterable 

capable of feeding our neural network with batches of data:

As before, you can find the example on Kaggle here: https://www.kaggle.com/

lucamassaron/hacking-bayesian-optimization-for-dnns.

https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization-for-dnns
https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization-for-dnns
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def df_to_dataset(dataframe, shuffle=True, batch_size=32):

    dataframe = dataframe.copy()

    labels = dataframe.pop('target')

    ds = tf.data.Dataset.from_tensor_slices((dict(dataframe),   

                                             labels))

    if shuffle:

        ds = ds.shuffle(buffer_size=len(dataframe))

    ds = ds.batch(batch_size)

    return ds

tf.keras.utils.get_custom_objects().update({'leaky-relu': tf.keras.layers.
Activation(tf.keras.layers.LeakyReLU(alpha=0.2))})

We have also made leaky ReLU activation a custom object for our model; it can be called by a 

string, and there is no need to directly use the function. 

We proceed to code a function that creates our deep neural network model based on a set of 

hyperparameters:

def create_model(cat0_dim, cat1_dim, cat2_dim,
                 cat3_dim, cat4_dim, cat5_dim, 
                 cat6_dim, cat7_dim, cat8_dim, cat9_dim,
                 layers, layer_1, layer_2, layer_3, layer_4, layer_5, 
                 activation, dropout, batch_normalization, learning_rate, 
                 **others):
    
    dims = {'cat0': cat0_dim, 'cat1': cat1_dim, 'cat2': cat2_dim, 
            'cat3': cat3_dim, 'cat4': cat4_dim, 'cat5': cat5_dim,
            'cat6': cat6_dim, 'cat7': cat7_dim, 'cat8': cat8_dim, 
            'cat9': cat9_dim}
    
    vocab = {h:X_train['cat4'].unique().astype(int) 
             for h in ['cat0', 'cat1', 'cat2', 'cat3', 
                       'cat4', 'cat5', 'cat6', 'cat7', 
                       'cat8', 'cat9']}
    
    layers = [layer_1, layer_2, layer_3, layer_4, layer_5][:layers]
    
    feature_columns = list()



Hyperparameter Optimization280

    for header in ['cont1', 'cont2', 'cont3', 'cont4', 'cont5', 
                   'cont6','cont7', 'cont8', 'cont9', 'cont10',
                   'cont11', 'cont12', 'cont13']:
         
        feature_columns.append(tf.feature_column.numeric_column(header))

    for header in ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 
                   'cat6', 'cat7', 'cat8', 'cat9']:
        feature_columns.append(
            tf.feature_column.embedding_column(
            tf.feature_column.categorical_column_with_vocabulary_list(
            header, vocabulary_list=vocab[header]),  
            dimension=dims[header]))

    feature_layer = tf.keras.layers.DenseFeatures(feature_columns)

    network_struct = [feature_layer]

    for nodes in layers:
        network_struct.append(
                 tf.keras.layers.Dense(nodes, activation=activation))
        if batch_normalization is True:
                   network_struct.append(
                   tf.keras.layers.BatchNormalization())
        if dropout > 0:
            network_struct.append(tf.keras.layers.Dropout(dropout))

    model = tf.keras.Sequential(network_struct + 
                                [tf.keras.layers.Dense(1)])

    model.compile(optimizer=tf.keras.optimizers.Adam( 
                          learning_rate=learning_rate),
                  loss= tf.keras.losses.MeanSquaredError(),
                  metrics=['mean_squared_error'])
    
    return model



Chapter 8 281

Internally, the code in the create_model function customizes the neural network architecture 

based on the inputs provided. For instance, as parameters for the function you can provide the 

dimensions of the embeddings for each categorical variable, or define the structure and number 

of dense layers present in the network. All these parameters are related to the parameter space 

you want to be explored by Bayesian optimization, hence every input parameter of the function 

creating the model should be related to a sampling function defined in the search space. All 

you have to do is to place the sampling functions in a list, in the same order as expected by the 

create_model function:

# Setting the search space

    

space = [Integer(1, 2, name='cat0_dim'),

         Integer(1, 2, name='cat1_dim'),

         Integer(1, 2, name='cat2_dim'),

         Integer(1, 3, name='cat3_dim'),

         Integer(1, 3, name='cat4_dim'),

         Integer(1, 3, name='cat5_dim'),

         Integer(1, 4, name='cat6_dim'),

         Integer(1, 4, name='cat7_dim'),

         Integer(1, 6, name='cat8_dim'),

         Integer(1, 8, name='cat9_dim'),

         Integer(1, 5, name='layers'),

         Integer(2, 256, name='layer_1'),

         Integer(2, 256, name='layer_2'),

         Integer(2, 256, name='layer_3'),

         Integer(2, 256, name='layer_4'),

         Integer(2, 256, name='layer_5'),

         Categorical(['relu', 'leaky-relu'], name='activation'),

         Real(0.0, 0.5, 'uniform', name='dropout'),

         Categorical([True, False], name='batch_normalization'),

         Categorical([0.01, 0.005, 0.002, 0.001], name='learning_rate'),

         Integer(256, 1024, name='batch_size')

        ]
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As previously illustrated, you now combine all the elements related to the search into an objective 

function to be created by a function incorporating your basic search elements, such as the data 

and the cross-validation strategy:

def make_objective(model_fn, X, space, cv, scoring, validation=0.2):

    # This decorator converts your objective function with named arguments

    # into one that accepts a list as argument, while doing the conversion

    # automatically.

    @use_named_args(space) 

    def objective(**params):

        

        print("\nTesting: ", params)

        validation_scores = list()

        

        for k, (train_index, test_index) in enumerate(kf.split(X)):

            val_index = list()

            train_examples = len(train_index)

            train_examples = int(train_examples * (1 - validation))

            train_index, val_index = (train_index[:train_examples], 

                                      train_index[train_examples:])

            

            start_time = time()

            

            model = model_fn(**params)

            measure_to_monitor = 'val_mean_squared_error'

            modality='min'

            early_stopping = tf.keras.callbacks.EarlyStopping(

                                 monitor=measure_to_monitor,

                                 mode=modality,

                                 patience=5, 

                                 verbose=0)

            model_checkpoint = tf.keras.callbacks.ModelCheckpoint(

                                   'best.model',

                                   monitor=measure_to_monitor, 

                                   mode=modality, 
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                                   save_best_only=True, 

                                   verbose=0)

            run = model.fit(df_to_dataset(

                                X_train.iloc[train_index, :], 

                                batch_size=params['batch_size']),

                            validation_data=df_to_dataset(

                                X_train.iloc[val_index, :], 

                                batch_size=1024),

                            epochs=1_000,

                            callbacks=[model_checkpoint, 

                                       early_stopping],

                            verbose=0)

            

            end_time = time()

            

            rounds = np.argmin(

                     run.history['val_mean_squared_error']) + 1

            

            model = tf.keras.models.load_model('best.model')

            shutil.rmtree('best.model')

            

            test_preds = model.predict(df_to_dataset(

                            X.iloc[test_index, :], shuffle=False, 

                            batch_size=1024)).flatten()

                            test_score = scoring(

                            X.iloc[test_index, :]['target'], 

                            test_preds)

            print(f"CV Fold {k+1} rmse:{test_score:0.5f} - {rounds} 

                  rounds - it took {end_time-start_time:0.0f} secs")

            validation_scores.append(test_score)

            

            if len(history[k]) >= 10:

                threshold = np.percentile(history[k], q=25)

                if test_score > threshold:

                    print(f"Early stopping for under-performing fold: 

                          threshold is {threshold:0.5f}")
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                    return np.mean(validation_scores)

                

            history[k].append(test_score)

        return np.mean(validation_scores)

    return objective

The next step is to provide a sequence of random search runs (as a way to start building some 

feedback from the search space) and gather the results as a starting point. Then, we can feed them 

into a Bayesian optimization and proceed by using forest_minimize as a surrogate function:

counter = 0

history = {i:list() for i in range(5)}

used_time = 0

gp_round = dummy_minimize(func=objective,

                          dimensions=space,

                          n_calls=10,

                          callback=[onstep],

                          random_state=0)

gc.collect()

x0, y0 = joblib.load('checkpoint.pkl')

gp_round = gp_minimize(func=objective,

                           x0=x0,  # already examined values for x

                           y0=y0,  # observed values for x0

                           dimensions=space,

                           n_calls=30,

                           n_initial_points=0,

                           callback=[onstep],

                           random_state=0)

gc.collect()

Notice that after the first ten rounds of random search, we proceed with our search using a random 

forest algorithm as a surrogate function. That will ensure better and faster results than using a 

Gaussian process. 
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As before, in this process we have to strive to make the optimization feasible within the time and 

resources we have (for instance, by setting a low number of n_calls). Hence, we can proceed 

with batches of search iterations by saving the state of the optimization, checking the results 

obtained, and deciding thereafter to proceed or conclude the optimization process and not invest 

more time and energy into looking for a better solution.

Creating lighter and faster models with KerasTuner
If the previous section has puzzled you because of its complexity, KerasTuner can offer you a fast 

solution for setting up an optimization without much hassle. Though it uses Bayesian optimization 

and Gaussian processes by default, the new idea behind KerasTuner is hyperband optimization. 

Hyperband optimization uses the bandit approach to figure out the best parameters (see http://

web.eecs.umich.edu/~mosharaf/Readings/HyperBand.pdf). This works quite well with neu-

ral networks, whose optimization landscape is quite irregular and discontinuous, and thus not 

always suitable for Gaussian processes.

Let’s start from the beginning. KerasTuner (https://keras.io/keras_tuner/) was announced 

as a “flexible and efficient hyperparameter tuning for Keras models” by François Chollet, the cre-

ator of Keras. 

The recipe proposed by Chollet for running KerasTuner is made up of simple steps, starting from 

your existing Keras model:

1. Wrap your model in a function with hp as the first parameter.

2. Define hyperparameters at the beginning of the function.

3. Replace DNN static values with hyperparameters.

4. Write the code that models a complex neural network from the given hyperparameters.

5. If necessary, dynamically define hyperparameters as you build the network.

We’ll now explore how all these steps can work for you in a Kaggle competition by using an ex-

ample. At the moment, KerasTuner is part of the stack offered by any Kaggle Notebook, hence you 

don’t need to install it. In addition, the TensorFlow add-ons are part of the Notebook’s pre-in-

stalled packages. 

Keep in mind that you cannot avoid building the function that builds a custom net-

work using input hyperparameters; KerasTuner just makes it much easier to handle.

http://web.eecs.umich.edu/~mosharaf/Readings/HyperBand.pdf
http://web.eecs.umich.edu/~mosharaf/Readings/HyperBand.pdf
https://keras.io/keras_tuner/
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If you are not using a Kaggle Notebook and you need to try KerasTuner, you can easily install both 

using the following commands:

!pip install -U keras-tuner

!pip install -U tensorflow-addons

Our first step is to import the necessary packages (creating shortcuts for some commands, such 

as for pad_sequences) and to upload the data we will be using directly from Keras:

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow import keras

import tensorflow_addons as tfa

from sklearn.model_selection import train_test_split

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LeakyReLU

from tensorflow.keras.layers import Activation

from tensorflow.keras.optimizers import SGD, Adam

from tensorflow.keras.wrappers.scikit_learn import KerasClassifier

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

pad_sequences = keras.preprocessing.sequence.pad_sequences

imdb = keras.datasets.imdb(train_data, train_labels),

(test_data, test_labels) = imdb.load_data(num_words=10000)

train_data, val_data, train_labels, val_labels = train_test_split(train_
data, train_labels, test_size=0.30,

                 shuffle=True, random_state=0)

You can find this example already set up on a Kaggle Notebook here: https://www.

kaggle.com/lucamassaron/kerastuner-for-imdb/.

https://www.kaggle.com/lucamassaron/kerastuner-for-imdb/
https://www.kaggle.com/lucamassaron/kerastuner-for-imdb/
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This time, we are using the IMDb dataset, which is available in the Keras package (https://keras.

io/api/datasets/imdb/). The dataset has some interesting characteristics:

• It is a dataset of 25,000 movie reviews from IMDb

• The reviews are labeled by sentiment (positive/negative)

• The target classes are balanced (hence accuracy works as a scoring measure)

• Each review is encoded as a list of word indexes (integers)

• For convenience, words are indexed by overall frequency

In addition, it has been successfully used in a popular Kaggle competition on word embeddings 

(https://www.kaggle.com/c/word2vec-nlp-tutorial/overview).

This example involves natural language processing. This type of problem is often solved by us-

ing recurrent neural networks (RNNs) based on LSTM or GRU layers. BERT, RoBERTa, and the 

other transformer-based models often achieve better results – being pre-trained models relying 

on large language corpora – but this is not necessarily true in all problems, and RNNs can prove 

a strong baseline to beat or a good addition to an ensemble of neural models. In our example, all 

words are already numerically indexed. We just add to the existing indices the numeric codes 

that denote padding (so we can easily normalize all the text to the phrase length), the start of 

the sentence, an unknown word, and an unused word:

# A dictionary mapping words to an integer index

word_index = imdb.get_word_index()

# The first indices are reserved

word_index = {k:(v+3) for k,v in word_index.items()} 

word_index["<PAD>"] = 0

word_index["<START>"] = 1

word_index["<UNK>"] = 2  # unknown

word_index["<UNUSED>"] = 3

reverse_word_index = dict([(value, key) for (key, value) in word_index.
items()])

def decode_review(text):

    return ' '.join([reverse_word_index.get(i, '?') for i in text])

https://keras.io/api/datasets/imdb/
https://keras.io/api/datasets/imdb/
https://www.kaggle.com/c/word2vec-nlp-tutorial/overview
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The next step involves creating a custom layer for attention. Attention is the foundation of trans-

former models and it is one of the most innovative ideas in neural NLP of recent times. 

The idea of attention can be easily conveyed. LSTM and GRU layers output processed sequences, 

but not all the elements in these output sequences are necessarily important for your predictions. 

Instead of averaging all the output sequences using a pool layer across the stratified sequences, 

you can actually take a weighted average of them (and during the training phase learn the correct 

weights to be used). This weighting process (attention) definitely improves the results you are 

going to pass on further. Of course, you can make this approach even more sophisticated using 

multiple attention layers (we call this multi-head attention), but in our example a single layer 

will suffice because we want to demonstrate that using attention is more effective in this problem 

than simply averaging or just concatenating all the results together:

from tensorflow.keras.layers import Dense, Dropout

from tensorflow.keras.layers import Flatten, RepeatVector, dot, multiply, 
Permute, Lambda

K = keras.backend

def attention(layer):

    # --- Attention is all you need --- #

    _,_,units = layer.shape.as_list()

    attention = Dense(1, activation='tanh')(layer)

    attention = Flatten()(attention)

    attention = Activation('softmax')(attention)

    attention = RepeatVector(units)(attention)

    attention = Permute([2, 1])(attention)

    representation = multiply([layer, attention])

    representation = Lambda(lambda x: K.sum(x, axis=-2), 

                            output_shape=(units,))(representation)

    # ---------------------------------- #

    return representation

For all the details of how these kinds of layers work, see the seminal paper on at-

tention: Vaswani, A. et al. Attention is all you need. Advances in neural information 

processing systems. 2017 (https://proceedings.neurips.cc/paper/2017/fil

e/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf). 

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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As a further variation in our experiments on the architecture of the DNNs for this problem, we 

also want to test the effectiveness of using different kinds of optimizers such as Rectified Adam 

(an adaptive learning Adam optimizer; read this post to learn more: https://lessw.medium.com/

new-state-of-the-art-ai-optimizer-rectified-adam-radam-5d854730807b) or Stochastic 

Weighted Averaging (SWA). SWA is a way to average the weights traversed during the optimiza-

tion based on a modified learning rate schedule: if your model tends to overfit or overshoot, SWA 

helps in getting near to an optimal solution and it is proven to work especially in NLP problems.  

def get_optimizer(option=0, learning_rate=0.001):

    if option==0:

        return tf.keras.optimizers.Adam(learning_rate)

    elif option==1:

        return tf.keras.optimizers.SGD(learning_rate, 

                                       momentum=0.9, nesterov=True)

    elif option==2:

        return tfa.optimizers.RectifiedAdam(learning_rate)

    elif option==3:

        return tfa.optimizers.Lookahead(

                   tf.optimizers.Adam(learning_rate), sync_period=3)

    elif option==4:

        return tfa.optimizers.SWA(tf.optimizers.Adam(learning_rate))

    elif option==5:

        return tfa.optimizers.SWA(

                   tf.keras.optimizers.SGD(learning_rate, 

                                       momentum=0.9, nesterov=True))

    else:

        return tf.keras.optimizers.Adam(learning_rate)

Having defined two key functions, we now face the most important function to code: the one 

that will provide different neural architectures given the parameters. We don’t encode all the 

various parameters we want to connect to the different architectural choices; we only provide 

the hp parameter, which should contain all the possible parameters we want to use, and that will 

be run by KerasTuner. Aside from hp in the function input, we fix the size of the vocabulary and 

the length to be padded (adding dummy values if the effective length is shorter or cutting the 

phrase if the length is longer): 

layers = keras.layers

models = keras.models

https://lessw.medium.com/new-state-of-the-art-ai-optimizer-rectified-adam-radam-5d854730807b
https://lessw.medium.com/new-state-of-the-art-ai-optimizer-rectified-adam-radam-5d854730807b
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def create_tunable_model(hp, vocab_size=10000, pad_length=256):

    # Instantiate model params

    embedding_size = hp.Int('embedding_size', min_value=8, 

                            max_value=512, step=8)

    spatial_dropout = hp.Float('spatial_dropout', min_value=0, 

                               max_value=0.5, step=0.05)

    conv_layers = hp.Int('conv_layers', min_value=1,

                         max_value=5, step=1)

    rnn_layers = hp.Int('rnn_layers', min_value=1,

                        max_value=5, step=1)

    dense_layers = hp.Int('dense_layers', min_value=1,

                          max_value=3, step=1)

    conv_filters = hp.Int('conv_filters', min_value=32, 

                          max_value=512, step=32)

    conv_kernel = hp.Int('conv_kernel', min_value=1,

                         max_value=8, step=1)

    concat_dropout = hp.Float('concat_dropout', min_value=0, 

                              max_value=0.5, step=0.05)

    dense_dropout = hp.Float('dense_dropout', min_value=0, 

                             max_value=0.5, step=0.05)

In the first part of the function, we simply recover all the settings from the hp parameter. We also 

make explicit the range of the search space for each of them. Contrary to the solutions we’ve seen 

so far, this part of the work is done inside the model function, not outside.

The function continues by defining the different layers using the parameters extracted from 

hp. In some cases, a parameter will switch on or off a part of the network performing certain 

data processing. For instance, in the code we inserted a branch of the graph (conv_filters and 

conv_kernel) that processes the sequence of words using convolutional layers, which, in their 

1D form, can also prove useful for NLP problems, since they can catch local sequences of words 

and meanings that LSTMs may find harder to grasp.

Now we can define the actual model:

    inputs = layers.Input(name='inputs',shape=[pad_length])

    layer  = layers.Embedding(vocab_size, embedding_size, 

                              input_length=pad_length)(inputs)
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    layer  = layers.SpatialDropout1D(spatial_dropout)(layer)

    for l in range(conv_layers):

        if l==0:

            conv = layers.Conv1D(filters=conv_filters, 

                       kernel_size=conv_kernel, padding='valid',

                       kernel_initializer='he_uniform')(layer)

        else:

            conv = layers.Conv1D(filters=conv_filters,  

                       kernel_size=conv_kernel, padding='valid', 

                       kernel_initializer='he_uniform')(conv) 

    avg_pool_conv = layers.GlobalAveragePooling1D()(conv)

    max_pool_conv = layers.GlobalMaxPooling1D()(conv)

    representations = list()

    for l in range(rnn_layers):

        

        use_bidirectional = hp.Choice(f'use_bidirectional_{l}',

                                      values=[0, 1])

        use_lstm = hp.Choice(f'use_lstm_{l}', values=[0, 1])

        units = hp.Int(f'units_{l}', min_value=8, max_value=512, step=8)

        if use_lstm == 1:

            rnl = layers.LSTM

        else:

            rnl = layers.GRU

        if use_bidirectional==1:

            layer = layers.Bidirectional(rnl(units, 

                              return_sequences=True))(layer)

        else:

            layer = rnl(units, return_sequences=True)(layer)

        representations.append(attention(layer))
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    layer = layers.concatenate(representations + [avg_pool_conv, 

                                                  max_pool_conv])

    layer = layers.Dropout(concat_dropout)(layer)

    for l in range(dense_layers):

        dense_units = hp.Int(f'dense_units_{l}', min_value=8, 

                             max_value=512, step=8)

        layer = layers.Dense(dense_units)(layer)

        layer = layers.LeakyReLU()(layer)

        layer = layers.Dropout(dense_dropout)(layer)

    layer = layers.Dense(1, name='out_layer')(layer)

    outputs = layers.Activation('sigmoid')(layer)

    model = models.Model(inputs=inputs, outputs=outputs)

We start by defining the input layer and transform it with a subsequent embedding layer that 

will encode the sequence values into dense layers. Some dropout regularization is applied to 

the process using SpatialDropout1D, a function that will randomly drop entire columns of the 

output matrix (standard dropout drops random single elements in the matrix instead). After 

these initial phases, we split the network into one pipeline based on convolutions (Conv1D) and 

another based on recurrent layers (GRU or LSTM). It is after the recurrent layers that we apply 

the attention layer. Finally, the outputs of these two pipelines are concatenated and, after a few 

more dense layers, they arrive at the final output node, a sigmoid since we have to represent a 

probability bounded in the range 0 to 1.

After the model definition, we set the learning parameters and compile the model before return-

ing it: 

    hp_learning_rate = hp.Choice('learning_rate', 

                                 values=[0.002, 0.001, 0.0005])

    optimizer_type = hp.Choice('optimizer', values=list(range(6)))

    optimizer = get_optimizer(option=optimizer_type,  

                              learning_rate=hp_learning_rate)

    

    model.compile(optimizer=optimizer,

                  loss='binary_crossentropy',

                  metrics=['acc'])
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    return model

Note that we have built the model using the functional API of Keras, not the sequential one. We 

would advise you to avoid the sequential one, in fact; it is easier to set up, but severely restricts 

your potential architectures.

At this point, most of the work is already done. As a suggestion, having worked out many op-

timizations using KerasTuner ourselves, we prefer to first build a non-parametric model, using 

all the possible architectural features that we want to test, with the mutually exclusive parts of 

the network set to the most complex solutions. After we have set up the generative function and 

our model seems to be working properly, we can, for instance, represent its graph and have it 

successfully fit some examples as a test. After that, we start inserting the parametric variables 

into the architecture and setting up the hp parameter definitions.

Now, we import KerasTuner. First, we set the tuner itself, and then we start the search:

import keras_tuner as kt

tuner = kt.BayesianOptimization(hypermodel=create_tunable_model,

                                objective='val_acc',

                                max_trials=100,

                                num_initial_points=3,

                                directory='storage',

                                project_name='imdb',

                                seed=42)

tuner.search(train_data, train_labels, 

             epochs=30,

             batch_size=64, 

             validation_data=(val_data, val_labels),

             shuffle=True,

             verbose=2,

In our experience, starting with a parametric function immediately will take more 

time and debugging effort. The idea behind KerasTuner is to let you think of your 

DNNs as a set of modular circuits and to help you optimize how the data flows 

inside them.
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             callbacks = [EarlyStopping('val_acc',

                                        patience=3,

                                        restore_best_weights=True)]

             )

As a tuner, we opt for the Bayesian optimization one, but you can also try the Hyperband tuner 

(https://keras.io/api/keras_tuner/tuners/hyperband/) and check if it works better for your 

problem. We provide our model function to the hypermodel parameter. Then, we set the objective 

using a string or a function, the maximum number of trials (KerasTuner will stop earlier if there 

is nothing more to be done), and the initial number of random trials – the more the better – in 

order to inform the Bayesian process. Early stopping is a standard and well-performing practice in 

modeling DNNs that you absolutely cannot ignore. Finally, but importantly, we set the directory 

where we want to save our search and a seed number for reproducibility of the optimization steps.

The search phase is run like a standard fit of a Keras model and – this is quite important – it 

accepts callbacks. Therefore, you can easily add early stopping to your model. In this case, the 

given epoch number should therefore be considered the maximum number of epochs. You may 

also want to optimize the batch size, which we haven’t done in our example. This still requires 

some extra work, but you can get an idea of how to achieve it by reading this GitHub closed issue: 

https://github.com/keras-team/keras-tuner/issues/122. 

After the optimization is complete, you can extract the best parameters and save the best model 

without any need to retrain it:

best_hps = tuner.get_best_hyperparameters()[0]

model = tuner.hypermodel.build(best_hps)

print(best_hps.values)

model.summary()

model.save("best_model.h5")

In this example, KerasTuner finds a solution that uses:

• A larger embedding layer

• Just plain GRU and LSTM layers (no bi-directional layers)

• Stacking of multiple one-dimensional convolution layers (Conv1D)

• More and larger dense layers

Interestingly, the solution is not only more effective, but also lighter and faster than our previous 

attempts based on intuition and experience with the problem. 

https://keras.io/api/keras_tuner/tuners/hyperband/
https://github.com/keras-team/keras-tuner/issues/122
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Chollet himself suggests using KerasTuner not just to make your DNNs perform better but also 

to shrink them to a more manageable size, something that may make the difference in Code 

competitions. This allows you to put together more models that work together within the limited 

inference time provided by the sponsors of the competition.

The TPE approach in Optuna
We complete our overview of Bayesian optimization with another interesting tool and approach 

to it. As we have discussed, Scikit-optimize uses Gaussian processes (as well as tree algorithms) 

and it directly models the surrogate function and the acquisition function.

If you would like to examine more examples of using KerasTuner, François Chollet 

also created a series of Notebooks for Kaggle competitions in order to showcase the 

workings and functionalities of his optimizer:

• https://www.kaggle.com/fchollet/keras-kerastuner-best-

practices for the Digit Recognizer datasets

• https://www.kaggle.com/fchollet/titanic-keras-kerastuner-

best-practices for the Titanic dataset

• https://www.kaggle.com/fchollet/moa-keras-kerastuner-best-

practices for the Mechanisms of Action (MoA) Prediction competition

As a reminder of these topics, the surrogate function helps the optimization process 

to model the potential performance result when you try a set of hyperparameters. 

The surrogate function is built using the previous experiments and their results; it is 

just a predictive model applied in order to forecast the behavior of a specific machine 

learning algorithm on a specific problem. For each parameter input provided to the 

surrogate function, you get an expected performance output. That’s intuitive and 

also quite hackable, as we have seen. 

The acquisition function instead points out what set of hyperparameters could 

be tested in order to improve the ability of the surrogate function to predict the 

performances of the machine learning algorithm. It is also useful for really testing 

if we can reach a top-performing result based on the surrogate function’s forecasts. 

These two objectives represent the explore part (where you run experiments) and 

the exploit part (where you test the performance) of a Bayesian optimization process.

https://www.kaggle.com/fchollet/keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/titanic-keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/titanic-keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/moa-keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/moa-keras-kerastuner-best-practices
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Instead, optimizers based on TPE tackle the problem by estimating the likelihood of success of 

the values of parameters. In other words, they model the success distribution of the parameters 

themselves using successive refinements, assigning a higher probability to more successful value 

combinations.

In this approach, the set of hyperparameters is divided into good and bad ones by these distri-

butions, which take the role of the surrogate and acquisition functions in Bayesian optimization, 

since the distributions tell you where to sample to get better performances or explore where 

there is uncertainty.

Therefore, TPE can model the search space and simultaneously suggest what the algorithm can 

try next, by sampling from the adjusted probability distribution of parameters. 

For a long time, Hyperopt was the option for those preferring to use TPE instead of Bayesian op-

timization based on Gaussian processes. In October 2018, however, Optuna appeared in the open 

source and it has become the preferred choice for Kagglers due to its versatility (it also works out 

of the box for neural networks and even for ensembling), speed, and efficiency in finding better 

solutions compared to previous optimizers. 

In this section, we will demonstrate just how easy is to set up a search, which is called a study 

under Optuna terminology. All you need to do is to write an objective function that takes as input 

the parameters to be tested by Optuna and then returns an evaluation. Validation and other al-

gorithmic aspects can be handled in a straightforward manner inside the objective function, also 

using references to variables external to the function itself (both global variables or local ones). 

Optuna also allows pruning, that is, signaling that a particular experiment is not going well and 

that Optuna can stop and forget about it. Optuna provides a list of functions that activate this 

callback (see https://optuna.readthedocs.io/en/stable/reference/integration.html); 

the algorithm will run everything efficiently for you after that, which will significantly reduce 

the time needed for optimization.  

All of this is in our next example. We return to optimizing for the 30 Days of ML competition. 

This time, we are trying to figure out what parameters make XGBoost work for this competition.

To explore the technical details of TPE, we suggest reading Bergstra, J. et al. Algorithms 

for hyper-parameter optimization. Advances in neural information processing systems 

24, 2011 (https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cf

d12577bc2619bc635690-Paper.pdf).

https://optuna.readthedocs.io/en/stable/reference/integration.html
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
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As a first step, we upload the libraries and the data, as before:

import pandas as pd

import numpy as np

from sklearn import preprocessing

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import OrdinalEncoder

from xgboost import XGBRegressor

import optuna

from optuna.integration import XGBoostPruningCallback

# Loading data 

X_train = pd.read_csv("../input/30-days-of-ml/train.csv").iloc[:100_000, 
:]

X_test = pd.read_csv("../input/30-days-of-ml/test.csv")

# Preparing data as a tabular matrix

y_train = X_train.target

X_train = X_train.set_index('id').drop('target', axis='columns')

X_test = X_test.set_index('id')

# Pointing out categorical features

categoricals = [item for item in X_train.columns if 'cat' in item]

# Dealing with categorical data using OrdinalEncoder

ordinal_encoder = OrdinalEncoder()

X_train[categoricals] = ordinal_encoder.fit_transform(X_
train[categoricals])

X_test[categoricals] = ordinal_encoder.transform(X_test[categoricals])

When using Optuna, you just have to define an objective function containing the model, the 

cross-validation logic, the evaluation measure, and the search space. 

You can find the Notebook for this example at https://www.kaggle.com/

lucamassaron/optuna-bayesian-optimization.

https://www.kaggle.com/lucamassaron/optuna-bayesian-optimization
https://www.kaggle.com/lucamassaron/optuna-bayesian-optimization
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Naturally, for data you can refer to objects outside the function itself, rendering the construction 

of the function much easier. As in KerasTuner, here you need a special input parameter based on 

a class from Optuna:

def objective(trial):

    

    params = {

            'learning_rate': trial.suggest_float("learning_rate", 

                                                 0.01, 1.0, log=True),

            'reg_lambda': trial.suggest_loguniform("reg_lambda", 

                                                   1e-9, 100.0),

            'reg_alpha': trial.suggest_loguniform("reg_alpha", 

                                                  1e-9, 100.0),

            'subsample': trial.suggest_float("subsample", 0.1, 1.0),

            'colsample_bytree': trial.suggest_float(

                                      "colsample_bytree", 0.1, 1.0),

            'max_depth': trial.suggest_int("max_depth", 1, 7),

            'min_child_weight': trial.suggest_int("min_child_weight", 

                                                  1, 7),

            'gamma': trial.suggest_float("gamma", 0.1, 1.0, step=0.1)

    }

    model = XGBRegressor(

        random_state=0,

        tree_method="gpu_hist",

        predictor="gpu_predictor",

        n_estimators=10_000,

        **params

    )

    

    model.fit(x, y, early_stopping_rounds=300, 

              eval_set=[(x_val, y_val)], verbose=1000,

              callbacks=[XGBoostPruningCallback(trial, 'validation_0-rmse')])

    preds = model.predict(x_test)

    rmse = mean_squared_error(y_test, preds, squared=False)

    return rmse
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In this example, for performance reasons, we won’t cross-validate but use one fixed dataset for 

training, one for validation (early stopping), and one for testing purposes. We are using GPU in 

this example, and we are also subsetting the available data in order to fit the execution of 60 trials 

into a reasonable length of time. If you don’t want to use GPU, just remove the tree_method and 

predictor parameters from the XGBRegressor instantiation. Also notice how we set a callback 

in the fit method in order to provide Optuna feedback on how the model is performing, so the 

optimizer can stop an underperforming experiment early to give space to other attempts.

x, x_val, y, y_val = train_test_split(X_train, y_train, random_state=0,

                                      test_size=0.2)

x, x_test, y, y_test = train_test_split(x, y, random_state=0, test_size=0.25)

study = optuna.create_study(direction="minimize")

study.optimize(objective, n_trials=100)

Another notable aspect is that you can decide to optimize either for minimization or maximization, 

depending on your problem (Scikit-optimize works only on minimization problems).

print(study.best_value)

print(study.best_params)

To complete the run, you just have to print or export the best test performance and the best pa-

rameters found by the optimization.

Ruchi Bhatia
https://www.kaggle.com/ruchi798

As a conclusion to this dense chapter, let’s look at one last interview. 

This time, we’re speaking to Ruchi Bhatia, a Grandmaster in Data-

sets and Notebooks. Ruchi is currently a graduate student at Carnegie 

Mellon University, a Data Scientist at OpenMined, and a Data Science 

Global Ambassador at Z by HP.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
My favorite kinds of competitions are NLP and Analytics competitions. Being multilingual has played a 

significant role in my main focus and interest: Natural Language Processing.

https://www.kaggle.com/ruchi798
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As for Analytics competitions, I enjoy making sense out of complex data and backing my answers to 

questions with the support of data! Every competition on Kaggle is novel and requires different techniques. 

I mainly follow a data-driven approach to algorithm selection and have no set favorites.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
When a new competition is announced, my priority is to understand the problem statement in depth. 

Sometimes problem statements can be out of our comfort zone or domain, so it’s crucial to ensure we 

grasp them well before moving on to exploratory data analysis. While performing EDA, my goal is to 

understand data distribution and focus on getting to know the data at hand. During this, we are likely 

to come across patterns, and we should make an effort to understand those and form a hypothesis for 

outliers and exceptional cases. 

After this, I spend time understanding the competition metrics. The creation of a leak-free cross-valida-

tion strategy is my next step. After this, I choose a baseline model and make my first submission. If the 

correlation between the local validation and the competition leaderboard is not satisfying, I iterate for 

as long as needed to understand possible discrepancies and account for them. 

Then I move on to improve my modeling approach with time. Apart from this, tweaking parameters 

and trying new experiments help to gain an understanding of what works best with the data at hand 

(ensuring that I’m preventing overfitting during the whole process). Finally, in the last few weeks of the 

competition, I perform model ensembling and check the robustness of my solution.

As for my projects outside of Kaggle, most of my time is spent in data gathering, cleaning, and getting 

relevant value out of the data.

Has Kaggle helped you in your career? If so, how?
Kaggle has tremendously helped me accelerate my career. Not only did it help me find my passion for 

data science, but it also motivated me to contribute effectively and stay consistent. It’s the perfect place 

to try hands-on experiments with an enormous amount of data at our fingertips and showcase our work 

on a global scale. In addition, our work is easily accessible, so we can reach a broader audience as well. 

I have used a majority of my Kaggle work on my portfolio to indicate the diversity of work I have done 

in my journey thus far. Kaggle competitions aim to solve novel and real-world problems, and I feel 

employers look for our ability and aptitude to solve such problems. I’ve also curated a broad range of 

datasets that helped me highlight my acumen in working with raw data. These projects helped me 

secure multiple job opportunities.
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Summary
In this chapter, we discussed hyperparameter optimization at length as a way to increase your 

model’s performance and score higher on the leaderboard. We started by explaining the code 

functionalities of Scikit-learn, such as grid search and random search, as well as the newer halv-

ing algorithms. 

Then, we progressed to Bayesian optimization and explored Scikit-optimize, KerasTuner, and 

finally Optuna. We spent more time discussing the direct modeling of the surrogate function by 

Gaussian processes and how to hack it, because it can allow you greater intuition and a more 

ad hoc solution. We recognize that, at the moment, Optuna has become a gold standard among 

Kagglers, for tabular competitions as well as for deep neural network ones, because of its speedier 

convergence to optimal parameters in the time allowed in a Kaggle Notebook. 

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
In my experience, I’ve noticed that many Kagglers get disheartened when their ranking in competitions 

isn’t what they expected it to be. After weeks and months of hard work, I can see why they might give up 

early, but winning Kaggle competitions is no easy feat. There are several people of different educational 

backgrounds and work experience competing, and having the courage to try is all that’s important. We 

should focus on our individualistic growth and see how far we’ve come in our journey.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
Comprehensive exploratory data analysis combined with relevant visualizations help us spot data trends 

and context that can improve our methodology. Since I believe in the power of visualizations, my favorite 

data science libraries would be Seaborn and TensorBoard. Seaborn for EDA and TensorBoard for visual-

izations needed during the machine learning workflow. I occasionally use Tableau too.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
When people enter a competition, I believe they should prepare themselves for deep diving into the problem 

statement and researching. Competitions on Kaggle are particularly challenging and help solve real-life 

problems in many cases. People should have a positive mindset and not get disheartened. Kaggle compe-

titions provide the perfect opportunity to learn and grow!
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However, if you want to stand out among the competition, you should strive to test solutions 

from other optimizers as well. 

In the next chapter, we will move on to discuss another way to improve your performance in 

Kaggle competitions: ensembling models. By discovering the workings of averaging, blending, 

and stacking, we will illustrate how you can boost your results beyond what you can obtain by 

tuning hyperparameters alone.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord
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Ensembling with Blending and 
Stacking Solutions

When you start competing on Kaggle, it doesn’t take long to realize that you cannot win with a 

single, well-devised model; you need to ensemble multiple models. Next, you will immediately 

wonder how to set up a working ensemble. There are few guides around, and more is left to Kag-

gle’s lore than to scientific papers.

The point here is that if ensembling is the key to winning in Kaggle competitions, in the real 

world it is associated with complexity, poor maintainability, difficult reproducibility, and hid-

den technical costs for little advantage. Often, the small boost that can move you from the lower 

ranks to the top of the leaderboard really doesn’t matter for real-world applications because the 

costs overshadow the advantages. However, that doesn’t mean that ensembling is not being 

used at all in the real world. In a limited form, such as averaging and mixing a few diverse mod-

els, ensembling allows us to create models that can solve many data science problems in a more 

effective and efficient way.

Ensembling in Kaggle is not only a way to gain extra predictive performance, but it is also a 

teaming strategy. When you are working with other teammates, putting together everyone’s 

contributions produces a result that often performs better than individual efforts, and can also 

help to organize the work of the team by structuring everyone’s efforts toward a clear goal. In fact, 

when work is performed in different time zones and under different constraints for each partici-

pant, collaborative techniques like pair coding are clearly not feasible. One team member may be 

subject to constraints due to office hours, another due to studying and examinations, and so on. 
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Teams in a competition often don’t have the chance to, and do not necessarily have to, synchronize 

and align all participants on the same tasks. Moreover, the skills within a team may also differ.

A good ensembling strategy shared among a team means that individuals can keep working based 

on their own routines and styles, yet still contribute to the success of the group. Therefore, even 

different skills may become an advantage when using ensembling techniques based on diversity 

of predictions.

In this chapter, we will start from the ensembling techniques that you already know, because they 

are embedded in algorithms such as random forests and gradient boosting, and then progress 

to ensembling techniques for multiple models such as averaging, blending, and stacking. We 

will provide you with some theory, some practice, and also some code examples you can use as 

templates when building your own solutions on Kaggle.

We will cover these topics:

• A brief introduction to ensemble algorithms

• Averaging models into an ensemble

• Blending models using a meta-model 

• Stacking models 

• Creating complex stacking and blending solutions

A brief introduction to ensemble algorithms
The idea that ensembles of models can outperform single ones is not a recent one. We can trace 

it back to Sir Francis Galton, who was alive in Victorian Britain. He figured out that, in order to 

guess the weight of an ox at a county fair, it was more useful to take an average from a host of 

more or less educated estimates from a crowd than having a single carefully devised estimate 

from an expert.

Before leaving you to read this chapter and try all the techniques, we have to mention 

a great reference on ensembling for us and for all practitioners when competing on 

Kaggle: the blog post written in 2015 by Triskelion (Hendrik Jacob van Veen) and by 

a few collaborators (Le Nguyen The Dat, Armando Segnini). The Kaggle Ensembling 

Guide was originally found on the mlwave blog (https://mlwave.com/kaggle-

ensembling-guide), which is no longer up, but you can retrieve the contents of the 

guide from https://usermanual.wiki/Document/Kaggle20ensembling20gui

de.685545114.pdf. The post arranged most of the implicit and explicit knowledge 

about ensembling from Kaggle forums at the time.

https://mlwave.com/kaggle-ensembling-guide
https://mlwave.com/kaggle-ensembling-guide
https://usermanual.wiki/Document/Kaggle20ensembling20guide.685545114.pdf
https://usermanual.wiki/Document/Kaggle20ensembling20guide.685545114.pdf


Chapter 9 305

In 1996, Leo Breiman formalized the idea of using multiple models combined into a more predictive 

one by illustrating the bagging technique (also called the “bootstrap aggregating” procedure) 

that later led to the development of the even more effective random forests algorithms. In the 

period that followed, other ensembling techniques such as gradient boosting and stacking were 

also presented, thus completing the range of ensemble methods that we use today.

The first basic strategies for ensembling predictors in Kaggle competitions were taken directly 

from bagging and random forest strategies for classification and regression. They involved making 

an average of various predictions and were thus named averaging techniques. These approaches 

quickly emerged from the very first Kaggle competitions held over 11 years ago also because of 

the pre-Kaggle Netflix competition, where strategies based on the average of the results of dif-

ferent models dominated the scene. Given their success, basic ensembling techniques based on 

averaging set a standard for many competitions to come, and they are still quite useful and valid 

even today for scoring more highly on the leaderboard.

Stacking, which is more complex and computationally demanding, emerged a bit later, when 

problems in competitions become more complex and the struggle between participants fiercer. 

Just as the random forest approach has inspired averaging different predictions, boosting heav-

ily inspired stacking approaches. In boosting, by sequentially re-processing information, your 

learning algorithm can model problems in a better and more complete way. In fact, in gradient 

boosting, sequential decision trees are built in order to model the part of data that previous itera-

tions are unable to grasp. This idea is reprised in stacking ensembles, where you stack the results 

of previous models and re-process them in order to gain an increase in predictive performance.

You can refer to a few articles to figure out how these ensembling algorithms were 

initially devised:

• For random forests, read Breiman, L. Bagging predictors. Machine learning 

24.2 – 1996: 123-140.

• If you want to know how boosting originally worked in more detail, read 

Freund, Y. and Schapire, R.E. Experiments with a new boosting algorithm. icml. 

Vol. 96 – 1996, and Friedman, J. H. Greedy function approximation: a gradient 

boosting machine. Annals of Statistics (2001): 1189-1232. 

• As for stacking, refer to Ting, K. M. and Witten, I. H. Stacking bagged and 

dagged models, 1997, for a first formal draft of the technique.
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Rob Mulla
https://www.kaggle.com/robikscube

Rob spoke to us about his views on ensembling and what he has learned 

from Kaggle. A Grandmaster in Competitions, Notebooks, and Dis-

cussion, and Senior Data Scientist at Biocore LLC, there is a lot we can 

learn from his experiences.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
My favorite type of competitions are ones that involve unique datasets requiring novel solutions that 

incorporate different types of modeling approaches. I enjoy when a competition isn’t just training large 

models on the dataset, but actually requires understanding the data very well and implementing ideas 

that leverage architectures specific to the tasks. I don’t try to specialize in any particular approach. When 

I first started Kaggle, I mainly stuck to gradient boosted models, but in order to be competitive in recent 

years I’ve grown in my understanding of deep learning, computer vision, NLP, and optimization. My 

favorite competitions require using more than just one technique.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I approach Kaggle competitions in some ways very similar to work projects. First comes data understand-

ing. In real-world projects, you may need to work on defining the problem and developing a good metric. 

In Kaggle, that is already done for you. Next is understanding how the data and metric relate to each 

other – and developing and testing modeling techniques that you believe will best solve the problem. The 

biggest difference in Kaggle compared to real-life data science is the final bit of ensembling and tuning 

of models to get a slight edge – in many real-world applications, these types of large ensembles are not 

necessary because the computational expense to performance gain can be small.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
A very challenging competition that I entered was the NFL Helmet Impact Detection competition. It 

involved video data, which I had no prior experience with. It also required researching common approaches 

and reading existing papers on the topic. I had to work on a two-stage approach, which added to the 

complexity of the solution. A different competition that I found challenging was the Indoor Location 

Navigation competition. It involved modeling, optimization, and really understanding the data well. I 

didn’t end up doing very well in the competition, but I learned a lot.

https://www.kaggle.com/robikscube
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Averaging models into an ensemble
In order to introduce the averaging ensembling technique better, let’s quickly revise all the strat-

egies devised by Leo Breiman for ensembling. His work represented a milestone for ensembling 

strategies, and what he found out at the time still works fairly well in a wide range of problems. 

Has Kaggle helped you in your career? If so, how?
Yes. Kaggle has played a big part in helping me gain notoriety in the data science space. I’ve also grown 

in my knowledge and understanding of new techniques and have met and worked with many brilliant 

people who have helped me grow in my skills and understanding of machine learning.

My team placed second for the NFL Helmet Impact Detection Competition. I also participated in a 

number of NFL competitions prior to that competition. The hosts of the competition reached out to me 

and eventually it helped me land my current role.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
I think inexperienced Kagglers sometimes worry too much about the ensembling and hyperparameter 

tuning of models. These are important towards the end of a competition, but they are not important unless 

you’ve already built a good base model. I also think that fully understanding the competition metric is 

extremely important. Many Kagglers overlook how important it is to understand how to optimize your 

solution to the evaluation metric.

What mistakes have you made in competitions in the past?
A lot. I’ve overfit models and spent time working on things that didn’t end up being beneficial in the 

end. However, I feel like this was necessary for me to learn how to better tackle future competitions. The 

mistakes may have hurt me in the specific competition I was working in, but helped me to be better in 

later competitions.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
For EDA, know how to manipulate data using NumPy, Pandas, and Matplotlib or another plotting library. 

For modeling, know how set up a proper cross validation scheme with Scikit-learn. The standard models 

like XGBoost/LightGBM are good to know how to baseline with. Deep learning libraries are mainly 

TensorFlow/Keras or PyTorch. Getting to know one of the two main deep learning libraries is important.
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Breiman explored all these possibilities in order to figure out if there was a way to reduce the 

variance of error in powerful models that tended to overfit the training data too much, such as 

decision trees.

Conceptually, he discovered that ensembling effectiveness was based on three elements: how 

we deal with the sampling of training cases, how we build the models, and, finally, how we 

combine the different models obtained.

As for the sampling, the approaches tested and found were:

• Pasting, where a number of models are built using subsamples (sampling without re-

placements) of the examples (the data rows)

• Bagging, where a number of models are built using random selections of bootstrapped 

examples (sampling with replacement)

• Random subspaces, where a number of models are built using subsamples (sampling 

without replacements) of the features (the data columns)

• Random patches, an approach similar to bagging, except features are also sampled when 

each model is selected, as in random subspaces

The reason we sample instead of using the same information is because, by subsampling cases 

and features, we create models that are all relevant to the same problem while each being different 

from the others. This difference also applies to the way each model overfits the sample; we expect 

all the models to grasp the useful, generalizable information from the data in the same way, and 

deal with the noise that is not useful for making predictions in a different way. Hence, variation 

in modeling reduces the variation in predictions, because errors tend to cancel each other out.

If this variation is so useful, then the next step should not just be to modify the data the model 

learns from, but also the model itself. We have two main approaches for the models:

• Ensembles of the same type of models

• Ensembles of different models

Interestingly, ensembling in one way or the other doesn’t help too much if the models that we 

are putting together are too different in predictive power. The point here is that you get an ad-

vantage if you put together models that are able to correctly guess the same type of predictions, 

so they can smooth out their errors when averaging the predictions that they get wrong. If you 

are ensembling models with performances that are too different, you will soon find out that 

there is no point because the net effect will be negative: as you are not smoothing your incorrect 

predictions, you are also degrading the correct ones.
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This is an important limit of averaging: it can use a set of different models (for instance, because 

they are trained using different samples and features) only if they are similar in predictive power. 

To take an example, a linear regression and a k-nearest neighbor algorithm have different ways 

of modeling a problem and capturing signals from data; thanks to the (distinct) characteristic 

functional forms at their cores, these algorithms can grasp different predictive nuances from 

the data and perform better on specific parts of their predictive tasks, but you cannot really 

take advantage of that when using averaging. By contrast, the different ways algorithms have 

to capture signals is something that stacking actually can leverage, because it can take the best 

results from each algorithm.

Based on this, we can summarize that, for an ensemble based on averaging (averaging the results 

of multiple models) to be effective, it should be:

• Built on models that are trained on different samples

• Built on models that use different subsamples from the available features

• Composed of models similar in predictive power

Technically, this implies that the models’ predictions should be as uncorrelated as possible while 

performing at the same level of accuracy on prediction tasks.

Now that we have discussed the opportunities and limitations of averaging multiple machine 

learning models, we are finally going to delve into the technical details. There are three ways to 

average multiple classification or regression models:

• Majority voting, using the most frequent classification among multiple models (only for 

classification models)

• Averaging values or probabilities

• Using a weighted average of values or probabilities

In the next few sections, we will discuss each approach in detail in the context of Kaggle com-

petitions.

Majority voting
Producing different models by varying the examples, features, and models we use in the ensemble 

(if they are comparable in predictive power, as we discussed before) requires a certain computa-

tional effort, but it doesn’t require you to build a data processing pipeline that is all that different 

from what you would set up when using a single model. 
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In this pipeline, you just need to collect different test predictions, keeping track of the models 

used, how you sampled examples or features when training, the hyperparameters that you used, 

and the resulting cross-validation performance.

If the competition requires you to predict a class, you can use majority voting; that is, for each 

prediction, you take the class most frequently predicted by your models. This works for both 

binary predictions and multi-class predictions, because it presumes that there are sometimes 

errors in your models, but that they can guess correctly most of the time. Majority voting is used 

as an “error correction procedure,” discarding noise and keeping meaningful signals.

In our first simple example, we demonstrate how majority voting works. We start by creating 

our example dataset. Using the make_classification function from Scikit-learn, we generate 

a Madelon-like dataset.

We will use this recreation of the Madelon dataset throughout this chapter as a basis for testing 

ensembling techniques:

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

X, y = make_classification(n_samples=5000, n_features=50, 

                           n_informative=10,

                           n_redundant=25, n_repeated=15, 

                           n_clusters_per_class=5,

                           flip_y=0.05, class_sep=0.5, 

                           random_state=0)

The original Madelon was an artificial dataset containing data points grouped in 

clusters placed on the vertices of some dimensional hypercube and randomly labeled. 

It comprised a few informative features, mixed with irrelevant and repeated ones (to 

create multicollinearity between features) and it has a certain amount of injected 

random noise. Ideated by Isabelle Guyon (one of the creators of the SVM algorithm) for 

the NIPS 2003 Feature Selection Challenge, the Madelon dataset is the model example 

of a challenging artificial dataset for a competition. Even some Kaggle competitions 

were inspired by it: https://www.kaggle.com/c/overfitting and the more recent 

https://www.kaggle.com/c/dont-overfit-ii.

https://www.kaggle.com/c/overfitting
https://www.kaggle.com/c/dont-overfit-ii
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X_train, X_test, y_train, y_test = train_test_split(X, y,   

                           test_size=0.33, random_state=0)

After splitting it into a training and a test set, we proceed by instantiating our learning algorithms. 

We will just use three base algorithms: SVMs, random forests, and k-nearest neighbors classi-

fiers, with default hyperparameters for demonstration purposes. You can try changing them or 

increasing their number:

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import log_loss, roc_auc_score, accuracy_score

model_1 = SVC(probability=True, random_state=0)

model_2 = RandomForestClassifier(random_state=0)

model_3 = KNeighborsClassifier()

The following step is just to train each model on the training set:

model_1.fit(X_train, y_train)

model_2.fit(X_train, y_train)

model_3.fit(X_train, y_train)

At this point, we need to predict on the test set for each model and ensemble all these predictions 

using majority voting. To do this, we will be using the mode function from SciPy:

import numpy as np

from scipy.stats import mode

preds = np.stack([model_1.predict(X_test),

                  model_2.predict(X_test),

                  model_3.predict(X_test)]).T

max_voting = np.apply_along_axis(mode, 1, preds)[:,0]

First, we check the accuracy for each single model:

for i, model in enumerate(['SVC', 'RF ', 'KNN']):

    acc = accuracy_score(y_true=y_test, y_pred=preds[:, i])

    print(f"Accuracy for model {model} is: {acc:0.3f}")
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We see that the three models have similar performance, around 0.8. Now it is time to check the 

majority voting ensemble:

max_voting_accuray = accuracy_score(y_true=y_test, y_pred=max_voting)

print(f"Accuracy for majority voting is: {max_voting_accuray:0.3f}")

The voting ensemble is actually more accurate: 0.817, because it managed to put together the 

correct signals from the majority.

For multilabel problems (when you can predict multiple classes), you can just pick the classes that 

are predicted above a certain number of times, assuming a relevance threshold that indicates that 

a prediction for a class is signal, not noise. For instance, if you have five models, you could set this 

threshold to 3, which means if a class is predicted by at least three models, then the prediction 

should be considered correct.

In regression problems, as well as when you are predicting probabilities, you cannot actually 

use majority voting. Majority voting works exclusively with class ownership. Instead, when you 

have to predict numbers, you need to combine the results numerically. In this case, resorting to 

an average or a weighted average will provide you the right way to combine predictions. 

Averaging of model predictions
When averaging your predictions from different models in a competition, you can consider all 

your predictions as having potentially the same predictive power and use the arithmetic mean 

to derive an average value.

Aside from the arithmetic mean, we have also found it quite effective to use:

• The geometric mean: This is where you multiply the n submissions, then you take the 

1/nth power of the resulting product.

• The logarithmic mean: Analogous to the geometric mean, you take the logarithm of your 

submission, average them together, and take the exponentiation of the resulting mean.

• The harmonic mean: Where you take the arithmetic mean of the reciprocals of your 

submissions, then you take the reciprocal of the resulting mean.

• The mean of powers: Where you take the average of the nth power of the submissions, 

then you take the 1/nth power of the resulting average.

The simple arithmetic average is always quite effective and basically a no-brainer that works 

more often than expected. Sometimes, variants such as the geometric mean or the harmonic 

mean may work better.
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Continuing with the previous example, we will now try to figure out what kind of mean works 

best when we switch to ROC-AUC as our evaluation metric. To begin with, we evaluate the per-

formances of each single model:

proba = np.stack([model_1.predict_proba(X_test)[:, 1],

                  model_2.predict_proba(X_test)[:, 1],

                  model_3.predict_proba(X_test)[:, 1]]).T

for i, model in enumerate(['SVC', 'RF ', 'KNN']):

    ras = roc_auc_score(y_true=y_test, y_score=proba[:, i])

    print(f"ROC-AUC for model {model} is: {ras:0.5f}")

The results give us a range from 0.875 to 0.881.

Our first test is performed using the arithmetic mean:

arithmetic = proba.mean(axis=1)

ras = roc_auc_score(y_true=y_test, y_score=arithmetic)

print(f"Mean averaging ROC-AUC is: {ras:0.5f}")

The resulting ROC-AUC score is decisively better than the single performances: 0.90192. We also 

test if the geometric, harmonic, or logarithmic mean, or the mean of powers, can outperform the 

plain mean:

geometric = proba.prod(axis=1)**(1/3)

ras = roc_auc_score(y_true=y_test, y_score=geometric)

print(f"Geometric averaging ROC-AUC is: {ras:0.5f}")

harmonic = 1 / np.mean(1. / (proba + 0.00001), axis=1)

ras = roc_auc_score(y_true=y_test, y_score=harmonic)

print(f"Geometric averaging ROC-AUC is: {ras:0.5f}")

n = 3

mean_of_powers = np.mean(proba**n, axis=1)**(1/n)

ras = roc_auc_score(y_true=y_test, y_score=mean_of_powers)

print(f"Mean of powers averaging ROC-AUC is: {ras:0.5f}")

logarithmic = np.expm1(np.mean(np.log1p(proba), axis=1))

ras = roc_auc_score(y_true=y_test, y_score=logarithmic)

print(f"Logarithmic averaging ROC-AUC is: {ras:0.5f}")
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Running the code will tell us that none of them can. In this case, the arithmetic mean is the best 

choice for ensembling. What actually works better than the simple mean, in almost all cases, is 

putting some prior knowledge into the way you combine the numbers. This happens when you 

weight your models in the mean calculation.

Weighted averages
When weighting your models, you need to find an empirical way to figure out the right weights. A 

common method, though very prone to adaptive overfitting, is to test different combinations on 

the public leaderboard until you find the combination that scores the best. Of course, that won’t 

ensure that you score the same on the private leaderboard. Here, the principle is to weight what 

works better. However, as we have discussed at length, very often the feedback from the public 

leaderboard cannot be trusted because of important differences with the private test data. Yet, you 

can use your cross-validation scores or out-of-fold ones (the latter will be discussed along with 

stacking in a later section). In fact, another viable strategy is to use weights that are proportional 

to the models’ cross-validation performances.

Although it is a bit counterintuitive, another very effective method is weighting the submissions 

inversely proportionally to their covariances. In fact, since we are striving to cancel errors by 

averaging, averaging based on the unique variance of each submission allows us to weight more 

heavily the predictions that are less correlated and more diverse, more effectively reducing the 

variance of the estimates.

In the next example, we will first create a correlation matrix of our predicted probabilities, and 

then we proceed by:

1. Removing the one values on the diagonal and replacing them with zeroes

2. Averaging the correlation matrix by row to obtain a vector

3. Taking the reciprocal of each row sum

4. Normalizing their sum to 1.0

5. Using the resulting weighting vector in a matrix multiplication of our predicted proba-

bilities

Here is the code for this:

cormat = np.corrcoef(proba.T)

np.fill_diagonal(cormat, 0.0)

W = 1 / np.mean(cormat, axis=1)

W = W / sum(W) # normalizing to sum==1.0
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weighted = proba.dot(W)

ras = roc_auc_score(y_true=y_test, y_score=weighted)

print(f"Weighted averaging ROC-AUC is: {ras:0.5f}")

The resulting ROC-AUC of 0.90206 is slightly better than the plain average. Giving more impor-

tance to more uncorrelated predictions is an ensembling strategy that is often successful. Even if 

it only provides slight improvements, this could suffice to turn the competition to your advantage.

Averaging in your cross-validation strategy
As we have covered, averaging doesn’t require you to build any special complex pipelines, only a 

certain number of typical data pipelines that create the models you are going to average, either 

using the same weights for all predictions or some empirically found weights. The only way to 

test it is to run a submission on the public leaderboard, thus risking adaptive fitting because your 

evaluation of the averaging will solely be based on the response from Kaggle.

Before testing directly on the leaderboard, though, you may also test at training time by running 

the averaging operations on the validation fold (the fold that you are not using for training your 

model). This will provide you with less biased feedback than that from the leaderboard. In the 

following code, you can find an example of how a cross-validation prediction is arranged:

from sklearn.model_selection import KFold

kf = KFold(n_splits=5, shuffle=True, random_state=0)

scores = list()

for k, (train_index, test_index) in enumerate(kf.split(X_train)):

    model_1.fit(X_train[train_index, :], y_train[train_index])

    model_2.fit(X_train[train_index, :], y_train[train_index])

    model_3.fit(X_train[train_index, :], y_train[train_index])

    

    proba = np.stack(

          [model_1.predict_proba(X_train[test_index, :])[:, 1],

           model_2.predict_proba(X_train[test_index, :])[:, 1],

           model_3.predict_proba(X_train[test_index, :])[:, 1]]).T

    

    arithmetic = proba.mean(axis=1)

    ras = roc_auc_score(y_true=y_train[test_index], 

                        y_score=arithmetic)
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    scores.append(ras)

    print(f"FOLD {k} Mean averaging ROC-AUC is: {ras:0.5f}")

print(f"CV Mean averaging ROC-AUC is: {np.mean(scores):0.5f}")

Relying on the results of a cross-validation as in the code above can help you evaluate which 

averaging strategy is more promising, without testing directly on the public leaderboard.

Correcting averaging for ROC-AUC evaluations
If your task will be evaluated on the ROC-AUC score, simply averaging your results may not suffice. 

This is because different models may have adopted different optimization strategies and their 

outputs may be deeply different. A solution could be to calibrate the models, a type of post-pro-

cessing we previously discussed in Chapter 5, Competition Tasks and Metrics, but this obviously 

takes further time and computational effort.

In these cases, the straightforward solution would be to convert output probabilities into ranks 

and just average the ranks (or make a weighted average of them). Using a min-max scaler ap-

proach, you simply convert each model’s estimates into the range 0-1 and then proceed with 

averaging the predictions. That will effectively convert your model’s probabilistic output into 

ranks that can be compared:

from sklearn.preprocessing import MinMaxScaler

proba = np.stack(

          [model_1.predict_proba(X_train)[:, 1],

           model_2.predict_proba(X_train)[:, 1],

           model_3.predict_proba(X_train)[:, 1]]).T

arithmetic = MinMaxScaler().fit_transform(proba).mean(axis=1)

ras = roc_auc_score(y_true=y_test, y_score=arithmetic)

print(f"Mean averaging ROC-AUC is: {ras:0.5f}")

This approach works perfectly when you are directly handling the test predictions. If, instead, you 

are working and trying to average results during cross-validation, you may encounter problems 

because the prediction range of your training data may differ from the range of your test predic-

tions. In this case, you can solve the problem by training a calibration model (see probability 

calibration on Scikit-learn (https://scikit-learn.org/stable/modules/calibration.html) 

and Chapter 5), converting predictions into true, comparable probabilities for each of your models.

https://scikit-learn.org/stable/modules/calibration.html
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Blending models using a meta-model
The Netflix competition (which we discussed at length in Chapter 1) didn’t just demonstrate that 

averaging would be advantageous for difficult problems in a data science competition; it also 

brought about the idea that you can use a model to average your models’ results more effectively. 

The winning team, BigChaos, in their paper (Töscher, A., Jahrer, M., and Bell, R.M. The BigChaos 

Solution to the Netflix Grand Prize. Netflix prize documentation – 2009) made many mentions of 

blending, and provided many hints about its effectiveness and the way it works.

In a few words, blending is kind of a weighted averaging procedure where the weights used to 

combine the predictions are estimated by way of a holdout set and a meta-model trained on it. 

A meta-model is simply a machine learning algorithm that learns from the output of other ma-

chine learning models. Usually, a meta-learner is a linear model (but sometimes it can also be a 

non-linear one; more on that in the next section), but you can actually use whatever you want, 

with some risks that we will discuss.

The procedure for obtaining a blending is straightforward:

1. Before starting to build all your models, you randomly extract a holdout sample from 

the training data (in a team, you should all use the same holdout). Usually, the holdout 

is about 10% of the available data; however, depending on circumstances (for instance, 

the number of examples in your training data, stratifications), it could be less as well as 

more. As always in sampling, you may enforce stratification in order to ensure sampling 

representativeness, and you can test using adversarial validation that the sample really 

matches the distribution in the rest of the training set.

2. Train all your models on the remaining training data.

3. Predict on the holdout and on the test data.

4. Use the holdout predictions as training data in a meta-learner and reuse the meta-learner 

model to compute the final test predictions using the test predictions from your models. 

Alternatively, you can use the meta-learner to figure out the selection of predictors and 

their weights that should be used in a weighted average.

There a quite a few advantages and disadvantages to such a procedure. Let’s start with the ad-

vantages. First, it is easy to implement; you just have to figure out what the holdout sample is. In 

addition, using a meta-learning algorithm ensures you will find the best weights without testing 

on the public leaderboard.
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In terms of weaknesses, sometimes, depending on sample size and the type of models you use, 

reducing the number of training examples may increase the variance of the predictions of your 

estimators. Moreover, even if you take great care over how you sample your holdout, you may still 

fall into adaptive overfitting, that is, finding weights that suit the holdout but are not generaliz-

able, especially if you use a meta-learner that is too complex. Finally, using a holdout for testing 

purposes has the same limitations as the training and test split we discussed in the chapter on 

model validation: you won’t have a reliable estimate if the sample size of the holdout is too small 

or if, for some reason, your sampling is not representative.

Best practices for blending
In blending, the kind of meta-learner you use can make a great difference. The most common 

choices are to use a linear model or a non-linear one. Among linear models, linear or logistic 

regressions are the preferred ones. Using a regularized model also helps to discard models that 

are not useful (L1 regularization) or reduce the influence of less useful ones (L2 regularization). 

One limit to using these kinds of meta-learners is that they may assign some models a negative 

contribution, as you will be able to see from the value of the coefficient in the model. When you 

encounter this situation, the model is usually overfitting, since all models should be contributing 

positively to the building of the ensemble (or, at worst, not contributing at all). The most recent 

versions of Scikit-learn allow you to impose only positive weights and to remove the intercept. 

These constraints act as a regularizer and prevent overfitting.

Non-linear models as meta-learners are less common because they tend to overfit in regression 

and binary classification problems, but they often shine in multiclass and multilabel classifica-

tion problems since they can model the complex relationships between the classes present. They 

also generally perform better if, aside from the models’ predictions, you also provide them with 

the original features, since they can spot any useful interactions that help them correctly select 

which models to trust more.

In our next example, we first try blending using a linear model (a logistic regression), then a 

non-linear approach (a random forest). We start by splitting the training set into a training part 

for the blend elements and a holdout for the meta-learner. Afterward, we fit the models on the 

trainable part and predict on the holdout.

from sklearn.preprocessing import StandardScaler

X_blend, X_holdout, y_blend, y_holdout = train_test_split(X_train, y_
train, test_size=0.25, random_state=0)
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model_1.fit(X_blend, y_blend)

model_2.fit(X_blend, y_blend)

model_3.fit(X_blend, y_blend)

proba = np.stack([model_1.predict_proba(X_holdout)[:, 1],

                  model_2.predict_proba(X_holdout)[:, 1],

                  model_3.predict_proba(X_holdout)[:, 1]]).T

scaler = StandardScaler()

proba = scaler.fit_transform(proba)

We can now train our linear meta-learner using the probabilities predicted on the holdout:

from sklearn.linear_model import LogisticRegression

blender = LogisticRegression(solver='liblinear')

blender.fit(proba, y_holdout)

print(blender.coef_)

The resulting coefficients are:

[[0.78911314 0.47202077 0.75115854]]

By looking at the coefficients, we can figure out which model contributes more to the meta-en-

semble. However, remember that coefficients also rescale probabilities when they are not well 

calibrated, so a larger coefficient for a model may not imply that it is the most important one. If 

you want to figure out the role of each model in the blend by looking at coefficients, you first have 

to rescale them by standardization (in our code example, this has been done using Scikit-learn’s 

StandardScaler).

Our output shows us that the SVC and k-nearest neighbors models are weighted more in the 

blend than the random forest one; their coefficients are almost equivalent and both are larger 

than the random forest coefficient.

Once the meta-model is trained, we just predict on our test data and check its performance:

test_proba = np.stack([model_1.predict_proba(X_test)[:, 1],

                       model_2.predict_proba(X_test)[:, 1],

                       model_3.predict_proba(X_test)[:, 1]]).T
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blending = blender.predict_proba(test_proba)[:, 1]

ras = roc_auc_score(y_true=y_test, y_score=blending)

print(f"ROC-AUC for linear blending {model} is: {ras:0.5f}")

We can try the same thing using a non-linear meta-learner, such as a random forest, for instance:

blender = RandomForestClassifier()

blender.fit(proba, y_holdout)

test_proba = np.stack([model_1.predict_proba(X_test)[:, 1],

                       model_2.predict_proba(X_test)[:, 1],

                       model_3.predict_proba(X_test)[:, 1]]).T

blending = blender.predict_proba(test_proba)[:, 1]

ras = roc_auc_score(y_true=y_test, y_score=blending)

print(f"ROC-AUC for non-linear blending {model} is: {ras:0.5f}")

An alternative to using a linear or non-linear model as a meta-learner is provided by the ensemble 

selection technique formalized by Caruana, Niculescu-Mizil, Crew, and Ksikes.

The ensemble selection is actually a weighted average, so it could simply be considered analogous 

to a linear combination. However, it is a constrained linear combination (because it is part of a 

hill-climbing optimization) that will also make a selection of models and apply only positive 

weights to the predictions. All this minimizes the risk of overfitting and ensures a more compact 

solution, because the solution will involve a model selection. From this perspective, ensemble 

selection is recommended in all problems where the risk of overfitting is high (for instance, be-

cause the training cases are few in number or the models are too complex) and in real-world 

applications because of its simpler yet effective solution.

When using a meta-learner, you are depending on the optimization of its own cost function, 

which may differ from the metric adopted for the competition. Another great advantage of en-

semble selection is that it can be optimized to any evaluation function, so it is mostly suggested 

when the metric for the competition is different from the canon of those typically optimized in 

machine learning models.

If you are interested in more details, read their famous paper: Caruana, R., Nicules-

cu-Mizil, A., Crew, G., and Ksikes, A. Ensemble selection from libraries of models (Pro-

ceedings of the Twenty-First International Conference on Machine Learning, 2004).
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Implementing ensemble selection requires the following steps, as described in the paper men-

tioned previously:

1. Start with your trained models and a holdout sample.

2. Test all your models on the holdout sample and, based on the evaluation metric, retain 

the most effective in a selection (the ensemble selection).

3. Then, keep on testing other models that could be added to the one(s) in the ensemble 

selection so that the average of the proposed selection improves over the previous one. 

You can either do this with replacement or without. Without replacement, you only put 

a model into the selection ensemble once; in this case, the procedure is just like a simple 

average after a forward selection. (In a forward selection, you iteratively add to a solution 

the model that improves the performance the most, until adding further models no longer 

improves the performance.) With replacement, you can put a model into the selection 

multiple times, thus resembling a weighted average.

4. When you cannot get any further improvement, stop and use the ensemble selection.

Here is a simple code example of an ensemble selection. We start by deriving a holdout sample and 

a training selection from our original training data. We fit the models and obtain the predictions 

on our holdout, as previously seen when blending with a meta-learner:

X_blend, X_holdout, y_blend, y_holdout = train_test_split

    (X_train, y_train, test_size=0.5, random_state=0)

model_1.fit(X_blend, y_blend)

model_2.fit(X_blend, y_blend)

model_3.fit(X_blend, y_blend)

proba = np.stack([model_1.predict_proba(X_holdout)[:, 1],

                  model_2.predict_proba(X_holdout)[:, 1],

                  model_3.predict_proba(X_holdout)[:, 1]]).T

In the next code snippet, the ensembling is created through a series of iterations. At each itera-

tion, we try adding all the models in turn to the present ensemble and check if they improve the 

model. If any of these additions outperforms the previous ensemble on the holdout sample, the 

ensemble is updated and the bar is raised to the present level of performance. 
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If no addition can improve the ensemble, the loop is stopped and the composition of the ensemble 

is reported back:

iterations = 100

proba = np.stack([model_1.predict_proba(X_holdout)[:, 1],

                  model_2.predict_proba(X_holdout)[:, 1],

                  model_3.predict_proba(X_holdout)[:, 1]]).T

baseline = 0.5

print(f"starting baseline is {baseline:0.5f}")

models = []

for i in range(iterations):

    challengers = list()

    for j in range(proba.shape[1]):

        new_proba = np.stack(proba[:, models + [j]])

        score = roc_auc_score(y_true=y_holdout, 

                              y_score=np.mean(new_proba, axis=1))

        challengers.append([score, j])

    

    challengers = sorted(challengers, key=lambda x: x[0],

                         reverse=True)

    best_score, best_model = challengers[0]

    if best_score > baseline:

        print(f"Adding model_{best_model+1} to the ensemble",  

              end=': ') 

        print(f"ROC-AUC increases score to {best_score:0.5f}")

        models.append(best_model)

        baseline = best_score

    else:

        print("Cannot improve further - Stopping")

Finally, we count how many times each model has been inserted into the average and we calculate 

the weights for our averaging on the test set:
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from collections import Counter

freqs = Counter(models)
weights = {key: freq/len(models) for key, freq in freqs.items()}
print(weights)

You can make the procedure more sophisticated in various ways. Since this approach may overfit, 

especially at the initial stages, you could start from a randomly initialized ensemble set or, as the 

authors suggest, you may already be starting with the n best performing models in the set (you 

decide the value of n, as a hyperparameter). Another variation involves applying sampling to the 

set of models that can enter the selection at each iteration; in other words, you randomly exclude 

some models from being picked. Not only will this inject randomness into the process but it will 

also prevent specific models from dominating the selection.

Stacking models together
Stacking was first mentioned in David Wolpert’s paper (Wolpert, D. H. Stacked generalization. Neural 

networks 5.2 – 1992), but it took years before the idea become widely accepted and common (only 

with release 0.22 in December 2019, for instance, has Scikit-learn implemented a stacking wrapper). 

This was due principally to the Netflix competition first, and to Kaggle competitions afterward.

In stacking, you always have a meta-learner. This time, however, it is not trained on a holdout, 

but on the entire training set, thanks to the out-of-fold (OOF) prediction strategy. We already 

discussed this strategy in Chapter 6, Designing Good Validation. In OOF prediction, you start from 

a replicable k-fold cross-validation split. Replicable means that, by recording the cases in each 

training and testing sets at each round or by reproducibility assured by a random seed, you can 

replicate the same validation scheme for each model you need to be part of the stacking ensemble.

Let’s remind ourselves of how OOF predictions on the training data work. When testing a model, 

at each round of the validation you train a model on part of the training data and you validate on 

another part that is held out from the training. 

In the Netflix competition, stacking and blending were often used interchangeably, 

though the actual method devised by Wolpert originally implied leveraging a scheme 

based on k-fold cross-validation, not a holdout set. In fact, the core idea in stacking 

is not to reduce the variance, as in averaging; it is mostly to reduce the bias, because 

it is expected that each model involved in the stacking will grasp a part of the infor-

mation present in the data, to be recomposed in the final meta-learner.
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By recording the validation predictions and then reordering them to reconstruct the ordering of 

the original training cases, you will obtain a prediction of your model on the very same training 

set that you have used. However, as you have used multiple models and each model has predicted 

on cases it didn’t use for training, you should not have any overfitting effects on your training 

set predictions.

Having obtained OOF predictions for all your models, you can proceed to build a meta-learn-

er that predicts your target based on the OOF predictions (first-level predictions), or you can 

keep on producing further OOF predictions on top of your previous OOF predictions (second- or 

higher-level predictions), thus creating multiple stacking layers. This is compatible with an idea 

presented by Wolpert himself: by using multiple meta-learners, you are actually imitating the 

structure of a fully connected feedforward neural network without backpropagation, where the 

weights are optimally calculated in order to maximize the predictive performance at the level 

of each layer separately. From a practical point of view, stacking multiple layers has proven very 

effective and works very well for complex problems where single algorithms are unable to obtain 

the best results.

Moreover, one interesting aspect of stacking is that you don’t need models of comparable predic-

tive power, as in averaging and often in blending. In fact, even worse-performing models may be 

effective as part of a stacking ensemble. A k-nearest neighbors model may not be comparable to a 

gradient boosting solution, but when you use its OOF predictions for stacking it may contribute 

positively and increase the predictive performance of the ensemble.

When you have trained all the stacking layers, it is time to predict. As far as producing the pre-

dictions used at various stacking stages, it is important to note that you have two ways to do this. 

The original Wolpert paper suggests re-training your models on all your training data and then 

using those re-trained models for predicting on the test set. In practice, many Kagglers don’t 

retrain, but directly use the models created for each fold and make multiple predictions on the 

test set that are averaged at the end.

In our experience, stacking is generally more effective with complete re-training on all available 

data before predicting on the test set when you are using a low number of k-folds. In these cases, 

the sample consistency may really make a difference in the quality of the prediction because 

training on less data means getting more variance in the estimates. As we discussed in Chapter 

6, when creating OOF predictions it is always better to use a high number of folds, between 10 

to 20. This limits the number of examples that are held out, and, without re-training on all the 

data, you can simply use the average of predictions obtained from the cross-validation trained 

models for obtaining your prediction on the test set.
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In our next example, for illustrative purposes, we only have five CV folds and the results are 

stacked twice. In the diagram below, you can follow how the data and the models move between 

different stages of the stacking process:

Figure 9.1: Diagram of a two-layer stacking process with final averaging of predictions

Notice that:

• Training data is fed to both levels of the stacking (OOF predictions at the second level of 

the stacking are joined with the training data)

• After obtaining OOF predictions from the CV loops, models are re-trained on the entire 

training dataset

• The final predictions are a simple average of all the predictions obtained by the stacked 

predictors

Let’s now take a look at the code to understand how this diagram translates into Python com-

mands, starting with the first level of training:

from sklearn.model_selection import KFold

kf = KFold(n_splits=5, shuffle=True, random_state=0)

scores = list()

first_lvl_oof = np.zeros((len(X_train), 3))
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fist_lvl_preds = np.zeros((len(X_test), 3))

for k, (train_index, val_index) in enumerate(kf.split(X_train)):

    model_1.fit(X_train[train_index, :], y_train[train_index])

    first_lvl_oof[val_index, 0] = model_1.predict_proba(

                                     X_train[val_index, :])[:, 1]

    

    model_2.fit(X_train[train_index, :], y_train[train_index])

    first_lvl_oof[val_index, 1] = model_2.predict_proba(

                                     X_train[val_index, :])[:, 1]

    

    model_3.fit(X_train[train_index, :], y_train[train_index])

    first_lvl_oof[val_index, 2] = model_3.predict_proba(

                                     X_train[val_index, :])[:, 1]

After the first layer, we retrain on the full dataset:

model_1.fit(X_train, y_train)

fist_lvl_preds[:, 0] = model_1.predict_proba(X_test)[:, 1]

model_2.fit(X_train, y_train)

fist_lvl_preds[:, 1] = model_2.predict_proba(X_test)[:, 1]

model_3.fit(X_train, y_train)

fist_lvl_preds[:, 2] = model_3.predict_proba(X_test)[:, 1]

In the second stacking, we will reuse the same models as those in the first layer, adding the stacked 

OOF predictions to the existing variables:

second_lvl_oof = np.zeros((len(X_train), 3))

second_lvl_preds = np.zeros((len(X_test), 3))

for k, (train_index, val_index) in enumerate(kf.split(X_train)):

    skip_X_train = np.hstack([X_train, first_lvl_oof])

    model_1.fit(skip_X_train[train_index, :],

                y_train[train_index])

    second_lvl_oof[val_index, 0] = model_1.predict_proba(

                          skip_X_train[val_index, :])[:, 1]
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    model_2.fit(skip_X_train[train_index, :],

                y_train[train_index])

    second_lvl_oof[val_index, 1] = model_2.predict_proba(

                          skip_X_train[val_index, :])[:, 1]

    

    model_3.fit(skip_X_train[train_index, :],

                y_train[train_index])

    second_lvl_oof[val_index, 2] = model_3.predict_proba(

                          skip_X_train[val_index, :])[:, 1]

Again, we retrain on the full data for the second layer:

skip_X_test = np.hstack([X_test, fist_lvl_preds])

model_1.fit(skip_X_train, y_train)

second_lvl_preds[:, 0] = model_1.predict_proba(skip_X_test)[:, 1]

model_2.fit(skip_X_train, y_train)

second_lvl_preds[:, 1] = model_2.predict_proba(skip_X_test)[:, 1]

model_3.fit(skip_X_train, y_train)

second_lvl_preds[:, 2] = model_3.predict_proba(skip_X_test)[:, 1]

The stacking is concluded by averaging all the stacked OOF results from the second layer:

arithmetic = second_lvl_preds.mean(axis=1)

ras = roc_auc_score(y_true=y_test, y_score=arithmetic)

scores.append(ras)

print(f"Stacking ROC-AUC is: {ras:0.5f}")

The resulting ROC-AUC score is about 0.90424, which is better than previous blending and 

averaging attempts on the same data and models.

Stacking variations
The main variations on stacking involve changing how test data is processed across the layers, 

whether to use only stacked OOF predictions or also the original features in all the stacking layers, 

what model to use as the last one, and various tricks in order to prevent overfitting. 
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We discuss some of the most effective here that we have personally experimented with:

• Optimization may or may not be used. Some solutions do not care too much about 

optimizing single models; others optimize only the last layers; others optimize on the 

first layers. Based on our experiences, optimization of single models is important and we 

prefer to do it as early as possible in our stacking ensemble.

• Models can differ at the different stacking layers, or the same sequence of models 

can be repeated at every stacking layer. Here we don’t have a general rule, as it really 

depends on the problem. The kind of models that are more effective may vary according 

to the problem. As a general suggestion, putting together gradient boosting solutions and 

neural networks has never disappointed us.

• At the first level of the stacking procedure, just create as many models are possible. 

For instance, you can try a regression model if your problem is a classification one, and 

vice versa. You can also use different models with different hyperparameter settings, thus 

avoiding too much extensive optimization because the stacking will decide for you. If you 

are using neural networks, just changing the random initialization seed could suffice to 

create a diverse bag of models. You can also try models using different feature engineering 

and even use unsupervised learning (like Mike Kim did when he used t-SNE dimensions 

in a solution of his: https://www.kaggle.com/c/otto-group-product-classification-

challenge/discussion/14295). The idea is that the selection of all such contributions is 

done during the second level of the stacking. This means that, at that point, you do not have 

to experiment any further and you just need to focus on a narrower set of better-perform-

ing models. By applying stacking, you can re-use all your experiments and let the stacking 

decide for you to what degree you should use something in your modeling pipeline.

•  Some stacking implementations take on all the features or a selection of them to further 

stages, reminiscent of skip layers in neural networks. We have noticed that bringing in 

features at later stages in the stacking can improve your results, but be careful: it also 

brings in more noise and risk of overfitting.

• Ideally, your OOF predictions should be made from cross-validation schemes with a high 

number of folds, in other words, between 10 to 20, but we have also seen solutions working 

with a lower number, such as 5 folds.

• For each fold, bagging the data (resampling with repetition) multiple times for the same 

model and then averaging all the results from the model (OOF predictions and test pre-

dictions) helps to avoid overfitting and produces better results in the end. 

https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14295
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14295
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• Beware of early stopping in stacking. Using it directly on the validation fold may cause 

a certain degree of overfitting, which may or may not be mitigated in the end by the 

stacking procedure. We suggest you play it safe and always apply early stopping based 

on a validation sample from your training folds, not your validation one.

The possibilities are endless. Once you have grasped the basic concept of this ensembling tech-

nique, all you need is to apply your creativity to the problem at hand. We will discuss this key 

concept in the final section of this chapter, where we will look at a stacking solution for a Kaggle 

competition.

Creating complex stacking and blending solutions
At this point in the chapter, you may be wondering to what extent you should apply the tech-

niques we have been discussing. In theory, you could use all the ensembling techniques we have 

presented in any competition on Kaggle, not just tabular ones, but you have to consider a few 

limiting factors:

• Sometimes, datasets are massive, and training a single model takes a long time.

• In image recognition competitions, you are limited to using deep learning methods.

• Even if you can manage to stack models in a deep learning competition, you have a limited 

choice for stacking different models. Since you are restricted to deep learning solutions, 

you can only vary small design aspects of the networks and some hyperparameters (or 

sometimes just the initialization seed) without degrading the performance. In the end, 

given the same type of models and more similarities than differences in the architectures, 

the predictions will tend to be too similar and more correlated than they should be, lim-

iting the effectiveness of ensembling. 

Under these conditions, complex stacking regimes are usually not feasible. By contrast, averaging 

and blending are usually possible when you have large datasets.

In earlier competitions, as well as in all recent tabular competitions, complex stacking and blend-

ing solutions ruled the day. To give you an idea of the complexity and creativity that needs to 

be put into stacking for a competition, in this last section we will discuss the solution provided 

by Gilberto Titericz (https://www.kaggle.com/titericz) and Stanislav Semenov (https://www.

kaggle.com/stasg7) to the Otto Group Product Classification Challenge (https://www.kaggle.

com/c/otto-group-product-classification-challenge). The competition was held in 2015 

and its task required classifying over 200,000 products into 9 distinct classes based on 93 features.

https://www.kaggle.com/titericz
https://www.kaggle.com/stasg7
https://www.kaggle.com/stasg7
https://www.kaggle.com/c/otto-group-product-classification-challenge
https://www.kaggle.com/c/otto-group-product-classification-challenge
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The solution proposed by Gilberto and Stanislav comprised three levels:

1. On the first level, there were 33 models. All the models used quite different algorithms, 

apart from a cluster of k-nearest neighbors where only the k parameter varied. They also 

used unsupervised t-SNE. In addition, they engineered eight features based on dimen-

sionality manipulation (computations performed on distances from nearest neighbors 

and clusters) and on row statistics (the number of non-zero elements in each row). All 

the OOF predictions and features were passed to the second level.

2. On the second level, they started optimizing hyperparameters and doing model selec-

tion and bagging (they created multiple versions of the same model by resampling and 

averaged the results for each model). In the end, they had only three models that they 

re-trained on all the data: an XGBoost, an AdaBoost, and a neural network.

3. On the third level, they prepared a weighted average of the results by first doing a geo-

metric mean of XGBoost and the neural network and then averaging it with the AdaBoost.

We can learn a lot from this solution, and not just limited to this competition. Aside from the 

complexity (on the second level, the number of times they resampled was in the order of hundreds 

for each model), it is noticeable that there are multiple variations on the schemes we discussed 

in this chapter. Creativity and trial and error clearly dominate the solution. This is quite typical 

of many Kaggle competitions, where the problems are seldom the same from one competition 

to another and each solution is unique and not easily repeatable.

Many AutoML engines, such as AutoGluon, more or less explicitly try to take inspiration from 

such procedures in order to offer a predefined series of automated steps that can ensure you a 

top result by stacking and blending.

However, despite the fact they implement some of the best practices around, their results are 

always subpar compared to what can be achieved by a good team of Kagglers, because creativity 

in the way you experiment and compose the ensemble is the key to success. The same goes for 

this chapter of ours. We have shown you the best practices for ensembling; take them as a starting 

point and create your own by mixing ideas and innovating based on the Kaggle competition or 

the real-world problem that you are dealing with.

See https://arxiv.org/abs/2003.06505 for a list of the algorithms used by Au-

toGluon to build its stacked models. The list is quite long and you will find many 

ideas for your own stacking solutions.

https://arxiv.org/abs/2003.06505
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Xavier Conort
https://www.kaggle.com/xavierconort

To conclude the chapter, we caught up with Xavier Conort, a Competi-

tions Grandmaster who ranked #1 in 2012-2013. An inspiration for many 

Kagglers at the beginning of Kaggle history, he is now the founder and 

CEO of his own company, Data Mapping and Engineering. He spoke 

to us about his experiences with Kaggle, his career, and more.

What’s your favourite kind of competition and why? In terms of 
techniques and solving approaches, what is your speciality on Kaggle?
I really enjoyed competitions where feature engineering from multiple tables was required to get good 

results. I liked to mine for good features, especially for business problems that were new to me. This gave 

me a lot of confidence in my capacity to tackle new problems. In addition to good feature engineering, 

stacking helped me get good results. I used it to blend multiple models or transform text or high categorical 

variables into numeric features. My favorite algorithm was GBM, but I tested many other algorithms to 

add diversity to my blends.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
My primary goal was to learn as much as possible from each competition. Before entering a competition, 

I tried to assess which skills I would develop. I was not afraid to go beyond my comfort zone. Thanks to 

the leaderboard feedback, I knew I could learn rapidly from my mistakes. Day-to-day work rarely offers 

this opportunity. It is difficult to assess the actual quality of the solution we are working on. So, we just 

play safe and tend to repeat past recipes. I don’t think I could have learnt as much as I did without Kaggle.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
My favorite competition is GE Flight Quest, a competition organised by GE where competitors had to 

predict arrival time of domestic flights in the US. I especially liked the way the competition’s private 

leaderboard was designed. It tested our capacity to predict future events by scoring our predictions on 

flights that happened after the competition deadline.

https://www.kaggle.com/xavierconort
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As we had only a few months of history (3 or 4, if my memory is correct), I knew there was a strong risk 

of overfitting. To mitigate this risk, I decided to build only features that had an obvious causal relation 

with flight delays, such as features measuring weather conditions and traffic. And I was very careful to 

exclude the name of the airport from my primary feature lists. Indeed, some airports hadn’t experienced 

bad weather conditions during the few months of history. So, I was very concerned that my favorite ML 

algorithm, GBM, would use the name of the airport as a proxy for good weather and then fail to pre-

dict well for those airports in the private leaderboard. To capture the fact that some airports are better 

managed than others and improve my leaderboard score slightly, I eventually did use the name of the 

airport, but as a residual effect only. It was a feature of my second layer of models that used as an offset 

the predictions of my first layer of models. This approach can be considered a two-step boosting, where 

you censor some information during the first step. I learnt it from actuaries applying this approach in 

insurance to capture geospatial residual effects.

Has Kaggle helped you in your career? If so, how?
It definitely helped me in my career as a data scientist. Before converting into data science, I was an actu-

ary in the insurance industry, didn’t know anything about machine learning, and didn’t know any data 

scientists. Thanks to Kaggle’s diversity of competitions, I boosted my learning curve. Thanks to my good 

results, I could show a track record and convince employers that a 39-year-old actuary could successfully 

develop new skills on his own. And thanks to Kaggle’s community, I connected with many passionate 

data scientists across the world. I first had a lot of fun competing with or against them. Finally, I had the 

chance to work with some of them. Jeremy Achin and Tom De Godoy, the DataRobot founders, were my 

competition teammates before they asked me to join DataRobot. Without Kaggle’s help, I think I would 

still be working as an actuary in the insurance industry.

Have you ever used something you have done in Kaggle competitions 
in order to build your portfolio to show to potential employers?
I have to confess that I did enter a few competitions with the goal to impress my employer or potential 

clients. It worked well, but it was much less fun and much more pressure.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
I would advise inexperienced Kagglers not to look at the solutions posted during the competition but to 

try to find good solutions on their own. I am happy that competitors didn’t share code during the early 

days of Kaggle. It forced me to learn the hard way.
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Summary
In this chapter, we discussed how ensembling multiple solutions works and proposed some basic 

code examples you can use to start building your own solutions. We started from the ideas that 

power model ensembles such as random forests and gradient boosting. Then, we moved on to 

explore the different ensembling approaches, from the simple averaging of test submissions to 

meta-modeling across multiple layers of stacked models.

As we discussed at the end, ensembling is more an art form based on some shared common prac-

tices. When we explored a successful complex stacking regime that won a Kaggle competition, 

we were amazed by how the combinations were tailored to the data and the problem itself. You 

cannot just take a stacking, replicate it on another problem, and hope that it will be the best solu-

tion. You can only follow guidelines and find the best solution consisting of averaging/stacking/

blending of diverse models yourself, through lots of experimentation and computational effort. 

In the next chapter, we will start delving into deep learning competitions, beginning with com-

puter vision ones for classification and segmentation tasks.

What mistakes have you made in competitions in the past?
One mistake is to keep on competing in competitions that are badly designed with leaks. It is just a waste 

of time. You don’t learn much from those competitions.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
Gradient Boosting Machine is my favorite algorithm. I first used R’s gbm, then Scikit-learn GBM, then 

XGBoost, and finally LightGBM. Most of the time, it has been the principal ingredient of my winning 

solution. To get some insight into what GBM learns, I would recommend the SHAP package.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Compete to learn. Compete to connect with other passionate data scientists. Don’t compete only to win.
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord


10
Modeling for Computer Vision

Computer vision tasks are among the most popular problems in practical applications of machine 

learning; they were the gateway into deep learning for many Kagglers, including yours truly 

(Konrad, that is). Over the last few years, there has been tremendous progress in the field and 

new SOTA libraries continue to be released. In this chapter, we will give you an overview of the 

most popular competition types in computer vision:

• Image classification

• Object detection

• Image segmentation

We will begin with a short section on image augmentation, a group of task-agnostic techniques 

that can be applied to different problems to increase the generalization capability of our models.

Augmentation strategies
While deep learning techniques have been extremely successful in computer vision tasks like 

image recognition, segmentation, or object detection, the underlying algorithms are typically 

extremely data-intensive: they require large amounts of data to avoid overfitting. However, not 

all domains of interest satisfy that requirement, which is where data augmentation comes in. 

This is the name for a group of image processing techniques that create modified versions of 

images, thus enhancing the size and quality of training datasets, leading to better performance 

of deep learning models. The augmented data will typically represent a more comprehensive set 

of possible data points, thereby minimizing the distance between the training and validation set, 

as well as any future test sets.
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In this section, we will review some of the more common augmentation techniques, along with 

choices for their software implementations. The most frequently used transformations include:

• Flipping: Flipping the image (along the horizontal or vertical axis)

• Rotation: Rotating the image by a given angle (clockwise or anti-clockwise)

• Cropping: A random subsection of the image is selected

• Brightness: Modifying the brightness of the image

• Scaling: The image is increased or decreased to a higher (outward) or lower (inward) size

Below, we demonstrate how those transformations work in practice using the image of an Amer-

ican acting legend and comedian, Betty White: 

Figure 10.1: Betty White image
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We can flip the image along the vertical or horizontal axes:

Figure 10.2: Betty White image – flipped vertically (left) and horizontally (right)

Rotations are fairly self-explanatory; notice the automatic padding of the image in the background:

Figure 10.3: Betty White image – rotated clockwise
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We can also crop an image to the region of interest:

Figure 10.4: Betty White image – cropped

On a high level, we can say that augmentations can be applied in one of two ways:

• Offline: These are usually applied for smaller datasets (fewer images or smaller sizes, 

although the definition of “small” depends on the available hardware). The idea is to 

generate modified versions of the original images as a preprocessing step for your dataset, 

and then use those alongside the “original” ones.

• Online: These are used for bigger datasets. The augmented images are not saved on disk; 

the augmentations are applied in mini-batches and fed to the model.

In the next few sections, we will give you an overview of two of the most common methods for 

augmenting your image dataset: the built-in Keras functionality and the albumentations package. 

There are several other options available out there (skimage, OpenCV, imgaug, Augmentor, SOLT), 

but we will focus on the most popular ones.

The methods discussed in this chapter focus on image analysis powered by GPU. 

The use of tensor processing units (TPUs) is an emerging, but still somewhat 

niche, application. Readers interested in image augmentation in combination with 

TPU-powered analysis are encouraged to check out the excellent work of Chris Deotte 

(@cdeotte):

https://www.kaggle.com/cdeotte/triple-stratified-kfold-with- 

tfrecords

Chris is a quadruple Kaggle Grandmaster and a fantastic educator through the Note-

books he creates and discussions he participates in; overall, a person definitely worth 

following for any Kaggler, irrespective of your level of experience.

https://www.kaggle.com/cdeotte/triple-stratified-kfold-with-tfrecords
https://www.kaggle.com/cdeotte/triple-stratified-kfold-with-tfrecords
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We will be using data from the Cassava Leaf Disease Classification competition (https://www.

kaggle.com/c/cassava-leaf-disease-classification). As usual, we begin with the ground-

work: first, loading the necessary packages:

import os

import glob

import numpy as np

import scipy as sp

import pandas as pd

import cv2

from skimage.io import imshow, imread, imsave

# imgaug

import imageio

import imgaug as ia

import imgaug.augmenters as iaa

# Albumentations

import albumentations as A

# Keras

# from keras.preprocessing.image import ImageDataGenerator, array_to_img, 
img_to_array, load_img

# Visualization

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

%matplotlib inline

import seaborn as sns

from IPython.display import HTML, Image

# Warnings

import warnings

warnings.filterwarnings("ignore")

https://www.kaggle.com/c/cassava-leaf-disease-classification
https://www.kaggle.com/c/cassava-leaf-disease-classification
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Next, we define some helper functions that will streamline the presentation later. We need a way 

to load images into arrays:

def load_image(image_id):

    file_path = image_id 

    image = imread(Image_Data_Path + file_path)

    return image

We would like to display multiple images in a gallery style, so we create a function that takes as 

input an array containing the images along with the desired number of columns, and outputs 

the array reshaped into a grid with a given number of columns:

def gallery(array, ncols=3):

    nindex, height, width, intensity = array.shape

    nrows = nindex//ncols

    assert nindex == nrows*ncols

    result = (array.reshape(nrows, ncols, height, width, intensity)

              .swapaxes(1,2)

              .reshape(height*nrows, width*ncols, intensity))

    return result

With the boilerplate taken care of, we can load the images for augmentation:

data_dir = '../input/cassava-leaf-disease-classification/'

Image_Data_Path = data_dir + '/train_images/'

train_data = pd.read_csv(data_dir + '/train.csv')

# We load and store the first 10 images in memory for faster access

train_images = train_data["image_id"][:10].apply(load_image)

Let’s load a single image so we know what our reference is:

curr_img = train_images[7]

plt.figure(figsize = (15,15))

plt.imshow(curr_img)

plt.axis('off')
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Here it is:

Figure 10.5: Reference image

In the following sections, we will demonstrate how to generate augmented images from this 

reference image using both built-in Keras functionality and the albumentations library.

Keras built-in augmentations
The Keras library has a built-in functionality for augmentations. While not as extensive as dedi-

cated packages, it has the advantage of easy integration with your code. We do not need a sepa-

rate code block for defining the augmentation transformations but can incorporate them inside 

ImageDataGenerator, a functionality we are likely to be using anyway.

The first Keras approach we examine is based upon the ImageDataGenerator class. As the name 

suggests, it can be used to generate batches of image data with real-time data augmentations.

ImageDataGenerator approach
We begin by instantiating an object of class ImageDataGenerator in the following manner: 

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator,

array_to_img, img_to_array, load_img 
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datagen = ImageDataGenerator( 

        rotation_range = 40, 

        shear_range = 0.2, 

        zoom_range = 0.2, 

        horizontal_flip = True, 

        brightness_range = (0.5, 1.5)) 

curr_img_array = img_to_array(curr_img)

curr_img_array = curr_img_array.reshape((1,) + curr_img_array.shape)

We define the desired augmentations as arguments to ImageDataGenerator. The official documen-

tation does not seem to address the topic, but practical results indicate that the augmentations 

are applied in the order in which they are defined as arguments.

Next, we iterate through the images with the .flow method of the ImageDataGenerator object. 

The class provides three different functions to load the image dataset in memory and generate 

batches of augmented data:

• flow

• flow_from_directory

• flow_from_dataframe

They all achieve the same objective, but differ in the way the locations of the files are specified. 

In our example, the images are already in memory, so we can iterate using the simplest method:

i = 0

for batch in datagen.flow(

    curr_img_array,

    batch_size=1,

    save_to_dir='.',

    save_prefix='Augmented_image',

    save_format='jpeg'):

    i += 1

    # Hard-coded stop - without it, the generator enters an infinite loop

In the above example, we utilize only a limited subset of possible options; for a full 

list, the reader is encouraged to consult the official documentation: https://keras. 

io/api/preprocessing/image/.

https://keras.io/api/preprocessing/image/
https://keras.io/api/preprocessing/image/
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    if i > 9: 

        break  

We can examine the augmented images using the helper functions we defined earlier:

aug_images = []

for img_path in glob.glob("*.jpeg"):

    aug_images.append(mpimg.imread(img_path))

plt.figure(figsize=(20,20))

plt.axis('off')

plt.imshow(gallery(np.array(aug_images[0:9]), ncols = 3))

plt.title('Augmentation examples')

Here is the result:

Figure 10.6: A collection of augmented images

Augmentations are a very useful tool, but using them efficiently requires a judgment call. First, 

it is obviously a good idea to visualize them to get a feeling for the impact on the data. On the 

one hand, we want to introduce some variation in the data to increase the generalization of our 

model; on the other, if we change the images too radically, the input data will be less informative 

and the model performance is likely to suffer. In addition, the choice of which augmentations to 

use can also be problem-specific, as we can see by comparing different competitions.
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If you look at Figure 10.6 above (the reference image from the Cassava Leaf Disease Classification 

competition), the leaves on which we are supposed to identify the disease can be of different sizes, 

pointing at different angles, and so on, due both to the shapes of the plants and differences in how 

the images are taken. This means transformations such as vertical or horizontal flips, cropping, 

and rotations all make sense in this context.

By contrast, we can look at a sample image from the Severstal: Steel Defect Detection competition 

(https://www.kaggle.com/c/severstal-steel-defect-detection). In this competition, par-

ticipants had to localize and classify defects on a steel sheet. All the images had the same size and 

orientation, which means that rotations or crops would have produced unrealistic images, adding 

to the noise and having an adverse impact on the generalization capabilities of an algorithm.

Figure 10.7: Sample images from the Severstal competition

https://www.kaggle.com/c/severstal-steel-defect-detection
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Preprocessing layers
An alternative approach to data augmentation as a preprocessing step in a native Keras manner 

is to use the preprocessing layers API. The functionality is remarkably flexible: these pipelines 

can be used either in combination with Keras models or independently, in a manner similar to 

ImageDataGenerator.

Below we show briefly how a preprocessing layer can be set up. First, the imports:

from tensorflow.keras.layers.experimental import preprocessing

from tensorflow.keras import layers

We load a pretrained model in the standard Keras manner:

pretrained_base = tf.keras.models.load_model(

    '../input/cv-course-models/cv-course-models/vgg16-pretrained-base',

)

pretrained_base.trainable = False

The preprocessing layers can be used in the same way as other layers are used inside the Sequential 

constructor; the only requirement is that they need to be specified before any others, at the be-

ginning of our model definition:

model = tf.keras.Sequential([

    # Preprocessing layers

    preprocessing.RandomFlip('horizontal'), # Flip left-to-right

    preprocessing.RandomContrast(0.5), # Contrast change by up to 50%

    # Base model

    pretrained_base,

    # model head definition 

    layers.Flatten(),

    layers.Dense(6, activation='relu'),

    layers.Dense(1, activation='sigmoid'),

])
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albumentations
The albumentations package is a fast image augmentation library that is built as a wrapper of 

sorts around other libraries. 

Below we list the important characteristics: 

• A unified API for different data types

• Support for all common computer vision tasks

• Integration both with TensorFlow and PyTorch

Using albumentations functionality to transform an image is straightforward. We begin by ini-

tializing the required transformations:

import albumentations as A

horizontal_flip = A.HorizontalFlip(p=1)

rotate = A.ShiftScaleRotate(p=1)

gaus_noise = A.GaussNoise() 

bright_contrast = A.RandomBrightnessContrast(p=1) 

gamma = A.RandomGamma(p=1) 

blur = A.Blur()

Next, we apply the transformations to our reference image:

img_flip = horizontal_flip(image = curr_img)

img_gaus = gaus_noise(image = curr_img)

img_rotate = rotate(image = curr_img)

img_bc = bright_contrast(image = curr_img)

img_gamma = gamma(image = curr_img)

img_blur = blur(image = curr_img)

The package is the result of intensive coding in quite a few Kaggle competitions 

(see https://medium.com/@iglovikov/the-birth-of-albumentations-

fe38c1411cb3), and claims among its core developers and contributors quite a 

few notable Kagglers, including Eugene Khvedchenya (https://www.kaggle.com/

bloodaxe), Vladimir Iglovikov (https://www.kaggle.com/iglovikov), Alex Pa-

rinov (https://www.kaggle.com/creafz), and ZFTurbo (https://www.kaggle.

com/zfturbo). 

The full documentation can be found at https://albumentations.readthedocs.

io/en/latest/.

https://medium.com/@iglovikov/the-birth-of-albumentations-fe38c1411cb3
https://medium.com/@iglovikov/the-birth-of-albumentations-fe38c1411cb3
https://www.kaggle.com/bloodaxe
https://www.kaggle.com/bloodaxe
https://www.kaggle.com/iglovikov
https://www.kaggle.com/creafz
https://www.kaggle.com/zfturbo
https://www.kaggle.com/zfturbo
https://albumentations.readthedocs.io/en/latest/
https://albumentations.readthedocs.io/en/latest/
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We can access the augmented images with the 'image' key and visualize the results:

img_list = [img_flip['image'],img_gaus['image'], img_rotate['image'],

            img_bc['image'], img_gamma['image'], img_blur['image']]

plt.figure(figsize=(20,20))

plt.axis('off')

plt.imshow(gallery(np.array(img_list), ncols = 3))

plt.title('Augmentation examples')

Here are our results:

Figure 10.8: Image augmented using the albumentations library

Having discussed augmentation as a crucial preprocessing step in approaching a computer vision 

problem, we are now in a position to apply this knowledge in the following sections, beginning 

with a very common task: image classification.

Chris Deotte
https://www.kaggle.com/cdeotte

Before we proceed, let’s look at a brief conversation we had with Chris 

Deotte, who we’ve mentioned quite a few times in this book (including 

earlier in this chapter), and for good reason. He is a quadruple Kaggle 

Grandmaster and Senior Data Scientist & Researcher at NVIDIA, who 

joined Kaggle in 2019.

https://www.kaggle.com/cdeotte
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What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I enjoy competitions with fascinating data and competitions that require building creative novel models. 

My specialty is analyzing trained models to determine their strengths and weaknesses. Afterward, I enjoy 

improving the models and/or developing post-processing to boost CV LB. 

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I begin each competition by performing EDA (exploratory data analysis), creating a local validation, 

building some simple models, and submitting to Kaggle for leaderboard scores. This fosters an intuition 

of what needs to be done in order to build an accurate and competitive model.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
Kaggle’s Shopee – Price Match Guarantee was a challenging competition that required both image 

models and natural language models. A key insight was extracting embeddings from the two types of 

models and then determining how to use both image and language information together to find product 

matches.

Has Kaggle helped you in your career? If so, how?
Yes. Kaggle helped me become a senior data scientist at NVIDIA by improving my skills and boosting my 

resume’s marketability.

Many employers peruse the work on Kaggle to find employees with specific skills to help solve their specific 

projects. In this way, I have been solicited about many job opportunities.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
In my opinion, inexperienced Kagglers often overlook the importance of local validation. Seeing your 

name on the leaderboard is exciting. And it’s easy to focus on improving our leaderboard scores instead 

of our cross-validation scores. 

What mistakes have you made in competitions in the past?
Many times, I have made the mistake of trusting my leaderboard score over my cross-validation score 

and selecting the wrong final submission.
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Classification
In this section, we will demonstrate an end-to-end pipeline that can be used as a template for 

handling image classification problems. We will walk through the necessary steps, from data 

preparation, to model setup and estimation, to results visualization. Apart from being informative 

(and cool), this last step can also be very useful if you need to examine your code in-depth to get 

a better understanding of the performance.

We will continue using the data from the Cassava Leaf Disease Classification contest (https://www.

kaggle.com/c/cassava-leaf-disease-classification).

As usual, we begin by loading the necessary libraries:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import datetime

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

import tensorflow as tf

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
Absolutely. Feature engineering and quick experimentation are important when optimizing tabular 

data models. In order to accelerate the cycle of experimentation and validation, using NVIDIA RAPIDS 

cuDF and cuML on GPU are essential.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition? 
The most important thing is to have fun and learn. Don’t worry about your final placement. If you focus 

on learning and having fun, then over time your final placements will become better and better.

Do you use other competition platforms? How do they compare to 
Kaggle?
Yes, I have entered competitions outside of Kaggle. Individual companies like Booking.com or Twitter.com 

will occasionally host a competition. These competitions are fun and involve high-quality, real-life data.

https://www.kaggle.com/c/cassava-leaf-disease-classification
https://www.kaggle.com/c/cassava-leaf-disease-classification
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from tensorflow.keras import models, layers

from tensorflow.keras.preprocessing import image

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, 
ReduceLROnPlateau

from tensorflow.keras.applications import EfficientNetB0

from tensorflow.keras.optimizers import Adam

import os, cv2, json

from PIL import Image

It is usually a good idea to define a few helper functions; it makes for code that is easier to both 

read and debug. If you are approaching a general image classification problem, a good starting 

point can be provided by a model from the EfficientNet family, introduced in 2019 in a paper from 

the Google Research Brain Team (https://arxiv.org/abs/1905.11946). The basic idea is to bal-

ance network depth, width, and resolution to enable more efficient scaling across all dimensions 

and subsequently better performance. For our solution, we will use the simplest member of the 

family, EfficientNet B0, which is a mobile-sized network with 11 million trainable parameters.

We construct our model with B0 as the basis, followed by a pooling layer for improved translation 

invariance and a dense layer with an activation function suitable for our multiclass classification 

problem:

class CFG:    
    # config
    WORK_DIR = '../input/cassava-leaf-disease-classification'
    BATCH_SIZE = 8
    EPOCHS = 5
    TARGET_SIZE = 512

def create_model():
    conv_base = EfficientNetB0(include_top = False, weights = None,
                               input_shape = (CFG.TARGET_SIZE,
                               CFG.TARGET_SIZE, 3))

For a properly detailed explanation of the EfficientNet networks, you are encouraged 

to explore https://ai.googleblog.com/2019/05/efficientnet-improving-

accuracy-and.html as a starting point.

https://arxiv.org/abs/1905.11946
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
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    model = conv_base.output
    model = layers.GlobalAveragePooling2D()(model)
    model = layers.Dense(5, activation = "softmax")(model)
    model = models.Model(conv_base.input, model)

    model.compile(optimizer = Adam(lr = 0.001),
                  loss = "sparse_categorical_crossentropy",
                  metrics = ["acc"])
    return model

Some brief remarks on the parameters we pass to the EfficientNetB0 function:

• The include_top parameter allows you to decide whether to include the final dense layers. 

As we want to use the pre-trained model as a feature extractor, a default strategy would 

be to skip them and then define the head ourselves.

• weights can be set to None if we want to train the model from scratch, or to 'imagenet'or 

'noisy-student' if we instead prefer to utilize the weights pre-trained on large image 

collections.

The helper function below allows us to visualize the activation layer, so we can examine the 

network performance from a visual angle. This is frequently helpful in developing an intuition 

in a field notorious for its opacity:

def activation_layer_vis(img, activation_layer = 0, layers = 10):
    layer_outputs = [layer.output for layer in model.layers[:layers]]
    activation_model = models.Model(inputs = model.input,
                                    outputs = layer_outputs)
    activations = activation_model.predict(img)
    
    rows = int(activations[activation_layer].shape[3] / 3)
    cols = int(activations[activation_layer].shape[3] / rows)
    fig, axes = plt.subplots(rows, cols, figsize = (15, 15 * cols))
    axes = axes.flatten()
    
    for i, ax in zip(range(activations[activation_layer].shape[3]), axes):
        ax.matshow(activations[activation_layer][0, :, :, i],
                   cmap = 'viridis')
        ax.axis('off')
    plt.tight_layout()
    plt.show()
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We generate the activations by creating predictions for a given model based on a “restricted” model, 

in other words, using the entire architecture up until the penultimate layer; this is the code up to 

the activations variable. The rest of the function ensures we show the right layout of activations, 

corresponding to the shape of the filter in the appropriate convolution layer.

Next, we process the labels and set up the validation scheme; there is no special structure in the 

data (for example, a time dimension or overlap across classes), so we can use a simple random split:

train_labels = pd.read_csv(os.path.join(CFG.WORK_DIR, "train.csv"))

STEPS_PER_EPOCH = len(train_labels)*0.8 / CFG.BATCH_SIZE

VALIDATION_STEPS = len(train_labels)*0.2 / CFG.BATCH_SIZE

We are now able to set up the data generators, which are necessary for our TF-based algorithm 

to loop through the image data.

First, we instantiate two ImageDataGenerator objects; this is when we incorporate the image 

augmentations. For the purpose of this demonstration, we will go with the Keras built-in ones. 

After that, we create the generator using a flow_from_dataframe() method, which is used to 

generate batches of tensor image data with real-time data augmentation:

train_labels.label = train_labels.label.astype('str')

train_datagen = ImageDataGenerator(

    validation_split = 0.2, preprocessing_function = None,

        rotation_range = 45, zoom_range = 0.2,

        horizontal_flip = True, vertical_flip = True,

        fill_mode = 'nearest', shear_range = 0.1,

        height_shift_range = 0.1, width_shift_range = 0.1)

train_generator = train_datagen.flow_from_dataframe(

    train_labels, 

    directory = os.path.join(CFG.WORK_DIR, "train_images"),

    subset = "training", 

    x_col = "image_id",y_col = "label", 

For a refresher on more elaborate validation schemes, refer to Chapter 6, Designing 

Good Validation.
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    target_size = (CFG.TARGET_SIZE, CFG.TARGET_SIZE),

    batch_size = CFG.BATCH_SIZE, 

    class_mode = "sparse")

validation_datagen = ImageDataGenerator(validation_split = 0.2)

validation_generator = validation_datagen.flow_from_dataframe(

        train_labels,

        directory = os.path.join(CFG.WORK_DIR, "train_images"),

        subset = "validation", 

        x_col = "image_id",y_col = "label", 

        target_size = (CFG.TARGET_SIZE, CFG.TARGET_SIZE),

        batch_size = CFG.BATCH_SIZE, class_mode = "sparse")

With the data structures specified, we can create the model:

model = create_model()

model.summary()

Once our model is created, we can quickly examine a summary. This is mostly useful for sanity 

checks, because unless you have a photographic memory, chances are you are not going to re-

member the layer composition batches of a sophisticated model like EffNetB0. In practice, you 

can use the summary to check whether the dimensions of output filters are correct or whether 

the parameter counts (trainable on non-trainable) are in line with expectations. For the sake of 

compactness, we only demonstrate the first few lines of the output below; inspecting the archi-

tecture diagram for B0 will give you an idea of how long the complete output would be.

Model: "functional_1"

__________________________________________________________________________

Layer (type)                  Output Shape         Param # Connected to

==========================================================================

input_1 (InputLayer)          [(None, 512, 512, 3) 0

__________________________________________________________________________

rescaling (Rescaling)         (None, 512, 512, 3)  0       input_1[0][0]

__________________________________________________________________________

normalization (Normalization) (None, 512, 512, 3)  7       rescaling[0][0]

___________________________________________________________________________

stem_conv_pad (ZeroPadding2D) (None, 513, 513, 3)  0       normalization[0]
[0]
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___________________________________________________________________________

stem_conv (Conv2D)              (None, 256, 256, 32) 864    stem_conv_
pad[0][0]

___________________________________________________________________________

stem_bn (BatchNormalization)    (None, 256, 256, 32) 128    stem_conv[0][0]

___________________________________________________________________________

stem_activation (Activation)    (None, 256, 256, 32) 0      stem_bn[0][0]

___________________________________________________________________________

block1a_dwconv (DepthwiseConv2D (None, 256, 256, 32) 288    stem_
activation[0][0]

___________________________________________________________________________

block1a_bn (BatchNormalization) (None, 256, 256, 32) 128    block1a_
dwconv[0][0]

___________________________________________________________________________

With the above steps taken care of, we can proceed to fitting the model. In this step, we can also 

very conveniently define callbacks. The first one is ModelCheckpoint: 

model_save = ModelCheckpoint('./EffNetB0_512_8_best_weights.h5', 

                             save_best_only = True, 

                             save_weights_only = True,

                             monitor = 'val_loss', 

                             mode = 'min', verbose = 1)

The checkpoint uses a few parameters worth elaborating on:

• We can preserve the best set of model weights by setting save_best_only = True.

• We reduce the size of the model by only keeping the weights, instead of the complete set 

of optimizer state.

• We decide on which model is optimal by locating a minimum for validation loss.

Next, we use one of the popular methods for preventing overfitting, early stopping. We monitor 

the performance of the model on the holdout set and stop the algorithm if the metric stops im-

proving for a given number of epochs, in this case 5:

early_stop = EarlyStopping(monitor = 'val_loss', min_delta = 0.001,

                           patience = 5, mode = 'min',

                           verbose = 1, restore_best_weights = True)
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The ReduceLROnPlateau callback monitors the loss on the holdout set and if no improvement is 

seen for a patience number of epochs, the learning rate is reduced, in this case by a factor of 0.3. 

While not a universal solution, it can frequently help with convergence:

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.3, 

                              patience = 2, min_delta = 0.001, 

                              mode = 'min', verbose = 1)

We are now ready to fit the model:

history = model.fit(

    train_generator,

    steps_per_epoch = STEPS_PER_EPOCH,

    epochs = CFG.EPOCHS,

    validation_data = validation_generator,

    validation_steps = VALIDATION_STEPS,

    callbacks = [model_save, early_stop, reduce_lr]

)

We will briefly explain the two parameters we have not encountered before:

• The training generator yields steps_per_epoch batches per training epoch.

• When the epoch is finished, the validation generator produces validation_steps batches.

An example output after calling model.fit() is given below:

Epoch 00001: val_loss improved from inf to 0.57514, saving model to ./
EffNetB0_512_8_best_weights.h5

Once a model is fitted, we can examine the activations on a sample image using the helper func-

tion we wrote at the start. While this is not necessary for successful model execution, it can help 

determine what sort of features our model is extracting before applying the classification layer 

at the top:

activation_layer_vis(img_tensor, 0)
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Here is what we might see:

Figure 10.9: Sample activations from a fitted model

We can generate the predictions with model.predict():

ss = pd.read_csv(os.path.join(CFG.WORK_DIR, "sample_submission.csv"))

preds = []

for image_id in ss.image_id:

    image = Image.open(os.path.join(CFG.WORK_DIR,  "test_images",

                                    image_id))

    image = image.resize((CFG.TARGET_SIZE, CFG.TARGET_SIZE))

    image = np.expand_dims(image, axis = 0)

    preds.append(np.argmax(model.predict(image)))

ss['label'] = preds

We build the predictions by iterating through the list of images. For each of them, we reshape 

the image to the required dimensions and pick the channel with the strongest signal (the model 

predicts class probabilities, of which we pick the largest one with argmax). The final predictions 

are class numbers, in line with the metric utilized in the competition.

We have now demonstrated a minimal end-to-end pipeline for image classification. Numerous 

improvements are, of course, possible – for instance, more augmentations, bigger architecture, 

callback customization – but the basic underlying template should provide you with a good 

starting point going forward.

We move on now to a second popular problem in computer vision: object detection.
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Object detection
Object detection is a computer vision/image processing task where we need to identify instances 

of semantic objects of a certain class in an image or video. In classification problems like those 

discussed in the previous section, we simply need to assign a class to each image, whereas in 

object detection tasks, we want to draw a bounding box around an object of interest to locate 

it within an image.

In this section, we will use data from the Global Wheat Detection competition (https://www.

kaggle.com/c/global-wheat-detection). In this competition, participants had to detect wheat 

heads, which are spikes atop plants containing grain. Detection of these in plant images is used 

to estimate the size and density of wheat heads across crop varieties. We will demonstrate how 

to train a model for solving this using Yolov5, a well-established model in object detection, and 

state-of-the-art until late 2021 when it was (based on preliminary results) surpassed by the YoloX 

architecture. Yolov5 gave rise to extremely competitive results in the competition and although 

it was eventually disallowed by the organizers due to licensing issues, it is very well suited for 

the purpose of this demonstration. 

Figure 10.10: Sample image visualizations of detected wheat heads

An important point worth mentioning before we begin is the different formats for bounding box 

annotations; there are different (but mathematically equivalent) ways of describing the coordi-

nates of a rectangle. 

https://www.kaggle.com/c/global-wheat-detection
https://www.kaggle.com/c/global-wheat-detection
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The most common types are coco, voc-pascal, and yolo. The differences between them are clear 

from the figure below:

Figure 10.11: Annotation formats for bounding boxes

One more part we need to define is the grid structure: Yolo detects objects by placing a grid over 

an image and checking for the presence of an object of interest (wheat head, in our case) in any 

of the cells. The bounding boxes are reshaped to be offset within the relevant cells of the image 

and the (x, y, w, h) parameters are scaled to the unit interval:

Figure 10.12: Yolo annotation positioning

We start by loading the annotations for our training data:

df = pd.read_csv('../input/global-wheat-detection/train.csv')

df.head(3)
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Let’s inspect a few:

Figure 10.13: Training data with annotations

We extract the actual coordinates of the bounding boxes from the bbox column:

bboxs = np.stack(df['bbox'].apply(lambda x: np.fromstring(x[1:-1],

                                  sep=',')))

bboxs

Let’s look at the array:

array([[834., 222.,  56.,  36.],

       [226., 548., 130.,  58.],

       [377., 504.,  74., 160.],

       ...,

       [134., 228., 141.,  71.],

       [430.,  13., 184.,  79.],

       [875., 740.,  94.,  61.]])

The next step is to extract the coordinates in Yolo format into separate columns:

for i, column in enumerate(['x', 'y', 'w', 'h']):

    df[column] = bboxs[:,i]

df.drop(columns=['bbox'], inplace=True)

df['x_center'] = df['x'] + df['w']/2

df['y_center'] = df['y'] + df['h']/2

df['classes'] = 0

df = df[['image_id','x', 'y', 'w', 'h','x_center','y_center','classes']]

df.head(3)

The implementation from Ultralytics has some requirements on the structure of the dataset, 

specifically, where the annotations are stored and the folders for training/validation data. 
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The creation of the folders in the code below is fairly straightforward, but a more inquisitive 

reader is encouraged to consult the official documentation (https://github.com/ultralytics/

yolov5/wiki/Train-Custom-Data):

# stratify on source

source = 'train'

# Pick a single fold for demonstration's sake

fold = 0 

val_index = set(df[df['fold'] == fold]['image_id'])

# Loop through the bounding boxes per image

for name,mini in tqdm(df.groupby('image_id')):

    # Where to save the files

    if name in val_index:

        path2save = 'valid/'

    else:

        path2save = 'train/'   

    # Storage path for labels

    if not os.path.exists('convertor/fold{}/labels/'.

                          format(fold)+path2save):

        os.makedirs('convertor/fold{}/labels/'.format(fold)+path2save)

    with open('convertor/fold{}/labels/'.format(fold)+path2save+name+".

              txt", 'w+') as f:

   # Normalize the coordinates in accordance with the Yolo format requirements

        row = mini[['classes','x_center','y_center','w','h']].

        astype(float).values

        row = row/1024

        row = row.astype(str)

        for j in range(len(row)):

            text = ' '.join(row[j])

            f.write(text)

            f.write("\n")

    if not os.path.exists('convertor/fold{}/images/{}'.

                          format(fold,path2save)):

        os.makedirs('convertor/fold{}/images/{}'.format(fold,path2save))

    # No preprocessing needed for images => copy them as a batch

https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
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    sh.copy("../input/global-wheat-detection/{}/{}.jpg".

            format(source,name),

            'convertor/fold{}/images/{}/{}.jpg'.

            format(fold,path2save,name))

The next thing we do is install the Yolo package itself. If you are running this in a Kaggle Notebook 

or Colab, make sure to double-check GPU is enabled; Yolo installation will actually work without 

it, but you are likely to run into all sorts of timeouts and memory issues due to CPU versus GPU 

performance differences.

!git clone https://github.com/ultralytics/yolov5  && cd yolov5 &&

pip install -r requirements.txt  

We omit the output, as it is rather extensive. The last bit of preparation needed is the YAML con-

figuration file, where we specify the training and validation data locations and the number of 

classes. We are only interested in detecting wheat heads and not distinguishing between different 

types, so we have one class (its name is only provided for notational consistency and can be an 

arbitrary string in this instance):

yaml_text = """train: /kaggle/working/convertor/fold0/images/train/

            val: /kaggle/working/convertor/fold0/images/valid/

            nc: 1

            names: ['wheat']"""

with open("wheat.yaml", 'w') as f:

    f.write(yaml_text)

%cat wheat.yaml

With that, we can start training our model:

!python ./yolov5/train.py --img 512 --batch 2 --epochs 3 --workers 2 
--data wheat.yaml --cfg "./yolov5/models/yolov5s.yaml" --name yolov5x_
fold0 --cache

Unless you are used to launching things from the command line, the incantation above is posi-

tively cryptic, so let’s discuss its composition in some detail:

• train.py is the workhorse script for training a YoloV5 model, starting from pre-trained 

weights.



Modeling for Computer Vision362

• --img 512 means we want the original images (which, as you can see, we did not pre-

process in any way) to be rescaled to 512x512. For a competitive result, you should use a 

higher resolution, but this code was executed in a Kaggle Notebook, which has certain 

limitations on resources.

• --batch refers to the batch size in the training process.

• --epochs 3 means we want to train the model for three epochs.

• --workers 2 specifies the number of workers in the data loader. Increasing this number 

might help performance, but there is a known bug in version 6.0 (the most recent one 

available in the Kaggle Docker image, as of the time of this writing) when the number of 

workers is too high, even on a machine where more might be available.

• --data wheat.yaml is the file pointing to our data specification YAML file, defined above.

• --cfg "./yolov5/models/yolov5s.yaml" specifies the model architecture and the corre-

sponding set of weights to be used for initialization. You can use the ones provided with 

the installation (check the official documentation for details), or you can customize your 

own and keep them in the same .yaml format.

• --name specifies where the resulting model is to be stored.

We break down the output of the training command below. First, the groundwork:

Downloading the pretrained weights, setting up Weights&Biases https://
wandb.ai/site integration, GitHub sanity check.

Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/
Ultralytics/Arial.ttf...

wandb: (1) Create a W&B account

wandb: (2) Use an existing W&B account

wandb: (3) Don't visualize my results

wandb: Enter your choice: (30 second timeout) 

wandb: W&B disabled due to login timeout.

train: weights=yolov5/yolov5s.pt, cfg=./yolov5/models/yolov5s.yaml, 
data=wheat.yaml, hyp=yolov5/data/hyps/hyp.scratch-low.yaml, epochs=3, 
batch_size=2, imgsz=512, rect=False, resume=False, nosave=False, 
noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, 
image_weights=False, device=, multi_scale=False, single_cls=False, 
optimizer=SGD, sync_bn=False, workers=2, project=yolov5/runs/train, 
name=yolov5x_fold0, exist_ok=False, quad=False, cos_lr=False, label_
smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, 
entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
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github: up to date with https://github.com/ultralytics/yolov5 ✅ 

YOLOv5 🚀🚀  v6.1-76-gc94736a torch 1.9.1 CUDA:0 (Tesla P100-PCIE-16GB, 
16281MiB)

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, 
warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, 
cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_
gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, 
scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, 
mixup=0.0, copy_paste=0.0

Weights & Biases: run 'pip install wandb' to automatically track and 
visualize YOLOv5 🚀🚀  runs (RECOMMENDED)

TensorBoard: Start with 'tensorboard --logdir yolov5/runs/train', view at 
http://localhost:6006/

Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/
yolov5s.pt to yolov5/yolov5s.pt...

100%|██████████████████████████████████████| 14.1M/14.1M [00:00<00:00, 
40.7MB/s]

Then comes the model. We see a summary of the architecture, the optimizer setup, and the 

augmentations used:

Overriding model.yaml nc=80 with nc=1

                 from  n    params  module                                  
arguments

  0                -1  1    3520  models.common.Conv                      
[3, 32, 6, 2, 2]

  1                -1  1    18560  models.common.Conv                      
[32, 64, 3, 2]

  2                -1  1    18816  models.common.C3                        
[64, 64, 1]

  3                -1  1    73984  models.common.Conv                      
[64, 128, 3, 2]

  4                -1  2    115712  models.common.C3                        
[128, 128, 2]

  5                -1  1    295424  models.common.Conv                      
[128, 256, 3, 2]
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  6                -1  3    625152  models.common.C3                        
[256, 256, 3]

  7                -1  1   1180672  models.common.Conv                      
[256, 512, 3, 2]

  8                -1  1   1182720  models.common.C3                        
[512, 512, 1]

  9                -1  1    656896  models.common.SPPF                      
[512, 512, 5]

 10                -1  1    131584  models.common.Conv                      
[512, 256, 1, 1]

 11                -1  1         0  torch.nn.modules.upsampling.Upsample    
[None, 2, 'nearest']

 12           [-1, 6]  1         0  models.common.Concat                    
[1]

 13                -1  1    361984  models.common.C3                        
[512, 256, 1, False]

 14                -1  1     33024  models.common.Conv                      
[256, 128, 1, 1]

 15                -1  1         0  torch.nn.modules.upsampling.Upsample    
[None, 2, 'nearest']

 16           [-1, 4]  1         0  models.common.Concat                    
[1]

 17                -1  1     90880  models.common.C3                        
[256, 128, 1, False]

 18                -1  1    147712  models.common.Conv                      
[128, 128, 3, 2]

 19          [-1, 14]  1         0  models.common.Concat                    
[1]

 20                -1  1    296448  models.common.C3                        
[256, 256, 1, False]

 21                -1  1    590336  models.common.Conv                      
[256, 256, 3, 2]

 22          [-1, 10]  1         0  models.common.Concat                    
[1]

 23                -1  1   1182720  models.common.C3                        
[512, 512, 1, False]

 24      [17, 20, 23]  1     16182  models.yolo.Detect                      
[1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 
198, 373, 326]], [128, 256, 512]]
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YOLOv5s summary: 270 layers, 7022326 parameters, 7022326 gradients, 15.8 
GFLOPs

Transferred 342/349 items from yolov5/yolov5s.pt

Scaled weight_decay = 0.0005

optimizer: SGD with parameter groups 57 weight (no decay), 60 weight, 60 
bias

albumentations: Blur(always_apply=False, p=0.01, blur_limit=(3, 7)), 
MedianBlur(always_apply=False, p=0.01, blur_limit=(3, 7)), ToGray(always_
apply=False, p=0.01), CLAHE(always_apply=False, p=0.01, clip_limit=(1, 
4.0), tile_grid_size=(8, 8))

train: Scanning '/kaggle/working/convertor/fold0/labels/train' images and 
labels

train: New cache created: /kaggle/working/convertor/fold0/labels/train.
cache

train: Caching images (0.0GB ram): 100%|██████████| 51/51 [00:00<00:00, 
76.00it/

val: Scanning '/kaggle/working/convertor/fold0/labels/valid' images and 
labels..

val: New cache created: /kaggle/working/convertor/fold0/labels/valid.cache

val: Caching images (2.6GB ram): 100%|██████████| 3322/3322 [00:47<00:00, 
70.51i

Plotting labels to yolov5/runs/train/yolov5x_fold0/labels.jpg... 

AutoAnchor: 6.00 anchors/target, 0.997 Best Possible Recall (BPR). Current 
anchors are a good fit to dataset ✅ 

Image sizes 512 train, 512 val

Using 2 dataloader workers

This is followed by the actual training log:

Starting training for 3 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size

       0/2    0.371G    0.1196   0.05478         0        14       512: 
100%|███

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@
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                 all       3322     147409    0.00774     0.0523    
0.00437   0.000952

     Epoch   gpu_mem       box       obj       cls    labels  img_size

       1/2    0.474G    0.1176   0.05625         0         5       512: 
100%|███

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@

                 all       3322     147409    0.00914     0.0618    
0.00493    0.00108

     Epoch   gpu_mem       box       obj       cls    labels  img_size

       2/2    0.474G    0.1146   0.06308         0        12       512: 
100%|███

               Class     Images     Labels          P          R     
mAP@.5 mAP@

                 all       3322     147409    0.00997     0.0674    
0.00558    0.00123

3 epochs completed in 0.073 hours.

Optimizer stripped from yolov5/runs/train/yolov5x_fold0/weights/last.pt, 
14.4MB

Optimizer stripped from yolov5/runs/train/yolov5x_fold0/weights/best.pt, 
14.4MB
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Validating yolov5/runs/train/yolov5x_fold0/weights/best.pt...

Fusing layers... 

YOLOv5s summary: 213 layers, 7012822 parameters, 0 gradients, 15.8 GFLOPs

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@WARNING: NMS time limit 0.120s exceeded

               Class     Images     Labels          P          R     
mAP@.5 mAP@

                 all       3322     147409    0.00997     0.0673    
0.00556    0.00122

Results saved to yolov5/runs/train/yolov5x_fold0
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The results from both training and validation stages can be examined; they are stored in the 

yolov5 folder under ./yolov5/runs/train/yolov5x_fold0:

Figure 10.14: Validation data with annotations

Once we have trained the model, we can use the weights from the best performing model (Yolov5 

has a neat functionality of automatically keeping both the best and last epoch model, storing 

them as best.pt and last.pt) to generate predictions on the test data:

!python ./yolov5/detect.py --weights ./yolov5/runs/train/yolov5x_fold0/
weights/best.pt --img 512 --conf 0.1 --source /kaggle/input/global-wheat-
detection/test --save-txt --save-conf --exist-ok

We will discuss the parameters that are specific to the inference stage:

• --weights points to the location of the best weights from our model trained above.
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• --conf 0.1 specifies which candidate bounding boxes generated by the model should be 

kept. As usual, it is a compromise between precision and recall (too low a threshold gives 

a high number of false positives, while moving the threshold too high means we might 

not find any wheat heads at all).

• --source is the location of the test data.

The labels created for our test images can be inspected locally: 

!ls ./yolov5/runs/detect/exp/labels/

This is what we might see:

2fd875eaa.txt  53f253011.txt  aac893a91.txt  f5a1f0358.txt

348a992bb.txt  796707dd7.txt  cc3532ff6.txt

Let’s look at an individual prediction: 

!cat 2fd875eaa.txt

It has the following format:

0 0.527832 0.580566 0.202148 0.838867 0.101574

0 0.894531 0.587891 0.210938 0.316406 0.113519

This means that in image 2fd875eaa, our trained model detected two bounding boxes (their co-

ordinates are entries 2-5 in the row), with confidence scores above 0.1 given at the end of the row.

How do we go about combining the predictions into a submission in the required format? We 

start by defining a helper function that helps us convert the coordinates from the yolo format to 

coco (as required in this competition): it is a matter of simple rearrangement of the order and 

normalizing to the original range of values by multiplying the fractions by the image size:

def convert(s):

    x = int(1024 * (s[1] - s[3]/2))

    y = int(1024 * (s[2] - s[4]/2))

    w = int(1024 * s[3])

    h = int(1024 * s[4])

    

    return(str(s[5]) + ' ' + str(x) + ' ' + str(y) + ' ' + str(w)

           + ' ' + str(h))



Modeling for Computer Vision370

We then proceed to generate a submission file: 

1. We loop over the files listed above.

2. For each file, all rows are converted into strings in the required format (one row represents 

one bounding box detected).

3. The rows are then concatenated into a single string corresponding to this file.

The code is as follows:

with open('submission.csv', 'w') as myfile:

    # Prepare submission
    wfolder = './yolov5/runs/detect/exp/labels/'
    for f in os.listdir(wfolder):
        fname = wfolder + f
        xdat = pd.read_csv(fname, sep = ' ', header = None)
        outline = f[:-4] + ' ' + ' '.join(list(xdat.apply(lambda s:
                                     convert(s), axis = 1)))
        myfile.write(outline + '\n')
        
myfile.close()

Let’s see what it looks like:

!cat submission.csv

53f253011 0.100472 61 669 961 57 0.106223 0 125 234 183 0.1082 96 696 928 
126 0.108863 515 393 86 161 0.11459 31 0 167 209 0.120246 517 466 89 147
aac893a91 0.108037 376 435 325 188
796707dd7 0.235373 684 128 234 113
cc3532ff6 0.100443 406 752 144 108 0.102479 405 87 4 89 0.107173 576 537 
138 94 0.113459 256 498 179 211 0.114847 836 618 186 65 0.121121 154 544 
248 115 0.125105 40 567 483 199
2fd875eaa 0.101398 439 163 204 860 0.112546 807 440 216 323
348a992bb 0.100572 0 10 440 298 0.101236 344 445 401 211
f5a1f0358 0.102549 398 424 295 96

The generated submission.csv file completes our pipeline.

In this section, we have demonstrated how to use a YoloV5 to solve the problem of object detec-

tion: how to handle annotations in different formats, how to customize a model for a specific 

task, train it, and evaluate the results. 
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Based on this knowledge, you should be able to start working with object detection problems.

We now move on to the third popular class of computer vision tasks: semantic segmentation.

Semantic segmentation
The easiest way to think about segmentation is that it classifies each pixel in an image, assigning 

it to a corresponding class; combined, those pixels form areas of interest, such as regions with 

disease on an organ in medical images. By contrast, object detection (discussed in the previous 

section) classifies patches of an image into different object classes and creates bounding boxes 

around them.

We will demonstrate the modeling approach using data from the Sartorius – Cell Instance Segmen-

tation competition (https://www.kaggle.com/c/sartorius-cell-instance-segmentation). In 

this one, the participants were tasked to train models for instance segmentation of neural cells 

using a set of microscopy images.

Our solution will be built around Detectron2, a library created by Facebook AI Research that 

supports multiple detection and segmentation algorithms.

We begin by installing the extra packages: 

!pip install pycocotools

!pip install 'git+https://github.com/facebookresearch/detectron2.git'

We install pycocotools (https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/

pycocotools), which we will need to format the annotations, and Detectron2 (https://github.

com/facebookresearch/detectron2), our workhorse in this task.

Before we can train our model, we need a bit of preparation: the annotations need to be convert-

ed from the run-length encoding (RLE) format provided by the organizers to the COCO format 

required as input for Detectron2. The basic idea behind RLE is saving space: creating a segmen-

tation means marking a group of pixels in a certain manner. Since an image can be thought of as 

an array, this area can be denoted by a series of straight lines (row- or column-wise). 

Detectron2 is a successor to the original Detectron library (https://github.com/

facebookresearch/Detectron/) and the Mask R-CNN project (https://github.

com/facebookresearch/maskrcnn-benchmark/).

https://www.kaggle.com/c/sartorius-cell-instance-segmentation
https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/Detectron/
https://github.com/facebookresearch/Detectron/
https://github.com/facebookresearch/maskrcnn-benchmark/
https://github.com/facebookresearch/maskrcnn-benchmark/
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You can encode each of those lines by listing the indices, or by specifying a starting position and 

the length of the subsequent contiguous block. A visual example is given below:

Figure 10.15: Visual representation of RLE

Microsoft’s Common Objects in Context (COCO) format is a specific JSON structure dictating 

how labels and metadata are saved for an image dataset. Below, we demonstrate how to convert 

RLE to COCO and combine it with a k-fold validation split, so we get the required train/validation 

pair of JSON files for each fold.

Let’s begin:

# from pycocotools.coco import COCO

import skimage.io as io

import matplotlib.pyplot as plt

from pathlib import Path

from PIL import Image

import pandas as pd

import numpy as np

from tqdm.notebook import tqdm

import json,itertools
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from sklearn.model_selection import GroupKFold

# Config

class CFG:

    data_path = '../input/sartorius-cell-instance-segmentation/'

    nfolds = 5

We need three functions to go from RLE to COCO. First, we need to convert from RLE to a binary 

mask:

# From https://www.kaggle.com/stainsby/fast-tested-rle

def rle_decode(mask_rle, shape):

    '''

    mask_rle: run-length as string formatted (start length)

    shape: (height,width) of array to return 

    Returns numpy array, 1 - mask, 0 - background

    '''

    s = mask_rle.split()

    starts, lengths = [np.asarray(x, dtype=int)

                       for x in (s[0:][::2], s[1:][::2])]

    starts -= 1

    ends = starts + lengths

    img = np.zeros(shape[0]*shape[1], dtype=np.uint8)

    for lo, hi in zip(starts, ends):

        img[lo:hi] = 1

    return img.reshape(shape)  # Needed to align to RLE direction

The second one converts a binary mask to RLE:

# From https://newbedev.com/encode-numpy-array-using-uncompressed-rle-for-

# coco-dataset

def binary_mask_to_rle(binary_mask):

    rle = {'counts': [], 'size': list(binary_mask.shape)}

    counts = rle.get('counts')

    for i, (value, elements) in enumerate(

            itertools.groupby(binary_mask.ravel(order='F'))):

        if i == 0 and value == 1:

            counts.append(0)
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        counts.append(len(list(elements)))

    return rle

Finally, we combine the two in order to produce the COCO output:

def coco_structure(train_df):

    cat_ids = {name: id+1 for id, name in enumerate(

        train_df.cell_type.unique())}

    cats = [{'name': name, 'id': id} for name, id in cat_ids.items()]

    images = [{'id': id, 'width': row.width, 'height': row.height,

               'file_name':f'train/{id}.png'} for id,

               row in train_df.groupby('id').agg('first').iterrows()]

    annotations = []

    for idx, row in tqdm(train_df.iterrows()):

        mk = rle_decode(row.annotation, (row.height, row.width))

        ys, xs = np.where(mk)

        x1, x2 = min(xs), max(xs)

        y1, y2 = min(ys), max(ys)

        enc =binary_mask_to_rle(mk)

        seg = {

            'segmentation':enc, 

            'bbox': [int(x1), int(y1), int(x2-x1+1), int(y2-y1+1)],

            'area': int(np.sum(mk)),

            'image_id':row.id, 

            'category_id':cat_ids[row.cell_type], 

            'iscrowd':0, 

            'id':idx

        }

        annotations.append(seg)

    return {'categories':cats, 'images':images,'annotations':annotations}

We split our data into non-overlapping folds: 

train_df = pd.read_csv(CFG.data_path + 'train.csv')

gkf = GroupKFold(n_splits = CFG.nfolds)

train_df["fold"] = -1

y = train_df.width.values
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for f, (t_, v_) in enumerate(gkf.split(X=train_df, y=y,

                             groups=train_df.id.values)):

    train_df.loc[v_, "fold"] = f

    

fold_id = train_df.fold.copy()

We can now loop over the folds:

all_ids = train_df.id.unique()

# For fold in range(CFG.nfolds):

for fold in range(4,5):    

    train_sample = train_df.loc[fold_id != fold]

    root = coco_structure(train_sample)

    with open('annotations_train_f' + str(fold) + 

              '.json', 'w', encoding='utf-8') as f:

        json.dump(root, f, ensure_ascii=True, indent=4)

        

    valid_sample = train_df.loc[fold_id == fold]

    print('fold ' + str(fold) + ': produced')

for fold in range(4,5):    

    train_sample = train_df.loc[fold_id == fold]

    root = coco_structure(train_sample)

    with open('annotations_valid_f' + str(fold) + 

              '.json', 'w', encoding='utf-8') as f:

        json.dump(root, f, ensure_ascii=True, indent=4)

        

    valid_sample = train_df.loc[fold_id == fold]

    print('fold ' + str(fold) + ': produced')

The reason why the loop has to be executed in pieces is the size limit of the Kaggle environment: 

the maximum size of Notebook output is limited to 20 GB, and 5 folds with 2 files (training/val-

idation) for each fold meant a total of 10 JSON files, exceeding that limit.
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Such practical considerations are worth keeping in mind when running code in a Kaggle Note-

book, although for such “preparatory” work, you can, of course, produce the results elsewhere, 

and upload them as Kaggle Datasets afterward.

With the splits produced, we can move toward training a Detectron2 model for our dataset. As 

usual, we start by loading the necessary packages:

from datetime import datetime

import os

import pandas as pd

import numpy as np

import pycocotools.mask as mask_util

import detectron2

from pathlib import Path

import random, cv2, os

import matplotlib.pyplot as plt

# Import some common detectron2 utilities

from detectron2 import model_zoo

from detectron2.engine import DefaultPredictor, DefaultTrainer

from detectron2.config import get_cfg

from detectron2.utils.visualizer import Visualizer, ColorMode

from detectron2.data import MetadataCatalog, DatasetCatalog

from detectron2.data.datasets import register_coco_instances

from detectron2.utils.logger import setup_logger

from detectron2.evaluation.evaluator import DatasetEvaluator

from detectron2.engine import BestCheckpointer

from detectron2.checkpoint import DetectionCheckpointer

setup_logger()

import torch

While the number of imports from Detectron2 can seem intimidating at first, their function will 

become clear as we progress with the task definition; we start by specifying paths to the input 

data folder, annotations folder, and a YAML file defining our preferred model architecture:

class CFG:

    wfold = 4

    data_folder = '../input/sartorius-cell-instance-segmentation/'
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    anno_folder = '../input/sartoriusannotations/'

    model_arch = 'mask_rcnn_R_50_FPN_3x.yaml'

    nof_iters = 10000 

    seed = 45

One point worth mentioning here is the iterations parameter (nof_iters above). Usually, mod-

el training is parametrized in terms of the number of epochs, in other words, complete passes 

through the training data. Detectron2 is engineered differently: one iteration refers to one mini-

batch and different mini-batch sizes are used in different parts of the model.

In order to ensure the results are reproducible, we fix random seeds used by different components 

of the model:

def seed_everything(seed):

    random.seed(seed)

    os.environ['PYTHONHASHSEED'] = str(seed)

    np.random.seed(seed)

    torch.manual_seed(seed)

    torch.cuda.manual_seed(seed)

    torch.backends.cudnn.deterministic = True

seed_everything(CFG.seed)

The competition metric was the mean average precision at different intersection over union (IoU) 

thresholds. As a refresher from Chapter 5, Competition Tasks and Metrics, the IoU of a proposed set 

of object pixels and a set of true object pixels is calculated as:𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼 𝐼 𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 𝐼𝐼 

The metric sweeps over a range of IoU thresholds, at each point calculating an average precision 

value. The threshold values range from 0.5 to 0.95, with increments of 0.05.

At each threshold value, a precision value is calculated based on the number of true positives 

(TP), false negatives (FN), and false positives (FP) resulting from comparing the predicted object 

with all ground truth objects. Lastly, the score returned by the competition metric is the mean 

taken over the individual average precisions of each image in the test dataset.
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Below, we define the functions necessary to calculate the metric and use it directly inside the 

model as the objective function:

# Taken from https://www.kaggle.com/theoviel/competition-metric-map-iou

def precision_at(threshold, iou):

    matches = iou > threshold

    true_positives = np.sum(matches, axis=1) == 1  # Correct objects

    false_positives = np.sum(matches, axis=0) == 0  # Missed objects

    false_negatives = np.sum(matches, axis=1) == 0  # Extra objects

    return np.sum(true_positives), np.sum(false_positives),

    np.sum(false_negatives)

def score(pred, targ):

    pred_masks = pred['instances'].pred_masks.cpu().numpy()

    enc_preds = [mask_util.encode(np.asarray(p, order='F'))

                 for p in pred_masks]

    enc_targs = list(map(lambda x:x['segmentation'], targ))

    ious = mask_util.iou(enc_preds, enc_targs, [0]*len(enc_targs))

    prec = []

    for t in np.arange(0.5, 1.0, 0.05):

        tp, fp, fn = precision_at(t, ious)

        p = tp / (tp + fp + fn)

        prec.append(p)

    return np.mean(prec)

With the metric defined, we can use it in the model:

class MAPIOUEvaluator(DatasetEvaluator):

    def __init__(self, dataset_name):

        dataset_dicts = DatasetCatalog.get(dataset_name)

        self.annotations_cache = {item['image_id']:item['annotations']

                                  for item in dataset_dicts}

            

    def reset(self):

        self.scores = []

    def process(self, inputs, outputs):

        for inp, out in zip(inputs, outputs):

            if len(out['instances']) == 0:
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                self.scores.append(0)    

            else:

                targ = self.annotations_cache[inp['image_id']]

                self.scores.append(score(out, targ))

    def evaluate(self):

        return {"MaP IoU": np.mean(self.scores)}

This gives us the basis for creating a Trainer object, which is the workhorse of our solution built 

around Detectron2:

class Trainer(DefaultTrainer):
    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        return MAPIOUEvaluator(dataset_name)

    def build_hooks(self):

        # copy of cfg
        cfg = self.cfg.clone()

        # build the original model hooks
        hooks = super().build_hooks()

        # add the best checkpointer hook
        hooks.insert(-1, BestCheckpointer(cfg.TEST.EVAL_PERIOD, 
                                         DetectionCheckpointer(self.model,
                                         cfg.OUTPUT_DIR),
                                         "MaP IoU",
                                         "max",
                                         ))
        return hooks

We now proceed to load the training/validation data in Detectron2 style:

dataDir=Path(CFG.data_folder)

register_coco_instances('sartorius_train',{}, CFG.anno_folder + 

                        'annotations_train_f' + str(CFG.wfold) + 

                        '.json', dataDir)
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register_coco_instances('sartorius_val',{}, CFG.anno_folder + 

                        'annotations_valid_f' + str(CFG.wfold) + 

                        '.json', dataDir)

metadata = MetadataCatalog.get('sartorius_train')

train_ds = DatasetCatalog.get('sartorius_train')

Before we instantiate a Detectron2 model, we need to take care of configuring it. Most of the values 

can be left at default values (at least, in a first pass); if you decide to tinker a bit more, start with 

BATCH_SIZE_PER_IMAGE (for increased generalization performance) and SCORE_THRESH_TEST (to 

limit false negatives):

cfg = get_cfg()

cfg.INPUT.MASK_FORMAT='bitmask'

cfg.merge_from_file(model_zoo.get_config_file('COCO-InstanceSegmentation/' +

                    CFG.model_arch))

cfg.DATASETS.TRAIN = ("sartorius_train",)

cfg.DATASETS.TEST = ("sartorius_val",)

cfg.DATALOADER.NUM_WORKERS = 2

cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url('COCO-InstanceSegmentation/'

                    + CFG.model_arch)

cfg.SOLVER.IMS_PER_BATCH = 2

cfg.SOLVER.BASE_LR = 0.001

cfg.SOLVER.MAX_ITER = CFG.nof_iters

cfg.SOLVER.STEPS = []

cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512

cfg.MODEL.ROI_HEADS.NUM_CLASSES = 3  

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = .4

cfg.TEST.EVAL_PERIOD = len(DatasetCatalog.get('sartorius_train')) 

                           // cfg.SOLVER.IMS_PER_BATCH  

Training a model is straightforward:

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)

trainer = Trainer(cfg) 

trainer.resume_or_load(resume=False)

trainer.train()



Chapter 10 381

You will notice that the output during training is rich in information about the progress of the 

procedure:

Figure 10.16: Training output from Detectron2

Once the model is trained, we can save the weights and use them for inference (potentially in a 

separate Notebook – see the discussion earlier in this chapter) and submission preparation. We 

start by adding new parameters that allow us to regularize the prediction, setting confidence 

thresholds and minimal mask sizes:

THRESHOLDS = [.18, .35, .58]

MIN_PIXELS = [75, 150, 75]

We need a helper function for encoding a single mask into RLE format:

def rle_encode(img):

    '''

    img: numpy array, 1 - mask, 0 - background

    Returns run length as string formatted

    '''

    pixels = img.flatten()



Modeling for Computer Vision382

    pixels = np.concatenate([[0], pixels, [0]])

    runs = np.where(pixels[1:] != pixels[:-1])[0] + 1

    runs[1::2] -= runs[::2]

    return ' '.join(str(x) for x in runs)

Below is the main function for producing all masks per image, filtering out the dubious ones (with 

confidence scores below THRESHOLDS) with small areas (containing fewer pixels than MIN_PIXELS):

def get_masks(fn, predictor):

    im = cv2.imread(str(fn))

    pred = predictor(im)

    pred_class = torch.mode(pred['instances'].pred_classes)[0]

    take = pred['instances'].scores >= THRESHOLDS[pred_class]

    pred_masks = pred['instances'].pred_masks[take]

    pred_masks = pred_masks.cpu().numpy()

    res = []

    used = np.zeros(im.shape[:2], dtype=int) 

    for mask in pred_masks:

        mask = mask * (1-used)

        # Skip predictions with small area

        if mask.sum() >= MIN_PIXELS[pred_class]:

            used += mask

            res.append(rle_encode(mask))

    return res

We then prepare the lists where image IDs and masks will be stored:

dataDir=Path(CFG.data_folder)

ids, masks=[],[]

test_names = (dataDir/'test').ls()

Competitions with large image sets – like the ones discussed in this section – often require train-

ing models for longer than 9 hours, which is the time limit imposed in Code competitions (see 

https://www.kaggle.com/docs/competitions). This means that training a model and running 

inference within the same Notebook becomes impossible. A typical workaround is to run a train-

ing Notebook/script first as a standalone Notebook in Kaggle, Google Colab, GCP, or locally. The 

output of this first Notebook (the trained weights) is used as input to the second one, in other 

words, to define the model used for predictions.

https://www.kaggle.com/docs/competitions
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We proceed in that manner by loading the weights of our trained model:

cfg = get_cfg()

cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/"+

                    CFG.arch+".yaml"))

cfg.INPUT.MASK_FORMAT = 'bitmask'

cfg.MODEL.ROI_HEADS.NUM_CLASSES = 3 

cfg.MODEL.WEIGHTS = CFG.model_folder + 'model_best_f' + 

                    str(CFG.wfold)+'.pth' 

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5

cfg.TEST.DETECTIONS_PER_IMAGE = 1000

predictor = DefaultPredictor(cfg)

We can visualize some of the predictions:

encoded_masks = get_masks(test_names[0], predictor)

_, axs = plt.subplots(1,2, figsize = (40, 15))

axs[1].imshow(cv2.imread(str(test_names[0])))

for enc in encoded_masks:

    dec = rle_decode(enc)

axs[0].imshow(np.ma.masked_where(dec == 0, dec))

Here is an example:

Figure 10.17: Visualizing a sample prediction from Detectron2 alongside the source image
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With the helper functions defined above, producing the masks in RLE format for submission is 

straightforward:

for fn in test_names:

    encoded_masks = get_masks(fn, predictor)

    for enc in encoded_masks:

        ids.append(fn.stem)

        masks.append(enc)

pd.DataFrame({'id':ids, 'predicted':masks}).to_csv('submission.csv', 

                                                   index=False)

pd.read_csv('submission.csv').head()

Here are the first few rows of the final submission:

Figure 10.18: Formatted submission from a trained Detectron2 model

We have reached the end of the section. The pipeline above demonstrates how to set up a seman-

tic segmentation model and train it. We have used a small number of iterations, but in order to 

achieve competitive results, longer training is necessary.

Laura Fink
https://www.kaggle.com/allunia

To wrap up this chapter, let’s see what Kaggler Laura Fink has to say 

about her time on the platform. As well as being a Notebooks Grand-

master and producing many masterful Notebooks, she is also Head of 

Data Science at MicroMata.

https://www.kaggle.com/allunia
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What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
My favorite competitions are those that want to yield something good to humanity. I especially like all 

healthcare-related challenges. Nonetheless, each competition feels like an adventure for me with its own 

puzzles to be solved. I really enjoy learning new skills and exploring new kinds of datasets or problems. 

Consequently, I’m not focused on specific techniques but rather on learning something new. I think I’m 

known for my strengths in exploratory data analysis (EDA).

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
When entering a competition, I start by reading the problem statement and the data description. After 

browsing through the forum and public Notebooks for collecting ideas, I usually start by developing my 

own solutions. In the initial phase, I spend some time on EDA to search for hidden groups and get some 

intuition. This helps quite a lot in setting up a proper validation strategy, which I believe is the foundation 

of all remaining steps. Then, I start to iterate through different parts of the machine learning pipeline like 

feature engineering or preprocessing, improving the model architecture, asking questions about the data 

collection, searching for leakages, doing more EDA, or building ensembles. I try to improve my solution 

in a greedy fashion. Kaggle competitions are very dynamic and one needs to try out diverse ideas and 

different solutions to survive in the end.

This is definitely different from my day-to-day work, where the focus is more on gaining insights from 

data and finding simple but effective solutions to improve business processes. Here, the task is often more 

complex than the models used. The problem to be solved has to be defined very clearly, which means that 

one has to discuss with experts of different backgrounds which goals should be reached, which processes 

are involved, and how the data needs to be collected or fused. Compared to Kaggle competitions, my daily 

work needs much more communication than machine learning skills.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
The G2Net Gravitational Wave Detection competition was one of my favorites. The goal was to detect 

simulated gravitational wave signals that were hidden in noise originating from detector components 

and terrestrial forces. An important insight during this competition was that you should have a critical 

look at standard ways to analyze data and try out your own ideas. In the papers I read, the data was 

prepared mainly by using the Fourier or Constant-Q transform after whitening the data and applying 

a bandpass filter. 
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It came out very quickly that whitening was not helpful, as it used spline interpolation of the Power Spec-

tral Density, which was itself very noisy. Fitting polynomials to small subsets of noisy data adds another 

source of errors because of overfitting.

After dropping the whitening, I tried out different hyperparameters of the Constant-Q transform, which 

turned out to be the leading method in the forum and public Notebooks for a long time. As there were 

two sources of gravitational waves that can be covered by different ranges of Q-values, I tried out an en-

semble of models that differed in these hyperparameters. This turned out to be helpful in improving my 

score, but then I reached a limit. The Constant-Q transform applies a series of filters to time series and 

transforms them into the frequency domain. I started to ask myself if there was a method that does these 

filtering tasks in a better, more flexible way. It was at the same time that the idea of using 1 dim CNNs 

came up in the community, and I loved it. We all know that filters of 2 dim CNNs are able to detect edges, 

lines, and textures given image data. The same could be done with “classical” filters like the Laplace or 

Sobel filter. For this reason, I asked myself: can’t we use the 1dCNN to learn the most important filters on 

its own, instead of applying transformations that are already fixed somehow? 

I was not able to get my 1 dim CNN solution to work, but it turned out that many top teams managed it 

well. The G2Net competition was one of my favorites even though I missed out on the goal of winning a 

medal. However, the knowledge I gained along the way and the lesson I learned about so-called standard 

approaches were very valuable.

Has Kaggle helped you in your career? If so, how?
I started my first job after university as a Java software developer even though I already had my first 

contact with machine learning during my master’s thesis. I was interested in doing more data analytics, 

but at that time, there were almost no data science jobs, or they were not named this way. When I heard 

about Kaggle the first time, I was trapped right from the start. Since then, I often found myself on Kaggle 

during the evenings to have some fun. It was not my intent to change my position at that time, but then 

a research project came up that needed machine learning skills. I was able to show that I was a suitable 

candidate for this project because of the knowledge I gained by participating on Kaggle. This turned out 

to be the entry point for my data science career.

Kaggle has always been a great place for me to try out ideas, learn new methods and tools, and gain 

practical experience. The skills I obtained this way have been quite helpful for data science projects at 

work. It’s like a boost of knowledge, as Kaggle provides a sandbox for you to try out different ideas and to 

be creative without risk. Failing in a competition means that there was at least one lesson to learn, but 

failing in a project can have a huge negative impact on yourself and other people.
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Besides taking part in competitions, another great way to build up your portfolio is to write Notebooks. 

In doing so, you can show the world how you approach problems and how to communicate insights and 

conclusions. The latter is very important when you have to work with management, clients, and experts 

from different backgrounds.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
I think many beginners that enter competitions are seduced by the public leaderboard and build their 

models without having a good validation strategy. While measuring their success on the leaderboard, 

they are likely overfitting to the public test data. After the end of the competition, their models are not 

able to generalize to the unseen private test data, and they often fall down hundreds of places. I still 

remember how frustrated I was during the Mercedes-Benz Greener Manufacturing competition as 

I was not able to climb up the public leaderboard. But when the final standings came out, it was a big 

surprise how many people were shuffled up and down the leaderboard. Since then, I always have in mind 

that a proper validation scheme is very important for managing the challenges of under- and overfitting.

What mistakes have you made in competitions in the past?
My biggest mistake so far was to spend too much time and effort on the details of my solution at the 

beginning of a competition. Indeed, it’s much better to iterate fast through diverse and different ideas 

after building a proper validation strategy. That way, it’s easier and faster to find promising directions 

for improvements and the danger of getting stuck somewhere is much smaller.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
There are a lot of common tools and libraries you can learn and practice when becoming active in the 

Kaggle community and I can only recommend them all. It’s important to stay flexible and to learn about 

their advantages and disadvantages. This way, your solutions don’t depend on your tools, but rather on 

your ideas and creativity.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Data science is not about building models, but rather about understanding the data and the way it was 

collected. Many competitions I have entered so far showed leakages or had hidden groups in the test data 

that one could find with exploratory data analysis.
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Summary
In this chapter, we gave you an overview of the most important topics related to computer vision 

from a Kaggle competition angle. We introduced augmentations, an important class of techniques 

used for extending the generalization capabilities of an algorithm, and followed by demonstrat-

ing end-to-end pipelines for three of the most frequent problems: image classification, object 

detection, and semantic segmentation.

In the next chapter, we switch our attention to natural language processing, another extremely 

broad and popular category of problems.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord


11
Modeling for NLP

Natural language processing (NLP) is a field operating at the intersection of linguistics, computer 

science, and AI. Its primary focus is algorithms to process and analyze large amounts of natural 

language data. Over the last few years, it has become an increasingly popular topic of Kaggle 

competitions. While the domain itself is very broad and encompasses very popular topics such 

as chatbots and machine translation, in this chapter we will focus on specific subsets that Kaggle 

contests frequently deal with.

Sentiment analysis as a simple classification problem is extremely popular and discussed all 

over, so we’ll begin with a somewhat more interesting variation on the problem: identifying 

sentiment-supporting phrases in a tweet. We’ll proceed to describe an example solution to the 

problem of open domain question answering and conclude with a section on augmentation for 

NLP problems, which is a topic that receives significantly less attention than its computer vision 

counterpart.

To summarize, we will cover:

• Sentiment analysis

• Open domain Q&A

• Text augmentation strategies

Sentiment analysis
Twitter is one of the most popular social media platforms and an important communication tool 

for many, individuals and companies alike. 
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Capturing sentiment in language is particularly important in the latter context: a positive tweet 

can go viral and spread the word, while a particularly negative one can be harmful. Since human 

language is complicated, it is important not to just decide on the sentiment, but also to be able 

to investigate the how: which words actually led to the sentiment description?

We will demonstrate an approach to this problem by using data from the Tweet Sentiment Ex-

traction competition (https://www.kaggle.com/c/tweet-sentiment-extraction). For brevity, 

we have omitted the imports from the following code, but you can find them in the corresponding 

Notebook in the GitHub repo for this chapter.

To get a better feel for the problem, let’s start by looking at the data:

df = pd.read_csv('/kaggle/input/tweet-sentiment-extraction/train.csv')

df.head()

Here are the first few rows:

Figure 11.1: Sample rows from the training data

The actual tweets are stored in the text column. Each of them has an associated sentiment, along 

with the support phrase stored in the selected_text column (the part of the tweet that was the 

basis for the decision on sentiment assignment).

We start by defining basic cleanup functions. First, we want to get rid of website URLs and 

non-characters and replace the stars people use in place of swear words with a single token, 

"swear". We use some regular expressions to help us do this:

def basic_cleaning(text):

    text=re.sub(r'https?://www\.\S+\.com','',text)

    text=re.sub(r'[^A-Za-z|\s]','',text)

    text=re.sub(r'\*+','swear',text) # Capture swear words that are **** out

    return text

https://www.kaggle.com/c/tweet-sentiment-extraction
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Next, we remove HTML from the content of the tweets, as well as emojis:

def remove_html(text):

    html=re.compile(r'<.*?>')

    return html.sub(r'',text)

def remove_emoji(text):

    emoji_pattern = re.compile("["

                           u"\U0001F600-\U0001F64F" #emoticons

                           u"\U0001F300-\U0001F5FF" #symbols & pictographs

                           u"\U0001F680-\U0001F6FF" #transport & map symbols

                           u"\U0001F1E0-\U0001F1FF" #flags (iOS)

                           u"\U00002702-\U000027B0"

                           u"\U000024C2-\U0001F251"

                           "]+", flags=re.UNICODE)

    return emoji_pattern.sub(r'', text)

Lastly, we want to be able to remove repeated characters (for example, so we have “way” instead 

of “waaaayyyyy”):

def remove_multiplechars(text):

    text = re.sub(r'(.)\1{3,}',r'\1', text)

    return text

For convenience, we combine the four functions into a single cleanup function:

def clean(df):

    for col in ['text']:#,'selected_text']:

        df[col]=df[col].astype(str).apply(lambda x:basic_cleaning(x))

        df[col]=df[col].astype(str).apply(lambda x:remove_emoji(x))

        df[col]=df[col].astype(str).apply(lambda x:remove_html(x))

        df[col]=df[col].astype(str).apply(lambda x:remove_multiplechars(x))

    return df

The last bit of preparation involves writing functions for creating the embeddings based on a 

pre-trained model (the tokenizer argument):

def fast_encode(texts, tokenizer, chunk_size=256, maxlen=128):
    tokenizer.enable_truncation(max_length=maxlen)
    tokenizer.enable_padding(max_length=maxlen)
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    all_ids = []
    
    for i in range(0, len(texts), chunk_size):
        text_chunk = texts[i:i+chunk_size].tolist()
        encs = tokenizer.encode_batch(text_chunk)
        all_ids.extend([enc.ids for enc in encs])
    
    return np.array(all_ids)

Next, we create a pre-processing function enabling us to work with the entire corpus:

def preprocess_news(df,stop=stop,n=1,col='text'):
    '''Function to preprocess and create corpus'''
    new_corpus=[]
    stem=PorterStemmer()
    lem=WordNetLemmatizer()
    for text in df[col]:
        words=[w for w in word_tokenize(text) if (w not in stop)]
       
        words=[lem.lemmatize(w) for w in words if(len(w)>n)]
     
        new_corpus.append(words)
        
    new_corpus=[word for l in new_corpus for word in l]
    return new_corpus

Using our previously prepared functions, we can clean and prepare the training data. The sentiment 

column is our target, and we convert it to dummy variables (one-hot encoding) for performance:

df.dropna(inplace=True)
df_clean = clean(df)

df_clean_selection = df_clean.sample(frac=1)
X = df_clean_selection.text.values
y = pd.get_dummies(df_clean_selection.sentiment)

A necessary next step is tokenization of the input texts, as well as conversion into sequences 

(along with padding, to ensure equal lengths across the dataset):

tokenizer = text.Tokenizer(num_words=20000)
tokenizer.fit_on_texts(list(X))
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list_tokenized_train = tokenizer.texts_to_sequences(X)
X_t = sequence.pad_sequences(list_tokenized_train, maxlen=128)

We will create the embeddings for our model using DistilBERT and use them as-is. DistilBERT 

is a lightweight version of BERT: the tradeoff is 3% performance loss at 40% fewer parameters. 

We could train the embedding layer and gain performance – at the cost of massively increased 

training time.

tokenizer = transformers.AutoTokenizer.from_pretrained("distilbert-base-
uncased")  

# Save the loaded tokenizer locally

save_path = '/kaggle/working/distilbert_base_uncased/'

if not os.path.exists(save_path):

    os.makedirs(save_path)

tokenizer.save_pretrained(save_path)

# Reload it with the huggingface tokenizers library

fast_tokenizer = BertWordPieceTokenizer(

                 'distilbert_base_uncased/vocab.txt', lowercase=True)

fast_tokenizer

We can use the previously defined fast_encode function, along with the fast_tokenizer defined 

above, to encode the tweets:

X = fast_encode(df_clean_selection.text.astype(str),

                fast_tokenizer,

                maxlen=128)

With the data prepared, we can construct the model. For the sake of this demonstration, we 

will go with a fairly standard architecture for these applications: a combination of LSTM layers, 

normalized by global pooling and dropout, and a dense layer on top. In order to achieve a truly 

competitive solution, some tweaking of the architecture would be needed: a “heavier” model, 

bigger embeddings, more units in the LSTM layers, and so on.

transformer_layer = transformers.TFDistilBertModel.from_
pretrained('distilbert-base-uncased')

embedding_size = 128

input_ = Input(shape=(100,))



Modeling for NLP394

inp = Input(shape=(128, ))

embedding_matrix=transformer_layer.weights[0].numpy()

x = Embedding(embedding_matrix.shape[0],

              embedding_matrix.shape[1],

              embeddings_initializer=Constant(embedding_matrix),

              trainable=False)(inp)

x = Bidirectional(LSTM(50, return_sequences=True))(x)

x = Bidirectional(LSTM(25, return_sequences=True))(x)

x = GlobalMaxPool1D()(x)

x = Dropout(0.5)(x)

x = Dense(50, activation='relu', kernel_regularizer='L1L2')(x)

x = Dropout(0.5)(x)

x = Dense(3, activation='softmax')(x)

model_DistilBert = Model(inputs=[inp], outputs=x)

model_DistilBert.compile(loss='categorical_crossentropy',

                              optimizer='adam',

                              metrics=['accuracy'])

There is no special need to pay attention to a temporal dimension of the data, so we are fine with 

a random split into training and validation, which can be achieved inside a call to the fit method:

model_DistilBert.fit(X,y,batch_size=32,epochs=10,validation_split=0.1)

Below is some sample output:

Epoch 1/10

27480/27480 [==============================] - 480s 17ms/step - loss: 
0.5100 - accuracy: 0.7994

Epoch 2/10

27480/27480 [==============================] - 479s 17ms/step - loss: 
0.4956 - accuracy: 0.8100

Epoch 3/10

27480/27480 [==============================] - 475s 17ms/step - loss: 
0.4740 - accuracy: 0.8158

Epoch 4/10
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27480/27480 [==============================] - 475s 17ms/step - loss: 
0.4528 - accuracy: 0.8275

Epoch 5/10

27480/27480 [==============================] - 475s 17ms/step - loss: 
0.4318 - accuracy: 0.8364

Epoch 6/10

27480/27480 [==============================] - 475s 17ms/step - loss: 
0.4069 - accuracy: 0.8441

Epoch 7/10

27480/27480 [==============================] - 477s 17ms/step - loss: 
0.3839 - accuracy: 0.8572

Generating a prediction from the fitted model proceeds in a straightforward manner. In order 

to utilize all the available data, we begin by re-training our model on all available data (so no 

validation):

df_clean_final = df_clean.sample(frac=1)

X_train = fast_encode(df_clean_selection.text.astype(str),

                      fast_tokenizer,

                      maxlen=128)

y_train = y

We refit the model on the entire dataset before generating the predictions:

Adam_name = adam(lr=0.001)

model_DistilBert.compile(loss='categorical_crossentropy',optimizer=Adam_
name,metrics=['accuracy'])

history = model_DistilBert.fit(X_train,y_train,batch_size=32,epochs=10)

Our next step is to process the test data into the same format we are using for training data fed 

into the model:

df_test = pd.read_csv('/kaggle/input/tweet-sentiment-extraction/test.csv')

df_test.dropna(inplace=True)

df_clean_test = clean(df_test)

X_test = fast_encode(df_clean_test.text.values.astype(str),

                     fast_tokenizer,

                     maxlen=128)

y_test = df_clean_test.sentiment



Modeling for NLP396

Finally, we generate the predictions:

y_preds = model_DistilBert.predict(X_test)

y_predictions = pd.DataFrame(y_preds,

                             columns=['negative','neutral','positive'])

y_predictions_final = y_predictions.idxmax(axis=1)

accuracy = accuracy_score(y_test,y_predictions_final)

print(f"The final model shows {accuracy:.2f} accuracy on the test set.")

The final model shows 0.74 accuracy on the test set. Below we show a sample of what the out-

put looks like; as you can see already from these few rows, there are some instances where the 

sentiment is obvious to a human reader, but the model fails to capture it:

Figure 11.2: Example rows from the predicted results

We have now demonstrated a sample pipeline for solving sentiment attribution problems (iden-

tifying parts of the text that lead to annotator decisions on sentiment classification). There are 

some improvements that can be made if you want to achieve competitive performance, given 

below in order of likely impact:

• Larger embeddings: This allows us to capture more information already at the (processed) 

input data level

• Bigger model: More units in the LSTM layers

• Longer training: In other words, more epochs
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While the improvements listed above will undoubtedly boost the performance of the model, the 

core elements of our pipeline are reusable:

• Data cleaning and pre-processing

• Creating text embeddings

• Incorporating recurrent layers and regularization in the target model architecture

We’ll now move on to a discussion of open domain question answering, a frequent problem 

encountered in NLP competitions.

Abhishek Thakur
https://www.kaggle.com/abhishek

We caught up with Abhishek Thakur, the world’s first quadruple Kaggle 

Grandmaster. He currently works at Hugging Face, where he is building 

AutoNLP; he also wrote pretty much the only book on Kaggle in En-

glish (aside from this one!), Approaching (Almost) Any Machine Learning 

Problem.

What’s your specialty on Kaggle?
None. Every competition is different and there is so much to learn from each one of them. If I were to have 

a specialty, I would win all competitions in that domain.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
The first thing I do is to take a look at the data and try to understand it a bit. If I’m late to the competition, 

I take the help of public EDA kernels. 

The first thing I do when approaching a problem on (or off) Kaggle is to build a benchmark. Building a 

benchmark is very important as it provides you with a baseline you can compare your future models to. 

If I’m late to the game, for building the baseline, I try not to take the help of public Notebooks. If we do 

that, we think only in a single direction. At least, that’s what I feel. 

When I am done with a benchmark, I try to squeeze as much as possible without doing anything com-

plicated like stacking or blending. Then I go over the data and models again and try to improve on the 

baseline, one step at a time.

https://www.kaggle.com/abhishek
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Open domain Q&A
In this section, we will be looking at the Google QUEST Q&A Labeling competition (https://www.

kaggle.com/c/google-quest-challenge/overview/description). In this competition, ques-

tion-answer pairs were evaluated by human raters on a diverse set of criteria, such as “question 

conversational,” “question fact-seeking,” or “answer helpful.” The task was to predict a numeric 

value for each of the target columns (corresponding to the criteria); since the labels were aggre-

gated across multiple raters, the objective was effectively a multivariate regression output, with 

target columns normalized to the unit range.

Day-to-day work sometimes has a lot of similarities. Most of the time there is a benchmark and then you 

have to come up with techniques, features, models that beat the benchmark.

What was the most interesting competition you entered? Did you have 
any special insights?
Every competition is interesting.

Has Kaggle helped you in your career?
Sure, it has helped. In the last few years, Kaggle has gained a very good reputation when it comes to 

hiring data scientists and machine learning engineers. Kaggle rank and experience with many datasets 

is something that surely helps in the industry in one way or another. The more experienced you are with 

approaching different types of problems, the faster you will be able to iterate. And that’s something very 

useful in industries. No one wants to spend several months doing something that doesn’t bring any value 

to the business.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
Most beginners give up quite easily. It’s very easy to join a Kaggle competition and get intimidated by 

top scorers. If beginners want to succeed on Kaggle, they have to have perseverance. In my opinion, per-

severance is the key. Many beginners also fail to start on their own and stick to public kernels. This makes 

them think like the authors of public kernels. My advice would be to start with competitions on your own, 

look at data, build features, build models, and then dive into kernels and discussions to see what others 

might be doing differently. Then incorporate what you have learned into your own solution.

https://www.kaggle.com/c/google-quest-challenge/overview/description
https://www.kaggle.com/c/google-quest-challenge/overview/description
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Before engaging in modeling with advanced techniques (like transformer-based models for NLP), it 

is frequently a good idea to establish a baseline with simpler methods. As with the previous section, 

we will omit the imports for brevity, but you can find them in the Notebook in the GitHub repo.

We begin by defining several helper functions, which can help us extract different aspects of the 

text. First, a function that will output a word count given a string:

def word_count(xstring):

    return xstring.split().str.len()

The metric used in the competition was Spearman correlation (linear correlation computed 

on ranks: https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient). 

Since we intend to build a Scikit-learn pipeline, it is useful to define the metric as a scorer (the 

make_scorer method is a wrapper in Scikit-learn that takes a scoring function – like accuracy or 

MSE – and returns a callable that scores an output of the estimator):

def spearman_corr(y_true, y_pred):

        if np.ndim(y_pred) == 2:

            corr = np.mean([stats.spearmanr(y_true[:, i],

                                            y_pred[:, i])[0]

for i in range(y_true.shape[1])])

        else:

            corr = stats.spearmanr(y_true, y_pred)[0]

        return corr

    

custom_scorer = make_scorer(spearman_corr, greater_is_better=True)

Next, a small helper function to extract successive chunks of size n from l. This will help us later 

with generating embeddings for our body of text without running into memory problems:

def chunks(l, n):

    for i in range(0, len(l), n):

        yield l[i:i + n]

Part of the feature set we will use is embeddings from pre-trained models. Recall that the idea 

of this section is the construction of a baseline without training elaborate models, but this need 

not prevent us from using existing ones. 

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
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We begin by importing the tokenizer and model, and then we process the corpus in chunks, en-

coding each question/answer into a fixed-size embedding:

def fetch_vectors(string_list, batch_size=64):

    # Inspired by https://jalammar.github.io/a-visual-guide-to-using-bert- 
    for-the-first-time/

    DEVICE = torch.device("cuda")

    tokenizer = transformers.DistilBertTokenizer.from_pretrained

                    ("../input/distilbertbaseuncased/")

    model = transformers.DistilBertModel.from_pretrained

                ("../input/distilbertbaseuncased/")

    model.to(DEVICE)

    fin_features = []

    for data in chunks(string_list, batch_size):

        tokenized = []

        for x in data:

            x = " ".join(x.strip().split()[:300])

            tok = tokenizer.encode(x, add_special_tokens=True)

            tokenized.append(tok[:512])

        max_len = 512

        padded = np.array([i + [0] * (max_len - len(i)) for i in tokenized])

        attention_mask = np.where(padded != 0, 1, 0)

        input_ids = torch.tensor(padded).to(DEVICE)

        attention_mask = torch.tensor(attention_mask).to(DEVICE)

        with torch.no_grad():

            last_hidden_states = model(input_ids,

                                       attention_mask=attention_mask)

        features = last_hidden_states[0][:, 0, :].cpu().numpy()

        fin_features.append(features)

    fin_features = np.vstack(fin_features)

    return fin_features
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We can now proceed to load the data:

xtrain = pd.read_csv(data_dir + 'train.csv')

xtest = pd.read_csv(data_dir + 'test.csv')

xtrain.head(4)

Here are the first few rows:

Figure 11.3: Sample rows from the training data

We specify our 30 target columns of interest:

target_cols = ['question_asker_intent_understanding',

               'question_body_critical', 

               'question_conversational', 'question_expect_short_answer', 

               'question_fact_seeking',

               'question_has_commonly_accepted_answer', 

               'question_interestingness_others',

               'question_interestingness_self', 

               'question_multi_intent', 'question_not_really_a_question', 

               'question_opinion_seeking', 'question_type_choice', 

               'question_type_compare', 'question_type_consequence', 

               'question_type_definition', 'question_type_entity', 
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               'question_type_instructions', 'question_type_procedure', 

               'question_type_reason_explanation',

               'question_type_spelling', 

               'question_well_written', 'answer_helpful', 

               'answer_level_of_information', 'answer_plausible', 

               'answer_relevance', 'answer_satisfaction', 

               'answer_type_instructions', 'answer_type_procedure', 

               'answer_type_reason_explanation', 'answer_well_written']

For a discussion of their meaning and interpretation, the reader is referred to the competition’s 

Data page, at https://www.kaggle.com/c/google-quest-challenge/data.

Next, we proceed with feature engineering. We start by counting the words in the title and body 

of the question, as well as the answer. This is a simple yet surprisingly useful feature in many 

applications:

for colname in ['question_title', 'question_body', 'answer']:

    newname = colname + '_word_len'

    

    xtrain[newname] = xtrain[colname].str.split().str.len()

    xtest[newname] = xtest[colname].str.split().str.len()

The next feature we create is lexical diversity, counting the proportion of unique words in a 

chunk of text:

colname = 'answer'

xtrain[colname+'_div'] = xtrain[colname].apply

                         (lambda s: len(set(s.split())) / len(s.split()) )

xtest[colname+'_div'] = xtest[colname].apply

                        (lambda s: len(set(s.split())) / len(s.split()) )

When dealing with information sourced from online, we can extract potentially informative 

features by examining the components of a website address (where we define components as 

elements of the address separated by dots); we count the number of components, and store in-

dividual ones as features:

for df in [xtrain, xtest]:

    df['domcom'] = df['question_user_page'].apply

                   (lambda s: s.split('://')[1].split('/')[0].split('.'))

https://www.kaggle.com/c/google-quest-challenge/data
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    # Count components

    df['dom_cnt'] = df['domcom'].apply(lambda s: len(s))

    # Pad the length in case some domains have fewer components in the name

    df['domcom'] = df['domcom'].apply(lambda s: s + ['none', 'none'])

    # Components

    for ii in range(0,4):

        df['dom_'+str(ii)] = df['domcom'].apply(lambda s: s[ii])

Numerous target columns deal with how relevant the answer is for a given question. One possible 

way of quantifying this relationship is evaluating shared words within a pair of strings:

# Shared elements

for df in [xtrain, xtest]:

    df['q_words'] = df['question_body'].apply(lambda s: [f for f in 
s.split() if f not in eng_stopwords] )

    df['a_words'] = df['answer'].apply(lambda s: [f for f in s.split() if 
f not in eng_stopwords] )

    df['qa_word_overlap'] = df.apply(lambda s: len(np.intersect1d(s['q_
words'], s['a_words'])), axis = 1)

    df['qa_word_overlap_norm1'] = df.apply(lambda s: s['qa_word_overlap']/
(1 + len(s['a_words'])), axis = 1)

    df['qa_word_overlap_norm2'] = df.apply(lambda s: s['qa_word_overlap']/
(1 + len(s['q_words'])), axis = 1)

    df.drop(['q_words', 'a_words'], axis = 1, inplace = True)

Stopwords and punctuation occurrence patterns can tell us something about the style and intent:

for df in [xtrain, xtest]:

    

    ## Number of characters in the text ##

    df["question_title_num_chars"] = df["question_title"].apply(lambda x: 
len(str(x)))

    df["question_body_num_chars"] = df["question_body"].apply(lambda x: 
len(str(x)))

    df["answer_num_chars"] = df["answer"].apply(lambda x: len(str(x)))

    ## Number of stopwords in the text ##



Modeling for NLP404

    df["question_title_num_stopwords"] = df["question_title"].apply(lambda 
x: len([w for w in str(x).lower().split() if w in eng_stopwords]))

    df["question_body_num_stopwords"] = df["question_body"].apply(lambda 
x: len([w for w in str(x).lower().split() if w in eng_stopwords]))

    df["answer_num_stopwords"] = df["answer"].apply(lambda x: len([w for w 
in str(x).lower().split() if w in eng_stopwords]))

    ## Number of punctuations in the text ##

    df["question_title_num_punctuations"] =df['question_title'].
apply(lambda x: len([c for c in str(x) if c in string.punctuation]) )

    df["question_body_num_punctuations"] =df['question_body'].apply(lambda 
x: len([c for c in str(x) if c in string.punctuation]) )

    df["answer_num_punctuations"] =df['answer'].apply(lambda x: len([c for 
c in str(x) if c in string.punctuation]) )

    ## Number of title case words in the text ##

    df["question_title_num_words_upper"] = df["question_title"].
apply(lambda x: len([w for w in str(x).split() if w.isupper()]))

    df["question_body_num_words_upper"] = df["question_body"].apply(lambda 
x: len([w for w in str(x).split() if w.isupper()]))

    df["answer_num_words_upper"] = df["answer"].apply(lambda x: len([w for 
w in str(x).split() if w.isupper()]))

With the “vintage” features prepared – where our focus is on simple summary statistics of the 

text, without paying heed to semantic structure – we can move on to creating embeddings for 

the questions and answers. We could theoretically train a separate word2vec-type model on our 

data (or fine-tune an existing one), but for the sake of this presentation we will use a pre-trained 

model as-is. A useful choice is the Universal Sentence Encoder from Google (https://tfhub.

dev/google/universal-sentence-encoder/4). This model is trained on a variety of data sources. 

It takes as input a piece of text in English and outputs a 512-dimensional vector.

module_url = "../input/universalsentenceencoderlarge4/"

embed = hub.load(module_url)

The code for turning the text fields into embeddings is presented below: we loop through the 

entries in the training/test sets in batches, embed each batch (for memory efficiency reasons), 

and then append them to the original list. 

https://tfhub.dev/google/universal-sentence-encoder/4
https://tfhub.dev/google/universal-sentence-encoder/4
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The final data frames are constructed by stacking each list of batch-level embeddings vertically:

embeddings_train = {}

embeddings_test = {}

for text in ['question_title', 'question_body', 'answer']:

    train_text = xtrain[text].str.replace('?', '.').str.replace('!', '.').
tolist()

    test_text = xtest[text].str.replace('?', '.').str.replace('!', '.').
tolist()

    

    curr_train_emb = []

    curr_test_emb = []

    batch_size = 4

    ind = 0

    while ind*batch_size < len(train_text):

        curr_train_emb.append(embed(train_text[ind*batch_size: (ind + 
1)*batch_size])["outputs"].numpy())

        ind += 1

        

    ind = 0

    while ind*batch_size < len(test_text):

        curr_test_emb.append(embed(test_text[ind*batch_size: (ind + 
1)*batch_size])["outputs"].numpy())

        ind += 1    

        

    embeddings_train[text + '_embedding'] = np.vstack(curr_train_emb)

    embeddings_test[text + '_embedding'] = np.vstack(curr_test_emb)

    print(text)

Given the vector representations for both questions and answers, we can calculate the semantic 

similarity between the fields by using different distance metrics on the pairs of vectors. The idea 

behind trying different metrics is the desire to capture diverse types of characteristics; an anal-

ogy in the context of classification would be to use both accuracy and entropy to get a complete 

picture of the situation:

l2_dist = lambda x, y: np.power(x - y, 2).sum(axis=1)

cos_dist = lambda x, y: (x*y).sum(axis=1)
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dist_features_train = np.array([

    l2_dist(embeddings_train['question_title_embedding'], embeddings_
train['answer_embedding']),

    l2_dist(embeddings_train['question_body_embedding'], embeddings_
train['answer_embedding']),

    l2_dist(embeddings_train['question_body_embedding'], embeddings_
train['question_title_embedding']),

    cos_dist(embeddings_train['question_title_embedding'], embeddings_
train['answer_embedding']),

    cos_dist(embeddings_train['question_body_embedding'], embeddings_
train['answer_embedding']),

    cos_dist(embeddings_train['question_body_embedding'], embeddings_
train['question_title_embedding'])

]).T

dist_features_test = np.array([

    l2_dist(embeddings_test['question_title_embedding'], embeddings_
test['answer_embedding']),

    l2_dist(embeddings_test['question_body_embedding'], embeddings_
test['answer_embedding']),

    l2_dist(embeddings_test['question_body_embedding'], embeddings_
test['question_title_embedding']),

    cos_dist(embeddings_test['question_title_embedding'], embeddings_
test['answer_embedding']),

    cos_dist(embeddings_test['question_body_embedding'], embeddings_
test['answer_embedding']),

    cos_dist(embeddings_test['question_body_embedding'], embeddings_
test['question_title_embedding'])

]).T

Let’s gather the distance features in separate columns:

for ii in range(0,6):

    xtrain['dist'+str(ii)] = dist_features_train[:,ii]

    xtest['dist'+str(ii)] = dist_features_test[:,ii]

Finally, we can also create TF-IDF representations of the text fields; the general idea is to create 

multiple features based on diverse transformations of the input text, and then feed them to a 

relatively simple model. 
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This way, we can capture the characteristics of the data without the need to fit a sophisticated 

deep learning model. 

We can achieve it by analyzing the text at the word as well as the character level. To limit the 

memory consumption, we put an upper bound on the maximum number of both kinds of features 

(your mileage might vary; with more memory, these limits can be upped):

limit_char = 5000

limit_word = 25000

We instantiate character- and word-level vectorizers. The setup of our problem lends itself to 

a convenient usage of the Pipeline functionality from Scikit-learn, allowing a combination of 

multiple steps in the model fitting procedure. We begin by creating two separate transformers 

for the title column (word- and character-level):

title_col = 'question_title'

title_transformer = Pipeline([

    ('tfidf', TfidfVectorizer(lowercase = False, max_df = 0.3, min_df = 1,

                             binary = False, use_idf = True, smooth_idf = 
False,

                             ngram_range = (1,2), stop_words = 'english', 

                             token_pattern = '(?u)\\b\\w+\\b' , max_
features = limit_word ))

])

title_transformer2 = Pipeline([

 ('tfidf2',  TfidfVectorizer(sublinear_tf=True,

    strip_accents='unicode', analyzer='char',

    stop_words='english', ngram_range=(1, 4), max_features= limit_char))   

])

We use the same logic (two different pipelined transformers) for the body:

body_col = 'question_body'

body_transformer = Pipeline([

    ('tfidf',TfidfVectorizer(lowercase = False, max_df = 0.3, min_df = 1,

                             binary = False, use_idf = True, smooth_idf = 
False,

                             ngram_range = (1,2), stop_words = 'english', 
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                             token_pattern = '(?u)\\b\\w+\\b' , max_
features = limit_word ))

])

body_transformer2 = Pipeline([

 ('tfidf2',  TfidfVectorizer( sublinear_tf=True,

    strip_accents='unicode', analyzer='char',

    stop_words='english', ngram_range=(1, 4), max_features= limit_char))   

])

And finally for the answer column:

answer_col = 'answer'

answer_transformer = Pipeline([

    ('tfidf', TfidfVectorizer(lowercase = False, max_df = 0.3, min_df = 1,

                             binary = False, use_idf = True, smooth_idf = 
False,

                             ngram_range = (1,2), stop_words = 'english', 

                             token_pattern = '(?u)\\b\\w+\\b' , max_
features = limit_word ))

])

answer_transformer2 = Pipeline([

 ('tfidf2',  TfidfVectorizer( sublinear_tf=True,

    strip_accents='unicode', analyzer='char',

    stop_words='english', ngram_range=(1, 4), max_features= limit_char))   

])

We wrap up the feature engineering part by processing the numerical features. We use simple 

methods only: missing value imputation to take care of N/A values and a power transformer to 

stabilize the distribution and make it closer to Gaussian (which is frequently helpful if you are 

using a numerical feature inside a neural network):

num_cols = [

    'question_title_word_len', 'question_body_word_len',

    'answer_word_len', 'answer_div',

    'question_title_num_chars','question_body_num_chars',

    'answer_num_chars',
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    'question_title_num_stopwords','question_body_num_stopwords',

    'answer_num_stopwords',

    'question_title_num_punctuations',

    'question_body_num_punctuations','answer_num_punctuations',

    'question_title_num_words_upper',

    'question_body_num_words_upper','answer_num_words_upper',

    'dist0', 'dist1', 'dist2', 'dist3', 'dist4',       'dist5'

]

num_transformer = Pipeline([

    ('impute', SimpleImputer(strategy='constant', fill_value=0)),

    ('scale', PowerTransformer(method='yeo-johnson'))

])

A useful feature of Pipelines is they can be combined and nested. Next, we add functionality 

to handle categorical variables, and then put it all together in a ColumnTransformer object to 

streamline the data pre-processing and feature engineering logic. Each part of the input can be 

handled in its own appropriate manner:

cat_cols = [ 'dom_0',  'dom_1', 'dom_2', 

    'dom_3', 'category','is_question_no_name_user',

    'is_answer_no_name_user','dom_cnt'

]

cat_transformer = Pipeline([

    ('impute', SimpleImputer(strategy='constant', fill_value='')),

    ('encode', OneHotEncoder(handle_unknown='ignore'))

])

preprocessor = ColumnTransformer(

    transformers = [

        ('title', title_transformer, title_col),

        ('title2', title_transformer2, title_col),

        ('body', body_transformer, body_col),

        ('body2', body_transformer2, body_col),

        ('answer', answer_transformer, answer_col),

        ('answer2', answer_transformer2, answer_col),

        ('num', num_transformer, num_cols),
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        ('cat', cat_transformer, cat_cols)

    ]

)

Finally, we are ready to use a Pipeline object combining pre-processing and model fitting:

pipeline = Pipeline([

    ('preprocessor', preprocessor),

    ('estimator',Ridge(random_state=RANDOM_STATE))

])

It is always a good idea to evaluate the performance of your model out of sample: a convenient 

way to go about this is to create out-of-fold predictions, which we discussed in Chapter 6. The 

procedure involves the following steps:

1. Split the data into folds. In our case we use GroupKFold, since one question can have 

multiple answers (in separate rows of the data frame). In order to prevent information 

leakage, we want to ensure each question only appears in one fold.

2. For each fold, train the model using the data in the other folds, and generate the predic-

tions for the fold of choice, as well as the test set.

3. Average the predictions on the test set.

We start with preparing the “storage” matrices in which we will store the predictions. mvalid 

will contain the out-of-fold predictions, while mfull is a placeholder for the predictions on the 

entire test set, averaged across folds. Since several questions contain more than one candidate 

answer, we stratify our KFold split on question_body:

nfolds = 5

mvalid = np.zeros((xtrain.shape[0], len(target_cols)))

mfull = np.zeros((xtest.shape[0], len(target_cols)))

kf = GroupKFold(n_splits= nfolds).split(X=xtrain.question_body, 
groups=xtrain.question_body)

We loop through the folds and build the separate models:

for ind, (train_index, test_index) in enumerate(kf):

    

    # Split the data into training and validation

    x0, x1 = xtrain.loc[train_index], xtrain.loc[test_index]
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    y0, y1 = ytrain.loc[train_index], ytrain.loc[test_index]

    for ii in range(0, ytrain.shape[1]):

        # Fit model

        be = clone(pipeline)

        be.fit(x0, np.array(y0)[:,ii])

        filename = 'ridge_f' + str(ind) + '_c' + str(ii) + '.pkl'

        pickle.dump(be, open(filename, 'wb'))

        

        # Storage matrices for the OOF and test predictions, respectively

        mvalid[test_index, ii] = be.predict(x1)

        mfull[:,ii] += be.predict(xtest)/nfolds

        

    print('---')

Once the fitting part is done, we can evaluate the performance in accordance with the metric 

specified in the competition:

corvec = np.zeros((ytrain.shape[1],1))

for ii in range(0, ytrain.shape[1]):

    mvalid[:,ii] = rankdata(mvalid[:,ii])/mvalid.shape[0]

    mfull[:,ii] = rankdata(mfull[:,ii])/mfull.shape[0]

    

    corvec[ii] = stats.spearmanr(ytrain[ytrain.columns[ii]], mvalid[:,ii])
[0]

    

print(corvec.mean())

The final score is 0.34, which is fairly acceptable as a starting point. 

In this section, we have demonstrated how to build descriptive features on a body of text. While 

this is not a winning formula for an NLP competition (the score is OK, but not a guarantee for 

landing in the medal zone), it is a useful tool to keep in your toolbox. We close this chapter with 

a section providing an overview of text augmentation techniques.
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Shotaro Ishihara
https://www.kaggle.com/sishihara

Our second interview of the chapter is with Shotaro Ishihara, aka u++, 

a Competitions and Notebooks Master who was a member of the win-

ning team in the PetFinder.my Adoption Prediction competition. He is 

currently a Data Scientist and Researcher at a Japanese news media 

company, and has also published books in Japanese on Kaggle, including a translation of Abhishek 

Thakur’s book. He maintains a weekly newsletter in Japanese on Kaggle initiatives (https://www.

getrevue.co/profile/upura).

Where can we find the Kaggle books you’ve written/translated?
https://www.kspub.co.jp/book/detail/5190067.html is a Kaggle primer for beginners based on 

the Titanic GettingStarted competition.

https://book.mynavi.jp/ec/products/detail/id=123641 is the Japanese translation of Abhishek 

Thakur’s Approaching (Almost) Any Machine Learning Problem.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
In Kaggle, I love joining competitions with tabular or text datasets. These types of datasets are familiar 

to me because they are widely used in news media companies. I have a good knowledge of the approaches 

used to handle these datasets.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
The first process is the same: thinking about how to tackle the problem through exploratory data analysis. 

Kaggle assumes the use of advanced machine learning, but this is not the case in business. In practice, I 

try to find ways to avoid using machine learning. Even when I do use it, I prefer working with classical 

methods such as TF-IDF and linear regression rather than advanced methods such as BERT.

We are interested in learning more about how to avoid using machine 
learning in real-world problems. Can you give us some examples?
When working on automated article summaries at work, we adopt a more straightforward extractive 

approach (https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_1D2OS3a03/_

article/-char/en) rather than a neural network-based method (https://www.jstage.jst.go.jp/

article/pjsai/JSAI2021/0/JSAI2021_1D4OS3c02/_article/-char/en).

https://www.kaggle.com/sishihara
https://www.getrevue.co/profile/upura
https://www.getrevue.co/profile/upura
https://www.kspub.co.jp/book/detail/5190067.html
https://book.mynavi.jp/ec/products/detail/id=123641
https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_1D2OS3a03/_article/-char/en
https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_1D2OS3a03/_article/-char/en
https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_1D4OS3c02/_article/-char/en
https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_1D4OS3c02/_article/-char/en
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 It is difficult to guarantee 100% performance with machine learning, and simple methods that are easy 

for humans to understand and engage with are sometimes preferred.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
In the PetFinder.my Adoption Prediction competition, a multi-modal dataset was provided. Many 

participants tried to explore and use all types of data, and the main approach was to extract features 

from images and texts, concatenate them, and train LightGBM. I also employed the same approach. 

Surprisingly, one of my teammates, takuoko (https://www.kaggle.com/takuok), developed a great 

neural network that handles all datasets end to end. Well-designed neural networks have the potential 

to outperform LightGBM in multi-modal competitions. This is a lesson I learned in 2019.

Is that lesson still valid today?
I think the answer is yes. Compared to 2019, neural networks are getting better and better at handling 

multimodal data.

Has Kaggle helped you in your career? If so, how?
Yes. Kaggle gave me a lot of experience in data analysis. The machine learning knowledge I’ve gained 

from Kaggle has significantly helped me to work more successfully. My achievements in Kaggle and 

business work were one of the main reasons why I received the 30 Under 30 Awards and Grand Prize in 

2020 from the International News Media Association. Kaggle has also allowed me to get to know a lot 

of people. These relationships have definitely contributed to my career development.

How have you built up your portfolio thanks to Kaggle?
Learned skills, achieved competition results, and published Notebooks, books, newsletters, and so on.

How do you promote your publishing?
I have various communication channels and I use the appropriate tools for promotion. For example, 

Twitter, personal blogs, and YouTube.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
The importance of exploratory data analysis. In the field of machine learning, there is a concept of the No 

Free Lunch theorem. We should not only learn algorithms, but also learn how to address challenges. The 

No Free Lunch theorem is a statement that there is no universal model that performs well on all problems. 

https://www.kaggle.com/takuok
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Text augmentation strategies
We discussed augmentation strategies for computer vision problems extensively in the previous 

chapter. By contrast, similar approaches for textual data are a less well-explored topic (as evi-

denced by the fact there is no single package like albumentations). In this section, we demonstrate 

some of the possible approaches to addressing the problem.

In machine learning competitions, it is essential to find a model that is appropriate to the characteristics 

of the dataset and the task in order to improve your score.

What mistakes have you made in competitions in the past?
Overfitting to the public leaderboard. In the LANL Earthquake Prediction competition, I scored pretty 

well on the public leaderboard and finished the competition at the rank of fifth. However, my final ranking 

was 211st, which means I believed too much in a limited dataset. Overfitting is a very popular concept in 

machine learning, and I realized the importance of this with pain through Kaggle.

Do you suggest any particular way to avoid overfitting?
It is important to observe carefully how the training and evaluation datasets are divided. I try to build a 

validation set that reproduces this partitioning.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
I love Pandas, which is an essential library for handling tabular datasets. I use it for exploratory data 

analysis by extracting, aggregating, and visualizing.

What do you suggest readers do to master Pandas?
You can look at some community tutorials. Kaggle also provides some learning tutorial courses on Pandas 

and feature engineering.

Do you use other competition platforms? How do they compare to 
Kaggle?
I sometimes use Japanese platforms like Signate, Nishika, etc. (https://upura.github.io/projects/

data_science_competitions/). These are obviously inferior to Kaggle in terms of functionality and 

UX/UX, but it’s interesting to see familiar subjects like the Japanese language.

https://upura.github.io/projects/data_science_competitions/
https://upura.github.io/projects/data_science_competitions/
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Basic techniques
As usual, it is informative to examine the basic approaches first, focusing on random changes and 

synonym handling. A systematic study of the basic approaches is provided in Wei and Zou (2019) 

at https://arxiv.org/abs/1901.11196.

We begin with synonym replacement. Replacing certain words with their synonyms produces text 

that is close in meaning to the original, but slightly perturbed (see the project page at https://

wordnet.princeton.edu/ if you are interested in more details, like where the synonyms are 

actually coming from):

def get_synonyms(word):

    

    synonyms = set()

    

    for syn in wordnet.synsets(word):

        for l in syn.lemmas():

            synonym = l.name().replace("_", " ").replace("-", " ").lower()

            synonym = "".join([char for char in synonym if char in ' 
qwertyuiopasdfghjklzxcvbnm'])

            synonyms.add(synonym) 

    if word in synonyms:

        synonyms.remove(word)

    

    return list(synonyms)

We create a simple wrapper around the workhorse function defined above, specifying a chunk of 

text (a string containing multiple words) and replace at most n of the words:

def synonym_replacement(words, n):    

    words = words.split()    

    new_words = words.copy()

    random_word_list = list(set([word for word in words if word not in 
stop_words]))

    random.shuffle(random_word_list)

    num_replaced = 0

    

    for random_word in random_word_list:

https://arxiv.org/abs/1901.11196
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
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        synonyms = get_synonyms(random_word)

        

        if len(synonyms) >= 1:

            synonym = random.choice(list(synonyms))

            new_words = [synonym if word == random_word else word for word 
in new_words]

            num_replaced += 1

        

        if num_replaced >= n: # Only replace up to n words

            break

    sentence = ' '.join(new_words)

    return sentence

Let’s see how the function works in practice:

print(f" Example of Synonym Replacement: {synonym_replacement('The quick 

brown fox jumps over the lazy dog',4)}")

Example of Synonym Replacement: The spry brown university fox jumpstart 
over the lazy detent

Not quite what you would call Shakespearean, but it does convey the same message while changing 

the style markedly. We can extend this approach by creating multiple new sentences per tweet:

trial_sent = data['text'][25]

print(trial_sent)

the free fillin' app on my ipod is fun, im addicted

for n in range(3):

    print(f" Example of Synonym Replacement: {synonym_replacement(trial_
sent,n)}")

Example of Synonym Replacement: the free fillin' app on my ipod is fun, im 
addict

Example of Synonym Replacement: the innocent fillin' app on my ipod is 
fun, im addicted

Example of Synonym Replacement: the relinquish fillin' app on my ipod is 
fun, im addict

As you can see, generating variations of a text chunk using synonyms is quite straightforward.
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Next, swapping is a simple and efficient method; we create a modified sentence by randomly 

swapping the order of words in the text. 

Carefully applied, this can be viewed as a potentially useful form of regularization, as it disturbs 

the sequential nature of the data that models like LSTM rely on. The first step is to define a func-

tion swapping words:

def swap_word(new_words):    

    random_idx_1 = random.randint(0, len(new_words)-1)

    random_idx_2 = random_idx_1

    counter = 0    

    while random_idx_2 == random_idx_1:

        random_idx_2 = random.randint(0, len(new_words)-1)

        counter += 1        

        if counter > 3:

            return new_words

    

    new_words[random_idx_1], new_words[random_idx_2] = new_words[random_
idx_2], new_words[random_idx_1] 

    return new_words

Then, we write a wrapper around this function:

# n is the number of words to be swapped

def random_swap(words, n):    

    words = words.split()

    new_words = words.copy()

    

    for _ in range(n):

        new_words = swap_word(new_words)

        

    sentence = ' '.join(new_words)    

    return sentence

Synonyms and swapping do not affect the length of the sentence we are modifying. If in a given 

application it is useful to modify that attribute, we can remove or add words to the sentence. 
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The most common way to implement the former is to delete words at random:

def random_deletion(words, p):

    words = words.split()

    

    # Obviously, if there's only one word, don't delete it

    if len(words) == 1:

        return words

    # Randomly delete words with probability p

    new_words = []

    for word in words:

        r = random.uniform(0, 1)

        if r > p:

            new_words.append(word)

    # If you end up deleting all words, just return a random word

    if len(new_words) == 0:

        rand_int = random.randint(0, len(words)-1)

        return [words[rand_int]]

    sentence = ' '.join(new_words)

    

    return sentence

Let’s look at some examples:

print(random_deletion(trial_sent,0.2))

print(random_deletion(trial_sent,0.3))

print(random_deletion(trial_sent,0.4))

the free fillin' app on my is fun, addicted

free fillin' app on my ipod is im addicted

the free on my ipod is fun, im
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If we can remove, we can also add, of course. Random insertion of words to a sentence can be 

viewed as the NLP equivalent of adding noise or blur to an image:

def random_insertion(words, n):    

    words = words.split()

    new_words = words.copy()    

    for _ in range(n):

        add_word(new_words)        

    sentence = ' '.join(new_words)

    return sentence

def add_word(new_words):    

    synonyms = []

    counter = 0

    

    while len(synonyms) < 1:

        random_word = new_words[random.randint(0, len(new_words)-1)]

        synonyms = get_synonyms(random_word)

        counter += 1

        if counter >= 10:

            return        

    random_synonym = synonyms[0]

    random_idx = random.randint(0, len(new_words)-1)

    new_words.insert(random_idx, random_synonym)

Here is the function in action:

print(random_insertion(trial_sent,1))

print(random_insertion(trial_sent,2))

print(random_insertion(trial_sent,3))

the free fillin' app on my addict ipod is fun, im addicted

the complimentary free fillin' app on my ipod along is fun, im addicted

the free along fillin' app addict on my ipod along is fun, im addicted
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We can combine all the transformations discussed above into a single function, producing four 

variants of the same sentence:

def aug(sent,n,p):

    print(f" Original Sentence : {sent}")

    print(f" SR Augmented Sentence : {synonym_replacement(sent,n)}")

    print(f" RD Augmented Sentence : {random_deletion(sent,p)}")

    print(f" RS Augmented Sentence : {random_swap(sent,n)}")

    print(f" RI Augmented Sentence : {random_insertion(sent,n)}")

aug(trial_sent,4,0.3)

Original Sentence : the free fillin' app on my ipod is fun, im addicted

SR Augmented Sentence : the disembarrass fillin' app on my ipod is fun, im 
hook

RD Augmented Sentence : the free app on my ipod fun, im addicted

RS Augmented Sentence : on free fillin' ipod is my the app fun, im 
addicted

RI Augmented Sentence : the free fillin' app on gratis addict my ipod is 
complimentary make up fun, im addicted

The augmentation methods discussed above do not exploit the structure of text data - to give one 

example, even analyzing a simple characteristic like “part of speech” can help us construct more 

useful transformations of the original text. This is the approach we will now focus on.

nlpaug
We conclude this section by demonstrating the capabilities provided by the nlpaug package 

(https://github.com/makcedward/nlpaug). It aggregates different methods for text augmenta-

tion and is designed to be lightweight and easy to incorporate into a workflow. We demonstrate 

some examples of the functionality contained therein below.

! pip install nlpaug

We import the character- and word-level augmenters, which we will use to plug in specific meth-

ods:

import nlpaug.augmenter.char as nac

import nlpaug.augmenter.word as naw

https://github.com/makcedward/nlpaug
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test_sentence = "I genuinely have no idea what the output of this sequence 
of words will be - it will be interesting to find out what nlpaug can do 
with this!"

What happens when we apply a simulated typo to our test sentence? This transformation can be 

parametrized in a number of ways; for a full list of parameters and their explanations, the reader 

is encouraged to examine the official documentation: https://nlpaug.readthedocs.io/en/

latest/augmenter/char/keyboard.html.

aug = nac.KeyboardAug(name='Keyboard_Aug', aug_char_min=1,

                      aug_char_max=10, aug_char_p=0.3, aug_word_p=0.3,

                      aug_word_min=1, aug_word_max=10, stopwords=None,

                      tokenizer=None, reverse_tokenizer=None,

                      include_special_char=True, include_numeric=True,

                      include_upper_case=True, lang='en', verbose=0,

                      stopwords_regex=None, model_path=None, min_char=4)

test_sentence_aug = aug.augment(test_sentence)

print(test_sentence)

print(test_sentence_aug)

This is the output:

I genuinely have no idea what the output of this sequence of words will be 
- it will be interesting to find out what nlpaug can do with this!

I geb&ine:y have no kdeZ qhQt the 8uYput of tTid sequsnDr of aorVs will be 
- it wi,k be jnterewtlHg to find out what nlpaug can do with this!

We can simulate an OCR error creeping into our input:

aug = nac.OcrAug(name='OCR_Aug', aug_char_min=1, aug_char_max=10,

                 aug_char_p=0.3, aug_word_p=0.3, aug_word_min=1,

                 aug_word_max=10, stopwords=None, tokenizer=None,

                 reverse_tokenizer=None, verbose=0,

                 stopwords_regex=None, min_char=1)

test_sentence_aug = aug.augment(test_sentence)

print(test_sentence)

print(test_sentence_aug)

https://nlpaug.readthedocs.io/en/latest/augmenter/char/keyboard.html
https://nlpaug.readthedocs.io/en/latest/augmenter/char/keyboard.html
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We get:

I genuinely have no idea what the output of this sequence of words will be 
- it will be interesting to find out what nlpaug can do with this!

I 9enoine1y have no idea what the ootpot of this sequence of wokd8 will be 
- it will be inteke8tin9 to find out what nlpaug can du with this!

While useful, character-level transformations have a limited scope when it comes to creative 

changes in the data. Let us examine what possibilities nlpaug offers when it comes to word-level 

modifications. Our first example is replacing a fixed percentage of words with their antonyms:

aug = naw.AntonymAug(name='Antonym_Aug', aug_min=1, aug_max=10, aug_p=0.3,

                     lang='eng', stopwords=None, tokenizer=None,

                     reverse_tokenizer=None, stopwords_regex=None,

                     verbose=0)

test_sentence_aug = aug.augment(test_sentence)

print(test_sentence)

print(test_sentence_aug)

We get:

I genuinely have no idea what the output of this sequence of words will be 
- it will be interesting to find out what nlpaug can do with this!

I genuinely lack no idea what the output of this sequence of words will 
differ - it will differ uninteresting to lose out what nlpaug can unmake 
with this!

nlpaug also offers us a possibility for, for example, replacing synonyms; such transformations 

can also be achieved with the more basic techniques discussed above. For completeness’ sake, we 

demonstrate a small sample below, which uses a BERT architecture under the hood:

aug = naw.ContextualWordEmbsAug(model_path='bert-base-uncased',

                                model_type='', action='substitute',

                                # temperature=1.0,

                                top_k=100,

                                # top_p=None,

                                name='ContextualWordEmbs_Aug', aug_min=1,

                                aug_max=10, aug_p=0.3, 

                                stopwords=None, device='cpu',

                                force_reload=False,
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                                # optimize=None,

                                stopwords_regex=None,

                                verbose=0, silence=True)

test_sentence_aug = aug.augment(test_sentence)

print(test_sentence)

print(test_sentence_aug)

Here is the result:

I genuinely have no idea what the output of this sequence of words will be 
- it will be interesting to find out what nlpaug can do with this!

i genuinely have no clue what his rest of this series of words will say - 
its will seemed impossible to find just what we can do with this!

As you can see, nlpaug offers a broad range of options for modifying your textual input to generate 

augmentations. Which ones should actually be chosen is very much context-dependent and the 

decision requires a little bit of domain knowledge, suited to a particular application.

Summary
In this chapter, we discussed modeling for NLP competitions. We demonstrate both vintage and 

state-of-the-art methods applicable to a diverse range of problems appearing in Kaggle compe-

titions. In addition, we touched upon the frequently ignored topic of text augmentation.

In the next chapter, we will discuss simulation competitions, a new class of contests that has 

been gaining popularity over the last few years.

Some places for further exploration would be beginner competitions such as Nat-

ural Language Processing with Disaster Tweets (https://www.kaggle.com/c/nlp-

getting-started), as well as more intermediate or advanced ones like Jigsaw 

Rate Severity of Toxic Comments (https://www.kaggle.com/c/jigsaw-toxic-

severity-rating) or Google QUEST Q&A Labeling (https://www.kaggle.com/c/

google-quest-challenge). In all of these cases, nlpaug has been widely used 

– including in the winning solutions.

https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/jigsaw-toxic-severity-rating
https://www.kaggle.com/c/jigsaw-toxic-severity-rating
https://www.kaggle.com/c/google-quest-challenge
https://www.kaggle.com/c/google-quest-challenge
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord
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Simulation and Optimization 
Competitions

Reinforcement learning (RL) is an interesting case among the different branches of machine 

learning. On the one hand, it is quite demanding from a technical standpoint: various intuitions 

from supervised learning do not hold, and the associated mathematical apparatus is quite a bit 

more advanced; on the other hand, it is the easiest one to explain to an outsider or layperson. A 

simple analogy is teaching your pet (I am very intentionally trying to steer clear of the dogs versus 

cats debate) to perform tricks: you provide a treat for a trick well done, and refuse it otherwise.

Reinforcement learning was a latecomer to the competition party on Kaggle, but the situation has 

changed in the last few years with the introduction of simulation competitions. In this chapter, 

we will describe this new and exciting part of the Kaggle universe. So far – at the time of writing – 

there have been four Featured competitions and two Playground ones; this list, while admittedly 

not extensive, allows us to give a broad overview.

In this chapter, we will demonstrate solutions to the problems presented in several simulation 

competitions:

• We begin with Connect X.

• We follow with Rock, Paper, Scissors, where a dual approach to building a competitive 

agent is shown.

• Next, we demonstrate a solution based on multi-armed bandits to the Santa competition.

• We conclude with an overview of the remaining competitions, which are slightly outside 

the scope of this chapter.
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If reinforcement learning is a completely new concept for you, it is probably a good idea to get some 

basic understanding first. A very good way to start on the RL adventure is the Kaggle Learning 

course dedicated to this very topic in the context of Game AI (https://www.kaggle.com/learn/

intro-to-game-ai-and-reinforcement-learning). The course introduces basic concepts such 

as agents and policies, also providing a (crash) introduction to deep reinforcement learning. All 

the examples in the course use the data from the Playground competition Connect X, in which the 

objective is to train an agent capable of playing a game of connecting checkers in a line (https://

www.kaggle.com/c/connectx/overview).

On a more general level, it is worth pointing out that an important aspect of simulation and opti-

mization competitions is the environment: due to the very nature of the problem, your solution 

needs to exhibit more dynamic characteristics than just submitting a set of numbers (as would be 

the case for “regular” supervised learning contests). A very informative and detailed description 

of the environment used in the simulation competitions can be found at https://github.com/

Kaggle/kaggle-environments/blob/master/README.md.

Connect X
In this section, we demonstrate how to approach the simple problem of playing checkers using 

heuristics. While not a deep learning solution, it is our view that this bare-bones presentation of 

the concepts is much more useful for people without significant prior exposure to RL.

If you are new to the concept of using AI for board games, the presentation by Tom van de 

Wiele (https://www.kaggle.com/tvdwiele) is a resource worth exploring: https://tinyurl.

com/36rdv5sa.

The objective of Connect X is to get a number (X) of your checkers in a row – horizontally, verti-

cally, or diagonally – on the game board before your opponent. Players take turns dropping their 

checkers into one of the columns at the top of the board. This means each move may have the 

purpose of trying to win for you or trying to stop your opponent from winning.

https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
https://www.kaggle.com/c/connectx/overview
https://www.kaggle.com/c/connectx/overview
https://github.com/Kaggle/kaggle-environments/blob/master/README.md
https://github.com/Kaggle/kaggle-environments/blob/master/README.md
https://www.kaggle.com/tvdwiele
https://tinyurl.com/36rdv5sa
https://tinyurl.com/36rdv5sa
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Figure 12.1: Connect X board

Connect X was the first competition that introduced agents: instead of a static submission (or 

a Notebook that was evaluated against an unseen dataset), participants had to submit agents 

capable of playing the game against others. The evaluation proceeded in steps:

1. Upon uploading, a submission plays against itself to ensure it works properly.

2. If this validation episode is successful, a skill rating is assigned, and the submission joins 

the ranks of all competitors.

3. Each day, several episodes are played for each submission, and subsequently rankings 

are adjusted.

With that setup in mind, let us proceed toward demonstrating how to build a submission for 

the Connect X competition. The code we present is for X=4, but can be easily adapted for other 

values or variable X.

First, we install the Kaggle environments package:

!pip install kaggle-environments --upgrade
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We define an environment in which our agent will be evaluated:

from kaggle_environments import evaluate, make

env = make("connectx", debug=True)

env.render()

While a frequent impulse you might have is to try sophisticated methods, it is useful to start 

simple – as we will do here, by using simple heuristics. These are combined into a single function 

in the accompanying code, but for the sake of presentation, we describe them one at a time here.

The first rule is checking whether either of the players has a chance to connect four checkers 

vertically and, if so, returning the position at which it is possible. We can achieve this by using a 

simple variable as our input argument, which can take on two possible values indicating which 

player opportunities are being analyzed:

def my_agent(observation, configuration):

    from random import choice

    # me:me_or_enemy=1, enemy:me_or_enemy=2

    def check_vertical_chance(me_or_enemy):

        for i in range(0, 7):

            if observation.board[i+7*5] == me_or_enemy \

            and observation.board[i+7*4] == me_or_enemy \

            and observation.board[i+7*3] == me_or_enemy \

            and observation.board[i+7*2] == 0:

                return i

            elif observation.board[i+7*4] == me_or_enemy \

            and observation.board[i+7*3] == me_or_enemy \

            and observation.board[i+7*2] == me_or_enemy \

            and observation.board[i+7*1] == 0:

                return i

            elif observation.board[i+7*3] == me_or_enemy \

            and observation.board[i+7*2] == me_or_enemy \

            and observation.board[i+7*1] == me_or_enemy \

            and observation.board[i+7*0] == 0:

                return i

        # no chance

        return -99
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We can define an analogous method for horizontal chances:

    def check_horizontal_chance(me_or_enemy):

        chance_cell_num = -99

        for i in [0,7,14,21,28,35]:

            for j in range(0, 4):

                val_1 = i+j+0

                val_2 = i+j+1

                val_3 = i+j+2

                val_4 = i+j+3

                if sum([observation.board[val_1] == me_or_enemy, \

                        observation.board[val_2] == me_or_enemy, \

                        observation.board[val_3] == me_or_enemy, \

                        observation.board[val_4] == me_or_enemy]) == 3:

                    for k in [val_1,val_2,val_3,val_4]:

                        if observation.board[k] == 0:

                            chance_cell_num = k

                            # bottom line

                            for l in range(35, 42):

                                if chance_cell_num == l:

                                    return l - 35

                            # others

                            if observation.board[chance_cell_num+7] != 0:

                                return chance_cell_num % 7

        # no chance

        return -99

We repeat the same approach for the diagonal combinations:

# me:me_or_enemy=1, enemy:me_or_enemy=2

def check_slanting_chance(me_or_enemy, lag, cell_list):

        chance_cell_num = -99

        for i in cell_list:

            val_1 = i+lag*0

            val_2 = i+lag*1

            val_3 = i+lag*2

            val_4 = i+lag*3

            if sum([observation.board[val_1] == me_or_enemy, \
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                    observation.board[val_2] == me_or_enemy, \

                    observation.board[val_3] == me_or_enemy, \

                    observation.board[val_4] == me_or_enemy]) == 3:

                for j in [val_1,val_2,val_3,val_4]:

                    if observation.board[j] == 0:

                        chance_cell_num = j

                        # bottom line

                        for k in range(35, 42):

                            if chance_cell_num == k:

                                return k - 35

                        # others

                        if chance_cell_num != -99 \

                        and observation.board[chance_cell_num+7] != 0:

                            return chance_cell_num % 7

        # no chance

        return -99

We can combine the logic into a single function checking the opportunities (playing the game 

against an opponent):

    def check_my_chances():
        # check my vertical chance
        result = check_vertical_chance(my_num)
        if result != -99:
            return result
        # check my horizontal chance
        result = check_horizontal_chance(my_num)
        if result != -99:
            return result
        # check my slanting chance 1 (up-right to down-left)
        result = check_slanting_chance(my_num, 6, [3,4,5,6,10,11,12,13,17,
18,19,20])
        if result != -99:
            return result
        # check my slanting chance 2 (up-left to down-right)
        result = check_slanting_chance(my_num, 8, [0,1,2,3,7,8,9,10,14,15, 
16,17])
        if result != -99:
            return result
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        # no chance
        return -99

Those blocks constitute the basics of the logic. While a bit cumbersome to formulate, they are a 

useful exercise in converting an intuition into heuristics that can be used in an agent competing 

in a game.

The performance of our newly defined agent can be evaluated against a pre-defined agent, for 

example, a random one:

env.reset()

env.run([my_agent, "random"])

env.render(mode="ipython", width=500, height=450)

The code above shows you how to set up a solution from scratch for a relatively simple problem 

(there is a reason why Connect X is a Playground and not a Featured competition). Interestingly, 

this simple problem can be handled with (almost) state-of-the-art methods like AlphaZero: 

https://www.kaggle.com/connect4alphazero/alphazero-baseline-connectx.

With the introductory example behind us, you should be ready to dive into the more elaborate 

(or in any case, not toy example-based) contests.

Rock-paper-scissors
It is no coincidence that several problems in simulation competitions refer to playing games: at 

varying levels of complexity, games offer an environment with clearly defined rules, naturally 

lending itself to the agent-action-reward framework. Aside from Tic-Tac-Toe, connecting check-

ers is one of the simplest examples of a competitive game. Moving up the difficulty ladder (of 

games), let’s have a look at rock-paper-scissors and how a Kaggle contest centered around this 

game could be approached.

The idea of the Rock, Paper, Scissors competition (https://www.kaggle.com/c/rock-paper-

scissors/code) was an extension of the basic rock-paper-scissors game (known as roshambo in 

some parts of the world): instead of the usual “best of 3” score, we use “best of 1,000.”

Please see the accompanying code in the repository for a complete definition of 

the agent in this example.

https://www.kaggle.com/connect4alphazero/alphazero-baseline-connectx
https://www.kaggle.com/c/rock-paper-scissors/code
https://www.kaggle.com/c/rock-paper-scissors/code
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We will describe two possible approaches to the problem: one rooted in the game-theoretic ap-

proach, and the other more focused on the algorithmic side.

We begin with the Nash equilibrium. Wikipedia gives the definition of this as the solution to 

a non-cooperative game involving two or more players, where each player is assumed to know 

the equilibrium strategies of the others, and no player can obtain an advantage by changing only 

their own strategy.

Denoting our players as red and blue, each cell in the matrix of outcomes shows the result of a 

given combination of moves:

Figure 12.2: Payoff matrix for rock-paper-scissors 

As an example, if both play Rock (the top-left cell), both gain 0 points; if blue plays Rock and red 

plays Paper (the cell in the second column of the first row), red wins – so red gains +1 point and 

blue has -1 point as a result.

If we played each action with an equal probability of 1/3, then the opponent must do the same; 

otherwise, if they play Rock all the time, they will tie against Rock, lose against Paper, and win 

against Scissors – each with a probability of 1/3 (or one-third of the time). The expected reward, 

in this case, is 0, in which case we can change our strategy to Paper and win all the time. The 

same reasoning can be conducted for the strategy of Paper versus Scissors and Scissors versus 

Rock, for which we will not show you the matrix of outcomes due to redundancy.

An excellent introduction to rock-paper-scissors in a game-theoretic framework 

can be found at https://www.youtube.com/watch?v=-1GDMXoMdaY.

https://www.youtube.com/watch?v=-1GDMXoMdaY
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The remaining option in order to be in equilibrium is that both players need to play a random 

strategy – which is the Nash equilibrium. We can build a simple agent around this idea: 

%%writefile submission.py

import random

def nash_equilibrium_agent(observation, configuration):

    return random.randint(0, 2)

How does our Nash agent perform against others? We can find out by evaluating the performance:

!pip install -q -U kaggle_environments

from kaggle_environments import make

We start by creating the rock-paper-scissors environment and setting the limit to 1,000 episodes 

per simulation:

env = make(

    "rps", 

    configuration={"episodeSteps": 1000}

)

We will make use of a Notebook created in this competition that implemented numerous agents 

based on deterministic heuristics (https://www.kaggle.com/ilialar/multi-armed-bandit-

vs-deterministic-agents) and import the code for the agents we compete against from there:

%%writefile submission_copy_opponent.py
def copy_opponent_agent(observation, configuration):
    if observation.step > 0:

The magic at the start (writing from a Notebook directly to a file) is necessary to 

satisfy the submission constraints of this particular competition.

At the time of writing, there is an error that pops up after this import (Failure to 

load a module named ‘gfootball’); the official advice from Kaggle is to ignore it. In 

practice, it does not seem to have any impact on executing the code.

https://www.kaggle.com/ilialar/multi-armed-bandit-vs-deterministic-agents
https://www.kaggle.com/ilialar/multi-armed-bandit-vs-deterministic-agents
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        return observation.lastOpponentAction
    else:
        return 0

# nash_equilibrium_agent vs copy_opponent_agent
env.run(
    ["submission.py", "submission_copy_opponent.py"]
)

env.render(mode="ipython", width=500, height=400)

When we execute the preceding block and run the environment, we can watch an animated board 

for the 1,000 epochs. A snapshot looks like this:

Figure 12.3: A snapshot from a rendered environment evaluating agent performance

In supervised learning – both classification and regression – it is frequently useful to start ap-

proaching any problem with a simple benchmark, usually a linear model. Even though not state 

of the art, it can provide a useful expectation and a measure of performance. In reinforcement 

learning, a similar idea holds; an approach worth trying in this capacity is the multi-armed bandit, 

the simplest algorithm we can honestly call RL. In the next section, we demonstrate how this 

approach can be used in a simulation competition.
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Santa competition 2020
Over the last few years, a sort of tradition has emerged on Kaggle: in early December, there is 

a Santa-themed competition. The actual algorithmic side varies from year to year, but for our 

purposes, the 2020 competition is an interesting case: https://www.kaggle.com/c/santa-2020.

The setup was a classical multi-armed bandit (MAB) trying to maximize reward by taking re-

peated action on a vending machine, but with two extras:

• Reward decay: At each step, the probability of obtaining a reward from a machine de-

creases by 3 percent.

• Competition: You are constrained not only by time (a limited number of attempts) but 

also by another player attempting to achieve the same objective. We mention this con-

straint mostly for the sake of completeness, as it is not crucial to incorporate explicitly in 

our demonstrated solution.

The solution we demonstrate is adapted from https://www.kaggle.com/ilialar/simple-multi-

armed-bandit, code from Ilia Larchenko (https://www.kaggle.com/ilialar). Our approach is 

based on successive updates to the distribution of reward: at each step, we generate a random 

number from a Beta distribution with parameters (a+1, b+1) where:

• a is the total reward from this arm (number of wins)

• b is the number of historical losses

When we need to decide which arm to pull, we select the arm with the highest generated number 

and use it to generate the next step; our posterior distribution becomes a prior for the next step.

For a good explanation of the methods for approaching the general MAB problem, 

the reader is referred to https://lilianweng.github.io/lil-log/2018/01/23/

the-multi-armed-bandit-problem-and-its-solutions.html.

https://www.kaggle.com/c/santa-2020
https://www.kaggle.com/ilialar/simple-multi-armed-bandit
https://www.kaggle.com/ilialar/simple-multi-armed-bandit
https://www.kaggle.com/ilialar
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html
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The graph below shows the shape of a Beta distribution for different pairs of (a, b) values:

Figure 12.4: Shape of the beta distribution density for different combinations of (a,b) param-
eters

As you can see, initially, the distribution is flat (Beta(0,0) is uniform), but as we gather more 

information, it concentrates the probability mass around the mode, which means there is less 

uncertainty and we are more confident about our judgment. We can incorporate the competi-

tion-specific reward decay by decreasing the a parameter every time an arm is used.

We begin the creation of our agent by writing a submission file. First, the necessary imports and 

variable initialization:

%%writefile submission.py

import json

import numpy as np

import pandas as pd

bandit_state = None

total_reward = 0

last_step = None
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We define the class specifying an MAB agent. For the sake of reading coherence, we reproduce 

the entire code and include the explanations in comments within it:

def multi_armed_bandit_agent (observation, configuration):

    global history, history_bandit

    step = 1.0         # balance exploration / exploitation

    decay_rate = 0.97  # how much do we decay the win count after each call

    

    global bandit_state,total_reward,last_step

        

    if observation.step == 0:

        # initial bandit state

        bandit_state = [[1,1] for i in range(configuration["banditCount"])]

    else:       

        # updating bandit_state using the result of the previous step

        last_reward = observation["reward"] - total_reward

        total_reward = observation["reward"]

        

        # we need to understand who we are Player 1 or 2

        player = int(last_step == observation.lastActions[1])

        

        if last_reward > 0:

            bandit_state[observation.lastActions[player]][0] += last_
reward * step

        else:

            bandit_state[observation.lastActions[player]][1] += step

        

        bandit_state[observation.lastActions[0]][0] = (bandit_
state[observation.lastActions[0]][0] - 1) * decay_rate + 1

        bandit_state[observation.lastActions[1]][0] = (bandit_
state[observation.lastActions[1]][0] - 1) * decay_rate + 1

    # generate random number from Beta distribution for each agent and 
select the most lucky one

    best_proba = -1
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    best_agent = None

    for k in range(configuration["banditCount"]):

        proba = np.random.beta(bandit_state[k][0],bandit_state[k][1])

        if proba > best_proba:

            best_proba = proba

            best_agent = k

        

    last_step = best_agent

    return best_agent  

As you can see, the core logic of the function is a straightforward implementation of the MAB 

algorithm. An adjustment specific to our contest occurs with the bandit_state variable, where 

we apply the decay multiplier.

Similar to the previous case, we are now ready to evaluate the performance of our agent in the 

contest environment. The code snippet below demonstrates how this can be implemented:

%%writefile random_agent.py

import random

def random_agent(observation, configuration):

    return random.randrange(configuration.banditCount)

from kaggle_environments import make

env = make("mab", debug=True)

env.reset()

env.run(["random_agent.py", "submission.py"])

env.render(mode="ipython", width=800, height=700)

We see something like this:
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Figure 12.5: Snapshot from a rendered environment evaluating agent performance

In this section, we demonstrated how a vintage multi-armed bandit algorithm can be utilized in 

a simulation competition on Kaggle. While useful as a starting point, this was not sufficient to 

qualify for the medal zone, where deep reinforcement learning approaches were more popular.

We will follow up with a discussion of approaches based on other methods, in a diverse range 

of competitions.

The name of the game
Beyond the relatively elementary games discussed above, simulation competitions involve more 

elaborate setups. In this section, we will briefly discuss those. The first example is Halite, defined 

on the competition page (https://www.kaggle.com/c/halite) in the following manner:

Halite [...] is a resource management game where you build and control a small 

armada of ships. Your algorithms determine their movements to collect halite, a 

luminous energy source. The most halite at the end of the match wins, but it’s up 

to you to figure out how to make effective and efficient moves. You control your 

fleet, build new ships, create shipyards, and mine the regenerating halite on the 

game board.

https://www.kaggle.com/c/halite
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This is what the game looks like:

Figure 12.6: Halite game board

Kaggle organized two competitions around the game: a Playground edition (https://www.kaggle.

com/c/halite-iv-playground-edition) as well as a regular Featured edition (https://www.

kaggle.com/c/halite). The classic reinforcement learning approach was less useful in this in-

stance since, with an arbitrary number of units (ships/bases) and a dynamic opponent pool, the 

problem of credit assignment was becoming intractable for people with access to a “normal” 

level of computing resources.

A description of the winning solution by Tom van de Wiele (https://www.kaggle.com/c/halite/

discussion/183543) provides an excellent overview of the modified approach that proved suc-

cessful in this instance (deep RL with independent credit assignment per unit).

Explaining the problem of credit assignment in full generality is beyond the scope of 

this book, but an interested reader is encouraged to start with the Wikipedia entry 

(https://en.wikipedia.org/wiki/Assignment_problem) and follow up with 

this excellent introductory article by Mesnard et al.: https://proceedings.mlr.

press/v139/mesnard21a.html.

https://www.kaggle.com/c/halite-iv-playground-edition
https://www.kaggle.com/c/halite-iv-playground-edition
https://www.kaggle.com/c/halite
https://www.kaggle.com/c/halite
https://www.kaggle.com/c/halite/discussion/183543
https://www.kaggle.com/c/halite/discussion/183543
https://en.wikipedia.org/wiki/Assignment_problem
https://proceedings.mlr.press/v139/mesnard21a.html
https://proceedings.mlr.press/v139/mesnard21a.html
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Another competition involving a relatively sophisticated game was Lux AI (https://www.kaggle.

com/c/lux-ai-2021). In this competition, participants were tasked with designing agents to tackle 

a multi-variable optimization problem combining resource gathering and allocation, competing 

against other players. In addition, successful agents had to analyze the moves of their opponents 

and react accordingly. An interesting feature of this contest was the popularity of a “meta” ap-

proach: imitation learning (https://paperswithcode.com/task/imitation-learning). This is 

a fairly novel approach in RL, focused on learning a behavior policy from demonstration – without 

a specific model to describe the generation of state-action pairs. A competitive implementation 

of this idea (at the time of writing) is given by Kaggle user Ironbar (https://www.kaggle.com/c/

lux-ai-2021/discussion/293911).

Finally, no discussion of simulation competitions in Kaggle would be complete without the Google 

Research Football with Manchester City F.C. competition (https://www.kaggle.com/c/google-

football/overview). The motivation behind this contest was for researchers to explore AI agents’ 

ability to play in complex settings like football. The competition Overview section formulates 

the problem thus:

Unlike some examples given above, this competition was dominated by reinforcement learning 

approaches:

• Team Raw Beast (3rd) followed a methodology inspired by AlphaStar: https://www.kaggle.

com/c/google-football/discussion/200709

• Salty Fish (2nd) utilized a form of self-play: https://www.kaggle.com/c/google-football/

discussion/202977

• The winners, WeKick, used a deep learning-based solution with creative feature engineer-

ing and reward structure adjustment: https://www.kaggle.com/c/google-football/

discussion/202232

Studying the solutions listed above is an excellent starting point to learn how RL can be utilized 

to solve this class of problems.

The sport requires a balance of short-term control, learned concepts such as passing, 

and high-level strategy, which can be difficult to teach agents. A current environ-

ment exists to train and test agents, but other solutions may offer better results.

https://www.kaggle.com/c/lux-ai-2021
https://www.kaggle.com/c/lux-ai-2021
https://paperswithcode.com/task/imitation-learning
https://www.kaggle.com/c/lux-ai-2021/discussion/293911
https://www.kaggle.com/c/lux-ai-2021/discussion/293911
https://www.kaggle.com/c/google-football/overview
https://www.kaggle.com/c/google-football/overview
https://www.kaggle.com/c/google-football/discussion/200709
https://www.kaggle.com/c/google-football/discussion/200709
https://www.kaggle.com/c/google-football/discussion/202977
https://www.kaggle.com/c/google-football/discussion/202977
https://www.kaggle.com/c/google-football/discussion/202232
https://www.kaggle.com/c/google-football/discussion/202232
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Firat Gonen
https://www.kaggle.com/frtgnn

For this chapter’s interview, we spoke to Firat Gonen, a Triple Grand-

master in Datasets, Notebooks, and Discussion, and an HP Data Science 

Global Ambassador. He gives us his take on his Kaggle approach, and 

how his attitude has evolved over time.

What’s your favorite kind of competition and why? In terms of 
technique and solving approaches, what is your specialty on Kaggle? 
My favorite kind evolved over time. I used to prefer very generic tabular competitions where a nice laptop 

and some patience would suffice to master the trends. I felt like I used to be able to see the outlying trends 

between training and test sets pretty good. Over time, with being awarded the ambassadorship by Z by HP 

and my workstation equipment, I kind of converted myself towards more computer vision competitions, 

though I still have a lot to learn.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work? 
I usually prefer to delay the modeling part for as long as I can. I like to use that time on EDAs, outliers, 

reading the forum, etc., trying to be patient. After I feel like I’m done with feature engineering, I try to 

form only benchmark models to get a grip on different architecture results. My technique is very similar 

when it comes to professional work as well. I find it useless to try to do the best in a huge amount of time; 

there has to be a balance between time and success.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
The competition hosted by François Chollet was extremely challenging; the very first competition to force 

us into AGI. I remember I felt pretty powerless in that competition, where I learned several new techniques. 

I think everybody did that while remembering data science is not just machine learning. Several other 

techniques like mixed integer programming resurfaced at Kaggle.

Has Kaggle helped you in your career? If so, how?
Of course: I learned a lot of new techniques and stayed up to date thanks to Kaggle. I’m in a place in my 

career where my main responsibility lies mostly in management. That’s why Kaggle is very important 

to me for staying up to date in several things.

https://www.kaggle.com/frtgnn
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How have you built up your portfolio thanks to Kaggle?
I believe the advantage was in a more indirect way, where people saw both practical skills (thanks to 

Kaggle) and more theoretical skills in my more conventional education qualifications.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
I think there are two things newcomers do wrong. The first one is having fear in entering a new competition, 

thinking that they will get bad scores and it will be registered. This is nonsense. Everybody has bad scores; 

it’s all about how much you devote to a new competition. The second one is that they want to get to the 

model-building stage ASAP, which is very wrong; they want to see their benchmark scores and then they 

get frustrated. I advise them to take their time in feature generation and selection, and also in EDA stages.

What mistakes have you made in competitions in the past?
My mistakes are, unfortunately, very similar to new rookies. I got impatient in several competitions 

where I didn’t pay enough attention to early stages, and after some time you feel like you don’t have 

enough time to go back.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
I would recommend PyCaret for benchmarking to get you speed, and PyTorch for a model-building 

framework.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Exploratory data analysis and previous similar competition discussions.

Do you use other competition platforms? How do they compare to 
Kaggle?
To be honest, I haven’t rolled the dice outside Kaggle, but I have had my share of them from a tourist 

perspective. It takes time to adjust to other platforms.



Summary
In this chapter, we discussed simulation competitions, a new type of contest that is increasing in 

popularity. Compared to vision or NLP-centered ones, simulation contests involve a much broader 

range of methods (with somewhat higher mathematical content), which reflects the difference 

between supervised learning and reinforcement learning.

This chapter concludes the technical part of the book. In the remainder, we will talk about turning 

your Kaggle Notebooks into a portfolio of projects and capitalizing on it to find new professional 

opportunities. 

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord
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Participation on Kaggle has its benefits: scoring well in the four areas and consequently ranking 

high in the esteem of other Kagglers certainly brings satisfaction and a sense of accomplishment. 

However, your experience on Kaggle also has an impact beyond Kaggle and can help advance your 

career. It is not just the experience you gain from participating in competitions, experimenting on 

data you have never worked on before, or repeating experiments with new techniques; it is also the 

connections you create with other data scientists and the attention you may get from companies.

Although Kaggle is not fully recognized as a qualification by many companies, the work you do 

in competitions can demonstrate a lot about your capabilities and help you to stand out from 

the crowd. In this chapter, we will explore ways you can stand out by showcasing your work on 

Kaggle itself and other sites in an appropriate way. We will cover the following topics:

• Building your portfolio with Kaggle

• Arranging your online presence beyond Kaggle

• Monitoring competition updates and newsletters

In the next chapter, we will conclude the book by exploring how Kaggle can directly affect your 

career by enhancing your professional network and providing you with career opportunities.

Building your portfolio with Kaggle
Kaggle’s claim to be the “home of data science” has to be taken into perspective. As we have dis-

cussed at length, Kaggle is open to everyone willing to compete to figure out the best models in 

predictive tasks according to a given evaluation metric. 
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There are no restrictions based on where you are in the world, your education, or your proficiency 

in predictive modeling. Sometimes there are also competitions that are not predictive in nature, 

for instance, reinforcement learning competitions, algorithmic challenges, and analytical con-

tests that accommodate a larger audience than just data scientists. However, making the best 

predictions from data according to a metric is the core purpose of Kaggle competitions.

Real-world data science, instead, has many facets. First, your priority is to solve problems, and the 

metric for scoring your model is simply a more or less exact measurement of how well it solves 

the problem. You may not only be dealing with a single metric but have to take into account mul-

tiple ones. In addition, problems are open to being solved in different ways and much depends 

on how you formulate them.

As for data, you seldom get specifications about the data you have to use, and you can modify any 

existing dataset to fit your needs. Sometimes you can even create your own dataset from scratch if 

you need to. There are no indications about how to put data together or process it. When solving 

a problem, you also have to consider:

• Technical debt

• Maintainability of the solution over time

• Time and computational costs for running the solution

• Explainability of the workings of the model

• Impact on the operating income (if the real-world project is a business one, increasing 

profits and/or reducing costs is the leitmotif)

• Communication of the results at different levels of complexity and abstraction

Often, all these aspects count more than raw performance against evaluation metrics.

Technical debt is a term more common in software development than data science, 

though it is a relevant one. For technical debt, you should consider whatever you 

have to do in order to deliver your project faster but that you will have to redo again 

later at a higher cost. The classic paper Hidden Technical Debt in Machine Learning 

Systems by David Sculley and other Google researchers should enlighten you on the 

relevance of the problem for data science: https://proceedings.neurips.cc/ 
paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
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Not all this expertise can be supplemented by Kaggle competitions. Most of this should be gained 

by direct practice and experience-building in an enterprise environment. Yet, the knowledge 

and skills attached to Kaggle competitions are not completely separate from many of the con-

siderations we discussed above, and they are a good complement to many of the enterprise-level 

data science processes. By competing on Kaggle, you are being exposed to different types of data 

and problems; you need to execute extensive feature engineering and fast iterations of model 

hypotheses; you also have to devise methods of putting together state-of-the-art solutions using 

common open-source packages. This is a set of valuable skills, and it should be promoted on your 

side. The best way to do so is to build a portfolio, a collection of your solutions and work based 

on Kaggle competitions and other resources from Kaggle.

In order to build a portfolio from Kaggle competitions, you can take multiple approaches. The easiest 

is to leverage the facilities offered by Kaggle, especially the Datasets, Notebooks, and Discussions.

Gilberto Titericz
https://www.kaggle.com/titericz

Before we proceed, we present a discussion on career opportunities 

derived from Kaggle in our interview with Gilberto Titericz. He is a 

Grandmaster in Competitions and Discussions, the former number 1 

in rankings, and the current number 1 in total gold medals from Kag-

gle competitions. He is also a Senior Data Scientist at NVIDIA and was featured not long ago in 

an article on Wired on the topic (https://www.wired.com/story/solve-these-tough-data-

problems-and-watch-job-offers-roll-in/).

What’s your favourite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
Since I started to compete on Kaggle in 2011, the types of competitions that I prefer are the ones with 

structured tabular data. The techniques that I use more in Kaggle are target encoding of categorical 

features (there are infinite ways to do it wrong) and stacking ensembles.

https://www.kaggle.com/titericz
https://www.wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in/
https://www.wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in/
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How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
Kaggle is a great playground for machine learning. The main difference from real-life projects is that 

in Kaggle we already have the problem very well defined and formatted, the dataset created, the target 

variable built, and the metric chosen. So, I always start a Kaggle competition playing with EDA. Un-

derstanding the problem and knowing the dataset is one of the keys to an advantage over other players. 

After that, I spend some time defining a proper validation strategy. This is very important to validate 

your model correctly and in line with the way that Kaggle scores the private test set. Besides the fact that 

using a stratified Kfold is something that works for most binary classification problems, we must evaluate 

if a grouped Kfold or a time-based split must be used in order to validate correctly, avoid overfitting, and 

mimic, as much as possible, the private test set. After that, it is important to spend some time running 

experiments on feature engineering and hyperparameter optimization. Also, I always end a competition 

with at least one Gradient Boosted Tree model and one deep learning-based approach. A blend of such di-

verse approaches is very important to increase diversity in the predictions and boost the competition metric.

Has Kaggle helped you in your career? If so, how?
Yes, Kaggle was the main reason I changed the direction of my career. Up to 2016 I worked as an electronic 

engineer, and due to everything that I learned competing since 2011 I was able to switch to the data science 

area. Kaggle helped me to understand the concepts of machine learning and apply everything I learned 

from the theory. In addition, Kaggle is an excellent place for experimentation, where you can download 

a dataset and play with it to extract the maximum information possible from the data. That, combined 

with the competition environment, makes it perfect to learn coding and machine learning, and at the 

same time, it gets addictive and makes you want to learn more and more. Winning a few competitions 

puts your name at the top of the leaderboard and this is priceless for anyone’s career. Headhunters all 

around the world look at Kaggle to find good matches for their positions and the knowledge and experience 

gained from competitions can boost any career.

How have you built up your portfolio thanks to Kaggle?
Once I joined Kaggle, I spent some years learning all the techniques, algorithms, and tricks to extract 

more information from data and boost the metrics as much as possible. High accuracy is the main goal 

of most of the competitions, but to do that relying on luck alone is almost impossible; knowledge and 

experience play a big role when the goal is to win or at least finish in the gold medal zone. The number 

of medals I have in Kaggle competitions is my portfolio; up to now (11/2021) it’s 58 gold and 47 silver, 

which summarizes well the ML experience I got from Kaggle. Taking into account that each competition 

runs for at least 1 month, this is more than 105 consecutive months of experience doing competitive ML.
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In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
Novices often overlook a proper validation strategy. That doesn’t just happen in Kaggle; I’ve seen data 

scientists all around the world building models and neglecting one of the most important things in the 

experimentation theory. There is no general rule when setting a proper validation strategy, but the data 

scientist must take into account how the model is going to be used in the future, and make the validation 

as close as possible to that.

What mistakes have you made in competitions in the past?
Several mistakes; it is impossible to list them all. I have probably made all the possible combinations of 

mistakes. The good thing about mistakes is that you can learn from them. Once you make a mistake and 

you detect it, it is very likely that you won’t make it again. The main mistake people make in Kaggle is 

to trust in the leaderboard score and not in their local validation score. Overfitting to the leaderboard is 

a constant in Kaggle and this is the main difference from the real world. In a real project, we must build 

a strong validation strategy that we can trust, because in the real world the models will be tested on real 

data and you have only one chance to hit the mark, not multiple submissions per day.

Are there any particular tools or libraries that you would recommend 
using for data analysis and machine learning?
Some years ago I would have recommended R, but taking into account how fast Python is growing in the 

ML space and how generic and easy it is to use in production, I recommend to anyone starting ML that 

they learn it. In terms of libraries for tabular data, I recommend pandas for manipulation, and if you 

want speed then go with cuDF (the RAPIDS.ai GPU version of pandas). For EDA, I recommend using 

DataFrame with the Seaborn or Matplotlib libraries, and for machine learning Scikit-learn, SciPy, cuML 

(GPU), XGBoost, LightGBM, CatBoost, and PyTorch. Keep in mind that building a simple XGBoost 

model using the raw features is fast and can give you a good benchmark to compare with further models.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
Entering a Kaggle competition and submitting a public Notebook is easy, but finishing a competition 

in the gold zone can be extremely challenging. So the most important thing, at least for me, is to keep 

in mind that independent of the final ranking, we should use Kaggle to have fun and learn as much as 

possible from the discussion forums, from the public Notebooks, and even from the post-deadline winners’ 

posts describing their ideas and what worked. 
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Leveraging Notebooks and discussions
Besides rankings themselves, Notebooks are the way to get you noticed on Kaggle because they 

simultaneously demonstrate how you solve problems, how you present ideas, and how you code 

them. Conceived as a way to easily and openly share solutions and ideas among participants, 

Notebooks are the most important tool (after rankings) for demonstrating abilities that are ap-

preciated by employers.

In fact, one of the most important changes in the world of data science in recent years has been 

its transition from a game of outstanding talents (unicorn data scientists) to a team game, where 

data scientists have to collaborate with each other and with other departments to ensure the 

success of a project. Consequently, in their hiring processes, companies often care more about 

you being able to communicate ideas and results, as well as coding in a clean and effective way.

In the previous section, we discussed how real-world projects require a wider range of skills, rang-

ing from dealing with technical debt to designing cost-effective solutions. You can still demon-

strate these skills on Kaggle, even if they are not the ones that will make you win a competition. 

Notebooks are the best tools for doing this.

Also keep in mind that what makes a competition winner is not just replicating what everyone else is doing, 

but thinking out of the box and coming up with novel ideas, strategies, architectures, and approaches.

Do you use other competition platforms? How do they compare to 
Kaggle?
I have won a couple of competitions on other competition platforms, but the main difference compared to 

Kaggle is the number of users. Kaggle has 171k active users as of November 2021, which makes the forums, 

Notebooks, and dataset interactions much richer in terms of content. Also, Kaggle offers something unique: 

Notebooks where you can write and run code for free using Google servers, which can be priceless if you 

don’t have access to good hardware.

Refer to Chapter 3, Working and Learning with Kaggle Notebooks, for an introduction 

to Kaggle Notebooks.
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You will find different types of Notebooks on Kaggle. As a good approximation, we can group 

them into four categories:

• Solutions and ideas for ranking in a competition

• Exploratory data analysis (EDA) on the data

• Tutorials explaining machine learning models or data science principles

• Fresh implementations of models derived from papers or other original solutions

Each of these can provide you with an edge by means of an interesting set of skills. If solutions 

and ideas for competitions are the classic way to demonstrate that you know how to tackle a 

complex problem in data science, the other three can show the world that you can:

• Manipulate, represent, and extract visual and non-visual insights from data (EDA), which 

is a skill deemed very important in every setting, from scientific research to business

• Educate on data science, opening the door to roles in education, mentorship, and devel-

oper advocacy

• Translate research into practice, a key skill at a time when innovations in data science 

(especially in deep learning) appear daily and need to be translated into working solu-

tions quickly

Even if you don’t rank highly in Kaggle competitions or have astonishing solutions to present, 

these other three kinds of Notebooks (EDA, tutorials, and paper implementations) can provide 

you opportunities in the real world if you can promote them in the best way. To do so, you need to 

understand how to code readable and interesting Notebooks, which is something that you learn 

from practice and experience. Since it is an art, our suggestion is to learn from others, especially 

from the Notebooks Grandmasters who place high in the Notebooks user ranking (https://www.

kaggle.com/rankings?group=notebooks&page=1&pageSize=20).

We recommend you look at what kind of Notebooks they have developed, how they have arranged 

their work using figures, how they have structured their code, and then, finally, based on your 

skills and interests, try to imitate one of their Notebooks. We also suggest that you do not bet 

your chances for success only on code and charts, but also on the narrative that you present. No 

matter whether you are showing off a solution, teaching, or implementing a neural architecture 

in TensorFlow, how you explain the Notebook’s cells with words is very important in terms of 

leaving a lasting positive impression.

https://www.kaggle.com/rankings?group=notebooks&page=1&pageSize=20
https://www.kaggle.com/rankings?group=notebooks&page=1&pageSize=20
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Aside from browsing the Notebooks of high rankers, there is also a way to be notified about less 

mainstream – yet still finely crafted – Notebooks that have recently appeared on Kaggle. The as-

trophysicist and passionate Kaggle user Heads or Tails, Martin Henze (https://www.kaggle.com/

headsortails), publishes on the discussion forums a weekly Notebooks of the Week: Hidden Gems 

post, a collection of the most interesting Notebooks around. At the moment, there are already 

over 100 volumes and the author continues to search Kaggle for anything that could prove inter-

esting. If you would like to be updated about cool Notebooks, just follow Martin Henze’s profile 

on Kaggle or check if he has published something new under his discussions from time to time.

If you love digging through Notebooks looking for ideas and learning from them, we never tire of 

stressing that you should not brainlessly copy other people’s work. There are many Notebooks 

on Kaggle, and often someone copies one, makes some small changes, and re-presents the Note-

book to other Kagglers as if it were their own original idea. It is also customary to cherry-pick a 

function, or part of the code from a Notebook, and insert it into your own. In both these cases, 

please remember always to quote the source and the author. If you cannot retrace something to 

the original author, even referring to the last Notebook where you found the code you used is 

enough. While the main purpose of a showcase is to display your own efforts and skills, it is very 

important to recognize that some parts of your code or some ideas are taken from elsewhere. 

Aside from being a sign of respect toward your fellow Kagglers, a source attribution highlights 

that you are knowledgeable enough to recognize other people’s efforts and inventions, and that 

you know how to employ them in your own work.

In a minor way, discussions on Kaggle’s forums can help you get noticed for specific roles in data 

science and software development. Initially, discussions on Kaggle were just for communicat-

ing with organizers or for asking pressing questions about the competition itself. At the end of 

competitions, participants seldom felt compelled to present or discuss their solutions. However, 

since discussions obtained their own user rankings and mastery grades, you have been able to 

find much more information on forums.

In our experience, discussions on Kaggle can be split into four categories:

• Competition solutions that explain in detail (sometimes with the help of an associated 

Notebook) how a team managed to reach a certain position on the private leaderboard

Refer to Chapter 4, Leveraging Discussion Forums, for an introduction to discussions 

on Kaggle.

https://www.kaggle.com/headsortails
https://www.kaggle.com/headsortails
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• Help with and an explanation of requirements during a competition

• Thanks, compliments, and chit-chat

• Posts that help and tutor other competitors, explaining things to them

We have observed that excelling in the last type of post and being widely noticed for it can help 

you achieve the role of developer advocate, especially if you also have other active channels where 

you interact with your fellow data scientists (for instance, a Twitch or YouTube channel, a Twitter 

account, or a Medium blog).

With the growth of developer advocate roles in both large companies and start-ups, there is an 

important demand for experts skilled at helping other data scientists and developers in their 

projects. If you want to learn more about this role, the following article on draft.dev is quite 

explanatory and exhaustive: https://draft.dev/learn/what-is-a-developer-advocate.

Leveraging Datasets
Kaggle competitions are often criticized for presenting data that is already cleaned, well arranged, 

and far from representative of data found in the real world. Our point of view is slightly different; 

we find the data that Kaggle presents in competitions can also be quite messy or noisy. Sometimes 

the data presented will not actually suffice in terms of quality and quantity for getting a top score, 

and you will need to look around for additional data on the internet.

What Kaggle does miss out with regard to data in a data science project is the process of collecting 

and gathering data in organized repositories and files, a process that, in real-world settings, is 

not possible to standardize because it differs from company to company and problem to problem. 

Data handling in the real world should mostly be learned on the field.

The introduction of datasets into Kaggle was aimed at mitigating the idea that Kaggle was just 

focused on modeling problems. Kaggle Datasets are very helpful in this sense because they allow 

you to create and upload your own data and document the features and their values; they also 

require you to manage your data over time by planning the frequency with which you are going 

to update or completely replace it.

Refer to Chapter 2, Organizing Data with Datasets, for an introduction to Kaggle Data-

sets.

draft.dev
https://draft.dev/learn/what-is-a-developer-advocate
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More interestingly, in Kaggle Datasets, you are also given the opportunity to attach different 

analyses and models built using Kaggle Notebooks, uploaded from your data or a competition. 

These models could be work you came up with during a competition, or something you devised 

because you studied the uploaded data attentively and found a set of interesting problems you 

could solve with it.

In addition, Kaggle Datasets offer you a template to check for the completeness of the meta-in-

formation accompanying your data. A description, tags, a license, sources, and the frequency of 

updates: these are only a few of the required pieces of information (used to calculate a usability 

score) that will help anyone using your data to understand how to use it. You may even point out 

(in the description or in discussions) tasks for the dataset that relate to pending work you would 

like to do with it. This is a good way to communicate your full understanding of the potential 

value of the data you have uploaded.

All these characteristics make Kaggle Datasets a very good way to show off your experience with 

problems on Kaggle and, in general, your ability with data and machine learning algorithms, 

because they allow you to:

• Publish and maintain a dataset

• Demonstrate that you have understood the value of the data with a tasks roadmap

• Show coded and fully working solutions (since Kaggle Notebooks can immediately work 

on the same data, without any preparation), ranging from data preparation to explanatory 

data analysis to predictive modeling

We strongly recommend using Kaggle Datasets for showing off the work you have done during 

Kaggle competitions or on any other project, because they separate your work from others’ and 

integrate data and Notebooks. In short, Kaggle Datasets can demonstrate to anyone a working 

solution that you have implemented. There is a downside, though: you are mostly tied to a Note-

book environment (even when you use scripting), which is not perfectly transparent in terms of 

the package and version requirements necessary for someone to know to run the code in other 

environments.

Previously, Tasks were part of the Kaggle Dataset functionality, but they have recently 

been removed: https://www.kaggle.com/product-feedback/292674. Neverthe-

less, you can use the data description and discussions to point out what you expect 

your data could be used for.

https://www.kaggle.com/product-feedback/292674
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In fact, Kaggle Notebooks depend on a Docker environment (https://www.docker.com/) set 

by a configuration file, a Dockerfile, that determines which versions have been installed. When 

browsing a Notebook, it is not immediately evident what version of packages are being used 

until you inspect this configuration file. For this purpose, as well as for replicating the settings, 

the Dockerfile can be found on the Kaggle repository on GitHub (https://github.com/Kaggle/

docker-python/blob/main/Dockerfile.tmpl), though it changes over time and you may need 

to keep track of the one used in your work.

Finally, in addition to this aspect, don’t forget that getting even a glimpse of a Dataset and its 

related Notebooks requires access to the Kaggle community.

Gabriel Preda
https://www.kaggle.com/gpreda

We had an inspiring career-oriented talk with Gabriel Preda, a Kaggle 

Grandmaster in Datasets, Notebooks, and Discussions, and Principal 

Data Scientist at Endava. Gabriel has a PhD in Computational Elec-

tromagnetics and had a long career in software development before 

devoting himself completely to data science. When he discovered Kaggle, he felt at home on the 

platform and invested a lot of time and effort into it, which paid dividends for him professionally.

Has Kaggle helped you in your career? How?
Kaggle helped me to accelerate my learning curve in data science. Before Kaggle, I was looking all around 

for sources of information or problems to solve, but it was not very methodical or effective. On Kaggle, I 

found a community of people interested in the same things as me. I was able to see the work of top experts 

in the field, learn from their published Notebooks with analyses or models, get insights from them, ask 

them questions, and even compete against them. I was mostly in data analysis at the time I joined Kaggle, 

but very quickly I started to compete; that means learning how to build, validate, and iteratively improve 

models. After around two years on Kaggle, I switched my career; I went from managing software projects 

to a full-time data science job. Kaggle also gave me some visibility, and during interviews with candidates 

at my present company they mentioned that they wanted to join because they saw that I worked there.

https://www.docker.com/
https://github.com/Kaggle/docker-python/blob/main/Dockerfile.tmpl
https://github.com/Kaggle/docker-python/blob/main/Dockerfile.tmpl
https://www.kaggle.com/gpreda
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Have you ever used something you have done on Kaggle as part of 
your portfolio to show potential employers?
I use my Kaggle portfolio as the main source of information for potential employers; my LinkedIn profile 

points to my Kaggle profile. Also, in recent years, employers have become more aware about Kaggle, and 

some of them ask specifically about your Kaggle profile. There are also potential employers that make 

very clear that they do not consider Kaggle relevant. I disagree with this view; personally, before inter-

viewing candidates, I normally check their GitHub and Kaggle profiles. I find them extremely relevant. 

A good Kaggle profile will demonstrate not only technical skills and experience with certain languages, 

tools, techniques, or problem-solving skills, but also how well someone is able to communicate through 

discussions and Notebooks. This is a very important quality for a data scientist.

You reached Grandmaster in Notebooks (Kernels) first, then in 
Discussions, and finally in Datasets. Can you tell us about your 
journey?
I became the seventh Kernels Grandmaster and I got as high as the third rank. For maybe two years I 

think I was in the top 10 in the Kernels hierarchy as well. I started writing Kernels primarily to improve 

my knowledge of the R language while analyzing datasets I found more interesting. I also experimented 

with all kinds of techniques, including polygon clips, building dual meshes of Voronoi polygons, and 2D 

Delaunay tessellation. I gradually started to focus on exploratory data analysis, followed by building 

models for datasets and then for competitions. Also, once I started to compete more, I started to write 

Kernels for competing in Python. About the same time, I began to notice that some of my Kernels attracted 

attention from Kagglers, primarily upvotes and forks but also favorable comments. Some of my Kernels 

written for exploration of data in active competitions reached a very wide audience and brought me 

many gold medals; therefore, I reached the Master and then Grandmaster tier. Currently, I do not publish 

many Kernels related to competitions; mostly I create starting Kernels related to datasets that I publish.

Next, I also obtained the Discussions Grandmaster level. I never anticipated that I would reach this 

tier in discussions. First, I started commenting on other people’s Kernels. Then, gradually, as I got more 

involved in competitions, most of my comments were in the discussion sections of active competitions, 

either asking questions about topics of interest in these competitions or starting new topics, for example, 

suggesting solutions for one problem in a competition or collections of resources to address various open 

issues related to the competition.  I want to mention a special set of comments that I added. As a Kaggle 

Kernels Grandmaster (one of the first), I frequently upvoted new Kagglers’ Notebooks when I discovered 

very good content.
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In such cases, I try to find a few moments to also praise (especially if the content is of good quality) the 

achievement of the author. Especially to beginners, giving not only the expression of your appreciation by 

upvoting their work, but also adding some positive feedback about their contribution, might give them a 

boost of confidence so that they will invest more in learning and contributing even more on Kaggle. I like 

to do this, and I hope it helps. I once also compiled a list of recommendations about how to comment on 

Kaggle. This is the list: be short (but not too short); be specific; provide information, not opinions; praise 

other people’s work when you have the opportunity; keep calm and try to be helpful; do not tag people 

in your comments unless it makes sense (for example, if it is a discussion, and you need to direct your 

comment to someone that addressed you in that thread).

The last Grandmaster tier I reached is in Datasets. This is also the tier where I reached the highest ranking, 

second. My progress through the ranks was slow. I started with something I liked. Getting a high profile 

in Datasets requires investment in curating, cleaning, and documenting the data. If it is not something 

that you really like, you most probably will not keep going. I pursued things that were important to me 

but also to a wider community: to my country, my continent, or the whole world. I published datasets 

about elections in my country, and about various social, demographic, and economic topics in Europe. I 

focused on subjects of actuality, that were both relevant and of high importance for the community. For 

example, during the pandemic, I published datasets on COVID-19 cases, about vaccinations, tests, and 

virus variants both from my country and worldwide. I captured data that went beyond simple numerical, 

tabular values. Text data, especially originating from direct contributions from people, provided import-

ant insights for many people. One of my most upvoted datasets consists of collections of Reddit posts and 

comments or Twitter posts (tweets) on subjects as diverse as vaccine myths, cricket, pandemics, sports 

events, and political personalities. I invested significantly in automating data collection, data cleaning, 

and data processing scripts. This saved me precious time (especially for datasets updated frequently – some 

of them were collected continuously, with scripts triggered every hour) but also made it possible to have 

better control of the process. Every time I publish a new dataset, I also write one or more starting Kernels. 

These Kernels are not intended to reach a large audience. I create them as helper Kernels for potential 

users of my Datasets, so that they find it easier to use the data. In many cases, I prefer to keep the original 

data (as I collected it, or downloaded from an alternative source) and include a Kernel for data cleaning, 

transformation, and preliminary analysis as well as the result of this process, the data in a more accessible 

format. In this way, I try to capture in the dataset more than the data itself; I also provide information 

about techniques for data transformation.
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Arranging your online presence beyond Kaggle
Since Kaggle Datasets and Notebooks require a Kaggle account, you have to take into account 

that not everyone may already have one or want to create one just to look at your work. You also 

have to consider alternatives that are more accessible. More frequently, Kagglers choose to use a 

project on GitHub (https://github.com/), write an article on Medium (https://medium.com/) 

as well as other publishing platforms, or post on their own blog. There are other opportunities 

to promote your work and skills, however, such as:

• Publishing code relevant to Kaggle competitions that can be executed from the browser 

on https://deepnote.com/

• Setting up a Discord community that gathers Kagglers, such as Abhishek Thakur’s MLSpace 

(https://discord.com/invite/4RMwz64gdH), or running a YouTube channel (also from 

Abhishek Thakur: https://www.youtube.com/channel/UCBPRJjIWfyNG4X-CRbnv78A)

• Setting up a Twitch channel like Rob Mulla’s, where he demonstrates coding relevant to 

Kaggle competitions: https://www.twitch.tv/medallionstallion (also on GitHub: 

https://github.com/RobMulla/twitch-stream-projects)

• Delivering a weekly newsletter on Kaggle news, like Shotaro Ishihara: https://www.

getrevue.co/profile/upura 

• Interviewing Kagglers and other data science experts as Sanyam Bhutani is doing, 

and broadcasting the interviews using videos, podcasts, and blog posts: https://

chaitimedatascience.com/ (you can browse the dataset containing all the data about 

the interviews held so far, prepared by Rohan Rao: https://www.kaggle.com/rohanrao/

chai-time-data-science)

As you can deduce, there are really quite a lot of opportunities and media through which you can 

diffuse your work and skills on Kaggle, depending on what you want to achieve. In this chapter, 

our focus is on just blogs and a GitHub presence (which are the most common choices and quite 

effective), but you are free to decide on any different approach you deem suitable for your purposes.

Blogs and publications
Writing can be a way both to refine your knowledge – because you need to read up on a topic in 

order to write about it – and to let others know about you and your skills. Getting famous for your 

writing helps you in various ways, from being spotted by recruiters and companies to building 

your connections for both Kaggle competitions and your wider professional life.

https://github.com/
https://medium.com/
https://deepnote.com/
https://discord.com/invite/4RMwz64gdH
https://www.youtube.com/channel/UCBPRJjIWfyNG4X-CRbnv78A
https://www.twitch.tv/medallionstallion
https://github.com/RobMulla/twitch-stream-projects
https://www.getrevue.co/profile/upura
https://www.getrevue.co/profile/upura
https://chaitimedatascience.com/
https://chaitimedatascience.com/
https://www.kaggle.com/rohanrao/chai-time-data-science
https://www.kaggle.com/rohanrao/chai-time-data-science
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Social media (LinkedIn, Twitter, and Facebook) allows you to post ideas and short pieces of text, 

and this is something that we do suggest you leverage. Given that data science and Kaggle com-

petition topics require discussion and reasoning at length, the best approach, however, is to write 

long articles and publish them by means of a blog or a website that publishes writing. Ideally, we 

suggest you coordinate your communication between social media and your articles in order to 

promote them, with dedicated posts announcing them or discussing key points in your writing.

Let’s first discuss how and where you could publish your articles.

An article on Medium, especially on Medium publications such as Towards Data Science (https://

towardsdatascience.com/), can get a lot of attention. Medium publications are shared spaces 

for stories written around a common theme or topic, usually by multiple authors. As a website, 

Medium can reach a wide audience of readers and some publications have a very good reputation 

in the data science community for the quality of their articles. A publication can have one or more 

editors who select the pieces and assure that their contents are consistent with the policies of the 

publication and its quality level. Medium publications where you could post your articles are:

• Towards Data Science, as mentioned (https://towardsdatascience.com/questions-

96667b06af5)

• Better Programming (https://betterprogramming.pub/write-for-us-5c4bcba59397)

• Mlearning.ai (https://medium.com/mlearning-ai/mlearning-ai-submission-

suggestions-b51e2b130bfb)

• Becoming Human (https://becominghuman.ai/write-for-us-48270209de63)

• Towards AI (https://pub.towardsai.net/submit-your-medium-story-to-towards-

ai-a4fa7e8b141d)

Each of these publications has the great advantage of already having a large audience, probably 

larger than your following on social media. You will get more readers than you would probably 

expect, reaching people at companies as well as other professionals you can network with.

Besides Medium, these other websites might also accept your publications:

• Hacker Noon (https://www.publish.hackernoon.com/): Quite popular among tech 

bloggers and contains anything tech-related (it is quite generalist). With a monthly au-

dience of four million people, it is the right place if you want to reach many tech lovers 

with anything tech-related. Being featured on the top pages is extremely difficult and a 

double-edged sword: you will get a lot of attention, as well as many critics.

https://towardsdatascience.com/
https://towardsdatascience.com/
https://towardsdatascience.com/questions-96667b06af5
https://towardsdatascience.com/questions-96667b06af5
https://betterprogramming.pub/write-for-us-5c4bcba59397
https://medium.com/mlearning-ai/mlearning-ai-submission-suggestions-b51e2b130bfb
https://medium.com/mlearning-ai/mlearning-ai-submission-suggestions-b51e2b130bfb
https://becominghuman.ai/write-for-us-48270209de63
https://pub.towardsai.net/submit-your-medium-story-to-towards-ai-a4fa7e8b141d
https://pub.towardsai.net/submit-your-medium-story-to-towards-ai-a4fa7e8b141d
https://www.publish.hackernoon.com/
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• Dev.to (https://dev.to/): Mainly has an audience of developers (almost eight hundred 

thousand) and features articles and tutorials on coding. Your posts should be more focused 

on the quality and efficacy of your code (modeling is in the background).

• FreeCodeCamp (https://www.freecodecamp.org/news/developer-news-style-

guide/): More focused on tutorials; people go there to learn how to code. It is ideal for 

promoting courses on machine learning and promoting new packages.

• Analytics Vidhya (https://www.analyticsvidhya.com/about/write/): Quite popular in 

India; it is more centered around articles explaining machine learning and deep learning 

building blocks.

• KDnuggets (https://www.kdnuggets.com/news/submissions.html): One of the oldest 

publications in data mining. It still has quite a lot of followers (one million unique visitors 

in March 2021) among the old guard of data scientists and academics.

Each publication has strong and weak points and differs in the audience it reaches, so you have 

to decide which one better suits your content. Start by browsing the publications they offer in 

order to understand how your writing could fit in.

Of course, if you would prefer, you can instead use your own blog. Having your own blog has its 

advantages, such as no advertising or editorial scrutiny over what you write. On the other hand, 

you cannot leverage a pre-existing audience and you will have to work to create one by promoting 

your articles on social media. You can set up your own website from scratch on a web domain of 

your choice or you could create your own blog on GitHub, too.

If you need something even more automated, using a platform such as Jeremy Howard’s fastpages 

(https://github.com/fastai/fastpages) can simplify the way you deal with writing content 

together with code examples, because it automatically converts notebooks and Word documents 

into blog pages and publishes them for you.

If you prefer to be completely independent and set up your own website, this will require more 

effort and some expense; domain names and web space are not free. In this case, self-promotion 

of your content becomes critical.

If you decide to use GitHub (since it is free and you may already use it as a repository 

for your code), here is a simple and fast guide to creating GitHub blog posts: http:// 
jmcglone.com/guides/github-pages/

https://dev.to/
https://www.freecodecamp.org/news/developer-news-style-guide/
https://www.freecodecamp.org/news/developer-news-style-guide/
https://www.analyticsvidhya.com/about/write/
https://www.kdnuggets.com/news/submissions.html
https://github.com/fastai/fastpages
http://jmcglone.com/guides/github-pages/
http://jmcglone.com/guides/github-pages/
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The main advantage of writing about your solutions is the storytelling element, because you have 

to accompany your code snippets with descriptions and explanations and you need to write in 

a more verbose way than you could do in a Notebook. In a sense, how you describe your work 

becomes as important as the code you write. By adjusting the tone of your writing, you can reach 

different types of audiences. Writing concepts in an accessible way means you will enlarge your 

audience and connect with more professionals. Writing in a highly technical way instead could 

impress more potential companies that may consider hiring you, though limiting the number 

of readers you get.

Since writing is a very personal act and our hints and suggestions won’t apply to every scenario, 

our general suggestion is to decide beforehand the purpose of your writing and who you would 

like to reach with it.

GitHub
Aside from writing articles and having a code repository you can direct readers to, having your 

code on GitHub will also help you not to reinvent the wheel in every competition you enter. You 

can store the code you want to reuse in a project or in Gists (https://docs.github.com/en/

github/writing-on-github/editing-and-sharing-content-with-gists), which are small 

snippets of code that can be accessed individually.

Even if it may appeal to you to leave all your code on Kaggle, with time you will find it difficult to 

access and you may even have trouble finding it altogether. This is because you cannot arrange 

your Kaggle Notebooks into separate projects; they will just be presented as a long list that you 

can order by a few attributes such as the number of votes or when you last ran the Notebook. 

GitHub makes it much easier to find what you need and reuse it. For instance, you can create 

scripts containing all your code and then download and import them into a Kaggle Notebook 

without needing to copy anything.

In the following example, we download and reuse helper functions for a tabular neural network:

!wget https://raw.githubusercontent.com/lmassaron/deep_learning_for_
tabular_data/master/tabular.py

# Importing from Tabular

from tabular import gelu, Mish, mish

from tabular import TabularTransformer, DataGenerator

https://docs.github.com/en/github/writing-on-github/editing-and-sharing-content-with-gists
https://docs.github.com/en/github/writing-on-github/editing-and-sharing-content-with-gists


Creating Your Portfolio of Projects and Ideas464

A wget command will directly access code on GitHub and download it onto the disk of the Note-

book; afterward, you can just import the functions and classes that you need from it. To obtain 

the link providing direct access to your code, you just need to look for the file containing it on the 

GitHub repository and then click on the Raw button on the header of the page:

Figure 13.1: The header of a visualized file on GitHub. Notice the Raw button on the upper 
right part of the header bar.

After clicking on the Raw button, you will be taken to the web address where the file is stored on 

GitHub. You can use that web address to refer to the file from outside of GitHub.

GitHub is also useful also for storing images that you can use on Kaggle discussions (since you 

can no longer upload images on the Kaggle forums). In the case of images, you won’t have a Raw 

button to click, but you can instead right-click on the image and open the file in another tab; this 

will have the same effect.

GitHub is another great way to showcase your work, but given the nature of the website (it is 

targeted at developers) and the content you can put on it (files containing code), you should 

expect a very technical audience. In companies, human resources probably won’t look too deep-

ly at your GitHub account, instead stopping at the README.md, which should therefore be well 

written and visually appealing. Recruiting managers, on the other hand, will be more interested 

in the code in your projects. You should put some effort into having well-structured code in your 

files, procedures, and classes, also including the instructions necessary for the installation and 

replication of your results.

You will have to use tools such as conda (https://docs.conda.io/en/latest/) or poetry 

(https://python-poetry.org/) to ensure the correct packages are installed for your code to 

work. In order to give the best structure to your project, you’ll probably need something like 

CookieCutter (https://drivendata.github.io/cookiecutter-data-science/). Using a 

template for your projects, like the ones CookieCutter provides, enables your code to be arranged 

into specific directories easily and will provide the files that allow its usage and understanding. A 

CookieCutter template will make your project easier to read, understand, and maintain.

https://docs.conda.io/en/latest/
https://python-poetry.org/
https://drivendata.github.io/cookiecutter-data-science/
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Finally, for managing your experiments and data sources, you will also need some version con-

trol system for the data being used, not just for your code, for instance using Data Version Con-

trol (DVC: https://dvc.org/). All these resources and the skills you need to run them properly 

(creating your environment, structuring your project, versioning data and models) are closer to 

software engineering than data science competencies. They are not so relevant on Kaggle – or 

can be done in simple ways – and will require effort and learning. Yet, they will become part of 

the capabilities that you will present with your projects on GitHub, improving your chances of 

making a good impression on job interviewers.

If you want to put in live demonstrations of your models, you have a few different options. The 

easiest is having the code running on the original Notebooks (just by putting a link to your Kaggle 

Notebook in the README.md file of your GitHub project) or on Google Colab. To have the Note-

book you stored on GitHub run automatically in Google Colab, just post its link with the domain 

changed from github.com to githubtocolab.com: the link will open your Notebook in Colab.

The most impressive showcase you can prepare, however, is using HuggingFace Spaces (https://

huggingface.co/spaces) to demonstrate how your Kaggle model could be used in an online 

application. Spaces are a simple way to host machine learning demonstrations and create online 

portfolios of your work, as explained in the documentation (https://huggingface.co/docs/

hub/spaces). They are limited to 16GB of RAM and 8 CPU cores, but they are free and sufficient 

for demonstrating how your model can run in a dedicated application. You can install your de-

pendencies on the HuggingFace remote machine, sync code and models with GitHub, or build an 

app using Streamlit (https://streamlit.io/) or Gradio (https://gradio.app/).

As an example, Rashmi Banthia, a Kaggle Expert and a Teaching Fellow at Harvard University 

(https://www.kaggle.com/rashmibanthia), has posted a demonstration of her model from the 

Sartorious Cell Instance Segmentation competition: https://huggingface.co/spaces/rashmi/

Cell-Instance-Segmentation-MMDetection. By presenting your model together with a few 

examples in a real-time demonstration, you can immediately convey its effectiveness even to a 

non-machine learning audience.

Monitoring competition updates and newsletters
By now, you can see that it is important to showcase your work on Kaggle so you can communicate 

to the world your interest in certain types of models and data problems. From this perspective, it 

is important that you are always aware of the opportunities offered by competitions.

https://dvc.org/
github.com
githubtocolab.com
https://huggingface.co/spaces
https://huggingface.co/spaces
https://huggingface.co/docs/hub/spaces
https://huggingface.co/docs/hub/spaces
https://streamlit.io/
https://gradio.app/
https://www.kaggle.com/rashmibanthia
https://huggingface.co/spaces/rashmi/Cell-Instance-Segmentation-MMDetection
https://huggingface.co/spaces/rashmi/Cell-Instance-Segmentation-MMDetection
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The main way to do this is to visit the Kaggle website frequently and agree to receive emails from 

them. You can set this option from your profile, on the Notification and e-mail settings page, 

where you can agree to receive notifications both on the site and by email. You can also choose to 

receive emails containing tips on new features and initiatives on Kaggle, along with news about 

recently launched competitions:

Figure 13.2: A Kaggle email announcing a series of videos from the Kaggle Team

If you are a Twitter user, you’ll find it useful to follow a couple of profiles to keep you updated 

about new stuff on Kaggle. Kagoole (https://twitter.com/kagoole) is a web application that 

can inform you about new competitions and also, in its Heroku app form (https://kagoole.

herokuapp.com/), provides you with solutions for past competitions. It was created by Doarakko 

(https://github.com/Doarakko/). The other Twitter profile you could follow is Is he Kerneler? 

(https://twitter.com/HKerneler), created by Regonn (https://github.com/regonn/), which 

tells you how much time is left before each active Kaggle competition closes.

As we know from Chapter 1, Kaggle is not the only organization that holds data science competi-

tions. In order to keep better track of what is actually happening both on Kaggle and other data 

science competition websites, we suggest using websites such as https://mlcontests.com/ or 

https://ods.ai/competitions that monitor all ongoing competitions on Kaggle, as well as on 

other platforms such as AICrowd and DrivenData. For instance, mlcontests.com provides you 

with information on prizes, deadlines, and useful links for each competition. 

https://twitter.com/kagoole
https://kagoole.herokuapp.com/
https://kagoole.herokuapp.com/
https://github.com/Doarakko/
https://twitter.com/HKerneler
https://github.com/regonn/
https://mlcontests.com/
https://ods.ai/competitions
mlcontests.com
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It also gives you cloud GPU comparisons in terms of performance, machines, and prices. You can 

register your email and receive much of this information directly to your inbox.

Summary
In this chapter, we discussed how to showcase your work and how this can be valuable for pro-

gressing your career. It helps you to demonstrate capabilities that, while (of course) not covering 

the entire span of your data science knowledge and experience, still represent a great asset.

In order to display your work, you can either use Kaggle resources or external resources. Kaggle 

resources offer you an integrated environment and, provided you have everything at hand, are 

quite accessible and quick to set up. External resources (Medium publications, GitHub, Hug-

gingFace Spaces, and so on) are more widely known and accessible for the majority of recruiters, 

human resource officers, and hiring managers because they use them routinely.

In the next chapter, we will complete our discussion of the opportunities that Kaggle competitions 

offer you by talking about network building and how to use your Kaggle efforts to get an interview.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord




14
Finding New Professional 
Opportunities

After introducing how to better highlight your work and achievements in competitions in the 

previous chapter, we will now conclude our overview of how Kaggle can positively affect your 

career. This last chapter discusses the best ways to leverage all your efforts to find new professional 

opportunities. We expect you now have all the previously described instruments (your Kaggle 

Discussions, Notebooks, and Datasets, and a GitHub account presenting quite a few projects 

derived from Kaggle), so this chapter will move to softer aspects: how to network and how to 

present your Kaggle experience to recruiters and companies.

It is common knowledge that networking opens up many possibilities, from being contacted 

about new job opportunities that do not appear on public boards to having someone to rely on 

for data science problems you are not an expert in. Networking on Kaggle is principally related to 

team collaboration during competitions and connections built during meetups and other events 

organized by Kagglers.

When it comes to job opportunities, as we have often repeated previously, Kaggle is 

not a widely recognized source used by human resources and hiring managers for se-

lecting candidates. Some companies do take your Kaggle rankings and achievements 

into good consideration, but that’s a special case, not the general rule. Typically, you 

should expect your Kaggle experience to be ignored or sometimes even criticized. Our 

experience tells us, however, that what you learn and practice on Kaggle is highly 

valuable and it can be promoted by showcasing your coding and modeling efforts, 

and also by being able to talk about your experiences working alone or in a team.
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Here, we will cover:

• Building connections with other competition data scientists

• Participating in Kaggle Days and other Kaggle meetups

• Getting spotted and other job opportunities

Building connections with other competition data 
scientists
Connections are essential for finding a job, as they help you get into contact with people who 

may know about an opportunity before it becomes public and the search for potential candidates 

begins. In recent years, Kaggle has increasingly become a place where you can connect with other 

data scientists, collaborate, and make friends. In the past, competitions did not give rise to many 

exchanges on forums, and teams were heavily penalized in the global rankings because compe-

tition points were split equally among the team members. Improved rankings (see https://www.

kaggle.com/general/14196) helped many Kagglers see teaming up in a more favorable light.

Teaming up in a Kaggle competition works fine if you already know the other team members and 

you already have an established approach to assigning tasks and collaborating remotely. In these 

situations, each team member already knows how to collaborate by:

• Taking on part of the experimentation agreed by the team members

• Collaborating with another team member to build a solution

• Exploring new solutions based on their skills and experience

• Preparing models and submissions so they are easily stacked or blended 

If you are new to teaming, however, you will find it difficult either to enter a team or to organize 

one yourself. Unless you have contacts, it will be hard to get in touch with other people on the 

leaderboard. Firstly, not all of them will want to team up because they prefer to compete alone. 

Furthermore, some of the other competitors might be interested in teaming but will be too wary 

to accept your proposal. When forming a team with Kagglers you don’t know, there are a few 

concerns:

• The person entering the team won’t bring any value to the team

• The person entering the team won’t actually collaborate but just be a freeloader

• The person entering the team has infringed (or will infringe) Kaggle rules, which will lead 

to the disqualification of the entire team

https://www.kaggle.com/general/14196
https://www.kaggle.com/general/14196
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• The person entering the team is actually interested in spying and leaking information to 

other teams

Most of these situations are pathological in a competition, and you should be aware that these are 

common considerations that many make when evaluating whether or not to team up with another 

Kaggler for the first time. You can only dispel these perceived potential problems by presenting 

yourself as someone with a strong background in Kaggle; that is, someone who has taken part in 

some competitions alone and, in particular, published Notebooks and participated in discussions. 

This will add great credibility to your proposal and more likely bring you acceptance into a team.

When you have finally joined a team, it is important to establish efficient and dedicated forms 

of communication between the team members (for instance, by creating a channel on Slack or 

Discord). It is also essential to agree on daily operations that involve both:

• Deciding how to divide your experimentation efforts.

• Deciding how to use the daily submissions, which are limited in number (often a cause of 

conflict in the team). In the end, only the team leader chooses the final two submissions, 

but the process of getting there naturally involves discussion and disagreement. Be pre-

pared to demonstrate to your teammates why you have decided on certain submissions 

as final by showing them your local cross-validation strategy and results.

After you have experienced working together in a team in a positive manner, you will surely have 

gained the respect and trust of other team members. In future competitions, you will probably 

find it easier to team up again with the same people, or join a different team that they are part 

of with their help.

The people you will meet and get to work with on Kaggle include data scientists, data enthusiasts, 

students, domain specialists, and more. Below, we speak to a diverse cross-section of Kagglers, 

who describe their day jobs and how Kaggle fits into their lives.

Yirun Zhang
https://www.kaggle.com/gogo827jz

Yirun Zhang is a final-year PhD student at King’s College London. A 

Notebooks and Discussion Grandmaster, he was a member of the win-

ning team in the Jane Street Market Prediction competition (https://

www.kaggle.com/c/jane-street-market-prediction).

https://www.kaggle.com/gogo827jz
https://www.kaggle.com/c/jane-street-market-prediction
https://www.kaggle.com/c/jane-street-market-prediction
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Can you tell us about yourself?
My research area lies in the field of applying machine learning algorithms to solving challenging problems 

in modern wireless communication networks such as time series forecasting, resource allocation, and 

optimization. I have also been involved in projects that study AI privacy, federated learning, and data 

compression and transmission.

Apart from daily PhD research, I have been active on Kaggle for almost two years, since the second year of 

my PhD. The first competition I took part in on Kaggle was Instant Gratification, in which I utilized a 

diversity of machine learning and statistical methods from the sklearn library. This competition helped 

me develop a general sense of what a machine learning modeling pipeline is for Kaggle competitions.

I have been actively sharing my knowledge with the community in terms of Notebooks and discussion 

posts on Kaggle, and am now a Kaggle Notebooks and Discussion Grandmaster. Through sharing and 

discussing with others on the forum, I have gained precious feedback and new knowledge, which has also 

helped me finally become the winner of a Kaggle competition recently.

Tell us a bit about the competition you won.
Jane Street Market Prediction was a really tough one. The reason is that it was hard to build a robust 

cross-validation (CV) strategy and lots of people were just using the public leaderboard as the validation 

set. They were training a neural network for hundreds of epochs without using a validation strategy to 

overfit the public leaderboard. Our team tried hard to maintain our own CV strategy, and survived in 

the shake-up.

How different is your approach to Kaggle from what you do in your 
day-to-day work?
Kaggle competitions are very different from my daily PhD research. The former is very tense and contains 

instant feedback, while the latter is a long-term process. However, I have found that the new knowledge 

and methodology I learn from Kaggle competitions is also very useful in my PhD research.

Osamu Akiyama
https://www.kaggle.com/osciiart

Osamu Akiyama, aka OsciiArt, is a Kaggler whose day job does not in-

volve data science. He’s a medical doctor at Osaka University Hospital 

and a Competitions Master.

https://www.kaggle.com/osciiart
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Can you tell us about yourself?
I’m a second-year resident working at Osaka University Hospital. I received my master’s degree in Life 

Science from Kyoto University. After I worked in an R&D job for a pharmaceutical company, I transferred 

to the Faculty of Medicine of Osaka University and I obtained a medical license for Japan.

I started to learn data science and AI on my own because I was shocked by AlphaGo. I started participat-

ing on Kaggle in order to learn and test my skills in data science and AI. My first competition was NOAA 

Fisheries Steller Sea Lion Population Count in 2017. I participate in Kaggle competitions constantly 

and I’ve got three gold medals.

Has Kaggle helped you in your career?
Because I’m not educated in information science, I used my results in Kaggle to demonstrate my skill 

when I applied for an internship at an AI company and when I applied to be a short-term student in an 

AI laboratory. As I’m just a medical doctor, I’ve never used my data science skills in my main job. However, 

thanks to my Kaggle results, I sometimes have the opportunity to participate in medical data research.

What is your favorite type of competition and why?
My favorite kind of competition is medical data competitions. I love to try finding some insight from the 

medical data using my knowledge of medicine.

How do you approach a Kaggle competition?
I love to find a secret characteristic of competition data that most other competitors are not aware of or to 

try a unique approach customized to the characteristics of competition data. Actually, such an approach 

is not successful in most cases, but still, it’s fun to try.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
I’d like to mention Freesound Audio Tagging 2019, which was a multi-label classification task for sound 

data. The training data was composed of a small amount of reliably labeled data (clean data) and a 

larger amount of data with unreliable labels (noisy data). Additionally, there was a difference between 

data distribution in the curated data and the noisy data. To tackle this difficulty, we used two strategies. 

The first was multitask learning, in which training on noisy data was treated as a different task from 

clean data. The second was pseudo-labeling (a kind of semi-supervised learning), in which noisy data 

was relabeled by predicted labels from a model trained with the clean data.
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Do you use other competition platforms? How do they compare to 
Kaggle?
I use Signate (https://signate.jp/) and guruguru (https://www.guruguru.science/). These are 

Japanese data science competition platforms. They are not as big as platforms like Kaggle; competitions on 

these platforms use smaller datasets than Kaggle in general, so it is easier to participate. Also, sometimes 

there are interesting competitions that are different from the ones on Kaggle.

Mikel Bober-Irizar
https://www.kaggle.com/anokas

Mikel Bober-Irizar, aka Anokas, is a Competitions Grandmaster, a Mas-

ter in Notebooks and Discussion, and a machine learning scientist at 

ForecomAI. He is also a student of Computer Science at the University 

of Cambridge and the youngest ever Grandmaster on Kaggle.

Can you tell us about yourself?
I joined Kaggle in 2016, back when I was 14 and I had no idea what I was doing – I had just read about 

machine learning online and it seemed cool. I started in my first few competitions by copying other 

people’s public code from the forums and making small tweaks to them. Throughout a few competitions, 

I slowly gained an understanding of how things worked, motivated by trying to climb the leaderboard 

– until I started making good progress, which culminated in coming second in the Avito Duplicate Ads 

Competition later that year.

Since then, I have participated in 75 competitions, in 2018 becoming the youngest competition Grand-

master and the first ever Triple Master. I was since a Visiting Research Fellow at Surrey University, and 

I’m now studying Computer Science at the University of Cambridge, where I’m also doing research in 

machine learning and security.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your speciality on Kaggle?
I really enjoy competitions with lots of opportunity for feature engineering, and those with lots of different 

types of data, which allow you to be really creative in the approach you take to solving it – it’s a lot more 

fun than a competition where everyone has to take the same approach and you’re fighting over the last 

decimal place.

https://signate.jp/
https://www.guruguru.science/
https://www.kaggle.com/anokas
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I wouldn’t say I have a specialty in terms of approach, but enjoy trying different things.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
A couple of years ago, Google ran a competition for detecting objects within images and the relationships 

between them (e.g., “chair at table”). Other teams spent ages taking a conventional approach and training 

large neural networks to tackle the tasks, which I didn’t have the knowledge or compute to compete with. 

I chose to attack the problem from a different angle, and using some neat heuristics and tree models I 

ended up in seventh place with just a few hours of work.

Has Kaggle helped you in your career?
Kaggle has led to lots of opportunities for me and has been a really great community to get to know. I’ve 

met lots of people and learned a lot throughout all the competitions I’ve participated in. But Kaggle is 

also how I got into machine learning in the first place – and I don’t think I would be in this field otherwise. 

So yes, it’s helped a lot.

What mistakes have you made in competitions in the past?
It’s quite easy to end up with a complicated solution that you can’t replicate from scratch, since chances 

are you’ll be using various versions of code and intermediate datasets in your final solution. Then, if you’re 

lucky enough to win, it can be very stressful to deliver working code to the host! If you’re doing well, it’s 

a good idea to pin down what your solution is and clean up your code.

It’s also easy to get into a situation where you use different validation sets for different models, or don’t 

retain validation predictions, which can make it hard to compare them or do meta-learning later on in 

the competition.

Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
I really like XGBoost, which still tends to beat neural networks on tabular data (as well as its newer cousin, 

LightGBM). SHAP is really nice for explaining models (even complex ones), which can give you more 

insights into what to try next.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
I think it’s important to try not to get bogged down in implementing ultra-complicated solutions, and 

instead try to make incremental solutions. 
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Kaggle has certainly been influential in the previous three interviewees’ rich lives and careers, and 

they are only just getting started. Below we speak to two Kagglers who now hold senior roles in 

their respective companies, and who have had long and fruitful journeys also thanks to Kaggle.

Competitions now are a lot harder than when I first started out, so it’s a good idea to look at other peo-

ple’s code (lots of people make this public during the competition) and try to learn from them. You might 

want to consider joining a team with some other Kagglers: competitions in teams have been the most fun 

competitions for me, and have always been a fantastic learning experience.

And finally: most ideas tend to not work – if you want to win a competition, you need to persevere and 

keep experimenting!

Dan Becker
https://www.kaggle.com/dansbecker

First, we have Dan Becker, a Notebooks Grandmaster and Vice President 

of Product, Decision Intelligence, at DataRobot. Kaggle has played a 

significant part in Dan’s career.

Can you tell us about yourself?
I first tried using machine learning at a 3-person start-up in 2000 where we tried to use neural networks 

to help retailers optimize the reserve prices they set for items on eBay. We had no clue what we were doing, 

and we failed miserably.

By 2002, I was confident that machine learning could never work. I got a PhD in economics and took a 

job as an economist for the US government. I wanted to move to Colorado, but there weren’t many jobs 

there looking for economics PhDs. So I was looking for a less academic credential.

In 2010, I saw a newspaper article about the Heritage Health Prize. It was an early Kaggle competition 

with a $3 million prize. I still believed that simpler models like what I used as an economist would give 

better predictions than fancy machine learning models. So I started competing, thinking that a good 

score in this competition would be the credential I needed to find an interesting job in Colorado. My first 

submission to that competition was not last place, but it was pretty close. My heart sank when I watched 

my model get scored, and then saw everyone else was so far ahead of me. I briefly gave up any hope of 

doing well in the competition, but I was frustrated not even to be average.

https://www.kaggle.com/dansbecker
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I spent all my nights and weekends working on the competition to climb up the leaderboard. I relearned 

machine learning, which had progressed a lot in the 10 years since I’d first tried it. I’d learn more and 

upload a new model each day. It took a lot of time, but it was rewarding to march up the leaderboard each 

day. By the time my score was in the middle of the leaderboard, I thought continued work might get me in 

the top 10%. So I kept working. Soon I was in the top 10%, thinking I might get in the top 10 competitors.

When I was in the top 10, an analytics consulting company reached out to me to ask if I wanted to be hired 

and compete under their company name, which they would use for marketing. I told them I would do it 

if I could work from Colorado. So the Kaggle competition helped me achieve my original goal.

We finished in 2nd place. There was no prize for 2nd place, but everything I’ve done in my career since then 

has been enabled by this one Kaggle competition. It was a bigger success than I ever could have imagined.

How else has Kaggle helped you in your career?
Kaggle has almost entirely made my career. My first job as a data scientist came when someone recruited 

me off the leaderboard. My next job after that was working for Kaggle. Then I worked at DataRobot, whose 

recruiting strategy at the time was to hire people who had done well in Kaggle competitions. Then I went 

back to Kaggle to start Kaggle Learn, which is Kaggle’s data science education platform. The list goes on. 

Every job I’ve had in the last decade is clearly attributable to my initial Kaggle success.

As I switched from economics to data science, my Kaggle achievements were at the heart of why I was 

hired. Being further in my career now, I don’t think in terms of portfolios... and I’m fortunate that I’m 

recruited more than I look for work.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I’ve been around the community for a long time, but I haven’t intensely dedicated myself to a competition 

in 7 or 8 years. I enjoy new types of competitions. For example, I was first exposed to deep learning in 

2013 as part of Kaggle’s first competitions where deep learning was competitive. This was before Keras, 

TensorFlow, PyTorch, or any of the deep learning frameworks that exist today. No one in the community 

really knew how to do deep learning, so everyone was learning something new for the first time.

Kaggle also ran an adversarial modeling competition, where some people built models that tried to ma-

nipulate images slightly to fool other models. That was very experimental, and I don’t know if they’ll ever 

run anything like that again. But I really like the experimental stuff, when everyone in the community 

is figuring things out together in the forums.
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How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
The last few times I’ve done competitions, I focused on “what tooling can I build for this competition that 

would automate my work across projects?”. That hasn’t been especially successful, but it’s an interesting 

challenge. It’s very different from how I approach everything else professionally.

Outside of competitions, I LOVE analytics and just looking at data on interesting topics. I sometimes say 

that my strength as a data scientist is that I just look at the data (in ways that aren’t filtered by ML models).

I also spend a lot of time thinking about how we go from an ML model’s prediction to what decision we 

make. For example, if a machine learning model predicts that a grocery store will sell 1,000 mangos 

before the next shipment comes, how many should that grocery store hold in stock? Some people assume 

it’s 1,000... exactly what you forecast you can sell. That’s wrong.

You need to think about trade-offs between the cost of spoiling mangos if you buy too many vs the cost of 

running out. And what’s their shelf life? Can you carry extra stock until after your next shipment comes? 

There’s a lot of optimization to be done there that’s part of my day-to-day work, and it’s stuff that doesn’t 

show up in Kaggle competitions.

Tell us about a particularly challenging competition you entered, and 
what insights you used to tackle the task.
I tried to build an automated system that did joins and feature engineering for the Practice Fusion 

Diabetes Classification challenge. The main thing I learned was that if you have more than a few files, 

you still needed a person to look at the data and understand what feature engineering makes sense.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
New participants don’t realize how high the bar is to do well in Kaggle competitions. They think they 

can jump in and score in the top 50% with a pretty generic approach... and that’s usually not true. The 

thing I was most surprised by was the value of using leaderboard scores for different models in assigning 

weights when ensembling previous submissions.

What mistakes have you made in competitions in the past?
I’ve screwed up last-minute details of submissions in multi-stage competitions several times (and ended 

up in last place or near last place as a result).
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Are there any particular tools or libraries that you would recommend 
using for data analysis or machine learning?
Mostly the standard stuff. 

Outside of Kaggle competitions, I personally like Altair for visualization... and I write a lot of SQL. SQL 

is designed for looking at simple aggregations or trends rather than building complex models, but I think 

that’s a feature rather than a bug.

Jeong-Yoon Lee
https://www.kaggle.com/jeongyoonlee

Finally, we have Jeong-Yoon Lee, a multiple-medal-winning Competi-

tions Master and Senior Research Scientist in the Rankers and Search 

Algorithm Engineering team at Netflix Research.

Can you tell us about yourself?
My name is Jeong, and I’m a Senior Research Scientist at Netflix. I started Kaggle back in 2011 when I 

finished my PhD and joined an analytic consulting start-up, Opera Solutions. There, I met avid Kaggle 

competitors including Michael Jahrer, and we participated in KDD Cups and Kaggle competitions together. 

Since then, even after leaving the company, I continue working on competitions both as a competitor 

and an organizer. Lately, I don’t spend as much time as I did before on Kaggle, but still check it out from 

time to time to learn the latest tools and approaches in ML.

Has Kaggle helped you in your career?
Tremendously. First, it provides credentials in ML. Many hiring managers (when I was an interviewee) 

as well as candidates (when I was an interviewer) mentioned that my Kaggle track records had caught 

their attention. Second, it provides learning in state-of-the-art approaches in ML. By working on over 

100 competitions across different domains, I’m familiar with more approaches to almost any ML problem 

than my peers. Third, it provides a network of top-class data scientists across the world. I’ve met so many 

talented data scientists at Kaggle and enjoy working with them. I translated Abhishek Thakur’s book, 

organized a panel at KDD with Mario, Giba, and Abhishek, and am interviewing for Luca’s book. ;)

https://www.kaggle.com/jeongyoonlee
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In 2012, I used Factorization Machine, which was introduced by Steffen Rendle at KDD Cup 2012, and 

improved on prediction performance by 30% over an existing SVM model in a month after I joined a 

new company. At a start-up I co-founded, our main pitch was the ensemble algorithm to beat the mar-

ket-standard linear regression. At Uber, I introduced adversarial validation to address covariate shifts 

in features in the machine learning pipelines.

What’s your favorite kind of competition and why? In terms of 
techniques and solving approaches, what is your specialty on Kaggle?
I like competitions with small to medium-size datasets, which are mostly tabular data competitions, be-

cause I can quickly iterate different approaches even on my laptop anytime anywhere. During my peak 

time at Kaggle in 2015, I often built my solutions on the airplane or in between my babysitting shifts. My 

triplets were born in late 2014 and I was working at a new start-up I’d co-founded.

I don’t think I have any special modeling techniques, but my specialty is more around competition man-

agement, which includes recruiting team members, setting up a collaboration framework (e.g., Git, S3, 

Messenger, Wiki, internal leaderboard, cross-validation splits), helping the team work effectively through-

out the competition, etc. So I’m not a competition Grandmaster myself, but was able to reach the top 10 

because other Grandmasters liked to work with me.

How do you approach a Kaggle competition? How different is this 
approach to what you do in your day-to-day work?
I try to build a pipeline that enables fast iterations and incremental improvements. The more ideas you 

try, the better chance you have to do well in a competition. The principle applies to my day-to-day work 

as well. The scope is different, though. At work, we start by defining problems and identifying the data, 

while at Kaggle, both are given, and we start from EDA.

In your experience, what do inexperienced Kagglers often overlook? 
What do you know now that you wish you’d known when you first 
started?
Recently, I noticed that many users simply fork a Notebook shared by other users and fine-tune it to get 

better scores. Eventually what matters is learning, not the Kaggle ranking or points. I recommend that 

new Kagglers spend more time building their own solutions.

What’s the most important thing someone should keep in mind or do 
when they’re entering a competition?
It’s about learning, not about winning.
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Participating in Kaggle Days and other Kaggle 
meetups
A good way to build connections with other Kagglers (and also be more easily accepted into a 

team) is simply to meet them. Meetups and conferences have always been a good way to do so, 

even if they do not specifically deal with Kaggle competitions, because the speakers talk about 

their experiences on Kaggle or because the topics have been dealt with in Kaggle competitions. 

For instance, many Research competitions require successful competitors to write papers on their 

experience, and the paper could be presented or quoted during a conference speech.

There were no special events directly connected with Kaggle until 2018, when LogicAI, a company 

created by Maria Parysz and Paweł Jankiewicz, arranged the first Kaggle Days event in Warsaw, 

Poland, in collaboration with Kaggle. They gathered over 100 participants and 8 Kaggle Grand-

masters as speakers.

More Kaggle Days events followed. Here are the events that were arranged, along with the links 

to the materials and talks:

• Warsaw, May 2018 (https://kaggledays.com/events/warsaw2018)

• Paris, January 2019 (https://kaggledays.com/events/paris2019)

• San Francisco, April 2019 (https://kaggledays.com/event/sanfrancisco2019)

• Dubai, April 2019 (https://kaggledays.com/events/dubai2019)

• Beijing, October 2019 (https://kaggledays.com/events/beijing2019)

• Tokyo, December 2019 (https://kaggledays.com/events/tokyo2019)

Starting from the second event in Paris, smaller events in the form of meetups were held in various 

cities (over 50 meetups in 30 different locations). Participating in a major event or in a meetup 

is a very good opportunity to meet other Kagglers and make friends, and could be helpful both 

for career purposes or for teaming up for future Kaggle competitions. 

Do you use other competition platforms? How do they compare to 
Kaggle?
I’m advising Dacon AI, a Korean ML competition platform company. It started in 2018 and has hosted 

96 competitions so far. It’s still in an early stage compared to Kaggle, but provides similar experiences 

to Korean users.

https://kaggledays.com/events/warsaw2018
https://kaggledays.com/events/paris2019
https://kaggledays.com/event/sanfrancisco2019
https://kaggledays.com/events/dubai2019
https://kaggledays.com/events/beijing2019
https://kaggledays.com/events/tokyo2019
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In fact, one of the authors found their next job in just this way.

Getting spotted and other job opportunities
For some time, Kaggle was a hotspot where employers could find rare competencies in data 

analysis and machine learning modeling. Kaggle itself offered a job board among the discussion 

forums and many recruiters roamed the leaderboard looking for profiles to contact. Companies 

themselves held contests explicitly to find candidates (Facebook, Intel, and Yelp arranged recruit-

ing competitions for this purpose) or conveniently pick up the best competitors after seeing them 

perform excellently on certain kinds of problems (such as the insurance company AXA did after 

its telematics competitions). The peak of all this was marked by a Wired interview with Gilberto 

Titericz, where it was stated that “highly ranked solvers are flooded with job offers” (https://www.

wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in/).

Recently, things have changed somewhat and many Kagglers report that the best that you can 

expect when you win or score well in a competition is some contact from recruiters for a couple 

of months. Let’s look at how things have changed and why.

Nowadays, you seldom find job offers requiring Kaggle experience, since companies most often 

require previous experience in the field (even better, in the same industry or knowledge domain), 

an academic background in math-heavy disciplines, or certifications from Google, Amazon, or 

Microsoft. Your presence on Kaggle will still have some effect because it will allow you to:

• Be spotted by recruiters that monitor Kaggle rankings and competitions

• Be spotted by companies themselves, since many managers and human resource depart-

ments keep an eye on Kaggle profiles

• Have some proof of your coding and machine learning ability that could help companies 

select you, perhaps not requiring you to take any further tests

• Have specific experience of problems highly relevant to certain companies that you cannot 

acquire otherwise because data is not easily accessible to everyone (for instance, telematics, 

fraud detection, or deepfakes, which have all been topics of Kaggle competitions)

Seldom will your results and rankings be taken into account at face value, though, because it is 

difficult to distinguish the parts that are actually due to your skill from other factors affecting 

the results that are of less interest to a company thinking of hiring you (for instance, the time you 

have available to devote to competitions, hardware availability, or some luck).

https://www.wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in/
https://www.wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in/
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Your Kaggle rankings and results will more likely be noticed in the following cases:

• You have scored well in a competition whose problem is particularly important for the 

company.

• You have systematically scored well in multiple competitions around topics of interest for 

the company, a sign of real competency that means you are not simply labeling yourself 

a “data scientist” or a “machine learning engineer” without a solid basis.

• Through your Kaggle participation, you are showing a true passion for data analysis to 

the point where you are investing your free time for free. This is a positive, but may also 

turn into a double-edged sword and bring lower monetary offers unless you show that 

you recognize your value.

While they might not make the difference alone, your Kaggle rankings and results can act as 

differentiators. Recruiters and companies may use Kaggle rankings to make lists of potential 

candidates. The two most noticed rankings are in Competitions and Notebooks (hence, they also 

have the more intense competition and larger numbers of Grandmasters out of the four ranked 

areas), but sometimes they also watch the rankings for a specific competition. When certain rare 

competencies (for instance, in NLP or computer vision) are sought after, it is easier to find them 

in competitions that require you to use them skillfully in order to be successful.

Another great differentiator comes at interview time. You can quote your competitions to show 

how you solved problems, how you coded solutions, and how you interacted and collaborated 

with teammates. On these occasions, more than the ranking or medal you got from Kaggle, it is 

important to talk about the specifics of the Kaggle competition, such as the industry it referred to, 

the type of data you had to deal with and why it interested you, and also to present your actions 

during the competition using the STAR approach, often used in job interviews. 

The STAR approach
In the STAR approach, you should structure what you did in a competition based on the framework 

Situation, Task, Action, and Result. This method aims to have you talk more about behaviors 

than techniques, thus putting more emphasis on your capacities than the capabilities of the al-

gorithm you have chosen; anyone else could have used the same algorithm, but it was you who 

managed to use it so successfully.

The method works principally when dealing with success stories, but you can also 

apply it to unsuccessful ones, especially for situations where you gained important 

insights about the reasons for your failure that stopped you from failing in the same 

way again.
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To apply the method, you break down your story into four components:

• Situation: Describe the context and the details of the situation so the interviewer can 

understand, at a glance, the problems and opportunities

• Task: Describe your specific role and responsibilities in the situation, helping to frame 

your individual contribution in terms of skills and behaviors

• Action: Explain what action you took in order to handle the task

• Result: Illustrate the results of your actions as well as the overall result

Some companies do explicitly ask for the STAR approach (or its relative, the Goal-Impact-Chal-

lenges-Finding method, where more emphasis is put on the results); others do not, but expect 

something similar.

Since just reporting the rankings and medals you got in a competition may not be enough to 

impress your interviewer, reformulating your successful experience in a Kaggle competition is 

paramount. The approach can work either when you have competed solo or in a team; in the 

latter case, an important aspect to describe is how you interacted with and positively influenced 

the other teammates. Let’s discuss some ways you could do that.

First, you describe the situation that arose in the competition. This could be in the initial phases, 

in the experimentation phases, or in the final wrap-up. It is important you provide clear context 

in order for the listener to evaluate whether your behavior was correct for the situation. Be very 

detailed and explain the situation and why it required your attention and action.

Then, you should explain the task that you took on. For instance, it could be cleaning your data, 

doing explorative analysis, creating a benchmark model, or continuously improving your solution.

Next, you describe how you executed the task. Here, it would be quite handy if you could present 

a Medium article or a GitHub project in support of your description (as we discussed in the pre-

vious chapter). Systematically presenting your experience and competence through well-written 

documentation and good coding will enforce your value proposition in front of the interviewer.

Finally, you have to explain the result obtained, which could be either qualitative (for instance, 

how you coordinated the work of a team competing on Kaggle) or quantitative (for instance, how 

much your contribution affected the final result).

The best answers are those that suit the values and objectives of the company you 

are interviewing for.
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Summary (and some parting words)
In this chapter, we have discussed how competing on Kaggle can help improve your career pros-

pects. We have touched on building connections, both by teaming up on competitions and partic-

ipating in events related to past competitions, and also on using your Kaggle experience in order 

to find a new job. We have discussed how, based on our experience and the experience of other 

Kagglers, results on Kaggle alone cannot ensure that you get a position. However, they can help 

you get attention from recruiters and human resource departments and then reinforce how you 

present competencies in data science (if they are supported by a carefully-built portfolio, as we 

described in the previous chapter).

This chapter also marks the conclusion of the book. Through fourteen chapters, we have discussed 

Kaggle competitions, Datasets, Notebooks, and discussions. We covered technical topics in ma-

chine learning and deep learning (from evaluation metrics to simulation competitions) with the 

aim of helping you achieve more both on Kaggle and after Kaggle.

Having been involved in Kaggle competitions for ten years, we know very well that you can find 

everything you may need to know on Kaggle – but everything is dispersed across hundreds of 

competitions and thousands of Notebooks, discussions, and Datasets. Finding what you need, 

when you need it, can prove daunting for anyone starting off on Kaggle. We compiled what we 

think is essential, indispensable knowledge to guide you through all the competitions you may 

want to take part in. That is why this has not been a book on data science in a strict sense, but a 

book specifically on data science on Kaggle.

Aside from technical and practical hints, we also wanted to convey that, in over ten years, we have 

always found a way to turn our experiences on Kaggle into positive ones. You can re-read this work 

as a book that describes our endless journey through the world of data science competitions. A 

journey on Kaggle does not end when you get all the Grandmaster titles and rank first worldwide. 

It actually never ends, because you can re-invent how you participate and leverage your expe-

rience in competitions in endless ways. As this book ends, so your journey on Kaggle starts, and 

we wish for you a long, rich, and fruitful experience – as it has been for us. Have a great journey!
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors: 

https://packt.link/KaggleDiscord

https://packt.link/KaggleDiscord
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